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Abstract

English

To reach the Paris Agreement, the global CO2 emissions need to reach zero by
2050. The energy sector is the biggest contributor to emissions, an increase
in efficiency in this sector is necessary to achieve the emission goals. One
way to improve this and to increase the share of renewable energy sources is
the Digital Energy Twin (DET). The following methods were used to create
models and simulations for the DET.
Co-Simulation of an industrial energy system: A physical model of a thermo-
hydraulic system and a data-driven model of a photovoltaic system were
combined to a Co-Simulation model. It was shown that this can produce
meaningful results and the PV system can reduce the usage of the gas-
powered kettle. In the second part, the practical part that included work
in the laboratory, an electroplating process was conducted. The aim of the
experiment was mainly to create a data-set for the creation of a data model. The
experiment was conducted successfully and the created data-set was modeled
with different machine learning algorithms such as neural networks.

Deutsch

Um das Pariser Abkommen zu erreichen, müssen die globalen CO2-Emissionen
bis 2050 auf null sinken. Der Energiesektor ist der größte Verursacher von
Emissionen, eine Effizienzsteigerung in diesem Sektor ist notwendig, um die
Emissionsziele zu erreichen. Eine Möglichkeit, dies zu verbessern und den
Anteil der erneuerbaren Energiequellen zu erhöhen, ist der Digital Energy
Twin. Die folgenden Methoden wurden verwendet, um Modelle und Simula-
tionen für den DET zu erstellen.
Co-Simulation eines industriellen Energiesystems: Ein physikalisches Modell
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eines thermohydraulischen Systems und ein datengetriebenes Modell einer
Photovoltaikanlage wurden zu einem Co-Simulationsmodell kombiniert. Es
wurde gezeigt, dass damit aussagekräftige Ergebnisse erzielt werden können
und die PV-Anlage den Verbrauch des gasbetriebenen Kessels reduzieren kon-
nte. Aufbau eines Galvanik-Experiments: Im zweiten Teil, dem praktischen
Teil, der die Arbeit im Labor beinhaltet, wurde ein Galvanisierungsprozess
durchgeführt. Ziel des Experiments war es vor allem, einen Datensatz für
die Erstellung eines Datenmodells zu erzeugen. Das Experiment wurde er-
folgreich durchgeführt und der erstellte Datensatz konnte mit verschiedenen
maschinellen Lernalgorithmen wie neuronalen Netzen modelliert werden.
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1. Introduction

In the shadow of the Covid-19 pandemic, one may forget the challenges to
come, that need all combined effort to deal with. Some prominent examples
are climate change, increasing energy demand, the extinction of species, the
shortage of resources, increasing human population. These aspects are closely
connected and often influenced by each other. In the following part, the focus
is put mainly on the growing energy demand and its connection to greenhouse
gas emission and climate change. To give an overview, in this introduction two
recently published reports are further investigated. Firstly the World Energy
Outlook 2020, published by the International Energy Agency (IEA) [1] and
secondly the World Oil Outlook 2045, published by the Organization of the
Petroleum Exporting Countries (OPEC) [2].

1.1. Motivation

1.1.1. Current Position and Paris Agreement

The greenhouse gas emissions have been rising during the last decades, as
can be seen in Figure 1.1. To keep the effect of global warming below 2◦C,
all countries of the world signed the Paris Climate Agreement [3]. By doing
so, the countries committed to the Paris Climate goals, to keep the effects of
global warming to a minimum. To reach these goals, the development of the
CO2 emissions have to develop as is shown in Figure 1.1.

One can see in Figure 1.1 that the goals are ambitious and major changes in
all CO2 emitting processes have to be made. To stay below 1.5◦C temperature
change - which is the goal of the Paris Agreement - carbon neutrality has to
be reached by 2050 and net negative emissions have to be made after 2050.
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1. Introduction

Figure 1.1.: Historic CO2 Emissions and future projected global CO2 Emissions that meet the
Paris Agreement Temperature Goal. [4]

Figure 1.2.: The Greenhouse Gas Emissions per Sector. One can see that Energy is the main
Factor. [5]

Looking at the emissions, one can see in Figure 1.2 that the emissions related to
the energy sector make up the biggest share of the greenhouse gas emissions.
The reach the Paris Agreement goals, major reductions are necessary for this
sector.

1.1.2. Outlook

The next discussed point is the predicted development in the energy sector,
the demand, and the form of production. In Figure 1.3, one can see the
development and the prediction for the final energy consumption for the EU by
fuel and by sector. The reference for this graph is 2016, until 2050 the numbers
are predictions. The report was published by the European Commission and
considers many factors in the creation. The projection indicates a change in

2



1.1. Motivation

Figure 1.3.: Final Energy Consumption for the EU by Fuel and by Sector.[6]

Figure 1.4.: Growth in Primary Energy Demand by Fuel-Type on a global Level, 2019–2045[2]

the fuel mix of energy consumption in favor of renewable energy sources.
This shift is driven by the emission targets the members of the EU made and
energy efficiency policies until 2030 as well as the emission trading system.
Even though the share of oil decreases, it remains at a high level, mostly
because transportation is projected to remain dominated by oil.

Due to factors like the increasing population and increasing energy demand
per person, on a worldwide level the final energy consumption is expected to
rise, as can be seen in Figure 1.4. Renewable energy sources have the biggest
increase, but this does not reduce the CO2 emissions if the energy produced
by fossil fuel is not reduced.

The vision shared by OPEC paints a picture of the future that is not too
optimistic regarding climate goals. If the form of production is not expected

3



1. Introduction

to change that much, a decrease in demand is necessary. The digital twin
can help to increase the efficiency of industrial processes and help to achieve
this goal by increasing the share of renewable energies used in industrial
processes.

1.2. Project Description

The goal of the project is the creation of a Digital Energy Twin (DET) for
the printed circuit manufacturer AT&S. Large scale energy systems can only
react slowly to fluctuations in the energy demand and energy supply because
they are created for a single supply system. To overcome this limitation and
increase the flexibility, the operation of demand and supply needs to be
optimized. This optimization can lead to better integration of volatile energy
sources. These sources could be renewable energies like solar power or other
sources like waste heat could be used. By better integration the dependence
on conventional energy sources can be reduced.
To summarize, the DET is a software tool that supports in optimizing the
operation and set-up of energy systems on an industrial scale. Different data
sources, such as production data, predictions of the system as well as historical
data is used in the process. The DET aims to provide solutions to problems
related to energy fluctuations, volatile energy supply and increased efficiency.
[7] The following statements conclude the major goals of the DET.

• create optimization algorithms and software tools
• apply digital twin methodology to energy systems
• service provision of augmented and virtual
• development of energy models
• development of a concept for data security
• standardized and simplified models reality (AR/VR)

4



1.2. Project Description

The work can be split into three main parts, all of which have in common
that they are steps in the development of component models for the Digital
Energy Twin.

1. The physical modeling of an industrial heat bath and the co-simulation
of the heat bath with a data-driven photovoltaic system

2. The assembling of an electroplating process and the creation of a data
set

3. The creation of a data model using the data obtained in the electroplating
process

As can be seen from these three parts, physical models, data-driven models
and the combination of these two is the central part of the thesis. Physical
models have many advantages, they describe the system with equations, and
using programs like Modelica, systems can be constructed easily and in high
detail. Unfortunately, often it is the case that the construction of a physical
model is not possible, either because the model is too complex or too little
information is available. Then a data-driven approach can be chosen, one
uses the available data of a system to create a model, without knowing what
happens behind the scenes. These concepts are described in more detail in
section 2.5.

1.2.1. Co-Simulation of an Industrial Energy System

The physical model created in the first part is the first approach in the creation
of a model of the bath system, an important part of the Digital Twin. With the
co-simulation of the data-driven photovoltaic system, which was developed by
Schranz et al. [8], it was shown that this is a promising approach for further
implementation. The basic idea is that parts that can not be modeled physi-
cally are described by a data model, the different models can be connected
via Co-Simulation, a main tool in the creation of the DET.

5



1. Introduction

1.2.2. Setup of an Electroplating Process

In the second part, the practical part that includes work in the laboratory, an
electroplating process was conducted. The experiment setup is explained in
more detail in section 3.2. The aim of the experiment was mainly to create a
data set for the creation of a data model. The electroplating experiment was
designed in a simple way but with as much similarity to the process at AT&S
as possible.

1.2.3. Data-model of the Electroplating Process

In the third part, the data obtained in the second part was used to create a
data model of an electroplating process. Different algorithms were used, the
main focus was however on neural networks. Different architectures were
applied, it was also investigated how to increment physical knowledge and
how to include physical constraints into the network. Because the accurate
physical modeling of an electroplating process is very difficult, a data model
is a key strategy. This approach is the first step in this direction, to test if it is
an promising approach and to set the boundaries for further development.

6



2. Literature Study

2.1. Overview

In this chapter, the concept of Digital Twins and Cyber physical systems is
explained as well as their differences. A analysis regarding the number, topic
and distribution of publication to DT and CPS was created.

2.2. Digital Twin

2.2.1. Introduction

Digital Twins are virtual copies of real processes and physical systems. NASA
defines DTs as ”integrated multi-physics, multi-scale, probabilistic simulation
of a vehicle or system that uses the best available physical models, sensor
updates, fleet history, and so forth, to mirror the life of its flying twin” [9].Since
its conceptual introduction by Michael Grieves in 2002 , the concept has
evolved to model not only discrete production but also continuous production
processes, information processes, and transport systems.[10]

The idea of the Digital Twin has not changed drastically since its creation,
but the terminology has changed. The concept is still valid today and the
idea, that by using the digital information of a physical system to construct a
digital entity on its own has not changed. As the creator of the Digital Twin
mentioned, it is of special interest to link the twin to the physical system
during its whole lifecycle. [11]. The Digital Twin concept model is shown in
Figure 2.1.

7



2. Literature Study

Figure 2.1.: The Digital Twin Concept exemplified on a Battery Pack in a Hybrid Car. [12]

It contains three main parts: [11]

• physical products in real space
• virtual products in virtual space
• the connections of the virtual and real space

In Figure 2.1, an example of a DT can be seen, the DT of a battery pack. One
can see the different main parts, the real and the virtual space as well as the
connection between them. Data and information is exchanged and ties the
virtual and real products together.

2.2.2. Keyword Analysis for DT and CPS

To give a better overview about the development of publications related to
the topic Digital Twin and Cyber-Physical System, a literature analysis was
conducted. Information about the most important keywords and the number
of papers related to these can be obtained by these graphs. These graphs are
represented in this section, to give new insight into this area. To obtain the
data, Elsevier’s abstract and citation database Scopus was used. The number
of publications in which the keyword was present in either title, abstract or
the keyword section of the paper was determined. Even though not every
paper can be captured in this way, this analysis serves to show the trend of
the development and helps to predict the future development of the area.

8



2.2. Digital Twin

Figure 2.2.: Keyword Analysis to show the development in yearly Publications and which areas
are important. The graph shows the yearly publications to ”Digital Twin” with one
of the shown words in either Title, Abstract or Keywords.

2.2.3. Development

2.2.3.1. Early Years: 2002 - 2010

The concept of the Digital Twin was first mentioned by Michael Grieves, in
the year 2002. This happened at a presentation at the University of Michigan,
it was not yet called Digital Twin, but conceptual ideal for product lifecycle
management (PLM). Even though it had a different name, the elements of
the Digital Twin which are mentioned above were all mentioned. Real space,
virtual space and their connection were mentioned in the presentation, the
idea of the DT was created. [11]

The concept was referred to as product lifecycle management (PLM), this
meant that that the two systems would be linked together for the entire
life-cycle of the product. This includes the following parts: [13]

• creation
• production
• operation
• disposal

9



2. Literature Study

2.2.3.2. Recent Years: 2010 - 2019

During the last decade, several changes could be noted. First, the DT was used
in new areas, especially in astronautics and the aerospace field. NASA has
used it several times, in their technology roadmaps [14] and in the proposals
for sustainable space exploration [15]. Another field the DT was proposed to
was to aircrafts, to fighter aircrafts and NASA vehicles [16].
The biggest change however can be seen in Figure 2.2. The number of pub-
lications changed significantly, a rise from 24 publication in 2016 to 934

publications in 2019 is shown. The increased interest in DT was due to its
application in different industries like production design, the optimization
of processes, prognosis and usage in the automotive and energy sector [17].
The development regarding the different aspects of DTs can be seen in Figure
2.2. It is shown which keywords are mentioned more frequently as others and
how the development in the last 5 years looks like.

2.2.4. Digital Energy Twin

The term “Digital Energy Twin” is new to the scientific literature, it has not yet
been used in a publication, as a Scopus keyword analysis showed. However,
the terms “Digital Twin” and “Energy” have been used together and several
approaches similar to the “Digital Energy Twin” described in this thesis have
been made.
In 2018, Karanjkar et al present a case study for energy optimization in an
automated industrial assembly line process [18]. This optimization was done
by applying the digital twin concept to the assembly line, the results showed
that an energy consumption reduction by a factor of 2.7 was possible without
significantly affecting the line throughput.

2.3. Cyber Physical System

Cyber-physical systems (CPS) consist of mechanical components, software and
modern information technology. They are a new generation of systems and
contain capabilities which allow them to interact with humans. Via networks
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2.3. Cyber Physical System

like the internet, they are connected with each other and can be controlled and
regulated. The exchange of data can take place in real time. Future research
includes airplanes and space vehicles, hybrid cars, and autonomous driving.
[19] Cyber-physical systems (CPS) are used for the integration of software
components with physical processes [20]. In the literature, the relationships
between DTs and CPS are described differently. Both are closely related with
the other, but they differ in concept and core elements. Another difference are
the fields of application, according to Lu et al. 2020 [21].
CPS enable the control and monitoring of complex systems and infrastructures,
they provide services as real-time sensing, information feedback and dynamic
control [22] Examples for CPS are:

• autonomous driving cars
• smart buildings
• industry 4.0
• smart grid

There are different perspectives to look at cyber-physical systems, what leads
to different definitions in the scientific community. In the following, examples
of representative definitions of CPS are given. CPSs are described as “phys-
ical and engineered systems, whose operations are monitored, coordinated,
controlled, and integrated by a computing and communicating core” Rajku-
mar [23]. Another definition is “integration of computation with physical
processes” by Lee [24], or “embedded systems together with their physical
environment” by Marwedel [25]. All definitions have in common, that comput-
ing is deeply embedded into every physical component and that a real-time
response is necessary. To conclude, CPS are complex, next-generation engi-
neering systems that integrate a cyber part into the physical part. The cyber
part is the embedded computing technology and the integration includes
observation, communication, and control of the physical system. [17]

2.3.1. Development

The term CPS was coined in the USA, some years later the development
was promoted by innovation programs of the European Union [26]. In 2006

the term CPS was used at the National Science Foundation (NSF) of the
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United States [27]. Another step in the development happened in 2007 by the
President’s Council of Advisors on Science and Technology (PCAST). The
organization recommended the investigation and development of CPS and
promoted its importance in the scientific community [28].
In Europe, the European Union provided programs to increase the possibili-
ties of research on CPS. The EU technology initiative ARTEMIS (Advanced
Research and Technology for Embedded Intelligence Systems) have invested
in the development of next-generation systems between European Nations.
The vision of a world with smart and aware systems and machines which
are connected and communicate with each other was promoted by this pro-
gram. [29]. Another program (Horizon 2020) was launched by the European
Commission in 2013 to tackle societal challenges by developing new strategies
to deal with them. Horizon 2020 includes CPS and computing research and
innovation. [30]

2.4. Comparison of DT and CPS

The distinction between Digital Twins and Cyber-Physical Systems is not triv-
ial, they are frequently used in similar ways or to describe alike problems. Both
are frequently mentioned in the context of internet of things (IoT), Industry
4.0, and production optimization. A comparison of the number of publications
is shown in Figure 2.3. One can see that CPS is at a higher level and DT started
only in 2015. The publications to DT however increased from only 24 in 2016

to almost 1000 in 2019. The subject areas to which the publications can be
connected can be seen in Figure 2.4 and Figure 2.5.

Another difference can be found in the field of applications. While CPS aim at
monitoring and controlling processes, DTs aim at analyzing/understanding
real-time data of an object or system by means of its virtual representation
and deriving conclusions and learning from the data. The control of processes
and systems is part of CPS but not of DTs. According to this definition, DTs
are the prerequisite for the development of CPS. [31] A way to visualize the
differences between the two concepts is to analyze publications. An analysis
of the publications using the data provided by Scopus was done and can be
seen in Figure 2.3, Figure 2.4 and Figure 2.5.
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Figure 2.3.: Keyword Analysis to show the Development of DT and CPS.

In Figure 2.3 the publications to DT and CPS are visualized and compared to
each other. One can see that CPS start at a higher level and even today there
are more than three times as many publications published as to DTs. Until
2016 there were almost no publications on the topic DT, but in recent years
the increment can be seen clearly.

In Figure 2.4 and Figure 2.5 the publications are organized with respect to their
subject areas. There are many similarities, both have engineering, computer
science and mathematics as the three biggest subject areas and engineering
and computer science dominate more than half of the field. But there are also
differences visible, the biggest field in CPS is computer science while in DT
it is engineering. In CPS the three biggest subject areas cover over 3/4 of the
publications, while the publications of DT are more diversified and natural
sciences are more present.

2.4.1. Tools: Modeling and Simulation

The most important tool in the creation and editing of DT and CPS is modeling.
This is a central component, DT and CPS would not exist without modeling.
For the analysis and optimization of CPS, methods and tools are needed for
both the cyber and the physical part.[31] Furthermore, recent studies have
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Figure 2.4.: The most important Subject Areas for Digital Twin. The number of Publications
was analyzed.

Figure 2.5.: The most important Subject Areas for Cyber Physical Systems. The number of
Publications was analyzed.
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shown that co-simulation is a promising approach for the modeling and
simulation of complex systems. [32] In the following chapter, the principles of
modeling, the different approaches, and their applications are explained in
more detail.
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2.5. Modeling Theory

2.5.1. Modeling Paradigms

A trend in modeling and optimization is the increased complexity of the
models and the systems which are analyzed. This fact and that subsystems
have to be considered together increases the requirements. These increase in
complexity is a challenge to traditional techniques, new tools for modeling and
simulation of complex systems are needed. The combination of data-driven
models with first-principle models is a new approach. This Co-Simulation
is a promising approach as recent studies have shown [32]. Subsystems are
coupled and exchange data in discrete points which enables a new form of
complexity. [31]

2.5.2. Types of Modeling

2.5.2.1. White Box Modeling

White-box models are specified by the fact that before the modeling process
is started, the modeler already has deep knowledge about the system and
physical insight to it. One can argue that it is not possible to have a white box
model since we never have perfect physical insight into a system. If we take
a simple example such as the heat flux through a wall, the wall will differ
slightly from brick to brick, only an assumption can be made in the modeling
process. [33]

2.5.2.2. Black Box Modeling

Black-box models are created from data, before the modeling process we have
no or only limited knowledge about he system and only little physical insight.
It is usually formed from a known basis of model terms, which is flexible
enough to represent a broader range of behaviors.
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Figure 2.6.: Different types of Models are distinguished by the Amount of Prior Knowledge
they Incorporate.

Figure 2.7.: Comparison of Acausal and Causal Modeling [31]

2.5.2.3. Grey Box Modeling

Grey-box models lie in between black and white-box models, they are obtained
when less physical insight is available. There are two sub-classes: physical
models and semi-physical models, this depends on the amount of knowledge
we have about the system.

In Figure 2.6, a representation of the key elements of each model type can be
seen.

2.5.3. Physical Modeling

Physical modeling is closely connected to the principle of white box model-
ing. In this field, a distinction can be made between causal and non-causal
modeling, this is explained in Figure 2.7 .

Acausal refers to the functionality of the model, if the modeled system is
directional or not. In this form of modeling, one uses ordinary differential
equations (ODE) to describe the system. The equations are used in an explicit
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form and can be regarded as direct, which makes it understandable how one
can derive the unknown parameters from the known ones[34]. In general,
such a system has the form:

x̂ = f (x(t), u(t), p) (2.1)

where x is the state variable,t is the time, u is the controlled variable and p
are parameters.

In causal modeling on the other hand, differential-algebraic equations (DAE)
in implicit form are used to describe the system.

F(x̂, x(t), y(t), u(t), p) = 0 (2.2)

where y is the algebraic variable. The equations must be used to solve the
unknowns in view of the known quantities determined by a certain usage
context. Solving DAEs is generally more difficult than solving explicit ODEs
[34]. Results from Schweiger et al. 2020 [34] show that causal modeling
paradigms are suitable for modeling complex systems, causal techniques are
less suitable. Both can be used for simulation.

2.5.3.1. Modelica and Dymola

Modelica is an object-oriented modeling language for physical models. It was
released in 1997 in the programming language standard 1.0. In April 2017,
version 3.4 was released. In Modelica, a physical model is described with
algebraic and ordinary differential equations. A Modelica translator is used to
translate these equations into a mathematical model The goal of Modelica is
to model the dynamic behavior of technical systems consisting of components
from different domains in a convenient way. The models are described by
differential, algebraic, and discrete equations. [35]

There are free and commercial versions of Modelica simulation environments.
Dymola is based on the open Modelica language, in Dymola hierarchical mod-
els composition is supported. Many libraries with models than can modified
for specific purposes exist. The reusability of the models - which is also an
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important factor in the Digital Energy Twin - is a main advantage of Dymola.
[36]

An example for a library is the Buildings library from the IBPSA Project 1, it
is a ”Modelica Framework for building and community energy system design
and operation ” [37]. It is formed by cooperation from different universities in
Europe and the USA. Parts of this library were used in the Use-

2.5.3.2. Examples

A physical model is a smaller or larger physical copy pf an object that is built
in terms of logic and mathematical equations, examples are:

• model car
• model rocket
• simple model of a house
• model of a wind turbine

To summarize, processes that can be idealized and still give meaningful results
can be described by physical modeling.

2.5.4. Data-driven Modeling and Machine Learning

Physical modeling requires a priori knowledge of a system and its parts.
For the development of physical models one therefore needs experts which
also limits the availability. Furthermore, it is often difficult to evaluate the
performance and error of the models [38].

In data-drive modeling, large amounts of data can be used to automatically
construct models for monitoring or fault detection. The difference to physical
modeling is that we do not need any insight into the system or a priori
knowledge. The learning happens by observing the system, this is a good
alternative for complex systems or systems where we have no physical insight
[39]. Of this huge field, the focus in this work lies on machine learning since
these were the methods that were applied to the data. In the following chapter,
an overview of this topic is given in more detail, the applied algorithms are
explained in Chapter 3.3.
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2.5.4.1. Training and Data

It is not trivial to obtain the data, that are needed for the training of a model.
Many times, more time and effort is needed to obtain the data as for the
creation and the training of the model. Depending on the size of the data-
set, usually 70% - 85% of the data are used for training purposes and the
remaining part for testing of the model.

2.5.4.2. Examples

Typical examples of data-driven models that also demonstrate the situation
in where machine learning methods is useful and can produce meaningful
results and predictions are:

• model to predict live cycle of a virus [40]
• model to predict protein interfaces [41]
• model of a complex building

Whenever a system is complex and the idealization leads to big errors, one
may try to collect data and model the object without detailed knowledge
about the system.

2.5.5. Co-Simulation

This field combines parts of physical and data-driven modeling. The sys-
tems under consideration become more complex and the efficiency has to
increase. One approach to this problem is Co-Simulation [32]. There are two
approaches to this problem and to efficiently simulate the interaction between
subsystems:

(i) the whole system can be modeled using a single tool, this is referred to
as a monolithic simulation

(ii) subsystems can be coupled in a so-called co-simulation.
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There are several differences between this approaches, the second one has
the advantage that is is possible to specialize each subsystem and implement
more knowledge. Different simulators can be used to combine the subsystems
and for their interaction [42]. The communication can slow down the the sim-
ulation, the communication steps have to be chosen in an interval according
to the simulation time. The number of applications of co-simulation has risen
in many areas because of the factors mentioned above. [43]

Dynamical model produce traces, each trace is calculated by the simulation
of the subsystem. The subsystems are connected trough their traces by the
simulators. Two things are needed to run a co-simulation [44].

• a co-simulation scenario
• an orchestrator algorithm

The function of these are to connect the subsystems and to produce the final
result. The co-simulation scenario takes the role of the connector between
the parts and couples the models together. Each model needs inputs and
produces outputs, how these interact with each other is described by the co-
simulation scenario. The results are generated by the orchestrator algorithm,
all subsystems and the simulations are started with a starting value. This sets
their input and produces an output, over the simulation time the development
of the coordination happens over the orchestrator [32]. To differenciate the
characteristics of the simulators and their interaction, one can distinguish two
main approaches for co-simulation, namely discrete-event (DE) and continuous-
time (CT) co-simulation. Both approaches can be used for the co-simulation of
continuous, discrete, or hybrid coupled systems [44].

2.5.5.1. Discrete Event

Discrete event means, that the communication of the simulation units happens
in events. These units are characterized by the two factors, the reactivity and
transiency [44].

• reactivity: the DE Simulation unit has to process an event instantly
• transiency: events can cause other events to occur instantaneously
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To give an example of a DE system, one can consider a traffic light. The modes
are: red, yellow, green or off. The traffic light is described by events, initially,
it can be green and change to red after 60 seconds. But a police officer could
also trigger a change in between from red to off. The system’s output is an
event, from one state to another.

2.5.5.2. Continuous Time

A Continuous-Time (CT) has a state that evolves continuously overtime, which
means that ideally in CT co-simulation, the simulation units exchange their
values continuously. The states of a CT simulation unit change continuously
and its output may have to obey the physical laws of continuity [44].

2.5.5.3. Hybrid

The combination of CT and DE paradigms lead to hybrid co-simulation. An
example for this combination can be found in many regulation units. In the
use case, the CT system represents the temperature of the heat bath, the DE
part is he controller that switches the heating systems like the boiler or the
heating cartridge on or off.

2.5.5.4. Functional Mockup Interface

The Functional Mockup Interface (FMI) is used simulation from different lan-
guages or programs, it combines the subsystems between different languages.
It is an industry standard that provides an exchange format for code and
data. In the Use-case which is presented later, a FMI standard was used to
combine Python and Modelica. It has proven to be the state of the art tool for
combining different modeling approaches [45].
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2.6. Electroplating Theory

2.6.1. Requirements and Basics

Definition: Electroplating is the electrochemical deposition of metals on a
surface, in the process substrates are coated with some metallic deposits.
Electroplating takes place in an electrolytic bath, a liquid with free moving
ions. Current is conducted through the electrolytic bath, the object to be plated
is usually located at the negative pole (cathode), the metal to be plated is
located at the positive pole (anode). Electric current is used to obtain a metal
deposited on the object, this happens by dissolving metal ions by reduction.
The metal ions can be deposited from the solution, which leads to a change of
concentration of the electrolyte, or the anode dissolves at the same time and
the concentration stays constant.
A distinction is made between the electrodeposition of thin layers and the
electrodeposition of thick layers. Pre-treatment of the substrate is necessary,
usually in two steps, first the degreasing and second the removal of the oxide
layer.

2.6.2. Processes and important Terms

2.6.2.1. Deposition of metal without external power source

The form of deposition does not use any external power source to supply the
electrons which are needed for the reduction of the metal. These electrons are
supplied by an inner current source, there are three categories:

1. ion exchange process
2. contact procedure
3. reduction process

The first procedure is used in one step for the galvanization process at AT&S
and is described here briefly. It was however not used during the experiment.
The ion exchange process consists mainly of the process of putting the to be
coated part at a high temperature in the corresponding solution. The basis
is the deposition of a noble metal present in solution in ion form on a base
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Figure 2.8.: Electroplating in a Copper Sulfate Solution with a soluble Copper Anode. [46]

metal.
In the process, the less noble metal is dissolved as an ion and thus provides
the electrons necessary to discharge the ions of the more noble metal, which
is then deposited in metallic form. The ion exchange stops immediately when
the surface of the base metal is completely covered, so only very thin layers
can be deposited. [46]

2.6.2.2. Deposition of metal with external power source

Metal deposition with an external power source is based on the process of
electrolysis. Its settings determine the quantitative process, the qualitative
process, and among other things the structure and properties of the resulting
coatings. The control of these reactions makes it possible to create coatings of
uniform thickness with the desired properties.

Electrolysis: When two metal strips are immersed in the solution of a metal
salt and connected to the poles of a direct current(DC) source, a current flows
through the solution.
The positive ions, the cations, migrate to the negative electrode, the negative
ions, the anions, to the positive electrode (anode). The cations take up negative
charge at the cathode, are reduced and deposited in metallic form, the reverse
process occurs at the anode. The anions migrate with their excess electrons to
the anode, release the excess and become neutral particles.
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Reactions: Solutions of metal salts are dissociated. If electrolysis is carried out
in a copper sulfate solution, the copper ion migrates to the cathode, where
metallic copper is deposited. The sulfate ion migrates to the anode, is dis-
charged there, and combines with a copper ion formed during the dissolution
of the anode to form copper sulfate. The copper sulfate dissociates again and
the process is repeated. Thus the concentration of the electrolyte remains
constant.

Dissociation of copper sulfate:

CuSO4 → Cu2+ + SO2−
4 (2.3)

Process at the cathode:

Cu2+ + 2e → Cu (2.4)

Process at the anode:

SO2−
4 → SO4 + 2e (2.5)

This reaction sequence applies if the anode consists of a soluble layered metal,
otherwise the reaction mechanism is much more complicated.
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2.6.2.3. Important Terms

Electrolyte:

Electrolytes are divided into basic and acid, depending on their pH value.
They are further classified by the applied metal salt. The main content of the
electrolyte is salts containing the coating metal to be deposited, components
for controlling the electrolyte properties, and components for controlling the
layer properties.

Faraday’s Law

The quantitative relationships between electrochemical current and deposited
mass in electrolysis were discovered by Michael Faraday, who formulated two
laws. This allows the amount of metal deposited, the layer thickness, exposure
times, etc. to be calculated. Faraday’s 1st law states that the amount of material
chemically converted by the electric current is directly proportional to the
amount of current. Faraday’s 2nd law states that the quantities of different
substances deposited on the electrodes by the same amount of current are
proportional to their chemical equivalent weights. The following applies: 1

Faraday deposits 1 gram equivalent of metal. The gram equivalent is calculated
as follows: The atomic weight is divided by the valence of the metal relevant to
electrolysis. In practice, an electrochemical equivalent is used. It indicates how
many grams of a substance are deposited per ampere-hour and is calculated
according to the following equation:

electrochemical equivalent =
atomicmass(g)
valence · 26, 8

(2.6)

In Table 2.1 the electrochemical equivalent of some important metals can be
found.

Current density

The ratio between the amount of current and the electrode surface is called
current density. It indicates the amount of current per unit area. The cathodic
current density is important for the quality of the coatings. There is an optimal
current density range for each electrolyte.
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Deposition rate

To deposit a coating with a certain layer thickness, the time required for this
is calculated from the deposition conditions, these can be seen in Table 2.1.
The corresponding formula is:

t =
d · s · A · 1000

Ee · i · r (2.7)

In this equation, the variables have the following meaning:

• t = exposition time [hours]
• d = coating thickness [mm]
• s = density of the laminated metal [g/cm3]
• A = area to be coated [dm2]
• Ee = electrochemical equivalent [g/Ah]
• i = current [A]
• r = cathodic current yield [1]

In Table 2.1, density, atomic weight and electrochemical constants of some
important coating metals are shown. These are the metals that were considered
as anodes for the experimental setup. [46]
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Table 2.1.: Density, Atomic Weight and Electrochemical Constants for selected Coating Metals
[46]

M ... Name of the metal
S ... Symbol

d ... Density at 20°C / g/cm3

u ... atomic mass
v ... valence

Z ... electrochemical equivalent
c ... current yield

R ... deposition rate at 1 A / dm3 and the specified current yield

M S D u v Z c / % R / µ m / h

Copper Cu 8,96 63,54 2 1,19 97-100 12,8 - 13,2
Iron Fe 7,87 55,847 2 1,04 95-100 12,5 - 13,2
Silver Ag 10,5 107,87 1 4,02 85 - 95 32,6 - 36,4
Zinc Sn 7,29 118,69 2 2,21 70 - 95 21,3 - 28,9
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3.1. Development of the Use Case for a
Thermohydraulic System

Machine learning methods, in particular neural networks, have become in-
creasingly important in recent years. Fields of application are very diverse
and range from artificial intelligence, autonomous driving to the prediction
of photovoltaic modules. In the natural sciences, however, it is not yet very
widespread, which is why development is primarily associated with the ex-
pertise of users and accumulated experience.
The method of data-driven modeling follows a step-by-step approach. The
basis is data of the process or energy supply system to be modeled. The more
data available, the sooner a model can be developed and trained to provide
accurate and reliable information on the behavior of a process. The first step
in the DET project was the data-model of the photovoltaic system. The basic
approach of the method has been developed and successfully applied to a PV
module. The next step is the application of data-driven modeling to a process
bath at AT&S. The motivation of the next step in the development is to refine
the method and the model in the mathematical environment of learning. It
should be noted that at the end of this experiment the model does not map
the actual process at AT&S. It is merely the first development step, but was
designed in a way to have several points in common with a real heat bath
from AT&S.

Definition

The following use-case demonstrates how physical models of different do-
mains and data-driven models can be co-simulated. For this purpose, a sim-
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plified use case in the field of industrial energy supply was developed, this
can be seen in Figure 3.3. A heat bath with a periodically varying heat de-
mand is supplied from three sources, the boiler, a heating cartridge which
is supplied with energy from the photovoltaic sysatem (PV) and waste heat
from different sources. The surplus part of the PV energy is fed into the grid.
The photovoltaic power is calculated by a data-driven model in Python, the
physical model is developed in the modeling language Modelica [47]. The
co-simulation is based on the Functional Mock-up Interface (FMI) standard
[48]. A recent study has shown that the FMI standard is considered the most
promising standard for co-simulation[32]. The data model was exported from
Python as a functional mock-up unit for co-simulation and imported into
Dymola. [31]

3.1.1. System Engineering

The demand for a working model, a use-case model that demonstrates the
principle of modeling on an example related to some process at AT&S was
already discussed in the first meeting, the project kick-off. This model should
fulfill several requirements:

• represent a production process from AT&S
• show the principle of physical modeling
• show the principle of data driven modeling
• be simple
• be easily adaptable
• simulation results should be created
• a energy intensive process step should be modeled

The development process started at kick-off meeting an was followed by
several discussion within the TU Graz team and with the project partners,
especially with the team from AEE Intec.

3.1.1.1. First step: Design of a working Example

It was decided to choose a heat bath for the physical modeling, in which
important steps in the production of printed circuit boards takes place and
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Figure 3.1.: Sketch for the Physical Model. The Bath is the central Process, with a Load of 100

kW, which is provided by three sources. These are the Kettle, Solar Heat and Waste
Heat. There is an Electrical and a Thermal Part, Losses are considered.

which is also an energy-intensive process step. A first sketch of the parts
which were modeled and their connection can be seen in Figure 3.1. In the
kick-off meeting, a guided tour through all the process steps was given by
AT&S, this knowledge and other facts from the company were used to create
an example that was designed to resemble the process at the factory.

In Figure 3.1, a simple working example of a thermal bath can be seen. The
diagram is divided into four parts which are described in the following
paragraphs:

Production

The production part includes the different sources of heat, to supply the bath
with the needed amount of energy to reach the wanted temperature. At the
company, the heat is provided mostly by a kettle, which can run on natural gas
or biomass. Another heat source is the waste heat of which plenty is available
from sources like the heat pumps, the cooling system, and the compressors.
This waste heat is not used so far and therefore it is interesting to look at the
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potential it has in the model. Finally, solar power was included in the working
example. AT&S does have some capacity installed, so it is a reality-based
approach.

Distribution

In this part, the distribution of the heat was considered. Since the demand of
the bath strongly varies, a storage unit is necessary to supply big amounts of
heat when needed and to store the produced heat when not needed. For the
distribution, a loss of 5 % was supposed.

Process

This is the main part of the working example, the bath. An example would be
the copper coating of the printed circuit boards, in these chemical processes
a high temperature is necessary. It was decided to assume a load of 100 kW,
which should by supplied to 50% by thermal power and to 50% by electrical
power.

Electricity

The electrical part was represented by a heating cartridge. This heating car-
tridge is supplied by a PV system and is used to heat up the bath. One goal is
to reduce the gas used in the kettle by increasing the share of PV energy used
by the heating cartridge.

3.1.2. Implementation of the Model

3.1.2.1. Symbolic Representation

In Figure 3.2, a symbolic representation of the main parts can be seen. The
weather input is used by the PV model to predict the output of the photovoltaic
system, which can either use the power to heat the bath or feed it to the grid.
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Figure 3.2.: A symbolic Representation of the Use-Case to show the main Components of the
Model.

The bath has another heat input which consists of the kettle and the waste
heat. By these two connections energy can flow to the bath and change its
temperature.

3.1.2.2. Detailed Representation

The model consists of three main parts, which are described in more detail
further down:

• thermohydraulic System
• electrical System
• datadriven model of the photovoltaic system

3.1.3. Description of the Components

Thermo-hydraulic System

The thermohydraulic system consists of different heat suppliers and heat
dissipation and a volume, which represents the bath. The heat suppliers are
connected to the bath and are controlled by PI-controllers. On the supplier
side there are considered:
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Figure 3.3.: The Use-Case in the Simulation Software Dymola. The System consists of three
main Parts, the Thermohydraulic System, the Electrical System and the Datamodel
of the Photovoltaic System.
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• kettle
• waste heat
• heating cartridge

On the heat dissipation side there are considered the following parts:

• heat flow from the hot bath to the environment
• heat dissipation due to the inserted cold materials

The volume is left one of the blue circles, it is connected by the red lines to
the heat suppliers and dissipaters.

The parameters which were used frequently for simulation examples can be
seen in Table 3.1.

Table 3.1.: Parameter for the Use-Case with standard Values

V ... volume of the bath
Pk ... power of the kettle

Pc ... power of the heating cartridge
TE ... temperature environment

Pw ... used power of the waste heat processes
τ ... periodicity of the temperature changes

V / l 1000

Pk / kW 15

Pc / kW 45

TE/◦ C 20

Pw / kW 4

τ/ h 24

Volume: The size of the volume can easily be modified, several simulations
were run with a size of 1000 liters. The volume is connected to the heat fluxes,
the temperature varies as is specified with Tdesired. The temperature of the
volume is measured and is used as an input to the PI-controller. The volume
is connected to a flow resistance to decouple the pressure state from the
boundary conditions.
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Electrical System

The electrical system takes the input from the PV system, a generator converts
it to AC current. The power can now be used in two ways, either in the heating
cartridge to heat up the volume, or the power can be sold to the grid. The first
option is preferred, one wants to use the maximum of the generated electricity.
If the desired temperature is reached, however, only a little power is needed
to keep the temperature and some part of the generated power can be sold to
the grid.

Data-driven model of the PV system

The model was created by a Co-Simulation between a data-driven model and
a physical model. The data-driven model was created in Python, the physical
model in Modelica. The data which was used for the training of the data is
separated into two parts:

(i) the meteorological data containing temperature, global radiation, air
humidity

(ii) the power of the PV system

A data model was designed to predict the energy production of the photo-
voltaic system. The model was based on real measured data provided by
TU Graz, comprising 10,968 hourly measurements of the production of a
48 kWp PV system, as well as hourly averages of temperature, humidity
and global radiation, collected between July 2018 and December 2019. In
the model used for the use-case, an ensemble learning variant of decision
tree induction was applied. This random forest regression can map the influ-
ence of the weather values on the production extremely accurately, without
computationally intensive equations.

Regulation

The heat suppliers are regulated by PI-Controllers. The PI-controllers compare
the actual temperature value with the desired value and controls the system
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in a way that the desired value is reached, in this case the desired temperature
of the bath. As desired value of the temperature, a period with a length of 24

hours, which changes between 40 °C and 60 °C was used. The system is regu-
lated by two PI-controllers, one for the kettle and one for the heat cartridge.
In the controllers, two temperatures are compared, the actual temperature of
the volume and the desired temperature, which varies periodically with time.
The controller regulates the kettle and the cartridge in way that the difference
between these two temperatures becomes minimal.

Kettle

The Kettle is the main part of the system and can be seen in the lower part, to
the left of the volume. A kettle from the buildings library, which is an open
source library for dymola developed by the IBPSA Project 1, was used and
adapted to fit the demands of this example.
In this system water flows between the volume and the kettle, where it gets
heated up and flows back to the volume. By default a power of 15 kW was
used for the kettle.

Waste Heat

An important factor is the waste heat, since it is available from several sources
at the factory. The waste heat flows directly into the volume in this model, a
default value of 4 kW was assumed in this case.

Heating Cartridge

The heating cartridge is also an existing part in the real baths. In this model it
used the power generated by the photovoltaic system to heat the volume, if
the actual temperature is lower than the desired temperature. The efficiency of
the heat cartridge was assumed with 90 % and it is regulated by a PI-controller.
The PV system has a power of 48 kWp, combined with the assumed efficiency
of 90 % that leads to a maximal power of approximately 45 kW.
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Heat dissipation

This heat flow has a negative sign, which means heat flows out of the system
(the bath) to the environment (the factory hall). It is a function of the tempera-
ture of the bath and of the environment. The temperature of environment was
by default 20 °C. The consequence of these heat flows is, that even when the
desired temperature is reached, some heating has to take place to keep the
temperature at a steady level.
Another process that can not be neglected is the insertion of materials, which
are generally at room temperature. This leads to a heat dissipation in the bath,
this part was modelled with a periodicity over time, which should represent
the reality at the factory. A set of printed circuit boards is put into the bath
for a certain time, which draws heat from the bath in that time.
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3.2. Electroplating Experiment

3.2. Electroplating Experiment

3.2.1. Experimental Set-Up and Conduction

In the electroplating experiment, a copper substrate was electroplated with
copper. The electroplating was conducted in beaker glasses, the temperature
was regulated by putting the beaker glass in a heated water bath. The param-
eters which were varied and measured can be seen in table 3.2. The range of
the parameters duration and current density was selected according to the
theory and formulas found in the book [46].

Safety:
Laboratory equipment as laboratory coat, nitrile gloves, and safety glasses
were used in all the necessary situations. The work with the sulfuric acid was
performed under a vent.

Experimental Set-Up:
The experimental set-up had some similarities with the experiment silver
coulometer from the laboratory experimental physics 2. The idea to conduct
this experiment was influenced by this laboratory exercise and there are simi-
larities in the experimental set-up. A schematic overview of the experimental
set-up can be seen in Figure 3.4. A cathode was put in an electrolyte, between
two anodes inside a vessel. A laboratory power supply was used to provide
the current and voltage, the outputs were connected to the copper plates.
The vessel was put into a heated water bath, which was used to perform
the experiment at different temperatures. The temperature was additionally
measured with a thermometer. Since the accuracy of the laboratory power
supply is low, a high precision multimeter was used to adjust the current, it
was also used to measure the current three times during the experiment as
well as the voltage.

Preparation of Cathode and Anodes:
Before performing the experiment, the cathode and the anodes had to be
prepared accordingly. They were cleaned in several steps:
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Table 3.2.: Parameters that were varied during the Experiment

Parameter Range Uncertainty
Electroplating duration 10 - 90 min 1s

Temperature 20− 60◦C +/- 2°
Current density 0,5 - 5 A/dm2 < 5 %

Figure 3.4.: A sketch of the Experimental Setup.
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3.2. Electroplating Experiment

• mechanical cleaning with soap
• ultrasonic cleaning
• removal of oxide layer

Preparation of the Electrodes:
The first step was performed using perfume-free liquid soap and cleaning
sponges. A hard mechanical cleaning was done, after this step, the copper
plates were put into the ultrasonic bath for 15 minutes. The ultrasonic bath
was heated to 40

◦C and was filled with water and some liquid soap. After
the ultrasonic bath, the copper piece was cleaned in water and put into the
sulfuric acid for at least 10 minutes to remove any residuals and the oxide
layer. This cleaning procedure was done for three pieces of copper for each
experiment, two anodes and one cathode.
Once three pieces of copper were cleaned, they were marked with a permanent
marker and on the cathode a strip of duct tape was put on the copper piece to
get an area of about 30 cm2. The area was measured using a caliper, both sides
have to be taken into account since plating happens on both sides. Before
experimenting, the anodes and the cathode had to be weighted, in order to
determine the weight difference after the experiment.

Preparation of the Electrolyte:
The electrolyte, slightly acid copper sulfate solution was used. The preparation
steps were as follows: In a beaker glass, 132 g of the copper sulfate was mixed
with 750 ml of distilled water. 10 ml of sulfuric acid were added to get the
solution to a pH value of 4. The solution was put on the magnetic stirrer and
stirred for 15 minutes until all the copper sulfate dissolved. The electrolyte
was used for about 5 experiments, depending on the level of contamination it
was changed sooner or later.

Preparation of the Set-Up:
Then the random value generator was used to create a data-set of duration,
temperature, and current density. These values were used in the experiment
later on. In the next step, 350 ml of electrolyte were put into a beaker glass,
which was put into the heated water bath. In this beaker glass, a distance
holder was put, in order to perform the experiment with the same distance
between cathode and anodes. The electrolyte level had to be on the duct
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3. Methodology

Figure 3.5.: The Template which was used during the Experiment.

tape part of the cathode, so all the measured area was in the electrolyte. The
electrodes were connected and the current was adjusted. A template was
prepared to put the measured values in for each experiment. This helped to
avoid any confusions and to reduce the risk of forgetting a measured value,
this template can be seen in Figure 3.5 .

Measurements during the Experiment
During the experiment, the time was measured using software with several
different stopwatches which can be labeled. The current was measured three
times during the experiment, equally distributed over the time period. The
voltage was measured one time. Current and voltage were measured using
the multimeter since the accuracy was higher. The temperature was measured
three times, also equally distributed over the time period.

Measurements after the Experiment
When the time was up, the laboratory power supply was turned off, the
anodes and the cathode were rinsed off with water to remove the electrolyte
and put on the side to dry. A hairdryer was used to ensure all the water
was dried. Then the weight was measured again, of the cathode and the two
anodes separately.

Objective

Non-goals: The real bath process of the production line at AT&S should not
be mapped. The parameters relevant to the product are not fully mapped.
These will only be addressed at the end of the methodology development.
The project team is only at the beginning of the methodology development.
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3.2. Electroplating Experiment

Figure 3.6.: Heat bath 1 and 2 with the corresponding Power Supplies.

Figure 3.7.: The heat bath 3 and 4 with the corresponding Power Supplies.

Figure 3.8.: The used Chemicals and the Copper Plates
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3. Methodology

Figure 3.9.: Visualization of the Inputs and Outputs of the Model.

Objective: The primary objective is to apply data models to a new area and to
investigate how well they are suited to this. Figure 3.9 shows the schematic
structure, the input and output data. After learning, the model should be
capable of predicting the layer thickness using the parameters temperature,
duration, current, and concentration. For the DET, it is also important to
predict the energy demand of a given electroplating process. One can change
the input structure to predict the energy demand, this step was also tested.

Creation of Randomized Parameters

For better usability for the data model, a randomized set of the parameters is
created. This decreases the risk of learning non existing patterns.

3.2.2. Table of Devices, Table of Chemicals

In this section, the used devices and chemicals are shown with detail in Table
3.3 and Table 3.4.
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3.2. Electroplating Experiment

3.2.2.1. Correlation with AT&S

The experiment conducted strongly differs from the actual electroplating
processes at the production units of AT&S. The goal was not to create a copy,
which would not be possible in this scope for several reasons, such as the
complexity of the system and the protection of privacy data. Even though the
experiment is different, it was conducted in a way to have similarities, it was
electroplated with copper - which is also the most important step to make
circuit boards conducting. If possible, the parameters were chosen to coincide
with the process at the factory, such as the coating thickness, the duration, and
the current. This was discussed with the staff of AT&S and during a workshop
with the bath producer Atotech.
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3.3. Data-models

3.3.1. Introduction

In the following section, the machine learning methods which were applied to
the data-set of the PV system or on the data-set which was produced during
the electroplating experiment are explained in more detail. A train-test-split
was done, that means randomly a part of the data was chosen for training the
model and another part for testing the model. To measure the quality of the
model, the R2 value was calculated, for the training data and - with a higher
significance - also for the test data.

3.3.2. Basic Principle

Machine learning is the general term when computer learn from data, the
data has to be provided in a certain way. There are many different ways the
machine can learn:

(i) supervised
(ii) unsupervised

(iii) reinforced

The data one feeds into a machine learning algorithm can consist of input-
output pairs or just inputs. Supervised learning algorithms require input-
output pairs, they need the output to learn. Unsupervised learning algorithms
can learn from only the input data. Supervised learning works in general
as follows: One feeds in an example input, then the associated output. This
is repeated many times until eventually the algorithms picks up a pattern
between the inputs and outputs. Once this is done, one can feed it a unseen
input and it will predict the output. Using unsupervised learning algorithms,
one feeds in an example input without the associated output, usually the
output is not known for a certain input. This step is repeated many times,
eventually the algorithm will recognize clusters in the input data and can
organize it. Now one can feed it a unseen input and it will predict which
cluster it belongs to [49]. Since we have input-output pairs in both examples,
supervised learning algorithms were applied to the data sets.

48



3.3. Data-models

3.3.3. Workflow

Data Acquisition: The most time consuming part for the PV system and
the galvanization model was creation of the data sets. For the PV system,
the data with the output of the PV unit was provided by TU Graz, it were
almost 11.000 data points with 1 hour resolution. The weather information
was provided by KFU Graz with an resolution of fifteen minutes. The data
for the machine learning model of the galvanization experiment was created
in the laboratory. The input parameters were temperature, duration, current
density and voltage. The output is the mass difference of the cathode before
and after the experiment.

3.3.4. Machine Learning: Terms and Algorithms

Overfitting and Underfitting: To describe these concepts, one has to look
at the performance of the model on the testing and the training data and
compare these two. If the model does not have the ability to predict well the
labels on the data it was trained on, it has a high bias. The model underfits,
which can have the following reasons:

• the information is not detailed enough
• the model is too simple to describe the data

To solve this problem, one can use data with a higher predicitve ability or
change to a more complex model.

Overfitting is another problem, here the model performs very well on the
training data, but not on the testing data. Overfitting is also called the problem
of high variance. Reasons for overfitting are:

• the data consists of many features but a small number of examples
• the model is too complex to describe the data

To solve this problem, one can try a simpler model, if possible add more
training data, regularize the model or reduce the dimensionality of examples
in the data-set. Regularization is a widely used approach.
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Gradient descent is a numerical optimization algorithm which is frequently
used for optimization. It is a iterative optimization algorithm, to find a local
minimum one starts at a random point, computes the gradient of the function
at this point and takes a step in the negative direction to reach a minimum
at some point. Often we do not know for sure if we are at the global or a
local minimum but in many cases one does not care and a local minimum is
sufficient. [50]

3.3.4.1. Linear Regression

A frequently used regression learning algorithm is linear regression. A model
is learned, that is a linear combination of features of the input. One wants to
build a model fw,b(x) as a linear combination of features of example x:

fw,b(x) = wx + b (3.1)

It is desired to fit the data points as good as possible with only a linear model.
As a loss function, the squared error loss was used in this case. This is an
arbitrary decision, one could also use the absolute value of the difference or
the cube instead of a square. The loss function is defined by:

floss =
N

∑
i=1

( fw,b(xi)− yi)
2 (3.2)

In the optimization procedure, the parameters w and b of equation 3.1 are
found that minimize the loss function, so the mean square error becomes
minimal. [51]

3.3.4.2. Polynomial Regression

The polynomial regression works similar as the linear regression, but poly-
nomials of higher orders are used to fit the data. This allows one to fit more
complex patterns, linear regression is often too simple for real data. In this
example, a hyper parameter fitting was used to figure out the degree of the
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Figure 3.10.: Examples of Underfitting, good fitting and Overfitting on the same Data. [52]

polynomial which has the lowest error. This can be used to eliminate the
problem of under fitting if the linear regression is to simple to describe the
data properly.

In Figure 3.10 one can see the effect of overfitting to the data due to the use
of a high degree polynomial. In this case a polynomial of degree 2 has a
good fitting behavior. The overfitting curve does give very good results on
the training data, but if one tests it with new data it will not return good
results.

3.3.4.3. Decision Tree Regression

A decision tree has influence in a wide area of machine learning, covering
classification and regression. It can be used to visualize decisions and decision
making. A decision tree is drawn upside down, the root starts on top and it
grows down with the branches. At a node of the branches, a specific feature is
examined. A choice is made according to some criterion, if the value is below
a the chosen threshold the left branch is followed and otherwise the right
branch. Once the leaf node is reached, a class is found for the example. In the
background, on has to decide which features to choose and what threshold
is used for splitting. Also one needs to define when to stop splitting and a
criterion to measure the quality of a split. [53]

3.3.4.4. Random Forest Regression

Closely related to decision trees is random forest regression. The Random
Forest Algorithm combines the output of several Decision Trees to generate
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Figure 3.11.: The Random Forest Algorithm generates the Output by combining many ran-
domly generated Decision Trees. [55]

the final output. It is an ensemble algorithm, meaning that models of the same
nature are combined. Decision trees have an aspect that prevents them from
being the perfect tool for predictive learning, namely inaccuracy [54]. Random
forests combine the simplicity of decision trees with flexibility, this results in
an improved accuracy.

3.3.4.5. Neural Network

An artificial neural network (ANN) or neural network (NN) consists of ar-
tificial neurons, which are arranged in layers. A NN can be understood as
a function, where the most important parts are the neurons and the connec-
tions between them. Each neuron of a layer is connected to all neurons of
the directly adjacent layer. So an NN takes information about its input layer
and outputs the result of its calculation at the output layer. In between there
are several hidden layers, where the main part of the information processing
happens.
This structure can be seen in Figure 3.12. In this Figure, on the left one can see
the input neurons. This is where information such as a recognizable image
or text is entered. A representation of the information within the states of
the individual input neurons (A, B and C) is selected. The input neurons
are linked to the neurons of the next layer via weighted connections. The
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Figure 3.12.: The Structure of a Neural Network. It is constructed by different types of Layers.

signal of the input neurons is therefore passed on to the following neurons
with different degrees of intensity and processed there. When the signals
of all inputs of a neuron have been processed, the resulting signal is again
forwarded in the same way as before. Finally, the result of the NN can be
read at the output layer. Should this neuron light up and have a strong output
signal, this can be interpreted in terms of its significance as a result. [56]
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4.1. Use-Case

4.1.1. PV prediction Model

In experiments on randomized training and test data in a ratio of 80 % to
20 %, the model achieved determination coefficients of R2(train) = 0.96 on
the training data and R2(test) = 0.87 on the reference data. The model is
therefore sufficiently generalizable. The methods for preparing the data and
implementing the model are based on the framework developed by Schranz
et al. 2020 [8]. The prediction was performed in milliseconds range, with only
a minimum communication overhead.

The correlation between the generated output in kW of the PV system and
the different weather parameters was analyzed and is shown in Figure 4.1.
The correlation and therefore the influence for the data model is high for
radiation, medium for temperature. The correlation between generated power
and humidity is negative, that indicates an anticorrelation.

Table 4.1.: Results of the Regression Algorithms for the PV System

Methode R2(training data) R2(test data)
Linear Regression 0.86 0.84

Polynomial Regression (Degree 3) 0.88 0.87

Decision Tree Regression 0.999 0.78

Random Forest Regression 0.98 0.87

Neural Network 0.88 0.87
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Figure 4.1.: The Correlation between the predicted Energy Output of the PV system and the
different metereological Parameters. The correlation with Radiation is high, with
Temperature medium. With Humidity one even has Anticorrelation.

As can be seen in Table 4.1, Random Forest Regression, polynomial Regression
and Neural Networks showed the best result on the test data. The Random
Forest algorithm was used for the Co-Simulation in Modelica.

4.1.2. Simulation of the Heat Bath

In this section, selected simulation results that were created in the Modelica
model which is described and can be seen in chapter 3.1.2 are shown. The
simulation was done for a heat bath that changes its temperature in a periodic
interval and has different heat flows in and out of the system. The model was
created to be a simple example for a working model and to represent the heat
bath at AT&S.

4.1.2.1. Temperature Behavior

Simulation of the bath with a periodically changing temperature is shown in
Figure 4.2. The simulation was done for bath with different volume, which
leads to different heat inertia which means the bath react differently to the
change of the setpoint temperature.
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4.1.2.2. Photovoltaic Usage

In Figure 4.3, the produced (black line), the consumed (yellow area) end the
excess energy (blue area) from the PV system is shown. The consumed energy
is used to heat up the bath or to keep the temperature constant, the excess
energy is fed into the grid.

4.1.2.3. Overall Consumption

In Figure 4.4, the total consumption and the individual sources supplying the
bath are shown. In the first few hours, the bath is heated up; the boiler and
heating cartridge run at maximum capacity. Shortly after t = 12h, the desired
temperature is reached, the boiler is shut down and the PV system covers the
demand necessary to maintain the temperature. Excess energy is fed into the
grid. The waste heat is used continuously, but only covers a small part in this
simulation. One can see interesting details by comparing the above figures.
The brown line for volume 2 in Figure 4.2 and the PV usage in Figure 4.3
are from the same simulation run, one can see that at t = 12h the set point
temperature is reached. This leads to reduced use of PV power due to the
reduced amount of the heat bath. In Figure 4.4, one can see how the heating
systems react to the different demands. During the process of heating up the
bath, both the kettle and the heating cartridge run on full capacity. The heating
cartridge uses all the power it can get from the PV system. After t = 12h, when
the set-point temperature is reached. the kettle reduces its power to roughly
10%, the PV system to roughly 50 %. One can see that the temperature is
kept constant mostly by the PV system, which leads to a reduction of gas
consumption in the kettle.
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Figure 4.2.: The Setpoint Temperature (blue) and the course of the current Temperature of two
Baths of different Volumes.

Figure 4.3.: The produced Energy of the PV system, the Self-Consumption of the heat cartridge
and the feed-in into the Grid.

Figure 4.4.: Simulation Results of the various Sources used to heat the bath: Waste Heat, PV
Energy of the Heating Cartridge, Boiler and the total Demand.
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4.2. Electroplating

The results of the electroplating experiment and a visualization of the distri-
bution with respect to the different parameters is shown.

4.2.1. Experiment Execution

The experiment was executed 202 times, subtracting the samples where errors
were discovered later on the data set consists of 199 samples. The measured
values can be found in the Appendix in Table A.1 and Table A.3. The distribu-
tion of the data in respect to the varied parameter can be seen in the following
graphs: the distribution of the temperature in Figure 4.6, the distribution
of the current density in Figure 4.5, and the distribution of the experiment
duration in Figure 4.7. The data-set was used to create data-driven models
using machine learning methods. The velocity of testing was increased during
the testing phase, at the beginning, only one experiment was conducted at
the time. After several days the one was able to parallelize the procedure and
four setups were installed which could be operated at the same time. The tem-
perature was varied from room temperature to 60 degrees in 10 degrees steps.
This results were later used to generate data models by applying machine
learning methods to these data sets.

4.2.2. Visualization of the Data

In the Figures 4.5, 4.6, and 4.7 the distribution of the conducted experiments
with respect to the current density, the temperature and the duration are
shown. One can see that the temperature distribution is uniformly distributed,
for the current density and the duration more experiments were conducted in
the lower range.
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Figure 4.5.: The Distribution of the conducted Experiments with Respect to the Current Density.

Figure 4.6.: The Distribution of the conducted Experiments with Respect to the Temperature.

Figure 4.7.: The Distribution of the conducted Experiments with Respect to the Experiment
Duration.
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4.3. Data model Electroplating

4.3.1. Comparison of the Models

The results were analyzed by different machine learning algorithms. The
accuracy was high, with R2 values over 0,98.

The training of the model was done with 70% of the data, the testing with
the remaining 30%. Several algorithms were used to calculate models that
predict the amount of deposited material. A value to determine the quality of
a model is the R2 value. This quality measure has been calculated for various
models and is shown in the table 4.2.

4.3.2. Coefficient of Determination (R2)

The important number is the R2 on the test data, since it tells how well the
model performs on the unseen data. Here the best algorithms were polynomial
regression and the neural networks. For both models, the parameters have to
be tuned, for the polynomial regression the degree must not be too high, as
on can see in table 4.2. At a high degree the R2 value becomes even negative,
this is because of overfitting, the model fits the training data perfect but can
not work well on the test data. The Neural Network must no have too many
layers or it will perform poorly.

One major goal of this analysis was to find out the effect of the different
parameters on the velocity of deposition and therefore the amount of deposited
material. This correlation between the deposited mass - the mass difference of
the cathode before and after the experiment - and the other parameters that
were varied. The result can be seen in Figure 4.8.

4.3.3. Correlation Analysis
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Table 4.2.: Results of the Regression Algorithms for the Electroplating Experiment

Methode R2(training data) R2(test data)
Linear Regression 0.830 0.683

Polynomial Regression (Degree 2) 0.981 0.962

Decision Tree Regression 0.99 0.908

Random Forest Regression 0.992 0.943

Shallow Neural Network 0.973 0.946

Deep Neural Network 0.988 0.947

Figure 4.8.: The Correlation between the Deposited Mass on the Cathode and the different
Parameters Exposition Time, Temperature, Current Density, Voltage and Area.
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5. Discussion

5.1. Modeling of Energy System

One trend in model-based analysis and optimization of CPS is the increasing
complexity of the systems under consideration, which is further intensified
by the need for interoperability and increased efficiency requirements. Sub-
systems can no longer be considered separately and computer-based systems
such as microprocessors, software, and communication networks (the cyber
part of CPS) cannot be ignored when understanding system behavior. These
developments pose new challenges to traditional modeling and simulation
techniques: For the analysis and optimization of CPS, methods and tools are
needed for both the cyber and the physical part. It is necessary to combine
data-driven techniques with first-principle models. The concept consists of
coupling two or more models in a co-simulation in which the data exchange
between the subsystems is limited to discrete communication points. These
different trends and possibilities push established methods and tools to their
limits and even beyond. The results of the different algorithms for the PV
model can be seen in Table 4.1, the simulation results results of the use-case
in Figure 4.2, Figure 4.3, and Figure 4.4.

Improvements for the Use-Case

This model does not make the claim to simulate the case perfectly, the main
focus of the model was to show that a Co-simulation works and that data-
driven models and physical models can interchange data. Some improvement
ideas are to include a battery for the photovoltaic system, add different waste
heat sources with data taken from the factory, include a solar thermal system
which is already installed at the factory. This model will be under further
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development in the project, the next steps will be to improve the kettle model,
to include a load profile that corresponds to the actual load in the factory,
and to include a battery system to store the excess power generated by the
photovoltaic system.

5.2. Electroplating

The experiment was conducted 202 times, 199 of these experiments were
usable. The result - the deposited mass on the cathode - was always in an
expected range. To check the results a template was used that marks the
values if they are out of a reasonable range. This was in 199 experiments not
the case. The temperature and the current changed during the experiment,
to minimize the error due to these changes they were measured three times
and the mean value was calculated. The voltage changed with the position of
the copper sheets since the resistance depends on the distance of electrolyte
between them. To keep it constant a simple construction out of wood was
used.

The results were meaningful when compared to the expected values which
were calculated theoretically. The measured values are shown in the Appendix
in Table A.1 and Table A.3. The distribution of the data in respect to the
varied parameter can be seen in the following graphs: the distribution of the
temperature in Figure 4.6, the distribution of the current density in Figure 4.5,
and the distribution of the experiment duration in Figure 4.7

5.3. Data Model

The data-model used for the PV System depends mostly on the weather
prediction since the output is strongly connected to the predicted radiation
of the sun. The error will be much bigger if a weather forecast is used and
not historic data since the weather forecast has an error on its own. The
data-model that was created from the electroplating experiment was used to
train different machine learning algorithms. Neural networks and polynomial
regression showed the best results, the results can be seen in Table 4.2.
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6.1. Use Case

In the first part of the thesis, a Co-Simulation model was created. The ther-
mohydraulic and electrical system was modeled in the physical modeling
language Modelica. A data-driven model that used a random forest regression
algorithm to predict the performance of a PV system based on given tempera-
ture, humidity and global radiation values was created in python. The data
model is integrated into the physical model based on the FMI standard for
co-simulation. The results show that the power predicted by the data model
corresponds very accurately to the actual measured data. Furthermore, it is
shown that the use of the boiler can be significantly reduced by connecting
the PV system. Further development steps are upscaling of the model and
integrating more parts to increase its complexity and to simulate the process
at AT&S better. Research is needed in the following areas, among others:
Automatic model generation, automatic model updates based on measured
data or analyses to scale different models and modeling paradigms.

6.2. Electroplating Experiment and Datamodel

The experiment was conducted successfully, with the helpful tips of colleagues
from the chemistry department the experiment was designed and set up at
the department of physics. The experiment did not serve the purpose to create
new insight into the galvanization process, but the creation of data sets and
the application of machine learning algorithms like neural networks is a new
topic to chemistry. The results showed that the machine learning tools were
able to pick up the pattern underlying the data, almost all models had an
accuracy of >95 %.
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6. Conclusion and Outlook

This experiment showed that the application of machine learning methods
to new parts of science has potential, a next step in the process could be
an experiment that describes a more complex process. For such a machine
learning model a bigger data set would be needed, this would be the next
step for the integration in the Digital Energy Twin.
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APPENDIX

A.0.1. Measured Data during the Electroplating Experiment
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A. Measurands of galvanization Experiment

Table A.1.: First part of the measured Data of the Electroplating Experiment.

Nr. ... number of experiment
mC ... mass of cathode before the coating

mA1 ... mass of anode 1 before coating
mA2 ... mass of anode 2 before coating
mC’ ... mass of cathode after coating
mA1’ ... mass of anode 1 after coating
mA2’ ... mass of anode 2 after coating

t ... duration of the plating process

Nr. mC / g mA1 / g mA2 / g mC’ / g mA1’ / g mA2’ / g t / min
1 17,42 15,70 15,88 17,81 15,50 15,70 30,05

2 17,80 15,51 15,70 18,71 15,05 15,28 45

4 18,69 15,04 15,26 19,40 14,74 14,91 50

5 20,10 14,35 14,54 20,77 14,01 14,21 25

6 14,73 15,04 15,32 15,30 14,77 15,04 35,5
7 16,61 15,87 15,67 17,11 15,63 15,40 52

8 15,15 14,78 15,04 15,53 14,58 14,87 55

9 20,73 14,01 14,20 21,67 13,54 13,73 68

10 15,52 14,58 14,85 16,01 14,33 14,62 38

12 17,30 15,52 15,30 17,72 15,31 15,10 25

13 17,08 16,65 16,82 17,84 16,23 16,39 22

14 15,99 14,32 14,61 16,46 14,09 14,38 16,5
15 18,17 12,74 13,09 18,47 12,60 12,95 25

16 18,49 14,63 15,49 19,72 14,04 14,82 35

17 18,46 15,02 16,63 18,94 14,79 16,39 61

18 18,24 14,38 16,23 18,49 14,24 16,10 65

19 15,76 14,09 16,40 16,71 13,61 15,88 45

20 15,80 14,55 14,73 16,14 14,38 14,53 35

21 17,06 19,03 17,85 18,57 18,20 17,16 75

22 15,37 18,39 12,94 15,95 18,08 12,67 45

23 15,61 12,59 14,02 16,16 12,31 13,77 40

24 15,95 18,07 12,67 16,19 17,96 12,56 24

25 16,12 14,37 14,53 16,28 14,32 14,48 42

26 18,49 14,25 16,09 19,50 13,74 15,60 41
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27 16,17 17,96 12,56 16,64 17,73 12,32 20

28 16,68 15,53 17,90 17,07 15,37 17,71 36

29 15,96 17,52 17,43 16,25 17,39 17,28 33

30 16,95 15,44 16,67 17,08 15,37 16,61 51

31 16,03 14,93 15,01 16,22 14,83 14,92 39

32 16,71 13,62 15,89 16,92 13,51 15,79 33

33 16,24 14,30 14,47 16,38 14,23 14,40 17

34 16,24 17,38 17,28 17,00 17,02 16,89 41

35 16,38 14,24 14,40 16,62 14,10 14,27 32

36 16,60 17,72 16,02 17,19 17,42 15,73 18

37 16,53 14,96 17,14 17,67 14,35 16,56 40

38 21,85 16,77 13,44 22,32 16,51 13,27 40

39 15,92 15,35 17,40 16,35 15,15 17,17 45

40 18,13 16,19 13,70 18,56 15,95 13,52 45

41 17,42 14,82 13,51 18,06 14,51 13,18 25

42 17,94 14,25 14,08 18,34 14,07 13,85 45

43 17,76 16,54 15,58 18,71 16,07 15,09 35

44 18,63 17,78 17,15 18,79 17,69 17,08 15

45 18,17 14,33 15,01 18,44 14,19 14,88 45

46 17,05 17,25 16,09 17,23 17,16 15,99 50

47 17,68 14,35 15,71 19,03 13,65 15,06 50

48 17,41 15,15 12,91 17,72 15,00 12,77 50

49 16,27 13,74 18,71 18,00 12,94 17,80 80

50 14,36 15,32 18,19 14,96 15,03 17,89 35

51 15,70 13,25 13,84 15,84 13,18 13,75 50

52 17,12 14,06 17,14 17,26 13,98 17,06 50

53 16,59 14,51 15,99 16,78 14,40 15,89 50

54 16,97 13,51 13,18 17,14 13,42 13,09 50

55 18,05 19,10 19,54 18,50 17,85 19,34 50

56 19,10 19,83 18,77 19,55 19,60 18,55 50

57 19,00 18,62 18,72 19,28 18,48 18,59 50

58 19,11 18,04 16,36 19,58 17,82 16,11 50

59 19,47 17,68 13,63 20,27 17,32 13,19 50

60 19,24 12,75 17,06 20,03 12,40 16,65 50
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61 18,59 14,85 14,17 19,35 14,46 13,77 50

62 19,13 15,04 14,99 19,94 14,62 14,59 50

63 18,91 17,04 16,10 20,06 16,49 15,49 50

64 19,75 17,81 13,96 20,85 17,30 13,36 50

65 20,08 18,54 18,56 21,20 17,95 18,02 50

66 19,10 17,83 15,87 20,21 17,30 15,26 50

67 15,81 17,27 16,46 15,91 17,22 16,40 30

68 18,45 15,23 14,45 18,65 15,13 14,36 30

69 18,28 13,76 13,33 18,56 13,61 13,19 30

70 17,56 16,63 17,30 17,93 16,43 17,11 30

71 18,06 13,18 18,06 18,36 13,03 17,86 30

72 21,18 17,34 19,67 21,47 17,19 19,52 30

73 19,57 13,16 14,40 19,87 13,00 14,23 30

74 20,85 12,37 17,70 21,15 12,20 17,55 30

75 18,78 16,39 17,21 19,25 16,15 16,97 30

76 19,34 13,74 14,57 19,82 13,50 14,32 30

77 20,01 19,05 18,17 20,50 18,81 17,92 30

78 19,55 13,40 13,17 20,04 13,14 12,94 30

79 19,88 19,46 13,58 20,61 19,04 13,26 30

80 15,91 14,34 15,11 16,63 13,94 14,77 30

81 21,49 18,14 17,08 22,23 17,81 16,69 30

82 21,15 17,62 18,66 21,86 17,25 18,30 30

83 18,41 21,56 13,04 19,36 21,10 12,54 30

84 20,04 19,51 17,86 20,96 19,04 17,41 30

85 18,53 17,18 17,55 19,47 16,73 17,05 30

86 17,12 12,20 13,00 18,02 11,73 12,51 30

87 16,17 14,59 14,65 16,23 14,56 14,61 30

88 16,75 15,38 14,20 16,81 15,35 14,16 30

89 18,50 14,17 14,23 18,56 14,14 14,19 30

90 17,71 16,40 13,08 17,78 16,37 13,05 30

91 18,37 19,02 13,90 18,48 18,95 13,84 30

92 17,22 13,03 16,35 17,35 12,97 16,29 30

93 15,86 18,28 14,73 15,99 18,20 14,66 30

94 17,27 13,24 17,24 17,38 13,18 17,18 29,5
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95 17,77 17,91 16,71 18,20 17,68 16,48 30

96 20,04 16,94 17,80 20,46 16,73 17,58 30

97 18,56 17,03 16,66 18,98 16,83 16,42 30

98 20,49 17,40 21,08 20,91 17,16 20,86 30

99 16,81 18,96 14,66 17,14 18,80 14,50 20

100 21,85 13,13 12,52 22,17 12,97 12,35 20

101 20,94 18,20 17,18 21,25 18,04 17,00 20

102 16,23 12,93 13,84 16,56 12,76 13,67 20

103 15,98 12,97 12,50 16,14 12,88 12,42 20

104 17,34 14,55 14,61 17,51 14,47 14,52 20

105 18,48 14,11 15,33 18,65 14,03 15,25 20

106 17,38 14,16 14,18 17,55 14,07 14,09 20

107 16,57 16,72 18,01 16,77 16,61 17,90 40

108 22,17 17,14 16,45 22,37 17,05 16,34 40

109 21,25 14,47 16,81 21,44 14,35 16,71 40

110 17,13 16,38 12,93 17,33 16,29 12,84 40

111 16,61 16,27 11,69 17,12 16,03 11,46 45

112 19,26 17,66 17,55 19,76 17,43 17,30 45

113 19,82 20,84 15,23 20,33 20,57 14,99 45

114 19,45 16,97 18,97 19,98 16,71 18,71 45

115 16,66 17,03 14,33 16,94 16,88 14,20 15

117 16,96 18,77 17,89 17,25 18,60 17,75 14,5
116 16,66 16,08 14,50 16,96 15,93 14,35 16

118 17,05 18,55 12,82 17,36 18,38 12,67 15

119 21,45 14,01 12,40 21,86 13,81 12,18 60

120 22,37 12,35 13,17 22,78 12,14 12,94 59

121 16,77 14,08 12,72 17,17 13,88 12,51 58

122 17,33 14,45 12,86 17,74 14,25 12,65 57

123 21,86 20,12 17,36 22,14 19,98 17,24 25

124 22,78 17,81 19,80 23,05 17,65 19,69 25

125 17,16 18,41 17,72 17,44 18,26 17,57 25

126 17,73 16,89 19,57 18,01 16,74 19,42 25

127 16,79 14,06 13,64 16,87 14,01 13,59 21

128 16,97 15,45 17,01 17,06 15,41 16,96 22
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129 16,77 21,71 17,29 16,84 21,66 17,25 18,5
130 15,83 17,05 17,41 15,94 16,98 17,36 24,5
131 19,74 14,97 12,64 20,35 14,67 12,33 25,5
132 17,11 14,23 12,66 17,70 13,94 12,35 26

133 16,94 18,69 18,58 17,54 18,36 18,29 25,5
134 16,94 16,70 18,37 17,54 16,42 18,02 25

135 17,05 18,27 12,33 17,45 18,06 12,16 70

136 16,83 13,92 14,65 17,23 13,72 14,46 70

137 16,87 16,92 18,35 17,28 16,70 18,14 70

138 15,90 18,01 19,68 16,34 17,77 19,49 70

139 17,24 12,32 16,86 17,82 12,02 16,58 20

140 17,53 17,24 16,73 18,19 16,90 16,41 20

141 17,53 17,34 17,57 18,32 16,97 17,14 20

142 17,43 19,97 21,63 18,03 19,61 21,35 20

143 18,77 15,39 17,63 19,59 14,99 17,22 60

144 20,33 17,22 19,39 21,16 16,80 18,97 60

145 17,34 13,58 18,63 18,20 13,16 18,17 60

146 18,01 14,00 16,94 18,86 13,61 16,49 60

147 18,62 16,40 19,42 18,82 16,30 19,33 90

148 15,34 16,79 18,97 15,53 16,69 18,88 90

150 22,97 13,16 21,62 23,15 13,06 21,51 90

151 17,22 13,71 12,01 17,58 13,52 11,84 15

152 17,44 16,67 19,48 17,80 16,50 19,29 15

153 17,27 16,40 16,57 17,64 16,22 16,37 15

154 16,33 17,75 18,13 16,69 17,55 17,95 15

155 18,80 12,92 13,43 19,92 12,36 12,87 80

156 23,15 14,24 15,90 24,25 13,62 15,41 80

157 17,80 12,17 13,78 18,94 11,55 13,26 80

158 18,19 12,12 20,51 19,34 11,48 19,99 80

159 18,17 14,45 21,34 18,66 14,18 21,09 15

160 15,52 19,59 12,15 16,00 19,34 11,90 15

161 17,70 16,87 17,12 18,21 16,58 16,88 15

162 19,94 18,04 16,94 20,43 17,78 16,68 15

163 19,74 11,81 16,48 19,95 11,72 16,38 10
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164 17,09 19,32 17,92 17,28 19,22 17,80 10

165 18,30 17,52 20,34 18,51 17,41 20,24 10

166 17,13 17,56 17,91 17,34 17,45 17,81 10

167 19,59 14,15 13,05 21,18 13,42 12,17 80

168 17,88 14,32 11,42 19,45 13,53 10,64 80

169 17,65 15,99 21,50 19,32 15,18 20,56 80

170 18,84 13,85 12,47 20,48 13,03 11,64 80

171 21,56 16,21 13,48 21,84 16,07 13,34 70

172 24,24 16,68 13,51 25,28 16,19 12,97 70

173 15,98 12,80 12,35 16,25 12,70 12,21 70

174 18,92 13,61 15,39 19,20 13,46 15,25 70

175 25,26 15,24 13,33 26,33 14,69 12,81 65

176 16,25 16,18 12,21 17,42 15,60 11,60 65

177 19,20 12,69 13,44 20,37 12,13 12,82 65

178 21,84 12,95 16,06 22,93 12,47 15,44 65

179 17,80 16,36 13,25 18,27 16,11 13,02 45

180 19,84 11,55 16,86 20,30 11,30 16,63 45

181 16,70 19,31 19,97 17,18 19,07 19,70 45

182 18,50 18,87 11,46 18,99 18,62 11,20 45

183 17,59 18,24 14,17 18,91 17,54 13,52 45

184 19,42 19,82 17,83 20,67 19,24 17,09 45

185 19,93 16,29 11,90 21,26 15,67 11,20 45

186 17,28 16,26 18,86 18,65 15,63 18,11 45

187 19,75 11,58 12,11 20,14 11,42 11,89 10

188 17,34 15,43 12,46 17,72 15,24 12,25 10

189 17,42 16,67 12,79 17,82 14,47 12,59 10

190 22,93 12,80 15,59 23,33 12,61 15,39 10

191 18,98 11,18 12,59 19,35 11,01 12,40 85

192 20,13 19,68 11,19 20,49 19,49 11,01 84

193 17,73 14,45 12,58 18,10 14,26 12,40 83

194 17,17 12,24 15,23 17,54 12,06 15,03 82

195 19,25 15,17 11,71 19,89 14,83 11,41 55

196 19,78 18,07 17,43 20,42 17,75 17,09 55

197 17,65 20,63 15,38 18,31 20,28 15,05 55
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198 19,75 10,62 15,61 20,41 10,28 15,30 55

199 21,14 11,28 13,39 21,58 11,11 13,16 15

200 16,29 12,17 20,27 16,71 11,99 19,95 15

201 18,41 11,62 13,51 18,84 11,43 13,28 15

202 17,39 13,01 17,79 17,86 12,76 17,57 15
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Table A.3.: Second part of the measured Data of the Electroplating Experiment.

Nr. ... number of experiment
U ... voltage
I ... current

J ... current density
A ... area of the cathode

T ... temperature of the heatbath
d1 ... massdifference of the cathode

d2 ... massdifference of anode 1

d3 ... massdifference of anode 2

Nr. U / V I / A J / A/dm2 A/cm2 T / °C d1 / g d2 / g d3 / g
1 0,700 0,6480 2,012 32,20 39,0 0,39 -0,20 -0,18

2 1,200 0,9833 3,054 32,20 39,0 0,91 -0,46 -0,42

4 0,600 0,6567 2,549 25,76 60,0 0,71 -0,30 -0,35

5 1,500 1,3253 4,116 32,20 39,0 0,67 -0,34 -0,33

6 0,700 0,8023 2,492 32,20 25,5 0,57 -0,27 -0,28

7 0,600 0,4850 1,883 25,76 39,0 0,50 -0,24 -0,27

8 0,250 0,3303 1,026 32,20 60,2 0,38 -0,20 -0,17

9 1,100 0,6867 2,133 32,20 22,0 0,94 -0,47 -0,47

10 0,600 0,6187 1,921 32,20 59,0 0,49 -0,25 -0,23

12 1,100 0,7933 3,080 25,76 23,5 0,42 -0,21 -0,20

13 1,800 1,7113 5,315 32,20 39,0 0,76 -0,42 -0,43

14 1,200 1,3893 4,315 32,20 59,0 0,47 -0,23 -0,23

15 0,800 0,5870 1,877 31,28 21,7 0,30 -0,14 -0,14

16 0,300 1,7187 5,189 33,12 39,1 1,23 -0,59 -0,67

17 0,300 0,3770 1,301 28,98 60,2 0,48 -0,23 -0,24

18 0,350 0,1953 0,700 27,90 24,3 0,25 -0,14 -0,13

19 1,100 1,0467 3,291 31,81 39,5 0,95 -0,48 -0,52

20 0,300 0,4937 1,477 33,43 58,3 0,34 -0,17 -0,20

21 1,300 0,9837 3,308 29,73 25,0 1,51 -0,83 -0,69

22 0,600 0,6470 2,099 30,82 38,8 0,58 -0,31 -0,27

23 0,500 0,6480 2,058 31,48 59,7 0,55 -0,28 -0,25

24 0,400 0,4130 1,317 31,35 39,2 0,24 -0,11 -0,11

25 0,100 0,1493 0,452 33,05 58,7 0,16 -0,05 -0,05
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26 1,800 1,1917 4,201 28,37 25,1 1,01 -0,51 -0,49

27 1,100 1,1217 3,578 31,35 38,5 0,47 -0,23 -0,24

28 0,419 0,4990 1,736 28,74 59,5 0,39 -0,16 -0,19

29 0,4150 1,382 30,03 39,2 0,29 -0,13 -0,15

30 0,207 0,1215 0,389 31,25 24,1 0,13 -0,07 -0,06

31 0,234 0,2570 0,791 32,48 59,2 0,19 -0,10 -0,09

32 0,368 0,3030 0,938 32,31 39,0 0,21 -0,11 -0,10

33 0,670 0,4325 1,469 29,44 24,8 0,14 -0,07 -0,07

34 1,014 0,8930 2,974 30,03 39,4 0,76 -0,36 -0,39

35 0,582 0,3763 1,278 29,44 26,1 0,24 -0,14 -0,13

36 2,171 1,5290 4,622 33,08 26,4 0,59 -0,30 -0,29

37 1,398 1,3987 4,319 32,38 28,2 1,14 -0,61 -0,58

38 0,352 0,2853 0,866 32,96 38,0 0,47 -0,26 -0,17

39 0,420 0,4293 1,419 30,26 58,4 0,43 -0,20 -0,23

40 0,383 0,4390 1,313 33,44 44,8 0,43 -0,24 -0,18

41 1,411 1,2420 4,072 30,50 39,7 0,64 -0,31 -0,33

42 0,388 0,4497 1,515 29,68 59,0 0,40 -0,18 -0,23

43 1,800 1,3093 4,350 30,10 28,0 0,95 -0,47 -0,49

44 0,445 0,4767 1,494 31,90 44,8 0,16 -0,09 -0,07

45 0,254 0,3013 0,901 33,43 60,3 0,27 -0,14 -0,13

46 0,180 0,1657 0,547 30,28 45,7 0,18 -0,09 -0,10

47 1,026 1,1573 3,562 32,49 60,6 1,35 -0,70 -0,65

48 0,360 0,3227 1,040 31,03 38,2 0,31 -0,15 -0,14

49 0,717 1,3497 4,249 31,76 44,4 1,73 -0,80 -0,91

50 0,833 0,8153 2,642 30,87 38,8 0,60 -0,29 -0,30

51 0,213 0,1577 0,522 30,22 25,2 0,14 -0,07 -0,09

52 0,174 0,1460 0,496 29,43 38,7 0,14 -0,08 -0,08

53 0,153 0,1610 0,505 31,91 48,3 0,19 -0,11 -0,10

54 0,154 0,1867 0,565 33,06 58,9 0,17 -0,09 -0,09

55 0,630 0,4470 1,465 30,50 24,9 0,45 -1,25 -0,20

56 0,533 0,4460 1,472 30,31 37,0 0,45 -0,23 -0,22

57 0,380 0,4507 1,461 30,84 48,3 0,28 -0,14 -0,13

58 0,325 0,4447 1,462 30,42 58,1 0,47 -0,22 -0,25

59 1,020 0,7710 2,473 31,18 26,6 0,80 -0,36 -0,44
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60 0,835 0,7543 2,439 30,93 38,8 0,79 -0,35 -0,41

61 0,582 0,7343 2,428 30,25 61,1 0,76 -0,39 -0,40

62 0,656 0,7767 2,476 31,36 49,8 0,81 -0,42 -0,40

63 1,322 1,1007 3,493 31,51 27,8 1,15 -0,55 -0,61

64 1,170 1,0740 3,358 31,98 38,4 1,10 -0,51 -0,60

65 0,817 1,0583 3,472 30,48 60,3 1,12 -0,59 -0,54

66 0,839 1,0523 3,499 30,07 49,5 1,11 -0,53 -0,61

67 0,261 0,1560 0,531 29,39 26,4 0,10 -0,05 -0,06

68 0,410 0,3027 1,032 29,33 38,6 0,20 -0,10 -0,09

69 0,464 0,4540 1,571 28,90 39,4 0,28 -0,15 -0,14

70 0,705 0,5990 2,057 29,12 49,2 0,37 -0,20 -0,19

71 0,755 0,5060 1,616 31,30 26,3 0,30 -0,15 -0,20

72 0,667 0,4923 1,572 31,33 38,5 0,29 -0,15 -0,15

73 0,549 0,4977 1,633 30,47 59,4 0,30 -0,16 -0,17

74 0,666 0,4957 1,594 31,09 49,3 0,30 -0,17 -0,15

75 1,172 0,7857 2,392 32,84 25,8 0,47 -0,24 -0,24

76 0,913 0,8010 2,623 30,53 38,5 0,48 -0,24 -0,25

77 0,740 0,7700 2,562 30,06 59,4 0,49 -0,24 -0,25

78 0,813 0,7980 2,673 29,86 49,3 0,49 -0,26 -0,23

79 1,494 1,1893 3,889 30,59 27,3 0,73 -0,42 -0,32

80 1,541 1,1859 4,007 29,60 38,6 0,72 -0,40 -0,34

81 1,065 1,1913 3,813 31,25 58,5 0,74 -0,33 -0,39

82 0,118 1,1155 3,544 31,47 33,4 0,71 -0,37 -0,36

83 1,259 1,0410 3,093 33,66 49,2 0,95 -0,46 -0,50

84 1,934 1,4883 4,703 31,65 29,6 0,92 -0,47 -0,45

85 1,637 1,4977 4,523 33,12 38,8 0,94 -0,45 -0,50

86 1,457 1,4833 4,459 33,26 58,5 0,90 -0,47 -0,49

87 0,174 0,1057 0,327 32,29 28,9 0,06 -0,03 -0,04

88 0,148 0,1083 0,334 32,41 38,3 0,06 -0,03 -0,04

89 0,125 0,1243 0,398 31,26 59,5 0,06 -0,03 -0,04

90 0,131 0,1087 0,346 31,39 48,9 0,07 -0,03 -0,03

91 0,365 0,2010 0,630 31,89 23,7 0,11 -0,07 -0,06

92 0,291 0,2100 0,690 30,44 38,6 0,13 -0,06 -0,06

93 0,240 0,2063 0,667 30,93 59,7 0,13 -0,08 -0,07
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94 0,236 0,2043 0,676 30,22 50,0 0,11 -0,06 -0,06

95 1,048 0,7013 2,285 30,69 24,2 0,43 -0,23 -0,23

96 0,833 0,6973 2,321 30,05 38,5 0,42 -0,21 -0,22

97 0,710 0,7000 2,304 30,39 59,4 0,42 -0,20 -0,24

98 0,742 0,7047 2,303 30,60 49,4 0,42 -0,24 -0,22

99 1,165 0,8190 2,647 30,94 25,7 0,33 -0,16 -0,16

100 0,877 0,7910 2,549 31,03 38,5 0,32 -0,16 -0,17

101 0,713 0,7917 2,552 31,02 58,2 0,31 -0,16 -0,18

102 0,822 0,8160 2,552 31,97 50,1 0,33 -0,17 -0,17

103 0,632 0,2947 0,963 30,59 25,6 0,16 -0,09 -0,08

104 0,493 0,3987 1,306 30,51 37,4 0,17 -0,08 -0,09

105 0,360 0,4063 1,309 31,03 59,5 0,17 -0,08 -0,08

106 0,434 0,4040 1,368 29,53 50,0 0,17 -0,09 -0,09

107 0,436 0,2537 0,789 32,16 25,7 0,20 -0,11 -0,11

108 0,342 0,2517 0,804 31,32 37,8 0,20 -0,09 -0,11

109 0,235 0,2547 0,815 31,25 59,6 0,19 -0,12 -0,10

110 0,282 0,2510 0,802 31,28 49,9 0,20 -0,09 -0,09

111 0,903 0,5507 1,833 30,05 23,4 0,51 -0,24 -0,23

112 0,651 0,5473 1,694 32,31 38,0 0,50 -0,23 -0,25

113 0,477 0,5500 1,810 30,39 59,6 0,51 -0,27 -0,24

114 0,597 0,5543 1,704 32,52 49,9 0,53 -0,26 -0,26

115 1,437 0,9830 3,323 29,58 23,8 0,28 -0,15 -0,13

117 1,103 0,9915 3,372 29,40 60,4 0,29 -0,17 -0,14

116 0,897 0,9725 2,978 32,66 38,0 0,30 -0,15 -0,15

118 0,940 0,9955 3,355 29,67 47,8 0,31 -0,17 -0,15

119 0,555 0,3520 1,045 33,67 24,6 0,41 -0,20 -0,22

120 0,472 0,3493 1,113 31,39 39,1 0,41 -0,21 -0,23

121 0,337 0,3473 1,083 32,09 59,1 0,40 -0,20 -0,21

122 0,379 0,3533 1,125 31,40 49,2 0,41 -0,20 -0,21

123 0,818 0,5557 1,607 34,58 24,7 0,28 -0,14 -0,12

124 0,635 0,5497 1,775 30,96 37,8 0,27 -0,16 -0,11

125 0,477 0,5510 1,699 32,43 58,5 0,28 -0,15 -0,15

126 0,573 0,5557 1,628 34,13 49,5 0,28 -0,15 -0,15

127 0,289 0,2063 0,694 29,75 37,7 0,08 -0,05 -0,05
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128 0,355 0,2040 0,668 30,53 25,7 0,09 -0,04 -0,05

129 0,187 0,2060 0,684 30,10 64,9 0,07 -0,05 -0,04

130 0,250 0,2063 0,695 29,67 49,2 0,11 -0,07 -0,05

131 1,524 1,1530 3,492 33,02 26,5 0,61 -0,30 -0,31

132 1,375 1,1390 3,679 30,96 38,5 0,59 -0,29 -0,31

133 0,987 1,1563 3,788 30,53 58,0 0,60 -0,33 -0,29

134 1,165 1,1520 3,527 32,66 48,6 0,60 -0,28 -0,35

135 0,375 0,2433 0,795 30,61 26,5 0,40 -0,21 -0,17

136 0,368 0,2470 0,821 30,08 34,7 0,40 -0,20 -0,19

137 0,260 0,2553 0,930 27,44 53,6 0,41 -0,22 -0,21

138 0,294 0,3307 1,118 29,57 44,0 0,44 -0,24 -0,19

139 1,872 1,4290 4,816 29,67 27,7 0,58 -0,30 -0,28

140 1,844 1,5800 4,830 32,71 34,4 0,66 -0,34 -0,32

141 1,264 1,7603 5,799 30,36 54,4 0,79 -0,37 -0,43

142 1,315 1,3694 4,180 32,76 44,6 0,60 -0,36 -0,28

143 0,904 0,6843 2,250 30,41 27,5 0,82 -0,40 -0,41

144 0,890 0,6897 2,128 32,41 34,0 0,83 -0,42 -0,42

145 0,595 0,6957 2,311 30,10 55,2 0,86 -0,42 -0,46

146 0,655 0,6923 2,170 31,90 45,1 0,85 -0,39 -0,45

147 0,204 0,1053 0,348 30,31 25,0 0,20 -0,10 -0,09

148 0,169 0,1040 0,344 30,20 24,1 0,19 -0,10 -0,09

150 0,154 0,1043 0,347 30,10 46,0 0,18 -0,10 -0,11

151 1,560 1,1950 3,934 30,38 27,2 0,36 -0,19 -0,17

152 1,548 1,1817 3,817 30,96 31,9 0,36 -0,17 -0,19

153 0,953 1,1867 4,311 27,52 55,5 0,37 -0,18 -0,20

154 1,073 1,1827 3,944 29,99 46,2 0,36 -0,20 -0,18

155 0,951 0,6950 2,282 30,46 27,2 1,12 -0,56 -0,56

156 0,801 0,6880 2,293 30,01 34,0 1,10 -0,62 -0,49

157 0,601 0,6897 2,315 29,79 54,7 1,14 -0,62 -0,52

158 0,595 0,6977 2,111 33,05 43,2 1,15 -0,64 -0,52

159 1,965 1,5860 5,209 30,45 27,7 0,49 -0,27 -0,25

160 1,737 1,5687 4,993 31,42 35,2 0,48 -0,25 -0,25

161 1,216 1,5870 5,231 30,34 54,8 0,51 -0,29 -0,24

162 1,317 1,5870 4,729 33,56 44,6 0,49 -0,26 -0,26
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163 1,200 0,9835 3,282 29,97 27,3 0,21 -0,09 -0,10

164 1,240 0,9875 3,182 31,03 34,3 0,19 -0,10 -0,12

165 0,820 0,9855 3,347 29,45 54,8 0,21 -0,11 -0,10

166 0,900 0,9920 3,151 31,49 45,1 0,21 -0,11 -0,10

167 1,300 0,9880 3,224 30,64 27,1 1,59 -0,73 -0,88

168 1,100 0,9823 3,238 30,34 33,1 1,57 -0,79 -0,78

169 0,791 0,9900 3,588 27,59 54,7 1,67 -0,81 -0,94

170 0,867 0,9927 3,049 32,56 43,2 1,64 -0,82 -0,83

171 0,320 0,2020 0,667 30,28 26,8 0,28 -0,14 -0,14

172 0,828 0,7273 2,394 30,39 33,9 1,04 -0,49 -0,54

173 0,195 0,2037 0,670 30,40 55,0 0,27 -0,10 -0,14

174 0,232 0,2043 0,680 30,05 44,2 0,28 -0,15 -0,14

175 1,090 0,8140 2,649 30,73 25,8 1,07 -0,55 -0,52

176 0,890 0,8693 2,842 30,59 34,6 1,17 -0,58 -0,61

177 0,628 0,8450 2,790 30,29 53,4 1,17 -0,56 -0,62

178 0,771 0,8230 2,686 30,64 44,6 1,09 -0,48 -0,62

179 0,750 0,5260 1,709 30,78 27,0 0,47 -0,25 -0,23

180 0,622 0,5193 1,695 30,63 34,0 0,46 -0,25 -0,23

181 0,396 0,5157 1,721 29,96 55,3 0,48 -0,24 -0,27

182 0,560 0,5310 1,791 29,64 43,7 0,49 -0,25 -0,26

183 2,013 1,4600 4,820 30,29 28,6 1,32 -0,70 -0,65

184 1,421 1,3730 4,444 30,89 34,5 1,25 -0,58 -0,74

185 1,051 1,5065 5,040 29,89 54,9 1,33 -0,62 -0,70

186 1,260 1,3460 4,465 30,15 44,5 1,37 -0,63 -0,75

187 1,590 1,2690 4,226 30,03 30,5 0,39 -0,16 -0,22

188 1,581 1,2775 4,186 30,52 34,8 0,38 -0,19 -0,21

189 0,960 1,2625 4,066 31,05 55,0 0,40 -2,20 -0,20

190 1,080 1,2630 4,135 30,54 42,5 0,40 -0,19 -0,20

191 0,380 0,2257 0,759 29,71 25,9 0,37 -0,17 -0,19

192 0,356 0,2513 0,829 30,32 33,2 0,36 -0,19 -0,18

193 0,200 0,2237 0,722 30,99 54,4 0,37 -0,19 -0,18

194 0,244 0,2283 0,762 29,98 44,8 0,37 -0,18 -0,20

195 0,840 0,5775 1,911 30,22 27,9 0,64 -0,34 -0,30

196 0,694 0,5615 1,901 29,53 34,0 0,64 -0,32 -0,34

82



197 0,464 0,5695 1,916 29,72 55,0 0,66 -0,35 -0,33

198 0,537 0,5805 1,751 33,15 44,5 0,66 -0,34 -0,31

199 1,780 1,4375 4,728 30,40 28,9 0,44 -0,17 -0,23

200 1,657 1,3765 4,605 29,89 24,8 0,42 -0,18 -0,32

201 1,105 1,3825 4,637 29,81 54,9 0,43 -0,19 -0,23

202 1,200 1,4170 4,360 32,50 43,9 0,47 -0,25 -0,22
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