
CryptoPatcher:
Automatic On-Device Patching of Crypto

API Misuses in Android Applications

Florian Draschbacher, BSc

CryptoPatcher:
Automatic On-Device Patching of Crypto API

Misuses in Android Applications

Florian Draschbacher BSc

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Johannes Feichtner
Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute for Applied Information Processing and Communications (IAIK)

Graz, January 2021

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The document uploaded to TUGRAZonline is identical to the present
thesis.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen
Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Dokument ist mit der
vorliegenden Arbeit identisch.

Date/Datum Signature/Unterschrift

Abstract

As people are shifting an increasing amount of their sensitive private data onto smartphones and tablets,
mobile security has moved into the focus of the research community. Numerous publications in recent
years have uncovered serious security vulnerabilities in Android applications that stemmed from the
misuse of cryptographic Application Programming Interfaces (APIs).

Despite major efforts by Google as the platform provider to educate application developers in the correct
use of cryptographic primitives, a considerable portion of programmers remain unable or unwilling to
follow the recommended best practices. Consequentially, they keep putting their users at risk of falling
victims to trivial attacks. As a means to protect users who depend on potentially insecure applications, a
third-party solution is needed.

In this thesis, we present CryptoPatcher as a solution to this problem. Once configured on an Android
device, our system reacts to every new application installation by automatically generating and installing
a patched package that transparently mitigates several classes of potential crypto API misuses. Since
our solution does not require any user intervention for its operation, it is perfectly suited for untrained
novices. Still, CryptoPatcher also offers advanced monitoring functionality for system administrators that
allows gaining detailed insights into the accessed crypto APIs, chosen parameterisations and potential
vulnerabilities of installed applications. Based on the provided information, advanced users can judge the
trustworthiness of a specific program and toggle CryptoPatcher’s mitigations.

Since the operation on an Android device places our system in tight performance constraints, we
designed a custom Android Patch Development Kit (APDK) for constructing application-agnostic patches
that can be deployed to arbitrary compiled Android packages. Through a custom XML patch format
and a domain-specific language based on Java annotations, patch developers can express modifications
to a target software’s manifest file and intercept invocations of function calls. Furthermore, additional
resources and native libraries can be injected into target packages. Since the specific code manipulation
scheme is abstracted from the patch code, our system can provide two different rewriting backends, each
with unique characteristics in terms of performance and compatibility.

As a proof of the efficacy and efficiency of CryptoPatcher, we analysed our approach on a selection
of popular applications from Google Play, each risking disclosure of user data through misuse of
cryptographic APIs. In our evaluation, we show how our solution successfully impedes attacks and
confirm the correctness of CryptoPatcher’s displayed warnings by locating the source of the identified
vulnerabilities in the reverse-engineered source code of the test subjects.

Keywords: Android, Patching, Cryptography, Dynamic Analysis, Mobile Security

Kurzfassung

Während ein wachsender Teil der Bevölkerung seine sensiblen Daten auf mobile Endgeräte wie Tablets
und Smartphones verlagert, rückt der Bereich Mobile Security auch immer mehr in den Fokus der
Forschung. Mehrere Veröffentlichungen der letzten Jahre haben in einer Vielzahl von Android-Apps
ernstzunehmende Sicherheitslücken entdeckt, die ihren Ursprung in der unsachgemäßen Verwendung von
kryptografischen Programmierschnittstellen (APIs) haben.

Trotz großer Bemühungen von Seiten des Plattform-Anbieters Google, App-Entwickler im korrekten
Umgang mit kryptografischen Primitiven zu schulen, zeigt sich ein beträchtlicher Teil der Programmierer
immer noch unwillig oder unfähig, den Empfehlungen zu folgen. Um zu verhindern, dass sie die Daten
ihrer Kunden weiterhin trivialen Attacken ausliefern, scheint eine Drittanbieter-Lösung unumgänglich.

In dieser Arbeit präsentieren wir CryptoPatcher als Lösung dieses Problems. Einmal auf einem Android-
Gerät eingerichtet, reagiert das System auf jede App-Installation mit der automatischen Generierung und
Installation eines modifizierten Programm-Pakets, das potentielle Fehler in der Verwendung von Krypto-
APIs selbständig behebt. Weil dazu keine Intervention des Nutzers erforderlich ist, ist die Software auch
für ungeschulte Anwender bestens geeignet. Für Administratoren bietet das System auch eine detaillierte
Protokollierung der verwendeten Krypto-APIs, gewählten Parametrierung undmöglichen Sicherheitslücken
von installierten Apps. Auf Basis der so gewonnenen Informationen können fortgeschrittene Nutzer nach
Einschätzung der Vertrauenswürdigkeit eines Programms Schutzvorrichtungen bei Bedarf deaktivieren.

Weil der Betrieb auf einem Android-Gerät unser System zu Sparsamkeit im Umgang mit System-
Ressourcen zwingt, haben wir ein maßgeschneidertes Android Patch Development Kit (APDK) entworfen,
das die Konstruktion anwendungs-agnostischer Patches erlaubt, die auf beliebige kompilierte Android-
Pakete angewandt werden können. Über ein eigenes XML-Patch-Format und eine domänenspezifische
Sprache basierend auf Java-Annotations können Patch-Entwickler Modifikationen der Manifest-Datei for-
mulieren oder Funktions-Aufrufe abfangen. Auch das Einbetten von Ressourcen und Nativen Bibliotheken
ist möglich. Da die genaue Methode der Code-Manipulation vom Patch-Code abstrahiert ist, kann unser
System zwei verschiedene Rewriting-Backends integrieren, die jeweils unterschiedliche Charakteristika in
Bezug auf Performance und Kompatibilität bieten.

Als Beweis der Effektivität von CryptoPatcher haben wir unsere Herangehensweise an einer Auswahl
beliebter Apps aus dem Google-Play-Store untersucht, die alle durch Fehler im Umgang mit Krypto-APIs
die Preisgabe von Nutzerdaten riskieren. In unserer Evaluierung zeigen wir, wie unsere Lösung erfolgreich
Attacken verhindert und bestätigen die Korrektheit der von CryptoPatcher angezeigten Warnungen, indem
wir den Ursprung der Sicherheitslücken im dekompilierten Quellcode der untersuchten Apps lokalisieren.

Schlüsselwörter: Android, Patchen, Kryptografie, Dynamische Analyse, Mobile Security

Contents

Contents iii

List of Figures v

List of Tables vii

List of Listings ix

Acknowledgements xi

1 Introduction 1
1.1 Crypto API Misuses on the Android Platform . 1
1.2 The CryptoPatcher System . 3

1.2.1 Android Patch Development Kit . 3
1.2.2 The CryptoPatch Patch . 3
1.2.3 The CryptoPatcher Application . 3

1.3 Outline . 3

2 Background 5
2.1 Cryptographic Primitives . 5

2.1.1 Pseudo Random Number Generators . 6
2.1.2 Ciphers . 6
2.1.3 Password-Based Encryption . 7

2.2 Transport Layer Security (TLS) . 7
2.2.1 Public Key Infrastructure . 7
2.2.2 TLS Pinning . 8

2.3 Android OS Architecture . 8
2.3.1 Linux Kernel . 9
2.3.2 System Services . 10
2.3.3 Frameworks and APIs . 10
2.3.4 Applications . 10

2.4 App Package Format . 11
2.4.1 Android Manifest . 11
2.4.2 Binary XML Format . 11

i

2.4.3 ARSC Format . 11
2.4.4 Resources . 12
2.4.5 DEX Format . 12
2.4.6 Native Libraries . 14
2.4.7 Packaging . 15
2.4.8 Signatures . 15

2.5 Android Runtime . 16
2.6 Android Cryptography APIs . 17

2.6.1 Cryptographic Primitives . 17
2.6.2 TLS/SSL . 17

3 Related Work 19
3.1 Fixing Crypto Misuses . 19
3.2 Android Application Patching . 20

3.2.1 Rewriting Dalvik Bytecode or Machine Code 20
3.2.2 Adapting the Android Framework . 21
3.2.3 Manipulating Runtime Structures . 22
3.2.4 Intercepting libc or System Calls . 22
3.2.5 Container Applications . 23
3.2.6 Hybrid Solutions . 23

4 CryptoPatcher System Overview 25
4.1 Objectives . 25
4.2 Approach . 27

4.2.1 Android Patch Development Kit . 27
4.2.2 CryptoPatch . 28
4.2.3 CryptoPatcher . 28

5 Android Patch Development Kit 31
5.1 Introduction . 31

5.1.1 Objectives . 31
5.1.2 Approach . 32

5.2 Usage . 34
5.2.1 Android Manifest Patches . 34
5.2.2 Java Code Patches . 35
5.2.3 Resources and Native Libraries . 37
5.2.4 Deployment . 37

5.3 Implementation . 37
5.3.1 Annotation Processor . 38
5.3.2 Manifest XML Patching . 38

ii

5.3.3 Rewriting Backend Differences . 39
5.3.4 Static Rewriting . 41
5.3.5 Dynamic Rewriting . 42
5.3.6 Resources . 44

5.4 Conclusion . 44

6 CryptoPatch and CryptoPatcher App 45
6.1 Introduction . 45

6.1.1 Objectives . 45
6.1.2 Patch Approach . 46
6.1.3 Application Approach . 48

6.2 Usage . 48
6.2.1 Installation . 48
6.2.2 Basic Use . 49
6.2.3 User Interface . 49

6.3 Implementation . 52
6.3.1 CryptoPatch Patch . 52
6.3.2 CryptoPatcher Application . 57

6.4 Conclusion . 58

7 Evaluation 59
7.1 Case Studies . 59

7.1.1 TLS . 59
7.1.2 Cipher . 65
7.1.3 Password-Based Encryption . 67

7.2 Performance . 69
7.3 Limitations . 70

7.3.1 Compatibility . 70
7.3.2 Malicious Targets Applications . 71
7.3.3 Usability . 71

7.4 Summary . 72

8 Conclusion 73
8.1 Future Work . 74

8.1.1 Cover more Crypto API Misuses . 74
8.1.2 Improve Compatibility . 74
8.1.3 Optimise Performance . 74
8.1.4 Enhance Customisability . 74
8.1.5 Additional Patches . 74

Bibliography 75

iii

iv

List of Figures

4.1 The three main components of the CryptoPatcher system 27

5.1 The build and deployment process of an APDK patch 33
5.2 Applying an XML patch to the Android manifest file 35
5.3 Applying a Java patch through static rewriting . 41

6.1 Overview and detail display of the monitor screen . 50
6.2 Overview and detail screen of the apps list . 51
6.3 Simplified illustration of the procedure followed in the TLS patch 54

7.1 In the unpatched application, login credentials can be intercepted through the proxy server 61
7.2 With active CryptoPatcher protection, no information is leaked at all 62
7.3 Login fails while an attack is mounted under active CryptoPatcher protection 62
7.4 CryptoPatcher noticed and terminated the compromised connection 63
7.5 A MITM attacker can trivially extract Banggood login credentials 64
7.6 CryptoPatcher detected and prevented the MITM attack on the vulnerable app 64
7.7 CryptoPatcher reported an IV reuse . 66
7.8 CryptoPatcher detected an insecure iteration count parameter 68

v

vi

List of Tables

7.1 APK sizes and patch deployment durations for the different rewriting backends 70

vii

viii

List of Listings

5.1 Java patch example . 36
5.2 Rewriting backend differences example: Framework code 40
5.3 Rewriting backend differences example: Application code. 40
5.4 Smali IR of object creation in Dalvik bytecode . 42

6.1 Enabling the CryptoPatcher application as a device owner 48
6.2 Excerpt from the patch for injecting CryptoPatch’s SSLSocket wrapper 52
6.3 Excerpt from the patch for injecting our custom CryptoPatchCipherProvider. 54
6.4 Excerpt from the patch for injecting our custom SecretKeyFactorySpi 55
6.5 CryptoPatch’s SecureRandomSpi implementation . 56

7.1 The Network Security Configuration of the Facebook Messenger Lite application 60
7.2 Excerpt from the CryptoAesMaster class of the Password Saver application 65
7.3 The org.awallet.c.g.m class defines the static IV CryptoPatcher reported 66
7.4 The code responsible for key derivation inside the My Passwords application 69

ix

x

Acknowledgements

First and foremost, I would like to take this opportunity for thanking my thesis advisor Johannes Feichtner.
He not only played a major role in the selection of this thesis’ topic, but also did his best to help me stay on
track as I worked. Whenever I had reached yet another unforeseen technical hurdle during the development
of the CryptoPatcher system, he sent me valuable ideas and advise that always made me feel like I wasn’t
fighting the demons of technology on my own. During the writing work of my thesis, I was impressed
with the speed of his email responses and the amount of thoughts Johannes had poured into his feedback.

Furthermore, I wish to express my sincere gratitude to my parents Heimo and Regine and my brother
Thomas, who through the twists and turns of the extraordinary year 2020 ended up being my office
colleagues during the majority of my work on this thesis. Their continuous encouragement and support
carried me through the occasional difficult times, as did the excellent meals my father prepared whilst
himself struggling with the challenging situation of working from home.

Florian Draschbacher
Graz, Austria, January 2021

xi

xii

Chapter 1

Introduction

As adoption rates of smart phones have grown over the last decade, people are gradually shifting larger parts
of their computing tasks onto the new platform. Today, mobile phones not only represent a centre piece of
people’s communication, but have also taken over responsibilities as a means of payment and medium
for controlling banking accounts. A major factor enabling this development is the broad availability of
applications that claim to offer easy and secure access to a wealth of privacy-sensitive functionality. To
this end, they make use of special infrastructure in the operating system’s Application Programming
Interface (API), that provides cryptographic primitives for obtaining secure random numbers, performing
encryption and decryption of data or establishing secure communication channels.

Several studies over the last few years have revealed that in contrast to people’s belief, applications often
fail to deliver the degree of security required for processing sensitive data, due to improper employment
of crypto primitives. Frequently, apps use the correct API component for a specific task, but do not
parameterise it correctly. As a consequence, many applications are prone to trivial attacks by adversaries
that can extract sensitive information completely unnoticed by the user.

In an effort to improve the situation, we are presenting CryptoPatcher, a system that is designed to
automatically protect users from crypto API misuses in apps on their Android devices. The CryptoPatcher
system is comprised of three components: TheAndroid Patch Development Kit (APDK)was built to aid
in developing and applying patches to Android application packages. Using our kit, we constructed a patch
we call CryptoPatch, to specifically target and fix commonly found crypto API misuses in third-party
applications. Lastly, the CryptoPatcher Android application automatically applies CryptoPatch to
all applications installed on an Android device. It also includes a monitor component that provides
high-level descriptions of detected vulnerabilities and additional low-level details on an app’s usage of
cryptographic primitives that advanced users can use as a basis for deciding about the inspected program’s
trustworthiness.

1.1 Crypto API Misuses on the Android Platform
Mobile devices’ foray into people’s homes in recent years has also piqued curiosity of the research
community. The first series of papers on the topic investigated the security of SSL/TLS implementations
in Android applications and was started in 2012 by Fahl et al. [20] and Georgiev et al. [25]. The
former focused on the user perspective and found that 8% of 13500 Android apps that were run through
conservative automated static analysis were in some form vulnerable to aMan-In-The-Middle (MITM)
attack. Additionally, the majority of apps was found to still use unprotected HTTP. Georgiev et al.[25]
concentrated on the developer perspective, and found that a myriad of popular Java libraries was vulnerable
to MITM attacks, thus affecting any Android application that integrated them. Sounthiraraj et al.
[49] developed a system combining automated static and dynamic methods for analyzing SSL/TLS

1

2 1 Introduction

implementations and found that only 3% of more than 23000 tested apps from Google Play were actually
vulnerable to MITM attacks. In contrast, statically analyzing the 500 most popular apps in 20 Google Play
categories of 2013, Tendulkar et al.[51] found that more than 15% 1 were vulnerable. As shown by Buhov
et al.[8, 9], the general trend of growth of the rate of vulnerable apps continued, reaching more than 30%
by 2014.

By early 2016, the scale of the problem alerted Google to take measures. An analysis step was added
to Google Play and all apps affected by insecure SSL/TLS implementations were banned from the store
starting from May 20162. Additionally, the new Android 7.0 release introduced a feature called Network
Security Configuration3 that allowed developers to specify custom trusted SSL certificates via an XML
configuration file. This addressed a very frequent cause of SSL/TLS misuse that stemmed from developers
writing their own certificate verification code in order to use custom, often self-signed, certificates.
Subsequent studies by Wang et al.[54], Shin et al.[48] and Tang et al.[50] revealed that these measures were
very effective in clearing the Google Play Store of apps affected by SSL/TLS issues, but a considerable
amount of apps in third-party app stores stayed vulnerable, particularly in Asia. Additionally, apps that
still do not employ certificate pinning (figures published in 2017 by Razaghpanah et al. reported only 5%
of apps used certificate pinning [44]) are prone to attacks if a Certificate Authority (CA) is compromised,
which has happened in the past as documented by the Open Web Application Security Project (OWASP)
Foundation [42].

Soon after the first issues with SSL/TLS in Android apps were discovered, researchers initiated a second
area of research investigating misuse of other crypto-related APIs on Android, and presented even more
alarming results: Egele et al. [18] found that 68% of the subset of collected Play Store apps that utilise
crypto APIs made at least one mistake in doing so, thus weakening the security premises of the used
primitives. The most common issue was that apps were using block ciphers in the Electronic Code Book
(ECB) mode, which is considered insecure for most uses (as discussed in Section 2.1.2). Subsequent
studies by Shao et al. [47], Chatzikonstantinou et al.[10], Gajrani et al. [23] and Muslukhov et al. [39]
reported even higher rates of affected apps between 80 and 90% of those that used cryptography. While
Muslukhov et al. [39] observed a general trend of improvements to app security, Gao et al. [24] recently
reported that analysed app updates were more likely to introduce new crypto misuses than address existing
ones. Unanimously, both studies suggest that the problem still affects a large portion of currently available
Android applications.

As the criticality of the problem came to the attention of the research community, several potential
mitigations were presented. In an effort to fix the matter in the long term, Google integrated additional
Lint rules into the Android Studio Integrated Development Environment (IDE) that warn developers
when compiling application source code that potentially supplies cryptographic primitives with insecure
parameters. Still, warnings are easily ignored, and many applications were even already written before
these checks were put in place and have rarely been updated since. Consequently, a solution is needed
that works on compiled application binaries. In order to detect the misuse of crypto APIs in these, most
of the existing solutions employ static analysis, which involves identifying function calls within the
compiled application code and tracing back the used parameters. This approach is prone to imprecise
or erroneous classification and computationally expensive, prohibiting its use in an on-device solution.
Other suggestions employ dynamic analysis, which provides higher precision and performance, but usually
comes at the cost of requiring a modified OS install with root access. Our new proposal, the CryptoPatcher
system, solves the problem at hand with a flexible dynamic analysis approach that is performant enough
for execution on an Android device itself, yet works on unmodified Android firmwares.

1Apps that only used SSL in third-party libraries were excluded
2About ThoseX509TrustManager Emails: https://commonsware.com/blog/2016/02/22/about-x509trustmanager-emails.html
3Changes to Trusted Certificate Authorities in Android Nougat: https://android-developers.googleblog.com/2016/07/

changes-to-trusted-certificate.html

https://commonsware.com/blog/2016/02/22/about-x509trustmanager-emails.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html

The CryptoPatcher System 3

1.2 The CryptoPatcher System
Our contributions in this thesis are threefold: First, we introduce the Android Patch Development Kit, a
new system for developing and deploying patches that can be injected into arbitrary applications available
only in compiled form. Second, we presentCryptoPatch, which we designed with the goal of automatically
mitigating security vulnerabilities in third-party apps induced by their misuse of cryptographic APIs. In
order to demonstrate the capability of both these new technologies, our third contribution CryptoPatcher
packages them into a form that provides a practical benefit to end users, by running a system daemon on
the target Android device itself that automatically applies the CryptoPatch patch to any new application
that is installed on the system.

1.2.1 Android Patch Development Kit

The Android Patch Development Kit allows building application patches within the Android Studio IDE
that developers are already accustomed to. Patches can intercept calls to system or library methods, inject
resources or native code, and modify the target application’s manifest file. The flexible design of the
APDK allows to switch the underlying code rewriting backend without requiring modifications to the
patch code. Particular focus has also been put on the performance characteristics of the deployment
functionality, so that it can itself be executed as part of an Android application.

1.2.2 The CryptoPatch Patch

Using our Android Patch Development Kit, we implemented a patch that aims at automatically correcting
misuses of cryptographic APIs in the target application. Based on the taxonomy suggested by Egele et
al. [18], we identified four classes of crypto API misuses that can be fixed transparently to the target
application. Our patch implements these mitigations and also tightly integrates with the CryptoPatcher
application by collecting usage reports for a broader range of privacy-relevant APIs.

1.2.3 The CryptoPatcher Application

To demonstrate the practical applicability of our solution, we implemented the prototype for an application
that targets end consumers. In the fashion of an antivirus program, it runs a daemon service on the
Android device and constantly watches out for new app installations. When such an event is detected,
CryptoPatcher automatically disables the original program and sets up a patched version of it by applying
the CryptoPatch patch described above. An additional configuration panel allows to toggle protection on
a per-app basis, and displays information on the specific cryptographic APIs accessed by each patched
application.

1.3 Outline
The rest of this thesis is structured as described in the following:

Chapter 2 seeks to provide necessary background information for understanding the terminology used
and arguments brought up throughout the remainder of this thesis. We touch on cryptographic primitives,
provide a primer on the architecture of the Android OS and its application package format, and describe
the cryptographic APIs available to app developers.

Chapter 3 summarises other researchers’ efforts that share some aspects with this thesis. We discuss
works that also aim to fix security vulnerabilities in applications only available in compiled form, and
provide an overview of different approaches for modifying the program flow of third-party Android
applications.

4 1 Introduction

Chapter 4 provides an introduction and structural overview of the complete CryptoPatcher system. Not
only does it introduce the various components, but it also highlights the connections between them and
how they work together.

Chapter 5 is dedicated to the Android Patch Development Kit. It starts by summarising the requirements
and goal for designing this component, before discussing how it can be used for modifying different
aspects of existing applications. Additionally, we provide insights into the inner workings of the various
building blocks, and the challenges we faced while implementing them.

In Chapter 6, we cover the CryptoPatch patch and the CryptoPatcher application. Every supported
crypto API misuse is detailed, along with a description of the mitigation measures that were implemented.
Moreover, we elaborate on the user-facing functionality and what technical hurdles had to be overcome in
order to realise the envisioned plan.

Chapter 7 offers an evaluation of the complete CryptoPatcher system, as comprised by the Android
Patch Development Kit, the CryptoPatch patch and the CryptoPatcher Android application. We provide
performance characteristics of the patching process and an exemplary case study on a select set of popular
applications from Google Play. Furthermore, we point out the inherent limitations stemming from the
underlying methodologies and technologies we built upon.

Lastly, Chapter 8 concludes this work with a summary of our efforts and contributions in this thesis.
We provide a glimpse into the future with respect to the described CryptoPatcher system in the form of
possible improvements that could be further explored.

Chapter 2

Background

In this chapter, we provide the background information required for a complete understanding of the
discussions in the rest of this thesis.

First, Section 2.1 starts with an overview of cryptographic primitives. It focuses only on the most
relevant concepts, beginning with Pseudo Random Number Generators, continuing with different kinds of
Ciphers for encryption and decryption, and finishing with an excerpt about Password-Based Encryption.

In a very similar way, the adjacent Section 2.2 puts the introduced primitives into the bigger context of
the TLS/SSL layers commonly used for securing network communication and adds the concepts of Public
Key Infrastructure and TLS Pinning to the picture.

In the following Section 2.3, we provide a primer about the Android OS architecture, spanning from
a description of the underlying Linux kernel, across the low-level system services, frameworks and
application APIs, until arriving at the actual user-facing applications on the highest level.

Next, the Android app package format is explained in Section 2.4, including crucial details about the
contained Android Manifest file, the compiled Binary XML format and the ARSC resource index structure.
The section also charts the specifics of the uncompressed resources contained in an app package archive,
as well as the native shared libraries. Finally, the section reports recent changes to the packaging and
signing process required for obtaining an installable file.

We continue with Section 2.5 and an account of the Android runtime, focusing on the more modern ART
runtime that implements a hybrid between ahead-of-time and just-in-time compilation. Our discussions
include the modalities of compiling bytecode to native code and touch on the different calling conventions
involved during method invocations.

As a conclusion to this chapter, a short summary of the cryptography APIs offered by the Android
framework in Section 2.6 shows the convergence point of all earlier topics. We briefly explain the
Java Security Provider system for cryptographic primitives and enumerate the different cryptography
implementations available on Android, before covering the core components that make up the SSL
framework of the platform.

2.1 Cryptographic Primitives
This section describes a few of the most commonly used cryptographic building blocks, or primitives,
that have some relevancy for this thesis. Please note we will only provide a rough overview for the topics
covered here. The interested reader is advised to consult background literature on the respective subjects
for more complete descriptions.

5

6 2 Background

2.1.1 Pseudo Random Number Generators

For the most part, the biggest strength of a computer is its determinism, i.e. the fact that the same program
will always lead to the same result given the same input data. While this is perfectly desirable in most
situations, there are cases where some degree of indeterminism is required in order to make the computer
run through a different sequence of instructions upon repeated execution of a program. Commonly, the
solution to this problem are Pseudo Random Number Generators (PRNG), which, based on some initial
seed value, will generate a sequence of seemingly random values. These are not true random number
generators, because the probability of a specific value 𝑥 to be drawn is not uniform across all possible
values 𝑥. Although this is not a problem for applications like games, many cryptographic primitives rely
on some form of unique value that has to be unpredictable by any means.

In order to fulfil this requirement, a special class of Cryptographically Secure Pseudo Random Number
Generators (CSPRNG) was conceptualised. While the distribution of the generated values more closely
resembles true uniformity, these mathematical devices still require seed material to initialise their internal
state. Most commonly, the system state and environment measurements from hardware sensors can
be combined into a seed that is reasonably suitable for use as a random seed. Additionally, many
implementations of CSPRNGs allow application developers to provide extra seed material that usually
augments the one coming from the system.

2.1.2 Ciphers

In cryptography, ciphers are mathematical devices that utilise a secret key for transforming information
(the plain text) into an encrypted cipher text that looks like random data to an observer. Still, the process
is reversible, so that the recipients of the cipher text are able to decrypt it, i.e. recover the original plain
text from the cipher text if they are in possession of the correct key. Fundamentally, ciphers provide data
confidentiality to their operators.

If the keys for encryption and decryption are identical, the cipher is called symmetric, otherwise it is
termed asymmetric. The latter case is more computationally intensive than the former, but invaluable for
specific applications. Asymmetric ciphers enable the implementation of signature schemes, where the
hash fingerprint of some input data is encrypted with a private signing key. The receiver of the data can
then use the public counterpart of the key for verifying the signature.

An additional taxonomy distinguishes between symmetric stream ciphers and symmetric block ciphers.
While a stream cipher is capable of processing an arbitrary amount of data, a block cipher operates on
equally-sized chunks of data at a predefined length. In order to use a block cipher on an arbitrary amount
of data, the latter has to be split into a block size suitable for the chosen cipher, and it has to be padded, so
that the last block of data is not left partially filled. A mode of operation then specifies how each individual
block is to be processed before running it through the block cipher.

The most basic mode of operation is called Electronic Code Book (ECB) mode. Because it encrypts
all blocks independently using the same key, this mode is inherently insecure for any application that
processes more than one block. An attacker can trivially compare blocks of cipher text that were encrypted
with the same key to determine whether they originated from the same plain text block.

Secure modes of operation incorporate the cipher text from the preceding block of data into the
encryption of the block following. While this principle alone already guarantees unique cipher text blocks
for repeated identical blocks of plain text, comparing the joined cipher text of multiple encryption runs
that used the same key still allows an attacker to deduce knowledge about the plain texts. To mitigate this
problem, the first block of data is augmented with a unique random data block called Initialisation Vector
(IV), which can be handed to the data recipient together with the cipher text. It is crucial that this IV be
unique for every encryption with the same key.

Transport Layer Security (TLS) 7

2.1.3 Password-Based Encryption

While ciphers require keys that utilise the full entropy available in the key size for highest effectiveness,
humans prefer passwords that consist of displayable characters, such as letters, numbers or punctuation
marks. Password-Based Key Derivation Functions (PBKDF) were designed specifically to bridge that
gap. They expand a user-specified password into a key that can be used for operating a cipher. In order to
compensate for the limited password entropy caused by the reduced set of human-readable passwords, the
PBKDFs adds other measures that are intended to slow down a brute-force attacker.

The commonly used PBKDF2 adds a unique random salt to the password to ensure that even two
identical passwords yield different keys, considerably slowing down bulk brute force attacks. Moreover,
the PBKDF allows for an iteration count argument that roughly specifies the time duration the derivation
should take. This parameter is chosen so that it causes an unnoticeable delay when run for deriving a single
key, but effectively impedes brute-forcing, where all potential keys have to be tried in rapid succession.

When PBKDF2 was first published in 2000, the recommended iteration count was specified at 1000
[31]. As computers have grown more powerful since then, the value was periodically updated. In recent
years, the National Institute of Standards and Technology (NIST) has recommended a minimum iteration
count of 10 000 for server applications [26]. It is an application developer’s responsibility to keep up with
these recommendations to ensure the end user’s data stays properly secured.

2.2 Transport Layer Security (TLS)
In this section, we will provide a relatively high-level description of the Transport Layer Security (TLS)
protocol, which today represents one of the backbones of the modern Internet.

The Transport Layer Security (TLS) protocol and its predecessor Secure Socket Layer (SSL) specify
an encryption layer that can be used on top of a networking protocol in order to protect the transmitted
information from being intercepted by a passive attacker on the same network. The encryption and
decryption is carried out transparently to the application layer on top. While we will focus on describing
the most commonly used HTTPS protocol combination (Hypertext Transfer Protocol over TLS), the same
principles apply to any other application layer protocol alike.

In analogy to the typically used lower-level Transport Control Protocol (TCP), TLS communication
involves a server and a client. After the client establishes a network connection to the target server, the two
parties exchange a series of TLS handshake messages for confirming each other’s identity and securely
agreeing on an encryption scheme and key for use in all subsequent communication. In the case of HTTPS,
servers usually don’t authenticate the client, but the opposite operation is crucial for ensuring that no
attacker is impersonating the target server. The authentication procedure is one of the most delicate pieces
of the protocol.

2.2.1 Public Key Infrastructure

The TLS protocol is built on the core principle of asymmetric cryptography. A TLS server is required to
be configured with an asymmetric key pair, consisting of a public key that acts as an identifier and a private
key that is used to prove the claimed identity to the client during the TLS key exchange or key agreement.

Although this key pair mechanism establishes identities in the domain of the TLS protocol, it still does
not provide a secure way to bind them to identities in the other layers of the protocol stack. An attacker
could still interpose as an arbitrary host, just by generating its own valid key pair. Because the secured
communication channel to the target host is only about to be arranged at the time its identity has to be
confirmed, the client does not have a way to query it for its true SSL identity on demand. The Public
Key Infrastructure (PKI) was designed to bridge this and similar gaps that arise in various applications of
asymmetric cryptography.

8 2 Background

Every program that is designated to participate in TLS communication maintains a set of trusted TLS
identities in the form of TLS certificates that link a public key to the name of a host. These trusted
identities are known as root Certificate Authorities (CAs) that notarise other server’s identities, which in
turn can act as CAs on a smaller scale. At the end of this tree-like construct, there are leaf certificates that
an TLS server actually uses as its TLS identity. A signed certificate contains the identity of the signer, so
that it is possible for an SSL client to follow a chain of trust from an identity presented by an TLS server
to a trusted root CA.

While this hierarchical PKI provides a flexible solution, it still contains a number of flaws. Most
prominently, the root CAs represent a very exposed point of failure. If the private key of a CA is
compromised, attackers can issue valid certificates for arbitrary domains, which allows them to intercept
any client’s communication with the targeted host. While this may sound like an unrealistic scenario,
exactly this has already happened multiple times in the past [42]. Although special mechanisms have
been put in place to revoke leaf and intermediary CA certificates, revoking root CA certificates was not
provisioned for when designing the system. Instead, TLS client applications have to adapt and remove the
compromised certificate. Most programs rely on a set of trusted CAs provided by the operating system,
which meant that in some cases, an OS update was required to patch the gaping security hole. While this
is not too much of a problem on well-maintained desktop operating systems, devices running the Android
operating system are often abandoned by the manufacturer a few years after release, which leaves millions
of users unprotected.

2.2.2 TLS Pinning

To mitigate this problem, an additional protection scheme was introduced that ensures the authenticity of
the TLS server a client application is communicating with even in absence of a well-maintained set of
trusted CAs. TLS Pinning involves short-cutting a part of the chain of trust by not (only) relying on the
relatively large set of trusted CAs included in the OS, but also shipping the TLS client application with the
TLS identity of an intermediary CA or the precise leaf certificate of the target server itself.

Two slightly different implementations of SSL Pinning exist. Certificate Pinning operates on the whole
certificate, meaning that every property of the certificate must exactly match a value hardcoded in the
client application. While this provides the greatest degree of security, it is also a very inflexible solution,
because it necessitates an application update whenever the server certificate changes. Since certificates are
usually issued for only a very limited time span of a few months, this approach results in the need for very
frequent app updates.

The other possibility is called Public Key Pinning, and compares certificates only in terms of their
public key, ignoring mismatches in any other property. While this permits continued use of the application
across server certificate updates that retained the key pair, it also provides less protection against the
compromise of these keys. While Certificate Pinning limits the potential security hole to the lifespan of a
single certificate, Public Key Pinning allows an attacker to keep intercepting connections of users who
failed to install the application update by issuing new certificates that use the same key pair.

Both of these variants are adequate solutions for applications that only access a limited set of TLS
servers known when shipping the product to customers. As noted by [41], organisations employing SSL
pinning are also required to have tight control over both server and application development, so that they
can keep the pinned certificates updated.

2.3 Android OS Architecture
This section covers details about the Android operating system, which the CryptoPatcher system is
targeting.

Android OS Architecture 9

Android is an Operating System (OS) originally designed for mobile devices such as smartphones
or tablets. Since its release in 2007, its lightweight and flexible nature has lead it into other embedded
environments as well, such as TVs and smart watches. The Android Open Source Project (AOSP) is
developed by Google in annual release cycles for the most part, so that a major revision is rolled out to
recent devices once a year. As of May 2019, there were more than 2.5 billion actively used Android
devices worldwide1. Between October 2019 and October 2020, devices running the Android OS were
estimated to account for more than 40% of worldwide Internet traffic2.

The foundation of the Android OS is formed by the Linux kernel, which manages the underlying
hardware and system resources. The next layer in the conceptual stack are the different system services
and native libraries that together lay the ground for the Java frameworks and APIs, part of which already
live inside the Java world established by the Android runtime. Lastly, at the top of the structural pyramid
reside the consumer applications that can leverage all the underlying technologies to generate a real-world
benefit for the user.

2.3.1 Linux Kernel

Like many modern embedded operation systems, the Android OS is based on a Linux kernel, which is
responsible for interfacing with the low-level hardware. The kernel itself includes core functionality for
controlling CPU speed, memory management, scheduling of processes, implementing access control and
file input or output. Additionally, the different kernel subsystems can be extended with kernel modules.

A key kernel module added for the Android OS is the Binder Inter-Process Communication (IPC)
mechanism. It provides a way for applications to call exposed functionality of other processes, copying
call arguments and results across virtual memory regions of different processes. Other kernel modules
represent device drivers for the different Integrated Circuits (ICs) in the system, such as network interfaces,
sensors, displays and various I/O buses. Following the UNIX philosophy, all these drivers expose device
files in a special virtual file system, so that user space applications can take advantage of the available
hardware and kernel infrastructure.

Once the kernel has brought up its different subsystems, it hands over operation to user-space applications.
These are executing in a less-privileged context on the CPU, so that they have to go through the kernel
in order to access certain functionality, such as control of hardware components. The kernel provides a
system call mechanism that allows user space applications to trigger a special kind of interrupt, which the
kernel handles by executing a particular functionality on behalf of the caller depending on the arguments
passed from the user space program. By having the kernel supervise all accesses to critical infrastructure,
it is in a position to enforce configured access policies, so that a group of administrator (root) users can
selectively grant permissions to other (non-administrator) users.

Because the Android operating system, in its designation for mobile devices such as smart phones, was
expected to process very privacy-sensitive information, its developers chose to not grant root access to
normal end users in official release builds. While this generally helps preventing malicious applications
from taking over the whole device, it also impedes the deployment of advanced third-party protection
measures against more specific attacks, for example against vulnerabilities introduced by misconfigured
applications.

1Google I/O’19: https://youtu.be/TQSaPsKHPqs?t=3298
2Net Market Share: https://netmarketshare.com/operating-system-market-share.aspx

https://youtu.be/TQSaPsKHPqs?t=3298
https://netmarketshare.com/operating-system-market-share.aspx

10 2 Background

2.3.2 System Services

The first user space program started by Android’s Linux kernel is the init process, which in turn spawns an
array of additional system services. Many of these are native daemons, responsible for providing a very
specific slice of relatively low-level functionality, such as USB debugging or Bluetooth communication.
One of the started processes, named Zygote, takes on a very central role in the system.

The Zygote process can be considered the nucleus for all other processes that execute Java code, be
it as part of a system component or a third-party user-installed application. When it is started, Zygote
configures the Java Virtual Machine (JVM) (the specific implementation depends on the Android version,
as discussed in Section 2.5 below) and preloads a set of commonly used framework classes. Once the
JVM is initialised, it spawns the system server covered in the next paragraph and starts a Unix domain
socket, listening for fork requests issued by other processes, such as the System Server. In response to
these requests, Zygote forks into a new process that executes a specified Java program.

Spawned by the Zygote process, the System Server process is another important corner stone in the
operation of the Android OS. It acts as a registry for various different sub services, each responsible for
managing a specific portion of the OS functionality and exposing it to other processes at a higher level.
A considerable amount of the functions available in the API is constructed around proxy components
that interact with the system server process via the Binder IPC mechanism. Similar to how the kernel
conceptually shields user-space applications from having arbitrary hardware access in the Linux domain,
the Android system server adds an additional barrier that is protected with Android’s own permission
system.

2.3.3 Frameworks and APIs

The Android OS ships with a wealth of APIs and extension points that third-party developers can leverage
to implement specific application functionality and improve the over-all user experience of the platform.
While most of these APIs are exposed in the form of Java classes, many of the interfaces that interact with
the OS or hardware in some way are implemented on top of either the System Server or native shared
libraries provided by the OS.

In contrast to most Linux distributions, the Android OS does not employ the GNU project’s C library
glibc. Instead, a custom C library called bionic was brought into existence, assembled from parts of
other open-source projects and components that were implemented from scratch, specifically tailored
for low-power embedded use. While bionic is compatible with the POSIX API in most parts, some
functionality was purposefully omitted for improved security. Other underlying native libraries include
BoringSSL (Android’s fork of OpenSSL) and libraries for hardware-accelerated 3d graphics or media
decoding.

In addition to these Android-specific APIs, Android applications can also take advantage of many
packages of the Java platform taken over from the OpenJDK3 project.

2.3.4 Applications

While all applications running on an Android device share their ancestry from the Zygote process, they
generally run in separate processes. As an additional isolation measure, the OS also assigns different Linux
user IDs to installed application packages. This mechanism is then used to provide each application with
exclusive access to its own data folder. In order to access files outside of this private folder, applications
have to be granted permissions from the OS, and ultimately from the user. Similar permissions also exist
for managing Internet access or control over hardware sensors.

3OpenJDK: https://openjdk.java.net

https://openjdk.java.net

App Package Format 11

Applications are most commonly developed in the Java or Kotlin programming languages, but may also
include native machine code for performance-critical parts of their functionality. For deployment, they
are packaged into a special APK container format that bundles all compiled code, as well as resources
needed at runtime. While manual installation from any source is possible, most users download their
programs exclusively from Google’s official app marketplace Play Store, which also provides them with
the possibility to update software packages once a new version becomes available.

2.4 App Package Format
The Android OS defines its own Android Package (APK) file format for deployment of applications onto
devices. As part of the installation procedure, the file is copied into a special folder on the device, where it
is accessed during the execution of the contained program. The file consists of a ZIP archive that contains
a manifest declaring the app’s interaction points with the system, a resources index file accompanied by
the resources themselves and compiled native and Java code (or bytecode-compatible code such as that
stemming from Kotlin code). All these components will be detailed in the following subsections.

2.4.1 Android Manifest

The Android Manifest is an XML file written by the app author, which can be considered the contract
between the OS and the application, declaring the supported functionality and required permissions or
device capabilities.

For every implementation of one of Android’s core application building blocks, a corresponding entry
has to be added to the manifest file. These components include Activities, which are full-screen application
windows, Services that can provide functionality while the user is interacting with a different program in
foreground and Content Providers that expose a well-defined public interface to an app’s databases or files.
An additional core element of the Android API are Broadcast Receivers, which listen to signals raised
from the system or other applications via IPC.

In order to limit third-party application’s access to the functionality exposed in the manifest file, the
software developer has the possibility to extend Android’s permission system with custom permissions that
can for example be granted only to packages from the same author. For Content Providers, the manifest
even allows specifying separate permissions for read and write access.

2.4.2 Binary XML Format

During compilation, XML files used in an Android application, such as the manifest described above, are
transformed into a more space-efficient proprietary binary XML format. It mostly differs from the plain
text XML format in that any strings (including attribute keys and values) are only stored as references into
a common strings table at the beginning of the file. Moreover, every attribute holds an integer Attribute
Identifier in addition to the attribute key string reference. The mapping between attribute IDs and keys is
globally defined, so it can be used for quickly looking up a specific attribute without having to resolve the
attribute key string through the strings table.

2.4.3 ARSC Format

Apps may contain many different types of resources, such as layout XMLs describing the structure of a
user interface, vector or bitmap images for icons and theming, strings that can be provided in multiple
languages, or configuration files. All of the individual resources are internally identified by a unique
integer number, and must additionally be assigned a human-readable name. The Android SDK then uses
these names to generate a Java class with a final static integer field for every resource, which application
code can reference instead of hardcoding the integer identifiers. The Java compiler eventually inlines the

12 2 Background

resource IDs, so that this solution greatly improves readability and maintainability of the app source code,
while not affecting runtime performance in any way.

In order to save storage space on the target device, many resources of an application are compressed
during compilation. As part of this process, an index table is constructed, which keeps track of all
available resources. This index, as well as compiled text resources, are stored in a special data structure
in the ARSC file that can be conveniently mmapped into the process memory at runtime for fast access.
Fundamentally, the data is structured into nested chunks, each consisting of a generic header, an additional
header depending on the specific type of the chunk, and optional payload data or child chunks.

At the root of this tree-like construct sits the Table Chunk, which contains one or several Package
Chunks and a Value String Pool Chunk. While the former essentially bundle a set of resources, the latter
stores a list of actual resource string values, so that they may simply be referenced as an offset into the list
by consumers inside the Package Chunks.

A Package Chunk holds two more String Pool Chunks, for the type names and the resource keys
respectively, the latter of which are the human-readable resource names mentioned above. The type
names are referenced inside other elements of the Package Chunk, so-called TypeSpec Chunks. These are
for structuring the resources by their type, so that for example all string resources stay together. Lastly,
Type Chunks are added for every combination of resource type and device configuration. For instance, a
separate Type Chunk may exist for German string resources that actually includes entries for the individual
string resources, each containing a reference into the Package Chunk’s Key String Pool and the Table
Chunk’s Value String Pool.

While some resource values, most notably all string resources, are stored directly in the ARSC structure,
images and compiled XML layouts reside as separate files inside the res folder within the APK archive.
For these, only their path is used as the resource value inside the Type Chunks.

The integer identifiers used for addressing an app’s resources directly translate to a path through the
nested structures described above. For example, the resource id 0x7f0b001e can be interpreted as the
30th (0x001e) resource entry of the 11th (0x0b) Type Chunk inside package 0x7f. Note that by default,
the Android build tools merge all resources of an app (even those included through library dependencies)
into a single package chunk with ID 0x7f.

2.4.4 Resources

As mentioned in Section 2.4.3 above, some resources are kept as separate files inside the APK file, albeit
in a compressed form. In addition to these processed resources, developers may wish for some files to
retain their original form. The Android SDK supports this case as well, by providing special folders whose
contents are not touched during compilation, but are still included in the application package.

2.4.5 DEX Format

The centre piece of the APK file’s contents are the Dalvik Executable (DEX) files4, which contain the
Java program code in a machine-independent intermediate representation called Dalvik bytecode. This
bytecode is produced in a multi-step process during compilation. As a first step, the conventional Java
compiler generates a traditional .class file for every Java class, which the Android build tools then
transform into one or several DEX files. This deviation from standard Java formats was chosen for more
efficient execution on the highly resource-constrained environment of mobile devices.

4Dalvik Executable format: https://source.android.com/devices/tech/dalvik/dex-format

https://source.android.com/devices/tech/dalvik/dex-format

App Package Format 13

2.4.5.1 File Structure

At the top level, a DEX file consists of a header section, several index table sections and a data section.

The header at the very start of the DEX file serves two main purposes. To begin with, by starting the file
with a well-known magic value and listing several checksum fields, it helps consumer programs recognise
the format and verify the integrity of the contained information. As part of the magic value, the specific
version of the DEX file format the file adheres to is noted. Additionally, the header also works as a central
index for the remaining sections of the file. For all parts described below, dedicated offset and size fields
in the header aid in locating the respective data structures within the DEX file.

Immediately following the header, the string IDs table contains a list of string identifiers to be used as
constants in the actual program code or as names of other DEX elements. For every identifier, a string
data offset points to the exact position of the actual character data, which is encoded in a version of UTF-8
modified to work with zero byte terminators. For performance reasons, the string IDs table is sorted by the
code point values and must not contain any duplicates, which also helps minimising the memory footprint.

In the next segment, the type IDs table stores a list of identifiers of primitive, array or class types
the bytecode in the DEX file references. Every entry points to an element in the string IDs table,
representing a type in the Java type descriptor format, which uses one-letter abbreviations for primitive
types, an opening square bracket for arrays and a transformed fully-qualified identifier in the form of
Lcom/mypackage/myclass; for classes. Similar organisational requirements as for the string IDs table
apply.

The immediately adjacent sections together describe the class structure of the program code contained in
the DEX file. The class definitions table is the central component in this bundle, declaring the inheritance,
implemented interfaces and access flags of the class itself. It also holds references into the field identifiers
table and the method identifiers table, both of which contain structures that provide type information
of the respective entities through additional references into other tables within the DEX file. Finally, a
class definition item also includes a pointer to a class data item, which, through the values encoded in its
virtual_methods and direct_methods fields leads to the code items that contains the actual bytecode
instructions. As with the sections described in previous paragraphs, the mentioned tables and lists (as well
as those covered in the next paragraph) strictly follow a clearly specified ordering and must not contain
any duplicates.

To conclude the identifier tables sections at the start of the file, the DEX format specifies a call site
identifiers table and a method handle table, both of which are used in program code whenever execution
flow is to be directed towards a different method contained in the same or another DEX file.

Following the identifier tables, the curious investigator will find the data section, which contains the
actual values referenced by many of the structures described above. Finally, the map section at the very
end of the file provides a similar overview to its contents as the header at the start, but is more tailored for
iteration of the whole file, instead of the more random access pattern that occurs during execution.

2.4.5.2 Dalvik Bytecode

All program code for static, virtual or direct methods implemented in the DEX file is following the
Dalvik Bytecode format5. This in essence is a machine code format for a register-based virtual machine
that operates on 32-bit registers. Values spanning 64 bits in width are possible as well and are stored
in two adjacent registers. While the machine theoretically supports an arbitrary amount of registers,
most instructions have a limit to the number of registers they can actually address. The virtual machine
processes the instruction stream in code units of 16 bits, although instructions themselves are not fixed

5Dalvik bytecode: https://source.android.com/devices/tech/dalvik/dalvik-bytecode

https://source.android.com/devices/tech/dalvik/dalvik-bytecode

14 2 Background

size, but composed of an arbitrary multiple of such blocks. All instructions contain an 8-bit opcode and
specify the affected registers or immediate values.

Since they are the most relevant for the rest of this thesis, we will only examine the family of invocation
instructions in more detail here, consisting of the invoke-static, invoke-direct, invoke-virtual,
invoke-super and invoke-interface instructions, each with a few minor variations.

The invoke-static instruction is used for calling a static class method. In its basic form, it contains a
4-bit argument count, a 16-bit method reference index and up to five 4-bit argument register indices. In
effect, this allows the caller to arbitrarily choose five of the first 16 of the machine’s registers for passing
arguments. When more parameters have to be used, an additional invoke-static/range instruction is
available that permits method calls to include up to 255 adjacent register indices for transporting the call
arguments. The method reference index is an index into the method identifiers table described above.

Very similar in concept is the invoke-direct instruction, except that it is used for calling instance
methods that are not virtual, i.e. private instance methods or constructors. While argument passing works
almost identical to the invoke-static instruction, there is one important difference. Targeting instance
methods, a direct method implicitly takes the this object as its first parameter. Like for invoke-static, a
range variant is also available for invoke-direct.

Another member of the invocation family of instructions is invoke-virtual, which is applicable
for any virtual instance method, i.e. a method that can be overridden by subclasses. When executed, it
performs a lookup in the target object’s vtable to find the most specific implementation of the method in
question. Please note that vtable resolution cannot simply be circumvented by using an invoke-direct
with a virtual method, since doing so is actively prohibited at least by the ART runtime, although the
arguments passing works exactly the same.

A particularly interesting instruction is invoke-super, which serves the purpose of requesting execution
of the next less specific implementation of the referenced method, i.e. the implementation of the closest
ancestor class. The specified method is not executed in verbatim, but used as the basis for a lookup in
the vtable of the class that contains the method using the invoke-super instruction. Consequentially,
invoke-super cannot be used outside of the member methods of the target object’s class. In fact, this
example goes to show how closely the Dalvik bytecode instruction set is following the feature set of
the higher level Java language. The argument transport is handled in the same way as described for
invoke-direct above.

Lastly, invoke-interface is the instruction that allows calling interface methods of objects whose
exact type is not known at compile time, so a lookup similar to that for virtual methods is necessary. The
mechanism for parameter passing is identical to that of the other instance method invocations described
above.

Please note additional invoke-custom and invoke-polymorphic instructions exist that will not be
discussed in more detail here, since they were only added in Android 8.0 for implementing dynamic
invocation functionality, which is not relevant here.

2.4.6 Native Libraries

A special Android Native Development Kit (NDK) permits building performance-critical portions of an
application in native code. It also provides the opportunity to port existing C or C++ libraries to the
mobile platform. The native code is compiled into a shared library object, which is embedded into the
APK package and can be dynamically linked at runtime. For calls from Java to native machine code and
vice versa, the Java Native Interface (JNI) is utilised.

App Package Format 15

2.4.7 Packaging

While traditionally, an Android application was deployed as one monolithic application package and DEX
file that supported a wide range of devices, this scheme has been deviated from in recent years.

Originally, a limitation of the DEX file format required applications to stay under the boundary of 216
referenced methods in their Java code. This meant that Android developers had to exercise great caution
when introducing library dependencies into their code base. Over time, the situation was becoming
increasingly more aggravated as Google kept adding more functionality into its Android Support Libraries
to combat the fragmentation problem of the platform. Eventually, a specialMultiDex library for integration
into third-party apps was brought forth, that exploits clever tricks to get the Dalvik runtime to load multiple
DEX files in parallel. Although the successor runtime ART was designed to support this functionality
from the very start, the responsible header structure in the DEX file format itself has never been modified
for reasons of backward compatibility. As a result, even modern apps typically consist of multiple DEX
files inside the APK package.

The APK format has received more changes due to the addressing of another problem caused by the
heavy fragmentation in the Android device landscape. Developers used to deliver universal APKs to
Google Play, which contained resources and native code for any of the system configurations supported by
the Android platform. This lead to large application packages that occupied storage space for resources
that only some different device really benefitted from. To solve the problem, Google introduced the
Android App Bundle6 system that has publishers submit their applications to the Play Store as special
intermediary compilation artefacts. Based on the specific device configuration of the end user, Google Play
then serves multiple different APK files for code and resources. The infrastructure later was also expanded
to allow the on-demand installation of feature modules onto a slim base package. As a consequence of
this development, applications are today commonly installed as Split APKs, consisting of a base package
containing the core functionality and several secondary APK files for the specific use case and system
configuration.

2.4.8 Signatures

Once all application files are packaged, the resulting APK file is signed before it can be installed on an
actual device. Although (in contrast to the rivalling iOS platform) Android does not require the executable
code itself to be signed, having the developer sign the APK package is used as a means for tracing back
the origin of the application at install time. Only updates signed with the same certificate as the original
application can be applied onto an existing installation, which guarantees that a malicious party cannot
access private app files by tricking the user into installing a tampered update. Still, the signing certificates
are usually self-signed and do not have to be notarised by a central authority, which means that attackers
are left with the possibility to modify existing applications, sign them with an arbitrary certificate and
manoeuvre unsuspecting users into installing it, as long as the legitimate original is not installed on the
device. For this reason, the Android OS requires explicit user intervention prior to allowing installation of
apps from unknown sources (that is, obtained from any place other than Google Play).

The Android OS today supports several different APK signature schemes that each grew out of the need
for improvements over its respective predecessor. Until Android 7.0, the signature scheme of the Java
Archive (JAR) format7 for distribution of desktop Java programs was used. It operated on all the unzipped
files inside the APK structure, noting down a hash fingerprint for any of them in a special index file inside
a metadata folder within the archive, which was then used as the basis for generating the signature. The
version 2 signature scheme8 provided improved performance and security, by calculating the signature as

6About Android App Bundles: https://developer.android.com/guide/app-bundle
7JAR File Specification: https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
8APK Signature Scheme v2: https://source.android.com/security/apksigning/v2

https://developer.android.com/guide/app-bundle
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
https://source.android.com/security/apksigning/v2

16 2 Background

a whole on the raw data blocks inside the archive instead of the individual uncompressed files and storing
it inside a dedicated ZIP metadata block. The subsequently released version 39 expands on version 2,
adding support for key rotation and more detailed metadata fields.

Since support of newer signature schemes is bound to recent versions of the Android OS, every one of
them was designed with backwards compatibility in mind. Developers are advised to sign their applications
with a combined scheme for best compatibility. The end user’s device will then pick the most secure
contained signature it supports for verification.

2.5 Android Runtime
Because Android applications are typically written in Java or Kotlin and compiled into architecture-
independent bytecode instead of native machine code, executing them requires some sort of interpreter or
runtime. The following section describes the components employed for this purpose by the Android OS.

Originally, application interpretation was the job of the Dalvik runtime, which was officially replaced in
Android 5.0 with the more flexible and performant Android Runtime (ART). Most notably, recent versions
of the newer product employ a combination of Ahead-Of-Time (AOT) compilation for translating bytecode
into native code during installation and Just-In-Time (JIT) compilation for performing this step in a more
fine-grained way at runtime. The deprecated Dalvik runtime was originally released as a pure interpreter
and later updated to include a JIT that had grown considerable complexity by the time ART was released.
Since Dalvik has been discontinued in 2014, we will concentrate our efforts on the ART runtime for this
work.

The ART runtime was designed in a modular structure with an abstract compilation driver interface,
which allows quickly exchanging the used backend. Originally, the Quick compilation driver was employed
by default, which was based on functionality inherited from the Dalvik VM. In Android 7.0, a new
Optimising driver was introduced as the default, which produces more performant code at the cost of
longer compilation times.

Independent of the specific backend in use, compilation operates on a per-method level in ART.
Depending on the runtime configuration, an app may be completely AOT-compiled during installation, or
not at all at that point, in which case it will be ran purely by the interpreter when first launched. Over time,
frequently invoked methods will be JIT-compiled for short-term performance improvements and noted in
a usage profile, which a special background service then uses as a guideline for AOT compilation of the
app at a later point of time.

Internally, the Android runtime maintains in-memory representations of the parsed portions of the DEX
files that are augmented with additional metadata relevant for execution. Most notably, an instance of the
ArtMethod C++ class is created for every method, which holds information about the specific method
type and the compilation state, among others.

How an invoked method is executed depends on the compilation state of the caller and the callee
methods. If both have been compiled to native code before, the method call may be inlined, which means
that execution jumps directly to the compiled code of the callee, without requiring intervention of the ART
runtime. Every compilation state follows its own unique calling convention, which means that bridge
functions in the ART runtime are necessary for making calls between methods of differing compilation
state. These bridge methods then bring the call arguments into the appropriate format for the callee. A
similar parameter conversion also has to be performed when calling into native methods via JNI.

9APK Signature Scheme v3: https://source.android.com/security/apksigning/v3

https://source.android.com/security/apksigning/v3

Android Cryptography APIs 17

2.6 Android Cryptography APIs
This section covers how the different concepts described in the previous sections come together in the
various cryptography APIs of the Android platform.

2.6.1 Cryptographic Primitives

For the most part, the Android API follows common Java traditions when it comes to providing
cryptographic primitives to application developers. In order to separate the actual implementors
of the functionality from its consumers, the Java framework includes a special Security Provider
infrastructure. For every cryptography API, the Java Cryptography Extension (JCE) defines a Service
Provider Interface (SPI), which describes the functionality that a provider can supply. The most relevant
for this thesis are the CipherSpi abstract class for the application-facing Cipher class (for encryption and
decryption), the SecureRandomSpi as the backend of the SecureRandom API (CSPRNG functionality),
and KeyGeneratorSpi for KeyGenerator (PBE).

A central provider component is part of every cryptography implementor project and installed with
the JCE subsystem, so it can act as a registry for all implemented SPIs of the cryptography package.
Application code can create instances of these implementations through factory methods in public-facing
JCE classes, which allow either explicitly specifying the desired provider or letting the system chose the
system default.

The Android framework provides several of these default providers. Generally the most secure provider
is the AndroidKeystore provider, which implements particularly strong protection of key material.
Cryptographic operations can be performed on a secure coprocessor, so that the actual keys are never
loaded into RAM, where they could be compromised by an attacker program. Since this processor
is usually limited in the supported algorithms, it is complemented with several more (software-based)
providers, each focussing on a particular set of APIs.

The most common pitfall with these APIs is that some default to insecure configurations, while others
completely rely on developers choosing safe parameters. In combination with a lack of clarity in the
official documentation, this has lead to developers making grave mistakes in protecting their application’s
data.

2.6.2 TLS/SSL

Although the Android framework heavily borrows from Java practises for TLS/SSL as well, it does add a
few unique refinements.

The core components of the Java Secure Sockets Extension (JSSE) are the SSLSocketFactory and
SSLSocket classes and the TrustManager and HostnameVerifier interfaces. As the name suggests,
the SSLSocket is the element that actually provides the encryption layer over a networking socket. It
enables programs to trigger a TLS handshake before using the socket as any other unprotected connection,
with all encryption happening transparently to the application code. The TrustManager has to be
specified during construction of the SSLSocketFactory that later is used for instantiating SSLSocket
instances. During the handshake, it is the TrustManager’s task to verify the TLS certificate presented
by the server. The HostnameVerifier complements the TrustManager by making sure the presented
certificate matches the server’s hostname.

Although only the combination of TrustManager and HostnameVerifier ensure that a connec-
tion is properly secured from Man-In-The-Middle attacks, the Java SSL framework considers the
HostnameVerifier part of the application layer on top of the TLS layer. As a result, programs that use
the SSLSocket class directly have to invoke the HostnameVerifier in their own code, it is not called
by the Java framework as part of the handshake. In the past, this has contributed to great confusion

18 2 Background

among application developers trying to employ TLS/SSL in their apps. Additionally, the complexity of
the APIs has frequently lead to developers inadvertently leaving their apps unprotected when trying to use
self-signed certificates.

In order to address a number of deficiencies in the Java TLS stack, Android introduced various
improvements over the standard Java APIs over the years. The most noteworthy addition was the Network
Security Configuration system that allows developers of apps targeting Android 7.0 or newer to configure
trusted TLS certificates in an XML file that is parsed into a special TrustManager at runtime. This
permits easy integration of self-signed certificates or TLS pinning without the potential vulnerabilities of
custom implementations.

Chapter 3

Related Work

Over the past years, the security of Android applications has been subject of numerous scientific
publications. In this chapter, we honour these efforts and highlight their differences to our work.

This chapter is structurally separated in two sections. The first one focuses on related works that share
the most similarities with our approach, for they also attempted to fix cryptographic API misuses in
applications only available in binary form.

Section 3.2 covers a wider range of projects that employ some form of Android application patching. We
discuss the strengths and weaknesses of various different approaches, classify them into several categories
and compare them with our own implementation.

3.1 Fixing Crypto Misuses
In terms of addressed security vulnerabilities, CDRep, published in 2016 by Ma et al. [37], is the existing
project that is most similar to ours. It describes a system capable of locating crypto API misuses in compiled
third-party Android applications and applying patch templates for fixing them. While CDRep employs
offline static analysis for identifying issues, our solution uses a dynamic approach that is performant
enough to work on the device itself and benefits from increased accuracy and usability.

In [8], Buhov et al. introduced a Cydia Substrate module for adding certificate pinning to third-party
Android applications. Although it shares the dynamic on-device nature, their system differs from our
solution in that it requires a rooted device and builds on the Trust-On-First-Use principle. Additionally,
our solution is conceived with a broader scope of fixing multiple crypto misuse problems instead of just
TLS/SSL.

Bates et al. [6] proposed a solution for fixing SSL certificate verification on Ubuntu by dynamically
linking a shim between third-party applications and SSL libraries that implements various kinds of
proper certificate verification. Although they had to overcome some similar challenges as we did and
also implemented partial support for the Java Secure Socket Extension, their solution is not translatable
to Android applications for two reasons. Firstly, it employs the Java Instrumentation infrastructure
that is not supported by Android’s JVM and secondly, it interposes on internal functionality of the
TrustManagerImpl that is specific to the desktop JSSE implementation.

Finally, Fahl et al. [21] and Tendulkar et al. [51] suggest solving SSL certificate verification problems on
Android by letting developers configure trusted server certificates through XML files. A similar solution
was adopted in Android 7.0, as described in Section 2.6.2.

19

20 3 Related Work

3.2 Android Application Patching
Application patching generally refers to the process of modifying a third-party program’s code sequence
after it has been compiled. A common application in the context of the Android operating system is
intercepting framework methods, so that injected code is executed in place of a called system framework
function.

The work that is most similar to our solution in terms of application patching is AppGuard by Backes
et al. [5], which describes an on-device system for injecting policy checks into security-critical parts of
third-party Android applications installed on the same device, effectively creating a more fine-grained
permission system. However, our work differs from Backes et al.’s in that it seeks to patch crypto
misuses instead of adding a permission system, automates the patching process and installation of patched
applications to a higher degree and is capable of dealing with new technologies such as App Bundles1,
Split APKs2, dynamic feature modules and their consequences for app patching.

Other solutions for patching Android applications and/or intercepting framework methods can be
divided into six categories:

3.2.1 Rewriting Dalvik Bytecode or Machine Code

This option usually involves modifying an application’s DEX file(s) and the contained Dalvik bytecode
instructions. Since this works on unmodified stock Android devices, it is generally the most popular
approach. Its disadvantages are that some method calls (e.g. calls to system methods from native code)
cannot be captured and that modified applications need to be resigned, which means they cannot be
installed as updates to the unmodified version, and which allows apps to detect and prevent the applied
modifications.

The most similar works to our Android Patch Development Kit in this category are those of Davis et al.
[17, 16] and of Ki et al. [32]. Both propose general-purpose frameworks for intercepting method calls
in compiled Android applications, focussing on calls to Android APIs. Ki et al. go to great lengths for
covering corner cases such as constructors and faithful super call patches, neglecting the performance
effects caused by this attention to detail. As a consequence, they report that patching takes over a minute
on average on a top-tier desktop machine, so is far away from being able to run on mobile devices. Davis
et al. who similarly strike for very accurate patching claim their product to be more performant, averaging
at a total patch time of 5 seconds on a desktop computer, but these figures remain questionable in the light
of those presented by Ki et al. of a similar approach on newer hardware.

Several solutions employ Java bytecode instrumentation tools for intercepting method calls in Android
applications. Although this allows reusing existing infrastructure, it also requires a translation layer
between Dalvik bytecode and Java bytecode, which adds considerable runtime and memory consumption
overhead during the patching process. Hao et al [28] employ this approach to reuse the BCEL Java
bytecode manipulation library for implementing an Android app instrumentation tool, while Arzt et al. [2]
and Ali-Gombe et al. [1] utilise aspect-oriented programming and the AspectJ system to this end.

Yet another possibility for implementing Dalvik bytecode rewriting is taking advantage of the apktool
program for transforming the DEX file into the Smali intermediate representation3, which can then be
parsed into memory as an Abstract Syntax Tree (AST) for easy manipulation. Dai et al. [15] and
Liu et al. [35] follow this approach for more convenient register reorganisation when injecting logging
calls into sensitive APIs in order to detect malicious behaviour in compiled apps. What is preventing

1About Android App Bundles: https://developer.android.com/guide/app-bundle/
2What a new publishing format means for the future of Android: https://medium.com/googleplaydev/2e34981793a
3Smali Wiki: https://github.com/JesusFreke/smali/wiki

https://developer.android.com/guide/app-bundle/
https://medium.com/googleplaydev/2e34981793a
https://github.com/JesusFreke/smali/wiki

Android Application Patching 21

this concept from being applicable for on-device patching is its high memory usage for the AST and the
runtime overhead of Smali parsing.

Applications making use of Dalvik bytecode rewriting are manifold. Lee et al. [34] use it to enforce a
more fine-grained permission system onto compiled Android apps by inserting a call to a security check
function before any of an activity’s methods. Rasthofer et al. [43] follow a more sophisticated approach
with the same goal, implementing a specification language and static analysis for precise control over
data flows from sensitive data sources to sinks. Jeon et al. [30] patch apps to reroute all sensitive API
accesses through their policy decision application and remove the permissions from manifests as part of
the patching, effectively creating a fail-safe default scenario for their custom permission system.

Several publications use this approach for patching security vulnerabilities in third-party applications.
For example, Zhang et al. [61] and Xie et al. [56] developed solutions that specifically target inter-app
vulnerabilities, where a malicious application collaborates with a benign but insecure or another malicious
program to extract user data.

Rewriting machine code, i.e. the native parts of Android apps, is rarely attempted, since it is much
more complex than rewriting Dalvik bytecode as Ha et al. [27] discuss in their 2018 paper REPICA.

3.2.2 Adapting the Android Framework

Some solutions opt for modifying the Android framework itself in order to run custom code in place of or
in addition to some method within the framework. While this is usually the most reliable and performant
solution, it generally comes at the big cost of requiring a custom-built Android version or a rooted device.

A common use case for this concept is implanting a more fine grained permission system. Nauman et
al. [40] modify the Android package manager to allow selectively granting permissions and add additional
mechanisms for the user to specify detailed policies for limiting runtime access to critical resources
based on factors like current time and location or frequency of previous accesses. Heuser et al. [29]
realised a more radical change to the existing Android permissions model, presenting a permission system
composed of authorisation hooks spread throughout the Android framework and Linux kernel that can
be controlled by user-installable Security Module applications. Backes et al. [3] suggest a very similar
approach, except that Security Modules are designed as a more trustworthy part of the system that can also
completely override system default policies. The MOSES system by Russello et al. [45] implements a
system for maintaining separate software-isolated profiles that have different security policies attached
to them for controlling whether and how data generated and linked to one profile can be accessed from
another. Finally, Wu et al. [55] went even further and show a lightweight solution for running untrusted
Android applications in an isolated virtual runtime side-by-side on an actual Android device.

Modifying the Android framework components also allows researchers to monitor unmodified applica-
tions’ behaviour for the purpose of identifying malicious activities. To this end, Enck et al. [19] modified
the Dalvik virtual machine and the Binder library to implement taint tracking for monitoring whether
Android applications leak sensitive private data. In a similar spirit, Cho et al [11] adapted the runtime
to log all instructions it executes. This allows to analyse code dynamically loaded or decrypted only at
runtime.

You et al. [59] work around the requirement of a custom and/or rooted OS by bundling modified system
components with the target app and manually restarting the application process with a custom version of
Zygote. However, their solution adds a startup delay to the app, is more prone to break with new Android
releases and still requires resigning the target app, thus inheriting the same disadvantages as the code
rewriting approach described above.

22 3 Related Work

3.2.3 Manipulating Runtime Structures

Another possibility is using native code to overwrite function pointers in the internal data structures of the
Dalvik and ART runtimes. In contrast to the bytecode rewriting approach discussed above, this allows
rewriting framework methods instead of just their call sites. Additionally, the technique is capable of
intercepting system library calls from JNI code and patching essentially just involves injecting a native
library, allowing for very performant patch deployment. Unfortunately, because it is dealing with internal
data structures instead of a public API, the approach is very prone to break with new or modified Android
versions and it also still requires either repackaging and resigning target apps or root privileges.

Von Styp-Rekowsky et al. [52] presented this approach for the Dalvik runtime in 2013, injecting policy
checks into arbitrary apps that go beyond Android’s native permission system. While they chose to
repackage target applications, Fan et al. [22] decided to inject their runtime modification code for the ART
runtime into running processes using ptrace. Their system then collects information about the target app,
such as calls to security-sensitive APIs. A very similar approach was presented by Mulliner et al. [38] for
attacking Google Play in-app billing.

Popular hooking frameworks for modifying applications and system components on rooted devices,
such as Cydia Substrate4 and Xposed5, are also part of this category. They modify the Zygote process to
inject their code into every started Java process, where they then manipulate the internal runtime structures
to implement their hooking functionality. In an academic context, Costamagna et al. [13] presented a very
similar general-purpose solution that utilises Samsung’s Android Dynamic Binary Instrumentation toolkit
to inject their native library into arbitrary processes.

3.2.4 Intercepting libc or System Calls

Android being a Linux-based system, most important operations involve a call into some libc function that
in turn performs some system call. Modifying the pointers in the Global Offset Table (GOT) maintained
by the dynamic linker allows to intercept calls to libc, which can be used for hĳacking IPC, among others.
However, given the low-level nature of the libc functions in question, much of the higher-level context has
to be manually reconstructed, which is prone to fail with future OS revisions. Additionally, this solution
either requires a rooted device or repackaging and resigning the target application.

Backes et al. [4] implemented a sandboxing mechanism for unmodified apps on unmodified systems by
executing third-party applications inside a low-privileged isolated process controlled by a central broker
running in a normal Android application. The broker uses libc hooking in order to intercept all system
calls made by the target application and is able to reconstruct and modify Binder IPC transactions. The
broker could then be used for enforcing security policy decisions. A similar system was realised even
earlier by Xu et al. [57], but it applied the libc GOT modification code from within the target process
itself, in a native library repackaged into the target application.

To a similar effect, Russello et al. [46] and Zheng et al. [62] present solutions that use ptrace for
intercepting system calls and implementing an improved permission system or observing potentially
malicious applications. Bianchi et al. [7] managed to work around the requirement for root access when
employing ptrace in their sandboxing solution, by executing the target application as a child process to a
generated stub application.

4Cydia Substrate: http://www.cydiasubstrate.com
5Xposed - General info: https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053

http://www.cydiasubstrate.com
https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053

Android Application Patching 23

3.2.5 Container Applications

Recent years have seen the emergence of a new category of Android applications that allow to run
third-party applications within a container application through clever use of Java’s Dynamic Proxy API6
and proxying Android framework components. Although it allows to modify the execution flow of an
application without manipulating the application package, this solution has major shortcomings. As
extensively documented by Zhang et al. [60], it effectively bypasses the Android OS’s application isolation,
because a single host application communicates with the system on behalf of all its contained guest
applications. Since for the OS, the host and its guest form one entity, they all have access to the same
app data folder and share their permissions. In order to prevent a malicious virtualised application from
accessing the other application’s data, the host solution would have to take additional safety measures,
which all tested commercial software failed to address. Moreover, the technique adds a runtime overhead
noticeable on the device’s battery life and limits integration of virtualised apps into the OS.

Despite the severe security implications, several implementations are readily available to end consumers
through Google Play (e.g. Parallel Space7) and as open source libraries (e.g. VirtualApp8) for integration
into third-party products.

Dai et al. [14] published a compilation of knowledge and research around the topic, covering attack
vectors from the perspective of the host and guest, conceptual design, available implementations and
possible mitigations. Complementarily, Luo et al. [36] provide more detailed documentation on the
concepts required for designing such a system, and recommend methods for apps to actively prevent being
executed in a virtual container.

The work by Xuan et al. [58] illustrates how a malicious host application can hĳack legitimate
applications in order to obtain user data such as login credentials.

3.2.6 Hybrid Solutions

Finally, some publications use a combination of some of the aforementioned techniques in an attempt to
compensate one solution’s weaknesses with another’s strengths.

Zhou et al. [63] utilise manipulation of runtime structures in conjunction with native code rewriting in
order to prevent target applications from breaking out of the sandbox through a JNI library. This allows
them to construct a much tighter system for enforcing security policies onto the target application without
requiring modifications to the OS or root access.

In a similar fashion, the DeepDroid solution presented by Wang et al. [53] takes advantage of both
runtime structure manipulation and system call interception in order to enforce enterprise policies in
Dalvik bytecode and native parts of third-party Android applications. In comparison to Zhou et al.’s work,
this approach permits more control over native code while still not requiring modifications to the Android
system libraries. However, it does need root privileges.

6Dynamic Proxy Classes: https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
7Parallel Space: https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
8VirtualApp: https://github.com/asLody/VirtualApp

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://github.com/asLody/VirtualApp

24 3 Related Work

Chapter 4

CryptoPatcher System Overview

The purpose of this chapter is to provide a high-level introduction to our contributions presented in this
thesis.

In Section 4.1, we formulate and justify the objectives chosen for the rest of this thesis. We draw the
line from the problem stated in Chapter 1 to the various mitigation possibilities discussed in Chapter 2,
before explaining what is required to develop our solution in a way beneficial for future research in slightly
different fields.

The following Section 4.2 is dedicated to presenting our approach as the solution to the objectives stated
earlier. We report how the need for flexibility lead us to the structure of the project and highlight how
every part is tailored to cater to a specific portion of the overall goal.

4.1 Objectives
From the various studies summarised in Section 1.1, it becomes evident that a considerable number of
Android applications leave their user’s data at risk by not properly implementing security. More specifically,
this includes vulnerabilities that make mistakes in the use of TLS/SSL for securing communication over a
network, ciphers for encryption and decryption of data, password-based encryption and random number
generators.

While Google as the de-facto owner of the Android platform has slowly started to take measures, they
still are not addressing the wealth of applications that are not regularly updated despite being in real-world
use. Additionally, some application developers keep maintaining their code, but simply lack the skillset
required for properly implementing cryptography. This situation is particularly unacceptable for corporate
organisations, where leaking sensitive information could put the company’s existence at stake. As long
as the Android OS does not integrate any form of automated security upgrade to potentially insecure
third-party applications, an external solution is the best bet for protecting the data of users who depend on
the operation of programs that misuse cryptography APIs.

Although it would be possible to develop a custom variant of the Android OS in an organisation outside
of the Android Open Source Project, such an endeavour could never reach the critical mass of end consumer
devices. Given the largely fragmented Android ecosystem and device revisions released in tight product
cycles, maintaining a third-party operating system that covers all possible handsets represents a task that
could only be accomplished with substantial financial resources. Even if such an aftermarket operating
system could be provided for the end user’s device, manufacturers typically sell their devices tightly sealed,
so that frequently, security vulnerabilities have to be exploited in order to replace the preinstalled firmware
image. While such a procedure can be followed by enthusiasts willing to take a risk, the task represents
an insurmountable challenge for the typical consumer, and is even linked with legal consequences under

25

26 4 CryptoPatcher System Overview

some jurisdictions. Together, these troubles effectively rule out the option of developing and rolling out a
custom OS for large-scale organisations.

Since Android is based on a Linux kernel, root privileges on the device are enough for applying many
modifications to the OS. However, because most vendors do not grant the owner of the device root access,
the goal of performing system modifications through this route can usually only be achieved by exploiting
a security vulnerability. Even if this feat could be accomplished, a rooted environment means that any
misbehaving program can have grave consequences for the whole system. For rollout to the device fleet of
a company, this option cannot be seriously taken into consideration.

Given that modifying the OS and/or utilising root privileges are no viable options, the remaining methods
have to be carefully evaluated. As elaborated in Section 3.2.1, all sandboxing approaches that do not
require root permissions severely restrict the integration of applications into the system. Consequentially,
an invasive solution must be chosen, which mitigates the security vulnerabilities inside the application
code itself.

Still, the system needs to protect against security vulnerabilities present in any of the apps installed on a
device. The process of mitigating an installed application’s vulnerabilities must happen as transparently
to the user as possible, so that no manual intervention is required for keeping the system secure. If an
enterprise rolls out the protection solution to the devices of its employees, it is critical that the latter do
not have to be instructed on its operation.. The solution must also be capable of covering applications
installed from any source, while ensuring that updates through the most commonly used distribution
channel Google Play still work without any interferences.

Furthermore, the ideal solution works on the device itself, without depending on an external server
for modifying target applications’ execution flow. Android devices can be utilised in remote areas or
restricted environments, where the functionality of installed applications must be guaranteed despite lack
of a network connection. Obviously, for mitigations to the TLS API, which itself only makes sense in
a networking scenario, a web service can be accessed without limiting the applicability of the overall
solution.

In addition to providing automatic protection for unexperienced consumers, more advanced users and
administrators will be interested in the possibility to learn more about the APIs an application accesses,
and possibly use the acquired knowledge as the basis for making decisions about the trustworthiness of a
given application. It is thus desirable to integrate functionality for monitoring the cryptographic primitives
and their parameterisations used by target applications, as well as an option for bypassing the added
security checks after having confirmed from the logs that an application can be trusted. This capability
might be critical for apps that for some reasons fail to operate when subjected to CryptoPatcher’s automatic
mitigations.

Although the use case in this thesis is strictly focused on mitigating vulnerabilities induced by misuse
of cryptographic APIs, it is very likely that similar principles can be applied to the fight against other
classes of vulnerabilities commonly found in Android applications. It is thus desirable to structure the
project in a way that permits later adaptation for other use cases. Similarly, the system needs to be able to
accommodate to novel techniques for rewriting application bytecode that might arise in the future, so that
developers do not need to reimplement their patches in this case.

To summarise, the objectives of this thesis are:

• Mitigation of security vulnerabilities induced by misuse of cryptographic APIs in compiled third-party
Android apps

• Implementation of a solution applicable to as many devices as possible, without requirement for
modifying the OS or obtaining root privileges

• Providing automatic protection so as little manual intervention as possible is needed

Approach 27

• Realising a standalone system that executes on the target Android device itself

• Allowing advanced users to gain insights into an application’s API usage and to modify the default
policy

• Developing a flexible design that can be adapted both in terms of covered security vulnerabilities and
rewriting technique

4.2 Approach
We designed the CryptoPatcher system to meet the goals stated above. With the need for high flexibility
and adaptability in mind, we structured it in three components, each adding features more tailored to
the specific task of automatically patching crypto API misuses. Figure 4.1 displays how these three
components interact inside the CryptoPatcher system.

Patched Application

Original Code

CryptoPatch

Crypto API Accesses

CryptoPatcher App

Service

APDK Deployment

Invokes

Monitor

Policy

Installs

Builds

Injects

Reports

Controls

APDK Development

Annotation Processor

Build Script

Produces Glue Code

Figure 4.1: The three main components of the CryptoPatcher system (encoded in different colours)

4.2.1 Android Patch Development Kit

The Android Patch Development Kit (APDK) implements the functionality required for developing and
deploying patches for third-party Android applications that are only available in binary form. Maintaining

28 4 CryptoPatcher System Overview

these parts of the CryptoPatcher system individually lays the foundation for the flexibility required for
applying the developed concepts onto different research questions. Our APDK provides patch developers
with means to intercept arbitrary method calls in the Dalvik bytecode, modify the Android manifest, add
resources or inject native libraries.

The Dalvik bytecode rewriting and patch deployment infrastructure is flexible enough to develop patches
completely agnostic to the target application, meaning a compiled patch can be applied to any application.
Additionally, the Dalvik rewriting backend can be exchanged transparently to the patch code. Our system
currently includes a stable static rewriting backend that modifies the actual Dalvik bytecode and an
experimental dynamic rewriting backend that implements the runtime structure manipulation approach for
the ART runtime.

Our APDK is also equipped with a patch deployment system designed in a performant and portable
fashion, so that it fits the constrained performance envelope of an Android device. It includes the whole
tool chain needed for unpacking, modifying, repacking and signing an Android application. By injecting
the patches into the target application’s package, patch deployment does not require any privileges apart
from a way to install repackaged apps onto a device.

4.2.2 CryptoPatch

The CryptoPatch patch is the part of the CryptoPatcher system responsible for implementing the specific
mitigations for the covered misuses of cryptographic APIs. It consists of Dalvik bytecode patches and
Android manifest modifications that add an entry point called by the Android framework when the target
app is started and gives CryptoPatch a chance to initialise its state.

CryptoPatch’s bytecode patches intercept calls to the SSLSocket API for TLS/SSL, the Cipher API
for encryption or decryption, the KeyGenerator API involved in deriving keys for Password-Based
Encryption and the SecureRandom API, as well as a few utility classes and alternative frontends to the
same functionality. These are the four API classes that are most frequently subject to misuse and can be
mitigated transparently to the application code.

In addition to automatically mitigating crypto API misuses wherever possible, the patch also collects
call parameters on a set of additional methods of the Android framework, so that the CryptoPatcher
application can be supplied with information for its monitor display.

4.2.3 CryptoPatcher

The CryptoPatcher application is implemented as an Android program that can be installed on unmodified
devices. It consists of a service that is started immediately after booting the OS and a user interface that
allows managing the installed patched packages and monitoring events.

By listening for installation events broadcast by the system, the background service can automatically
start the patching process whenever the user installs or updates an application on the device. To this end,
the patch deployment functionality of the APDK is directly integrated into the CryptoPatcher application.

In order to obtain permission for automatically installing patched application packages, the CryptoPatcher
service utilises theDevice AdministratorAPI1. Originally targeted at enterpriseMobile Device Management
(MDM), this API grants elevated permissions to a single application on the device. Since this represents a
possibility for obtaining some degree of control over the system on a device running an official production
build of the Android OS, it is a perfect solution compatible with a broad range of devices. Original
applications are disabled but kept on the device, so that the common update flow via Google Play remains
unaffected by the CryptoPatcher protection.

1Device Administration overview: https://developer.android.com/guide/topics/admin/device-admin

https://developer.android.com/guide/topics/admin/device-admin

Approach 29

CryptoPatcher’s monitoring user interface is tailored towards the requirements of two rather contrary
user groups. For curious but inexperienced amateur users, it provides high-level descriptions for an
application’s API accesses. Events that were found to put user data at risk are highlighted in colours
that encode the severeness of the issue. For advanced operators, CryptoPatcher augments the simplified
output with extensive details about the specific framework function that was called, along with the
exact parameterisation chosen. Based on this information, experienced administrators can then disable
CryptoPatcher’s mitigations in cases where an application whose trustworthiness was manually confirmed
does not work properly when patched, for example because it communicates with a corporate server that
cannot be reached by CryptoPatcher’s TLS notary web service.

30 4 CryptoPatcher System Overview

Chapter 5

Android Patch Development Kit

In this chapter, we shed light on our Android Patch Development Kit (APDK) from various perspectives.
To begin with, Section 5.1 lays down the requirements that were set up at the start of the APDK’s design
and how they dictated the decisions taken during implementation. Section 5.2 continues with a brief user
documentation of the APDK system, exploring how patch developers can take advantage of the APDK’s
capabilities in terms of patching Android manifest and DEX files or injecting native libraries and resources.
Section 5.3 details some of the technical challenges we encountered during the development of the APDK
and the solutions we found in order to overcome them. Lastly, Section 5.4 concludes the chapter.

5.1 Introduction
In Chapter 4 we identified the need for developing a flexible patching infrastructure in order to be able to
apply the technological knowledge gained in this thesis to other similar fields in future work. The Android
Patch Development Kit is the sensible step in order to meet this goal. In the following, we lay out our
objectives for this general-purpose patching system and discuss the design chosen for accomplishing the
stated mission.

5.1.1 Objectives

Fundamentally, we require our patching framework to be capable of intercepting framework method calls
made in application code. This mechanism is what enables the later implementation of the CryptoPatch
patch. More specifically, we are interested in rerouting control flow to an injected wrapper method when a
specified framework method is called. From the wrapper method, the patch developer should then have the
possibility to add custom functionality in addition or in replacement to that of the originally called method.
Since most patching goals applicable to a broader range of third-party programs can be accomplished
by interposing on public methods, we can ignore private methods for this matter. We are thus focussing
on public static methods, virtual (public instance) methods and constructors. Ideally, calls to one of the
aforementioned functions can be intercepted independently of the specific call procedure, i.e. even when
called via Java Reflection, from native code, or as a super call from an instance to a method of one of its
ancestor classes.

In addition to the ability to modify control flow, many patches will want to add their own components
to an existing application. Since the Android OS requires installed applications to declare their main
interaction points in the manifest file, there is an evident need for the capability to perform modifications to
this file at the time a patch is applied. Specifically, we want to be able to add, modify or remove elements
and attributes at precise locations inside the manifest’s XML structure.

Similarly, feature-rich patches commonly present their own user interfaces. For example, as described in
Section 3.2.1, several publications injected an extended permission system into applications that displays a

31

32 5 Android Patch Development Kit

dialog asking for user’s permissions on certain actions. In order to accommodate such projects, our system
needs a way to add resources into an application. Further pursuing this idea, it would be desirable to also let
patches add native libraries into existing applications, in case they need to perform a performance-critical
task or want to leverage an existing C or C++ code base.

For the purpose of the CryptoPatcher project, it is essential that developing a patch is entirely decoupled
from deploying it to an application. Only if patch development does not require insights into the
implementation of a target app, it is possible to produce patches compatible to a wider range of programs.
Patch deployment also needs to be implemented with a particular focus on portability and performance,
since it has to run in environments with very tight memory and processing resources on Android devices.

Still, we want patches targeting methods of a class to be inferred onto subclasses in the framework as
well as those declared inside a target application’s code. Only by covering this case as well can we ensure
a particular method is reliably intercepted. For example, some Android APIs allow application developers
to pass a callback to the framework. We want to be able to intercept this callback, even if the specific
implementation resides in the target application.

All of these features must be made available to patch developers in a way that is easy to understand with
experience in Android development. To this end, it should integrate and make use of existing tools and
assist the developer in preventing bugs. For example, the patch compilation should fail if the patch targets
a method that does not exist or tries to pass arguments of the wrong type. Otherwise, applying the patch
will either crash the target application or just not effect any change at all. Still, it must be possible to add
libraries to the compilation classpath in case a patch optionally wants to intercept methods with parameter
types not defined by the Android framework.

5.1.2 Approach

We designed the Android Patch Development Kit to meet the requirements stated above. It completely
decouples patch development from its deployment, thus allowing the development of generic patches
applicable to any third-party Android software. Figure 5.1 provides a rough overview of the process.

5.1.2.1 Patch Development

Patches are developed inside the Android Studio Integrated Development Environment (IDE) Android
application developers are already accustomed to. They are compiled from a set of Java source files
containing static methods that method calls will be redirected to. The method to be intercepted is specified
via a set of Java annotations. Resources and native libraries can be included just like in an application
project. Modifications to Android manifest files are formalised in a special set of XML elements loosely
based on the XML Patch format as specified in RFC 52611.

The core component of the patch development process is the APDK annotation processor. It is invoked
as part of compilation and performs multiple jobs. Firstly, it checks whether all methods targeted by
the patch actually exist in the respective framework class. It then produces glue code for linking the
developer-supplied patch code with the exchangeable rewriting backend. The two currently supported
rewriting methods are compatibility-focused static rewriting via Dalvik bytecode modification at patch
deployment and more performant dynamic rewriting, which works through manipulation of ART virtual
machine data structures at runtime.

For compiling patch packages, the standard Gradle tool is utilised, but a custom build script modifies
the process, so that two different ZIP archives are generated from the same patch source, one for each of

1An Extensible Markup Language (XML) Patch Operations Framework Utilizing XML Path Language (XPath) Selectors:
https://tools.ietf.org/html/rfc5261

https://tools.ietf.org/html/rfc5261

Introduction 33

Java Patches

Annotation Processor

Glue Code

Manifest Patch Resources
Native Libraries

Android Build Tools
(Custom Gradle Script)

Patch Package

Patch Deployment Target Application

Patched Application

Figure 5.1: The build and deployment process of an APDK patch

the supported rewriting backends. Every ZIP archive includes a complete description of the patch ready
for deployment.

5.1.2.2 Patch Deployment

While both rewriting backends share the deployment steps of unpacking the target application before and
repacking and resigning it after applying the modifications, they differ considerably in the way their Dalvik
bytecode modifications are applied.

The static rewriting backend infers subclass patches while the patch is applied to the target application.
This involves iterating through all classes contained in the application’s DEX files and examining their
inheritance structure. If a class is found to inherit a method targeted by a patch, its corresponding method
is intercepted analogously. While executing the inference during patch deployment is a very reliable
solution and does not affect runtime performance of the produced application, it noticeably increases the
duration the user has to wait for the patched program to be operational.

For this reason, the experimental dynamic rewriting backend defers patch inference to the target
application’s runtime. During patch deployment, only an extra DEX file and an additional entry point for
loading it are injected into the application package. The added components then infer patches onto classes
as they are loaded by the runtime. While this speeds up the patch deployment considerably, the added
workload slightly slows down the target application and is much more prone to fail, since it manipulates
runtime structures not meant to be externally tampered with.

34 5 Android Patch Development Kit

5.2 Usage
Patches utilising the Android Patch Development Kit are developed as Android application projects in the
Android Studio IDE. Since the system currently requires a specific project structure, patch developers are
advised to base new patches on a copy of our template project. This ensures the different dependencies,
build scripts and tools are correctly configured.

The organisation of the patch project follows the same structure as that of a regular Android application
project. Dalvik bytecode patches are developed inside Java classes and annotated so that the build system
and deployment mechanism can identify the respective target methods. The modifications to the Android
manifest file are noted inside the manifest file of the patch project, using a special Domain Specific
Language (DSL) based on custom XML elements. Lastly, resources and native libraries reside in their
usual folders.

5.2.1 Android Manifest Patches

Modifications to the Android manifest file of a target applications are expressed as changes inside the
manifest XML file of the patch project. The syntax and semantics for formalising changes are loosely
based on RFC 5261, but were adapted for compatibility with the proprietary Android binary XML format.
The format defines a change in terms of a selector for specifying the precise subject of the modification
(either an element, an attribute or a text node) and a description of the actual operation to be performed.
Available options are deletion, replacement or insertion of elements or attributes.

The selector is formulated as an XML Path Language (XPath) statement. In their most basic form,
XPath expressions represent a path into the XML tree structure, very similar to how file system paths
address a specific file in a folder structure. However, XPaths can make use of a number of very powerful
extensions, such that they can reference a node’s attributes or position relative to another node.

For each of the supported operations, a specific XML element can be placed inside the patch XML.
The <add sel="..." pos="..."/> tag is used for adding attributes or elements to the selected node.
Its sel attribute contains the selector, while an optional pos attribute allows specifying where exactly
in relation to the selected node or its child nodes the added node should be placed. Possible values are
prepend, before and after. If elements are to be added in this operation, they are passed as the child
nodes of the <add/> node in the patch XML. In case of the absence of child nodes, all the attributes of the
<add/> node other than sel or pos will be copied to the selected node.

The <replace sel="..."/> element is particularly powerful. When targeting an element, it will
be replaced with the first child node of the replace element in the XML patch document, including
all its attributes and children. While the replace tag can additionally be used for text nodes, its true
strengths show when being applied onto attribute nodes. In this case, the replacement value (the text
content of the replace tag) can contain placeholder expressions. The $${xpath(...)} placeholder
allows including the result of an additional XPath expression evaluated in relation to the replaced element,
$${globalize(...,...)} forms a fully-qualified class name from a relative class name (second
argument) and its package name (first argument). Lastly, the $${appendeach(..., ...)} placeholder
splits its first argument string at semicolon characters, appends the string passed in the second argument to
every obtained substring and rejoins them with a semicolon character. Placeholder expressions can be
nested, so that very complex combinations are possible.

Finally, the <remove sel="..."/> element permits patch developers to delete the selected element,
attribute or text nodes.

Figure 5.2 shows an example patch utilising all tags introduced above. Its first element adds a new
metadata node to the manifest element. The three following patch elements demonstrate the use of the
replace tag and the supported placeholder expressions, modifying the package name, resolving relative

Usage 35

<?xml v e r s i o n = "1 . 0 " encod ing =" u t f −8" ?>
<man i f e s t xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk / r e s / a n d r o i d "

xmlns : p a t c h =" h t t p : / / schemas . a n d r o i d . com / apk / r e s − au t o "
package="com . apdk . sample . p a t c h ">

<pa t c h : add s e l =" man i f e s t ">
<meta − d a t a a nd r o i d : name=" pa t c h ed " a nd r o i d : v a l u e =" t r u e " / >

</ p a t c h : add >

<pa t c h : r e p l a c e s e l =" man i f e s t / @package ">$${ xpa th (" . ") } . p a t c h ed < / p a t c h : r e p l a c e >
<pa t c h : r e p l a c e s e l =" man i f e s t / a p p l i c a t i o n / a c t i v i t y /@name">

$${ g l o b a l i z e (xpa th (" / m an i f e s t / @package ") , xpa t h (" . ")) }
< / p a t c h : r e p l a c e >
<pa t c h : r e p l a c e s e l =" man i f e s t / a p p l i c a t i o n / p r o v i d e r / @a u t h o r i t i e s ">

$${ appendeach (xpa th (" . ") , " . p a t c h ed ") }
< / p a t c h : r e p l a c e >

<pa t c h : remove s e l =" man i f e s t / a p p l i c a t i o n / @tes tOnly " / >
< / man i f e s t >

<?xml v e r s i o n = "1 . 0 " encod ing =" u t f −8" ?>
<man i f e s t
xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk / r e s /

a n d r o i d "
package=" sample . t a r g e t ">

< a p p l i c a t i o n a nd r o i d : t e s tO n l y =" t r u e ">
< a c t i v i t y a nd r o i d : name=" . Ma i nAc t i v i t y "

< i n t e n t − f i l t e r >
< a c t i o n a nd r o i d : name=" and r o i d . i n t e n t .

a c t i o n .MAIN" / >
< c a t e g o r y a nd r o i d : name=" and r o i d . i n t e n t .

c a t e g o r y .LAUNCHER" / >
</ i n t e n t − f i l t e r >

</ a c t i v i t y >

< p r o v i d e r
a nd r o i d : name=" sample . t a r g e t . P r o v i d e r "
a nd r o i d : a u t h o r i t i e s =" p r o v i d e r 1 ; p r o v i d e r 2 ">

< / p r o v i d e r >
< / a p p l i c a t i o n >

< / man i f e s t >

<?xml v e r s i o n = "1 . 0 " encod ing =" u t f −8" ?>
<man i f e s t
xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk / r e s /

a n d r o i d "
package=" sample . t a r g e t . p a t c h ed ">

< a p p l i c a t i o n >
< a c t i v i t y a nd r o i d : name=" sample . t a r g e t . p a t c h ed .

Ma i nAc t i v i t y "
< i n t e n t − f i l t e r >

< a c t i o n a nd r o i d : name=" and r o i d . i n t e n t .
a c t i o n .MAIN" / >

< c a t e g o r y a nd r o i d : name=" and r o i d . i n t e n t .
c a t e g o r y .LAUNCHER" / >

</ i n t e n t − f i l t e r >
</ a c t i v i t y >

< p r o v i d e r
a nd r o i d : name=" sample . t a r g e t . P r o v i d e r "
a nd r o i d : a u t h o r i t i e s =" p r o v i d e r 1 . p a t c h ed ;

p r o v i d e r 2 . p a t c h ed ">
< / p r o v i d e r >

< / a p p l i c a t i o n >

<meta − d a t a a nd r o i d : name=" pa t c h ed "
a nd r o i d : v a l u e =" t r u e " / >

</ man i f e s t >

Original Manifest

XML Patch

Patched Manifest

Figure 5.2: Applying an XML patch to the Android manifest file

activity names and altering the authorities property of all content providers. Lastly, the testOnly attribute
is removed from the application node in the manifest.

5.2.2 Java Code Patches

Dalvik bytecode methods can be patched via a system of custom annotations that, enriched with information
generated by the APDK’s annotation processor, encode all information needed during patch deployment.

For every method that patch developers wants to intercept, they have to write a public static wrapper
method exposing the same argument types, the return type and the thrown exceptions as the targeted method.
In case an instance method is targeted, an additional parameter of the instance type has to be prepended
to the argument list. The APDK currently offers @PatchStaticMethod, @PatchInstanceMethod
and @PatchConstructor annotations, each for specifying a target method of the type implied by the
respective name. All of these annotations permit passing an optional String argument encoding the target
method’s name. If not explicitly specified, the target method is assumed to carry the same name as the
patch wrapper method.

In addition to the target method name and signature, the patch deployment components also need to
know the class that defines the target method. To this end, an additional @PatchClass("...") annotation
is available, which can be applied to either an individual wrapper method or a wrapper collection class
containing multiple wrapper methods that all target the same class. Generally, wrapper methods may be
spread throughout the whole project, although the use of wrapper collection classes is highly recommended

36 5 Android Patch Development Kit

for maintaining a clean project structure. In case a target method is not fully qualified, does not exist or
its parameters or thrown exceptions differ from those specified in the wrapper method, the annotation
processor will throw an error during compilation.

Code inside a patch wrapper method can call through to its original target method, although they have
to make use of special infrastructure to do so. For every class targeted by a wrapper method, the APDK
annotation processor will add an inner class inside the generated OriginalMethods class that is named
after the fully-qualified class name of the target, except that dots will be replaced with underscores. This
inner class will expose a proxymethod for any of the target class’s original methods. For example, a wrapper
method targeting java.io.File.getName() will make the annotation processor produce an inner class
OriginalMethods.java_io_File containing a method titled getName(). This layer of indirection is
needed for being able to transparently exchange the used rewriting backend. The example patch utilising
this mechanism in Listing 5.1 intercepts calls to the Intent.setData(), Intent.setDataAndType()
and Intent.addFlag() instance methods..

@PatchClass("android.content.Intent")
public static class IntentPatch {

@PatchInstanceMethod
public static Intent setData(Intent thiz, Uri uri) {

return OriginalMethods.android_content_Intent.setData(thiz,
patchContentUri(uri));

}

@PatchInstanceMethod
public static Intent setDataAndType(Intent thiz, Uri uri, String

type) {
return OriginalMethods.android_content_Intent.setDataAndType
(thiz, patchContentUri(uri), type);

}

@PatchInstanceMethod
public static Intent addFlags(Intent thiz, int flags) {

OriginalMethods.android_content_Intent.setDataAndType(thiz,
patchContentUri(thiz.getData()), thiz.getType());

OriginalMethods.android_content_Intent.addFlags(thiz, flags)
;

return thiz;
}

}

Listing 5.1: Java patch example

Sometimes, a patch needs to intercept calls to a method whose argument or return types are not defined
by the Android framework. When written using the techniques described so far, such a patch would fail to
compile, not least because the annotation processor would fail to confirm the target method’s existence.
As a mitigation to this problem, the APDK provides an additional @PatchType("...") annotation that
allows to concretise an object’s type to the APDK, while identifying it with a more generic type to the
Java compiler. A JAR or DEX file can then be supplied to the annotation processor via the gradle build
file, so that it can still ascertain the existence of the targeted method. After such a patch is deployed to an
application through static rewriting, the resulting Dalvik executable will only reference the annotated type
if it was already referenced in the original bytecode.

Although best efforts are being made to offer the same functionality for all rewriting backends, the
patch developer is advised to keep in mind there are some inherent differences to the currently supported
techniques that cannot be worked around automatically, so particular corner cases are best avoided when
writing patches.

Implementation 37

For example, there are limitations to the methods that a patch can target. Specifically, virtual methods
have to be targeted at the class that first defines them. If a particular subclass’s implementation is to be
intercepted, it is the wrapper method’s responsibility to check the instance type at runtime, and selectively
apply modifications depending on the found type. Additionally, constructor patching is currently only
supported by dynamic rewriting, because it would require computationally expensive register reorganisation
in the static rewriter.

Moreover, there is a difference in how the rewriting backends handle different call types of the intercepted
methods. While dynamic rewriting correctly captures method invokes via Reflection, from native code or
as part of super calls, static rewriting does not support them at all.

From our experience, these limitations do not hinder the APDK’s practical utility in any way because
they can be worked around relatively easily for most use cases. Support for Reflection can be added to the
static rewriter, but was considered out of scope for this thesis.

5.2.3 Resources and Native Libraries

Developers can integrate resources and native libraries into their patch project just like they would in an
application project. Please note that it is currently not possible to modify or remove existing resources of a
targeted application package.

5.2.4 Deployment

All of the APDK’s deployment functionality is implemented inside a Java library for convenient integration
into other projects. The CryptoPatcher distribution provides two programs utilising this library, namely
the CryptoPatcher application and a general-purpose utility program for applying patches to an APK file
on a desktop computer via a command-line interface.

Themain interface to the APDK’s deployment functionality are its ApkPatcher and SplitApkPatcher
classes. For starting the deployment process, these components have to be supplied an instance of the
ApkPatchTaskInfo or SplitApkPatchTaskInfo classes. These structures are responsible for holding
all data required as input and produced as output of the process. Both *Patcher classes support publishing
detailed progress reports to a listener specified by the client application.

5.3 Implementation
Most of the custom functionality in the build system for APDK patch projects resides in the annotation
processor. The artefact resulting from patch compilation is later fed to the patch deployment process
along with a target application, which may consist of a single APK file or a Split APK collection of a base
package and several secondary APK files. In the latter case, deployment processing is largely the same as
for a self-contained application, except that all steps have to be carried out on every individual file. Patch
deployment starts by unpacking the application package. Since an APK file is essentially a ZIP archive,
Java’s standard ZIP infrastructure can be utilised for this task and the corresponding repackaging that takes
place after the patch has been applied. Following the unpacking of the target APK file, a similar procedure
is applied on the patch package. The patch resources and native libraries are then copied into the unpacked
target package, before the manifest and DEX files are patched. After repackaging, the zipsigner2 open
source project is employed for signing the resulting APK file. The following sections detail some of the
implementation challenges that had to be overcome in the course of the project.

2Official source of the ZipSigner app for Android: https://github.com/kellinwood/zip-signer

https://github.com/kellinwood/zip-signer

38 5 Android Patch Development Kit

5.3.1 Annotation Processor

The APDK annotation processor is invoked during patch compilation. Its job is to examine the organisation
of the Java patch code and generate glue code for linking it with the used rewriting backend.

As its first task, the annotation processor constructs an inheritance graph of all classes in the Android
framework and classpath libraries, along with their declared methods. To this end, it is capable of parsing
Java or Dalvik bytecode in Java Archive (JAR), Dalvik Executable (DEX), Optimised Dalvik Executable
(ODEX) or Ahead Of Time (OAT) files through the integration of the ASM3 and dexlib24 open source
libraries. It is the patch developer’s responsibility to pass the relevant files to the annotation processor. At
a minimum, the simplified framework file contained in the Android SDK distribution must be supplied.
From the obtained data, the annotation processor is then able to check the correct parameters, return types
and thrown exceptions of all patch wrapper methods.

Next, the annotation processor generates additional Java files. Independent of the selected rewriting
backend, an additional layer of wrapper methods termed glue methods is added, all merged into the same
container class and explicitly annotated to simplify patch deployment. These glue methods will be called
in place of an intercepted method at runtime and forward execution to the wrapper methods provided by
the patch developer.

Additionally, the processor loops through all classes affected by a patch wrapper method and infers
the patch onto relevant methods of subclasses inside the Android framework or classpath libraries. The
inference information is saved to the glue methods as additional annotations for consumption by the patch
deployment components.

The rest of the Java code produced by the annotation processor largely differs between the two supported
rewriting backends. For the static case, the OriginalMethods class produced by the annotation processor
just consists of simple calls to the original method. This simple solution is possible since static rewriting
only affects the code of the target application. In contrast, dynamic rewriting equally applies to the target
program code and the patch code, so simply invoking the target method from the patch wrapper would
lead to a stack overflow. Instead, each proxy method in the OriginalMethods class generated for this
case calls a backup method that points to the original implementation as found before applying the patch.

5.3.2 Manifest XML Patching

As elaborated in Section 5.2.1, the APDK supports specifying modifications to the target application’s
Android manifest file in terms of an XML patch file. While the general concepts are loosely based on RFC
5261, the format had to be heavily adapted for extending its feature set and ensuring its compatibility with
Android’s proprietary binary XML format.

In order to facilitate the XML patch deployment, the APDK starts by parsing the compiled manifest into
its own in-memory tree representation. For this purpose, a custom parser was implemented on top of the
open-source axml project5.

While the tree representation already exposes manipulation functionality, the data is converted into
plain XML format before applying the XML patch. This is achieved by serialising the structure into
plain text XML and parsing it into an instance of Java’s XML DOM Document class. The additional
transformation was made necessary for being able to take advantage of existing Java infrastructure for
evaluating XPath expressions on the manifest XML structure.

3ASM Java Bytecode Manipulation Framework: https://asm.ow2.io
4dexlib2: https://github.com/JesusFreke/smali/tree/master/dexlib2
5axml: https://github.com/Sable/axml

https://asm.ow2.io
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://github.com/Sable/axml

Implementation 39

Still, extra measures have to be taken for mirroring all information from the binary format into the
plain XML document. In an effort to speed up parsing at runtime, the binary XML format includes an
integer identifier and a type qualifier for every attribute. The APDK retains this metadata by injecting
shadow attributes into the plain XML data, so it does not have to completely regenerate this structure
when transforming the patched XML data back into the binary format. Since the patch XML is stored
inside the manifest file of the patch project, it is automatically converted to binary XML format during
compilation and goes through similar processing as the target manifest as preparation for the patching.
This ensures that nodes copied from the patch to the target manifest while deploying the patch are already
enriched with proper shadow attributes.

An additional obstacle that has to be overcome for manifest patching are resource references. The
Android framework allows many attributes in the manifest to be filled with references to a resource instead
of explicitly hardcoding the value. For example, this enables developers to display the app name in the
language of the user. However, a patch may want to modify such a value or use it as part of its XPath
selector. In order to support this use case, the APDK resolves all resource string references before applying
the patch, and adds shadow attributes for the original references and values. Once the patch has been
deployed, the APDK scans through the resulting XML structure and identifies values that were modified,
so that the changes can be propagated back into the referenced resource. Please note that this functionality
has not yet been fully implemented because it is not needed by our CryptoPatch patch. In particular, the
current implementation stores the modifications inside the Android manifest for performance reasons,
instead of propagating them back to the resources file.

Furthermore, the manifest patching infrastructure collects a mapping between original and patched
ContentProvider authorities and adds them to the manifest in a dedicated metadata field. The field can
then be queried by the injected Java code at runtime. These modifications are necessary in cases where
the patched application is to be installed alongside the original version, because applications can only be
installed if their contained ContentProvider’s authorities do not collide with those of a package already
known to the system.

As a minor caveat worth mentioning, our XML patching only follows a very minimalistic strategy for
handling XML namespaces in the patch. In particular, entries added to the target manifest from the patch
can not introduce new namespaces. However, given that Android manifests generally only contain a very
limited set of known namespaces, this should not affect real-world use in any way.

5.3.3 Rewriting Backend Differences

Because the APDK attempts to provide an abstraction layer that separates the patch code from the
underlying rewriting technology, it has to establish a common ground between the supported rewriting
backends. However, the two backends work fundamentally different. Static rewriting manipulates control
flow at the call site of a method during patch deployment, replacing the reference to the method that is
to be invoked. On the contrary, dynamic rewriting operates at runtime, modifying the target method’s
implementation itself.

The most salient consequence of these differences can be found in the way the two backends handle
class inheritances. Given that the concrete type of an object is usually only known at runtime, static
rewriting, performing light static analysis, in many cases can only determine one of the more generic
ancestor classes. Because of the lack of more detailed type information, a method patch can only be
applied to all subclasses of the target class, independent of whether they override the implementation. On
the other hand, a method patch applied through dynamic rewriting only affects subclasses as long as they
do not override the target method’s implementation.

In order to bridge these gaps, we stipulated patch semantics that both rewriting backends are capable
to support and enforce them in the annotation processor. All virtual method patches have to aim at the
class of the target method’s first declaration, i.e. the most generic class exposing that function, and further

40 5 Android Patch Development Kit

inspect the runtime instance type from there. With regards to static rewriting, this condition alone ensures
that calls to a more specific subclass implementation cannot be missed even if the object is cast to one
of its ancestor types. The APDK’s annotation processor then infers the patch onto all subclasses of the
targeted class in the Android framework, so that cases with more specific type information are covered
as well. Lastly, the inference is extended onto classes of the target application during patch deployment
(static rewriting) or runtime (dynamic rewriting).

As an example, consider the class structure depicted in Listing 5.2 and Listing 5.3 and assume a patch
wants to target the FileInputStream.read()method. Because the call in MainActivity.onCreate()
casts the concrete BetterFileInputStream instance to its InputStream ancestor type, it would
escape static rewriting if FileInputStream.read() is targeted directly. Instead, the APDK requires
InputStream.read() to be targeted by the patch, because that is the place the method is first defined.
While this properly captures the call in MainActivity.onCreate() when deployed with static rewriting,
dynamic rewriting fails to do so because the BetterFileInputStream class overrides the read()
method and thus does not share the implementation with its ancestor class. Additionally, intercepting
only InputStream.read() still misses the call in MainActivity.onPause() even for static rewriting,
because the created object is cast to the more concrete FileInputStream type there. In order to cover
these case as well, the APDK needs to infer the patch onto all subclasses of the generic target class in the
framework (FileInputStream) and in the target application (BetterFileInputStream).

abstract class InputStream {
abstract int read();

}

class FileInputStream extends InputStream {
@Override
int read() {
...

}
}

Listing 5.2: Rewriting backend differences example: Framework code

class BetterFileInputStream extends FileInputStream {
@Override
int read(){
...

}
}

class MainActivity {
void onCreate() {
InputStream input = new BetterFileInputStream(new File(...));
int value = input.read();

}

void onPause() {
FileInputStream input = new BetterFileInputStream(new File(...))
;

int value = input.read();
}

}

Listing 5.3: Rewriting backend differences example: Application code

Implementation 41

p u b l i c c l a s s Pa t ch {
@PatchClass ({ " j a v a . l a ng . S t r i n gB u f f e r " })
@PatchIns tanceMethod
p u b l i c s t a t i c S t r i n gB u f f e r append (S t r i n gB u f f e r t h i z , i n t v a l u e) {

t r y {
r e t u r n Or i g i n a lMe thod s . j a v a _ l a n g _ S t r i n gB u f f e r . append (" p a t c h ed ") ;

} c a t c h (Throwable t h r owab l e) {
t h r owab l e . p r i n t S t a c k T r a c e () ;

}

r e t u r n t h i z ;
}

}

. . .
. l i n e 32
new− i n s t ance v0 , L java / l a ng / S t r i n gB u f f e r ;

i n v o k e− d i r e c t {v0 } , L java / l a ng / S t r i n gB u f f e r ; −>< i n i t > ()V

con s t / 16 v1 , 0x7b

i n v o k e− v i r t u a l {v0 , v1 } , L java / l a ng / S t r i n gB u f f e r ; −>
append (I) L java / l a ng / S t r i n gB u f f e r ;

mov e− r e s u l t−ob j e c t v0

i n v o k e− v i r t u a l {v0 } , L java / l a ng / S t r i n gB u f f e r ; −> t o S t r i n g
() L java / l a ng / S t r i n g ;

mov e− r e s u l t−ob j e c t v0
. . .

. . .
. l i n e 32
new− i n s t ance v0 , L java / l a ng / S t r i n gB u f f e r ;

i n v o k e− d i r e c t {v0 } , L java / l a ng / S t r i n gB u f f e r ; −>< i n i t > ()V

con s t / 16 v1 , 0x7b

i n v o k e − s t a t i c {v0 , v1 } , Lcom / f l o r i a n d r a s c h b a c h e r /
c r y p t o p a t c h e r / p a t c h /
P a t c hG l u e $ j a v a _ l a n g _S t r i n gBu f f e r ; −>append (L java /
l a ng / S t r i n gB u f f e r ; I) L java / l a ng / S t r i n gB u f f e r ;

mov e− r e s u l t−ob j e c t v0

i n v o k e− v i r t u a l {v0 } , L java / l a ng / S t r i n gB u f f e r ; −> t o S t r i n g
() L java / l a ng / S t r i n g ;

mov e− r e s u l t−ob j e c t v0
. . .

Smali IR of Original Bytecode

Java Patch

Smali IR of Patched Bytecode

Figure 5.3: Applying a Java patch through static rewriting

5.3.4 Static Rewriting

In contrast to most existing Android patching frameworks implementing DEX modifications, the APDK’s
static rewriting backend does not disassemble Dalvik bytecode into the Smali Intermediate Representation
(IR) and operate on a convenient in-memory representation of that format. Instead, it opts for a streaming
design based on the lower-level dexlib2 library, where patches are applied on the bytecode directly and
most data is read from the DEX file only at the time it is needed. This ensures that the process consumes a
bare minimum of memory on the device at any time.

As the first step in the static rewriter’s patch deployment, the DEX file inside the patch package is
parsed. Specifically, the APDK deployment components extract annotations in order to construct a list
of all contained glue methods and the respective target functions. Next, the program iterates through all
classes defined in the DEX files of the target application. For every class that extends a known target class,
the corresponding patches are extended onto the subclass. As described in Section 2.4.5, the classes listed
inside a DEX file are ordered by dependency so that the whole operation can be accomplished as a single
pass.

A target application’s control flow is diverted by modifying the call points to a target method. To
this end, the static rewriter iterates through all bytecode of the source application. Once a call to one
of the targeted methods is found, the invoke-* instruction is replaced with an invoke-static, and
the referenced method is exchanged for the corresponding static glue method. Since invoke-virtual
calls implicitly pass the instance as their first argument, the corresponding static patch glue and wrapper
methods’ parameters need to be explicitly augmented accordingly in this case. These basic principles
allow the implementation of a very performant yet powerful system.

Figure 5.3 illustrates how a Java patch expressed through the APDK’s annotation system is applied to
the Dalvik bytecode inside the DEX file via static rewriting.

However, there are some cases that the static rewriting backend is incapable of handling, due to
limitations inherently linked to the technique or for reasons of performance tradeoffs that had to be made

42 5 Android Patch Development Kit

in the implementation. Most notably, static rewriting is unable to intercept constructor invocations. This
restriction is caused by peculiarities of the virtual machine in regards to uninitialised objects. As illustrated
in Listing 5.4, constructors are usually called via an invoke-direct immediately after a new instance is
allocated. If the APDK was to replace the invoke-direct with an invoke-static, it would have to
pass the uninitialised instance as an explicit argument. However, the Android runtime specifically disallows
passing an object as a function parameter before it has been initialised by a constructor. A possible
workaround is calling the glue method in an added invoke instruction immediately after the constructor,
but that would involve compute-intensive register reorganisation. Alternatively, an additional wrapper
class could be added whose constructor calls the glue method, although this requires more thorough
static analysis for retaining the class hierarchy and would thus decrease patch deployment performance
considerably.

new-instance v0, Ljava/util/ArrayList;
invoke-direct {v0}, Ljava/util/ArrayList;-><init>()V

Listing 5.4: Smali IR of object creation in Dalvik bytecode

Another more subtle deficiency of the static rewriter concerns how invoke-super instructions are
handled. These are used for and in fact limited to cases where an instance method invokes a method
of one of the instance’s ancestor classes. If the APDK was to intercept these by replacement with an
invoke-static to a glue function, it could potentially destroy the program’s control flow irreparably.
This is because although the APDK offers wrapper methods the possibility of calling the original method
they replaced, these calls always make use of the invoke-virtual instruction, which has different
semantics in terms of the vtable lookup than invoke-super, as discussed in Section 2.4.5.2. A wrapper
method reached through an invoke-super would thus end up in an infinite recursion if it called the
original method. As a remedy, the APDK leaves invoke-super instructions untouched by static rewriting.

5.3.5 Dynamic Rewriting

The dynamic rewriting backend reduces application package modifications to a minimum, deferring patch
inference in the target application’s code to its runtime. During patch deployment, an additional DEX
file and native library are injected into the target package. Furthermore, a ContentProvider is inserted
into the Android manifest file so the added dynamic rewriter components can be initialised before the
application code starts executing.

During runtime initialisation, the dynamic rewriter extracts the patch code from the injected DEX file,
parsing the annotation data for obtaining information regarding the target methods. It then loads the
list of framework classes preloaded in the Zygote process that the Android OS stores inside a special
publicly-readable system file. From this information, the dynamic rewriter is able to infer patches not
unlike it is done in the static rewriter, except that the list of preloaded class names is not sorted by
dependencies. As a result, we have to manually confirm patches have been inferred onto all ancestor
classes before processing a given subclass. Once all preloaded classes have been dealt with, a function
in the ClassLinker component involved in runtime class loading is hĳacked, so that we can install a
listener that is invoked immediately before a new class is first used. It is through this listener that patches
can be continually inferred to cover all loaded classes.

The inference of patches onto framework classes at runtime is necessitated by the fact that the
android.jar framework library included in the Android SDK distribution lacks some classes that are
not considered part of the public interface and simplifies inheritance structures. This poses no problem for
static rewriting, because the Dalvik bytecode generated by the Android build tools will only reference
the public framework classes known at compile time. However, it is problematic for dynamic rewriting,
which operates on the much more detailed type information available at runtime. As an example, the
abstract android.content.ContentResolver class in the framework is public, but its most commonly

Implementation 43

used concrete implementation android.app.ContextImpl$ApplicationContentResolver is not,
and thus excluded from the android.jar file. Consequentially, patches written for ContentResolver
methods can not be transferred to the ApplicationContentResolver class by the annotation processor.
At runtime, calls to ContentResolver methods are actually resolved to the corresponding concrete
subclass methods, so will not be intercepted if the patch was not inferred onto the concrete class.

Method rewriting itself is accomplished through manipulation of internal Android Runtime (ART)
data structures. Since all the runtime and virtual machine libraries reside inside the same process as
the application code, the latter can inspect and modify the former’s internal state. More specifically, the
APDK’s dynamic rewriter employs the SandHook6 library for taking control of the ArtMethod structures
the runtime maintains for the target methods. To start with, the whole structure is copied to a backup
method, which can later be used for invoking the original method. Next, the APDK makes use of the
libffi7 project for generating a native closure function in executable memory and sets the function pointer
in the ArtMethod structure to its address. When executed, this closure function forwards its received
parameters and a static userdata pointer to a specified dispatcher function, where the originally called
method is identified through the userdata and the corresponding wrapper method is invoked via the Java
Native Interface (JNI).

The dynamic generation of a separate closure function for every intercepted method is crucial to the
correct operation of patch inference. Because no new Java methods are added during inference at runtime,
multiple classes end up sharing a single wrapper function. However, this is problematic when the latter
wants to execute the original method it intercepted, which requires explicitly referencing the backup
method mentioned above and thus effectively bypasses the normal virtual method resolution through
the vtable. This problem is very similar in nature to that found in invoke-super instructions for static
rewriting, but due to the greater leverage of the dynamic approach, it can be solved. The implementation
of the OriginalMethods class for dynamic rewriting maintains a mapping from fully qualified original
method name to backup method that is filled as part of method hooking. However, when one of the
OriginalMethods methods is executed, it still needs to know the method that was originally called in
order to look up the corresponding backup method. This is where the generated closure function comes
into play. Because every intercepted method is effectively turned into a dynamically generated native
method that calls through to the patch glue method, the originally called method remains visible on the
call stack. The OriginalMethods implementation can thus use the call stack element at a known offset
as the key for its lookup into the backup methods map.

While it may seem that a similar effect can be achieved in a simpler way, this is actually not true
when inspected more closely. The function pointer contained in an ArtMethod instance could simply be
exchanged to point to the wrapper function directly. However, this approach turns out ineffective on recent
Android versions due to the fact that (as briefly discussed in Section 2.5) method calls are frequently
inlined by the ART compiler for performance reasons, so that the ArtMethod structure does not have to be
consulted. As a remedy, Android hooking frameworks usually resort to overwriting the first machine code
instructions of the compiler-generated code for the target method, inserting a jump to a trampoline that in
turn redirects execution to the (JIT- or AOT-)compiled version of the hook method. However, this process
effectively replaces the call stack entry of the originally called method with that of the glue method in the
course of the latter’s invocation, voiding its applicability for our project.

Please note the dynamic rewriting backend is still considered to be in an experimental state and not
working reliably. In particular, many patched third-party applications crashwith amemory fault immediately
after startup. While the issue appears to be linked with the lookup of the OatQuickMethodHeader
runtime structure for a patched method, we were so far unable to pinpoint the exact cause in a reasonable
time frame due to the difficulty of debugging release builds of the ART runtime.

6Android ART Hook/Native Inline Hook/Single Instruction Hook: https://github.com/ganyao114/SandHook
7A portable foreign-function interface library: https://github.com/libffi/libffi

https://github.com/ganyao114/SandHook
https://github.com/libffi/libffi

44 5 Android Patch Development Kit

5.3.6 Resources

The requirement of the possibility for patches to add resources into the target application posed another
technical challenge when developing the APDK system. As discussed in Section 2.4.3, the Android build
tools bundle all the application resources into an ARSC file and assign integer identifiers for referencing
them in code. Since these identifiers are hardcoded within the instructions referencing them, very elaborate
static analysis would be needed for changing them. Because the APDK utilises the standard Android tool
chain for patch development, all the patch resources and their references in code are processed in the same
way as those of the target application. As the resource identifiers are assigned by the build tools from a
per-type counter starting at zero for every application, simply merging the ARSC index of the patch into
that of the target application is not possible due to identifier clashes. Although the identifiers in the patch
ARSC could be modified relatively easily, the values hardcoded in the patch code can not.

As the solution to this problem, the APDK configures the aapt resource compiler from the Android build
tools to assemble the patch project’s resources in a package with ID 0x8f, diverging from the default ID
0x7f used in normal applications. As described in Section 2.4.3, the resource IDs include the containing
package ID, so that this modification prevents resource identifiers of the patch package from clashing with
those of the target application.

Patch deployment then just involves copying the package chunk from the patch’s ARSC file to that of
the target application. Additionally, all referenced strings have to be copied between the string pool chunks
of the two files, and the references in the patch package chunk are adjusted accordingly.

5.4 Conclusion
In this chapter, we introduced our custom patching framework that was tailored specifically to the
requirements identified for the CryptoPatcher system, albeit with the clear goal of delivering a solution
that can be conveniently adapted for further use in related fields. The need for a clear separation between
patch development and deployment was justified as key to a wide applicability of patches. Additionally,
we demonstrated how developers can leverage the capabilities of the APDK for implementing their own
patches capable of modifying the Android manifest file and Dalvik bytecode, as well as injecting resources
and native libraries into third-party applications. These possibilities form the foundation for enabling the
addressing of specific cryptographic API misuses in the CryptoPatch patch described in the remainder of
our thesis.

Chapter 6

CryptoPatch and CryptoPatcher App

This chapter covers both the CryptoPatch patch and the user-facing CryptoPatcher application. Since
the two components are very tightly coupled and their depiction from various perspectives perfectly
complement each other, they perfectly lend themselves to a holistic description.

We start with an overview of the objectives for the two components in Section 6.1, before we discuss the
approach that enabled us to meet the stated goals. Next, we focus on the CryptoPatcher application from a
user perspective, detailing its configuration and usage in Section 6.2. We then dive into the technicalities
of our specific implementations in Section 6.3, elaborating the technical challenges experienced when
realising the patches for TLS, Cipher, PBE and Secure Random API misuses. At the end of the chapter,
Section 6.4 provides a short conclusion of the covered aspects of the CryptoPatcher system.

6.1 Introduction
Most of the general requirements for the CryptoPatch patch and the CryptoPatcher application are congruent
with or directly derived from those already described in Chapter 4 for the CryptoPatcher system as a whole.
This section will thus only provide more detailed reasoning and refine the technicalities of the specific
patches for mitigating crypto API misuses and their deployment within the CryptoPatch application.

6.1.1 Objectives

As a guideline for the security vulnerabilities we intend to address, we use the publications discussed in
Section 1.1. While we overall strive for correcting as many application flaws introduced by misuse of
cryptographic APIs as possible, there is a need to do so transparently to the application code and the user.
This is because of limitations to the degree an application can accommodate functionality not originally
provisioned for by its original authors. For example, in order to mitigate an application’s use of a constant
Initialisation Vector (IV) for symmetric block ciphers, it would have to be made aware of an additional
token (a proper random IV) that needs to be supplied to both decryption and encryption of the correct
ciphertext and corresponding plaintext. Our CryptoPatch aims at staying invisible to the user, so that
existing use flows of target applications are not affected by the patching. Consequentially, we do not
consider it a viable solution to inject an additional user interface for users to manually provide input to the
patch, which stresses the need for an alternative solution.

It is also crucial for our system to offer the possibility to pass over all collected data such as call
parameters for display in the user interface. This is because there are cases where a dynamic approach as
chosen by CryptoPatcher is unable to determine whether a given operation poses a security risk or not.
Consider an application’s use of a hardcoded encryption key. While dynamic analysis is able to recognise
the repeated use of the same key, there is no way to distinguish between a static key securely derived
from unique system properties and one that is baked into the application code and thus the same for all

45

46 6 CryptoPatch and CryptoPatcher App

installations of the program. While this distinction cannot be made in an automated fashion, expert users
can often make educated guesses based on previous experience, if they have access to detailed information
regarding the operation in question.

Besides, our patch needs to cover all possible API endpoints to the cryptographic primitives addressed.
For some functionality, such as HTTPS communication, a wide range of different open source middleware
libraries exists. However, as described in Section 2.6.2, the HostnameVerifier, a crucial component of
the Java TLS stack for ensuring the confidentiality of a connection, has to be invoked from the application
code, since it is not automatically called by the framework during the handshake. Consequentially, the
invocation can happen in various different ways and places, making it difficult for a patch to bring it into
relation with the TrustManager used for the same connection. However, it is only with knowledge of all
parameters that an authoritative judgement about the trustworthiness of a connection can be made. A
clever solution has to be discovered for this problem.

Other requirements are more specific to the exact security vulnerabilities we want to cover. For TLS
patching, we need a way to effectively preventMan-in-the-Middle (MITM) attacks, even if the original
application code does not perform proper server certificate validation. Since the server may employ a
self-signed certificate, simply injecting a default implementation based on Public-Key Infrastructure could
render the target application inoperational. In order to solve this problem, some publications as discussed
in Section 3.1 proposed to build on the Trust-On-First-Use principle, which assumes that the application
receives the legitimate certificate from the server at the time of their first contact. However, we believe
that this base assumption is inherently flawed, so that an alternative solution needs to be found.

6.1.2 Patch Approach

From those common security vulnerabilities that were found to be induced by crypto API misuses in
Android applications, we identified four different classes perfectly eligible for patching transparently to
the application code and user. In the following, we describe how the objectives stated above dictated the
design of our patch.

6.1.2.1 TLS/SSL

As documented by multiple sources summarised in Section 1.1, Android applications very commonly
make some mistake when implementing secure network communication via the TLS/SSL protocol family.
Specifically, they frequently utilise a TrustManager that trusts all servers irrespective of the validity of
the presented certificate or implement HostnameVerifiers that do not properly ensure that the subject
of the server’s certificate matches the host name it was accessed under. As a consequence, application
users are left unprotected to MITM attacks compromising potentially sensitive information such as login
credentials.

In order to correct this flaw in a way that covers all possible implementations, the CryptoPatch patch
opts for a practical approach based on an assessment whether an attacker is actively intercepting a given
connection, instead of just judging about the possibility of such an incident to happen. This provided us
the opportunity to reliably target any possible use of TLS connections in an application, irrespective of the
specific HTTP stack it builds upon.

More specifically, our solution employs a trusted notary web service that is assumed to remain
uncompromised under any circumstances. Whenever a target application has established a TLS connection,
our notary web service is queried for the legitimate certificate of the contacted server. If the response does
not match with the certificate directly obtained from the server, the connection is immediately dropped,
without ever having sent application data through the compromised channel. By performing this check
immediately before the target program starts sending application data, we know that the former considers
the connection secure. Combined with our information about the legitimacy of the connection, we can take
this knowledge as a basis for deducing whether an application uses insecure certificate validation logic.

Introduction 47

6.1.2.2 Ciphers

Another set of common vulnerabilities is linked to an application’s use of the Cipher API. In particular,
developers frequently fail to specify a mode of operation for symmetric block ciphers, which causes a
fallback to Electronic Code Book (ECB) mode. As discussed in Section 2.1.2, ECB mode is considered
insecure for applications that encrypt multiple blocks of data with the same key. An additional problem is
software that repeatedly uses the same combination of key and IV for any block cipher configuration.

In order to mitigate these problems, our CryptoPatch solution is capable of automatically upgrading
ciphers that use ECB mode to the more secure CBC mode. Additionally, it collects a database of previously
used IVs, so that it can detect reuses and autonomously generates a proper random value in this event. In
order to supply the same IV to the decryption functionality, it is embedded within the ciphertext.

6.1.2.3 Password-Based Encryption

A similar mis-parameterisation issue exists with regard to Password-Based Encryption, where it is crucial to
initialise the Key Derivation Function with an adequate iteration count and a unique random salt. Programs
that fail to meet these basic requirements put their user’s passwords at risk of getting compromised through
basic brute-force attacks.

While an insecure iteration count can trivially be upgraded in our patch, injecting a secure salt in place
of a constant is currently not supported. The only channel that could be used for transporting the same
random salt to the decryption as was used for encryption would be embedded inside the ciphertext. This
idea however poses major challenges because it is difficult to bring the salt in relation to the produced
ciphertext within the patch code. The reason for this lies buried in the design of the specific APIs involved
here. For the Cipher API, the IV is set directly on the object that is later used for encryption or decryption.
For PBE however, the salt is used for generating the key in an entirely separate operation and can not be
extracted at the place where the ciphertext is produced.

6.1.2.4 Secure Random

The SecureRandom API on the Android OS has had a history of severe flaws. As documented by Google
[12], in releases prior to Android 4.2, if an application developer explicitly seeded the random number
generator, the supplied value would replace the default entropy derived from the system state. As a result,
applications that used a constant seed risked all generated randomness to be predictable. Although this
original issue was fixed in Android 4.2, the introduced changes opened the door to even more severe
problems. Specifically, the system failed to properly seed the random number generator in fresh application
processes forked from the Zygote process, so that applications could predict each other’s supposedly secure
random values. The developers of the Android OS [33] even acknowledged that the vulnerability has been
actively exploited for compromising a bitcoin transaction. This incident underlines the importance of
ensuring proper seeding of a Cryptographically Secure Pseudo Random Number Generator (CSPRNG).
Although both flaws have been corrected in recent versions of the Android OS, what remains invariantly
important for today’s application developers on any platform is avoiding the bad practise of seeding a
CSPRNG with a constant seed.

Since the CryptoPatcher application that automatically deploys our CryptoPatch patch takes advantage
of functionality for its automated operation that only became available with Android 5.0, we chose not
to specifically address the two vulnerabilities described above that concern earlier revisions of the OS.
Instead, we strive to detect an application’s reuse of CSPRNG seeds as an indicator of a general lack
of diligence from the developer’s part. In the event of a discovered reuse, the CryptoPatch patch will
automatically prevent the explicit seeding and instead fall back to the system-provided entropy generation,
which is generally considered secure enough for most applications.

48 6 CryptoPatch and CryptoPatcher App

6.1.3 Application Approach

The key to enabling the envisioned degree of automation in the CryptoPatcher application is its implemen-
tation as a special device administrator program destined for the role of the device owner. This special
position on the device permits our program to install or disable packages without requiring the usual
interaction from the user. In combination with the on-device patch deployment functionality inherited
from our APDK, our solution is thus equipped with all tools required for autonomously generating patched
versions of third-party applications and installing them to the system. The original software is only
disabled, not removed from the device, so as to prevent its execution while still supporting the common
update flow through the Google Play store.

When it comes to the structure of the user-facing CryptoPatcher application, a particular focus of our
effort was closely following the idioms and concepts present in other parts of the Android OS. The goal
was for our application’s screens to resemble user interfaces that consumers are already accustomed to for
managing aspects of their device similar to those dealt with by the CryptoPatcher application. In particular,
that meant that the interface for managing installed patched applications was deliberately designed similar
to the Android OS’s application management system settings, and the screen for displaying patching
progress resembles that of the system’s application installer. Consequentially, users can take advantage of
the knowledge already gathered for navigating the rest of the system.

6.2 Usage
In this section, we concentrate on describing the configuration and operation of the CryptoPatcher
application. Since the CryptoPatch patch does not offer any immediately user-facing functionality, it is not
covered here.

6.2.1 Installation

The first step of setting up the CryptoPatcher Android application is installing the APK file on the target
device. In theory, our software could be deployed through Google Play to facilitate this task. Alternatively,
users could just download the APK file from the Internet and manually install it on their device, although
this requires explicitly enabling software installs from unknown sources in the system settings.

If any accounts have been set up on the device before, they need to be removed in order for the next
step to succeed. This affects Google accounts and any other account visible in the accounts section of
the Android system settings. Please note that keeping the device clear of accounts is only necessary
for the duration of the installation procedure. All removed accounts can simply be restored once the
CryptoPatcher software is configured.

In the next and last step, the CryptoPatcher application has to be promoted to the role as a Device
Owner on the device. To this end, a command has to be executed on the terminal interface of the Android
OS’s DevicePolicyManager, which can be reached from a computer through a USB connection and the
Android Debug Bridge (ADB) tool. The exact command to be issued can be found in Listing 6.1.

adb shell dpm set-device-owner com.floriandraschbacher.cryptopatcher
/.CryptoPatcherDeviceAdminReceiver

Listing 6.1: Enabling the CryptoPatcher application as a device owner

For corporate use, the installation procedure can be automated and integrated into the device setup by
utilising Android Enterprise infrastructure.

Usage 49

6.2.2 Basic Use
Once installed and configured on a device, the CryptoPatcher application is constantly running in a
background service listening for app installation events emitted from the system. Every freshly installed
application is immediately disabled, so that the user cannot accidentally mistake it for the patched
version. The latter is automatically generated by deploying the CryptoPatch patch and installed through
CryptoPatcher’s privileges as Device Owner application. A system notification keeps the user informed
of the ongoing patching. Because the original application is left on the device, the normal update flow
through Google Play stays largely unaffected by CryptoPatcher’s operation. Whenever the user chooses
to install an app update, CryptoPatcher’s service automatically picks up the change and generates a new
patched version.

6.2.3 User Interface
Since the default operation already provides automatic protection, inexperienced users do not have to
interact with the CryptoPatcher user interface at all. Still, it offers curious explorers and administrators
multiple opportunities for gaining insight and taking control of the app’s functionality.

6.2.3.1 Monitor Screen

The main screen of the CryptoPatcher application displays a list of all monitor events produced by the
CryptoPatch components inside patched programs. The entries are sorted chronologically and updated
automatically, so that the most recent events are always available at the very top. For every list element,
the app’s icon and name are displayed, so that users can trace back individual events to the respective
program they originated from. Additionally, CryptoPatcher evaluates the specific protection and security
status, as well as detailed information on the exact API usage in order to provide a brief summary for
every event. For identified crypto API misuses, the background colour of the item in the list encodes the
severity as assessed by CryptoPatcher. A yellow background signifies that the CryptoPatch patch was able
to mitigate the vulnerability, while a red highlight signals that this was not possible, either because the
user explicitly disabled protection for the respective application, or because technical limitations require a
source-level fix from the provider of the third-party software.

Upon tapping of a list entry, the user is presented with the event details screen, providing much more
comprehensive information about the specific incident. For issues related to cipher operations, the exact
algorithm, key and initialisation vector (if any) are reported, while SSL communication events include
the destination host name and its presented certificate chain. Independent of the specific API, the exact
method and parameters that lead to the report are disclosed.

Figure 6.1 demonstrates a screenshot of the monitor list screen and the details interface that is shown
when one of the events is selected.

6.2.3.2 Apps Screen

CryptoPatcher’s apps screen, depicted in Figure 6.2, provides an overview of all patched applications
installed on the device. Augmenting every entry with the application’s icon, package name and version
number provides clear distinction and allows ascertaining the installed revision at a glance.

Tapping on one of the items leads the user to a details screen for the corresponding application. Two
buttons provide the possibility to access a system-provided package information screen and to uninstall
the program. The following section allows users to toggle CryptoPatcher’s protection for the specific
application. Lastly, a list of only the monitoring events emitted from the particular software allows quickly
inspecting its trustworthiness.

While a patching operation is under way, the details screen provides additional information about its
progress and current state. If a problem was encountered, the user can obtain an error message from this
place.

50 6 CryptoPatch and CryptoPatcher App

Figure 6.1: Overview and detail display of the monitor screen

Usage 51

Figure 6.2: Overview and detail screen of the apps list

52 6 CryptoPatch and CryptoPatcher App

6.3 Implementation

6.3.1 CryptoPatch Patch

As covered in the preceding section of this thesis, the CryptoPatch patch includes mitigations for four
classes of cryptography API misuses that can be corrected transparently to the target applications. In the
following, we discuss the specifics of their implementations and highlight several difficulties we had to
overcome in the process.

6.3.1.1 TLS/SSL

For mitigating an application’s use of an insecure HostnameVerifier or TrustManager independently
of the used higher-level protocol stack, our patch targets the SSLSocket.getInputStream() and
SSLSocket.getOutputStream() methods. Since these must be called immediately before transport of
application data begins, we can infer that the target program considers the connection secure if they are
invoked. While the TLS handshake can be started implicitly and not just from an application’s call to
the SSLSocket.handshake() method, there is no way for a program to send or receive application data
other than going through either of these two functions for obtaining an InputStream or OutputStream.
They thus present a perfect opportunity for interposition by our patch.

However, just by intercepting the aforementioned methods, the patch does not have a chance for
extracting the contacted host’s address, port and name. All of this data is crucial for fetching the expected
certificate from our notary web server. While the necessity for obtaining the address and port is trivial to
understand, it is less obvious that the host name is similarly important for ensuring reliable operation. The
reason for this can be found in today’s common use of the Server Name Identification (SNI) extension
of the TLS protocol. It is typically employed so that a single host computer can serve website data for
multiple different domains. In this scenario, the client program includes the target host name in the TLS
handshake, so that the server can present the certificate with a matching subject. If we were unable to
identify the host name of the contacted server, our notary web server could not query the correct certificate
from the latter, thus leading to a certificate mismatch for no reason.

As a solution to this problem, our patch goes a little beyond just intercepting the two methods mentioned
above. In fact, it targets the creation of the SSLSocket, so that a wrapper object can be put in its
place. To this end, the patch interposes on every method of the SSLSocketFactory class, where all
information concerning the host is available in the call parameters. From here, it is passed to the constructor
of the wrapper class, which now serves as a container for all data collected for a specific connection
and as a possibility for executing our own certificate validation logic. The wrapper class extends the
SSLSocket class and also forwards some of the private methods exposed by the system-default Conscrypt
SSLSocket implementation to the wrapped object. This approach is necessary because some HTTP
libraries access these methods via Java Reflection and do not fail gracefully for implementations other
than the system default. By respecting these cases, our patch can do its job transparently to the application
code. Listing 6.2 exemplarily demonstrates what the patch for intercepting one of SSLSocketFactory’s
SSLSocket creation methods looks like. Please note that for the sake of brevity, all other similar methods
and the code of the CryptoPatcherWrappedSSLSocket class that actually implements the certificate
validation logic were omitted here.

@PatchClass("javax.net.ssl.SSLSocketFactory")
public static class SSLSocketFactoryPatch {

@PatchInstanceMethod
public static Socket createSocket(SSLSocketFactory thiz, Socket
s, String host, int port, boolean autoClose) throws
IOException {
boolean protect = CryptoPatchProtectionStateResolver.

getInstance().getProtectionActive();

Implementation 53

Socket socket = OriginalMethods.
javax_net_ssl_SSLSocketFactory.createSocket(thiz, s, host
, port, autoClose);

return new CryptoPatcherWrappedSSLSocket((SSLSocket) socket,
host, port, protect);

}
}

Listing 6.2: Excerpt from the patch for injecting CryptoPatch’s SSLSocket wrapper

Since the static rewriting backend of our APDK system is subject to technical limitations regarding
the interception of method calls from code inside the framework, extra care had to be taken with regards
to the HttpsURLConnection API. Although this class makes use of the SSLSocketFactory system
for creation of its SSLSockets, its integration into the Android framework means that it is not covered
by the solution described above. In an effort to work around this problem, our patch sets a custom
default SSLSocketFactory for the HttpsURLConnection API, which in essence wraps the system
default implementation and redirects execution to the patch wrapper methods covering all remaining uses
of the SSLSocketFactory APIs as described above. In order not to disturb an application’s explicit
specification of a default or connection-specific SSLSocketFactory, the corresponding setters on the
HttpsURLConnection API are intercepted so that the supplied object can be wrapped before being
passed to the original setter.

The CryptoPatch’s custom certificate validation logic contacts our notary web service, which we
implemented as a Java Jetty servlet presenting a simple JSON REST interface over HTTPS. The service in
turn initiates a TLS connection to the specified target server and queries it for the certificate of the given host.
Please note the latter is not validated in any way by the notary service so as to support self-signed certificates,
which can be found in real-world use in some cases. The obtained certificate is then forwarded to the
patched application, where it is compared to the one received through the direct connection to the target
server. In case of a mismatch (and activated protection in the CryptoPatcher application), the connection
is immediately aborted by throwing an IOException. Since the SSLSocket.getInputStream() /
SSLSocket.getOutputStream() methods are known to throw these types of exceptions for example in
the event of a connection loss, the target application is guaranteed to gracefully handle the error. In order
to ensure that noMan-In-The-Middle (MITM) attack can be mounted on the connection between the patch
and notary web service, we utilise certificate pinning. The basic sequence executed by our TLS patch is
illustrated in Figure 6.3.

Please note that we currently are not maintaining a dedicated web server for our notary servlet, so that
the program must be running on a local host known to and reachable from the Android device that runs
CryptoPatcher. We would like to stress that this setup is only suitable as a general proof of concept. For
real-world use, a dedicated server is imperative, not least to ensure that compromising the connection
between the notary service and target servers is exacerbated for an attacker.

In order to reduce the load on our notary web service, we integrated a caching system into the CryptoPatch.
It stores every certificate obtained through the service in a dedicated file inside an application-private
cache folder. If a mismatch is detected between the cached entry and the certificate presented by the target
server, the notary web service is queried as the authoritative last resort. This procedure is necessary in
case the certificate of the target server has been updated.

Since the notary web service usually runs on a remote web server, it is incapable of determining the
legitimate certificate of a target server running on a local host. Consequentially, a special scheme has to be
devised to account for this scenario. In its current implementation, our patch assumes that communication
with a local server is less likely to be attacked and less likely to involve sensitive information. Since the
possibilities of a remote notary service are technically limited for this specific corner case, a fallback to

54 6 CryptoPatch and CryptoPatcher App

Application CryptoPatch Notary Service Target Server

SSLSocketFactory.createSocket
(hostname, port)

Wrapped SSLSocket

TLS Handshake
Server Certificate

SSLSocket.getInputStream() /
SSLSocket.getOutputStream()

Query(hostname, port)

TLS Handshake
Legitimate Certificate

Legitimate Certificate
Abort / Accept Connection

Figure 6.3: Simplified illustration of the procedure followed in the TLS patch

the Trust-On-First-Use (TOFU) principle could be investigated in further works, although we considered
it out of scope for this thesis.

6.3.1.2 Cipher

Although our patch for the Cipher API follows a similar structural principle as that in the patch for
TLS/SSL, its implementation was slightly more challenging since the Cipher class, in contrast to the
SSLSocket class, is final and thus cannot trivially be wrapped. As a consequence, CryptoPatch has to get
more deeply involved with the Provider architecture of the Java Cryptography Extension (JCE) described
in Section 2.6.1. Specifically, the patch implements its own Provider that wraps another Provider’s
implementation of a specific cipher algorithm. By intercepting the Cipher.getInstance() method,
we are able to replace the default or user-specified Provider with an instance of our wrapper. When
the latter is then requested to create a new Cipher object, it returns an CryptoPatchCipherSpi object,
which is a custom wrapper CipherSpi that implements CryptoPatch’s actual vulnerability mitigation
functionality for the specific API. Listing 6.3 shows an illustrative excerpt from the patch code responsible
for injecting our custom wrapper Provider. Please note the actual implementation of the latter and the
CipherSpi are too extensive for detailed listing.

@PatchClass("javax.crypto.Cipher")
public class CipherPatch {

@PatchStaticMethod
public static Cipher getInstance(String transformation , Provider

provider) throws NoSuchAlgorithmException ,
NoSuchPaddingException {

return OriginalMethods.javax_crypto_Cipher.getInstance(
transformation ,

new CryptoPatchCipherProvider(provider ,

Implementation 55

transformation , nonceStore));
}

}

Listing 6.3: Excerpt from the patch for injecting our custom CryptoPatchCipherProvider

During its construction, the CryptoPatchCipherSpi automatically upgrades the supplied transforma-
tion string that encodes the requested algorithm, mode of operation and padding. If the insecure Electronic
Code Book (ECB) mode is explicitly specified, or in case no mode is specified for an algorithm that is
known to default to ECB mode, CryptoPatch opts to use the secure CBC mode instead. However, this
mode requires a unique random Initialisation Vector (IV) to be supplied to both encryption and decryption.

A similar problem arises when a target application relies on an insecure IV. In order to detect these
cases, the CryptoPatch maintains a database of previously used IVs. It is organised as two simple plain
text files stored in application-private storage. One of the files saves all IVs that occurred exactly once,
while the other keeps track of all values that were found to be used repeatedly. Since applications that
properly implement IV generation are expected to produce a new value for every encryption, the first of the
mentioned files could be prone to growing very large over time. In order to compensate for this problem,
our solution stores the IVs used exactly once inside the application’s private cache directory, so that it
can be automatically evicted by the system, or manually by the user in low-memory situations. When an
application-supplied IV was found inside the list of used IVs, it is permanently moved to the list of reused
IVs.

Whenever CryptoPatch has to inject a fresh random IV, it prepends the value to the produced ciphertext.
For all decently well-written third-party applications, the change in ciphertext length should not be a
problem, since they should already be using the Cipher.getOutputSize() method for appropriately
sizing their buffers. Our implementation of CipherSpi accounts for the space for the prepended IV in
this method if needed.

Since an IV could have been tagged as reused between the time it was used for encryption and the time
the produced ciphertext is decrypted, we can not rely on information from our IV database for ascertaining
when an IV is to be extracted from the ciphertext. Instead, we need a way to encode in the ciphertext
itself whether an IV has been prepended. To this end, the IV in the ciphertext is itself prefixed with a
constant header. During decryption, the state machine inside our CryptoPatchCipherSpi class delays
initialisation of the wrapped cipher until enough ciphertext material has been supplied for determining the
presence of IV data from the found prefix.

It is worth noting that the solution discussed above has limitations. Namely, in some cases, an encrypted
value is sent to a server for decryption, or vice versa. In this scenario, upgrading the requested encryption
scheme transparently to the application code could render the server unable to decrypt the produced
ciphertext. It is for this reason that our CryptoPatcher application allows users to disable the automatic
mitigation measures. This permits administrators to trade off the need for protection against that of
retaining a specific application’s full feature set.

6.3.1.3 Password-Based Encryption

The patch for mitigating common flaws in the implementation of Password-Based Encryption (PBE) is
less sophisticated than those for the two APIs described above. In general, it follows the same principle as
our patch for the Cipher API, in that it intercepts the SecretKeyFactory.getInstance() method for
returning a SecretKeyFactory instance based on a custom wrapper SecretKeyFactorySpi class, as
illustrated in Listing 6.4.

@PatchClass("javax.crypto.SecretKeyFactory")
public static class SecretKeyFactoryPatch {

@PatchStaticMethod

56 6 CryptoPatch and CryptoPatcher App

static SecretKeyFactory getInstance(String algorithm) throws
NoSuchAlgorithmException {
boolean protect = CryptoPatchProtectionStateResolver.

getInstance().getProtectionActive();
return new CryptoPatchSecretKeyFactory(new

CryptoPatcherSecretKeyFactorySpi(algorithm , nonceStore ,
protect), new CryptoPatchPbeProvider(), algorithm);

}
}

Listing 6.4: Excerpt from the patch for injecting our custom SecretKeyFactorySpi

When the target application requests the SecretKeyFactory to generate a secret, the supplied key
specification is inspected for improper values for the salt or iteration count parameters. In case the iteration
count is lower than the current minimum recommendation of 1000, the patch automatically raises it to
meet this best practise.

For reasons described in Section 6.1.2.3, our patch does not have an opportunity to automatically correct
the use of a constant salt. Instead, it is limited to producing a critical event for display in the CryptoPatcher
application’s monitoring interface. The mechanism for identifying reused values works analogously to
that discussed for IVs above.

Since some applications utilise the BouncyCastle library or its Android-specific SpongyCastle
fork for PBE, CryptoPatch covers the relevant APIs as well. Specifically, this encompasses the
PBEParameterGenerator.init() method that takes the salt and iteration count as its immediate
arguments. The patch itself works identical to that for the standard JCE PBE API.

6.3.1.4 Secure Random

For correcting the bad practise of seeding the SecureRandom API with a constant value, CryptoPatch
hooks the SecureRandom.getInstance()method for injecting its own wrapper Provider and a custom
SecureRandomSpi. Since the default implementation can also be accessed without going through the
static factory method by just creating a new instance of the SecureRandom class, our patch also installs a
custom default Provider for the SHA1PRNG algorithm. Listing 6.5 displays the implementation of our
SecureRandomSpi class, including monitor event creation and seed reuse checks.

public static class WrappedSecureRandomSpi extends SecureRandomSpi {
private final SecureRandom wrapped;
private boolean protect = true;

public WrappedSecureRandomSpi(String algorithm , Provider
wrappedProvider , Boolean protect) throws
NoSuchAlgorithmException {
this.wrapped = OriginalMethods.java_security_SecureRandom.

getInstance(algorithm , wrappedProvider);
this.protect = protect;

}

@Override
protected void engineSetSeed(byte[] seed) {

SecureRandomApiUsageReport report = new
SecureRandomApiUsageReport(

SecureRandom.class, wrapped.getProvider().getClass()
, "setSeed", Arrays.toString(seed));

report.setProtectionStatus(protect ? ProtectionStatus.
Protected : ProtectionStatus.Unprotected);

report.setAlgorithm(wrapped.getAlgorithm());

Implementation 57

report.setSeed(seed);

if (checkSeedReuse(seed)) {
// Let wrapped seed itself.
if (!protect) wrapped.setSeed(seed);
report.setSecurityStatus(SecurityStatus.Insecure);

} else {
report.setSecurityStatus(SecurityStatus.Secure);
wrapped.setSeed(seed);

}

AppMonitorClient.getInstance().reportApiUsage(report);
}

@Override
protected void engineNextBytes(byte[] bytes) {

wrapped.nextBytes(bytes);
}

@Override
protected byte[] engineGenerateSeed(int numBytes) {

return wrapped.generateSeed(numBytes);
}

}

Listing 6.5: CryptoPatch’s SecureRandomSpi implementation

The main task of the custom SecureRandom Provider besides generating monitoring events is
preventing seed reuses. To this end, it employs a simple database as devised above. Whenever a seed
reuse is detected, the entropy material is not forwarded to the underlying wrapped implementation, so that
the system default seeding is used as the sole source of entropy.

6.3.2 CryptoPatcher Application
The backbone of the CryptoPatcher application is formed by its main service. Started immediately after
boot, it promotes itself to a persistent service that is automatically reinstantiated in the event of a crash, and
displays a notification to inform the user of its current state. Moreover, it installs a BroadcastReceiver
that constantly listens for changes to the installed packages. An execution queue collects all patching
tasks that have to be processed, so that the application can gracefully handle the installation of additional
programs while patch deployment for a previous installation is in progress.

For obtaining some sort of control over the system, the CryptoPatcher application takes advantage of the
DevicePolicyManager API. By implementing a DeviceAdminReceiver that is configured as device
owner (through the instructions detailed in Section 6.2.1), our application is granted access to the powerful
PackageInstaller API. Through this interface, it can install and uninstall applications, both in the form
of a single APK file or multiple Split APKs supplied to a single installation session. Our application
uses the opportunity for installing a progress listener in order to reflect the patch installation progress
in its user interface. An array of additional package management functionality is available through the
DevicePolicyManager API, one of which is the possibility for disabling an installed application. In this
special state, the program’s icon in the launcher is grayed out and tapping it just yields an error message
screen. However, disabled applications are still eligible for updates through Google Play, presenting a
perfect way for CryptoPatcher to support the usual update flow for patched software.

Throughout the whole application, a particular focus was put on closely following best practises for the
Android platform. To this end, the CryptoPatcher software makes extensive use of the Android Jetpack
components that facilitate the design of lifecycle-aware, data-centric applications. For the user interface,

58 6 CryptoPatch and CryptoPatcher App

all Fragments were implemented as lightweight containers for ViewModel classes that deal with the
heavy lifting of keeping the screen elements synchronised to the backing data stores. Wherever possible,
the access to the latter was abstracted through Database Access Objects (DAOs) and realised in accordance
to the reactive programming paradigm via observable LiveData holders. Populating the actual on-screen
display takes advantage of the view binding mechanism for reducing boilerplate code.

In order to keep track of all installed patched applications, as well as a package’s status both in terms
of ongoing patch deployments and configured protection level, the CryptoPatcher application integrates
the Rooms library for SQL database interaction without getting involved in the lower-level details. Since
the library already supports yielding query results as LiveData objects that automatically notify their
observers whenever the data changes, it facilitates our goal of immediately reflecting updates into the user
interface.

A central feature of the CryptoPatcher system is the possibility for gaining insights into a patched
application’s operation through a monitor display. This functionality is implemented by means of special
broadcast messages exchanged between the CryptoPatch inside a patched target application and the
CryptoPatcher software. Since these messages contain sensitive information such as encryption keys, they
need to be kept unaccessible to other processes. To this end, we employ custom permissions so that patched
applications are only allowed to produce monitor events, but not consume them. A BroadcastReceiver
inside the CryptoPatcher application collects all emitted messages inside a circular buffer that is reflected
into the monitor user interface.

Managing the protection status on a per-app level similarly takes advantage of Android IPC infrastructure.
Specifically, a ContentProvider was implemented that allows the patch code inside an application
process to query the current configuration from the CryptoPatcher application. In order to restrict insights
into the protection level to only the affected package, the ContentProvider inspects the metadata
provided by the Android Binder IPC mechanism to identify the calling component.

6.4 Conclusion
In this chapter, we completed the picture of our CryptoPatcher solution with the introduction of the
CryptoPatch patch and the CryptoPatcher application. These are the components that bring the powerful
foundations laid by the Android Patch Development Kit to a practical use for the benefit of end consumers.

Starting from a refinement of the specific objectives for these two entities, we discussed how our patch
strives to mitigate the covered four categories of vulnerabilities induced by crypto API misuse and how the
design of the CryptoPatcher application seeks to bring it into a user-friendly form. After highlighting the
user-facing functionality and depicting its operation, we covered the actual implementation of the system.

Chapter 7

Evaluation

In this chapter, we evaluate efficacy and efficiency of our CryptoPatcher system. To compensate for the
fact that the dynamic nature of our solution impedes large-scale automated analysis, Section 7.1 instead
presents case studies that show how our software protects users’ data from being disclosed through an
application’s misuse of cryptography APIs in practical scenarios. Specifically, we demonstrate how our
CryptoPatcher solution prevents a simulated Man-In-The-Middle attack on a susceptible application’s
TLS traffic. Additionally, we reverse-engineer several third-party programs to pinpoint the location of
crypto API misuses identified by our system. The subsequent Section 7.2 sheds some light on performance
characteristics of our implementation, before Section 7.3 lists its limitations, respective causes and potential
improvements. Finally, Section 7.4 concludes the chapter with a summary of our findings.

7.1 Case Studies
All case studies are executed on a Google Nexus 9 tablet running the official Android Nougat 7.1.1
firmware released by the manufacturer in 2016, as the last for the device. Although this means the device
has not received the latest revisions of the Android OS, the same holds true for a considerable portion of
active devices. In fact, as can be observed from official figures accessible through Android Studio1, more
than a third of devices is still running on the same Nougat version or an even older release. In terms of
CPU performance and RAM size, the tablet is still comparable to recent low- to mid-range phones.

The target applications subject to our case study were all chosen from Google Play. Selection
criteria included their popularity, confidentiality of the processed data, exhibition of at least one of the
vulnerabilities covered by CryptoPatch, and compatibility with our APDK deployment infrastructure.

7.1.1 TLS

As discussed in Section 1.1, the prevalent misconfiguration of TLS in Android applications prompted
Google to introduce the Network Security Configuration (NSC) system as a global, easy-to-integrate
countermeasure. As its most fundamental achievements, the NSC solution provides convenient TLS
pinning possibilities and a safe default that distrusts user-installed Certificate Authorities (CAs). Both
components help in preventing Man-In-The-Middle (MITM) attacks where an attacker can decrypt a
victim’s TLS communication.

However, through the flexible NSC system, applications can still actively enable support for user-installed
certificates. While this option is generally intended for use in isolated debugging environments during

1Android Version Distribution statistics will now only be available in Android Studio: https://www.xda-developers.com/
android-version-distribution-statistics-android-studio/

59

https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/

60 7 Evaluation

app development, a considerable amount of apps ship to customers in this configuration, effectively
dismissing a cornerstone of the protection measures provided by the NSC scheme. Depending on the
specific circumstances, this mistake may open the door to a certain class of MITM attacks, where a
user is tricked into installing an adversary’s CA that can be used to transparently decrypt and re-encrypt
intercepted TLS communication.

Even worse, it seems a small fraction of applications available through Google Play still employ unsafe
HostnameVerifier or TrustManager implementations. It is unclear how these managed to pass the
automated checks described in Section 1.1 that were put up by Google in 2016.

7.1.1.1 Facebook Messenger Lite

An example of an unsafe NSC can be found in the Facebook Messenger Lite2 application, installed on more
than 500 million devices as of January 2021, placing it among the most popular programs available through
Google Play. The program integrates text messaging, voice calling and video chatting functionality that
allows communicating with other Facebook users via the Internet. From the software’s Network Security
Configuration, included in Listing 7.1, we can observe that all user-installed certificates are trusted, and
even more problematically, they are allowed to override the pinned certificates specified for some hosts.

<?xml version="1.0" encoding="utf-8"?>
<network-security -config>

<base-config cleartextTrafficPermitted="true">
<trust-anchors>

<certificates src="system" />
<certificates overridePins="true" src="user" />

</trust-anchors>
</base-config>
<domain-config cleartextTrafficPermitted="false">

<domain includeSubdomains="true">facebook.com</domain>
...
<pin-set expiration="2021-07-1">

<pin digest="SHA-256">lCppFqbkrlJ3EcVFAkeip0+44
VaoJUymbnOaEUk7tEU=</pin>

...
</pin-set>
...

</domain-config>
</network-security -config>

Listing 7.1: The Network Security Configuration of the FacebookMessenger Lite application (ellipses
mark points of truncation)

As a consequence of this explicit opt-out of the default protection measures, the application needs to
integrate a custom implementation of certificate pinning for preventing susceptibility to MITM attacks. In
order to ascertain the existence and effectiveness of the custom approach, we can try to mount a MITM
attack by configuring a system-wide HTTPS proxy. Instead of just relaying traffic, our proxy server tries
to impersonate the target server to the Facebook Messenger Lite application and vice versa, so that it gets
a chance to decrypt the communication. The proxy’s certificate, which it uses for re-encrypting the traffic,
is installed on the target Android device. For our study, we use the Proxyman3 proxy server running on a
computer on the local network.

Once the login credentials entered in the welcome screen of the app’s user interface are submitted to

2We used Facebook Messenger Lite (com.facebook.mlite) 120.0.0.1.118, the newest version at the time of our testing
3Modern Web Debugging Proxy: https://proxyman.io

https://proxyman.io

Case Studies 61

the Facebook server, we can indeed observe various HTTPS requests in the Proxyman application, as
illustrated in Figure 7.1. It appears like the Facebook Messenger Lite application does not implement any
TLS pinning functionality beyond the system-provided NSC scheme, which is bypassed as detailed above.
Consequentially, an attacker can observe user name and password, which are enough for a permanent
account takeover.

To summarise, an attacker would have to perform these steps:

1. Trick the user into installing the attacker’s CA certificate

2. Intercept network traffic (e.g. through ARP spoofing)

3. Take over Facebook account with obtained credentials

In order to shield users of the Facebook Messenger Lite application from this critical information
disclosure, we install the program onto a device protected with our CryptoPatcher solution. With the
service running in the background, we simply initiate the download of the target application through the
Google Play Store and wait until it has installed. Next, we can observe the CryptoPatcher notification
informing us of the ongoing patching operation. Once the patched version is installed, it can be started
from the application launcher. Again, we enter the credentials of our test account and initiate the login
procedure. This time, as illustrated in Figure 7.3, the login within the Facebook Messenger Lite program
fails with a message notifying the user of an unexpected error. From CryptoPatcher’s monitor screen
depicted in Figure 7.4, we can confirm that this is because our system detected a mismatch between the
server certificate presented by the proxy server and the expected one as obtained through the notary web
service, so that the connection was forcefully aborted. Since the CryptoPatch terminated the connection
before any data was exchanged, no information leaked to the MITM attacker, as can be verified from a
glance at the display of the proxy server program in Figure 7.2. Only the request to our notary web server
can be observed, which is protected through TLS pinning in CryptoPatch.

Figure 7.1: In the unpatched application, login credentials can be intercepted through the proxy server

62 7 Evaluation

Figure 7.2: With active CryptoPatcher protection, no information is leaked at all

Figure 7.3: Login fails while an attack is mounted under active CryptoPatcher protection

Case Studies 63

Figure 7.4: CryptoPatcher noticed and terminated the compromised connection

7.1.1.2 Banggood

An example of a critically unsafe application in terms of TLS communication is the Banggood Android
client4. Banggood is a Chinese online retailer that offers low-priced items shipped directly from China.
Its Android app has been downloaded more than 10 million times from Google Play as of January 2021.

The software not only uses a similar NSC as that of Facebook Messenger Lite described above, but
more importantly completely dismisses the NSC system altogether by utilising a custom TrustManager
implementation that accepts any certificate. As a result, the attack sketched above is tremendously
simplified for an adversary, who no longer needs to trick the user into installation of a custom CA
certificate.

When the registration procedure is executed inside the Banggood application as obtained from Google
Play on a stock device, a MITM attacker can trivially extract the used login credentials, as shown in
Figure 7.5. Worsening the criticality of the vulnerability is the fact that the unassuming user has no chance
to notice the account takeover.

From reverse-engineering the Banggood APK, we conclude that the application is using a stub
TrustManager implementation that does not perform any checks on the server’s certificate at all. Since
the application is heavily obfuscated, we considered a full investigation of its exact operation out of scope
for this thesis.

4We used Banggood (com.banggood.client) 7.15.0, the newest version at the time of our testing

64 7 Evaluation

Still, when installing the application on a system protected by CryptoPatcher, the data disclosure is
successfully prevented. From CryptoPatcher’s monitor interface depicted in Figure 7.6, we can confirm that
the network request for registration failed because our system aborted the connection after the certificate
mismatch was detected.

Figure 7.5: A MITM attacker can trivially extract Banggood login credentials

Figure 7.6: CryptoPatcher detected and prevented the MITM attack on the vulnerable app

Case Studies 65

7.1.2 Cipher

The only official countermeasure set up to prevent developers from making mistakes in the use of the
Cipher API are Lint rules inside the Android Studio IDE. Since the produced warnings can easily be
ignored or disabled, a considerable amount of applications on Google Play still use the unsafe ECB mode
or a static IV.

7.1.2.1 Password Saver

Our first case study in this group investigates the Password Saver application5. With more than 500 000
downloads from Google Play as of January 2021, the software is one of the more popular choices in the
category of password vaults, allowing the organisation of all the user’s passwords in one place, encrypted
by a single master password.

Despite the bold claims in its listing on Google Play, the software does not properly protect the entered
data, as can be found out through CryptoPatcher’s monitoring functionality. Specifically, our solution
finds that for all its invocations of the Cipher API, the Password Saver program fails to specify a mode of
operation, so that the AES algorithm is executed in the default Electronic Code Book (ECB) mode.

In order to demonstrate the validity of CryptoPatcher’s claims, we augment the automated dynamic
analysis with a manual static examination using the JADX DEX decompiler6. From a search in the
reverse-engineered Java code, we can locate the source of the problem in the CryptoAesMaster class. In
the functions that are apparently used for encryption and decryption of most of the user-entered data fields,
the transformation string "AES" is supplied, as shown in Listing 7.2.

package com.gsonly.passbook;

class CryptoAesMaster {
public static String encrypt(String str, String str2) {

String str3 = "ISO-8859-1";
String str4 = "AES";
try {

SecretKeySpec secretKeySpec = new SecretKeySpec(
getRawKey(str2), str4);

Cipher instance = Cipher.getInstance(str4);
instance.init(1, secretKeySpec);
str = toHex(instance.doFinal(new String(str.getBytes(

UrlUtils.UTF8), str3).getBytes(str3)));
return str;

} catch (Exception e) {
try {

e.printStackTrace();
} catch (Exception unused) {
}
return str;

}
}

}

Listing 7.2: Excerpt from the CryptoAesMaster class of the Password Saver application

Since our CryptoPatch broadcasts the monitor event at the same place that the insecure value is corrected,
we can conclude that our solution not only successfully detected the crypto API misuse, but also protected

5We used Password Saver (com.gsonly.passbook) 2.13, the newest version at the time of our testing
6JADX Dex To Java Decompiler: https://github.com/skylot/jadx

https://github.com/skylot/jadx

66 7 Evaluation

the user by automatically mitigating the vulnerability.

7.1.2.2 aWallet

A slightly different CipherAPI misuse can be found in the aWallet application7, another popular password
organiser available from Google Play. As of January 2021, the software has accumulated more than 1
million downloads.

From CryptoPatcher’s monitor screen depicted in Figure 7.7, we are informed that although the program
utilises the secure "AES/CBC/PKCS7Padding" transformation, its use of a constant IV still puts the stored
data at risk.

Figure 7.7: CryptoPatcher reported an IV reuse

For investigating the cause of the report, we again take advantage of the JADX decompiler. Through
a search for references to the IvParameterSpec class and by following the parameters passed to its
constructor, we eventually reach the class org.awallet.c.g.m, partly shown in Listing 7.3, which
defines a static final byte array holding the IV reported by CryptoPatcher. The constant is accessed from
other places in the code through the org.awallet.c.g.m.p() method.

package org.awallet.c.g;

7We used aWallet (org.awallet.free) 8.5.1, the newest version at the time of our testing

Case Studies 67

public final class m {
...
private static final byte[] l = new byte[]{(byte) 66, (byte) 42,

(byte) 83, (byte) -56, (byte) -127, (byte) -81, (byte) -72,
(byte) 96, (byte) -22, (byte) 94, (byte) 32, (byte) 35, (byte
) 16, (byte) 75, (byte) -117, (byte) -26};

...

private byte[] p(int i, boolean z) {
...

if (i != 8) {
if (i != 16) {

...
} else if (z) {

...
} else {

return l;
}

} else if (!z) {
...

} else {
...

}
}

}

Listing 7.3: The org.awallet.c.g.m class defines the static IV CryptoPatcher reported

The fact that the IV is not only reused but also hardcoded into the application’s source code further raises
the severity of the vulnerability, rendering CryptoPatcher’s mitigation even more critical for protecting the
user’s data.

7.1.3 Password-Based Encryption

Although the frequent problem of insecure parameterisation of Password-Based Encryption (PBE) has
been reported numerous times before, no official countermeasure has been integrated into the Android
SDK or Play Store. As a result, a countless number of applications are still putting their user’s data at risk.

For our case study of this vulnerability, we have picked the My Passwords application8, with a total of
more than 1 million installs according to Google Play as of January 2021. Like the two products examined
above, the application belongs to the group of password managers.

When the My Passwords program is installed on a system protected with our CryptoPatcher system, the
latter issues a warning as soon as the user enters the master password. Specifically, as shown in Figure 7.8,
we are informed that the My Passwords application derives a cryptographic key from our entered master
password, but only specifies an iteration count of 100. The low value can be considered hazardous from a
security standpoint in the light of the recommendations discussed in Section 2.1.3.

8We used My Passwords (com.er.mo.apps.mypasswords) 20.12.00, the newest version at the time of our testing

68 7 Evaluation

Figure 7.8: CryptoPatcher detected an insecure iteration count parameter

In order to confirm the correctness of this finding, we once more utilise the JADX decompiler.
From the obtained reverse-engineered Java source code, we can identify the place that instantiates
the PBEKeySpec object for use in the SecretKeyGenerator API. The relevant parts are illustrated
in Section 7.1.3. We can observe that the method com.er.mo.libs.secureutils.e.b() calls the
com.er.mo.libs.secureutils.d.a() function, which uses its third parameter as the iteration count
in the creation of the PBEKeySpec object. Since the caller here passes the value 100 as the third parameter,
we have proven that CryptoPatcher’s claims were indeed correct.

package com.er.mo.libs.secureutils.e;

public class b {
private void h(int i, String str) {

byte[] a = c.a(3, str);
byte[] bArr = new byte[16];
System.arraycopy(a, 0, bArr, 0, 16);
byte[] bArr2 = new byte[16];
System.arraycopy(a, 16, bArr2, 0, 16);
try {

this.a.init(i, com.er.mo.libs.secureutils.d.a(str, bArr,
100, 256), new IvParameterSpec(bArr2));

} catch (InvalidAlgorithmParameterException |
InvalidKeyException e) {
throw new CryptoRuntimeException(e);

}

Performance 69

}
}

package com.er.mo.libs.secureutils;

public class d {
public static SecretKeySpec a(String str, byte[] bArr, int i,
int i2) {
StringBuilder stringBuilder;
if (VERSION.SDK_INT < 19) {

throw new RuntimeException("Currently the KeyFactory
supports android v-19 and newer");

} else if (str == null || str.length() == 0) {
throw new IllegalArgumentException("Invalid password!");

} else if (bArr == null || bArr.length == 0) {
throw new IllegalArgumentException("Invalid salt!");

} else if (i <= 0) {
stringBuilder = new StringBuilder();
stringBuilder.append("Invalid iteration count: ");
stringBuilder.append(i);
throw new IllegalArgumentException(stringBuilder.

toString());
} else if (i2 == 128 || i2 == 192 || i2 == 256) {

try {
return new SecretKeySpec(SecretKeyFactory.

getInstance("PBKDF2WithHmacSHA1").generateSecret(
new PBEKeySpec(str.toCharArray(), bArr, i, i2)).
getEncoded(), "AES");

} catch (NoSuchAlgorithmException |
InvalidKeySpecException e) {
throw new RuntimeException(e);

}
} else {

stringBuilder = new StringBuilder();
stringBuilder.append("Invalid key size: ");
stringBuilder.append(i2);
throw new IllegalArgumentException(stringBuilder.

toString());
}

}
}

Listing 7.4: The code responsible for key derivation inside the My Passwords application

7.2 Performance

Injecting additional instructions into an existing application inevitably has some effect on the size of the
resulting package. Within the boundaries of technical possibility, we are trying to keep the overhead as
low as possible, so as not to overly strain a device’s limited memory resources. Similarly, we are aiming to
keep patch deployment durations as short as possible, since they have direct implications for the overall
user experience of our approach. In order to provide some sense of the performance characteristics of our
solution in these regards, Table 7.1 shows the APK sizes for all applications covered in our case studies
before patch deployment, as well as the resulting file sizes and deployment durations for both dynamic and
static rewriting.

70 7 Evaluation

Package
APK Size (Bytes) Deployment Dur. (Seconds)

Original Dynamic Rewr. Static Rewr. Dynamic Rewr. Static Rewr.

Messenger Lite 11 052 557 11 868 500 11 678 834 20.7 59.1
Banggood 38 328 752 38 749 610 38 665 655 60.8 214.1
Password Saver 4 883 335 5 922 587 4 958 304 10.5 66.3
aWallet 2 705 974 3 733 992 2 752 903 9.8 21.8
My Passwords 3 133 775 4 111 466 3 177 335 8.2 33.8

Table 7.1: APK sizes and patch deployment durations for the different rewriting backends

As can already be observed from this small sample set, patch deployment durations are still somewhat
detrimental to the overall user experience, given that a user has to wait for the patched version of a freshly
installed application to be generated before it can be used. Although dynamic rewriting works faster than
static rewriting, as mentioned in Section 5.3.5, it is still far too unreliable for general use. Consequentially,
users frequently have to wait up to several minutes until the patch has been deployed via static rewriting.

Please note that the above figures can only serve as rough guidelines for the expected performance
characteristics of a patching operation and its results. In addition to the differences between rewriting
backends, these characteristics largely depend on a multitude of factors, such as the total size of DEX files
within the APK package, the number of individual compressed files in the APK or the amount of calls to
patched APIs.

Since the effect of the injected CryptoPatch patch on runtime performance of patched applications
similarly varies with the number of calls to intercepted APIs, we refrain from including any benchmark
results here. However, from our experience, we are confident that the minimal performance degradation
caused by CryptoPatcher is not noticeable to end users for the vast majority of target applications.

7.3 Limitations
Although the above case studies approve the general efficacy of our approach for automatically mitigating
security vulnerabilities induced by misuse of cryptographic APIs, there still are a few limitations that are
worth pointing out here.

7.3.1 Compatibility

Many high-profile applications integrate some form of signature checks in order to prevent malicious
modifications to their software’s functionality from third parties. Through this measure, developers
seek to protect the intellectual property contained in the application’s executable code and try to prevent
piracy. The latter problem commonly affects commercial applications and involves criminals re-releasing
manipulated versions of popular legitimate software as a means to spread malware. Since this act on a
technical level shares similarities with our approach, all countermeasures that try to prevent piracy affect
CryptoPatcher as well. It thus has to be accepted that a compatibility rate of 100% can not be achieved,
because a benign solution such as CryptoPatcher should not waste resources in the ethically questionable
cat-and-mouse game of working around these countermeasures.

In addition to these cases where an application actively prevents being tampered with, CryptoPatcher
currently is similarly incompatible to another set of programs that for some reason fail to function under
the modifications applied by our system. A considerable source of problems can be found in the solution’s

Limitations 71

alteration of package names, particularly in conjunction with ContentProvider URIs derived from the
application’s package name. In order to improve the situation in this regard, future work could expand
our patch to cover all possible interaction points between a patched app and the rest of the system that
reference package names.

Furthermore, the problem that native code and custom implementations of cryptographic primitives are
not covered by CryptoPatcher’s monitoring and protection can not realistically be remediated. For these
cases, the only possibility for misuse mitigations is a fix from the original developer.

7.3.2 Malicious Targets Applications

It is also worth noting that our solution currently does not assume target apps to have any malicious
intentions. Instead, they are simply considered vulnerable due to ignorance or lack of competency on
their developer’s part. Consequentially, all our countermeasures rely on the presupposition that target
applications make no attempts to actively evade the restrictions put up by the patching process.

A target application aware of being patched could for example dynamically alter its own executable
code to get rid of CryptoPatcher’s modifications. While this is generally more difficult for static rewriting
where the CryptoPatch patch is baked into the target application’s DEX file, the runtime manipulations of
dynamic rewriting could be reverted relatively easily.

Although the CryptoPatcher system could be hardened against malicious target packages to some degree,
it is to be expected that not all cases could be covered due to the very fact that our patch is running within
the same process as the target application.

7.3.3 Usability

While we specifically designed our application to work as transparently to the user as possible, some minor
nuisances of the Android system that are beyond our control slightly worsen the overall user experience.

In particular, recent versions of the Google Play Store include a service called Play Protect9, which
compares all installed applications with known malicious packages through a web server. In the default
configuration, a dialog is shown whenever an unknown package is installed through sources other than
Google Play, asking whether the application file should be uploaded to Google’s servers for further
examination. Since this dialog is also shown for the patched app versions produced by CryptoPatcher,
the user has to manually intervene for every installation. Fortunately, Play Protect can be disabled in
the Google Play application, so that it no longer interferes with CryptoPatcher. As long as the user only
obtains programs through Google Play, the disabled setting has no implications for the device’s security.
This is because all software available from this official repository is scanned already when uploaded by
developers.

A few minor usability issues stem from the fact that CryptoPatcher keeps the original applications
installed alongside the patched versions, so as to maintain compatibility with the common update route
via Google Play. As a result of this practise, two icons are shown in the app launcher for every installed
application. Only the removed colours of the black-and-white icon that signify the suspended state of the
original version provide visual distinction. As a solution to this minor nuisance, a custom launcher could
be developed that hides these suspended applications.

9Help protect against harmful apps with Google Play Protect: https://support.google.com/accounts/answer/2812853?hl=en

https://support.google.com/accounts/answer/2812853?hl=en

72 7 Evaluation

7.4 Summary
In this chapter, we demonstrated two case studies that proved how CryptoPatcher is effective in preventing
attacks against applications that misuse cryptographic primitives. It was shown that our solution is capable
of prohibiting a MITM attack on a third-party program’s insufficiently protected TLS communication.
Furthermore, we traced down API calls inside reverse-engineered target applications in order to validate
CryptoPatcher’s claims. Performance-wise, we come to the conclusion that while the effects of patching on
APK sizes are minimal, patch deployment speed still leaves room for improving the overall user experience.
Lastly, we highlighted the limitations of our solution, including some that are inherently linked to the
technicalities of our approach, and others that can be addressed in future work.

Chapter 8

Conclusion

As mobile security and the Android OS in particular are moving into the focus of security researchers,
an increasing number of vulnerabilities are being uncovered that are caused by applications’ misuse of
cryptographic primitives. Despite all efforts of Google as the platform provider to eradicate this critical
threat to end user’s data confidentiality, a considerable portion of programs stay susceptible to attacks due
to plain negligence or incompetence on their developers’ part. In order to still guard users that are for one
reason or another reliant on the operation of an insecure product, some form of third-party protection is
needed.

In this thesis, we address this problem with our CryptoPatcher solution, a software capable of patching
security vulnerabilities induced by crypto API misuses in third-party Android packages. As an Android
application targeted for installation on end consumers’ devices, CryptoPatcher runs a background service
observing changes to the packages installed on the system. For every newly found application, our system
automatically produces and deploys a patched version without requiring any intervention from the user.
As a result, our solution can be used by novice and advanced users alike. For the latter group, the
CryptoPatcher control application integrates detailed monitoring functionality, offering insights into the
specific used cryptographic APIs, the chosen parameterisation and potential vulnerabilities of installed
programs.

For developing and deploying the CryptoPatch patch that forms the core of the CryptoPatcher system,
we devised our own Android Patch Development Kit. Through an annotation processor and custom
deployment infrastructure, the APDK provides all functionality needed for modifying compiled Android
APK files in a wide variety of ways. It is possible to perform sophisticated changes to the manifest
of a target application, intercept execution of precisely targeted functions in the DEX code or inject
native libraries and resources. Through abstraction of the code rewriting functionality, patches developed
with the APDK can be deployed using either a static or a dynamic rewriting backend, each with unique
characteristics in terms of compatibility and performance. These efforts not only laid a solid foundation
for the task at hand in this thesis, they also provide a good starting ground for designing solutions to
similar problems in related fields.

The specific crypto API misuses covered by our solution include those revolving around the SSLSocket
API for TLS communication, the Cipher API for encryption and decryption, the SecretKeyFactory
API for derivation of cryptographic keys from user-supplied passwords and the SecretRandom API for
generating random numbers. For most of the known mistakes made in programs utilising these interfaces,
CryptoPatcher can offer mitigations that are completely transparent to the targeted application and the
user. For those vulnerabilities that cannot possibly be automatically remediated, our system still produces
extensive information and warnings in its monitor UI.

In order to demonstrate how CryptoPatcher can effectively protect user data against exploits of the
security shortcomings described above, we selected a set of five vulnerable applications as the subjects

73

74 8 Conclusion

of case studies. Through simulated attacks and reverse-engineering of the target softwares’ source code,
we were able to not only validate all claims our software made with regards to the test subject’s security,
but could also prove that our solution successfully prevented the disclosure of critical data caused by the
identified problems.

8.1 Future Work
Since extensibility has been a core goal of our implementation from the very start, CryptoPatcher can be
trivially expanded to cover a broader set of security vulnerabilities and also to further its compatibility and
performance. Specifically, we envision the following future work:

8.1.1 Cover more Crypto API Misuses

Although CryptoPatcher already covers the most common misuses of cryptographic APIs, there still are a
few more candidates for inclusion in our system. Most prominently, a patch could dynamically upgrade all
plain HTTP connections to HTTPS where available. The concept was not realised for this thesis due to the
anticipated difficulties in ascertaining whether a found HTTPS API endpoint actually matches the one on
the original HTTP server. An additional idea could be to automatically replace references to the unsafe
MD5 hashing algorithm with a safe alternative.

8.1.2 Improve Compatibility

As of now, CryptoPatcher is still incompatible to some applications, even beyond those that actively prevent
manipulations. A whole group of additional software is not supported either due to use of proprietary
technology in their build process or because of some specific way in which they depend on their original
package name. In order to remediate these issues, the system has to be tested in a larger scale, and the
identified problems be investigated. Additionally, the current issues of the dynamic rewriter on most
production packages have to be solved.

8.1.3 Optimise Performance

Deployment durations have an immediate influence on the user experience of the CryptoPatcher application.
In order to further reduce the delay before users can launch installed packages, it is imperative to benchmark
the current implementation and identify those portions that can be optimised. For further improvements, a
potential solution could be the transfer of some parts to more performant native code.

8.1.4 Enhance Customisability

Another opportunity for further work is provided by the limitations of the current configuration options
within the CryptoPatcher control application. Specifically, a single switch is used for toggling the state
of all the mitigations included in the CryptoPatch patch. More selective control could allow users to
strike a more precise balance between keeping a target program fully operational and mitigating all its
vulnerabilities.

8.1.5 Additional Patches

Since our APDK is entirely decoupled from the CryptoPatch patch, it could be used for any other solution
that requires modification of third-party applications. For example, the system provides a powerful
foundation for research into various aspects of applications’ runtime behaviour. More practical applications
are similarly conceivable that add functionality to existing software. Further pursuing this idea, another
option is a system where third-party patches can be distributed through a (curated) central marketplace,
initiating a whole ecosystem similar to that of the Xposed framework.

Bibliography

[1] Aisha I. Ali-Gombe, Irfan Ahmed, I. I. I. Golden G. Richard, and Vassil Roussev. AspectDroid:
Android App Analysis System. Proceedings of the Sixth ACM on Conference on Data and Application
Security and Privacy, CODASPY 2016. ACM, 2016, pages 145–147. doi:10.1145/2857705.2857739
(cited on page 20).

[2] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting Android and Java Applications
as Easy as abc. Runtime Verification - 4th International Conference, RV 2013. Proceedings.
Volume 8174. Lecture Notes in Computer Science. Springer, 2013, pages 364–381. doi:10.1007/978-
3-642-40787-1_26. https://doi.org/10.1007/978-3-642-40787-1%5C_26 (cited on page 20).

[3] Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. Android
security framework: extensible multi-layered access control on Android. Proceedings of the 30th
Annual Computer Security Applications Conference, ACSAC 2014. ACM, 2014, pages 46–55.
doi:10.1145/2664243.2664265 (cited on page 21).

[4] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-Rekowsky.
Boxify: Full-fledged App Sandboxing for Stock Android. 24th USENIX Security Symposium,
USENIX Security 15. USENIX Association, 2015, pages 691–706. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/backes (cited on page 22).

[5] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-
Rekowsky. AppGuard - Enforcing User Requirements on Android Apps. Tools and Algorithms for
the Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013.
Proceedings. Volume 7795. Lecture Notes in Computer Science. Springer, 2013, pages 543–548.
doi:10.1007/978-3-642-36742-7_39. https://doi.org/10.1007/978-3-642-36742-7%5C_39 (cited on
page 20).

[6] Adam Bates, Joe Pletcher, Tyler Nichols, Braden Hollembaek, Dave Tian, Kevin R. B. Butler,
and Abdulrahman Alkhelaifi. Securing SSL Certificate Verification through Dynamic Linking.
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pages 394–405. doi:10.1145/2660267.2660338 (cited on page 19).

[7] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna. NJAS: Sandboxing
Unmodified Applications in non-rooted Devices Running stock Android. Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
2015. ACM, 2015, pages 27–38. doi:10.1145/2808117.2808122 (cited on page 22).

[8] Damjan Buhov, Markus Huber, Georg Merzdovnik, and Edgar R. Weippl. Pin it! Improving Android
network security at runtime. 2016 IFIP Networking Conference, Networking 2016 and Workshops.
IEEE Computer Society, 2016, pages 297–305. doi:10.1109/IFIPNetworking.2016.7497238 (cited on
pages 2, 19).

[9] Damjan Buhov, Markus Huber, Georg Merzdovnik, Edgar R. Weippl, and Vesna Dimitrova.
Network Security Challenges in Android Applications. 10th International Conference on Availability,

75

https://doi.org/10.1145/2857705.2857739
https://doi.org/10.1007/978-3-642-40787-1_26
https://doi.org/10.1007/978-3-642-40787-1_26
https://doi.org/10.1007/978-3-642-40787-1%5C_26
https://doi.org/10.1145/2664243.2664265
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://doi.org/10.1007/978-3-642-36742-7_39
https://doi.org/10.1007/978-3-642-36742-7%5C_39
https://doi.org/10.1145/2660267.2660338
https://doi.org/10.1145/2808117.2808122
https://doi.org/10.1109/IFIPNetworking.2016.7497238

76 Bibliography

Reliability and Security, ARES 2015. IEEE Computer Society, 2015, pages 327–332. doi:10.1109/
ARES.2015.59 (cited on page 2).

[10] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and Christos Xenakis.
Evaluation of Cryptography Usage in Android Applications. BICT 2015, Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications Technologies (formerly
BIONETICS). ICST/ACM, 2015, pages 83–90. http://dl.acm.org/citation.cfm?id=2954820 (cited
on page 2).

[11] Haehyun Cho, Jeong Hyun Yi, and Gail-Joon Ahn. DexMonitor: Dynamically Analyzing and
Monitoring Obfuscated Android Applications. IEEE Access 6 (2018), pages 71229–71240. doi:10.
1109/ACCESS.2018.2881699 (cited on page 21).

[12] Fred Chung. Security Enhancements in Jelly Bean. Feb 2013. https://android- developers.
googleblog.com/2013/02/security-enhancements-in-jelly-bean.html (cited on page 47).

[13] Valerio Costamagna and Cong Zheng.ARTDroid: A Virtual-Method Hooking Framework on Android
ART Runtime. Proceedings of the 1st International Workshop on Innovations in Mobile Privacy
and Security, IMPS 2016, co-located with the International Symposium on Engineering Secure
Software and Systems (ESSoS 2016). Volume 1575. CEURWorkshop Proceedings. CEUR-WS.org,
2016, pages 20–28. http://ceur-ws.org/Vol-1575/paper%5C_10.pdf (cited on page 22).

[14] Deshun Dai, Ruixuan Li, Junwei Tang, Ali Davanian, and Heng Yin. Parallel Space Traveling: A
Security Analysis of App-Level Virtualization in Android. Proceedings of the 25th ACM Symposium
on Access Control Models and Technologies, SACMAT 2020. ACM, 2020, pages 25–32. doi:10.
1145/3381991.3395608 (cited on page 23).

[15] Shuaifu Dai, Tao Wei, and Wei Zou. DroidLogger: Reveal suspicious behavior of Android
applications via instrumentation. 2012 7th international conference on computing and convergence
technology (ICCCT). IEEE. 2012, pages 550–555 (cited on page 20).

[16] Benjamin Davis and Hao Chen. RetroSkeleton: retrofitting android apps. The 11th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys’13. ACM, 2013,
pages 181–192. doi:10.1145/2462456.2464462 (cited on page 20).

[17] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. I-arm-droid: A rewriting
framework for in-app reference monitors for android applications. Mobile Security Technologies
2012.2 (2012), pages 1–7 (cited on page 20).

[18] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study of
cryptographic misuse in android applications. 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13. ACM, 2013, pages 73–84. doi:10.1145/2508859.2516693 (cited on
pages 2–3).

[19] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick D. McDaniel,
and Anmol Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitor-
ing on Smartphones. 9th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2010. USENIX Association, 2010, pages 393–407. http://www.usenix.org/events/osdi10/
tech/full%5C_papers/Enck.pdf (cited on page 21).

[20] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, Lars Baumgärtner, and Bernd
Freisleben.Why eve and mallory love android: an analysis of android SSL (in)security. the ACM
Conference on Computer and Communications Security, CCS’12. ACM, 2012, pages 50–61.
doi:10.1145/2382196.2382205 (cited on page 1).

[21] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith. Rethinking
SSL development in an appified world. 2013 ACM SIGSAC Conference on Computer and Com-

https://doi.org/10.1109/ARES.2015.59
https://doi.org/10.1109/ARES.2015.59
http://dl.acm.org/citation.cfm?id=2954820
https://doi.org/10.1109/ACCESS.2018.2881699
https://doi.org/10.1109/ACCESS.2018.2881699
https://android-developers.googleblog.com/2013/02/security-enhancements-in-jelly-bean.html
https://android-developers.googleblog.com/2013/02/security-enhancements-in-jelly-bean.html
http://ceur-ws.org/Vol-1575/paper%5C_10.pdf
https://doi.org/10.1145/3381991.3395608
https://doi.org/10.1145/3381991.3395608
https://doi.org/10.1145/2462456.2464462
https://doi.org/10.1145/2508859.2516693
http://www.usenix.org/events/osdi10/tech/full%5C_papers/Enck.pdf
http://www.usenix.org/events/osdi10/tech/full%5C_papers/Enck.pdf
https://doi.org/10.1145/2382196.2382205

77

munications Security, CCS’13. ACM, 2013, pages 49–60. doi:10.1145/2508859.2516655 (cited on
page 19).

[22] Wenhao Fan, Yaohui Sang, Daishuai Zhang, Ran Sun, and Yuan’an Liu. DroidInjector: A process
injection-based dynamic tracking system for runtime behaviors of Android applications. Computers
& Security 70 (2017), pages 224–237. doi:10.1016/j.cose.2017.06.001 (cited on page 22).

[23] Jyoti Gajrani,Meenakshi Tripathi, Vĳay Laxmi,Manoj SinghGaur,MauroConti, andMuttukrishnan
Rajarajan. sPECTRA: A precise framEwork for analyzing CrypTographic vulneRabilities in Android
apps. 14th IEEE Annual Consumer Communications & Networking Conference, CCNC 2017.
IEEE, 2017, pages 854–860. doi:10.1109/CCNC.2017.7983245 (cited on page 2).

[24] Jun Gao, Pingfan Kong, Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Negative results on
mining crypto-API usage rules in Android apps. Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019. IEEE, 2019, pages 388–398. doi:10.1109/MSR.2019.00065
(cited on page 2).

[25] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov.
The most dangerous code in the world: validating SSL certificates in non-browser software. the
ACM Conference on Computer and Communications Security, CCS’12. ACM, 2012, pages 38–49.
doi:10.1145/2382196.2382204 (cited on page 1).

[26] Paul A. Grassi, James L. Fenton, Elaine M. Newton, Ray A. Perlner, Andrew R. Regenscheid,
William E. Burr, and Justin P. Richer.NIST Special Publication 800-63B: Digital Identity Guidelines
- Authentication and Lifecycle Management. Online. Jun 2017. https://pages.nist.gov/800-63-
3/sp800-63b.html#sec5 (cited on page 7).

[27] Dongsoo Ha, Wenhui Jin, and Heekuck Oh. REPICA: Rewriting Position Independent Code of ARM.
IEEE Access 6 (2018), pages 50488–50509. doi:10.1109/ACCESS.2018.2868411 (cited on page 21).

[28] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. SIF: a selective instrumentation
framework for mobile applications. The 11th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys’13. ACM, 2013, pages 167–180. doi:10.1145/2462456.2465430
(cited on page 20).

[29] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM: A Pro-
grammable Interface for Extending Android Security. Proceedings of the 23rd USENIX Security
Symposium. USENIX Association, 2014, pages 1005–1019. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/heuser (cited on page 21).

[30] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S.
Foster, and Todd D. Millstein. Dr. Android and Mr. Hide: fine-grained permissions in android
applications. SPSM’12, Proceedings of the Workshop on Security and Privacy in Smartphones and
Mobile Devices, Co-located with CCS 2012. ACM, 2012, pages 3–14. doi:10.1145/2381934.2381938
(cited on page 21).

[31] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. Online. Sep 2000.
https://tools.ietf.org/html/rfc2898 (cited on page 7).

[32] Taeyeon Ki, Alexander Simeonov, Bhavika Pravin Jain, Chang Min Park, Keshav Sharma, Karthik
Dantu, Steven Y. Ko, and Lukasz Ziarek. Reptor: Enabling API Virtualization on Android for
Platform Openness. Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys’17. ACM, 2017, pages 399–412. doi:10.1145/3081333.3081341
(cited on page 20).

[33] Alex Klyubin. Some SecureRandom Thoughts. Online. Aug 2013. https://android-developers.
googleblog.com/2013/08/some-securerandom-thoughts.html (cited on page 47).

https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1016/j.cose.2017.06.001
https://doi.org/10.1109/CCNC.2017.7983245
https://doi.org/10.1109/MSR.2019.00065
https://doi.org/10.1145/2382196.2382204
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://doi.org/10.1109/ACCESS.2018.2868411
https://doi.org/10.1145/2462456.2465430
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
https://doi.org/10.1145/2381934.2381938
https://tools.ietf.org/html/rfc2898
https://doi.org/10.1145/3081333.3081341
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html

78 Bibliography

[34] Sung-Hoon Lee, Seung-Hyun Kim, Soohyung Kim, and Seung-Hun Jin. AppWrapper: Patching
Security Functions with Dynamic Policy on Your Insecure Android Apps. 2018 IEEE International
Symposium on Software Reliability Engineering Workshops, ISSRE Workshops. IEEE Computer
Society, 2018, pages 36–41. doi:10.1109/ISSREW.2018.00-34 (cited on page 21).

[35] Jierui Liu, Tianyong Wu, Xi Deng, Jun Yan, and Jian Zhang. InsDal: A safe and extensible
instrumentation tool on Dalvik byte-code for Android applications. IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering, SANER 2017. IEEE Computer
Society, 2017, pages 502–506. doi:10.1109/SANER.2017.7884662 (cited on page 20).

[36] Tongbo Luo, Cong Zheng, Z. Xu, and Xin Ouyang. Anti-Plugin: Don ’t Let Your App Play As An
Android Plugin. Black Hat Asia 2017. 2017 (cited on page 23).

[37] Siqi Ma, David Lo, Teng Li, and Robert H. Deng. CDRep: Automatic Repair of Cryptographic
Misuses in Android Applications. Proceedings of the 11thACMonAsia Conference onComputer and
Communications Security, AsiaCCS 2016. ACM, 2016, pages 711–722. doi:10.1145/2897845.2897896
(cited on page 19).

[38] Collin Mulliner, William K. Robertson, and Engin Kirda. VirtualSwindle: an automated attack
against in-app billing on android. 9th ACM Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’14. ACM, 2014, pages 459–470. doi:10.1145/2590296.2590335 (cited on
page 22).

[39] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source Attribution of Cryptographic
API Misuse in Android Applications. Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018. ACM, 2018, pages 133–146. doi:10.1145/3196494.3196538
(cited on page 2).

[40] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending Android permission model
and enforcement with user-defined runtime constraints. Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2010. ACM, 2010, pages 328–332.
doi:10.1145/1755688.1755732 (cited on page 21).

[41] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and Sascha Fahl. To Pin
or Not to Pin-Helping App Developers Bullet Proof Their TLS Connections. 24th USENIX
Security Symposium, USENIX Security 15. USENIX Association, 2015, pages 239–254. https:
//www.usenix.org/conference/usenixsecurity15/technical- sessions/presentation/oltrogge

(cited on page 8).

[42] OWASP. Certificate and Public Key Pinning. Online. Accessed on: Feb. 12, 2020. https://owasp.
org/www-community/controls/Certificate_and_Public_Key_Pinning (cited on pages 2, 8).

[43] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. DroidForce: Enforcing Complex,
Data-centric, System-wide Policies in Android. Ninth International Conference on Availability,
Reliability and Security, ARES 2014. IEEE Computer Society, 2014, pages 40–49. doi:10.1109/
ARES.2014.13 (cited on page 21).

[44] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Johanna Amann, and Phillipa Gill. Studying TLS Usage in Android Apps. Proceedings of the 13th
International Conference on emerging Networking EXperiments and Technologies, CoNEXT 2017.
ACM, 2017, pages 350–362. doi:10.1145/3143361.3143400 (cited on page 2).

[45] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes.MOSES: supporting oper-
ation modes on smartphones. 17th ACM Symposium on Access Control Models and Technologies,
SACMAT ’12. ACM, 2012, pages 3–12. doi:10.1145/2295136.2295140 (cited on page 21).

https://doi.org/10.1109/ISSREW.2018.00-34
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1145/2897845.2897896
https://doi.org/10.1145/2590296.2590335
https://doi.org/10.1145/3196494.3196538
https://doi.org/10.1145/1755688.1755732
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/oltrogge
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/oltrogge
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/2295136.2295140

79

[46] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark. FireDroid:
hardening security in almost-stock Android. Annual Computer Security Applications Conference,
ACSAC ’13. ACM, 2013, pages 319–328. doi:10.1145/2523649.2523678 (cited on page 22).

[47] Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang, and Chenjie Shi. Modelling Analysis
and Auto-detection of Cryptographic Misuse in Android Applications. IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, DASC 2014. IEEE Computer
Society, 2014, pages 75–80. doi:10.1109/DASC.2014.22 (cited on page 2).

[48] Dongwan Shin and Jiangfeng Sun. An Empirical Study of SSL Usage in Android Apps. 2018
International Carnahan Conference on Security Technology, ICCST 2018. IEEE, 2018, pages 1–5.
doi:10.1109/CCST.2018.8585431 (cited on page 2).

[49] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan. SMV-Hunter:
Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps.
21st Annual Network and Distributed System Security Symposium, NDSS 2014. The Internet
Society, 2014. https://www.ndss-symposium.org/ndss2014/smv-hunter-large-scale-automated-
detection-ssltls-man-middle-vulnerabilities-android-apps (cited on page 1).

[50] Junwei Tang, Jingjing Li, Ruixuan Li, Hongmu Han, Xiwu Gu, and Zhiyong Xu. SSLDetecter:
Detecting SSL Security Vulnerabilities of Android Applications Based on a Novel Automatic
Traversal Method. Security and Communication Networks 2019 (2019), 7193684:1–7193684:20.
doi:10.1155/2019/7193684 (cited on page 2).

[51] Vasant Tendulkar and William Enck. An Application Package Configuration Approach to Mitigating
Android SSL Vulnerabilities. CoRR abs/1410.7745 (2014). arXiv: 1410.7745. http://arxiv.org/
abs/1410.7745 (cited on pages 2, 19).

[52] Philipp Von Styp-Rekowsky, Sebastian Gerling, Michael Backes, and Christian Hammer. Idea:
Callee-Site Rewriting of Sealed System Libraries. Engineering Secure Software and Systems
- 5th International Symposium, ESSoS 2013. Proceedings. Volume 7781. Lecture Notes in
Computer Science. Springer, 2013, pages 33–41. doi:10 . 1007 / 978 - 3 - 642 - 36563 - 8 \ _3. https:
//doi.org/10.1007/978-3-642-36563-8%5C_3 (cited on page 22).

[53] Xueqiang Wang, Kun Sun, Yuewu Wang, and Jiwu Jing. DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices. 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015. The Internet Society, 2015. https://www.ndss-symposium.org/ndss2015/
deepdroid-dynamically-enforcing-enterprise-policy-android-devices (cited on page 23).

[54] Yingjie Wang, Xing Liu, Weixuan Mao, and Wei Wang. DCDroid: automated detection of SSL/TLS
certificate verification vulnerabilities in Android apps. Proceedings of the ACM Turing Celebration
Conference - China, ACM TUR-C 2019. ACM, 2019, 137:1–137:9. doi:10.1145/3321408.3326665
(cited on page 2).

[55] Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. AirBag: Boosting
Smartphone Resistance to Malware Infection. 21st Annual Network and Distributed System Security
Symposium, NDSS 2014. The Internet Society, 2014. https://www.ndss-symposium.org/ndss2014/
airbag-boosting-smartphone-resistance-malware-infection (cited on page 21).

[56] Jiayun Xie, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani. AutoPatchDroid: A framework
for patching inter-app vulnerabilities in android application. IEEE International Conference on
Communications, ICC 2017. IEEE, 2017, pages 1–6. doi:10.1109/ICC.2017.7996682 (cited on page 21).

[57] Rubin Xu, Hassen Saïdi, and Ross J. Anderson. Aurasium: Practical Policy Enforcement for Android
Applications. Proceedings of the 21th USENIX Security Symposium. USENIX Association, 2012,

https://doi.org/10.1145/2523649.2523678
https://doi.org/10.1109/DASC.2014.22
https://doi.org/10.1109/CCST.2018.8585431
https://www.ndss-symposium.org/ndss2014/smv-hunter-large-scale-automated-detection-ssltls-man-middle-vulnerabilities-android-apps
https://www.ndss-symposium.org/ndss2014/smv-hunter-large-scale-automated-detection-ssltls-man-middle-vulnerabilities-android-apps
https://doi.org/10.1155/2019/7193684
https://arxiv.org/abs/1410.7745
http://arxiv.org/abs/1410.7745
http://arxiv.org/abs/1410.7745
https://doi.org/10.1007/978-3-642-36563-8_3
https://doi.org/10.1007/978-3-642-36563-8%5C_3
https://doi.org/10.1007/978-3-642-36563-8%5C_3
https://www.ndss-symposium.org/ndss2015/deepdroid-dynamically-enforcing-enterprise-policy-android-devices
https://www.ndss-symposium.org/ndss2015/deepdroid-dynamically-enforcing-enterprise-policy-android-devices
https://doi.org/10.1145/3321408.3326665
https://www.ndss-symposium.org/ndss2014/airbag-boosting-smartphone-resistance-malware-infection
https://www.ndss-symposium.org/ndss2014/airbag-boosting-smartphone-resistance-malware-infection
https://doi.org/10.1109/ICC.2017.7996682

80 Bibliography

pages 539–552. https://www.usenix.org/conference/usenixsecurity12/technical- sessions/
presentation/xu%5C_rubin (cited on page 22).

[58] Chaoting Xuan, Gong Chen, and Erich Stuntebeck. DroidPill: Pwn Your Daily-Use Apps. Proceed-
ings of the 2017 ACM on Asia Conference on Computer and Communications Security, AsiaCCS
2017. ACM, 2017, pages 678–689. doi:10.1145/3052973.3052986 (cited on page 23).

[59] Wei You, Bin Liang, Wenchang Shi, Shuyang Zhu, Peng Wang, Sikefu Xie, and Xiangyu Zhang.
Reference hĳacking: patching, protecting and analyzing on unmodified and non-rooted android
devices. Proceedings of the 38th International Conference on Software Engineering, ICSE 2016.
ACM, 2016, pages 959–970. doi:10.1145/2884781.2884863 (cited on page 21).

[60] Lei Zhang, Zhemin Yang, Yuyu He, Mingqi Li, Sen Yang, Min Yang, Yuan Zhang, and Zhiyun Qian.
App in the Middle: Demystify Application Virtualization in Android and its Security Threats. Proc.
ACM Meas. Anal. Comput. Syst. 3.1 (2019), 17:1–17:24. doi:10.1145/3322205.3311088 (cited on
page 23).

[61] Mu Zhang and Heng Yin. AppSealer: Automatic Generation of Vulnerability-Specific Patches
for Preventing Component Hĳacking Attacks in Android Applications. 21st Annual Network
and Distributed System Security Symposium, NDSS 2014. The Internet Society, 2014. https:
//www.ndss-symposium.org/ndss2014/appsealer-automatic-generation-vulnerability-specific-

patches-preventing-component-hijacking (cited on page 21).

[62] Min Zheng,Mingshen Sun, and JohnC. S. Lui.DroidTrace: A ptrace based Android dynamic analysis
system with forward execution capability. International Wireless Communications and Mobile
Computing Conference, IWCMC 2014. IEEE, 2014, pages 128–133. doi:10.1109/IWCMC.2014.6906344
(cited on page 22).

[63] Yajin Zhou, Kunal Patel, Lei Wu, Zhi Wang, and Xuxian Jiang. Hybrid User-level Sandboxing of
Third-party Android Apps. Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’15. ACM, 2015, pages 19–30. doi:10.1145/2714576.2714598
(cited on page 23).

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu%5C_rubin
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu%5C_rubin
https://doi.org/10.1145/3052973.3052986
https://doi.org/10.1145/2884781.2884863
https://doi.org/10.1145/3322205.3311088
https://www.ndss-symposium.org/ndss2014/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking
https://www.ndss-symposium.org/ndss2014/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking
https://www.ndss-symposium.org/ndss2014/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking
https://doi.org/10.1109/IWCMC.2014.6906344
https://doi.org/10.1145/2714576.2714598

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	1 Introduction
	1.1 Crypto API Misuses on the Android Platform
	1.2 The CryptoPatcher System
	1.2.1 Android Patch Development Kit
	1.2.2 The CryptoPatch Patch
	1.2.3 The CryptoPatcher Application

	1.3 Outline

	2 Background
	2.1 Cryptographic Primitives
	2.1.1 Pseudo Random Number Generators
	2.1.2 Ciphers
	2.1.3 Password-Based Encryption

	2.2 Transport Layer Security (TLS)
	2.2.1 Public Key Infrastructure
	2.2.2 TLS Pinning

	2.3 Android OS Architecture
	2.3.1 Linux Kernel
	2.3.2 System Services
	2.3.3 Frameworks and APIs
	2.3.4 Applications

	2.4 App Package Format
	2.4.1 Android Manifest
	2.4.2 Binary XML Format
	2.4.3 ARSC Format
	2.4.4 Resources
	2.4.5 DEX Format
	2.4.6 Native Libraries
	2.4.7 Packaging
	2.4.8 Signatures

	2.5 Android Runtime
	2.6 Android Cryptography APIs
	2.6.1 Cryptographic Primitives
	2.6.2 TLS/SSL

	3 Related Work
	3.1 Fixing Crypto Misuses
	3.2 Android Application Patching
	3.2.1 Rewriting Dalvik Bytecode or Machine Code
	3.2.2 Adapting the Android Framework
	3.2.3 Manipulating Runtime Structures
	3.2.4 Intercepting libc or System Calls
	3.2.5 Container Applications
	3.2.6 Hybrid Solutions

	4 CryptoPatcher System Overview
	4.1 Objectives
	4.2 Approach
	4.2.1 Android Patch Development Kit
	4.2.2 CryptoPatch
	4.2.3 CryptoPatcher

	5 Android Patch Development Kit
	5.1 Introduction
	5.1.1 Objectives
	5.1.2 Approach

	5.2 Usage
	5.2.1 Android Manifest Patches
	5.2.2 Java Code Patches
	5.2.3 Resources and Native Libraries
	5.2.4 Deployment

	5.3 Implementation
	5.3.1 Annotation Processor
	5.3.2 Manifest XML Patching
	5.3.3 Rewriting Backend Differences
	5.3.4 Static Rewriting
	5.3.5 Dynamic Rewriting
	5.3.6 Resources

	5.4 Conclusion

	6 CryptoPatch and CryptoPatcher App
	6.1 Introduction
	6.1.1 Objectives
	6.1.2 Patch Approach
	6.1.3 Application Approach

	6.2 Usage
	6.2.1 Installation
	6.2.2 Basic Use
	6.2.3 User Interface

	6.3 Implementation
	6.3.1 CryptoPatch Patch
	6.3.2 CryptoPatcher Application

	6.4 Conclusion

	7 Evaluation
	7.1 Case Studies
	7.1.1 TLS
	7.1.2 Cipher
	7.1.3 Password-Based Encryption

	7.2 Performance
	7.3 Limitations
	7.3.1 Compatibility
	7.3.2 Malicious Targets Applications
	7.3.3 Usability

	7.4 Summary

	8 Conclusion
	8.1 Future Work
	8.1.1 Cover more Crypto API Misuses
	8.1.2 Improve Compatibility
	8.1.3 Optimise Performance
	8.1.4 Enhance Customisability
	8.1.5 Additional Patches

	Bibliography

