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Kurzfassung 

Im Rahmen dieser Arbeit wird die Standsicherheit geotechnischer Bauwerke 

untersucht. Bezogen auf Stabilitätsprobleme im Falle von 

Tragfähigkeitsnachweisen bezieht sich der Stand der Technik auf zwei wichtige 

Sicherheitsanalysen. Das plastische Grenzgleichgewicht wird entweder durch die 

Erhöhung der Belastung (Bruchlastanalyse) oder die Reduktion der 

Festigkeitsparameter (Festigkeitsreduktionsanalyse) herbeigeführt. Das 

Hauptthema dieser Arbeit ist der Vergleich dieser beiden Vorgehensweisen,  

wobei sowohl analytische (ÖNORM B 4435, EC7, DIN 4017) als auch numerische 

Methoden (FEA, FELA) unter Berücksichtigung assoziierter, nicht assoziierter 

“Davis A“ und nicht assoziierte Plastizität zur Anwendung kommen.  

Die in dieser Arbeit vorgestellten Ergebnisse bestätigen, dass herkömmliche 

analytische Methoden gemäß Standards (ÖNORM B 4435, EC7, DIN 4017) als 

konservativ eingestuft werden können und im Vergleich zu numerischen 

Methoden für die Bruchlastanalyse zu geringeren Bruchlasten führen. Beim 

Vergleich der numerischen Bruchlastanalyse beider Programme wird gezeigt, dass 

die Bruchlast von Plaxis im Allgemeinen höher ist als die Bruchlast von Optum. 

Darüber hinaus wird gezeigt, dass der ursprüngliche Davis Ansatz A zu stark 

konservativen Ergebnissen bei der Belastung für beide Sicherheitsanalysen führt, 

während die verbesserten Davis Ansätze B und C zu einem genaueren 

Sicherheitsfaktor führen. Sowohl für beide Methoden als auch für die 

Sicherheitsanalysen liefert die nicht assoziierte Plastizität sowie die nicht 

assoziierte Plastizität nach Davis Ansatz A im Vergleich zu den Ergebnissen einer 

assoziierten Plastizität eine wesentlich geringere Bruchlast.  

Ein weiterer Schwerpunkt dieser Arbeit besteht darin, die beiden 

Sicherheitsanalysen zu vergleichen und die Belastungsunterschiede aufzuzeigen, 

die dem jeweiligen Sicherheitsfaktor entsprechen, sowie den Sicherheitsfaktor zu 

vergleichen, der der aufgebrachten Last entspricht. Es wird gezeigt, dass in Bezug 

auf die Sicherheitsanalysen, ein höherer Sicherheitsfaktor zu größeren Differenzen 

in der Belastung führt. 

Je geringer der Unterschied in der aufgebrachten Belastung ist (tatsächliche 

Belastung gegenüber Versagensbelastung), desto geringer ist der Unterschied 

hinsichtlich des resultierenden Sicherheitsfaktors bei Anwendung der 

Festigkeitsreduktionsanalyse. Die in dieser Arbeit vorgestellten Ergebnisse 

bestätigen, dass die Sicherheitsfaktoren beider Analysen für die untersuchten 

konstitutiven Modelle MC (Plaxis, Optum) und HS (Plaxis) / HMC (Optum) sowie 

numerischen Berechnungsverfahren FEA (Plaxis, Optum) und FELA (Optum) für 

drainierte Bedingungen gleich sind, sofern ein homogener Bodenaufbau vorliegt. 

Unter drainierten Bedingungen ist der resultierende Sicherheitsfaktor für beide 

Sicherheitsanalysen unabhängig von den Anfangsspannungen. 



Die Durchführung einer automatischen Festigkeitsreduktionsanalyse im Falle 

eines FEA-codes (SRFEA) mit geringerer Fehlertoleranz führt zu geringeren 

Oszillationen und somit zu “glatteren“ (stetig differenzierbar) Kurven, während 

eine höhere Fehlertoleranz zu stärkerer Oszillation führt, wodurch Spitzen in den 

Sicherheitsfaktoren auftreten. Es werden jedoch selten Unterschiede im 

Sicherheitsfaktor nachgewiesen, lediglich der Verlauf der Kurve ändert sich.  

Unter Berücksichtigung des MC-Versagenskriterium und Aufbringung der 

Bruchlast, kommt es zum Materialversagen. Die entsprechenden -Ebenen zeigen 

den Spannungspfad in einem p'-q-Raum im Falle des Versagens für jeden 

Spannungspunkt (FoSFL 1.0). Es wird gezeigt, dass die Spannungspunkte (A bis F) 

in Richtung triaxialer Kompression verlaufen. Darüber hinaus bleibt der  - Winkel 

nahezu konstant.  

Im Fall von Plaxis SRFEA mit assoziierter Plastizität sowie nicht assoziierter 

Plastizität ist ersichtlich, dass der Sicherheitsfaktor bei 3D Berechnungen im 

Vergleich zu 2D Berechnungen zu etwas höheren Werten führt. Bei nicht 

assoziierter Plastizität führt der Sicherheitsfaktor zu einer höheren Oszillation im 

Vergleich zur assoziierten Plastizität, während beim Sicherheitsfaktor von 1.5 die 

Kurve im Vergleich zur assoziierten Plastizität glatter ist. Schlussendlich stimmen 

numerische 3D- und 2D-Ergebnisse hinsichtlich der Bruchlast sehr gut überein. Im 

Fall von einer Grenzwertanalyse (FELA) in Optum bei assoziierter wie auch nicht 

assoziierter Plastizität nach Davis A ist ersichtlich, dass eine beinahe zweifach so 

große “3D Bruchlast“ resultiert, im Vergleich zur 2D Bruchlast. Unter der 3D 

Versagenslast ist zu sehen, dass das System stabil bleibt, bis der 

Festigkeitsparameter ‘ um ~1° verringert wird (c‘=0kPA). Während unter der 2D 

Versagenslast das System stabil bleibt, bis der Festigkeitsparameter ‘ um ~7° 

reduziert wird (c‘=0kPA). Dies lässt auf die geringeren Versagenslasten 

rückschließen. 

 

 





Abstract 

Within the scope of this thesis stability problems, especially bearing capacity, will 

be discussed. There are two important safety analyses, when it comes to stability 

problems, like bearing capacity. On the one hand, the loads are amplified until 

collapse occurs, and on the other hand the strength parameters are determined, 

which are necessary to prevent collapse, given a set of actual loads. The main issue 

of this thesis is to compare these two safety analyses by means of analytical 

methods (ÖNORM B 4435, EC7, DIN 4017), as well as numerical methods (FEA, 

FELA) considering associated, non-associated (after Davis A) and non-associated 

plasticity. The results presented in this thesis confirm that conventional analytical 

methods according to standard regulations (ÖNORM B 4435, EC7, DIN 4017) can 

be classified as conservative approach and lead to lower failure loads compared to 

numerical methods for the failure load analysis. Regarding the numerical failure 

load, the results show that the failure load obtained with Plaxis is generally higher 

compared to Optum. Furthermore, it is shown that the original Davis Approach A 

leads to strongly conservative results in the failure load for both safety analyses, 

whereas the enhanced Davis Approaches B and C are results in a more accurate 

factors of safety. For both methods, as well as for both safety analyses, non-

associated plasticity and non-associated plasticity after Davis Approach A 

provides a substantially lower failure load when compared with results of an 

associated plasticity.  

Another aim of this thesis is to compare the two safety analyses and show the 

differences in loading corresponding to the factor of safety, as well as to compare 

the factor of safety corresponding to the applying load. It is shown that, the higher 

the FoS, the greater the difference in the exposure related to the safety analysis. 

Furthermore, the less the difference in the applied loading (actual load vs. failure 

load) the less the difference in the resulting FoSSR considering SRFEA. The results 

presented in this thesis confirm that the FoS for both analyses, as well as both 

numerical methods (FEA, FELA) using  the constitutive models MC (Plaxis, 

Optum) and HS (Plaxis) / HMC (Optum) are the same for drained conditions of 

one homogenous soil body. Furthermore, under conditions where no excess pore 

pressures are generated (drained) the solution is independent of the initial stresses. 

Performing automatic strength reduction using a FEA-code (SRFEA), with lower 

tolerated errors lead to less oscillations and therefore smooth curves, whereas 

higher tolerated errors lead to more oscillations and therefore higher FoSSR-peak 

values (amplitude).  However, only slight differences were observed for the factor 

of safety at failure; only the graph changes. Under the MC failure criterion and the 

application of the failure load, the soil mass fails. The corresponding -plane 

illustrates the stress path in a p’-q space at failure for different stress points. It is 

shown that each stress point tends to triaxial compression. Furthermore, the lode 

angle  remains nearly constant. 



In case of Plaxis SRFEA, associated plasticity as well as non-associated plasticity 

3D calculations result in slightly higher FoSSR values compared to 2D calculations. 

In case of non-associated plasticity, the FoSSR at failure results in more oscillation 

compared to associated plasticity, whereas for the FoSSR 1.5 the curve is smoother 

compared to associated plasticity. Nevertheless, results obtained with 3D- and 2D 

SRFEA are in good agreement and comply with the 2D failure load. In case of 

Optum limit analysis (FELA) associated plasticity and non-associated plasticity 

after Davis A, it is seen that the resulting 3D load is nearly twice the 2D load at 

failure. Under the 3D failure load, it is seen that the system remains stable until the 

strength parameter ’ is reduced by ~1° (c‘=0kPA).  Whereas under the 2D failure 

load the system remains stable until the strength parameter ’ is reduced by ~7° 

(c‘=0kPA), relating to the lower failure loads compared to 3D. 
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List of symbols and abbreviations 

Capital letters 

A‘  effective area of the footing 

Ae   area of element 

Aq   boundary area of soil mass subjected to unknown surface 

tractions 

At   boundary area of soil mass subjected to fixed surface 

tractions 

Aw   boundary area of soil mass subjected to fixed velocities 

B  strain interpolation matrix 

�̅�  global strain–displacement matrix for mesh multiplied by 

the element areas 

Be  strain–displacement matrix for element e 

𝐵𝑒̅̅ ̅  strain–displacement matrix for element e multiplied by its 

area 

Bj  strain–displacement matrix for node j of an element  

𝐵�̅�  strain–displacement matrix for node j of an element 

multiplied by the element area 

D  non-linear material stiffness matrix 

De  elastic material stiffness matrix 

E’   Young`s modulus  

Ei   initial stiffness modulus 

E50 secant stiffness in standard drained triaxial test 

E50
ref  reference secant stiffness in standard drained triaxial test  

EOed  tangent stiffness for primary oedometer loading  

EOed
ref  reference tangent stiffness for primary oedometer loading  

Eur   unloading/reloading stiffness from triaxial test  



Eur
ref   reference unloading/reloading stiffness from triaxial test  

Fc  compression cap yield function 

H  hardening parameter 

J1, J2 , J3  deviatoric stress invariants 

K  global stiffness matrix 

K0
NC   K0-value for normal consolidation 

Kc  bulk modulus for primary isotropic compression 

Ki  stiffness matrix (step i) 

Ks  bulk modulus for isotropic swelling 

Ks
ref  reference bulk modulus for unloading, reloading 

M  Plaxis model parameter for cap point (chapter 2.1.2)  

Optum material parameter (chapter 2.1.3) 

N  dilation at ultimate limit state; shape function 

Nj   linear shape function for node j 

 

Nc, Nq, Nx, N bearing capacity factor 

 

Pi
ext  external force vector (step i) 

Pi-1
int  internal force vector (step i-1) 

Q   collapse load 

Qn, Qs   normal and tangential (shear) loads per unit 

thickness acting on element edge of length L 

Qf,k   characteristic value of bearing resistance 

Rf,k=Rn  characteristic value of bearing resistance 

Rf   failure ratio 

V   volume of soil mass 

�̇�  rate of internal energy dissipation less rate of work done by 

external loads 



�̇�  rate of internal energy dissipation less rate of work done by 

external loads 

𝑊𝑒𝑥𝑡
̇ , Pext  rate of work expended by external forces 

𝑊𝑖𝑛𝑡
̇ , Pint  rate of internal energy dissipation 

L  length of discontinuity; length of element edge 

  



Small letters 

a’  effective length of the footing  

ac  magnitude of triaxial compression at a specific stress state 

ae  magnitude of triaxial extension at a specific stress state 

b‘  effective width of the footing 

bx  factor considering the foundation base inclination 

c  design effective value of cohesion 

c’   effective cohesion  

c’failure   effective cohesion at failure 

c’mob   mobilized effective cohesion  

c*   reduced effective cohesion according to Davis (1968) 

cc  cohesion at triaxial compression 

cd  design effective value of cohesion 

ce  cohesion at triaxial extension 

d  effective depth of the footing 

f   yield function   

f c  yield function cap point 

f s  yield function hardening 

g   potential function (chapter 2.1.1) 

vector of fixed body forces at a point (chapter 2.2.2) 

gc  yield function cap point 

ge  vector of fixed body forces for element e 

gs  yield function hardening 

gx  factor considering the surface inclination 

gx, gy  fixed body forces in x- and y-directions 



ge
x, ge

y  fixed body forces in x- and y-directions for element e 

h  global vector of unknown body forces 

he  vector of unknown body forces for element e 

hx, hy  unknown body forces in x- and y-directions 

he
x, he

y  unknown body forces in x- and y-directions for element e 

ix  factor considering the load inclination 

l‘  effective length of the footing 

m   power of stress-level dependency of stiffness  

p   volumetric stress  

p0   confining initial pressure  

p’   effective mean stress  

pp  isotropic pre-consolidation stress 

pu   confining pressure at qu 

�̇�𝑝  isotropic pre-consolidation stress rate 

pref   reference stress for stiffness  

q   deviatoric stress 

vector of unknown tractions acting on area Aq (chapter 

2.2.2) 

q’  design effective overburden pressure 

�̅�  deviatoric stress 

qa  asymptotic deviatoric stress 

qf   ultimate deviatoric stress 

qn, qs  unknown normal and tangential (shear) stresses acting on 

element edge 

qu   ultimate shear stress 



qjn, qjs  unknown normal and tangential (shear) stresses acting on 

element edge at node j 

s  diameter of Mohr Coulomb circle 

sx  factor considering the foundation shape 

t  radius of Mohr Coulomb circle (chapter 2.1.1) 

effective depth of the footing (chapter 2.3.2) 

vector of fixed surface tractions acting on area At (chapter 

2.2.2) 

tjn, tjs  fixed surface tractions in normal and tangential (shear)  

directions at node j 

tx  factor considering the foundation base inclination  

u  vector of displacement field (chapter 2.2.1) 

global vector of unknown nodal velocities (chapter 2.2.2) 

 

ue  vector of unknown nodal velocities for element e 

 

uj  vector of unknown velocities at node j 

un, us  unknown velocities in normal and tangential (shear) 

directions 

ux, uy  unknown velocities in x- and y-directions 

ujn, ujs  unknown velocities in normal and tangential (shear) 

directions for node j 

ujx, ujy  unknown velocities in x- and y-directions for node j 

Δu  displacement increment 

Δun, Δus  velocity jumps across discontinuity in normal and tangential 

directions 

|u|   total displacements 

v  nodal values of displacements 

w  fixed velocities on surface Aw 

wn, ws  fixed velocities in normal and tangential (shear) directions 



wjn, wjs  fixed velocities in normal and tangential (shear) directions 

for node j 

x, y   cartesian coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Greek letters 

   strength factor according to Davis (1968)  

0   strength factor according to Davis (1968)  at initial 

conditions  

failure   strength factor according to Davis (1968) at failure  

   strain  

Δ  strain increment 

Δp   incremental plastic strains 

e   elastic strain  

p   plastic strains  

ε̇   strain rate  

𝜀�̇�  elastic strain rate  

𝜀�̇�   plastic strain rate  

1   total principal strain  

1,50   axial strain at half of the ultimate shear stress 

1
p   total plastic principal strain 

vol   total volumetric strain  

v
p  total plastic volumetric strain 

 𝜀̇vp  total plastic volumetric strain rate according to compression 

𝜀̇v,c
p  total plastic volumetric strain rate 

p  plastic shear strain  

𝛾�̇�   plastic shear strain rate  

   unit weight  

sat   saturated unit weight  



unsat   unsaturated unit weight  

'o, '1  buyoyant unit weight above foundation level 

'u, '2, '  buyoyant unit weight below foundation level 

’   effective friction angle  

*   reduced effective friction angle according to Davis (1968)  

’mob   mobilized effective friction angle  

’failure   effective friction angle at failure  

’ peak   maximum effective friction angle 

’pt   effective friction angle on transition line between 

contraction and dilatancy  

’cv   critical state Effective friction angle 

’c   effective friction angle at triaxial compression 

’e    effective friction angle at triaxial extension 

c   inclination of the compression cone 

c  compressive strength 

�̇�𝑐   compressive strength 

   plastic multiplier  

�̇�   plastic multiplier rate 

�̇�𝑐   plastic multiplier hardening state 

�̇�𝑠   plastic multiplier cap point 

x  factor considering the surface inclination 

‘  Poisson´s ratio  

'UR   Poisson´s ratio for unloading/reloading  

x   factor considering the foundation shape 



∆i  incremental displacement vector (step i) 

   lode angle 

   stress  

'   effective stress  

�̇�′   effective stress rate  

'1, '2, '3  principle effective stress  

'1  major effective principal stress 

'3  minor effective principal stress 

   total stress  

1, 2, 3  principle total stress  

'f   effective normal stress at failure 

i   unknown actual stress state  

i-1   known stress state of the previous step  

m   effective mean stress  

n   normal stress  

'k   effective normal stress based on velocity characteristics 

's   effective normal stress which defines failure criterion 

according to Coulomb 

 

jxx, jyy  cartesian stresses at node j 

xx, yy  cartesian stresses 

nn  normal stress at node j 

Δ   additional stress increment 

  shear stress 

f   shear strength 



’f   effective shear strength 

k  shear stress based on velocity characteristics 

k  shear stress which defines failure criterion according to 

Coulomb 

 

mob   mobilized shear stress 

jxy   cartesian stresses 

xy   cartesian stresses at node j 

jns   shear stress at node j 

x  factor considering the foundation base inclination  

’   effective dilatancy angle  

’mob  mobilized effective friction angle  

’failure   effective dilatancy angle at failure 

  



Abbreviations 

ULS   Ultimate limit state 

SLS   Serviceability limit state 

FEA    Finite element analysis  

FELA    Finite element limit analysis  

LB    lower boundary  

UB    upper boundary 

FoS    factor of safety  

FL   failure load 

SR    strength reduction 

MC    Mohr Coulomb 

HMC    Hardening Mohr Coulomb 

HS    Hardening soil 

 

Figures and tables declaration chapter 4 and 5 as well as in the appendix: 

a.   associated 

n.a.   non-associated 

n.a. Davis A  non-associated Davis A 

FEA, FELA  failure load analysis based on FEA/FELA 

SRFEA, SRFELA  strength reduction analysis based on FEA/FELA 

FoSFL    factor of safety for failure load 

FoSSR    factor of safety for strength reduction 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

 

 

1 

1 Introduction  

In general, the design of geotechnical structures comprises ultimate and 

serviceability limit state considerations. Within the scope of this thesis stability 

problems, especially ground failure behaviour, will be discussed. There are two 

important safety analyses when it comes to stability problems such as bearing 

capacity. On the one hand, the loads are amplified until collapse occurs (failure 

load) and on the other hand the strength parameters (i.e. ' and c’) are determined, 

which are necessary to prevent collapse, given a set of actual loads. The main aim 

of this thesis is to compare these two safety analyses by analytical methods 

(ÖNORM B 4435, EC7, DIN 4017), as well as numerical methods (FEA, FELA). 

Conventional analytical methods according to standard regulations are still used in 

daily engineering practice, despite many assumptions. However, the applicability 

of these methods is limited to certain boundary conditions. Hence, there is still 

need to find other, more efficient methods that provide more realistic solutions.  

Tools which are quite frequently used in the field of soil mechanics are finite 

element analysis (FEA) and finite element limit analysis (FELA). Generally, this 

thesis considers standard limit boundary problems, which allow to compare 

analytically derived results (DIN 4017, EC 1997, ÖNORM B 4435) with 

numerical results (FEA, FELA). The latter consider different orders of shape 

function (FEA: 6-noded, 10-noded, 15-noded) as well as lower and upper bound 

theorems of plasticity (FELA). In both analytical and numerical methods, 

characteristic values are used. It should be mentioned at this point that it is 

discussed, whether partial factors are appropriate or distort the characteristics of 

the soil body. 

The variation of the friction angle has been used to evaluate differences between 

numerical and analytical methods. For the latter, several assumptions are made: 

neglection of the dilatancy angle ('), constant friction angle ('). It is known that 

with non-associated flow rule the failure mechanism is not unique. Further, non-

associated plasticity models yield lower bearing capacity values compared to the 

associated flow rule (Optum G2 Theory Manual, 2016). Due to the fact that for the 

case of finite element limit analysis only associated plasticity computes a rigorous 

solution, the approach by Davis (1968) is used. Therefore, reduced strength 

parameters in combination with an associated flow rule are used to simulate non-

associated behaviour. 

The comparison of these methods has been carried out for the Mohr Coulomb 

(MC) and Hardening Soil (HS) model. Both models use the MC failure criterion, 

thus the results for a homogenous soil body should be nearly the same. At last, 

only drained conditions are analyzed as well as one type of footing (strip 

foundation). All calculations were done in 2D and 3D. 
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2 Theoretical Part 

2.1 Constitutive Model 

The following contents in this chapter are based on [1], [2].  

Analytical design approaches comprise both, serviceability limit state (SLS) and 

ultimate limit state (ULS) considerations. In addition, advanced numerical 

methods describe soil behaviour by means of constitutive models. In this way, 

inhomogeneous soil stratification and naturally grown material can be taken into 

account; further, different loading conditions are considered: primary loading, 

unloading / reloading. Constitutive models describe stress-strain behaviour and, 

thus, soil displacements as a consequence of different loading conditions. These 

models are used with finite element analyses (FEA), as well as finite element limit 

analysis (FELA) for soil bodies and soil/structure interaction issues under 

symmetric/axisymmetric, plane strain (2D) and three-dimensional conditions. A 

large quantity of constitutive models are input parameter based on laboratory tests, 

whereas each of them deals with uncertainties, inter alia due to the inhomogeneity 

of the soil body. In this thesis different constitutive models are used with finite 

element analyses (FEA), as well as finite element limit analysis (FELA) for plane 

strain (2D) and three-dimensional conditions, namely Mohr Coulomb (MC) and 

Hardening Soil (HS) for Plaxis 2D/3D and Mohr Coulomb (MC) and Hardening 

Mohr Coulomb (HMC) for Optum G2/G3. In this thesis compression is signed 

positive, and tension negative, as it is usual for geotechnical engineering.  
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2.1.1 Mohr Coulomb Model (MC) 

The following contents in this chapter are based on [3], [4], [5].  

It should be mentioned that the Mohr Coulomb model is used in both numerical 

programs (i.e. Plaxis and Optum). The Mohr Coulomb model is defined as a linear-

elastic, perfectly plastic constitutive model with MC failure criterion. Based on the 

Young’s modulus E and the Poisson’s ratio  the linear-elastic part, behaves based 

on Hooke’s law of isotropic elasticity and yields reversible strains. The plastic part 

is described by means of the effective friction angle ’, cohesion c’ and dilatancy 

angle ’ and yields irreversible strains. To evaluate whether the material behaves 

plastically or not, a yield function f is established which accounts for the stress and 

strain history. Plastic yielding occurs as soon as f = 0. A perfectly plastic model is 

specified by a certain (= fixed) yield surface, which is not affected by the plastic 

strain, therefore only defined by the input parameters. For stress states represented 

by points within the yield surface, the material behaves elastically. As indicated in 

Eq. (1) and Eq. (2), the total strain (rate) are divided into an elastic and plastic 

portion. 

𝜀 =  𝜀𝑒 + 𝜀𝑝    (1) 

𝜀̇ =  𝜀�̇� + 𝜀�̇�   (2) 

The relation between the stress rates and the elastic strain rates is described by 

Hook’s law, shown in Eq. (3) 

𝜎′̇ =  𝐷𝑒𝜀�̇� = 𝐷𝑒(𝜀̇ − 𝜀�̇�)  (3) 

According to the classical theory of plasticity (Hill, 1950), plastic strain rates are 

proportional to the derivative of the yield function with respect to the stresses 

(Plaxis Manual, 2018). This behaviour responds in a perpendicular vector of the 

plastic strain rate to the yield surface. This classical form of the theory relates to 

associated plasticity (’=’). Since the Mohr Coulomb model overestimates 

dilatant effects due to associated plasticity, a plastic potential function g is 

established in case of non-associated plasticity (’> ’), whereas g ≠ f applies. Eq. 

(4) describes the plastic strain rate taking into account a plastic multiplier  

𝜀�̇� = 𝜆
𝜕𝑔

𝜕𝜎′
    (4) 

For linear elastic behaviour, the plastic multiplier  equals zero, whereas at the 

onset of plastic behaviour the plastic multiplier  gives in a positive value (Eq. (5), 

(6)). 
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𝜆 = 0    𝑓𝑜𝑟:    𝑓 < 0    𝑜𝑟:   
 𝜕𝑓𝑇

𝜕𝜎′
  𝐷𝑒𝜀̇ ≤ 0     (𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)   (5) 

𝜆 > 0    𝑓𝑜𝑟:    𝑓 = 0    𝑎𝑛𝑑:    
𝜕𝑓𝑇

𝜕𝜎′
  𝐷𝑒𝜀̇ > 0     (𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦)  (6) 

Fig. 1 displays both, the reversible elastic stress-strain portion as well as the 

irreversible plastic strains in a stress-strain ('−) diagram. 

 

Fig. 1  Linear-elastic perfectly plastic model (according to Brinkgreve, 2018) 

 

The Mohr Coulomb failure criterion defines the state of yielding, shown in Eq. (7):  

𝜏𝑓
′ = 𝜎𝑓

′ tan𝜑′ + 𝑐′    (7) 

Expressing the Mohr Coulomb failure criterion by means of principal effective 

stresses, Eq. (7) can be rewritten using a MC stress circle as shown in Eq. (8): 

(𝜎1
′ − 𝜎3

′) =  (𝜎1
′ + 𝜎3

′) sin𝜑′ + 2𝑐′ cos𝜑′  (8) 

Failure occurs as soon as the Mohr Coulomb’s circle reaches the failure line (Fig. 

2).  

 

 

 

 

 

 

Fig. 2  Mohr Coulomb failure criterion in t’-s’ plane (according to M. Wehnert, 

2006) 

‘ 

 p e 
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Eq. (8) does not account for the intermediate effective principal stress σ’2. 

However, in finite element analyses (FEA) as well as finite element limit analyses 

(FELA) a three-dimensional principal effective stress space is considered. The 

Mohr Coulomb yield condition is an extension of the Coloumb`s friction law to 

general state of stress (Plaxis Material Manual, 2016). To obtain full Mohr 

Coulomb yield conditions, six yield functions f, as well as six potential functions 

g, have to be applied. The yield function f consists of two parameters describing 

plastic behaviour, the friction angle ’ and the cohesion c’ Based on the major ’1 

and the minor ’3 effective principal stress, both the yield function f (flow 

condition) and the potential function g are shown in Eq. (9), (10). For the case 

f = 0, all functions together give a fixed hexagonal cone in principal stress space 

(Fig. 3) (see for instance Smith&Griffiths, 1982).  

𝑓({𝜎′}) = (𝜎1
′ − 𝜎3

′) − (𝜎1
′ + 𝜎3

′) sin𝜑′ − 2𝑐 cos 𝜑′  (9) 

𝑔({𝜎′}) = 
1

2
(𝜎1

′ − 𝜎3
′) +

1

2
 (𝜎1

′ + 𝜎3
′) sin 𝜓′   (10)  

 

 
 

Fig. 3  MC yield function in the principal stress space for a coarse-grained soil 

(according to M. Wehnert, 2016) 

 

The linear-elastic perfectly plastic Mohr Coulomb model requires a total of five 

soil parameters to describe soil behaviour, shown in Tab.1. Considering that the 

loading history (over- or normally consolidated) as well as the loading type 

(normal, un-and reloading) of the soil is not taken into account by this constitutive 

model, only one stress-independent stiffness parameter E’ is applied. 

 

 

 

compression 

extension 

‚ 
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Tab. 1  Required parameter for the Mohr Coulomb model 

Young’s modulus E’ [kPa] 

Poisson’s ratio ' − 

Effective cohesion c’ [kPa] 

Effective friction angle '  

Effective dilatancy angle '  

 

 

2.1.1.1 Interpretation of the Stress State 

In Fig. 4 (a), the Mohr Coulomb failure criterion is displayed based on the relation 

between shear stress and normal stress. 

 

 

 

 

 

 

 

Fig. 4  Different types of presentation of the Mohr Coulomb failure criterion for 

compression (according to M. Wehnert, 2006)  

 

Fig. 4 (b) presents the s’-t’ diagram, where s’ defines the center of the Mohr 

Coulomb´s circle and t’ defines the radius.  

𝑠′ =
𝜎1
′+𝜎3

′

2
   (11) 

𝑡′ =
𝜎1
′−𝜎3

′

2
  (12) 

 

‚ 

‚ 

‚ 
‚ 

‚ 

‚ 
‚ 

                  (a)                                         (b)                                      (c)  
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Fig.4 (c) presents the p’-q diagram, which is generally used for the visualization 

of the stress paths; in this context, p’ denotes the mean effective stress and q the 

deviatoric stress invariant. For the condition of a triaxial stress, state the overall 

formula can be reduced to Eq. (13), (14): 

𝑝′ =
𝜎1
′+2𝜎3

′

3
  (13) 

𝑞 = 𝜎1
′−𝜎3

′   (14)  

 

2.1.1.2 Principal Effective Stress Space 

In finite element analyses (FEA), as well as finite element limit analyses (FELA), 

a three-dimensional principal effective stress space is considered. Thus, 

representing the yield criterion in a principal stress space by means of a p’-q 

diagram, would be opportune (Fig.4). The diagonal space of the three-dimensional 

cone is defined by the mean effective stress axis (Fig.3). The distance between 

origin and current deviatoric plane along the space diagonal is given by the 

magnitude of p’. The shape of the -plane (deviatoric plane) is defined by six yield 

functions, whereas the orientation of the -plane is perpendicular to the space 

diagonal. The triaxial compression point C as well as the triaxial extension point 

E determine the cone opening. Fig.5 shows characteristic stress paths. 

 

 

 

 

 

 

 

 

 

Fig. 5  MC yield function in the principal stress space for a cohesionless soil  

 

MC – yield surface 

axis of the π-plane σ‘1 compression 

axis of the π-plane σ‘2 extension 

axis of the π-plane σ‘3 compression 

axis of the π-plane σ‘1 extension 

axis of the π-plane σ‘2 compression 

axis of the π-plane σ‘3 extension 

‘1 

‘3 ‘2 
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The magnitude of triaxial compression / extension at a specific stress state is shown 

in Eq. (15), (16). The present investigations are restricted to coarse-grained soil 

conditions, which are herein also referred to as cohesionless soil conditions 

(c’ = 0 kPa). 

𝑞

𝑝′
= tan𝜑𝑐

′  →  𝑎𝑐 = 𝑝
′ × tan𝜑𝑐

′ + 𝑐𝑐
′    (15) 

𝑞

𝑝′
= tan𝜑𝑒

′  →  𝑎𝑒 = 𝑝
′ × tan𝜑

𝑒
′ + 𝑐𝑒

′    (16) 

with: 

𝜑𝑐
′ = tan−1

6×sin𝜑′

3−sin𝜑′
            𝜑𝑒

′ = tan−1
6×sin𝜑′

3+sin𝜑′
  (17) 

 

𝑐𝑐
′ =

6𝑐′×cos𝜑′

3−sin𝜑′
            𝑐𝑒

′ =
6𝑐′×cos𝜑′

3+sin𝜑′
   (18) 

 

In order to clarify the mathematical relations Eq. (15), (16), (17), (18) a graphic 

illustration for cohesionless soils is shown in Fig. 6.  

 

 

Fig. 6  MC yield function in the principal stress space for a cohesionless soil 

(according to MA Thesis Sallinger, 2017) 

 

 

 

C 

E 
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Additionally, the location of a random stress state P in the deviatoric plane can be 

established by using invariants. In this way, the actual stress state is unique and 

independent of the respective coordinate system. In addition to the mean effective 

stress p’, the second as well as the third deviatoric stress invariant are necessary to 

define a stress state in the principal stress space. The deviatoric stress invariant is 

shown in Eq. (19), (20), (21). 

𝐽1 =  (𝜎1
′ − 𝜎𝑚

′ ) + (𝜎2
′ − 𝜎𝑚

′ ) + (𝜎3
′ − 𝜎𝑚

′ )   (19) 

 

𝐽2 =  
1

6
[(𝜎1

′ − 𝜎2
′ )
2
+ (𝜎2

′ − 𝜎3
′ )
2
+ (𝜎3

′ − 𝜎1
′ )
2
]  (20) 

 

𝐽3 =  (𝜎1
′ − 𝜎𝑚

′ ) × (𝜎2
′ − 𝜎𝑚

′ ) × (𝜎3
′ − 𝜎𝑚

′ )   (21) 

 

The orientation within the deviatoric plane is given by the lode angle  which is 

formulated by Eq. (22). Conversely, the distance of a stress state perpendicular 

from the space diagonal is calculated as √3𝐽2  . 

𝜃 =
1

3
sin−1 (−

√27

2
×

𝐽3

√𝐽2
3
)    (22) 

 

The lode angle spans a range from -30° (triaxial compression) to +30° (triaxial 

extension). 

➢  = -30°  → triaxial compression (Point C: '1 ≥ '2 = '3) 

➢  = +30°  → triaxial extension   (Point E: '1 = '2 ≥ '3) 

 

In summary, a random stress state P can be completely described by means of 3 

components: p’, √3𝐽2 and q, shown in Fig.6. 
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2.1.2 Hardening Soil Model (HS) 

The following contents in this chapter are based on [6], [7].  

Nevertheless, the Mohr Coulomb model has a number of inherent limitations and 

cannot be expected to capture the entire spectrum of soil behaviour (Optum G2 

Material Manual, 2016). In addition, the predictions of any model strongly depend 

on the choice of the input material parameters. Indeed, there is no guarantee that a 

complex model represents reality better than a simple model. However, the 

advantages of the Hardening Soil model (Plaxis 2D) compared to MC are obvious: 

• HS considers a hyperbolic stress-strain relation, which is more realistic 

compared to the bi-linear curve as is the case for MC. 

• HS accounts for the stress-dependency of soil stiffness. 

When using the Mohr Coulomb model, a fixed value of stiffness has to be entered, 

which is not reality.  

The Hardening Soil model was developed by Schanz (1998) and Schanz (1999) 

based on Vermeer (1978). It is an advanced model for simulating the behaviour of 

different types of soil and applicable to both soft soils and stiff soils; further, it 

belongs to the family of double hardening models (shear and compression 

hardening). By introducing two additional flow conditions to the MC failure 

criterion, shear hardening as well as isotropic hardening, can be resembled for 

different loading conditions. The former is used to model irreversible plastic 

strains (shear distortion) due to deviatoric loading, whereas the latter is used to 

model irreversible plastic strains as a consequence of primarily isotropic 

compression (e.g. primary loading path in oedometer tests). In contrast to a linear-

elastic, perfectly plastic models (e.g. MC), the yield surface of hardening plasticity 

models is not fixed in principal stress space. In contrast, the develop based on 

respective stress paths. The striking features of the model are the stress-dependent 

stiffness as well as a mobilized dilatancy angle and the strict separation between 

primary loading and unloading/reloading. In the case of a triaxial test for drained 

conditions, the observed relation between axial strain and deviatoric stress can be 

approximated by a hyperbola taking into account plastic behaviour, a dilatancy 

angle and a yield cap for volumetric hardening. To simulate this material 

behaviour, a hyperbolic stress-strain relationship is used in the model, first 

formulated by Konder and Zelasko (1963) and later expanded by Ducan and Chang 

(1970) (Fig. 7, Eq. (23)). 
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Fig. 7  Hyperbolic stress-strain relation in primary loading for a standard 

drained triaxial test (according to Brinkgreve, 2008) 

 

2.1.2.1 Hyperbolic Stress-Strain Relationship 

The asymptotic deviatoric stress qa is linked to the ultimate deviatoric stress qf 

according to the following equation:  

𝑞𝑎 =
𝑞𝑓

𝑅𝑓
             𝑎𝑛𝑑             𝑞𝑓 = (𝑐

′ cot 𝜑′ + 𝜎3
′) × 

2sin𝜑′

1−sin𝜑′
   (23) 

𝜀1 = 
1

𝐸𝑖
 ×  

𝑞

1−
𝑞

𝑞𝑎

  →   𝑤𝑖𝑡ℎ 𝐸𝑖 = 
2𝐸50
2−𝑅𝑓

       (24) 

The relationship for qf (Eq. (24)) is derived from the Mohr Coulomb failure 

criterion and involves strength parameters ’ and c’. For the case that q equals qf 

the failure criterion, as described by the Mohr Coulomb model, is satisfied and 

thus perfectly plastic yielding occurs. The proportion between qa and qf is defined 

by the failure ratio Rf, which should be smaller than 1 (Plaxis default setting 0.9). 

Ei defines the initial stiffness modulus according to E50. In contrast to primary 

deviatoric loading, where both elastic and plastic strains occur, 

unloading/reloading processes are modeled as purely elastic processes using 

Hooke's law. The unloading/reloading modulus Eur and the constant Poisson ratio 

ur are required as elastic parameters. The secant modulus E50 (primary deviatoric 

loading) and the unloading/reloading modulus Eur are both stress-dependent and 

inter alia described by means of the minor principal stress ’3 (i.e. confining 

pressure in triaxial test). E50
ref is defined as the secant of the triaxial stress-strain 

curve at 50% of the ultimate deviatoric stress qf at a reference confining stress level 

pref (Plaxis default setting 100 kPa). Eur
ref is the reference stiffness modulus for 

unloading/reloading and is approximately 3 times larger than E50
ref (Plaxis default 

setting).  

50% 

50% 
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The tangent stiffness modulus Eoed is also stress-dependent and obtained by the 

oedometer test. Compared to purely elastic constitutive models, the elastoplastic 

Hardening Soil model does not contain a fixed relationship between E50 and Eoed; 

as a consequence, Eoed can be specified independent of E50. It should be noted that, 

in contrast to E50 and Eur, the minor principal stress ’1 is used to describe the 

stress-dependency of Eoed. Eoed
ref is mainly used for primary loading with one-

dimensional compression. Moreover, stress dependent soil behaviour is described 

by the power factor m (0.5< m <1).  

𝐸50 = 𝐸50
𝑟𝑒𝑓

(
𝑐′ cos𝜑′+𝜎3

′ sin𝜑′

𝑐′ cos𝜑′+𝑝𝑟𝑒𝑓 sin𝜑′
)
𝑚

  (25) 

𝐸𝑢𝑟 = 𝐸𝑢𝑟
𝑟𝑒𝑓

(
𝑐′ cos𝜑′+𝜎3

′ sin𝜑′

𝑐′ cos𝜑′+𝑝𝑟𝑒𝑓 sin𝜑′
)
𝑚

  (26) 

𝐸𝑜𝑒𝑑 = 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

(
𝑐′ cos𝜑′+𝜎1

′ sin𝜑′

𝑐′ cos𝜑′+𝑝𝑟𝑒𝑓 sin𝜑′
)
𝑚

  (27) 

 

2.1.2.2 Yield Surface of the Hardening Soil Model 

Irreversible shear distortions from primary deviatoric loading paths are governed 

by the deviatoric yield surface 𝑓𝑠(Eq. (28)). Vermeer (1980) invented contour lines 

where p (plastic shear strain) remains constant, which presumed as characteristic 

hardening parameter. 

𝑓𝑠 =
2

𝐸𝑖
×

𝑞

1−
𝑞

𝑞𝑎

− 
2𝑞

𝐸𝑢𝑟
− 𝛾𝑝       𝑤𝑖𝑡ℎ       𝛾𝑝 = −(𝜀1

𝑝
−𝜀2

𝑝
−𝜀3

𝑝
)  (28) 

The definition of p is reduced to p ~ -21
p for triaxial conditions, assuming that 

plastic volume expansion v
p is negligible compared to the plastic shear distortion. 

Adding the elastic and the plastic part of the axial expansion results exactly in the 

value for 1 according to Eq. (24) from the formulation of the hyperbolic stress-

strain relationship. However, this only applies, if v
p = 0. 

Considering a three-dimensional stress state, five additional flow conditions are 

required in addition to the flow condition depicted in Eq. (28). A non-associated 

flow rule (𝑔
𝑠
≠ 𝑓

𝑠
) is used to describe the change in the plastic strains during 

hardening. The same function as in the Mohr Coulomb model (Eq. (10) is used for 

the plastic potential function in the Hardening Soil model. Instead of a constant 

dilatancy angle (’), 𝑔𝑠 considers the dilatancy angle as function of the mobilized 

friction angle ('m). The mobilized dilatancy angle ('m) is calculated based on the 

well-known stress-dilatancy theory issued by Rowe (1962) and depends on the 

mobilized friction angle ('m). In this case, slight modifications of Rowe’s theory 

are applied: 
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𝜓𝑚
′ = 

{
 
 

 
       0                       → 0 <  𝜑𝑚

′  ≤  𝜑𝑝𝑡
′

⋮
sin𝜑𝑚

′ −sin𝜑𝑝𝑡
′

1−sin𝜑𝑚
′ sin𝜑𝑝𝑡

′        →  𝜑𝑝𝑡
′  <  𝜑𝑚

′  ≤  𝜑𝑝𝑒𝑎𝑘
′

  (29) 

sin𝜑𝑚
′ = 

𝜎1
′ −𝜎3

′

𝜎1
′ +𝜎3

′ −2𝑐′ cot𝜑′
    (30) 

sin𝜑𝑐𝑣
′ = sin𝜑

′−sin𝜓
′

1−sin𝜑′ sin𝜓′
    (31) 

Where ’cv is the critical state friction angle, ’pt is the friction angle on the 

transition line between contraction and dilatancy and ’peak is the maximum 

friction angle. The material contracts for small stress ratios 'm < 'cv, whereas 

dilatancy appears for high-stress ratios 'm > 'cv, which is a significant 

characteristic of the stress-dilatancy relationship. For larger values of the 

mobilized friction angle 'm, the mobilized dilatancy angle 'm is performed by 

Rowe’s theory, as far as the results signed positive. If the results signed negative, 

or for very small mobilized friction angles 'm, 'm is equal to zero. For all issues 

when ' equals zero, 'm is set to zero, too. 

In addition to using the mobilized dilatancy angle to define the yield surface 

(deviatoric flow area), m is also used to calculate plastic volumetric strains under 

pure shear stress. Schanz et al. (1999) introduced the following relationship 

between �̇�𝑣
𝑝 and �̇�𝑝; see Eq. (32) (shear hardening flow rule – linear form): 

�̇�𝑣
𝑝 = �̇�𝑝 sin𝜓𝑚    (32) 

Finally, the strain increments �̇� due to deviatoric loading are defined as (see also 

Eq. (2), (3)): 

�̇� = 𝜀�̇� + 𝜀𝑝𝑠 ̇ = (𝐷𝑒)
−1
 �̇�′+ 𝜆�̇� 𝜕𝑔

𝑠

𝜕𝜎′
  (33) 

The plastic multiplier �̇�
𝑠
  is again determined by using the consistency condition. 

In contrast to the Mohr Coulomb model, the consistency condition �̇� = 0 expands 

due to the hardening by a further term. This term contains the hardening parameter 

�̇�𝑝. Mentioned that for the consistency condition the stress point cannot propagate 

beyond the yield surface. 

�̇� =  𝜕𝑓
𝑠𝑇

𝜕𝜎′
�̇�′+ 𝜕𝑔

𝑠

𝜕𝛾𝑝
�̇�𝑝 = 0   (34) 
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2.1.2.3 Cap Point of the Yield Surface of the Hardening Soil Model 

The yield surface fs can only be used to describe plastic strains under deviatoric 

loading. Plastic volume strains under isotropic loading, however, cannot be 

described with this yield surface. Therefore, a second yield surface fc is introduced 

(Fig. 8), which closes the elastic cone region of the principal stress space. This so-

called cap type yield surface governs isotropic hardening behaviour under isotropic 

loading and allows to formulate a model input independently of E50
ref and Eoed

ref. 

E50
ref mainly controls the magnitude of the plastic strains, which are related to the 

shear yield surface fs. In contrast, Eoed
ref is used to control the magnitude of plastic 

strains, which develop in direction of the cap yield surface fc. For triaxial 

conditions, the cap point fc is defined as follows: 

𝑓
𝑐
=

�̅�2

𝑀2
− (𝑝′)

2
− 𝑝𝑝

2     (35) 

𝑤𝑖𝑡ℎ 

𝑝′ = 
𝜎1
′+𝜎2

′+𝜎3
′

3
      (36) 

�̅� =  −(𝜎1
′−𝜎3

′)       → 𝑓𝑜𝑟 𝑡𝑟𝑖𝑎𝑥𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (37) 

The size and shape of the cap are determined by the parameter M and the isotropic 

pre-consolidation stress pp, where M is an auxiliary model parameter that primarily 

depends on the earth pressure coefficient K0
NC for normally consolidated soils and 

pp governs the size / position of the cap-yield surface. In contrast to the deviatoric 

yield surface fs, an associated flow rule (gc = fc) is available to determine plastic 

strain rates invoked by isotropic loading. Therefore, the ellipse could be used as a 

yield surface as well as a plastic potential. The plastic multiplier �̇�𝑐 is again 

determined by using the consistency condition. In contrast to the Mohr Coulomb 

model, the consistency condition 𝑓̇ = 0 expands due to hardening by a further term 

(Eq. (38)). The hardening law linking �̇�𝑝 to volumetric cap strain 𝜀�̇�
𝑝𝑐

is shown in 

Eq. (39): 

�̇�𝑣
𝑝𝑐 = �̇�

𝑐 𝜕𝑓
𝑐

𝜕𝜎′
     (38) 

𝜀�̇�
𝑝𝑐
=

𝐾𝑠 𝐾𝑐−1⁄

𝐾𝑠
𝑟𝑒𝑓  ×  [(

𝑝𝑝+𝑐
′ cot𝜑′

𝑝𝑟𝑒𝑓+𝑐′ cot𝜑′
)
−𝑚

] × �̇�𝑝   (39) 
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Ks/Kc is the ratio of bulk moduli for isotropic swelling and primary isotropic 

compression, and represents another model constant in addition to m and pref. 

Furthermore, Ks
ref is the reference bulk modulus in unloading/reloading. There is 

a relationship between the ratio of bulk moduli Ks/Kc  as well as the parameter M  

and K0
NC , Eur

ref , Eoed
ref , so that these three parameters togther (K0

NC , Eur
ref, Eoed

ref) 

can be used as input parameter to determine the magnitude of M and Ks/Kc, 

respectively. High values of M lead to steep caps below the Mohr Coulomb failure 

criterion and, thus, to small K0
NC values. On the other hand, small M values 

responds into caps that are located around the p’ axis, corresponding into large 

K0
NC values. 

To completely understand the two yield surfaces (fs, fc) of the Hardening Soil 

model, both Fig. 8 and Fig. 9 should be considered. Fig.8 shows a simple yield line 

in p’-q plane, whereas Fig.9 represents the yield surfaces in principal stress space. 

The cap yield surface fc expands as a function of the pre-consolidation stress pp, 

whereas the deviatoric yield surface fs can expand up to the Mohr Coulomb failure 

surface. 

 

 
Fig. 8  Yield surfaces f s and f c of the HS Model in p’-q plane 

1.elasticity (unloading, reloading) 

2.plasticity (compression) 

3.plasticity (shear) 

4.plasticity (compression + shear) 

5.plasticity (failure criterion) 
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Fig. 9  Yield surfaces f s and f c for the HS Model in the principal stress space for a 

coarse-grained soil (according to M. Wehnert, 2006) 

 

Tab. 2 shows the required parameter for the Hardening Soil model. 

Tab. 2  Required parameter for the Hardening Soil model 

Tangent stiffness for primary oedometer loading 

(plastic straining due to primary compression) 

 

Eref
oed [kPa] 

Secant Young’s modulus in triaxial compression 

under confining pressure σ3 = pref (plastic straining 

due to primary deviatoric loading) 

Eref
50 [kPa] 

Young’s modulus in unloading/reloading at 

reference pressure pref 
Eref

ur [kPa] 

Poisson’s ratio for unloading/reloading 'ur − 

Power factor  m − 

Effective cohesion c’ [kPa] 

Effective friction angle '  

Effective dilatancy angle '  

‘1 

‘3 

‘2 

cap 

shear yield surface 
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2.1.3 Hardening Mohr Coulomb Model (HMC) 

The following contents in this chapter are based on [8].  

The Hardening Mohr Coulomb model is used in Optum only and is herein used to 

resemble the Hardening Soil model in Plaxis, which was already explained in 

chapter 2.1.2. The basic idea of these two constitutive models is roughly the same: 

Both models use stress-dependent stiffness parameters and non-associated 

plasticity.  Nevertheless, these two constitutive models are equal in results, for the 

boundary value problems in this thesis. 

It should be mentioned that the user has the opportunity to use the MC model with 

an implemented hardening compression cap which is defined by: 

𝐹𝑐 = |𝜎1 −𝜎3|− (𝜎1 + 𝜎3)sin𝜑𝑐 − 2𝜅𝑐 sin𝜑𝑐 (40) 

�̇�𝑐 = −𝐻�̇�𝑣,𝑐
𝑝

     (41) 

The cap hardens according to �̇�𝑐 (𝜅𝑐,0 initial compressive strength); �̇�𝑣,𝑐
𝑝  defines the 

part of the plastic volumetric strain associated with the compression cap. H is the 

corresponding hardening parameter and c represents the inclination of the 

compression cone. Fig.10 shows the stress-strain response under drained confined 

compression. 

 

 
Fig. 10  Stress-strain response under drained confined compression (Optum G2 

Material Manual, 2016) 
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Nevertheless, the Mohr Coulomb model has a number of inherent limitations and 

cannot be expected to capture the entire spectrum of soil behaviour (Optum G2 

Material Manual, 2016). On the other hand, the predictions of any model are 

strongly depending on the choice of the input material parameters. Indeed, there is 

no guarantee that a complex model represents the reality better than a simple 

model. However, the Hardening Mohr Coulomb model (HMC) was generated to 

eliminate some of the drawbacks of the standard Mohr Coulomb model. The HMC 

model was first developed by Muir Wood (2004) considering a triaxial stress 

space, later extended by Doherty and Muir Wood (2013) considering a general 

stress space. In comparison to other non-granular materials, soil behaves 

differently in stiffness for initial loading and unloading/reloading processes. The 

apparent stiffness in initial loading is significantly less than the observed stiffness 

after unloading/reloading. To define the initial stiffness, the secant modulus E50 is 

used: 

𝐸50 = 
1
2
𝑞𝑢

𝜀1,50
      𝑤𝑖𝑡ℎ       𝑞𝑢 = (𝜎1 −𝜎3)𝑢  (42) 

The ultimate shear stress is characterized by qu and the axial strain at half the 

ultimate shear stress is defined as 1,50. For unloading/reloading conditions the 

stiffness modulus is defined by Eur. It should be mentioned that Eur is an elastic 

stiffness, whereas E50 is active in both, the elastic and plastic strain range. Thus, 

Eur
ref (unloading/reloading) and the constant Poisson ratio ur (transverse expansion 

factor) are required as elastic parameters, whereas the “elastoplastic” E50
ref 

(primary loading) is not related in an obvious linear fashion. In general, both 

moduli E50, and Eur, are stress-dependent stiffness moduli, which grow with 

increasing confining pressure. Eur
 is approximately 2-5 times higher compared to 

E50. The amount of stress dependency is given by the power m (0.5< m <1). Fig. 

(11) compares real soil behaviour in primary loading and unloading/reloading with 

numerical results when applying the Mohr Coulomb model.  
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Fig. 11  Soil behaviour under primary and un/reloading conditions (Optum G2 

Material Manual, 2016) 

 

The ultimate shear stress is proportional to the pressure p’, whereas p’ is defined 

by qu=Mpu. M characterizes a material parameter and pu the confining pressure at 

the ultimate limit state (p0 confining pressure).  For conventional triaxial 

compression and a purely frictional material the ultimate shear stress is defined by 

Eq. (43). 

𝑞𝑢 = (
3𝑀

3−𝑀
) 𝑝0      𝑤𝑖𝑡ℎ     𝑀 =  

6 sin𝜑

3−sin𝜑
  (43) 

Under an appreciable level of shear strains, the dilation is a function of the material 

density, which is therefore related to the strains. For dense soils under continuing 

shearing, the soil undergoes a significant amount of dilation, whereas loose soils 

tend to dilate less, up to a plastic contraction. The actual dilation observed in 

experiments is in fact quite variable compared to constitutive models that use 

constant dilation and thus are not representing the real soil behaviour. Tayler 

(1948) suggested to link the variability of the current dilation to the current stress 

ratio q/p’. Approaching ultimate limit state, the dilation increases, nevertheless soil 

undergoes compaction as well. N characterizes the dilation at the ultimate limit 

state and can be described by Eq.(45).  

�̇�𝑣
𝑝

�̇�𝑠
𝑝 = 𝑀 −𝑁 − 

𝑞

𝑝
    (44) 

𝑁 =
3 sin𝜓

√3cos𝜃+sin𝜃 sin𝜓
   (45)  

𝜃 = −30° →   
�̇�𝑣
𝑝

�̇�𝑠
𝑝 = 

6 sin𝜑

3−sin𝜑
− 

6 sin𝜓

3−sin𝜓
− 

𝑞

𝑝
  (46) 
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The Hardening Mohr Coulomb model deals with three regions in p’-q stress space, 

contrary to the Mohr Coulomb model which consists of one elastic region only, 

which is limited by a failure criterion. 

 

 

Fig. 12  Hardening, compaction and dilation procedure in the HMC model (Optum 

G2 Material Manual, 2016) 

 

Tab. 3  Hardening, compaction and dilation procedure in the HMC model 

1 
Elastic region 

point A to B 

no plastic/irreversible strains 

shear loading 

initial yield surface is reached 

2 
Compaction region 

point B to C 

hardening of yield surface 

implying a decrease of stiffness 

compaction takes place 

3 
Dilation region 

point C to D 
plastic dilation occurs → failure 
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In practice, the HMC model is initialized as follows:  

 

Tab. 4  Practice initialization of the Hardening Mohr Coulomb model 

1 
Initial stress calculated by K0 procedure  

(automatic or manual (via separate step)) 

2 

µmin is calculated based on the stress state at each point 

stress state satisfies the initial yield criterion  

→ F0 = q0 −µmin(p′ 0 + a) = 0  

3 

Finally, set µ0 = µmin+δµ  

δµ user defined, using F = q−µ0(p′+a) as initial yield surface 

→ initial point will be below yield 

 

 

It should be mentioned that, as a consequence of point 3 Tab.4, soil behaves much 

stiffer at very low levels of strain (Small strain stiffness). 

 

 
Fig. 13  Practice initialization of the Hardening Mohr Coulomb model (Optum G2 

Material Manual, 2016) 
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The HMC model makes use of three stiffness parameters, which can be entered in 

two different ways: Set A and Set B. Set A is shown in Tab.5, which is used for all 

calculations (as well as Plaxis HS Model). 

 

Tab. 5  Required parameter for the hardening Mohr Coulomb model 

Set A 

Secant Young’s modulus in triaxial 

compression under confining pressure σ3 = 

pref 

Eref
50 [MPa] 

Young’s modulus in unloading/reloading 

at reference pressure pref 
Eref

ur [MPa] 

Poisson’s ratio in unloading/reloading at 

reference pressure pref 
'ur − 

Power of stress-level dependency of 

stiffness 
m − 

Strength 

parameter 

according 

to MC 

Effective cohesion c’ [kPa] 

Effective friction angle '  

Effective dilatancy angle '  
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2.2 Numerical Methods 

2.2.1 FEA 

The following contents in this chapter are based on [9], [10].  

It should be mentioned that Plaxis has only the opportunity to use FEA, whereas 

Optum has the opportunity to use FEA as well as FELA. FEA is known as 

displacement-based finite element analysis. For plane strain (2D) conditions the 

domain can get discretized by either 6-noded or 15-noded triangular elements, 

which are defined by the user itself, for both programs (Plaxis, Optum). The former 

is defined by second order (quadratic) interpolation functions based on nodal 

displacements and first-order (linear) interpolation based on the strains, whereas 

the numerical integration involves three Gauss points. The latter is defined by a 

fourth-order interpolation based on the displacements and third order (cubic) 

interpolation based on the strains, whereas the numerical integration involves 

twelve Gauss points. The 15-noded triangular element produces very accurate and 

high-quality stress results for difficult engineering problems, like bearing capacity. 

In comparison, the 6-noded triangular element produces good results for standard 

deformation analysis problems in engineering fields, as long as the number of 

elements is sufficient. Failure loads and safety factors of strength reduction are 

generally overestimated using 6-noded triangular elements. However, one 15-

noded element is more powerful than four 6-noded elements, thus the total number 

of nodes and stress points is equal. The use of 15-node triangles leads to more 

storage consumption and slower calculation and, thus, to lower operational 

performance. In this thesis, all examples have been modeled using a 15-noded 

element. For three-dimensional (3D) conditions the domain can get discretized 

only by a 10-noded triangular (quadratic) element (Plaxis 3D only; Optum 3D → 

LB, UB). 

 

 

 

 

 

 

Fig. 14  (a) 6-noded triangular element, (b) 15-noded triangular element,  

(c)    10-noded tetrahedral element (according to Optum G2 Theory Manual, 

2016) 
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Each node is outlined by a specific number of degrees of freedom according to the 

unknown displacement component. The distribution of the displacement 

component within the element depends on the nodal values of displacements as 

well as the shape function N (Eq. (47)). The number of nodes determine the 

variation of the displacements within the elements and leads to the polynomial 

form of the distribution. 

𝑢 = 𝑁𝑣     (47) 

In order to calculate the strains from the nodal displacements, a strain interpolation 

matrix B is introduced. Matrix B contains derivatives of the shape functions (Eq. 

(48)). 

𝜀 = 𝐵𝑣     (48) 

The formulation of the equilibrium equation (Eq. (49)) involves body forces h as 

well as tractions t imposed on the surface. An incremental process has to be 

introduced, due to the unknown actual stress state i (Eq.(50)). i-1 represents the 

known stress state of the previous step and Δ is the sought additional stress 

increment. Equilibrium is reached as soon as the difference between external and 

internal forces falls below a specified threshold. 

∫𝐵𝑇∆𝜎𝑑𝑉 =  ∫𝑁𝑇ℎ𝑖𝑑𝑉 + ∫𝑁𝑇𝑡𝑖𝑑𝑆 − ∫𝐵𝑇𝜎𝑖−1𝑑𝑉 (49) 

𝜎𝑖 = 𝜎𝑖−1 + ∆𝜎       (50) 

For the preexisting conditions (i.e. elastoplastic behaviour) no linear correlation 

between strains and stresses is given, thus an iterative procedure has to be 

introduced to fulfill equilibrium within the domain. The elastoplastic material 

behaviour includes a non-linear material stiffness matrix D (Eq. (51)). 

𝜎 = 𝐷𝜀     (51) 

The calculation procedure of displacement-based finite element analyses initiates 

by adopting a displacement increment Δu; next, the interpolation matrix B is used 

to obtain the strain increment Δ. Eq. (52) is used to rate the stress increment, 

whereas De defines the elastic material stiffness. The vector of incremental plastic 

strains Δp depends on the material behaviour itself. In the elastic regime, Δp 

equals zero, whereas for elastoplastic conditions, it has to be determined as in 

Vermeer (1989). 

∆𝜎 = 𝐷𝑒(∆𝜀 − ∆𝜀𝑝)    (52) 
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Substituting the incremental stress-strain relation into the equilibrium Eq. (49), the 

resulting correlation can be written as follows: 

𝐾𝑖∆𝑣𝑖 = 𝑃𝑒𝑥𝑡
𝑖 − 𝑃𝑖𝑛𝑡

𝑖−1  (53) 

𝐾𝑖  stiffness matrix (step i) 

∆𝑣𝑖 incremental displacement vector (step i) 

𝑃𝑒𝑥𝑡
𝑖  external force vector (step i) 

𝑃𝑖𝑛𝑡
𝑖−1 internal force vector (step i-1) 

The stiffness matrix is iteratively updated, whereas equilibrium and compatibility 

conditions are met (considering the non-linear relation of stress and strain 

increments). The global stiffness matrix K comprises the stiffness components of 

the entire model (Eq. (54)). The incremental displacement vector i is defined as 

the sum of sub-incremental displacement vectors , applied to the domain (MA 

Thesis Oberhollenzer, 2017).  

  𝐾 =  ∫𝐵𝑇𝐷𝐵𝑑𝑉   (54) 
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2.2.2 FELA 

The following contents in this chapter are based on [11].  

Finite element limit analysis (FELA) is based on the lower an upper bound theorem 

of plasticity. The gap between the two boundaries represents the range of 

admissible solutions. FELA requires an elastic-perfectly plastic material (MC 

failure criteria). Furthermore, only associated plasticity (’ = ’) can be modeled; 

in order to resemble non-associated flow, the Davis Approach has to be applied. If 

the failure load is reached (MC failure criterion), infinite plastic strains occur at a 

constant stress level. On the other hand, elastic strain increments are set to zero 

because they have no effect on the failure load.  

2.2.2.1 Lower-Bound Theorem of Plasticity 

The lower-bound theorem requires a statically feasible stress field, which satisfies 

equilibrium conditions (body forces, surface tractions) for the whole system, as 

well as stress boundary conditions and yield criteria. In contrast, soil kinematics 

are not concerned. In respect to a lower-bound solution the failure criteria and 

therefore the actual collapse load, is not reached. Discontinuities in the stresses 

cause the division of the material into several stress zones, which do not violate 

the yield condition.  Fig. (15) shows a soil mass with a volume V and a boundary 

area A, which is exposed to fixed surface stresses t and unknown tractions q. In 

practice, q might correspond to unknown bearing capacity, whereas t might 

correspond to a prescribed surcharge load (Sloan, 2013). Additionally, two body 

forces g (fixed) and h (unknown) are acting over the volume V. The former is 

generally defined as unit weight, whereas the latter is an unknown body force, 

which could be useful for calculating slope stability or excavations. 

 

 

 

 

 

 

Fig. 15  Surface and body forces acting on soil mass (according to Sloan, 2013) 

 

 



2 Theoretical Part 

 

 

27 

Referring to the collapse load (Eq. (55)) of a bearing capacity problem, Q2 equals 

zero and Q1 at least equals qn, by maximizing the load carried by the tractions 

normal to the boundary edge. 

𝑄 = ∫ 𝑄1(𝒒)𝑑𝐴𝐴𝑞
+ ∫ 𝑄2(𝒉)𝑑𝑉 𝑉

   →        𝑄 = ∫ 𝑞𝑛𝑑𝐴𝐴𝑞
  (55) 

In the case of the lower-bound theorem, a non-linear optimization problem is 

modeled by discretizing the model in 3-noded elements. The nodes of each element 

consist of two vectors, one of three unknown stresses, and one of two unknown 

body forces. The unknowns are subject to equilibrium equality constraints for each 

continuum element, equilibrium equality constraints for each discontinuity, stress 

boundary conditions, and a yield condition inequality constraint for each node 

(MA Thesis Oberhollenzer, 2017). 

 

 

 

 

 

 

 

 

 

 

Fig. 16  Lower-bound mesh for strip footing problem (according to Sloan, 2013) 

 

The object function, which has to be maximized up to failure, signifies the collapse 

load. In case of a bearing capacity problem, the external traction q is increased 

until failure occurs. The resulting forces acting in a normal and tangential direction 

are defined by Eq.(56), based on the linear variation of the stresses over the edge. 

The stresses q1and q2
 are acting at the nodes of the 3-noded triangular element. 

{
𝑄𝑛
𝑄𝑠
} =  

𝐿

2
({
𝑞𝑛
1

𝑞𝑠
1} + {

𝑞𝑛
2

𝑞𝑠
2})  (56) 
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By summing up each load edges, and making use of a Cartesian coordinate system, 

the failure load can be formulated as c1
T in case of bearing capacity problems. 

On the contrary, for slope stability problems (body forces instead of external 

forces), c2
T is defining the critical condition at failure. In this context, c represents 

a vector of constants and  represents the global vector of unknown nodal stresses. 

To get statically admissible conditions, the stresses in each element have to satisfy 

continuum equilibrium. Based on the linear variation of the stresses over the edge, 

a relation between  and the linear shape function Ni can be established. The shape 

function depends on x and y and the element nodal coordinates. 
 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+ ℎ𝑥 + 𝑔𝑥 = 0  (57) 

𝜕𝜎𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+ ℎ𝑦 + 𝑔𝑦 = 0  (58) 

𝝈 = ∑ 𝑁𝑖𝝈
𝑖3

𝑖=1    (59) 

Inserting Eq.(59) into Eq.(57),(58) results in a pair of equilibrium where the B-

matrices define the standard strain-displacement matrix and further consider 

compatibility constraints. For an elegant implementation of the stress 

discontinuities, both sides have to be multiplied by the element area Ae (Eq. (60)). 

Equilibrium at any point in the domain is satisfied as long as Eq.(60) is fulfilled. 

[�̅�1
𝑇�̅�2

𝑇�̅�3
𝑇]𝝈𝑒 = −(𝒉𝑒 + 𝒈𝑒)𝐴𝑒   (60) 

𝑤ℎ𝑒𝑟𝑒 �̅�𝑗
𝑇 = 𝐴𝑒𝑩1

𝑇 = [𝑏𝑗
0
0
𝑐𝑗

𝑐𝑗
𝑏𝑗
]  (61) 

To obtain statically admissible stress fields, which are in equilibrium, the normal 

and shear stresses have to be the same on both sides of discontinuities; see Eq.(62). 

Consequently, each pair of nodes has to consider two equality limitations induced 

by two associated Cartesian stress components. Considering this limitation over 

all pairs of nodes gives the global set of conditions for satisfying discontinuity 

equilibrium. Across each stress discontinuity, the normal and shear stresses are 

continuous, while the tangential normal stress may differ at the same nodes.  

{
𝜎𝑛𝑛
1

𝜏𝑛𝑠
1 } =  {

𝜎𝑛𝑛
2

𝜏𝑛𝑠
2 } , {

𝜎𝑛𝑛
3

𝜏𝑛𝑠
3 } = {

𝜎𝑛𝑛
4

𝜏𝑛𝑠
4 }   (62) 

Fig. 17, shows a zero-thickness interface element which is used to model areas of 

discontinuity; the latter helps to increase calculation accuracy of the collapse load. 
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Fig. 17  Statically admissible stress discontinuity for zero thickness elements (Sloan, 

2013) 

 

Fig. 17 shows nodal pairs initially located at the same coordinates (x1, y1 = x2, y2 

and x3, y3 = x4, y4), which leads to a change in Eq.(63) and provides the evidence 

that B̅1
Tσ1 =B̅1

Tσ2. 

[�̅�1
𝑇  − �̅�1

𝑇     0]𝝈𝑒 = 0   (63) 

To fulfill the stress boundary conditions with respect to equilibrium conditions, the 

stresses for any boundary node have to correspond to the prescribed surface 

traction t. These constraints must be applied to all edges where surface stresses 

are specified, and they ensure that the boundary conditions are satisfied exactly 

for a linear finite element model (Sloan, 2013). 

{
𝜎𝑛𝑛
1

𝜏𝑛𝑠
1 } =  {

𝑡𝑛
1

𝑡𝑠
1} , {

𝜎𝑛𝑛
2

𝜏𝑛𝑠
2 } = {

𝑡𝑛
2

𝑡𝑠
2}   (64) 

 

 

 

 

 

 

 

Fig. 18  Stress boundary conditions (Sloan, 2013) 
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Given that the linearly variation of the stresses over an element, as well as the 

convex behaviour of the yield function is provided, the yield condition is satisfied 

and the limitation f (i) ≤ 0 is fulfilled at each node i.  

 

2.2.2.2 Upper-Bound Theorem of Plasticity 

In contrast to the lower-bound theorem, which represents the lower bound of 

possible failure loads, the upper-bound theorem marks the upper limits of possible 

failure loads. In simple terms, the upper bound theorem states that an upper bound 

to the true collapse load can be derived from an energy equation between the 

external work and the internal plastic power dissipation for any kinematically 

admissible failure mechanism (Yu, 2006: Plasticity and Geotechnics). 

Modifications in displacement within the soil body have to be kinematically 

admissible. Furthermore, no gaps as well as overlaps should occur (i.e. 

compatibility conditions). Notably, the stress distribution does not have to fulfill 

equilibrium compared to the lower-bound theorem. The upper-bound calculation 

procedure is formulated as a non-linear optimization problem by applying a 

velocity distribution u = {ux, uy, uz}T that satisfies compatibility, the flow rule as 

well as the velocity boundary conditions w. The mechanism which gives the least 

dissipated plastic power is used to compute the best upper bound of the limit load. 

Additionally, it leads to a minimizing of the internal power dissipation (plastic 

shearing) by the rate of work (fixed external forces), according to Eq.(65).  Eq.(65) 

is also known as the object function.  

�̇� =  𝑃𝑖𝑛𝑡 − ∫ 𝒕𝑇𝒖𝑑𝐴
𝐴𝑡

− ∫ 𝒈𝑇𝒖𝑑𝑉
𝑉

  (65) 

𝑃𝑖𝑛𝑡 = ∫ 𝝈𝑇
𝑉

�̇�𝑝𝑑𝑉   (66) 

 

The upper bound is specified by the enhanced value 𝑊 ̇ to the rate of expended 

work caused by external forces Pext (Eq.(66)) 

𝑃𝑒𝑥𝑡 = ∫ 𝒒𝑇
𝐴𝑞

𝒖𝑑𝐴 − ∫ 𝒉𝑇
𝑉

𝒖𝑑𝑉  (67) 

Similar to a lower-bound theorem linear elements are used to discretize the domain 

and investigate kinematic admissibility of the velocity field. The 3-noded elements 

adopt a linear velocity distribution u, which is associated with a constant stress 

field . To satisfy the requirements of the upper-bound theorem, the unknowns are 

subject to constraints arising from the flow rule, the velocity boundary conditions, 

and the yield condition (Sloan, 2013). The nodes of each element are described by 

means of two vectors; one comprises three unknown stresses, the other one two 

unknown velocities as well as an unknown non-negative plastic multiplier rate �̇�. 

The unknowns are obtained by solving Eq.(65).  
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In each triangle, the plastic strains (velocities) are governed by the limitations 

attributed to associated plastic flow, and also have to fulfill the consistency 

requirement λ̇f(σe) = 0. For modeling velocity discontinuities two multipliers are 

implemented to realize associated plasticity. Each corresponding node has to meet 

the velocity boundary conditions.  

Summing up, all stresses in each element result in the yield condition f(e) ≤ 0 

(Sloan, 2013). 

  

 
Fig. 19  Upper-bound mesh for strip footing problem (according to Sloan, 2013) 

 

 

The stresses and plastic strain rates �̇�𝑝 are constant over each element, and are 

resulting in an internal power dissipation Pint determined by Eq.(68), where  is 

the global vector of element stresses and ue is the global vector of nodal velocities. 
 

𝑃𝑖𝑛𝑡 = ∫ 𝝈𝑇𝑉 �̇�𝑝𝑑𝑉 = ∑ (𝝈𝑇�̇�
𝑝
𝑉)

𝑒

𝑒 = ∑ 𝝈𝑇�̅�
𝑒
𝒖𝑒𝑒 = 𝝈𝑇�̅�𝒖𝑒  (68) 

The residual integrals in Eq.(65) can be evaluated by using the linear expansions 

of velocities u, resulting in cTu; in the latter, c is a vector of known constants 

(Sloan, 2013). The final correlation is shown in Eq.(69). 

�̇�  =  𝝈𝑇�̅�𝒖 − 𝒄𝑇𝒖  (69) 

For a triangular element, the continuum flow rule conditions are given in Eq.(70). 

The plastic multiplier is denoted as �̇�.  
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To ensure the occurrence of the plastic strain 𝜀̇𝑝  at the yield surface, 𝜆 ̇ 𝑓(𝜎𝑒) has 

to be zero. 

�̇�𝑝 = �̇�∇𝑓(𝝈𝑒), �̇� ≥ 0  (70) 

Any 3-noded element has to fulfill the flow rule constraints, as shown in Eq. (71).  

�̅�𝑒𝒖𝑒 = �̇�∇𝑓(𝝈𝑒)    (71) 

�̇� ≥ 0,    �̇�𝑓(𝝈𝑒) = 0  →  �̇� = 𝐴𝑒𝜆 ̇  

Hence, in the case of two-dimension conditions, the continuum flow rule produces 

four resemble restrictions, as well as one inequality restriction on the element 

unknowns. Whenever the yield criterion represents a linear stress function, all 

resemble restrictions results in a non-linear shape. 

For the discontinuity flow rule a similar procedure as for lower-bound theorems is 

used to describe velocity discontinuities for upper-bound theorems.  Fig. (20) 

represents two triangles of zero thickness (six unknowns), both corresponding to 

the flow conditions expressed in Eq.(71). Along the discontinuity, velocity peaks 

can act in normal Δun as well as tangential Δus directions, which results in potential 

differences at nodes which initially had the same coordinates. These peaks are 

represented in Fig.(20) by means of two zero-thickness continuum elements with 

(x1, y1) = (x2, y2) and (x3, y3) = (x4, y4). It should be mentioned that for each triangle 

the flow rule constraints (Eq.(71)) have to be satisfied. 

 

 

Fig. 20  Kinematically admissible velocity discontinuity (Sloan, 2013) 

 

∆𝑢𝑛 = 
�̇�𝜕𝑓

𝜕𝜎𝑛
         ;       ∆𝑢𝑠 = 

�̇�𝜕𝑓

𝜕𝜏
  (72) 

→ 𝑤𝑖𝑡ℎ  �̇� ≥ 0,   𝛼𝑓̇ (𝜎𝑛, 𝜏) = 0 
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In Eq. (72), �̇� is the product of an amount Ae equal to zero and an infinite amount 

𝜆 ̇ , also known as =0. In the case of plane-strain discontinuity conditions, the 

common yield condition f (e) can be substituted by its planar counterpart f(n, ). 

Whereby, n declares nn and  declares ns. The flow rule conditions (Eq. (70)) 

that define (un, us) are then given by Eq.(72) 

To fulfill the velocity boundary conditions with respect to kinematic admissibility, 

the velocity field must satisfy the prescribed boundary conditions. The limitations 

must be applied to all boundary nodes, where velocity is specified. Based on the 

linearly variation of the velocity over the edge, the boundary conditions can be 

expressed as Eq.(73). 

{
𝑢𝑛
1

𝑢𝑠
1} =  {

𝑤𝑛
1

𝑤𝑠
1} , {

𝑢𝑛
2

𝑢𝑠
2} = {

𝑤𝑛
2

𝑤𝑠
2}  (73) 

 

 
Fig. 21  Velocity boundary conditions (Sloan, 2013) 

 

To implement an upper-bound theorem, supplementary restrictions are imposed 

on the velocity field, to correspond the type of loading. According to Fig.19, the 

velocity boundary conditions shown in Eq.(73) could be used to model loading 

under associated plasticity conditions by applying the normal velocities w1
n 

= w2
n = -C along the convenient element edges, whereas C represents a constant 

value. In the case of bearing capacity problems, where a specific part of the soil 

body is loaded by an unknown uniform normal pressure q, (e.g. strip footing), the 

surface normal velocities are imposed by restrictions to match the type of loading. 

These restrictions on the surface normal velocities result in C as a prescribed rate 

of flow of material across the boundary. 

(𝑎) ∫ 𝑢𝑛𝑑𝐴 = 𝐶𝐴𝑞
                      (𝑏) ∫ 𝑢𝑦𝑑𝐴 = −𝐶𝑉

  (74) 

To ensure that kinematic admissibility conditions are met (including zero thickness 

discontinuities), the stresses must satisfy the following yield condition within each 

element: f(e) < 0. By assuming the element stresses to be constant, results are 

given in one non-linear inequality restriction for each continuum and discontinuity 

triangle. 
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2.2.2.3 Davis Approach 

The following contents in this chapter are based on [12].  

Finite element limit analyses are restricted to an associated flow rule, whereas the 

SRFEA technique provides the opportunity of using a non-associated flow rule. 

The application of an associated flow rule presumes ’='; as a consequence, soil 

dilatancy is generally overestimated. In order to overcome this limitation, Davis 

(1968) suggested to modify the strength parameters (c’ → c*, ’ → *) to model 

non-associated plasticity (’< ’), shown in Eq. 75-77. The parameter  failure (Eq. 

(77)) is determined as a function of the effective friction angle ’ and the effective 

dilatancy angle ’. 

𝑐∗ =  𝛽𝑐′    (75) 

tan𝜑∗ =  𝛽 tan𝜑′   (76) 

𝛽𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝛽 =
cos𝜓′ cos𝜑′

1−sin𝜓′ sin𝜑′
  (77) 

Since the original Davis Approach A leads to strongly conservative results 

regarding the factor of safety, two further approaches (Davis B, Davis C) were 

developed by Tschuchnigg et al. (2015) in order to investigate the failure 

mechanism in more detail. In addition to generally reduced strength parameters 

according to Davis Approach A, the failure value applied in Davis Approach B 

(Eq.(78)) is determined based on an iterative procedure and varies throughout 

strength reduction procedures.  failure is iteratively updated until the factor of safety 

remains constant. 

𝛽𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 
cos(tan−1(

tan𝜑′

𝐹𝑜𝑆
)) × cos(tan−1(

tan𝜓′

𝐹𝑜𝑆
))

1−sin cos(tan−1(
tan𝜑′

𝐹𝑜𝑆
))×sin(tan−1(

tan𝜓′

𝐹𝑜𝑆
))

  (78) 

In much the same way, Davis Approach C resembles Davis Approach B; however, 

the effective dilatancy angle ' remains constant for Davis Approach C. The value 

failure (Eq.(79)) is again iteratively updated until the factor of safety remains 

constant. Consequently, Davis B and C lead to equal results in terms of the factor 

of safety, if ' equals zero. 

𝛽𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
cos(tan−1(

tan𝜑′

𝐹𝑜𝑆
)) × cos𝜓′

1−sin cos(tan−1(
tan𝜑′

𝐹𝑜𝑆
))×sin𝜓′

   (79) 
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Tab. 6  Comparison of Davis Approach A, B, C (according to Tschuchnigg 2015a) 

 Davis A Davis B Davis C 

 constant varies varies 

' failure = f('') failure = f('failure'failure) failure = f('failure') 

Note: 
* could theoretically 

become smaller than ’ 
* cannot be smaller than ’ 

* could theoretically 

become smaller than ’ 

limit  ≤ 1 
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2.2.3 Flow Rule 

The following contents in this chapter are based on [13], [14], [15], [16], [17].  

The flow rule is a key factor in finite element analyses as well as in finite element 

limit analyses and defines the direction of plastic strain increments, corresponding 

to the first derivative of the yield function for associated plasticity. As previously 

discussed, finite element limit analysis is restricted to associated flow, whereas the 

finite element analysis based on displacements provide the opportunity of using a 

non-associated flow rule. Considering the plasticity theory explored by Hill et al. 

(1998), one has clearly to distinguish between associated and non-associated 

plasticity. To illustrate the explanation, a linear-elastic perfectly-plastic MC model 

(chapter 2.1.1) is assumed. The strain increment can be calculated by Hooke’s law, 

as far as the respective stress increment occurs in the elastic range. Stress 

increments occurring at the onset of plastic behaviour (failure criterion) cannot be 

carried by the material itself, resulting in plastic strains. As a result, the material 

undergoes a certain plastic deformation. However, the flow rule determines how 

the plastic strains develop at failure. An associated flow rule presumes a dilatancy 

angle ′ equal to the friction angle ′; consequently, the flow rule is assumed to 

be associated when the plastic strain increment is perpendicular to the yield 

function. This is convenient because it combines the yield surface with the flow 

rule. Laboratory tests documented in the literature (e.g. Schweiger et al, 1995) 

showed that the assumption of associated plasticity generally leads to an 

overestimation of plastic volumetric strains. In detail outcomes of laboratory tests 

show that the volume increase from a soil sample was less than the associated flow 

rule. For the case of shallow stress points, the dilatancy angle of granular, normally 

consolidated soils is usually in the range of less than 10°. Further, the dilatancy 

angle strongly depends on the friction angle as well as the soil density. Increasing 

depth leads to an increasing density of the soil body and, thus, decreasing dilatancy 

angles (MA Thesis Sallinger, 2017). However, it should be considered that the 

associated flow rule is by no means natural law. In the case of friction materials, 

the assumption of an associated flow rule usually does not match reality. Hence, 

non-associated flow rules may be adopted, which resemble soil behaviour in a 

more realistic way. To simulate non-associated behaviour (′ ≠ ′), a plastic 

potential g is added to the equations which represent the yield function. Thus, a 

non-associated flow rule presumes g≠f, which influences the direction of the 

plastic strain increment. The approach of flow rule requires in general coaxiality 

between principal stress and strain rate (B. De Saint Venant, 1870).  
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Fig. 22 represents the difference between associated and non-associated flow rule 

with respect to the direction of the plastic strain rate vector. p describes the plastic 

deviatoric strain rate and εp describes the plastic volumetric strain rate. Notably, 

plastic volumetric strain rates εp are overestimated in the case of associated 

plasticity. 

 

 

 

 

 

 

 

 

 

Fig. 22  Comparison of associated and non-associated flow rule (according to Egger, 

2012) 

 

To which extent plastic and elastoplastic boundary value problems are influenced 

by the flow rule type is still a matter of ongoing research. For a more realistic 

representation of the soil behaviour it is recommended to apply non-associated 

plasticity. Fig.23 concerns the stress-strain relation for associated as well as non-

associated plasticity in combination with the Mohr Coulomb model based on a 

triaxial test. For loose sands and normally consolidated (NC) clays, the stress-

strain relation causes a monotonically increasing up to the ultimate limit state is 

reached. It is shown that the deformations (volumetric vs. shear strain) are highly 

dependent on the flow rule. Most significantly, the resulting dilation is far too large 

for associated plasticity. On the other hand, non-associated plasticity specifies the 

amount of dilation directly and therefore the resulting can be described in more an 

accurate way. For dense sands and overconsolidated (OC) clays the situation is, 

qualitatively, nearly the same. It should be mentioned that the dilatant response of 

the soil ends at the onset of softening behaviour. 

 

 

 

associated 

non-associated 
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Fig. 23  Soil behaviour and capabilities of associated and non-associated  

Mohr Coulomb model (according to Optum G2 Theory Manual, 2016) 

 

 

The effect of the flow rule on the deformations is clearly seen on lot of 

experiments, thus, the focus has been on how far the flow rule influences the failure 

load. Erickson and Drescher (2002), Loukidis and Salgado (2009), and 

Krabbenhoft et al. (2012) reported a reduction in bearing capacity of up to 45% for 

the case of a strip as well as a circular footing on sand when applying non-

associated flow rule. Such reductions in bearing capacity are found in many 

theoretical documents and are caused by several aspects:  

Matter the fact, a consequence of non-associated plasticity would result in the non-

uniqueness of the limit load; while solving elastoplastic boundary value problems. 

The usual assumption that the limit load is unique applies only for associated 

plasticity. Thus, there may be multiple solutions that fulfill the governing 

equations, but each referring to a different limit load. This results in oscillations of 

the load-displacement curve beyond a certain level of displacement which is 

caused by switching between different modes of failure (beyond the point at which 

the load-carrying capacity of the structure first becomes exhausted). The level of 

non-uniqueness for non-associated plasticity is intimately related to the occurrence 

of shear bands representing localized areas of intensive deformation, which usually 

lead to oscillatory behaviour of the load-displacement curve (Fig.24).  

 

(a) loose sand / NC clay (b) dense sand / OC clay 

experimental associated MC  non-associated MC  
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Fig. 24  Response of biaxial test prone to localization (Optum G2 Theory Manual, 

2016) 

 

Another consequence of non-associated plasticity is that the resulting limit load is 

significantly lower compared to the corresponding limit load under associated 

plasticity. The reduction of the limit load depends on the difference between 

friction and dilation angle and their magnitude. An increasing difference between 

friction and dilation angle leads to decreasing limit loads. This tendency can be 

attributed to localized states of increased stress and strain as well as to certain 

kinematic constraints of the shear bands.  

As shown in many theses and papers, it has been often observed that numerical 

methods are depending on the finite element mesh.  
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2.3 Safety Analysis  

2.3.1 Numerical Method 

It should be mentioned that Plaxis has the opportunity to apply the strength 

reduction technique (SRFEA1) based on both, associated and non-associated 

plasticity. The failure load (FEA2) can only be calculated manually for the same 

conditions of plasticity. On the other hand, Optum has the opportunity to 

automatically calculate the failure load (FEA2 and FELA2) for associated, non-

associated plasticity conditions as well as Davis A, thereby taking into account 

non-associated plasticity conditions in combination with FELA2. In contrast, an 

automatic strength reduction is only possible for associated plasticity, by means of 

non-associated Davis A, either for SRFEA1 and SRFELA1. Therefore, for non-

associated plasticity, the strength reduction (SRFEA1 and SRFELA1) can only be 

calculated manually. 

2.3.1.1 Strength Reduction 

The following contents in this chapter are based on [18].  

A safety analysis by means of strength reduction corresponds to a simultaneously 

reduction of the strength parameter tan’ and c’ up to the onset, which defines the 

failure criteria and no more equilibrium is achieved (Eq.(80)). It should be noted 

that as long as the reduced friction angle ’ is greater compared to the dilatancy 

angle ’, the latter one is kept constant (Fig. 25a). At the point where ’ = ’, 

both get simultaneously reduced, as shown in Fig. 25b (MA Thesis Oberhollenzer, 

2017). In case of non-associated plasticity, a safety analysis by means of strength 

reduction leads to numerical instabilities without a clear failure mechanism. Since 

multiple solutions exist which fulfill the governing equations (due different 

strength parameters as mentioned in chapter 2.2.3), the factor of safety is generally 

lower compared to associated plasticity conditions. 

FoS𝑆𝑅 =
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑜𝑖𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑜𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑠𝑜𝑖𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
=

tan 𝜑′

tan 𝜑𝑚𝑜𝑏
′

=  
𝑐′

𝑐𝑚𝑜𝑏
′   (80) 

 

 

 

 
1 SRFEA, SRFELA  → strength reduction anaylsis based on FEA / FELA 
2 FEA, FELA   → failure load analysis based on FEA / FELA 
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Fig. 25  Strength reduction (according to MA Thesis Oberhollenzer, 2017) 

 

2.3.1.2 Failure Load  

Safety analysis based on the consideration of applied failure loads requires a 

stepwise increase of the actual load until failure occurs. 

FoS𝐹𝐿 =
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑎𝑑
  (81) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‘ 

tan‘= tan‘ 
1 

1 

 

tan‘mob= tan‘mob 

‘ 

tan‘ 

tan‘ 

1 

1 

 
(a) tan‘ kept constant for ’>’ (b) tan’, tan‘ reduced 

      simultaneously for ’=’ 
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2.3.2 Analytical Method 

The following contents in this chapter are based on [19], [20], [21].  

The definition of a ground failure is described as collapse, which occurs, when the 

foundation is loaded until the failure appearance. This results in so called sliding 

areas between the subsoil, in which the shear resistance of the soil is overcoming, 

leading to a ”laterally” displacement of the soil. (Fig. 26.) 

 

 
 

Fig. 26  Sliding surface according to bearing capacity (Lecture Nodes Advanced Soil 

Mechanics and Foundation Engineering (2018), Graz University of 

Technology) 

 

2.3.2.1 Failure Load after DIN 4017 

For the calculation of the failure load after DIN 4017 the program GGU FOOTING 

was used. The GGU-FOOTING program makes it possible to calculate the ground 

failure after DIN 4017 and settlements according to DIN 4019. The global safety 

concept can be used according to DIN 1054 (old) as well as the partial safety 

concept according to DIN 1054: 2005 and EC 7. In addition to the standard 

methods according to DIN 4017, the methods according to Terzaghi, Meyerhoff, 

Hansen, and Vesic can also be used. 
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Eq.(82) shows the definition of the failure load after DIN 4017 for drained 

conditions at final state. 

𝑅𝑛 =  𝑎′ × 𝑏′[(𝛾2 × 𝑏′ × 𝑁𝑏) + (𝛾1 × 𝑑 × 𝑁𝑑) +  (𝑐 × 𝑁𝑐)]  (82) 

 

 

 

 

Eq. (83), (84), (85) represent the bearing capacity factor (Nx) according to DIN 

4017, which considers five parameters:  

• base values of the bearing capacity (Nx,0) 

• coefficient of the load inclination (ix) 

• coefficient of the surface inclination (x) 

• coefficient of the foundation base inclination (x) 

• foundation shape (x). 

𝑁𝑏 = 𝑁𝑏,0 × 𝜐𝑏 × 𝑖𝑏 × 𝜆𝑏 × 𝜉𝑏    (83) 

𝑁𝑑 = 𝑁𝑑,0 × 𝜐𝑑 × 𝑖𝑑 × 𝜆𝑑 × 𝜉𝑑    (84) 

𝑁𝑐 = 𝑁𝑐,0 × 𝜐𝑐 × 𝑖𝑐 × 𝜆𝑐 × 𝜉𝑐     (85) 

For the settings in GGU FOOTING the dead load of the strip foundation was 

considered. A study according to the influence of the depth coefficient (after 

Brinch Hansen) of the failure load was implemented. 

 

 

 

 

 

 

 

influence of 

overburden pressure 

/ foundation depth 

influence of 

cohesion 

influence of  

friction / 

foundation width 
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2.3.2.2 Failure Load after EC7 (EN 1997-1) 

The calculation of the failure load after EC7 was done manually for drained 

conditions in final state, shown in Eq.(86); the latter considers eight parameters:  

• bearing capacity factor (Nx) 

• coefficient of the load inclination (ix)  

• coefficient of the foundation base inclination (bx) 

• coefficient of the foundation shape (sx) 

• effective cohesion (c’) 

• overburden pressure including the foundation depth (q’) 

• buyoyant unit weight below foundation level (’) 

• foundation width (B’). 

 

 

 

𝑅𝑓,𝑘 =  𝐴′ × [(𝑐′ × 𝑁𝑐 × 𝑏𝑐 × 𝑠𝑐 × 𝑖𝑐) + (𝑞
′ × 𝑁𝑞 × 𝑏𝑞 × 𝑠𝑞 × 𝑖𝑞) +

                            0.5 × (𝛾′ × 𝐵′ × 𝑁𝛾 × 𝑏𝛾 × 𝑠𝛾 × 𝑖𝛾) ]   (86) 

 

 

Eq. (87), (88), (89) represent the bearing capacity factor (Nx) according to EC7. 

 

𝑁𝑞 =  𝑒𝜋 tan𝜑
′
× tan (45 +

𝜑′

2
⁄ )

2

   (87) 

𝑁𝑐 =  (𝑁𝑞 − 1 ) × cot 𝜑′   (88) 

𝑁𝛾 = 2 × (𝑁𝑞 − 1 ) × tan𝜑′    (89) 

For the manual calculation of the failure load after EC7 a study according to the 

influence of the depth coefficient is not possible, because it is not considered in 

the formula. Compared to ÖNORM B4435, the EC7 is not considering the 

influence of the ground level inclination. 

 

 

influence of cohesion influence of overburden pressure 

/ foundation depth 

influence of friction / foundation width 
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2.3.2.3 Failure Load after ÖNORM B 4435-2 

The calculation of the failure load after ÖNORM B4435 was done manually for 

drained conditions in final state, shown in Eq.(90). 

𝑄𝑓,𝑘 =  𝐴′ × [(𝛾𝑢
′  × 𝑏′ × 𝑁𝛾) + (𝛾𝑜

′  × 𝑡 × 𝑁𝑞) +  (𝑐𝑑 × 𝑁𝑐)]   (90) 

 

 

 

 

Eq. (91), (92), (93) represent the bearing capacity factors (Nx) according to 

ÖNORM B 4435-2, which consider seven parameters:  

• base values of the bearing capacity (Nx,0) 

• coefficient of the load inclination (ix) / angle of the load inclination (s) 

• coefficient of the surface inclination (gx) 

• coefficient of the foundation base inclination (tx) / angle of the foundation 

base () 

• coefficient of the foundation shape (sx). 

𝑁𝛾 = 𝑁𝛾,0 × 𝑖𝛾 × 𝑔𝛾 × 𝑡𝛾 × 𝑠𝛾     (91) 

𝑁𝑞 = 𝑁𝑞,0 × 𝑖𝑞 × 𝑔𝑞 × 𝑡𝑞 × 𝑠𝑞    (92) 

𝑁𝑐 =  cot 𝜑 ×(𝑁𝑞,0 × 𝑖𝑐 × 𝑔𝑐 × 𝑡𝑐 −  
1

cos𝛼×cos𝛿𝑠
)  ×  𝑠𝑐    (93) 

For the manual calculation of the failure load after ÖNORM B4435 a study 

concerning the influence of the depth coefficient is not possible; thus, it is not taken 

into account in the equation system. 

influence of 

cohesion 

influence of 

overburden pressure / 

foundation depth 

influence of  

friction / 

foundation 
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3 Used Software 

3.1 GGU FOOTING – 2D Analytical Calculation 

For the calculation of the failure load after DIN 4017 the program GGU FOOTING 

was used. The GGU-FOOTING program makes it possible to calculate the bearing 

capacity after DIN 4017 and settlements according to DIN 4019. The global safety 

concept can be used according to DIN 1054 (old) as well as the partial safety 

concept according to DIN 1054: 2005 and EC 7. In addition to the standard 

methods according to DIN 4017, the methods according to Terzaghi, Meyerhoff, 

Hansen, and Vesic can also be used. All calculations were done taking into account 

characteristic values only, whereas the design situations and the partial safety 

factors were not considered. 

3.1.1 Geometry and Loading 

The simple homogeneous soil body includes one strip foundation (Fig. 27), with a 

depth t of 1m, a width b of 2m and a length l of 10,000m to simulate an infinite 

strip foundation (>>). Next to the strip foundation, the soil body is loaded by a 

constant distributed surface load of 10kPa (unfavorable, permanent) along 17m. 

For the failure load calculation one centrally concentrated load is imposed on the 

strip foundation (unfavorable, permanent), which is inclined by 8.5 degrees. 

 

 

 

 

 

Fig. 27  Geometry and loading for analytical calculations of the failure load 
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3.1.2 Input Parameter 

The input parameter of the strip foundation as well as the homogenous soil body 

are shown in Tab.7.  For the homogenous soil body, a stiff sand under drained 

conditions was assumed. The calculations were executed with respect to the failure 

load (i.e. FoS = 1.0) for associated (’=’), non-associated plasticity (’=0°, 

11.7°) and non-associated plasticity after Davis Approach A (*=’) considering 

a dilatancy angle of 0° and 11.7°; see Tab.8. 

 

Tab. 7  Input parameter of the strip foundation and the soil body for analytical 

calculations of the failure load 

 

Tab. 8  Flow rule of the soil body for analytical calculations of the failure load 

flow rule - plasticity 

 ‘ [°] ‘ [°] * [°] 

associated  35  - 

non-associated 

after Davis A 
 35 32.44 

 35 29.84 

 

 

For the manual analytical calculation after EC7 and ÖNORM B 4435 the same 

geometry and loading was used, as for the GGU FOOTING software (DIN 4017). 

  

input parameter 

 
strip foundation  soil body – final state drained 

b [m] 2.0 c’ [kPa] 0 

t [m] 1.0 ’ [°] 35 

l [m] * 10,000  = ' [kN/m³] 20 

 [kN/m³] 20 E [MPa] * 37.3 

  ’ [-] 0.3 

* for the manual calculation after EC7 and 

ÖNORM B 4435-2 the length of the strip 

foundation (∞) assumed to be 1.0m for the 

effective area A’ 

 

* only for the calculation after DIN 4017 

* calculated by the program GGU 
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3.2 PLAXIS- 2D / 3D Calculations (FEA) 

The following contents in this chapter are based on [22], [23], [26], [27]. 

Plaxis 2D / 3D is a displacement-based FEA code designed for geotechnical 

applications (2D 6-noded, 2D 15-noded, 3D 10-noded elements). The program 

includes different constitutive models, which allow the user to consider both, 

simple constitutive models like the linear-elastic perfectly plastic MC model 

(chapter 2.1.1) as well as more complex models like the HS model (chapter 2.1.2). 

Plaxis 2D / 3D enables the user to investigate deformation problems, stability 

problems, structural elements (anchors, retaining walls etc.) and flow analyses for 

various types of geotechnical applications. For both, Plaxis 2D as well as for Plaxis 

3D, Version 2018 is used.  

3.2.1 Numerical Control Parameter 

There are specific numerical control parameters that are mainly used for the 

calculations discussed below. The setting maximum number of steps stored defines 

the number of steps during calculation phase to be stored. It is increased from only 

one (default setting) to 3 for the calculations of the stress paths, whereas the final 

step generally contains the most relevant results. The setting maximum steps 

specifies the maximum number of steps during each calculation phase. During 

calculations performed in the scope of this thesis, it was sometimes necessary to 

increase the default setting (i.e. 1000 steps) to reach stable results, which lead to 

an increase of the calculation time. The setting maximum number of iterations 

(default setting 60) describes the maximum number of iterations performed within 

each calculation step. 

With respect to the numerical settings, tolerated error studies were conducted to 

define the influence on the factor of safety, discussed in the following chapter 

4.2.3.1. Every non-linear numerical analysis represents an approximation of the 

exact solution; thus, deviations between the approximation and the exact solution 

occur, shown in Fig.28. These deviations are substantially controlled by the 

numerical control parameter tolerated error associated with the solution 

algorithm. The algorithm verifies that the error of equilibrium is confined to 

acceptable limits. Within the safety analysis, the program produces iterations until 

the calculated error is less than the pre-defined tolerated error. 

 

 

 



3 Used Software 

 

 

49 

 
Fig. 28  Exact solution versus approximate (numeric) solution primarily governed by 

the tolerated error (Plaxis References Manual, 2018) 

 

The use of the numerical control parameter arc-length control considers the 

application of an automatic failure detection technique. This application is 

described by a decrease of the applied load for the calculation to converge which 

leads to an assumed failure, hence stopping the calculation.  

 

 
 

Fig. 29  Numerical controll parameter arc-length control (Plaxis References Manual, 

2018) 
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3.2.2 General Settings 

There are general settings that are mainly used for the calculations discussed 

below. It should be mentioned that for all calculations the setting design approach 

is set to (none) indicating that only characteristic values are considered. In the 

calculations, the calculation type Plastic is used except for the safety analysis 

(Safety) as well as the initial phase (K0 procedure). For the general setting of the 

loading type, the staged construction loading type is used for the initial as well as 

the plastic phase. This setting allows the user to determine a new condition that is 

to be achieved at the end of the calculation phase. On the other hand, for the safety 

phase the loading type incremental multiplier is used. The incremental multiplier 

concerns a safety analysis using the load advancement number of steps process 

and is used to determine the increment of the strength reduction. The strength 

reduction technique is executed automatically until the value of the max. steps 

parameter is reached. Steady-state water pressure conditions were modelled by 

means of the phreatic option.  

 

3.2.3 Deformation Control Parameter 

There are specific deformation control parameters, that are mainly used for the 

calculations discussed below. The deformation control parameter reset 

displacement and small strain to zero is used (switch on) after the initial phase, so 

that the displacements are set to zero at the beginning of following calculation 

phase; in this way, displacements of the initial phase are not considered.  
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3.2.4 Geometry and Loading 

The simple homogeneous soil body (10m times 36m) includes a one strip 

foundation, presented in Fig. 30, with a depth t of 1m and a width b of 2m for 

plane-strain conditions; in the three-dimensional case, lengths l from 1m to 4m are 

used. Beside the strip foundation the soil body is loaded by a constant distributed 

surface load of 10kPa (unfavorable, permanent) stretching a distance of 17m to 

reach higher plasticity. For the failure load analysis, as well as the strength 

reduction analysis, one centrally positioned single load on the strip foundation is 

considered (unfavorable, permanent), which is inclined by 8.5 degrees. This 

example corresponds to the MA Thesis of Knitter and Nowakoswki 2018 Ex.2 

[26], [27]. 

 

 

 

 

 

 

 

 

Fig. 30  Geometry and loading for numerical calculations 

 

 

3.2.5 Input Parameter 

The input parameter of the strip foundation as well as the homogenous soil body 

are shown in Tab.10. For the homogenous soil body, a stiff sand and drained 

conditions are assumed. The flow rule conditions are shown in Tab.9. 
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Tab. 9  Flow rule of the soil body for numerical calculations 

 

 

 

 

 

 

 

 

 

 

 

Tab. 10  Input parameter of the strip foundation and the soil body for numerical 

calculations 

 

 

 

 

 

 

 

 

 

 

 

 

flow rule - plasticity 

 ‘ [°] ‘ [°] * [°] 

associated  35  - 

non-associated 
 35 - 

 35 - 

non-associated 

after Davis A 
 35 32.44 

 35 29.84 

input parameter soil body -drained stiff sand  strip foundation 

c’ref [kPa] 0 - 

’  35 - 

’ [°] varied due to flow rule - 

sat [kN/m³] 20 24 

unsat [kN/m³] 17 24 

E’ [MPa] 50 30,000 

' [-] 0.3 0.2 

E50
ref = Eoed

ref [MPa] 69.06 - 

Eur
ref [MPa] 207.2 - 

'ur [-] 0.2 0.2 

 [-] varied due to flow rule 0.5 

pref [kPa] 100 - 

m [-] 0.5 - 

MC 

HS 
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3.3 Phases 

3.3.1 Initial Phase 

To perform the initial state (Tab.11, I) of the subsoil before construction, the K0-

procedure is used in the first calculation step. The major influence on the initial 

horizontal, as well as vertical stresses, equals the unit weight of the subsoil itself, 

including their loading history. In this context, in chapter 4.2.3.3 a study 

concerning the influence of the K0-value on the factor of safety was done. At last 

the empirical equation by Jacky (Eq.(94)) is used to calculate the earth pressure 

coefficient K0, which is calculated based on the effective friction angle ’ of the 

soil body. 

𝐾0 = 1 − sin𝜑 ′  (94) 

 

3.3.2 Plastic Phase - Loading 

The second calculation phase (Tab.11, II) after the initial state is a plastic phase 

that calculates the elastic-plastic deformations of the soil body after construction 

due to dead load. This phase is used to calculate the failure load in Plaxis manually. 

In order to obtain the failure load, the total multiplier ∑Mstage is used that starts at 

zero and incrementally increases to the value of 1.0 in the case equilibrium 

conditions are met. Note that the subsequent phase will not be started, unless 

∑Mstage criteria are satisfied. Thus, the failure load is reached if the plastic phase 

at a certain value of load does not satisfy the ∑Mstage criteria. For example, in this 

thesis there is only one plastic phase applied, according to the MA Thesis of Knitter 

and Nowakoswki 2018 Ex.2. In this phase, the strip foundation, as well as the 

loading are activated. → max. steps 1000-3000 (arc length on/off) 

 

3.3.3 Safety Analysis – Strength Reduction 

The third and last calculation phase (Tab.11, II) after the plastic phase is the safety 

analysis (chapter 2.3.1.1). → max. steps 300-500 (arc length on)  
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Tab. 11  Plaxis – calculation phases 

 

I. Initial State 

 

II. Plastic Phase – failure load (manual) 

 

 

III. Safety analysis - strength reduction (automatic) 

 

 

 

 

 

 

 

          (a) 2D initial phase                        (b) 3D initial phase 

                (a) 2D initial phase  (b) 3D initial phase 

            (a) 2D initial phase                                           (b) 3D initial phase 
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3.4  Mesh and Shape Functions 

Several scientific investigations (e.g. Oberhollenzer 2017, Veigl 2020) show that 

the mesh discretization has a significant influence on the factor of safety. In this 

thesis the use of a mesh study was not implemented. Furthermore, a medium mesh 

discretization and 15-noded elements for the 2D calculations is used. For the 3D 

calculations, a fine mesh discretization and 10-noded elements were used. The use 

of higher order elements in combination with a fine mesh discretization gives 

reasonable calculation results, thereby leading to higher calculation times, 

especially for 3D calculations. Fig. 31 and 32 show the mesh distribution for 2D 

and 3D calculations in Plaxis.  

 

 

 

 

 

 

 

Fig. 31  2D mesh distribution – medium – 15-noded elements 

 

 
 

Fig. 32  3D mesh distribution – fine – 10-noded elements 

  

3370 elements 

700,952 elements → 1m thickness 

862,508 elements  →  4m 

thickness 

1m 
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3.5 OPTUM G2 / G3 – Calculations (FEA, FELA)  

The following contents in this chapter are based on [24], [25], [26], [27].  

Optum G2 is a two-dimensional and Optum 3D is a three-dimensional, finite 

element program that has the opportunity to use a displacement-based FEA code 

(2D 6-noded, 2D 15-noded, 3D 10-noded elements), as well as finite element limit 

analysis (LB, UB). The program includes different constitutive models that allow 

the user to model simple models like the linear-elastic perfectly plastic MC model 

(chapter 2.1.1) as well as more complex models like the HMC model (chapter 

2.1.3). Optum G2/G3 enables the user to perform deformation and strength 

analysis of geotechnical boundary value problems. For Optum G2 Version 2018, 

for Optum G3 Version 2019 are used. 

3.5.1 Numerical Settings 

3.5.1.1 Element Type 

For the setting element type there are four possibilities in plane-strain conditions: 

There are 6-noded, as well as 15-noded elements, for computing FEA code and on 

the other hand lower and upper “elements” for calculating limit analysis. 

3.5.1.2 Mesh Adaptivity 

The setting mesh adaptivity induces an automatic mesh discretization procedure at 

the position of the critical points in the subsoil.  

3.5.1.3 Drainage Condition 

In Optum the user has the opportunity to distinguish between three drainage 

conditions: drained/undrained, always drained and non-porous. For each drainage 

type characteristic drainage conditions have to be chosen, which can either be 

defined as long or short term. These setting determine whether the soil behaves 

drained or undrained. In this thesis, the options drained/undrained and long term 

are chosen. To model the strip foundation, the setting non-porous was chosen. 

3.5.1.4 Design Approach 

For all calculations the setting design approach is set to (none), thereby applying 

characteristic values. In this way, no design situations and partial safety factors are 

considered. 
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3.5.2 Geometry and Loading 

The simple homogeneous soil body (10m times 36m) includes one strip 

foundation, presented in Fig. 33, with a depth t of 1m and a width b of 2m for 

plane-strain conditions. On both sides of the strip foundation, the soil body is 

loaded by a constant distributed surface load of 10kPa (unfavorable, permanent) 

along 17m to generate increased soil plasticity. For the failure load analysis, as 

well as the strength reduction analysis, one centrally concentrated load on the strip 

foundation is considered (unfavorable, permanent), which is inclined by 8.5 

degrees. This example corresponds to the MA Thesis of Knitter and Nowakoswki 

2018 Ex.2 [26], [27]. 

 

 

 

 

 

 

 

Fig. 33  Geometry and loading for numerical calculations 

 

3.5.3 Input Parameter 

The input parameters of the strip foundation as well as the homogenous soil body 

are shown in Tab.13. For the homogenous soil body, a stiff sand in combination 

with drained conditions was considered. The flow rule conditions (plasticity) are 

shown in Tab.12. 
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Tab. 12  Flow rule of the soil body for numerical calculations 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 13  Input parameter of the strip foundation and the soil body for numerical 

calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

flow rule - plasticity 

 ‘ [°] ‘ [°] * [°] 

associated  35  - 

non-associated 
 35 - 

 35 - 

non-associated 

after Davis A 
 35 32.44 

 35 29.84 

input parameter soil body -drained stiff sand  strip foundation 

c’ref [kPa] 0 - 

’  35 - 

’ [°] varied due to flow rule - 

sat [kN/m³] 20 24 

unsat [kN/m³] 17 24 

E’ [MPa] 50 30,000 

' [-] 0.3 0.2 

E50
ref = Eoed

ref [MPa] 69.06 - 

Eur
ref [MPa] 207.2 - 

'ur [-] 0.2 0.2 

 [-] varied due to flow rule 0.5 

pref [kPa] 100 - 

m [-] 0.5 - 

MC 

HMC 
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3.5.4 Phases 

Optum G2 has the opportunity to calculate an automatic failure load (FEA and 

FELA) considering associated and non-associated plasticity conditions as well as 

the Davis A approach for imitating non-associated plasticity in terms of limit 

analysis. In contrary, an automatic strength reduction is only possible for 

associated plasticity, in relation to non-associated Davis A, either for SRFEA or 

SRFELA. For non-associated plasticity, the strength reduction (SRFEA and 

SRFELA) can only be calculated manually. For the calculation of the automatic 

strength reduction, as well as the automatic failure load it is not necessary to 

perform an exhaustive step-by-step elastoplastic analysis (compared to Plaxis). 

Thus, under drained conditions, where no excess pore pressures are generated, the 

solution is independent of the initial stresses and only one phase has to be 

computed for the analysis.  

Optum G3 has the opportunity to calculate an automatic failure load (FELA) for 

associated and non-associated plasticity after Davis A. In contrast to 2D 

calculations an automatic strength reduction is not possible, therefore a manual 

strength reduction for both associated plasticity, and non-associated plasticity after 

Davis A (SRFELA) was done.  

Fig. 34 shows the calculation phase for the failure load (i.e. the strength reduction 

analysis phase). 

 

 
 

Fig. 34  Calculation phase for failure load and strength reduction analysis  

 

3.5.4.1 Limit Analysis – Automatic Failure Load 

The analysis type limit analysis yields an automatic collapse multiplier value, 

which describes to which extent the actual load has to be increased in order to 

invoke failure. Therefore, fixed loads are kept constant and multiplier loads are 

amplified until collapse is reached. 
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3.5.4.2 Multiplier Elastoplastic - Automatic Failure Load 

In the same way, for multiplier elastoplastic analysis fixed loads are kept constant 

and multiplier loads are amplified until collapse is reached. With the resulting 

collapse multiplier the actual load has to be increased to obtain collapse. Tab.14 

presents the notations for FEA and FELA calculations, as well as the definition of 

the analysis. 

Tab. 14  Phases for automatic failure load analysis 

 

3.5.4.3 Strength Reduction – Automatic 

The analysis strength reduction produces an automatic reduction of strength 

parameters, that is necessary to reach collapse at the actual load.  For a factor 

higher than unity, the whole system is under stable conditions. Tab.15 presents the 

notations for SRFEA and SRFELA calculations as well as the definition of the 

analysis. 

3.5.4.4 Elastoplastic - Manual Strength Reduction 

An Elastoplastic analysis calculates the responding deformations either to a 

specific value of loading or to gravity loading (e.g. excavation, embankment). To 

check whether the corresponding failure load leads to failure for a given friction 

angle, feasibility analyses were conducted (output stable or unstable).  

 

 notation 2D notation 3D* analysis 

associated 

LB failure load LB Limit Analysis 
UB failure load UB 

15.noded - 
Multiplier  

Elastoplastic 

non-associated 15.noded - Multiplier  

Elastoplastic 

non-associated 

after Davis A 

LB Davis A failure load LB 
Limit Analysis 

UB Davis A failure load UB 

15.noded Davis A - 
Multiplier  

Elastoplastic 

* for 1m and 4m thickness 
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Notably, a feasibility analysis requires an initial phase (K0-procedure). Thus, the 

failure load could lead to failure without reducing the strength parameter as well. 

Tab.15- 17 present the notations for SRFELA calculations as well as the definition 

of the analysis for 2D and 3D calculations. 

 

Tab. 15  Phases for 2D automatic strength reduction analysis 

 

 

 

 

 

 

Tab. 16   Phases for 3D manual strength reduction analysis 

 

 

 

 

 

 

Tab. 17   Phases for 3D manual strength reduction analysis 

 

 

  

 notation analysis 

associated 

LB 

Strength Reduction UB 

15.noded 

non-associated 

after Davis A 

LB Davis A 

Strength Reduction UB Davis A 

15.noded Davis A 

 notation* analysis 

associated manuel SR LB 

Elastoplastic manuel SR UB 

non-associated 

after Davis A 

manuel SR LB 

manuel SR UB 

* for 1m and 4m thickness 

 notation* analysis 

associated and 

non-associated 

after Davis A 

3D failure load LB 1m 

Feasibility 3D failure load LB 1m  ’red 

2D failure load LB 1m 

2D failure load LB 1m  ’red 

* equal for 4m thickness as well as for UB 
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3.5.5 Mesh and Shape Functions 

Several scientific investigations (e.g. Oberhollenzer 2017, Veigl 2020) show that 

the mesh discretization has a significant influence on the factor of safety. In this 

thesis the use of a mesh study was not implemented. In contrary, an automatic 

mesh adaptivity for 2D and 3D calculations is used. Mesh adaptivities are realized 

by means of an automatic mesh discretization at critical points in the soil domain. 

Fig. 35, 36 show the mesh distribution for 2D and 3D calculations in Optum for 

15-noded elements as well as limit analysis. 

 

 
 

Fig. 35  2D mesh distribution – 3 mesh adaptivity 

 

 
 

Fig. 36  3D mesh distribution – 5 mesh adaptivity 

5000 elements LB / UB 

1000 elements 15.noded 

15,000 elements LB / UB 

→ 1m, 4m thickness 



4 Calculation Results 

 

 

63 

4 Calculation Results 

All calculations are done for drained conditions. Both, the analytical and the 

numerical methods, use characteristic values.   

4.1 Analytical Method  

4.1.1 2D: Failure load 

Conventional analytical methods according to standards are still used in daily 

engineering practice, despite many – at least in part – spurious assumptions. Even 

so, analytical methods do not consider the impact of the dilatancy angle (') and 

the friction angle (') is presumed to be evenly distributed, which does not 

correspond to reality. This fact represents the main differences compared to FEA.  

Fig.37 shows the difference between analytical and numerical methods. The 

markers ( x ) at the vertical axis describe the failure loads after standard regulations 

(Tab.18), whereas the load-displacement curve presents the numerical method 

(FEA 15-nod.). It has been noted that for associated plasticity and non-associated 

plasticity after Davis Approach A ('=0°), the difference between FEA and 

conventional methods is in a range spanning from ~300kN/m to 1100kN/m 

relating to the failure load. Notably, that the lower the friction angle is, the lower 

the differences become. For both methods, analytical and numerical, non-

associated plasticity after Davis Approach A provides a substantially lower bearing 

capacity when compared with results of an associated flow rule.  

Tab.18 shows the resulting failure loads for associated plasticity, as well as non-

associated plasticity after Davis Approach A (('=0°) for both methods, analytical 

and numerical. Differences in the bearing capacity of the analytical method arising 

from different design standards, namely DIN 4017, EC7 and ÖNORM B 4435, are 

caused by different declarations of the coefficient concerning the load inclination. 

Nevertheless, for the investigated coarse-grained soil, in case of zero cohesion, the 

analytical methods show differences up to 350kN/m. Comparing each standard 

regulations DIN4017, EC 7 and ÖNORM B 4435, the results are indicating a 

decrease in the range spanning of bearing capacity, with a decreasing friction angle 

(non-associated plasticity after Davis Approach A). However, due to remarkably 

lower values of the failure load, it has to be considered as a conservative method 

(MA Thesis Nowakoswki, 2018).  
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Fig. 37  Load-displacement curve analytical vs. numerical method (FEA 15-nod.)  

for a. ’=’=35° and n.a. Davis A *=’=29.84° 

 

Tab. 18  Analytical method failure load 

failure load [kN/m]  

 
 ‘=35° 

*=29.84° 

(Davis A ‘=0°) 

analytic 

DIN 4017  
(consideration depth coeffcient) 

(consideration dead load foundation) 

1895.46 961.48 

EC 7 2244.75 1113.82 

ÖNORM B 4435 2152.74 1078.26 

numeric 
Plaxis FEA 15-nod. 3030.00 1560.00 

Optum FEA 15-nod. 2796.00 1423.00 

→ failure load ~ Δ300-1100kN/m  
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A study on the influence of the depth coefficient after Brinch Hansen as well as on 

the depth of the foundation base (FB) at the failure load were conducted with GGU 

FOOTING, thereby taking into account DIN 4017. Without consideration of the 

depth coefficient, the difference in failure load is in a range between ~ 140kN/m 

and 375kN/m, whereas the same foundation base depth is used; see Tab.19. 

However, considering the depth coefficient as well as a deeper foundation base 

(FB) leads to higher failure loads and smaller differences compared to FEA results. 

Furthermore, with decreasing friction angle the differences become smaller.  

Tab. 19  Analytical method failure load  

- influence of depth coefficient and foundation base 

failure load [kN/m] 

DIN 4017 

(consideration dead load foundation) 
‘=‘=35° 

‘=*=29.84° 

(Davis A ‘=0°) 

1m FB* 1895.46 961.48 

1m FB 1666.65 820.26 

2m FB* 2606.20 1357.92 

2m FB 2233.21 1127.70 

* with depth coefficient by Brinch Hansen 

 

In addition, a goal was to investigate the influence of the dead load of the 

foundation and the depth coefficient after Brinch Hansen. Both parameters are 

implemented in GGU FOOTING, using the conventional approach after DIN 

4017. The study is done for the case of 1m foundation base (FB). Ignoring both, 

the dead load of the foundation as well as the depth coefficient, the difference in 

failure load according to DIN 4017 is in a range between 405 kN/m and 775 kN/m 

as shown in Tab.20.  However, considering the dead load of the foundation leads 

to higher failure loads and smaller differences compared to FEA results. 

 

Tab. 20 Analytical method failure load - influence of dead load of the foundation 

failure load [kN/m] 

DIN 4017 ‘=‘=35° 
‘=*=29.84° 

(Davis A ‘=0°) 

1m FB* 1895.46 961.48 

1m FB 1121.79 557.02 

* with consideration of the dead load of the foundation, as 

well as the depth coefficient by Brinch Hansen 
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Further calculations concerning non-associated plasticity after Davis Approach A 

with a dilatancy angle of 11.7° (/3) are documented in the Appendix. Detailed 

studies of the influence of the dilatancy angle as well as the cohesion on the bearing 

capacity / failure load are listed in the MA Thesis of Nowakoswki, 2018 (Ex.2).  
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4.2 Numerical Method 

The validity of conventional approaches (analytical methods) is limited to certain 

conditions. Tools quite frequently used in the field of soil mechanics are finite 

element analysis (FEA) and finite element limit analysis (FELA). Therefore, the 

differences of numerical methods have been studied, using displacement-based 

finite element analyses (FEA 10-noded, 15-noded) and finite element limit 

analyses (FELA LB/UB). Furthermore, in numerical methods, the flow rule can be 

studied in more detail. Due to the fact that in the case of finite element limit 

analysis only associated plastic flow is applicable, the approach by Davis (1968) 

is used. Therefore, reduced strength parameters in combination with an associated 

flow rule are performed to simulate non-associated behaviour. Finally, both 

programs, Plaxis 2D and Optum G2, are compared for finite element analysis 

(FEA) calculations, also by means of the constitutive models. In the following two 

chapters 4.2.1, 4.2.2 and 4.2.3, the results concern associated plasticity and non-

associated plasticity, as well as non-associated plasticity after Davis A (ψ’ = 0°). 

Further calculations with non-associated plasticity after Davis Approach A with a 

dilatancy angle of 11.7° ('/3) as well as non-associated plasticity with a dilatancy 

angle of 11.7° ('/3) are documented in the Appendix. Detailed studies of the 

influence of the dilatancy angle as well as the cohesion on the bearing capacity 

represented by the failure load can be found in the MA Thesis of Nowakoswki, 

2018 (Ex.2). 

4.2.1 2D: Failure Load vs. Strength Reduction 

The main aim of this thesis is to compare these two analyses and show the 

differences in loading corresponding to the factor of safety of 1.0, 1.5, 2.0, 3.0, as 

well as to compare the factor of safety corresponding to the applied load. This 

means applying the failure load for FoSFL 1.0 up to 3.0 and calculate with these 

loads the FoSSR for the strength reduction analysis and, on the other hand, applying 

the actual load for FoS 1.0 up to 3.0 for the strength reduction analysis and the 

failure load analysis. Eq.(95) shows the definition of the differences in loading for 

the failure load analysis and the strength reduction analysis. Eq.(96) shows the 

definition of the difference of the resulting strength reduction FoSSR applying the 

failure load and the actual load. Eq.(97) shows the definition of the difference of 

the resulting FoS for both analyses, applying a specific load. 

∆% = (
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑−𝑆𝑅 𝑙𝑜𝑎𝑑

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑
)  × 100   (95) 

∆% = (
𝐹𝑜𝑆𝑆𝑅_𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑−𝐹𝑜𝑆𝑆𝑅_𝑙𝑜𝑎𝑑

𝐹𝑜𝑆𝑆𝑅_𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑
)  × 100  (96) 

∆% = (
𝐹𝑜𝑆𝐹𝐿−𝐹𝑜𝑆𝑆𝑅

𝐹𝑜𝑆𝐹𝐿
)  × 100    (97) 
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Fig.38 shows the load-displacement curve for the failure load analysis obtained 

with both, Plaxis and Optum FEA (15-noded), as well as Optum FELA (LB, UB) 

for associated plasticity and non-associated plasticity after Davis A (ψ’ = 0°). The 

lower and upper bounds are marked as bars above and below the load-displacement 

curve, whereas the failure loads relating to FEA are marked as square icon. In this 

case, finite element limit analysis is confined to an associated flow rule only. It 

should be mentioned that the failure load for Plaxis FEA (15-noded) is calculated 

manually, whereas in Optum FEA (15-noded) and FELA (LB, UB) an automatic 

failure load analysis is possible. In the case of Plaxis calculations, special attention 

has to be drawn to the numerical control parameter arc-length control when 

obtaining the failure load of FoSFL 1.0 (see 3.2.1).  

Comparing the failure loads obtained with Plaxis and Optum, the differences are 

in a range spanning of ~7.8% (~200 kN/m; associated plasticity) and ~8.8% (~150 

kN/m; non-associated plasticity after Davis A). Furthermore, comparing 

associated plasticity with non-associated plasticity after Davis A, it can be shown 

that smaller friction angles lead to decreasing failure loads; a reduction of 5° of the 

friction angle (associated ’=35°, Davis A *=29.84°) reduce the failure load to 

50%. As discussed in chapter 2.2.2 for the lower-bound solution, the actual failure 

load is not reached, whereas for the upper-bound solution the failure load overruns 

the actual failure load. 

 

 
Fig. 38  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod. and 

Optum FELA for a. ’=’=35° and n.a. Davis A *=’=29.84° 
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Fig.39 shows the load-displacement curve for the failure load analysis obtained 

with both, Plaxis FEA (15-noded) and Optum FEA (15-noded) for non-associated 

plasticity and non-associated plasticity after Davis A ((ψ’ = 0°). The failure loads 

relating to FEA are marked as square icon. It should be mentioned that the failure 

load for Plaxis FEA (15-noded) is calculated manually, whereas in Optum FEA 

(15-noded) an automatic failure load analysis is possible. Therefore, in Plaxis the 

numerical control parameter arc-length control is an issue for the resulting failure 

load of FoSFL 1.0.  

Comparing the failure loads obtained with Plaxis and Optum for non-associated 

plasticity, the differences lie within a range spanning of ~7.8% (~150 kN/m), 

whereas for non-associated plasticity after Davis A the differences are in a range 

spanning  of ~8.8% (~150 kN/m). Furthermore, the result show that the original 

Davis Approach A leads to conservative results in the failure load compared to 

non-associated plasticity. As mentioned in chapter 2.2.3, a consequence of non-

associated plasticity is that the resulting failure load is significantly lower 

compared to associated plasticity conditions. Furthermore, a consequence is that 

the failure mechanism is generally non-unique, resulting in oscillations of the load-

displacement curve, which can be attributed to switching modes of failure. This 

phenomenon results in the peaks in the load-displacement curve. It should be 

mentioned that the second peak value of Optum fits well with the failure load 

according to Plaxis as the resulting failure load according to Optum.   

 

 
Fig. 39  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod. 

for n.a. ’=0° and n.a. Davis A *=’=29.84° 
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Fig.40, 41 and 42 represent the total displacement │u│for each analysis. 

            

 

Fig. 40  Total displacement for the corresponding failure load a. ’=’=35° 

 

 

 

Fig. 41  Total displacement for the corresponding failure load n.a. ’=0° 

 

 

Fig. 42  Total displacement for the corresponding failure load  

n.a. Davis A *=’=29.84° 

 

PLAXIS 2D HS Model 

15-noded FEA 

OPTUM HMC Model 

15-noded FEA 

FELA LB, UB 

PLAXIS 2D HS Model 

15-noded FEA 

OPTUM HMC Model 

15-noded FEA 

PLAXIS 2D HS Model 

15-noded FEA 

OPTUM HMC Model 

15-noded FEA 

FELA LB, UB 



4 Calculation Results 

 

 

71 

Fig.43, 44 and 45 represent the shear strains for each analysis. 

 
 

 
 

Fig. 43  Shear strains for the corresponding failure load a. ’=’=35° 

 

 
 

 
 

Fig. 44  Shear strains for the corresponding failure load n.a. ’=0° 

 

 
 

 
 

Fig. 45  Shear strains for the corresponding failure load n.a. Davis A *=’=29.84° 
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For associated plasticity, non-associated plasticity as well as for non-associated 

plasticity after Davis A it has been noted that the failure load obtained with Plaxis 

is generally higher compared to Optum (according to MA Thesis Nowakoswki, 

2018). The reason therefore is the mesh adaptivity used in Optum G2. 

 

To study the influence of the Davis Approach on the strength reduction FoSSR, the 

original Davis Approach A (Davis A 1968), as well as the enhanced Davis 

Approach B and C (Tschuchnigg et al 2015) are used to imitate non-associated 

plasticity for a dilatancy angle of 11.7°. It is also shown by Simon Oberhollenzer 

(MA Thesis “numerical studies on slope stability studies”) that the original Davis 

Approach A leads to conservative results in the factor of safety, whereas the 

enhanced Davis Approach B and C give more accurate results regarding the factor 

of safety. Tab. 21 and 22 show the resulting strength reduction FoSSR according to 

Davis Approach A, B, C (’=11.7°). Therefore, the loads according to Davis 

Approach A are used to calculate the FoSSR according to Davis Approach B and 

C, resulting in higher FoSSR. The study of the influence of the Davis Approach is 

done for Optum SRFELA (LB, UB) and Plaxis SRFEA (15-nod.). 

Tab. 21  Comparison of Davis Approach A, B, C for non-associated ’=11.7° 

 

Tab. 22  Comparison of Davis Approach A, B, C for non-associated ’=11.7° 

 

 

Optum HMC model SRFELA - ’=35° =’=11.7° 

Davis A Davis B* Davis C* 
 LB UB (LB+UB)/2 

FoSSR 
load 

[kN/m] 

load 

[kN/m] 

load 

[kN/m] 
FoSSR *=’ [°] FoSSR *=’ [°] 

3.0 163.5 171 167.25 3.25 34.79 3.30 34.99 

2.0 333 345 339.00 2.15 34.51 2.20 34.92 

1.5 620 655 637.50 1.60 34.08 1.65 34.57 

* according to Davis A (LB+UB)/2 

Plaxis HS model SRFEA 15-noded - ’=35° =’=11.7° 

 Davis A Davis B Davis C 

load* [kN] FoSSR *=’ [°] FoSSR *=’ [°] FoSSR *=’ [°] 

174 2.99 32.44 3.30 34.79 3.30 34.99 

360 1.99 32.44 2.20 34.50 2.20 34.92 

670 1.49 32.44 1.60 34.06 1.60 34.56 

* according to Davis Approach A 



4 Calculation Results 

 

 

73 

Fig.46 demonstrates both analyses, the failure load (FEA) as well as the strength 

reduction (SRFEA), for Plaxis and Optum. The figure shows the relation of the 

applied load, which is required to reach the FoS 3.0, 2.0, 1.5 and 1.0, in case of 

associated plasticity. The resulting FoS at 1000kN/m differs within a range of 51% 

and 10% for 2000kN/m (Eq.(97)). Thus, the higher the loading the less the 

difference in the resulting FoS, comparing both analyses. 

 

 
Fig. 46  FEA 15-nod. vs. SRFEA 15-nod. for a. ’=’=35°  

(Plaxis HS model and Optum HMC model) 

 

Tab.23 shows the applied loads corresponding to FoS-values 3.0, 2.0, 1.5, 1.0 for 

different safety analysis considerations as depicted in Fig.46. The applying load 

differs within a range of 0% for FoS = 1.0 and 7 % for FoS = 3.0 (Eq.(95)). Thus, 

the higher the FoS the higher the difference regarding the corresponding load. 

Furthermore, it is shown that the required loading for the strength reduction 

analysis at FoSSR 3.0 to 1.5 for Plaxis and Optum fits well, whereas for the FoS 

1.0 at collapse the applied load in Plaxis results in generally higher loads compared 

to Optum (relating to the failure load analysis).  

Tab. 23  FEA 15-nod. vs. SRFEA 15-nod. for a. ’=’=35°  

(Plaxis HS model and Optum HMC model) 
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Tab.24 refers to Plaxis SRFEA and Tab.25 refers to Optum SRFEA, in case of 

associated plasticity. It demonstrates the strength reduction analysis, applying the 

failure load compared to the actual load, that is necessary to reach the FoS 3.0, 2.0, 

1.5 and 1.0. The results in the strength reduction FoSSR differ within a range of 0% 

for FoSSR = 1.0 and 53% for FoSSR = 3.0 (Eq.(96)). Thus, the smaller the 

difference in the applied loads the smaller the difference in the resulting FoSSR 

with respect to the strength reduction analysis.  

 

Tab. 24   SRFEA 15-nod. for a. ’=’=35° (Plaxis HS model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

Tab. 25  SRFEA 15-nod. for a. ’=’=35° (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRFEA 15-noded - ’=’=35° 

Plaxis – HS model 

Optum – HMC model 
failure load [kN/m]   →   FoSSR SR load [kN/m]   →    FoSSR 

1010     →     1.40 210       →     3.02 

1515     →     1.22 422       →     2.01 

2020     →     1.12 850       →     1.50 

3030     →     0.99 3030     →     0.99 

SRFEA 15-noded - ’=’=35° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

932       →     1.43 196.5    →     2.98 

1398     →     1.24 416       →     1.99 

1864     →     1.13 816       →     1.49 

2796     →     1.01 2796     →     1.01 
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Fig.47-51 represent the failure mechanism obtained using the strength reduction 

technique (associated plasticity) and FEA according to Plaxis and Optum. In this 

case, the applied failure loads corresponding to FoSFL-values from 1.0 to 3.0 are 

used to calculate the FoSSR for the strength reduction approach and vice versa 

(Tab.24, 25). 

 

Fig. 47  Plaxis HS model SRFEA 15-nod. incremental deviatoric strain  

a. ’= ’= 35° for the corresponding actual load FoSSR 3.0-1.5 

 

 

Fig. 48  Plaxis HS model SRFEA 15-nod. incremental deviatoric strain  

a. ’= ’= 35° for the corresponding failure load FoSFL 3.0-1.5 

 

 

 

Fig. 49  Optum HMC model SRFEA 15-nod. shear dissipation  

a. ’= ’= 35° for the corresponding actual load FoSSR 3.0-1.5 

 

 

 

Fig. 50  Optum HMC model SRFEA 15-nod. shear dissipation  

a. ’= ’= 35° for the corresponding failure load FoSFL 3.0-1.5 

 

                  

Fig. 51  Sliding surface at collapse SRFEA 15-nod. a. ’= ’ = 35° 

Plaxis HS model              →          Optum HMC model 

FoSSR 0.99 FoSSR 1.01 

FoSSR 3.02 FoSSR 2.01 FoSSR 1.50 

FoSSR 1.40 FoSSR 1.22 FoSSR 1.12 

FoSSR 2.98 FoSSR 1.99 FoSSR 1.49 

FoSSR 1.43 FoSSR 1.24 FoSSR 1.13 
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Fig.52 demonstrates both analyses, the failure load (FELA) as well as the strength 

reduction (SRFELA) for Optum.  The figure shows the relation of the applied load, 

which is required to reach the FoS 3.0, 2.0, 1.5 and 1.0, in case of associated 

plasticity. The resulting FoS at 1000kN/m vary within a range of 49% and 14% for 

2000kN/m (Eq.(97)). Thus, the higher the loading the less the difference in the 

resulting FoS, comparing both analyses.  

 

Fig. 52  FELA vs. SRFELA for a. ’=’=35° (Optum HMC model LB, UB) 

 

Tab.26 shows the applied loads corresponding to FoS-values 3.0, 2.0, 1.5, 1.0. for 

different safety analysis considerations as depicted in Fig.52. The results vary 

within a range of 0% for FoS = 1.0 and 79% for FoS = 3.0 (Eq.(95)). Thus, the 

higher the FoS the higher the difference regarding the corresponding load. As 

mentioned before, the loading for the strength reduction analysis at collapse has to 

be the same as for the failure load analysis, shown in Tab.26. 

Tab. 26  FELA vs. SRFELA for a. ’=’=35° (Optum HMC model LB, UB) 

 

 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 500 1000 1500 2000 2500 3000 3500

Fo
S 

[-
]

load [kN/m]

Optum SRFELA LB Optum SRFELA UB Optum FELA LB Optum FELA UB

Optum HMC model − ’=’=35° 

 FELA LB SRFELA LB FELA UB SRFELA UB 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 897.67 192 954.33 200 
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Tab.27 (LB) and 28 (UB) represent the strength reduction FoSSR for the applied 

failure load as well as the actual load reaching the FoS 3.0, 2.0, 1.5, 1.0, in case of 

associated plasticity. The results in the strength reduction FoSSR vary within a 

range of 0% for FoSSR = 1.0 and 52% for FoSSR = 3.0 (Eq.(96)). Thus, the smaller 

the difference in the applied loads the smaller the difference in the resulting FoSSR 

with respect to the strength reduction analysis. 

Tab. 27  SRFELA LB for a. ’=’=35° (Optum HMC model)  

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

 

Tab. 28  SRFELA UB for a. ’=’=35° (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRFELA LB - ’=’=35° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

897.67       →     1.43 192       →     3.00 

1346.50     →     1.24 405       →     2.00 

1795.33     →     1.13 792       →     1.50 

2693          →     1.00 2693     →     1.00 

SRFELA UB - ’=’=35° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

954.33       →     1.42 200       →     3.00 

1431.50     →     1.24 424       →     2.00 

1908.67     →     1.13 829       →     1.50 

2863          →     1.02 2863     →     1.02 
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Fig.53-57 represent the failure mechanism obtained using the strength reduction 

technique (associated plasticity) and the limit analysis according to Optum. In this 

case, the applied failure loads corresponding to FoSFL-values from 1.0 to 3.0 are 

used to calculate the FoSSR for the strength reduction approach and vice versa 

(Tab.27, 28).  

 

Fig. 53  Optum HMC model SRFELA LB shear dissipation a. ’= ’= 35°  

for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 54  Optum HMC model SRFELA LB shear dissipation a. ’= ’= 35°  

for the corresponding failure load FoSFL 3.0-1.5 

 

Fig. 55  Optum HMC model SRFELA UB shear dissipation a. ’= ’= 35°  

for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 56  Optum HMC model SRFELA UB shear dissipation a. ’= ’= 35°  

for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 57  Sliding surface at collapse SRFELA (LB, UB) a. ’=’= 35° 
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Fig.58 demonstrates both analyses, the failure load (FEA) as well as the strength 

reduction (SRFEA) for Plaxis. The figure shows the relation of the applied load, 

which is required to reach the FoS 3.0, 2.0, 1.5 and 1.0, in terms of non-associated 

plasticity versus non-associated plasticity after Davis A. The resulting FoS at 

500kN/m differs within a range of 43 % and 21 % for 1000kN/m (Eq.(97)). Thus, 

the higher the loading the less the difference in the resulting FoS, comparing both 

analyses. 

 

 
 

Fig. 58  FEA 15-nod. Vs. SRFEA 15-nod. for n.a. '=0° and  

n.a. Davis A *='=29.84° (Plaxis HS model) 

 

Tab.29 shows the obtained loads that correspond to the FoS-values 3.0, 2.0, 1.5, 

1.0. for each safety analysis, failure load and strength reduction as depicted in Fig. 

58. The results differ within a range of 0% for FoS = 1.0 and 70% for FoS = 3.0 

for n.a. Davis A (Eq.(95)). On the opposite the results vary within a range of 0% 

for FoS = 1.0 and 66% for FoS = 3.0 (Eq.(95)), in terms of non-associated 

plasticity. Consequently, the higher the FoS the higher the difference regarding the 

corresponding load. It should be mentioned that the original Davis Approach A 

leads to conservative results regarding the factor of safety compared to non-

associated plasticity. Furthermore, as mentioned before, the original Davis 

Approach A leads to conservative results with respect to the factor of safety 

compared to non-associated plasticity. 
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Tab. 29  FEA 15-nod. vs. SRFEA 15-nod. for n.a. '=0° and  

n.a. Davis A *='=29.84° (Plaxis HS model) 

 

Tab.30 (non-associated) and Tab.31 (non-associated after Davis A) highlights the 

results of the strength reduction analysis, applying the failure load compared to the 

actual load, that is necessary to reach the FoS 3.0, 2.0, 1.5 and 1.0 considering non-

associated plasticity and non-associated plasticity after Davis A. The results differ 

within a range of 0% for FoSSR = 1.0 and 50% for FoSSR = 3.0 for n.a. Davis A 

(Eq.(96)). On the opposite the results vary within a range of 0% for FoSSR = 1.0 

and 45% for FoSSR = 3.0 (Eq.(96)), in terms of non-associated plasticity. 

Consequently, the less the FoS the less the difference regarding the corresponding 

load.  

Tab. 30  SRFEA 15-nod. for n.a. ’=0° (Plaxis HS model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

Tab. 31  SRFEA 15-nod. for n.a. Davis A *= ’=29.84° (Plaxis HS model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

 Plaxis – HS model ’=0° Plaxis – HS model =’=28.94° 

 FEA SRFEA FEA SRFEA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 580 198 520 148 

2.0 870 405 780 292 

1.5 1160 730 1040 530 

1.0 1740 1740 1560 1560 

SRFEA 15-noded - ’=0° 

Plaxis – HS model 

failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

580       →     1.67 198       →     3.01 

870       →     1.39 405       →     2.01 

1160     →     1.23 730       →     1.50 

1740     →     1.01 1740     →     1.01 

SRFEA 15-noded - =’=28.94° 

Plaxis – HS model 

failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

520       →     1.51 148       →     3.00 

780       →     1.26 292       →     2.01 

1040     →     1.14 530       →     1.50 

1560     →     0.99 1560     →     0.99 
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Fig.59-63 represent the SRFEA failure mechanisms obtained with Plaxis 

considering both, non-associated plasticity and non-associated plasticity after 

Davis A. In this case, the applied failure loads corresponding to FoSFL-values from 

1.0 to 3.0 are used to calculate the FoSSR for the strength reduction approach and 

vice versa (Tab.30, 31).  

 

Fig. 59  Plaxis HS model SRFEA 15-nod. incremental deviatoric strain  

n.a. Davis A *=’=29.84° for the corresponding actual load FoSSR 3.0-1.5 

 

 

Fig. 60  Plaxis HS model SRFEA 15-nod. incremental deviatoric strain  

n.a. Davis A *=’=29.84° for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 61  Plaxis HS model SRFEA 15-nod. incremental deviatoric strain n.a. ’ = 0°  

for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 62 Plaxis HS model SRFEA 15-nod. incremental deviatoric strain n.a. ’ = 0°  

for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 63  Sliding surface at collapse 

Plaxis HS model SRFEA 15-nod. incremental deviatoric strain 

 

FoSSR 0.99 *= ’= 29.84° FoSSR 1.01 ’= 35° ’= 0° 

FoSSR 3.00 FoSSR 2.01 FoSSR 1.50 

FoSSR 1.51 FoSSR 1.26 FoSSR 1.14 

FoSSR 3.01 FoSSR 2.01 FoSSR 1.50 

FoSSR 1.67 FoSSR 1.39 FoSSR 1.23 
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Fig.64 demonstrates both analyses, the failure load (FELA) as well as the strength 

reduction (SRFELA) for Optum.  The figure shows the relation of the applied load, 

which is required to reach the FoS 3.0, 2.0, 1.5 and 1.0, in case of non-associated 

plasticity after Davis A. The resulting FoS at 500kN/m vary within a range of 50% 

and 14% for 1000kN/m (Eq.(97)). Thus, the higher the loading the less the 

difference in the resulting FoS, comparing both analyses. 

 

 

Fig. 64  FELA vs. SRFELA for n.a. Davis A *=’=29.84°  

(Optum HMC model LB, UB) 

 

Tab.32 shows the applied loads corresponding to FoS-values 3.0, 2.0, 1.5, 1.0. for 

different safety analysis considerations as depicted in Fig.64. The results vary 

within a range of 0% for FoS = 1.0 and 70% for FoS = 3.0. Thus, the higher the 

FoS the higher the difference regarding the corresponding load. As mentioned 

before, the loading for the strength reduction analysis at collapse has to be the same 

as for the failure load analysis, shown in Tab.32. 

Tab. 32  FELA vs. SRFELA for n.a. Davis A *=’=29.84°  

(Optum HMC model LB, UB) 
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 FELA LB SRFELA LB FELA UB SRFELA UB 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 465.33 141 488.33 145 

2.0 698 275 732.50 286 

1.5 930.67 492 976.67 513 

1.0 1396 1396 1465 1465 
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Tab.33 (LB) and 34 (UB) represent the strength reduction FoSSR for the applied 

failure load as well as the actual load reaching the FoS 3.0, 2.0, 1.5, 1.0, in case of 

non-associated plasticity after Davis A. The results in the strength reduction FoS 

vary within a range of 0% for FoSSR = 1.0 and 50% for FoSSR = 3.0 (Eq.(96)). 

Thus, the smaller the difference in the applied loads the smaller the difference in 

the resulting FoSSR with respect to the strength reduction analysis. 

Tab. 33  SRFELA LB for n.a. Davis A *=’=29.84° (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

Tab. 34  SRFELA UB for n.a. Davis A *=’=29.84° (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRFELA LB - *=’=29.84° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

465.33     →      1.54 141       →     3.01 

698          →      1.30 275       →     2.00 

930.67     →     1.16 492       →     1.50 

1396        →      1.00 1396     →     1.00 

SRFELA UB - *=’=29.84° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

488.33       →     1.54 145       →     3.00 

732.50       →     1.30 286       →     2.00 

976.67       →     1.16 513       →     1.50 

1465          →     1.01 1465     →     1.01 
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Fig.65-69 represent the failure mechanism obtained using the strength reduction 

technique (non-associated plasticity after Davis) and the limit analysis according 

to Optum. In this case, the applied failure loads corresponding to FoSFL-values 

from 1.0 to 3.0 are used to calculate the FoSSR for the strength reduction approach 

and vice versa (Tab.33, 34).  

 

Fig. 65  Optum HMC model SRFELA LB shear dissipation  

n.a. Davis A *=’= 29.84° for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 66  Optum HMC model SRFELA LB shear dissipation  

n.a. Davis A * =’=29.84° for the corresponding failure load FoSFL 3.0-1.5 

 

Fig. 67  Optum HMC model SRFELA UB shear dissipation  

n.a. Davis A *=’=29.84° for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 68  Optum HMC model SRFELA UB shear dissipation  

n.a. Davis A *=’=29.84° for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 69  Sliding surface at collapse SRFELA (LB, UB) n.a. Davis A *=’=29.84° 

  

            Optum HMC model LB                   →                    Optum HMC model UB 

FoSSR 1.00 FoSSR 1.01 

FoSSR 3.01 FoSSR 2.00 FoSSR 1.50 

FoSSR 1.54 FoSSR 1.30 FoSSR 1.16 

FoSSR 3.00 FoSSR 2.00 FoSSR 1.50 

FoSSR 1.54 FoSSR 1.30 FoSSR 1.16 
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4.2.2 2D: Influence of the Constitutive Model  

To evaluate the influence of the constitutive model on the obtained collapse loads 

and corresponding factors of safety, for both safety analyses (failure load, strength 

reduction) selected studies considering different flow rules and constitutive models 

(MC, HS, HMC) are performed. The HS (Plaxis) and HMC (Optum) model are 

both using the MC failure criterion, thus the results for a homogenous soil body 

should be nearly the same as for the MC Model and no differences in the factor of 

safety are expected to occur. For both models, strength reduction analyses (SRFEA 

15-nod., SRFELA LB, UB) as well as failure load analyses (FEA 15-nod., FELA 

LB, UB) are performed, but only for associated plasticity. Tab. 35-38 show the 

required loading, that has to be applied to reach the FoS 3.0 to 1.0. for each safety 

analysis.  This referred to both programs, Plaxis and Optum. 

 

Tab. 35  Influence of the Plaxis constitutive model on the FoS for the failure load and 

strength reduction analysis (a. ’=’=35° 15-nod. element) 

 

Tab. 36  Influence of the Optum constitutive model on the FoS for the failure load and 

strength reduction analysis (a. ’=’=35° 15-nod. element) 

 

 

 

Plaxis 15-noded element - ’=’=35° 

 HS model MC model 

 FEA SRFEA FEA SRFEA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 1010 210 1006.67 204 

2.0 1515 422 1510 427 

1.5 2020 850 2013.33 850 

1.0 3030 3030 3020 3020 

Optum 15-noded element- ’=’=35° 

 HMC model MC model 

 FEA SRFEA FEA SRFEA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 932 196.5 933.33 195 

2.0 1398 416 1400 415 

1.5 1864 816 1866.67 815 

1.0 2796 2796 2800 2800 
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Tab. 37  Influence of the Optum constitutive model on the FoS for the failure load and 

strength reduction analysis (a. ’=’=35° LB) 

 

Tab. 38  Influence of the Optum constitutive model on the FoS for the failure load and 

strength reduction analysis (a. ’=’=35° UB) 

 

The FoS results are almost identical for both constitutive models MC (Plaxis, 

Optum) and HS (Plaxis) / HMC (Optum) as well as FE codes (Plaxis, Optum). 

There is hardly any difference regarding the applied loads corresponding to FoSSR 

values from 3.0 to 1.0 as well as the applied loads required in order to reach the 

failure loads corresponding to FoSFL values from 3.0 to 1.0. At last, whether using 

the MC or the HS/HMC model, the constitutive model has hardly any effect on 

drained conditions of a homogenous soil body. Therefore, the 3D calculations 

according to Plaxis 3D and Optum G3 were done for the Mohr Coulomb model 

only. 

In case of Plaxis, it should be taken into account that the mesh should be 

sufficiently fine to receive accurate numerical results. In contrast, too fine meshes 

should be avoided, since they lead to excessive calculation times. On the other 

hand, Optum involves an automatic mesh adaptivity function, which involves an 

iterative process that automatically refines the mesh at regions with large strain 

gradients. As a consequence, the mesh dependency of calculations results is 

significantly reduced, thereby reducing the calculation times.  

 

Optum LB - ’=’=35° 

 HMC model MC model 

 FELA SRFELA FELA SRFELA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 897.67 192 896.67 192 

2.0 1346.50 405 1345 400 

1.5 1795.33 792 1793.33 790 

1.0 2693 2693 2690 2690 

Optum UB - ’=’=35° 

 HMC model MC model 

 FELA SRFELA FELA SRFELA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 954.33 200 954.67 202 

2.0 1431.50 424 1432 420 

1.5 1908.67 829 1909.33 830 

1.0 2863 2863 2864 2864 
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4.2.2.1 p’-q stress path and corresponding π-plane  

p’-q stress paths as well as corresponding -planes are obtained for Plaxis 

calculations (15-noded elements) considering both, MC and HS. Considering the 

failure load analysis, the calculations were performed with associated (’=’), 

non-associated plasticity (’=0°, 11.7°) and non-associated plasticity after Davis 

Approach A (*=’). The failure load analysis is done by stepwise loading 

according to FoSFL 3.0, 2.0, 1.5 until collapse occurs (FoSFL 1.0). Fig.70 shows the 

considered stress points, which are located at characteristic points of the failure 

body. Stress points A and B were positioned inside and on the edge of the active 

zone, whereas C and D were on the failure surface confining the passive zone; E 

was specified inside the passive zone (according to Fig.26). Stress point F was 

randomly specified outside the failure body. Subsequent results are restricted to 

MC; in addition, results obtained with HS are documented in the Appendix. 

 

 

Fig. 70  Stress points on an in between the sliding surface  

(failure mechanism incremental deviatoric strain ys) 

 

As a starting point, a brief introduction to the plots of the p’-q stress paths and the 

corresponding -planes is given. π-planes cover starting and end points of 

respective phases (initial, FoSFL 3.0, 2.0, 1.5,1.0), whereas p'-q stress paths involve 

all points of respective phases (initial, FoSFL 3.0, 2.0, 1.5,1.0). Furthermore, the -

plane for each stress point is plotted at failure, and not for each FoSFL (3.0, 2.0, 

1.5). The yield surface for the -plane is drawn in red solid lines and concerns the 

maximum isotropic effective stress. On the other hand, the grey dot-dashed lines 

represent the triaxial compression and triaxial extension MC failure lines in the -

plane and the p’-q stress paths. If the last point of the plastic phase at failure has 

reached the yield surface in -plane, the current stress point is plastic, otherwise it 

is an elastic point. 

A 
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C 
F 
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Fig. 71  MC model FEA 15-nod. plastic points for a. ’=’=35° stress point A-F 

  

 

 

Fig. 72  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and plastic stress point A (MC model FEA 15-nod.) 

 

 

 

Fig. 73  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and plastic stress point B (MC model FEA 15-nod.) 
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Fig. 72, 73 show stress points A and B (i.e. active zone; associated plasticity). As 

soon as stress paths coincide with the MC failure line, the stress points become 

plastic. The corresponding -plane illustrates the stress path in a p’-q’ space at 

failure for each stress point (FoSFL 1.0). Furthermore, Tab.39 shows that the lode 

angle  is almost the same (i.e. -22°) except for the elastic stress point F ( = −). 

 

Tab. 39   Resulting stresses and lode angle for stress point A-F  

for a. ’=’=35° at failure (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

 

The remaining stress points C,D,E and F for associated plasticity are shown in 

the Appendix. 

 

 

 

 

 

 

 

 

 

’=’=35° - FoSFL 1.0 at failure 

stress point ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 1173.12 447.27 317.90 -21.934 

B -plastic 1633.06 622.64 442.54 -21.934 

C - plastic 438.93 167.29 118.95 -21.945 

D - plastic 145.05 55.26 39.31 -21.955 

E - plastic 87.42 33.31 23.69 -21.950 

F - elastic 381.48 151.07 122.35 -24.197 
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Fig. 74  MC model FEA 15-nod. plastic points for n.a. ’=0° stress point A-F 

 

 

Fig. 75  p‘-q stress path and corresponding -plane  

for n.a. ’=0° and plastic stress point C (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

 

Fig. 76  p‘-q stress path and corresponding -plane  

for n.a. ’=0° and plastic stress point D (MC model FEA 15-nod.) 
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Fig. 75, 76 show stress points C and D (passive zone at sliding surface) for non-

associated plasticity. The corresponding -plane illustrates the stress path in a p’-

q space until failure for each stress point (FoSFL 1.0). Furthermore, Tab. 40 

illustrates that the lode angle  remains nearly constant at -22° except for the elastic 

stress points E and F ( = -23°). As mentioned in chapter 2.2.3, a consequence of 

non-associated plasticity is the non-unique failure load resulting in oscillations of 

the FoSFL beyond a threshold value linked to the bearing capacity.  

 

Tab. 40  Resulting stresses and lode angle for stress point A-F  

for n.a. ’=0° at failure (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

 

Results concerning the remaining stress points A,B,E and F for non-associated 

plasticity are shown in the Appendix. In this context, the same conclusions can be 

drawn for a dilatancy angle of 11.7° ('/3).  

 

 

 

 

 

 

 

’=0° - FoSFL 1.0 at failure 

stress point ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 557.98 212.72 151.21 -21.937 

B -plastic 1081.81 412.44 293.16 -21.935 

C - plastic 208.45 79.42 56.49 -21.954 

D - plastic 77.73 29.60 21.06 -21.968 

E - elastic 77.46 30.01 22.64 -22.884 

F - elastic 299.92 116.35 88.17 -22.963 
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Fig. 77  MC model FEA 15-nod. plastic points  

for n.a. Davis A *=’=29.84° stress point A-F  

 

  
Fig. 78  p‘-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and plastic stress point E 

 

Fig. 79  p‘-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and elastic stress point F 
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Fig. 78, 79 show stress points E and F, which are either located inside the passive 

zone or outside the failure body, for non-associated plasticity after Davis A. At the 

position of the MC failure criterion, the stress point becomes plastic. The 

corresponding -plane illustrates the stress path in a p’-q space at failure for each 

stress point (FoSFL 1.0). As seen in Fig 78 and Fig. 79, both stress points (E, F) 

tend to trixial compression. Furthermore, Tab. 41 shows that the lode angle  gives 

almost identical values ranging from -24° to -25°. It should be mentioned, that 

since the last point of the stress path remains in between the yield surface (at 

failure), stress point F functions as an elastic point. Comparing the FoSFL 3.0, 2.0 

and 1.5, the last point of each phase lies on the corresponding yield surface. 

 

Tab. 41  Resulting stresses and lode angle for stress point A-F  

for n.a. Davis A *=’=29.84° at failure (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

Results concerning the remaining stress points A,B,C and D for non-associated 

plasticity after Davis A are shown in the Appendix. In this context, the same 

conclusions can be drawn for a dilatancy angle of 11.7° ('/3).  

  

*=’=29.84° - FoSFL 1.0 at failure 

 ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 776.02 312.31 260.35 -24.749 

B -plastic 884.24 355.88 296.65 -24.748 

C - plastic 292.31 119.67 98.07 -24.176 

D - plastic 116.49 48.18 39.08 -23.830 

E - plastic 70.32 28.88 23.59 -24.074 

F - elastic 301.64 125.66 108.28 -25.341 
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4.2.3 2D: Influence of Numerical Settings  

4.2.3.1 Tolerated error  

To study the influence of numerical control parameters on safety analyses, SRFEA 

is performed with altered tolerated error values (0.1%, 1% = default setting, 3%, 

5%). The numerical study concerning the tolerated error is done using Plaxis (15-

noded elements, HS model). The calculations were executed for the FoSSR 1.0, 1.5, 

2.0 for associated (’=’), non-associated plasticity (’=0°, 11.7°) as well as non-

associated plasticity after Davis Approach A (*=’),  by applying the failure load 

(FoSFL 1.0) from Optum and calculating the according strength reduction FoSSR. 

Therefore, there should be no more reduction of the strength parameter. For FoSSR-

values 1.5 and 2.0, “real” loads according to Plaxis strength reduction were 

considered. In addition, failure loads obtained with Optum for FoSFL 1.0 were 

applied for this study to compare both FE codes. 

Fig.80 demonstrates the influence of the tolerated error (1% = default setting, 3%, 

5%) on the oscillation behaviour with respect to the factor of safety at failure 

(FoSSR 1.0). Performing automatic SRFEA with a tolerated error of 3% and 5% 

result in a higher amplitude of oscillation and therefore higher FoSSR-peaks 

compared to the default setting of 1%. Thus, in case of associated plasticity, the 

higher the tolerated error (inaccurate), the more oscillations of the FoSSR-value 

occur, for closer observation (zoomed in). Generally, associated plasticity results 

in less oscillations (smoother curve) compared to non-associated plasticity.  

 

 

Fig. 80  Influence of tolerated error 1%, 3%, 5% for a. ’=’=35° at failure 

(HS model SRFEA 15-nod.) 
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Given the same boundary conditions (i.e. associated plasticity, FoSSR = 1.0), Fig.81 

demonstrates the influence of a tolerated error equal 0.1%, which means less than 

the default setting of 1. Performing automatic SRFEA with a tolerated error of 

0.1% results in less oscillations and therefore lower FoSSR-peaks leading to a 

smoother curve. Thus, in case of associated plasticity, the lower the tolerated error, 

the less FoSSR-oscillations occur. Furthermore, it is shown that the gradient of the 

first branch is lower compared to tolerated errors of 1% and 5%. Additionally, the 

horizontal branch is yet to be reached. However, when more steps are used, the 

graph converges towards the result obtained with tolerated errors 1% and 5%. 

 

 

Fig. 81  Influence of tolerated error 0.1% for a. ’=’=35° at failure  

(HS model SRFEA 15-nod.) 

 

Given the same number of load steps, Tab.42 demonstrates that the FoSSR-values 

obtained with a tolerated error of 0.1 % are smaller compared to FoSSR obtained 

with tolerated errors of 1% and 5%. However, when more steps are used, the graph 
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0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0 100 200 300 400 500 600 700 800 900 1000 1100

Fo
S S

R
[-

]

Steps [-]

tolerated error 0.1% 1000 steps FoS 0.98 tolerated error 0.1% 500 steps FoS 0.96



4 Calculation Results 

 

 

96 

Tab. 42  Comparison of the tolerated error 0.1%, 1%, 3%, 5% and the resulting FoSSR 

at failure for a. ’=’=35° (HS model SRFEA 15-nod.) 

 

 tolerated error 

steps 0.1% 1% 3% 5% 

500 FoSSR 0.96 FoSSR 1.02 FoSSR 1.01 FoSSR 1.01 

1000 FoSSR 0.98 - - - 

 

Fig.82 demonstrates the influence of the tolerated error for ’=0° (1% default 

setting, 3%, 5%) on the oscillation behavior with respect to the factor of safety at 

failure (FoSSR 1.0). Performing automatic SRFEA with a tolerated error of 3% and 

5% results in lower amplitudes of oscillation and therefore lower FoSSR-peaks, 

compared to the default setting of 1%. Thus, in case of non-associated plasticity 

(’=0°), the higher the tolerated error (inaccurate), the less FoSSR-oscillation 

(smooth curve) occurs, relating to 1%, 3%, 5%. As mentioned in chapter 2.2.3, a 

consequence of non-associated plasticity is that the response of the collapse load 

will generally be non-unique when solving elastoplastic boundary value problems.  

 

 
Fig. 82  Influence of tolerated error 1%, 3%, 5% for n.a. ’=0° at failure  

(HS model SRFEA 15-nod.) 
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Fig.83 demonstrates the influence of the tolerated error 0.1% in terms of non-

associated plasticity (’=0°) at failure (FoSSR 1.0). Performing automatic SRFEA 

with a tolerated error 0.1%. results in lower amplitudes of oscillation and therefore 

lower FoSSR-peaks (smooth curve). Thus, in case of non-associated plasticity 

(’=0°), the lower the tolerated error (more accurate), the less the FoSSR-

oscillation (smooth curve), relating to 0.1% and 1%. Furthermore, it is shown, that 

the gradient of the first branch is not as steep, compared to tolerated error of 1% 

up to 5%.  It should be noted that the horizontal branch is yet not reached. 

However, when more steps are used, the graph is approximating towards the range 

of tolerated error 1% up to 5%. 

 

 

Fig. 83  Influence of tolerated error 0.1% for n.a. ’=0° at failure  

(HS model SRFEA 15-nod.) 
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approximating towards 1.0. 
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Tab. 43  Comparison of the tolerated error 0.1%, 1%, 3%, 5% and the resulting 

FoSSR at failure for n.a. ’=0° (HS model SRFEA 15-nod.) 

 

 tolerated error 

steps 0.1% 1% 3% 5% 

500 FoSSR 0.94 FoSSR 1.06 FoSSR 1.06 FoSSR 1.07 

1000 FoSSR 1.00 - - - 

 

Fig.84 demonstrates the influence of the tolerated error (1% default setting, 3%, 

5%) on the oscillation behavior with respect to the factor of safety at failure (FoSSR 

1.0).  Performing automatic SRFEA with a tolerated error of 3% and 5% results in 

higher amplitudes of oscillation and therefore higher FoSSR-peaks, compared to 

the default setting of 1%. Thus, in case of non-associated plasticity after Davis A 

(*=’=29.84°), the higher the tolerated error (inaccurate), the more oscillations 

of the FoSSR-value occur, for closer observation (zoomed in). On the opposite the 

tolerated error of 0.1% results in lower amplitudes of oscillation and therefore in 

lower FoSSR-peaks. Consequently, the lower the tolerated error (more accurate), 

the less oscillations (smooth curve) of the FoSSR-value occur, for closer 

observation (zoomed in). Furthermore, it is shown, that the gradient of the first 

branch is not as steep, compared to tolerated error of 1% up to 5%.  It should be 

noted that the horizontal branch is yet not reached. However, when more steps are 

used, the graph is approximating towards the range of tolerated error 1% up to 5%. 

 
Fig. 84  Influence of tolerated error 0.1%, 1%, 3%, 5%  

for n.a. Davis A =’=29.84° at failure (HS model SRFEA 15-nod.) 
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Tab. 44   Comparison of the tolerated error 0.1%, 1%, 3%, 5% and the resulting 

                   FoSSR at failure n.a. Davis A =’=29.84° (HS model SRFEA 15-nod.) 

 tolerated error 

steps 0.1% 1% 3% 5% 

500 FoSSR 1.00 FoSSR 1.00 FoSSR 1.01 FoSSR 1.00 

1000 FoSSR 1.00 - - - 

 

However, there are hardly difference observed in the factor of safety at failure, 

besides the changing of the graph (oscillation). Further calculations for non-

associated plasticity as well as after Davis Approach A with a dilatancy angle of 

11.7° ('/3) have been done, representing the same conclusions as for ’=0°and 

shown in the Appendix. Additionally, all the conditions are calculated for the 

FoSSR 1.5 and 2.0, shown in the Appendix. Notably, with decreasing FoSSR-

oscillation the tolerated error 1% up to 5% are in good agreement. Compared to 

tolerated error 0.1% the results and their conclusions are always the same. At last, 

studies according to the mesh discretization influence of the tolerated error and 

therefore on the resulting FoSSR have been done in the MA Thesis of Dipl.-Ing. 

Veigl, Bsc “Numerical studies on slope stability analysis for drained and undrained 

material behaviour”, 2020. The reason of the discrepancy between associated and 

non-associated plasticity according to the oscillation behavior at higher tolerated 

errors (3%, 5%) is part of ongoing research. 
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4.2.3.2 K0 value 

To study the influence of K0 on both FE-codes (FEA, FELA) and the resulting FoS 

for each analysis, different values are considered (0.3, 1.0) and further compared 

to the original one (dependent on the friction angle). The numerical study of the 

K0 parameter has been done for Plaxis MC model and for Optum HMC model. 

The calculations are done for the failure load and strength reduction FoS 1.0, 1.5, 

2.0, 3.0 for associated and non-associated plasticity, as well as non-associated 

plasticity after Davis Approach A 

𝐾0 =
𝜎𝑥𝑥
′

𝜎𝑦𝑦
′          𝑤𝑖𝑡ℎ →    𝜎𝑦𝑦

′ = 𝛾 × 𝑧     𝑎𝑛𝑑     𝜎𝑥𝑥
′ = 𝐾0 × 𝜎𝑦𝑦

′    (98) 

Generally, the initial stress state is an important aspect in finite element analysis 

and significantly governed by the earth pressure coefficient at rest (but also from 

soil surface, soil stratigraphy and so on). The vertical effective stresses σv′ satisfy 

equilibrium is relating to the dead load of the soil body. It should be noted, that   

the K0 procedure does not guarantee failure criteria in the stress field, whereas 

complete equilibrium is satisfied only for a horizontal soil surface, soil layers and 

phreatic levels. The horizontal effective stress is defined by σh′. The K0 value is 

generally calculated by Eq.(98), whereas the default setting in Plaxis corresponds 

to K0 = 1 - sin’. 

Tab.45-53 show the resulting FoS and the applied loads obtained during failure 

load (FEA, FELA), as well as strength reduction analysis (SRFEA, SRFELA) for 

the Optum HMC model 

Tab. 45  Influence of the K0-value at the FoSFL for Optum HMC model FEA 15-nod.  

a. ’=’=35°, n. ’=0° and n.a. Davis A *=’=29.84° 

Optum HMC model – FEA 15-noded failure load [kN/m] 

 defining the flow rule K0 = 0.3 
K0 = 0.426 

 
K0 = 1.0 

K0* = 0.502 

 ’= ’= 35° 2797 2796 2759 

’= 0° 1634 1605 1631 

*= ’= 29.84° 1436 1423 1417 
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Tab. 46  Influence of the K0-value at the FoSFL for Optum HMC model FELA LB  

a. ’=’=35° and n.a. Davis A *=’=29.84° 

Optum HMC model – FELA LB failure load [kN/m] 

 defining the flow rule K0 = 0.3 
K0 = 0.426 

 
K0 = 1.0 

K0* = 0.502 

 ’= ’= 35° 2692 2693 2693 

*= ’= 29.84° 1396 1396 1395 

 

Tab. 47  Influence of the K0-value at the FoSFL for Optum HMC model FELA UB  

a. ’=’=35° and n.a. Davis A *=’=29.84° 

Optum HMC model – FELA UB failure load [kN/m] 

 defining the flow rule K0 = 0.3 
K0 = 0.426 

 
K0 = 1.0 

K0* = 0.502 

 ’= ’= 35° 2864 2863 2864 

*= ’= 29.84° 1464 1465 1464 

 

Tab. 48  Influence of the K0-value at FoSSR for Optum HMC model SRFEA 15-nod.  

a. ’=’=35° 

Optum HMC model SRFEA 15-noded ’=’=35° 

K0 = 0.3 K0 = 0.426 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

 197  197  197 

 415 1.99 416  415 

 810  816  805 

 2797  2796  2759 

 

Tab. 49  Influence of the K0-value at the FoSSR for Optum HMC model SRFEA  

15-nod. n.a. Davis A =’=29.84° 

Optum HMC model SRFEA 15-noded *=’=29.84° 

K0 = 0.3 K0* = 0.502 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

 144  143  143 

 280  280  280 

 501  501  501 

 1436  1423  1417 
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Tab. 50  Influence of the K0-value at the FoSSR for Optum HMC model SRFELA LB  

a. ’=’=35° 

Optum HMC model SRFELA LB ’=’=35° 

K0 = 0.3 K0 = 0.426 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

 192.5  192  192.5 

 405  405  405 

 792  792   

 2692  2693   

 

Tab. 51  Influence of the K0-value at the FoSSR for Optum HMC model SRFELA LB  

n.a. Davis A *=’=29.84° 

Optum HMC model SRFELA LB *=’=29.84° 

K0 = 0.3 K0* = 0.502 K0 = 1.0 

FoSSR  load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

 140.5  140.5  140.5 

 275  275  275 

 492  492  492 

 1396  1396  1395 

 

Tab. 52  Influence of the K0-value at the FoSSR for Optum HMC model SRFELA UB  

a. ’=’=35° 

Optum HMC model SRFELA UB ’=’=35° 

K0 = 0.3 K0 = 0.426 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

 198.5  200  197 

 420  424  415 

 827  829  805 

 2864  2863  2864 
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Tab. 53  Influence of the K0-value at the FoSSR for Optum HMC model SRFELA LB  

n.a. Davis A *=’=29.84° 

Optum HMC model SRFELA UB *=’=29.84° 

K0 = 0.3 K0* = 0.502 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

3.00 144  145  145 

2.01 280  286  286 

 501  513  513 

 1464  1465  1464 

 

Nevertheless, in the case of drained conditions, the solution is independent of the 

initial stresses (K0-procedure) and therefore the K0 (according to MA Thesis 

Oberhollenzer, 2017). In contrast, K0 has an impact on the safety calculation 

results when undrained conditions are considered. As shown in the Appendix, the 

results for the MC Model/Plaxis for the strength reduction analysis shows no 

difference in the resulting FoSSR, as well as the loading.  
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4.2.4 2D vs. 3D:  Effect on FoS 

4.2.4.1 PLAXIS  

2D and 3D results were compared using Plaxis 3D (SRFEA 10-noded elements, 

MC). The calculations are done for the strength reduction FoSSR 1.0, 1.5, 2.0 for 

associated (’=’) as well as non-associated plasticity (’=0°, 11.7°).  For this the 

two-dimensional SR_load for the FoSSR 2.0, 1.5.,1.0 is applied and the three-

dimensional FoSSR for the strength reduction analysis is calculated.  

To study the influence of the thickness of the model, different model extensions in 

the third direction (i.e. 1m and 4m) are applied. Fig.85 and 86 represent the total 

displacement for 1m and 4m thickness of the model, whereas an associated flow 

rule is applied. 

 

 

 

Fig. 85  3D Plaxis MC model SRFEA 10-nod. 1m thickness for a. ’=’=35° 

sliding surface at failure  

 

 

Fig. 86  3D Plaxis MC model SRFEA 10-nod.  4m thickness for a. ’=’=35° 

sliding surface at failure  

max. IuI at the left upper front corner of the strip foundation 

max. IuI at the left upper middle edge of the strip foundation 
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Fig.87 compares 2D with 3D results using SRFEA and associated plasticity. The 

results show that for both 3D calculations, the FoSSR gives slightly higher values 

compared to 2D calculations. Accordingly, 3D and 2D SRFEA are in good 

agreement (0.02-0.03), which is also the case regarding the 2D failure load. 

 

 

Fig. 87  3D Plaxis MC model SRFEA 10-nod.at failure for a. ’=’=35° 

 

Fig.88 shows the 3D strength reduction analysis relating to the 2D load for the 

FoSSR 1.5 in terms of associated plasticity. It is seen that for 3D calculations the 

peak FoSSR results in the same values as in 2D calculations. Furthermore, the FoSSR 

1.5 induces higher amplitudes of oscillation in the resulting FoSSR, therefore a 

manual curve (red dashed line) was plotted approximating towards the peak values. 

Thus, 3D strength reduction analysis, relating to the peak values of the FoSSR, fits 

very well with 2D strength reduction analysis, both corresponding to the 2D load 

for the FoSSR 1.5. The reason of the large oscillation is part of ongoing research. 
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Fig. 88  3D Plaxis MC model SRFEA 10-nod. at FoSSR 1.5 for a. ’=’=35° 

Fig. 89 demonstrate the influence of the tolerated error of 0.1%, which means less 

than the default setting of 1% (1m thickness) regarding to Fig 88. Performing 

automatic SRFEA with a tolerated error of 0.1% results in a smooth curve that 

converges to the desired FoSSR of 1.5.  Furthermore, it is shown that the gradient 

of the first branch for a tolerated error of 0.1% is lower compared to the tolerated 

error of 1%; furthermore, the horizontal branch at the end was not reached within 

the specified number of allowable steps. Comparing both tolerated errors after step 

~300, the peak FoSSR for 1% tolerated error results in 1.5 and the FoSSR for 0.1% 

tolerated error results in 1.17, thus showing a difference in the FoSSR of 0.33. 

 

Fig. 89 3D Plaxis MC model SRFEA 10-nod. at FoSSR 1.5 for a. ’=’=35° 

influence of tolerated error 1% vs. 0.1% 
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Further calculations according to the FoSSR 2.0 in terms of associated plasticity 

are done and shown in the Appendix. 

 

Fig.90 and 91 represent the total displacement for 1m and 4m thickness of the 

model, considering non-associated plasticity. 

 

 

Fig. 90  3D Plaxis MC model SRFEA 10-nod. 1m thickness for n.a. ’=0° 

sliding surface at failure for strength reduction analysis  

 

 

 

Fig. 91  3D Plaxis MC model SRFEA 10-nod. 4m thickness for n.a. ’=0° 

sliding surface at failure for strength reduction analysis  

 

 

 

 

 

max. IuI at the left upper front corner of the strip foundation 

max. IuI at the left upper middle edge of the strip foundation 

 



4 Calculation Results 

 

 

108 

Fig.92 shows the 3D strength reduction analysis relating to the 2D failure load 

using a non-associated flow rule. It is seen that for 3D calculations the peak FoSSR 

results in slightly higher values compared to 2D calculations. Furthermore, the 

FoSSR 1.0 induces more oscillation in the resulting graph. Therefore, a manual 

smoothed curve (red dashed line) was plotted, which approximate towards the peak 

values. Nevertheless, peak values of the 3D SRFEA are in reasonable agreement 

with 2D SRFEA results (0.08-0.12), whereas both correspond to the 2D failure 

load. 

 

 

Fig. 92  3D Plaxis MC model SRFEA 10-nod. at failure for n.a. ’=0° 

 

Fig.93 shows the 3D strength reduction analysis relating to the 2D load at FoSSR 

1.5 in terms of non-associated plasticity. It demonstrates higher values comparing 

3D to 2D strength reduction analysis. Nevertheless, 3D analysis fits very well 

(0.02-0.05) with 2D analysis at FoSSR 1.5. 
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Fig. 93  3D Plaxis MC model SRFEA 10-nod. at FoS 1.5 for n.a. ’=0° 

 

Further calculations according to the FoSSR 2.0 in term of non-associated plasticity 

after Davis A are shown in the Appendix. Also listed are calculation made for non-

associated plasticity in regards to the dilatancy angle of 11.7°('/3) . Notably those 

calculations equal the same conclusion as for ’=0°. 
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4.2.4.2 OPTUM  

The comparison of two-dimensional systems versus three-dimensional systems 

done for Optum G3 for a FELA and SRFELA (LB, UB) MC model. The 

calculations are done for the failure load analysis (FELA) as well as the strength 

reduction analysis (SRFELA) at failure for FoS 1.0, in terms of associated (’= 

’), as well as non-associated plasticity after Davis A (’=0°, 11.7°). For the 

applied load for the failure load analysis at collapse (FoSFL 1.0), no more strength 

reduction should occur. This means calculating the three-dimensional, as well as 

two-dimensional failure load analysis, and applying both loads for calculating the 

three-dimensional FoSSR for the strength reduction analysis. To study the influence 

of the thickness of the soil body, 1m and 4m thick models were considered. Tab.54 

and 55 show the resulting failure load analysis in terms of three-dimensional and 

two-dimensional space. It is seen that the resulting three-dimensional load is nearly 

twice the two-dimensional load at failure. The reason of the large discrepancy 

between 2D and 3D is part of ongoing research. 

 

Tab. 54  Optum 3D MC model FELA for a. and n.a. Davis A 

Optum 3D MC model – FELA failure load [kN/m] 

flow rule LB 1m LB 4m UB 1m UB 4m 

’= ’= 35° 5130 4341 5500 4999 

*= ’= 32.44° 3808 3262 4069 3682 

*= ’= 29.84° 2856 2485 3031 2735 

 

Tab. 55  Optum 2D MC model FELA a. and n.a. Davis A 

Optum 2D MC model – FELA failure load [kN/m] 

flow rule LB UB 

’= ’= 35° 2690 2864 

*= ’= 32.44° 

 

1932 2036 

*= ’= 29.84° 

 

1396 1464 

 

 

Tab.56 shows the results of the 3D manual strength reduction according to the 3D 

failure load. It is seen that the system remains stable until the strength parameter 

is reduced by ~1°, thus nearly no more strength reduction occurs, hence collapse 

takes place at a almost unchanged strength parameter. Tab.57 shows the results of 

the 3D manual strength reduction according to the 2D failure load. It is seen that 

the system remains stable until the strength parameter is reduced by ~7°, relating 

to the lower loads compared to 3D failure load. 
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Tab. 56  3D manual SRFELA at 3D failure load for Optum MC model  

a. and n.a. Davis A 

Optum MC model – manual SRFELA FoS  → 3D loading at failure 

flow rule LB 1m LB 4m UB 1m UB 4m 

’= ’= 35° 
stable *= ’= 32.44° 

*= ’= 29.84° 

failure at ’=34°, *=31.5°, *=29° 

 
 

Fig. 94  3D sliding surface at failure for manual SRFELA 

for 3D failure load a. ’red= ’= 34° Optum MC model 

 

 
 

Fig. 95   3D sliding surface at failure for manual SRFELA 

for 3D failure load n.a. Davis A *red= ’= 29° Optum MC model 

 

 
 

Fig. 96  3D sliding surface at failure for manual SRFELA 

for 3D failure load n.a. Davis A *red= ’= 25.5° Optum MC model 

1m thickness → IuI 4m thickness → IuI 

1m thickness → IuI 4m thickness → IuI 

1m thickness → IuI 4m thickness → IuI 
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Tab. 57  3D manual SRFELA at 2D failure load for Optum MC model  

a. and n.a. Davis A 

Optum MC model – manual SRFELA → 2D loading at failure 

flow rule LB 1m LB 4m UB 1m UB 4m 

’= ’= 35° 
stable *= ’= 32.44° 

*= ’= 29.84°  

failure at ’=28°, *=25.5°, *=22.5° 

 
 

Fig. 97  3D sliding surface at failure for manual SRFELA 

for 2D failure load a. ’red= ’= 28° Optum MC model 

 

 
 

Fig. 98  3D sliding surface at failure for manual SRFELA 

for 2D failure load n.a. Davis A *red= ’= 22.5° Optum MC model 

 

  
 

Fig. 99  3D sliding surface at failure for manual SRFELA 

for 2D failure load n.a. Davis A *red= ’= 25.5° Optum MC model 

1m thickness → IuI 4m thickness → IuI 

1m thickness → IuI 4m thickness → IuI 

1m thickness → IuI 4m thickness → IuI 
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5 Conclusion 

The results presented in this thesis confirm that conventional analytical methods 

documented in standard regulations (DIN 4017, EC 7 and ÖNORM B 4435) are 

limited to certain conditions (e.g. associated plasticity) and can be classified as 

conservative. This can be attributed to the fact that analytical solutions ignore 

dilatancy effects and presume fully mobilized friction angles. This fact represents 

the main difference compared to numerical methods; furthermore, only failure load 

analyses can be considered. For the investigated coarse-grained soils the 

differences in failure load between analytical and numerical methods are in a range 

of ~300kN/m up to 1100kN/m. Notably, the lower the friction angle (e.g. non-

associated plasticity Approach after Davis A) is, the less differences become, 

according to the standard regulations (e.g.: DIN4017, EC7, ÖNORM B4435) 

versus FEA.  

Comparing the numerical failure load analysis (FEA) of both programs it is shown 

for associated plasticity and non-associated plasticity, as well as for non-associated 

plasticity after Davis A, that the failure load obtained with Plaxis is generally 

higher compared to Optum. Furthermore, it is shown that the original Davis 

Approach A leads to conservative results regarding the failure load for both safety 

analyses (failure load, strength reduction) compared to non-associated plasticity, 

whereas the enhanced Davis Approach B and C are in good agreement. Regardless 

of the calculation type (analytical and numerical) and the safety analysis type 

(failure load vs. strength reduction approach), non-associated plasticity as well as 

non-associated plasticity after Davis Approach A give lower FoS-values compared 

to associated plasticity calculations. In accordance with previous studies, the 

consequence of non-associated plasticity is the oscillation of the load-displacement 

curve, which can be attributed to switching between different modes of failure. 

This phenomenon as well explains the peaks in the load-displacement curve.  

Another aim of this thesis is to compare the two safety analyses when it comes to 

bearing capacity problems; namely, failure load analysis and strength reduction 

analysis, which consider different definitions of the FoS. Comparing the FoS 1.0 

to 3.0 for each analysis represents a difference in actual loading in a range of 0% 

corresponding to the FoS 1.0 up to ~79% corresponding to the FoS 3.0 for 

associated plasticity (~70% Davis A, 66% non-associated). Thus, higher FoS 

values lead to higher differences. It should be mentioned, that for the applied load 

at failure (FoS 1.0), no more strength reduction is required, since collapse takes 

place. Comparing the resulting strength reduction FoSSR, the differences are in a 

range of 0% corresponding to the loading at collapse up to ~53%, corresponding 

to the actual load that is necessary to reach the FoS 3.0 for both analyses for 

associated plasticity (~50% Davis A, 45% non-associated). Thus, the smaller the 

difference in the applied loading the smaller the difference in the resulting FoSSR 

relating to strength reduction analysis. 
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The results presented in this thesis confirm that the FoS for both constitutive 

models MC (Plaxis, Optum) and HS (Plaxis) / HMC (Optum), as well as FEA, 

SRFEA (Plaxis, Optum) and FELA, SRFELA (Optum), are the same. There is 

hardly any difference in the applying load for FoSSR-values ranging from 3.0 to 

1.0 as well as in the applying failure load required to obtain FoSFL-values from 3.0 

to 1.0.  

In this thesis, the calculations for the stress paths and -plane were done for the 

failure load analysis by gradually increasing the load to corresponding FoSFL-

values (i.e. 3.0, 2.0, 1.5 and 1.0 at failure). Stress points become plastic as soon as 

they coincide with the MC failure criterion at collapse. It is shown that each of the 

stress points A to F, which are located at characteristic position of the failure body, 

develops in direction of triaxial compression. Furthermore, the lode angle 

 remains nearly constant at -22° for associated plasticity (-24° Davis A, -22° non-

associated). 

To study the influence of numerical control parameters on the automatic strength 

reduction for displacement based finite element, SRFEA has been performed with 

altered values of tolerated error (0.1%, 1% default setting, 3%, 5%). Performing 

automatic SRFEA with a tolerated error of 3% and 5% compared to the default 

setting of 1%, results in more oscillation and therefore higher peaks of the FoSSR. 

Thus, in case of associated plasticity and non-associated plasticity after Davis, the 

higher the tolerated error, the more oscillation occurs in the FoSSR. Performing 

automatic SRFEA with a tolerated error of 0.1% results in less oscillation and 

therefore lower peaks in the FoSSR, thereby yielding smooth curves. Thus, in case 

of on associated plasticity and non-associated plasticity after Davis Approach A, 

the lower the tolerated error (more accurate), the less oscillation (smooth curve) 

occurs in the FoSSR. Furthermore, it is shown, that the gradient of the first branch 

is lower compared to tolerated error of 1% up to 5%. Additionally, the horizontal 

branch (final FoSSR) is yet not reached. However, when more steps are used, the 

graph converges towards the range of results marked by results obtained with 

tolerated errors of 1% and 5%.  

Generally, associated plasticity results in less oscillation (smooth curve) compared 

to non-associated plasticity. For lower tolerated error and non-associated 

plasticity, less oscillation in the amplitude (smooth curve) occurs in the FoSSR as 

well as for associated plasticity. The reason of the discrepancy between associated 

and non-associated plasticity according to the oscillation behavior at higher 

tolerated errors (3%, 5%) is part of ongoing research. However, there has hardly 

any differences been observed in the factor of safety at failure, only the graph 

changes (higher amplitudes of oscillation).  

The results presented in this thesis confirm that under drained conditions (i.e. no 

excess pore water pressure) the solution is independent of the initial stresses (K0-

procedure) and therefore the K0 has no influence.  
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Using Plaxis SRFEA and associated plasticity, it is seen that for 3D calculations 

the FoSSR results in slightly higher values compared to 2D calculations. For 

FoSSR = 1.5, it is shown that 3D-FoSSR-peak-values are almost identical to 2D 

results. Performing automatic SRFEA with a tolerated error of 0.1% results in a 

smooth curve that converges towards the desired FoSSR of 1.5. In simple terms, 3D 

strength reduction FoSSR-peak-values are in good agreement with 2D strength 

reduction analysis, both corresponding to the 2D loading at FoSSR = 1.5. In case of 

non-associated plasticity, the FoSSR at failure results in more oscillation compared 

to associated plasticity, whereas for the FoSSR 1.5 the curve is smoother compared 

to associated plasticity. Nevertheless, 3D strength reduction analysis fits very well 

with 2D strength reduction analysis. In case of Optum FELA associated and non-

associated after Davis A plasticity, it is seen that the resulting three-dimensional 

load is nearly twice the two-dimensional load at failure. Under the 3D failure load, 

it is seen that the 3D system remains stable until the strength parameter ’ is 

reduced by ~1° (c‘=0kPA).  Whereas under the 2D failure load the 3D system 

remains stable until the strength parameter ’ is reduced by ~7° (c‘=0kPA), 

relating to the lower failure loads compared to 3D. The reason of the large 

discrepancy between 2D and 3D is part of ongoing research. 
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9 Appendix 

9.1 A – Analytical Method 2D Failure Load 

 
 

Fig. 100  Load-displacement curve analytical vs. numerical method (FEA 15-nod.) 

for a. ’=’=35° and n.a. Davis A *=’=32.44° 

 

Tab. 58  Analytical method failure load 

failure load [kN/m]  

 
 ‘=35° 

*=32.44° 

(Davis A ‘=11.7°) 

analytic 

DIN 4017  
(consideration depth coeffcient) 

(consideration dead load foundation) 

1895.46 1344.11 

EC 7 2244.75 1573.73 

ÖNORM B 4435 2152.74 1515.84 

numeric 
Plaxis FEA 15-nod. 3030.00 2170.00 

Optum FEA 15-nod. 2796.00 1994.00 

→ failure load ~ Δ425-1100kN/m  
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Tab. 59  Analytical method failure load  

- influence of depth coefficient and foundation base 

failure load [kN/m] 

DIN 4017 

(consideration dead load foundation) 
‘=35° 

*=32.44° 

(Davis A ‘=11.7°) 

1m FB* 1895.46 1344.11 

1m FB 1666.65 1164.15 

2m FB* 2606.20 1872.85 

2m FB 2233.21 1579.48 

* with depth coefficient by Brinch Hansen 

 

Tab. 60  Analytical method failure load – influence of the dead load of the foundation 

failure load [kN/m] 

DIN 4017 ‘=35° 
*=32.44° 

(Davis A ‘=11.7°) 

1m FB* 1895.46 1344.11 

1m FB 1121.79 786.94 

* with consideration of the dead load of the foundation, as well 

as the depth coefficient by Brinch Hansen 
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9.2 B – Numerical Method  

       2D Failure Load vs. Strength Reduction 

 

 
 

Fig. 101  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod. and 

Optum FELA for a. ’=’=35° and n.a. Davis A *=’=32.44° 

 

 
 

Fig. 102  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod. 

for n.a. ’=11.7° and n.a. Davis A *=’=32.44° 
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Fig. 103  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod. and 

Optum FELA for n.a. Davis A *=’=29.84° and n.a. Davis A 

*=’=32.44° 

 

 

 
 

Fig. 104  Load-displacement curve numerical method Plaxis, Optum FEA 15-nod.  

for n.a. ’=0° and n.a. ’=11.7° 
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Fig. 105  Total displacement for the corresponding failure load n.a. ’=11.7° 

 

 

 

Fig. 106  Total displacement for the corresponding failure load 

 n.a. Davis A *= ’= 32.44° 
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Fig. 107  Shear strains for the corresponding failure load n.a. ’=11.7° 

 

 
 

 
 

Fig. 108  Shear strains for the corresponding failure load n.a. Davis A *=’=32.44° 
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Fig. 109  FEA 15-nod. vs. SRFEA 15-nod. (Plaxis HS model) 

for n.a. '=11.7° and n.a. Davis A *='=32.44°  

 

 

Tab. 61  FEA 15-nod. vs. SRFEA 15-nod. (Plaxis HS model) 

for n.a. '=11.7° and n.a. Davis A *='=32.44°  
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]

load [kN/m]

Plaxis SRFEA Plaxsi FEA Plaxis SRFEA Davis A Plaxis FEA Davis A

 Plaxis HS model - ’=11.7° Plaxis HS model - =’=32.44° 

 FEA SRFEA FEA SRFEA 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 830 205 723.33 174 

2.0 1245 435 1085 360 

1.5 1660 825 1446.67 670 

1.0 2490 2490 2170 2170 

∆50% 

∆25% 

∆0% 
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Tab. 62  SRFEA 15-nod. for n.a. ’=11.7° (Plaxis HS model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

Tab. 63  SRFEA 15-nod. for n.a. Davis A *= ’=32.44° (Plaxis HS model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRFEA 15-noded - ’=11.7° 

Plaxis – HS model 

failure load [kN/m]   →   FoSSR SR load [kN/m]   →    FoSSR 

830       →     1.49 205       →     2.99 

1245      →     1.27 435       →     2.00 

1660     →     1.14 825       →     1.50 

2490     →     1.00 2490     →     1.00 

SRFEA 15-noded - =’=32.44° 

Plaxis – HS model 

failure load [kN/m]   →    FoSSR SR load [kN/m]   →    FoSSR 

723.33      →     1.51 174       →     2.99 

1085        →     1.26 360       →     1.99 

1446.67   →     1.14 670       →     1.49 

2170        →     0.99 2170     →     0.99 
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Fig. 110  Plaxis HS model SRFEA 15-noded incremental deviatoric strain  

n.a. Davis A *=’=32.44° for the corresponding actual load FoSSR 3.0-1.5 

 

 

Fig. 111  Plaxis HS model SRFEA 15-noded incremental deviatoric strain  

n.a. Davis A *=’=32.44° for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 112  Plaxis HS model SRFEA 15-noded incremental deviatoric strain  

n.a. ’=11.7° for the corresponding actual load FoSSR 3.0-1.5 

 

 

Fig. 113 Plaxis HS model SRFEA 15-noded incremental deviatoric strain  

n.a. ’=11.7° for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 114  Sliding surface at collapse 

Plaxis HS model SRFEA 15-noded incremental deviatoric strain 
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Fig. 115  FELA vs. SRFELA (Optum HMC model LB, UB)  

for n.a. Davis A *=’=32.44° 

 

 

Tab. 64  FELA vs. SRFELA (Optum HMC model LB, UB) 

for n.a. Davis A *=’=32.44° 
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 FELA LB SRFELA LB FELA UB SRFELA UB 

FoS failure load [kN/m] SR load [kN/m] failure load [kN/m] SR load [kN/m] 

3.0 643 163.50 679.33 171 

2.0 964.50 333 1019 345 

1.5 1286 620 1358.67 655 

1.0 1929 1929 2038 2038 

∆49% 

∆22% 

∆0% 
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Tab. 65  SRFELA LB for n.a. Davis A *=’=32.44° (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

Tab. 66  SRFELA for n.a. Davis A *=’=32.44°  (Optum HMC model) 

applying failure load vs. applying actual load for FoS 1.0-3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRFELA LB - *=’=32.44° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →   FoSSR SR load [kN/m]   →    FoSSR 

 643          →     1.48 163.50   →     3.01 

964.50     →    1.26 333       →     2.00 

1286        →     1.14 620       →     1.50 

1929        →     1.00 1929     →     1.00 

SRFELA UB - *=’=32.44° 

Optum – HMC model 

Optum – HMC model 
failure load [kN/m]   →    FoSSR SR load [kN/m]  →   FoSSR 

679.33         →     1.48 171       →     3.00 

1019            →     1.26 345       →     2.00 

1358.67       →     1.14 655       →     1.50 

2038            →     1.00 2038     →     1.00 
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Fig. 116  Optum HMC model SRFELA LB shear dissipation  

n.a. Davis A *=’= 32.44° for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 117  Optum HMC model SRFELA LB shear dissipation  

n.a. Davis A *=’=32.44° for the corresponding failure load FoSFL 3.0-1.5 

 

Fig. 118  Optum HMC model SRFELA UB shear dissipation  

n.a. Davis A *=’=32.44° for the corresponding actual load FoSSR 3.0-1.5 

 

Fig. 119  Optum HMC model SRFELA UB shear dissipation  

n.a. Davis A *=’=32.44° for the corresponding failure load FoSFL 3.0-1.5 

 

 

Fig. 120  Sliding surface at collapse – SRFELA n.a. Davis A *=’=32.44° 
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9.3 C – 2D Constitutive Models 

9.3.1 Plaxis MC Model Stress Path & -Plane 

 

 
 

Fig. 121  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and plastic stress point C (MC model FEA 15-nod.) 

 

 
 

Fig. 122  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and plastic stress point D (MC model FEA 15-nod.) 
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Fig. 123  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and plastic stress point E (MC model FEA 15-nod.) 

 

 

 
 

Fig. 124  p‘-q stress path and corresponding -plane  

for a. ’=’=35° and elastic stress point F (MC model FEA 15-nod.) 
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Fig. 125  p’-q stress path and corresponding -plane  

for n.a. ’=0° and plastic stress point A (MC model FEA 15-nod.)  

 

 
 

Fig. 126  p‘-q stress path and corresponding -plane  

for n.a. ’=0° and plastic stress point B (MC model FEA 15-nod.) 
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Fig. 127  p‘-q stress path and corresponding -plane  

for n.a. ’=0° and elastic stress point E (MC model FEA 15-nod.)  

 

 
 

Fig. 128  p‘-q stress path and corresponding -plane  

for n.a. ’=0° and elastic stress point F (MC model FEA 15-nod.) 
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Fig. 129  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and plastic stress point A 

 

 

 
 

Fig. 130  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and plastic stress point B 

 

 

 

 

 

 

 

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

0 100 200 300 400 500q
 [

kN
/m

²]

p' [kN/m²]

MC failure line stress path point A

initial state FoS 1.0 1550kN

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

q
 [

kN
/m

²]

p' [kN/m²]

MC failure line stress path point B

initial state FoS 1.0 1550kN

MC - yield surface

MC - yield surface

449.56; 491.75 
θ = -25° 

512.26; 560.33 
θ = -25° 

θ = -25° 

θ
 =

 -
3

0°
 

θ
 =

 +
3

0
° 

θ = -25° 

θ
 =

 -
3

0°
 

θ
 =

 +
3

0
° 

‘
1,c

 

‘
3,c 

 

‘
2,e

 

‘
2,c 

 

‘
3,e

 

‘
1,e

 

‘
1,c

 

‘
3,c 

 

‘
2,e

 

‘
2,c 

 

‘
3,e

 

‘
1,e

 



9 Appendix 

 

 

148 

 
 

Fig. 131  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and plastic stress point C 

 

 
 

Fig. 132  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=29.84° and plastic stress point D 
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Fig. 133  MC model FEA 15-nod. plastic points  

for n.a. ’=11.7° stress point A-F 

Tab. 67  Resulting stresses and lode angle for stress point A-F  

for n.a. ’=11.7° at failure (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

’=11.7° - FoSFL 1.0 at failure 

stress point ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 748.09 285.20 202.72 -21.936 

B -plastic 1475.49 562.55 399.84 -21.934 

C - plastic 286.62 109.21 77.67 -21.952 

D - plastic 116.00 44.19 31.43 -21.961 

E - plastic 77.02 29.35 20.87 -21.952 

F - elastic 387.48 147.86 105.64 -22.018 
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Fig. 134  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and plastic stress point A (MC model FEA 15-nod.)  

 

 

 
 

Fig. 135  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and plastic stress point B (MC model FEA 15-nod.) 
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Fig. 136  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and plastic stress point C (MC model FEA 15-nod.)  

 

 

 
 

Fig. 137  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and plastic stress point D (MC model FEA 15-nod.) 
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Fig. 138  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and plastic stress point E (MC model FEA 15-nod.)  

 

 

 
 

Fig. 139  p‘-q stress path and corresponding -plane  

for n.a. ’=11.7° and elastic stress point F (MC model FEA 15-nod.) 
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Fig. 140  MC model FEA 15-nod. plastic points  

for n.a. Davis A =’=32.44° stress point A-F 

 

Tab. 68  Resulting stresses and lode angle for stress point A-F  

for n.a. Davis A =’=32.44° at failure (MC model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*=’=32.44° - FoSFL 1.0 at failure 

 ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 999.44 390.97 301.56 -23.240 

B -plastic 1232.59 482.12 371.91 -23.244 

C - plastic 353.29 139.18 106.60 -23.018 

D - plastic 129.06 51.11 38.94 -22.850 

E - plastic 77.72 30.68 23.45 -22.950 

F - elastic 301.18 124.08 108.19 -25.747 
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Fig. 141  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and plastic stress point A 

 

 

 
 

Fig. 142  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and plastic stress point B 
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Fig. 143  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and plastic stress point C 

 

 

 
 

Fig. 144  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and plastic stress point D 
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Fig. 145  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and plastic stress point E 

 

 
 

Fig. 146  p’-q stress path and corresponding -plane (MC model FEA 15-nod.) 

for n.a. Davis A *=’=32.44° and elastic stress point F 
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9.3.2 Plaxis HS Model Stress Path & -Plane 

 
 

Fig. 147  HS model FEA 15-nod. plastic points for a. ’= ’=35° stress point A-F 

 

Tab. 69  Resulting stresses and lode angle for stress point A-F  

for a. '=’=35° at failure (HS model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

’=’=35° - FoSFL 1.0 at failure 

 ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - cap 1087.63 295.65 295.17 -29.970 

B - hardening 1978.99 553.45 551.42 -29.929 

C - plastic 513.58 139.23 139.17 -29.992 

D - plastic 202.62 54.92 54.91 -29.997 

E - plastic 127.10 34.47 33.87 -29.677 

F - elastic 440.76 142.40 142.23 -29.972 
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Fig. 148  HS model FEA 15-nod. plastic points for n.a. ’=0° stress point A-F 

 

Tab. 70  Resulting stresses and lode angle for stress point A-F for n.a. ’=0° at failure 

(HS model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

’=0° - FoSFL 1.0 at failure 

stress point ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 574.67 169.66 155.73 -28.323 

B - hardening 882.48 315.76 313.85 -29.833 

C - plastic 169.45 51.77 45.92 -27.595 

D - hardening 96.98 32.86 28.39 -26.658 

E - hardening 71.35 25.52 23.61 -27.978 

F - elastic 305.99 95.12 91.12 -29.766 



9 Appendix 

 

 

159 

 
 

Fig. 149  HS model FEA 15-nod. plastic points  

for n.a. Davis A *=’=29.84° stress point A-F 

 

Tab. 71  Resulting stresses and lode angle for stress point A-F  

for n.a. Davis A *=’=29.84° at failure (HS model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*=’=29.84° - FoSFL 1.0 at failure 

 ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - hardening 576.16 194.11 193.66 -29.942 

B - hardening 877.52 305.11 305.09 -29.999 

C - plastic 352.92 118.49 118.40 -29.982 

D - plastic 137.46 46.15 46.12 -29.985 

E - plastic 88.37 29.75 29.38 -29.840 

F - elastic 301.56 115.31 115.31 -30.000 
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Fig. 150  HS model FEA 15-nod. plastic points for n.a. ’=11.7° stress point A-F 

 

Tab. 72  Resulting stresses and lode angle for stress point A-F  

for n.a. ’=11.7° at failure (HS model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

’=11.7° - FoSFL 1.0 at failure 

stress point ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastic 870.01 236.53 235.76 -29.940 

B - cap 1250.77 388.86 388.86 -30.000 

C - plastic 412.38 112.33 111.75 -29.904 

D - hardening 138.35 40.31 40.25 -29.970 

E - hardening 90.75 25.97 25.88 -29.930 

F - cap 362.66 111.13 11.13 -30.000 
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Fig. 151  HS model FEA 15-nod. plastic points  

for n.a. Davis A *=’=32.44° stress point A-F 

 

Tab. 73  Resulting stresses and lode angle for stress point A-F  

for n.a. Davis A *=’=32.44° at failure (HS model FEA 15-nod.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

*=’=32.44° - FoSFL 1.0 at failure 

 ‘1 [kN/m²] ‘2 [kN/m²] ‘3 [kN/m²]  [°] 

A - plastci 470.72 145.82 142.03 -29.424 

B - cap 999.13 306.39 306.37 -29.998 

C - plastic 471.03 142.31 142.12 -29.973 

D - plastic 200.58 60.73 60.52 -29.926 

E - plastic 119.94 36.19 36.19 -30.000 

F - elastic 376.50 132.34 132.25 -29.982 
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9.4 D – 2D Numerical Settings Studies 

9.4.1 D – Tolerated Error 

 
Fig. 152  Influence of tolerated error 0.1%, 1%, 3%, 5% for a. ’=’=35° at FoSSR 1.50 

(HS model SRFEA 15-nod.) 

 

 

 
 

Fig. 153  Influence of tolerated error 0.1%, 1%, 3%, 5% for a. ’=’=35° at FoSSR 2.00 

(HS model SRFEA 15-nod.) 
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Fig. 154  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. ’=0° at FoSSR 1.50 

(HS model SRFEA 15-nod.) 

 

 

 
Fig. 155  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. ’=0° at FoSSR 2.00 

(HS model SRFEA 15-nod.) 
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Fig. 156  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. Davis A *=’=29.84°  

at FoSSR 1.50 (HS model SRFEA 15-nod.) 

 

 

 
Fig. 157  Influence of tolerated error 0.1% 1%, 3%, 5% for n.a. Davis A *=’=29.84°  

at FoSSR 2.00 (HS model SRFEA 15-nod.) 
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Fig. 158  Influence of tolerated error 1%, 3%, 5% for n.a. ’=11.7° at failure  

(HS model SRFEA 15-nod.) 

 

 
Fig. 159  Influence of tolerated error 0.1% for n.a. ’=11.7° at failure  

(HS model SRFEA 15-nod.) 

 

Tab. 74  Comparison of the tolerated error 0.1%, 1%, 3%, 5% and the resulting FoSSR 

at failure for n.a. ’=11.7° (HS model SRFEA 15-nod.) 

 Tolerated error 

steps 0.1% 1% 3% 5% 

500 FoSSR 0.97 FoSSR 1.02 FoSSR 1.02 FoSSR 1.02 

1000 FoSSR 0.98 - - - 
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Fig. 160  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. ’= 11.7°  

at FoSSR 1.50 (HS model SRFEA 15-nod.) 

 

 

 
Fig. 161  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. ’= 11.7°  

at FoSSR 2.00 (HS model SRFEA 15-nod.) 
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Fig. 162  Influence of tolerated error 1%, 3%, 5% for n.a. Davis A *=’=32.44°  

at failure (HS model SRFEA 15-nod.) 

 

 
Fig. 163  Influence of tolerated error 0.1% for n.a. Davis A *=’=32.44° at failure 

(HS model SRFEA 15-nod.) 
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Fig. 164  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. Davis A *=’=32.44° 

at FoSSR 1.50 (HS model SRFEA 15-nod.) 

 

 
Fig. 165  Influence of tolerated error 0.1%, 1%, 3%, 5% for n.a. Davis A *=’=32.44° 

at FoSSR 2.00 (HS model SRFEA 15-nod.) 
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9.4.2 D – K0 

Tab. 76  Influence of the K0-value at the FoSSR 

for Plaxis MC model SRFEA 15-nod. A. ’=’=35° 

Plaxis MC model SRFEA 15-noded ’=’=35° 

K0 = 0.3 K0 = 0.426 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

3.00 203 

 

2.99 204 3.01 203 

 
2.01 430 2.01 427 2.01 430 

 835  850  835 

 3020  3020  3020 

 

Tab. 77  Influence of the K0-value at the FoSSR 

for Plaxis MC model SRFEA 15-nod. n.a. ’=0° 

Plaxis MC model SRFEA 15-noded ’=0° 

K0 = 0.3 K0 = 0.426 K0 = 1.0 

FoSSR load [kN/m] FoSSR load [kN/m] FoSSR load [kN/m] 

3.01 200 

 

 

3.01 198 

 

 

2.99 200 

 

 

2.01 400 2.00 400 2.01 400 

 735  730  735 

 1760  1760  1760 
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9.5 Comparison of 2D SR FoS with 3D SR FoS  

 

 
 

Fig. 166  3D Plaxis MC model SRFEA 10-nod. at FoSSR 2.0 for a. ’=’=35° 

 

 
 

Fig. 167  3D Plaxis MC model SRFEA 10-nod. at FoSSR 2.0 for n.a. ’=0° 
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Fig. 168  3D Plaxis MC model SRFEA 10-nod. 1m thickness for n.a. ’=11.7° 

sliding surface at failure  

 

 

 

 

Fig. 169  3D Plaxis MC model SRFEA 10-nod. 4m thickness for n.a. ’=11.7° 

sliding surface at failure 

 

 

 

 

 

 

 

max. IuI at the left upper back corner of the strip foundation 

max. IuI at the left upper middle edge of the strip foundation 
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Fig. 170  3D Plaxis MC model SRFEA 10-nod. at failure for n.a. ’=11.7° 

 

 

Fig. 171  3D Plaxis MC model SRFEA 10-nod. at FoSSR 1.5 for n.a. ’=11.7° 
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