

Ursula Ehrhart, BSc

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen

MASTERARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieurin

Masterstudium Bauingenieurwissenschaften – Infrastruktur

eingereicht an der Technischen Universität Graz

Betreuer Assoc.Prof. Dipl.-Ing. Dr.techn. Stefan Marschnig

Institut für Eisenbahnwesen und Verkehrswirtschaft

Zweitbetreuer Dipl.-Ing. Dr.techn. Ivan Vidović

Graz, Januar 2021

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Text-dokument ist mit der vorliegenden Masterarbeit identisch.

Datum, Unterschrift

Technische Universität Graz Institut für Eisenbahnwesen und Verkehrswirtschaft

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen

Masterarbeit

Abgabedatum 10.01.2021

Ursula Ehrhart BSc 01431073 ursula.ehrhart@tugraz.at

Betreuer: Stefan Marschnig Assoc.Prof. Dipl.-Ing. Dr.techn. stefan.marschnig@tugraz.at

Ivan Vidović Dipl.-Ing. Dr.techn. ivan.vidovic@voestalpine.com

www.ebw.TUGraz.at

Danksagung

An dieser Stelle möchte ich mich beim Institut für Eisenbahnwesen und Verkehrswirtschaft bedanken, an welchem diese Arbeit verfasst wurde. Ebenso die angenehme Arbeitsatmosphäre, wie die interessanten Gespräche, Diskussionen und Einführungen haben zum Abschluss dieser Arbeit beigetragen.

Ein besonderer Dank gebührt dabei meinen beiden Betreuern Assoc.Prof. Dipl.-Ing. Dr.techn. Stefan Marschnig und Dipl.-Ing. Dr.techn. Ivan Vidović. Ihr habt mich nicht nur auf dieses spannende Thema gebracht, ihr seid außerdem für fachliche Fragen jederzeit zur Verfügung gestanden. Gleichzeitig habt ihr mir Freiraum geboten, um diese Arbeit eigenständig auf meine Art und Weise verfassen zu können. Danke dafür!

Des Weiteren möchte ich mich bei Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Veit bedanken, der das Weiterkommen und Voranschreiten dieser Arbeit in jeglicher Hinsicht gefördert hat und mich in Gesprächen stets motiviert hat.

Ein großes Dankeschön ergeht an meine Familie. Besonders meine Eltern Maria und Martin haben mein Studium erst ermöglicht und meinen eingeschlagenen Weg nicht nur akzeptiert, sondern mich dabei stets vollends unterstützt. Auch meiner Schwester gebührt ein besonderer Dank: Du warst für mich in intensiven und stressigen Zeiten meines Studiums eine wertvolle mentale Stütze! Weiters möchte ich mich bei meinem Freund Sebastian bedanken, der es besonders in der Fertigstellung dieser Arbeit und des zeitgleichen Lockdowns nicht immer leicht mit mir hatte, mich dennoch unterstützt und bestärkt hat.

Zu guter Letzt möchte ich mich recht herzlich bei all jenen Menschen bedanken, die mich während meines Studiums an der technischen Universität Graz ausgebildet, betreut, begleitet oder mir während dieser Zeit zur Seite gestanden haben.

Kurzfassung

Im Zuge dieser Arbeit wird einerseits das Gleislageverhalten zweier Streckenabschnitte des österreichischen Schienennetzes untersucht und miteinander abgeglichen. Andererseits wird die fahrzeugseitige Gleisbeanspruchung dem Gleislageverhalten gegenübergestellt. Abschließend werden verschiedene Gleisverschleißmodelle angewandt und wiederum mit dem Gleislageverhalten abgeglichen. Die Datengrundlage für das Gleislageverhalten bietet die TUG Datenbank und für die fahrzeugseitige Gleisbeanspruchung werden Messdaten der stationären Argos[®]-Messstellen der ÖBB-Infrastruktur AG verwendet. Im Zuge der Untersuchungen werden die zwei Streckenabschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben herangezogen, welche sich in deren Oberbauform, täglichen Bruttotonnenbelastung und zulässigen Höchstgeschwindigkeit gleichen.

Trotz der ähnlichen Belastung (GesBt/Tag) und absoluten Achsanzahl sind die Gleisverschlechterungsraten der Betrachtungsabschnitte unterschiedlich. Der Abschnitt Bruck/Mur-Leoben weist eine doppelt so hohe mittlere Gleisverschlechterungsrate als der Bereich Sü-Benbrunn-Gänserndorf auf. Gleichzeitig ist im Abschnitt Bruck/Mur-Leoben der absolute Anteil an Güterverkehrsachsen höher und die mittlere Güterverkehrsachslast größer (bei vergleichbaren Personenverkehrsradsatzlasten).

Die Anwendung der Gleisverschleißmodelle bzw. -terme nach dem UIC Kodex 714 E, dem österreichischen/schweizerischen und schwedischen Ansatz und einem Abgleich mit dem Gleislageverhalten zeigt, dass diese Modelle ohne Kalibrierung nicht auf die Betrachtungsabschnitte angewandt werden können. Lediglich die britische Verschleißformel weist basierend auf dem Verhältnisvergleich auf Anhieb eine gute Übereinstimmung mit den Gleisverschlechterungsraten. Diese Übereinstimmung ist jedoch mit Vorsicht zu genießen.

Abstract

In the course of this work, the behaviour of the track deterioration rate of two sections of the Austrian rail network is investigated and compared with each other. Furthermore, the track loading on the vehicle side is set in contrast with the track deterioration rate. Finally, Track Deterioration Models (TDM) are applied and challenged with the track geometry parameter. The data basis for the track deterioration rates is provided by the TUG data warehouse. The measurement data for the vehicle-side track stress come from the stationary measuring stations Argos[®] of ÖBB-Infrastruktur AG. In the course of the investigations, the two sections Süßenbrunn-Gänserndorf and Bruck/Mur-Leoben were used, which are similar in their track superstructure, daily load (gross-tonnes) and permissible maximum speed.

Despite the same daily load (gross-tonnes) and absolute number of axles, the sections' track deterioration rates are different. The section Bruck/Mur-Leoben shows an average track deterioration rate twice as high as the section Süßenbrunn-Gänserndorf. At the same time, the absolute number of freight axles is higher in the Bruck/Mur-Leoben section. A higher mean freight axle load (at comparable mean passenger axle loads) can also be observed.

The application of the TDM and track deterioration terms according to the UIC Leaflet 714 E, the Austrian/Swiss and Swedish approach and a comparison with the sections' track deterioration rates shows that these models cannot be applied to the sections without calibration. Only the British wear formula, based on the ratio comparison, shows good agreement with the track deterioration rates right away. However, this agreement should be treated with caution.

Inhaltsverzeichnis

1	Ein	nleitung1			
2	Voruntersuchungen				
2.1 Betrachtungsbereiche					
2.2		Argos® Systems4			
2.3		ARAMIS			
2.4		Dateninformation und -aufbereitung6			
2.5		Auswertung7			
2.5.1 2.5.2 2.5.3 2.6	L 2 3	Achslastkollektive 7 Verkehrsartverteilungen 11 Streckenbelastung 12 Frkenntnisse 12			
3	7ie	14			
1		G Datenbank vs. Argos [®]			
т л 1	10	Einführung in die TUC Detenbank			
4.1	1	Modifizierte Standardabweichung der Längshöhe (sigH)			
4.1.2	2	Gleislageverschlechterungsrate (b-Rate)			
4.2		Vergleich der Abschnitte bezüglich b-Raten (TUG Datenbank)19			
4.2.1	L	Streckenabschnitte			
4.2.2	2 3	Auswahlkriterien für die Querschnitte aus der TUG Datenbank			
4.2.4	1	Statistischer Vergleich der b-Raten			
4.2.4	4.1 1 2	Überprüfung der Datensätze bezüglich Normalverteilung			
4.3	t.Z	Vergleich der Abschnitte bezüglich Achslasten (Argos [®])			
4.4		Vergleich der Abschnitte bezüglich Fahrzeuggeschwindigkeiten (Argos [®])32			
4.5		Gegenüberstellung der Argos [®] -Messdaten mit den b-Raten			
4.6		Erkenntnisse der Datengegenüberstellung			
5	Gle	sisverschleißmodelle			
5.1		TDM und deren Anwendung auf die Betrachtungsbereiche			
5.1.1	1	Österreichischer/Schweizerischer Modellansatz			
5.1.1	1.1 1.2	Modellanwendung			
5.1.2	2	Schwedischer Modellansatz			
5.1.2	2.1	Modellanwendung			
5.1.3	3	Britischer Modellansatz			
5.1.3	3.1 4	Modellanwendung			
5.1.4	4.1	Modellanwendung			
5.1. ⁴ 5.2	1.2	Modellkalibrierung			
5.3		Erkenntnisse der Gleisverschleißmodell-Anwendungen			
6	Zu	sammenfassung			
7	Auchlick E0				
Abbildungsverzeichnis					
Tabellenverzeichnic					
literaturverzeichnis					
AnhangIX					

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Einleitung

1 Einleitung

Die wirtschaftlich nachhaltige Instandhaltung der Eisenbahninfrastruktur stellt nicht nur seit der Liberalisierung des europäischen Eisenbahnverkehrs eine große Herausforderung dar. Bereits in den Urzeiten der Eisenbahn galt es einen Kompromiss zwischen der Erhaltung der Infrastruktur und den dafür notwendigen und vor allem verfügbaren Mittel zu finden. Dass dabei der Eigentümer der Infrastruktur gleichzeitig für die Instandhaltung und Beförderung von Gütern und Personen zuständig war, hatte sowohl Vor- als auch Nachteile. Einer dieser Nachteile war beispielweise die Zulassung von lediglich einem Verkehrsunternehmen. Die damit verbundene Ausgrenzung anderer Anbieter und dem dadurch fehlenden Wettbewerb wurde von der Europäischen Union stark kritisiert. An diesem Umstand änderte sich bis zur Liberalisierung der europäischen Eisenbahn kaum etwas. Die Grundlage der Liberalisierung war somit einen freien Netzzugang zu ermöglichen, um die Wettbewerbsfähigkeit zu verbessern und gleichzeitig eine Effizienzsteigerung zu erzielen. Im Zuge dessen fand im Laufe der Jahre eine Organisationsaufteilung zwischen der Verwaltung, Wartung und Instandhaltung der Infrastruktur und des Zugbetriebes statt. Die Infrastruktur und Fahrzeuge wurden dadurch nicht mehr von ein und demselben Unternehmen gestellt, es entstanden stattdessen eigenständige Eisenbahninfrastrukturunternehmen (EIU) und Eisenbahnverkehrsunternehmen (EVU). 1992 fand eine organisatorische Umstrukturierung der Österreichischen Bundesbahn im Zuge des anstehenden EU Beitrittes 1995 statt. Dabei erfolgte eine Systemaufspaltung in EVU und EIU. In Abbildung 1 ist die heutige Gliederung der ÖBB-Holding AG dargestellt, welche sich in die ÖBB-Personenverkehr AG, Rail Cargo Austria AG und ÖBB-Infrastruktur AG gliedert. Die ersten beiden Gesellschaften sind dabei EVU, während die ÖBB-Infrastruktur AG das EIU darstellt. [1]

Stand: August 2020

Abbildung 1 Organigramm der ÖBB-Holding AG [2]

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

Die Aufgaben eines EIUs sind Wartungen und Instandsetzungen an der Schieneninfrastruktur durchzuführen, damit diese den EVU in einem qualitativ zulässigen Zustand bereitgestellt wird. EVU sind währenddessen für den Einsatz von normgerechten Fahrzeugen verantwortlich. Günstige Fahrzeuge in der Anschaffung bei gleichzeitig maximaler Lastausnutzung sind dabei für EVU vergleichsweise wirtschaftlicher. Diese Kombination bedeutet jedoch einen höheren Instandhaltungsaufwand und folglich steigende Infrastrukturerhaltungskosten für EIU. Diese konträren Bestrebungen haben durch die Änderungen der Organisationsstrukturen und Trennung der Kostenrechnung zu einem drastischen Interessenskonflikt zwischen den EVU und EIU geführt. Eine Folge dieses Interessenskonfliktes ist der unwirtschaftliche und nicht nachhaltige Umgang mit den eingesetzten Ressourcen im Eisenbahnsystem. [3]

Um die Instandhaltung der Infrastruktur finanzieren zu können, zahlt das EVU für den Trassengebrauch ein Infrastrukturbenützungsentgelt an das EIU. Die Berechnung dieses Entgeltes beruht europaweit auf unterschiedlichen Ideologien und fällt deshalb für ein und dasselbe Fahrzeug unterschiedlich hoch aus. In Österreich basiert die Bepreisung der direkten Fahrwegkosten auf Bruttotonnenkilometer. Die Zugkilometer (zurückgelegte Stecke) werden dabei mit dem Fahrzeuggewicht multipliziert. Dieser Ansatz hat zur Folge, dass einerseits keine Unterscheidung zwischen leichten Fahrzeugen mit einem hohen Kilometersatz und schweren Fahrzeugen mit einem geringen Kilometersatz getroffen wird. Andererseits bleiben der Geschwindigkeitseinfluss und Fahrzeugzustand (Laufeigenschaft) unberücksichtigt. Eine Bepreisung basierend auf Bruttotonnenkilometer ist folglich alles andere als fair und die Beschreibung des Gleisverschleißes aufgrund einer Zugfahrt bleibt aus. [4]

Ob zwei Streckenabschnitte des österreichischen Schienennetzes, welche eine vergleichbare Gesamtbruttotonnenbelastung erfahren und einen ähnlichen Oberbau aufweisen, ein identes Gleislageverhalten haben, soll im Zuge dieser Arbeit festgestellt werden. Des Weiteren werden mehrere Gleisverschleißmodelle, die auf unterschiedlichen Ansätzen beruhen, auf diese Abschnitte angewandt und dem Gleislageverhalten gegenübergestellt.

2 Voruntersuchungen

Die Grundlage dieser Masterarbeit ist eine Voruntersuchung, welche im Zuge des Masterprojektes mit dem Titel "Ein Vergleich der Achslastkollektive Argos[®] vs. ARAMIS[®] [5] durchgeführt wurde. Es ist zu erwähnen, dass die Erstellung der vorliegenden Masterarbeit lediglich aufgrund der Ergebnisse des Masterprojektes möglich war. Außerdem werden die Daten aus Argos[®] auch im Rahmen dieser Arbeit herangezogen. Aus diesem Grund werden die betrachteten Bereiche, die herangezogenen Daten und die Ergebnisse des Vorprojektes in diesem Kapitel erläutert.

Folgende Fragestellungen sind in der Voruntersuchung beleuchtet worden:

- i. Wie sehen die Achslastkollektive der Betrachtungsbereiche laut den Argos[®]-Messdaten und den Plandaten aus ARAMIS aus? (Siehe Kapitel 2.5.1)
- ii. In welchem Verhältnis stehen die Verkehrsarten und sind diese zwischen den Datensätzen und Betrachtungsbereichen vergleichbar? (Siehe Kapitel 2.5.2)
- Sind die ermittelten Gesamtbruttotonnen sowohl zwischen den Argos[®]- und ARA-MIS-Daten, als auch zwischen den Betrachtungsbereichen vergleichbar groß? (Siehe Kapitel 2.5.3)

2.1 Betrachtungsbereiche

Für die Untersuchung der genannten Fragestellungen wurden Plan- und Messdaten der drei Betrachtungsbereiche Niklasdorf, Deutsch-Wagram und Himberg herangezogen, aufbereitet und ausgewertet. In Abbildung 2 sind die genannten Abschnitte übersichtshalber im österreichischen Schienennetz angeführt.

Abbildung 2 Netzkarte der ÖBB-Infrastruktur [5] [6]

Für diese drei Betrachtungsbereiche wurden ähnliche Beanspruchungen vermutet. Ferner sind die zulässigen Höchstgeschwindigkeiten (gemäß VzG¹) auf den Streckenabschnitten vergleichbar. Diese betragen 120 km/h im Bereich der Messstelle Deutsch-Wagram und 140 km/h im Bereich der Messstellen Niklasdorf und Himberg. Neben dem Personennahund Güterverkehr sind auf allen betrachteten Strecken Personenfernverkehrszüge zu verzeichnen. Die Messstelle Niklasdorf liegt auf der Eisenbahnstrecke 600 im Streckennetz der ÖBB² zwischen den Haltestellen Niklasdorf und Leoben. Die Messstelle Deutsch-Wagram befindet sich zwischen Wien-Süßenbrunn und Deutsch-Wagram auf der ÖBB-Strecke 901 und jene von Himberg ist auf den Strecken 700 und 701 zwischen den Haltestellen Himberg und Gramatneusiedl situiert. [5]

2.2 Argos[®] Systems

Argos[®] Systems bietet stationäre, automatische, am Gleis angebrachte Anlagen, die der Oberbaubeanspruchungsüberwachung und der Fahrzeugzustandserfassung bei Betriebsgeschwindigkeit dienen. Diese Anlagen sind auch unter dem Namen "Wayside Train Monitoring Systems" (WTMS) oder "Zugkontrolleinrichtungen" (ZKE) bekannt. Argos[®] verfügt über diverse Module, anhand welcher dynamische Radkräfte gemessen, Ladeverschiebungen detektiert, Radformen überprüft, Laufverhalten analysiert, Gleisverschiebekräfte und Wagenwankeigenschaften erfasst und entgleiste Räder und herabhängende Kupplungen identifiziert werden können. Ein Zugstopp oder eine Geschwindigkeitsreduktion kann bei auftretenden technischen Problemen oder Gefahren aufgrund der präzisen Messtechniken der ZKE zeitnah eingeleitet werden. Die betriebliche Sicherheit und die Erhöhung der Streckenverfügbarkeit können aufgrund dieser Anlagen gewährleistet werden. [7] [8]

Im Zuge der Voruntersuchung wurden aus den Argos[®] -Messdaten lediglich die quasistatische Vertikalkraft (Achslast), die Fahrzeuggeschwindigkeiten und die Fahrzeugidentifikationsdaten herangezogen. Aus diesem Grund werden lediglich die genannten Kenngrößen im Weiteren näher erläutert.

Die quasistatischen Vertikalkräfte der Argos[®] -Messdaten sind dabei Rückrechnungen ausgehend von den erfassten dynamischen Vertikalkräften an den Messanlagen. Diese dynamischen vertikalen Radkräfte werden an den Argos[®]-Messstellen mit Hilfe von Dehnmessstreifen eruiert. An einem solchen Messabschnitt werden mehrere Dehnmessstreifen an aufeinander folgenden Schwellenfächern angebracht um die Messunsicherheiten zu minimieren. Im Allgemeinen werden diese Messsysteme von Argos[®] an die Schienen geklemmt

¹ Verzeichnis der örtlichen zugelassenen Geschwindigkeit der österreichischen Bundesbahn

² Österreichische Bundesbahn

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

oder geklebt. Bei den Messstellen Deutsch-Wagram und Himberg sind die Dehnmessstreifen an den Schienensteg und -fuß geklebt, während diese in Niklasdorf anhand einer Klemmvorrichtung angebracht wurden. Bei einer Zugüberfahrt wird die Dehnung der Dehnmessstreifen aufgrund der Durchbiegung der Schiene erfasst, daraus die dynamische vertikale Radaufstandskraft ermittelt und auf die quasistatische Radlast rückgerechnet. Die Messgenauigkeit ist dabei vom System und der Geschwindigkeit abhängig. Generell liegt diese zwischen 1% und 5% bei maximal 100 bzw. 200 km/h. Im Allgemeinen ermöglichen Argos®-Messanlagen eine Achslasterfassung zwischen 800 kg und 40 t bei Fahrgeschwindigkeiten bis zu 300 km/h. Die in der Voruntersuchung herangezogene Geschwindigkeit wird mit Hilfe von Zeitmessungen der Radsatzüberfahrten an den Schwellenfächern ermittelt und für jede Achse dokumentiert (achsscharfe Dateninformation). In der nachstehenden Abbildung 3 ist ein Gleisausschnitt mit der beschriebenen Dehnmessstreifen-Sensorik dargestellt. die Dehnmessstreifen befinden sich am Schienensteg und -fuß unter den Abdeckungen. Die mit der Sensorik verbundenen Kabel führen zur umliegenden Messelektronik. Das abgebildete Messgleis hat gesamt eine Messlänge von knapp 10 m, wobei 16 Messsensoren in den Schwellenfächern angebracht sind. [5] [7]

Abbildung 3 Messgleis mit Sensorik [5]

Anlagen mit Dehnmessstreifen, welche die dynamische Vertikalkraft erfassen weisen die Genauigkeitsklasse 2 auf. Nach der EN 15654-1 bedeutet dies eine Messungenauigkeit von weniger als 1% bei der Inbetriebsetzung und weniger als 2% im Betrieb. Eine Korrektur der am Gleis anfallenden Temperaturschwankungen erfolgt bei diesen Messstellen in der Auswertung. [5]

2.3 ARAMIS

ARAMIS³ ist eine Software der ÖBB-Infrastruktur AG aus dem Bereich Betrieb, die Eisenbahninfrastrukturunternehmen (EIU) und Eisenbahnverkehrsunternehmen (EVU) eine mandantenfähige echtzeit-online Zugverfolgung ermöglicht. Des Weiteren werden statische Zuginformationsdaten, wie beispielsweise die Wagenmasse oder die zulässige Wagengeschwindigkeit, ins System aufgenommen. Diese Daten werden jedoch von den EVU eigens übermittelt (und nicht gemessen). Aus diesem Grund handelt es sich bei den in weiterer Folge herangezogenen Zuginformationsdaten aus ARAMIS um Plandaten. [9]

2.4 Dateninformation und -aufbereitung

Die Messdaten aus Argos[®] sind von der ÖBB-Infrastruktur AG (Bereich Streckenmanagement und Anlagenentwicklung) bereitgestellt worden. Für die Messstelle Deutsch-Wagram liegen dabei die Daten des Gleises 2 vor, während die Messdaten bei den Bereichen Niklasdorf und Himberg jeweils von Gleis 1 stammen. Weiters werden von den drei Messabschnitten Jahresdaten aus 2019 herangezogen, wobei der Datensatz aus Deutsch-Wagram 346 Messtage umfasst, Himberg 364 und Niklasdorf 275 Messtage. Die Datensätze sind somit für Deutsch-Wagram und Himberg weitgehend vollständig vorhanden, während die Daten der Monate Januar, Februar und März der Messstelle Niklasdorf fehlen. Der Messstandort Niklasdorf stand in diesen drei Monaten für Messungen nicht zur Verfügung. Um die Vergleichbarkeit sowohl zwischen den Betrachtungsbereichen, als auch mit den Daten aus ARAMIS dennoch gewährleisten zu können, werden Auswertungen der Messstellen Niklasdorf und Deutsch-Wagram stets auf 364 Messtage hochgerechnet. [5]

Die Argos[®]-Messdaten der drei Messquerschnitte liegen für jede erfasste Achse vor. Das heißt, dass für diese Achsen im erwähnten Zeitraum Informationen, wie beispielsweise die Geschwindigkeit oder die quasistatische Achslast in den Argos[®]-Datensätzen vorhanden sind. Dies kann als "achsscharfe" Dateninformation aufgefasst werden. Zudem sind für Wagen bzw. Fahrzeuge, die vom System erkannt wurden, achsscharfe Fahrzeugbezeichnungen und/oder UIC⁴-Nummern bekannt. Basierend auf der Fahrzeugbezeichnung und der zwölfstelligen UIC-Nummer werden die Achsen den Wagen- bzw. Fahrzeugtypen Personenwagen, Güterwagen, Lokomotive oder Bahndienstfahrzeug zugeordnet und in weiterer Folge ausgewertet.

Die Zuginformationsdaten aus ARAMIS für die drei Betrachtungsbereiche beinhalten die Anzahl der Wagen/Fahrzeuge für den jeweiligen Wagen-/Fahrzeugtyp. Zudem sind die statischen Achslasten und die Achsanzahl der jeweiligen Wagen/Fahrzeuge angeführt. Die

³ Advanced Railway Automation, Management and Information System

⁴ Union internationale des chemins de fer (Internationaler Eisenbahnverband)

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at

statischen Achslasten aus den ARAMIS-Daten entsprechen dabei nicht den realen Achslasten, sondern jenen laut den offiziellen Fahrzeugdatenblättern. Die herangezogenen ARA-MIS-Daten stammen aus den Kalenderwochen 22 und 47 aus dem Jahr 2016 und den Kalenderwochen acht und 19 aus 2017. Die Daten dieser vier Wochen liegen außerhalb von Ferienzeiten und weisen außerdem hohe Pünktlichkeitswerte auf. Dies stellt die von der ÖBB-Infrastruktur AG (Bereich Betrieb) zur Verfügung gestellten Datengrundlage dar. Des Weiteren umfassen die Daten aus ARAMIS Zuginformationen für zweigleisige Querschnitte. Die ARAMIS-Daten werden deshalb auf Jahreswerte (Faktor 13 bei 52 Kalenderwochen bzw. 364 Tage) für ein einzelnes Gleis (Faktor 0,5) kalibriert. Durch diese Hochrechnung der ARAMIS-Daten wird zwar der Vergleich mit den absoluten Zahlenwerten der Argos[®]-Daten realistischer, die Entwicklung des Zugverkehrs im Jahresgang bleibt durch die lineare Hochrechnung jedoch aus. Diese Tatsache gilt es besonders bei der Auswertung und beim Datenvergleich zu beachten. Des Weiteren ist anzumerken, dass die Plandaten aus ARAMIS als "Soll-Zustand" eingestuft werden können, da diese auf Fahrzeuginformationen der EVU basieren. Die Argos®-Daten stellen währenddessen den "Ist-Zustand" dar, da diese auf Messdaten beruhen und somit die realen Verkehrseigenschaften beschreiben. In der Auswertung wird dadurch unter anderem ein Vergleich zwischen dem "Soll-Zustand" und dem "Ist-Zustand" gezogen. [5]

Die Ergebnisse der Auswertungen der ARAMIS- und Argos[®]-Daten werden im folgenden Kapitel angeführt. Im Anschluss werden die Erkenntnisse erläutert und auf die Fragestellungen eingegangen.

2.5 Auswertung

2.5.1 Achslastkollektive

Die Achslastkollektive der drei Betrachtungsabschnitte, unterschieden in deren Datengrundlage, werden jeweils in relative Anteile der quasistatischen Achslast in Tonnen dargestellt. 23 Achslastklassen mit einer Klassenbreite von einer Tonne bzw. 1,5 Tonnen werden gewählt. Die angegebene Tonnage auf der Abszisse ist dabei in der jeweiligen Klasse noch enthalten. Bei der Auswertung werden die Achsen in die Wagentypen "Personenwagen" (PW), "Lokomotive" (LOK), "Güterwagen" (GW) und "Bahndienstfahrzeug" (BDF) unterteilt. Achsen von Triebwagen, die im Personenverkehr eingesetzt werden und Sitzplätze bieten, sind der Kategorie PW zugeordnet. Diese Eigenschaften gelten sowohl für die Auswertungen der Argos[®]-Messdaten als auch für die Plandaten aus ARAMIS. [5]

Die Achslastkollektive der Argos[®]-Messstellen Deutsch-Wagram, Himberg und Niklasdorf werden in Abbildung 4, Abbildung 5 und Abbildung 6 gezeigt.

Abbildung 4 Achslastkollektiv der Argos[®]-Messdaten aus Deutsch-Wagram [5]

Abbildung 5 Achslastkollektiv der Argos[®]-Messdaten aus Himberg [5]

Abbildung 6 Achslastkollektiv der Argos[®]-Messdaten aus Niklasdorf [5]

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

Die Achslastkollektive aus Abbildung 4 bis Abbildung 6 sind allesamt multimodal (mehrgipflig) verteilt. Weiters enthalten die Betrachtungsbereiche Achsen der Wagenkategorie PW, welche im erwarteten mittleren Achslastenbereich zwischen 10 t und 15 t liegen, mit Ausnahme der Messstelle Niklasdorf (Abbildung 6): An dieser Messstelle sind Achslasten der Kategorie PW zwischen 21 t und 22,5 t zu verzeichnen, welche jedoch ausgeschöpften Personenfernverkehrszüge zugeordnet werden können. Bei allen drei betrachteten Abschnitten ist eine Ansiedelung von Achsen des Typs LOK ab einer quasistatischen Achslast von 19 t erkennbar. Dies ist anhand der maschinellen Ausstattung und der mitgeführten Komponenten begründbar, welche für den Antrieb einer LOK notwendig sind. Radsätze der Kategorie GW und einer Achslast bis zu 7 t können als leere Wagen angenommen werden. In Deutsch-Wagram (Abbildung 4) stammen 27,2% der Achsen von leeren Güterwagen, in Himberg (Abbildung 5) sind es 21,8% und in Niklasdorf (Abbildung 6) 13,9%. Die Achsanteile der Wagenkategorie BDF sind bei allen drei Argos®-Messstellen zu vernachlässigen, da diese geringer als 0,18% sind. Ferner sind bei den drei Betrachtungsbereichen Überbelastungen zu verzeichnen. 1,3% der in Deutsch-Wagram (Abbildung 4) erfassten Radsätze liegen über der in Österreich geltenden maximal zulässigen Achslast von 22,5 t. In Himberg (Abbildung 5) sind es 0,9%, während in Niklasdorf (Abbildung 6) 5,9% der Achsen eine höhere Achslast als 22,5 t aufweisen. [5]

In Abbildung 7, Abbildung 8 und Abbildung 9 sind die Achslastkollektive der Plandaten aus ARAMIS für Deutsch-Wagram, Himberg und Niklasdorf visualisiert. Da die Wagenkategorie BDF in den ARAMS-Daten nicht eigens angeführt wird, sind Achsen des Typs BDF in den dargestellten Achslastkollektiven nicht wiederzufinden. [5]

Abbildung 7 Achslastkollektiv der ARAMIS-Plandaten aus Deutsch-Wagram [5]

Abbildung 8 Achslastkollektiv der ARAMIS-Plandaten aus Himberg [5]

Abbildung 9 Achslastkollektiv der ARAMIS-Plandaten aus Niklasdorf [5]

Ähnlich wie die Achslastkollektive der Argos[®]-Messdaten stellen auch die ARAMIS-Daten eine mehrgipflige Verteilung dar. Achsen des Wagentyps GW, die bis zu 7 t aufweisen, werden auch beim ARAMIS-Datensatz als leere Güterwagen-Achsen eingestuft. Der Achsanteil liegt dabei in Deutsch-Wagram (Abbildung 7) bei 14,4%, in Himberg (Abbildung 8) bei 16,0% und in Niklasdorf (Abbildung 9) bei 26,1%. Radsätze von Lokomotiven der Bereiche Deutsch-Wagram und Himberg gehören laut den ARAMIS-Daten weitgehend der Achslastklasse 22,5 t an. Im Vergleich dazu ordnen sich LOK-Radsätze aus Niklasdorf der Achslastklasse 21 t und 22,5 t zu. An den Messstellen Himberg (Abbildung 8) und Niklasdorf (Abbildung 9) sind PW-Achsen überwiegend in den Achslastklassen 13 t und 14 t zu beobachten, während dieser Achstyp an der Messstelle Deutsch-Wagram (Abbildung 7) in die Achslastklassen 11 t bis 15 t und 21 t einzuordnen ist. Des Weiteren sind bei allen drei Betrachtungsbereichen, die auf den Plandaten basieren, kaum bis keine Überbelastungen (>22,5 t) zu verzeichnen. [5] _Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

Im Anhang Anhang 1 bis Anhang 6 sind die absoluten Werte der dargestellten sechs Achslastkollektive aus Abbildung 4 bis Abbildung 9 beigefügt.

2.5.2 Verkehrsartverteilungen

Um feststellen zu können, ob die drei betrachteten Bereiche ähnliche Achsanteile der Wagentypen PW, GW und LOK aufweisen, werden im Zuge der Voruntersuchung Verkehrsartverteilungen in Form von Kreisdiagrammen erstellt. In Abbildung 10 sind die Verkehrsartverteilungen basierend auf den Argos[®]-und ARAMIS-Daten für die drei Betrachtungsbereiche einsehbar.

Abbildung 10 Anteile der Achsen je Wagentyp, Messstelle und Datenquelle [5]

Die Plandaten aus ARAMIS weisen im Vergleich zu den Messdaten aus Argos[®] bei allen drei Betrachtungsbereichen 6% mehr Achsen der Kategorie GW auf. Dementsprechend sind die Achsanteile des Typs PW bei den Plandaten geringer als in den Messdaten. Des Weiteren ist auffallend, dass die Verkehrsartverteilungen der Bereiche Himberg und Niklasdorf in jeweils beiden Datensätzen übereinstimmen. Deutsch-Wagram weist basierend auf den Argos[®]-Messdaten sehr ähnliche Anteile an Achsen in den Kategorien GW (47%) und PW (46%) auf. Beruhend auf den ARAMIS-Plandaten ist der Achsanteil des Typs GW (53%) höher als jener des Typs PW (42%). Der relative Anteil der LOK-Achsen ist bei allen sechs Darstellungen etwa gleich groß. [5]

2.5.3 Streckenbelastung

Die Messdaten aus Argos[®] und die Plandaten aus ARAMIS werden neben der Achslastkollektive und der Verkehrsartverteilung auch anhand der Kenngrößen der täglichen Gesamtbruttotonnen⁵, der Gesamtjahresbruttotonnen und der absoluten Achsanzahl gegenübergestellt. Wie bereits in Kapitel 2.4 (Dateninformation und -aufbereitung) erwähnt, werden für die Vergleichbarkeit die betreffenden Mess- und Plandaten auf 364 Messtage hochgerechnet. Die Werte der genannten Kenngrößen sind in Tabelle 1 als Jahreswerte für ein einzelnes Gleis ersichtlich.

Kenngrößen	Datenquelle	Deutsch-Wagram	Himberg	Niklasdorf
Gesamtbruttotonnen	Argos®	41.901	83.298	54.982
[GesBt/Tag]	ARAMIS	44.190	33.038	56.457
Gesamtjahresbruttotonnen	Argos®	15.251.865*	30.320.355	20.013.568*
[GesBt/Jahr]	ARAMIS	16.085.221*	12.025.743*	20.550.180*
Abcoluto Achconzobl []	Argos®	1.332.376*	2.384.954	1.341.442*
	ARAMIS	1.283.055*	918.873*	1.645.274*

Tabelle 1Kenngrößen der Mess- und Plandaten (*hochgerechneter Wert) [5]

Die Messquerschnitte Deutsch-Wagram und Niklasdorf zeigen in den betrachteten Kenngrößen jeweils eine gute Übereinstimmung zwischen den Datenquellen Argos[®] und ARA-MIS, wenngleich die Plandaten die tatsächliche Situation geringfügig überschätzen. Des Weiteren sind diese beiden Messstellen bezüglich der täglichen und jährlichen GesBt und absoluten Achsanzahl als vergleichbar einzustufen. Der Messquerschnitt Himberg weist wiederum erhebliche Unterschiede zwischen den beiden Datenquellen in allen drei Kenngrößen auf. Die Plandaten sind dabei in den herangezogenen Kenngrößen etwa um den Faktor 2,5 höher als die Messdaten. [5]

2.6 Erkenntnisse

In den sechs dargestellten Achslastkollektiven (Abbildung 4 bis Abbildung 9) zeichnet sich eine Multimodalität ab. Dies begründet einerseits darauf, dass Achsen des Typs PW zum größten Teil im mittleren Achslastenbereich zwischen 10 t und 15 t liegen. Andererseits sind Radsätze der Kategorie GW für gewöhnlich leer oder vollbeladen und weisen dabei Achslasten unter 7 t bzw. über 18 t auf. Radsätze von Lokomotiven haben aufgrund der maschinellen Ausstattung in der Regel Achslasten von mehr als 20 t. Die Kenngrößen der

⁵ Die Bezeichnung Gesamtbruttotonnen setzt sich aus dem Eigengewicht der Triebfahrzeuge und Wagen inklusive Reisende und Güter zusammen. [4].

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

täglichen und jährlichen Gesamtbruttotonnenbelastung und der absoluten Achsanzahl aus ARAMIS und Argos[®] sind in deren Größenordnung zwischen den Bereichen Niklasdorf und Deutsch-Wagram vergleichbar. Im Bereich Himberg sind wiederum erhebliche Differenzen zwischen den beiden Datenquellen zu erkennen. Dieser Trend ist bei allen drei Kenngrößen zu beobachten. Als Ursache für die Datenabweichungen kommen zwei Gründe in Frage. Möglicherweise hat eine Zunahme des Verkehrs, und damit die Beanspruchung, im Messbereich Himberg im Laufe des betrachteten Zeitabschnittes stattgefunden. Des Weiteren ist nicht auszuschließen, dass die Plandaten der vier herangezogenen Wochen aus den Jahren 2016 und 2017 für den Vergleich mit der tatsächlichen Verkehrsbelastung aus den Argos[®]-Jahresdaten nicht repräsentativ sind. [5]

Die Verkehrsartverteilungen stimmen zwar zwischen den Plan- und Messdaten nicht exakt überein, sie weisen jedoch ähnliche Größenordnungen auf. Bei isolierter Betrachtung der beiden Datenquellen Argos® und ARAMIS gleichen die Bereiche Himberg und Niklasdorf einander, während sich der Bereich Deutsch-Wagram von diesen unterscheidet. Eine weitere wichtige Erkenntnis der Voruntersuchung ist, dass die täglichen Gesamtbruttotonnenbelastungen der Bereiche Deutsch-Wagram und Niklasdorf sowohl bei den Messdaten als auch bei den Plandaten ähnlich hoch sind. Die Unterschiede in den Verkehrsartverteilungen zwischen den beiden Abschnitten sind wiederum erheblich. Die Beanspruchung der Infrastruktur ist daher trotz nahezu gleicher Bruttotonnenbelastung different. Im Zuge dieser Erkenntnis ist festzuhalten, dass in Österreich derzeit auf Basis der Gesamtbruttotonnenbelastung von einem ähnlichen Gleislageverhalten und folglich denselben Gleisverschlechterungsraten ausgegangen wird, wenngleich die Verteilung der Verkehrstypen unterschiedlich ist. Die Gleisverschlechterungsraten als auch die aktuelle und zu erwartende Gleisqualität sind wiederum Grundlage für Instandhaltungsmaßnahmen, wie beispielsweise dem Stopfen der Schotterbettung. Das bedeutet, dass die betrachteten Abschnitte Deutsch-Wagram und Niklasdorf in der Theorie gleich oft gestopft werden müssen, obwohl auf dem Abschnitt Deutsch-Wagram im Vergleich zu Niklasdorf um etwa 20% mehr Güterverkehr gefahren wird. Andererseits sind in Niklasdorf aufgrund des höheren Personenverkehrsanteils schnellere Züge und somit höhere dynamische Kräfte zu verzeichnen. [5]

Die gewonnenen Ergebnisse der Voruntersuchung werfen weitere Fragestellungen auf, welche in Kapitel 3 angeführt sind und weiter diskutiert werden. Nachfolgend werden lediglich die Bereiche Deutsch-Wagram und Niklasdorf weiter betrachtet, da diese in den Belastungskenngrößen sowohl untereinander ähnlich groß sind, als auch die Plan- und Messdaten des jeweiligen Abschnittes eine Vergleichbarkeit bezeugen. Der Abschnitt Himberg wird für die Untersuchung der nachstehenden Fragestellungen außer Acht gelassen, da die Kenngröße der täglichen Gesamtbruttotonnenbelastung zu den anderen beiden Betrachtungsbereichen eine zu große Abweichung aufweist. Ein Vergleich dieses Abschnittes mit den beiden anderen ist folglich nicht bzw. nur bedingt zulässig.

3 Ziele

In dieser Arbeit wird ein Konnex zwischen den Messdaten aus Argos[®] und einem Teil der TU Graz Datenbank hergestellt. Dabei werden quasistatische Achslasten, Geschwindigkeiten und Verkehrsartverteilungen aus den Argos[®]-Messdaten den Gleisverschlechterungsraten (b-Raten) der TUG Datenbank gegenübergestellt und diskutiert. Ferner wird ein Vergleichsverhältnis diverser Gleisverschleißmodelle bzw. -terme mit dem Gleislageverhalten aufgestellt. Diese Untersuchungen erfolgen jeweils an den beiden Streckenabschnitten Deutsch-Wagram und Niklasdorf bei gleichen Gleisrandbedingungen.

Die nachstehenden zwei Themenblöcke an Fragestellungen werden im Zuge dieser Arbeit untersucht und beantwortet:

- I. Sind die Gleisverschlechterungsraten zweier Gleisabschnitte mit einem unterschiedlichen Verkehrsartaufkommen ident, wenn die Gleischarakteristik der Betrachtungsbereiche gleich sind? Wie verhalten sich die Betriebsgeschwindigkeit und die erfassten Achslasten aus Argos[®] in Bezug auf die Gleisverschlechterungsraten?
- II. Welche Gleisverschleißmodelle (TDM) bzw. -terme gibt es, die die vertikale Gleislage implizieren und auf den betrachteten Abschnitten verwendet werden können? Und verhalten sich diese Modelle bzw. Terme bei Anwendung auf die Betrachtungsabschnitte gleich wie die Gleisverschlechterungsraten oder müssen diese modifiziert werden?

Letztendlich soll eine Aussage darüber getroffen werden, ob an den Messstellen Deutsch-Wagram und Niklasdorf die isolierte Betrachtung der Gesamtbruttotonnen Aussagen über das Gleislageverhalten zulassen und ob es einen eindeutigen Zusammenhang zwischen der quasistatischen Achslast und der Geschwindigkeit mit den Gleisverschlechterungsraten gibt. Weiters soll im Rahmen dieser Arbeit festgestellt werden, ob die in Frage kommenden Gleisverschleißmodelle bzw. -terme die Gleisverschlechterung der beiden Betrachtungsbereiche beschreiben. _Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

4 TUG Datenbank vs. Argos[®]

4.1 Einführung in die TUG Datenbank

Die TUG Datenbank wurde im Zuge der Dissertationen von Hummitzsch [10] und Holzfeind [11] 2009 an der TU Graz am Institut für Eisenbahnwesen und Verkehrswirtschaft erstellt. Die TUG Datenbank verknüpft Mess- und Oberbaudaten des Schienennetzes der österreichischen Bundesbahn. Die Datenbank dient unter anderem dazu, die Qualität des Gleises zu analysieren und zu beschreiben, daraus den weiteren Trend anhand von Regressionsanalysen zu prognostizieren und Instandhaltungseinsätze zu planen. Das Streckennetz der ÖBB wurde dabei in Gleisabschnitte unterteilt, welches mittlerweile 23 Streckenabschnitte (bei 4.400 km Netzlänge) umfasst [12]. Die TUG Datenbank wurde seit ihrer Erfindung stetig weiterentwickelt und angepasst. Die Streckenabschnitte der TUG Datenbank mit Stand 2014 sind in Abbildung 11 dargestellt.

Abbildung 11 Streckenabschnitte der TU Graz Datenbank (stand 18.06.2014) [13]

Informationen über Einbauten, Trassierungsparameter, Oberbauart, zulässige Geschwindigkeit, Längsneigung, Maschineneinsätze und Messdaten sind für sämtliche Abschnitte über einen Zeitraum von nahezu 20 Jahren vorhanden. Erst durch die Implementierung der TUG Datenbank wurde eine schnelle und einfache Netzinformationsabfrage durch die Angabe der Stationierung (Gleisabschnittsnummer, Gleisnummer und Kilometrierung) möglich. Im Sinne der leichteren Handhabung der Datenbank und zur Reduktion der zu verwaltenden Datenmengen wurden die Abschnitte in äquidistante (5 m) Querschnitte unterteilt. Des Weiteren sind nur die Informationen des Querschnitts in der Datenbank abgelegt. [10] [11] Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

Die Gleislagequalität wird in der TUG Datenbank anhand der Gleislageverschlechterungsrate (b-Rate) für jeden Querschnitt angegeben. Die Berechnung der b-Rate basiert wiederum auf der Qualitätsziffer "modifizierte Standardabweichung der Längshöhe" (sigH_{mod}). Im Allgemeinen gibt es unzählige weitere Ziffern, die zur Beschreibung der Gleisqualität angewandt werden können. In diese Qualitätsziffern fließen häufig die messbaren gleisgeometrischen Parameter horizontale und vertikale Gleisgeometrie, die Verwindung, Überhöhung und die Spurweite ein. Diese fünf Parameter gehören zu den wichtigsten Kenngrößen für eine Beurteilung der Gleislage. Da in Österreich die modifizierte Standardabweichung der Längshöhe für die Ermittlung und Planung von mittel- bis langfristigen Stopfeinsätzen zur Anwendung kommt, wird im Weitern ausschließlich auf diese Qualitätsziffer genauer eingegangen. [12]

Die Qualitätsziffer und Gleislageverschlechterungsrate werden in den folgenden zwei Kapiteln näher erläutert.

4.1.1 Modifizierte Standardabweichung der Längshöhe (sigH_{mod})

Die modifizierte Standardabweichung der Längshöhe ist eine von vielen Gleisqualitätsziffern, die weltweit entwickelt wurde. Diese Qualitätsziffer basiert auf der Gleislängshöhe, welche auch vertikale Gleisgeometrie genannt wird. In Abbildung 12 ist eine Abweichung der vertikalen Gleisgeometrie schematische dargestellt.

Abbildung 12 Vertikale Gleisgeometrie [14]

Im Allgemeinen kann die vertikale Gleislage anhand einer Sehnenmessung oder einer Inertialmessung ermittelt werden. Je nach Messwagengeneration bzw. -anbieter kommt eines dieser Hauptsysteme zum Einsatz. In Österreich findet lediglich die Inertialmessung Anwendung, welche anhand der Oberbaumesswagen EM 80 und EM 250 durchgeführt wird. Diese Messwagen erfassen neben den fünf bereits genannten gleisgeometrischen Parametern (horizontale und vertikale Gleisgeometrie, die Verwindung, Überhöhung und die Spurweite) auch das Schienenprofile und die Schienenoberfläche. [15] [16] Um das Setzungsverhalten des Gleises anhand einer Gleisqualitätsziffer beschreiben zu können, wird aus dem im Zuge einer Messfahrt eruierten Rohsignal der Längshöhe die modifizierte Standardabweichung für die Querschnitte alle 5 m errechnet. Wie in Formel 1 ersichtlich ist, handelt es sich dabei um keine Standardabweichung im mathematischen Sinne [17].

$$sigH_{mod} = \frac{\sum_{i=1}^{N} \left| \frac{x_{li,i} - x_{re,i}}{2} \right|}{N} * 1,35$$
 Formel 1 [12]

sigH_modModifizierte Standardabweichung der Längshöhe $\chi_{ll,i}$ Messwert des Längshöhensignals der linken Schiene am Querschnitt i $\chi_{re,i}$ Messwert des Längshöhensignals der rechten Schiene am Querschnitt iNAnzahl der Querschnitte im Einflussbereich

Für die Berechnung der modifizierten Standardabweichung wird in einem ersten Schritt der Mittelwert des Längshöhensignals der rechten und linken Schiene ermittelt. Anschließend wird für jeden Gleisquerschnitt eine mittlere Gleislageabweichung über einen Einflussbereich von 100 m kalkuliert. Dies stellt den Mittelwert aller Abstände von der Nulllinie zu den Messwerten in einer gleitenden Abschnittslänge von 100 m dar. Die Multiplikation mit dem Faktor 1,35 erfolgt, um einen Vergleich mit konventionellen Standardabweichungen zu ermöglichen. Die Berechnung der modifizierten Standardabweichung aus dem Rohsignal der Längshöhe erfolgt nach der Messfahrt durch die ÖBB. In der TUG Datenbank sind zwar lediglich die Werte der modifizierten Standardabweichung hinterlegt, allerdings kann jederzeit auch auf die Längshöhe zurückgegriffen werden. Der Vorteil der modifizierten Standardabweichung zu anderen Standardabweichungen ist, dass in diesem Fall der Einfluss etwaiger Einzelfehler nicht überzeichnet wird. Nachdem diese als mittlere Gleislagequalität aufzufassen ist, ist diese Eigenschaft zweckmäßig. Diverse Formen der Standardabweichung haben sich europaweit für Instandhaltungsmaßnahmen in Form von Stopfen als Qualitätsziffer etabliert. Die Anwendung der modifizierten Standardabweichung erfolgt dabei jedoch lediglich in Österreich. [12] [17]

4.1.2 Gleislageverschlechterungsrate (b-Rate)

Basierend auf den modifizierten Standardabweichungen der Längshöhe werden die b-Raten anhand von linearen Regressionen eruiert. In Formel 2 ist die herangezogene Regressionsgerade angeführt.

$$Q(t) = Q_{0,n} + b * t$$
 Formel 2 [18]

Q(t)Gleisqualität zum Zeitpunkt tQ_{0,n}Anfangsqualität des Raumes n

t Zeit

b Gleisverschlechterungsrate

Die b-Rate ist dabei ein Gleislageparameter, welcher Aussagen über die Gleisverschlechterung eines Querschnittes in einem bestimmten Zeitraum ermöglicht. Dabei wird jeweils für einen Querschnitt eine lineare Regressionsgerade in die modifizierten Standardabweichungen der Längshöhe geschätzt. Das Ergebnis einer solchen Regression sind die Verschlechterungsrate (b), die Anfangsqualität ($Q_{0,n}$) und die Gleisqualität am Ende eines Verschlechterungszyklus ($Q_{ult,n}$) für den Zeitraum n. Diese drei Parameter werden für jeden Querschnitt in der TUG Datenbank gespeichert. [18]

In Abbildung 13 ist das Gleislageverhalten eines Querschnittes über zwei Raumabschnitte schematisch dargestellt.

Abbildung 13 Gleislageverhalten eines Gleisquerschnittes (vgl. [18])

Ein Raumanfang bzw. Raumende wird jeweils von einer Instandhaltungstätigkeit begrenzt, da durch diesen Eingriff die Gleislagequalität sprunghaft erhöht bzw. die modifizierte Standardabweichung verringert wird. Eine hohe b-Rate bedeutet dabei eine rasche Verschlechterung der Gleislage. [18]

In der Praxis werden für die Prognose der Gleisqualität neben der linearen auch die logarithmische und exponentielle Regressionsfunktion eingesetzt. Dabei ist anzumerken, dass logarithmische Regressionsfunktionen die Endqualität des Gleises unterschätzen und Instandhaltungsmaßnahmen deshalb zu spät durchgeführt werden. Infolge dessen nimmt die Qualität des Gleises ab, was schlussendlich zu einer verkürzten Lebensdauer führt. Exponentielle Regressionsfunktionen überschätzen wiederum die Gleisqualitäten am Ende eines Zeitraumes, wodurch Instandhaltungsmaßnahmen zu früh eingesetzt werden und ferner unwirtschaftlich gehandelt wird. Lineare Funktionen zeigen hingegen im Vergleich mit den anderen beiden Funktionstypen die geringsten Abweichungen zwischen realen und prognostizierten Gleisqualitäten auf. [12]

Basierend auf den Erkenntnissen der Masterarbeit "Das Gleislageverhalten nach Einbau einer Tragschicht" von Vidović [19] und der Dissertation "Tamping within sustainable track asset management" von Neuhold [18] werden die Gleisverschlechterungsraten der TUG Datenbank anhand von linearen Regressionsfunktionen berechnet.

4.2 Vergleich der Abschnitte bezüglich b-Raten (TUG Datenbank)

Um untersuchen zu können, ob die Gleisverschlechterungsraten der Bereiche um die Messstellen Deutsch-Wagram und Niklasdorf trotz deren unterschiedlichen Verkehrsartaufkommen ähnlich sind, werden in einem ersten Schritt die Streckenabschnitte definiert. In einem zweiten Schritt werden Strecken-Randbedingungen aufgestellt, um die Vergleichbarkeit zu gewährleisten. In weiterer Folge werden die b-Raten der beiden betrachteten Streckenabschnitte, als auch des Gesamtnetzes in Form von Boxplots dargestellt. Um die Gleichheit bzw. den Unterschied der b-Raten nicht nur visuell auf Basis der Boxplots zu verifizieren, werden zusätzlich statistische Tests angewandt. Eine zusammenfassende Schlussfolgerung der Untersuchungen erfolgt am Ende dieses Kapitels.

4.2.1 Streckenabschnitte

Eine örtliche Abgrenzung der Streckenabschnitte um die Argos[®]-Messquerschnitte Deutsch-Wagram und Niklasdorf wird vorgenommen, um fahrbahnseitig lediglich jene Gleisverschlechterungsraten heranzuziehen, welche die Belastung laut den Messdaten aus Argos[®] erfahren. Die Streckenabschnitte werden ausgehend von den Messstellen in beide Richtungen bis zur nächsten auftretenden Abzweigstelle bzw. Überleitstelle begrenzt. Für den Messquerschnitt Deutsch-Wagram entsteht durch diesen Ansatz der Betrachtungsbereich zwischen Süßenbrunn Bf.⁶ und Gänserndorf Bf. (Gleis 2). In der TUG Datenbank hat dieser Bereich die Streckennummer 017. Ausgehend von der Messstelle Niklasdorf wird der durch Bruck/Mur Stadtwald und Leoben Hbf.⁷ (Gleis 1) begrenzte Betrachtungsbereich festgelegt. Dieser ist Teil der TUG Datenbank-Strecke mit der Streckennummer 009. In Abbildung 14 ist der Betrachtungsbereich Süßenbrunn-Gänserndorf und in Abbildung 15 der Abschnitt Bruck/Mur-Leoben einsehbar. Der Standort des Argos[®]-Messquerschnitts ist jeweils eingezeichnet.

⁶ Bahnhof

⁷ Hauptbahnhof

Abbildung 14 Betrachtungsbereich um die Messstelle Deutsch-Wagram [20]

Abbildung 15 Betrachtungsbereich um die Messstelle Niklasdorf [20]

Zusammenfassend sind in Tabelle 2 für die beiden Betrachtungsabschnitte und die Messquerschnitte Informationseckdaten zu deren Begrenzungen angeführt. Der Abschnitt Deutsch-Wagram weist dabei eine Streckenlänge von rund 18,7 km auf, während die Untersuchungslänge des Bereiches Niklasdorf knapp 14,9 km beträgt.

		VON	Argos [®] Messstelle	BIS
Niklasdorf	Abschnitt (m)	1.550	12.100	16.400
TUG 009	QS Nr.	508.605	510.715	511.575
Gleis 1	Ort	Bruck/Mur Stadtwald	-	Leoben Hbf.
Deutsch-Wagram	Abschnitt (m)	12.600	14.500	31.310
TUG 017	QS Nr.	686.792	687.172	690.534
Gleis 2	Ort	Süßenbrunn Bf.	_	Gänserndorf Bf.

Tabelle 2 Eckdaten der Streckenabschnitte

_Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

4.2.2 Auswahlkriterien für die Querschnitte aus der TUG Datenbank

Für die beschriebenen Betrachtungsabschnitte werden Gleisrandbedingungen festgelegt, um anschließend die b-Raten von ähnlichen Querschnitten vergleichen zu können. Randbedingungen, welche notwendigerweise schon vorab des Vorprojektes getroffen wurden, sind die maximal zulässige Geschwindigkeit (gemäß VzG) zwischen 120 und 140 km/h, die Belastungsklasse zwischen 45.000 und 70.000 Gesamtbruttotonnen (GesBt) pro Tag (TUG Datenbank) und Gleisnummer 2 für die Messstelle Deutsch-Wagram und Gleisnummer 1 für Niklasdorf. Wie bereits in Kapitel 2.5.3 erläutert wurde, beträgt die tägliche Belastung auf dem Abschnitt Deutsch-Wagram etwa 41.900 GesBt und auf dem Abschnitt Niklasdorf etwa 55.000 GesBt (siehe Tabelle 1).

Des Weiteren werden lediglich b-Raten jener Querschnitte herangezogen, die in geraden Abschnitten liegen. Als Gerade werden in der TUG Datenbank Bereiche mit Radien größer als 600 m definiert. Bei beiden Abschnitten handelt es sich um Strecken mit Schotteroberbau. Querschnitte, welche in sogenannten "Störstellen" zu liegen kommen, bleiben unberücksichtigt. Als Störstelle werden Brücken, Weichen, Eisenbahnkreuzungen und Tunnel gezählt. Außerdem werden lediglich Querschnitte auf der freien Strecke herangezogen und somit Abschnitte in Bahnhofsbereichen nicht mit einbezogen. Zusätzlich fließen ausschließlich jene Querschnitte in die Betrachtung der b-Raten ein, welche in der TUG Datenbank für "gültig" erklärt werden. Ein Gleisquerschnitt wird als gültig gewertet, wenn 50 m vor und nach dem betrachteten Querschnitt keine Störstellen auftreten. Dies beruht darauf, dass Störstellen eine Gesamteinflusslänge von 100 m auf die modifizierte Standardabweichung der Längshöhe aufweisen (siehe Berechnung der Standardabweichung in Kapitel 4.1.1).

Bevor eine Wahl bezüglich des zu heranziehenden Schwellentyps getroffen werden kann, werden die Häufigkeiten der Schwellenarten Holz, Beton und Beton besohlt für die Bereiche um die Messstellen Deutsch-Wagram und Niklasdorf eruiert. Das Ergebnis ist in nachstehender Abbildung 16 dargestellt. Dabei wird die Anzahl der Schwellen der Betrachtungsbereiche jenen des Gesamtnetzes unter Anwendung der bereits erwähnten Randbedingungen gegenübergestellt. Die absoluten Häufigkeiten der verschiedenen Schwellenarten können im Anhang 7 eingesehen werden.

Abbildung 16 Querschnitthäufigkeit der Schwellenarten in den Betrachtungsbereichen und im Gesamtnetz bei Anwendung der Randbedingungen

Querschnitte, die Betonschwellen aufweisen sind sowohl im Gesamtnetz, als auch bei den betrachteten Abschnitten am häufigsten vertreten. Im Abschnitt Süßenbrunn-Gänserndorf sind 1.416 Querschnitte mit Betonschwellen zu zählen, während es im Bereich Bruck/Mur-Leoben 692 sind. Die Anzahl der besohlten Betonschwellen beträgt in beiden Bereichen jeweils etwa 1/3 der Häufigkeit der Querschnitte ohne Besohlung. Querschnitte mit Holzschwellen sind im Bereich Bruck/Mur-Leoben keine vorhanden. Diese Erkenntnisse lassen lediglich die Betrachtung der besohlten und unbesohlten Betonschwellen zu.

Ferner ist anzumerken, dass ausschließlich jene b-Raten eines Querschnittes herangezogen werden können, welche nach dem Einbau des betrachteten Schwellentyps ermittelt wurden. In den meisten Fällen wird im Zuge eines Schwellenwechsels das Gleis erneuert, das wiederum erheblichen Einfluss auf die Gleislage hat. Dies führt dazu, dass es für keinen einzigen Querschnitt mit besohlten Betonschwellen und bei Anwendung der angeführten Kriterien im Abschnitt Süßenbrunn-Gänserndorf Gleisverschlechterungsraten gibt. Die besohlten Betonschwellen wurden in diesem Abschnitt im Jahr 2017 eingebaut, wodurch die TUG Datenbank nach diesem Zeitpunkt keine b-Raten aufweist. Da dies kein Vergleich zwischen den Betrachtungsbereichen zulässt, werden lediglich b-Raten von Querschnitten mit unbesohlten Betonschwellen berücksichtigt.

Im Zuge der Datenaufbereitung der b-Raten aus den beiden Betrachtungsbereichen werden negative b-Raten herausgenommen. Eine b-Rate mit einem negativen Vorzeichen würde eine eigenständige Gleislageverbesserung über die Zeit bedeuten (vgl. Abbildung 13). Da dieser Zustand unrealistisch ist und die negativen b-Raten das Ergebnis verzerren würden, bleiben diese unberücksichtigt. Zusammenfassend sind nachstehend die erläuterten Eigenschaften angeführt, welche bei den Querschnitten in den beiden Betrachtungsbereichen letzten Endes als Auswahlkriterium wirken:

- 1 Zulässige Geschwindigkeit gemäß VzG zwischen 120 und 140 km/h
- 1 Deutsch-Wagram Gleis 2 und Niklasdorf Gleis 1
- 1 Belastungsklasse 45.000 bis 70.000 GesBt/Tag
- I Gerade Abschnitte (R>600 m)
- 1 Schotteroberbau
- 1 Betonschwellen (unbesohlt)
- L Keine Störstellen (Bahnhöfe, Eisenbahnkreuzungen, Brücken, Tunnel, Weichen)
- I Gültig: JA
- 1 b-Raten ab dem Schwelleneinbaujahr
- 1 positive b-Raten

Bei Anwendung dieser Kriterien auf die Querschnitte in den beiden Betrachtungsbereichen bleiben für den Abschnitt Bruck/Mur-Leoben b-Raten aus 691 Querschnitte (3.455 m) und für Süßenbrunn-Gänserndorf b-Raten für 1.413 Querschnitte (7.065 m). Die b-Raten dieser Querschnitte stellen die herangezogenen Gleisverschlechterungsraten für die Gegenüberstellungen in Kapitel 4.5 (Gegenüberstellung der Argos[®]-Messdaten mit den b-Raten) und 5.2 (Gegenüberstellung der TDM-Auswertung mit den b-Raten) dar.

4.2.3 Darstellung der b-Raten

In Abbildung 17 sind die b-Raten für die Betrachtungsbereiche um Deutsch-Wagram und Niklasdorf und vergleichsweise für das Gesamtnetz angeführt. Die Querschnitte der abgebildeten b-Raten erfüllen allesamt die bereits erläuterten Gleisrandbedingungen. In den oberen drei Boxplots sind der Vollständigkeit halber die gesamten Gleisverschlechterungsraten (mit Ausreißer) abgebildet. In der Detailbetrachtung ist lediglich die Spannweite der Boxplots dargestellt, wobei der untere Whisker auf ein Minimum von null begrenzt wird.

Abbildung 17 Boxplot der b-Raten unter Anwendung der Kriterien

Die statistischen Parameter zu den Gleisverschlechterungsraten und den mittleren Einbaujahren der unbesohlten Betonschwellen sind in Tabelle 3 angeführt.

Parameter	Bruck/Mur-Leoben	Süßenbrunn-Gänserndorf	Gesamtnetz
Arithmetisches Mittel	0,1803	0,0871	0,1521
Minimum	0,0005	0,0001	0,0000
Q25	0,0871	0,0398	0,0473
Median/Q50	0,1472	0,0726	0,0909
Q75	0,2134	0,1114	0,1847
Maximum	0,7912	0,9154	4,8233
Standardabweichung	0,1299	0,0706	0,1869
Anzahl der b-Raten	2.033	3.765	273.897
Mittelwert Schwelleneinbaujahr	1995,8	1989,4	1996,7
Median Schwelleneinbaujahr	1996,0	1981,0	1996,0

Tabelle 3 Statistische Parameter der b-Raten

Beim Vergleich der zwei Betrachtungsabschnitte und des Gesamtnetzes ist auffallend, dass die Gleisverschlechterungsrate im Bereich Süßenbrunn-Gänserndorf im Median mit 0,073 geringfügig niedriger ausfällt als jener des Gesamtnetzes (0,091). Der Betrachtungsbereich Bruck/Mur-Leoben weist im Median eine b-Rate von 0,147 auf. Dieses Verhalten wird zugleich von den Mittelwerten bezeugt. Die Einkerbungen (Notches) im Bereich der Mediane überlappen sich zwischen keinem der drei dargestellten Bereiche. Dies ist ein Indiz, dass sich die Mediane der b-Raten aus den Betrachtungsbereichen signifikant unterscheiden. Auf einen genaueren statistischen Vergleich der b-Raten wird jedoch in Kapitel 4.2.4 eingegangen. Des Weiteren zeigt der statistische Vergleich des Abschnittes Bruck/Mur-Leoben mit Süßenbrunn-Gänserndorf in den b-Raten eine höhere Streuung (siehe Tabelle 3).

Die Schwellen der herangezogenen Querschnitte wurden im Bereich Süßenbrunn-Gänserndorf vorwiegend im Jahr 1981 eingebaut, einige wenige weisen das Einbaujahr 2001 auf. Dieser Abschnitt hat bezüglich des Schwelleneibaujahres einen Median von 1981. Der Einbau der Schwellen des Abschnittes Bruck/Mur-Leoben erfolgte in den Jahren 1993, 1996 und 2004 bei einem Median von 1996. Die Schwellen sind somit auf dem Abschnitt Süßenbrunn-Gänserndorf älter. Bemerkenswert ist, dass die im Mittel "älteren" Schwellen dennoch eine tendenziell geringere Gleisverschlechterungsrate aufweisen.

Zusammengefasst kann gesagt werden, dass der Abschnitt Süßenbrunn-Gänserndorf (zugehörig der Argos[®]-Messstelle Deutsch-Wagram) grafisch erkennbar geringere Gleislageverschlechterungsraten aufweist als der Abschnitt Bruck/Mur-Leoben (zugehörig der Argos[®]-Messstelle Niklasdorf). Ob dieser Unterschied zwischen den Betrachtungsbereichen bei Anwendung der Randbedingungen nicht nur grafisch, sondern auch statistisch signifikant ist, wird im nachstehenden Kapitel untersucht.

4.2.4 Statistischer Vergleich der b-Raten

Für die b-Raten der beiden Abschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben soll folglich ein statistischer Vergleich aufgestellt werden. Die Datensätze können dabei als voneinander unabhängig eingestuft werden. Da die Testmethoden von der Verteilungsart der Daten abhängig sind, werden in einem ersten Schritt die b-Raten-Datensätze auf deren Verteilung überprüft. Anschließend werden statistische Tests angewandt.

In Abbildung 18 ist zur Übersicht ein Ablaufschema dargestellt, aus welchem die Voraussetzungen für einen statistischen Vergleich zwischen den beiden Betrachtungsbereichen unter Anwendung von Hypothesentestmethoden hervorgehen. Die Verbundenheit der Daten und die Art der Verteilung bilden dabei die Basis.

Abbildung 18 Abfolge für die Anwendung statistischer Testmethoden [21] [22]

4.2.4.1 Überprüfung der Datensätze bezüglich Normalverteilung

Ob eine Normalverteilung vorliegt, kann einerseits inferenzstatistisch oder anhand grafischer Methoden der deskriptiven (beschreibenden) Statistik ermittelt werden. Die Inferenzstatistik ermöglicht dabei Wahrscheinlichkeitsaussagen über Stichproben und Populationswerte. Mit Hilfe von Testmethoden der Inferenzstatistik, wie beispielsweise des Shapiro-Wilk-Tests oder Kolmogorov-Smirnov-Tests, kann überprüft werden, ob die b-Raten der TUG Datenbank einer Normalverteilung folgen. Des Weiteren sind grafische Methoden der deskriptiven Statistik, wie beispielsweise Histogramme, Quantil-Quantil-Diagramme (Q-Q-Plot) oder Boxplots zulässig. Anzumerken ist, dass nie eine isolierte Betrachtung von inferenzstatistischen oder grafischen Ansätzen durchgeführt werden, sondern diese Möglichkeiten immer in Kombination erfolgen sollten. Nicht selten offenbart eine der beiden Methoden mehr über die Dateneigenschaften als die andere. [23]

In den bereits dargestellten Boxplots der b-Raten aus Abbildung 17 ist eine linkssteile Verteilung ersichtlich. Diese Verteilung kann vermutet werden, da die Mediane der Betrachtungsabschnitte nicht mittig, sondern tendenziell links liegen und der rechte Whisker jeweils länger als der linke ist. Des Weiteren ist das arithmetische Mittel größer als der Median, was für eine linkssteile Verteilung spricht. Mittels eines Q-Q-Plots soll grafisch verdeutlicht werden, ob es sich bei den b-Raten um normalverteilte Datensätze handelt. Die Quantile der beobachteten Werte werden in einer solchen Darstellung gegen die erwarteten Quantile einer Normalverteilung abgetragen. Dadurch können Verteilungen zweier Datensätze verglichen werden.

Das Quantil-Quantil-Diagramm aus Abbildung 19 untermauert die Vermutung, dass es sich bei den b-Raten der Datensätze aus Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben um keine normalverteilten Daten handelt. Würden die beiden Datensätze einer Normalverteilung folgen, würden die beobachteten und erwarteten Werte (graue Vierecke) nahe bzw. auf der rot dargestellten Diagonalen liegen.

Abbildung 19 Q-Q-Plot der b-Raten beider Betrachtungsbereiche

Der Shapiro-Wilk-Test soll im Anschluss inferenzstatistisch prüfen, ob die Daten der beiden Betrachtungsbereiche aus einer Normalverteilung stammen. Diese Testmethode ist ausnahmslos zur Überprüfung auf Normalverteilung anzuwenden und im Allgemeinen sehr rechenintensiv [22]. Eine händische Berechnung ist deshalb sehr aufwändig. Die Testung auf Normalverteilung erfolgt demnach mittels der Statistik-Software *RStudio*. Auf die Vorgehensweise und Berechnung des Shapiro-Wilk-Test wird dennoch zum Verständnis eingegangen. In Abbildung 20 sind die Nullhypothese, die Teststatistik und die Entscheidungsregel dargestellt.

Abbildung 20 Methodik des Shapiro-Wilk-Test [24]

Als Teststatistik für den Shapiro-Wilk-Test wird der Quotient aus zwei Varianzschätzungen gebildet. Für die erwartete Varianz im Zähler werden die Daten aufsteigend geordnet und

paarweise die Differenz der Daten von außen nach innen gebildet. Diese Differenzen werden mit den Gewichten a_i aus den Shapiro-Wilk-Tabellen multipliziert, aufsummiert und das Quadrat der Summe gebildet. Die erwartete Varianz wird durch die nicht korrigierte Stichprobenvarianz dividiert. Die Nullhypothese H₀ besagt bei diesem Testverfahren für die Daten der Gleisverschlechterungsraten, dass die b-Raten einer Normalverteilung folgen. Im Gegensatz dazu unterstellt die Alternativhypothese H₁, dass die b-Raten nicht normalverteilt sind. Die Nullhypothese wird abgelehnt, wenn die Teststatistik W^2 kleiner oder gleich dem kritischen tabellarischen Wert W_{α}^2 ist. Das Signifikanzniveau α wird bei dieser Testung mit 5% angesetzt. Anstelle der Teststatistik W^2 und dem kritischen tabellarischen Wert W_{α}^2 wird häufig bei Statistikprogrammen als Prüfkriterium der sogenannte p-Wert angegeben. Der p-Wert gibt dabei die Wahrscheinlichkeit an, mit welcher die getestete Nullhypothese Gültigkeit besitzt. In der Regel wird die Nullhypothese bei einer Wahrscheinlichkeit von mehr als 5% (p = 0,05) angenommen. [24]

Das Ergebnis des Shapiro-Wilk-Test als statistischer Signifikanztest aus *RStudio* ist in Abbildung 21 ersichtlich.

```
> shapiro.test(NI_b$b)
        Shapiro-Wilk normality test
data: NI_b$b
W = 0.82762, p-value < 2.2e-16
> shapiro.test(DW_b$b)
        Shapiro-Wilk normality test
data: DW_b$b
W = 0.81063, p-value < 2.2e-16</pre>
```

Abbildung 21 Shapiro-Wilk-Test aus RStudio

Die b-Raten sowohl des Abschnitts Bruck/Mur-Leoben, als auch des Bereiches Süßenbrunn-Gänserndorf weisen mit einer Wahrscheinlichkeit von weniger als 2,2*10⁻¹⁴% (*"p-value*") eine Normalverteilung auf. Da der p-Wert geringer als 5% ist, kann die Nullhypothese H₀ (*"Die b-Raten sind normalverteilt."*) verworfen werden und die Alternativhypothese H₁ (*"Die b-Raten sind nicht normalverteilt."*) angenommen werden.

Basierend auf den Ergebnissen des Shapiro-Wilk-Tests und des Q-Q-Plots kann nun mit Sicherheit ausgeschlossen werden, dass die b-Raten einer Normalverteilung folgen. Für den Vergleich der b-Raten beider Betrachtungsbereiche auf deren zentrale Tendenz sind somit parameterfreie statistische Testmethoden, wie es der Mann-Whitney-U-Test ist, zulässig (vgl. Abbildung 18). _Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

4.2.4.2 Mann-Whitney-U-Test

Der Mann-Whitney-U-Test, wird auch Wilcoxon-Rangsummen-Test oder Wilcoxon-Mann-Whitney-Test genannt. Dieser testet auf Basis von Nullhypothesen die Lage zweier statistischer Gruppen. Dabei wird die Wahrscheinlichkeit betrachtet, dass ein zufällig ausgewählter Wert der einen Gruppe größer oder kleiner als ein zufällig ausgewählter Wert der anderen Gruppe ist. Der Mann-Whitney-U-Test kann als nichtparametrisches Pendant zum parametrischen t-Test eingestuft werden. [23] [24]

Der Mann-Whitney-U-Test wird mit Hilfe der Statistik-Software *RStudio* einmal als ungerichtete Hypothese und zur genaueren Verifizierung und gleichzeitigen Kontrolle zweimal als gerichtete Hypothese ausgeführt. Eine Nullhypothese H₀ ist ungerichtet, wenn die Alternativhypothese H₁ sowohl positive als auch negative Abweichungen von der Nullhypothese H₀ umfasst. Im Gegenzug dazu spricht bei einer gerichteten Nullhypothese eine Abweichung zwischen zwei Populationen in die festgelegte Richtung für die Nullhypothese und eine entgegengesetzte Abweichung für die Alternativhypothese. [25]

Bei Anwendung des Mann-Whitney-U-Tests in *RStudio* wird die Art der Testung (gerichtet oder ungerichtet) über die Eingabe der Alternativhypothese H₁ (*"alternative=two.sided/greater/less*") festgelegt. Getestet wird dennoch die zu H₁ konträre Nullhypothese H₀. Der p-Wert (*"p-value*") gibt demnach Auskunft darüber, mit welcher Wahrscheinlichkeit H₀ angenommen werden kann. [23]

Der ungerichtete Hypothesentest (*"alternative* = *two.sided*") basiert auf der Nullhypothese, dass die b-Raten des Betrachtungsabschnittes Süßenbrunn-Gänserndorf (*"DW_b*") jenen des Bereiches Bruck/Mur-Leoben gleichen (*"NI_b*"). Dieser Test wird von nun an als *"*Test I" bezeichnet. In Abbildung 22 ist der ungerichtete Mann-Whitney-U-Test für den Vergleich der Lage der b-Raten-Datensätze aus *RStudio* dargestellt.

Abbildung 22 Test I: ungerichteter Mann-Whitney-U-Test (H₀: b_{DW}=b_{NI}) aus RStudio

Der gerichtete Hypothesentest aus Abbildung 23 testet die Nullhypothese H₀, dass die Gleisverschlechterungsraten aus Süßenbrunn-Gänserndorf tendenziell kleiner oder gleich den b-Raten aus Bruck/Mur-Leoben sind (bei H₁: *"alternative = greater"*). Dieser Hypothesentest ist im Folgenden unter dem Namen "Test II" geläufig.
_Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

```
> wilcox.test(DW_b$b, NI_b$b, paired = F, alternative = "greater")
Wilcoxon rank sum test with continuity correction
data: DW_b$b and NI_b$b
W = 1718318, p-value = 1
alternative hypothesis: true location shift is greater than 0
```

Abbildung 23 Test II: gerichteter Mann-Whitney-U-Test (H₀: $b_{DW} \le b_{NI}$) aus *RStudio*

Konträr und als Kontrolle zum Test II prüft der Hypothesentest III aus Abbildung 24 die gerichtete Nullhypothese, dass die b-Raten des Bereiches um Deutsch-Wagram größer oder gleich den b-Raten des Abschnittes um Niklasdorf sind (bei H₁: *"alternative = less*").

```
> wilcox.test(DW_b$b, NI_b$b, paired = F, alternative = "less")
Wilcoxon rank sum test with continuity correction
data: DW_b$b and NI_b$b
W = 1718318, p-value < 2.2e-16
alternative hypothesis: true location shift is less than 0</pre>
```

Abbildung 24 Test III: gerichteter Mann-Whitney-U-Test (H₀: $b_{DW} \ge b_{NI}$) aus RStudio

In Tabelle 4 sind zusammenfassend die angenommenen Hypothesen der drei durchgeführten statistischen Mann-Whitney-U-Tests mit deren jeweiligen Wahrscheinlichkeit für das Zutreffen der Nullhypothese H_0 angeführt.

	Test Nr.	Test Art	Ho	H1	p-Wert	angenommene Hypothese
Abbildung 22	Test I	ungerichtet	$b_{DW} = b_{NI}$	$b_{DW} \neq b_{NI}$	<2,2×10 ⁻¹⁶	H1
Abbildung 23	Test II	gerichtet	$b_{\text{DW}} \leq b_{\text{NI}}$	$b_{DW} > b_{NI}$	1	Ho
Abbildung 24	Test III	gerichtet	$b_{\text{DW}} \ge b_{\text{NI}}$	b _{DW} < b _{NI}	<2,2×10 ⁻¹⁶	H1

 Tabelle 4
 Statistische Mann-Whitney-U-Hypothesentests

Der Hypothesentest I bezeugt, dass die b-Raten aus den Betrachtungsbereichen einander nicht gleichen. Dass die b-Raten zwischen Bruck/Mur und Leoben (b_{NI}) in deren statistischen Lage höher ausfallen als jene zwischen Süßenbrunn und Gänserndorf (b_{DW}) wird zum einen von Test II (Annahme H₀) nachgewiesen und zum anderen vom Hypothesentest III (Verwerfung H₀) nicht wiederlegt. Die Gleisverschlechterungsraten der beiden Betrachtungsabschnitte Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf weisen somit bei gleicher Oberbauart, Belastungsklasse, bei vergleichbaren maximal zulässigen Geschwindigkeiten und konformen Trassierungseigenschaften sowohl grafisch als auch statistisch nachweislich unterschiedliche b-Raten auf. Die b-Raten des Abschnittes Bruck/Mur-Leoben sind im Mittel höher als die b-Raten des Abschnittes Süßenbrunn-Gänserndorf. Dies bedeutet in anderen Worten, dass das Gleis im Bereich der Argos[®]-Messstelle Niklasdorf schneller bzw. früher Längshöhenfehler aufweist, als das Gleis im Bereich der Messstelle Deutsch-Wagram.

4.3 Vergleich der Abschnitte bezüglich Achslasten (Argos[®])

Die quasistatischen Radsatzlasten der beiden Argos[®]-Messstellen wurden bereits in der Voruntersuchung in Kapitel 2 diskutiert und in Form von Achslastkollektiven dargestellt. In diesem Kapitel werden die wichtigsten Erkenntnisse des Achslastenvergleiches zwischen den Verkehrsarten und Messstellen angeführt, da diese für die Gegenüberstellung der Gleisverschlechterungsraten mit den Messdaten aus Argos[®] von Bedeutung sind. In Abbildung 25 sind die quasistatischen Achslasten in Form von Boxplots für jeden Messquerschnitt dargestellt und in Tabelle 5 die zugehörigen statistischen Parameter. Die Achslasten werden, wie in der Voruntersuchung, den drei Wagenarten Personenwagen (PW), Güterwagen (GW) und Lokomotive (LOK) zugeordnet. Bahndienstfahrzeuge bleiben hierbei aufgrund deren geringen verzeichneten Häufigkeit unberücksichtigt.

Abbildung 25 Quasistatische Achslasten der Argos®-Messstellen im Vergleich

Statistische Parame-	Achsen von Personenwagen		Achsen von Güterwagen		Achsen einer Lokomotive	
ter der Achslasten in Tonnen	DW	NI	DW	NI	DW	NI
Arithmetisches Mittel	12,23	12,99	9,28	14,79	21,47	21,53
Minimum	6,23	0,99	0,34	0,84	1,03	1,85
Q25	11,31	12,01	5,80	7,69	20,95	21,25
Median/Q50	12,62	13,01	6,59	16,38	21,55	21,62
Q75	13,46	13,72	11,73	20,00	22,05	21,99
Maximum	24,12	25,03	26,09	29,17	26,59	25,86
Standardabweichung	1,83	1,89	5,11	6,11	1,21	1,00
Anzahl der Achsen	578.023	229.225	603.193	701.466	84.989	80.987
(*hochgerechneter Wert)	(608.094*)	(303.411*)	(634.573*)	(928.486*)	(89.410*)	(107.197*)

 Tabelle 5
 Statistische Parameter der quasistatischen

_Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

Die Differenz der Achslasten zugehörig Personenwagen und Lokomotiven ist im arithmetischen Mittel und Median zwischen den Messstellen Niklasdorf und Deutsch-Wagram sehr gering. Die Achslasten dieser Wagenarten können deshalb zwischen den beiden betrachteten Messquerschnitten als vergleichbar eingestuft werden. Die Radsätze von Güterwagen weisen zwischen Niklasdorf und Deutsch-Wagram hingegen erhebliche Achslastunterschiede auf (knapp 10 t Differenz im Median und mehr als 5 t im arithmetischen Mittel). Des Weiteren ist die Standardabweichung der Achslast bei Güterwagen-Achsen vergleichsweise zu den anderen Wagenarten hoch. Die Ursache für die hohe Streuung der Achslasten dieser Verkehrsart ist auf die Art der Beladung zurück zu führen. Diese sind in der Regel entweder voll beladen oder die Güterwagen sind leer [5].

Die absoluten hochgerechneten Achsanzahlen des Messquerschnittes Deutsch-Wagram fallen in der Kategorie GW und PW ähnlich aus, während die Messstelle Niklasdorf etwa 3mal soviele Radsätze zugehörig GW erfährt wie Radsätze von PW. In Summe weisen die Betrachtungsbereiche dagegen eine vergleichbare kalibrierte absolute Achsanzahl auf. Der Bereich um die Messstelle Deutsch-Wagram erfährt jährlich hochgerechnet 1.332.077 Achsen. Um den Messabschnitt Niklasdorf sind es 1.339.094 Achsen und damit um 7.017 Achsen mehr. Die Differenz der jährlichen absoluten Achsanzahl zwischen den Messquerschnitten beträgt somit lediglich 0,5%.

4.4 Vergleich der Abschnitte bezüglich Fahrzeuggeschwindigkeiten (Argos[®])

Um einen Vergleich der Fahrzeuggeschwindigkeiten einerseits zwischen den Verkehrsarten Personenverkehr PV, Güterverkehr GV und dem sogenannten Lokomotiven-Verkehr LV und andererseits zwischen den Betrachtungsbereichen durchführen zu können, werden die Fahrzeuggeschwindigkeiten aus den Argos[®]-Messdaten anhand eines Boxplots visualisiert. Jeder Zugeinheit wird dabei eine Geschwindigkeit zugeschrieben und einer der drei Verkehrsarten zugeordnet. Bei der Verkehrsart LV handelt es sich um einzelne oder mehrere hintereinander gekuppelte Lokomotiven ohne Güter- oder Personenwagen.

Bei der Messstelle Deutsch-Wagram werden Geschwindigkeiten bis zu 123 km/h (bei VzG 120 km/h) berücksichtigt. Beim Messquerschnittes Niklasdorf werden Geschwindigkeitsdaten bis zu 143 km/h bei einer maximal zulässigen Geschwindigkeit von 140 km/h ausgewertet. Die Aufbereitung der Geschwindigkeitsdaten begründet darauf, dass einerseits eine Überschreitung der auf den Abschnitten geltenden maximal zulässigen Geschwindigkeit aufgrund der Zugsicherungssysteme unrealistisch ist. Andererseits sollen Ausreißer aufgrund von Messfehlern die Darstellung nicht verzerren, Messungenauigkeiten jedoch sehr wohl in die Betrachtung einfließen. Eine Geschwindigkeitsbegrenzung nach unten wird nicht durchgeführt, da es auf der freien Strecke immer wieder zu ungeplanten Zugstopps oder Geschwindigkeitsreduktionen kommen kann. In Abbildung 26 sind die Fahrzeuggeschwindigkeiten beider Messstellen in Form eines Boxplots dargestellt und in Tabelle 6 die zugehörigen statistischen Kennwerte.

Abbildung 26 Fahrzeuggeschwindigkeiten der Argos®-Messstellen im Vergleich

Statistische Parameter	Persone	nverkehr	Güterverkehr		Lokomotiven	
der Fahrzeuggeschwin- digkeit in km/h	DW	NI	DW	NI	DW	NI
Arithmetisches Mittel	103,7	110,2	74,2	87,4	87,1	95,5
Minimum	20,4	48,8	4,4	40,1	18,3	40,0
Q25	97,5	102,0	66,7	82,1	73,5	84,8
Median/Q50	107,5	107,2	77,5	92,5	85,9	95,0
Q75	111,9	118,2	82,6	98,9	101,0	99,6
Maximum	122,9	143,0	110,9	124,8	122,9	142,6
Standardabweichung	11,2	15,1	15,1	17,4	18,6	20,7
Anzahl der Fahrzeuge (*hochgerechneter Wert)	23.849 (25.090*)	9.960 (13.183*)	181 (190*)	117 (155*)	11.204 (11.787*)	13.587 (17.984*)

 Tabelle 6
 Statistische Parameter der Geschwindigkeit

Die Fahrzeuggeschwindigkeit der Verkehrsarten GV und LV sind im Median und arithmetische Mittel beim Messquerschnitt Niklasdorf größer als bei jenem in Deutsch-Wagram. Der PV weist im Median zwar eine gleiche Geschwindigkeit auf (107 km/h), das arithmetische Mittel fällt an der Messstelle Niklasdorf jedoch ein wenig höher aus als bei Deutsch-Wagram (110 zu 103 km/h). Die zu beobachtenden geringfügig höheren Geschwindigkeiten im GV und PV am Messquerschnitt Niklasdorf sind plausibel, da an diesem Abschnitt eine höhere zulässige Geschwindigkeit (20 km/h-Differenz zu Deutsch-Wagram) gilt. Dennoch kann festgehalten werden, dass sich die Fahrzeuggeschwindigkeit zwischen den Abschnitten zwar in geringen Maßen unterscheiden, die Differenz jedoch nicht äußerst groß ist.

4.5 Gegenüberstellung der Argos[®]-Messdaten mit den b-Raten

In diesem Kapitel werden die ermittelten b-Raten der TUG Datenbank den Achslasten, Fahrzeuggeschwindigkeiten und Verkehrsartverteilungen aus den Argos[®]-Messdaten des Betrachtungsabschnittes Bruck/Mur-Leoben (Niklasdorf) jenen des Bereiches Süßenbrunn-Gänserndorf (Deutsch-Wagram) gegenübergestellt.

In Tabelle 7 sind die Mediane der Gleisverschlechterungsraten, quasistatischen Achslasten und der Geschwindigkeiten für die Betrachtungsbereiche angeführt. Des Weiteren sind die relativen Anteile der Verkehrsartverteilung angegeben, welche sich auf die achsscharfen Absolutwerte (jede Achse zählt) der Voruntersuchung beziehen [5].

Betrachtete Elemente		Messstelle Niklasdorf (Bruck/Mur-Leoben)	Messstelle Deutsch-Wagram (Süßenbrunn-Gänserndorf)	
b-Rate [-]		0,1472	0,0726	
Achelact [t]		13,01	12,62	Ц
	GV	16,38	6,59	edia
Eshrzouggoschwindigkoit [km/h]	PV	107,2	107,5	Σ
	GV	92,5	77,5	
Verkehrsartverteilung (Achs-	PV	23	46	,o
scharf) [%]	GV	69	47	6

 Tabelle 7
 Kenngrößenvergleich zwischen den Betrachtungsabschnitten

In Abbildung 27 sind die Mediane der Kennwerte aus Tabelle 7 verhältnismäßig sowohl zwischen den Betrachtungsbereichen als auch zwischen den Verkehrsarten PV und GV dargestellt.

Abbildung 27 Grafischer Elementvergleich zwischen den Betrachtungsbereichen

Die Anteile der Verkehrsartverteilung sind unverändert jene der Voruntersuchung aus Kapitel 2. Bei den Kenngrößen Achslast, Fahrzeuggeschwindigkeit und Verkehrsart der Argos[®]-Messstellen wird lediglich zwischen dem Personenverkehr (PV) und Güterverkehr (GV) unterschieden. Die Verkehrsart Lokomotive kann bei der Gegenüberstellung der TUG Datenbank mit den Argos[®]-Messdaten ausgeklammert werden, da diese Verkehrsart lediglich 6 bzw. 7% Achsanteil aufweist (siehe Abbildung 10).

Die absolute hochgerechnete Achsanzahl der beiden Betrachtungsbereiche Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben beträgt für das Jahr 2019 jeweils mehr als 1,33 Mio. Achsen (siehe Tabelle 1). Diesbezüglich können die Bereiche aufgrund der Differenz von 0,5% als vergleichbar eingestuft werden. Die Betrachtungsabschnitte unterscheiden sich jedoch in deren achsscharfen Verkehrsartverteilung (siehe Abbildung 10). Der Bereich Bruck/Mur-Leoben weist um 20% mehr GV-Achsen und halb so viele PV-Achsen auf als Süßenbrunn-Gänserndorf.

Die Auswertung der Fahrzeuggeschwindigkeiten zeigt im Personenverkehr keine markanten Unterschiede zwischen den Abschnitten, während der Güterverkehr im Bereich Bruck/Mur-Leoben im Median um etwa 20 km/h schneller unterwegs ist. Bemerkenswert ist, dass der Abschnitt um den Messquerschnitt Niklasdorf eine größere Belastung erfährt, da die Achslasten im Median im Personen-, aber vor allem im Güterverkehr höher sind.

Bei einer unterschiedlichen Verkehrsartverteilung und einer differenten Achslast-Belastung im Median, jedoch einer vergleichbaren absoluten jährlichen Achsanzahl und ähnlichen Fahrzeuggeschwindigkeiten sind die Gleisverschlechterungsraten der Bereiche Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf dennoch verschieden. _Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at TUG Datenbank vs. Argos[®]

4.6 Erkenntnisse der Datengegenüberstellung

Trotz der gleichen Belastungsklasse von 45.000 bis 70.000 GesBt, welcher beide Abschnitte in der TUG Datenbank zugeordnet werden, sowie nachweislich vergleichbaren jährlichen Gesamtbruttotonnenbelastungen und der absoluten Achsanzahl (Tabelle 1), sind die Gleisverschlechterungsraten zwischen Niklasdorf und Deutsch-Wagram unterschiedlich (Abbildung 17). Die b-Rate ist im Bereich Niklasdorf etwa doppelt so hoch wie in Deutsch-Wagram. Ferner bedeutet dies, dass sich die Gleislage (Gleislängshöhe) in Niklasdorf schneller verschlechtert als in Deutsch-Wagram. Die Instandhaltungsmaßnahmenplanung wie Stopfeinsätze, welche zur Beseitigung von Längshöhenfehler eingesetzt werden, basiert heute unter anderem auf der Streckeneinteilung in Belastungsklassen [5]. Trotz der differenten Gleisverschlechterungsraten werden somit die Betrachtungsbereiche bezüglich deren Gleislage gleichermaßen instandgehalten.

Zusammenfassend kann gesagt werden, dass Einteilungen in Belastungsklassen basierend auf den täglichen bzw. jährlichen Gesamtbruttotonnen zumindest nicht in allen Fällen repräsentativ für die Gleisbeanspruchung und die damit zusammenhängende Gleislageverschlechterung sind. Wie es an den Abschnitten Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf gezeigt werden konnte, können Achslasten und Verkehrsartverteilungen bei der Gleisverschlechterung eine wesentliche Rolle spielen.

In der Vergangenheit haben einige Eisenbahninfrastrukturunternehmen versucht, die Gleiskomponentenschädigung, welche aufgrund einer Zugfahrt entsteht, anhand empirisch-analytischer Rechenmodelle zu beschreiben. Im nachstehenden Kapitel werden einige dieser Gleisverschleißmodelle beschrieben und auf die betrachteten Gleisabschnitte angewendet. In wieweit das Verhältnis zwischen den errechneten Gleisschädigungen der diversen Modelle und den b-Raten übereinstimmt, wird im Anschluss untersucht. Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at

5 Gleisverschleißmodelle

Gleisverschleißmodelle sind weltweit auch unter dem Namen "Track Deterioration Model" (TDM) bekannt. Diese empirisch-analytischen Modelle basieren auf unterschiedlichsten Ideologien und Ansätzen für die Beschreibung des Gleisverschleißes. Beruhend auf diesen Verschleißmodellen prognostizieren Eisenbahninfrastrukturunternehmen den Verschleiß von Gleiskomponenten und bepreisen teilweise fußend auf diesen Modellen deren Zugtrassen. In die Modelle fließen einerseits Schienenfahrzeugdaten, wie Achslasten, ungefederte Massen, Anfahrzugkräfte oder die Verkehrsart, ein. Andererseits sind zulässige Streckengeschwindigkeiten und/oder Infrastruktureigenschaften, wie Radien, Modellkenngrößen. Eine Eigenschaft, welche alle Modelle gemeinsam haben, ist die Modellkalibrierung bzw. Gewichtung der Schädigungssummanden mithilfe von Faktoren. Ziel dieser Gleisschädigungsmodelle ist nicht nur die wirtschaftlich und technisch optimale Planung von Gleisinstandhaltungsmaßnahmen, sondern ferner eine möglichst diskriminierungsfreie und ver-ursachungsgerechte Trassenbereisung [26].

Im Folgenden werden einige TDM erläutert und die Gleisschädigungen für die Betrachtungsbereiche Bruck/Mur-Leoben (Argos[®]-Messstelle Niklasdorf) und Süßenbrunn-Gänserndorf (Argos[®]-Messstelle Deutsch-Wagram) ermittelt. Es werden dabei jedoch nur jene Modell-Terme herangezogen und berechnet, welche die Gleislage beschreiben. Die anschließende Gegenüberstellung der ermittelten Schädigungsterme mit den Gleisverschlechterungsraten der beiden Betrachtungsabschnitte soll Auskunft darüber geben, in wie weit diese Modell-Terme die Veränderung bzw. Verschlechterung der Gleislage und Gleisqualität an den beiden Abschnitten beschreiben.

Vorab sei bemerkt, dass die in die Verschleißmodelle einfließende Fahrzeuganzahl, welche aus den Argos[®]-Datensätzen eruiert wird, für den Abschnitt Bruck/Mur-Leoben aufgrund der fehlenden Daten der Monate Januar, Februar und März hochgerechnet wird und diese Fahrzeuganzahl bei der Modellanwendung angesetzt wird. Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Gleisverschleißmodelle

5.1 TDM und deren Anwendung auf die Betrachtungsbereiche

5.1.1 Österreichischer/Schweizerischer Modellansatz

Das Schädigungsmodell aus dem Projekt "ÖBB Verschleißfaktor 1.0" [27], welches in Kooperation des Instituts für Eisenbahnwesen und Verkehrswirtschaft (EBW) mit der ÖBB-Infrastruktur AG umgesetzt wurde, basiert methodisch auf den Grundsätzen des schweizerischen Verschleißmodells [28]. Dieses TDM wurde im Jahr 2017 bei der SBB Infrastruktur ins Trassenpreismodell mit dem Ziel aufgenommen, den Nutzern die Kosten verursachungsgerecht zu verrechnen und einen Anreiz zur Anschaffung fahrbahnschonender Fahrzeuge zu erzielen [27]. In Österreich hat dieses Gleisverschleißmodell zwar noch keine Anwendung gefunden, es wird jedoch an einem neuen darauf basierenden Verschleißmodell gearbeitet.

Das analytische Schädigungsmodell nach dem österreichischen bzw. schweizerischen Ansatz verknüpft den fahrzeugseitigen Input mit dem fahrwegseitigen Verschleiß. Dabei beschreiben fünf Schädigungsterme den Gleiskomponentenverschleiß, welcher bei einer Zugfahrt entsteht und von der Wagen- und Fahrzeugart abhängig ist. Die Verschleißformel stützt sich dabei auf den vier Gleisinstandhaltungsmaßnahmen Schotterbettstopfen (D1), Schienenschleifen (D2 und D3), Außenschienenwechsel im Bogen (D4) und Weichenbauteilwechsel (D5). Die Kostenkalibrierungsfaktoren ki sind die mittleren Instandsetzungskosten je Gleisschädigungsart und schaffen eine monetäre Bewertung des Gleisverschleißes. In Formel 3 ist das Schädigungsmodell mit den fünf Verschleißtermen D1 bis D5 dargestellt. "D" steht dabei für den englischen Begriff "Damage". [27]

mit:	
$C(V,R)_i$	Kosten je Fahrzeugkilometer
P_2	Dynamische vertikale Radkraft
T_{PV}	Traction Power Value
<i>k</i> _i	Kostenkalibrierungsfaktoren
f 5	Kalibrierungsfaktor für die Anteile von P_2 bzw. Y an den sonstigen Instandhaltungskosten
W_{bf}	Spezifische Reibarbeit
Y	Horizontale Führungskraft

Der Einfluss der Vertikallast auf die Schotterbettzerrüttung und die damit zusammenhängende Verschlechterung der Gleislage in der Geraden und im Bogen wird mit dem Verschleißterm D1 anhand eines überlinearen Einflusses (dritte Potenz) beschrieben. Die angesetzte dritte Potenz bewirkt eine relativ große Kostenrelevanz der Schotterbettstopfung Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

in der Verschleißformel. Dies begründet darauf, dass die Gleisstopfung in der Realität kostenmäßig einen sehr hohen Anteil der gesamten Gleisinstandhaltungsarbeiten ausmacht. Der überlineare Einfluss der Vertikalkraft P2 mit der Potenz drei basiert auf den Erkenntnissen des ORE Berichtes aus dem Jahr 1987 (Frage D 161.1). Beim österreichischen/schweizerischen Modell wird einerseits jeder Radsatz als Schädigungsrelevant eingestuft, andererseits wird anstatt der statischen Radaufstandskraft die dynamische geschwindigkeitsabhängige Radlast verwendet. Der dynamische Anteil des Schädigungsterms D1 ist dabei von großer Bedeutung. Da Züge mit höherer Betriebsgeschwindigkeit gleichzeitig eine bessere Gleislage als langsamere Züge benötigen und somit mehr Instandhaltungsmaßnahmen in Form von Stopfeinsätzen notwendig sind, ist die Geschwindigkeit eine wichtige Komponente im Verschleißterm D1. Die Teilschädigungsterme D2 und D3 beschreiben die Schienenoberflächenfehler Head Checks und Squats im geraden Gleis. Diese entstehen vorwiegend aufgrund von dynamischen Vertikalkräften (Achslast) und Schienenlängskrafteinwirkungen (Antriebsleistung). Der Traction Power Value (TPV) gibt dabei die auf die Berührflächen zwischen Rad und Schiene bezogene Antriebsleistung an. Die vertikale dynamische Radaufstandskraft P₂ der Terme D1 und D2 ist jeweils die Gleiche, jedoch mit unterschiedlicher Gewichtung durch deren Exponenten. Anhand des Verschleißterms D4 wird die Schienenoberflächenschädigung im Bogengleis, genauer gesagt Schienenoberflächenrisse und der Materialabtrag, dargestellt. Dieser Verschleiß wird in der Theorie der Reibarbeit zugeschrieben und im Verschleißmodell nach der empirischen Ty-Funktion nach Burstow berücksichtigt. Der fünfte Verschleißterm D5 beschreibt den Weichenkomponentenverschleiß, welcher wiederum durch vertikal (P_2) und lateral (Y) einwirkende Kräfte verursacht wird. [27] [28] [29]

5.1.1.1 Modellanwendung

In weiterer Folge wird lediglich der Teilschädigungsterm D1 herangezogen, da dieser die Gleislage impliziert und für den Vergleich mit den b-Raten maßgebend ist. Die dynamische vertikale Radaufstandskraft P₂ wird in der österreichischen/schweizerischen Verschleißformel nach der Methode des Britischen Railway Group Standards GM/TT0088 ermittelt [27]. Die dynamische vertikale Radlast setzt sich aus der statischen Radlast und einem geschwindigkeitsabhängigen Kraftanteil zusammen. Der dynamische Kraftanteil wird wiederum aus Gleiskenngrößen (maximale Streckengeschwindigkeit, Anrampungswinkel, Gleissteifigkeit, -dämpfung, und -masse) und Fahrzeugkenngrößen (maximale Fahrzeuggeschwindigkeit und ungefederte Radmasse) berechnet. Die Fahrwegkonstanten α , m_t, c_t und K_t werden gleich wie beim Projekt "ÖBB Verschleißfaktor 1.0" des Institutes für EBW mit der ÖBB-Infrastruktur AG aus dem Railway Group Standard GM/TT0088 übernommen [27].

In Formel 4 ist die Berechnung der dynamischen vertikalen Radaufstandskraft angeführt.

$$P_{2} = P_{0} + V * 2\alpha * \sqrt{\frac{m_{u}}{m_{u} + m_{t}}} * \left(1 - \frac{c_{t} * \pi}{4 * \sqrt{K_{t} * (m_{u} + m_{t})}}\right) * \sqrt{K_{t} * m_{u}}$$
 Formel 4 [30]

 P_2 Dynamische vertikale Radaufstandskraft in N

- P_0 V Statische vertikale Radmasse des Fahrzeuges in kg
- Fahrzeug- bzw. trassierungsbedingte Geschwindigkeit in m/s
- = 0,02 rad; vertikaler Anrampungswinkel bei Schienenunebenheiten (Schienenstöße) 2α
- Ungefederte Radmasse des Fahrzeuges in kg m_u
- = 245 kg; effektive vertikale Gleismasse je Rad m_t
- = 55.400 Ns/m; effektive vertikale Gleisdämpfung je Rad Ct
- = 62.000.000 N/m; effektive vertikale Gleissteifigkeit je Rad K+

Da die Vertikalkraft P2 geschwindigkeitsabhängig ist, werden nach dem österreichischen/schweizerischen Verschleißmodell die Streckenabschnitte in vier Radienklassen und sechs Geschwindigkeitsklassen unterteilt, wobei die Geschwindigkeitsklassen der Kategorie "Gerade" angehören. Jeder dieser zehn Klassen wird eine Bezugsgeschwindigkeit zugeordnet. Nachdem es sowohl fahrzeugseitig, als auch fahrwegseitig Maximal-Geschwindigkeiten gibt, ist für die Berechnung der P2-Kraft die geringere aus den beiden Geschwindigkeiten maßgebend. [27]

In Tabelle 8 sind die Radien- und Geschwindigkeitsklassen mit den zugehörigen Bezugsgeschwindigkeiten angeführt.

Radienband [m]		Geschwindigkeitsband [km/h]		Bezugsgeschwindigkeit [km/h]
R1	600 < R ≤ 1.000			137,78
R2	$400 < R \le 600$	1 6		106,73
R3	250 <r 400<="" td="" ≤=""><td></td><td></td><td>90,22</td></r>			90,22
R4	R ≤ 250			80,04
		V1	V ≤ 80	75
Gerade		V2	$80 < V \le 100$	90
	R > 1.000	V3	$100 < V \le 120$	110
		V4	120 < V ≤ 140	130
		V5	$140 < V \le 160$	150
		V6	160 < V ≤ 200	200

Bezugsgeschwindigkeiten für die Radien- und Geschwindigkeitsbänder [27] Tabelle 8

Da für die betrachteten Streckenabschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben lediglich b-Raten aus geraden Abschnitten herangezogen werden und die maximal zulässige Höchstgeschwindigkeit in diesen Bereichen 120 bzw. 140 km/h beträgt, sind für die Berechnung der Vertikalkräfte lediglich die Geschwindigkeitsklassen V4 und V5 des Radienbandes "Gerade" von Bedeutung.

Für die Berechnung der gewichteten dynamischen vertikalen Radlast P₂³ werden die Fahrzeugkenngrößen aus dem Projekt "ÖBB Verschleißfaktor 1.0" herangezogen, welche in Anhang 8 einsehbar sind. Für jeden Fahrzeug- bzw. Wagentyp wird in einem ersten Schritt die dritte Potenz der P₂-Kraft jeweils für angetriebene und unangetriebene Radsätze berechnet. Die Summe der angetriebenen und unangetriebenen P₂³-Maßzahlen je Fahrzeug/Wagen ergeben die Schädigungsinkremente, welche in Anhang 9 aufgelistet sind.

Diese Schädigungsinkremente werden in einem zweiten Schritt mit der absoluten Anzahl der aus den Argos[®]-Messdaten erfassten (hochgerechneten) Fahrzeuge/Wagen und der betrachteten Streckenlänge multipliziert. Die Streckenlänge ergibt sich dabei aus der Anzahl der Querschnitte der TUG Datenbank unter Anwendung der bereits erläuterten Streckenrandbedingungen in Kapitel 4.2.2 (Auswahlkriterien für die Querschnitte aus der TUG Datenbank). Die Querschnittinformationen liegen in der TUG Datenbank alle 5 m auf. Um auf die für die Rechnung relevante Streckenlänge zu kommen, wird die ermittelte Querschnittsanzahl mit fünf multipliziert. Der Abschnitt Süßenbrunn-Gänserndorf weist nach Anwendung der Streckenrandbedingungen 1.413 Querschnitte und damit eine Abschnittlänge von 7.065 m auf, während es im Bereich Bruck/Mur-Leoben 3.455 m bei 691 Querschnitte sind. Um wiederum die Vergleichbarkeit zwischen den Abschnitten Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben sicherzustellen, wird für beide Bereiche die gleiche Streckenlänge von 3.455 m angesetzt. Trotz der Tatsache, dass die verwendete Streckenlänge letzten Endes lediglich ein Faktor darstellt, welcher das am Ende betrachtete Schädigungssummenverhältnis nicht verändert, wird die Streckenlänge dennoch der Vollständigkeit halber angesetzt. Im Zuge dieses zweiten Schrittes wird die tatsächliche Schädigung an den betrachteten Abschnitten ermittelt und die Summe über alle Fahrzeuge gebildet. Diese Summe stellt prinzipiell die Schädigungssumme für den Schädigungsterm D1 dar.

Da jedoch nicht für alle erfassten Fahrzeuge aus den Argos[®]-Daten Fahrzeuginformationen vorliegen bzw. nicht alle Fahrzeuge aus den Argos[®]-Daten klar identifizierbar sind, werden Hochrechnungsfaktoren berechnet, welche in Tabelle 9 angeführt sind.

Betrachtungsbereich	Summe der Radsatzlasten aller Fahrzeuge in Tonnen	Summe der Radsatzlasten der bekannten Fahrzeuge in Tonnen	AL-Faktor
Bruck/Mur-Leoben	15.096.900,9	13.955.493,9	1,08
Süßenbrunn-Gänserndorf	14.493.927,4	13.199.364,2	1,10

 Tabelle 9
 Hochrechnungsfaktoren (AL-Faktoren) für die Schädigungssummen

Im Abschnitt um die Argos[®]-Messstelle Niklasdorf sind mehr als 7% der Wagen/Fahrzeuge als "unbekannt" einzustufen und im Bereich Deutsch-Wagram sind es mehr als 9%. Um dennoch eine repräsentative Größenordnung der Schädigungssummen D1 sicherzustellen,

werden diese in einem dritten Schritt anhand der sogenannten Achslast-Faktoren (AL-Faktoren) hochgerechnet. Die AL-Faktoren berechnen sich aus dem Verhältnis der Summe der gesamten erfassten Radsatzlasten zur Summe der Radsatzlasten aus systembekannten Fahrzeugen.

Die ermittelten Schädigungssummen für jeden Fahrzeug- bzw. Wagentyp und die Gesamtschädigungssumme der Betrachtungsbereiche können im Anhang 10 eingesehen werden. Die Schädigungssumme des Gleisabschnittes Süßenbrunn-Gänserndorf beträgt bei Anwendung des Hochrechnungsfaktors 1,10 rund 17,7x10¹², während im Bereich Bruck/Mur-Leoben die Schädigung mehr als 24,2x10¹² bei einem Faktor von 1,08 ausmacht. Die ermittelte Schädigungssumme des Bereiches Süßenbrunn-Gänserndorf ist mit 73% der Schädigungssumme des Gleisabschnittes Bruck/Mur-Leoben um mehr als 1/3 geringer. Zusammenfassend sind in Tabelle 10 die kalkulierten Schädigungssummen einsehbar.

Betrachtungsbereich	Schädigungssumme D1 (hochgerechnet)	Verhältnis	b-Ratenverhältnis (Median)
Bruck/Mur-Leoben	24.228.440.694.391	0.72	0.40
Süßenbrunn-Gänserndorf	17.748.593.941.884	0,75	0,49

Tabelle 10 Österreichisch/Schweizerischer Modellansatz

Eine Gegenüberstellung und Diskussion des österreichisch/schweizerischen Verschleißansatzes und den im Weiteren betrachteten und angewandten TDM auf die Bereiche Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben mit den Gleisverschlechterungsraten erfolgt in Kapitel 5.2.

5.1.1.2 Modellkalibrierung

Um ein ähnliches Verhältnis zwischen den Streckenabschnitten bezüglich deren Schädigungssummen zu erhalten wie es die Gleisverschlechterungsraten aufweisen, wird der österreichische/schweizerische Verschleißterm D1 (P_2^3) kalibriert. Der Exponent der P_2 -Kraft ist eine sogenannte "Drehschraube", anhand welcher der Verschleißansatz auf die Betrachtungsabschnitte angepasst werden kann. Dieser beschreibt den Einfluss der dynamischen Vertikalkraft je Fahrzeugart auf die Gleislage. Überdies wird die Konstante α aus dem Railway Group Standard GM/TT0088 modifiziert. Diese impliziert den vertikalen Anrampungswinkel auf der Schiene und beschreibt das diskontinuierliche Gleis, welches aufgrund von eingefahrenen verlaschten Schienenstößen entsteht. In Abbildung 28 ist eine schematische Darstellung des Anrampungswinkels α ersichtlich. Der gesamte Anrampungswinkel wird mit 2 α angegeben und fließt in dieser Form in die Berechnung der P_2 -Kraft ein. Der Britischen Railway Group Standard geht dabei von einer symmetrischen Gleisverbindung und somit identen Anrampungswinkeln aus.

Abbildung 28 Anrampungswinkel [30]

Die Adaption des Anrampungswinkels im Verschleißterm D1 ist zulässig, da sich diese Fahrwegkonstante von Gleis zu Gleis unterscheiden kann. Besonders in Gleisabschnitten mit verschweißten statt verlaschten Schienenstößen fällt der Anrampungswinkel geringer aus. Heutzutage werden Schienen in Österreich in der Regel verschweißt. Dies gilt besonders für Hauptstrecken.

Ziel der Modifizierung des Exponenten und des Anrampungswinkels des Teilschädigungsterms D1 ist, ein vergleichbares Schädigungssummenverhältnis zwischen den Betrachtungsbereichen zu schaffen, wie es die Gleisverschlechterungsraten aufweisen. Das Verhältnis der Betrachtungsbereiche Süßenbrunn-Gänserndorf zu Bruck/Mur-Leoben bezüglich den b-Raten im Median weist 0,49 auf (siehe Tabelle 10). Dies stellt den Verhältniswert dar, auf welchen die Modellkalibrierung abzielt. Einige Kalibrierungsversuche mit unterschiedlichen Anrampungswinkeln und Exponenten sind in Tabelle 11 mit den Verhältniswerten angeführt.

Modellansatz		Bruck/Mur-Leoben	Süßenbrunn-Gänserndorf	
Exponent = 3	D1	8.898.260.946.851	5.695.461.648.786	
$2\alpha = 0,01 \text{ rad}$	Verhältnis	0,64		
Exponent = 3	D1	5.014.611.883.017	2.879.238.609.621	
$2\alpha = 0,005 \text{ rad}$	Verhältnis	0,57		
Exponent = 3,5	D1	54.451.314.864.342	29.607.500.252.864	
$2\alpha = 0,005 \text{ rad}$	Verhältnis	0,54		
Exponent = 4	D1	596.228.542.222.469	309.484.534.038.003	
2α = 0,005 rad	Verhältnis	0,!	52	

 Tabelle 11
 Schädigungssummenanteile nach Modellkalibrierung (Ö/CH)

Prinzipiell kann festgestellt werden, dass der gesamte Anrampungswinkel von 0,02 rad laut dem Britischen Railway Group Standard GM/TT0088 für die beiden Betrachtungsabschnitte zu hoch ist. Weiters scheint der überlineare Einfluss der dynamischen Vertikalkraft mit dem Exponenten drei zu gering zu sein.

Eine Halbierung des gesamten Anrampungswinkels von 0,02 auf 0,01 rad bei Anwendung der dritten Potenz, führt zu einem Schädigungssummenverhältnis von 0,64. Eine weitere Reduzierung von 2 α auf 0,005 rad bei einer gleichbleibenden dritten Potenz bewirkt ein Verhältnis von 0,57. Die Erhöhung des Exponenten von drei auf 3,5 (bei 2 α = 0,005 rad) verringert den D1-Verhältniswert zwischen den Betrachtungsbereichen auf 0,54. Die Anwendung der vierten Potenz mit dem Anrampungswinkel von 0,005 rad ergibt ein Schädigungssummenverhältnis zwischen den beiden Abschnitten von 0,52. Dieses Verhältnis ist vergleichbar mit jenem der b-Raten in der Höhe von 0,49. Die Beschreibung der Gleislageverschlechterung durch den Teilschädigungsterm D1 des österreichischen/schweizerischen Modellansatzes ist für die Abschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben mit einem Anrampungswinkel von 0,005 rad und einem Exponenten der vierten Ordnung gegeben.

5.1.2 Schwedischer Modellansatz

Das schwedische Verschleißmodell basiert auf den vier Hauptverschleißmechanismen Gleissetzung bzw. Schotterbettzerrüttung, Gleiskomponentenverschleiß, Schienenverschleiß und Rollkontaktermüdung (RCF⁸) [31]. In Formel 5 ist das schwedische Verschleißmodell mit den Einflussgrößen angeführt.

$$E_{a,Z}(R_j, T_a) = k_1 * \frac{T_Z}{n_Z} * \sum_{i=1}^{n_Z} Q_{tot_i}^3 + k_2 * \frac{(T_a + T_Z)}{n_Z} * \sum_{i=1}^{n_Z} \left[\sqrt{Q_{tot_i}^2 + Y_{qst_i}^2} \right]^3 + K_{34} * T_Z * \frac{\sum_{i=1}^{n_Z} [f(\overline{F_v} \overline{v})_i]}{m_Z}$$
Formel 5 [31]

$E_{a,Z}(R_j,T_a)$	Akkumulierte Gleisverschlechterung (abh. Radiusklasse, Verkehrsvolumen und Fahrzeugtyp)
Tz	Verkehrsvolumen des Fahrzeuges Z während dem ersten Jahr
Ta	Verkehrsvolumen seit Fahrwegerrichtung oder -instandhaltung
nz	Anzahl der Achsen des Fahrzeuges Z
Q _{tot,i}	Gesamte vertikale Achslast ($Q_{stat}+Q_{qst}+Q_{d20Hz}+Q_{dhf}$)
Y _{qst,i}	Quasistatische Radsatzquerkraft des führenden Radsatzes
mz	Fahrzeugmasse
$f(\overline{F_v}\overline{v})i$	Funktion hinsichtlich Reibarbeit bei Schienenverschleiß und RCF
k_1	Grenzkostenkoeffizient für Gleissetzungen
k2	Grenzkostenkoeffizient für Komponentenermüdung
<i>k</i> ₃₄	Grenzkostenkoeffizient für Schienenverschleiß und RCF

 m_z

⁸ Rolling Contact Fatigue

Die Verschlechterung der Gleislage aufgrund von Schotterbettzerrüttung wird durch die vertikale Krafteinbringung eruiert. Diese Vertikalkraft setzt sich dabei aus einem statischen, einem quasistatischen, einem dynamischen und einem ungefederten Kraftanteil zusammen. Ferner wird das Komponentenversagen des Gleises durch einen vertikalen und lateralen Kraftanteil beschrieben. Schienenoberflächenfehler, wie Verschleiß oder Rollkontaktermüdung, werden ähnlich wie im österreichisch/schweizerischen Verschleißmodell anhand der Ty-Funktion nach Burstow ermittelt. [29] [31]

5.1.2.1 Modellanwendung

Für die weitere Betrachtung wird lediglich jener Teil des schwedischen Verschleißmodells angewandt, welcher die Gleislage beschreibt (gelb markierter Teil in Formel 5). Da sich die dynamische Vertikalkraft Q_{tot} in diesem Modell aus Simulationsgrößen zusammensetzt, welche für die erfassten Fahrzeuge der Argos[®]-Messstellen nicht vollständig vorhanden sind, wird stattdessen erneut die dynamische Vertikalkraft P₂ nach dem Railway Group Standard GM/TT0088 herangezogen. Die im Zuge der Anwendung des österreichischen/schweizerischen Modellansatzes bereits berechneten P₂-Kräfte werden jedoch bei dieser Betrachtung nicht verwendet. Als Geschwindigkeit, welche in die dynamischen Vertikalkraft P₂ einfließt, wird statt der maximalen Fahrzeug- bzw. Trassierungsgeschwindigkeit die tatsächliche gefahrene Betriebsgeschwindigkeit aus den Argos[®]-Messdaten angesetzt.

Das in der schwedischen Verschleißformel angesetzte Verhältnis T_z zu n_z entspricht der statischen Achslast (Verhältnis statisches Fahrzeuggewicht zu Achsanzahl des Fahrzeuges) und wirkt somit als Faktor im betrachteten Teilschädigungsterm.

Die Berechnungsgrößen der Schädigungsterme nach dem schwedischen Modellansatz für die Systemfahrzeuge sind für den Abschnitt Bruck/Mur-Leoben in Anhang 11 und für den Bereich Süßenbrunn-Gänserndorf in Anhang 12 angeführt. Die berechneten Schädigungsterme je Fahrzeug- bzw. Wagentyp werden für den Bereich Bruck/Mur-Leoben aufgrund der fehlenden Daten der ersten drei Monate des Jahres 2019 wiederum hochgerechnet, um die Vergleichbarkeit zwischen den Betrachtungsbereichen gewährleisten zu können. Dabei werden die berechneten Schädigungsterme je Fahrzeug- bzw. Wagentyp durch die tatsächliche Achsanzahl dividiert und mit der hochgerechneten Achsanzahl multipliziert.

Zusammenfassend sind in Tabelle 12 die Schädigungssummen und die %-Anteile der beiden Betrachtungsbereiche dargestellt. Die Schädigungssumme aus Süßenbrunn-Gänserndorf beträgt knapp 61% der Schädigungssumme aus Bruck/Mur-Leoben.

Betrachtungsbereich	Schädigungssumme Tz / nz * ΣP ₂ ³ (*hochgerechnet)	Verhältnis	b-Ratenverhältnis (Median)
Bruck/Mur-Leoben	100.066.672.341.420*	0.61	0.40
Süßenbrunn-Gänserndorf	60.722.764.233.017	0,61	0,49

Tabelle 12 Schwedischer Modellansatz (P₂)

Neben der dynamischen Vertikalkraft P₂ nach dem Railway Group Standard GM/TT0088 wird des Weiteren die erfasste quasistatische Achslast APZ₅₀ aus den Argos[®]-Messdaten für die Ermittlung der Schädigungssumme nach dem schwedischen Verschleißansatz verwendet. Die Berechnung der Teilschädigungssumme erfolgt dabei analog. Es wird lediglich anstatt der P₂-Kraft die quasistatische Achslast APZ₅₀ in die Formel eingesetzt. Bei diesem Ansatz bleibt der Geschwindigkeitsbezug außen vor. In Tabelle 13 sind die hochgerechneten Schädigungssummen unter Verwendung der quasistatischen Achslast nach der schwedischen Verschleißformel angeführt.

Betrachtungsbereich	Schädigungssumme T _z / n _z * ΣAPZ ₅₀ 3 (*hochgerechnet)	Verhältnis	b-Ratenverhältnis (Median)
Bruck/Mur-Leoben	125.007.209*	0.40	0.40
Süßenbrunn-Gänserndorf	49.821.093	0,40	0,49

Tabelle 13Schwedischer Modellansatz (APZ50)

Bei Betrachtung der Gesamtschädigungssummen ist ersichtlich, dass jene Summe des Gleisabschnittes Süßenbrunn-Gänserndorf etwa 40% der Gesamtschädigung des Bereiches Bruck/Mur-Leoben ausmacht.

Die Teilberechnungssummen der jeweiligen Fahrzeugtypen können in Anhang 13 für den Bereich Bruck/Mur-Leoben und in Anhang 14 für den Abschnitt Süßenbrunn-Gänserndorf eingesehen werden.

5.1.2.2 Modellkalibrierung

In einem weiteren Schritt wird eine Modifizierung des Schädigungsterms nach dem schwedischen Verschleißmodell, welcher die Gleisschädigung beschreibt, vorgenommen. Die Modellkalibrierung erfolgt dabei ähnlich zur bereits durchgeführten Kalibrierung in Kapitel 5.1.1.2 unter Anwendung des österreichischen/schweizerischen Ansatzes. Zum einen werden der Exponent und der Anrampungswinkel der P₂-Kraft adaptiert, um wiederum ein Verhältnis zwischen den Betrachtungsbereichen in der Höhe von etwa 0,49 zu erreichen. Andererseits wird die Potenz der erfassten quasistatischen Achslast APZ₅₀ aus den Argos[®]-Messdaten bezüglich des angestrebten Verhältnisses kalibriert. Die Hochrechnung der Schädigungssummen für den Abschnitt Bruck/Mur-Leoben zur Sicherstellung der Vergleichbarkeit zwischen den Abschnitten ist dieselbe wie bei der Modellanwendung. In Tabelle 14 sind die Schädigungssummen und -anteile für die Abschnitte Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf der kalibrierten schwedischen Teilschädigungssumme ersichtlich.

Modellansatz		Bruck/Mur-Leoben	Süßenbrunn-Gänserndorf
Exponent = 3,5	$T_z/n_z^*\Sigma(P_2)^{3,5}$	1.366.752.998.474.720	820.801.778.347.561
$2\alpha = 0,02 \text{ rad}$	%-Anteil	100,0%	60,1%
Exponent = 3,0	T _z /n _z *Σ(P ₂) ³	26.512.522.222.293	12.807.618.916.174
2α = 0,005 rad	%-Anteil	100,0%	48,3%
APZ ₅₀ aus Argos [®]	Tz/nz*Σ(APZ₅₀)²	62.541.101	28.847.296
Exponent = $2,0$	%-Anteil	100,0%	46,1%
APZ₅₀ aus Argos®	Tz/nz*Σ(APZ ₅₀) ^{1,7}	51.214.594	24.921.188
Exponent = 1,7	%-Anteil	100,0%	48,7%

 Tabelle 14
 Schädigungssummenanteile nach Modellkalibrierung (SWE)

Die Kalibrierung des P₂-Kraftansatzes anhand der Erhöhung des Exponenten zeigt bezüglich des Schädigungssummenverhältnisses wenig Wirkung (0,60). Vielmehr bewirkt eine Verringerung des Schienenanrampungswinkels von 0,02 auf 0,005 rad bei dritter Potenz ein Verhältnis von 0,48, welches mit dem b-Raten-Verhältnis von 0,49 gut übereinstimmt.

Beim schwedischen Modellansatz der quasistatischen Achslast APZ₅₀ ist einer Verringerung des Exponenten durchzuführen, um ein vergleichbares Verhältnis zu den Gleisverschlechterungsraten zu erhalten. Bei der Schädigungssummenberechnung mit dem Exponenten 1,7 stehen die Abschnitte Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf in einer 48,7%igen Relation.

Die Berechnungsgrößen der in Tabelle 14 angeführten kalibrierten Schädigungssummen sind in Anhang 15 bis Anhang 22 einsehbar.

5.1.3 Britischer Modellansatz

In Großbritannien werden sogenannte "Variable Usage Charge" (VUC) Modelle angesetzt, um Instandhaltungs- und Erneuerungskosten decken zu können. Dabei wird beim VUC zwischen den vier Kategorien vertikale und horizontale Gleislage, Infrastruktur und Signaltechnik unterschieden. Fahrzeuge werden in diesen Kategorien anhand von sogenannten "Gleisnoten" bewertet, welche mithilfe von Formeln berechnet werden. Ziel dieser Bewertung ist es, dass gleisfreundliche Fahrzeuge weniger Benutzungsentgelt bezahlen als gleisschädliche Fahrzeuge. [32]

VUC cost category	Formula used to calculate 'track friendliness' score	Background
Track (Vertical)	Ct * (0.473e^(0.133A) + 0.015 SU - 0.009 S - 0.284 U - 0.442) * GTM * axles	Based on Serco analysis using VTISM in PR13
Track (Horizontal)	Allocated using the 'curving class' methodology	Based on TTCI analysis in CP4
Civils	Ct.A ^{3.00} .S ^{1.52} (per tonne.mile).GTM	Based on TTCI analysis in CP4 and Serco analysis in PR13
Signalling	50% of costs assumed to be load-related allocated using Track (Vertical) formula, above, and 50% of costs assumed to be non-load-related allocated based on vehicle miles	Based on TTCI analysis in CP4 and Serco analysis in PR13

In Abbildung 29 sind die vier Kategorien mit den Berechnungsformeln angeführt.

Abbilduna	29	VUC-Kategorien	des	britischen	Modellansatzes	[32]
/ loonaang	~ ~	voc nategorien	aco	brittiberrerr	i louchanbutzeb	1221

5.1.3.1 Modellanwendung

Da im Zuge dieser Arbeit lediglich Verschleißmodelle betrachtet werden, welche die vertikale Gleislage implizieren, wird in weiterer Folge lediglich die britische Formel "Track (vertikal)" auf die Betrachtungsbereiche angewandt und untersucht. In Formel 6 ist das Schädigungsmodell mit dessen Einflussgrößen angeführt.

$D_V = C_t * (0,473 * e^{0,133 * A} + 0,015 * S * U - 0,009 * S - 0,284 * U - 0,442) * GTM$	Formel 6
	[32] [33]

Dv Gleisschädigungsnote (vertikal)

Ct Koeffizient (0,89 für Lok-gezogene Personenwagen und Personentriebzüge und 1 für alle anderen Fahrzeuge

A Statische Achslast in t (zwischen 5 bis 25 t)

S Betriebsgeschwindigkeit in mph (zwischen 25 bis 100 mph)

U Ungefederte Masse in t/Achse (zwischen 1 bis 3 t)

GTM Gesamtbruttotonnenmeilen $(=n_A*L*A)$

L Zurückgelegte Strecke in Meilen

n_A Achsanzahl

Der Verschleiß des Fahrweges wird im englischen Modell basierend auf den drei Parametern statische Achslast, Betriebsgeschwindigkeit und der ungefederten Achslast beschrieben. Auffallend ist, dass das Modell nicht einheitentreu aufgestellt ist. Aus diesem Grund handelt es sich bei der Berechnungsgröße D_V um eine Gleisschädigungsnote. Je niedriger dabei die Gleisschädigungsnote eines Fahrzeuges ist, desto gleisschonender ist dieses Fahrzeug. Weiters ist anzumerken, dass dieses Modell nicht nur die Gleisschädigung evaluiert, sondern überdies den englischen Gleiszustand und deren Komponenten beinhaltet. Bei der Modellkalibrierung wurden die Formel-Faktoren so gewählt, dass das Verschleißmodell der Standardabweichung der britischen Gleislage folgt. Die Standardabweichungen der Gleislage stammen dabei von eingleisigen Strecken mit einer maximalen zulässigen Geschwindigkeit von bis zu 160 km/h (100 mph). [29]

Bei der Berechnung der Gleisschädigungsnote D_V für die Bereiche Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben werden die erfassten Geschwindigkeiten aus dem Argos[®]-Messdatensatz herangezogen. Die ungefederten Massen und die statischen Achslasten sind jene Fahrzeugkenngrößen, welche bereits beim österreichischen/schweizerischen Modellansatz verwendet wurden und aus dem Projekt ÖBB Verschleißfaktor 1.0 stammen. Personenwagen und Triebzüge werden mittels des Modellkoeffizienten C_t in der Höhe von 0,89 abgemindert. Für alle anderen Fahrzeuge bzw. Wagen wird ein C_t-Wert von 1,0 angesetzt.

In einem letzten Schritt werden die Terme beider Betrachtungsbereiche mit den Gesamtbruttotonnenmeilen (Produkt aus 2,15 Meilen, der quasistatischen Achslast und der Achsanzahl) multipliziert und die Summe der Gleisschädigungsnoten über alle Fahrzeuge gebildet. In Tabelle 15 sind die Gleisschädigungsnoten D_v nach dem britischen Modellansatz angeführt.

Betrachtungsbereich	Gleisschädigungsnoten Dv (hochgerechnet)	Verhältnis	b-Ratenverhältnis (Median)	
Bruck/Mur-Leoben	217.265.452.381.750	0.42	0.40	
Süßenbrunn-Gänserndorf	94.055.429.383.610	0,43	0,49	

Tabelle 15 Britischer Modellansatz

Das ermittelte Verhältnis der Gleisschädigungsnoten der beiden Betrachtungsabschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben beträgt 0,43. Dieses Verhältnis gleicht jenem der Gleisverschlechterungsraten in der Höhe von 0,49. Da das Verhältnis der Gleisschädigungsnoten mit jenem der b-Raten gut übereinstimmt, ist für das britische TDM keine Modellkalibrierung notwendig.

Die Berechnungskenngrößen des britischen Modellansatzes können für den Abschnitt Bruck/Mur-Leoben in Anhang 23 und für den Betrachtungsbereich Süßenbrunn-Gänserndorf in Anhang 24 betrachtet werden.

5.1.4 UIC Kodex 714 E

Ein weiterer Modellansatz welcher für die Eruierung der Gleisbeanspruchung herangezogen wird, ist der UIC Kodex 714 E. Dieser Ansatz beschreibt den Gesamtverschleiß des Gleises und basiert auf den mittleren täglichen Belastungen. Mit Hilfe von Faktoren wird einerseits der Einfluss der Geschwindigkeit und andererseits die Einwirkung aggressiver Güterwagenbzw. Lokradsätze im Modell berücksichtigt. Personen- und Güterverkehr wird im Verschleißmodell des UIC Kodex 714 E gesondert betrachtet und für die Berechnung der Gesamtbelastung daraus die Summe gebildet. Die sogenannte fiktive Betriebsbelastung wird nach Formel 7 berechnet. [28]

$$T_{f} = S_{v} * (T_{v} + K_{t} * T_{tv}) + S_{m} * (K_{m} * T_{m} + K_{t} * T_{tm})$$
 Formel 7 [28]

 T_f fiktive Betriebsbelastung Geschwindigkeitsbeiwert Personenverkehr (1,25 bei 100<V≤130 km/h) S_v Geschwindigkeitsbeiwert Güterverkehr (1,05 bei 60<V≤80 km/h und 1,15 bei 80<V≤100 km/h) Sm mittlere tägliche Belastung aus dem Personenverkehr (in Bt/Tag) T_V mittlere tägliche Belastung der Triebfahrzeuge aus dem Personenverkehr (in t/Tag) Ttv mittlere tägliche Belastung aus dem Güterverkehr (in Bt/Tag) T_m mittlere tägliche Belastung der Triebfahrzeuge aus dem Güterverkehr (in t/Tag) T_{tm} Faktor für den Einfluss der Aggressivität der Lokradsätze (1,4) K_t Faktor für den Einfluss der Aggressivität der Güterwagenradsätze (i.d.R. 1,15) Km Mit: $V \leq 60 \text{ km/h}$ = 1,00 für Sv(Sm) $= 1,05 \ für$ 60 km/h < V \leq 80 km/h Sv(Sm) $= 1,15 \ für$ 80 km/h < V $\leq 100 \ km/h$ $S_v(S_m)$ $= 1,25 \ für$ 100 km/h < V $\leq 130 \ km/h$ $S_v(S_m)$ $= 1,35 \ für$ 130 km/h < V $\leq 160 \ km/h$ S_v $= 1,40 \ für$ 160 km/h < V $\leq 200 \ km/h$ S_v $= 1,45 \ für$ 200 km/h < V $\leq 250 \ km/h$ S_v

Die Geschwindigkeitsbeiwerte sind von der Betriebsgeschwindigkeit des Personen- bzw. Güterverkehrs abhängig. Es wird zwischen acht Geschwindigkeitsklassen unterschieden, welchen ein Geschwindigkeitsbeiwert zugeordnet wird.

5.1.4.1 Modellanwendung

= 1,50 für

Sv

250 km/h < V

Für die Betrachtungsbereiche werden die mittleren Geschwindigkeiten für den Personenund Güterverkehr aus den Argos[®]-Messdaten ermittelt. Der Abschnitt Süßenbrunn-Gänserndorf weist im Personenverkehr eine mittlere Geschwindigkeit von rund 105 km/h und im Güterverkehr knapp 79 km/h auf. Im Bereich Bruck/Mur-Leoben beträgt die mittlere Betriebsgeschwindigkeit 121 km/h im Personenverkehr und knapp 87 km/h im Güterverkehr. Auf diesen Geschwindigkeiten basieren die angesetzten Geschwindigkeitsbeiwerte bei der Modellanwendung. Bei beiden Betrachtungsabschnitten kommt somit der Geschwindigkeitsbeiwert S_v in der Höhe von 1,25 für den Personenverkehr zur Anwendung. Für den Güterverkehr weist der Bereich Süßenbrunn-Gänserndorf einen Geschwindigkeitsbeiwert S_m von 1,05 auf, während dieser für Bruck/Mur-Leoben mit 1,15 anzunehmen ist. Die Berechnung der fiktiven Betriebsbelastung nach dem Modellansatz des UIC Kodex 714 E mit den Faktoren und Beiwerten ist in Tabelle 16 angeführt. Die ermittelte fiktive Betriebsbelastung des Bereiches Süßenbrunn-Gänserndorf fällt um etwa 27% geringer aus, als jene des Gleisabschnittes Bruck/Mur-Leoben.

Modellparameter	Bruck/Mur-Leoben	Süßenbrunn-Gänserndorf	
V _{mean,PV} (aus Argoos [®])	121,0	104,7	ehr
Sv	1,25	1,25	erke
T _v [t/Tag]	10.820,1	20.433,0	env
Kt	1,40	1,40	uos.
T _{tv} [t/Tag]	1.201,5	2.848,1	Per
V _{mean,GV/LOK} (aus Argos [®])	86,9	78,9	r
S _m	1,15	1,05	-keh
K _m	1,15	1,15	rver
T _m [t/Tag]	37.737,2	16.184,1	üte
T _{tm} [t/Tag]	5.138,4	2.424,6	0
T _{fs}	15.628	30.525	
T _{fm}	58.180	23.106	amr
$T_f = T_{fs} + T_{fm}$	73.808	53.632	Sum
Verhältnis	0,	73	

 Tabelle 16
 Modellanwendung auf die Betrachtungsabschnitte

5.1.4.2 Modellkalibrierung

Im Gleisbeanspruchungsmodell nach dem UIC Kodex 714 E wird der Einfluss der Lokradsätze mit dem Faktor Kt 1,4 und jener der Güterwagenradsätze mit dem Faktor Km 1,15 gewichtet. Radsätze des Personenverkehrs stellen den Basisfall dar und werden indirekt mit dem Faktor 1,0 bewertet. Im Zuge der Modellkalibrierung der Betrachtungsbereiche werden die Faktoren Kt und Km adaptiert. In Tabelle 17 sind die berechneten fiktiven Betriebsbelastungen mit den modifizierten Faktoren und dem Beanspruchungsverhältnis zwischen den Abschnitten Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben angeführt. Ziel der Kalibration ist wiederum das b-Raten-Verhältnis von 0,49.

Modellansatz		Bruck/Mur-Leoben	Süßenbrunn-Gänserndorf
Kt = 1,3 Tr Km = 3,5 Verhältnis		175.052	92.956
		0,53	
K _t = 1,0	T _f	185.848	96.222
K _m = 3,8	Verhältnis	0,52	
$K_t = 1/4$	Tf	240.889	119.056
K _m = 5,0	Verhältnis	0,4	49

Tabelle 17 Fiktive Betriebsbelastung nach Modellkalibrierung (UIC Kodex 714 E)

Bei Betrachtung der Kalibrierungsfaktoren K_t und K_m in Tabelle 17 ist auffallend, dass der Gewichtungsfaktor von Güterwagenradsätze im Vergleich zu jenem der Lokradsätze viel höher anzusetzen ist. Um ein ähnliches Beanspruchungsverhältnis zwischen den Abschnitten zu schaffen wie es die Gleisverschlechterungsraten aufweisen (0,49), ist der K_m-Faktor (Güterverkehr) um etwa das dreifache höher zu gewichten als der K_t-Faktor (Lok). Auf den Betrachtungsabschnitten haben somit Güterwagenradsätze einen stärkeren Einfluss auf die gesamte Gleisbeanspruchung als Lokradsätze. Dies wiederspricht wiederum dem ursprünglichen Modellansatz des UIC Kodex 714 E, welcher Radsätze einer Lokomotive vergleichsweise zu Güterwagenradsätzen aggressiver einschätzt.

5.2 Gegenüberstellung der TDM-Auswertung mit den b-Raten

Die erläuterten Gleisverschleißmodelle nach dem UIC Kodex 714 E, dem österreichischen/schweizerischen, schwedischen und britischen Modellansatz sind in Tabelle 18 mit den Schädigungssummen und den relativen Verhältniswerten zusammengefasst. Der Einfachheit halber sind die Modellansätze und -modifizierungen durchnummeriert (Nr.). Die mittleren Gleisverschlechterungsraten aus der TUG Datenbank weisen zwischen den Betrachtungsbereichen um die Argos[®]-Messstellen Niklasdorf und Deutsch-Wagram ein Verhältnis von 0,49 im Median und 0,48 im arithmetischen Mittel auf. Diese Verhältniswerte werden mit jenen der diversen Modellansätze verglichen. Des Weiteren sind Kennzahlen aus den Argos[®]-Messdaten berechnet worden. Auch diese werden den Gleisverschlechterungsraten gegenübergestellt.

		Absoluter Wert		Verhältniswert	
Gleisverschlechterungsrate			Messstelle Niklasdorf	Deutsch-Wagram	DeutschWagram Niklasdorf
h Data	Ø		0,1803	0,0871	0,48
D-Rale	Median		0,1472	0,0726	0,49
Modellansätze		Nr.			
Österreich/	P_2^3 mit 2 α = 0,02 rad	Ι	24.228.440.694.391	17.748.593.941.884	0,73
Schweiz	P_2^4 mit 2 α = 0,005 rad	II	596.228.542.222.469	309.484.534.038.003	0,52
	$T_z/n_z^*\Sigma(P_2)^3$ mit 2\alpha = 0,02 rad	III	100.066.672.341.420	60.722.764.233.017	0,61
Cobwodon	Tz/nz*Σ(APZ ₅₀) ³	IV	125.007.209	49.821.093	0,40
Schweden	$T_z/n_z^*\Sigma(P_2)^3$ mit 2\alpha = 0,005 rad	V	26.512.522.222.293	12.807.618.916.174	0,48
	T _Z /n _Z *Σ(APZ ₅₀) ^{1,7}	VI	51.214.594	24.921.188	0,49
Großbritannien	Cv	VII	217.265.452.381.750	94.055.429.383.610	0,43
LITC Kodoy 714 E	T _f	VIII	73.808	53.632	0,73
UIC KOUEX /14 L	$T_{f}(K_{t}=1,4, K_{m}=5)$	IX	240.889	119.056	0,49
Kennzahlen aus den	Argos [®] -Messdaten	Nr.			
GesBt/Tag Σ(APZ ₅₀)/Tage		Х	54.982	41.901	0,76
(GesBt/Tag) ^{2,5} (Σ(APZ ₅₀)/Tage		XI	708.845.087.187	359.385.846.617	0,51
(GesBt/Tag) ^{2,6}	$(\Sigma(APZ_{50})/Tage)^{2,6}$	XII	2.111.413.952.378	1.041.797.733.957	0,49
(GesBt/Tag) ^{2,7}	$(\Sigma(APZ_{50})/Tage)^{2,7}$	XIII	6.289.200.502.172	3.019.992.380.592	0,48

Tabelle 18 TDM im Vergleich mit den b-Raten

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at

Der Teilschädigungsterm D1 des österreichischen/schweizerischen Modellansatzes weist einen Verhältniswert von 0,73 auf und ist um den Faktor 1,5 höher als jener der Gleisverschlechterungsrate (Nr. I). Durch eine Verringerung des Anrampungswinkels von 0,02 auf 0,005 rad und eine Erhöhung des Exponenten von der dritten auf die vierte Potenz (Nr. II), kann das Schädigungssummenverhältnis zwischen den Betrachtungsbereichen mit 0,52 auf das b-Raten-Verhältnis angenähert werden. Der Schienenanrampungswinkel, welcher in die Berechnung des dynamischen Kraftanteiles der P₂-Kraft einfließt, beschreibt Gleisfehler aufgrund von eingefahrenen verlaschten Schienenstößen. Generell ist ein geringer Anrampungswinkel vereinfacht mit einer höheren Gleisqualität gleichzusetzen, die im Vergleich zu Schienenstößen aufgrund von Schweißstöße entsteht. Eine Reduzierung dieses Winkels im Verschleißterm D1 zur Modellkalibrierung für die beiden Betrachtungsbereiche ist durchaus plausibel, da im österreichischen Schienennetz in der Regel Schienenstöße verschweißt und nicht verlascht werden. Der Ansatz der vierten statt der dritten Potenz bedeutet eine Änderung der Gewichtung der dynamischen Vertikalkraft P₂ je Fahrzeugart für die betrachteten Streckenbereiche.

Der modifizierte schwedische Teilschädigungsterm mit dem P₂-Kraftansatz ist von der Berechnung her mit D1 des österreichischen/schweizerischen Modellansatzes vergleichbar. Der Unterschied liegt darin, dass zum einen die tatsächlich gefahrenen Geschwindigkeiten in die Berechnung einfließen. Zum anderen werden die Schädigungssummen je Fahrzeugbzw. Wagentyp zusätzlich mit einem statischen Achslast-Faktor gewichtet. Im betrachteten schwedischen Teilschädigungsterm hat somit die statische Achslast vergleichsweise zur Geschwindigkeit einen maßgeblich höheren Einfluss. In weiterer Folge bedeutet dies, dass das schwedische Modell aufgrund der höheren Gewichtung der statischen Massen weniger für Hochgeschwindigkeitsstrecken (i.d.R. V≥200 km/h) geeignet ist. Das berechnete Schädigungssummenverhältnis zwischen den Betrachtungsabschnitten bei einem Anrampungswinkel von 0,02 rad und der dritten Potenz beträgt 0,61 (Nr. III). Wiederum wird bei der Modellkalibrierung der Schienenanrampungswinkel auf 0,005 rad (bei gleichbleibender dritter Potenz) verringert (Nr. V). Das ermittelte Schädigungssummenverhältnis (0,48) und das b-Raten-Verhältnis (0,49) weisen dadurch ähnliche Größenordnungen auf.

Bei Anwendung des modifizierten schwedischen Modellansatzes mit der quasistatischen Achslast APZ₅₀ und der dritten Potenz, resultiert ein Schädigungssummenverhältnis zwischen den Betrachtungsbereichen von 0,40 (Nr. IV). Durch die Modellkalibrierung mit dem Exponentenansatz von 1,7 wird ein Summenverhältnis von 0,49 ermittelt (Nr. VI), was jenem Verhältnis der Gleisverschlechterungsraten entspricht.

Das Verhältnis der sogenannten Gleisschädigungsnoten zwischen Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben nach dem britischen Modellansatz beträgt 0,43 (Nr. VII) und ist mit dem b-Raten-Verhältnis vergleichbar. Die in das Modell einfließenden Parameter statische Achslasten, Betriebsgeschwindigkeiten und ungefederte Massen werden mit Faktoren gewichtet, welche im Zuge der Modellentwicklung auf den britischen Gleiszustand kalibriert wurden. In der Regel ist der Gleiszustand in Großbritannien im Vergleich zum österreichischen Schienennetz schlechter. Aus diesem Grund ist die relativ gute Annäherung des Verhältnisses der Gleisschädigungsnoten mit jenem der Gleisverschlechterungsraten als Zufall einzustufen.

Das fiktive Betriebsbelastungs-Verhältnis zwischen den Betrachtungsabschnitten, welches anhand des Modellansatzes nach dem UIC Kodex 714 E berechnet wurde, beträgt 0,73 (Nr. III). Das Modell basiert auf mittleren täglichen Personen- und Güterverkehrsbelastungen und berücksichtigt mithilfe von Beiwerten deren Geschwindigkeit. Anhand von Faktoren wird die Aggressivität der Radsätze von Güterwagen (K_m=1,15) und Lokomotiven (K_t=1,4) gewichtet, wobei jener Faktor der Lokomotiven um etwa 20% höher ist als der Güterwagenfaktor. Die Faktoren bezüglich der Radsatzaggressivität werden bei der Modellkalibrierung modifiziert. Bei einem Güterwagenfaktor K_m von 3,8 und einem Lok-Faktor K_t von 1,4 wird ein Betriebsbelastungsverhältnis in der Höhe von 0,49 erhalten (Nr. IX). Dies entspricht wiederum dem b-Raten-Verhältnis. Nichts desto trotz kann festgehalten werden, dass der Modellansatz des UIC Kodex 714 E mit seinen Geschwindigkeitsbeiwerten, mittleren täglichen Bruttotonnenbelastungen und den Faktoren für den Radsatzeinfluss für die Betrachtung der Gleislageverschlechterung in den Bereichen Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben nicht in Frage kommt. Die Gewichtung der Güterwagenradsätze um mehr als das 3,5-fache als jene der Lokomotiven ist unrealistisch und nicht plausibel.

Neben den Verschleißmodellen wird des Weiteren aus den Argos[®]-Messdaten die tägliche quasistatische Gesamtbruttotonnenbelastung (GesBt/Tag) betrachtet und deren Verhältnisübereinstimmung mit den Gleisverschlechterungsraten geprüft. Die täglichen quasistatischen Gesamtbruttotonnen weisen dabei zwischen den Betrachtungsabschnitten ein Verhältnis von 0,79 auf (Nr. X). Werden diese täglichen quasistatischen Gesamtbruttotonnen mit dem Exponent 2,6 gewichtet, so beträgt das Verhältnis 0,49 (Nr. XII) und gleicht jenem der b-Raten. Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Gleisverschleißmodelle

5.3 Erkenntnisse der Gleisverschleißmodell-Anwendungen

Die Gegenüberstellungen der angewandten Gleisverschleißmodelle mit den Gleisverschlechterungsraten lassen sämtliche Schlussfolgerungen zu, welche in diesem Kapitel kurz zusammengefasst werden. Bis auf den britischen Ansatz beschreibt kein TDM auf Anhieb das Verhältnis der Gleislageverschlechterungsrate hinreichend genau. Anhand der durchgeführten Modellkalibrierungen können jedoch die Verhältniswerte der Gleisverschleißansätze (zumindest in der Theorie) mit jenen der b-Raten verglichen werden.

Bemerkenswert ist, dass sowohl der österreichische/schweizerische als auch der schwedische Modellansatz nach einer Modellkalibration für die betrachteten Abschnitte herangezogen werden können, obwohl die Geschwindigkeit bzw. die statische Achslast in den Modellen unterschiedlich gewichtet wird. Die Modellkalibrierung dieser beiden Ansätze hat ferner gezeigt, dass der vertikale Anrampungswinkel, welcher in die Berechnung der dynamischen Vertikalkraft einfließt, für die Betrachtungsbereiche abzumindern ist. Für die Abschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben kann somit eine ebenmäßigere Schienenverbindung vermutet werden, als es der Britische Railway Group Standard GM/TT0088 angenommen hat. Dies ist durchaus plausibel, da in der Regel verschweißte statt verlaschter Schienenstöße im österreichischen Schienennetz zur Anwendung kommen.

Des Weiteren konnte nach einer Kalibrierung des Verschleißansatzes nach dem UIC Kodex 714 E eine Anpassung an den b-Raten-Verhältniswert geschaffen werden. Dieser Kalibrierungsansatz entspricht jedoch nicht der ursprünglichen Verschleißideologie des UIC Kodex 714 E.

Ergänzend ist festzuhalten, dass der Verhältniswert aus der erfassten täglichen Gleisbelastung in Gesamtbruttotonnen zwar das Verhältnis der Gleisverschlechterungsraten nur unzureichend beschreibt, bei Anwendung des Exponenten 2,7 jedoch eine Vergleichbarkeit geschaffen werden kann.

Obwohl der Verhältniswert des britischen Verschleißansatzes auf Anhieb mit jenem der Gleisverschlechterungsraten der Betrachtungsbereiche gut übereinstimmen, sollte diese Erkenntnis nicht ohne weitere Untersuchungen auf das österreichische Schienennetz übertragen werden. Dieser Grundsatz gilt außerdem für vorangegangenen Feststellungen. Die Kalibrierung der Verschleißmodelle und der Ansatz der Gesamtbruttotonnen wurden lediglich für die Abschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben belegt und nicht für das gesamte österreichische Schienennetz.

6 Zusammenfassung

Ziel dieser Arbeit war es, zwei vergleichbare Streckenabschnitte des österreichischen Schienennetzes auf Grundlage von Argos[®]-Messdaten und der TUG Datenbank bezüglich deren Gleisverschlechterungsraten, Achslasten und Betriebsgeschwindigkeiten gegenüber zu stellen. Des Weiteren wurden Gleisverschleißmodelle (Track Deterioration Model, TDM) auf die Abschnitte angewandt und mit den Gleisverschlechterungsraten abgeglichen. Die beiden Betrachtungsbereiche Süßenbrunn-Gänserndorf (Argos[®]-Messstelle Deutsch-Wagram) und Bruck/Mur-Leoben (Argos[®]-Messstelle Niklasdorf) wurden dabei herangezogen, da diese eine konforme Gleischarakteristik für den Vergleich der Gleisverschlechterungsraten aufweisen.

Eingangs wurden zwei Themenblöcke an Fragestellungen formuliert. Die Fragen des Themenblockes I lauten wie folgt und werden anschließend beantwortet.

I. Sind die Gleisverschlechterungsraten zweier Gleisabschnitte mit einem unterschiedlichen Verkehrsartaufkommen ident, wenn die Gleischarakteristik der Betrachtungsbereiche gleich sind? Wie verhalten sich die Betriebsgeschwindigkeit und die erfassten Achslasten aus Argos[®] in Bezug auf die Gleisverschlechterungsraten?

Die beiden Betrachtungsbereiche weisen neben ähnlichen zulässigen Höchstgeschwindigkeiten (120 km/h im Bereich Deutsch-Wagram und 140 km/h im Bereich Niklasdorf) auch eine gleiche Oberbauform (Schotteroberbau mit überwiegend unbesohlten Betonschwellen) auf. Ferner werden die Abschnitte in der TUG Datenbank in die gleiche Belastungsklasse zwischen 45.000 und 70.000 GesBt/Tag eingeordnet. Tatsächlich weisen diese Bereiche laut den Argos®-Messdaten aus dem Jahr 2019 täglich rund 42.000 GesBt (Deutsch-Wagram) und 55.000 GesBt (Niklasdorf) auf und erfahren somit eine vergleichbare Gleisbelastung. Eine Gegenüberstellung der Gleisverschlechterungsraten der Betrachtungsbereiche zeigt sowohl grafisch, als auch statistisch einen signifikanten Unterschied. Vergleichsweise zu Süßenbrunn-Gänserndorf sind die b-Raten des Abschnittes Bruck/Mur-Leoben im Median etwa doppelt so hoch. Gleichzeitig weist der Bereich Bruck/Mur-Leoben im Güterverkehr im Median eine höhere quasistatische Achslast und Geschwindigkeit auf. Die Geschwindigkeit und Achslast im Personenverkehr sind im Median bei beiden Abschnitten ähnlich. In den Betrachtungsbereichen verkehren laut den Argos®-Messdaten über das Jahr absolut gesehen zwar gleich viele Achsen (rund 1,3 Mio.), die Verkehrsartverteilungen unterscheiden sich jedoch. Im Abschnitt Süßenbrunn-Gänserndorf werden gleich viele Güterwagen- wie Personenwagen-Achsen erfasst, während in Bruck/Mur-Leoben absolut dreimal mehr Güterwagen- als Personenwagen-Achsen zu beobachten sind.

Unter anderem wird heute in Infrastrukturunternehmen basierend auf den Belastungsklassen die Planung des Instandhaltungsaufwandes bezüglich der Gleislage durchgeführt. Stopfeinsätze würden somit in diesen beiden Bereichen gleich oft angesetzt werden, obwohl zwischen den mittleren b-Raten der Faktor zwei liegt und der Abschnitt Bruck/Mur-Leoben in der Realität schneller bzw. früher Längshöhenfehler aufweist, als das Gleis im Bereich Süßenbrunn-Gänserndorf. Basierend auf den Erkenntnissen dieser Arbeit ist die isolierte Betrachtung von Belastungsklassen somit zumindest nicht in allen Fällen repräsentativ für die Gleisbeanspruchung und die damit zusammenhängende Gleislageverschlechterung. Die Geschwindigkeit und die einzelnen Radsatzlasten sind wichtige Faktoren, von welchen die Gleisbeanspruchung abhängt.

Nachstehend sind die Fragestellungen des zweiten Themenblockes (II) dieser Arbeit angeführt und werden wiederum anschließend beantwortet.

II. Welche Gleisverschleißmodelle (TDM) bzw. -terme gibt es, die die vertikale Gleislage implizieren und auf den betrachteten Abschnitten verwendet werden können? Und verhalten sich diese Modelle bzw. Terme bei Anwendung auf die Betrachtungsabschnitte gleich wie die Gleisverschlechterungsraten oder müssen diese modifiziert werden?

Es wurden dabei Verschleißmodelle nach dem UIC Kodex 714 E, dem österreichischen/schweizerischen, schwedischen und britischen Ansatz für die Betrachtungsbereiche untersucht und angewandt. Die ermittelten Modellberechnungsgrößen der Abschnitte Süßenbrunn-Gänserndorf und Bruck/Mur-Leoben wurden in ein Verhältnis gesetzt und mit dem b-Raten-Verhältnis dieser Abschnitte abgeglichen. Lediglich die britische Gleisschädigungsnote beschreibt die b-Raten basierend auf dem Verhältnisvergleich auf Anhieb und ohne Modellkalibrierung. Diesbezüglich sei angemerkt, dass die Kalibration der Kenngrößenfaktoren für die statische Achslast, Betriebsgeschwindigkeit und ungefederte Masse der britischen Formel auf der englischen Gleislage beruhen. Da die Gleislage in England im Vergleich zum österreichischen Schienennetz im Allgemeinen schlechter ist, ist die Übereinstimmung des Verhältnisvergleiches der Gleisnoten mit den b-Raten erstaunlich. Eine Untersuchung von weiteren Streckenabschnitten wäre hier erforderlich.

Die Modelle nach dem UIC Kodex 714 E, der österreichischen/schweizerischen und schwedischen Ideologie wurden nach der Anwendung kalibriert, da die Verhältnisse der Kenngrößen aus den TDM keine Übereinstimmung mit den Gleisverschlechterungsraten aufzeigten. Das österreichische/schweizerische und schwedische Verschleißmodel liegt dabei in dieser Arbeit der gleichen dynamischen Vertikalkraft zugrunde. Die Modellkalibrierung sowohl des österreichische/schweizerischen, als auch des schwedischen Teilschädigungsterms erfolgte anhand einer Verringerung des Anrampungswinkels. Die Streckenabschnitte Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.**tugraz**.at Zusammenfassung

Bruck/Mur-Leoben und Süßenbrunn-Gänserndorf verfügen durch den geringeren Anrampungswinkel somit über eine gleichmäßigere Schienenverbindung, als im Britischen Railway Group Standard GM/TT0088 für die dynamische Vertikalkraft angesetzt wird. Der Ansatz der quasistatischen Achslast im schwedischen Modell mit Verringerung des Exponenten führt des Weiteren zu einer guten Übereinstimmung des Verhältnisvergleiches mit den b-Raten.

Sowohl der österreichische/schweizerische als auch der schwedische Verschleißansatz können in modifizierter Form auf die Betrachtungsabschnitte angewandt werden, wenngleich sich die Modelle unterscheiden. Im schwedischen Ansatz werden statische Achslasten höher gewichtet als die Geschwindigkeit, während im österreichischen/schweizerischen Modell der Geschwindigkeitseinfluss erheblich ist. Da es sich bei den Abschnitten um keine Hochgeschwindigkeitsstrecken handelt, ist die Erkenntnis, dass beide Modellansätze für die Abschnitte funktionieren, zulässig.

Die fiktive Betriebsbelastung nach dem UIC Kodex 714 E weist nach der Modellkalibrierung eine gute Übereinstimmung zwischen dem Beanspruchungsverhältnis und dem Verhältnis der Gleisverschlechterungsraten auf. Für die Gewichtungsfaktoren, welche die Radsatzaggressivität implizieren, ist ein um 3,5-fach höherer Wert für Güterwagenachsen als für Lokradsätze anzusetzen. Die Tatsache, dass die modifizierten Kalibrierungsfaktoren der ursprünglichen Ideologie des UIC Kodex 714 E wiedersprechen, lässt den modifizierten Modellansatz für die Abschnitte als unzulässig einstufen.

Abschließend ist festzuhalten, dass die Gegenüberstellung der Gleisverschlechterungsraten mit den Argos[®]-Messdaten und den (kalibrierten) Gleisverschleißmodellen lediglich für zwei Gleisabschnitte des österreichischen Schienennetzes durchgeführt wurde. Basierend auf diesen Betrachtungen kann somit keine Aussage für das gesamte österreichische Netz getroffen werden.

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at

7 Ausblick

Im Zuge dieser Arbeit wurden die Gleisverschlechterungsraten den Gleismessdaten (Achslast und Geschwindigkeit) zweier Betrachtungsabschnitte gegenübergestellt. Bei diesen Bereichen handelte es sich um Gleisabschnitte mit Schotteroberbau und unbesohlten Betonschwellen, welche in der Geraden liegen, eine tägliche Belastung von 45.000 bis 70.000 Gesamtbruttotonnen erfahren und zulässige Maximalgeschwindigkeiten von 120 bzw. 140 km/h aufweisen. Um flächendeckende und für das österreichische Schienennetz gültige Aussagen treffen zu können, ist zum einen eine Betrachtung von mehreren Gleisabschnitten mit den genannten Gleisrandbedingungen notwendig. Zum anderen wäre eine Gegenüberstellung der b-Raten mit Messdaten von sowohl höher und geringer belasteten Streckenabschnitten (in GesBt), als auch anderwärtige Maximalgeschwindigkeiten interessant.

Die Betrachtung von mehr als zwei Messquerschnitten für eine gültige Aussage für das gesamte österreichische Schienennetz gilt außerdem für die Anwendung und Kalibrierung der Gleisverschleißmodellterme, welche den Verschleiß der Gleisanlage bewerten. Dabei wäre beispielsweise die Modifizierung des Schienenanrampungswinkels der P₂-Kraft aus dem österreichisch/schweizerischen Modellansatz von Bedeutung. Auch das Zutreffen des britischen Modelansatzes bei netzweiter Anwendung und Gegenüberstellung mit den b-Raten wäre hoch interessant.

Des Weiteren beinhalten die meisten Verschleißmodelle nicht nur den Gleislageverschleiß, sondern beispielsweise auch den Schienenverschleiß oder Weichenbauteilverschleiß. Genauso könnten diese Verschleißterme mit Messparametern oder, wenn diese nicht vorhanden sind, Instandhaltungskosten abgeglichen und kalibriert werden.

Letztendlich sind all diese Gleisverschleißmodelle Durchschnittsmodelle, welche den tatsächlichen Einfluss der Radsätze und die Schädigung des Fahrwegs dennoch nicht vollends beschreiben können. Inzwischen ist es jedoch möglich, Zugfahrten anhand der stationären autarken Wayside Train Monitoring Systems (WTMS) nicht nur zu überwachen, sondern auch deren Fahrzeugeigenschaften zu erfassen, welche für die Gleisschädigung maßgeblich sind. Tatsächliche Fahrzeugmassen, Geschwindigkeiten oder gar Radflachstellen können durch die WTMS ermittelt werden. Eine Verknüpfung dieser messbaren Eigenschaften der WTMS-Anlagen mit weiteren Fahrzeuginformationsdaten, wie beispielsweise Antriebsleistungen, würde einen großen Fortschritt bedeuten. Nicht nur eine faire und verursachungsgerechte Trassenbepreisung, abhängig vom tatsächlichen Fahrzeugzustand und der Betriebsdurchführung, wäre dadurch möglich, es würde auch für Eisenbahnverkehrsunternehmen ein Anreiz geschaffen werden, in gleisschonendere Fahrzeuge zu investieren.

Abbildungsverzeichnis

Abbildung 1	Organigramm der ÖBB-Holding AG [2]1
Abbildung 2	Netzkarte der ÖBB-Infrastruktur [5] [6]3
Abbildung 3	Messgleis mit Sensorik [5]5
Abbildung 4	Achslastkollektiv der Argos [®] -Messdaten aus Deutsch-Wagram [5]8
Abbildung 5	Achslastkollektiv der Argos [®] -Messdaten aus Himberg [5]8
Abbildung 6	Achslastkollektiv der Argos [®] -Messdaten aus Niklasdorf [5]8
Abbildung 7	Achslastkollektiv der ARAMIS-Plandaten aus Deutsch-Wagram [5]9
Abbildung 8	Achslastkollektiv der ARAMIS-Plandaten aus Himberg [5]10
Abbildung 9	Achslastkollektiv der ARAMIS-Plandaten aus Niklasdorf [5]10
Abbildung 10	Anteile der Achsen je Wagentyp, Messstelle und Datenquelle [5]11
Abbildung 11	Streckenabschnitte der TU Graz Datenbank (stand 18.06.2014) [13] \dots 15
Abbildung 12	Vertikale Gleisgeometrie [14]16
Abbildung 13	Gleislageverhalten eines Gleisquerschnittes (vgl. [18]) 18
Abbildung 14	Betrachtungsbereich um die Messstelle Deutsch-Wagram [20] 20
Abbildung 15	Betrachtungsbereich um die Messstelle Niklasdorf [20] 20
Abbildung 16	Querschnitthäufigkeit der Schwellenarten in den Betrachtungsbereichen
und im Gesamt	netz bei Anwendung der Randbedingungen 22
Abbildung 17	Boxplot der b-Raten unter Anwendung der Kriterien
Abbildung 18	Abfolge für die Anwendung statistischer Testmethoden [21] [22] 26
Abbildung 19	Q-Q-Plot der b-Raten beider Betrachtungsbereiche 27
Abbildung 20	Methodik des Shapiro-Wilk-Test [24] 27
Abbildung 21	Shapiro-Wilk-Test aus <i>RStudio</i>
Abbildung 22	Test I: ungerichteter Mann-Whitney-U-Test (H_0 : $b_{DW}=b_{NI}$) aus RStudio. 29
Abbildung 23	Test II: gerichteter Mann-Whitney-U-Test (H_0: $b_{DW} \le b_{NI}$) aus RStudio . 30
Abbildung 24	Test III: gerichteter Mann-Whitney-U-Test (H ₀ : $b_{DW} \ge b_{NI}$) aus RStudio 30
Abbildung 25	Quasistatische Achslasten der Argos®-Messstellen im Vergleich
Abbildung 26	Fahrzeuggeschwindigkeiten der Argos [®] -Messstellen im Vergleich 33
Abbildung 27	Grafischer Elementvergleich zwischen den Betrachtungsbereichen 34
Abbildung 28	Anrampungswinkel [30]
Abbildung 29	VUC-Kategorien des britischen Modellansatzes [32]

Tabellenverzeichnis

Tabelle 1	Kenngrößen der Mess- und Plandaten (*hochgerechneter Wert) [5] 12
Tabelle 2	Eckdaten der Streckenabschnitte
Tabelle 3	Statistische Parameter der b-Raten 24
Tabelle 4	Statistische Mann-Whitney-U-Hypothesentests
Tabelle 5	Statistische Parameter der quasistatischen
Tabelle 6	Statistische Parameter der Geschwindigkeit
Tabelle 7	Kenngrößenvergleich zwischen den Betrachtungsabschnitten
Tabelle 8	Bezugsgeschwindigkeiten für die Radien- und Geschwindigkeitsbänder [27]40
Tabelle 9	Hochrechnungsfaktoren (AL-Faktoren) für die Schädigungssummen
Tabelle 10	Österreichisch/Schweizerischer Modellansatz
Tabelle 11	Schädigungssummenanteile nach Modellkalibrierung (Ö/CH)
Tabelle 12	Schwedischer Modellansatz (P ₂)
Tabelle 13	Schwedischer Modellansatz (APZ ₅₀)
Tabelle 14	Schädigungssummenanteile nach Modellkalibrierung (SWE)
Tabelle 15	Britischer Modellansatz
Tabelle 16	Modellanwendung auf die Betrachtungsabschnitte
Tabelle 17	Fiktive Betriebsbelastung nach Modellkalibrierung (UIC Kodex 714 E) \dots 51
Tabelle 18	TDM im Vergleich mit den b-Raten52

Literaturverzeichnis

- [1] *Marschnig, S.; Veit, P.:* European Railway System. Institut für Eisenbahnwesen und Verkehrswirtschaft, Graz, 2015.
- [2] ÖBB-Konzern: Organisation, 2020, https://konzern.oebb.at/de/ueber-den-konzern/organisation [Zugriff am: 27.11.2020].
- [3] Wörner, N.: Bahntechnik: Schienen- und Zugüberwachung: Ein Muss für die Sicherheit,
 2010, https://www.elektroniknet.de/messen-testen/schienen-und-zugueberwachung-einmuss-fuer-die-sicherheit.28230.html [Zugriff am: 08.05.2020].
- [4] Infrastrukturbenützungsentgelt Regulierungsbehörde, 2020, https://www.schienencontrol.gv.at/de/IBE.html [Zugriff am: 09.05.2020].
- [5] *Ehrhart, U.:* Ein Vergleich der Achslastkollektive Argos® vs. ARAMIS. Graz, Technische Universität, Masterprojekt, 2020 UNVERÖFFENTLICHT.
- [6] ÖBB-Infrastruktur AG: Netzkarten, 2020, https://infrastruktur.oebb.at/de/geschaeftspartner/schienennetz/dokumente-und-daten/netzkarten [Zugriff am: 11.11.2020].
- [7] Argos® Wayside train monitoring, 2020, http://www.argos-systems.eu/ [Zugriff am: 16.05.2020].
- [8] SBB: Zugkontrolleinrichtungen: Kompromisslose Sicherheit | SBB, 2020, https://bahninfrastruktur.sbb.ch/de/produkte-dienstleistungen/bahnbetrieb/zugkontrolleinrichtungen.html [Zugriff am: 29.12.2020].
- [9] ÖBB-Infrastruktur AG: Aramis, 2020, https://infrastruktur.oebb.at/de/geschaeftspartner/it-tools/aramis [Zugriff am: 18.05.2020].
- [10] Hummitzsch, R.: Zur Prognostizierbarkeit des Qualitätsverhaltens von Gleisen Statistische Analyse des Gleisverhaltens zur Erstellung eines Prognosemodells. Graz, Technische Universität, Dissertation, 2009.
- [11] *Holzfeind, J.:* Zur Prognostizierbarkeit des Qualitätsverhaltens von Gleisen Analyse des Gleisverhaltens am Einzelquerschnitt. Graz, Technische Universität, Dissertation, 2009.
- [12] Neuhold, J.; Vidović, I.; Marschnig, S.: Preparing Track Geometry Data for Automated Maintenance Planning. In: Journal of Transportation Engineering, Part A: Systems 146 (2020), Heft 5.
- [13] Holzfeind, J.; Hummitzsch, R.: Qualitätsverhalten von Gleisen Zusammen-hänge zwischen Parameterkennwerten und Verschlechterungsverhalten. In: ZEVrail 132 (2009), 6-7, S. 212-224.
- [14] Zaayman, L.: Gleiszustandsmonitoring und Analyse für eine effiziente Wartungsplanung Relevanz und Möglichkeiten von Wartungsarbeiten am Beispiel Südafrika. In: EI - Der Eisenbahningenieur (2013), Heft 4, S. 36-40.
- [15] *Landgraf, M.:* Zustandsbeschreibung des Fahrwegs der Eisenbahn Von der Messdatenanalyse zum Anlagenmanagement. Graz, Technische Universität, Dissertation, 2016.
- [16] Hansmann, F.: Innovative Messdatenanalyse ein Beitrag für ein nachhaltiges Anlagenmanagement Gleis. Graz, Technische Universität, Dissertation, 2015.

- [17] *Auer, F.:* Gleislagequalitätsanalyse zur Instandhaltungsoptimierung. *In:* Eisenbahntechnische Rundschau (2004), Heft 1, S. 838-844.
- [18] *Neuhold, J.:* Tamping within sustainable track asset management. Graz, Technische Universität, Dissertation, 2020.
- [19] *Vidović, I.:* Das Gleislageverhalten nach Einbau einer Tragschicht. Graz, Technische Universität, Masterarbeit, 2016.
- [20] Schweers. *Eisenbahnatlas Österreich. Railatlas Austria,* Köln Germany. Schweers + Wall, 2005. ISBN 3-89494-128-4.
- [21] Eckstein, P.P.: Angewandte Statistik mit SPSS. Gabler Verlag, Wiesbaden, 2012.
- [22] Daniela Keller: Statistischer Vergleich von zwei Gruppen, 2013, https://statistik-und-beratung.de/2013/07/statistischer-vergleich-von-zwei-gruppen/ [Zugriff am: 03.10.2020].
- [23] *Wollschläger, D.:* Grundlagen der Datenanalyse mit R. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
- [24] *Duller, C.:* Einführung in die nichtparametrische Statistik mit SAS, R und SPSS. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018.
- [25] *Janczyk, M.; Pfister, R.:* Inferenzstatistik verstehen. Springer Berlin Heidelberg, Berlin, Heidelberg, 2020.
- [26] Holzfeind, J.; Nerlich, I.; Giger, M. et al.: Verschleißabhängige Komponente im Trassenpreissystem der Schweiz - ein Anreiz zur Rückbesinnung auf ein Gesamtoptimum. In: ZEVrail 137 (2015), 6-7, S. 232-243.
- [27] *Marschnig, S.; Vidović, I.; Wilfling, P.:* ÖBB Verschleißfaktor 1.0. Institut für Eisenbahnwesen und Verkehrswirtschaft, Graz Ausgabe 2019 UNVERÖFFENTLICHT.
- [28] *Marschnig, S.:* SBB Verschleißfaktor Fahrbahn Endbericht. Institut für Eisenbahnwesen und Verkehrswirtschaft, Graz Ausgabe 2015 UNVERÖFFENTLICHT.
- [29] *Marschnig, S. (ed.):* iTAC innovative Track Access Charge, Monographic Series TU Graz / Railway Research no. 1, Verlag der TU Graz, 2016.
- [30] Jenkins, H.H.; Stephenson, J.H.; Clayton, G.A. et al.: The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces. In: Railway Engineering Journal 3 (1974), Heft 1.
- [31] Öberg, J.; Andersson, E.: Determining the deterioration cost for railway tracks. In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 223 (2009), Heft 2, S. 121-129.
- [32] *Worly, B.; Burstow, M.:* The Variable Usage Charge (VUC) in CP5. NetworkRail, 2014 [Zugriff am: 12.10.2020].
- [33] NetworkRail: Periodic Review 2013 Consultation on the allocation of the Variable Usage Charge, 2012, https://cdn.networkrail.co.uk/wp-content/uploads/2017/02/Variable-Usage-Charge-consultation.pdf [Zugriff am: 12.10.2020].

Anhang

Anhang 1	absolute Achsanzahl von Deutsch-Wagram aus Argos [®] [5]X
Anhang 2	absolute Achsanzahl von Himberg aus Argos® [5]XI
Anhang 3	absolute korrigierte Achsanzahl von Niklasdorf aus Argos $^{\ensuremath{\mathbb{R}}}$ [5]XII
Anhang 4	absolute korrigierte Achsanzahl von Deutsch-Wagram aus ARAMIS [5] XIII
Anhang 5	absolute korrigierte Achsanzahl von Himberg aus ARAMIS [5]XIV
Anhang 6	absolute korrigierte Achsanzahl von Niklasdorf aus ARAMIS [5]XV
Anhang 7	Häufigkeit der Schwellenarten (Querschnittanzahl) bei gleichen
Gleisrandbe	edingungenXV
Anhang 8	FahrzeugdatenXVI
Anhang 9	Österreichischer/Schweizerischer Modellansatz: Schädigungsinkremente .XVII
Anhang 10	Österreichischer/Schweizerischer Modellansatz: Schädigungssummen XVIII
Anhang 11	Schwedischer Modellansatz (P ₂): Bruck/Mur-LeobenXIX
Anhang 12	Schwedischer Modellansatz (P2): Süßenbrunn-GänserndorfXX
Anhang 13	Schwedischer Modellansatz (APZ ₅₀): Bruck/Mur-LeobenXXI
Anhang 14	Schwedischer Modellansatz (APZ50): Süßenbrunn-GänserndorfXXII
Anhang 15	Kalibrierter schwedischer Modellansatz ($P_2^{3,5}$ mit 2a=0,02): Bereich
Bruck/Mur-	Leoben XXIII
Anhang 16	Kalibrierter schwedischer Modellansatz ($P_2^{3,5}$ mit 2a=0,02): Bereich
Süßenbrunr	n-GänserndorfXXIV
Anhang 17	Kalibrierter schwedischer Modellansatz (P_2^3 mit $2a=0,005$): Bereich
Bruck/Mur-	Leoben
Anhang 18	Kalibrierter schwedischer Modellansatz (P_2^3 mit $2a=0,005$): Bereich
Süßenbrunr	n-GänserndorfXXVI
Anhang 19	Schwedischer Modellansatz (APZ ₅₀ ²): Bruck/Mur-LeobenXXVII
Anhang 20	Schwedischer Modellansatz (APZ ₅₀ ²): Süßenbrunn-GänserndorfXXVIII
Anhang 21	Schwedischer Modellansatz (APZ ₅₀ ^{1,7}): Bruck/Mur-LeobenXXIX
Anhang 22	Schwedischer Modellansatz (APZ50 ^{1,7}): Süßenbrunn-GänserndorfXXX
Anhang 23	Britischer Modellansatz: Bruck/Mur-LeobenXXXI
Anhang 24	Britischer Modellansatz: Süßenbrunn-GänserndorfXXXII

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Anhang

Klassen	Bahndienstfahrzeuge	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	11	0	0	11
]1;2]	0	17	5	0	22
]2;3]	0	14	0	0	14
]3;4]	0	352	3	0	355
]4;5]	0	9315	9	0	9324
]5;6]	0	198093	4	0	198097
]6;7]	13	136751	4	4	136772
]7;8]	58	39048	4	1624	40734
]8;9]	20	28829	1	27052	55902
]9;10]	3	20500	7	84672	105182
]10;11]	12	10144	12	21771	31939
]11;12]	4	13754	23	64046	77827
]12;13]	7	17197	14	167252	184470
]13;14]	12	11746	19	137475	149252
]14;15]	46	8992	66	54687	63791
]15;16]	39	9491	63	8388	17981
]16;17]	37	10219	117	8952	19325
]17;18]	5	12727	933	2036	15701
]18;19]	3	17164	1083	52	18302
]19;20]	4	25152	4543	0	29699
]20;21]	3	13646	15599	1	29249
]21;22.5]	5	15209	50438	7	65659
>22.5	13	4822	12042	4	16881
Σ	284	603193	84989	578023	1266489

|--|
Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Anhang

Klassen	Bahndienstfahrzeuge	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	1	0	0	1
]1;2]	0	21	0	2	23
]2;3]	0	34	0	2	36
]3;4]	0	2175	0	0	2175
]4;5]	0	46591	15	0	46606
]5;6]	9	247866	116	22	248013
]6;7]	224	222568	122	81	222995
]7;8]	259	116821	62	22	117164
]8;9]	283	96735	26	1445	98489
]9;10]	21	74153	36	15042	89252
]10;11]	31	43693	32	65013	108769
]11;12]	57	71500	115	110836	182508
]12;13]	66	84601	65	160404	245136
]13;14]	57	65777	60	110661	176555
]14;15]	75	54656	41	69949	124721
]15;16]	43	49284	26	6572	55925
]16;17]	74	46637	128	1290	48129
]17;18]	40	53985	691	667	55383
]18;19]	48	75977	822	33	76880
]19;20]	23	130045	2386	46	132500
]20;21]	23	93239	18775	4	112041
]21;22.5]	44	112344	108033	6	220427
>22.5	47	12766	8411	2	21226
Σ	1424	1701469	139962	542099	2384954

Anhang 2	absolute	Achsanzahl	von	Himberg	aus	$\text{Argos}^{\mathbb{R}}$	[5]
----------	----------	------------	-----	---------	-----	-----------------------------	-----

Eine integrative Analyse von	Gleislagedaten, stationären	Messanlagen und	Verschleißmodellen	www.ebw.tugraz.at
Anhang				

Klassen	Bahndienstfahrzeuge	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	1	0	1	3
]1;2]	0	17	8	0	25
]2;3]	0	269	13	1	284
]3;4]	0	285	0	0	285
]4;5]	0	7171	1	8	7180
]5;6]	1	62860	17	125	63004
]6;7]	21	116827	27	315	117189
]7;8]	119	60436	3	904	61461
]8;9]	249	28925	5	1333	30513
]9;10]	647	15456	21	5061	21185
]10;11]	83	14999	88	26655	41824
]11;12]	44	16716	9	41824	58593
]12;13]	75	23156	33	75691	98955
]13;14]	136	31000	17	98077	129231
]14;15]	187	34803	40	36805	71835
]15;16]	155	37473	115	10400	48143
]16;17]	145	45944	392	433	46915
]17;18]	129	44179	497	241	45047
]18;19]	63	65177	348	77	65665
]19;20]	77	96289	1248	113	97728
]20;21]	79	76869	13415	2711	93073
]21;22.5]	103	83396	85136	4808	173443
>22.5	53	73039	6548	48	79688
Σ	2365	935288	107983	305633	1351269

Anhang 3	absolute korrigierte	Achsanzahl von	Niklasdorf	aus Argos®	[5]
----------	----------------------	----------------	------------	------------	-----

Klassen	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	0	0	0
]1;2]	0	0	0	0
]2;3]	0	0	0	0
]3;4]	0	0	0	0
]4;5]	163475	0	0	163475
]5;6]	15249	0	0	15249
]6;7]	5629	0	0	5629
]7;8]	14580	0	0	14580
]8;9]	10504	0	0	10504
]9;10]	17804	0	0	17804
]10;11]	3465	0	265200	268665
]11;12]	4992	0	28314	33306
]12;13]	13579	0	63440	77019
]13;14]	387634	0	24804	412438
]14;15]	7989	0	123032	131021
]15;16]	8762	0	0	8762
]16;17]	2275	176	0	2451
]17;18]	254	312	0	566
]18;19]	78	156	0	234
]19;20]	3718	7878	0	11596
]20;21]	715	936	24284	25935
]21;22.5]	23062	56992	3770	83824
>22.5	0	0	0	0
Σ	683761	66450	532844	1283055

Anhang 4

absolute korrigierte Achsanzahl von Deutsch-Wagram aus ARAMIS [5]

Klassen	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	0	0	0
]1;2]	0	0	0	0
]2;3]	0	0	0	0
]3;4]	26	0	0	26
]4;5]	118339	0	0	118339
]5;6]	24596	0	0	24596
]6;7]	4056	0	0	4056
]7;8]	24791	0	0	24791
]8;9]	18122	0	0	18122
]9;10]	12051	0	0	12051
]10;11]	12116	0	0	12116
]11;12]	14209	0	1248	15457
]12;13]	17108	0	60177	77285
]13;14]	371852	0	86021	457873
]14;15]	11232	0	104	11336
]15;16]	7735	0	0	7735
]16;17]	9133	182	0	9315
]17;18]	1209	0	130	1339
]18;19]	429	156	0	585
]19;20]	455	1248	0	1703
]20;21]	13013	780	4212	18005
]21;22.5]	47619	55042	1482	104143
>22.5	0	0	0	0
Σ	708091	57408	153374	918873

Anhang 5	absolute korrigierte Achsanzahl	von Himborg aus ARAMIS	151
Annang J	absolute korrigierte Achsanzam	von minderg aus ANAMIS	

Klassen	Güterwagen	Lokomotiven	Personenwagen	Σ
[0;1]	0	0	0	0
]1;2]	0	0	0	0
]2;3]	21476	0	0	21476
]3;4]	0	0	0	0
]4;5]	289497	0	0	289497
]5;6]	68796	0	0	68796
]6;7]	49075	0	0	49075
]7;8]	38168	0	0	38168
]8;9]	11563.5	0	0	11563.5
]9;10]	12545	0	0	12545
]10;11]	4901	0	0	4901
]11;12]	4478.5	0	9750	14228.5
]12;13]	8684	0	199849	208533
]13;14]	565779.5	0	68796	634575.5
]14;15]	5629	0	1521	7150
]15;16]	7481.5	0	0	7481.5
]16;17]	1209	162.5	0	1371.5
]17;18]	1079	1430	182	2691
]18;19]	767	78	26	871
]19;20]	3146	6955	0	10101
]20;21]	10127	65650	0	75777
]21;22.5]	133835	52598	0	186433
>22.5	39	0	0	39
Σ	1238276	126873.5	280124	1645274

Anhang 6 absolute korrigierte Achsanzahl von Niklasdorf aus ARAMIS [5]

Schwellenart	Süßenbrunn Bf. – Gänsern- dorf Bf.	Bruck/Mur Stadtwald – Le- oben Hbf.	Gesamtnetz (gefiltert)
Beton	1 416	692	98 266
Beton besohlt	398	278	21 499
Holz	45	0	16 073
Unbekannt	0	0	2 649
Σ	1 859	970	138 487

Anhang 7 Häufigkeit der Schwellenarten (Querschnittanzahl) bei gleichen Gleisrandbedingungen

Anhang

Systemfahrzeug	Fahrzeug/Zug	V_zul	Gewicht	Achsen angetr.	Achsen unangetr.	P2_a angetr.	P2_b angetr.	Mv angetr.	Mv unangetr.	P2_a unangetr.	P2_b unangetr.
F1	1x16_Taurus_Standard, 182, 6182, 470, 183, 6183, 541, 1541, 190	230	87,9	4	0	1,2108	107,8205	1248	0	0	0
F1G	1x16_Taurus_Standard, 182, 6182, 470, 183, 6183, 541, 1541, 190_G	100	87,9	4	0	1,2108	107,8205	1248	0	0	0
F2	1063_1163	120	80,0	4	0	1,6629	98,1000	2064	0	0	0
F2G	1063_1163_G	100	80,0	4	0	1,6629	98,1000	2064	0	0	0
F3	F140_AC2_TRAXX, 185, 6185, 4482	140	85,0	4	0	1,8339	104,2313	2426	0	0	0
F3G	F140_AC2_TRAXX, 185, 6185, 4482_G	100	85,0	4	0	1,8339	104,2313	2426	0	0	0
F4	Vectron_X4, 193, 1193, 6193, 6191, 170, 2170, 4170, 475, 4475, 6192	200	88,0	4	0	1,6321	107,9100	2002	0	0	0
F4G	Vectron_X4, 193, 1193, 6193, 6191, 170, 2170, 4170, 475, 4475, 6192_G	100	88,0	4	0	1,6321	107,9100	2002	0	0	0
F5	1144	160	84,0	4	0	1,2165	103,0050	1257	0	0	0
F5G	1144_G	100	84,0	4	0	1,2165	103,0050	1257	0	0	0
F6	1142	150	82,5	4	0	1,2061	101,1656	1240,5	0	0	0
F6G	1142_G	100	82,5	4	0	1,2061	101,1656	1240,5	0	0	0
F7	2016, 1223	140	80,0	4	0	1,4662	98,1000	1684	0	0	0
F7G	2016, 1223_G	100	80,0	4	0	1,4662	98,1000	1684	0	0	0
F8	2070	140	72,0	4	0	1,4154	88,2900	1592	0	0	0
F8G	2070_G	100	72,0	4	0	1,4154	88,2900	1592	0	0	0
F9	4010	200	323,4	8	16	0,9984	82,7310	934	894	0,9690	57,7727
F10	4110_G	200	229,2	8	8	0,9984	82,7310	934	894	0,9690	57,7727
F11	4011_ICE_T	230	378,1	8	20	0,9092	66,2430	815	700	0,8170	66,2430
F12	4020	120	131,3	4	8	1,0561	78,3492	1015	850	0,9360	41,3328
F13	4024_Talent, 4124	140	120,5	4	6	0,8506	58,1733	741	503	0,6420	59,7429
F14	4746_CityJet, 4744	160	151,5	8	4	0,9360	64,2821	850	700	0,8170	57,2209
F15	5022_Desiro	120	73,8	4	2	0,8539	58,8600	745	500	0,6391	63,2583
F16	5047	120	45,4	2	2	0,9353	56,3498	849	699	0,8162	54,8783
F17	RailJet_Wagen	230	54,3	0	4	0	0	0	850	0,9360	66,5850
F18	RIC_Wagen	200	51,0	0	4	0	0	0	850	0,9360	62,5388
F19	2achs_GW_AL8t	100	16,0	0	2	0	0	0	863	0,9459	39,2400
F20	2achs_GW_AL14t	100	28,0	0	2	0	0	0	863	0,9459	68,6700
F21	2achs_GW_AL22t	100	44,0	0	2	0	0	0	863	0,9459	107,9100
F22	4achs_GW_Y25_AL5t	100	20,0	0	4	0	0	0	650	0,7749	24,5250
F23	4achs_GW_Y25_AL14t	100	56,0	0	4	0	0	0	650	0,7749	68,6700
F24	4achs_GW_Y25_AL22t	100	88,0	0	4	0	0	0	650	0,7749	107,9100
F25	NahverkehrsDOSTO	140	58,2	0	4	0	0	0	786	0,8865	71,3678
F26	4023_Talent	140	99,9	4	4	0,8506	58,1733	741	503	0,6420	64,2800

Anhang 8	Fahrzeugdaten
/ united try o	1 ann Eou guacon

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at

	Teilschädigur Bruck/M	ngsinkremente ur-Leoben	Teilschädigungsinkremente Süßenbrunn-Gänserndorf		Schädigungsinkremente Bruck/Mur-Leoben	Schädigungsinkremente Süßenbrunn-Gänserndorf
Systemfahr-	P ₂ ³ angetr.	P ₂ ³ unangetr.	P ₂ ³ angetr.	P ₂ ³ unangetr.	P ₂ ³	P ₂ ³
zeug	(V4_130)	(V4_130)	(V3_110)	(V3_110)	(V4_130)	(V3_110)
F1	74630927	0	55998159	0	74630927	55998159
F1G	47975131	0	47975131	0	47975131	47975131
F2	105479206	0	88769763	0	105479206	88769763
F2G	73925309	0	73925309	0	73925309	73925309
F3	160897260	0	114561088	0	160897260	114561088
F3G	95171213	0	95171213	0	95171213	95171213
F4	131179551	0	94999955	0	131179551	94999955
F4G	79718900	0	79718900	0	79718900	79718900
F5	71242040	0	53127694	0	71242040	53127694
F5G	45353818	0	45353818	0	45353818	45353818
F6	68658757	0	51142779	0	68658757	51142779
F6G	43630351	0	43630351	0	43630351	43630351
F7	96259728	0	69806475	0	96259728	69806475
F7G	58625155	0	58625155	0	58625155	58625155
F8	80748982	0	58092222	0	80748982	58092222
F8G	48557353	0	48557353	0	48557353	48557353
F9	76792186	99263513	57116687	71050487	176055699	128167174
F10	76792186	49631756	57116687	35525244	126423943	92641931
F11	50191261	102586299	36761669	76101153	152777560	112862821
F12	34502758	29022155	29442172	24034869	63524913	53477041
F13	19223432	17618802	13975972	13291840	36842234	27267812
F14	51449293	17462737	37423287	12731051	68912030	50154338
F15	16793872	5482206	14265897	4764925	22276078	19030822
F16	9581957	7138528	8074023	6054746	16720485	14128770
F17	0	26692231	0	19495308	26692231	19495308
F18	0	25007942	0	18132582	25007942	18132582
F19	0	4793447	0	4793447	4793447	4793447
F20	0	8702309	0	8702309	8702309	8702309
F21	0	16606456	0	16606456	16606456	16606456
F22	0	4246509	0	4246509	4246509	4246509
F23	0	12489113	0	12489113	12489113	12489113
F24	0	25490488	0	25490488	25490488	25490488
F25	0	25996536	0	19268387	25996536	19268387
F26	19223432	12898081	13975972	9819036	32121513	23795008

Anhang 9 Österreichischer/Schweizerischer Modellansatz: Schädigungsinkremente

	Absolute Fa (*hochg	ahrzeuganzahl gerechnet)	Abschnitt	tlänge in km	Schädigung	ssumme D1
Systemfahr- zeug	Bruck/Mur- Leoben*	Süßenbrunn- Gänserndorf	Bruck/Mur- Leoben	Süßenbrunn- Gänserndorf	Bruck/Mur-Leoben (V4_130)	Süßenbrunn-Gänserndorf (V3_110)
F1	3266	6847	3,455	3,455	842 137 617 525	1 324 714 007 905
F1G	5207	5258	3,455	3,455	863 081 486 016	871 534 944 012
F2	0	0	3,455	3,455	0	0
F2G	702	397	3,455	3,455	179 299 183 736	101 398 541 230
F3	0	0	3,455	3,455	0	0
F3G	410	0	3,455	3,455	134 814 781 922	0
F4	8	799	3,455	3,455	3 625 802 794	262 251 651 703
F4G	356	1201	3,455	3,455	98 052 652 882	330 789 989 077
F5	1059	2005	3,455	3,455	260 663 580 163	368 030 145 644
F5G	10674	1060	3,455	3,455	1 672 588 504 845	166 099 289 407
F6	72	4	3,455	3,455	17 079 552 400	706 793 210
F6G	3478	265	3,455	3,455	524 283 678 742	39 946 858 789
F7	4	161	3,455	3,455	1 330 309 448	38 830 200 543
F7G	526	611	3,455	3,455	106 541 252 725	123 757 995 086
F8	0	0	3,455	3,455	0	0
F8G	0	325	3,455	3,455	0	54 523 838 057
F9	0	0	3,455	3,455	0	0
F10	0	0	3,455	3,455	0	0
F11	195	0	3,455	3,455	102 930 061 910	0
F12	0	4882	3,455	3,455	0	902 013 832 124
F13	7507	107	3,455	3,455	955 565 406 391	10 080 501 149
F14	2807	22055	3,455	3,455	668 321 618 161	3 821 761 818 516
F15	12	0	3,455	3,455	923 566 187	0
F16	3	165	3,455	3,455	173 307 829	8 054 458 441
F17	19179	6273	3,455	3,455	1 768 719 191 337	422 525 998 384
F18	24243	25082	3,455	3,455	2 094 654 369 146	1 571 338 953 174
F19	25706	22485	3,455	3,455	425 726 266 761	372 382 132 892
F20	21322	2982	3,455	3,455	641 077 438 575	89 658 236 649
F21	13375	932	3,455	3,455	767 394 722 133	53 473 785 497
F22	52183	88356	3,455	3,455	765 612 743 484	1 296 331 747 184
F23	35900	10516	3,455	3,455	1 549 080 943 736	453 764 211 820
F24	89671	18105	3,455	3,455	7 897 292 465 153	1 594 500 787 117
F25	2	28313	3,455	3,455	179 636 060	1 884 860 887 757
F26	500	0	3,455	3,455	55 489 913 698	0
Schädigungssumme					22 396 640 053 760	16 163 331 605 367

Anhang 10 Österreichischer/Schweizerischer Modellansatz: Schädigungssummen

Systemfahr- zeug	Achsanzahl n _z	Fahrzeuggewicht Tz	P2 ³ nicht hochgerechnet	ΣΡ2 ³ hochgerechnet	T _z / n _z * ΣP ₂ ³
F1	4	87,93	226 472 120 676	440 620 506 224	0.961.661.649.662
F1G	4	87,93	330 472 129 070	448 629 506 234	9 801 001 048 003
F2	4	80	27 220 206 140	26 425 710 152	728 714 262 020
F2G	4	80	27 320 296 148	30 435 718 152	728 714 363 030
F3	4	85	10 440 025 510	25.042.000.000	551 202 602 072
F3G	4	85	19 449 835 518	25 943 698 968	551 303 603 073
F4	4	88	14.007.005.000		440 242 002 086
F4G	4	88	14 997 905 069	20 015 586 545	440 342 903 986
F5	4	84	266 470 250 275	499 627 412 525	10 361 395 694 030
F5G	4	84	300 470 230 273	400 037 413 525	10 201 385 684 020
F6	4	82,5	00 702 472 100	121 710 242 202	2 716 700 270 420
F6G	4	82,5	96 762 473 160	131 /19 242 203	2 /16 /09 3/0 439
F7	4	80	21 501 270 200	28 677 208 065	E72 E47 070 204
F7G	4	80	21 501 279 500	28 077 398 903	5/5 54/ 9/9 504
F8	4	72	0	0	0
F8G	4	72	0	0	0
F9	24	323,39	0	0	0
F10	16	229,16	0	0	0
F11	28	378,15	22 847 730 429	30 465 503 563	411 442 681 453
F12	12	131,31	0	0	0
F13	10	120,52	137 653 382 779	183 537 843 706	2 211 998 092 339
F14	12	151,51	107 872 298 706	143 831 155 327	1 815 948 242 200
F15	6	73,79	158 968 393	211 957 857	2 606 848 397
F16	4	45,35	21 135 065	29 589 091	335 488 112
F17	4	54,3	412 752 259 260	550 338 737 074	7 470 848 355 785
F18	4	51	437 510 390 157	583 349 192 112	7 437 702 199 428
F19	2	16	77 120 822 248	102 828 429 706	822 627 437 646
F20	2	28	114 477 815 700	152 639 473 971	2 136 952 635 595
F21	2	44	144 113 113 547	192 150 818 063	4 227 317 997 388
F22	4	20	123 249 798 512	164 333 327 115	821 666 635 574
F23	4	56	277 446 679 061	369 928 905 415	5 179 004 675 805
F24	4	88	1 440 352 613 094	1 920 473 720 294	42 250 421 846 458
F25	4	58,2	11 758 333	17 637 499	256 625 613
F26	8	99,86	8 644 724 241	11 526 298 987	143 877 027 111
	100 066 672 341 420				
			Bruck/Mur-Leobe	en	

Anhang 11 Schwedischer Modellansatz (P₂): Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl n _z	Fahrzeuggewicht Tz	P ₂ ³	T _z / n _z * ΣP ₂ ³		
F1	4	87,93				
F1G	4	87,93	550 108 081 530	12 092 338 321 170		
F2	4	80	10.475 657 000			
F2G	4	80	18 475 657 900	369 513 157 997		
F3	4	85	0	2		
F3G	4	85	0	0		
F4	4	88				
F4G	4	88	148 201 173 475	3 260 425 816 460		
F5	4	84	142 425 400 716	2 012 145 205 021		
F5G	4	84	143 435 490 716	3 012 145 305 031		
F6	4	82,5	0.076.007.015			
F6G	4	82,5	8 010 091 912	100 581 894 500		
F7	4	80	42 262 412 029	067 340 350 750		
F7G	4	80	43 302 412 936	007 240 230 730		
F8	4	72	12 269 024 050	222 640 820 261		
F8G	4	72	12 308 934 939	222 040 829 201		
F9	24	323,39	0	0		
F10	16	229,16	0	0		
F11	28	378,15	0	0		
F12	12	131,31	226 345 307 967	2 476 720 658 730		
F13	10	120,52	2 886 589 082	34 789 171 614		
F14	12	151,51	991 124 006 675	12 513 491 208 718		
F15	6	73,79	0	0		
F16	4	45,35	2 316 789 452	26 268 306 711		
F17	4	54,3	113 240 186 470	1 537 235 531 326		
F18	4	51	414 936 716 745	5 290 443 138 499		
F19	2	16	69 139 976 148	553 119 809 182		
F20	2	28	19 807 099 526	277 299 393 370		
F21	2	44	11 853 160 506	260 769 531 121		
F22	4	20	232 510 827 516	1 162 554 137 579		
F23	4	56	91 336 331 868	1 278 708 646 159		
F24	4	88	333 293 954 759	7 332 467 004 694		
F25	4	58,2	549 003 719 047	7 988 004 112 130		
F26	8	99,86	0	0		
	Schädigungssumme 60 722 764 233 017					
Süßenbrunn-Gänserndorf						

Anhang 12 Schwedischer Modellansatz (P2): Süßenbrunn-Gänserndorf

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Anhang

Systemfahr-	Achsanzahl	Fahrzeuggewicht	APZ ₅₀ ³	Σ APZ ₅₀ ³	T _z / n _z * Σ ΑΡΖ ₅₀ ³
g	112	87.93	ment nochgerechnet	nochgerechnet	
F1G	4	87.93	270735	360980	7934979
F2	4	80			
F2G	4	80	20287	27055	541109
F3	4	85			
F3G	4	85	11268	15030	319378
F4	4	88			
F4G	4	88	12642	16872	371187
F5	4	84			
F5G	4	84	388508	518022	10878468
F6	4	82,5	110076	151016	
F6G	4	82,5	113876	151846	3131818
F7	4	80	14420	10246	284040
F7G	4	80	14430	19246	384910
F8	4	72	0	0	0
F8G	4	72	0	0	0
F9	24	323,39	0	0	0
F10	16	229,16	0	0	0
F11	28	378,15	7408	9878	133405
F12	12	131,31	0	0	0
F13	10	120,52	116158	154878	1866588
F14	12	151,51	58741	78322	988853
F15	6	73,79	119	159	1957
F16	4	45,35	1	2	22
F17	4	54,3	166798	222398	3019059
F18	4	51	190185	253581	3233152
F19	2	16	23397	31196	249569
F20	2	28	90663	120886	1692410
F21	2	44	223215	297621	6547653
F22	4	20	48455	64607	323036
F23	4	56	452561	603415	8447806
F24	4	88	2550926	3401241	74827311
F25	4	58,2	10	15	217
F26	8	99,86	6869	9158	114321
		Schädigung	jssumme		125 007 209
			Bruck/Mur-Leobe	en	

Anhang 13 Schwedischer Modellansatz (APZ₅₀): Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	ΣΑΡΖ 50 ³	Tz / nz * Σ ΑΡΖ ₅₀ 3		
F1	4	87,93				
F1G	4	87,93	518356	11394370		
F2	4	80	1.1505			
F2G	4	80	14596	291919		
F3	4	85	0			
F3G	4	85	0	U		
F4	4	88	04512	2070204		
F4G	4	88	94513	2079294		
F5	4	84	120102	2712047		
F5G	4	84	129183	2/1284/		
F6	4	82,5	11017	22222		
F6G	4	82,5	11017	227233		
F7	4	80	27615	552205		
F7G	4	80	27013	552295		
F8	4	72	7890	142007		
F8G	4	72	7669	142007		
F9	24	323,39	0	0		
F10	16	229,16	0	0		
F11	28	378,15	0	0		
F12	12	131,31	114446	1252291		
F13	10	120,52	1983	23896		
F14	12	151,51	541472	6836380		
F15	6	73,79	0	0		
F16	4	45,35	1025	11620		
F17	4	54,3	52764	716275		
F18	4	51	205837	2624424		
F19	2	16	25510	204082		
F20	2	28	15080	211115		
F21	2	44	15869	349112		
F22	4	20	85416	427080		
F23	4	56	154955	2169372		
F24	4	88	635756	13986626		
F25	4	58,2	248031	3608856		
F26	8	99,86	0	0		
		Schädigungssum	49 821 093			
	Süßenbrunn-Gänserndorf					

Anhang 14 Schwedischer Modellansatz (APZ₅₀): Süßenbrunn-Gänserndorf

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	P2 ^{3,5} nicht hochgerechnet	ΣP2 ^{3,5} hochgerechnet	T _z / n _z * ΣP ₂ ^{3,5}	
F1	4	87,93	5 244 210 707 000	6 002 424 042 705	452 705 706 006 000	
F1G	4	87,93	5 244 318 707 096	6 992 424 942 795	153 705 736 986 289	
F2	4	80	420 720 442 021	561 107 225 100	44 000 444 700 770	
F2G	4	80	420 730 442 921	561 107 235 189	11 222 144 703 773	
F3	4	85	200,040,210,226	412 422 422 620	0.705.006.600.557	
F3G	4	85	309 940 318 226	413 422 432 638	8 /85 220 093 55/	
F4	4	88	226 704 720 000	215 006 272 777	6 040 720 201 102	
F4G	4	88	236 704 720 098	315 896 372 777	6 949 720 201 103	
F5	4	84	E 4E1 E41 240 424	7 260 976 570 025	152 646 407 070 720	
F5G	4	84	5 451 541 249 424	7 208 870 570 035	152 646 407 970 729	
F6	4	82,5	1 420 492 711 466	1 010 446 816 162		
F6G	4	82,5	1 439 463 711 466	1 919 440 810 103	29 200 200 202 229	
F7	4	80	222 004 701 021	444 110 501 104	8 882 200 022 870	
F7G	4	80	552 504 701 021	444 119 501 194	0 002 390 023 079	
F8	4	72	0	0	0	
F8G	4	72	0	0		
F9	24	323,39	0	0	0	
F10	16	229,16	0	0	0	
F11	28	378,15	305 042 707 204	406 748 482 624	5 493 219 109 983	
F12	12	131,31	0	0	0	
F13	10	120,52	1 607 780 832 233	2 143 707 776 311	25 835 966 120 102	
F14	12	151,51	1 382 700 871 292	1 843 619 410 863	23 276 719 295 156	
F15	6	73,79	1 918 427 993	2 557 903 991	31 459 404 254	
F16	4	45,35	269 373 583	377 123 016	4 275 909 940	
F17	4	54,3	5 741 178 607 415	7 654 938 072 992	103 915 784 340 861	
F18	4	51	5 931 742 065 151	7 909 016 607 081	100 839 961 740 280	
F19	2	16	894 582 492 803	1 192 784 390 723	9 542 275 125 783	
F20	2	28	1 422 674 668 405	1 896 929 214 538	26 557 009 003 531	
F21	2	44	2 007 445 713 828	2 676 594 285 105	58 885 074 272 301	
F22	4	20	1 196 172 174 024	1 594 898 779 008	7 974 493 895 040	
F23	4	56	3 262 405 703 260	4 349 874 271 013	60 898 239 794 179	
F24	4	88	19 090 536 267 546	25 454 095 667 151	559 990 104 677 317	
F25	4	58,2	140 732 167	211 098 251	3 071 479 547	
F26	8	99,86	103 652 742 465	138 203 656 620	1 725 127 143 763	
	Schädigungssumme					
	Bruck/Mur-Leoben					
	Exponent=3,5, 2α=0,02)					

Anhang 15 Kalibrierter schwedischer Modellansatz ($P_2^{3,5}$ mit $2\alpha=0,02$): Bereich

Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	P ₂ ^{3,5}	T _z / n _z * ΣP ₂ ^{3,5}
F1	4	87,93		
F1G	4	87,93	8 315 136 161 969	182 781 244 328 351
F2	4	80		
F2G	4	80	280 264 673 154	5 605 293 463 074
F3	4	85	0	2
F3G	4	85	0	0
F4	4	88	2 426 500 201 601	52 602 204 105 242
F4G	4	88	2 436 509 281 601	53 603 204 195 213
F5	4	84		45 717 150 227 812
F5G	4	84	2 1/7 007 155 705	45 /1/ 150 22/ 812
F6	4	82,5	114 020 157 605	2 251 665 752 469
F6G	4	82,5	114 020 137 095	2 331 003 732 408
F7	4	80	681 674 467 409	13 633 489 348 187
F7G	4	80	001 074 407 405	13 033 403 540 107
F8	4	72	180 570 610 501	3 250 270 989 017
F8G	4	72	100 370 010 301	5 250 270 505 017
F9	24	323,39	0	0
F10	16	229,16	0	0
F11	28	378,15	0	0
F12	12	131,31	2 903 353 454 961	31 769 138 693 836
F13	10	120,52	34 338 231 073	413 844 360 893
F14	12	151,51	12 423 174 696 147	156 849 482 302 571
F15	6	73,79	0	0
F16	4	45,35	28 743 984 419	325 906 093 105
F17	4	54,3	1 459 845 608 996	19 817 404 142 124
F18	4	51	5 279 284 309 443	67 310 874 945 394
F19	2	16	748 246 031 888	5 985 968 255 104
F20	2	28	243 191 512 195	3 404 681 170 732
F21	2	44	161 766 795 338	3 558 869 497 440
F22	4	20	2 187 014 521 590	10 935 072 607 949
F23	4	56	1 043 704 740 542	14 611 866 367 586
F24	4	88	4 309 537 182 166	94 809 818 007 648
F25	4	58,2	7 152 339 078 973	104 066 533 599 056
F26	8	99,86	0	0
		Schädigungssum	ıme	820 801 778 347 560
			Süßenbrunn-Gänserndorf	
			Exponent=3,5, 2α=0,02)	

Anhang 16 Kalibrierter schwedischer Modellansatz ($P_2^{3,5}$ mit $2\alpha=0,02$): Bereich Süßen-

brunn-Gänserndorf

Systemfahr- zeug	Achsanzahl n _z	Fahrzeuggewicht Tz	P2 ³ nicht hochgerechnet	ΣP ₂ ³ hochgerechnet	Tz / nz * ΣΡ2 ³		
F1	4	87,93	60.052.022.400	01 027 221 210	2 020 044 224 520		
F1G	4	87,93	68 952 923 489	91 937 231 319	2 020 941 234 539		
F2	4	80	4 956 942 622	6 477 220 420	120 546 600 400		
F2G	4	80	4 850 843 622	6 477 330 420	129 546 608 408		
F3	4	85	2 417 (72 211	4 550 756 272	06 072 572 002		
F3G	4	85	3 417 672 311	4 558 /50 3/2	96 873 572 903		
F4	4	88	2 001 261 120	2 002 147 201	97 977 747 601		
F4G	4	88	2 991 301 130	5 992 147 591	87 827 242 801		
F5	4	84	92 092 196 272	110 646 606 210	2 222 578 722 515		
F5G	4	84	02 903 100 273	110 646 606 310	2 323 378 732 313		
F6	4	82,5	22 440 144 771	20 022 200 677	617 147 451 472		
F6G	4	82,5	22 440 144 771	29 922 300 077	017 147 451 472		
F7	4	80	3 730 428 250	4 987 474 215	00 740 484 207		
F7G	4	80	5755 420 255	4 907 474 213	55775464257		
F8	4	72	0	0	0		
F8G	4	72	0	0	Ŭ		
F9	24	323,39	0	0	0		
F10	16	229,16	0	0	0		
F11	28	378,15	3 394 133 013	4 525 787 440	61 121 658 993		
F12	12	131,31	0	0	0		
F13	10	120,52	26 558 750 665	35 411 667 553	426 781 417 346		
F14	12	151,51	16 660 226 820	22 213 855 645	280 462 268 549		
F15	6	73,79	28 520 259	38 027 011	467 690 393		
F16	4	45,35	2 767 728	3 874 819	43 933 619		
F17	4	54,3	54 325 120 844	72 433 809 207	983 288 959 983		
F18	4	51	57 031 569 765	76 042 354 411	969 540 018 746		
F19	2	16	8 587 234 199	11 449 719 836	91 597 758 685		
F20	2	28	23 016 849 315	30 689 612 223	429 654 571 124		
F21	2	44	43 132 230 302	57 509 640 403	1 265 212 088 865		
F22	4	20	11 073 091 366	14 764 145 399	73 820 726 995		
F23	4	56	67 713 843 126	90 285 124 168	1 263 991 738 350		
F24	4	88	520 361 223 089	693 816 253 685	15 263 957 581 078		
F25	4	58,2	2 852 161	4 278 241	62 248 404		
F26	8	99,86	1 613 573 068	2 151 430 757	26 855 234 429		
	Schädigungssumme						
			Bruck/Mur-Leob	en			
	Exponent=3, 2α =0,005)						

Anhang 17 Kalibrierter schwedischer Modellansatz (P_2^3 mit 2α =0,005): Bereich

Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	P ₂ ³	T _z / n _z * ΣP ₂ ³
F1	4	87,93		
F1G	4	87,93	123 793 366 294	2 721 194 829 535
F2	4	80		
F2G	4	80	3 483 973 685	69 679 473 700
F3	4	85	0	
F3G	4	85	0	0
F4	4	88	25 211 222 026	
F4G	4	88	25 211 338 836	554 649 454 403
F5	4	84	20 202 060 222	626 262 222 679
F5G	4	84	30 302 908 223	030 302 332 078
F6	4	82,5	2 077 800 275	42 856 486 025
F6G	4	82,5	2 0/7 890 275	42 030 400 925
F7	4	80	7 220 520 847	146 610 596 976
F7G	4	80	7 330 329 847	140 010 390 930
F8	4	72	2 105 756 252	20 522 612 520
F8G	4	72	2 195 750 252	59 525 012 529
F9	24	323,39	0	0
F10	16	229,16	0	0
F11	28	378,15	0	0
F12	12	131,31	33 546 784 457	367 076 370 366
F13	10	120,52	525 847 435	6 337 513 291
F14	12	151,51	164 402 850 619	2 075 677 323 987
F15	6	73,79	0	0
F16	4	45,35	332 652 678	3 771 694 736
F17	4	54,3	19 017 487 814	258 162 397 076
F18	4	51	65 890 908 887	840 109 088 312
F19	2	16	8 845 073 401	70 760 587 210
F20	2	28	4 157 431 492	58 204 040 889
F21	2	44	3 832 330 525	84 311 271 554
F22	4	20	22 674 914 985	113 374 574 925
F23	4	56	24 733 493 500	346 268 908 996
F24	4	88	132 916 611 756	2 924 165 458 632
F25	4	58,2	99 554 838 453	1 448 522 899 494
F26	8	99,86	0	0
		Schädigungssum	ime	12 807 618 916 174
			Süßenbrunn-Gänserndorf	
			Exponent=3, 2α=0,005)	

Anhang 18 Kalibrierter schwedischer Modellansatz (P_2^3 mit $2\alpha = 0,005$): Bereich Süßen-

brunn-Gänserndorf

Systemfahr- zeug	Achsanzahl n _z	Fahrzeuggewicht Tz	APZ ₅₀ ² nicht hochgerechnet	Σ APZ ₅₀ ² hochgerechnet	T _z / n _z * Σ ΑΡΖ ₅₀ ²
F1	4	87,93	100.057	160.055	
F1G	4	87,93	122 967	163 955	3 604 026
F2	4	80	0 522	10 701	254.010
F2G	4	80	9 523	12 /01	254 019
F3	4	85	E 271	7 165	152 247
F3G	4	85	5 371	7 105	152 247
F4	4	88	E E70	7 426	162 502
F4G	4	88	5 572	7 430	103 592
F5	4	84	174 222	222 426	4 991 155
F5G	4	84	174 525	252 450	4 001 135
F6	4	82,5	51.640	69 971	1 420 456
F6G	4	82,5	51 049	00 07 1	1 420 430
F7	4	80	6 911	9 217	184 347
F7G	4	80	0 511	9 217	104 547
F8	4	72	0	0	0
F8G	4	72	0	0	
F9	24	323,39	0	0	0
F10	16	229,16	0	0	0
F11	28	378,15	6 065	8 087	109 215
F12	12	131,31	0	0	0
F13	10	120,52	90 318	120 424	1 451 344
F14	12	151,51	43 435	57 914	731 194
F15	6	73,79	91	122	1 497
F16	4	45,35	2	3	33
F17	4	54,3	114 661	152 882	2 075 373
F18	4	51	133 891	178 522	2 276 152
F19	2	16	26 874	35 832	286 654
F20	2	28	63 209	84 280	1 179 917
F21	2	44	99 402	132 536	2 915 795
F22	4	20	70 413	93 884	469 422
F23	4	56	276 361	368 482	5 158 745
F24	4	88	1 197 939	1 597 255	35 139 615
F25	4	58,2	7	11	160
F26	8	99,86	5 176	6 901	86 142
		Schädigung	Jssumme		62 541 101
			Bruck/Mur-Leobe	en	
			Exponent=2		

Anhang 19 Schwedischer Modellansatz (APZ₅₀²): Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	ΣΑΡΖ 50 ²	T _z / n _z * Σ ΑΡΖ ₅₀ ²
F1	4	87,93		
F1G	4	87,93	234 800	5 161 325
F2	4	80		
F2G	4	80	6 957	139 147
F3	4	85		
F3G	4	85	0	0
F4	4	88	41.261	000.020
F4G	4	88	41 361	909 939
F5	4	84		1 776 187
F5G	4	84	20 000	1 250 185
F6	4	82,5	E OGG	104 485
F6G	4	82,5	5 000	104 405
F7	4	80	12 202	265 840
F7G	4	80	13 292	205 040
F8	4	72	4 222	77 820
F8G	4	72	4 323	// 620
F9	24	323,39	0	0
F10	16	229,16	0	0
F11	28	378,15	0	0
F12	12	131,31	83 574	914 483
F13	10	120,52	1 594	19 207
F14	12	151,51	417 987	5 277 312
F15	6	73,79	0	0
F16	4	45,35	883	10 014
F17	4	54,3	41 093	557 839
F18	4	51	160 935	2 051 926
F19	2	16	30 138	241 106
F20	2	28	10 845	151 832
F21	2	44	7 736	170 188
F22	4	20	135 204	676 021
F23	4	56	97 869	1 370 161
F24	4	88	306 751	6 748 529
F25	4	58,2	189 961	2 763 939
F26	8	99,86	0	0
		Schädigungssum	ne	28 847 297
		5	Süßenbrunn-Gänserndorf	
			Exponent=2	

Anhang 20 Schwedischer Modellansatz (APZ₅₀²): Süßenbrunn-Gänserndorf

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen	www.ebw.tugraz.at
 Anhang	

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	APZ ₅₀ ^{1,7} nicht hochgerechnet	Σ APZ ₅₀ ^{1,7} hochgerechnet	T _z / n _z * Σ ΑΡΖ ₅₀ ^{1,7}		
F1	4	87,93		129 403	2 844 496		
F1G	4	87,93	97 052				
F2	4	80					
F2G	4	80	7 591	10 124	202 488		
F3	4	85	4 2 2 2	5 738	121 928		
F3G	4	85	4 302				
F4	4	88	4.350	5.017	127.072		
F4G	4	88	4 359	5 817	12/ 9/3		
F5	4	84	APZ_m ^{1,2} X PZ_m ^{1,2} X PZ_m ^{1,2} X PZ_m ^{1,2} Tz 87,93 97 052 129 403 1 80 7 591 10 124 1 85 4 302 5 738 1 85 4 302 5 738 1 86 4 302 5 817 1 84 137 089 182 789 1 84 137 089 182 789 1 80 5 542 7 392 1 72 0 0 1 72 0 0 1 72 0 0 1 72 0 0 1 72 0 0 1 73,93 0 0 1 74 7 619 1 1 72 0 0 1 73,9 84 112 1 13,1 0 0 1 77,9 84 112 </td <td>2 929 562</td>	2 929 562			
F5G	4	84	157 009	102 705	2 020 202		
F6	4	82,5	40 748	54 335	1 120 652		
F6G	4	82,5	-07-0	54 335 1 120 652	1 120 052		
F7	4	80	5 542	7 392 147 832	147 832		
F7G	4	80	5 5 12	, 352	117 052		
F8	4	72	0	0	0		
F8G	4	72	0	0	Ŭ		
F9	24	323,39	0	0	0		
F10	16	229,16	0	0	0		
F11	28	378,15	5 714	7 619	102 893		
F12	12	131,31	0	0	0		
F13	10	120,52	83 920	111 893	1 348 533		
F14	12	151,51	39 825	53 101	670 432		
F15 6		73,79	84	112	1 383		
F16	4	45,35	2	3	38		
F17	4	54,3	102 931	137 242	1 863 061		
F18	4	51	121 300	161 733	2 062 099		
F19	2	16	28 160	37 546	300 371		
F20	2	28	56 875	75 834	1 061 674		
F21	2	44	78 069	104 092	2 290 030		
F22	4	20	79 037	105 383	526 916		
F23	4	56	238 950	318 600	4 460 403		
F24	4	88	956 025	1 274 702	28 043 445		
F25	4	58,2	7	10	146		
F26	F26 8 99,86 4 761 6 348 79 237						
Schädigungssumme 51 214 594							
Bruck/Mur-Leoben							
Exponent=1,7							

Anhang 21 Schwedischer Modellansatz (APZ₅₀^{1,7}): Bruck/Mur-Leoben

Systemfahr- zeug	Achsanzahl nz	Fahrzeuggewicht Tz	ΣΑΡΖ 50 ^{1,7}	T _z / n _z * Σ ΑΡΖ ₅₀ ^{1,7}			
F1	4	87,93					
F1G	4	87,93	185 208	4 071 194			
F2	4	80					
F2G	4	80	5 572	111 447			
F3	4	85					
F3G	4	85	0	U			
F4	4	88	22.200	710 500			
F4G	4	88	32 299	/10 288			
F5	4	84	46 510	076 700			
F5G	4	84	40 510	976709			
F6	4	82,5	4.014	92 796			
F6G	4	82,5	4 014	62 760			
F7	4	80	10 676	213 517			
F7G	4	80	100,00	215 517			
F8	4	72	3 610	64 977			
F8G	4	72	55	01577			
F9	24	323,39	0	0			
F10	16	229,16	0	0			
F11	28	378,15	0	0			
F12	12	131,31	77 335	846 221			
F13	10	120,52	1 496	18 035			
F14	12	151,51	388 156	4 900 689			
F15	6	73,79	0	0			
F16	4	45,35	845	9 581			
F17	4	54,3	38 141	517 763			
F18	4	51	149 668	1 908 268			
F19	2	16	31 820	254 558			
F20	2	28	9 865	138 112			
F21	2	44	6 242	137 315			
F22	4	20	155 628	778 139			
F23	4	56	85 642	1 198 984			
F24	4	88	246 738	5 428 236			
F25 4		58,2	175 537	2 554 068			
F26	F26 8 99,86 0 0						
Schädigungssumme 24 921 188							
Süßenbrunn-Gänserndorf							
Exponent=1,7							

Anhang 22 Schwedischer Modellansatz (APZ₅₀^{1,7}): Süßenbrunn-Gänserndorf

Eine integrative Analyse von Gleislagedaten, stationären Messanlagen und Verschleißmodellen | www.ebw.tugraz.at Anhang

System- fahrzeug	Ct [-]	A [t/Achse]	U_angetr. [t/Achse]	U_unanangetr. [t/Achse]	Strecke [Meilen]	Gesamte Achslast [t]	Dv
F1	1	2 50	2,496	0	2.15	19462060.05	10 705 057 500 404
F1G	1	2,50	2,496	0	2,15	18462069,05	12 / 25 85/ 522 434
F2	1	1.42	4,128	0	2.15	10462060.05	870 806 205 604
F2G	1	1,43	4,128	0	2,15	18462069,05	870 896 205 694
F3	1	1 57	4,852	0	2.15	10462060.05	602 777 600 110
F3G	1	1,57	4,852	0	2,15	18462069,05	602 /// 609 110
F4	1	2.17	4,004	0	2.15	10462060.05	FED 267 700 641
F4G	1	2,17	4,004	0	2,15	18462069,05	558 267 798 641
F5	1	1.00	2,514	0	2.15	10462060.05	15 262 218 445 124
F5G	1	1,02	2,514	0	2,15	18462069,05	15 202 216 445 154
F6	1	1 72	2,481	0	2.15	18462060.05	4 270 102 205 070
F6G	1	1,75	2,481	0	2,15	18462069,05	4 370 183 285 878
F7	1	1.67	3,368	0	2 1 F	18462060.05	656 124 515 201
F7G	1	1,07	3,368	0	2,15	18462069,05	050 124 515 201
F8	1	1.04	3,184	0	2.15	18462060.05	0
F8G	1	1,04	3,184	0	2,15	18462069,05	0
F9	0,89	0,60	1,868	1,788	2,15	18462069,05	0
F10	0,89	0,84	1,868	1,788	2,15	18462069,05	0
F11	0,89	0,60	1,630	1,400	2,15	18462069,05	586 868 273 671
F12	0,89	0,89	2,030	1,700	2,15	18462069,05	0
F13	0,89	1,12	1,482	1,006	2,15	18462069,05	5 665 725 273 002
F14	0,89	1,00	1,700	1,400	2,15	18462069,05	3 171 491 213 333
F15	0,89	1,54	1,490	1,000	2,15	18462069,05	5 882 172 491
F16	0,89	2,53	1,698	1,398	2,15	18462069,05	573 132 562
F17	1	4,24	0	1,700	2,15	18462069,05	9 014 230 657 563
F18	1	3,92	0	1,700	2,15	18462069,05	10 079 648 299 802
F19	1	6,25	0	1,726	2,15		
F20	1	3,57	0	1,726		18462069,05	10 079 697 091 987
F21	1	2,27	0	1,726			
F22	1	5,00	0	1,300	2,15		
F23	1	1,79	0	1,300		18462069,05	143 366 930 944 323
F24	1	1,14	0	1,300		1	
F25	1	2,41	0	1,572	2,15	18462069,05	660 709 739
F26	0,89	1,35	1,482	1,006	2,15	18462069,05	247 419 231 184
Schädigungssumme							217 265 452 381 750

Anhang 23 Britischer Modellansatz: Bruck/Mur-Leoben

Eine integrative Analyse von Gleislagedaten	, stationären Messanlagen und Verschleißmodel	en www.ebw.tugraz.at 📕
Anhang		

System- fahrzeug	Ct [-]	A [t/Achse]	U_angetr. [t/Achse]	U_unanangetr. [t/Achse]	Strecke [Meilen]	Gesamte Achslast [t]	Dv
F1	1	2.50	2,496	0	2.15	12240700 17	
F1G	1	2,50	2,496	0	2,15	13340708,17	12 931 195 983 263
F2	1	1.42	4,128	0	2.45	12240700.17	242.000 560.025
F2G	1	1,43	4,128	0	2,15	13340708,17	347 880 568 035
F3	1	1 57	4,852	0	2.15	12240700 17	0
F3G	1	1,57	4,852	0	2,15	13340708,17	0
F4	1	2.17	4,004	0	2.15	12240700 17	2 242 100 107 007
F4G	1	2,17	4,004	0	2,15	13340708,17	2 342 180 187 887
F5	1	1 0 7	2,514	0	2.15	12240709 17	2 0 2 6 7 7 1 6 7 2 4 0
F5G	1	1,02	2,514	0	2,15	13340708,17	2 923 077 107 349
F6	1	1 72	2,481	0	2.15	12240709 17	222 645 121 842
F6G	1	1,75	2,481	0	2,15	13340708,17	232 045 131 842
F7	1	1.67	3,368	0	2.15	12240709 17	601 534 901 336
F7G	1	1,07	3,368	0	2,15	13340708,17	091 524 801 550
F8	1	1.94	3,184	0	2.15	12240709 17	220 602 576 005
F8G	1	1,04	3,184	0	2,15	13340708,17	220 092 370 093
F9	0,89	0,60	1,868	1,788	2,15	13340708,17	0
F10	0,89	0,84	1,868	1,788	2,15	13340708,17	0
F11	0,89	0,60	1,630	1,400	2,15	13340708,17	0
F12	0,89	0,89	2,030	1,700	2,15	13340708,17	3 307 932 237 131
F13	0,89	1,12	1,482	1,006	2,15	13340708,17	59 215 292 323
F14	0,89	1,00	1,700	1,400	2,15	13340708,17	17 532 726 016 983
F15	0,89	1,54	1,490	1,000	2,15	13340708,17	0
F16	0,89	2,53	1,698	1,398	2,15	13340708,17	37 274 741 097
F17	1	4,24	0	1,700	2,15	13340708,17	1 935 930 365 120
F18	1	3,92	0	1,700	2,15	13340708,17	6 949 642 474 669
F19	1	6,25	0	1,726	2,15		
F20	1	3,57	0	1,726		13340708,17	2 617 120 331 231
F21	1	2,27	0	1,726			
F22	1	5,00	0	1,300	2,15		
F23	1	1,79	0	1,300		13340708,17	27 271 866 743 520
F24	1	1,14	0	1,300			
F25	1	2,41	0	1,572	2,15	13340708,17	14 653 924 765 729
F26	0,89	1,35	1,482	1,006	2,15	13340708,17	0
Schädigungssumme							94 055 429 383 610

Anhang 24 Britischer Modellansatz: Süßenbrunn-Gänserndorf

WISSEN • TECHNIK • LEIDENSCHAFT

Institut für Eisenbahnwesen und Verkehrswirtschaft Technische Universität Graz Rechbauerstrasse 12/II 8010 Graz +43 316 873 6216 office.ebw@tugraz.at