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Abstract

In this master thesis the non-relativistic limit of Dirac operators with electrostatic and
Lorentz scalar δ-shell interactions in R3 is investigated. These interactions appear, for
instance, as idealizations in the description of a relativistic quantum particle with spin
1/2 in the presence of strongly localized external fields. In order to describe δ-shell
interactions, we consider the formal differential expression

Aη,τ = A0 + (ηI4 + τβ) 〈δΣ, ·〉δΣ

as a singular pertubation of the free Dirac operator A0. Here, Σ is a compact, closed
and C2-smooth surface in R3, η, τ ∈ R represent the strengths of interaction and
I4, β ∈ C4×4 are two matrices. Applying the theory of quasi boundary triples, self-
adjoint operators Aη,τ can be constructed by encoding the effect of the δ-interactions
in form of suitable jump conditions on the interface Σ. These operators are interpreted
as realizations of the formal differential expression above.

Subsequently, for λ ∈ C \ R the non-relativistic limit

(
Aη,τ −

(
λ+mc2

))−1 →
(

(Tη,τ − λ)−1 0
0 0

)
for c→∞

is determined for the resolvent, where Tη,τ is a self-adjoint operator. The correspond-
ing convergence analysis and the characterization of the limit operator Tη,τ is done
separately for the two cases η + τ 6= 0 and η + τ = 0, as in these the limit operators
behave quite differently.

For the parameter combination η + τ 6= 0, the limit operator Tη,τ turns out to be a
Schrödinger operator with a δ-interaction of strength η + τ . This indicates that the
Dirac operators Aη,τ can indeed be regarded as relativistic counterparts of the well
studied Schrödinger operators with δ-interactions.

Finally, it is shown that in the case of η + τ = 0, the limit operator Tη,τ is a
Schrödinger operator as well. However, the characterization of the domain of definition
yields that, in contrast to the case η + τ 6= 0, there are no jump conditions describing
δ-interactions but oblique jump conditions.
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1 Introduction

In non-relativistic quantum mechanics, a free particle with mass m is described by the
free Schrödinger equation

i~
∂

∂t
Ψ = − ~2

2m
∆Ψ (1.1)

with Planck’s constant ~ and wave function Ψ. This equation neglects small details
such as the spin of particles, which is necessary to explain the magnetic moment of
particles as it was observed in the Stern-Gerlach experiment. A reason for this can
be seen in the fact that the spin observable does not have a classical analogue and is
therefore not taken into account when deriving the Schrödinger equation by applying
substitution rules. In order to include the description of the spin of a particle, it has to
be added retrospectively to non-relativistic quantum mechanics by means of a magnetic
moment operator as it is done in the monograph [54, Chaper 5.2]. Furthermore, due to
the asymmetry of temporal and spatial coordinates, it is obvious that the Schrödinger
equation (1.1) is not invariant under Lorentz transformations. Dirac’s aim was to
generalize equation (1.1) to a relativistic equation, which besides the explanation of
many other phenomena, provides a natural description of the particle spin. In the
following we motivate the Dirac equation, based on Dirac’s approach, as it is done in
[54, Chapter 5.3] or [78, Chapter 1.1]. Firstly, observe that by formally replacing the
numbers E and pk in the classical, non-relativistic energy-momentum relationship of
a free particle

E =
p2

2m
=

1

2m

3∑
k=1

p2
k (1.2)

by the differential expressions i~ ∂
∂t

and −i~ ∂
∂xk

, the free Schrödinger equation (1.1) is
obtained. Following the presentation in [54, Chaper 5.3] we introduce the relativisitic
4-momentum

(pµ) =

(
E

c
, γmv

)
with the rest mass m, the speed of light c, the velocity of the particle v in the cur-

rent inertial reference system and the γ-factor γ =
(

1− v2

c2

)− 1
2
. Using the metric

tensor of special relativity (ηµν), one obtains the Lorentz invariant energy-momentum
relationship of a free particle

pµp
µ = ηµνp

νpµ = m2c2

11



12 1 Introduction

or equivalently
E2 = c2p2 +m2c4 (1.3)

with the relativistic 3-momentum p = γmv. The first attempt in generalizing the
Schrödinger equation (1.1) is to apply substitution rules, as we did above in deriving it
from the energy-momentum relationship (1.2). In particular, we define the 4-gradient
as

(∂µ) =

(
1

c

∂

∂t
,−∇

)
and replace the relativistic 4-momentum (pµ) in the energy-momentum relationship
(1.3) by the differential expression (i~∂µ). This leads to the so-called Klein-Gordon
equation (

∆− 1

c2

∂2

∂t2
− m2c2

~2

)
Ψ = 0,

which is a Lorentz invariant partial differential equation of second order in temporal
and spatial coordinates. Therefore more information about the system has to be
known, since in addition to Ψ(t0, ·) also the initial condition ∂

∂t
Ψ(t0, ·) at a given

time t0 ∈ R has to be specified to solve this wave equation uniquely. Furthermore,
the quantity resulting from the wave function Ψ, which is supposed to describe the
location of the particle, can no longer be interpreted as a probability density, since it
is not positive. Dirac did not believe that taking relativistic effects into account would
lead to such drastic changes in the underlying description of the system. So instead
of replacing the 4-momentum by a differential expression he proposed a linearization
of the relativistic energy equation (1.3) in the following sense.(

E − c
3∑

k=1

αkpk −mc2β

)(
E + c

3∑
k=1

αkpk +mc2β

)
= 0 (1.4)

A comparison of (1.3) and (1.4) shows that the unknown quantities αk and β must be
chosen so that they satisfy the anti-commutation relations

• αkαj + αjαk = 2δkjI4

• αkβ + βαk = 0

• β2 = I

for all k, j ∈ {1, 2, 3}. Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
be the Pauli spin matrices, then we define the Dirac matrices as

αk =

(
0 σk
σk 0

)
and β =

(
I2 0
0 −I2

)
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and a direct calculation shows that these matrices fulfill the upper anti-commutation
relations. For a more detailed discussion of the usage of 4×4 matrices we refer to
the lecture notes [48]. Furthermore, it should be noted that we are using here the
standard representation of the Dirac matrices, which was introduced by Dirac. For
other equivalent representations of these matrices we refer to [78, Appendix 1.A]. Since
E and pk are numbers we have that every solution of

E ± c
3∑

k=1

αkpk ±mc2β = 0 (1.5)

is also a solution of (1.4) and therefore we will restrict ourselves to the case of the
lower sign. This is not a loss of generality, since it can be shown that the resulting
Dirac equation leads to the same physical predictions as if we had chosen the other
sign. Using the usual substitutions E by i~ ∂

∂t
and p by −i~∇ for equation (1.5) one

obtains the free Dirac equation(
i~
∂

∂t
+ ic~

3∑
k=1

αk
∂

∂xk
−mc2β

)
Ψ = 0

whose vector-valued solutions Ψ : R3 → C4 are called Dirac spinors. As shown in
[54, Chaper 5.3.2], the Dirac spinors describe particles with spin 1/2 as, for example,
electrons. By applying the notation α·x =

∑3
k=1 αkxk for a given x ∈ R3, the following

more compact representation of the free Dirac equation is obtained.

i~
∂

∂t
Ψ =

(
−ic~(α · ∇) +mc2β

)
Ψ (1.6)

Next, we define the free Dirac operator as the formal differential expression

A0 = −ic~(α · ∇) +mc2β

and thus obtain for the free Dirac equation (1.6) the representation

i~
∂

∂t
Ψ = A0Ψ (1.7)

for suitable Dirac spinors Ψ.
To define A0 in a mathematically rigorous way it is necessary to choose a Hilbert

space and a suitable subspace on which A0 acts. This choice has a great influence
on the properties of the operator. As it will be shown in Theorem 3.1, A0 is a self-
adjoint operator in the Hilbert space L2(R3;C4) defined on the standard Sobolev space
H1(R3;C4) ⊆ L2(R3;C4) and the spectrum is given by

σ(A0) = (−∞,−mc2] ∪ [mc2,∞).
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This is interesting for two reasons. First, it shows that Planck’s constant ~ can be set
to 1 without loss of generality, since it does not affect the spectrum, and secondly that
the free Dirac operator is not semi-bounded.

From a mathematical point of view the absence of semi-boundedness leads to serious
difficulties, since many analytic tools, such as sesquilinear forms, cannot be applied
to construct self-adjoint extensions of restrictions of A0 and to study their properties.
This is one of the main reasons why many results already shown for Schrödinger
operators are still open problems when Dirac operators are considered.

From a physical point of view there are possible energy states of the system that are
negative and these energies are not bounded from below. Therefore there must be some
mechanism that prevents a particle with positive energy from dropping into lower and
lower negative energy states and releasing an infinite amount of energy in the process.
Dirac’s solution to this problem was to postulate non-measurable particles that occupy
almost all negative energy states. Due to Pauli’s exclusion principle, this prevents
particles with positive energies from dropping into these negative energy states. If a
sufficiently large amount of energy is added to particles with negative energy, they
can be excited to states of positive energy. The states that are now unoccupied in the
negative energy range behave like particles themselves and are called holes. Using a
anti-unitary transformation, called charge conjugation, for a fixed particle charge as
in [78, Chapter 1.4], these holes can be interpreted as particles with opposite charge
and positive energy. This led to the discovery of anti-particles, such as in the case of
the electron, the positron.

Next, the influence of an external potential V on a relativistic quantum particle, will
be investigated. In particular, we consider perturbations of the free Dirac operator of
the form

A = A0 + V (1.8)

with external potential V , which is described by a 4×4 hermitian matrix-valued func-
tion. This function acts like a multiplication operator on Dirac spinors. Since we are
studying relativistic effects, these potentials must be invariant under Lorentz trans-
formations. For a given scalar potential Φ the quantity V = Φβ is Lorentz invariant
as shown in [78, Chapter 4.2]. Similarly, an electromagnetic field described by a scalar
potential Φ and a vector potential F can be represented by the Lorentz-invariant
quantity V = ΦI4 − α · F . This motivates the following formal ansatz for the Dirac
operator of a relativistic quantum particle with spin 1/2 moving in an external field
consisting of a electrostatic potential Φel and a scalar potential Φs

A = A0 + (ΦelI4 + Φsβ) . (1.9)

In [78, Chapter 4.3] the self-adjointness and the essential spectrum of the operators A,
defined as realizations of the expression (1.8), are investigated, but since these results
are not applied in this thesis we skip their presentation and refer to the mentioned
literature.
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Of particular interest are strongly localized fields which only have an effect in a
small neighbourhood of a set Σ ⊆ R3 with measure 0. An example for a field of
this kind is the quark confinement inside a nucleon in form of the MIT bag model
as it is discussed in [66, 75]. To describe these strongly localized fields it is often a
useful simplification to replace them by so-called δ-potentials which are supported on
Σ. Although this is only an idealized model, it reflects the physical behavior of such
a system to a reasonable extend and is solvable. In this context “solvable” generally
means that it is possible to provide a detailed description of the spectral properties
of the underlying operators. In the following we consider a constant electrostatic
potential and a constant Lorentz scalar potential which are both strongly localized in
a neighbourhood of the surface Σ ⊆ R3 and approximated by δ-potentials supported
on Σ. Applying the above formal ansatz (1.9) for the Dirac operator of a relativistic
quantum particle with spin 1/2 moving in these external potential fields, yields the
formal expression

Aη,τ = A0 + (ηI4 + τβ) 〈δΣ, ·〉δΣ (1.10)

with constant interaction strengths η, τ ∈ R. This formal differential expression is the
starting point of this thesis and will be the main object of considerations.

The first task of this thesis is to give rigorous meaning to the formal expression
(1.10). This is done as in [12, 14, 40] by using extension theoretical tools like quasi
boundary triples and encoding the effect of the δ-potentials in form of jump conditions
on the boundary Σ ⊆ R3 of a C2-domain. In this way we are able to construct operators
Aη,τ , which are interpreted as realizations of the formal expression (1.10). As it will
be shown in Section 3.2, Aη,τ are self-adjoint operators in the Hilbert space L2(R3;C4)
for non-critical interaction strengths η2 − τ 2 6= 4c2. This property is necessary to
interpret Aη,τ as a quantum mechanical observable, namely the total energy of the
particle. Furthermore, the operators Aη,τ are explicitly given by

dom(Aη,τ ) =
{
f = f+ ⊕ f− ∈ H1(Ω+;C4)⊕H1(Ω−;C4)

∣∣∣
icα · ν (τ+f+ − τ−f−) +

1

2
(ηI4 + τβ) (τ+f+ + τ−f−) = 0

}
Aη,τf =

(
−ic(α · ∇) +mc2β

)
f+ ⊕

(
−ic(α · ∇) +mc2β

)
f−

where Ω+ ⊆ R3 is a bounded C2-domain with boundary ∂Ω+ = Σ and open com-
plement Ω− = R3 \ Ω+, ν is the outer unit normal vector on Σ and τ± are the trace
operators of the Sobolev spaces H1(Ω±;C4). This will lead to a variant of Krein’s
formula, which relates the resolvent of Aη,τ to the resolvent of the free Dirac operator
A0 and a pertubation term. This perturbation term can be represented by integral
operators in L2(R3;C4) and L2(Σ;C4) and contains all information about the spectral
properties of the operator Aη,τ .

The treatment of critical interaction strengths η, τ ∈ R with η2 − τ 2 = 4c2 is
much more complicated and will not be discussed in this thesis. However, this is not
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a restriction, since critical interaction strengths only occur in a single point c > 0
and are therefore insignificant for the non-relativistic limit c → ∞. For a detailed
discussion of critical interaction strengths, we refer to [14] and [40, Chapter 4.3] for
the three-dimensional case and to [15] for the two-dimensional case.

The second task of this thesis is to determine the non-relativisitc limit of Aη,τ for
c→∞. This establishes a connection between the relativistic and the non-relativistic
description and thereby allows an interpretation of the operators Aη,τ by means of the
well studied non-relativistic counterparts. Intuitively, one would expect that if the lim-
iting velocity c for particles is removed the description of a relativistic quantum particle
by means of the Dirac equation would turn into a description of a non-relativistic
quantum particle by means of the Schrödinger equation. Roughly speaking, we are
able to recover non-relativistic quantum mechanics if we perform the limit c → ∞.
In Sections 4.1 and 4.2 it is shown that this indeed is the case. In particular, if we
consider the kinetic energy term Aη,τ −mc2 and an arbitrary number λ ∈ C \ R, the
norm resolvent convergence

lim
c→∞

(
Aη,τ −

(
λ+mc2

))−1
=

(
(Tη,τ − λ)−1 0

0 0

)
follows with a self-adjoint Schrödinger operator Tη,τ in L2(R3;C2). This self-adjoint
operator Tη,τ can be characterized by certain jump conditions on the surface Σ ⊆ R3

which depend on the interaction strengths η and τ . It will be shown that the behavior
of Tη,τ depends strongly on whether η + τ = 0 or η + τ 6= 0 occurs.

• If η and τ are chosen such that η + τ 6= 0 is valid, then for all f ∈ dom(Tη,τ ) the
jump conditions

τ+f+ = τ−f−

for f and

(η + τ) (τ+f+ + τ−f−) =
1

2m
(∂νf+ − ∂νf−)

for ∂νf follow on Σ. Here ∂νf± denotes the normal derivative of the functions
f± = f � Ω± : Ω± → C2 on Σ with respect to the outer unit normal vector ν.
These interface conditions describe a Schrödinger operator with a δ-interaction
of strength η + τ as discussed for instance in [18]. Therefore, in this case the
non-relativistic limit yields the expected transition of the description by means
of a Dirac operator to a description by means of a Schrödinger operator. Retro-
spectively we thereby get the justification that the imposed jump conditions for
Dirac operators with δ-shell interactions were indeed chosen correctly.
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• If η and τ are chosen such that η+ τ = 0 and initially η− τ = εc2 for some ε ∈ R
are valid, then for all f ∈ dom(Tη,τ ) the jump conditions

τ+ ((σ · ∇)f+) = τ− ((σ · ∇)f−)

for (σ · ∇)f and

i(σ · ν) (τ+f+ − τ−f−) =
ε

2

(
τ+

(
i

2m
(σ · ∇)f+

)
+ τ−

(
i

2m
(σ · ∇)f−

))
for f follow on Σ. Once again we have applied the notation σ · x =

∑3
k=1 σkxk

for a given x ∈ R3 and the Pauli spin matrices σk. These so-called oblique jump
conditions seem to occur frequently in the analysis of Dirac operators and it
is therefore assumed that there is a close relationship between Dirac operators
and Schrödinger operators with oblique jump conditions. See, for instance, [5,
Remark 5] where oblique jump conditions appear in the context of boundary
value problems of Dirac operators in two dimensions.

As surprising as this very different behavior of the non-relativistic limit Tη,τ may seem,
it reflects the following known result for Dirac operators with electrostatic and Lorentz
scalar point interactions in one dimension. If η+τ 6= 0 is valid, then the jump condition
of a function f ∈ dom(Tη,τ ) in Σ = {0} corresponds to a Schrödinger operator with
δ-interaction, whereas in the case η + τ = 0 the jump condition corresponds to a
Schrödinger operator with δ′-interaction. This can be shown using ordinary boundary
triples or with a similar strategy as in [2, Appendix J]. The interesting aspect in three
dimensions is that for η + τ = 0 a different behaviour is observed and, in contrast to
the one-dimensional case, there are no jump conditions which describe δ-interactions
or δ′-interactions but oblique jump conditions.

While the non-relativistic limit of pure electrostatic or pure Lorentz scalar δ-shell
interactions in R3 has been investigated in [10, 12, 40], the general case with arbitrary
constant interaction strengths η, τ ∈ R has not been considered so far, to the best
knowledge of the author. Thus, the aim of this thesis is to make a small contribution
in this field.

To conclude this introduction, we briefly outline the previous research on Dirac op-
erators with δ-interactions. In 1987, Gestezy and Šeba first discussed Dirac operators
with δ-interactions in one dimension in [32] and constructed self-adjoint realizations
of the formal expressions by imposing suitable jump conditions. In addition to an ex-
plicit representation of the resolvent and a characterization of the spectrum, it could
be shown that in the non-relativistic limit there is a convergence in the norm resolvent
sense to a Schrödinger operator with δ-point interaction. An alternative approach to
point interactions was presented in [72, 80] and it was shown that these interactions
can be approximated by a sequence of so-called squeezed potentials with shrinking
support and that this convergence is in the norm resolvent sense. For more recent
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publications on one-dimensional Dirac operators with point interactions, we refer for
instance to [19, 20, 57].

Dirac operators with δ-shell interactions in three dimensions were first studied by
Dittrich, Exner and Šeba in [23]. The authors considered electrostatic and Lorentz
scalar δ-interactions supported on the surface of a sphere. By using spherical harmon-
ics the problem was reduced to a one-dimensional problem and the self-adjointness of
the operators Aη,τ , as well as spectral properties and a representation of the resolvent
could be shown. A first treatment of a more general class of surfaces Σ ⊆ R3 is found
in [6, 7, 8]. For non-critical interaction strengths η, τ ∈ R with η2 − τ 2 6= 4c2, the
self-adjointness of the operators Aη,τ could be shown as well as spectral properties, in
particular of the discrete spectrum, were discussed for the case τ = 0. Furthermore,
it was shown in [51, 52] that δ-shell interactions with η = 0 or τ = 0 can be approx-
imated by squeezed potentials as in the one-dimensional case. However, in general
this convergence is taking place only in the strong resolvent sense. On the basis of
the results in [7], it was shown in [10, 12] that the operators Aη,τ can alternatively be
defined by means of quasi boundary triples and, in addition to an explicit resolvent
formula, an extensive investigation of the spectral properties of the operators Aη,τ
was carried out. Furthermore, the non-relativistic limit for purely electrostatic and
purely Lorentz scalar δ-shell interactions was discussed and a Schrödinger operator
with δ-interaction characterized as the limit operator. The case of critical interaction
strengths η, τ ∈ R with η2− τ 2 = 4c2 was considered in [14, 40] and it was shown that
the properties of the operators Aη,τ differ significantly from those with non-critical
interaction strengths. In particular, there is a reduction of the regularity of the func-
tions in the domain of definition of Aη,τ as well as possible points from the essential
spectrum located in the spectral gap (−mc2,mc2).



2 Definitions and preliminary
results

In this chapter we introduce all necessary definitions, tools and results to define and
study Dirac operators with electrostatic and Lorentz scalar δ-shell interactions in a
mathematical rigorous way.

In Section 2.1 we introduce linear operators and discuss their properties. Next, Sec-
tion 2.2 is devoted to the abstract extension theoretic tool of quasi boundary triples.
This will allow us to characterize Dirac operators with electrostatic and Lorentz scalar
δ-shell interactions Aη,τ as self-adjoint extensions of restrictions of the free Dirac oper-
ator A0 in the Hilbert space L2(R3;C4). Subsequently, an auxiliary result is presented
in Section 2.3, which will allow us to show the self-adjointness of the Schrödinger op-
erator Tη,τ in the non-relativistic limit η + τ = 0 and to characterize its domain of
definition. In order to define the underlying Hilbert space and the domain of definition
of the free Dirac operator and Dirac operators with electrostatic and Lorentz scalar δ-
shell interactions, we will introduce L2-spaces and Sobolev spaces on a domain Ω ⊆ R3

in Section 2.4. Furthermore, L2-spaces and Sobolev spaces on the boundary ∂Ω of a
Lipschitz domain Ω ⊆ R3 are introduced in Section 2.5. This allows us to characterize
boundary values and regularity of functions which are defined on the boundary of the
Lipschitz domain. Finally, in Section 2.6 certain integral operators in L2-spaces are
discussed, which appear in the representation formula of the resolvent of the operators
Aη,τ .

2.1 Linear operators

In this section we introduce unbounded linear operators, their adjoint operators and
spectral properties. All the material is well known and can be found for instance in
the books [45, 69, 81, 83] or in the lecture notes [65]. If a result comes from another
source text, it is referred to at the respective passage. Although it is not the most
general stetting, we assume throughout this entire section that H and G are Hilbert
spaces over C unless stated otherwise.

Let dom(T ) ⊆ H be a subspace of H, then a linear mapping T : dom(T ) → G is
called a linear operator from H to G. The set dom(T ) is called domain of definition
of T or just domain of T if no confusion is possible. Next, we define the kernel of a

19
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linear operator T as

ker(T ) =
{
x ∈ dom(T )

∣∣∣ Tx = 0
}
⊆ H

and the range of T as

ran(T ) =
{
y ∈ G

∣∣∣ ∃x ∈ dom(T ) such that Tx = y
}
⊆ G.

It is obvious that these two sets are subspaces ofH and G, respectively. In the following
we will always assume that T is a linear operator from H to G, unless stated otherwise.

If two linear operators T : dom(T ) → G and S : dom(S) → G are given, we write
S ⊆ T if dom(S) ⊆ dom(T ) and Sx = Tx holds true for all x ∈ dom(S). In this
case S is called a restriction of T and T is called an extension of S and we write
S = T �dom(S).

Definition 2.1. A linear operator T : dom(T )→ G is called bounded, if there exists
a constant C > 0 such that

‖Tx‖G ≤ C‖x‖H
holds true for all x ∈ dom(T ).

The norm of a linear and bounded operator is defined as the minimal C of Definition
2.1 and it can be shown that

‖T‖ = sup

{‖Tx‖G
‖x‖H

∣∣∣ x ∈ dom(T ) \ {0}
}

holds true. We define L(H,G) as the set of all linear and bounded operators T from
H to G with dom(T ) = H and it is well known that L(H,G) equipped with the
above operator norm is a Banach space. In the special case of H = G we simply
write L(H) = L(H,H) and observe that this space is even a unital Banach algebra.
Furthermore, we define the dual space of H as H∗ = L(H,C) and call its elements
linear and bounded functionals.

Definition 2.2. A linear operator T : H → G is called compact if the image of every
bounded set in H is relatively compact in G. In other words, for every bounded set
B ⊆ H, the closure of T (B) ⊆ G is compact in G.

As in the case of bounded operators we define K(H,G) as the set of all linear and
compact operators T from H to G. It can be shown that every compact operator is
bounded and therefore K(H,G) is a subset of L(H,G). In the special case of H = G,
we simply write K(H) = K(H,H) and it can be shown that K(H) is a closed, two-sided
ideal in L(H).

The next result, also known as Fredholm’s alternative, is formulated here in such a
way that it is best suited for the considerations in the following chapters. In particular,
we will use Theorem 2.3 to investigate certain types of integral operators that appear
in the resolvent representation of Dirac operators with electrostatic and Lorentz scalar
δ-shell interactions.
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Theorem 2.3. Let H be a Hilbert space, T ∈ K(H) be a compact operator and
λ ∈ C \ {0} an arbitrary number, then exactly one of the following statements is true.

i) The homogeneous problem Tx − λx = 0 has only the trivial solution x = 0. In
this case there exists for all y ∈ H a unique solution x ∈ H of the inhomogeneous
problem Tx− λx = y.

ii) There are 1 ≤ n = dim (ker(T − λ)) < ∞ linearly independent solutions of the
homogeneous problem Tx− λx = 0.

Since many important linear operators such as differential operators are not bounded,
we have to consider a more general class of linear operators called closed operators.
Although these operators are not bounded, they have properties similar to those of
bounded operators but are still broad enough to cover most linear operators found in
practice. Let T : dom(T ) → G be a linear operator from H to G, then we define the
graph of T as the set

G(T ) =
{

(x, Tx)
∣∣∣ x ∈ dom(T )

}
⊆ H×G.

Due to the linearity of the underlying operator, the graph is a linear subspace of H×G
and it contains all the information about the operator.

Definition 2.4. A linear operator T : dom(T )→ G is called closed, if the graph G(T )
of T is a closed subspace of H×G with respect to the product norm ‖·‖H×G defined by

‖(x, y)‖H×G =
√
‖x‖2

H + ‖y‖2
G for all (x, y) ∈ H × G.

At this point, it should be noted that for given norms on H and G, other norms
may be defined on the product space. However, since we are working with Hilbert
spaces whose norms are induced by inner products, this choice is advantageous. The
next result characterizes closed operators in a way which is usually more convenient
to work with.

Theorem 2.5. Let T : dom(T ) → G be a linear operator, then the following state-
ments are equivalent.

i) T is closed

ii) For every sequence (xn)n∈N ⊆ dom(T ) with xn → x in H and Txn → y in G, it
follows that x ∈ dom(T ) and Tx = y holds true.

iii) The space (dom(T ), ‖·‖T ) equipped with the graph norm ‖x‖T =
√
‖x‖2

H + ‖Tx‖2
G

for every x ∈ dom(T ) is complete and therefore a Hilbert space.

Using Theorem 2.5, it follows immediately that every linear and bounded operator
T ∈ L(H,G) is closed, but as shown in [83, Page 347 - Bsp a)], not every closed
operator is bounded on its domain of definition. The next result, which contains the
so-called closed graph theorem, shows the connection of bounded and closed linear
operators.
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Theorem 2.6. Let T : dom(T ) → G be a linear operator, then two of the following
properties imply the third.

i) T is closed.

ii) dom(T ) is closed in H.

iii) T is bounded on dom(T ).

This result allows us to deduce the boundedness of the inverse operator as follows.
Let T : dom(T ) → G be a linear, closed and bijective operator, then it is easy to see
that the inverse operator T−1 : G → dom(T ) is closed as well. Since dom(T−1) = G is
a Banach space, the boundedness of T−1 follows from Theorem 2.6. This will be used
in Theorem 2.8 and in the considerations regarding the spectral properties of closed
operators.

If a not necessarily closed operator is given, then it is in many cases important to
know if closed extensions exist. This leads us to the concept of closable operators.

Definition 2.7. A linear operator T : dom(T ) → G is called closable if the closure
of G(T ) in H×G with respect to the product norm ‖·‖H×G is the graph of a linear
operator. This unique operator is the smallest closed extension of T with respect to
the inclusion of linear operators and is denoted T .

If T a closable opterator then it follows immediately from Definition 2.7 that the
closure T is explicitly given by

dom(T ) =
{
x ∈ H

∣∣∣ ∃(xn)n∈N ⊆ dom(T ), y ∈ G such that xn → x and Txn → y
}

Tx = y.

In particular, every bounded operator is closable and dom
(
T
)

= dom(T ) is valid.
To conclude the considerations of closed operators we formulate a result which shows

that the invertibility of a linear, closed and bijective operator is stable under small
perturbations. The proof can be found for instance in [46, Thm. 1.16]. Theorem 2.8
will be of particular importance in the next chapter, since in the process of studying
the non-relativisitc limit of Dirac operators with electrostatic and Lorentz scalar δ-
shell interactions we will have to deduce the existence of the inverse of a sum of two
linear operators. Before formulating the result recall the consideration above which
showed that the inverse operator of a linear, closed and bijective operator is always
bounded.
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Theorem 2.8. Let T : dom(T ) → G be a linear, closed and bijective operator with
inverse T−1 ∈ L(G,H) and let A : dom(A) → G be a given linear operator such
that dom(T ) ⊆ dom(A) holds true. Furthermore, assume that there exist constants
a, b ≥ 0 such that ‖Ax‖G ≤ a‖x‖H + b‖Tx‖G is valid for all x ∈ dom(T ) and that a
and b satisfy the inequality a‖T−1‖+ b < 1. Then S = A+T is a linear and invertible
operator with S−1 ∈ L(G,H) and the estimate∥∥S−1 − T−1

∥∥ ≤ ‖T−1‖ (a‖T−1‖+ b)

1− a‖T−1‖ − b
.

holds true. If A is a bounded operator with ‖A‖‖T−1‖ < 1 one can choose a = ‖A‖
and b = 0.

Next, we consider adjoint operators which can be regarded as a generalization of
the concept of the conjugate transpose of a complex matrix.

Definition 2.9. Let T : dom(T ) → G be a linear and densely defined operator from
H to G. Then the uniquely defined linear operator

dom(T ∗) =
{
y ∈ G

∣∣∣ ∃y∗ ∈ H such that (y∗, x)H = (y, Tx)G ∀x ∈ dom(T )
}
⊆ G

T ∗y = y∗

is called the adjoint operator of T or just the adjoint of T if no confusion is possible.

Note that the density of dom(T ) ⊆ H in H is necessary to obtain a unique element
y∗ ∈ H and consequently a well-defined and unique operator T ∗. The next theorem is
a collection of well known results concerning the adjoint operator which will be useful
in the following chapters when dealing with Dirac operators.

Theorem 2.10. Let T : dom(T ) → G be a linear and densely defined operator and
F be a given Hilbert space, then the following statements are true.

i) T ∗ : dom(T ∗)→ H is a closed operator.

ii) T is bounded on dom(T ) if and only if T ∗ ∈ L(G,H) and in this case ‖T‖ = ‖T ∗‖
holds true.

iii) dom(T ∗) is dense in G if and only if T is closeable and in this case T = T ∗∗ holds
true. Furthermore, if T is bounded, then T ∗∗ is the unique bounded extension of
T to H.

iv) If T is a closable operator, then T
∗

= T ∗ holds true.

v) Let S : dom(S)→ G be a linear and densely defined operator from H to G, then
it follows from S ⊆ T that T ∗ ⊆ S∗ holds true.

vi) Let S ∈ L(G,F) be a given linear and bounded operator, then (ST )∗ = T ∗S∗

holds true.
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vii) Let S ∈ L(H,G) be a given linear and bounded operator, then (S + T )∗ = S∗+T ∗

holds true.

With the definition of the adjoint operator we are now able to define the important
concepts of symmetric and self-adjoint operators. For the latter, a rich spectral theory
can be developed and they are central quantities in the mathematical formulation of
quantum mechanics.

Definition 2.11. A linear and densely defined operator T : dom(T ) → H in H is
called symmetric if T ⊆ T ∗ holds true. A symmetric operator is called self-adjoint
if even T = T ∗ applies. Furthermore, a symmetric operator is called essentially self-
adjoint if the closure T is self-adjoint.

To obtain a self-adjoint operator by modifying the domain of definition of a sym-
metric operator, the crucial step is to choose the “correct” domain of definition. This
choice will be of great importance in the next chapter, as we want to define Dirac
operators with electrostatic and Lorentz scalar δ-shell interactions as self-adjoint ex-
tensions of certain symmetric operators. The next theorem allows us to characterize
self-adjoint operators in a very convenient way.

Theorem 2.12. Let T : dom(T ) → H be a linear, densely defined and symmetric
operator and λ ∈ C \R be a given complex number, then the following statements are
equivalent.

i) T is self-adjoint.

ii) T is closed and ker(T ∗ + λ) = ker(T ∗ + λ) = {0}.
iii) ran(T − λ) = H = ran(T − λ).

It shall be noted that a careful inspection of Theorem 2.12 shows that T is self-
adjoint if and only if ii) or iii) is valid for one λ0 ∈ C \R and hence for all λ ∈ C \R.

Finally, we discuss the spectral theory of closed operators in Hilbert spaces. At
this point it is noteworthy to remark, that without loss of generality we can restrict
ourselves to closed operators, since the resolvent set of an non-closed operator is always
empty as shown in [81, Bemerkung 5.1]. First, we introduce the resolvent set and the
spectrum of a linear and closed operator.

Definition 2.13. Let T : dom(T ) → H be a linear, densely defined and closed
operator.

i) The resolvent set of T is defined as the set of all λ ∈ C such that the operator
T − λ is bijective

ρ(T ) =
{
λ ∈ C

∣∣∣ T − λ : dom(T )→ H is bijective
}
.

ii) The spectrum of T is defined as σ(T ) = C \ ρ(T ).
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An application of the consideration following Theorem 2.6 shows that the resolvent
R(λ) = (T − λ)−1 is a linear and bounded operator in H for all λ ∈ ρ(T ). Sometimes
a more detailed investigation of the spectrum may be necessary and therefore we
decompose it further into several parts. To avoid technical details that would require a
distinction between algebraic and geometric multiplicity of an eigenvalue, we formulate
items ii) and iii) only for self-adjoint operators. For a detailed presentation in the case
of not necessarily self-adjoint operators, we refer to [38, Chapter 6].

Definition 2.14. Let T : dom(T ) → X be a linear, densely defined and closed
operator.

i) The point spectrum of T is defined as the set of all eigenvalues

σp(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) 6= {0}
}
.

The elements of the eigenspace ker(T − λ) are called eigenvectors of T to the
eigenvalue λ.

ii) The discrete spectrum of a self-adjoint operator T is defined as the set of all
isolated eigenvalues for which the eigenspace is finite dimensional

σdisc(T ) =
{
λ ∈ σp(T )

∣∣∣ λ is isolated in σ(T ) and dim(ker(T − λ)) <∞
}
.

iii) The essential spectrum of a self-adjoint operator T is defined as the set
σess(T ) = σ(T ) \ σdisc(T ).

The last theorem of this section is a collection of well known results concerning the
resolvent set and the spectrum of a linear and closed operator which will be useful in
the following chapters when dealing with Dirac operators.

Theorem 2.15. Let T : dom(T )→ H be a linear, closed and densely defined operator,
then the following statements are true.

i) If T is a symmetric operator, then σp(T ) ⊆ R holds true.

ii) If T is a self-adjoint operator, then σ(T ) ⊆ R and C \ R ⊆ ρ(T ) hold true.
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2.2 Quasi boundary triples

In this section we introduce the concept of quasi boundary triples, which is a powerful
tool in the extension and spectral theory of symmetric operators. The following results
for quasi boundary triples can be found in [16, 17, 18, 40]. If a result comes from
another source text, it is referred to at the respective passage.

As in our case it is in general relatively easy to construct a symmetric operator from
a formal differential expression by specifying a suitable domain of definition. If this
operator is not self-adjoint, the question arises whether self-adjoint extensions exist
and how they can be characterized.

To formulate our considerations in a more precise way we will always assume in
the following that H is a Hilbert space and S : dom(S) ⊆ H → H is a linear,
densely defined, closed and symmetric operator in H. From Theorem 2.10 it follows
that a linear operator A is a self-adjoint extension of S if and only if A is a self-
adjoint restriction of S∗. In particular, A is completely characterized by its domain of
definition dom(A) ⊆ dom(S∗) and the relation A = S∗ �dom(A). Thus, the problem
of finding self-adjoint extensions of S is equivalent to specifying their domains of
definition. For this purpose quasi boundary triples can be used.

Definition 2.16. Let T : dom(T ) ⊆ H → H be a linear operator in H with T = S∗.
A triple {G,Γ0,Γ1} is called quasi boundary triple for the adjoint operator S∗, if G is a
Hilbert space and the linear operators Γ0,Γ1 : dom(T ) ⊆ H → G satisfy the following
conditions.

i) The abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G (2.1)

is valid for all f, g ∈ dom(T ).

ii) The range of the mapping Γ = (Γ0,Γ1)> : dom(T )→ G×G is dense in G×G.

iii) The operator A0 = T �ker(Γ0) is self-adjoint in H.

Usually quasi boundary triples appear in the context of boundary value problems
and therefore the linear operators Γ0 and Γ1 are often referred to as abstract bound-
ary maps. As it is stated in [17, Section 1.3] quasi boundary triples exist if and
only if S admits self-adjoint extensions. This is equivalent to both defect indices
n±(S) = dim(ker(S∗ ± i)) being equal and in this case dim(G) = n±(S) applies.

Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ then the restriction
A0 = T � ker(Γ0) of T is by definition a self-adjoint operator in H and the direct
sum decomposition

dom(T ) = dom(A0)u ker(T − λ) = ker(Γ0)u ker(T − λ)

is valid for all λ ∈ ρ(A0). A proof of this decomposition can be found for instance in
[9, Lem. 4.7]. This implies that Γ0 � ker(T − λ) is an injective linear operator from
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H to G for all λ ∈ ρ(A0) and hence the following operator-valued functions associated
with the quasi boundary triple {G,Γ0,Γ1} are well-defined.

Definition 2.17. Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗.

i) The γ-field is defined by the values γ(λ) = (Γ0 �ker(T − λ))−1 for all λ ∈ ρ(A0).

ii) The Weyl function is defined by the valuesM(λ) = Γ1γ(λ) = Γ1 (Γ0 �ker(T − λ))−1

for all λ ∈ ρ(A0).

These operator-valued functions will be of great importance in the construction and
investigation of certain self-adjoint extensions of the symmetric operator S. The next
theorem is is a collection of useful properties concerning the γ-field and the Weyl
function. The proofs of these statements can be found for instance in [17, Prop. 1.13
, Prop. 1.14].

Theorem 2.18. Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ and
A0 = T �ker(Γ0), then the following statements are true for all λ, µ ∈ ρ(A0).

i) The values of the γ-field γ(λ) : dom(γ(λ)) → H are linear, densly defined and
bounded operators from G to H with dom(γ(λ)) = ran(Γ0) and
ran(γ(λ)) = ker(T − λ).

ii) For the adjoint operators, one has γ(λ)∗ ∈ L(H,G) and the explicit representation

γ(λ)∗ = Γ1

(
A0 − λ

)−1
is valid. In particular, ran(γ(λ)∗) ⊆ ran(Γ1) follows.

iii) The values of the Weyl function M(λ) : dom(M(λ))→ G are linear and densely
defined operators in G with dom(M(λ)) = ran(Γ0) and ran(M(λ)) ⊆ ran(Γ1).

iv) On dom(M(λ))
M(λ)−M(µ)∗ = (λ− µ)γ(µ)∗γ(λ)

holds true. This implies that M(λ) ⊆ M(λ)∗ is valid. In particular, M(λ) is
symmetric if λ ∈ ρ(A0) ∩ R.

Next, we draw our attention to the problem of finding self-adjoint extensions of the
symmetric operator S. In its most general form, these considerations require the
concept of linear relations as it is discussed for instance in [13] and [69]. However,
since we are not going to work with linear relations in this thesis, we leave out their
introduction and refer to the mentioned literature for a detailed presentation. For our
purposes it will prove to be sufficient to consider the following situation.

Let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗ and B ∈ L(G) be a linear and
bounded operator in G, then we define a linear operator in H by

AB = T �ker(BΓ1 + Γ0) (2.2)

as a restriction of the operator T . An application of the abstract Green’s identity (2.1)
and [16, Prop. 2.2] shows that in this case a symmetric operator B induces a symmetric
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extension AB of S. In contrast to ordinary boundary triples, a self-adjoint operator
B generally does not lead to a self-adjoint extension AB of S. This is discussed for
instance in [16, Prop. 4.11] for the case of linear relations.

The next theorem allows us to characterize the symmetric extensions AB of S in-
duced by self-adjoint operators B ∈ L(G) according to (2.2) and to study their spec-
trum. Furthermore, it provides a variant of Krein’s formula which enables us to rep-
resent the resolvents of the operators AB in an explicit way. A proof of this result can
be found for instance in [16, Thm. 2.8] or [17, Thm. 1.16]. The theorems in the pre-
viously mentioned sources are reduced to Theorem 2.19 in the case of linear operators
B as it is stated in [18, Thm. 2.8] and [40, Thm. 2.2.6]. This result will be of par-
ticular importance in the treatment of Dirac operators with electrostatic and Lorentz
scalar δ-shell interactions, since it allows us to obtain an explicit representation of the
resolvent.

Theorem 2.19. Let S : dom(S) ⊆ H → H be a linear, densely defined, closed and
symmetric operator in H and let {G,Γ0,Γ1} be a quasi boundary triple for T = S∗.
Furthermore, let A0 = T � ker(Γ0) be the self-adjoint extension of S according to
Definition 2.16, B ∈ L(G) be a linear, bounded and self-adjoint operator in G and AB
be the symmetric extension of S according to (2.2). Then the following statements
are true for all λ ∈ ρ(A0).

i) λ ∈ σp(AB) if and only if 0 ∈ σp(I +BM(λ)) and in this case

ker(AB − λ) =
{
γ(λ)f

∣∣∣ f ∈ ker(I +BM(λ))
}

is valid.

ii) If λ /∈ σp(AB) is valid and f ∈ H is given, then one has f ∈ ran(AB − λ) if and
only if Bγ(λ)∗f ∈ ran(I +BM(λ)).

iii) If λ /∈ σp(AB) is valid, then

(AB − λ)−1 f = (A0 − λ)−1 f − γ(λ) (I +BM(λ))−1Bγ(λ)∗f (2.3)

follows for all f ∈ ran(AB − λ).

iv) If λ ∈ ρ(A0)∩ ρ(AB) is valid, then Krein’s formula (2.3) holds true for all f ∈ H.

We conclude this section with the following observation which follows from Theorem
2.19. As mentioned above, an operator B which is self-adjoint in G yields a symmetric
extension AB of S in H. Due to Theorem 2.12 and Theorem 2.19 ii) it follows for a
given λ ∈ ρ(A0) with λ /∈ σp(AB) that AB is even self-adjoint if we can show that
Bγ(λ)∗f ∈ ran(I+BM(λ)) holds true for every f ∈ H. This is equivalent to the range
condition ran(Bγ(λ)∗) ⊆ ran(I + BM(λ)). In the next section we will use this line
of reasoning to show the self-adjointness of Dirac operators electrostatic and Lorentz
scalar δ-shell interactions.
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2.3 A Krein-like formula

This section deals with the characterization of a self-adjoint operator based on an
explicit representation of its resolvent. A situation like this will arise in the next
chapter when examining the non-relativistic limit of a Dirac operator with electrostatic
and Lorentz scalar δ-shell interactions in the case η + τ = 0. In particular, with the
result of this section we will be able to identify the limit operator as a Schrödinger
operator with oblique jump conditions. Theorem 2.20 can be found in [59] and is
formulated here in such a way that it is most convenient to apply for our purposes.
For this reason, the notation in this section is based on the one of [59].

Let A : dom(A) ⊆ H → H be a self-adjoint operator in the Hilbert space H, then
we equip dom(A) with the graph norm

‖x‖2
A = ‖u‖2

H + ‖Ax‖2
H

for all x ∈ dom(A) and thereby obtain a Banach space due to Theorem 2.5. An
application of Theorem 2.6 now shows that the resolvent

R(z) = (A− z)−1 : H → dom(A)

is a linear and bounded operator from (H, ‖·‖H) to (dom(A), ‖·‖A) for all z ∈ ρ(A).
Next we assume that another Hilbert space G and a linear and bounded operator
τ : dom(A)→ G are given. Here, the boundedness of τ is understood with respect to
the graph norm on dom(A). As in our case, A typically corresponds to a differential
operator and τ to some trace operator which assigns boundary values to functions in
the considered function space.

Our objective now is to explicitly construct a family of self-adjoint operators AτΘ
which is parameterized by some quantity Θ and coincides with A on ker(τ). If ker(τ) is
dense in H then H\ker(τ) can be regarded as a “thin” set and in this case we interpret
the operators AτΘ as singular perturbations of the operator A. For each z ∈ ρ(A),
Theorem 2.10 and Theorem 2.15 enable us to define the following linear and bounded
operators.

Ǧ(z) = τR(z) : H → G and Ĝ(z) = Ǧ(z)∗ : G → H

Next we assume that there exists a family of linear, closed and densely defined oper-
ators Γ(z) : D ⊆ G → G which are parameterized by z ∈ ρ(A). It is noteworthy to
remark that with this assumption we implicitly demand that the domain of definition
D of each Γ(z) is independent of z ∈ ρ(A). Furthermore, all operators Γ(z) should
satisfy the following conditions.

• Γ(z)− Γ(w) = (z − w)Ǧ(w)Ĝ(z) on D for all z, w ∈ ρ(A).

• Γ(z) ⊆ Γ(z)∗ for all z ∈ ρ(A).
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Let Θ : dom(Θ) ⊆ G → G be a linear, densely defined and symmetric operator in G,
then we define a family of linear operators in G by

ΓΘ(z) = Θ + Γ(z) : dom(Θ) ∩D ⊆ G → G (2.4)

for any z ∈ ρ(A). Next we define the set of all z ∈ ρ(A) such that ΓΘ(z) and ΓΘ(z)
are bijective and the inverse operators are bounded

ZΘ =
{
z ∈ ρ(A)

∣∣∣ ∃ΓΘ(z)−1,ΓΘ(z)−1 ∈ L(G)
}
. (2.5)

An application of [59, Rem. 2.9], yields the main result of this section whose proof
can be found in [59, Thm. 2.1].

Theorem 2.20. Let ΓΘ be defined as in (2.4) and ZΘ according to (2.5). Furthermore
it is assumed that ZΘ 6= ∅ is valid and that ker(τ) is dense in H. Then, the linear and
bounded operator

Rτ
Θ(z) = R(z)− Ĝ(z)ΓΘ(z)−1Ǧ(z) : H → H

for z ∈ ZΘ is the resolvent of a self-adjoint operator AτΘ in H. This operator AτΘ
coincides with A on ker(τ) and can be explicitly represented in the following way

dom(AτΘ) = ran(Rτ
Θ(z))

=
{
x ∈ H

∣∣∣ ∃xz ∈ dom(A) such that x = xz − Ĝ(z)ΓΘ(z)−1τxz

}
(AτΘ − z)x = (A− z)xz.

Furthermore, the definition of AτΘ is independent of z ∈ ZΘ and the decomposition of
x ∈ dom(AτΘ) in the representation of the domain of definition dom(AτΘ) is unique.

2.4 Sobolev spaces on a domain

In the context of partial differential equations one is naturally drawn to differentiable
functions. But it turns out that differentiable functions are not well suited for deal-
ing with partial differential equations and boundary value problems. For instance to
formulate these problems in an appropriate way and to show existence and unique-
ness results. In this section we introduce the important concept of Sobolev spaces
which generalize differentiable functions in the sense of distributions and which allow
a comprehensive treatment of boundary value problems. These function spaces will
be the main objects for rigorously defining the formal differential expressions of Dirac
operators of chapter 1 by specifying their domain of definition and thereby obtaining
self-adjoint realizations. All the material of this section is well known and can for
instance be found in the books [22, 24, 53, 77, 84] or the lecture notes [9, 58]. If a
result comes from another source text, it is referred to at the respective passage.
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In the following we assume that Ω ⊆ Rn is an open subset of Rn. We define the space
of equivalence classes of complex-valued and p-integrable functions as Lp(Ω;C). Ac-
cording to Fischer-Riesz’s theorem this space is a Banach space for every
1 ≤ p ≤ ∞. Furthermore, we define the space of locally p-integrable functions
Lploc(Ω;C) as the set of equivalence classes of complex-valued functions f : Ω → C
such that f �K ∈ Lp(K;C) holds true for all compact subsets K ⊆ Ω. Of particular
importance in this thesis will be the special case of p = 2. We equip the space L2(Ω;C)
with the inner product

(u, v)L2(Ω;C) =

∫
Ω

u(x)v(x)dx

for all u, v ∈ L2(Ω;C) and thereby obtain a Hilbert space.
Next, we introduce spaces of differentiable functions. Let α = (α1, . . . , αn) ∈ Nn

0

be a given multi-index, then we define the α-th derivative of a sufficiently smooth
function f : Ω→ C in x ∈ Ω as

∂αf(x) =
∂α1

∂xα1
1

· · · ∂
αn

∂xαnn
f(x)

and |α| = α1 + · · ·+ αn as the order of this derivative. In the special case that α = ej
applies we generally use the notation ∂ejf = ∂jf for the partial derivative with respect
to the variable xj as it is common in vector calculus. For a given k ∈ N0, we define
the set of functions that are k-times continuously differentiable on Ω as

Ck(Ω;C) =
{
f : Ω→ C

∣∣∣ ∂αf exists and is continuous for every |α| ≤ k
}

and the set of the infinitely often differentiable functions as

C∞(Ω;C) =
⋂
k∈N0

Ck(Ω;C).

The support of a function f : Ω→ C is the set

supp(f) =
{
x ∈ Ω

∣∣∣ f(x) 6= 0
}

and we define the set of test functions as the set of infinitely often differentiable
functions whose support is compact in Ω

D(Ω;C) =
{
f ∈ C∞(Ω;C)

∣∣∣ supp(f) is compact in Ω
}
.

With the usual definitions of addition and scalar multiplication of functions it can
easily be shown that sets Ck(Ω;C), C∞(Ω;C) and D(Ω;C) are vector spaces. Due to
technical reasons, we define an additional function space by

C∞(Ω;C) =
{
ψ �Ω

∣∣∣ ψ ∈ D(Rn;C)
}
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as restrictions of test functions to the open set Ω ⊆ Rn.
As a generalization of differentiable functions we follow Schwartz’s approach and

construct distributions as linear and continuous functionals defined on the space of test
functions. For this purpose, a notion of convergence in D(Ω;C) has to be introduced.

Definition 2.21. Let (ϕm)m∈N ⊆ D(Ω;C) be a sequence of test functions and
ϕ ∈ D(Ω;C) be given. We call (ϕm)m∈N convergent to ϕ in D(Ω;C) if the follow-
ing conditions are met.

i) There exists a compact subset K ⊆ Ω such that supp(ϕ) ⊆ K and supp(ϕm) ⊆ K
is valid for all m ∈ N.

ii) For every multi-index α ∈ Nn
0 , ∂αϕm converges uniformly to ∂αϕ on K.

In this case we write ϕm → ϕ in D(Ω;C).

Before we define distributions, we introduce a commonly used notation. Let
T : D(Ω;C)→ C be a linear mapping defined on D(Ω;C), then we write

〈T, ϕ〉 = T (ϕ)

for the application of T to a test function ϕ ∈ D(Ω;C).

Definition 2.22. A linear functional T : D(Ω;C) → C is called a distribution if it
is sequentially continuous in the sense of Definition 2.21. In other words, for every
sequence (ϕm)m∈N ⊆ D(Ω;C) and ϕ ∈ D(Ω;C) with ϕm → ϕ in D(Ω;C) it follows
that 〈T, ϕm〉 → 〈T, ϕ〉 in C holds true.

With the usual definitions of addition and scalar multiplication it can easily be
shown that set of distributions is a vector space. This space is denoted by D′(Ω;C)
since it is the dual space of D(Ω;C) with respect to the topology induced by the notion
of convergence of Definition 2.21.

Next, we address the question if sufficiently regular functions can be regarded as
distributions. It is easy to see that for a given function f ∈ L1

loc(Ω;C) the assignment

〈Tf , ϕ〉 =

∫
Ω

f(x)ϕ(x)dx (2.6)

for ϕ ∈ D(Ω;C) defines a distribution. Furthermore, with the fundamental lemma
of calculus of variations it can be shown that the function f ∈ L1

loc(Ω;C) which
characterizes T = Tf is unique and therefore the assignment f 7→ Tf according to
(2.6) corresponds to an embedding of L1

loc(Ω;C) in D′(Ω;C). Every distribution T for
which an f ∈ L1

loc(Ω;C) exists such that T = Tf is valid is called a regular distribution.
In this case we identify T with f and using a slight abuse of notation we simply write
T ∈ L1

loc(Ω;C) and 〈T, ·〉 = 〈f, ·〉. Similarly we write T ∈ L2(Ω;C) if f is even a
L2-function.
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Let α ∈ Nn
0 be a given multi-index, then we define the α-th derivative of a distribu-

tion T by the assignment

〈∂αT , ϕ〉 = (−1)|α|〈T, ∂αϕ〉

for any test function ϕ ∈ D(Ω;C). It can easily be shown that ∂αT defines a distribu-
tion for all multi-indices α ∈ Nn

0 and we therefore have ∂αT ∈ D′(Ω;C). In particular
this shows that every distribution is infinitely often differentiable in the above sense.

Next we consider the special case that the α-th derivative ∂αTf of a regular distri-
bution Tf induced by the function f ∈ L1

loc(Ω;C) is itself a regular distribution. This
implies that there exists a g ∈ L1

loc(Ω;C) such that ∂αTf = Tg holds true. In this case
we call g the weak derivative of f and we write g = ∂αf in analogy to the classical
derivative for the weak derivative as well. In the entire following thesis we will always
assume that ∂αf represents the weak derivative, unless stated otherwise.

After this preparation we are now able to introduce the important concept of Sobolev
spaces on an open set Ω ⊆ Rn as subspaces of D′(Ω;C). Although it is not the most
general setting, we define these function spaces only for the case p = 2 as a set of
L2-functions whose distributional derivatives are L2-functions as well. For a detailed
presentation of Sobolev spaces in the case 1 ≤ p ≤ ∞, we refer to the literature
mentioned in the introduction of this section.

Definition 2.23. Let Ω ⊆ Rn be an open set and k ∈ N0 be a given integer, then the
Sobolev space of order k on Ω is defined as

Hk(Ω;C) =
{
f ∈ L2(Ω;C)

∣∣∣ ∂αf exists for all |α| ≤ k and ∂αf ∈ L2(Ω;C)
}
.

Furthermore, we equip the space Hk(Ω;C) with the inner product

(u, v)Hk(Ω;C) =
∑
|α|≤k

(∂αu, ∂αv)L2(Ω;C)

for u, v ∈ Hk(Ω;C).

Since the distributional derivative and thus the weak derivative is a linear oper-
ation, it follows that the Sobolev space Hk(Ω;C) is indeed a subspace of D′(Ω;C).
Furthermore, it can be shown that Sobolev spaces are Hilbert spaces for all k ∈ N0.

In many cases it is not sufficient to consider only integer order Sobolev spaces as
for instance the weak formulation of a boundary value problem shows. This leads to
the so-called Sobolev-Slobodeckij spaces Hs(Ω;C) which fill the “gaps” between the
integer order Sobolev spaces and allow us to measure the regularity of a function on a
continuous scale by introducing a suitable semi-norm.
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Definition 2.24. Let k ∈ N0 be a given integer and σ ∈ (0, 1) be a real number, then
the Sobolev space of order s = k + σ is defined as

Hs(Ω;C) =
{
f ∈ Hk(Ω;C)

∣∣∣ |∂αf |Hσ(Ω;C) <∞ for all |α| = k
}

with semi-norm

|f |Hσ(Ω;C) =

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|n+2σ dxdy

 1
2

.

Furthermore, we equip the space Hs(Ω;C) with the inner product

(u, v)Hs(Ω;C) = (u, v)Hk(Ω;C) +
∑
|α|=k

∫
Ω

∫
Ω

(∂αu(x)− ∂αu(y))(∂αv(x)− ∂αv(y))

|x− y|n+2σ dxdy

for u, v ∈ Hs(Ω;C).

It can be easily shown that the Sobolev-Slobodeckij spaces Hs(Ω;C), such as the
integer order Sobolev spaces, are subspaces ofD′(Ω;C). Furthermore, also the Sobolev-
Slobodeckij spaces are Hilbert spaces for all s ≥ 0.

In order to simplify the presentation and to avoid distinguishing between the cases
s ∈ N0 and s /∈ N0, we will from now on use Definition 2.23 in the case of s ∈ N0 and
otherwise Definition 2.24 whenever the space Hs(Ω;C) is mentioned. In addition, we
will also refer to the Sobolev-Slobodeckij spaces in the following as Sobolev spaces.

Next we introduce an important subspace of Hs(Ω;C), namely the space

Hs
0(Ω;C) = D(Ω;C)

‖·‖Hs(Ω;C)

which is by definition closed in the Hilbert space Hs(Ω;C) and thus a Hilbert space
itself. In general only Hs

0(Ω;C) $ Hs(Ω;C) is valid, which can be easily shown
for instance for bounded domains with the help of constant functions. However, an
important situation arises in the case of Ω = Rn for which Hs

0(Rn;C) = Hs(Rn;C)
applies.

At this point it should be noted that in literature the Sobolev-Slobodeckij spaces
for p = 2 are usually denoted by W s,2(Ω;C), while Hs(Ω;C) is used for the so-called
Bessel potential spaces, which provide an alternative approach to real order Sobolev
spaces. In the following chapters, Ω ⊆ Rn will always be at least a Lipschitz domain,
and it can be shown in this case that these two function spaces coincide. The same
applies to Ω = Rn. Therefore our labeling is justified. For a more detailed presentation
of the Bessel potential spaces and their relationship to the Sobolev-Slobodeckij spaces,
we refer to [53, Chapter 3] and [84, Chapter 5].

Finally, we consider vector-valued functions, since they appear in the context of
Dirac spinors. The extension of Sobolev spaces to the vector-valued case is done in



2.5 Sobolev spaces on the boundary 35

a straightforward manner by forming the product space of all the occurring function
spaces and applying the results of this section component-wise. First, we construct for
m ∈ N the space L2(Ω;Cm) = L2(Ω;C)m consisting of equivalence classes of functions
f = (f1, . . . , fm) : Ω→ Cm whose components fk are in L2(Ω;C). Using the standard
Euclidean inner product in Cm, we define an inner product on L2(Ω;Cm) by

(u, v)L2(Ω;Cm) =
m∑
k=1

(uk, vk)L2(Ω;C) =

∫
Ω

u(x) · v(x)dx

for u = (u1, . . . , um), v = (v1, . . . , vm) ∈ L2(Ω;Cm) and thereby turning L2(Ω;Cm) into
a Hilbert space. In a similar manner, we define the Sobolev space of order s ≥ 0 as the
set of all equivalence classes of functions f = (f1, . . . , fm) : Ω→ Cm with components
fk ∈ Hs(Ω;C). An inner product on Hs(Ω;Cm) is defined by the assignment

(u, v)Hs(Ω;Cm) =
m∑
k=1

(uk, vk)Hs(Ω;C)

for u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Hs(Ω;Cm) and it can now be shown that all
the results of this section remain valid also in the vector-valued case, especially the
Hilbert space property of the spaces Hs(Ω;Cm).

2.5 Sobolev spaces on the boundary

After having defined Sobolev spaces on an open set Ω ⊆ Rn in Section 2.4 we now
address the question how regularity of functions f : ∂Ω→ C defined on the boundary
∂Ω of Ω can be characterized. This leads to Sobolev spaces on the boundary whose
construction is far more technical than the one of Sobolev spaces on an open set. Up
to now we have not imposed any regularity conditions on the boundary of an open
set, but as it turns out the regularity of the boundary has a great influence on the
orders of Sobolev spaces that can be defined. Therefore, we will start this section by
introducing Lipschitz domains, which are usually sufficiently regular for our purposes
of introducing Sobolev spaces on the boundary. All the material of this section is well
known and can be found for instance in the books [53, 77, 84] or the lecture note [58].
If a result comes from another source text, it is referred to at the respective passage.

Definition 2.25. Let Ω ⊆ Rn be an open set. If there exists a Lipschitz continuous
function ζ : Rn−1 → R with a uniform Lipschitz constant such that

Ω =
{
x = (x1, . . . , xn−1, xn) ∈ Rn

∣∣∣ xn < ζ(x1, . . . , xn−1)
}

holds true, then Ω is called a Lipschitz hypograph.



36 2 Definitions and preliminary results

With the function ζ from Definition 2.25, the boundary ∂Ω of a Lipschitz hypograph
can be parameterized explicitly by

∂Ω =
{

(x, ζ(x)) ∈ Rn
∣∣∣ x ∈ Rn−1

}
.

Using Lipschitz hypographs we now define the more general Lipschitz domains as
open sets which can be locally described as Lipschitz hypographs.

Definition 2.26. An open set Ω ⊆ Rn is called Lipschitz domain if its boundary
Γ = ∂Ω is compact in Rn and there exist finite families {Wi}i∈I and {Ωi}i∈I consisting
of subsets of Rn such that the following conditions are met.

i) The family {Wi}i∈I is an open cover of Γ. In particular, Wi is an open subset of
Rn for every i ∈ I and Γ ⊆

⋃
i∈I
Wi holds true.

ii) For every i ∈ I there exists a rigid motion κi, i.e.: a rotation and a translation,
which transforms Ωi into a Lipschitz hypograph.

iii) Wi ∩ Ω = Wi ∩ Ωi is valid for every i ∈ I.

At this point it is noteworthy to remark that only the boundary of the Lipschitz
domain has to be compact and hence bounded to ensure the finiteness of the families
{Wi}i∈I and {Ωi}i∈I in Definition 2.26. The domain itself may very well be unbounded.
In particular for a bounded Lipschitz domain Ω ⊆ Rn its open complement Rn\Ω is
an unbounded Lipschitz domain.

Occasionally it may be necessary to require more regularity of the boundary and
in this case we modify Definition 2.26 as follows. Let k ∈ N be a given integer and
Ω ⊆ Rn an open set for which there exists a function ζ as in Definition 2.25. We call Ω
a Ck-hypograph if ζ is a Ck-function and ∂αζ is bounded for all multi-indices α ∈ Nn

0

with |α| ≤ k. Analogously, we define a Ck-domain by substituting “Ck” for “Lipschitz”
in Definition 2.26.

To define Sobolev spaces on the boundary of a Lipschitz domain, a surface integral
and therefore a surface measure on an (n − 1)-dimensional submanifold of Rn has to
be constructed. This will be accomplished by using the next result, also known as
Rademacher’s theorem, whose proof can be found for instance in [28, Prop. 19.28].

Theorem 2.27. Let U ⊆ Rn be an open set and f : U → R be a Lipschitz continuous
function on U , then f is differentiable almost everywhere on U , ∇f is measurable and
‖∇f‖L∞(U ;Rn) <∞ holds true.

A first important consequence of Rademacher’s theorem is the following. Let
Ω ⊆ Rn be a Lipschtz-hypograph according to Definition 2.25 with Lipschitz-continuous
function ζ. Theorem 2.27 implies that there exists a unit normal vector field

ν(x, ζ(x)) =
1√

1 + ‖∇ζ(x)‖2

(
−∇ζ(x)

1

)
(2.7)
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on Γ = ∂Ω for almost all x ∈ Rn−1. This result is generalized to Lipschitz domains by
using the decomposition from Definition 2.26.

Next we proceed with the construction of a surface integral on the boundary of a
Lipschitz domain. Let Ω ⊆ Rn be a Lipschitz domain according to Definition 2.26
and let ζi : Rn−1 → R be the corresponding Lipschitz continuous functions and
κi : Rn → Rn be the corresponding rigid motions. We define the transformation
maps

Φi(x) = κ−1
i (x, ζi(x)) (2.8)

for x ∈ Rn−1 and i ∈ I and choose a partition of unity subordinate to {Wi}i∈I . This
is a family of functions {ϕi}i∈I such that the following conditions are satisfied.

• ϕi ∈ D(Rn;R) and supp(ϕi) ⊆ Wi hold true for every i ∈ I.

• 0 ≤ ϕi(x) ≤ 1 holds true for every x ∈ Rn and every i ∈ I.

•
∑
i∈I
ϕi(x) = 1 holds true for every x ∈ Γ.

Let f : Γ→ C be a function defined on the boundary of the Lipschitz domain, then
we set ϕif : Γ → C and thereby obtain a family of functions for which
supp(ϕif) ⊆ Wi ∩ Γ is valid for all i ∈ I. Furthermore it follows that∑

i∈I

ϕi(x)f(x) = f(x)

holds true for every x ∈ Γ and thus {ϕif}i∈I is a decomposition of f . Next we define
for every i ∈ I the set Vi = Φ−1

i (Wi ∩ ∂Ωi) = Φ−1
i (Wi ∩ Γ) ⊆ Rn−1 and the mapping

(ϕif) ◦ Φi : Vi → C as the pullback of ϕif to the parameter domain by Φi. Since
supp(ϕif) ⊆ Wi ∩ Γ holds true, we can extend (ϕif) ◦ Φi by 0 to all of Rn−1 and

thus obtain a well-defined mapping (ϕ̃if) ◦ Φi : Rn−1 → C which has the explicit
representation

(ϕ̃if) ◦ Φi(x) =

{
(ϕif) ◦ Φi(x) , if Φi(x) ∈ Wi ∩ Γ

0, else
(2.9)

for all x ∈ Rn−1. At this point it is already apparent that the regularity of the boundary
influences the regularity of (ϕ̃if)◦Φi via ζi. This will be of particular importance when
defining the Sobolev spaces on the boundary of a Lipschitz domain.

We call f integrable over Γ, if the mapping

x 7→ (ϕ̃if) ◦ Φi(x)
√

det(DΦi(x)>DΦi(x))

from Rn−1 to C is measurable and integrable with respect to the (n− 1)-dimensional
Lebesgue measure for all i ∈ I, with

DΦi(x) =


∂
∂x1

Φ1
i (x) ∂

∂x2
Φ1
i (x) · · · ∂

∂xn−1
Φ1
i (x)

...
...

...
∂
∂x1

Φn
i (x) ∂

∂x2
Φn
i (x) · · · ∂

∂xn−1
Φn
i (x)


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being the gradient of Φi at x ∈ Rn−1. In this case we define the surface integral of
f over the boundary of a Lipschitz domain as the sum of surface integrals over the
boundaries of Lipschitz hypographs by∫

Γ

f(x)dσ(x) =
∑
i∈I

∫
Wi∩Γ

ϕi(x)f(x)dσ(x)

=
∑
i∈I

∫
Rn−1

(ϕ̃if) ◦ Φi(x)
√

det(DΦi(x)>DΦi(x))dx

(2.10)

with σ being the so-called Hausdorff measure. It can be shown that the surface integral
on the boundary of a Lipschitz domain is independent of the parameterizations {Wi}i∈I
and {Ωi}i∈I and the partition of unity {ϕi}i∈I . For further details we refer to [71,
Chapter 3.1] and [27, Rem. 8.10].

With the definition of a surface integral we are now in the position to define L2-spaces
on the boundary Γ = ∂Ω of a Lipschitz domain Ω ⊆ Rn as the set of equivalence classes
of complex-valued and squadrate-integrable functions with respect to the Hausdorff
measure

L2(Γ;C) =

{
f : Γ→ C

∣∣∣∣∣
∫
Γ

|f(x)|2 dσ(x) <∞

}
.

Due to the linearity of the Lebesgue integral in Rn−1 it follows that L2(Γ;C) is a vector
space. Furthermore, by equipping L2(Γ;C) with the inner product

(u, v)L2(Γ;C) =

∫
Γ

u(x)v(x)dσ(x)

for u, v ∈ L2(Γ;C), we obtain a Hilbert space.
Based on the L2(Γ;C)-spaces we define now Sobolev spaces on the boundary of a

Lipschitz domain by characterizing the regularity of a function f : Γ → C in terms
of the regularity of the pullbacks (2.9) of the decomposition of f on the parameter
domain.

Definition 2.28. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ = ∂Ω. For
0 ≤ s ≤ 1, the Sobolev space of order s on the boundary of Ω is defined as

Hs(Γ;C) =
{
f ∈ L2(Γ;C)

∣∣∣ (ϕ̃if) ◦ Φi ∈ Hs(Rn−1;C) for all i ∈ I
}
.

Furthermore we equip Hs(Γ;C) with the inner product

(u, v)Hs(Γ;C) =
∑
i∈I

((ϕ̃iu) ◦ Φi, (ϕ̃iv) ◦ Φi)Hs(Rn−1;C) (2.11)

for u, v ∈ Hs(Γ;C).
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Since Hs(Rn−1;C) is a vector space it follows immediately that the sets Hs(Γ;C) are
vector spaces as well and it can be shown that they are even Hilbert spaces. In the case
of Ck-domains, Sobolev spaces of order 0 ≤ s ≤ k can be introduced in a similar way
and all the following results remain valid for these spaces if one consistently replaces
1 with k. Although it seems that the spaces Hs(Γ;C) and the norm induced by the
inner product (2.11) depend on the families {Wi}i∈I , {Ωi}i∈I and {ϕi}i∈I it can be
shown that, as in the case of the L2(Γ;C)-spaces, another choice yields the same space
with an equivalent norm. See [84, Thm. 4.2] for further details.

For technical reasons, we will also consider Sobolev spaces of negative order. We
define these as dual spaces and set

Hs(Γ;C) =
(
H−s(Γ;C)

)∗
for all −1 ≤ s < 0.

The next result is known as Rellich-Kondrachov theorem and its proof can be found
for instance in [84, Thm. 7.9, Thm. 7.10] in combination with Schauder’s theorem.

Theorem 2.29. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ = ∂Ω and s < t
be given, then the following statements are true.

i) If 0 ≤ s holds true, then the embedding H t(Ω;C) ↪→Hs(Ω;C) is compact.

ii) If −1 ≤ s and t ≤ 1 holds true, then the embedding H t(Γ;C) ↪→ Hs(Γ;C) is
compact.

Next, we turn our attention to the calculation of boundary values of Sobolev func-
tions as it is required for boundary value problems. Since the boundary Γ = ∂Ω of
a Lipschitz domain Ω ⊆ Rn is a Lebesgue zero set, restrictions of L2-functions to the
boundary are not well-defined. To resolve this difficulty, the so-called trace operator is
introduced which provides a precise meaning of boundary values of sufficiently regular
L2-functions.

Theorem 2.30. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ = ∂Ω and
1
2
< s ≤ 1 be given, then there exists a linear, bounded and surjective operator

τ : Hs(Ω;C)→ Hs− 1
2 (Γ;C)

such that τ(f) = f �Γ is valid for all f ∈ C∞(Ω;C).

Using the trace operator of Theorem 2.30 the divergence theorem can be generalized
to Sobolev spaces and Lipschitz domains. The proof of this result canbe found in for
instance [3, Thm. A.6.8] or [71, Thm. 3.23] and relies heavily on the density of the
infinitely often differentiable functions C∞(Ω;C) in H1(Ω;C). Following a common
convention, we omit the arguments of the functions under the integrals to simplify the
notation.
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Theorem 2.31. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ = ∂Ω and let
u, v ∈ H1(Ω;C) be two given functions, then∫

Ω

(
∂

∂xi
u · v + u · ∂

∂xi
v

)
dx =

∫
Γ

τ(u)τ(v)νidσ

is valid for all i ∈ {1, . . . , n} with ν being the unit normal vector field on Γ.

The next theorem is a collection of useful properties concerning the Sobolev spaces
Hs(Ω;C) and H

1
2 (Γ;C) and the trace operator which are needed in the next chapter.

Item ii) is a consequence of [84, Thm. 4.3] and Theorem 2.29, the proof of item iii)
can be found in[68, Thm. 46] and [58, Ex. 9] and item iv) is a consequence of [53,
Thm. 3.20].

Theorem 2.32. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ = ∂Ω, then the
following statements are true.

i) Hs
0(Ω;C) = ker(τ) is valid for all 1

2
< s ≤ 1.

ii) Hs(Γ;C) is dense in L2(Γ;C) for all 0 ≤ s ≤ 1.

iii) If Ω is bounded, then both Ω+ = Ω and Ω− = Rn\Ω are Lipschitz domains with
trace operators τ± according to Theorem 2.30. Let u ∈ H1(Ω+ ∪ Ω−;C) with
u± = u�Ω± ∈ H1(Ω±;C) be given, then in this case it follows that u ∈ H1(Rn;C)
if and only if τ+u+ = τ−u− on the common surface Γ = ∂Ω±.

iv) If Ω is a C2-domain with the unit normal vector field ν, then νif ∈ H
1
2 (Γ;C) is

valid for all f ∈ H 1
2 (Γ;C) and i ∈ {1, . . . , n}.

In this thesis it will be necessary to consider an alternative approach to boundary
values, besides the representation in terms of the trace operator of Theorem 2.30. It
will turn out that under appropriate conditions both approaches coincide. For this
purpose we have to introduce the so-called non-tangential limits.

It is known that every Lipschitz domain satisfies the so-called uniform cone condi-
tion. This implies that in each point x ∈ Γ there exists a cone V (x) ⊆ Rn, which has
its origin in x, and an open ball B(x, r) ⊆ Rn such that the set D(x) = V (x)∩B(x, r)
is located entirely in Ω. In this context D(x) is also known as non-tangential approach
cone. A function f : Ω→ C is said to have a non-tangential limit in x ∈ Γ, if the limit

(Lf)(x) = lim
D(x)3y→x

f(y) = c

exists for a c ∈ C. In the following we will always regard point-wise limits on Σ
as non-tangential limits and therefore usually write Ω in the above limit instead of
explicitly mentioning the approach cone D(x). In view of the uniform cone condition
it is then evident from the context how the limit is performed. With these notions the
following result holds true, as it can be found for instance in [33, Thm. 2.5].
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Lemma 2.33. Let Ω ⊆ Rn be a Lipschitz domain with boundary Γ and let
f ∈ Hs(Ω;C) with 1

2
< s ≤ 1 be a given function. If the non-tangential limit of

f exists almost everywhere on Γ, then Lf = τ(f) is valid in the sense of Hs− 1
2 (Γ;C).

Finally, we consider vector-valued functions as in Section 2.4. In order to do so,
we assume that a Lipschitz domain Ω ⊆ Rn with boundary Γ = ∂Ω is given. The
extension of Sobolev spaces to the vector-valued case is done in a straightforward
manner by forming the product space of all the occurring function spaces and ap-
plying the results of this section component-wise. First we construct for a given
m ∈ N the space L2(Γ;Cm) = L2(Γ;C)m consisting of equivalence classes of functions
f = (f1, . . . , fm) : Γ→ Cm whose components fk are in L2(Γ;C). Using the standard
Euclidean inner product in Cm, we define an inner product on L2(Σ;Cm) by

(u, v)L2(Γ;Cm) =
m∑
k=1

(uk, vk)L2(Γ;C) =

∫
Γ

u(x) · v(x)dσ(x)

for u = (u1, . . . , um), v = (v1, . . . , vm) ∈ L2(Γ;Cm) and thereby turning L2(Γ;Cm)
into a Hilbert space. Furthermore, for 0 ≤ s ≤ 1 we define the set of all equivalence
classes of function f = (f1, . . . , fm) : Γ → Cm with components fk ∈ Hs(Γ;C) as
space Hs(Γ;Cm) = Hs(Γ;C)m and equip it with the inner product

(u, v)Hs(Γ;Cm) =
m∑
k=1

(uk, vk)Hs(Γ;C)

for u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Hs(Γ;Cm).
Next, by component-wise application of the trace operator of Theorem 2.30, we

obtain a linear, bounded and surjective operator τ : Hs(Ω;Cm) → Hs− 1
2 (Γ;Cm) for

all 1
2
< s ≤ 1.

As in Section 2.4, all results of this section remain valid for the vector-valued case.
Especially the Hilbert space property of the spaces Hs(Γ;Cm), the compact embedding
results of Hs(Ω;Cm) and Hs(Γ;Cm) of Theorem 2.29 and the properties of the spaces

Hs(Ω;Cm) and Hs(Γ;Cm) and the trace operator τ : Hs(Ω;Cm) → Hs− 1
2 (Γ;Cm) of

Theorem 2.32.
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2.6 Integral operators and operators in L2 × L2

This rather technical section deals with results concerning integral operators and oper-
ators defined on the Cartesian product of two L2-spaces which are needed in the next
chapters. In particular, the values of the γ-field and Weyl function of the quasi bound-
ary triple used to describe Dirac operators with electrostatic and Lorentz scalar δ-shell
interactions will be found to correspond to such integral operators. Therefore, the ex-
amination of these operators is of great importance and we will show that for special
integral kernels they represent everywhere defined, linear and bounded operators.

We begin with integral operators and follow the presentation of [10] or [40]. Proofs
are only provided if the statements are not found in the mentioned literature, but
are needed in the course of this thesis. Before we state the theorems, it should be
pointed out that on a domain Ω ⊆ R3 the Lebesgue measure and on the boundary of
a C2-domain the Hausdorff measure is used. Furthermore, remember that all norms
on Rn and all matrix norms on Cn×n are equivalent and we therefore do not have to
specify a certain norm. The proofs of Theorems 2.34, 2.35 and 2.36 can for instance
be found in [10, Prop. A.3 , Prop. A.4 and Prop. A.5] or [40, Prop. 2.4.3 , Prop.
2.4.4 and Prop. 2.4.5] and are based on the so-called Schur-test [81, Chapter 6.3].

Theorem 2.34. Let Ω ⊆ R3 be an open set, n ∈ N be a given integer and
t : R3 → Cn×n be a measurable, matrix-valued function. Furthermore it is assumed
that there exist constants κ1, κ2 > 0 and R > 0 such that

‖t(x)‖ ≤ κ1

{
‖x‖−2 , for ‖x‖ < R

e−κ2‖x‖ , for ‖x‖ ≥ R

is valid for all x ∈ R3 \ {0}. Then it follows that the assignment

(Tf)(x) =

∫
Ω

t(x− y)f(y)dy

for f ∈ L2(Ω;Cn) and x ∈ Ω corresponds to a well-defined, linear and bounded
operator T : L2(Ω;Cn) → L2(Ω;Cn) with ‖T‖ ≤ κ1K for some constant K > 0
depending only on κ2.

Theorem 2.35. Let Ω ⊆ R3 be an open set with compact and C2-smooth boundary
Γ, n ∈ N be a given integer and t : R3 → Cn×n be a measurable, matrix-valued
function. Furthermore it is assumed that there exist constants κ1, κ2 > 0 and R > 0
such that

‖t(x)‖ ≤ κ1

{
‖x‖−2 , for ‖x‖ < R

e−κ2‖x‖ , for ‖x‖ ≥ R
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is valid for all x ∈ R3 \ {0}. Then it follows that the assignments

(T1f)(x) =

∫
Γ

t(x− y)f(y)dσ(y)

for f ∈ L2(Γ;Cn) and x ∈ Ω and

(T2f)(x) =

∫
Ω

t(x− y)f(y)dy

for f ∈ L2(Ω;Cn) and x ∈ Γ correpond to well-defined, linear and bounded operators
T1 : L2(Γ;Cn) → L2(Ω;Cn) and T2 : L2(Ω;Cn) → L2(Γ;Cn) with ‖T1‖, ‖T2‖ ≤ κ1K
for some constant K > 0 depending only on κ2 and on the boundary Γ.

Theorem 2.36. Let Σ ⊆ R3 be a compact, closed and C2-smooth surface, n ∈ N
be a given integer and t : R3 → Cn×n be a measurable, matrix-valued function.
Furthermore it is assumed that there exists a constant κ > 0 such that

‖t(x)‖ ≤ κ(1 + ‖x‖−1)

is valid for all x ∈ R3 \ {0}. Then it follows that the assignment

(Tf)(x) =

∫
Σ

t(x− y)f(y)dσ(y)

for f ∈ L2(Σ;Cn) and x ∈ Σ corresponds to a well-defined, linear and bounded
operator T : L2(Σ;Cn) → L2(Σ;Cn) with ‖T‖ ≤ κK for some constant K > 0
depending only on the surface Σ.

In the derivation of an explicit representation of the resolvent of the free Dirac
operator in Theorem 3.4 as well as in other proofs in this thesis it will be necessary
to exchange the order of integration of a double integral which arises from an integral
operator and an L2-inner product. The next lemma shows that this is possible under
suitable assumptions about the matrix-valued integral kernel. The proof of item ii) is
based on a decomposition of the integral kernel, as it can be found in [10, Prop. A.4].

Lemma 2.37. Let n ∈ N be a given integer, Ω ⊆ R3 be an open set and t : R3 → Cn×n

be a measurable, matrix-valued function, then the following statements are true.

i) If t satisfies the estimate of Theorem 2.34, then∫
Ω

∫
Ω

t(x− y)f(y) · g(x)dxdy =

∫
Ω

∫
Ω

t(x− y)f(y) · g(x)dydx (2.12)

is valid for all f, g ∈ L2(Ω;Cn).



44 2 Definitions and preliminary results

ii) If Ω has a compact C2-smooth boundary Γ and t satisfies the estimate of Theorem
2.35, then∫

Ω

∫
Γ

t(x− y)f(y) · g(x)dσ(x)dy =

∫
Γ

∫
Ω

t(x− y)f(y) · g(x)dydσ(x) (2.13)

is valid for all f ∈ L2(Ω;Cn) and g ∈ L2(Γ;Cn).

iii) If Σ ⊆ R3 is a compact, closed and C2-smooth surface and t satisfies the estimate
of Theorem 2.36, then∫

Σ

∫
Σ

t(x−y)f(y) ·g(x)dσ(x)dσ(y) =

∫
Σ

∫
Σ

t(x−y)f(y) ·g(x)dσ(y)dσ(x) (2.14)

is valid for all f, g ∈ L2(Σ;Cn).

Proof. Proof of i): Due to the similarities of the proofs, we only discuss assertion
i) in detail and mention the necessary modifications in the proofs of ii) and iii). We
define the functions

τ1(x) = τ2(x) = κ1

{
‖x‖−2 , for ‖x‖ < R

e−κ2‖x‖ , for ‖x‖ ≥ R

for all x ∈ R3 \ {0} and immediately obtain the estimate ‖t(x)‖ ≤
√
τ1(x)τ2(x).

As r2e−
κ2r

2 → 0 for r → ∞ applies, there exists a constant κ3 > 0 such that
r2e−κ2r ≤ κ3e

−κ2r
2 is valid for all r > R. By using spherical coordinates, we obtain∫

Ω

τi(x)dx ≤
∫
R3

τi(x)dx

= 4πκ1

 R∫
0

r2

r2
dr +

∞∫
R

r2e−κ2rdr

 ≤ 4π

R + κ3

∞∫
R

e−
κ2r

2 dr

 <∞

(2.15)

for i ∈ {1, 2} with the angle-dependent integrals already being integrated.
Next, we assume that arbitrary functions f, g ∈ L2(Ω;Cn) are given. Then it

follows from Theorem 2.34 and an application of the Cauchy-Schwarz inequality, that
the integrals (2.12) exist. With use of (2.15) we find that the integrals∫

Ω

∫
Ω

τ1(x− y)‖f(y)‖2
2dxdy = ‖f‖2

L2(Ω;Cn)

∫
Ω

τ1(x)dx <∞ (2.16)
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and ∫
Ω

∫
Ω

τ2(x− y)‖g(x)‖2
2dydx = ‖g‖2

L2(Ω;Cn)

∫
Ω

τ2(y)dy <∞ (2.17)

are finite and therefore the order of integration in both integrals can be exchanged
due to Fubini’s theorem. Using (2.16) and (2.17) and a Cauchy-Schwarz inequality for
double integrals as presented in [76, Page 11] results in the finiteness of the following
integral∫

Ω

∫
Ω

∣∣∣t(x− y)f(y) · g(x)
∣∣∣ dxdy

≤
∫
Ω

∫
Ω

‖t(x− y)‖2‖f(y)‖2‖g(x)‖2dxdy

≤
∫
Ω

∫
Ω

√
τ1(x− y)‖f(y)‖2

√
τ2(x− y)‖g(x)‖2dxdy

≤

∫
Ω

∫
Ω

τ1(x− y)‖f(y)‖2
2dxdy

 1
2
∫

Ω

∫
Ω

τ2(x− y)‖g(x)‖2
2dxdy

 1
2

= ‖f‖L2(Ω;Cn)‖g‖L2(Ω;Cn)

∫
Ω

τ1(x)dx

 1
2
∫

Ω

τ2(y)dy

 1
2

<∞.

A component-wise consideration and a separation into the real and imaginary parts of
the integrands, respectively, leads with Fubini’s theorem to the equality of the integrals
(2.12) and thus to the first assertion of the lemma.

Proof of ii): To prove the claimed property ii) we define for an arbitrary s ∈ (0, 1) the
functions

τ1(x) = κ1κ3‖x‖−2+s

and

τ2(x) = κ1

{
‖x‖−2−s , for ‖x‖ < R

e−κ2‖x‖ , for ‖x‖ ≥ R

for all x ∈ R3 \ {0}, where the constant κ3 > 0 is chosen so that e−κ2‖x‖ ≤ κ3‖x‖−2+s

is valid for all ‖x‖ ≥ R. For the choice of κ3, compare the procedure in the proof of
i). By applying [10, Lem. A.2 ii)] we obtain∫

Γ

τ1(x)dσ(x) <∞
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while ∫
Ω

τ2(y)dy <∞

follows with a consideration as in the proof of estimate (2.15). Based on the estimate
‖t(x)‖ ≤

√
τ1(x)τ2(x), we now obtain the assertion about the integral (2.13) with a

line of reasoning analogous to the proof of i). In fact, only the integration with respect
to the Lebesgue measure dx has to be replaced by an integration with respect to the
Hausdorff measure dσ(x).

Proof of iii): To complete the proof it remains to show item iii). For this purpose we
define the functions

τ1(x) = τ2(x) = κ(1 + ‖x‖−1)

for all x ∈ R3 \ {0} and immediately obtain the estimate ‖t(x)‖ ≤
√
τ1(x)τ2(x).

Furthermore, from [10, Lem. A.2 ii)] it follows that∫
Σ

τi(x)dσ(x) <∞

is valid for i ∈ {1, 2}. With a line of reasoning as in the proof of i), the asserted
statement about the integral (2.14) follows.

Next, we present a result concerning the boundedness of a singular integral operator
whose proof can be found in [6, Lem. 3.3] and the references mentioned therein.

Theorem 2.38. Let Σ ⊆ R3 be a compact, closed and C2-smooth surface and
i ∈ {1, 2, 3}, then it follows that the assignment

(Tif)(x) = lim
ε→0+

∫
Σ\B(x,ε)

xi − yi
‖x− y‖3f(y)dσ(y)

for f ∈ L2(Σ;C) and x ∈ Σ corresponds to a well-defined, linear and bounded operator
Ti : L2(Σ;C)→ L2(Σ;C).

We conclude our considerations concerning integral operators with two operators
induced by the integral kernel of the resolvent of the free Schrödinger operator. To
introduce these operators we assume in the following that a bounded Lipschitz domain
Ω ⊆ R3 with boundary Σ = ∂Ω is given. We then define the sets Ω+ = Ω and
Ω− = R3\Ω and thereby obtain two Lipschitz domains which satisfy R3 = Ω+∪̇Σ∪̇Ω−.

The free Schrödinger operator in L2(R3;C) is defined by the assignment

dom(T0) = H2(R3;C)

T0f = − 1

2m
∆f

(2.18)
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and as it is shown in [81, Chapter 11], this is a self-adjoint operator in L2(R3;C)
with spectrum σ(T0) = [0,∞). Furthermore, for all λ ∈ ρ(T0) the explicit resolvent
representation (

(T0 − λ)−1f
)

(x) =

∫
R3

Kλ(x− y)f(y)dy (2.19)

for all f ∈ L2(R3;C) and for almost all x ∈ R3 applies. The integral kernel of the
resolvent corresponds to the function

Kλ(x) =
2m

4π‖x‖
exp

(
i
√

2mλ‖x‖
)

(2.20)

for all x ∈ R3 \ {0}. At this point it is necessary to note that in the following the
square root

√
µ of a complex number µ ∈ C is always chosen such that Im{√µ} ≥ 0

applies. In particular, Im{√µ} > 0 is valid for all µ ∈ C \ [0,∞).
Next, we introduce for λ ∈ ρ(T0) the so-called single layer potential and the single

layer boundary integral operator as they are discussed for instance in [42] and [53].
The single layer potential is defined as the composition of the fundamental solution
of the operator T0 − λ and the adjoint trace operator and corresponds to a linear and
bounded operator SL(λ) : H−

1
2 (Σ;C)→ H1(R3;C). Furthermore, we define the single

layer boundary integral operator as the trace of the single layer potential and thereby
obtain a linear and bounded operator S(λ) : H−

1
2 (Σ;C)→ H

1
2 (Σ;C).

As it is stated in [42], the explicit integral representation

(SL(λ)f) (x) =

∫
Σ

Kλ(x− y)f(y)dσ(y) (2.21)

for all f ∈ L2(Σ;C4) and for almost all x ∈ R3 applies to the restriction of the single
layer potential SL(λ)�L2(Σ;C). Furthermore, (2.21) in combination with the mapping
properties of the single layer potential and Lemma 2.33, results in the representation

(S(λ)f) (x) =

∫
Σ

Kλ(x− y)f(y)dσ(y) (2.22)

for all f ∈ L2(Σ;C4) and almost all x ∈ Σ for the restriction of the single layer
boundary integral operator S(λ)�L2(Σ;C).

The following properties of the single layer potential will be used in Chapter 4.1.
The proofs of these statements can be found for instance in [42, Lem. 3.3].

Lemma 2.39. Let λ ∈ ρ(T0) be given, then the following statements are true for the
single layer potential.

i) The jump condition

τ+ (SL(λ)f)+ − τ− (SL(λ)f)− = 0

on the surface Σ is valid for all f ∈ H− 1
2 (Σ;C).
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ii) The range condition

ran(SL(λ)) =

{
f ∈ H1(R3;C)

∣∣∣∣ (− 1

2m
∆− λ

)
f± = 0

}
applies. In particular, for a given f ∈ H− 1

2 (Σ;C)

∆ (SL(λ)f)± = −2mλ (SL(λ)f)± ∈ L
2(Ω±;C)

is valid in the sense of distributions.

We conclude this section by considering operators defined on the Cartesian product
of two L2-spaces. In Chapter 3.1, we will require these results when introducing a
maximal Dirac operator for functions which do not posses the Sobolev regularity H1

on the whole of R3, but only on restrictions of it.
As in the introduction of the single layer potential and the single layer boundary

integral operator we assume in the following that Ω ⊆ R3 be a bounded Lipschitz
domain according to Definition 2.26 with boundary Σ = ∂Ω. We define Ω+ = Ω and
Ω− = R3\Ω and thereby obtain two Lipschitz domains which satisfy R3 = Ω+∪̇Σ∪̇Ω−.
On these two sets we define the spaces L2(Ω±;C4) and form their Cartesian product
L2(Ω+;C4)× L2(Ω−;C4). We equip this space with the inner product

((f+, f−), (g+, g−))L2(Ω+;C4)×L2(Ω−;C4) = (f+, g+)L2(Ω+;C4) + (f−, g−)L2(Ω−;C4) (2.23)

for f±, g± ∈ L2(Ω±;C4) and thereby turning L2(Ω+;C4) × L2(Ω−;C4) into a Hilbert
space. Next, we define

ι(f) = (f �Ω+, f �Ω−)

for f ∈ L2(R3;C4) and obtain a linear map ι : L2(R3;C4)→ L2(Ω+;C4)×L2(Ω−;C4).
Using the inner product (2.23) it is easy to see that ι corresponds to an isometric
isomorphism, which will allow us to identify the space L2(R3;C4) with the space
L2(Ω+;C4) × L2(Ω−;C4). At this point it should be noted that the inverse mapping
ι−1 : L2(Ω+;C4)× L2(Ω−;C4) → L2(R3;C4) can be defined, for instance, by the zero
continuation on the Lebesgue zero set Σ by

(ι−1f)(x) =

{
f±(x) , for x ∈ Ω±

0 , for x ∈ Σ

for all (f+, f−) ∈ L2(Ω+;C4) × L2(Ω−;C4) and for almost all x ∈ R3. The values
on Σ are insignificant in the sense of L2-functions and can be adjusted in accordance
with practical needs. However, this choice is advantageous for the treatment of test
functions. Due to the isomorphisms

L2(Ω+;C4) ∼= L2(Ω+;C4)× {0} and L2(Ω−;C4) ∼= {0} × L2(Ω−;C4)
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and since these subspaces are orthogonal with respect to the inner product (2.23), we
will from now on write L2(Ω+;C4) ⊕ L2(Ω−;C4) for the Cartesian product
L2(Ω+;C4) × L2(Ω−;C4) in analogy to the orthogonal sum of Hilbert spaces. Ele-
ments (f+, f−) ∈ L2(Ω+;C4)⊕ L2(Ω−;C4) are usually denoted by f+ ⊕ f−.

In analogy to the L2-space, we define the Sobolev space H1(Ω+;C4) ⊕H1(Ω−;C4)
and equip it with an inner product similar to (2.23). Again, we obtain a Hilbert space,
which in contrast to the L2-space is not isomorphic to H1(R3;C4) but isomprophic to
H1(R3 \ Σ;C4). This follows from Theorem 2.32 since a function f ∈ H1(R3 \ Σ;C4)
is only in H1(R3;C4) if τ+f+ = τ−f− is valid on Σ.

For a linear operator T in L2(Ω+;C4) ⊕ L2(Ω−;C4) we obtain a linear operator
in L2(R3;C4) with dom(ι−1Tι) = ι−1(dom(T )) by considering ι−1Tι. It can now
be shown that all properties like dense definition, closability, symmetry, etc. are
carried over from T to ι−1Tι. The converse of this statement is true as well and
therefore in the following chapters we will often switch back and forth between these
two representations without mentioning it explicitly. In particular, to simplify the
notation, we will identify the operators T and ι−1Tι with each other and use the symbol
T for both the operator in L2(Ω+;C4) ⊕ L2(Ω−;C4) and the operator in L2(R3;C4).
The same applies to elements in the domain of these operators.





3 Dirac operators with
electrostatic and Lorentz scalar
δ-shell interactions

In this chapter we begin our investigation of Dirac operators. In Section 3.1 we will
collect basic properties of the free Dirac operator in R3 and define operators which we
will use in the construction of a quasi boundary triple in Section 3.2. By means of this
quasi boundary triple we are able to define Dirac operators with δ-shell interactions in
a mathematically rigorous way by imposing certain jump conditions on the common
interface Σ of two C2-domains. Subsequently, the self-adjointness of these operators
is shown in the case of non-critical interaction strengths.

3.1 The maximal and free Dirac operator

In this section we will examine the free Dirac operator in R3 and provide an explicit
representation of its resolvent, which will be of great importance in the following
sections. Furthermore we define a maximal Dirac operator, which will be needed for
the construction of a quasi boundary triple in Section 3.2.

Starting point of this section is the formal differential expression

A = −ic~(α · ∇) +mc2β (3.1)

from Chapter 1 which describes a relativistic quantum particle with spin 1/2 without
the influence of external fields. Here

αk =

(
0 σk
σk 0

)
and β =

(
I2 0
0 −I2

)
are the Dirac matrices, which consist of the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.
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As already mentioned in Chapter 1, these matrices fulfill the anti-commutation
relations

• αkαj + αjαk = 2δkjI4

• αkβ + βαk = 0

• β2 = I

for all k, j ∈ {1, 2, 3}. Furthermore we use the abbreviation

α · x =
3∑

k=1

αkxk

for a vector x ∈ R3 to simplify the notation. From the above anti-commutation
relations it follows by double summation that

(α · x)2 =
3∑

k,j=1

xkxjαkαj =
1

2

3∑
k,j=1

xkxj(αkαj + αjαk) =
3∑

k,j=1

xkxjδkj = ‖x‖2 (3.2)

holds true for all x ∈ R3.
The formal differential expression A of (3.1) will lead us to the maximal and the

free Dirac operator on R3 by choosing suitable domains of definition. In particular,
we will obtain the free Dirac operator by closing a Dirac operator defined on the test
functions. Furthermore, the maximal operator will turn out to be important when
constructing a quasi boundary triple in the next section and the free Dirac operator
will serve as the self-adjoint reference operator.

In this section we will follow the presentation of the books [78, 82] for characterizing
the free Dirac operator and [14, 40] for the preparation of the construction of the
quasi boundary triple in Section 3.2. Although the proofs of the statements of this
section can be found in these references, we present some of them in order to provide
a self-contained presentation.

We begin our discussion with a realization of the formal differential expression (3.1)
and define this operator on the set of the most easily handleable functions, the test
functions

dom(TD) = D(R3;C4) = D(R3;C)4

TDf = Af = (−ic~(α · ∇) +mc2β)f.

This linear operator is densely defined since D(R3;C4) is dense in L2(R3;C4). Further-
more, by using the divergence theorem, it can be easily shown that TD is symmetric
and thus closable.

The next theorem provides a characterization of the closure of the operator TD and
thereby leads to the definition of the free Dirac operator. Furthermore, it shows the
self-adjointness of the free Dirac operator and that its spectrum consists exclusively of
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the essential spectrum. In particular, there are no isolated eigenvalues with a finite-
dimensional eigenspace. The proof of this theorem can be found in [82, Theorem 20.1]
and relies heavily on the properties of Schwartz functions to reduce the investigation
of the free Dirac operator to that of a unitary equivalent multiplication operator in
L2(R3;C4).

Theorem 3.1. The operator TD is closable and essentially self-adjoint in L2(R3;C4).
The free Dirac operator is defined as the self-adjoint operator A0 = TD and for this
operator the following statements are true.

i) For the free Dirac operator the explicit representation

dom(A0) = H1(R3;C4)

A0f = (−ic~(α · ∇) +mc2β)f
(3.3)

applies.

ii) There exist constants C1, C2 > 0 such that

C1‖f‖H1(R3;C4) ≤ ‖A0f‖L2(R3;C4) ≤ C2‖f‖H1(R3;C4)

holds true for all f ∈ dom(A0). In particular, the graph norm of A0 is equivalent
to the H1-norm.

iii) σ(A0) = (−∞,−mc2] ∪ [mc2,∞).

A first observation of Theorem 3.1 is that the Planck’s constant ~ does not influence
the spectral properties of the free Dirac operator A0 and we can therefore set it to
~ = 1 without loss of generality. Furthermore, an important consequence about the
square of the free Dirac operator can be deduced from Theorem 3.1, which will be
important in the following considerations when deriving an explicit representation of
the resolvent for the free Dirac operator. It turns out that A2

0 corresponds to a shifted,
free Laplace operator in L2(R3;C4). The proof of this result can be found in [82, Cor.
20.2].

Corollary 3.2. Let A0 be the free Dirac operator defined as in (3.3), then the following
characterization of the square of this operator is valid.

dom(A2
0) = H2(R3;C4)

A2
0f = (−c2∆ +m2c4)I4f

Here, the operator on the right side has to be understood in such a way that the
operator −c2∆ +m2c4 acts on every component of f .

Next, we show that a certain matrix-valued function which appears in the derivation
of the integral kernel of the resolvent of the free Dirac operator satisfies the require-
ments of Lemma 2.34. At this point it is necessary to note that in the following the
square root

√
µ of a complex number µ ∈ C is always chosen such that Im{√µ} ≥ 0

applies. In particular, Im{√µ} > 0 is valid for all µ ∈ C \ [0,∞).
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Lemma 3.3. Let λ ∈ ρ(A0) and j ∈ {1, 2, 3} be given and tj : R3 \ {0} → C4×4 be
the matrix-valued function defined by

tj(x) =
∂

∂xj

(
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

))
I4

=

(
i

√
λ2

c2
−m2c2‖x‖ − 1

)
1

4π‖x‖3 exp

(
i

√
λ2

c2
−m2c2‖x‖

)
xjI4

for all x ∈ R3 \ {0}. Then there exist constants κ1, κ2 > 0 independent of x ∈ R3 \ {0}
such that

‖tj(x)‖ ≤ κ1

{
‖x‖−2 , for ‖x‖ < 1

e−κ2‖x‖ , for ‖x‖ ≥ 1

holds true for all x ∈ R3 \ {0}.

Proof. We set

κ2 = Im

{√
λ2

c2
−m2c2

}
and due to the chosen square root κ2 > 0 is valid for all λ ∈ ρ(A0). Since all matrix
norms are equivalent, we choose the Frobenius norm for convenience and obtain

‖tj(x)‖F =
2
√∣∣λ2

c2
−m2c2

∣∣ ‖x‖2 + 1

4π‖x‖3 e−κ2‖x‖ |xj|

≤
2
√∣∣λ2

c2
−m2c2

∣∣ ‖x‖2 + 1

4π‖x‖2 e−κ2‖x‖

(3.4)

for all x ∈ R3 \ {0} by direct calculation. If ‖x‖ < 1 holds true, then it follows from
(3.4) that

‖tj(x)‖F ≤
2
√∣∣λ2

c2
−m2c2

∣∣+ 1

4π‖x‖2 e−κ2‖x‖

≤
2
√∣∣λ2

c2
−m2c2

∣∣+ 1

4π‖x‖2

is valid, while for ‖x‖ ≥ 1 it follows from (3.4) that the estimation

‖tj(x)‖F ≤
2
√∣∣λ2

c2
−m2c2

∣∣+ 1‖x‖

4π‖x‖2 e−κ2‖x‖2

≤
2
√∣∣λ2

c2
−m2c2

∣∣+ 1

4π
e−κ2‖x‖
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applies. Defining

κ1 =
2
√∣∣λ2

c2
−m2c2

∣∣+ 1

4π
immediately leads to the validity of the assertion.

Next, we will discuss the explicit resolvent representation of the free Dirac operator.
Although the proof of the next result can be found in [40, Prop. 3.1.1], we will
present it here as we will apply a similar line of reasoning again in Section 4.2. The
representation of the integral kernel of the resolvent will turn out to be particularly
important for the further considerations in this thesis.

Theorem 3.4. Let A0 be the free Dirac operator defined as in (3.3) and let λ ∈ ρ(A0)
be a given complex number. Then the explicit resolvent representation

(A0 − λ)−1f(x) =

∫
R3

Gλ(x− y)f(y)dy

is valid for all f ∈ L2(R3;C4) and for almost all x ∈ R3. The integral kernel Gλ is the
matrix-valued function

Gλ(x) =(
λ

c2
I4 +mβ +

(
1− i

√
λ2

c2
−m2c2‖x‖

)
i

c‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

)
(3.5)

for all x ∈ R3 \ {0}.

Proof. Step 1: Let λ ∈ ρ(A0) be given. Then according to Corollary 3.2

(A0 − λ)(A0 + λ) = A2
0 − λ2 =

(
−c2∆ +m2c4 − λ2

)
I4 = c2

(
−∆−

(
λ2

c2
−m2c2

))
I4

(3.6)
is valid on dom(A2

0) = H2(R3;C4). Here, the operator on the right side has to be
understood in such a way that the operator −c2∆+m2c4−λ2 acts on every component
of a function f ∈ H2(R3;C4).

Due to the choice of λ it follows with [81, Satz 11.25] that

λ2

c2
−m2c2 /∈ [0,∞) = σ(−∆)

is valid and therefore the resolvent(
−∆−

(
λ2

c2
−m2c2

))−1

: L2(R3;C)→ H2(R3;C)
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exists as linear and bounded operator in L2(R3;C). By defining the diagonal operator

1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4 : L2(R3;C4)→ H2(R3;C4)

we obtain from the representation (3.6) the inverse operator as

((
−c2∆ +m2c4 − λ2

)
I4

)−1
=

1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4

by component-wise consideration. Due to the mapping properties of this operator we
can apply the operator A0 + λ to it and it follows from (3.6) that

(A0 − λ)−1f = (A0 + λ)
1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f (3.7)

is valid for all f ∈ L2(R3;C4). Our next goal is to determine the expression on the
right side to obtain an explicit representation of the resolvent of A0 − λ.

Step 2: A component-wise application of [81, Satz 11.26] leads to the explicit repres-
entation of the resolvent

1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f(x) =

1

c2

∫
R3

1

4π‖x− y‖
exp

(
i

√
λ2

c2
−m2c2‖x− y‖

)
f(y)dy

for all f ∈ L2(R3;C4) and for almost all x ∈ R3. Here the square root has to be chosen
again so that the imaginary part is greater than zero.

If we define the matrix-valued function

τ(x) =
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

)
I4

for all x ∈ R3 \ {0} and the constants

k1 =
1

4π
and k2 = Im

{√
λ2

c2
−m2c2

}
it follows immediately that

‖τ(x)‖ ≤ k1

{
‖x‖−1 , for ‖x‖ < 1

e−k2‖x‖ , for ‖x‖ ≥ 1



3.1 The maximal and free Dirac operator 57

is valid for all x ∈ R3 \ {0}. If ‖x‖ < 1 applies, then obviously ‖x‖−1 < ‖x‖−2 follows
and therefore we conclude from Theorem 2.34 that the integral operator induced by
τ is well-defined and bounded in L2(R3;C4). Furthermore an application of Lemma
2.37 shows the interchangeability of the order of integration∫

R3

∫
R3

τ(x− y)f(y) · g(x)dxdy =

∫
R3

∫
R3

τ(x− y)f(y) · g(x)dydx

for all f, g ∈ L2(R3;C4).

Step 3: Let j ∈ {1, 2, 3} be an arbitrary index, then we define a matrix-valued function
by

tj(x) =
∂

∂xj

(
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

))
I4

=

(
i

√
λ2

c2
−m2c2‖x‖ − 1

)
1

4π‖x‖3 exp

(
i

√
λ2

c2
−m2c2‖x‖

)
xjI4

for all x ∈ R3\{0}. Due to Lemma 3.3 and Theorem 2.34 it follows that the assignment

(Tjf)(x) =

∫
R3

tj(x− y)f(y)dy

for f ∈ L2(R3;C4) and for x ∈ R3 corresponds to a well-defined, linear and bounded
operator Tj : L2(R3;C4) → L2(R3;C4). Furthermore, Lemma 2.37 yields the inter-
changeability of the order of integration∫

R3

∫
R3

tj(x− y)f(y) · g(x)dxdy =

∫
R3

∫
R3

tj(x− y)f(y) · g(x)dydx

for all f, g ∈ L2(R3;C4).
Next, we will investigate the relationship between tj and τ from Step 2. For this

purpose we define the function

d(x) =
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

)

for all x ∈ R3 \ {0} and assume that some arbitrary test function Ψ ∈ D(R3;C) is
given. In the following it will be necessary to transfer a partial derivative ∂jd to the
test function Ψ when performing an integral calculation. It is therefore reasonable to
apply the divergence theorem, but since d is not continuously differentiable due to the
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singularity in x = 0, it cannot be applied directly. A solution to this difficulty can be
provided by a strategy as in [29, Thm. 1 - Page 23].

We choose an arbitrary r > 0 such that supp(Ψ) ⊆ B(0, r) is valid and also an
0 < ε < min {1, r}. With these we define the set Ωε = B(0, r)\B(0, ε) and observe that
both functions are arbitrarily often differentiable on Ωε. A now possible application
of the divergence theorem yields

∫
R3

∂jd(x)Ψ(x)dx

= −
∫
Ωε

d(x)∂jΨ(x)dx+

∫
∂B(0,ε)

d(x)∂jΨ(x)dσ(x) +

∫
B(0,ε)

∂jd(x)Ψ(x)dx (3.8)

due to the choice of r > 0. By direct calculation using spherical coordinates one easily
shows that the second integral on the right side can be estimated by 4πk1‖∂jΨ‖L∞(R3;C)ε
due to the estimate of τ from Step 2, while the third integral can be estimated by
4πκ1‖Ψ‖L∞(R3;C)ε due to the estimate of Lemma 3.3. Thus the last two integrals on
the right side of (3.8) converge to zero for ε → 0. Furthermore, according to the es-
timates of Step 2, we have that f∂jΨ is integrable on R3 and consequently from (3.8)
and an application of the dominated convergence theorem∫

R3

∂jd(x)Ψ(x)dx = − lim
ε→0

∫
Ωε

d(x)∂jΨ(x)dx = −
∫
R3

d(x)∂jΨ(x)dx

follows. Applying this reasoning component-wise leads to the integration by parts
formula ∫

R3

tj(x− y)Ψ(x)dx = −
∫
R3

τ(x− y)∂jΨ(x)dx

for all test functions Ψ ∈ D(R3;C4) and for all y ∈ R3.

Step 4: Let f ∈ L2(R3;C4) and Ψ ∈ D(R3;C4) be given, then it follows from the
mapping properties of the resolvent of the Laplace operator that

1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f ∈ H2(R3;C4)

applies and thus the weak derivatives of this expression exist. Applying the results
from Steps 2 and 3 regarding the interchangeability of the order of integration and the
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integration by parts formula, we obtain

(Tjf,Ψ)L2(R3;C4) =

∫
R3

∫
R3

tj(x− y)f(y) ·Ψ(x)dydx

=

∫
R3

f(y) ·
∫
R3

tj(x− y)Ψ(x)dxdy

= −
∫
R3

f(y) ·
∫
R3

τ(x− y)∂jΨ(x)dxdy

= −
∫
R3

∫
R3

τ(x− y)f(y) · ∂jΨ(x)dydx

= −

((
−∆−

(
λ2

c2
−m2c2

))−1

I4f, ∂jΨ

)
L2(R3;C4)

by direct calculation. Since this is valid for all test functions the explicit representation

∂

∂xj

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f = Tjf

for the weak derivative follows for all f ∈ L2(R3;C4).

Step 5: Let f ∈ L2(R3;C4) be a given function and Gλ be the matrix-valued function
defined above. With the result of Step 4 we obtain for the resolvent (3.7) the explicit
representation

(A0 − λ)−1f(x) = (A0 + λ)
1

c2

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f(x)

=
1

c2
(−icα · ∇+mc2β + λI4)

(
−∆−

(
λ2

c2
−m2c2

))−1

I4f(x)

=
1

c2

(
−ic

3∑
j=1

αjTj + (mc2β + λI4)

(
−∆−

(
λ2

c2
−m2c2

))−1

I4

)
f(x)

=
1

c2

∫
R3

(
−ic

3∑
j=1

αjtj(x− y) + (mc2β + λI4)τ(x− y)

)
f(y)dy

=

∫
R3

Gλ(x− y)f(y)dy

for almost all x ∈ R3 by direct calculation.
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Next, we will define a maximal operator and a restriction of it, which will be of
particular importance in the construction of a quasi boundary triple for the Dirac
operator. For this purpose it will be necessary to consider functions that do not
possess the Sobolev regularity H1 on the whole of R3.

In this section we assume that a bounded C2-domain Ω ⊆ R3 according to Definition
2.26 with boundary Σ = ∂Ω is given. Based on this, we define the two sets Ω+ = Ω
and Ω− = R3 \ Ω and thus obtain two C2-domains that satisfy R3 = Ω+ ∪̇ Σ ∪̇ Ω−.

As discussed in Section 2.6, we use the decomposition

L2(R3;C4) ∼= L2(Ω+;C4)⊕ L2(Ω−;C4)

resulting from the isometric isomorphism ι : L2(R3;C4) → L2(Ω+;C4) ⊕ L2(Ω−;C4).
Furthermore, we identify an operator T in L2(Ω+;C4)⊕L2(Ω−;C4) with the operator
ι−1Tι in L2(R3;C4), since all properties of T are carried over to ι−1Tι and vice versa. In
the following we will switch back and forth between these two representations without
explicitly mentioning this. In particular, we denote both operators by T and a similar
convention is used for elements in their domain of definition.

Similar to the definition of the free Dirac operator, we define another realization of
the formal differential expression (3.1) and define this operator on the space of test
functions by the assignment

dom(AD) = D(Ω+;C4)⊕D(Ω−;C4) ∼= D(R3 \ Σ;C4)

ADf = (−ic(α · ∇) +mc2β)f+ ⊕ (−ic(α · ∇) +mc2β)f−.

Due to the identification of operators mentioned above we finally obtain a linear op-
erator in L2(R3;C4). This operator is densely defined, since D(Ω+;C4) ⊕ D(Ω−;C4)
is dense in L2(Ω+;C4) ⊕ L2(Ω−;C4). Furthermore, by a zero extension we obtain
ι−1 (dom(AD)) ⊆ D(R3;C4) and therefore

dom(AD) ⊆ D(R3;C4) ⊆ dom(A0)

and AD ⊆ A0 are valid respectively. Thus AD is itself closable due to the closeness of
A0.

In view of Theorem 3.1 in which we obtained the free Dirac operator A0 by closing
TD we will also in this case close the operator AD. We have already shown that this
is possible and we will characterize this closure in more detail in the next lemma. It
will be shown that the domain of definition of the closure contains all functions of
H1(R3;C4), which vanish on the C2-surface Σ in the sense of trace operators.

Lemma 3.5. The closure S = AD is a linear, densely defined and symmetric operator
in L2(R3;C4) and the following explicit representation applies

dom(S) = H1
0 (Ω+;C4)⊕H1

0 (Ω−;C4) ∼= H1
0 (R3 \ Σ;C4)

Sf = (−ic(α · ∇) +mc2β)f+ ⊕ (−ic(α · ∇) +mc2β)f−.
(3.9)
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Proof. Since AD is densely defined we immediately obtain that S is a densely defined
operator as well. Furthermore, it follows from the closeness of A0 and from the inclu-
sion AD ⊆ A0 that also S ⊆ A0 applies to the closure. Finally, we conclude from this
inclusion, the self-adjointness of A0 and Theorem 2.10

S ⊆ A0 = A∗0 ⊆ S∗

which shows the symmetry of S.
Next, we show the claimed property of the domain of S and, as agreed, we omit

the isomorphisms ι and ι−1 in the following to simplify the notation. Let f ∈ dom(S)
be given, then it follows immediately from S ⊆ A0 that f ∈ H1(R3;C4) holds true.
Furthermore, the definition of S as the closure of AD implies the existence of a sequence
(fn)n∈N ⊆ D(R3;C4) with supp(fn) ⊆ Ω+ ∪ Ω− such that fn → f and ADfn → Sf in
L2(R3;C4) are valid. Due to the inclusions AD ⊆ S ⊆ A0 this is equivalent to

‖fn − f‖L2(R3;C4) + ‖A0fn − A0f‖L2(R3;C4) = ‖fn − f‖A0
→ 0 for n→∞

with the graph norm of A0. According to Theorem 3.1, this norm is equivalent to the
H1-norm and therefore we obtain fn → f inH1(R3;C4). If we now consider restrictions
to Ω± then it follows that fn,± → f± in H1(Ω±;C4) is valid. The choice of the sequence
(fn)n∈N yields (fn,±)n∈N ⊆ D(Ω±;C4) and thus by definition f± ∈ H1

0 (Ω±;C4). This
shows f ∈ H1

0 (Ω+;C4)⊕H1
0 (Ω−;C4) and consequently the first inclusion.

For the converse inclusion let f ∈ H1
0 (Ω+;C4)⊕H1

0 (Ω−;C4) be given, then it follows
from Theorem 2.32 that f ∈ H1(R3;C4) = dom(A0) is valid. Furthermore, by defini-
tion of H1

0 (Ω±;C4), there exist sequences (fn,±)n∈N ⊆ D(Ω±;C4) such that fn,± → f±
in H1(Ω±;C4) holds true. In particular, this implies fn → f in H1(R3;C4). Due to
the continuous embedding H1(R3;C4) ↪→L2(R3;C4), we therefore obtain fn → f and
ADfn = A0fn → A0f in L2(R3;C4). This shows with the definition of the closure of
an operator f ∈ dom(S) and Sf = A0f which completes the proof.

Next, we will define a maximal operator and for this purpose we have to con-
struct specific subspaces of L2(Ω±;C4). We define these as the sets of all functions of
L2(Ω±;C4) such that the distributional application of the formal differential expression
(3.1) is a regular distribution in L2(Ω±;C4)

D± =
{
f± ∈ L2(Ω±;C4)

∣∣∣ (−ic(α · ∇) +mc2)f± ∈ L2(Ω±;C4)
}
.

Since the distributional derivative is a linear operation, it immediately follows that
the sets D± are vector spaces. Furthermore, we define an inner product on D± by the
assignment

(f±, g±)D± = (f±, g±)L2(Ω±;C4)+
(
(−ic(α · ∇) +mc2)f±, (−ic(α · ∇) +mc2)g±

)
L2(Ω±;C4)

(3.10)
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for f±, g± ∈ D± and thus obtain pre-Hilbert spaces. This allows us to define the
maximal operator as

dom(Amax) = D+ ⊕D−
Amaxf = (−ic(α · ∇) +mc2β)f+ ⊕ (−ic(α · ∇) +mc2β)f−.

From the definition of Amax it follows immediately that A0 ⊆ Amax holds true and thus
the maximal operator is an extension of the free Dirac operator. Next we will be able
to characterize the adjoint of the operator S of Lemma 3.5 as the maximal operator
Amax. This will be important for constructing a quasi boundary triple for the Dirac
operator in the next section.

Lemma 3.6. Let S be the linear operator defined as in (3.9), then S ⊆ Amax and
S∗ = Amax are valid.

Proof. Step 1: By definition, the chain of inclusion

AD ⊆ S ⊆ A0 ⊆ Amax

applies and thus the first assertion. Furthermore, the adjoint operator S∗ exists since
S is a densely defined linear operator.

Let f ∈ dom(S∗) and g+ ∈ D(Ω+;C4) be given, then we consider the zero extension
g = g+ ⊕ 0 ∈ dom(S) of g+ to all of R3. For this extension, ∂αg ∈ D(R3;C4) and
supp(∂αg) ⊆ Ω+ are valid for all multi-indices α ∈ N3

0 and consequently g ∈ dom(AD).
This yields supp(Sg) = supp(ADg) ⊆ Ω+ and further

〈(S∗f)+, g+〉 = ((S∗f)+, g+)L2(Ω+;C4) = (S∗f, g)L2(R3;C4) = (f, Sg)L2(R3;C4)

= (f+, (Sg)+)L2(Ω+;C4) =
(
f+, (−ic(α · ∇) +mc2β)g+

)
L2(Ω+;C4)

=
〈
(−ic(α · ∇) +mc2β)f+, g+

〉
where in the last line the definition of the distributional derivative of a regular distri-
bution was used. Since this is valid for all g+ ∈ D(Ω+;C4)

(−ic(α · ∇) +mc2β)f+ = (S∗f)+ ∈ L2(Ω+;C4) (3.11)

follows in the sense of distributions. This finally leads to f+ ∈ D+ and an analogous
lines of reasoning gives f− ∈ D−. Altogether we obtain f ∈ dom(Amax) and with
(3.11) the equality S∗f = Amaxf . This yields the first inclusion S∗ ⊆ Amax.

Step 2: In order to show the converse inclusion, let f ∈ D+ ⊕D− be given. As a first
step we choose an arbitrary g ∈ D(Ω+;C4) ⊕ D(Ω−;C4) and obtain g+ ∈ D(Ω+;C4)
for its restriction to Ω+. Therefore

(f+, (Sg)+)L2(Ω+;C4) =
(
f+, (−ic(α · ∇) +mc2β)g+

)
L2(Ω+;C4)

=
〈
(−ic(α · ∇) +mc2β)f+, g+

〉
=
(
(−ic(α · ∇) +mc2β)f+, g+

)
L2(Ω+;C4)

= ((Amaxf)+, g+)L2(Ω+;C4)
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follows, where in the second line the definition of the derivative of a regular distribution
was used. Analogously one shows

(f−, (Sg)−)L2(Ω−;C4) = ((Amaxf)−, g−)L2(Ω−;C4)

and an addition of these two relations finally leads to

(f, Sg)L2(R3;C4) = (Amaxf, g)L2(R3;C4) (3.12)

for all g ∈ D(Ω+;C4)⊕D(Ω−;C4).
Next, we are going to extend this result for test functions to all of dom(S). Let

g ∈ dom(S) be given, then due to the density of D(Ω±;C4) in H1
0 (Ω±;C4) there

exist sequences (gn,±)n∈N ⊆ D(Ω±;C4) such that gn,± → g± in H1(Ω±;C4) is valid.
In particular, this implies gn → g in H1(R3;C4). Due to the continuous embedding
H1(R3;C4) ↪→L2(R3;C4), we therefore obtain gn → g and Sgn → Sg in L2(R3;C4).
Using (3.12) , this leads to

(f, Sg)L2(R3;C4) = lim
n→∞

(f, Sgn)L2(R3;C4)

= lim
n→∞

(Amaxf, gn)L2(R3;C4) = (Amaxf, g)L2(R3;C4)

which proves f ∈ dom(S∗) and S∗f = Amaxf . We therefore obtain the inclusion
Amax ⊆ S∗ and with Step 1 finally S∗ = Amax which completes the proof.

We close this section with an auxiliary result which shows the density of the arbit-
rarily often differentiable functions in D±. This is equivalent to them forming a core
of the maximal operator. The proof of this result can be found in [14, Lem. 3.2].

Lemma 3.7. Space C∞(Ω±;C4) is dense in D± with respect to the norm induced by
the inner product (3.10).

3.2 A quasi boundary triple for the Dirac operator

and δ-shell interactions

In this section we will construct a quasi boundary triple for the Dirac operator and,
as discussed in Chapter 1, we will encode the effect of the δ-shell interactions in form
of jump conditions at the boundary Σ of the bounded C2-domain Ω ⊆ R3. This
will enable us to define self-adjoint realizations Aη,τ of the formal expression (1.10) of
Chapter 1. We follow the approach described in [14] and [40] and carry out proofs of
the results to provide a self-contained presentation.

In the following, as in Chapter 3.1, Ω ⊆ R3 is always a bounded C2-domain according
to Definition 2.26 with boundary Σ = ∂Ω. We define Ω+ = Ω and Ω− = R3 \ Ω
and thereby obtain two C2-domains which satisfy R3 = Ω+ ∪̇ Σ ∪̇ Ω−. Furthermore,
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we use the decomposition L2(R3;C4) ∼= L2(Ω+;C4) ⊕ L2(Ω−;C4) and an analogous
decomposition of operators as described in Sections 2.6 and 3.1 without explicitly
mentioning the isomorphism ι.

For the definition of a quasi boundary triple for S∗ of Section 3.1 it is necessary to
specify a closable operator T with S ⊆ T ⊆ S∗ and two boundary maps Γ0 and Γ1.
Due to Lemma 3.6, S∗ = Amax applies and consequently T ⊆ Amax has to apply as
well. We therefore define the linear operator T = Amax � H1(Ω+;C4) ⊕ H1(Ω−;C4)
in L2(R3;C4) as a restriction of the maximal operator. For this operator, the explicit
representation

dom(T ) = H1(Ω+;C4)⊕H1(Ω−;C4) ∼= H1(R3 \ Σ;C4)

Tf = Amaxf = (−icα · ∇+mc2β)f+ ⊕ (−icα · ∇+mc2β)f−

is valid and we therefore immediately obtain the chain of inclusions

S ⊆ A0 ⊆ T ⊆ Amax = S∗.

To define the boundary maps we assume that an arbitrary f ∈ dom(T ) is given

and obtain τ±f± ∈ H
1
2 (Γ;C4) ⊆ L2(Σ;C4) from the mapping properties of the trace

operators according to Theorem 2.30. Furthermore, with the outer unit normal vector
field ν on Σ and Theorem 2.32 we find νjτ±f± ∈ H

1
2 (Γ;C4) ⊆ L2(Σ;C4) for all

j ∈ {1, 2, 3}. Therefore, the boundary maps Γ0,Γ1 : dom(T )→ L2(Σ;C4), defined by

Γ0f = ic(α · ν)(τ+f+ − τ−f−)

and

Γ1f =
1

2
(τ+f+ + τ−f−)

for all f ∈ dom(T ) are well-defined and linear operators from dom(T ) ∼= H1(R3\Σ;C4)
to L2(Σ;C4) which satisfy the range condition

ran(Γ0,Γ1)> ⊆ H
1
2 (Γ;C4)×H

1
2 (Γ;C4).

The reason for this specific choice of the boundary maps will become apparent in the
discussion of δ-interactions below. In the next result we will show that the triple
{L2(Σ;C4),Γ0,Γ1} together with the operator T is a quasi boundary triple for S∗.

Theorem 3.8. The triple {L2(Σ;C4),Γ0,Γ1} is a quasi boundary triple for S∗ and
satisfies the range condition

ran(Γ0,Γ1)> = H
1
2 (Γ;C4)×H

1
2 (Γ;C4).

Furthermore, there holds
T �ker(Γ0) = A0

with the free Dirac operator A0 from Theorem 3.1.
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Proof. Step 1: Due to the definition of T as a restriction of the closed operator Amax,
it follows immediately that T is closable and the inclusion

T ⊆ Amax = S∗

applies to its closure. To show the converse inclusion let f ∈ dom(Amax) = D+ ⊕D−
be given. Since C∞(Ω+;C4)⊕ C∞(Ω−;C4) is dense in D+ ⊕D− according to Lemma
3.7, there exists a sequence (fn)n∈N ⊆ C∞(Ω+;C4)⊕ C∞(Ω−;C4) such that

‖fn − f‖Amax
= ‖fn − f‖D+⊕D− → 0 for n→∞ (3.13)

holds true. As a consequence of the inclusion

C∞(Ω+;C4)⊕ C∞(Ω−;C4) ⊆ H1(Ω+;C4)⊕H1(Ω−;C4) = dom(T )

and due to (3.13) we find that (fn)n∈N is a sequence in dom(T ) for which fn → f and
Tfn = Amaxfn → Amaxf in L2(R3;C4) are valid. Therefore, we obtain f ∈ dom(T )
and Tf = Amaxf by the definition of the closure of an operator. This shows the
inclusion

Amax ⊆ T

and with the above consideration, the equality S∗ = T follows.

Step 2: Let ν = ν+ = −ν− be the outer unit normal vector field on Σ. An application
of Theorem 2.31 yields by direct calculation(

(−icα · ∇+mc2β)f±, g±
)
L2(Ω±;C4)

−
(
f±, (−icα · ∇+mc2β)g±

)
L2(Ω±;C4)

= ±(−ic(α · ν)τ±f±, τ±g±)L2(Σ;C4)

for all f, g ∈ dom(T ). By adding these two equations and using the hermiticity of the
Dirac matrices, the abstract Green’s identity

(Γ1f,Γ0g)L2(Σ;C4) − (Γ0f,Γ1g)L2(Σ;C4)

=

(
1

2
(τ+f+ + τ−f−), ic(α · ν)(τ+g+ − τ−g−)

)
L2(Σ;C4)

−
(
ic(α · ν)(τ+f+ − τ−f−),

1

2
(τ+g+ + τ−g−)

)
L2(Σ;C4)

= −
(
ic(α · ν)(τ+f+ + τ−f−),

1

2
(τ+g+ − τ−g−)

)
L2(Σ;C4)

−
(
ic(α · ν)(τ+f+ − τ−f−),

1

2
(τ+g+ + τ−g−)

)
L2(Σ;C4)

= (−ic(α · ν)τ+f+, τ+g+)L2(Σ;C4) − (−ic(α · ν)τ−f−, τ−g−)L2(Σ;C4)

= (Tf, g)L2(R3;C4) − (f, Tg)L2(R3;C4)
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for all f, g ∈ dom(T ) follows.

Step 3: Next, we will show the range condition of the mapping

(Γ0,Γ1)> : dom(T )→ L2(Σ;C4)× L2(Σ;C4)

and assume that arbitrary functions ϕ, ψ ∈ H 1
2 (Γ;C4) are given. According to The-

orem 2.32 we have i(α · ν)ϕ ∈ H 1
2 (Γ;C4) and therefore due to the surjectivity of the

trace operators τ± there exist g+, h+ ∈ H1(Ω+;C4) and h− ∈ H1(Ω−;C4) such that

τ+g+ = − i
c
(α · ν)ϕ

and

τ±h± = ψ − 1

2
τ+g+ (3.14)

hold true. We define h = h+ ⊕ h− ∈ H1(Ω+;C4) ⊕ H1(Ω−;C4) and by using (3.14)
and Theorem 2.32 we obtain that even h ∈ H1(R3;C4) is valid. Next, we define

f = g+ ⊕ 0 + h ∈ H1(Ω+;C4)⊕H1(Ω−;C4) = dom(T )

and by applying the relation (3.2) of the Dirac matrices and due to the choice of g+

and h we find

Γ0f = ic(α · ν)(τ+f+ − τ−f−) = ic(α · ν)(τ+g+ + τ+h+ − τ−h−)

= ic(α · ν)τ+g+ = (α · ν)2ϕ = ϕ

and

Γ1f =
1

2
(τ+f+ + τ−f−) =

1

2
(τ+g+ + τ+h+ + τ−h−) = ψ

which shows the claimed range condition. Furthermore, due to Theorem 2.32, the
space H

1
2 (Γ;C4) is dense in L2(Γ;C4) and consequently the mapping (Γ0,Γ1)> has

dense range.

Step 4: To complete the proof it remains to show that the restriction of T to ker(Γ0)
is a self-adjoint operator in L2(R3;C4). For this purpose we assume that an arbitrary
f ∈ dom(T ) is given. From (α ·ν)2 = I4 and Theorem 2.32 it immediately follows that
the equivalence

f ∈ ker(Γ0) ⇐⇒ Γ0f = ic(α · ν)(τ+f+ − τ−f−) = 0

⇐⇒ τ+f+ = τ−f−

⇐⇒ f ∈ H1(R3;C4)

applies. This finally leads to

ker(Γ0) = H1(R3;C4) = dom(A0)
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and further to the equality
T �ker(Γ0) = A0

in the sense of linear operators. As A0 is a self-adjoint operator in L2(R3;C4) according
to Theorem 3.1 we conclude with the previous steps that {L2(Σ;C4),Γ0,Γ1} is a quasi
boundary triple for S∗ in the sense of Definition 2.16.

Next, it is our objective to determine the γ-field and the Weyl function of the quasi
boundary triple {L2(Σ;C4),Γ0,Γ1} in Theorem 3.8. For this purpose, we introduce
two families of linear and bounded operators, which are integral operators resulting
from the Green’s function Gλ of the free Dirac operator. It will turn out that, after
being restricted to certain subspaces, they correspond to the values of the γ-field and
the Weyl function of the above quasi boundary triple. This will be shown in Theorem
3.11.

Theorem 3.9. Let λ ∈ ρ(A0) be given and Gλ be the integral kernel of the resolvent
of the free Dirac operator defined as in (3.5), then the following statements are true.

i) The assignment

(Φλf)(x) =

∫
Σ

Gλ(x− y)f(y)dσ(y) (3.15)

for f ∈ L2(Σ;C4) and x ∈ R3 corresponds to a well-defined, linear and bounded
operator Φλ : L2(Σ;C4)→ L2(R3;C4).

ii) The adjoint operator of Φλ is given by

(Φ∗λf)(x) =

∫
R3

Gλ(x− y)f(y)dy (3.16)

for all f ∈ L2(R3;C4) and for almost all x ∈ Σ and is a linear and bounded
operator Φ∗λ : L2(R3;C4)→ L2(Σ;C4) as well.

iii) The assignment

(Cλf)(x) = lim
ε→0+

∫
Σ\B(x,ε)

Gλ(x− y)f(y)dσ(y) (3.17)

for f ∈ L2(Σ;C4) and x ∈ Σ corresponds to a well-defined, linear and bounded
operator Cλ : L2(Σ;C4)→ L2(Σ;C4).
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Proof. Proof of i) and ii): Since all operators are integral operators, we are going to
apply the results from Section 2.6. For this we need estimates of the integral kernels.
To prove the first two assertions we use the matrix-valued functions

tj(x) =

(
i

√
λ2

c2
−m2c2‖x‖ − 1

)
1

4π‖x‖3 exp

(
i

√
λ2

c2
−m2c2‖x‖

)
xjI4

of Lemma 3.3 and

τ(x) =
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

)
I4

of Theorem 3.4 for all x ∈ R3\{0}. By using these functions we obtain a decomposition
of the form

Gλ(x) =
1

c2

(
−ic

4∑
j=1

αjtj(x) + (mc2β + λI4)τ(x)

)

with the Green’s function Gλ of the free Dirac operator defined as in (3.5). Further-
more, due to the estimates for tj and τ from Lemma 3.3 and Theorem 3.4 Step 2
respectively, we obtain the inequality

‖Gλ(x)‖ ≤ κ1

{
‖x‖−2 , for ‖x‖ < 1

e−κ2‖x‖ , for ‖x‖ ≥ 1
(3.18)

for all x ∈ R3\{0} and sufficiently large c > 0 with constants κ1, κ2 > 0. An application
of Theorem 2.35 yields with (3.18) the assertion for Φλ and that the assignment

(Tf)(x) =

∫
R3

Gλ(x− y)f(y)dy

for f ∈ L2(R3;C4) and x ∈ Σ corresponds to a well-defined, linear and bounded oper-
ator T : L2(R3;C4) → L2(Σ;C4). Furthermore, it can be shown by direct calculation
that for all λ ∈ ρ(A0) and for all x ∈ R3 \ {0} the equality

−Gλ(x) = Gλ(x)∗

applies. Since Φλ is a everywhere defined and bounded operator it follows from The-
orem 2.10 that Φ∗λ ∈ L(L2(R3;C4), L2(Σ;C4)) holds true. Let f ∈ L2(R3;C4) and
g ∈ L2(Σ;C4) be given then, by Lemma 2.37, it follows from Fubini’s theorem and the
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hermiticity of the Dirac matrices that

(g,Φ∗λf)L2(Σ;C4) = (Φλg, f)L2(R3;C4) =

∫
R3

∫
Σ

Gλ(x− y)g(y) · f(x)dσ(y)dx

=

∫
Σ

∫
R3

g(y) ·Gλ(x− y)f(x)dxdσ(y)

=

∫
Σ

∫
R3

g(y) ·Gλ(y − x)f(x)dxdσ(y) = (g, Tf)L2(Σ;C4)

is valid. Since this is true for all f ∈ L2(R3;C4) and g ∈ L2(Σ;C4) we finally obtain
T = Φ∗λ in the sense of operators which proves the assertion ii).

Proof of iii): To investigate Cλ we define the matrix-valued functions

w1(x) =

(
λ

c2
I4 +mβ +

√
λ2

c2
−m2c2

1

c‖x‖
α · x

)
1

4π‖x‖
exp

(
i

√
λ2

c2
−m2c2‖x‖

)
,

w2(x) =
i

4πc‖x‖3α · x

(
exp

(
i

√
λ2

c2
−m2c2‖x‖

)
− 1

)
,

w3(x) =
i

4πc‖x‖3α · x

for all x ∈ R3 \ {0} and thus obtain by direct calculation the decomposition

Gλ(x) = w1(x) + w2(x) + w3(x).

Since all matrix norms are equivalent, we use the Frobenius norm for convenience and
obtain for w1 the estimate

‖w1(x)‖F ≤
1

4π‖x‖

(
2
|λ|
c2

+ 2m+

∣∣∣∣∣
√
λ2

c2
−m2c2

∣∣∣∣∣ 1

c‖x‖

3∑
j=1

‖αj‖F |xj|

)

≤ 1

4π‖x‖

(
2
|λ|
c2

+ 2m+

∣∣∣∣∣
√
λ2

c2
−m2c2

∣∣∣∣∣ 1

c

3∑
j=1

‖αj‖F

)

for all x ∈ R3 \ {0}. Therefore, according to the Theorem 2.36 the assignment

(T1f)(x) =

∫
Σ

w1(x− y)f(y)dσ(y)
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for f ∈ L2(Σ;C4) and x ∈ Σ corresponds to a well-defined, linear and bounded
operator in L2(Σ;C4). Since the integral kernel w1 is integrable over Σ due to the
above estimation and [10, Lem. A.2], we obtain∫

Σ

∫
Σ

‖w1(x− y)f(y)‖dσ(y)dσ(x) <∞

as in Lemma 2.37 by choosing g ≡ 1. This yields∫
Σ

‖w1(x− y)f(y)‖dσ(y) <∞

for almost all x ∈ Σ. By applying the dominated convergence theorem we therefore
find

(T1f)(x) = lim
ε→0+

∫
Σ\B(x,ε)

w1(x− y)f(y)dσ(y)

for all f ∈ L2(Σ;C4) and for almost all x ∈ Σ.
In order to analyze w2 we use the fundamental theorem of calculus and find∣∣∣∣∣exp

(
i

√
λ2

c2
−m2c2‖x‖

)
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
1∫

0

d

dt
exp

(
it

√
λ2

c2
−m2c2‖x‖

)
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣i
√
λ2

c2
−m2c2‖x‖

1∫
0

exp

(
it

√
λ2

c2
−m2c2‖x‖

)
dt

∣∣∣∣∣∣
≤

∣∣∣∣∣
√
λ2

c2
−m2c2

∣∣∣∣∣ ‖x‖
1∫

0

∣∣∣∣∣exp

(
it

√
λ2

c2
−m2c2‖x‖

)∣∣∣∣∣ dt
≤

∣∣∣∣∣
√
λ2

c2
−m2c2

∣∣∣∣∣ ‖x‖
and furthermore

‖w2(x)‖F =
1

4πc‖x‖3

∣∣∣∣∣exp

(
i

√
λ2

c2
−m2c2‖x‖

)
− 1

∣∣∣∣∣
3∑
j=1

‖αj‖F |xi|

≤ 1

4πc‖x‖

∣∣∣∣∣
√
λ2

c2
−m2c2

∣∣∣∣∣
3∑
j=1

‖αj‖F

for all x ∈ R3 \ {0}. With an analogous line of reasoning as for w1 we are able to
conclude that the assignment

(T2f)(x) = lim
ε→0+

∫
Σ\B(x,ε)

w2(x− y)f(y)dσ(y)
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for all f ∈ L2(Σ;C4) and almost all x ∈ Σ corresponds to a well-defined, linear and
bounded operator in L2(Σ;C4) as well.

Finally, by a component-wise application of Theorem 2.38 we obtain that also

(T3f)(x) = lim
ε→0+

∫
Σ\B(x,ε)

w3(x− y)f(y)dσ(y)

for f ∈ L2(Σ;C4) and x ∈ Σ corresponds to a well-defined, linear and bounded
operator in L2(Σ;C4). Consequently, by using the results concerning T1 and T2, we
obtain that

Cλ = T1 + T2 + T3

is a well-defined, linear and bounded operator in L2(Σ;C4), which proves the assertion
iii).

The next result is a collection of useful properties of the operators Φλ and Cλ. The
proof of item i) can be found in [7, Lem. 2.2] for λ = 0 and also the general case
λ ∈ ρ(A0) can be shown in a similar manner. Items ii) and iii) follow from the results
[40, Prop. 3.2.4] and [40, Prop. 4.1.4] and the compact embeddings

H
1
2 (Σ;C4) ↪→L2(Σ;C4) ↪→H−

1
2 (Σ;C4)

according to Theorem 2.29.

Theorem 3.10. Let λ ∈ ρ(A0) be given and Φλ and Cλ be the linear and bounded
operators defined as in (3.15) and (3.17), then the following statements are true.

i) The non-tangential limits

(C±f)(x) = lim
Ω±3y→x

(Φλf)(y)

exist for all f ∈ L2(Σ;C4) and for almost all x ∈ Σ. Furthermore, the relationship

C±f = Cλf ∓
i

2c
(α · ν)f

with the outer unit normal vector field ν on Σ applies.

ii) The operator
Cλβ + βCλ : L2(Σ;C4)→ L2(Σ;C4)

is compact and the range condition

ran(Cλβ + βCλ) ⊆ H
1
2 (Σ;C4)

applies.
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iii) The operator

(Cλ)2 − 1

4c2
I : L2(Σ;C4)→ L2(Σ;C4)

is compact and the range condition

ran

(
(Cλ)2 − 1

4c2
I

)
⊆ H

1
2 (Σ;C4).

applies.

Based on the results of Theorem 3.9 and Theorem 3.10 we are now able to show an
explicit representation of the values of the γ-field and the Weyl function of the quasi
boundary triple in Theorem 3.8.

Theorem 3.11. Let λ ∈ ρ(A0) be given and Φλ and Cλ be the linear and bounded oper-
ators defined as in (3.15) and (3.17), then for the quasi boundary triple {L2(Σ;C4),Γ0,Γ1}
in Theorem 3.8 the following statements are true.

i) The values of the γ-field are densely defined and bounded operators from L2(Σ;C4)

to L2(R3;C4) with dom(γ(λ)) = H
1
2 (Σ;C4). Furthermore, γ(λ) = Φλ �H

1
2 (Σ;C4)

is valid and therefore γ(λ) is a closable operator with γ(λ) = Φλ. In particular,
the explicit representation

(γ(λ)f)(x) =

∫
Σ

Gλ(x− y)f(y)dσ(y)

for all f ∈ H 1
2 (Σ;C4) and for almost all x ∈ R3 applies.

ii) γ(λ) as an operator from H
1
2 (Σ;C4) to H1(R3 \Σ;C4) is everywhere defined and

bounded.

iii) The values of the Weyl function are densely defined and bounded operators in

L2(Σ;C4) with dom(M(λ)) = H
1
2 (Σ;C4). Furthermore, M(λ) = Cλ �H

1
2 (Σ;C4)

is valid and therefore M(λ) is a closable operator with M(λ) = Cλ. In particular,
the explicit representation

(M(λ)f)(x) = lim
ε→0+

∫
Σ\B(x,ε)

Gλ(x− y)f(y)dσ(y)

for all f ∈ L2(Σ;C4) and for almost all x ∈ Σ applies.

iv) M(λ) as an operator in H
1
2 (Σ;C4) is everywhere defined and bounded.
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Proof. Step 1: Theorem 2.18 and Theorem 3.8 immediately imply

dom(γ(λ)) = ran(Γ0) = H
1
2 (Σ;C4)

and

ran(γ(λ)) = ker(T − λ) ⊆ dom(T ) = H1(Ω+;C4)⊕H1(Ω−;C4) ∼= H1(R3 \ Σ;C4)

which show the mapping properties of γ(λ) of i) and ii) and its dense definition.
Furthermore, according to Theorem 2.18 the representation

γ(λ)∗ = Γ1

(
A0 − λ

)−1

follows and γ(λ)∗ ∈ L(L2(R3;C4), L2(Σ;C4)) applies.
To derive an explicit representation for γ(λ) we use a strategy as in [6, Lem. 2.10]

and assume that arbitrary functions f ∈ L2(R3;C4) and g ∈ L2(Σ;C4) are given. For
any ε > 0 we define the bounded sets

Ωε =
{
x ∈ R3

∣∣∣ ‖x‖ < 1

ε
and dist(x,Σ) > ε

}
with the distance function dist(·,Σ) of a point in R3 to the boundary Σ. Based on the
estimate (3.18) of Theorem 3.9 we obtain

‖Gλ(x− y)‖ ≤ κ1max

{
1

ε2
, e−κ2ε

}
(3.19)

for all x ∈ Σ and all y ∈ Ωε. As a result of the boundedness of Ωε

fε = χΩεf ∈ L1(R3;C3) ∩ L2(R3;C4) (3.20)

follows and we obtain fε → f in L2(R3;C4) for ε→ 0 due to the dominated convergence
theorem.

By using (3.19) and (3.20) and the dominated convergence theorem we obtain
with the resolvent representation of Theorem 3.4 that the non-tangential limits of
(A0 − λ)−1 fε exist almost everywhere on Σ and are given by

(L (A0 − λ)−1 fε)(x) =

∫
Ωε

Gλ(x− y)f(y)dy (3.21)

for almost all x ∈ Σ. Since (A0 − λ)−1 fε ∈ H1(R3;C4) applies, we deduce from
Lemma 2.33 that the non-tangential limits (3.21) coincide with the values of the trace
operators τ± of the functions

(
(A0 − λ)−1 fε

)
�Ω± and therefore

(γ(λ)∗fε)(x) =
(

Γ1

(
A0 − λ

)−1
fε

)
(x) =

∫
Ωε

Gλ(x− y)f(y)dy (3.22)
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is valid for almost all x ∈ Σ. Using Fubini’s theorem as in Lemma 2.37 and (3.22) the
equality

(Φλg, fε)L2(R3;C4) =

∫
Ωε

∫
Σ

Gλ(x− y)g(x) · f(y)dσ(x)dy

=

∫
Σ

∫
Ωε

g(x) ·Gλ(x− y)f(y)dydσ(x)

= (g, γ(λ)∗fε)L2(Σ;C4)

follows. Consequently, from the boundedness of γ(λ)∗ we deduce

(g,Φ∗λf)L2(Σ;C4) = (Φλg, f)L2(R3;C4) = lim
ε→0

(Φλg, fε)L2(R3;C4)

= lim
ε→0

(g, γ(λ)∗fε)L2(Σ;C4) = (g, γ(λ)∗f)L2(Σ;C4)

and since this is true for all f ∈ L2(R3;C4) and all g ∈ L2(Σ;C4) we find the equality
Φ∗λ = γ(λ)∗ in the sense of linear operators. With Theorem 2.10 and the boundedness
of Φλ we finally obtain

γ(λ) ⊆ γ(λ) = γ(λ)∗∗ = Φ∗∗λ = Φλ

which shows the claimed representation from i), the boundedness of γ(λ) and the
statement about its closure.

Step 2: We will show that γ(λ) is closed as an operator from H
1
2 (Σ;C4) to

H1(R3 \ Σ;C4). Then the boundedness follows from the closed graph theorem. For

this purpose let (fn)n∈N ⊆ H
1
2 (Σ;C4) be a sequence such that fn → f ∈ H 1

2 (Σ;C4) in

H
1
2 (Σ;C4) and γ(λ)fn → g ∈ H1(R3 \Σ;C4) in H1(R3 \Σ;C4). Since the embedding

H
1
2 (Σ;C4) ↪→L2(Σ;C4) is compact according to Theorem 2.29 there exists a constant

K > 0 so that
‖fn − f‖L2(Σ;C4) ≤ K‖fn − f‖H 1

2 (Σ;C4)
→ 0

holds true and thus the convergence fn → f in L2(Σ;C4) follows. Due to the
boundedness of γ(λ) as an operator from L2(Σ;C4) to L2(R3;C4), it follows that
γ(λ)fn → γ(λ)f in L2(R3;C4) is valid. On the other hand, from the continuous
embedding H1(Ω±;C4) ↪→L2(Ω±;C4) we obtain

‖γ(λ)fn − g‖2
L2(R3;C4) = ‖(γ(λ)fn)+ − g+‖2

L2(Ω+;C4) + ‖(γ(λ)fn)− − g−‖2
L2(Ω−;C4)

≤ ‖(γ(λ)fn)+ − g+‖2
H1(Ω+;C4) + ‖(γ(λ)fn)− − g−‖2

H1(Ω−;C4)

= ‖γ(λ)fn − g‖2
H1(R3\Σ;C4) → 0
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and thus γ(λ)f = g in the sense of L2(R3;C4). This shows that the value of the γ-field

γ(λ) is closed as an operator from H
1
2 (Σ;C4) to H1(R3 \Σ;C4) and with Theorem 2.6

the claimed boundedness follows.

Step 3: From Theorem 2.18 and Theorem 3.8 it immediately follows that

dom(M(λ)) = ran(Γ0) = H
1
2 (Σ;C4)

and

ran(M(λ)) ⊆ ran(Γ1) = H
1
2 (Σ;C4)

are valid. This shows the mapping properties of M(λ) from iii) and iv) and its dense
definition.

Let f ∈ H 1
2 (Σ;C4) be given, then it follows from ii) that

Φλf = γ(λ)f ∈ H1(R3 \ Σ;C4)

holds true. By using Lemma 2.33 we therefore obtain that the non-tangential limits
C±f , which exist according to Theorem 3.10, coincide with the image of the trace op-
erators τ±(γ(λ)f)±. Consequently, it follows from the definition of the Weyl function,
item i) and Theorem 3.10 that

M(λ)f = Γ1γ(λ)f =
1

2
(τ+(γ(λ)f)+ + τ−(γ(λ)f)−) = Cλf

is valid, which shows the relationship M(λ) = Cλ �H
1
2 (Σ;C4). This yields the claimed

representation from iii) and the boundedness of M(λ) on its domain of definition.

As H
1
2 (Σ;C4) is dense in L2(Σ;C4) and M(λ) is bounded, we obtain

dom
(
M(λ)

)
= dom (M(λ)) = L2(Σ;C4)

for the closure of M(λ) and therefore immediately M(λ) = Cλ follows.

To show the boundedness of M(λ) as an operator in H
1
2 (Σ;C4) we first observe

that γ(λ) as an operator from H
1
2 (Σ;C4) to H1(R3 \ Σ;C4) according to item ii) and

the trace operators τ± from H1(Ω±;C4) to H
1
2 (Σ;C4) according to Theorem 2.30 are

bounded operators. Thus, the representation M(λ) = Γ1γ(λ) immediately leads to

the claimed boundedness of M(λ) as an operator in H
1
2 (Σ;C4).

Next, we draw our attention to Dirac operators with electrostatic and Lorentz
scalar δ-shell interactions. We intend to define these as self-adjoint operators Aη,τ
in L2(R3;C4), which result from the formal differential expression

Aη,τ = A0 + (ηI4 + τβ) 〈δΣ, ·〉δΣ
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with constant interaction strengths η, τ ∈ R. As mentioned in Chapter 1, we will
construct these operators by using the quasi boundary triple of Theorem 3.8 as re-
strictions of the operator T and by imposing suitable jump conditions on the surface
Σ. To find these jump conditions we proceed as in [12].

Since C∞(Ω+;C4) ⊕ C∞(Ω−;C4) is dense in dom(T ) = H1(Ω+;C4) ⊕ H1(Ω−;C4)
we assume in the first step that an arbitrary function f ∈ C∞(Ω+;C4)⊕ C∞(Ω−;C4)
is given. In this case it is possible to consider point evaluations of the functions f . We
define the effect of the δ-distribution on the function f in a symmetrical way as

δΣf =
1

2
(f+ �Σ + f− �Σ)

on Σ and thereby the assignment

δΣf〈δΣ, ϕ〉 =

∫
Σ

1

2
(f+ + f−) · ϕdσ

for ϕ ∈ D(R3;C4) becomes a distribution. By this definition, Aη,τf can be regarded
as a distribution and we find its effect on any test function ϕ ∈ D(R3;C4) as

〈Aη,τf, ϕ〉 =

∫
R3

f · (−icα · ∇+mc2β)ϕdx+

∫
Σ

1

2
(ηI4 + τβ) (f+ + f−) · ϕdσ. (3.23)

On the other hand, it is expected that the effect of the δ-potentials for x /∈ Σ will
not appear, as they are supported on Σ. Thus, using the divergence theorem and the
fact that Σ is a zero set leads to

〈Aη,τf, ϕ〉 =

∫
Ω+∪Ω−

(−icα · ∇+mc2β)f · ϕdx

=

∫
Ω+∪Ω−

f · (−icα · ∇+mc2β)ϕdx−
∫
Σ

ic(α · ν) (f+ − f−) · ϕdσ

=

∫
R3

f · (−icα · ∇+mc2β)ϕdx−
∫
Σ

ic(α · ν) (f+ − f−) · ϕdσ

(3.24)

for all ϕ ∈ D(R3;C4) with the outer unit normal vector field ν = ν+ = −ν− on Σ.
A comparison of (3.23) and (3.24) and the density of the arbitrarily often differen-

tiable functions suggests that the ansatz for the jump conditions

− ic(α · ν) (τ+f+ − τ−f−) =
1

2
(ηI4 + τβ) (τ+f+ + τ−f−) (3.25)

for all functions f ∈ dom(Aη,τ ) ⊆ dom(T ) ∼= H1(R3 \ Σ;C4) on Σ seems plausible.
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It should be pointed out that although the derivation of the jump conditions was
not done in a mathematically rigorous way, Theorem 4.4 with the non-relativistic
limit will show that the operators Aη,τ can be regarded as a relativistic counterpart
of Schrödinger operators with δ-potentials. Therefore it can be expected that these
jump conditions correctly model δ-potentials of Dirac operators.

To formulate the above jump conditions in a more compact form, we define the
multiplication operator

dom(B) = L2(Σ;C4)

Bf = (ηI4 + τβ) f
(3.26)

in L2(Σ;C4). It can be shown by a component-wise consideration, as in [81, Satz 6.1],
that B is a well-defined, linear, bounded and self-adjoint operator in L2(Σ;C4). Using
the boundary maps Γ0 and Γ1 of the quasi boundary triple in Theorem 3.8, the above
jump conditions are equivalent to

Γ0f +BΓ1f = 0

and we therefore define
Aη,τ = T �ker (Γ0 +BΓ1)

as our model operator for a Dirac operator with electrostatic and Lorentz scalar δ-shell
interactions. It follows immediately from the considerations of Section 2.2 that Aη,τ
is a symmetric extension of the operator S since B is self-adjoint.

At this point, it is noteworthy to remark that already the definition of the operator
Aη,τ leads to an interesting observation. In the case of η2 − τ 2 = −4c2, it can be
shown as in [12, Lem. 3.1] that the operator Aη,τ decouples into two independent
Dirac operators defined on Ω±. For the parameter combination η = 0 and τ = 2c
the operator defined on Ω+ corresponds to the MIT bag model operator of the quark
confinement. Roughly speaking, this has the effect that a particle being inside Ω+

remains in Ω+ for all times and the δ-potential makes the surface Σ impenetrable for
it. Since we will not consider these operators separately in this thesis, we refer to [56]
and [40, Chapter 5.1] for a more detailed presentation.

Before we are able to further investigate the operators Aη,τ , two more auxiliary
results are required. The proof of the first result is based on the one of [12, Lem. 3.3],
whereas we explicitly use the mapping properties of the values of the Weyl function
from Theorem 3.11.

Lemma 3.12. Let λ ∈ ρ(A0) and η, τ ∈ R with η2 − τ 2 6= 4c2 be given, then for a
function f ∈ L2(Σ;C4) with

(I4 + (ηI4 + τβ) Cλ) f ∈ H
1
2 (Σ;C4)

it follows that f ∈ H 1
2 (Σ;C4) holds true.
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Proof. Let f ∈ L2(Σ;C4) with the mentioned property be given, then it follows from
Theorem 3.11 and the mapping properties of M(λ) that

Ψ = (I4 − (ηI4 − τβ) Cλ) (I4 + (ηI4 + τβ) Cλ) f
= (I4 − (ηI4 − τβM(λ))) (I4 + (ηI4 + τβ) Cλ) f ∈ H

1
2 (Σ;C4)

holds true. On the other hand, we obtain

Ψ =

(
1− η2 − τ 2

4c2

)
f + τ (Cλβ + βCλ) f −

(
η2 − τ 2

)(
(Cλ)2 − 1

4c2
I

)
f

by explicit calculation of the expression for Ψ. A rearrangement of this equation with
Ψ ∈ H 1

2 (Σ;C4) and the mapping properties of Theorem 3.10 leads to

f =
4c2

4c2 − η2 + τ 2

(
Ψ− τ (Cλβ + βCλ) f +

(
η2 − τ 2

)(
(Cλ)2 − 1

4c2
I

)
f

)
∈ H

1
2 (Σ;C4)

which completes the proof.

At this point it is important to remark that the difficulty in dealing with the critical
case η2 − τ 2 = 4c2 results from the requirement η2 − τ 2 6= 4c2 in Lemma 3.12, and we
will therefore restrict ourselves in the following exclusively to the case of non-critical
interaction strengths η, τ ∈ R with η2 − τ 2 6= 4c2. At the end of this section we will
briefly comment on the critical case.

The next result is of particular importance for the proof of the self-adjointness and
an explicit representation of the resolvent of the operator Aη,τ . For the proof of Lemma
3.13 we follow a line of reasoning as it can be found in [14, Prop. 5.2] and [40, Prop.
4.1.7].

Lemma 3.13. Let λ ∈ ρ(A0) with λ /∈ σp(A±η,±τ ) and interaction strengths η, τ ∈ R
which satisfy η2 − τ 2 6= 4c2 be given. Then the bounded operator I +BCλ is bijective
as a mapping in L2(Σ;C4) and the inverse operator is bounded as well. Furthermore,

the bounded operator I + BM(λ) as a mapping in H
1
2 (Σ;C4) is also continuously

invertable.

Proof. Step 1: Suppose there exists an f ∈ L2(Σ;C4) \ {0} such that

(I +BCλ)f = 0

applies. Since 0 ∈ H
1
2 (Σ;C4) holds true, Lemma 3.12 implies that f ∈ H

1
2 (Σ;C4)

holds as well and thus we obtain

(I +BM(λ))f = 0
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by Theorem 3.11. This shows 0 ∈ σp(I+BM(λ)). In this case it follows from Theorem
2.19 that λ ∈ σp(Aη,τ ) is valid, which is a contradiction to the choice of λ. This shows
the injectivity of the operator I +BCλ : L2(Σ;C4)→ L2(Σ;C4).

Step 2: Next, we show the surjectivity of the operator I+BCλ : L2(Σ;C4)→ L2(Σ;C4).
For this purpose we consider the operator

I − (BCλ)2 = (I +BCλ) (I −BCλ)

in L2(Σ;C4) and immediately obtain the range condition

ran
(
I − (BCλ)2) ⊆ ran (I +BCλ) (3.27)

from its definition. As the first step, we show the injectivity of the operator I−(BCλ)2

and therefore assume that there exists an f ∈ L2(Σ;C4) \ {0} such that

0 =
(
I − (BCλ)2) f = (I +BCλ) (I −BCλ) f

is valid. In this case (I −BCλ) f ∈ ker (I +BCλ) holds true and since I + BCλ is
injective according to Step 1 we obtain

(I −BCλ) f = 0.

With a line of reasoning as in Step 1, applied to−B, it then follows that λ ∈ σp(A−η,−τ )
is valid which is a contradiction to the choice of λ. Thus, I − (BCλ)2 is an injective
operator.

An explicit computation now shows

I − (BCλ)2 =

(
1− η2 − τ 2

4c2

)
I +Kλ

with the linear and bounded operator

Kλ = −τ (Cλβ + βCλ)BCλ −
(
η2 − τ 2

)(
(Cλ)2 − 1

4c2
I

)
in L2(Σ;C4). Since Cλ is a bounded operator according to Theorem 3.9 and B is
bounded as well, it follows from Theorem 3.10 and the properties of compact operators
that Kλ is a compact operator in L2(Σ;C4). Fredholm’s alternative, Theorem 2.3,
therefore yields that I− (BCλ)2 is a surjective operator in L2(Σ;C4) for η2− τ 2 6= 4c2.
By using the range condition (3.27) the surjectivity of the operator I + BCλ follows
and with Step 1 finally its bijectivity. The boundedness of the inverse operator then
follows from Theorem 2.6 or the open mapping theorem.
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Step 3: To complete this proof, we show the bijectivity of I +BM(λ) as an operator

in H
1
2 (Σ;C4) and its continuous invertibility. Since I + BCλ is injective according to

Step 1, this is also carried over to I +BM(λ) due to M(λ) = Cλ �H
1
2 (Σ;C4). To show

its surjectivity we assume that a g ∈ H 1
2 (Σ;C4) is given. Due to the surjectivity of

I +BCλ according to Step 2 there exists an f ∈ L2(Σ;C4) such that

(I +BCλ) f = g

holds true. Furthermore, it follows from Lemma 3.12 and g ∈ H
1
2 (Σ;C4) that

f ∈ H 1
2 (Σ;C4) is valid and therefore we obtain

(I +BM(λ) f = g

which shows the surjectivity of I +BM(λ). The boundedness of the inverse operator

follows from the boundedness of I + BM(λ) as operator in H
1
2 (Σ;C4) according to

Theorem 3.11 and from Theorem 2.6 or the open mapping theorem.

As in the case of Lemma 3.12, the validity of Lemma 3.13 follows only in the case
of non-critical interaction strengths η, τ ∈ R. If η2 − τ 2 = 4c2 would be true, then
Fredholm’s alternative could not be applied in Step 2 in the proof of Lemma 3.13.

Now we will discuss to the main result of this section and show the self-adjointness
of the operators Aη,τ in case of non-critical interaction strengths.

Theorem 3.14. Let non-critical interaction strengths η, τ ∈ R with η2 − τ 2 6= 4c2 be
given, then the symmetric operator

dom(Aη,τ ) =
{
f ∈ H1(Ω+;C4)⊕H1(Ω−;C4)

∣∣∣
icα · ν (τ+f+ − τ−f−) +

1

2
(ηI4 + τβ) (τ+f+ + τ−f−) = 0

}
Aη,τf =

(
−icα · ∇+mc2β

)
f+ ⊕

(
−icα · ∇+mc2β

)
f−

(3.28)

is self-adjoint in L2(R3;C4). Furthermore λ ∈ ρ(Aη,τ ) applies to all λ ∈ ρ(A0) with
λ /∈ σp(A±η,±τ ) and in this case the explicit resolvent representation

(Aη,τ − λ)−1 f = (A0 − λ)−1 f − γ(λ) (I +BM(λ))−1Bγ(λ)∗f (3.29)

for all f ∈ L2(R3;C4) is valid.

Proof. Let λ ∈ ρ(A0) with λ /∈ σp(A±η,±τ ) be given. It follows immediately from
Theorem 2.19 that the representation (3.29) is valid for all f ∈ ran(Aη,τ − λ) and
therefore it is sufficient to show the surjectivity of the operator Aη,τ−λ. From Theorem
2.18 the range condition

ran(γ(λ)∗) ⊆ ran(Γ1) = H
1
2 (Σ;C4)
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follows and thus, due to the definition of B as a multiplication operator with con-
stants, also Bγ(λ)∗f ∈ H 1

2 (Σ;C4) for all f ∈ L2(R3;C4). By using the bijectivity of
I +BM(λ) according to Lemma 3.13 we obtain

ran(Bγ(λ)∗) ⊆ ran(I +BM(λ))

which in combination with Theorem 2.19 shows the range condition

ran(Aη,τ − λ) = L2(R3;C4). (3.30)

Consequently, Aη,τ−λ is a surjective operator from dom(Aη,τ ) to L2(R3;C4). Further-
more, the choice λ /∈ σp(Aη,τ ) shows the injectivity of Aη,τ −λ and thus all together its
bijectivity. This shows λ ∈ ρ(Aη,τ ) and from Theorem 2.19 the resolvent representation
(3.29) follows for all f ∈ L2(R3;C4).

To show the self-adjointness of the operator Aη,τ we choose an arbitrary λ ∈ C \R.
With Theorem 2.15, the self-adjointness of A0 and the symmetry of A±η,±τ we obtain
that λ ∈ ρ(A0) and λ /∈ σp(A±η,±τ ) are valid. Therefore the range condition (3.30)
is also valid in this case and an application of Theorem 2.12 then yields the claimed
self-adjointness of Aη,τ .

Next, for the sake of completeness, we characterize the spectrum of the operators
Aη,τ without providing any proofs. Item i) of the following result can be shown as in
[40, Thm. 3.2.3] by using [62, Thm. XIII.14], while the proof of item iii) can be found
in [12, Thm. 4.1 , Cor. 4.3]. For the proof of item ii) we refer to [12, Thm. 4.1] and
[40, Thm. 3.2.3] with a slight modification of the argumentation as its carried out for
instance in [15, Prop. 3.9].

Theorem 3.15. Let non-critical interactions strengths η, τ ∈ R with η2 − τ 2 6= 4c2

be given, then the following statements are true.

i) σess(Aη,τ ) = (−∞,−mc2] ∪ [mc2,∞).

ii) σdisc(Aη,τ ) ⊆ (−mc2,mc2) is a finite set.

iii) There exists a constant K > 0 independent of η and τ such that σdisc(Aη,τ ) = ∅
is valid if |η ± τ | < K applies. If the interaction strengths additionally satisfy
η2 − τ 2 6= 0, then σdisc(Aη,τ ) = ∅ is valid as well if |η ± τ | > 4c2

K
applies.

To conclude this section, we will briefly discuss the case of critical interaction
strengths η, τ ∈ R with η2 − τ 2 = 4c2 although they do not appear explicitly in
this thesis. The reason for non-occurring critical interaction strengths is that the con-
dition η2−τ 2 = 4c2 is valid only in a single point c > 0 and therefore does not influence
the non-relativistic limit c→∞ which is of interest to us.

The case of critical interaction strengths is investigated for instance in [14] and [40,
Chapter 4.3] and it turns out that the properties of Dirac operators with critical inter-
action strengths differ significantly from those with non-critical interaction strengths.
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In particular, it can be shown that in the case of critical interaction strengths, the sym-
metric operator Aη,τ is not self-adjoint but only essentially self-adjoint in L2(R3;C4).
In order to deduce properties of its self-adjoint closure Aη,τ the decisive step is to
consider the jump condition for functions in its domain of definition not in the sense
of L2(Σ;C4) but in the larger space H−

1
2 (Σ;C4). This can be accomplished by trans-

forming the quasi boundary triple of Theorem 3.8 into an ordinary boundary triple.
By using this ordinary boundary triple it can be shown that the domain of definition of
the self-adjoint operator Aη,τ is not contained in H1(R3 \Σ;C4) and depending on the
geometry of the boundary Σ = ∂Ω it is possible that spectral values of the essential
spectrum are located in the gap (−mc2,mc2). For a more detailed presentation of
these results we refer to the literature mentioned above.

Finally, it is noteworthy to remark that in case of two-dimensional Dirac operators
with singular electrostatic and Lorentz scalar interactions supported on closed loops,
a complete treatment is presented in [15]. In particular, a reduction of the regularity
of the functions in the domain of the self-adjoint realizations is observed, as well as an
additional point in the essential spectrum, which can be specified explicitly and can
take any value within the spectral gap depending on the interaction strengths.



4 The non-relativistic limit

In this chapter we investigate the non-relativistic limit of the operators Aη,τ with
constant interaction strengths η, τ ∈ R. The case η + τ 6= 0 is considered in Section
4.1 and it is shown that the limit operator of the resolvent of Aη,τ−mc2 is the resolvent
of a Schrödinger operator with a δ-interaction of strength η + τ . Finally in the main
part of this thesis, in Section 4.2, we investigate the case of interaction strengths which
satisfy η+ τ = 0. It is shown that also in this case a Schrödinger operator is obtained
as the limit operator. However, it turns out that this Schrödinger operator differs
significantly in the characterization of the domain of definition from the one in the
case of η + τ 6= 0. In particular, on the interface Σ there are no jump conditions
describing δ-interactions but oblique jump conditions.

4.1 The non-relativistic limit for η + τ 6= 0

In this section we will investigate the behavior of the resolvents of the operators Aη,τ
for c→∞ in the case of interaction strengths which satisfy η+ τ 6= 0. This will prove
to be less complicated than the case η + τ = 0, which we will investigate in the next
section, since we will be able to apply results concerning Schrödinger operators from
[18]. The cases η = 0 or τ = 0 have already been investigated in [10, 12, 40] and the
same line of reasoning can also be applied in the general case.

For interaction strengths η, τ ∈ R with η + τ 6= 0 we will be able to relate the
resolvent of Aη,τ −mc2 to the one of a Schrödinger operator. In particular, it will be
shown that there is a convergence to the resolvent of a Schrödinger operator with a
δ-interaction of strength η + τ supported on Σ times a projection onto the first two
components of the Dirac spinors. Furthermore, a convergence rate of O (c−1) is found.

For this purpose, we first have to introduce a few concepts. In this section we will
assume that Ω ⊆ R3 is a bounded C2-domain with boundary Σ = ∂Ω and we set
Ω+ = Ω and Ω− = R3 \Ω to obtain two C2-domains which satisfy R3 = Ω+ ∪̇Σ ∪̇Ω−.
Furthermore, we choose the outer unit normal vector field ν = ν+ = −ν− on Σ and
therewith define the normal derivative of a function f ∈ H2(Ω±;C) in analogy to the
classical normal derivative of a differentiable function as

∂ν±f± = ν± · τ(∇f±) = ±ν · τ(∇f±)

with τ± being the trace operators on Ω± from Theorem 2.30.

83
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Next, we are going to discuss Schrödinger operators with δ-interactions, as we con-
sidered them for Dirac operators in the previous chapter. For a scalar quantity a ∈ R,
these interactions are modeled by the formal expression

T = − 1

2m
∆ + a〈δΣ, ·〉δΣ (4.1)

and also in the case of Schrödinger operators we can give rigorous meaning to this
formal expression by imposing suitable jump conditions on Σ. We therefore define the
linear operator

dom(Ta) =
{
f ∈ H2(Ω+;C)⊕H2(Ω−;C)

∣∣∣ τ+f+ = τ−f− and

a

2
(τ+f+ + τ−f−) =

1

2m
(∂νf+ − ∂νf−)

}
Taf =

(
− 1

2m
∆f+

)
⊕
(
− 1

2m
∆f−

)
(4.2)

and interpret it as a realization of the formal expression (4.1). As in the previous
chapter, this operator can be regarded as an operator in L2(R3;C) by using the de-
composition L2(R3;C) ∼= L2(Ω+;C)⊕ L2(Ω−;C) from Section 2.6.

Next, we define the operator γ̃(λ) = SL(λ) � L2(Σ;C) for λ ∈ C \ [0,∞) with
the single layer potential of the free Schrödinger operator (2.18) and, based on the
considerations of Section 2.6, we obtain the explicit representation

(γ̃(λ)f) (x) =

∫
Σ

Kλ(x− y)f(y)dσ(y) (4.3)

for all f ∈ L2(Σ;C) and almost all x ∈ R3. The integral kernel of γ̃(λ) corresponds to
the function

Kλ(x) =
2m

4π‖x‖
exp

(
i
√

2mλ‖x‖
)

for all x ∈ R3 \ {0}. Due to the compact embedding H−
1
2 (Γ;C) ↪→L2(Γ;C) according

to Theorem 2.29 and the continuous embedding H1(R3;C) ↪→ L2(R3;C) it follows
immediately that γ̃(λ) is a linear and bounded operator from L2(Σ;C) to L2(R3;C).

Analogous to γ̃(λ), we define the operator M̃(λ) = S(λ) �L2(Σ;C) with the single
layer boundary integral operator and are led to the explicit representation(

M̃(λ)f
)

(x) =

∫
Σ

Kλ(x− y)f(y)dσ(y) (4.4)

for all f ∈ L2(Σ;C) and allmost all x ∈ Σ. Furthermore, with the same line of

reasoning as for γ̃(λ), we find that M̃(λ) is a linear and bounded operator in L2(Σ;C).
Applying the results [18, Thm. 3.5 , Thm. 3.6], which remain valid for the case of

a C2-domain, the following theorem can be shown.
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Theorem 4.1. Let a ∈ R be a real number, then the following statements are true.

i) The operator Ta is self-adjoint in L2(R3;C).

ii) For all λ ∈ ρ(Ta) ∩ ρ(T0) the explicit resolvent representation

(Ta − λ)−1 = (T0 − λ)−1 − γ̃(λ)(I + aM̃(λ))−1aγ̃(λ)∗

in L2(R3;C) with (I + aM̃(λ))−1 ∈ L(L2(Σ;C)) is valid.

Before we discuss the non-relativistic limit of the operators Aη,τ we need to prove
two more auxiliary results. We begin with an uniform boundedness result of a function
which will appear in Theorem 4.3 and several times in the further course of this thesis.

Lemma 4.2. Let λ ∈ C \ R be given, then for sufficiently large c > 0 the estimates

0 <
1

2

∣∣∣√2mλ
∣∣∣ ≤ ∣∣∣∣∣

√
t
λ2

c2
+ 2mλ

∣∣∣∣∣ ≤ 3

2

∣∣∣√2mλ
∣∣∣

and

− Im

{√
t
λ2

c2
+ 2mλ

}
≤ −1

2
Im
{√

2mλ
}

are valid for all t ∈ [0, 1].

Proof. Step 1: For a given λ ∈ C \ R we define the functions

fc(t) = t
λ2

c2
+ 2mλ

for t ∈ [0, 1] and find that these functions converge uniformly on [0, 1] to the constant
function f(t) = 2mλ for c → ∞. Furthermore, for sufficiently large c > 0 the values
of fc and f are located in the same complex half-plane and with the continuity of
the complex root on the latter we obtain the uniform convergence of the sequence of
functions

gc(t) =
√
fc(t) =

√
t
λ2

c2
+ 2mλ

on [0, 1] to the constant function g(t) =
√

2mλ with Im{g} > 0 as well. By using the
reversed triangle inequality we are therefore led to the inequalities

1

2

∣∣∣√2mλ
∣∣∣ =

1

2
‖g‖L∞([0,1],C) ≤ ‖g‖L∞([0,1],C) − ‖g − gc‖L∞([0,1],C)

≤ |g(t)| − |g(t)− gc(t)| ≤ |gc(t)|

and

|gc(t)| ≤ |g(t)|+ |g(t)− gc(t)| ≤ ‖g‖L∞([0,1],C) + ‖g − gc‖L∞([0,1],C)

≤ 3

2
‖g‖L∞([0,1],C) =

3

2

∣∣∣√2mλ
∣∣∣ .
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for all t ∈ [0, 1] and sufficiently large c > 0. Combining these two estimates we finally
obtain

0 <
1

2

∣∣∣√2mλ
∣∣∣ ≤ ∣∣∣∣∣

√
t
λ2

c2
+ 2mλ

∣∣∣∣∣ ≤ 3

2

∣∣∣√2mλ
∣∣∣

for all t ∈ [0, 1] which proves the first inequality.

Step 2: As in Step 1 it follows from the continuity of the imaginary part that the
sequence of functions hc = Im{gc} defined on [0, 1] converges uniformly to the constant

function h = Im{g} = Im
{√

2mλ
}
> 0 and therefore the inequality

1

2
Im
{√

2mλ
}

=
1

2
‖h‖L∞([0,1],C) ≤ ‖h‖L∞([0,1],C) − ‖h− hc‖L∞([0,1],C)

≤ h(t)− |h(t)− hc(t)| ≤ |hc(t)| = hc(t).

is valid for all t ∈ [0, 1] and sufficiently large c > 0. In particular, we find

− Im

{√
t
λ2

c2
+ 2mλ

}
≤ −1

2
Im
{√

2mλ
}

for all t ∈ [0, 1] which also shows the second inequality.

Next, we draw our attention to a result which is crucial for the investigation of the
non-relativistic limit in the case of η + τ 6= 0. It is shown that if we perform the
limit c→∞ the integral operators Φλ+mc2 and Cλ+mc2 , defined as in (3.15) and (3.17),

converge to the operators γ̃(λ) and M̃(λ) from (4.3) and (4.4). This enables us to
determine the limit operator of (Aη,τ − (λ+mc2))

−1
for c → ∞ using the resolvent

representation from Theorem 3.14. Although a proof of the next result can be found
in [10, Prop. 5.2] and [40, Lem. 4.4.2], we present it here to emphasize the necessity
of a separate analysis of the case η + τ = 0 in the non-relativistic limit.

Theorem 4.3. Let λ ∈ C \ R be given and Φλ+mc2 and Cλ+mc2 be the linear and
bounded integral operators defined as in (3.15) and (3.17). Furthermore, let γ̃(λ)

and M̃(λ) the linear and bounded integral operators according to (4.3) and (4.4) and
P+ = diag(1, 1, 0, 0) be a diagonal matrix. Then there exists a constant κ(m,λ,Σ) > 0
only depending on m, λ and Σ such that the following inequalities apply to sufficiently
large c > 0 ∥∥(A0 − (λ+mc2))−1 − (T0 − λ)−1P+

∥∥ ≤ κ

c
, (4.5)

‖Φλ+mc2 − γ̃(λ)P+‖ ≤
κ

c
, (4.6)
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∥∥Φ∗λ+mc2 − γ̃(λ)∗P+

∥∥ ≤ κ

c
, (4.7)

∥∥∥Cλ+mc2 − M̃(λ)P+

∥∥∥ ≤ κ

c
. (4.8)

Proof. Step 1: Let λ ∈ C \ R be given. Then it follows from the self-adjointness of
the operators A0 and T0 that λ, λ + mc2 ∈ ρ(A0) ∩ ρ(T0) is valid and therefore the
operators (A0 − (λ+mc2))−1 and (T0 − λ)−1 are well defined. Since all the occurring
operators are integral operators, it is our approach to apply the results of Section 2.6.
For this purpose we require estimates of the integral kernels.

By direct calculation one shows that the integral kernel of (A0 − (λ + mc2))−1 of
Theorem 3.4 is represented by

Gλ+mc2(x) =(
λ

c2
I4 + 2mP+ +

(
1− i

√
λ2

c2
+ 2mλ‖x‖

)
i

c‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)

for all x ∈ R3 \ {0}. Furthermore, we define the matrix-valued functions

t1(x) =

(
λ

c2
I4 +

(
1− i

√
λ2

c2
+ 2mλ‖x‖

)
i

c‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)

and

t2(x) =
2m

4π‖x‖

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
))

P+

for all x ∈ R3 \ {0}. By using that

Kλ(x) =
2m

4π‖x‖
exp

(
i
√

2mλ‖x‖
)

and due to the definition of the functions t1 and t2 we obtain the relation

Gλ+mc2(x)−Kλ(x)P+ = t1(x) + t2(x)

for all x ∈ R3 \ {0}.
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Step 2: By using the Frobenius norm and Lemma 4.2 with t = 1 we obtain

‖t1(x)‖F ≤
1

4π‖x‖
exp

(
−Im

{√
λ2

c2
+ 2mλ

}
‖x‖

)
·(

2 |λ|
c2

+
1

c‖x‖2

(
1 +

∣∣∣∣∣
√
λ2

c2
+ 2mλ

∣∣∣∣∣ ‖x‖
)

3∑
j=1

‖αj‖F |xj|

)

≤ 1

4π‖x‖
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)
·(

2 |λ|
c2

+
1

c‖x‖

(
1 +

3

2

∣∣∣√2mλ
∣∣∣ ‖x‖)) 3∑

j=1

‖αj‖F

(4.9)

for sufficiently large c > 0. In the case of ‖x‖ < 1 the inequality (4.9) implies the
estimate

‖t1(x)‖F ≤
1

4π‖x‖

(
2 |λ|
c2

+
1

c‖x‖
+

3

2c

∣∣∣√2mλ
∣∣∣) 3∑

j=1

‖αj‖F

≤ 1

4cπ‖x‖2

(
1 +

(
2 |λ|
c

+
3

2

∣∣∣√2mλ
∣∣∣) ‖x‖) 3∑

j=1

‖αj‖F

≤ 1

4cπ‖x‖2

(
1 + 2 |λ|+ 3

2

∣∣∣√2mλ
∣∣∣) 3∑

j=1

‖αj‖F

for all c ≥ 1. On the other hand, in the case of ‖x‖ ≥ 1 it follows from (4.9) that

‖t1(x)‖F ≤
1

4π

(
2 |λ|
c2

+
1

c‖x‖
+

3

2c

∣∣∣√2mλ
∣∣∣)( 3∑

j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

≤ 1

4cπ

(
1 +

2 |λ|
c

+
3

2

∣∣∣√2mλ
∣∣∣)( 3∑

j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

≤ 1

4cπ

(
1 + 2 |λ|+ 3

2

∣∣∣√2mλ
∣∣∣)( 3∑

j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

applies to sufficiently large c > 0. Consequently, if we define the constants

k1 =
1

4π

(
1 + 2 |λ|+ 3

2

∣∣∣√2mλ
∣∣∣) 3∑

j=1

‖αj‖F and k2 =
1

2
Im
{√

2mλ
}
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which depend only on m and λ, then the estimation

‖t1(x)‖ ≤ k1

c

{
‖x‖−2 , for ‖x‖ < 1

e−k2‖x‖ , for ‖x‖ ≥ 1

applies to all x ∈ R3 \ {0} and sufficiently large c > 0.

Step 3: Let x ∈ R3 and t ∈ [0, 1] be given, then

d

dt
exp

(
i

√
t
λ2

c2
+ 2mλ‖x‖

)
=
iλ2‖x‖

2c2

1√
tλ

2

c2
+ 2mλ

exp

(
i

√
t
λ2

c2
+ 2mλ‖x‖

)

is valid and by applying Lemma 4.2 we find the estimate∣∣∣∣∣ d

dt
exp

(
i

√
t
λ2

c2
+ 2mλ‖x‖

)∣∣∣∣∣ =
|λ|2 ‖x‖

2c2

1∣∣∣∣√tλ
2

c2
+ 2mλ

∣∣∣∣exp

(
−Im

{√
t
λ2

c2
+ 2mλ

}
‖x‖

)

≤ |λ|
2 ‖x‖
c2

1∣∣∣√2mλ
∣∣∣exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

for all x ∈ R3 and all t ∈ [0, 1]. If we now define the constants

k3 =
|λ|2∣∣∣√2mλ

∣∣∣ and k4 = −1

2
Im
{√

2mλ
}

which depend only on m and λ, we are led to the estimate∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣ ≤

1∫
0

∣∣∣∣∣ d

dt
exp

(
i

√
t
λ2

c2
+ 2mλ‖x‖

)∣∣∣∣∣ dt
≤ k3‖x‖

c2
exp (−k4‖x‖)

for all x ∈ R3 by using the fundamental theorem of calculus. From the definition of t2
we therefore obtain the estimation of the Frobenius norm

‖t2(x)‖F =
2
√

2m

4π‖x‖

∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤ mk3√
2c2π

e−k4‖x‖ ≤ mk3√
2cπ

e−k4‖x‖
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for all x ∈ R3 \ {0} and sufficiently large c > 0.

Step 4: We define the constants

k5 = 2max

{
k1,

mk3√
2π

}
and k6 = min {k2, k4}

which depend only on m and λ and obtain with Steps 1,2 and 3 the estimate

‖Gλ+mc2(x)−Kλ(x)P+‖ ≤ ‖t1(x)‖+ ‖t2(x)‖ ≤ k5

c

{
‖x‖−2 , for ‖x‖ < 1

e−k6‖x‖ , for ‖x‖ ≥ 1

for all x ∈ R3 \ {0} and sufficiently large c > 0. Since this is an estimation of the
integral kernel of the value of the operator((

(A0 − (λ+mc2))−1 − (T0 − λ)−1P+

)
f
)

(x)

=

∫
R3

(Gλ+mc2(x− y)−Kλ(x− y)P+) f(y)dy

for all f ∈ L2(R3;C4) and almost all x ∈ R3, an application of Theorem 2.34 yields
the estimate ∥∥(A0 − (λ+mc2))−1 − (T0 − λ)−1P+

∥∥ ≤ k

c

for sufficiently large c > 0 with a constant k(m,λ) > 0 depending only on m and λ.
This shows the first inequality (4.5).

Step 5: From the representation of Φλ+mc2 as in Theorem 3.9 and the one of γ̃(λ)
according to (4.3) we obtain

((Φλ+mc2 − γ̃(λ)P+) f) (x) =

∫
Σ

(Gλ+mc2(x− y)−Kλ(x− y)P+) f(y)dσ(y)

for all f ∈ L2(Σ;C4) and almost all x ∈ R3. In conclusion, by using the result of Step
4 and Theorem 2.36 the estimate

‖Φλ+mc2 − γ̃(λ)P+‖ ≤
k

c

for sufficiently large c > 0 follows with a constant k(m,λ,Σ) > 0 only depending on
m, λ and Σ. This shows the second inequality (4.6).

Step 6: Due to the boundedness of the occurring operators, Theorem 2.10 and Step 5
we are led to ∥∥Φ∗λ+mc2 − γ̃(λ)∗P+

∥∥ = ‖Φλ+mc2 − γ̃(λ)P+‖ ≤
k

c
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by component-wise consideration. This shows the third inequality (4.7).

Step 7: Finally, let us consider the convergence of Cλ+mc2 for c→∞. By the definition
of the integral kernel Kλ we immediately obtain the estimate

‖Kλ(x)‖ ≤ k

‖x‖

for all x ∈ Σ \ {0} with a constant k(m,λ) > 0 only depending on m and λ. A line of
reasoning as in Lemma 2.37 and the choice g ≡ 1 leads to∫

Σ

∫
Σ

|Kλ(x− y)| ‖f(y)‖dσ(y)dσ(x) <∞

for all f ∈ L2(Σ;C4) and thus∫
Σ

|Kλ(x− y)| ‖f(y)‖dσ(y) <∞

follows for almost all x ∈ Σ. Consequently, the dominated convergence theorem can
be applied and we obtain the representation((
Cλ+mc2 − M̃(λ)P+

)
f
)

(x) = lim
ε→0+

∫
Σ\B(x,ε)

(Gλ+mc2(x− y)−Kλ(x− y)P+) f(y)dσ(y)

for all f ∈ L2(Σ;C4) and for almost all x ∈ Σ. Next, we define the matrix-valued
functions

u1(x) =

(
λ

c2
I4 +

√
λ2

c2
+ 2mλ

1

c‖x‖
α · x

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)

u2(x) =
2m

4π‖x‖

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
))

P+ = t2(x)

u3(x) =
i

4πc‖x‖3α · x

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− 1

)
u4(x) =

i

4πc‖x‖3α · x

for x ∈ R3 \ {0} and immediately obtain

‖u2(x)‖ = ‖t2(x)‖ ≤ k1

c
e−k2‖x‖ ≤ k1

c
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due to Step 3 with a constant k1(m,λ) > 0 only depending on m and λ.
For u1 we proceed as in the proof of Theorem 3.9 Step 2 and obtain with Lemma

4.2 and t = 1 the estimation of the Frobenius norm

‖u1(x)‖F ≤
1

4π‖x‖

(
2
|λ|
c2

+

∣∣∣∣∣
√
λ2

c2
+ 2mλ

∣∣∣∣∣ 1

c

3∑
j=1

‖αj‖F

)

≤ 1

4π‖x‖

(
2
|λ|
c2

+
3

2

∣∣∣√2mλ
∣∣∣ 1

c

3∑
j=1

‖αj‖F

)

≤ 1

4cπ‖x‖

(
2 |λ|+ 3

2

∣∣∣√2mλ
∣∣∣ 3∑
j=1

‖αj‖F

)

=
k2

c‖x‖

for sufficiently large c > 0 with the constant

k2 =
1

4π

(
2 |λ|+ 3

2

∣∣∣√2mλ
∣∣∣ 3∑
j=1

‖αj‖F

)

which depends only on m and λ.
To estimate u3 we again apply the same procedure as in the proof of Theorem 3.9

Step 2 and obtain with Lemma 4.2 and t = 1 the estimation of the Frobenius norm

‖u3(x)‖F ≤
1

4πc‖x‖2

∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− 1

∣∣∣∣∣
3∑
j=1

‖αj‖F

≤ 1

4πc‖x‖

∣∣∣∣∣
√
λ2

c2
+ 2mλ

∣∣∣∣∣
3∑
j=1

‖αj‖F

≤ 1

4πc‖x‖
3

2

∣∣∣√2mλ
∣∣∣ 3∑
j=1

‖αj‖F

=
k3

c‖x‖

for sufficiently large c > 0 with the constant

k3 =
3

8π

∣∣∣√2mλ
∣∣∣ 3∑
j=1

‖αj‖F

which depends only on m and λ.
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It now follows from Theorem 2.36 that the assignments

(Ujf) (x) =

∫
Σ

uj(x− y)f(y)dy

for f ∈ L2(Σ;C4) and x ∈ Σ correspond to well-defined, linear and bounded operators
Uj : L2(Σ;C4) → L2(Σ;C4) for all j ∈ {1, 2, 3}. Furthermore there exists a constant
k(m,λ,Σ) > 0 only depending on m, λ and Σ such that the estimate

‖Uj‖ ≤
k

c

is valid for all j ∈ {1, 2, 3}. By using a similar reasoning as at the beginning of Step
7, we obtain the representation

(Ujf) (x) = lim
ε→0+

∫
Σ\B(x,ε)

uj(x− y)f(y)dy

for all f ∈ L2(Σ;C4) and almost all x ∈ Σ based on the above estimates of uj and the
dominated convergence theorem.

Step 8: To conclude the proof of this theorem we will show the boundedness of the
integral operator generated by u4. By component-wise consideration it follows from
Theorem 2.38 that the assignment

(U4f) (x) = lim
ε→0+

∫
Σ\B(x,ε)

u4(x− y)f(y)dσ(y)

for f ∈ L2(Σ;C4) and x ∈ Σ corresponds to a well-defined, linear and bounded
operator U4 : L2(Σ;C4)→ L2(Σ;C4). Furthermore, the estimate

‖U4‖ ≤
K

c

with a constant K(Σ) > 0 only dependent on Σ applies to this operator. As the
decomposition

Gλ+mc2(x)−Kλ(x)P+ = u1(x) + u2(x) + u3(x) + u4(x)

is valid for all x ∈ Σ \ {0} we obtain

Cλ+mc2 − M̃(λ)P+ =
4∑
j=1

Uj
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and thus finally ∥∥∥Cλ+mc2 − M̃(λ)P+

∥∥∥ ≤ 4∑
j=1

‖Uj‖ ≤
κ

c

with a constant κ(m,λ,Σ) > 0 only depending on m, λ and Σ. This proves the fourth
inequality (4.8) and completes the proof of the theorem.

Finally we draw our attention to the main result of this section, the non-relativistic
limit for the parameter combination η+τ 6= 0 of the interaction strengths. Our ansatz
for the limit operator is motivated by the following physical consideration. Intuitively
we expect that by removing the limiting speed c for relativistic quantum particles with
spin 1/2, the description by a Dirac operator changes to the description by a Schrödinger
operator. Since no energy states with negative energy are possible for non-relativistic
quantum particles, the spinor wave functions for these must be zero. As shown in [78,
Chapter 1.4.5] the wave functions of the negative energy states correspond precisely to
the last two components of a four-element Dirac spinor after a spectral transformation.
Therefore, taking the δ-shell interactions into account, the formal ansatz

T = − 1

2m
∆ + (η + τ)〈δΣ, ·〉δΣ (4.10)

for the limit operator for the first two components of the Dirac spinors seems plausible.
The next result will show that this formal differential expression actually generates an
operator in L2(R3;C2) which is the limit operator. The proof for τ = 0 can be found in
[10, Thm. 5.3] and [40, Thm. 4.4.3] and also for the general case of constant interaction
strengths η, τ ∈ R with η+ τ 6= 0 the strategy followed there can be applied. It should
be noted that in the following we will always assume that c > 0 is sufficiently large
so that η2 − τ 2 6= 4c2 applies and therefore no critical interaction strengths are given.
This requirement can always be met, since the interaction strengths are constant.

Theorem 4.4. Let λ ∈ C \ R and non-critical interaction strengths η, τ ∈ R with
η + τ 6= 0 and η2 − τ 2 6= 4c2 be given. Furthermore, let Aη,τ be the self-adjoint
Dirac operator defined as in (3.28) and Tη+τ be the self-adjoint Schrödinger operator
according to (4.2), then there exists a constant κ(m,λ, η, τ,Σ) > 0 only dependent on
m, λ, η, τ and Σ such that the following estimate is valid for sufficiently large c > 0,∥∥∥(Aη,τ − (λ+mc2)

)−1 − (Tη+τ − λ)−1 P+

∥∥∥ ≤ κ

c
.

In particular, the convergence

(
Aη,τ − (λ+mc2)

)−1 →
(

(Tη+τ − λ)−1 I2 0
0 0

)
for c→∞

in the operator norm applies as well as a convergence rate of O
(

1
c

)
.
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Proof. Step 1: Due to the choice of λ ∈ C \ R we conclude from the self-adjointness
of the operators Aη,τ and Tη+τ and Theorem 2.15 that λ + mc2 ∈ ρ(A0) ∩ ρ(Aη,τ )
and λ ∈ ρ(T0) ∩ ρ(Tη+τ ) are valid. According to Theorem 4.3 there exists a constant
κ1(m,λ,Σ) > 0 only dependent on m, λ and Σ such that for sufficiently large c > 0∥∥∥Cλ+mc2 − M̃(λ)P+

∥∥∥ ≤ κ1

c

holds true. As before, we define B as the self-adjoint multiplication operator in
L2(Σ;C4) by the matrix ηI4 + τβ and therefore, from the boundedness of all the
occurring operators, we obtain the estimate∥∥∥(I +BCλ+mc2)−

(
I +BM̃(λ)P+

)∥∥∥
=
∥∥∥B (Cλ+mc2 − M̃(λ)P+

)∥∥∥ ≤ ‖B‖∥∥∥Cλ+mc2 − M̃(λ)P+

∥∥∥ ≤ ‖B‖κ1

c
=
κ2

c

(4.11)

with the constant κ2(m,λ, η, τ,Σ) = ‖B‖κ1(m,λ,Σ) only dependent on m, λ, η , τ
and Σ. Due to Theorem 4.1(

I +BM̃(λ)P+

)−1

∈ L(L2(Σ;C4))

follows by component-wise consideration and by setting

T = I +BM̃(λ)P+

and
A = (I +BCλ+mc2)−

(
I +BM̃(λ)P+

)
= B

(
Cλ+mc2 − M̃(λ)P+

)
we obtain with (4.11) the estimate ‖A‖‖T−1‖ < 1 for sufficiently large c > 0. If we
now define the operator

S = A+ T = I +BCλ+mc2

then it follows from Theorem 2.8 and (4.11) that∥∥∥∥(I +BCλ+mc2)−1 −
(
I +BM̃(λ)P+

)−1
∥∥∥∥ ≤ ‖T−1‖2‖A‖

1− ‖A‖‖T−1‖

≤
κ2

c
‖T−1‖2

1− κ2

c
‖T−1‖

≤ 2κ2‖T−1‖2

c

is valid for sufficiently large c > 0 with κ2

c
‖T−1‖ ≤ 1

2
.
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Step 2: From Theorem 4.3 and Step 1 the estimates

‖Φλ+mc2‖ ≤ 1 + ‖γ̃(λ)P+‖ = K1 (4.12)

and ∥∥(I +BCλ+mc2)−1
∥∥ ≤ 1 +

∥∥∥∥(I +BM̃(λ)P+

)−1
∥∥∥∥ = K2 (4.13)

follow for sufficiently large c > 0 due to the triangle inequality. The constants
K1(m,λ,Σ) ≥ 1 and K2(m,λ, η, τ,Σ) ≥ 1 are only dependent on m, λ, η, τ and
Σ.

Next, we use the explicit resolvent representations of the operators Aη,τ and Tη+τ .
For the Dirac operator it is given by(

Aη,τ − (λ+mc2)
)−1

=
(
A0 − (λ+mc2)

)−1 − γ(λ+mc2)
(
I +BM(λ+mc2)

)−1
Bγ(λ+mc2)∗

=
(
A0 − (λ+mc2)

)−1 − Φλ+mc2 (I +BCλ+mc2)−1BΦ∗
λ+mc2

according to Theorem 3.11 and Theorem 3.14 and for the Schrödinger operator by

(Tη+τ − λ)−1P+ = (T0 − λ)−1P+ − γ̃(λ)P+

(
I + (η + τ)M̃(λ)P+

)−1

(η + τ)γ̃(λ)∗P+

= (T0 − λ)−1P+ − γ̃(λ)P+

(
I +BM̃(λ)P+

)−1

Bγ̃(λ)∗P+

due to Theorem 4.1. By using (4.12) and (4.13) and applying the triangle inequality
several times, these two resolvent representations lead to the estimate∥∥∥(Aη,τ − (λ+mc2)

)−1 − (Tη+τ − λ)−1 P+

∥∥∥ ≤ ∥∥∥(A0 − (λ+mc2)
)−1 − (T0 − λ)−1 P+

∥∥∥
+ max {K1, K2}2 ‖B‖

(
‖Φλ+mc2 − γ̃(λ)P+‖+

∥∥∥Φ∗
λ+mc2

− γ̃(λ)∗P+

∥∥∥
+

∥∥∥∥(I +BCλ+mc2)−1 −
(
I +BM̃(λ)P+

)−1
∥∥∥∥)

for sufficiently large c > 0. Finally combining Theorem 4.3 and Step 1 yields∥∥(Aη,τ − λ)−1 − (Tη+τ − λ)−1 P+

∥∥ ≤ K

c

with a constant K(m,λ, η, τ,Σ) > 0 only depending on m, λ, η, τ and Σ. This
completes the proof.
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We conclude this section with a comment on the case of interaction strengths
η, τ ∈ R which satisfy η + τ = 0. If one examines the proof of Theorem 4.4, then
it is evident that it relies heavily on the result of Theorem 4.3. In fact, for each value
λ ∈ C \R the integral kernel of the resolvent of the Dirac operator Aη,τ is represented
as

Gλ+mc2(x) =(
λ

c2
I4 + 2mP+ +

(
1− i

√
λ2

c2
+ 2mλ‖x‖

)
i

c‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
and as the proof of Theorem 4.3 shows, the integral kernel of the limit operator must
have a form such as KλP+. If we define the diagonal matrix P− = diag(0, 0, 1, 1), then
for interaction strengths η, τ ∈ R with η + τ = 0 and η − τ 6= 0

Bγ̃(λ)∗P+ = (η − τ)γ̃(λ)∗P−P+ = 0

would would be valid. As in the proof of Theorem 4.4, we therefore obtain the con-
vergence (

Aη,τ − (λ+mc2)
)−1 → (T0 − λ)−1 P+

for c→∞ which is also suggested by the formal differential expression (4.10).
However, this description of the δ-shell interactions and the execution of the limiting

process c → ∞ are strongly connected to the scaling of the interaction strengths by
the chosen quasi boundary triple of Section 3.2 and therefore it cannot be ruled out
that a different description of the δ-shell interactions might give a different result. We
will address this question in the next section, using a different approach than the one
described in this section. Roughly speaking, we will investigate interaction strengths
η, τ ∈ R whose difference is located on the parabola εc2 for an ε ∈ R and consider the
limit c → ∞ for these. This means that we change the strength of interaction along
with the constant c. This approach is strongly motivated by known results for Dirac
operators with electrostatic and Lorentz scalar δ-point interactions in one dimension.

4.2 The non-relativistic limit for η + τ = 0

In this last section we will investigate the non-relativistic limit of Dirac operators Aη,τ
in the case of constant interaction strengths η, τ ∈ R which satisfy η + τ = 0. While
the case of interaction strengths η, τ ∈ R with η+ τ 6= 0 has already been investigated
in [10, 12, 40] and in Section 4.1, the case η + τ = 0 has not yet been considered.

The procedure in this section is as follows. First, the explicit resolvent representa-
tion of Aη,τ −mc2 according to Theorem 3.14 is rewritten by suitable multiplication
operators. This is inspired by a technique in [11]. Furthermore, a rescaling of the in-
teraction strengths is performed. Next, it is shown with the results of Section 2.6 that
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the modified resolvent of Aη,τ −mc2 converges to the resolvent of the free Schrödinger
operator and a perturbation term which is composed of certain integral operators. By
applying the result of Section 2.3, this bounded limit operator can be characterized as
the resolvent of a self-adjoint Schrödinger operator. It turns out that this Schrödinger
operator differs significantly in the characterization of the domain of definition from
the one in the case of η + τ 6= 0. In particular, on the interface Σ there are no jump
conditions describing δ-interactions but oblique jump conditions.

As in the previous sections, we will always assume in the following that a bounded
C2-domain Ω ⊆ R3 with boundary Σ = ∂Ω is given. We set Ω+ = Ω and Ω− = R3 \Ω
and thereby obtain two C2-domains which satisfy R3 = Ω+ ∪̇ Σ ∪̇ Ω−. Furthermore,
we choose the outer unit normal vector field ν = ν+ = −ν−on Σ.

In order to motivate our procedure in this section we change the quasi boundary
triple of Section 3.2 by the assignment

Γ̃0 =
1

c
Γ0 and Γ̃1 = cΓ1

with the boundary maps Γ0 and Γ1 from Theorem 3.8. Analogous to the proof of
Theorem 3.8 it can now be shown that these boundary maps and L2(Σ;C4) provide
a quasi boundary triple for the Dirac operator S∗ as well and all results from the
previous sections remain valid if we replace the operators Φλ and Cλ defined as in
(3.15) and (3.17) by the operators

Φ̃λ = cΦλ and C̃λ = c2Cλ.

Thus, for a given f ∈ L2(R3;C4)

f ∈ ker(Γ0 +BΓ1) ⇐⇒ f ∈ ker(Γ̃0 + B̃Γ̃1)

with the multiplication operator B̃ in L2(Σ;C4), defined as multiplication by the
matrix 1

c2
(ηI4 + τβ), is valid. In particular, we obtain for the constant interaction

strengths η, τ ∈ R with η + τ = 0

1

c2
(ηI4 + τβ) =

η − τ
c2

P−

with the diagonal matrix P− = diag(0, 0, 1, 1). Therefore we may equivalently describe
electrostatic and Lorentz scalar δ-shell interactions in this situation by the parameter
ε = η−τ

c2
. At this point it should be noted that both descriptions only give the same

Dirac operator Aη,τ for a certrain c-value, marked by the dot in the following graph,
and therefore provide an equivalent way of defining electrostatic and Lorentz scalar
δ-shell interactions.
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c
Γ0,Γ1

εc2

η − τ•

c
Γ̃0, Γ̃1

(η−τ)/c2

ε
•

By changing the speed of light c, as we will do in the calculation of the non-relativistic
limit, we generally obtain different operators. In particular, the interaction strengths
in the description in terms of the boundary maps Γ0,Γ1 change according to the red
line in the left graph, while the red line in the right graph represents the change of the
interactions strengths described in terms of Γ̃0, Γ̃1. The behavior of the interaction
strengths in the receptive other description is indicated by the black line. Recalling
the last remarks of the previous section, we observe in the description in terms of
the boundary maps Γ̃0, Γ̃1 that for constant interaction strengths η − τ = const the
influence of the δ-potentials becomes insignificant for increasing c-values and therefore
the convergence to the free Schrödinger operator seems plausible.

In spite of these observations, we stick to the original boundary maps Γ0 and Γ1

of Theorem 3.8 and the operators Φλ und Cλ defined as in (3.15) and (3.17) due to
frequent references to the previous sections. In particular, in this section we will always
assume that the constant interaction strengths η, τ ∈ R satisfy the relation η + τ = 0
and in this case we set

ε =
η − τ
c2

.

With this assignment we obtain η − τ = εc2 which leads to

ηI4 + τβ = (η − τ)P− = εc2P−.

Next, we define the matrices

A1 =


0 0
0 0
1 0
0 1

 and A2 =


1 0
0 1
0 0
0 0


and thereby obtain a decomposition of the form ηI4 + τβ = εc2A1A

>
1 .
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By using these matrices, we define linear and bounded multiplication operators
Mi : L2(Σ;C2)→ L2(Σ;C4) by the assignment

Mif = Aif

for f ∈ L2(Σ;C2) and i ∈ {1, 2}. A direct calculation shows that the adjoint oper-
ators M∗

i : L2(Σ;C4) → L2(Σ;C2) are given as the multiplication operators with the
matrices A>i . Furthermore, due to the above relation of the matrices ηI4 + τβ and A1

B = εc2M1M
∗
1 (4.14)

follows with the multiplication operator B defined as in (3.26).
Let λ ∈ C \ R be given and Cλ be the linear and bounded operator in L2(Σ;C4)

defined as in (3.17), then the operator I + BCλ is bijective for all η, τ ∈ R with
η2− τ 2 6= 4c2 according to the Theorem 3.13. This applies in particular to interaction
strengths which satisfy η + τ = 0 and η − τ = εc2, since in this case η2 − τ 2 = 0
holds true. We will now show that this bijectivity is preserved even if we modify the
operator I +BCλ by the multiplication operator M1 .

Lemma 4.5. Let λ ∈ C \ R be given, then the linear and bounded operator

I + εc2M∗
1CλM1 : L2(Σ;C2)→ L2(Σ;C2)

is bijective. Furthermore, the inverse operator is bounded as well and satisfies the
relation

(I +BCλ)−1M1 = M1

(
I + εc2M∗

1CλM1

)−1

in L2(Σ;C2).

Proof. Step 1: Let λ ∈ C \R be given, then λ ∈ ρ(A0) follows and thus the operator
Cλ is well defined according to Theorem 3.9. Since all occurring operators are linear
and bounded, we find that I + εc2M∗

1CλM1 is a linear and bounded operator as well.
Obviously M1 is bijective as an operator from L2(Σ;C2) to

ran(M1) =
{

(0, 0, f1, f2)> ∈ L2(Σ;C4)
∣∣∣ (f1, f2)> ∈ L2(Σ;C2)

}
.

First, we show that I+εc2M∗
1CλM1 is injective and therefore assume that the condition(

I + εc2M∗
1CλM1

)
f = 0

is satisfied for a function f ∈ L2(Σ;C2). Since η2 − τ 2 = 0 holds true, we deduce
from Theorem 3.13 that I +BCλ is bijective and therefore we can apply the operator
(I +BCλ)−1M1. This yields with (4.14)

0 = (I +BCλ)−1M1

(
I + εc2M∗

1CλM1

)
f

= (I +BCλ)−1 (M1 + εc2M1M
∗
1CλM1

)
f

= (I +BCλ)−1 (I +BCλ)M1f

= M1f
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and since M1 is injective according to the above consideration, f = 0 follows. This
shows the injectivity of I + εc2M∗

1CλM1.

Step 2: Next, we show the surjectivity of I+εc2M∗
1CλM1 and assume that an arbitrary

f ∈ L2(Σ;C2) is given. It then follows from the definition of M1 that M1f ∈ L2(Σ;C4)
is valid and due to the surjectivity of I +BCλ there exists a g ∈ L2(Σ;C4) such that

(I +BCλ) g = M1f

applies. With the definition of B and by using ηI4 + τβ = εc2P− we obtain
0
0
f1

f2

 = M1f = (I +BCλ) g =


g1

g2

g3

g4

+ εc2


0
0

(Cλg)3

(Cλg)4


by component-wise consideration and consequently g1 = g2 = 0. This leads to
g ∈ ran(M1) and therefore there exists an h ∈ L2(Σ;C2), namely h = (g3, g4)>, which
satisfies g = M1h. Hence, the choice of g leads to

M1f = (I +BCλ) g = (I +BCλ)M1h

=
(
M1 + εc2M1M

∗
1CλM1

)
h = M1

(
I + εc2M∗

1CλM1

)
h

and finally
f =

(
I + εc2M∗

1CλM1

)
h

due to the injectivity of M1. This shows the surjectivity of I + εc2M∗
1CλM1.

Step 3: According to Step 1 and 2 we have that I + εc2M∗
1CλM1 is a bounded and

bijective operator and therefore it follows from Theorem 2.6 or the open mapping
theorem that the inverse operator is bounded as well. A direct calculation finally
shows

(I +BCλ)−1M1 −M1

(
I + εc2M∗

1CλM1

)−1

= (I +BCλ)−1 (M1

(
I + εc2M∗

1CλM1

)
−
(
I + εc2M1M

∗
1Cλ
)
M1

) (
I + εc2M∗

1CλM1

)−1

= 0

what completes the proof.

Next, we define integral operators which will prove to be important in the following.
For this purpose we define the matrix-valued function

Hλ(x) =
(

1− i
√

2mλ‖x‖
) i

4π‖x‖3 (σ · x)exp
(
i
√

2mλ‖x‖
)

(4.15)

for all x ∈ R3 \ {0} and all λ ∈ C \R with σk being the Pauli spin matrices. As in the
previous sections, the square root of a complex number µ ∈ C \ [0,∞) is chosen such
that Im

{√
µ
}
> 0 applies.
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Theorem 4.6. Let λ ∈ C \ R be given, then the following statements are true.

i) The assignment

(Ψλf)(x) =

∫
Σ

Hλ(x− y)f(y)dσ(y) (4.16)

for f ∈ L2(Σ;C2) and x ∈ R3 corresponds to a well-defined, linear and bounded
operator Ψλ : L2(Σ;C2)→ L2(R3;C2).

ii) The adjoint operator of Ψλ is given by

(Ψ∗λf)(x) =

∫
R3

Hλ(x− y)f(y)dy (4.17)

for all f ∈ L2(R3;C2) and for almost all x ∈ Σ and is a linear and bounded
operator Ψ∗λ : L2(R3;C2)→ L2(Σ;C2) as well.

iii) The assignment

(Dλf)(x) =

∫
Σ

λ

4π‖x− y‖
exp

(
i
√

2mλ‖x‖
)
f(y)dσ(y) (4.18)

for f ∈ L2(Σ;C2) and x ∈ Σ corresponds to a well-defined, linear and compact

operator Dλ : L2(Σ;C2)→ L2(Σ;C2) with ran(Dλ) ⊆ H
1
2 (Σ;C2).

Proof. Step 1: Since all operators are integral operators, we are going to apply the
results from Section 2.6. For this we need estimates of the integral kernels. Let
x ∈ R3 \ {0} be given, then the estimation

‖Hλ(x)‖F ≤

∣∣∣1− i√2mλ‖x‖
∣∣∣

4π‖x‖3

(
3∑
j=1

‖σj‖F |xj|

)
exp

(
−Im

{√
2mλ

}
‖x‖
)

≤
1 +

∣∣∣√2mλ
∣∣∣ ‖x‖

4π‖x‖2

(
3∑
j=1

‖σj‖F

)
exp

(
−Im

{√
2mλ

}
‖x‖
)
.

(4.19)

follows for the Frobenius norm. If ‖x‖ < 1 holds true, then it follows from (4.19) that

‖Hλ(x)‖F ≤
1 +

∣∣∣√2mλ
∣∣∣

4π‖x‖2

(
3∑
j=1

‖σj‖F

)
exp

(
−Im

{√
2mλ

}
‖x‖
)

≤
1 +

∣∣∣√2mλ
∣∣∣

4π‖x‖2

(
3∑
j=1

‖σj‖F

)
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is valid, while for ‖x‖ ≥ 1 it follows from (4.19) that the estimate

‖Hλ(x)‖F ≤
1 +

∣∣∣√2mλ
∣∣∣

4π‖x‖

(
3∑
j=1

‖σj‖F

)
exp

(
−Im

{√
2mλ

}
‖x‖
)

≤
1 +

∣∣∣√2mλ
∣∣∣

4π

(
3∑
j=1

‖σj‖F

)
exp

(
−Im

{√
2mλ

}
‖x‖
)

applies. Setting

κ1 =
1 +

∣∣∣√2mλ
∣∣∣

4π

(
3∑
j=1

‖σj‖F

)
and κ2 = −Im

{√
2mλ

}
then immediately leads to

‖Hλ(x)‖F ≤ κ1

{
‖x‖−2 , for ‖x‖ < 1

e−κ2‖x‖ , for ‖x‖ ≥ 1

for all x ∈ R3 \ {0}. An application of Theorem 2.35 results in the validity of the
assertion for Ψλ.

Step 2: As Ψλ is an everywhere defined and bounded operator according to Step 1 it
follows from Theorem 2.10 that Ψ∗λ ∈ L(L2(R3;C2), L2(Σ;C2)) holds true. Next, we
define an integral operator by

(Tf)(x) =

∫
R3

Hλ(x− y)f(y)dy

for f ∈ L2(R3;C2) and x ∈ Σ and conclude from Step 1 and Theorem 2.35 that this
assignment corresponds to a well-defined, linear and bounded operator
T : L2(R3;C2)→ L2(Σ;C2). Furthermore, it can be shown by direct calculation that

−Hλ(x) = Hλ(x)∗

is valid for all λ ∈ C \ R and all x ∈ R3 \ {0}.
To prove assertion ii) we assume that arbitrary functions f ∈ L2(R3;C2) and

g ∈ L2(Σ;C2) are given. Then it follows from Lemma 2.37 with Fubini ’s theorem and
the hermiticity of the Pauli spin matrices that

(g,Ψ∗λf)L2(Σ;C2) = (Ψλg, f)L2(R3;C2) =

∫
R3

∫
Σ

Hλ(x− y)g(y) · f(x)dσ(y)dx

=

∫
Σ

∫
R3

g(y) ·Hλ(y − x)f(x)dxdσ(y) = (g, Tf)L2(Σ;C2)
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applies. Since this holds true for all f ∈ L2(R3;C2) and g ∈ L2(Σ;C2), the equality
T = Ψ∗λ follows in the sense of linear operators which shows the assertion ii).

Step 3: Let M̃(λ) be the linear and bounded operator defined in (4.4), then it follows
immediately from the definition of Dλ that

Dλ =
λ

2m
M̃(λ)I2 =

λ

2m
S(λ)I2 �L

2(Σ;C2)

with the single layer boundary integral operator S(λ) is valid. The latter is a linear

and bounded operator from H−
1
2 (Σ;C) to H

1
2 (Σ;C). Due to the compact embeddings

H
1
2 (Σ;C) ↪→L2(Σ;C2) ↪→H−

1
2 (Σ;C)

according to Theorem 2.29 the claimed properties of Dλ follow.

The reason for the definition of the operators Ψλ and Dλ is provided by the following
theorem, which is of particular importance for the investigation of the non-relativistic
limit in Theorem 4.12. It is shown that the operators cΦλ and c2Cλ converge to modi-
fied operators Ψλ and Dλ after a suitable transformation by multiplication operators.
Furthermore, an important relationship between the operators Ψλ and Dλ is derived
from this theorem in Lemma 4.8.

Theorem 4.7. Let λ ∈ C\R be given, Φλ and Cλ be the linear and bounded operators
defined as in (3.15) and (3.17) and Ψλ and Dλ be the linear and bounded operators
according to (4.16) and (4.18). Then there exists a constant κ(m,λ,Σ) > 0 only
dependent on m, λ and Σ such that the following estimates are valid for sufficiently
large c > 0

‖cΦλ+mc2M1 −M2Ψλ‖ ≤
κ

c
, (4.20)

∥∥cM∗
1 Φ∗λ+mc2 −Ψ∗λM

∗
2

∥∥ ≤ κ

c
, (4.21)

∥∥c2M∗
1Cλ+mc2M1 −Dλ

∥∥ ≤ κ

c
. (4.22)

Proof. Step 1: Let λ ∈ C\R be given, then it immediately follows that λ+mc2 ∈ C\R
applies and therefore all occurring operators are well defined according to Theorem
3.9 and Theorem 4.6. Since these are integral operators, it is our approach to apply
the results of Section 2.6. For this purpose we require estimates of the integral kernels.

We begin with the integral kernel of the resolvent of the free Dirac operator and
conclude by direct calculation that

Gλ+mc2(x) =(
λ

c2
I4 + 2mP+ +

(
1− i

√
λ2

c2
+ 2mλ‖x‖

)
i

c‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
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is valid for all x ∈ R3 \{0}. Consequently, we obtain from P+A1 = 0 with the diagonal
matrix P+ = diag(1, 1, 0, 0)

cGλ+mc2(x)A1 =(
λ

c
I4 +

(
1− i

√
λ2

c2
+ 2mλ‖x‖

)
i

‖x‖2 (α · x)

)
1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
A1

(4.23)

for all x ∈ R3 \ {0}. Furthermore, the definition of the matrices A1 and A2 yields

A2Hλ(x) =
(

1− i
√

2mλ‖x‖
) i

4π‖x‖3 (α · x)exp
(
i
√

2mλ‖x‖
)
A1 (4.24)

for all x ∈ R3 \ {0}. Next, we define the matrix-valued functions

t1(x) =
λ

c

1

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
I4

t2(x) =
i

4π‖x‖3 (α · x)

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
))

t3(x) =
1

4π‖x‖2

(√
λ2

c2
+ 2mλ−

√
2mλ

)
(α · x)exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)

t4(x) =

√
2mλ

4π‖x‖2 (α · x)

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
))

and thus, by combining (4.23) and (4.24), we obtain the relationship

cGλ+mc2(x)A1 − A2Hλ(x) =

(
4∑
j=1

tj(x)

)
A1

between the integral kernels Gλ+mc2 and Hλ for all x ∈ R3 \ {0}.

Step 2: In order to derive an estimate for t1 we use the Frobnenius norm and find with
Lemma 4.2 and t = 1

‖t1(x)‖F =
2 |λ|

4πc‖x‖
exp

(
−Im

{√
λ2

c2
+ 2mλ

}
‖x‖

)

≤ 1

c

|λ|
2π‖x‖

exp

(
−1

2
Im
{√

2mλ
}
‖x‖
) (4.25)
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for all x ∈ R3 \ {0}. If ‖x‖ < 1 holds true, then it follows from (4.25) that

‖t1(x)‖F ≤
1

c

|λ|
2π‖x‖

<
1

c

|λ|
2π‖x‖2

is valid, while for ‖x‖ ≥ 1 it follows from (4.25) that the estimation

‖t1(x)‖F ≤
1

c

|λ|
2π

exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

applies. Defining

κ1 =
|λ|
2π

and κ2 =
1

2
Im
{√

2mλ
}

leads to the estimate

‖t1(x)‖ ≤ κ1

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ2‖x‖ , for ‖x‖ ≥ 1

for all x ∈ R3 \ {0} and sufficiently large c > 0 with the constants κ1 and κ2, which
depend only on m and λ.

Step 3: Let x ∈ R3 \ {0} be given, then it follows as in the proof of Theorem 4.3 Step
3 that there exist constants k1, k2 > 0 depending only on m and λ such that∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣ ≤ k1‖x‖

c2
e−k2‖x‖

holds true. Consequently, for t2 the estimate

‖t2(x)‖F ≤
1

4π‖x‖3

(
3∑
j=1

‖αj‖F |xj|

)∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤ 1

4π‖x‖2

(
3∑
j=1

‖αj‖F

)∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤ k1

4c2π‖x‖

(
3∑
j=1

‖αj‖F

)
e−k2‖x‖

≤ k1

4cπ‖x‖

(
3∑
j=1

‖αj‖F

)
e−k2‖x‖
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follows for sufficiently large c > 0. As in Step 2, we obtain constants κ3, κ4 > 0 only
dependent on m and λ such that

‖t2(x)‖ ≤ κ3

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ4‖x‖ , for ‖x‖ ≥ 1

applies to all x ∈ R3 \ {0} and sufficiently large c > 0.

Step 4: Next, we consider t3. From the convergence√
λ2

c2
+ 2mλ→

√
2mλ for c→∞

and an application of the triangle inequality we obtain∣∣∣∣∣
∣∣∣∣∣
√
λ2

c2
+ 2mλ+

√
2mλ

∣∣∣∣∣− 2
∣∣∣√2mλ

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣
√
λ2

c2
+ 2mλ−

√
2mλ

∣∣∣∣∣ ≤ ∣∣∣√2mλ
∣∣∣

for sufficiently large c > 0. This yields the chain of inequalities∣∣∣√2mλ
∣∣∣ ≤ ∣∣∣∣∣

√
λ2

c2
+ 2mλ+

√
2mλ

∣∣∣∣∣ ≤ 3
∣∣∣√2mλ

∣∣∣ . (4.26)

Furthermore, it follows from the convergence λ2

c
→ 0 for c→∞ that

|λ|2

c
≤ 1 (4.27)

applies to sufficiently large c > 0. If x ∈ R3 \ {0} is given, then we conclude from
Lemma 4.2 with t = 1 in combination with (4.26) and (4.27) that the estimate

‖t3(x)‖F ≤
1

4π‖x‖2

∣∣∣∣∣
√
λ2

c2
+ 2mλ−

√
2mλ

∣∣∣∣∣
(

3∑
j=1

‖αj‖F |xj|

)
·

exp

(
−Im

{√
λ2

c2
+ 2mλ

}
‖x‖

)

≤ 1

4π‖x‖

∣∣∣∣∣
√
λ2

c2
+ 2mλ−

√
2mλ

∣∣∣∣∣
(

3∑
j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

=
1

4π‖x‖

|λ|2
c2∣∣∣∣√λ2

c2
+ 2mλ+

√
2mλ

∣∣∣∣
(

3∑
j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)

≤ 1

4cπ‖x‖
1∣∣∣√2mλ

∣∣∣
(

3∑
j=1

‖αj‖F

)
exp

(
−1

2
Im
{√

2mλ
}
‖x‖
)
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is valid for sufficiently large c > 0. Finally, as in Step 2, we obtain constants κ5, κ6 > 0
only dependent on m and λ such that

‖t3(x)‖ ≤ κ5

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ6‖x‖ , for ‖x‖ ≥ 1

applies to all x ∈ R3 \ {0} and sufficiently large c > 0.

Step 5: For a given x ∈ R3 \ {0} we use the same estimation as in Step 3 and obtain

‖t4(x)‖F ≤

∣∣∣√2mλ
∣∣∣

4π‖x‖2

(
3∑
j=1

‖αj‖F |xj|

)∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤

∣∣∣√2mλ
∣∣∣

4π‖x‖

(
3∑
j=1

‖αj‖F

)∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤
k1

∣∣∣√2mλ
∣∣∣

4πc2

(
3∑
j=1

‖αj‖F

)
e−k2‖x‖

≤
k1

∣∣∣√2mλ
∣∣∣

4πc

(
3∑
j=1

‖αj‖F

)
e−k2‖x‖

for sufficiently large c > 0. Defining the constants

κ7 =
k1

∣∣∣√2mλ
∣∣∣

4π

(
3∑
j=1

‖αj‖F

)
and κ8 = k2

which depend only on m and λ, immediately leads to

‖t4(x)‖ ≤ κ7

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ8‖x‖ , for ‖x‖ ≥ 1

for all x ∈ R3 \ {0} and sufficiently large c > 0.

Step 6: From the previous steps it follows that there exist constants κ̃1(m,λ) > 0 and
κ̃2(m,λ) > 0 only dependent on m and λ such that

‖tj(x)‖ ≤ κ̃1

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ̃2‖x‖ , for ‖x‖ ≥ 1
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is valid for all j ∈ {1, . . . , 4}, all x ∈ R3 \ {0} and sufficiently large c > 0. This leads
to the estimate

‖cGλ+mc2(x)A1 − A2Hλ(x)‖ ≤

(
4∑
j=1

‖tj(x)‖

)
‖A1‖ ≤

4‖A1‖κ̃1

c

{
‖x‖−2 , for ‖x‖ < 1

e−κ̃2‖x‖ , for ‖x‖ ≥ 1

for all x ∈ R3 \ {0} and sufficiently large c > 0 for the integral kernel of the operator
cΦλ+mc2M1 −M2Ψλ. An application of Theorem 2.35 finally results in

‖cΦλ+mc2M1 −M2Ψλ‖ ≤
4‖A1‖κ̃1K

c

with a constant K(κ̃2,Σ) > 0 only dependent on κ̃2(m,λ) and Σ. This proves the first
inequality (4.20).

Step 7: Due to the boundedness of all the occurring operators we obtain with Theorem
2.10 and Step 6 the estimation

∥∥cM∗
1 Φ∗λ+mc2 −Ψ∗λM

∗
2

∥∥ = ‖cΦλ+mc2M1 −M2Ψλ‖ ≤
4‖A1‖κ̃1K

c

for sufficiently large c > 0 which proves the second inequality (4.21).

Step 8: Finally, we prove the last inequality and find by direct calculation that
P+A1 = 0 and A>1 αjA1 = 0 for all j ∈ {1, 2, 3} are valid. Therefore, it follows
from the representation of Gλ+mc2 that

c2A>1 Gλ+mc2(x)A1 =
λ

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
A>1 A1

=
λ

4π‖x‖
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
I2

holds true for all x ∈ R3 \{0}. The definition of this integral kernel immediately leads
to the estimate ∥∥c2A>1 Gλ+mc2(x)A1

∥∥ ≤ k

‖x‖

for all x ∈ R3 \ {0} with a constant k(λ) > 0 only dependent on λ. With a reasoning
as in Lemma 2.37 and the choice g ≡ 1 we find that∫

Σ

∫
Σ

∥∥c2A>1 Gλ+mc2(x− y)A1

∥∥‖f(y)‖dσ(y)dσ(x) <∞
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is valid for all f ∈ L2(Σ;C2). This leads to∫
Σ

∥∥c2A>1 Gλ+mc2(x− y)A1

∥∥‖f(y)‖dσ(y) <∞

for almost all x ∈ Σ and an application of the dominated convergence theorem then
yields(
c2M∗

1Cλ+mc2M1f
)

(x) = lim
δ→0+

∫
Σ\B(x,δ)

c2A>1 Gλ+mc2(x− y)A1f(y)dσ(y)

= lim
δ→0+

∫
Σ\B(x,δ)

λ

4π‖x− y‖
exp

(
i

√
λ2

c2
+ 2mλ‖x− y‖

)
f(y)dσ(y)

=

∫
Σ

λ

4π‖x− y‖
exp

(
i

√
λ2

c2
+ 2mλ‖x− y‖

)
f(y)dσ(y)

for all f ∈ L2(Σ;C2) and almost all x ∈ Σ. Defining the matrix-valued function

t(x) =
λ

4π‖x‖

(
exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
))

I2

for all x ∈ R3 \ {0} we obtain with the same estimate as in Step 3

‖t(x)‖F =
2 |λ|

4π‖x‖

∣∣∣∣∣exp

(
i

√
λ2

c2
+ 2mλ‖x‖

)
− exp

(
i
√

2mλ‖x‖
)∣∣∣∣∣

≤ k1 |λ|
4πc2

e−k2‖x‖ ≤ k1 |λ|
4πc

for sufficiently large c > 0. Therefore, with the representation of Dλ and Theorem
2.36 ∥∥c2M∗

1Cλ+mc2M1 −Dλ
∥∥ ≤ k1K |λ|

4πc
follows for sufficiently large c > 0 with a constant K(Σ) > 0 only depending on Σ.
This shows the third inequality (4.22) and completes the proof.

Theorem 4.7 enables us to show an important relationship between the operators
Ψλ, Ψ∗λ and Dλ which will be used in the proof of Theorem 4.12. Note the striking
similarity to Theorem 2.18 for quasi boundary triples.

Lemma 4.8. Let λ, µ ∈ C \ R be given, then

Dλ −D∗µ = (λ− µ) Ψ∗µΨλ

holds on the domain of definition L2(Σ;C2) of the operators. In particular, it follows
that Dλ = D∗

λ
applies.
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Proof. According to Theorem 3.11 we have that the values of the Weyl function
are closable operators and M(λ+mc2) = Cλ+mc2 applies. Due to Theorem 2.10 we
therefore obtain

M(λ+mc2)∗ = C∗λ+mc2

and with Theorem 4.7 the convergence

c2M∗
1C∗λ+mc2M1 → D∗λ for c→∞.

Let f ∈ H
1
2 (Σ;C2) be given then M1f ∈ H

1
2 (Σ;C4) follows and an application of

Theorem 2.18 leads to

M∗
1Cλ+mc2M1f −M∗

1C∗µ+mc2M1f = M∗
1M(λ+mc2)M1f −M∗

1M(µ+mc2)∗M1f

= (λ− µ)M∗
1γ(µ+mc2)∗γ(λ+mc2)M1f

= (λ− µ)M∗
1 Φ∗µ+mc2Φλ+mc2M1f

for all λ, µ ∈ C \ R. Since H
1
2 (Σ;C2) is dense in L2(Σ;C2) and since all occurring

operators are bounded, it can be shown by a simple approximation argument that this
equality is even valid for all f ∈ L2(Σ;C2). By multiplying with c2 and executing the
limit c→∞ we finally obtain the relationship

Dλ −D∗µ = (λ− µ) Ψ∗µΨλ

on L2(Σ;C2) due to Theorem 4.7 and the definition of the multiplication operator M2.

Next, we will show mapping properties and an alternative representation of the
operators Ψλ and Ψ∗λ which will be needed in the following. For this purpose it will
be necessary to define another trace operator, which we construct by the following
consideration.

Let f ∈ H1(R3;C2) be given, then it follows from Theorem 2.32 that τ+f+ = τ−f−
applies and therefore by assigning

τf =
1

2
(τ+f+ + τ−f−) = τ+f+ (4.28)

we obtain a well-defined, linear and bounded operator τ : H1(R3;C2)→ H
1
2 (Σ;C2).

Furthermore, it should be remembered that for a given operator S in L2(R3;C), an
expression of the form SI2f is always understood in such a way that the operator S
acts on every component of a C2-valued function f .
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Theorem 4.9. Let λ ∈ C\R be given, Ψλ and Ψ∗λ be the linear and bounded operators
defined as in (4.16) and (4.17) and τ be the trace operator according to (4.28), then
the following statements are true.

i) With the resolvent of the free Schrödinger operator in (2.19) the representation

Ψ∗
λ
f = τ

(
− i

2m
(σ · ∇)

)(
− 1

2m
∆− λ

)−1

I2f

is valid for all f ∈ L2(R3;C2). In particular, Ψ∗
λ
f ∈ H

1
2 (Σ;C2) applies to all

f ∈ L2(R3;C2).

ii) With the single layer potential of the free Schrödinger operator, the representation

Ψλf = − i

2m
(σ · ∇)SL(λ)I2f.

is valid for all f ∈ L2(Σ;C2). Furthermore

i(σ · ∇)Ψλf = −λSL(λ)I2f ∈ H1(R3;C2)

and
∆Ψλf = iλ(σ · ∇)SL(λ)I2f = −2mλΨλf ∈ L2(R3;C2)

are valid in the distributional sense for all f ∈ L2(Σ;C2).

iii) Ψλf ∈ H1(R3 \ Σ;C2) is valid for all f ∈ H 1
2 (Σ;C2) and the jump condition

i(σ · ν)
(
τ+ (Ψλf)+ − τ− (Ψλf)−

)
= f

on the surface Σ holds true.

Proof. Step 1: As the reasoning of this proof is analogous to the one of Theorem
3.4, we will not present all the details, but refer to the proof of Theorem 3.4. In fact,
only the dimension of the matrices needs to be changed from 4 × 4 to 2 × 2 without
modifying the other arguments.

First, we define for λ ∈ C \ R the matrix-valued functions

Kλ(x) =
2m

4π‖x‖
exp

(
i
√

2mλ‖x‖
)
I2

and

tj(x) =
∂

∂xj

(
2m

4π‖x‖
exp

(
i
√

2mλ‖x‖
))

I2

=
(
i
√

2mλ‖x‖ − 1
) 2m

4π‖x‖3 exp
(
i
√

2mλ‖x‖
)
xjI2
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for all x ∈ R3 \ {0} and all j ∈ {1, 2, 3}. By using a line of reasoning as in the proof
of Lemma 3.3 it can be shown that there exist constants k1, k2 > 0 such that

‖Kλ(x)‖, ‖tj(x)‖ ≤ k1

{
‖x‖−2 , for ‖x‖ < 1

e−k2‖x‖ , for ‖x‖ ≥ 1

is valid for all x ∈ R3 \ {0} and all j ∈ {1, 2, 3}. Consequently, due to Theorem 2.34,
we find that the assignment

(Tjf)(x) =

∫
R3

tj(x− y)f(y)dy

for f ∈ L2(R3;C2) and x ∈ R3 corresponds to a well-defined, linear and bounded
operator Tj : L2(R3;C2) → L2(R3;C2). Furthermore, as shown in Theorem 3.4 Step
3, the integration by parts formula∫

R3

tj(x− y)Ψ(x)dx = −
∫
R3

Kλ(x− y)∂jΨ(x)dx

is valid for all test functions Ψ ∈ D(R3;C2) and almost all y ∈ R3. This yields, as in
Theorem 3.4 Step 5 with Fubini’s theorem

(Tjf,Ψ)L2(R3;C2) =

∫
R3

∫
R3

tj(x− y)f(y) ·Ψ(x)dydx

=

∫
R3

f(y) ·
∫
R3

tj(x− y)Ψ(x)dxdy

= −
∫
R3

f(y) ·
∫
R3

Kλ(x− y)∂jΨ(x)dxdy

= −
∫
R3

∫
R3

Kλ(x− y)f(y) · ∂jΨ(x)dydx

= −

((
− 1

2m
∆− λ

)−1

I2f, ∂jΨ

)
L2(R3;C2)

and since this holds true for all test functions Ψ we obtain the explicit representation

∂

∂xj

(
− 1

2m
∆− λ

)−1

I2f = Tjf
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for the weak derivative with respect to the variable xj. As a result, it follows immedi-
ately by direct calculation that(
− i

2m
(σ · ∇)

)(
− 1

2m
∆− λ

)−1

I2f(x) = − i

2m

3∑
j=1

σj
∂

∂xj

(
− 1

2m
∆− λ

)−1

I2f(x)

= − i

2m

3∑
j=1

σjTjf(x) =

∫
R3

− i

2m

3∑
j=1

σjtj(x− y)f(y)dy =

∫
R3

Hλ(x− y)f(y)dy

is valid for all f ∈ L2(R3;C2) and almost all x ∈ R3 with the integral kernel Hλ defined
as in (4.15). Furthermore, the definition of the free Schrödinger operator leads to(

− i

2m
(σ · ∇)

)(
− 1

2m
∆− λ

)−1

I2f ∈ H1(R3;C2)

for all f ∈ L2(R3;C2) and therefore the trace operator τ can be applied. By proceeding
as in the proof of Theorem 3.11 Step 1 it can now be shown that the non-tangential
limits for this function exist as well and we therefore obtain

τ

(
− i

2m
(σ · ∇)

)(
− 1

2m
∆− λ

)−1

I2f(x) =

∫
R3

Hλ(x− y)f(y)dy =
(
Ψ∗
λ
f
)

(x)

for all f ∈ L2(R3;C2) and almost all x ∈ Σ. This shows item i) of this lemma by using
the mapping property of the trace operator τ .

Step 2: Assertion ii) can be proven analogously to i) by defining a linear and bounded

operator T̃j : L2(Σ;C2)→ L2(R3;C2) by the assignment

(T̃jf)(x) =

∫
Σ

tj(x− y)f(y)dσ(y)

for f ∈ L2(Σ;C2) and x ∈ R3 according to Step 1 and Theorem 2.36. Due to Theorem
2.39 it follows that SL(λ)I2f ∈ H1(R3;C2) is valid for all f ∈ L2(Σ;C2) and thus
the weak derivatives of this function exist. Consequently, with the representation of
the single layer potential for L2-functions according to (4.3) there follows the explicit
representation of the weak derivatives as

− i

2m
(σ · ∇)SL(λ)I2f(x) = − i

2m

3∑
j=1

σj
∂

∂xj
SL(λ)I2f(x) = − i

2m

3∑
j=1

σjT̃jf(x)

=

∫
Σ

− i

2m

3∑
j=1

σjtj(x− y)f(y)dy =

∫
Σ

Hλ(x− y)f(y)dy

= (Ψλf) (x)

(4.29)
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for all f ∈ L2(Σ;C2) and almost all x ∈ R3, as in Step 1. This shows the first assertion
of item ii).

Furthermore, this representation and Lemma 2.39 leads to

−i(σ · ∇) (Ψλf)± = − 1

2m
(σ · ∇)2 (SL(λ)I2f)± = − 1

2m
∆ (SL(λ)I2f)±

= λ (SL(λ)I2f)± ∈ H
1(Ω±;C2)

on Ω± in the distributional sense. It should be noted that for the second equal sign,
the definition of the distributional Laplace operator and the validity of Schwarz’s
theorem for test functions was used. Another application of Lemma 2.39 yields the
jump condition

τ+

(
i(σ · ∇) (Ψλf)+

)
− τ−

(
i(σ · ∇) (Ψλf)−

)
= −λ

(
τ+ (SL(λ)I2f)+ − τ− (SL(λ)I2f)−

)
= 0

on Σ which, in combination with Theorem 2.32 shows

i(σ · ∇)Ψλf = −λSL(λ)I2f ∈ H1(R3;C2). (4.30)

Therefore, the weak derivatives of this expression exist and by using (4.29) and (4.30)
we obtain

∆Ψλf = −i(σ · ∇)i(σ · ∇)Ψλf = λi(σ · ∇)SL(λ)I2f

= −2mλΨλf ∈ L2(R3;C2)

in the distributional sense. This shows the claimed property concerning the distribu-
tional Laplace operator and completes the proof of ii).

Step 3: To prove assertion iii) we choose a complex number µ ∈ C \ R and an c > 0
such that

µ2

c2
−m2c2 = 2mλ

is satisfied. By direct calculation the relation

A2Hλ(x) =
(

1− i
√

2mλ‖x‖
) i

4π‖x‖3 (α · x)exp
(
i
√

2mλ‖x‖
)
A1

=
(
cGµ(x)−

(µ
c

+mcβ
)
Kλ(x)

)
A1

for all x ∈ R\{0} follows with the integral kernel Gµ defined as in (3.5) and the integral
kernel of the resolvent of the free Schrödinger operator Kλ according to (2.20).

Obviously M1f ∈ H
1
2 (Σ;C4) = dom(γ(µ)) is valid for a given f ∈ H 1

2 (Σ;C2) with
the γ-field for the Dirac operator. Thus, by using the representation of the operator
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Φµ defined as in (3.15) and the one of the single layer potential according to (2.21) we
obtain

M2Ψλf =
(
cΦµ −

(µ
c

+mcβ
)

SL(λ)
)
M1f

=
(
cγ(µ)−

(µ
c

+mcβ
)

SL(λ)
)
M1f

(4.31)

by applying Theorem 3.11. This, in combination with the mapping properties of the
values of the γ-field of Theorem 3.11 and those of the single layer potential of Lemma
2.39 shows that Ψλf ∈ H1(R3 \ Σ;C2) is valid for all f ∈ H 1

2 (Σ;C2).
From the definition of the boundary maps of the quasi boundary triple of Theorem

3.8
M1f = Γ0γ(µ)M1f = ic(α · ν)

(
τ+ (γ(µ)M1f)+ − τ− (γ(µ)M1f)−

)
follows and with (α · ν)2 = I4 furthermore that

− i(α · ν)M1f = c
(
τ+ (γ(µ)M1f)+ − τ− (γ(µ)M1f)−

)
(4.32)

applies. By applying Lemma 2.39 we conclude from (4.31) and (4.32)

M2

(
τ+ (Ψλf)+ − τ− (Ψλf)−

)
= c

(
τ+ (γ(µ)M1f)+ − τ− (γ(µ)M1f)−

)
= −i(α · ν)M1f

for all f ∈ H 1
2 (Σ;C2). A component-wise consideration, the definition of the multi-

plication operators M1 and M2 and (σ · ν)2 = I2 finally results in

i(σ · ν)
(
τ+ (Ψλf)+ − τ− (Ψλf)−

)
= f

for all f ∈ H 1
2 (Σ;C2). This shows the jump condition on Σ and completes the proof

of the theorem.

Next, we define a linear operator in L2(R3;C2), which will be important for the sub-
sequent considerations, by the following observation. Let f ∈ H1(Ω+;C2)⊕H1(Ω−;C2)
with (σ · ∇)f+ ⊕ (σ · ∇)f− ∈ H1(R3;C2) be given, then it can be shown by using the
definition of the distributional derivative and Schwarz’s theorem for test functions that
the relation

∆f = (σ · ∇)(σ · ∇)f ∈ L2(R3;C2)

is valid for the distributional Laplace operator. Therefore, for an arbitrary ε ∈ R the
linear operator

dom(Tε) =

{
f ∈ H1(Ω+;C2)⊕H1(Ω−;C2)

∣∣∣∣ (σ · ∇)f+ ⊕ (σ · ∇)f− ∈ H1(R3;C2)

and i(σ · ν) (τ+f+ − τ−f−) = ετ

(
i

2m
(σ · ∇)f

)}
Tεf = − 1

2m
∆f

(4.33)
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with the trace operator τ from (4.28) is well-defined. As in the previous sections, we use
the isomorphism ι : L2(R3;C4)→ L2(Ω+;C4)⊕L2(Ω−;C4) of Section 2.6 to regard Tε
as a linear operator in L2(R3;C2) with domain of definition dom(Tε) ⊆ H1(R3\Σ;C2).
Furthermore, this linear operator is densely defined since D(R3 \ Σ;C2) ⊆ dom(Tε)
holds true.

Lemma 4.10. The operator Tε defined as in (4.33) is a symmetric operator in L2(R3;C2).

Proof. Let f, g ∈ dom(Tε) be given, then from the divergence theorem and the her-
miticity of the Pauli spin matrices it follows that(
− 1

2m
∆f±, g±

)
L2(Ω±;C2)

=

(
1

2m
i(σ · ∇)i(σ · ∇)f±, g±

)
L2(Ω±;C2)

=
1

2m
(i(σ · ∇)f±, i(σ · ∇)g±)L2(Ω±;C2) ±

(
i

2m
(σ · ν)τ± (i(σ · ∇)f±), τ±g±

)
L2(Σ;C2)

=
1

2m
(i(σ · ∇)f±, i(σ · ∇)g±)L2(Ω±;C2) ∓

(
τ±

(
i

2m
(σ · ∇)f±

)
, i(σ · ν)τ±g±

)
L2(Σ;C2)

=
1

2m
(i(σ · ∇)f±, i(σ · ∇)g±)L2(Ω±;C2) ∓

(
τ

(
i

2m
(σ · ∇)f

)
, i(σ · ν)τ±g±

)
L2(Σ;C2)

.

applies. If we add these two equations and use the jump condition on Σ for functions
from the domain of definition of Tε we obtain the following equality.(
− 1

2m
∆f, g

)
L2(R3;C2)

=

(
− 1

2m
∆f+, g

)
L2(Ω+;C2)

+

(
− 1

2m
∆f−, g−

)
L2(Ω−;C2)

=
1

2m
(i(σ · ∇)f+, i(σ · ∇)g+)L2(Ω+;C2) +

1

2m
(i(σ · ∇)f−, i(σ · ∇)g−)L2(Ω−;C2)

−
(
τ

(
i

2m
(σ · ∇)f

)
, i(σ · ν) (τ+g+ − τ−g−)

)
L2(Σ;C2)

=
1

2m
(i(σ · ∇)f, i(σ · ∇)g)L2(R3;C2) − ε

(
τ

(
i

2m
(σ · ∇)f

)
, τ

(
i

2m
(σ · ∇)g

))
L2(Σ;C2)

In the same way it can be shown that(
f,− 1

2m
∆g

)
L2(R3;C2)

=
1

2m
(i(σ · ∇)f, i(σ · ∇)g)L2(R3;C2) − ε

(
τ

(
i

2m
(σ · ∇)f

)
, τ

(
i

2m
(σ · ∇)g

))
L2(Σ;C2)

is valid as well. Finally, this leads to

(Tεf, g)L2(R3;C2)−(f, Tεg)L2(R3;C2) =

(
− 1

2m
∆f, g

)
L2(R3;C2)

−
(
f,− 1

2m
∆g

)
L2(R3;C2)

= 0

for all f, g ∈ dom(Tε) which shows the symmetry of Tε.
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Before we finally discuss the non-relativistic limit we require a further auxiliary
result, which shows the continuous invertibility of the operator I + εDλ.

Lemma 4.11. The operator I + εDλ is bijective in L2(Σ;C2) for all ε ∈ R and all
λ ∈ C \ R and also the inverse operator is bounded. Furthermore, the restriction

(I + εDλ)�H
1
2 (Σ;C2) as a linear operator in H

1
2 (Σ;C2) is bijective as well.

Proof. Step 1: Since Dλ is compact according to Theorem 4.6, it is sufficient to show
that the operator I + εDλ is injective due to Fredholm’s alternative. For this purpose
we assume that there exists an f ∈ ker(I+ εDλ)\{0}. Due to the mapping properties
of Dλ according to Theorem 4.6 one obtains

f = −εDλf ∈ H
1
2 (Σ;C2)

which leads with Theorem 4.9 to Ψλf ∈ H1(R3 \Σ;C2) and i(σ ·∇)Ψλf ∈ H1(R3;C2).
Furthermore, we conclude from Theorem 4.9, the definition of Dλ as a restriction of
the single layer boundary integral operator and the connection of the latter with the
single layer potential

i(σ · ν)
(
τ+ (Ψλf)+ − τ− (Ψλf)−

)
= f = −εDλf = − ελ

2m
S(λ)f

= − ελ
2m

τ (SL(λ)I2f) = ετ

(
i

2m
(σ · ∇)Ψλf

)
with the trace operator τ from (4.28). Overall, Ψλf ∈ dom(Tε) follows and therefore
we are able to apply the operator Tε to Ψλf .

With Theorem 4.9 we obtain

TεΨλf = − 1

2m
∆Ψλf = − λ

2m
i(σ · ∇)SL(λ)f = λΨλf

and therefore Ψλf is a eigenfunction of Tε to the complex eigenvalue λ ∈ C\R. This is
a contradiction due to the symmetry of Tε and Theorem 2.15. Consequently, I + εDλ
is injective and according to Theorem 2.3 even bijective. Finally, from Theorem 2.6
the boundedness of the inverse operator follows.

Step 2: As I + εDλ is injective according to Step 1, this also carries over to the
restriction to H

1
2 (Σ;C2). Thus the surjectivity of the latter remains to be shown. Let

an arbitrary g ∈ H 1
2 (Σ;C2) be given, then due to Step 1 there exists an f ∈ L2(Σ;C2)

such that
g = (I + εDλ) f

applies. From the mapping properties of Dλ according to Theorem 4.6 we immediately
deduce that

f = g − εDλf ∈ H
1
2 (Σ;C2)

is valid and thus the operator I + εDλ is bijective as an operator in H
1
2 (Σ;C2).
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Now we are in the position to show the main result of this section. It turns out that
for the c-dependent interaction strengths η, τ ∈ R the resolvents of the Dirac operators
Aη,τ converge to the resolvents of Tε modified by the multiplication operator M2.

Theorem 4.12. Let λ ∈ C \ R and c-dependent interaction strengths η, τ ∈ R with
η + τ = 0 and η − τ = εc2 for an ε ∈ R be given. Furthermore, let Tε be the
linear operator defined as in (4.33), then there exists a constant κ(m,λ, ε,Σ) > 0 only
dependent on m, λ, ε and Σ such that the following estimate is valid for sufficiently
large c > 0 ∥∥∥(Aη,τ − (λ+mc2

))−1 −M2 (Tε − λ)−1M∗
2

∥∥∥ ≤ κ

c
.

In particular, the convergence(
Aη,τ −

(
λ+mc2

))−1 →
(

(Tε − λ)−1 0
0 0

)
for c→∞

in the operator norm applies as well as a convergence rate of O
(

1
c

)
.

Proof. Step 1: Let λ ∈ C \ R be given, then it follows from Lemma 4.5 and Lemma
4.11 that the operators I + εc2M∗

1Cλ+mc2M1 and I + εDλ are invertible and their
inverse operators are bounded. Furthermore, according to Theorem 4.7 there exists a
constant k(m,λ) > 0 only dependent on m and λ such that for sufficiently large c > 0
the estimate ∥∥c2M∗

1Cλ+mc2M1 −Dλ
∥∥ ≤ k

c

applies. If we define the operators

T = I + εDλ

and
A =

(
I + εc2M∗

1Cλ+mc2M1

)
− (I + εDλ) = ε

(
c2M∗

1Cλ+mc2M1 −Dλ
)

then the estimate ‖A‖‖T−1‖ < 1 is valid for sufficiently large c > 0. Thus by applying
Theorem 2.8 we obtain∥∥∥(I + εc2M∗

1Cλ+mc2M1

)−1 − (I + εDλ)−1
∥∥∥ ≤ ‖T−1‖2‖A‖

1− ‖A‖‖T−1‖

≤
|ε|k
c
‖T−1‖2

1− |ε|k
c
‖T−1‖

≤ 2 |ε| k‖T−1‖2

c

for sufficiently large c > 0. In addition, Theorem 4.7 provides us with the estimates

‖cΦλ+mc2M1‖ ≤ 1 + ‖M2Ψλ‖ = K1 (4.34)
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and ∥∥∥(I + εc2Cλ+mc2
)−1
∥∥∥ ≤ 1 +

∥∥(I + εDλ)−1
∥∥ = K2 (4.35)

for sufficiently large c > 0 due to the triangle inequality. The two constants
K1(m,λ,Σ) ≥ 1 and K2(m,λ, ε,Σ) ≥ 1 are only dependent on m, λ, ε and Σ.

Next, from Theorem 3.14 and Lemma 4.5 the resolvent representation of Aη,τ as(
Aη,τ − (λ+mc2)

)−1
=
(
A0 − (λ+mc2)

)−1

− γ(λ+mc2)
(
I +BM(λ+mc2)

)−1
Bγ(λ+mc2)∗

=
(
A0 − (λ+mc2)

)−1 − Φλ+mc2 (I +BCλ+mc2)−1BΦ∗
λ+mc2

=
(
A0 − (λ+mc2)

)−1

− cΦλ+mc2M1

(
I + εc2M∗

1Cλ+mc2M1

)−1
εcM∗

1 Φ∗
λ+mc2

is obtained. By using (4.34) and (4.35) and applying the triangle inequality several
times, this leads to∥∥∥(Aη,τ − (λ+mc2)

)−1 − (T0 − λ)−1 P+ +M2Ψλ (I + εDλ)−1 εΨ∗
λ
M∗

2

∥∥∥
≤
∥∥∥(A0 − (λ+mc2)

)−1 − (T0 − λ)−1 P+

∥∥∥
+ |ε|max {K1, K2}2

(
‖cΦλ+mc2M1 −M2Ψλ‖

+ ‖cΦλ+mc2M1 −M2Ψλ‖+
∥∥∥(I + εc2Cλ+mc2

)−1 − (I + ε)−1Dλ
∥∥∥)

for sufficiently large c > 0 with the free Schrödinger operator T0 defined as in (2.18).
Finally, with Theorem 4.3 and Theorem 4.7 the estimate∥∥∥(Aη,τ − (λ+mc2)

)−1 − (T0 − λ)−1 P+ +M2Ψλ (I + εDλ)−1 εΨ∗
λ
M∗

2

∥∥∥ ≤ κ

c

follows for sufficiently large c > 0. The constant κ(m,λ, ε,Σ) > 0 is only dependent
on m, λ, ε and Σ. Furthermore, a direct calculation involving the definition of the
multiplication operator M2 shows that

M2Ψλ (I + εDλ)−1 εΨ∗
λ
M∗

2 =

(
Ψλ (I + εDλ)−1 εΨ∗

λ
0

0 0

)
applies.
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Step 2: Next, we will show that the linear and bounded operator

R(λ) = (T0 − λ)−1 I2 −Ψλ (I + εDλ)−1 εΨ∗
λ

from Step 1 corresponds to the resolvent of a self-adjoint operator in L2(R3;C2). For
this purpose we will apply the result of Section 2.3.

By using the trace operator τ : H1(R3;C2)→ H
1
2 (Σ;C2) of (4.28) we now define a

mapping τ̃ : H2(R3;C2)→ H
1
2 (Σ;C2) by the assignment

τ̃ f = τ

(
− i

2m
(σ · ∇)

)
f

for f ∈ H2(R3;C2) and thus obtain a linear and bounded operator. It can now be
shown with the help of the Fourier transform that the H2-norm is equivalent to the
graph norm induced by the Laplace operator and therefore τ̃ is bounded as a mapping
from

(
dom(T0I2), ‖·‖T0I2

)
to L2(R3;C2). Furthermore, its kernel is dense in L2(R3;C2),

since τ̃ f = 0 applies to all test functions f ∈ D(R3\Σ;C2). An application of Theorem
4.9 eventually leads to the relationship

Ψ∗
λ

= τ̃

(
− 1

2m
∆− λ

)−1

I2

on L2(R3;C2) between the resolvent of the free Schrödinger operator and the linear
operator Ψ∗

λ
.

Next, we restrict ourselves to the case that ε 6= 0 applies, otherwise Theorem 4.3
shows the convergence of the free Dirac operator to a free Schrödinger operator with
the claimed properties. We define the mapping

Γε(λ) =
1

ε
I +Dλ : L2(Σ;C2)→ L2(Σ;C2)

for λ ∈ C \ R and thus obtain a family of linear and bounded operators which are
continuously invertible due to Lemma 4.11.

Finally, an application of Lemma 4.8 yields that the operators Γε(λ), Dλ, Ψ∗
λ

and
Ψλ satisfy the conditions of Theorem 2.20 and therefore there exists a self-adjoint
operator T̃ε in L2(R3;C2) which coincides on ker(τ̃) with the free Schrödinger operator
T0I2 defined as in (2.18). This operator has the following explicit representation for
all λ ∈ C \ R.

dom(T̃ε) = ran
(
(T0 − λ)−1 I2 −Ψλ (I + εDλ) εΨ∗λ

)
=
{
f ∈ L2(R3;C2)

∣∣∣ ∃fλ ∈ H2(R3;C2) with f = fλ −Ψλ (I + εDλ)−1 ετ̃fλ

}
(T̃ε − λ)f = (T0 − λ) I2fλ
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Furthermore, the definition of T̃ε is independent of λ ∈ C \ R and the decomposition

of f ∈ dom(T̃ε) in the representation of the domain of definition dom(T̃ε) is unique.

Step 3: To complete the proof it remains to show that Tε = T̃ε is valid in the sense
of linear operators. In the first step we will show that dom(T̃ε) ⊆ dom(Tε) holds true

and therefore we assume that an arbitrary f ∈ dom(T̃ε) is given. Due to the explicit

representation of the operator T̃ε of Step 2 there exists a unique fλ ∈ L2(R3;C2) for
any λ ∈ C \ R such that

f = (T0 − λ)−1 I2fλ −Ψλ (I + εDλ)−1 εΨ∗
λ
fλ

= gλ −Ψλhλ.

with functions gλ ∈ L2(R3;C2) and hλ ∈ L2(Σ;C2) applies.
From the definition of the resolvent of the free Schrödinger operator we obtain

gλ ∈ H2(R3;C2) whereas due to Theorem 4.9 and Lemma 4.11 hλ ∈ H
1
2 (Σ;C2) fol-

lows. This yields with Theorem 4.9 that Ψλhλ ∈ H1(R3 \ Σ;C2) and finally that

f ∈ H1(R3 \ Σ;C2) applies. Consequently, dom(T̃ε) ⊆ H1(R3 \ Σ;C2) is valid.
To derive further properties of f we first observe that

(σ · ∇)gλ ∈ H1(R3;C2)

is valid for gλ ∈ H2(R3;C2) while according to Theorem 4.9

(σ · ∇)(Ψλhλ)+ ⊕ (σ · ∇)(Ψλhλ)− ∈ H1(R3;C2)

follows for hλ ∈ H
1
2 (Σ;C2). Thus, due to the linearity of the weak derivative, we

obtain (σ · ∇)f ∈ H1(R3;C2).
Next, by using Theorem 2.32 for gλ ∈ H2(R3;C2) we obtain the jump condition

i(σ · ν)
(
τ+ (gλ)+ − τ− (gλ)−

)
= 0 (4.36)

on Σ while Theorem 4.9 provides the jump condition

i(σ · ν)
(
τ+ (Ψλhλ)+ − τ− (Ψλhλ)−

)
= hλ (4.37)

on Σ for hλ ∈ H
1
2 (Σ;C2). If we now combine (4.36) and (4.37) we obtain

i(σ · ν) (τ+f+ − τ−f−)

= i(σ · ν)
(
τ+ (gλ)+ − τ− (gλ)−

)
− i(σ · ν)

(
τ+ (Ψλhλ)+ − τ− (Ψλhλ)−

)
= −i(σ · ν)

(
τ+ (Ψλhλ)+ − τ− (Ψλhλ)−

)
= −hλ = −

(
1

ε
I +Dλ

)−1

Ψ∗
λ
fλ

(4.38)
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for the behavior of f on the surface Σ.
On the other hand, with Theorem 4.9, the definition of the operator Dλ and the

trace operator τ : H1(R3;C2)→ H
1
2 (Σ;C2) according to (4.28) we find

τ

(
i

2m
(σ · ∇)f

)
= τ

(
i

2m
(σ · ∇)gλ

)
− τ

(
i

2m
(σ · ∇)Ψλhλ

)
= τ

(
i

2m
(σ · ∇) (T0 − λ)−1 I2fλ

)
+

λ

2m
τ (SL(λ)I2hλ)

= −Ψ∗
λ
fλ +Dλhλ

= −Ψ∗
λ
fλ +Dλ

(
1

ε
I +Dλ

)−1

Ψ∗
λ
fλ

(4.39)

due to the definition of hλ. Combining (4.38) and (4.39) finally leads to

τ

(
i

2m
(σ · ∇)f

)
− i

ε
(σ · ν) (τ+f+ − τ−f−)

= −Ψ∗
λ
fλ +Dλ

(
1

ε
I +Dλ

)−1

Ψ∗
λ
fλ +

1

ε

(
1

ε
I +Dλ

)−1

Ψ∗
λ
fλ

=

(
−I +

(
1

ε
I +Dλ

)(
1

ε
I +Dλ

)−1
)

Ψ∗
λ
fλ

= 0

which after a multiplication with ε shows the jump condition of f on Σ. Altogether
we therefore obtain f ∈ dom(Tε) and further dom(T̃ε) ⊆ dom(Tε).

Step 4: After we have already shown dom(T̃ε) ⊆ dom(Tε) in Step 3 we will now show

T̃εf = Tεf for all f ∈ dom(T̃ε). This then yields the inclusion T̃ε ⊆ Tε in the sense of
linear operators.

For this purpose we choose arbitrary f ∈ dom(T̃ε) and λ ∈ C \ R with the unique
element fλ ∈ L2(R3;C2) as in Step 3 such that

f = (T0 − λ)−1 I2fλ −Ψλ (I + εDλ)−1 εΨ∗
λ
fλ

= gλ −Ψλhλ.

with gλ ∈ H2(R3;C2) and hλ ∈ H
1
2 (Σ;C2) applies. Due to Theorem 4.9 we obtain

− 1

2m
∆Ψλhλ = λΨλhλ

and therefore, after rearranging this equation(
− 1

2m
∆− λ

)
Ψλhλ = 0 (4.40)
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in the distributional sense. Consequently, with (4.40), the definition of the operator

T̃ε from Step 2 and the linearity of the distributional Laplace operator we obtain

(Tε − λ) f = (Tε − λ) (gλ −Ψλhλ) =

(
− 1

2m
∆− λ

)
I2 (gλ −Ψλhλ)

=

(
− 1

2m
∆− λ

)
I2gλ −

(
− 1

2m
∆− λ

)
I2Ψλhλ

=

(
− 1

2m
∆− λ

)
I2gλ = (T0 − λ) I2gλ =

(
T̃ε − λ

)
f

which finally leads to Tεf = T̃εf . This is equivalent to T̃ε ⊆ Tε and due to Theorem
2.10, the symmetry of Tε and the self-adjointness of T̃ε we find the following chain of
inclusions.

T̃ε ⊆ Tε ⊆ T ∗ε ⊆ T̃ ∗ε = T̃ε

Thus Tε = T̃ε in the sense of linear operators follows which completes the proof.
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