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Abstract

Understanding the 3D structure of a scene from a single image is one of the holy grails of

computer vision. The ability to thoroughly reason about a scene in 3D is important for

a wide range of applications including augmented reality, robotics, and computer-aided

design. However, 3D vision from a single image is still an unsolved problem that poses

many challenges in practice. For example, there is an infinite number of possibilities to

spatially arrange objects in a scene.

In this thesis, we present state-of-the-art methods for estimating different 3D properties

which contribute to a holistic 3D scene understanding. Our methods combine deep learning

and geometry to perform object detection, 3D pose estimation, 3D model retrieval, and

focal length estimation given only a single RGB image. We especially focus on in-the-wild

scenarios where no prior knowledge about the underlying scene is available and raw image

intensities are the only source of information.

We first propose a method that performs 3D pose estimation and 3D model retrieval

for objects of arbitrary categories. For this purpose, we introduce a novel approach which

recovers the 3D pose of an object from predicted virtual control points and 3D dimensions.

We then show that the predicted 3D pose of an object provides an effective prior for 3D

model retrieval by comparing RGB images of objects only to 3D model renderings under

the predicted 3D pose. Utilizing this prior significantly increases the retrieval performance

while reducing the computational complexity.

Next, we integrate our proposed 3D pose estimation approach into an object detection

pipeline to deal with multiple objects in a single image. Additionally, we augment our

pipeline to estimate the image focal length. In this way, we exploit the geometric prior

given by the focal length for 3D pose estimation. Our method uses a joint optimization

which enforces a geometric consensus between the predicted 3D poses and the focal length.

This results in significantly improved 3D pose estimates.

To improve the 3D model retrieval performance, we further augment our pipeline

to compute pose invariant 3D shape descriptors from objects in RGB images. By first

vii



viii

mapping RGB images and 3D models to a common pose aware low-level representation

and then computing pose invariant 3D shape descriptors, major parts of our pipeline

benefit from training on a virtually infinite amount of synthetic data. In this way, we

increase the retrieval performance while significantly reducing the size of the retrieval

database.

Finally, we present a novel 3D pose refinement strategy based on differentiable render-

ing. By reprojecting our retrieved 3D models under our predicted 3D poses, we establish a

feedback loop which we use to improve the 3D poses. Our method compares RGB images

and 3D model renderings in a feature space which is optimized for 3D pose refinement and

additionally learns to approximate the non-differentiable rasterization backward pass in

differentiable rendering. We use this refinement method in combination with our 3D pose

estimation and 3D model retrieval approach to predict fine-grained 3D poses for objects

in the wild without providing initial 3D poses or ground truth 3D models given only a

single RGB image.

Keywords. 3D Object Detection, 3D Pose Estimation, 3D Model Retrieval, Focal

Length Estimation, Differentiable Rendering, Refinement, Deep Learning, Geometry



Kurzfassung

Einer der heiligen Grale des Maschinellen Sehens ist es die 3D-Struktur einer Szene auf

Basis eines einzelnen Bildes zu verstehen. Die Fähigkeit eine Szene vollständig dreidimen-

sional zu interpretieren ist wichtig für eine Vielzahl von Anwendungen, einschließlich Er-

weiterte Realität, Robotik und computergestütztem Konstruieren. Das 3D-Bildverstehen

auf Basis eines einzelnen Bildes ist jedoch immer noch ein ungelöstes Problem, das in

der Praxis viele Herausforderungen mit sich bringt. Zum Beispiel gibt es unendlich viele

Möglichkeiten Objekte in einer Szene räumlich anzuordnen.

In dieser Arbeit präsentieren wir modernste Methoden zur Schätzung verschiedener 3D-

Eigenschaften, die zu einem ganzheitlichen 3D-Verständnis einer Szene beitragen. Unsere

Methoden kombinieren Tiefes Lernen und geometrisches Wissen, um Objekterkennung,

3D-Lagenschätzung, 3D-Modellsuche und Brennweitenschätzung auf Basis eines einzigen

RGB-Bildes durchzuführen. Hierbei konzentrieren wir uns insbesondere auf Szenarien

außerhalb von kontrollierten Laborbedingungen, in denen keine Vorkenntnisse über die

zugrunde liegende Szene verfügbar sind und Bildintensitätswerte die einzige Information-

squelle sind.

Zuerst präsentieren wir eine Methode, die eine 3D-Lagenschätzung und eine

3D-Modellsuche für Objekte beliebiger Kategorien durchführt. Zu diesem Zweck stellen

wir einen neuartigen Ansatz vor, der die 3D-Lage eines Objekts aus vorhergesagten

virtuellen Kontrollpunkten und 3D-Dimensionen berechnet. Anschließend zeigen wir,

dass die vorhergesagte 3D-Lage eines Objektes eine effektive Vorinformation für die

Suche von 3D-Modellen bietet, indem RGB-Bilder von Objekten nur mit erzeugten

3D-Modellbildern unter der vorhergesagten 3D-Lage verglichen werden. Die Verwendung

dieses Vorwissens erhöht die Genauigkeit erheblich und verringert gleichzeitig den

Rechenaufwand.

Als Nächstes integrieren wir unseren vorgeschlagenen 3D-Lagenschätzungsansatz in

ein Objekterkennungssystem, um mehrere Objekte in einem einzigen Bild zu behandeln.

Zusätzlich erweitern wir unser System mit einer Bildbrennweitenschätzung. Auf
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diese Weise nutzen wir die geometrische Vorinformation, die die Brennweite für die

3D-Lagenschätzung bietet. Unsere Methode verwendet eine Optimierung, die einen

geometrischen Konsens zwischen den vorhergesagten 3D-Posen und der Brennweite

erzielt. Dies führt zu signifikant verbesserten 3D-Lagenschätzungen.

Um die Genauigkeit der 3D-Modellsuche zu verbessern, erweitern wir unser System

zusätzlich mit der Berechnung von lageninvarianten 3D-Formdeskriptoren für Objekte in

RGB-Bildern. Durch die Projektion von RGB-Bildern und 3D-Modellen in eine gemein-

same lagenbewusste Darstellung auf niedriger Ebene und die anschließende Berechnung la-

geninvarianter 3D-Formdeskriptoren profitieren große Teile unseres Systems von dem Ler-

nen mit einer nahezu unbegrenzten Menge synthetischer Daten. Auf diese Weise erhöhen

wir die Genauigkeit und reduzieren gleichzeitig die Größe der Suchdatenbank erheblich.

Abschließend präsentieren wir eine neuartige Strategie zur Verbesserung von

geschätzten 3D-Lagen, die auf differenzierbarer Bildsynthese basiert. Indem wir unsere

vorhergesagten 3D-Modelle unter unseren vorhergesagten 3D-Lagen projizieren, schließen

wir eine Rückkopplungsschleife, mit der wir die vorhergesagten 3D-Lagen verbessern.

Unsere Methode vergleicht RGB-Bilder und 3D-Modellbilder in einem Merkmalsraum,

der für die Verfeinerung von 3D-Lagen optimiert ist, und lernt zusätzlich, den nicht

differenzierbaren Rasterisierungsschritt in der differenzierbaren Bildsynthese zu

approximieren. Wir verwenden diese Verfeinerungsmethode in Kombination mit unserer

3D-Lagenschätzung und unserer 3D-Modellsuche, um genaue 3D-Lagen für Objekte

in freier Wildbahn auf Basis eines einzigen RGB-Bildes vorherzusagen, ohne initiale

3D-Lagen oder 3D-Modelle bereitzustellen.

Schlagwörter. 3D-Objekterkennung, 3D-Lagenschätzung, 3D-Modellsuche, Brennweit-

enschätzung, Differenzierbare Bildsynthese, Verfeinerung, Tiefes Lernen, Geometrie
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Vision allows humans to perceive the world around them without physical interac-

tion [253]. We use our eyes to see and our brain to understand the seen [182]. This

ability to not only see but understand our environment enables us to perform complex

tasks like safely driving cars through crowded streets, accurately reading other people’s

emotions from their facial expressions, or correctly decrypting a university student’s shaky

handwriting on his first exam. Consequently, vision is our dominant sense and our most

important source of information [46, 66, 229].

Inspired by the incredible capabilities of human vision, computer vision aims at pro-

viding machines with visual intelligence [265]. Teaching machines how to visually reason

gives rise to a multitude of applications across different domains. Computer vision makes

it possible to automate tasks like driving1, enhance our own vision by seeing outside the

spectrum of visible light2, explore new use cases like virtual reality3, and much more. It

1https://www.tesla.com/autopilot
2https://www.flir.com/discover
3https://www.oculus.com/experiences

1

https://www.tesla.com/autopilot
https://www.flir.com/discover
https://www.oculus.com/experiences
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is a technology of major industrial as well as social importance as it has the potential to

make our lives not only easier but also safer.

1.1 Problem Statement

Recently, there have been significant advances and breakthroughs in the field of computer

vision [83, 96, 146]. In the last decade, the advent of deep learning [82], the availability

of large scale datasets [165, 233], and the access to exponentially growing computational

resources [248] led to unprecedented progression in many disciplines. Today, computer

vision models even surpass human-level performance for specific tasks like fine-grained

classification [97] or industrial inspection [17].

However, if we move beyond constrained tasks and environments computer vision mod-

els fall short of human-level performance [84, 194]. For example, machines cannot match

humans at interpreting an arbitrary image, as shown in Fig. 1.1. Given a single RGB

image, humans can quickly reason about the 3D structure of the depicted scene. We sub-

consciously infer the presence of different objects. We build an internal representation of

their 3D shapes, 3D poses, and 3D dimensions. We understand their spatial arrangement

in the scene and derive high-level semantics, e.g., that the flower vase is placed on top of

the table or that the geometric topography of the objects resembles a living room. We can

even provide information about the camera that was used to capture the image. Connect-

ing all these individual pieces of information gives us a detailed 3D understanding of the

scene. Despite the large number of technological achievements in the past, computer vision

models still do not achieve a similar level of general 3D scene understanding [116, 123, 278]

due to the large number of challenges this task poses in practice (see Section 1.3).

In this thesis, we thus aim at advancing the state of the art in single image 3D vi-

sion [292]. In particular, we present methods for estimating different 3D properties which

contribute to a holistic 3D scene understanding. Our methods perform object detection,

3D pose estimation, 3D model retrieval, and estimation of camera intrinsics given only a

single RGB image. Combining all of our proposed methods allows us to infer a semantic

3D reconstruction of a scene, as shown in Fig. 1.1. This semantic reconstruction repre-

sents a dynamic configuration of objects, where a category label, a 3D model, and a 3D

pose is assigned to each detected object. This results in a compact but detailed high-level

representation of the scene with rich semantics and object hierarchies. Such a semantic

3D reconstruction paves the way for a host of applications (see Section 1.2).

All of our proposed methods use sophisticated combinations of deep learning and

geometry to leverage prior information via learning while exploiting geometric constraints

on the desired solutions (see Section 1.4). We especially focus on in-the-wild scenarios

where no prior knowledge about the underlying scene is available and raw image intensities

are the only source of information. In addition, all methods are designed to be fast and

scalable during inference so that they can be used in real-time applications while being

able to handle objects of arbitrary categories as well as multiple objects in a single image.
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Figure 1.1: An image of an arbitrary scene captured in the wild (big image)4. A semantic
3D reconstruction of the scene inferred by the methods proposed in this thesis showing detected
objects, predicted 3D poses, retrieved 3D models, and estimated camera intrinsics (medium image).
Our semantic 3D reconstruction of the scene observed from different viewpoints (small images).

1.2 Applications

The ability to thoroughly reason about a scene in 3D is important for a wide range of

applications. While some applications benefit from 3D vision, other applications only

become possible thanks to this technology. Below, we describe a number of example use

cases in practice.

4https://www.decoratorist.com/monochromatic-living-rooms-white

https://www.decoratorist.com/monochromatic-living-rooms-white
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Mixed Reality: 3D vision is a prerequisite for any form of mixed reality technology like

augmented reality or virtual reality. In augmented reality, virtual content is superimposed

onto the real world (see Figs. 1.2a and 1.2b). In virtual reality, the user is immersed in

a fully artificial world (see Fig. 1.2c). However, both technologies require their respective

devices to be registered in the real world in 3D to create the illusion. In addition, 3D

scene understanding is needed to enable advanced applications.

(a) (b) (c)

Figure 1.2: Examples of different mixed reality applications. (a) Augmented reality: Existing
objects are augmented with virtual information5. (b) Augmented reality: Virtual objects are added
to the real world6. (c) Virtual reality: The user is immersed in a fully artificial world7.

In augmented reality, a device must reason about objects in 3D to overlay virtual

information onto the real world in a geometrically and perspectively correct manner. In

this way, existing objects can be augmented with virtual information, as shown in Fig. 1.2a.

This is important for applications like instructed maintenance, guided repairs, point-of-

view navigation, virtual wardrobes, street shopping, virtually assisted medical surgeries,

and interactive learning experiences.

In addition, augmented reality makes it possible to add new virtual objects to the real

world, as shown in Fig. 1.2b. These virtual objects can interact with real objects in geomet-

rically and physically plausible ways. This enables applications like mixed reality gaming,

CAD sculpting, 3D drawing, head-up displays, virtual input devices, at-home customer

buying experiences, interactive teaching, cinematic movie prototyping, and holographic

video conferencing.

In virtual reality, an important part of the experience is the ability to move freely in the

artificial world, as shown in Fig. 1.2c. In this case, a device needs to understand the user’s

3D environment and keep track of the user’s motion to avoid accidental collisions with

objects in the real world like chairs or tables. This feature is important for applications

like gaming, telepresence, and virtual education.

5https://www.strategy4.org/my-blog/augmented-reality-exponential-technologies-in-the-sm

art-factory
6https://www.microsoft.com/hololens
7https://www.virsabi.com/vr-revolutionizing-architecture-and-design

https://www.strategy4.org/my-blog/augmented-reality-exponential-technologies-in-the-smart-factory
https://www.strategy4.org/my-blog/augmented-reality-exponential-technologies-in-the-smart-factory
https://www.microsoft.com/hololens
https://www.virsabi.com/vr-revolutionizing-architecture-and-design
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Robotics: Robots are physical agents in our 3D world. By understanding their envi-

ronment in 3D, they are able to interact with it in diverse ways. Hence, robots provided

with visual intelligence have many use cases.

(a) (b) (c)

Figure 1.3: Examples of different robotics applications. (a) 3D vision allows robots to au-
tonomously navigate through their environment8. (b) 3D scene understanding lets robots grasp
and manipulate nearby objects9. (c) Visual intelligence enables robots to perform complex tasks
like running an obstacle parkour10.

For example, 3D vision allows robots to autonomously navigate through their envi-

ronment, as shown in Fig. 1.3a. In order to navigate safely, robots must recognize their

static surrounding and dynamic objects in it. In this way, they can track other object’s

trajectories and avoid crashes. In contrast to human-operated machines, autonomously

navigating robots do not get distracted or fatigued. Additionally, they can have super-

human abilities like 360◦ vision or night sight, which further increase safety. Autonomous

navigation is not only important for self-driving cars (see Fig. 1.3a) but also for trucks,

buses, trains, trams, planes, drones, ships, submarines, agricultural machines, domestic

robots, spacecraft, and other vehicles.

3D scene understanding does not only allow robots to navigate their environment but

also to interact with it. By sensing their surrounding, robots can grasp and manipulate

nearby objects, as shown in Fig. 1.3b. To reliably grab objects, robots must reason about

the 3D shape and 3D pose of objects. This enables robots to automate tasks like warehouse

logistics, conveyor assembly, delivery or pickup services, mechanic repairs, agricultural

harvesting, hospital assistance, and elderly care.

Visual intelligence makes it possible for robots to perform complex tasks that were

previously exclusive to humans like running an obstacle parkour, as shown in Fig. 1.3c.

In the future, visual reasoning will even allow robots to execute tasks beyond the human

spectrum of capabilities.

8https://www.bbc.com/news/business-45048264
9https://www.ehstoday.com/safety-technology/article/21920298/how-warehouse-robotics-red

uce-worker-injuries
10https://www.bostondynamics.com/atlas

https://www.bbc.com/news/business-45048264
https://www.ehstoday.com/safety-technology/article/21920298/how-warehouse-robotics-reduce-worker-injuries
https://www.ehstoday.com/safety-technology/article/21920298/how-warehouse-robotics-reduce-worker-injuries
https://www.bostondynamics.com/atlas
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Computer-Aided Design: Today, 3D content is becoming increasingly popular. Dig-

ital 3D models provide rich experiences and have many use cases in different domains as

they resemble three-dimensional entities in the real world. 3D vision can assist users in

the creation of 3D content and help them to interact more efficiently with it.

(a) (b) (c)

Figure 1.4: Examples of different computer-aided design applications. (a) A semantic recon-
struction of real-world apartment11. (b) A 3D object is automatically restored from shattered
fragments12. (c) A 3D printer manufactures a retrieved spare part13.

Many applications require parts of the real world to be reconstructed virtually. Such

reconstructions are typically created by 3D artists in a lengthy and tedious process. 3D

scene understanding makes it possible to automate the creation of 3D content from real-

world environments. In this way, both large environments (Fig. 1.4a) as well as individual

object fragments (see Fig. 1.4b) can be digitalized. This is not only important for real

estate and archeology applications but also for mapping entire cities without dynamic

objects like cars, capturing forensic crime scenes, documenting car accidents, and accel-

erating the creation of virtual worlds based on real-world scenes for games, movies, and

virtual reality experiences.

Another application in this domain is visual search in 3D databases. In this context,

3D models of spare parts for damaged machines can be found given only an image of a

faulty part. In addition, a 3D printer can be used to manufacture the retrieved 3D model

on demand, as shown in Fig. 1.4c. This technology significantly reduces the downtime of

systems by accelerating the repair process in both industrial as well as consumer settings.

It is also possible to retrieve 3D models for complex devices consisting of multiple parts

like prosthetics.

Visual Intelligence: The ability to visually reason about a scene in 3D enables smart

applications across different domains. For example, in the area of surveillance, 3D scene

understanding can be used to detect unattended luggage at airports (see Fig. 1.5a), rec-

ognize forgotten objects in public transport, or find missing keys at home. It can also

11https://www.goodshomedesign.com/awesome-3d-plans-apartments
12https://www.tugraz.at/institutes/cgv/schreck/3d-object-retrieval
13https://www.bigstockphoto.com/search/?contributor=kenny001

https://www.goodshomedesign.com/awesome-3d-plans-apartments
https://www.tugraz.at/institutes/cgv/schreck/3d-object-retrieval
https://www.bigstockphoto.com/search/?contributor=kenny001
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prevent security systems from raising false alarms by differentiating intruders from pets

or randomly falling objects.

(a) (b) (c)

Figure 1.5: Examples of different visual intelligence applications. (a) Surveillance: Detection
of unattended luggage14. (b) Industry: Quality control of manufactured goods15. (c) Human
assistance: Input devices like controllers are tracked in 3D16.

In the area of industrial applications, 3D reasoning can automate the quality control

of manufactured goods (see Fig. 1.5b), the inspection of machines, and the stocktaking

in stores. This is especially important for industrial areas which are difficult to access by

humans due to limited space, extreme temperatures, or toxic environmental conditions.

In the area of human assistance, 3D vision can be used to track 3D input devices like

controllers, as shown in Fig. 1.5c. Visual reasoning can also be used to provide acoustic

scene descriptions for blind people or detect emergency cases for elderly people living

alone. These are only a handful of examples from the realm of possible applications.

1.3 Challenges

Predicting 3D properties from single 2D images poses many challenges in practice. Below,

we describe the most important challenges in single image 3D vision.

2D-3D Information Loss: Images are 2D projections of the 3D world [65]. This di-

mensionality reduction from 3D to 2D space causes a significant information loss [253]. In

addition, digital images are lossy discretizations of continuous signals as they are generated

by sampling in the spatial domain and quantization in the intensity domain [275]. As a

consequence, the task of recovering 3D information from a 2D observation is ill-posed from

an information theory point of view [231]. Hence, it is not surprising that the majority of

breakthroughs in computer vision have been achieved in 2D tasks like classification [99],

detection [225], and segmentation [170] while 3D tasks remain an open challenge.

However, by exploiting a massive pool of prior information paired with geometric

constraints humans can narrow down the space of possible solutions and find 3D config-

14https://www.bis.cz
15https://www.mvtec.com/de/services-support/technologien/3d-vision
16https://www.occulus.com/quest

https://www.bis.cz
https://www.mvtec.com/de/services-support/technologien/3d-vision
https://www.occulus.com/quest
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urations which explain the 2D observations well. Thus, this task should also be possible

for artificial 3D vision systems.

Appearance Variations: Another main challenge in single image 3D vision is the huge

variability in appearance. The appearance of an object in an image is subject to a large

number of factors. First, the 3D shape of an object effects its appearance. Even though

objects within a certain category share common characteristics, they can have vastly

different 3D shapes [33], as shown in Fig. 1.6a. Second, the appearance of an object can

change significantly with its 3D pose, as shown in Fig. 1.6b. Not only the 3D rotation but

also the 3D translation effects the appearance of an object [86, 151]. Third, even objects

with the same 3D shape and 3D pose can have diverse appearances due to different color,

texture, and material, as shown in Fig. 1.6c. Especially transparent, translucent, and

reflective materials cause confusion in computer vision systems.

(a) (b) (c)

Figure 1.6: The appearance of an object is subject to a large number of factors: (a) 3D shape
effects the appearance of objects. Even within a certain category, e.g., chair, objects can have
vastly different 3D shapes17. (b) The appearance of an object can change significantly with its 3D
pose17. (c) Different materials cause diverse appearances even for objects with the same 3D shape
and 3D pose18.

Moreover, many man-made objects have symmetries that result in ambiguous appear-

ances [33, 108]. For example, the table in Fig. 1.6b can be rotated by any multiple of π/2

around the axis perpendicular to its surface and through its center in 3D without effecting

its appearance in 2D. This makes it hard to perform 3D pose estimation for objects with

symmetries. Even worse, there might be uninformative views of an object that make both

3D pose estimation and 3D model retrieval ambiguous (see Fig. 1.6b, bottom right).

In addition to properties of the object itself, the environment of an object can effect its

appearance. For example, other objects might partially occlude the object of interest [119,

198], as demonstrated in Fig. 1.7a. Objects can also be truncated so that they are only

17https://www.shapenet.org
18https://www.ardengarage.co.uk/vehicle-wrapping

https://www.shapenet.org
https://www.ardengarage.co.uk/vehicle-wrapping
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partially visible. Surrounding geometry effects the global illumination and, thus, the

appearance of an object [52]. Moreover, cluttered background makes it difficult to detect

objects in the first place [165], as illustrated in Fig. 1.7b. Finally, also environmental

conditions like lighting, shadows, fog, rain, snow, and heat haze effect the appearance of

objects and can even result in ambiguities, as shown in Fig. 1.7c. Single image 3D vision

systems need to be robust to all these appearance variations.

(a) (b) (c)

Figure 1.7: The environment of an object can effect its appearance. (a) Other objects can occlude
the object of interest19. (b) Objects with similar appearance as their background are difficult to
detect20. (c) Environmental conditions like lighting effect the appearance. Due to challenging
illumination conditions it is unclear if the plane is flying towards or away from the camera21.

Uncalibrated Cameras: Knowledge about the camera that was used to capture an

image provides a huge prior for the prediction of many 3D properties [95]. However, in

the wild, images are taken with different cameras but the camera intrinsics are in many

cases unknown [302, 303]. Information about the camera might also not be available via

image meta tags [128]. Thus, 3D vision in the case of uncalibrated cameras is highly

ambiguous as two cameras with different intrinsics can produce similar-looking images

from different viewpoints [86], for example.

In addition, different cameras use different sensors, lens systems, exposures, image

processing pipelines, and compression algorithms which result in miscellaneous image ar-

tifacts [112].

Lack of Data: Today, state-of-the-art computer vision approaches are data-driven but

data in the form of 2D images with 3D annotations is scarce [258]. One reason for this

19https://www.houzz.com/photos/lissee-interiors-contemporary-dining-room-toronto-phvw-vp

~33996
20https://www.shutterstock.com/video/clip-27658489-cyclist-riding-bicycle-night-city-clo

se-up
21https://www.skystef.be/BRU-pics-sun-moon

https://www.houzz.com/photos/lissee-interiors-contemporary-dining-room-toronto-phvw-vp~33996
https://www.houzz.com/photos/lissee-interiors-contemporary-dining-room-toronto-phvw-vp~33996
https://www.shutterstock.com/video/clip-27658489-cyclist-riding-bicycle-night-city-close-up
https://www.shutterstock.com/video/clip-27658489-cyclist-riding-bicycle-night-city-close-up
https://www.skystef.be/BRU-pics-sun-moon
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dilemma is that labeling 3D properties for 2D images is hard and time-consuming [288,

303]. As a consequence of this cumbersome annotation process, not only the amount of

available labeled data is limited but also the quality of the annotations is insufficient [302].

In many cases, images are only partially labeled, inaccurately labeled, or even mislabeled

such that there is a high degree of label noise in the data.

One strategy to compensate for this lack of annotated real-world images is to use

synthetic data [257]. However, there is a significant domain gap between real and rendered

images which limits the benefit of synthetic data in practice [185, 218, 249].

1.4 Strategies

As discussed in the previous sections, single image 3D vision has a lot of applications but

poses many challenges in practice. Consequently, the field raises considerable research

interest and many different approaches for predicting individual 3D properties from a

single RGB image have been proposed. However, from a high-level perspective, common

strategies, concepts, and evolutions surface across different tasks in 3D vision. Thus, the

existing literature can be roughly categorized into two eras.

For more than 30 years, sophisticated hand-crafted pipelines have been engineered

to address different tasks in 3D vision. These pipelines consist of multiple individual

components that are independent of each other. While some components are of course

highly specialized for a specific task, other components have a broader field of appli-

cation and repeatedly appear across different tasks. For example, to perform 3D pose

estimation, traditional pipelines (1) detect keypoints [94, 230, 247], (2) compute feature

descriptors [15, 31, 175], (3) match descriptors against a template [202, 251], (4) find

robust correspondences [63, 274], and (5) recover 3D poses of from correspondences us-

ing geometric optimizations [68, 155, 216]. Similar multi-stage pipelines with almost the

same components have also been used for object detection [45, 61], estimation of camera

intrinsics [276, 317], and retrieval [60, 272].

Traditional pipelines make explicit use of projective geometry mathematics [95]. In the

context of 3D vision, geometric rules provide important task priors and make it possible

to recover 3D information from 2D observations. However, the performance of traditional

pipelines is limited because the individual components of a pipeline are developed indepen-

dently of each other. As a consequence, only the last component of a pipeline specifically

addresses the actual task while the other components are typically not optimized for the

given task.

To overcome this limitation, there has been a paradigm shift from traditional hand-

crafted pipelines to deep learning systems in recent years. In contrast to hand-crafted

pipelines, deep learning systems consists of a single component that learns to perform a

specific task from data instead of being explicitly programmed [82]. For this purpose, deep

learning systems train models that map arbitrarily shaped inputs to arbitrarily shaped

outputs. In most cases, these models are learned from large collections of input/output
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data pairs in a supervised offline training phase [146]. A learned model could directly map

an RGB image of an object to a 3D pose [279], for example. Today, there is even a trend

towards multi-task models that use a single component with branched substructures to

perform multiple different tasks given a single input [75, 140].

Deep learning systems have two main advantages. First, trained models are optimized

end-to-end. This means all computations between input and output are jointly optimized

for the given task. Second, the development of systems is accelerated since simply collect-

ing data supersedes the need for specific domain expertise to solve a task. However, deep

learning systems often make poor predictions in practice, especially in 3D vision [238].

In many cases, they do not learn the desired mapping from input to output robustly but

overfit to random structures in the data, which results in poor generalization [9, 264]. The

trained models are black boxes that cannot be interpreted, do not provide guarantees, and

cannot express true confidences for their predictions. Poor generalization is particularly

prominent for single image 3D vision tasks due to the limited amount of training data

in the form of 2D images with 3D annotations [258]. Moreover, because deep learning

systems learn models entirely from data, they cannot exploit prior knowledge about the

task, e.g., in the form of geometric constraints.

In this work, we, thus, propose approaches that combine the benefits of traditional

pipelines and deep learning systems to increase the performance of single image 3D vision

systems. In particular, we interweave learned models and geometric algorithms to leverage

the power of learning complex tasks from data while exploiting geometric constraints on the

desired solutions. For example, we replace multiple components of traditional pipelines

with deep learning systems, predict geometrically interpretable intermediate results in

trained models, approximate non-differentiable geometric operations with learned models,

perform geometry aware data augmentation, and much more. Our experiments show

that our proposed methods indeed increases the performance and achieve state-of-the-art

results across different single image 3D vision tasks.

1.5 Contributions

In this thesis, we advance the state of the art in single image 3D vision. We present

novel methods for estimating different 3D properties which contribute to a holistic 3D

scene understanding. Our methods perform object detection, 3D pose estimation, 3D

dimension estimation, 3D model retrieval, and estimation of camera intrinsics given only

a single RGB image. All of our proposed methods use sophisticated combinations of deep

learning and geometry to leverage prior information via learning while exploiting geometric

constraints on the desired solutions.

Our methods gradually contribute to a joint system that infers a semantic 3D recon-

struction of a scene given only a single RGB image. This system is able to detect multiple

objects of arbitrary categories at different scales, estimate a 3D pose for each object, re-

trieve a 3D model for each object, predict the focal length of the camera, and jointly
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refine all predictions using differentiable rendering. In this way, we achieve a compact

but detailed high-level 3D scene understanding with rich semantics and object hierar-

chies that paves the way for a host of applications. In particular, we make the following

contributions:

• In Chapter 5, we introduce a novel 3D pose estimation and 3D model retrieval

approach for objects of arbitrary categories. This method recovers the 3D pose of

an object from predicted virtual 2D-3D correspondences. We then show that the

predicted 3D pose of an object provides an effective prior for 3D model retrieval by

comparing RGB images of objects only to 3D model renderings under the predicted

3D pose. Utilizing this prior significantly increases the retrieval performance while

reducing the computational complexity.

• In Chapter 6, we propose improvements to the 3D pose estimation part of our

approach introduced in Chapter 5. In particular, we integrate our 3D pose estimation

method into an object detection pipeline to deal with multiple objects in a single

image. Additionally, we augment our system to estimate the camera focal length.

We then use a joint optimization which enforces a geometric consensus between

predicted 3D poses and the focal length. In this way, we exploit the geometric prior

given by the focal length for 3D pose estimation and significantly improve our 3D

pose estimates.

• In Chapter 7, we propose improvements to the 3D model retrieval part of our ap-

proach introduced in Chapter 5. In particular, we first map RGB images and 3D

models to a common pose aware low-level representation and then compute pose

invariant 3D shape descriptors for retrieval. In this way, major parts of our system

benefit from training on a virtually infinite amount of synthetic data. This results in

increased retrieval performance while significantly reducing the size of the retrieval

database.

• Finally, we present a novel 3D pose refinement strategy based on differentiable ren-

dering in Chapter 8. By reprojecting our retrieved 3D models under our predicted

3D poses computed as described in Chapters 5 to 7, we establish a feedback loop

which we use to improve the 3D poses. Our method compares RGB images and

3D model renderings in a feature space which is optimized for 3D pose refinement

and additionally learns to approximate the non-differentiable rasterization backward

pass in differentiable rendering. In this way, we precisely align 3D models to objects

in RGB images and compute 3D poses which are in many cases visually indistin-

guishable from ground truth 3D poses.
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1.6 Publications

This thesis covers the following peer-reviewed publications which have been accepted at

top-tier international conferences in the field of computer vision. The publications are

listed in chronological order of acceptance along with their respective abstracts.

3D Pose Estimation and 3D Model Retrieval for Objects in the Wild

Alexander Grabner, Peter M. Roth, and Vincent Lepetit

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2018, Salt Lake City, USA

(Accepted for poster presentation)

Abstract: We propose a scalable, efficient, and accurate approach to retrieve 3D models

for objects in the wild. Our contribution is twofold. We first present a 3D pose estima-

tion approach for object categories which significantly outperforms the state-of-the-art on

Pascal3D+. Second, we use the estimated pose as a prior to retrieve 3D models which

accurately represent the geometry of objects in RGB images. For this purpose, we render

depth images from 3D models under our predicted pose and match learned image descrip-

tors of RGB images against those of rendered depth images using a CNN-based multi-view

metric learning approach. In this way, we are the first to report quantitative results for

3D model retrieval on Pascal3D+, where our method chooses the same models as human

annotators for 50% of the validation images on average. In addition, we show that our

method, which was trained purely on Pascal3D+, retrieves rich and accurate 3D models

from ShapeNet given RGB images of objects in the wild.

GP2C: Geometric Projection Parameter Consensus for Joint 3D Pose and

Focal Length Estimation in the Wild

Alexander Grabner, Peter M. Roth, and Vincent Lepetit

In: Proceedings of International Conference on Computer Vision (ICCV)

October 2019, Seoul, South Korea

(Accepted for poster presentation)

Abstract: We present a joint 3D pose and focal length estimation approach for object

categories in the wild. In contrast to previous methods that predict 3D poses indepen-

dently of the focal length or assume a constant focal length, we explicitly estimate and

integrate the focal length into the 3D pose estimation. For this purpose, we combine deep

learning techniques and geometric algorithms in a two-stage approach: First, we estimate

an initial focal length and establish 2D-3D correspondences from a single RGB image using

a deep network. Second, we recover 3D poses and refine the focal length by minimizing the

reprojection error of the predicted correspondences. In this way, we exploit the geometric
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prior given by the focal length for 3D pose estimation. This results in two advantages:

First, we achieve significantly improved 3D translation and 3D pose accuracy compared to

existing methods. Second, our approach finds a geometric consensus between the individ-

ual projection parameters, which is required for precise 2D-3D alignment. We evaluate our

proposed approach on three challenging real-world datasets (Pix3D, Comp, and Stanford)

with different object categories and significantly outperform the state-of-the-art by up to

20% absolute in multiple different metrics.

Location Field Descriptors: Single Image 3D Model Retrieval in the Wild

Alexander Grabner, Peter M. Roth, and Vincent Lepetit

In: Proceedings of International Conference on 3D Vision (3DV)

September 2019, Quebec City, Canada

(Accepted for oral presentation)

Abstract: We present Location Field Descriptors, a novel approach for single image 3D

model retrieval in the wild. In contrast to previous methods that directly map 3D models

and RGB images to an embedding space, we establish a common low-level representation

in the form of location fields from which we compute pose invariant 3D shape descriptors.

Location fields encode correspondences between 2D pixels and 3D surface coordinates and,

thus, explicitly capture 3D shape and 3D pose information without appearance variations

which are irrelevant for the task. This early fusion of 3D models and RGB images re-

sults in three main advantages: First, the bottleneck location field prediction acts as a

regularizer during training. Second, major parts of the system benefit from training on

a virtually infinite amount of synthetic data. Finally, the predicted location fields are

visually interpretable and unblackbox the system. We evaluate our proposed approach

on three challenging real-world datasets (Pix3D, Comp, and Stanford) with different ob-

ject categories and significantly outperform the state-of-the-art by up to 20% absolute in

multiple 3D retrieval metrics.

Geometric Correspondence Fields: Learned Differentiable Rendering for

3D Pose Refinement in the Wild

Alexander Grabner, Yaming Wang, Peizhao Zhang, Tong Xiao, Peihong Guo, Peter Vajda,

Peter M. Roth, and Vincent Lepetit

In: Proceedings of European Conference on Computer Vision (ECCV)

August 2020, Glasgow, UK

(Currently under review)

Abstract: We present a novel 3D pose refinement approach based on differentiable ren-

dering for objects of arbitrary categories in the wild. In contrast to previous methods, we

make two main contributions: First, instead of comparing real-world images and synthetic
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renderings in the RGB or mask space, we compare them in a feature space optimized for

3D pose refinement. Second, we introduce a differentiable renderer that learns to approx-

imate the rasterization backward pass instead of relying on a hand-crafted algorithm. For

this purpose, we predict deep cross-domain correspondences between RGB images and 3D

model renderings in the form of geometric correspondence fields. These correspondence

fields serve as pixel-level gradients which are analytically propagated backward through

the rendering pipeline to perform gradient descent directly on the 3D pose. In this way,

we precisely align 3D models to objects in RGB images which results in significantly im-

proved 3D pose estimates. We evaluate our approach on the challenging Pix3D dataset and

achieve up to 55% relative improvement compared to state-of-the-art refinement methods

in multiple metrics.

1.7 Outline

The remainder of this thesis is structured as follows:

• In Chapter 2, we explain fundamentals in 3D geometry and deep learning that are

required to understand the contributions of this work.

• In Chapter 3, we present an extensive literature review on related work for different

3D vision tasks.

• In Chapter 4, we discuss available datasets consisting of 2D images with 3D anno-

tations that are indispensable for learning to solve tasks from data.

• In Chapter 5, we present our novel 3D pose estimation and 3D model retrieval

approach for objects of arbitrary categories. This method exploits the prior given

by the 3D pose for retrieval.

• In Chapter 6, we describe ways to improve our 3D pose estimation. In particular,

we augment our method to deal with multiple objects in a single image and exploit

focal length priors to improve accuracy.

• In Chapter 7, we propose improvements to our 3D model retrieval. For this purpose,

we predict pose invariant 3D shape descriptors from both RGB images and 3D model

renderings which improves accuracy and reduces database sizes.

• In Chapter 8, we present our differentiable rendering based refinement approach that

closed a feedback loop via reprojection to improve our 3D pose predictions.

• Finally, we draw conclusions and discuss future directions in Chapter 9.
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In this chapter, we explain fundamentals in 3D geometry (see Section 2.1) and deep

learning (see Section 2.2) that are required to understand the contributions of this thesis.

2.1 3D Geometry

To predict 3D properties from single RGB images, it is mandatory to first understand how

3D models are represented digitally, how 2D images are formed from 3D scenes, and how

geometric rules can be exploited to reverse this process. In this context, computer graphics

address the process of generating 2D images from 3D information, while 3D vision aims

at the inverse process of generating 3D information from 2D images. Thus, 3D vision can

be seen as inverse graphics in this case [150, 173].

2.1.1 Computer Graphics

We first discuss the generation of 2D images from 3D information for both real-world

scenes and artificial scenes. The presented concepts are also important for computer

vision (see Section 2.1.2).

17
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2.1.1.1 3D Models

Digital 3D models resemble three-dimensional entities in the real world. There are multiple

different mathematical representations for 3D models that have respective advantages

and disadvantages, as shown in Fig. 2.1. Below, we briefly describe the most important

representations used in computer graphics and computer vision. For more details, we refer

the interested reader to [3].

3D Voxel Grid 3D Point Cloud 3D Triangle Mesh

Figure 2.1: Illustration of different 3D model representations. We show a 3D voxel grid, a 3D
point cloud, and a 3D triangle mesh of the Stanford Bunny [280].

3D Voxel Grids: 3D voxel grids are regularly spaced three-dimensional grids, as shown

in Fig. 2.1. In most cases, each voxel (volumentric element) of a grid takes a binary

value indicating if this cell is part of an object or not [4]. This representation is the 3D

equivalent to a 2D mask. The level of detail of a 3D voxel grid is limited by the spatial

resolution and the memory consumption grows cubically with the spatial resolution. 3D

voxel grids can model the interior of objects but otherwise lack flexibility compared to

other representations.

3D Point Clouds: 3D point clouds are unordered sets of 3D points, as illustrated

in Fig. 2.1. The 3D points usually lie on the surface of objects [95]. Compared to 3D voxel

grids, 3D point clouds offer a dynamic level of detail and adaptive memory consumption.

However, the 3D points do not form a continuous surface. Thus, generating 2D images

from sparse 3D point clouds is difficult.

3D Meshes: 3D meshes can be seen as 3D point clouds with additional connectivity

topology to model surfaces, as shown in Fig. 2.1. The simplest and most common form

of 3D meshes are triangle meshes [183]. In this case, the connectivity topology defines

a set of triangles that form a continuous surface in 3D. Each 3D point, also referred to

as vertex, is part of one or more triangles. 3D meshes are extensively used in computer
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graphics and provide many appealing properties. For example, they are able to compactly

represent large flat surfaces, offer a dynamic level of detail, and support shading as well

as texturing. In this thesis, we, thus, focus on 3D models in the form of triangle meshes.

2.1.1.2 Projection

Images are 2D projections of the 3D world [65]. In the real world, digital cameras are used

to capture images. Digital cameras utilize an array of lenses, an aperture, and a shutter to

focus light on a two-dimensional image sensor for a short period of time [126]. Finally, an

image signal processing unit computes an image from the measured sensor data [127]. In

practice, there are many different types of lens systems, image sensors, and image signal

processing units [112]. Thus, physical image acquisition is a complex process.

To model this complex process mathematically, simplified camera models are used in

computer graphics and computer vision [95]. A camera model formally describes how

3D points are projected onto the 2D image plane. In this work, we use the commonly

employed pinhole camera model, illustrated in Fig. 2.2. This camera model implements

a perspective projection with simple mathematics but still accurately approximates many

real-world cameras.

Figure 2.2: Illustration of a pinhole camera model. The 3D point M is projected to the 2D
location m on the image plane that is located between the 3D scene and the camera eye C. A
pinhole camera model implements a perspective projection.
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Formally, the perspective projection performed by a pinhole camera model is described

as a matrix multiplication

m̃ = PM̃ , (2.1)

where M̃ = [M; 1] = (X,Y, Z, 1)T is a 3D point in homogenous world coordinates and

m̃ = (U, V,W )T is its 2D projection onto the image plane in homogenous pixel coordinates.

To obtain actual pixel coordinates

m = (u, v)T = (U/W, V/W )T (2.2)

a perspective division of U and V by the homogenous coordinate W is performed. The

3× 4 projection matrix

P = K[R, t] (2.3)

can be decomposed into a 3×3 intrinsic matrix K that describes the geometric projection

properties of the camera and a 3× 4 extrinsic matrix [R, t] that describes the 3D position

and the 3D rotation of the camera in the world, also referred to as the 3D pose of the

camera. In this work, we use a simple parametrization for the intrinsic matrix

K =

 f 0 cx
0 f cy
0 0 1

 , (2.4)

where f is the focal length of the camera in pixel units and (cx, cy)
T is the principal

point of the image that is always assumed at the image center. In this case, f can

be interpreted as the distance between the image plane and the camera eye C and the

principal point (cx, cy)
T lies at the intersection of the camera’s view direction ray and the

image plane (see Fig. 2.2). Available datasets only provide annotations for this kind of

parametrization (see Chapter 4). For completeness, more complex parametrizations of K

including asymmetric focal lengths, skew, or off-center principal point exist. Additionally,

there are also non-linear camera models that take lens distortions into account [265].

The extrinsic matrix

[R, t] =

 r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz

 (2.5)

concatenates a 3×3 rotation matrix R and a 3×1 translation vector t. [R, t] transforms 3D

points in world coordinates to 3D points in camera coordinates. The origin of the camera

coordinate system is the camera eye C and the camera is looking in the ZC direction with

−YC being the up direction. In this case, t can be interpreted as the position of the world

origin O in camera coordinates and the columns of R represent the directions of the world

axis (XW , YW , ZW ) in camera coordinates.
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Three-dimensional rotation matrices have many special properties. Rotation matrices

are orthogonal matrices, have a determinant of one, and their transpose is equal to their

inverse. Moreover, the set of rotation matrices that describe general rotations around the

origin of three-dimensional Euclidean space form the special orthogonal group SO(3), also

denoted the 3D rotation group. This implies that the composition of two rotations is also

a rotation. While a 3 × 3 rotation matrix has nine elements, it only has three degrees of

freedom. Thus, 3D rotations are often parametrized using more compact representations

than rotation matrices:

Euler Angles: In three-dimensional Euclidean space, a general rotation can be de-

scribed by a series of rotations around the individual axis of the coordinate system. This

parametrization, called Euler angles, consists of three rotation angles α, β, and γ, one

for each axis. These angles are often referred to as yaw (Z-axis), pitch (Y -axis), and roll

(X-axis). The rotation around a specific axis by an angle θ can be implemented as a

rotation matrix:

RX(θ) =

 1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 ,

RY (θ) =

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 ,

RZ(θ) =

 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 .

(2.6)

Finally, the matrices for rotations around individual axis can be combined into a general

rotation matrix

R(α, β, γ) = RZ(α)RY (β)RX(γ) . (2.7)

While the Euler angle representation for three-dimensional rotations has no redundant

parameters because it only uses three angles for the three degrees of freedom, it exposes

singularities. These singularities occur when the middle rotation aligns the axis of the first

and last rotation. In this case, called Gimbal lock, one degree of freedom is lost because

the first and last rotation rotate around the same axis [59].

Exponential Maps: Euler’s rotation theorem states that any rotation or sequence of

rotations around a fixed point is equivalent to a single rotation by an angle θ around an axis

running through this fixed point. This is known as an axis-angle representation [265]. One

way to parametrize such a representation is a three-dimensional vector v = (vx, vy, vz)
T ,

where the axis of rotation is given by the direction of the vector and the rotation angle θ is
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given by the norm of the vector ‖v‖2. Compared to Euler angles, there is no Gimbal lock.

However, singularities occur on spheres with radius 2πn because rotations by a multiple

of 2π around any axis are equivalent to no rotation.

In this context, an exponential map transforms a vector v describing the axis and

the magnitude of a 3D rotation to a rotation matrix. This transformation is usually

implemented by summing an infinite series of exponentiated skew-symmetric matrices

that is evaluated using the compact Rodrigues’ formula [89].

Quaternions: Another parametrization for 3D rotations using an axis-angle represen-

tation are unit quaternions [4]. A quaternion has four parameters that are represented

as

q = a+ bi+ cj + dk , (2.8)

where i2 = j2 = k2 = ijk = −1. Only quaternions with ‖q‖2 = 1 represent rotations. A

quaternion is generated from a rotation axis unit vector u = (ux, uy, uz)
T and a rotation

angle θ as

q = cos
(θ

2

)
+ sin

(θ
2

)
(uxi+ uyj + uzk) . (2.9)

In contrast to Euler angles, quaternions do not suffer from Gimbal lock. Compared to axis-

angle representations with three parameters, quaternions have four parameters but support

algebraic operations on rotations using simple and elegant mathematics. For example, the

dot product of two quaternions corresponds to the minimum angular distance between the

two respective rotations. Quaternions can also be converted to rotation matrices and vice

versa. In this work, we primarily use rotation matrices to execute rotations via matrix

multiplications but use the presented parametrizations to efficiently store rotations or

evaluate distances between rotations.

2.1.1.3 Rendering

Projecting 3D vertices onto the 2D image plane is not sufficient to generate an image from

a 3D model given as a triangle mesh, as illustrated in Fig. 2.3. In particular, the projection

only computes a set of 2D locations {mi} in R2 from a set of 3D vertices {Mi} in R3. The

so-far unused connectivity topology between the vertices is required to generate an image

that correctly shows the surface of a 3D model. Continuous vector primitives in the form

of triangles spanned by three 2D locations have to be mapped onto the discretized pixel

grid of an image. This process is called rasterization [64].

The rasterization determines which pixels of an image have to be filled and which

triangle is visible at a certain pixel. For this purpose, the rasterization algorithm performs

pixel tests for each triangle. Specifically, for each triangle the algorithm tests all pixels

and identifies if the center of a pixel lies within the triangle. If the center of a pixel lies

within a triangle, this pixel has to be filled. However, an issue arises if a pixel is covered

by two or more triangles.



2.1. 3D Geometry 23

Continuous Primitives Discretized Pixel Grid Projected 3D Vertices Shaded Rasterization

Figure 2.3: Illustration of rasterization. Continuous vector primitives in the form of triangles
spanned by the 2D locations of three projected 3D vertices have to be mapped onto the discretized
pixel grid of an image. The rasterization determines which pixels of an image have to be filled and
which triangle is visible at a certain pixel using a depth buffer. Finally, a shading computation is
performed to fill the respective pixels.

To correctly deal with overlapping triangles, the rasterization uses a depth buffer [64]

The depth buffer has the same spatial resolution as the image and is initialized with a

large constant value, e.g., infinity. During rasterization, the depth buffer is continuously

updated. If the center of a pixel lies within a triangle, a depth value is computed for

this pixel. This depth value is calculated from the depth values of the three projected

triangle vertices using perspectively correct interpolation with barycentric coordinates. If

the value stored in the depth buffer at this pixel is larger than the computed depth, the

depth buffer is updated with the new smaller value and the corresponding pixel of the

image is overwritten. The pixels of an image can be filled with arbitrary values like RGB

colors, surface normals, or 3D coordinates. The computation of these values is referred

to as shading [183]. Shading computations range from the evaluation of simple boolean

tests for generating binary masks to complex global illumination [52, 129] equations for

generating photo-realistic images.

In practice, rasterization is accelerated by only testing pixels that lie inside the 2D

bounding box of a projected triangle. Moreover, the pixel tests for each triangle are

parallelized. In the case of parallel triangle processing, it is mandatory to use a mutual

exclusion mechanism to control access to both the depth buffer and the image to avoid

race conditions [221]. Another common practice is to first solve the visibility of projected

triangles and then apply shading for each pixel in a second pass. This technique is known

as deferred shading [4]. The entire process of generating a 2D image given a 3D scene and

camera parameters is referred to as rendering [183].

Another approach to rendering is ray casting [183]. This technique shoots 3D rays from

the camera eye through each pixel center (see Fig. 2.2). For each 3D ray, an intersection

test with all 3D triangles is computed. Finally, if there are one or more ray-triangle

intersections, the triangle corresponding to the intersection closest to the camera is used to

compute a value to fill the respective pixel. However, in most scenarios, projection followed

by rasterization is significantly faster than ray casting. Thus, we focus on rendering via

projection and rasterization in this work.
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Graphics processing units (GPUs) [4] efficiently implement rendering via projection

and rasterization in hardware. Modern GPUs even offer the possibility to customize

certain stages of the rendering pipeline. For example, stages like the projection or shading

can be programmed to perform custom computations. Programs that run on the GPU are

called shaders [53]. Shaders are not only useful for rendering but also for general purpose

parallel programming [236].

2.1.2 Computer Vision

In Section 2.1.1, we showed how 2D images are generated from 3D information. Now, we

discuss strategies to inverse this process and recover 3D information from 2D images.

2.1.2.1 Sparse Correspondence-Based Vision

The geometric relation between a 3D scene and a 2D image is described by the projection

matrix P. Thus, many 3D properties can be extracted from P. For example, P specifies

the camera focal length, the 3D pose of the camera in the world, and more.

Camera Calibration: However, in computer vision, P is usually unknown. Conse-

quently, a popular strategy to recover 3D properties is to compute P from a set of 2D-3D

correspondences {mi,Mi} consisting of corresponding 2D locations mi and 3D points

Mi [95]. This is also known as camera calibration [276, 317]. Because P describes a trans-

formation from Mi to mi up to a multiplicative factor, as shown in Eqs. (2.1) and (2.2),

a linear system of equations

Ap = 0 (2.10)

with the parameters of P as unknowns can be formulated. In this case, A is a coefficient

matrix and p is a vector with the parameters of P. Each 2D-3D correspondence yields

two linearly independent equations. Thus, a minimum of six 2D-3D correspondences is

required to solve for the unknowns of P but more 2D-3D correspondences can be used. A

linear least-squares solution that minimizes the algebraic error of this system of equations

is obtained via singular value decomposition [80]. This approach is known as the Direct

Linear Transformation [2]. Finally, RQ factorization [81] is performed to decompose P

into K, R, and t to extract different 3D properties. It is also possible to further decompose

R into Euler angles, for example.

In many cases, the initial solution computed by the Direct Linear Transformation is

refined using a non-linear optimization [317]. Specifically, the geometric reprojection error

between corresponding 2D locations mi and projected 3D points Mi subject to K, R, and

t is minimized as

min
K,R,t

N∑
i=1

‖mi − proj(Mi,K,R, t)‖22 . (2.11)
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In this case, proj(·) describes the entire projection including matrix multiplication with

P and perspective division. N denotes the number of 2D-3D correspondences. This

non-linear least-squares optimization problem is minimized using iterative gradient-based

updates, for example, using the Levenberg-Marquardt algorithm [189].

In practice, 2D-3D correspondences are predicted from images [91]. Thus, they are

often noisy and contain outliers. While least-squares losses as described above have many

beneficial properties in terms of optimization, they are not robust to noise or outliers. To

address this issue, robust losses like the Huber loss [118] or the Cauchy loss [274] can be

employed instead. These loss functions assign less penalty to large errors, however, their

optimization is more complex [40].

Another strategy to deal with outliers is the random sample consensus (RANSAC) [63].

RANSAC is a non-deterministic meta-optimization algorithm that is wrapped around a

conventional optimization, e.g., a least-squares optimization, to achieve robustness. In

particular, the algorithm first randomly selects a subset of all available data points required

to compute a minimal solution, e.g., six 2D-3D correspondences. Second, a solution using

this minimal subset is computed. Third, all remaining data points are evaluated against

the solution. Depending on a predefined criterion, e.g., a reprojection error threshold, a

data point either supports the solution (inlier) or not (outlier). These steps are repeated

until a termination criterion is met, e.g., a maximum number of iterations is reached.

In the end, the randomly selected data points of the minimal solution with the largest

number of inliers as well as the inlier data points of this solution are used to compute a

final solution. Due to random sampling, the computed solution is non-deterministic and

can vary between two instantiations of RANSAC. Also, the iterative steps of the algorithm

can cause significant computational overhead. Finally, the algorithm is only useful when

the total number of data points is larger than the number of data points required for a

minimal solution.

Perspective-n-Point: In some cases, the intrinsic matrix K is known and only the

3D rotation R and the 3D translation t need to be computed. This is known as the

Perspective-n-Point (PnP) problem [63, 216, 299]. PnP problems are used to calculate

the 3D pose of a calibrated camera relative to a scene but also to compute the 3D pose of

objects relative to a camera.

In both cases, a minimum of three 2D-3D correspondences is required to solve for

the unknowns of R and t [68]. However, the minimal solution computed from three

2D-3D correspondences yields up to four geometrically feasible solutions [135]. Thus, an

additional constraint, e.g., a fourth 2D-3D correspondence, is required to disambiguate

the solutions. Efficient closed-form solutions for the PnP problem in the case of four or

more 2D-3D correspondences exist [143, 155].

In practice, PnP approaches use the same high-level optimization strategy as camera

calibration approaches. First, a linear solution is computed in closed form. Second,

this solution serves as initialization for a non-linear optimization that refines the result
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using iterative gradient-based updates [155, 176]. Again, robust techniques are utilized to

account for noisy 2D-3D correspondences and outliers.

There are also variations of the PnP problem that additionally recover parts of the

intrinsic matrix K. For example, the PnPf problem assumes that the camera focal length

is unknown [296, 318]. In this case, a minimum of four 2D-3D correspondences is required

to solve for the unknowns of R, t, and f . Other variations like the PnPfr problem

additionally recover non-linear radial lens distortion parameters [192].

Sparse correspondences have an important role in computer vision. Besides 2D-3D

correspondences, 2D-2D correspondences are used to compute stereo depth [292], homo-

graphies [95], and fundamental matrices [178]. In this work, we take advantage of the

geometric relations encoded by 2D-3D correspondences and solve PnP(f) problems to

recover the 3D poses of objects in Chapters 5 and 6.

2.1.2.2 Dense Alignment-Based Vision

The above-described techniques for recovering 3D information from 2D images rely on

correspondences that are extracted from images. However, computing robust correspon-

dences from images poses many challenges in practice [265]. For example, homogenous

regions or duplicate structures in images make the extraction of correspondences ambigu-

ous. Additionally, specialized system are required to compute 2D-3D correspondences in

many cases [22, 217, 317].

Appearance Alignment: One strategy to overcome these limitations is to align 3D

models or registered views to images such that their appearance difference in the image

space is minimized. In this way, an optimization problem can be formulated directly on an

image I opposed to indirectly on a set of 2D-3D correspondences {mi,Mi} predicted from

an image I. In this context, 3D extensions [37, 113] of the Lucas-Kanade algorithm [177]

aim at finding the parameters of a motion model that minimize the discrepancy between an

observed image and a stored template to recover 3D pose, for example. In contrast, Active

Shape Models [41], 3D Morphable Models [20], and their non-linear extensions [215, 273]

optimize for the parameters of trained generative models of statistical variations in shape

and appearance to perform image alignment and predict both 3D pose and 3D shape.

Differentiable Rendering: However, a more generic approach to address image align-

ment is to formulate the entire rendering pipeline as a differentiable function [134, 171].

In this way, a non-linear least-squares optimization problem

min
θ

∑
x,y

‖Ix,y − render(θ)x,y‖22 (2.12)

in the image space can be efficiently minimized using iterative gradient-based updates

that take the entire rendering pipeline into account. In this case, I is an observed image,
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render(·) is a fully differentiable rendering function that, for example, performs projection

and rasterization, (x, y) is a pixel position, and θ is a set of render inputs. In theory, any

traditional renderer input can be seen as an optimizable parameter is this formulation.

For example, θ can comprise intrinsic parameters like the camera focal length, extrinsic

parameters such the camera’s 3D pose in the world, 3D scene geometry in the form of

different 3D models, multiple light sources, textures, materials, and much more. A dif-

ferentiable renderer provides a universally applicable inverse graphics tool that avoids the

need for complex and specialized correspondence extraction systems. In Chapter 8, we

present such a differentiable rendering framework and apply it to 3D pose refinement.

However, the performed non-linear optimization requires an initialization just as in the

case of correspondences presented above. Such an initialization could be obtained by a

deep learning system, for example.

2.2 Deep Learning

Deep learning [82] is a subfield of machine learning [19] which studies algorithms that

learn to perform a specific task from data instead of being explicitly programmed. The

distinctive characteristic of deep learning systems compared to classic machine learning

systems is that they do not only learn a mapping from input to output but also learn an

abstract hierarchical representation of the data, as shown in Fig. 2.4.
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Figure 2.4: Comparison of different machine learning approaches. While classic machine learning
systems rely on hand-crafted features which limit performance, deep learning systems learn an
abstract hierarchical feature representation of the data. Thus, deep learning is a special form of
representation learning.
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The performance of learned systems often strongly depends on the representation of

the data they are given. For example, directly mapping raw inputs to outputs in a single

step is not robust in many cases. Thus, machine learning systems first transform the

raw input data to a different representation that eases the task and then perform the

mapping to the output (see Fig. 2.4). This intermediate data representation is known as

features. While classic machine learning systems rely on hand-crafted features that limit

the performance, deep learning systems learn features that are optimized for the task from

data. In this context, deep learning refers to the ability to learn an abstract hierarchical

feature representation of the input data using a series of transformations, which is a special

form of representation learning [82]. Thus, a deep learning system can be seen as a single

component that performs a mapping from an arbitrarily shaped input to an arbitrarily

shaped output and internally uses a hierarchical feature extraction pipeline optimized for

the task to perform robust predictions [146]. This yields an end-to-end trainable system

that can be directly optimized for a specific task.

Deep learning techniques have been known for decades [122]. However, only in recent

years, the availability of large supervised datasets [165, 233] and advances in both soft-

ware [1, 5, 203] and hardware [141, 248] have ignited the revolution of the deep learning in

practice [245]. Deep learning systems have significantly improved the state of the art across

different computing disciplines like speech recognition [107] and image processing [99] and

have become the main tool in machine learning today.

2.2.1 Neural Networks

Deep learning systems are typically implemented using artificial neural networks [18].

Neural networks are mathematical models which are loosely inspired by the complex net-

work structures in the human brain. As shown in Fig. 2.5, a neural network represents a

directed computational graph consisting of interconnected neurons.

2.2.1.1 Neurons

Neurons are the fundamental structures of a neural network. A neuron typically imple-

ments a non-linear transformation

y = σ(z) = σ(wTx) = σ
( N∑
n=1

wnxn

)
(2.13)

that computes a weighted linear sum z as the dot product of a vector of inputs x =

(x1, x2, . . . , xN )T and a corresponding vector of learnable weights w = (w1, w2, . . . , wN )T

followed by a non-linear activation function σ(·). This non-linearity is essential because

without it any neuron or neural network would just be a linear regressor. The are many

possibilities to design activation functions but they are usually monotonically increasing,

continuous, and piecewise differentiable. Popular activation functions are the sigmoid
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Figure 2.5: Illustration of a neural network with two hidden layers that maps three-dimensional
inputs to two-dimensional outputs. All layers of this network are fully connected as each neuron is
linked to all neurons in the previous layers. The dimension of the weight matrices W and hidden
features f are shown for completeness.

function [187] σ(z) = 1
1+e−z , the hyperbolic tangent function [19] σ(z) = tanh(z), and the

rectifier function [77] σ(z) = max(0, z). Each activation function has unique properties

and specific use cases. For more details, we refer the interested reader to [197].

2.2.1.2 Layers

The neurons of a network are organized in layers, as illustrated in Fig. 2.5. Networks

typically consist of one input layer, one or more hidden layers, and one output layer. Both

the input and the output of a layer can be seen as a vector of features and each hidden

layer implements a non-linear feature transformation. In this way, consecutive hidden

layers perform a series of multiple non-linear transformations to internally compute an

abstract hierarchical feature representation of the input data.

In practice, neurons within a layer compute the same non-linear transformation. As

a consequence, the transformation performed by a layer can be formulated as a matrix

multiplication of an input vector x and a weight matrix W followed by an element-wise

non-linearity. However, individual layers can implement different transformations. Thus,

many networks combine different types of layers that have specific properties and use

cases [250, 263].

Fully Connected Layers: A fully connected layer represents the most general type of

layer. In this case, each neuron of the layer is connected to all neurons of the previous

layer (see Fig. 2.5). This dense connection pattern makes it possible to compute features

with global context since every neuron takes all features of the previous layer as inputs.

Fully connected layers are often used in the final layer of a network [146].
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Convolutional Layers: While fully connected layers offer the beneficial property of

computing features with global context, they have a large number of learnable weights and,

therefore, are memory inefficient and prone to overfitting. To overcome this limitation,

convolutional layers employ a sparse local connectivity pattern opposed to a dense global

connectivity pattern. In particular, convolutional layers spatially convolve small filter

kernels over their input to compute features. Using filter kernels is a well known and

successful strategy in image processing to extract features like edges [281]. Formally, each

neuron of a 2D convolutional layer computes

yi,j = σ
( M∑
m=1

N∑
n=1

C∑
c=1

wm,n,cxi−M
2
+m,j−N

2
+n,c

)
, (2.14)

where x , , is a scalar input sampled from an input tensor with dimensions H ×W × C
like an RGB image, (i, j) is a 2D location in ([1, H], [1,W ]), and w , , is a scalar weight

sampled from a filter kernel with dimensions M×N×C. Typically, the spatial dimensions

of the kernel M and N are much smaller than the spatial dimensions of the input H and

W . A 2D convolutional layer can also be seen as a special fully connected layer with a

weight matrix that only has M ·N · C non-zeros values in each row, where each of these

values appears in shared form exactly once per row in a different column.

Convolutional layers have three distinctive properties. First, due to the sparse local

connectivity pattern convolutional features only consider inputs in a spatial neighborhood.

Thus, convolutional layers have a low number of learnable weights. Additionally, they have

low computational complexity and can efficiently process large inputs. Second, the same

filter kernel is applied at every spatial input location. Hence, the number of learnable

weights is further reduced and the implemented transformation can be parallelized for

every spatial input location. Third, convolutional layers compute translation equivariant

features. This means that if the input spatially shifts in a certain direction, the computed

features spatially shift by the same amount. This property is important for localization

tasks [198, 225].

While a single convolutional layer can only compute local low-level features, a series

of consecutive convolutional layers can compute a hierarchy of features, where the level

of abstraction increases with the layer count [152]. Compared to a single convolution, a

series of convolutions increases the spatial region of the input that effects a single feature

value, also known as the receptive field. In practice, the desire for a large receptive field

and a low number of parameters contradict each other and a tradeoff between the two has

to be found. The hierarchical feature extraction performed by multiple convolutions layers

is inspired by the organization of cells in the first stages of the human visual cortex [117],

where early cells respond to simple structures like oriented edges while later cells respond

to more complex patterns like faces. Neural networks that employ convolutional layers

are referred to as convolutional neural networks (CNNs).
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Interpolation Layers: Interpolation layers interpolate features in a local neighbor-

hood. They are used to upsample, downsample, or reshape features. In contrast to fully

connected and convolutional layers, interpolation layers do not have learnable weights.

Popular interpolation layers are pooling layers [250], nearest-neighbor interpolation lay-

ers [72], and bilinear interpolation layers [96].

Other Layers: Apart from the more commonly used layers described above, there are

also more specialized layers that, for example, apply a parameter-free non-linearity [82],

normalize features [121], or compute an embedding [101].

2.2.1.3 Architectures

Formally, a neural network models a non-linear function

y = f(x; θ) (2.15)

that maps an arbitrarily shaped input x to an arbitrarily shaped output y given a set of

parameters θ. In this case, θ comprises the learnable weights of all individual neurons of a

network. The implemented function f(·) can be arbitrarily complex and can address both

classification and regression problems. In fact, the universal approximation theorem states

that a network with a single hidden layer and a finite number of neurons can approximate

any continuous function up to a desired precision [114]. Although it is in theory possible

to approximate any function using a single hidden layer network up to an epsilon, a large

number of neurons in the hidden layer is required in practice. However, research shows

that networks with multiple hidden layers empirically require a smaller number of neurons

to approximate the same function and often generalize better to unseen data because they

internally learn an abstract hierarchy of features [99, 250].

The structure of a network which is also referred to as architecture, i.e., the number of

layers and the number of neurons per layer, can be designed arbitrarily depending on the

task. In practice, though, many networks show common architecture patterns that can

be used to categorize them. For example, many networks are feed-forward networks [315].

Feed-forward networks do not have recurrent connections or form cycles (see Fig. 2.5).

Thus, their computational graph is directed and acyclic. This structure eases the opti-

mization compared to networks with recurrent states [107, 139] that are important for

dealing with input sequences like videos but not for single image inputs.

2.2.2 Learning

Machine learning systems like neural networks are operated in two phases, i.e., training

and inference. During training, a model that learns to perform a specific task from data

is trained [234]. For this purpose, the learnable parameters of a model are adjusted

to optimize a predefined objective given some training data. In this thesis, we focus on
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supervised learning [188], where the training data consists of pairs of corresponding inputs

and outputs. During inference, the model parameters are frozen and the trained model

is used to make predictions, for example, for previously unseen data. In the following

sections, we describe the training of neural networks in more detail.

2.2.2.1 Objective

To train a neural network, first an objective also known as loss function is defined [82]. In

the case of supervised learning, a loss function

L(y, ŷ) = L
(
y, f(x; θ)

)
(2.16)

computes a scalar value that quantizes the error between a ground truth output y and a

prediction ŷ = f(x; θ) computed by the model given the corresponding input x for a single

input-output data pair {x,y}. Depending on the task, the loss function can take a variety

of different forms. A popular loss function for regression problems is the least-squares loss

L(y, ŷ) =
1

2
‖y − ŷ‖22 , (2.17)

where the term 1
2 is used as a scaling constant that reduces the gradient to the residual

‖y − ŷ‖2. However, similar to optimization problems in geometry (see Section 2.1.2.1),

robust losses like the Huber loss [118] or the Cauchy loss [274] are often employed to

increase the robustness to outliers in the data. A popular loss function for classification

problems is the cross-entropy loss

L(y, ŷ) = −
C∑
c=1

yc log(ŷc) , (2.18)

where y is a one-hot vector of length C that represents the ground truth class probability

distribution and ŷ is a vector of length C that represents the predicted class probability

distribution. In this case, C is the number of classes, while yc and ŷc represent the ground

truth and predicted probability for a certain class. However, the output of a neural

network is typically not a valid class probability distribution in which, for example, all

individual class probabilities sum to one and there are no negative values. To overcome

this limitation, a softmax normalization

ŷc =
exp(ỹc)∑C
i=1 exp(ỹi)

(2.19)

is applied to all raw network outputs. In this case, ŷc is a normalized output and ỹc is the

corresponding raw output. This normalization makes it possible to interpret each element

ŷc of a predicted output ŷ as the probability p(c|x) of a certain class c given the input x.
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2.2.2.2 Optimization

In the context of supervised neural network training, the goal of optimization is to find

a set of network parameters θ which minimizes a defined loss function given a set of

input-output training data pairs {xi,yi}. Neural networks implement highly non-linear

and non-convex functions. Consequently, there is no closed-form solution to compute an

optimal set of parameters θ given a loss function and training data pairs. However, the

individual transformations of a neural network are differentiable. Thus, optimization can

be performed using iterative gradient-based updates.

Backpropagation: Backpropagation [232] describes an algorithm to compute the gra-

dient of a loss function L
(
y, f(x; θ)

)
with respect to θ for a given training data pair {x,y}.

In particular, backpropagation makes use of the chain rule to calculate the gradient for

each individual parameter in θ. The algorithm uses dynamic programming to efficiently

compute gradients and to avoid redundant calculations of intermediate terms.

Gradient Descent: Backpropagation only computes gradients for the parameters in θ

but does not perform optimization. In order to actually optimize the parameters, an iter-

ative gradient-based optimization algorithm is applied. Gradient descent [18] iteratively

updates parameters according to the negative direction of the gradient:

θk+1 = θk − η · ∇θL
(
y, f(x; θ)

)
. (2.20)

In this case, k is the iteration index, η is the update step size also referred to as learning

rate, and ∇θL(·) is the gradient of a loss function with respect to θ. To compute an update

direction for multiple training data pairs, the gradients ∇θL(·) of individual data pairs

{xi,yi} are averaged.

Initialization: Iterative optimization algorithms like gradient descent require an initial

estimate that serves as a starting point for the optimization. Typically, neural network pa-

rameters are initialized using random sampling schemes [76, 97, 242]. In practice, another

common strategy is to reuse parts of a network trained for a different task [217, 225, 279].

This is known as transfer learning [314].

2.2.2.3 Regularization

However, learning differs from optimization [82]. While the goal of optimization is to find

parameters that minimize a loss function for some given data, the goal of learning is to

additionally perform well on previously unseen data in the future. Thus, learning aims

at optimizing for the entire underlying data distribution rather than for a finite set of

training data pairs.
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To achieve learning via optimization, regularization is essential [19]. In fact, regular-

ization is omnipresent in deep learning. For example, in practice, neural networks are

optimized using regularized variants of gradient descent. In contrast to standard gradient

descent that considers the entire training data set for computing an update direction in

each iteration, stochastic gradient descent [21] approximates the true gradient of the train-

ing data set by only considering a randomly selected subset of all available data pairs also

known as minibatch. This approach has three benefits. First, the approximated updates

have a regularizing effect and avoid overfitting. Second, the computational complexity for

calculating a single update is significantly reduced. Third, the stochastic updates reduce

the risk of getting stuck in poor local minima and make it possible to escape from shallow

basins in the high-dimensional loss surface. Additionally, there are extensions to stochas-

tic gradient descent that use heuristics to accelerate the optimization and avoid jittering

gradients like Momentum [214] and Nesterov Momentum [260] or dynamically adjust the

learning rate like Adam [138].

During optimization, a regularizing effect can also be achieved by early stopping [19],

where the training is discontinued ahead of schedule if the error on a validation set in-

creases. Regularization can also be encoded in the loss function by adding Lagrange

multipliers to the training objective. For example, weight decay [147] follows the principle

of Occam’s razor and encourages the norm of learned weights to be small, which results

in simpler models.

Another way to achieve regularization is to increase the size and the diversity of the

training data set [233]. A larger training data set provides a better approximation of the

true underlying data distribution and results in improved generalization. Common tricks

to avoid the costly collection of additional real data are data augmentation [88, 145] and

synthetic data [257, 271].

Specific structures within a network can also have a regularizing effect. For example,

a low number of network parameters decreases the risk of overfitting. Also, parameter

sharing as performed in convolutional layers increases generalization. Further, feature

normalization is a form of regularization [121, 235, 300].

Finally, different ensemble techniques can be used to achieve regularization. This

ranges from ensembles of predictions, e.g., a combination of predictions from multiple

random crops of an image, over ensembles of networks, to intra-network ensembles such

as dropout [254].

2.2.2.4 Hyperparameters

Neural networks have many hyperparameters that can significantly effect the performance

of trained models. Hyperparameters include the loss function, the optimizer, the param-

eter initialization, the learning rate, the activation functions, the employed regularization

techniques, the minibatch size, the number of gradient-based updates to the model, the

performed data augmentation, the spatial resolution of input images, the floating-point
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precision of the model, and much more [82]. A consensus between all hyperparameters is

required to achieve high generalization. In practice, this consensus is found via empirical

trial-and-error or exhaustive meta optimization.

The architecture of a network can also be seen as a hyperparameter. The structure of

a network is typically designed by researchers based on empirical results and provides a

strong prior that might be suboptimal for the task. To overcome this limitation, recent

approaches perform meta optimization in the form of neural architecture search [54] to

learn architectures that are optimized for the task.
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In this chapter, we present an extensive literature review on prior research and related

work for different 3D vision tasks. In particular, we formally describe and discuss ob-

ject detection (see Section 3.1), 3D pose estimation (see Section 3.2), 3D model retrieval

(see Section 3.3), the estimation of camera intrinsics (see Section 3.4), and differentiable

rendering (see Section 3.5).

3.1 Object Detection

Object detection aims at predicting the presence as well as the 2D location of objects

in images. Predictions are typically expressed as 2D bounding boxes (x, y, w, h) with an

accompanied class label for each bounding box, as shown in Fig. 3.1. Object detection has

many applications in computer vision, including surveillance [45, 246], face detection [284],

and general 2D scene understanding [61]. Moreover, object detection is often a first step

towards solving higher-level tasks like 3D pose estimation [86] or 3D model retrieval [87].

37
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Image Object Detection

Figure 3.1: Example of object detection. Predictions are typically expressed as 2D bounding
boxes (x, y, w, h) with an accompanied class label for each bounding box. The 2D bounding boxes
of individual objects can overlap, which results in ambiguity1.

Templates: Early approaches to object detection are based on template matching [29].

In this case, a reference pattern is compared to every subregion of an image in a sliding

window fashion [127]. If the sum of squared differences between the template and an image

window is below a certain threshold, an object is detected. Comparing the template against

an image pyramid [182] makes it possible to detect objects at different scales. However,

simple template matching in the image space is computationally expensive and not robust

to any appearance variations and, thus, performs poorly in practice.

Machine Learning: To overcome these limitations, classic machine learning approaches

train a classifier on top of hand-crafted features instead of raw pixel intensities and em-

ploy various speed-up mechanisms. The Viola-Jones detector [284], for example, uses an

integral image to efficiently compute Haar features [201] and uses Adaboost [67] to both

perform feature selection and train an efficient detection cascade for real-time face detec-

tion. In contrast, the HOG detector [45] uses a linear SVM [42] on top of more discrimi-

native features in the form of histograms of oriented gradients computed on a dense grid

of uniformly spaced cells with overlapping local contrast normalization. Deformable part

models [61, 74] extend the HOG detector and use a divide-and-conquer strategy to learn

a decomposition of objects into individual parts during training. During inference, root

and part detection results for an object are combined using a spatial deformation cost to

compute a final detection score. However, the performance of detection approaches based

on classic machine learning is limited because they rely on hand-crafted features that are

not optimized for the actual task.

Deep Learning: In contrast to classic machine learning approaches, deep learning ap-

proaches use convolutional neural networks to learn an abstract hierarchy of features

optimized for the task of object detection. In this way, they have significantly improved

the state of the art in object detection in recent years. Deep learning approaches to ob-

1https://www.evo.co.uk/lamborghini/gallardo/11857/video-lamborghini-vs-stunt-plane

https://www.evo.co.uk/lamborghini/gallardo/11857/video-lamborghini-vs-stunt-plane
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ject detection can be categorized into two-stage detectors [72, 73, 98, 225] that implement

a coarse-to-fine strategy and one-stage detectors [169, 222–224] that directly aim for a

fine-grained prediction.

Two-stage detectors typically achieve higher accuracy but also have a higher com-

putational complexity. R-CNN [73], for example, uses selective search [283] to identify

regions of interest and classifies each region of interest using a CNN pre-trained for Ima-

geNet classification [146]. To overcome the computational bottleneck of redundant feature

calculations for overlapping regions of interest, SPPNet [98] performs a single CNN for-

ward pass to compute features for the entire image and then uses spatial pyramid pooling

to extract a fixed-size representation for arbitrarily shaped regions of interest. Fast R-

CNN [72] further develops this idea and introduces a region of interest pooling operation

to optimize all network layers for object detection. Next, Faster R-CNN [225] introduces

a region proposal network which eliminates the need for computing regions of interest in

a pre-processing step and provides an end-to-end trainable model for object detection.

Finally, Feature Pyramid Networks [163] combine low-level and high-level features from

different layers to improve the detection of objects at different scales.

In contrast to two-stage detectors, one-stage detectors compromise in terms of ac-

curacy while significantly improving in terms of speed. For example, YOLO [222] and

successors [223, 224] use a single network that simultaneously divides the image into re-

gions and predicts bounding boxes and class probabilities for each region. In this context,

SSD [169] presents a multi-resolution technique that detects objects of different scales at

different network layers. To address the imbalance of foreground and background regions

in training one-stage detectors, RetinaNet [164] presents a modified cross-entropy loss that

puts more emphasis on misclassified training samples.

Backbones: The performance of object detectors based on deep learning strongly de-

pends on the used network architecture also referred to as the backbone of a detector. Due

to the task similarities between detection and classification, many detection approaches

build on networks designed and pre-trained for ImageNet classification [233]. Empirical

results show, that architectures that perform well for classification tend to perform well

for object detection with a general trend towards more layers and more regularization

in networks [99, 100, 146, 250, 262, 307]. To further improve the performance, neural

architecture search [54] for object detection is performed [36].

Instance Segmentation: To detect objects even more precisely, recent approaches per-

form instance segmentation [96, 168]. In contrast to object detection which only provides

2D bounding boxes for detections, instance segmentation additionally computes a binary

mask for each detected object, as shown in Fig. 3.2. In this way, objects are localized more

accurately and can be detached from their background to ease subsequent tasks [125].

Finally, a recent trend in this field is to directly integrate higher-level tasks with object

detection or instance segmentation using a single network [75]. The resulting multi-task
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Image Instance Segmentation

Figure 3.2: Example of instance segmentation. Predictions are typically expressed as binary
masks with an accompanied class label for each mask. In this way, objects are localized more
accurately compared to object detection and can be detached from their background.

network address various tasks using shared optimized features which increases generaliza-

tion, reduces the parameter count, and shortens the training time. In this context, we

directly integrate 3D pose estimation and 3D model retrieval with object detection to deal

with multiple objects in a single image in Chapters 6 and 7.

3.2 3D Pose Estimation

3D pose estimation addresses the task of predicting the 3D rotation and 3D translation of

objects relative to the camera. In some cases, only the 3D rotation is predicted. This task

is referred to as 3D viewpoint estimation. In other cases, the 3D dimensions of an object

are additionally predicted. This task is referred to as 3D object detection. An overview

of the three tasks and their respective degrees of freedom is presented in Table 3.1. For

all three tasks, predictions are typically visualized using 3D bounding boxes, as shown

in Fig. 3.3.

Task 3D Rotation 3D Translation 3D Dimensions Degrees of Freedom

3D Viewpoint Estimation 3 3
3D Pose Estimation 3 3 6
3D Object Detection 3 3 3 9

Table 3.1: Overview of 3D viewpoint estimation, 3D pose estimation, and 3D object detection.

In the literature, most 3D pose estimation approaches are based on some form of

2D-3D correspondences [255]. For example, the 3D pose of an object can be recovered

from correspondences between 3D model points and their respective 2D image locations

using a geometric optimization, as already discussed in Section 2.1.2.1. However, while

solving correspondence-based geometric optimization problems is not an issue in practice,

establishing 2D-3D correspondences in the first place is challenging.
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Image 3D Pose Estimation

Figure 3.3: Example of 3D pose estimation. Predictions are typically visualized using 3D bound-
ing boxes. Because the 3D configuration of multiple objects is known, overlapping issues between
projected 3D bounding boxes can be resolved correctly.

2D-3D Edge Correspondences: Early approaches to 3D pose estimation are based

on corresponding edges between rendered 3D models and observed 2D images. In this

context, RAPID [93] aligns selected control points on high contrast edges of 3D models

to edges in images. Similarly, [174] minimizes the distance from points on image edges to

curve segments of projected 3D models and takes inherent inaccuracies in the image mea-

surements into account. [50] performs 3D pose estimation via constrained active contour

tracking. [130] uses correspondences between different geometric primitives such as points,

lines, and ellipse-circle pairs to improve robustness. However, these methods require an

initial 3D pose which is close to the ground truth.

2D-3D Point Correspondences: To overcome this limitation, many approaches es-

tablish 2D-3D point correspondences instead. These approaches usually have an offline

phase and an online phase. In the offline phase, corresponding 3D model points and 2D

image locations are selected in registered images, a 2D keypoint descriptor is computed

for each 2D image location, and a database of 2D keypoint descriptors with associated

3D model points is created. In the online phase, 2D keypoints are detected, 2D keypoint

descriptors are computed, and 2D-3D correspondences are established by retrieving 3D

points from the database. For example, [220] manually selects 2D keypoints in several

registered reference images of an object and uses small local image patches as 2D keypoint

descriptors. [251] extracts SIFT [175] features from multiple images of an object, uses

structure from motion [95] to reconstruct 3D points, and creates a database from these

correspondences. In contrast, [270] learns a database of SURF [15] descriptors which are

robust to strong perspective changes from a textured 3D model. [154] detects 2D key-

points and performs 2D keypoint classification using randomized trees to predict 2D-3D

correspondences instead. [202] uses a combination of 2D keypoint matching and tracking

to increase speed. Finally, [282] combines information provided by edges and Harris [94]

keypoints to increase robustness. However, methods based on traditional 2D keypoints

only perform well for textured objects.
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Templates: Thus, another line of research focuses on template-based approaches. In

this context, [131] performs 2D template matching under geometric template deforma-

tions. [104] represents objects with multiple templates based on gradient orientations

computed from registered images, where each template is associated with a 3D pose. In

contrast, [105] builds templates from textured 3D models. [205] uses shape templates

based on object contours. [162] uses LDA [186] on HOG features [45] computed from local

edge maps to predict correspondences and measures global alignment of 3D poses. [209]

extends 2D deformable part models [61] to additionally predict 3D viewpoints. [305] com-

bines a deformable part model with a 3D aspect layout model to estimate continuous 3D

viewpoints. [161] uses a deformable part model to learn shared 3D parts and predict 3D

poses. [293] maps images of objects to a descriptor space that is discriminative in terms

of 3D shape and 3D pose and performs retrieval in this space to predict both quantities.

[259] trains an augmented auto-encoder and matches latent codes for 3D pose retrieval.

However, template-based methods often require large databases of templates and can only

interpolate between reference 3D poses.

Direct Estimation: Inspired by the success of end-to-end deep learning for tasks like

classification [233], recent approaches directly predict 3D pose parameters from RGB im-

ages. In this context, numerous works only perform 3D viewpoint estimation using CNNs.

These methods predict the 3D rotation of objects parametrized as three Euler angles, a

three-dimensional axis-angle vector, or a quaternion using regression [184, 302], classifica-

tion [277, 279], or hybrid variants of both [179, 306]. For example, [302] directly regresses

Euler angles using a CNN. [184] compares different variants and presents a regression

approach which parameterizes each Euler angle using trigonometric functions. [277] and

[279] perform 3D viewpoint classification by discretizing the range of each Euler angle into

a number of disjoint bins and predicting the most likely bin using a CNN. [257] uses a fine-

grained geometric structure-aware classification, which encourages the correlation between

bins of nearby 3D viewpoints. [179] formulates the task as a hybrid classification-regression

problem using an axis-angle representation: In addition to 3D viewpoint classification, a

residual 3D rotation is regressed for each angular bin using a delta-bin approach. [306]

also employs a delta-bin approach but estimates Euler angles and additionally leverages a

3D model of the object in the image. However, predicting a full 3D pose opposed to a 3D

viewpoint is desirable for many applications.

Thus, many approaches combine the 3D rotation estimation techniques described above

with 3D translation estimation. [190] uses a simplified 3D pose parametrization consisting

of two Euler angles and three translation parameters in a coarse-to-fine approach that

performs 3D pose classification followed by 3D model alignment. [156] performs hybrid

classification-regression for both 3D rotation and 3D translation using a delta-bin ap-

proach. [191] performs 3D object detection using a delta-bin approach for 3D rotation, a

regression approach for 3D dimensions, and geometric constraints on the 2D bounding box

to recover 3D translation. However, these approaches cannot deal with multiple objects
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in a single image nor handle objects at different scales, thus, they require object detection

in a preprocessing step.

To overcome these limitations, recent approaches integrate 3D pose estimation tech-

niques into object detection pipelines making the entire system end-to-end trainable. [136]

augments SSD [169] with 3D rotation classification and recovers 3D translation from 2D

bounding box constraints. Similarly, [151] extends Faster R-CNN [225] with delta-bin 3D

rotation estimation and additional 3D shape prediction. [304] performs semantic segmen-

tation for object detection, object center Hough voting [14] for 3D translation estimation,

and quaternion regression for 3D rotation estimation using a single network. [288] aug-

ments Mask R-CNN [96] to regress a quaternion as well as the object’s principal point

and distance from the camera for 3D pose estimation. However, end-to-end deep learning

for 3D pose estimation has not seen the same success as end-to-end deep learning for 2D

recognition tasks like classification [233]. This can be accounted to the lack of super-

vised training data in the form of 2D images with 3D annotations [258], overfitting to

random structures in the data, and network architectures that are not optimized for 3D

tasks [56, 277, 295]. Additionally, simple feed-forward CNNs cannot exploit prior knowl-

edge about the task, for example, in the form of geometric rules or information about the

camera intrinsics, which is a significant drawback.

Learning and Geometry: To leverage the benefits of both learning and geometry, re-

cent approaches predict 2D-3D point correspondences using learning and recover 3D poses

using geometric optimizations (see Section 2.1.2.1). In this context, multiple approaches

use CNNs to predict the 2D image locations of sparse category-specific 3D model points

from RGB images. For example, [208] recovers the 3D pose of an object from predicted 2D

locations of manually selected 3D model points using a PnP algorithm. Similarly, [204]

also predicts 2D locations using a CNN but recovers 3D poses using a trained deformable

shape model. [279] presents an approach that combines local 2D location estimates with

a global 3D viewpoint estimate. [207] uses a pixel-wise voting for generating heatmaps

of 2D locations in combination with semantic segmentation to address partial occlusions.

However, these approaches rely on category-specific 3D model points which need to be

selected and annotated manually for each 3D model.

In contrast, other approaches predict the 2D image locations of sparse category-

agnostic virtual 3D points that can be inferred automatically from 3D models. For exam-

ple, [43] predicts the 2D locations of virtual 3D points to estimate the 3D pose of object

parts. [217] predicts the 2D locations of the 3D bounding box corners of an object. [269]

integrates the technique presented in [217] with the YOLO [222] object detector to deal

with multiple objects in a single image and handle scale variations. [198] also predicts

the 2D locations of 3D bounding box corners but uses a patch-based CNN that generates

heatmaps to increase the robustness to partial occlusions. However, these approaches re-

quire the 3D model of an object to be known during inference to recover the 3D using a

PnP algorithm.
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To avoid providing ground truth 3D models at runtime, multiple approaches predict

both 2D image locations and corresponding 3D model points in the form of dense unsu-

pervised 2D-3D correspondences. In this case, a natural choice is to segment pixels that

belong to an object and predict a 3D model point for each segmented pixel. [22] uses

random forests [28] to predict such 2D-3D correspondences. [24] extends this approach

and uses predicted uncertainties to refine 3D poses. [125] uses Mask R-CNN [96] to seg-

ment instances and a second custom CNN to regress 3D model points. In contrast, [288]

integrates 3D model point regression with Mask R-CNN, while [285] integrates 3D model

point classification with Mask R-CNN. In Chapters 5 and 6, we present methods that also

predict 2D-3D correspondences using deep learning and recover 3D poses using geometric

optimizations. However, while these feed-forward approaches robustly estimate the coarse

high-level 3D rotation and 3D translation of objects, they cannot predict fine-grained 3D

poses in many cases [306].

3D Pose Refinement: To improve the 3D pose accuracy, refinement approaches try to

align 3D models to objects in RGB images. In particular, 3D pose refinement approaches

are based on the assumption that the projection of an object’s 3D model aligns with the

object’s appearance in the image given the correct 3D pose. Thus, they compare renderings

under the current 3D pose to the input image to get feedback on the prediction. 3D pose

refinement approaches relate back to edge alignment between rendered 3D models and

observed 2D images discussed in the beginning of this section [50, 93, 174].

In a similar fashion, region-based 3D pose refinement methods optimize energy func-

tions to refine the alignment of rendered 3D models and objects in 2D images for selected

regions. [243] optimizes an energy function defined on the 3D pose parameters to align

the contours of rendered 3D models and observed 2D images. [210] minimizes an energy

function based on foreground and background membership probabilities of each pixel to

refine 3D poses. However, the formulated energy functions are not directly optimizable.

Another strategy to refine 3D poses is to generate many small perturbations and

evaluate their accuracy using a scoring function. [311] uses normalized cross-correlation

in the intensity domain to evaluate the accuracy of a hypothesis. [166] trains a CNN

that scores in-painted 3D bounding boxes. However, this approach is computationally

expensive and the design of a robust scoring function is unclear.

Therefore, other approaches try to predict iterative 3D pose updates with deep learning

systems instead. These approaches use pairs of RGB images and 3D model renderings as

network input. [217] performs refinement by predicting 2D updates to previously predicted

2D locations of 3D bounding box corners using a custom network. [181] directly estimates

3D pose updates using a frozen Inception [262] architecture with custom fine-tuned output

layers. [159] predicts 3D pose updates using a network architecture designed for optical

flow estimation [48]. In contrast, [313] predicts 3D pose updates using a ResNet-like archi-

tecture [99]. In practice, though, the performance of these methods is limited because they

cannot generalize to 3D poses or 3D models that have not been seen during training [217].
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Recent approaches based on differentiable rendering overcome these limitations. Com-

pared to the methods described above, they analytically propagate error signals backward

through the rendering pipeline to compute more accurate 3D pose updates. In this way,

they exploit knowledge about the 3D scene geometry and the projection pipeline for the op-

timization. While [171] relies on comparisons between images and renderings in the RGB

space, [200] and [134] rely on comparisons in the mask space. In contrast, we present a

refinement method based on differentiable rendering that compares images and renderings

in a feature space optimized for 3D pose refinement in Chapter 8.

3.3 3D Model Retrieval

3D model retrieval addresses the task of predicting 3D models for objects in images.

In particular, 2D image observations of objects are used to retrieve 3D models which

accurately represent the geometry of the object from databases of 3D models [33, 258],

as shown in Fig. 3.4. For this task, only the 3D shape of objects is considered, while

colors and textures are ignored because color information can be extracted from images

and applied to registered 3D models easily [265]. In theory, a ranked list of all available

3D models from a database is generated for each query. In practice, however, only the

highest-ranked or approximately highest-ranked 3D model is returned to speed up retrieval

for large databases.

Image 3D Model Retrieval

Figure 3.4: Example of 3D model retrieval. For each object, a 3D model which accurately
represents the geometry of the respective object is retrieved from a database of 3D models. In this
case, the predicted 3D models are projected onto the image using the 3D poses of the objects.

Retrieval versus Reconstruction: 3D model retrieval differs from 3D model recon-

struction [95] which also addresses the task of predicting 3D models for objects in im-

ages. In particular, 3D reconstruction directly estimates geometry from 2D image ob-

servations [255, 265]. In the context of single image 3D model reconstruction for ob-

jects, there are approaches that predict voxel grids [144, 278, 297, 316], unstructured

3D point clouds [58, 180, 193], structured 3D point clouds [22, 24, 268, 285], and 3D

meshes [75, 90, 252, 286, 308]. Naturally, many concepts used in reconstruction ap-
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proaches are also found in retrieval approaches. However, because 3D model retrieval

databases consist of 3D meshes designed by humans, retrieved 3D models have several

advantages compared to reconstructed 3D models in practice. First, retrieved 3D models

have a high level of detail while having a low polygon count. Second, they obey symmetries

and provide correct geometry even for occluded or truncated object parts. Third, they are

often composed of hierarchical parts and model interior object structures. Finally, they

have pre-defined materials that can be used to realistically change the appearance of an

entire 3D model using color information extracted from images.

3D queries: Many approaches perform 3D model retrieval given a query 3D model [240,

241]. In this case, feature vectors in the form of 3D shape descriptors are computed

from both the query 3D model and the 3D models in the retrieval database. Then, a

distance between the query descriptor and each database descriptor is computed [149].

Finally, the 3D model from the database corresponding to the smallest computed distance

is returned. To improve speed for large databases, also an approximate nearest neighbor

in the descriptor space can be returned [6]. In this context, different approaches either

directly operate on 3D data, e.g., in the form of 3D voxel grids [211, 298], spherical

maps [55], or 3D point clouds [142, 212, 213], or process multi-view renderings of the

query 3D model [13, 34, 211, 256] to compute 3D shape descriptors. However, in this

work, we focus on the much more challenging task of 3D model retrieval given a single

RGB image [85, 133]

Classification: One approach to perform 3D model retrieval given a single RGB image

is to train a classifier that provides a 3D model for each class. In this context, [8] uses

a linear classifier on top of handcrafted features extracted from an image to predict both

3D shape and 3D viewpoint. In contrast, [190] trains a CNN that performs fine-grained

category classification and provides a 3D model for each category. However, 3D model

retrieval via classification does not scale and is limited to 3D models that have been seen

during training.

Embedding Spaces: A popular strategy to overcome the limitations of retrieval via

classification is to map 3D models and RGB images to feature vectors in a common

embedding space. In this space, 3D model retrieval is performed using distance-based

matching [149] between feature vectors that represent 3D shape descriptors just as de-

scribed for 3D model queries above. In this case, the mapping, the embedding space, and

the distance measure can be designed in a variety of ways.

For example, numerous works match features extracted from an RGB image against

features extracted from multi-view RGB renderings to predict both 3D shape and 3D

viewpoint. In this context, [10] uses a CNN trained for ImageNet classification [233]

to extract features. [185] takes a similar approach but additionally performs non-linear

feature adaption to overcome the domain gap between real and rendered RGB images.
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[116] and [123] use a CNN trained for object detection as a feature extractor. However,

the CNNs used in these approaches are not optimized for 3D model retrieval.

Thus, other approaches train mappings to predefined embedding spaces. [266] trains

CNNs to map 3D models, RGB images, depth maps, and sketches to an embedding space

based on text for cross-modal retrieval. [119] constructs a low-dimensional embedding

space by performing PCA on 3D model points and maps 3D model points predicted using

a CNN to that space for retrieval. [158] and [267] train a CNN to map RGB images to an

embedding space constructed from pairwise similarities between 3D models.

Instead of handcrafting an embedding space, an embedding space capturing 3D shape

properties can also be learned. [278] reconstructs voxel grids from RGB images of objects

using CNNs. The low-dimensional bottle-neck 3D shape descriptors are also used for

retrieval. [71] combines a 3D voxel encoder and an RGB image encoder with a shared 3D

voxel decoder to perform reconstruction from a joint embedding. 3D model retrieval is

performed by matching embeddings of 3D voxel grids against those of RGB images.

Finally, recent approaches explicitly learn an embedding space which is optimized for

3D model retrieval. [302] uses a single CNN to map RGB images and RGB renderings to

an embedding space which is optimized using a Euclidean distance-based lifted structure

loss [199]. At test time, the distances between an embedding of an RGB image and

embeddings of multi-view RGB renderings are averaged to compensate for the unknown 3D

pose of objects. [153] uses two CNNs to map RGB images and gray-scale renderings to an

embedding space and optimizes a Euclidean distance-based Triplet loss [290]. Additionally,

cross-view convolutions are employed to aggregate a sequence of multi-view renderings into

a single 3D shape descriptor to reduce the matching complexity. In Chapters 5 and 7,

we also present methods that explicitly learn an embedding space from data but further

perform efficient and scalable 3D model retrieval.

3.4 Estimation of Camera Intrinsics

The estimation of camera intrinsics, also referred to as camera calibration, has a long

tradition in computer vision [59, 95]. In this work, we use a simple parametrization

for the camera intrinsics consisting of a single parameter, i.e., the camera focal length

(see Section 2.1.1.2). This choice is motivated by the circumstance that available datasets

consisting of 2D images with 3D annotations only provide annotations for this kind of

parametrization (see Chapter 4). Thus, we focus our discussion of related work on ap-

proaches that estimate the camera focal length.

2D-3D Point Correspondences: Most approaches for estimating the camera intrinsics

are based on 2D-3D point correspondences. In this case, a geometric optimization based

on a small number of corresponding 2D locations and 3D points is performed to recover

the camera intrinsics, as already discussed in Section 2.1.2.1. In this context, the intrinsic

and extrinsic parameters of the camera are often recovered jointly [2]. Moreover, numerous
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works present geometric optimizations that explicitly estimate the camera focal length and

the 3D pose of the camera by solving a PnPf problem [192, 206, 296, 318, 319].

In practice, these methods require precise 2D-3D correspondences, which are often

selected manually or using known calibration grids [276, 317]. Many applications, however,

require automatic calibration. In specific cases, it is possible to exploit geometric image

elements such as lines [51], vanishing points [32, 39], or circles [35] to compute the intrinsics.

However, these approaches do not generalize to arbitrary natural images.

Deep Learning: To overcome this limitation, recent approaches directly estimate the

camera focal length from RGB images without requiring particular geometric structures

using deep learning. For example, [294] uses a CNN pre-trained for ImageNet classifi-

cation [146] to regress the horizontal field-of-view of the camera that has a one-to-one

mapping to the camera focal length. Similarly, [111] trains a CNN to classify the vertical

field-of-view of the camera. [172] regresses the vertical field-of-view of the camera as well

as radial distortion parameters. In contrast, [288] regresses the camera focal length from

regions of interest that contain objects to reduce the impact of homogenous background

regions on the prediction. In Chapter 6, we present a method based on deep learning to

predict the camera focal length using a logarithmic parametrization.

3.5 Differentiable Rendering

Differentiable rendering [171] is a powerful concept that provides inverse graphics capa-

bilities by computing gradients for 3D scene parameters from 2D image observations, as

already discussed in Section 2.1.2.2. This novel technique recently gained popularity for

tasks like 3D reconstruction [151, 195], scene lighting estimation [11, 157], and texture

prediction [132, 309]. Additionally, differentiable rendering can also be used to refine the

3D pose of objects [200].

However, even simple rendering is a non-differentiable process due to the rasterization

operation [134] (see Section 2.1.1.3). In particular, solving the visibility of overlapping

triangles is non-differentiable because an argmin operation is required to identify the

index of the frontmost triangle for each rasterized pixel. Thus, differentiable rendering

approaches either try to mimic rasterization with differentiable operations [167, 200] or

use conventional rasterization and provide approximate gradients for the rasterization

operation [70, 102, 134, 171].

To mimic rasterization, [200] presents a rastering algorithm formulated with differen-

tiable operations that assigns continuous opposed to binary values to each pixel to generate

approximate masks from 3D meshes. [167] formulates rendering as an aggregation function

that fuses the probabilistic contributions of all triangles of a 3D mesh with respect to the

rendered pixels to generate approximate silhouettes as well as shaded RGB renderings.

To perform differentiable rendering while using conventional rasterization, [151] uses

finite differences between forward renderings. In contrast, [171] uses filter-based derivatives
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to provide approximate gradients for the rasterization operation. [102] extends [171] by

computing correctly behaving derivatives in cases of self-occlusion. [70] treats 3D models

as locally planar and computes rasterization derivatives for barycentric coordinates but not

for visible triangle indices. [134] approximates gradients for rasterization by replacing the

sudden intensity changes at triangle boundaries that lead to zero gradients with gradual

changes that yield non-zero gradients using linear interpolation. However, differentiable

rendering is still considered an unsolved problem. Thus, we present a method that learns

to approximate the rasterization backward pass from data in Chapter 8.
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In this chapter, we discuss available datasets consisting of 2D images with 3D annota-

tions. Because the methods presented in this thesis are data-driven, labeled datasets are

indispensable for training our models in a supervised learning setup. They do not only

determine which tasks we can learn but also strongly impact the quality of our learned

models. We first give an overview of public datasets that address our 3D vision tasks and

then discuss datasets used in our evaluations in more detail.

4.1 Overview

Table 4.1 presents an overview of publicly available datasets consisting of 2D images with

3D annotations. We highlight important differences between existing datasets with respect

to specific properties. In the following, we discuss these properties in detail and explain

why certain datasets are better suited for training data-driven models for single image 3D

vision in the wild than others.
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Dataset Scenario Images 3D Models 3D Poses Focal Length

LineMOD [104] Instance Real Fine-grained Fine-grained Single camera
YCB [30] Instance Real Fine-grained Fine-grained Single camera
T-LESS [108] Instance Real Fine-grained Fine-grained Single camera
BOP [110] Instance Real Fine-grained Fine-grained Single camera

NOCS [285] Category Real Fine-grained Fine-grained Single camera
KITTI [69] Category Real Coarse Fine-grained Single camera
ScanNet [44] Category Real Coarse Fine-grained Single camera
Pascal3D+ [303] Category Real Coarse Coarse Coarse
ObjectNet3D [302] Category Real Coarse Coarse Coarse
Houzz [119] Category Real Coarse Coarse Fine-grained
Comp/Stanford [288] Category Real Fine-grained Coarse Fine-grained
IKEA [162] Category Real Fine-grained Fine-grained Fine-grained
Pix3D [258] Category Real Fine-grained Fine-grained Fine-grained

P4B [227] Category Synthetic Fine-grained Fine-grained Single camera
ShapeNet [33] Category Synthetic Fine-grained Fine-grained Fine-grained

Table 4.1: Overview of publicly available datasets consisting of 2D images with 3D annotations.

Scenario: First, existing datasets can be divided into instance-level and category-level

scenarios. In instance-level scenarios [30, 104, 108], the same objects are encountered

during both training and testing. Additionally, the corresponding datasets provide 3D

models with colors and textures that exactly match those of the objects in the RGB

images. Typically, the number of different objects is low.

In contrast, category-level scenarios [258, 285, 288, 303] provide a more challenging

setup. In this case, the training and test objects are different instances of a common

category. Thus, objects seen during training differ from objects seen during testing. For

example, objects within a category have varying 3D shapes and textures [302]. As a

consequence, they can have significantly different appearances. Additionally, the number

of different objects is high. However, common characteristics of objects within a category

can be learned to make predictions for previously unseen instances of that category.

Because both scenarios are significantly different, they require specialized approaches.

For example, while color information is an important clue in instance-level scenarios, it is

mostly irrelevant in category-level scenarios. In instance-level scenarios, exact 3D models

are typically available during testing. This is not the case in category-level scenarios.

Additionally, category-level approaches need to handle more appearance variations due

to the varying 3D shapes and textures of objects. As a consequence, many instance-level

approaches are not directly applicable to category-level scenarios. However, any category-

level approach can be used in an instance-level scenario but it might not leverage all

available information. The two scenarios pose different tasks.

In this thesis, we focus on datasets that address category-level scenarios because they

resemble our intended use case of general 3D scene understanding for objects in the wild.
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Images: While most datasets provide real-world images, some datasets only provide syn-

thetic images [33, 227]. However, research shows that systems purely trained on synthetic

data do not generalize to real data because there is a significant domain gap between real

and rendered images [71, 185, 285]. Even techniques like domain randomization [271] and

domain adaptation [218, 249] cannot fully bridge the gap between real and synthetic data.

As already discussed in Section 2.1.1.2, the formation of an image in the real world is a

complex process that is subject to many factors of variation. For example, physical objects

are composed of materials like metal, glass, and fabric that have complex reflection and

refraction properties. Moreover, objects are effected by their environment. Real-world

scenes consist of many objects that can occlude each other, cast or receive shadows, and

form complicated image backgrounds. Additionally, scenes in the real world are globally

illuminated and have multiple direct as well as indirect light sources [52, 129]. Finally,

artifacts caused by physical cameras and image compression algorithms effect real-world

images. As a consequence, generating photo-realistic renderings is hard, computationally

expensive, and in many cases even impossible.

In this thesis, we focus on datasets that provide real-world images because the statistics

of physically acquired images are different from those of rendered images, and we want to

make predictions for the domain of natural images.

3D Models: Many datasets only provide 3D models that coarsely match the geometry

of objects in images [44, 119, 302, 303]. Especially in category-level scenarios, it is difficult

for annotators to provide fine-grained 3D models for arbitrary objects in images. In many

cases, exactly matching 3D models are not available. However, manually constructing

them using computer-aided design is a complicated and time-consuming process. Thus,

annotators often select approximate 3D models.

In this thesis, we focus on datasets that provide fine-grained 3D model annotations

because precise knowledge about the geometry of objects is required to train accurate 3D

pose estimation and 3D model retrieval systems in practice.

3D Poses: Similar to the case of 3D models above, many datasets only provide coarse

3D pose annotations [119, 288, 302, 303]. 3D poses have six degrees of freedom that cannot

be labeled independently of each other. Hence, their annotation is difficult. The 3D pose

of an object is typically annotated based on a 3D model. In this case, annotators either

manually optimize the alignment between an object in an image and a rendered 3D model,

or first select correspondences between 2D object locations and 3D model points and then

perform a geometric optimization to recover the 3D pose (see Section 2.1.2.1). Thus, if the

provided 3D model is only a coarse approximation of the object geometry, the annotated

3D pose of an object will also only be a coarse approximation in either labeling approach.

In this thesis, we focus on datasets that provide fine-grained 3D pose annotations

because precise ground truth for the 3D rotation and 3D translation of objects is required

to train accurate 3D pose estimation and 3D pose refinement systems in practice.
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Focal Length: Finally, there are many datasets that have been captured using a single

camera [44, 104, 285]. In this case, the camera intrinsics are calibrated and assumed

to be known during testing. Additionally, this setup makes it possible to exploit certain

geometric constraints. For example, even without explicitly using the camera intrinsics and

accurate 3D translation can be estimated based on the 2D bounding box of an object [156].

This is not possible if images are captured with multiple cameras having different focal

lengths. Moreover, different focal length images are required to learn to predict the focal

length from data.

In this thesis, we focus on datasets that provide fine-grained focal length annotations

because in the case of uncalibrated cameras the estimation of an unknown focal length

provides an effective prior for 3D pose estimation.

4.2 Pascal3D+

The Pascal3D+ [303] dataset provides in-the-wild RGB images from PascalVOC [57] and

ImageNet [233] which are augmented with coarse 3D pose, 3D model, and focal length

annotations for objects of twelve categories (aeroplane, bike, boat, bottle, bus, car, chair,

table, motorbike, sofa, train, and tv). The images are captured with multiple cameras

having different focal lengths and there are annotations for multiple objects in a single

image. However, there is only a limited pool of around ten 3D models for each category and

each labeled object is assigned one 3D model from the respective category pool. Thus,

the 3D model annotations are only approximate. Moreover, the annotated 3D poses

are computed from manually selected 2D-3D correspondences. Because the annotated

3D models are only approximate, the computed 3D poses are also only approximate.

Additionally, a constant focal length is assumed for images captured with different focal

length cameras. The Pascal3D+ datasets already provide a train-test split and we use all

available samples for training and evaluation.

4.3 Comp and Stanford

The Comp and Stanford [288] datasets provide in-the-wild RGB images with fine-grained

3D model and focal length but coarse 3D pose annotations for objects of the category car.

The images are captured with multiple cameras having different focal lengths. Most images

show one prominent car which is non-occluded and non-truncated. Only this prominent

object is annotated, while possible other objects in the background are ignored. The

annotated 3D models are selected based on the known types of the cars in the images.

Thus, they are accurate for the majority of samples. However, the 3D poses are manually

optimized based on visual alignment by human annotators. As a consequence, the 3D

poses of many samples lack accuracy. The two datasets already provide a train-test split.

Thus, we use all available samples from Comp and Stanford for training and evaluation.
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4.4 Pix3D

The Pix3D [258] dataset extends the IKEA dataset [162] and provides in-the-wild RGB

images with fine-grained 3D pose, 3D model, and focal length annotations for objects

of different categories. The images are captured with multiple cameras having different

focal lengths. Compared to other category-level datasets, all annotations are fine-grained

because the annotation process is performed using exact 3D models and accurate 2D-

3D correspondences. However, only a single object per image is annotated, even though

there are multiple objects in many cases. This dataset provides annotations for multiple

object categories but we only train and evaluate on categories which have more than 300

non-occluded and non-truncated samples (bed, chair, sofa, table). Further, we restrict the

training and evaluation to samples marked as non-occluded and non-truncated because we

do not know which objects parts are occluded nor the extent of the occlusion, and many

objects are heavily truncated. Because the Pix3D dataset does not provide a train-test

split, we randomly select 50% of the samples of each category for training and the other

50% for testing.

4.5 ShapeNet

In contrast to the datasets describes above, the ShapeNet [33] dataset does not provide

real-world RGB images but a very large number of textured 3D models. Due to the enor-

mous size of this 3D model database, ShapeNet does not only cover many different object

categories but also presents a large variety in 3D model geometry. Synthetic images for

the training of data-driven approaches can be rendered from the available 3D models [257]

but the significant domain gap between real and rendered images limits the benefit of

this strategy in practice. However, the ShapeNet datasets is an excellent candidate for

a 3D model retrieval database because 3D models within a category densely sample the

underlying true data distribution of objects in the real world. Additionally, all 3D models

are consistently oriented, scaled, and translated.
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In this chapter, we present the first contribution of this thesis. In particular, we

propose a scalable, efficient, and accurate approach to retrieve 3D models for objects of

arbitrary categories from single RGB images captured in the wild. Our specific contri-

bution is twofold. First, we present a novel category-level 3D pose estimation approach

which significantly outperforms the state of the art for 3D viewpoint estimation on Pas-

cal3D+ [303]. Second, we use our estimated 3D poses as a prior to retrieve 3D models

which accurately represent the geometry of objects in RGB images. For this purpose, we

compare each object in an RGB image to depth renderings of 3D models from a retrieval

database generated under our predicted 3D pose. We perform this comparison by mapping

RGB images and depth renderings to feature vectors in the form of 3D shape descriptors

in a common embedding space using a CNN-based multi-view metric learning approach.

In this embedding space, we match 3D shape descriptors to perform 3D model retrieval.

We evaluate our proposed 3D model retrieval approach on Pascal3D+, where we are the

first to report quantitative results and our method retrieves the ground truth 3D model

for 50% of all validation objects. In addition, we show that our method which was trained

purely on Pascal3D+ retrieves rich and accurate 3D models from ShapeNet [33] without

retraining given previously unseen RGB images of objects in the wild.
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5.1 Introduction

Image Predicted 3D Poses and 3D Models

Figure 5.1: Given a single RGB image containing one or more objects of arbitrary categories like
car or aeroplane, we predict a 3D pose and a 3D model for each object.

Retrieving 3D models for objects in single 2D images captured in the wild, as shown

in Fig. 5.1, is important for applications like augmented reality, robotics, and general

3D scene understanding. Recently, the emergence of large 3D model databases such as

ShapeNet [33] initiated substantial interest in this task and motivated research for match-

ing single 2D images of objects against 3D models. However, there is no straightforward

approach to compare 2D images and 3D models, since they have considerably different

representations and characteristics.

One approach to address this problem is to project 3D models onto 2D images us-

ing rendering (see Section 2.1.1). This converts the task to comparing 2D images, which

is, however, still challenging because the appearance of objects in real-world images and

synthetic renderings can significantly differ. In general, the geometry and textures of avail-

able 3D models do not exactly match those of objects in real-world images. Thus, recent

approaches [10, 123, 256, 302] use CNNs (see Section 2.2) to extract features which are

partly invariant to these variations from images. In particular, these methods compute

and match feature vectors from real-world RGB images and synthetic RGB images gener-

ated by rendering 3D models under multiple 3D poses to perform retrieval. This strategy

allows them to extract features from both real and synthetic RGB images using a single

CNN that can be trained purely on synthetic data but can later also be applied to real

data. However, there are two main disadvantages:

First, there is a significant domain gap between real and synthetic RGB images (see Sec-

tion 4.1). Real images are subject to complex lighting, uncontrolled degradation, and

natural backgrounds. This makes it hard to generate photo-realistic renderings. More-

over, many 3D models do not even provide color or texture information. In this case,

photo-realistic rendering is impossible. As a consequence, using a single CNN for feature

extraction from both the real and synthetic image domain is limited in performance. Fi-

nally, not even techniques like domain adaption [185] can fully account for the different

characteristics of the two domains.
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Second, processing renderings from multiple different 3D poses for each 3D model is

computationally expensive. However, this step is mandatory because the appearance of

an object can significantly change with its 3D pose. Also, mapping renderings from all 3D

poses to a common feature vector does not scale to many categories [158]. Thus, knowing

the 3D pose of an object significantly eases the task of 3D model retrieval while reducing

computational complexity at the same.

To overcome these limitations, we propose to first predict the 3D pose of an object and

then use the predicted 3D pose as an effective prior for 3D model retrieval. Inspired by re-

cent work on instance-level 3D pose estimation [43, 217], we present a robust category-level

3D pose estimation approach based on virtual 2D-3D correspondences. More specifically,

we use a CNN to predict both virtual 3D points as well as their corresponding 2D image

locations from which we recover the 3D pose of each object using a PnP algorithm (see Sec-

tion 2.1.2). In contrast to previous work [43, 217], our approach does not require ground

truth 3D models at runtime and additionally supports category-agnostic predictions.

To perform 3D model retrieval, we then compare each object in an RGB image to

renderings of 3D models from a database. However, in contrast to previous work [10, 123,

256, 302], we exploit a 3D pose prior and only use a single rendering generated under

our predicted 3D pose per 3D model. This rendering can be pre-computed offline, which

makes our approach scalable. Additionally, we propose to use depth renderings instead of

RGB renderings and use two different CNNs in a multi-view metric learning approach to

map real-world RGB images and synthetic depth renderings to feature vectors in the form

of 3D shape descriptors in a common embedding space. In this way, we are not only able

to deal with untextured 3D models but also alleviate the domain gap.

We evaluate our proposed 3D pose estimation and 3D model retrieval approach on the

challenging Pascal3D+ [303] dataset. In terms of 3D pose estimation, our method out-

performs the state of the art for 3D viewpoint estimation. In terms of 3D model retrieval,

we are the first to report quantitative results on Pascal3D+ and our method retrieves the

ground truth 3D model for 50% of all validation objects. Moreover, we demonstrate that

our method which was trained purely on Pascal3D+ retrieves rich and accurate 3D models

from the ShapeNet [33] dataset without retraining given previously unseen RGB images

of objects in the wild from the Pascal3D+ validation data. To summarize, we make the

following contributions:

• We present a category-level 3D pose estimation approach for objects in the wild that

significantly outperforms the state of the art on Pascal3D+. Our method predicts

virtual 2D-3D correspondences which generalize across different categories.

• We introduce a novel 3D model retrieval approach that utilizes a 3D pose prior. Our

method compares objects in single RGB images to 3D model renderings generated

under predicted 3D poses and bridges the domain gap between real and rendered

images. In this way, we retrieve 3D models which accurately represent the geometry

of objects in images in a computationally efficient way, as shown in Fig. 5.1.
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5.2 3D Pose Estimation and 3D Model Retrieval

PnPReal Domain
CNN

RGB Image Predicted 2D Locations Predicted 3D Pose

Rendering

3D Models Depth Renderings

Matching

Retrieved 3D Model

REAL

SYNTH 1

SYNTH 2

Descriptors
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Input System Overview Output
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Figure 5.2: Overview of our approach. First row: Given a single RGB image of an object,
we first predict its 3D pose. We use a CNN to predict the 2D image locations of the object’s
3D bounding box corners (red dots) and the object’s 3D dimensions. From these virtual 2D-3D
correspondences, we recover the 3D pose of the object using a PnP algorithm. Second row: We
generate depth renderings from 3D models under our predicted 3D pose and compute 3D shape
descriptors from both the real RGB image as well as the synthetic depth renderings using two
different CNNs. Finally, we match the computed descriptors to retrieve an accurate 3D model for
the object. Our approach supports offline pre-computed 3D shape descriptors for 3D models.

Given a single RGB image containing one or more objects, we predict a 3D pose

and retrieve a 3D model with accurate geometry for each object. Fig. 5.2 presents an

overview of our proposed pipeline. We first estimate the 3D pose of each object from an

image window roughly centered on the object. In this work, we assume the input image

windows are known as in [303] or given by a 2D object detector [225]. Similar to previous

work [191, 204, 279], we also assume the object category to be known since it is a useful

prior for both 3D pose estimation and 3D model retrieval. However, we also show that this

information is not necessarily required in our approach. In fact, we can predict accurate

3D poses with only a marginal loss in accuracy when the object category is unknown.

After we estimated the 3D pose of an object, we perform 3D model retrieval by com-

paring the object to a number of candidate 3D models rendered under our predicted 3D

pose. In particular, we use depth renderings which allow us to deal with untextured 3D

models and circumvent the problem of scene lighting. In order to compare the real RGB

image to synthetic depth renderings, we map both representations to 3D shape descriptors

in a common embedding space using two CNNs, one for each domain. Finally, we match

our computed 3D shape descriptors to retrieve a 3D model with accurate geometry.

5.2.1 3D Pose Estimation

The first step in our approach is to robustly compute the 3D pose of an object. For this

purpose, we predict the 2D image locations of virtual 3D points [43]. More precisely, we
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use a CNN to predict the 2D image locations of the projections of the eight 3D bounding

box corners for each object [217]. From these 2D-3D correspondences, we recover the 3D

pose of an object by solving a PnP problem (see Section 2.1.2.1). This is illustrated in

the first row of Fig. 5.2.

However, PnP algorithms require both the 2D locations and 3D points of correspon-

dences to be known. Thus, previous approaches either assume the exact 3D model to be

given at runtime [217] or predict the projections of static 3D points [43]. To overcome

this limitation, we predict the spatial 3D dimensions d = (dx, dy, dz)
T of the object’s 3D

bounding box and use these to scale a unit cube, which approximates the ground truth

3D points. In this way, we are able to make predictions for arbitrary objects without

providing ground truth 3D models at runtime.

For this purpose, we introduce a CNN architecture which jointly regresses the 2D image

locations of the projections of the eight 3D bounding box corners (16 values) as well as

the 3D bounding box dimensions (3 values). As illustrated in Fig. 5.3, we implement

this architecture as a single 19 neuron linear output layer, which we apply on top of the

penultimate layer of different base networks such as VGG [250] or ResNet [99, 100]. During

training, we optimize the pose loss

Lpose = Lproj + αLdim + βLreg1 (5.1)

which is a linear combination of the projection loss Lproj, the dimension loss Ldim, and

the regularization Lreg. The meta-parameters α and β control the impact of the different

loss terms. Let Mi be the i-th 3D bounding box corner and mi = proj(Mi,K,R, t) its

projection onto the image plane using the ground truth camera intrinsics K, 3D rotation

R, and 3D translation t. Then the projection loss

Lproj = E

[
8∑
i=1

L
(
‖mi − m̂i‖2

)]
(5.2)

is the expected value of the distances between the ground truth projections mi and the

predicted 2D locations of these projections m̂i computed by the CNN for the training set.

Being aware of inaccurate annotations in datasets such as Pascal3D+ [303], we use the

Huber loss [118] L(·) in favour of the squared loss to be more robust to outliers.

The dimension loss

Ldim = E
[
L
(
‖d− d̂‖1

)]
(5.3)

is the expected value of the distances between the ground truth 3D dimensions d and the

predicted 3D dimensions d̂ computed by the CNN for the training set. Again, we use

the Huber loss L(·) in favour of the squared loss to be more robust to outliers. Finally,

to reduce the risk of overfitting, the regularization loss Lreg1 in Eq. (5.1) adds weight

decay [147] for all CNN parameters.
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5.2.2 3D Model Retrieval

Having a robust estimate of the 3D pose of an object, we only consider renderings under

our predicted 3D pose for 3D model retrieval instead of considering multiple renderings

under different 3D poses [10, 123, 185, 256]. This significantly reduces the computational

complexity compared to methods which process multiple renderings for each 3D model

and additionally provides a useful prior for retrieval. Moreover, in contrast to many recent

approaches [158, 185, 256, 302], we use depth renderings instead of RGB renderings. This

allows us to deal with 3D models which do not have material or texture information.

Additionally, we circumvent the problem of how to set the scene lighting. Compared to

methods that also achieve this effect by directly operating on 3D data, we do not require

computationally expensive 3D convolutions for high-resolution 3D voxel grids [71] nor rely

on real depth sensors [62, 320, 321].

However, since real RGB images and synthetic depth renderings have considerably

different characteristics, we introduce a multi-view metric learning approach which maps

images from both domains to a common embedding space. We implement this mapping

using a separate CNN for each domain. For real RGB images, we extract 3D shape

descriptors from the penultimate layer of our 3D pose estimation CNN (see Real Domain

CNN in Fig. 5.3). Because these features have already been computed during 3D pose

estimation inference, we get the real domain 3D shape descriptor without any additional

computational cost. For synthetic depth renderings, we compute 3D shape descriptors

using a CNN with the same architecture as our 3D pose estimation CNN, except for the

output layer (see Synth Domain CNN in Fig. 5.3).

To train the mapping of images from both domains to the common embedding space,

we optimize the similarity loss

Lsimilarity = Ldescr + γLreg2 (5.4)

which comprises the descriptor loss Ldescr and the regularization loss Lreg2 weighted by

the meta-parameter γ. The descriptor loss

Ldescr = E
[
max(0, s+ − s− +m)

]
(5.5)

minimizes the expected value of the Triplet loss [290] for the training set. In this case, s+ is

the Euclidean distance between a real domain descriptor and the corresponding synthetic

domain descriptor, s− is the Euclidean distance between the same real domain descriptor

and a negative example synthetic domain descriptor, and m specifies the margin, i.e., the

desired minimum difference between s+ and s−. To reduce the risk of overfitting, the

regularization loss Lreg2 in Eq. (5.4) adds weight decay for all CNN parameters.

Finally, we can first train our Real Domain CNN using the pose loss Lpose and then

train our Synth Domain CNN using the similarity loss Lsimilarity, or jointly optimize both
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Figure 5.3: Our pose loss is computed on the output of our Real Domain CNN. Our similarity
loss is computed on features extracted from the last base network layer of both our Real Domain
CNN and our Synth Domain CNN.

CNNs at the same time using the combined loss

Lcombined = Lpose + λLsimilarity , (5.6)

where λ is weighting meta-parameter.

After the optimization of our synthetic domain CNN, we can pre-compute descriptors

for synthetic depth renderings in an offline phase. In this case, we first generate multiple

renderings for each 3D model which cover the full 3D pose space. We then compute

descriptors for all these renderings and store them in a database. At runtime, we just

match descriptors corresponding to the 3D pose closest to our predicted 3D pose, which

is fast and scalable but still accurate as shown in our experiments.

5.3 Evaluation

To demonstrate our 3D model retrieval approach for objects in the wild, we evaluate it

in a realistic setup, where we retrieve 3D models from ShapeNet [33] given unseen RGB

images from Pascal3D+ [303]. In particular, we train our 3D model retrieval approach

purely on data from Pascal3D+ but use it to retrieve 3D models from ShapeNet. The

corresponding results are detailed in Section 5.3.3. Because estimating accurate 3D poses

is essential for our 3D model retrieval approach, we additionally evaluate our 3D pose

estimation approach on Pascal3D+ in Section 5.3.2.
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5.3.1 Implementation Details

To train our approach, we use specific implementation details, neural network hyperpa-

rameters, and other settings described in the following.

Intrinsic Camera Parameters: In Pascal3D+, the ground truth 3D poses are com-

puted from 2D-3D correspondences assuming the same intrinsic camera parameters for all

images. The dataset uses a pinhole camera model with a large focal length, as presented

in Section 2.1.1.2. We employ the same camera model in our approach.

Data Augmentation: Akin to previous work [191, 204, 257, 279], we perform data aug-

mentation by jittering ground truth 2D detections during training and exclude detections

marked as occluded or truncated from the evaluation. Additionally, we augment samples

for which the longer edge of the ground truth 2D bounding box is greater than 224 pixels

by applying Gaussian blurring with random kernel size and σ. For the training of our

Synth Domain CNN, we randomly sample negative example 3D models from the available

3D model pool for our Triplet criterion.

Meta-Parameters: Our Real Domain CNN is trained to predict normalized 2D loca-

tions. During training, we normalize 2D locations such that the image pixel range [0, 223]

is mapped to the interval [0, 1] and use the same Huber loss (δ = 0.01) for all 19 estimated

values. Empirically, we found α = 1, β = 1e−5, and γ = 1e−3 to perform well and set

m = 1. To jointly train both CNNs, we set λ = 1e−2.

Network Parameters: We use a minibatch size of 50, train both of our CNNs for 100

epochs, decrease the initial learning rate of 1e−4 by one order of magnitude after 50 and

90 epochs, and employ the Adam [138] optimization algorithm. We initialize our base

networks with weights pre-trained for ImageNet [233] classification and fine-tune all layers

for our task.

3D Dimensions: For both Pascal3D+ and ShapeNet, 3D models are consistently ori-

ented, scaled, and translated. They are normalized to fit within a unit cube centered at

the origin. Thus, we estimate 3D dimensions in the model space in the range [0, 1]. Since

these dimensions tend to be consistent within a category, estimating them is not a major

problem. In fact, we achieve high accuracy across all categories and the mean absolute

3D dimension error is around 0.017 which corresponds to a relative error of only 1.7%.

5.3.2 3D Pose Estimation

In the following, we first perform an ablation study of our 3D pose estimation approach.

We then compare it to previous methods and significantly outperform the state of the art

for 3D viewpoint estimation on Pascal3D+. Finally, we demonstrate that we are even able
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MedErr Accπ
6

Ours - VGG 11.7 0.8076
Ours - VGG+blur 11.6 0.8033
Ours - ResNet 10.9 0.8341
Ours - ResNet+blur 10.9 0.8392

Table 5.1: Ablation study of our 3D pose estimation method. We show the 3D viewpoint accuracy
using ground truth detections on Pascal3D+ for different setups of our approach. We report the
mean performance across all categories. Using ResNet as a base network together with blurring
training images improves the performance, especially on objects detected at small scale.

to top the state of the art without providing the correct category prior in some cases. For

a fair evaluation, we follow the protocol of [279] which quantifies 3D viewpoint prediction

accuracy on Pascal3D+ using the geodesic distance

∆(Rgt,Rpred) =
‖ log(RT

gtRpred)‖F√
2

(5.7)

to measure the difference between the ground truth 3D rotation matrix Rgt and the

predicted 3D rotation matrix Rpred. In particular, we report two metrics: MedErr (the

median of all geodesic distances) and Accπ
6

(the percentage of all geodesic distances smaller

than π
6 respectively 30◦). Evaluating our approach using the AV P metric [303] which

couples 2D object detection and azimuth classification is not meaningful as it is very

different from our specific task. Also, there is no 3D pose estimation evaluation protocol for

Pascal3D+. However, we demonstrate the benefit of additionally predicting 3D translation

information in qualitative 3D model alignment experiments in Section 5.3.3.3.

5.3.2.1 3D Pose Estimation on Pascal3D+

Table 5.1 presents an ablation study our approach that shows quantitative results for 3D

viewpoint estimation on Pascal3D+ using different setups. We start from a baseline and

additionally present more elaborate versions. For our baseline approach (Ours - VGG),

we build on a VGG-backend [250] and fine-tune the entire network for our task similar

to [191, 277, 279]. This baseline already achieves 3D viewpoint accuracy on par with the

state of the art (see Table 5.2).

However, by inspecting the failure cases of this baseline, we observe that many incorrect

predictions relate to small objects. In these cases, objects detected at a small scale need

to be upsampled to fit the fixed spatial input resolution of the network, i.e., 224 × 224

pixels. In fact, for more than 55% of Pascal3D+ validation objects the longer edge of the

ground truth 2D bounding box is smaller than 224 pixels. Thus, the required upsampling

results in blurry images with washed-out details, over-smoothed edges, and suppressed

corners. As a consequence, VGG which only employs 3× 3 convolutions performs poorly
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at extracting features from such upscaled images.

To overcome this limitation, we propose to use a network with larger kernel sizes that

performs better at handling over-smoothed input images such as ResNet-50 [99, 100] which

uses 7 × 7 kernels in the first convolutional layer. As shown in Table 5.1, our approach

with a ResNet-backend (Ours - ResNet) significantly outperforms the VGG-based version.

In addition, the total number of network parameters is notably lower (VGG: 135M vs.

ResNet-50: 24M).

To further improve the performance, we employ data augmentation in the form of im-

age blurring. In particular, we augment samples for which the longer edge of the ground

truth 2D bounding box is greater than 224 pixels by applying Gaussian blurring with

random kernel size and σ. Using ResNet-50 as a base network together with blurring

training images (Ours ResNet+blur), we improve on the Accπ
6

metric while maintaining

low MedErr (see Table 5.1). This indicates that we improve the performance on over-

smoothed images but do not loose accuracy on sharp images. While our approach with a

ResNet-backend shows increased performance in this setup, we do not benefit from train-

ing on blurred images using a VGG-backend (Ours - VGG+blur). This also confirms that

VGG is not suited for feature extraction from over-smoothed images. We also experi-

mented with other forms of data augmentation like in-plane rotation or training without

truncated and occluded objects but we did not achieve any performance improvements in

these cases. We hypothesize that this is due to the bias towards zero in-plane rotation and

little truncations and occlusions in the Pascal3D+ dataset. For all following experiments,

we use our best performing setup, i.e., Ours - ResNet+blur.

5.3.2.2 Comparison to the State of the Art

Next, we compare our 3D pose estimation approach to state-of-the-art methods on Pas-

cal3D+. Quantitative results are presented in Table 5.2. Our approach significantly out-

performs the state of the art in both MedErr and Accπ
6

considering mean performance

across all categories and also shows competitive results for individual categories.

However, the Accπ
6

scores for two categories, i.e., boat and table, are significantly below

the mean score. We analyze these results in more detail. The category boat is the most

challenging category due to the large intra-class variability in 3D shape and appearance.

Many detections for this category are of low resolution and often objects are barely visible

because of fog or mist. Additionally, there are a lot of ambiguities, e.g., even a human

cannot distinguish between the front and the back of a symmetric canoe. Nevertheless,

we outperform the state of the art for this challenging category.

The low Accπ
6

scores for the category table can be explained by three factors. First,

many tables are partly occluded by chairs (see table in Fig. 5.4). Second, the evaluation

protocol does not take into account that many tables are ambiguous with respect to a

rotation of π, π
2 , or even have an axis of symmetry like a round table. In some cases, our

system predicts an ambiguous 3D pose instead of the ground truth 3D pose, while it is
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category-specific

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr([204]) 11.2 15.2 37.9 13.1 4.7 6.9 12.7 N/A N/A 21.7 9.1 38.5 N/A
MedErr([204]*) 8.0 13.4 40.7 11.7 2.0 5.5 10.4 N/A N/A 9.6 8.3 32.9 N/A
MedErr([279]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr([191]) 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1
MedErr([257]**) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7
MedErr(Ours) 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9

Accπ
6
([279]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075

Accπ
6
([191]) 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103

Accπ
6
([257]**) 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.8200

Accπ
6
(Ours) 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.8392

category-agnostic

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr(Ours) 10.9 12.2 23.4 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5

Accπ
6
(Ours) 0.80 0.82 0.57 0.90 0.97 0.94 0.72 0.67 0.90 0.80 0.82 0.85 0.8133

Table 5.2: Quantitative results for 3D viewpoint estimation using ground truth detections on
Pascal3D+. [204]* requires the ground truth 3D models to be known at runtime. [257]** was
trained on vast amounts of RGB renderings from ShapeNet instead of Pascal3D+ training data.

not possible to differentiate between the two 3D poses visually. The evaluation protocol

needs to be changed to take this into account. Finally, the number of validation samples

for the category table is very small, i.e., 21, and, therefore, the reported results for this

category are highly biased.

5.3.2.3 Category-Agnostic 3D Pose Estimation

So far, the discussed results are category-specific. This means that the ground truth cat-

egory must be provided at runtime. In fact, all evaluated methods use a separate output

layer for each category. However, our approach is able to make category-agnostic predic-

tions which generalize across different categories. In this case, we use a single 19 neuron

output layer which is shared for all categories making our approach scalable. Our category-

agnostic 3D pose estimation even outperforms the previous category-specific state of the

art for some categories (see Table 5.2) because it fully leverages the mutual information

between similar categories like bike and motorbike, for example.

5.3.3 3D Model Retrieval

Now, we demonstrate our 3D model retrieval approach which uses our predicted 3D poses

as a prior. First, we present a quantitative evaluation of our approach on Pascal3D+.

Second, we show qualitative results for 3D model retrieval from ShapeNet given previously

unseen images from Pascal3D+. Finally, we use our predicted 3D poses and 3D dimensions

to precisely align retrieved 3D models to objects in real-world images.
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aero bike boat bottle bus car chair table mbike sofa train tv mean

Top-1-Acc (Rand) 0.15 0.21 0.36 0.25 0.25 0.10 0.15 0.10 0.28 0.31 0.27 0.27 0.2250
Top-1-Acc (Cano) 0.12 0.25 0.38 0.35 0.45 0.21 0.20 0.15 0.20 0.21 0.49 0.50 0.2925
Top-1-Acc (Off) 0.48 0.33 0.58 0.41 0.75 0.35 0.28 0.10 0.44 0.28 0.62 0.63 0.4375
Top-1-Acc (Pred) 0.48 0.31 0.60 0.41 0.78 0.41 0.29 0.19 0.43 0.36 0.65 0.61 0.4600
Top-1-Acc (GT) 0.53 0.38 0.51 0.37 0.79 0.44 0.32 0.43 0.48 0.33 0.66 0.72 0.4967

Table 5.3: Quantitative results for 3D model retrieval using ground truth detections on Pas-
cal3D+.

5.3.3.1 3D Model Retrieval from Pascal3D+

Since Pascal3D+ provides 3D pose and 3D model annotations for objects in RGB images,

we can train our entire approach on this dataset. In particular, we train our proposed two

CNN architectures for computing descriptors from real RGB images and synthetic depth

renderings. For our Synth Domain CNN, we employ the same data augmentation as for our

Real Domain CNN, except for blurring because we do not need to rescale low-resolution

depth renderings. The renderings are always generated at the desired resolution.

In fact, we are the first to report quantitative results for 3D model retrieval on Pas-

cal3D+. For this purpose, we compute the top-1-accuracy (Top-1-Acc), i.e., the percentage

of evaluated samples for which the top retrieved 3D model equals the ground truth 3D

model. This task is not trivial because many 3D models in Pascal3D+ have similar geom-

etry and are hard to distinguish. We evaluate our approach using five different 3D pose

setups: (1) the ground truth 3D pose (GT ), (2) our predicted 3D pose (Pred), (3) our

predicted 3D pose with offline pre-computed descriptors (Off ), (4) a canonical 3D pose

(Cano), and (5) a random 3D pose (Rand). Table 5.3 compares quantitative retrieval

results for all five setups.

As expected, we achieve the highest accuracy if we provide the ground truth 3D pose

of an object (GT ). In this case, our approach chooses the same 3D models as human

annotators for 50% of all validation objects. However, if we use 3D model renderings

generated under our predicted 3D pose (Pred), we almost match the accuracy of the

ground truth 3D pose setup. For some categories, we observe even better accuracy when

using our predicted 3D pose. This proves the high quality of our predicted 3D poses.

Moreover, our approach is fast and scalable at runtime while almost maintaining ac-

curacy by using offline pre-computed descriptors (Off ). For this experiment, we discretize

the 3D pose space in intervals of 10◦ and pre-compute descriptors for all 3D models. At

runtime, we only match pre-computed descriptors from the discretized 3D pose which

is closest to our predicted 3D pose and do not have to render 3D models or compute

descriptors online.

In contrast, if we just render the 3D models under a random 3D pose (Rand) the

performance decreases significantly. Nevertheless, even in this case, where we do not have

any information about the 3D pose, our approach performs better than random guessing.

Rendering models under a canonical 3D pose (Cano), e.g., a frontal view, provides a
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useful bias for objects of the categories train, bus, and tv monitor because these objects

are frequently seen from an almost frontal view in the Pascal3D+ dataset. Finally, these

results confirm the importance of fine-grained 3D pose estimation in our approach.

5.3.3.2 3D Model Retrieval from ShapeNet

In contrast to Pascal3D+, ShapeNet provides a significantly larger spectrum of 3D mod-

els. Thus, we now evaluate our retrieval approach trained purely on Pascal3D+ for 3D

model retrieval from ShapeNet without retraining given previously unseen images from

Pascal3D+. Fig. 5.4 shows qualitative retrieval results for all twelve categories in Pas-

cal3D+. Our approach predicts accurate 3D poses and 3D models for objects of different

categories. In some cases, our predicted 3D pose (see sofa in Fig. 5.4) or our retrieved 3D

model from ShapeNet (see aeroplane and chair in Fig. 5.4) is even more accurate than the

annotated ground truth from Pascal3D+. While the geometry of the retrieved 3D models

corresponds well to the objects in the query images, the materials and textures typically

do not. The reason for this is that we use depth renderings for retrieval which do not

include color information. This issue can be addressed by extracting texture information

from the query RGB image or by performing retrieval with RGBD images. However, this

is up to future research.

5.3.3.3 3D Model Alignment

Next, we use our predicted 3D pose and 3D dimensions to precisely align retrieved 3D

models to objects in real-world images. Fig. 5.5 shows how we improve the 2D object

localization and the alignment between the object and a rendering using our predicted

3D pose and 3D dimensions. This is especially useful if the object detection is not fully

accurate, which is true in almost all situations. In the presented cases, the detected 2D

bounding boxes are too small and the objects are not centered in the image windows.

Thus, if we just render a 3D model under our predicted 3D rotation, rescale it to tightly

fit into the 2D image window, and center it in the 2D image window, the alignment is

poor. However, if we additionally use our predicted 3D translation and 3D dimensions for

scaling and positioning, we significantly improve the alignment between the object and

the rendering. This is important for applications like robotics and augmented reality.

5.3.4 Failure Modes

Finally, we discuss failure modes of our approach. If our 3D pose estimation fails, the

3D model retrieval becomes even more difficult. This is also reflected in Table 5.3, where

we observe a strong decrease in performance if we render 3D models without 3D pose

information (Rand and Cano).

Most failure cases of our 3D pose estimation on Pascal3D+ relate to low-resolution

images or ambiguous objects. Fig. 5.6 shows four examples in which our 3D pose estimation
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Image
GT Depth GT RGB Pred. Depth Pred. RGB

Image
GT Depth GT RGB Pred. Depth Pred. RGB

Rendering Rendering Rendering Rendering Rendering Rendering Rendering Rendering

Figure 5.4: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet
given previously unseen RGB images from Pascal3D+ for all twelve categories. For each category,
we show two examples consisting of: the query RGB image; a depth rendering and an RGB
rendering of the ground truth 3D model from Pascal3D+ under the ground truth 3D pose from
Pascal3D+; a depth rendering and an RGB rendering of our retrieved 3D model from ShapeNet
under our predicted 3D pose.
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Image
3D Rotation 3D Pose +

Image
3D Rotation 3D Pose +

only 3D Dimensions only 3D Dimensions

Figure 5.5: We use our predicted 3D pose and 3D dimensions to refine the alignment between
the object and a rendering. For each example, we show: The detected object which is not centered
on the image window; A rendering which only uses our predicted 3D rotation; A rendering which
uses our predicted 3D pose and 3D dimensions.

Image
GT Depth GT RGB Pred. Depth Pred. RGB

Image
GT Depth GT RGB Pred. Depth Pred. RGB

Rendering Rendering Rendering Rendering Rendering Rendering Rendering Rendering

Figure 5.6: Many failure cases of our 3D pose estimation relate to low-resolution images. In
fact, for more than 55% of Pascal3D+ validation objects the longer edge of the ground truth 2D
bounding box is smaller than 224 pixels which is the fixed spatial input size of pre-trained CNNs
like VGG or ResNet. If the input resolution is too low, we cannot predict an accurate 3D pose.



72 Chapter 5. 3D Pose Estimation and 3D Model Retrieval in the Wild

Image
GT Depth GT RGB Pred. Depth Pred. RGB

Image
GT Depth GT RGB Pred. Depth Pred. RGB

Rendering Rendering Rendering Rendering Rendering Rendering Rendering Rendering

Figure 5.7: Our 3D pose estimation sometimes fails in challenging conditions. We observe that
heavy occlusions (top left), bad illumination conditions (top right), and difficult 3D poses (bottom)
which are far from the 3D poses seen during training result in incorrect 3D pose predictions. For
the last example, not even the annotated ground truth 3D pose is correct.

fails due to low-resolution inputs. After upsampling, the over-smoothed input RGB images

lack details and sharp discontinuities, which results in incorrect 3D pose predictions. In

fact, even for a human it is difficult to identify the correct 3D poses of the objects in these

examples. Fig. 5.7 shows additional failure cases, where heavy occlusions, bad illumination

conditions, and difficult 3D poses which are far from the 3D poses seen during training

result in incorrect 3D pose predictions.

1 2 3 4 5 6 7 8

Figure 5.8: Example images of objects with ambiguous 3D poses from the Pascal3D+ validation
data. It is impossible to differentiate between the front and back of symmetric boats (1–4). Addi-
tionally, many tables are ambiguous with respect to a rotation of π (5), π2 (6 and 7), or even have
an axis of symmetry like a round table (8).

Next, Fig. 5.8 shows examples for ambiguous objects from Pascal3D+. Many objects

have symmetries which make their 3D pose not well defined. For example, it is impossible

to differentiate between the front and back of a symmetric boat. This issue is even more

apparent for objects of the category table: Many tables are ambiguous with respect to a

rotation of π, π
2 , or even have an axis of symmetry like a round table. If our approach

predicts one of the possible 3D poses that is not the annotated ground truth 3D pose, this

is considered as a mistake by the commonly used evaluation protocol [279]. Even though

it is not possible to differentiate between the two 3D poses visually.

Finally, our 3D model retrieval sometimes fails in challenging cases. If the environmen-

tal conditions in the query RGB image are too difficult, we cannot retrieve an accurate

3D model, even if our predicted 3D pose is accurate. For example, visual distortions due

to wide-angle lenses, deformed or demolished objects, and heavy occlusions disturb our

3D model retrieval, as shown in Fig. 5.9.
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GT Depth GT RGB Pred. Depth Pred. RGB
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GT Depth GT RGB Pred. Depth Pred. RGB
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Figure 5.9: Failure cases of our 3D model retrieval for challenging cases, where our 3D pose
estimation was successful. The images exhibit fish-eye effects due to wide-angle lenses (top),
contain deformed or demolished objects (bottom left), and show heavy occlusions (bottom right)
which disturb our 3D model retrieval. However, the annotated ground truth 3D models are also
not accurate for these examples.

5.4 Conclusion

3D model retrieval from single RGB images in the wild is an important but challenging

task. Existing approaches address this problem by training on vast amounts of synthetic

data. However, there is a significant domain gap between real images and synthetic ren-

derings which limits performance in practice. For this reason, we learn to map real RGB

images and synthetic depth renderings to a common embedding space. Additionally, we

show that estimating the 3D pose of an object is a useful prior for 3D model retrieval. Our

approach is scalable as it supports category-agnostic predictions and offline pre-computed

descriptors. We do not only outperform the state of the art for 3D viewpoint estimation on

Pascal3D+ but also retrieve accurate 3D models from ShapeNet given previously unseen

RGB images from Pascal3D+. In Chapters 6 and 7, we will present further improvements

to both the 3D pose estimation and the 3D model retrieval part of our proposed system.
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3D Pose Estimation with Geometric Projection Parameter Consensus
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In the previous chapter, we presented a novel category-level 3D pose estimation ap-

proach for objects in the wild. While this approach is able to make category-agnostic

predictions without providing ground truth 3D models at runtime, it has three shortcom-

ings. First, it requires given 2D bounding boxes for the objects in the images. Second,

it assumes the ground truth camera focal length is given at runtime. Third, it relies on

the prediction of the 2D locations of an object’s 3D bounding box corner projections.

However, these 2D locations can be far from the actual object and can even lie outside of

the image area, which makes them difficult to predict in some cases.

To overcome these limitations, we integrate our 3D pose estimation approach presented

in Chapter 5 into an object detection pipeline [96] to deal with multiple objects at different

scales in a single image. Additionally, we augment our system to estimate the camera focal

length. For this purpose, we combine deep learning techniques and geometric algorithms

in a two-stage approach: First, we estimate an initial focal length and establish 2D-3D

correspondences from a single RGB image using a deep network. Second, we recover 3D

poses and refine the focal length by minimizing the reprojection error of the predicted

correspondences. In this way, we exploit the geometric prior given by the focal length

for 3D pose estimation. This results in two advantages: First, we achieve significantly

75
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improved 3D translation and 3D pose accuracy compared to existing methods. Second, our

approach finds a geometric consensus between the individual projection parameters, which

is required for precise 2D-3D alignment. Finally, we explore a different form of 2D-3D

correspondences for 3D pose estimation. In addition to sparse 2D-3D bounding box corner

correspondences, as presented in Chapter 5, we predict dense 2D-3D correspondences

by regressing a 3D point for each object pixel. We evaluate our proposed approach on

three challenging real-world datasets (Pix3D, Comp, and Stanford) with different object

categories and significantly outperform the state of the art by up to 20% absolute in

multiple different metrics.

6.1 Introduction

Figure 6.1: Two images of the same scene captured with two cameras having different focal
lengths. The appearance of the chair is similar in both images, but the 3D poses are significantly
different due to the distinct focal lengths and object-to-camera distances.

3D object pose estimation aims at predicting the 3D rotation and 3D translation of

objects relative to the camera. It is a fundamental yet unsolved computer vision problem

with many applications including augmented reality, robotics, and 3D scene understand-

ing. Recently, there have been significant advances in 3D object pose estimation from

single RGB images on the category level [85, 191, 225, 279], thanks to the revolution of

deep learning and the creation of large-scale datasets providing 3D annotations for 2D

images [302, 303].

While recent approaches achieve high accuracy in terms of 3D rotation, their accuracy

in terms of 3D translation is often low [190, 288]. The main reason for this discrepancy is

illustrated in Fig. 6.1, where we compare two images of an object captured with cameras
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having different focal lengths. The appearance of the object is similar in both images, even

though the 3D poses are significantly different. In fact, the appearance of an object in an

image is not only determined by the 3D pose, but also by the camera intrinsics. While

changes in the 3D rotation always significantly effect the appearance, changes in the 3D

translation do not if the translation direction and the ratio between the object-to-camera

distance and the focal length remain constant. Thus, estimating the 3D translation of

objects from RGB images in the case of unknown intrinsics is highly ambiguous.

Existing approaches either assume that the focal length is given at runtime [85, 191],

that the focal length is constant for all images [156], or that the 3D pose estimation

method will implicitly learn the subtle appearance variations caused by different focal

lengths from the data and adapt the prediction accordingly [190, 288]. In practice, how-

ever, none of these assumptions holds. In the wild, the focal length is unknown, images

are captured with different cameras, and deep networks do not discover the underlying

geometric relations of the problem without explicit guidance.

To overcome these limitations, we propose to explicitly estimate and integrate the

focal length into the 3D pose estimation. For this purpose, we introduce a two-stage

approach that combines deep learning techniques and geometric algorithms. In the first

stage, we estimate an initial focal length and establish 2D-3D correspondences from a

single RGB image using a deep network. In the second stage, we perform a geometric

optimization on the predicted correspondences to recover 3D poses and refine the focal

length. In particular, we minimize the reprojection error between predicted 2D locations

and 3D points subject to the 3D rotation, 3D translation, and focal length by solving a

PnPf problem (see Section 2.1.2). In this way, we exploit the geometric prior given by the

focal length for 3D pose estimation.

In contrast to existing approaches, which also predict 3D poses and the focal length but

only perform an independent estimation of the individual parameters [288], our approach

has two main advantages: First, explicitly modeling the focal length in the 3D pose

estimation yields significantly improved 3D translation and 3D pose accuracy. Second,

our approach finds a geometric consensus between 3D poses and the focal length. This

results in a significantly improved 2D-3D alignment when projecting 3D models of objects

back onto the image, which is important for many applications like augmented reality.

Thus, we call our method Geometric Projection Parameter Consensus (GP2C).

In addition, we explore two possible methods for establishing 2D-3D correspondences

from single RGB images which approach the task from different directions. Our first

method predicts 3D points for known 2D locations by estimating a 3D point for each object

pixel [22, 24, 125]. Our second method predicts 2D locations for known 3D points by esti-

mating the 2D locations of the object’s 3D bounding box corner projections [85, 217, 269],

as presented in Chapter 5. Our experiments show that both 2D-3D correspondence esti-

mation methods achieve comparable overall accuracy, but each method has its respective

advantages and disadvantages. Thus, we provide a detailed discussion comparing the two

methods in our evaluation.
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Finally, we integrate our proposed method into an object detection pipeline [96]. In

this way, we predict 2D-3D correspondences for multiple objects at different scales in a

single image and estimate the focal length using a single deep network. Both of our 2D-3D

correspondence estimation methods elegantly fit into this framework. As a consequence,

we avoid computationally expensive redundant feature calculations for individual tasks

and speed up training.

To demonstrate the benefits of our joint 3D pose and focal length estimation approach,

we evaluate it on three challenging real-world datasets with different object categories:

Pix3D [258] (bed, chair, sofa, table), Comp [288] (car), and Stanford [288] (car). We

present quantitative as well as qualitative results and significantly outperform the state of

the art. To summarize, our main contributions are:

• We present the first method for joint 3D pose and focal length estimation that

enforces a geometric consensus between 3D poses and the focal length.

• We outperform the state of the art on three challenging real-world datasets by up to

20% absolute in multiple metrics covering different aspects of projective geometry

including 3D translation, 3D pose, focal length, and projection accuracy.

6.2 Joint 3D Pose and Focal Length Estimation

Figure 6.2: Overview of our proposed two-stage approach. Stage 1: We first predict an initial
focal length and establish 2D-3D correspondences for each object using deep learning. Stage 2:
We then perform a geometric optimization on the predicted correspondences to recover 3D poses
and refine the initial focal length.

Given a single RGB image, we want to predict the camera focal length and the 3D

pose of each object in an image. For this purpose, we introduce a two-stage approach that

combines deep learning techniques and geometric algorithms, as shown in Fig. 6.2. In the

first stage, we predict an initial focal length and establish 2D-3D correspondences using

deep learning (see Section 6.2.1). In the second stage, we perform a geometric optimization

on our predicted correspondences to recover 3D poses and refine the initial focal length

(see Section 6.2.2).
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6.2.1 Deep Focal Length and 2D-3D Correspondence Estimation

To predict the focal length as well as 2D-3D correspondences for multiple objects with a

single deep network, we extend the generalized Faster/Mask R-CNN framework [96, 225].

This generic multi-task framework includes a 2D object detection pipeline to perform per-

image and per-object computations. In this way, we address multiple different tasks using

a single end-to-end trainable network. For our implementation, we use a Feature Pyramid

Network [163] on top of a ResNet-101 backbone [99, 100] and fine-tune a model pre-trained

for instance segmentation on COCO [165].

In the context of the generalized Faster/Mask R-CNN framework, an output branch

provides one or more subnetworks with different structure and functionality. We introduce

two dedicated output branches for estimating the focal length and 2D-3D correspondences

alongside the existing object detection branches.

Focal Length: The focal length branch provides one subnetwork which performs a per-

image computation, as illustrated in Fig. 6.4. In this case, we regress a scalar for each

image from the entire spatial resolution of the shared feature maps computed by the

convolutional network backbone. In contrast to previous work, we propose to regress a

logarithmic parametrization of the focal length

yf = ln(f), (6.1)

instead of predicting the focal length f directly [288], which has two advantages: First, the

logarithmic parametrization reduces the bias towards minimizing the error on long focal

lengths during the optimization of the network. This is meaningful because, regarding the

estimation of the focal length, the relative error is more important than the absolute error.

Second, the logarithmic parametrization achieves a more balanced sensitivity across the

entire range of the focal length. Otherwise, the sensitivity is significantly higher for short

focal lengths than for long focal lengths. During training, we optimize yf in a supervised

manner using the Huber loss [118].

2D-3D correspondences: For establishing 2D-3D correspondences, we explore two dis-

tinct methods. Both methods approach the problem from different directions and produce

significantly different correspondences and representations, as shown in Fig. 6.3. However,

our overall approach works with any kind of 2D-3D correspondences and does not depend

on a specific format. Thus, the method for establishing correspondences can be exchanged.

This is extremely useful because different methods have their respective advantages and

disadvantages which we discuss in our experiments in Section 6.3.5.

Our first method predicts 3D points for known 2D locations. In particular, we establish

correspondences between 2D image pixels which belong to the object and 3D coordinates

on the surface of the object. We represent these correspondences in the form of a location

field (LF) [288], which provides dense 2D-3D correspondences in an image-like format, as
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Image LF (X) LF (Y) LF (Z) BB

Figure 6.3: Visualization of two different forms of 2D-3D correspondences for an object: A
location field which encodes XYZ 3D coordinates for each pixel (LF) and the 2D projections of
the object’s 3D bounding box corners (BB).

shown in Fig. 6.3. A location field has the same size and spatial resolution as its reference

RGB image, but the three channels encode XYZ 3D coordinates in the object coordinate

system instead of RGB colors. Due to its image-like structure, this representation is

well-suited for regression with a CNN.

Our second method predicts 2D locations for known 3D points. In this case, we predict

the 2D projections of the object’s 3D bounding box corners (BB) [217], as shown in Fig. 6.3.

Since the 3D coordinates of the bounding box corners are unknown during inference, we

also predict the 3D dimensions of the object along the XYZ axis [85] from which we derive

the required 3D points. We represent these sparse 2D-3D correspondences in the form

of a 19-dimensional vector, which consists of the 2D locations of the eight bounding box

corners (16 values) and the 3D dimensions of the object (3 values), as already explained

in Section 5.2.1.

As shown in Fig. 6.4, we implement a separate 2D-3D correspondences branch for

each method. In contrast to the focal length branch, both branches perform region-based

per-object computations: For each detected object, an associated spatial region of interest

in the feature maps is aligned to a fixed size feature representation with a low spatial

resolution, e.g., 14 × 14. These aligned features serve as an input to one of our two

proposed correspondences branches. Thus, the chosen 2D-3D correspondences branch is

evaluated N times for each image, where N is the number of detected objects. We identify

the chosen 2D-3D correspondences method by adding a suffix: Ours-LF or Ours-BB.

For the LF method, the correspondences branch provides two different fully convolu-

tional subnetworks to predict a tensor of 3D points and a 2D object mask at a spatial

resolution of 28 × 28. The 2D mask is then applied to the tensor of 3D points to get

a low-resolution location field. We found this approach to produce significantly higher

accuracy compared to directly regressing a low-resolution location field which tends to

predict over-smoothed 3D coordinates around the object silhouette.

The resulting low-resolution location field can be upscaled and padded to obtain a high-
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Figure 6.4: Illustration of our network architecture. Our focal length branch takes the entire
shared feature maps as an input to predict an initial focal length and is evaluated once per image.
In contrast, our two correspondences branches take aligned features for each object as an input to
predicted 2D-3D correspondences (LF or BB) and are evaluated once for each detected object.

resolution location field with the same spatial resolution as the input image. However,

we sample 2D-3D correspondences from the low-resolution location field and only adjust

their 2D locations to match the input image resolution. In this way, we avoid generating

a large number of 2D-3D correspondences without providing additional information.

For the BB method, the correspondences branch also provides two subnetworks, but

this time with fully connected output layers. One subnetwork predicts the 2D locations of

the object’s 3D bounding box corners, the other subnetwork estimates the 3D dimensions

of the object. In this case, we regress the 2D location in normalized coordinates relative to

the spatial resolution of the aligned features. Again, we adjust the predicted 2D locations

to match the input image resolution.

During training, we optimize the 3D points and 2D mask (Ours-LF), or the 2D pro-

jections and 3D dimensions (Ours-BB) in a supervised manner using the Huber loss [118].

The final network loss is a combination of our focal length loss, our chosen 2D-3D corre-

spondences loss, and the 2D object detection losses of the generalized Faster/Mask R-CNN

framework [96, 225].

6.2.2 Geometric Optimization

Once we established correspondences between 2D locations and 3D points and predicted an

initial focal length, we use the same geometric optimization for all methods. In this case,

we perform a non-linear optimization of the PnPf problem [192] which finds a geometric
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consensus between the individual projection parameters. In particular, we optimize

min
K,R,t

N∑
i=1

L
(
‖mi − proj(Mi,K,R, t)‖2

)
(6.2)

which minimizes the reprojection error between corresponding 3D points Mi and 2D loca-

tions mi. In this case, proj(·) performs the projection of 3D points in the object coordinate

system to 2D locations in the image plane with respect to the rotation R, translation t,

and camera intrinsics K. As presented in Section 2.1.1.2, K is parametrized only by the

focal length f . Finally, L(·) is a loss function, such as the standard squared loss L(x) = x2

or the more robust Cauchy loss [274] L(x) = ln(1 + x2), and N denotes the number of

correspondences.

In this way, we perform an optimization over both the 3D pose and the focal length.

In this case, a minimum of four 2D-3D correspondences is needed to find a unique solu-

tion [299] because each correspondence gives two independent equations and we optimize

seven parameters: the 3-DoF rotation, the 3-DoF translation, and the 1-DoF focal length.

In practice, however, it is important to use more 2D-3D correspondences to compensate

for the presence of noise.

Following the strategy of previous PnP(f) approaches [103, 155, 206], we compute

an initial solution in O(n) time followed by an iterative refinement technique. For our

initial solution, we compute the 3D rotation and 3D translation using EPnP [155] with

our predicted focal length. Providing a good initial focal length is a key factor in achieving

high accuracy in terms of 3D translation. In theory, it is also possible to recover the focal

length using 2D-3D correspondences from scratch [192, 206] but this requires extremely

accurate and clean correspondences. For 2D-3D correspondence estimation on the category

level in the wild, however, we are facing fuzzy and noisy predictions. In this case, a low

reprojection error is achieved by finding the correct ratio between the object-to-camera

distance and the focal length. Thus, we cannot assume that the geometric optimization

will find the correct absolute focal length from scratch.

Taking this into account, we jointly optimize the 3D rotation, 3D translation, and focal

length during our iterative refinement. For this purpose, we employ a Newton-Step-based

optimization [40] depending on the loss function L(·), i.e., Levenberg-Marquardt [189]

(squared loss) or Subspace Trust-Region Interior-Reflective [27] (Cauchy loss).

Our approach naturally handles different projection models (egocentric or allocen-

tric) [151]. Additionally, jointly optimizing the 3D poses of multiple objects in an image

together with the focal length is straightforward. In this case, we compute the initial

solution as before but perform our iterative refinement for 1 + 6N parameters where N is

the number of detected objects. We did not evaluate this joint refinement though because

available category-level datasets with focal length annotations just provide 3D annotations

for one object per image, even if there are multiple objects in the image [258, 288]. In most

cases, we are still able to detect the other objects but do not have ground truth annotations
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to evaluate them, as shown in our qualitative results in Section 6.3.2. Moreover, our ap-

proach can readily be extended to deal with more complex camera models including skew,

off-center principal point, asymmetric aspect ratio, or lens distortions [192]. However,

currently there are no datasets with this kind of annotations, as discussed in Chapter 4.

6.3 Evaluation

To demonstrate the benefits of our joint 3D pose and focal length estimation approach

(GP2C), we evaluate it on three challenging real-world datasets with different object cat-

egories: Pix3D [258] (bed, chair, sofa, table), Comp [288] (car), and Stanford [288] (car).

Details on the evaluated datasets are presented in Chapter 4. In particular, we provide a

quantitative and qualitative evaluation of our approach in comparison to the state of the

art in Section 6.3.2, analyze important aspects in Section 6.3.3, investigate failure modes

in Section 6.3.4, and discuss advantages and disadvantages of our two presented meth-

ods for establishing 2D-3D correspondences in Section 6.3.5. To cover different aspects of

projective geometry in our evaluation, we use the following well-established metrics:

Detection: We report the detection accuracy AccD0.5 which gives the percentage of

objects for which the intersection over union between the ground truth 2D bounding box

and the predicted 2D bounding box is larger than 50% [303]. This metric is an upper

bound for other Acc metrics since we do not make blind predictions.

Rotation: We compute the geodesic distance

eR =
‖ log(RT

gtRpred)‖F√
2

(6.3)

between the ground truth 3D rotation matrix Rgt and the predicted 3D rotation matrix

Rpred which gives the minimal angular distance. We report the median of this distance

for all objects (MedErrR) and the percentage of objects for which the distance is below

the threshold of π
6 or 30◦ (AccRπ

6
) [279].

Translation: We calculate the relative translation distance

et =
‖tgt − tpred‖2
‖tgt‖2

(6.4)

between the ground truth 3D translation tgt and the predicted 3D translation tpred [109].

We report the median of this distance for all objects (MedErrt).
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Pose: We compute the average normalized distance of all transformed 3D model points

in 3D space

eR,t = avg
M∈M

dbbox
dimg

·
‖transf(M,Rgt, tgt)− transf(M,Rpred, tpred)‖2

‖tgt‖2
(6.5)

to evaluate 3D pose accuracy [105, 109]. In this case, transf(·) describes a transformation

in three-dimensional Euclidean space subject to a 3D rotation and a 3D translation. Thus,

each 3D point M of the ground truth 3D modelM is transformed using the ground truth

3D pose (Rgt and tgt) and the predicted 3D pose (Rpred and tpred). We normalize this

distance by the relative size of the object in the image using the ratio between the ground

truth 2D bounding box diagonal dbbox and the image diagonal dimg, and the L2-norm

of the ground truth translation ‖tgt‖2. This normalization provides an unbiased metric

for 3D pose evaluation in the case of unknown intrinsics. We report the median of this

distance for all objects (MedErrR,t).

Focal Length: We calculate the relative focal length error

ef =
|fgt − fpred|

fgt
(6.6)

between the ground truth focal length fgt and the predicted focal length fpred [206, 296].

We report the median of this error for all objects (MedErrf ).

Projection: To evaluate all projection parameters, we compute the average normalized

reprojection distance

eP = avg
M∈M

‖proj(M,Kgt,Rgt, tgt)− proj(M,Kpred,Rpred, tpred)‖2
dbbox

. (6.7)

In this case, proj(·) describes a projection from 3D to 2D subject to a 3D rotation, a 3D

translation, and a focal length. Thus, each 3D point M of the ground truth 3D model

M is projected to a 2D location using the ground truth projection parameters (Kgt, Rgt,

and tgt) and the predicted projection parameters (Kpred, Rpred, and tpred). As presented

in Section 2.1.1.2, K is parametrized only by the focal length f . Finally, dbbox is the

ground truth 2D bounding box diagonal. We report the median of this distance for all

objects (MedErrP ) and the percentage of objects for which the distance is below the

threshold of 0.1 (AccP0.1) [288].

6.3.1 Implementation Details

For our implementation, we resize and pad images to a spatial resolution of 512 × 512

maintaining the aspect ratio. In this way, we are able to use a minibatch size of 6 on a

12GB GPU. We train our networks for 200 epochs and employ a staged training strategy
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for fine-tuning a model pre-trained on COCO [165]: First, we freeze all pre-trained weights

and only train our focal length and 2D-3D correspondences branches using a learning rate

of 1e−3. During training, we gradually unfreeze all network layers and, finally, train the

entire model using a learning rate of 1e−4.

We employ different forms of data augmentation commonly used in object detec-

tion [96]. In this case, some techniques like mirroring or jittering of location, scale, and

rotation require adjusting the training targets accordingly, while independent pixel aug-

mentations like additive noise do not.

Balancing individual loss terms is crucial for training a multi-task network. We weight

the focal loss with 0.1, the 2D-3D correspondences loss with 10.0, and the object detection

loss with 1.0, however, the specific numbers are highly dependent on the implementation.

6.3.2 Comparison to the State of the Art

We first present quantitative results of our approach using our two different methods

for establishing 2D-3D correspondences (Ours-LF and Ours-BB) and compare them to

the state of the art. In fact, there is little research on joint 3D pose and focal length

estimation in the wild because datasets with this kind of annotations have only been

available recently (see Chapter 4). Existing 3D pose estimation methods either assume

that the ground truth focal length is given at runtime [85, 191] or evaluate on datasets

which were captured using a single camera with constant focal length [156]. However, we

reimplement the approach of [288] which also targets 3D pose estimation from uncalibrated

single RGB images and achieve comparable results, even outperforming their reported

MedErrP and AccP0.1 scores due to our improved backbone architecture and initialization.

The results are summarized in Table 6.1. We achieve consistent results across all datasets

and categories, thus, we provide a joint discussion based on the evaluated metrics:

Detection: All methods achieve high detection accuracy (AccD0.5). This is not surpris-

ing because we fine-tune a model pre-trained for instance segmentation on COCO [165].

In fact, all evaluated categories are also present in COCO.

Rotation: Also, all methods achieve high 3D rotation accuracy (MedErrR and AccRπ
6
).

Our reported numbers are in line with the results of previous work on 3D rotation estima-

tion in the wild [85, 279, 288] and confirm that 3D rotation can robustly be recovered from

2D observations up to a certain precision. Only for the category table, we observe sub-

average accuracy. In fact, almost all tables have symmetries, as can be seen in Fig. 6.6.

The resulting ambiguous object appearances sometimes confuse all evaluated methods

because they predict a single 3D pose rather than a distribution (see table in Fig. 6.11).

Translation: In terms of 3D translation accuracy (MedErrt), our approach significantly

outperforms the state of the art. Directly predicting the 3D translation from a local image
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Detection Rotation Translation Pose Focal Projection

Method Dataset Class AccD0.5

MedErrR AccRπ
6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

[288]
Pix3D bed

98.4% 5.82 95.3% 1.95 1.56 2.22 6.05 74.9%
Ours-LF 99.0% 5.13 96.3% 1.41 1.04 1.43 3.52 90.6%
Ours-BB 99.5% 5.40 97.9% 1.66 1.17 1.59 3.55 93.2%

[288]
Pix3D chair

94.9% 7.52 88.0% 2.69 1.58 1.98 6.04 75.3%
Ours-LF 95.2% 7.52 88.8% 1.92 1.21 1.62 3.41 88.2%
Ours-BB 97.3% 6.95 91.0% 1.68 1.08 1.58 3.24 90.9%

[288]
Pix3D sofa

96.5% 4.73 94.8% 2.28 1.62 2.42 4.33 82.2%
Ours-LF 96.5% 4.49 95.0% 1.92 1.33 1.79 2.56 93.7%
Ours-BB 98.3% 4.40 97.0% 1.63 1.16 1.73 2.13 95.6%

[288]
Pix3D table

94.0% 10.94 72.9% 3.16 2.28 3.03 8.90 53.6%
Ours-LF 94.0% 10.53 73.5% 2.16 1.62 2.05 5.92 69.5%
Ours-BB 95.7% 10.80 77.2% 2.81 1.78 2.10 5.74 72.4%

[288]
Pix3D mean

96.0% 7.25 87.8% 2.52 1.76 2.41 6.33 71.5%
Ours-LF 96.2% 6.92 88.4% 1.85 1.30 1.72 3.85 85.5%
Ours-BB 97.7% 6.89 90.8% 1.94 1.30 1.75 3.66 88.0%

[288]
Comp car

98.9% 5.24 97.6% 3.30 2.35 3.23 7.85 73.7%
Ours-LF 98.8% 5.23 97.9% 2.61 1.86 2.97 4.21 95.1%
Ours-BB 98.9% 4.87 98.1% 2.55 1.84 2.95 3.87 95.7%

[288]
Stanford car

99.6% 5.43 98.0% 2.33 1.80 2.34 7.46 76.4%
Ours-LF 99.6% 5.38 98.3% 1.93 1.51 2.01 3.72 96.2%
Ours-BB 99.6% 5.24 98.3% 1.92 1.47 2.07 3.25 96.5%

Table 6.1: Quantitative results on the Pix3D, Comp, and Stanford datasets. We significantly
outperform the state of the art in the 3D translation, 3D pose, focal length, and projection metrics.
We explain the reported numbers for each metric in detail in Section 6.3.2.

window of an object is highly ambiguous in the case of unknown intrinsics. By explicitly

estimating and integrating the focal length into the 3D pose estimation, we exploit a

geometric prior and achieve a relative improvement of 20%.

Pose: In the case of unknown intrinsics, the 3D pose accuracy (MedErrR,t) is primarily

governed by the 3D translation accuracy. Hence, we also observe a relative improvement

of 20% compared to the state of the art.

Focal Length: Considering the focal length accuracy (MedErrf ), our approach out-

performs the state of the art by a relative improvement of 10% due to our logarithmic

parametrization and correspondence-based refinement.

Projection: Finally, we report the projection metrics (MedErrP and AccP0.1) which

evaluate all predicted parameters. In these metrics, we achieve the largest improvement

compared to the state of the art: 20% absolute in AccP0.1 and 40% relative in MedErrP
across all datasets. In contrast to an independent estimation of the individual projection

parameters, our approach finds a geometric consensus which results in improved 2D-3D

alignment and reprojection error. This quantitative improvement is also reflected in our

qualitative results shown in Figs. 6.5 and 6.6. In this experiment, our approach consistently
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Projection

Method PnP Strategy MedErrP · 102 AccP0.1

Ours-LF
Standard 3.88 85.3%
RANSAC 3.87 85.4%
Cauchy 3.85 85.5%

Ours-BB
Standard 3.68 87.5%
RANSAC 3.68 87.6%
Cauchy 3.66 88.0%

Table 6.2: Evaluation of different PnP strategies. The results show that our predicted 2D-3D
correspondences are reliable and do not contain single extreme outliers.

produces a higher quality 2D-3D alignment compared to the state of the art for objects

of different categories. This significant improvement can be accounted to the fact that we

minimize the reprojection error during inference. However, we want to emphasize that

the 3D model is only used for the evaluation. The 3D poses and focal length are solely

computed from a single RGB image in our approach.

6.3.3 Analysis

Next, we analyze two important aspects of our approach: (1) the robustness of our pre-

dicted 2D-3D correspondences and (2) the importance of the focal length for estimating 3D

poses from these correspondences. For this purpose, we perform experiments on Pix3D,

which is the most challenging dataset because it provides multiple object categories and

has the largest variation in object scale. However, the reported results and insights also

transfer to other datasets.

2D-3D Correspondences: First, we run our approaches using different PnP strategies

and compare the obtained results using the projection metrics (MedErrP and AccP0.1)

in Table 6.2. In particular, we compare the standard approach, which is sensitive to

outliers due to the squared loss L(x) = x2, to the more robust RANSAC scheme and

Cauchy loss [274] L(x) = ln(1 + x2).

All three PnP strategies achieve similar performance for both Ours-LF and Ours-BB.

This experiment shows that our predicted 2D-3D correspondences do not contain single

extreme outliers which are often present in traditional approaches based on 2D keypoints

(see Section 3.2). This is due to the fact that all 2D-3D correspondences are computed from

a low dimensional feature embedding which produces consistent predictions. Qualitative

examples of our predicted 2D-3D correspondences are presented in Figs. 6.7 and 6.8.

Considering our predicted location fields, we observe that the overall shape of the

object is recovered very accurately. In specific cases, thin object parts and details are not

detected, e.g., the skinny legs of a table or the ornaments of a bed as shown in Fig. 6.8. To
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Image Ground Truth [288] Ours-LF Ours-BB

Figure 6.5: Qualitative 3D pose and focal length estimation results for all evaluated datasets and
categories. We project the ground truth 3D model onto the image using the 3D pose and focal
length predicted by different approaches. In contrast to [288] (red frames), our methods find a
geometric consensus between the parameters which results in improved 2D-3D alignment, e.g., the
scale of the rendering is more accurate (green frames). All images just provide 3D annotations for
one object per image. However, we are able to detect and predict 3D poses for multiple objects.
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Image Ground Truth [288] Ours-LF Ours-BB

Figure 6.6: Qualitative 3D pose and focal length estimation results for all evaluated datasets and
categories. We project the ground truth 3D model onto the image using the 3D pose and focal
length predicted by different approaches. In contrast to [288] (red frames), our methods find a
geometric consensus between the parameters which results in improved 2D-3D alignment, e.g., the
scale of the rendering is more accurate (green frames). All images just provide 3D annotations for
one object per image. However, we are able to detect and predict 3D poses for multiple objects.
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address this issue, the spatial resolution of the predicted location field can be increased.

In this work, we follow the architecture of Mask R-CNN’s mask branch and use a spatial

resolution of 28× 28 [96].

Considering our 3D bounding box corner projections, we observe that the predicted

2D locations are close to the ground truth 2D locations. Also, the perspective box shape

is well recovered and there is a consensus between the individual points. In some cases,

the predictions are even accurate for corners which project outside the image area, as

shown in Fig. 6.7. Also the 3D dimensions are predicted accurately, as already discussed

in Section 5.3.1.

However, visually looking at the raw 2D-3D correspondences, we observe that basically

all of the correspondences are noisy but the magnitude of the noise is rather low. If our

prediction fails, e.g., for an object with symmetries, entire regions of 2D-3D correspon-

dences are corrupt. In such cases, we cannot estimate an accurate 3D pose, not even with

robust methods.

Focal Length: Second, to demonstrate the importance of the focal length for estimating

3D poses from 2D-3D correspondences, we initialize our geometric optimization with three

different focal lengths and compare the results using the 3D pose distance in Fig. 6.9. In

this experiment, we plot the percentage of objects for which the 3D pose distance is below

a threshold varying in the range [0,1] (AccR,t).

As expected, if we initialize the geometric optimization with the ground truth focal

length, we achieve the highest 3D pose accuracy. However, for 3D pose estimation in

the wild, the focal length is unknown at runtime. In this case, we can use a constant

or a predicted focal length for initialization. Even if we use the best possible constant

focal length, which is the mode of the focal length distribution of the training dataset,

the accuracy drops significantly. This case is representative of the performance of our

3D pose estimation approach presented in Chapter 5 which assumes the focal length is

given at runtime. Instead, if we initialize our geometric optimization using our predicted

focal length, we achieve improved 3D pose accuracy. However, there is still a gap in the

accuracy compared to using the ground truth focal length.

This performance gap results from appearance ambiguities caused by different focal

lengths, as emphasized by a qualitative example shown in Fig. 6.10. In this experiment,

we again initialize our geometric optimization with three different focal lengths (ground

truth, predicted, and constant). We use the predicted 3D pose and focal length to project

the ground truth 3D model onto the image and additionally visualize the predicted and

ground truth object-to-camera distance.

Our geometric optimization finds a consensus between the individual projection pa-

rameters, which results in a precise 2D-3D alignment for any initial focal length because

we optimize the reprojection error during inference. However, the 3D pose of an object

is ambiguous in the case of unknown intrinsics. Thus, a good initial focal length is a

key factor in achieving high accuracy in terms of 3D translation, as can be seen from the
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Image LF (X) LF (Y) LF (Z) BB

Figure 6.7: Qualitative examples of our predicted 2D-3D correspondences. For each object,
we show two forms of 2D-3D correspondences: the location field (LF) and the projections of the
object’s 3D bounding box corners (BB). For each example image, the top row shows the ground
truth and the bottom row shows our predictions.
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Image LF (X) LF (Y) LF (Z) BB

Figure 6.8: Qualitative examples of our predicted 2D-3D correspondences. For each object,
we show two forms of 2D-3D correspondences: the location field (LF) and the projections of the
object’s 3D bounding box corners (BB). For each example image, the top row shows the ground
truth and the bottom row shows our predictions.
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Figure 6.9: Evaluation of 3D pose accuracy for different initial focal lengths. The results show
that a good initial estimate of the focal length is a key factor for achieving high 3D pose accuracy.

Image Ground Truth f GT f predicted f constant

Figure 6.10: In the case of unknown intrinsics, the 3D pose of an object is ambiguous. Our
approach finds a geometric consensus between all projection parameters, which results in a precise
2D-3D alignment for any initial focal length. However, a good initial focal length is required to
compute an accurate 3D pose as illustrated by the visualization of the object-to-camera distance.
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Rotation Translation Pose Focal Projection

Method Dataset Class
MedErrR AccRπ

6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

Ours-LF initial
Pix3D mean

7.10 87.9% 1.89 1.32 1.73 3.98 84.7%
Ours-LF refined 6.92 88.4% 1.85 1.30 1.72 3.85 85.5%

Ours-BB initial
Pix3D mean

7.04 90.1% 1.98 1.33 1.77 3.87 86.8%
Ours-BB refined 6.89 90.8% 1.94 1.30 1.75 3.66 88.0%

Table 6.3: Ablation study on joint 3D pose and focal length refinement. We compare our initial
solution to the final solution obtained by our joint refinement. Jointly optimizing all parameters
results in an improvement across all metrics.

visualization of the object-to-camera distance in Fig. 6.10. Our predicted focal length is

significantly more accurate than the best possible constant focal length, i.e., the mode of

the focal length distribution of the training dataset.

Finally, Table 6.3 presents quantitative results of our approach with and without joint

3D pose and focal length refinement. For this purpose, we compare our initial solution

obtained by EPnP [155] with our predicted focal length to the final solution computed by

our joint 3D pose and focal length refinement. Jointly optimizing all parameters results

in an improvement across all metrics. In fact, the initial solution already outperforms the

state of the art by a large margin. Our geometric optimization is fast and efficient. In our

implementation, the geometric optimization with joint refinement (Stage 2) takes only 5

ms, while the CNN forward pass (Stage 1) takes 60 ms per image on average.

6.3.4 Failure Modes

Fig. 6.11 shows failure modes of our approach using our two different methods for estab-

lishing 2D-3D correspondences (Ours-LF and Ours-BB). Most failure cases relate to strong

truncations, heavy occlusions, object symmetries and ambiguities, or 3D poses which are

far from the 3D poses seen during training. Interestingly, there is a large overlap be-

tween the failure cases of both methods, which indicates that the respective samples are

significantly different from the samples seen during training.

Naturally, the annotations are not perfect and some occluded or truncated samples

are marked as non-occluded and non-truncated, or the 3D pose annotation is incorrect.

In some cases, our methods make a correct prediction but this prediction is considered

wrong because of an erroneous ground truth 3D pose annotation, as shown in Fig. 6.11.

6.3.5 Discussion

So far, our results show that both presented 2D-3D correspondence estimation methods

(Ours-LF and Ours-BB) achieve a similar level of overall accuracy across different metrics.

However, each method has specific characteristics advantageous for different use cases.

For example, location fields implicitly handle truncations and occlusions because they

estimate 3D points for visible object parts and resolve occlusions using the 2D mask.
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Image Ground Truth Ours-LF

(a) Failure cases of Ours-LF

Image Ground Truth Ours-BB

(b) Failure cases of Ours-BB

Figure 6.11: Example failure cases for both presented 2D-3D correspondence estimation methods
(Ours-LF and Ours-BB). Most failure cases relate to strong truncations, heavy occlusions, object
symmetries and ambiguities, or 3D poses which are far from the 3D poses seen during training.
However, in some cases, our methods make a correct prediction but the ground truth 3D pose
annotation is corrupt, e.g., the annotator confused the back and the front of a car or mislabeled
the location of the object in the image, as shown in the first rows of both (a) and (b). We
highlight incorrect predictions and erroneous ground truth annotations with red frames and correct
predictions with green frames.

Moreover, the predicted dense 2D-3D correspondences might also be useful for other tasks

like dense depth estimation or 3D reconstruction. However, predicting location fields for

objects with thin structures is challenging. Additionally, this method requires detailed 3D

models for training.

In contrast, 3D bounding box corner correspondences only require accurate 3D bound-

ing boxes for training. The overall design of this method is simpler and more lightweight,

which makes it easier to implement and train. This is also reflected in our reported

numbers, which show a slight advantage compared to location fields. Additionally, 3D

bounding box corner correspondences always give a fixed number of sparse 2D-3D corre-

spondences. This results in fast inference, which is beneficial for real-time applications, for

example. However, while this method is well-suited for dealing with box-shaped objects

like cars, other approaches might perform better on highly non-box-shaped objects.
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6.4 Conclusion

Estimating the 3D poses of objects in the wild is an important but challenging task.

In particular, predicting the 3D translation is difficult due to ambiguous appearances

resulting from images captured with different but unknown focal lengths. For this purpose,

we present the first joint 3D pose and focal length estimation approach that enforces a

geometric consensus between 3D poses and the focal length. Our approach combines deep

learning techniques and geometric algorithms to explicitly estimate and integrate the focal

length into the 3D pose estimation. We evaluate our approach on three challenging real-

world datasets (Pix3D, Comp, and Stanford) and significantly outperform the state of the

art by up to 20%.
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In Chapter 5, we presented a novel approach to retrieve 3D models for objects of

arbitrary categories from single RGB images captured in the wild. While this approach

is computationally efficient at runtime because it utilizes a 3D pose prior to only match

a single offline pre-computed descriptor for each 3D model, it has three shortcomings.

First, it requires a large database of pre-computed descriptors which densely sample the

3D pose space. Depending on the sampling, this database can become very large and can

easily exceed a thousand pre-computed descriptors for each 3D model, which is memory

inefficient. Second, the descriptors trained in Chapter 5 have to be discriminative in

terms of both 3D pose and 3D shape as a consequence of the architectural design. This

is suboptimal for the task of 3D model retrieval. Finally, our previous approach requires

given 2D bounding boxes for the objects in the images.

To overcome these limitations, we propose a novel approach for single image 3D model

retrieval in the wild. In contrast to our previous method that directly maps RGB images

and 3D model renderings to an embedding space (see Section 5.2.2), we now establish

a common low-level representation in the form of location fields (see Section 6.2.1) from

which we compute pose invariant 3D shape descriptors. Location fields encode dense cor-

respondences between 2D object pixels and 3D model points and, thus, explicitly capture

97
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3D shape and 3D pose information without appearance variations which are irrelevant for

the task. This early fusion of RGB images and 3D model renderings results in six main

advantages:

First, our learned 3D shape descriptors only have to be discriminative in terms of 3D

shape because we can recover 3D poses from location fields using a geometric optimization

(see Section 6.2.2). Second, we only store a single pose invariant 3D shape descriptor for

each 3D model in our offline pre-computed database. In this way, our 3D model retrieval

is as computationally efficient as before but the memory consumption of the database is

significantly reduced. Third, predicting per-object location fields allows us to perform

3D model retrieval for multiple objects at different scales in a single image. Fourth, our

bottleneck location field prediction acts as a regularizer during training. Fifth, major parts

of our system benefit from training on a virtually infinite amount of synthetic data. Finally,

our predicted location fields are visually interpretable and unblackbox the system. We

evaluate our proposed approach on three challenging real-world datasets (Pix3D, Comp,

and Stanford) with different object categories and significantly outperform the state of

the art by up to 20% absolute in multiple 3D retrieval metrics.

7.1 Introduction

Figure 7.1: Given a single RGB image, we retrieve a 3D model with accurate geometry for each
object in the image from a previously seen or unseen 3D model database.

3D model retrieval from a single RGB image, as shown in Fig. 7.1, is a challenging but

important task with applications in augmented reality, robotics, 3D printing, 3D scene

understanding, and 3D scene modeling. Compared to reconstruction [71, 278], retrieval

provides 3D models designed by humans which are rich in detail. Due to the growing

number of large-scale 3D model databases, like ShapeNet [33] or 3D Warehouse1, efficient

image-based retrieval approaches have become a fundamental requirement.

1https://3dwarehouse.sketchup.com

https://3dwarehouse.sketchup.com
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Recent works address the retrieval task by directly mapping RGB images and 3D

models to a common embedding space [158, 266]. However, previous approaches have a

number of limitations in practice. First, the learned mapping is highly prone to overfitting

because training data in the form of RGB images with 3D model annotations is scarce [258,

288]. Second, systems purely trained on synthetic data do not generalize to real data due

to the domain gap between RGB images and RGB renderings [71, 185]. Finally, the black

box characteristic of these systems makes it hard to understand why the approaches fail

in certain scenarios.

To overcome these limitations, we map RGB images and 3D models to a common low-

level representation in the form of location fields from which we compute pose invariant

3D shape descriptors. Location fields [86, 288] are image-like representations that encode

a 3D model point for each 2D object pixel (see Fig. 7.3). In particular, we predict location

fields from RGB images using a CNN and render location fields from 3D models, as

already described in Section 6.2.1. Then, instead of exhaustively comparing location fields

from different 3D poses [123, 185], we compute pose invariant 3D shape descriptors in an

embedding space optimized for 3D model retrieval from the location fields. Thus, we call

our approach Location Field Descriptors.

Regarding 3D model retrieval, location fields have several advantages compared to

other rendered representations: RGB renderings [71, 302] are subject to appearance varia-

tions which are irrelevant for the task caused by material, texture, and lighting. Texture-

less gray-scale renderings [153, 185] are still effected by the scene lighting. Silhouettes [34]

are not effected by such appearance variations but discard valuable 3D shape information.

Depth [85, 316] and normal renderings [287, 301] capture 3D geometry but lose the re-

lation to the 3D pose in the object’s canonical coordinate system. In contrast, location

fields explicitly present 3D shape and 3D pose information as they establish correspon-

dences between 2D object pixels and 3D model points on the object surface. Considering

3D shape, the dense 3D points provide a partial reconstruction of the object geometry.

Considering 3D pose, the object’s 3D rotation and 3D translation can be geometrically

recovered from the 2D-3D correspondences using a PnP algorithm [24, 125].

The benefits of our approach are threefold: First, compared to directly mapping to

an embedding space, our intermediate location field prediction serves as a regularizing

bottleneck which reduces the risk of overfitting in the case of limited training data. Second,

major parts of our system benefit from training on a virtually infinite amount of synthetic

data due to the early fusion of RGB images and 3D models. Third, our predicted location

fields are visually interpretable, unblackbox our system, and offer valuable insights in cases

where our approach fails.

Finally, to demonstrate the benefits of our novel 3D model retrieval approach, we evalu-

ate it on three challenging real-world datasets with different object categories: Pix3D [258]

(bed, chair, sofa, table), Comp [288] (car), and Stanford [288] (car). We present quanti-

tative as well as qualitative results and significantly outperform the state of the art. To

summarize, our main contributions are:
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• We present the first method that uses location fields for pose invariant 3D model

retrieval. Our approach is accurate, scalable, and interpretable.

• We outperform the state of the art by up to 20% absolute in multiple 3D retrieval

metrics given both previously seen and unseen 3D model databases.

7.2 Location Field Descriptors

Figure 7.2: Overview of our approach. Given a single RGB image and a 3D model database, we
use CNNs to predict a location field and a pose invariant location field descriptor for each object in
the image. For each 3D model in the database, we learn a single center descriptor from multi-view
location fields offline during training. Finally, we match location field descriptors predicted from
the RGB image against offline computed center descriptors to retrieve a ranked list of the 3D
models in the database.

Given a single RGB image and a 3D model database, we retrieve a 3D model for each

object in the image, as shown in Fig. 7.2. For this purpose, we first generate location

fields from both RGB images and 3D models (see Section 7.2.1). We then compute pose

invariant 3D shape descriptors from the locations fields (see Section 7.2.2). Finally, we

match descriptors predicted from the RGB image against descriptors computed from the

3D models to retrieve the highest-ranked 3D model from the database for each object.

7.2.1 Location Field Generation

The first step in our approach is to map RGB images and 3D models to a common low-

level representation in the form of location fields. As illustrated in Fig. 7.3, a location

field [288] is an image-like representation that encodes a 3D model point for each 2D

object pixel. Compared to its reference RGB image, a location field has the same size

and spatial resolution but the three channels encode XYZ 3D coordinates in the canonical

object coordinate system instead of RGB colors. Locations fields explicitly present 3D

shape and 3D pose information because they encode dense correspondences between 2D

object pixels and 3D model points. From these 2D-3D correspondences, the 3D pose

can be geometrically recovered using a PnP algorithm [24, 125], as already presented
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Image LF (X) LF (Y) LF (Z)

Figure 7.3: An image of an object and its location field (LF). Location fields encode a 3D model
point in the canonical object coordinate system for each 2D object pixel. We show the three
channels which correspond to the X, Y, and Z values of the 3D coordinates in separate images.

in Chapter 6. Additionally, location fields can also be interpreted as structured partial 3D

point clouds.

Location fields can be directly rendered from 3D models. For this purpose, we rasterize

3D meshes using OpenGL and implement a custom fragment shader (see Section 2.1.1.3)

which linearly interpolates per-vertex 3D coordinates along the triangles of a 3D mesh.

Because the interpolated values describe 3D coordinates in the canonical object coordinate

system, the relation to the object’s inherent 3D pose is preserved.

In order to generate location fields from RGB images, we need to detect objects in 2D

and predict a location field of each object. For this purpose, we introduce a Location Field

CNN (see Fig. 7.2) which extends the generalized Faster/Mask R-CNN framework [96,

225]. This generic multi-task framework includes a 2D object detection pipeline to perform

per-image and per-object computations. In this way, we address multiple different tasks

using a single end-to-end trainable network.

In the context of the generalized Faster/Mask R-CNN framework, each output branch

provides a task-specific subnetwork with different structure and functionality. We intro-

duce a dedicated output branch for estimating location fields alongside the existing object

detection branches, similar as presented in Section 6.2.1. Like the mask branch [96], the

location field branch performs region-based per-object computations: For each detected

object, an associated spatial region of interest in the feature maps is aligned to a fixed

size feature representation with a low spatial but high channel resolution using linear in-

terpolation, e.g., 14 × 14 × 256. These aligned features serve as a shared input to the

classification, mask, and location field branches. Each branch is evaluated N times per

image, where N is the number of detected objects.

Our location field branch uses a fully convolutional subnetwork to predict a tensor

of 3D points at a resolution of 56 × 56 × 3 from the shared aligned features. We also

modify the mask branch to predict 2D masks at the same spatial resolution and use the

predicted masks to threshold the tensor of 3D points to get low-resolution location fields.
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We experimentally found this approach to generate significantly higher accuracy location

fields compared to directly regressing low-resolution location fields, which tends to predict

over-smoothed 3D coordinates around the object silhouette. During training, we optimize

our predicted location fields in a supervised manner using the Huber loss [118].

The resulting low-resolution location fields can be upscaled and padded to obtain

high-resolution location fields with the same spatial resolution as the input image. This

is especially helpful in cases where our approach fails. A visual overlay of the input image

and the predicted location fields is intuitively interpretable and offers valuable insights to

why the system fails.

However, we compute pose invariant 3D shape descriptors from the low-resolution loca-

tion fields because upscaling does not provide additional information but merely increases

the computational workload. Moreover, the predicted low-resolution location fields are

tightly localized crops, which reduces the complexity of the descriptor computation.

7.2.2 3D Shape Descriptors

Instead of exhaustively comparing each location field predicted from an RGB image to

multiple location fields of different 3D models rendered under different 3D poses [123, 185],

we map location fields to pose invariant 3D shape descriptors in an embedding space. We

refer to descriptors in this space as Location Field Descriptors.

For this purpose, we introduce a Descriptor CNN (see Fig. 7.2) which utilizes a dense

connection pattern [115]. Similar to ResNets [99, 100], DenseNets [115] introduce skip-

connections in the computational graph but concatenate feature maps instead of adding

them. The dense connection pattern encourages feature reuse throughout the network and

leads to compact but expressive models. This architecture is well-suited for computing

descriptors from location fields because they already provide a high level of abstraction.

Location fields are not effected by task-irrelevant appearance variations caused by color,

material, texture, or lighting. The object is already segmented from the background and

occlusions in the predicted location fields are resolved by the 2D mask used for thresholding

the tensor of 3D points. In fact, even the raw 3D coordinates provide useful matching

attributes, for example by aligning query and test 3D point clouds using ICP [16]. Thus,

extensive feature reuse within the Descriptor CNN is rational.

In order to learn an embedding space which is optimized for 3D model retrieval, we

need to address two requirements. First, the embedding space has to be discriminative

in terms of 3D shape. Second, the computed descriptors have to be invariant to the

3D pose of the object in the location field. We jointly address both requirements by

learning a representative center descriptor for each 3D model, as shown in Fig. 7.2. For

this purpose, we train the Descriptor CNN to map location fields of a 3D model rendered

under different 3D poses close to its corresponding center descriptor. At the same time,

we make sure that all center descriptors are discriminatively distributed in the embedding

space. Thus, during training, we penalize the distances between location field descriptors
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and center descriptors in a way that each location field descriptor and its corresponding

center descriptor are pulled closer together, while all center descriptors are pulled further

apart. This approach resembles a non-linear discriminant analysis [237], in which the

intra-class variance is minimized, while the inter-class variance is maximized to train more

discriminative embeddings.

In particular, we build on the ideas of Center loss [291] and Triplet-Center loss [101]

to optimize our embedding space. The Center loss

LC =

N∑
i=1

D(fi, cyi) (7.1)

minimizes the distance D(fi, cyi) between a location field descriptor fi and its correspond-

ing center descriptor cyi . In this case, yi is the index of the corresponding 3D model and

N denotes the number of samples in the minibatch. In contrast, the Triplet-Center loss

LTC =
N∑
i=1

max
(

0 , D(fi, cyi) +m−min
j 6=yi

D(fi, cj)
)

(7.2)

enforces the same distance D(fi, cyi) to be smaller than the distance between a location

field descriptor and its closest non-corresponding center descriptor minj 6=yi D(fi, cj) by at

least the margin m. For the distance function D(·), we use D(a,b) = L(‖a− b‖2) which

is the Euclidean distance in the embedding space subject to the Huber loss [118] L(·) in

favour of the squared loss to be more robust to outliers.

As a consequence, the Center loss only minimizes intra-class variance, while the Triplet-

Center loss aims at both minimizing intra-class variance and maximizing inter-class vari-

ance. In many cases, however, the Triplet-Center loss fails to achieve these goals. Instead,

it learns degenerated clusterings because the optimization criterion does not guarantee the

desired properties [137]. Thus, we employ a combination of Center loss and Triplet-Center

loss in our Descriptor loss

LD = Lcross-entropy + αLC + βLTC (7.3)

to achieve both low intra-class variance and high inter-class variance [137, 293]. In prac-

tice, these losses are combined with a cross-entropy loss Lcross-entropy computed on top of

a classification output layer with softmax normalization to learn more discriminative em-

beddings than classification alone [101, 291]. The parameters α and β control the impact

of the different loss terms.

We want to emphasize that the center descriptors are not fixed but learned during

training. In fact, the center descriptors are trainable weights of the Descriptor CNN in

our implementation. Also, even though we optimize a triplet criterion, we do not require

location field triplets as training input. Only a single location field and its corresponding

3D model index yi are needed. The center descriptors required for the Triplet loss are



104 Chapter 7. 3D Model Retrieval with Location Field Descriptors

sampled within the Descriptor CNN. Additionally, hard triplet mining [244] is less impor-

tant because we always sample the closest non-corresponding center descriptor and also

employ Center and cross-entropy losses.

We jointly train the Descriptor CNN on predicted and rendered location fields. This is

a major advantage compared to previous approaches that directly map to an embedding

space because training data in the form of RGB images with 3D model annotations is

limited (see Chapter 4). In contrast, we benefit from training on a virtually infinite

amount of synthetic data. Additionally, the intermediate location field prediction serves

as a regularizing bottleneck and reduces the risk of overfitting because regressing location

fields is more difficult than computing embeddings.

Since there is a domain gap between predicted and rendered location fields, we perform

Feature Mapping [218]. We use a residual block [99, 100] to map location field descriptors

from the predicted to the rendered domain. Thus, the training input either consists of

pairs of corresponding predicted and rendered location fields or single location fields, and

a 3D model index yi in both cases. In the case of pairs, we compute an additional Feature

Mapping loss between corresponding feature-mapped predicted and rendered location field

descriptor using the same distance function D(·) as defined above.

To perform retrieval from a previously unseen 3D model database, we generate center

descriptors without retraining. For each unseen 3D model, we render 100 location fields

under different 3D poses, compute their embeddings using the Descriptor CNN, and aver-

age these location field descriptors to obtain a new center descriptor. Alternatively, we can

retrain the Descriptor CNN by incorporating the new 3D models as additional rendered

location fields. In any case, the center descriptors are computed offline which results in

fast inference with a small memory footprint.

During inference, we only need to process RGB images using our CNNs since the

center descriptors have already been computed offline. For each RGB image, we evaluate

the Location Field CNN once and the Descriptor CNN N times to compute location field

descriptors, where N is the number of detected objects. We then match each computed

location field descriptors against all center descriptors and generate a ranked list of 3D

models based on the Euclidean distance between the descriptors, as shown in Fig. 7.2.

Finally, our entire system, i.e., the Location Field CNN and the Descriptor CNN, is

end-to-end trainable. The system loss is a combination of our Location Field loss, our

Descriptor loss, our Feature Mapping loss, and the detection losses of the generalized

Faster/Mask R-CNN framework.

7.3 Evaluation

To demonstrate the benefits of our novel 3D model retrieval approach, we evaluate it on

three challenging real-world datasets with different object categories: Pix3D [258] (bed,

chair, sofa, table), Comp [288] (car), and Stanford [288] (car). Details on the evaluated

datasets are presented in Chapter 4. In particular, we provide quantitative results for
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3D model retrieval from seen and unseen databases in comparison to the state of the art

in Section 7.3.2, present qualitative results of our approach in Section 7.3.3, perform an

ablation study in Section 7.3.4, and investigate failure modes in Section 7.3.5. For our

quantitative evaluation, we use the following well-established metrics:

Detection: We report the detection accuracy AccD0.5 which gives the percentage of

objects for which the intersection over union between the ground truth 2D bounding box

and the predicted 2D bounding box is larger than 50% [303]. This metric is an upper

bound for other Acc metrics since we do not make blind predictions.

Retrieval Accuracy: We evaluate the retrieval accuracies AccTop-1 and AccTop-10 which

give the percentage of objects for which the ground truth 3D model equals the top ranked

3D model (Top-1 ) [85], or is in the top ten ranked 3D models (Top-10 ) [302]. These

metrics can only be provided if the ground truth 3D model is in the retrieval database.

Hausdorff Distance: We compute a modified Hausdorff distance [7, 12]

dH =
1

|A|+ |B|

( ∑
A∈A

min
B∈B
‖A−B‖2 +

∑
B∈B

min
A∈A
‖B−A‖2

)
(7.4)

between the ground truth 3D model A and the retrieved 3D model B. For each 3D vertex

A ∈ A and B ∈ B, we calculate the Euclidean distance to the closest vertex from the

other 3D model and compute the mean over both sets. Before computing dH, we regularly

resample each 3D model. For this purpose, we render orthographic location fields from six

canonical 3D poses (front, left, right, back, top, bottom), sample 3D model points from

these location fields, and concatenated all 3D points. For the orthographic projection, we

use a resolution of 64× 64. In this way, we sample between 5000 and 10000 3D points per

3D model depending on the geometry.

There are many possible strategies for resampling 3D meshes. However, as long as the

sampling of 3D points is sufficiently dense, the differences in evaluation will be minimal.

We report the mean modified Hausdorff distance for all detected objects (dHAU). Since all

3D models are consistently aligned, the score is in the interval [0,
√

2 ] (lower is better).

3D Intersection Over Union: We compute the 3D intersection over union between

a voxelization of the ground truth 3D model and a voxelization of the retrieved 3D

model [267]. For this purpose, we voxelize 3D models using binvox [196] with a reso-

lution of 128 × 128 × 128. We report the mean 3D IOU for all detected objects (dIOU).

The score is in the interval [0, 1] (higher is better).
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7.3.1 Implementation Details

For our Location Field CNN, we use a Feature Pyramid Network [163] on top of a ResNet-

101 backbone [99, 100]. For our Descriptor CNN, we use a DenseNet-50 architecture [115]

with 3 dense blocks and a growth rate of 24. For our implementation, we resize and pad

RGB images to a spatial resolution of 512× 512× 3 maintaining the aspect ratio. For the

location fields, we employ a resolution of 56× 56× 3. In this configuration, the Descriptor

CNN maps low-resolution location fields to a 270-dimensional embedding space.

We initialize the convolutional backbone and the detection branches of the Location

Field CNN with weights trained for instance segmentation [96] on COCO [165]. The

location field branch and the Descriptor CNN are trained from scratch. We train our

networks for 300 epochs using a batch size of 32. The initial learning rate of 1e−3 is

decreased by a factor of 5 after 150 and 250 epochs.

We employ different forms of data augmentation. For RGB images, we use mirroring,

jittering of location, scale, and rotation, and independent pixel augmentations like additive

noise. For rendered location fields, we additionally use different forms of blurring to

simulate predicted location fields. During training of the Descriptor CNN, we further

leverage synthetic data in addition to real data and train on predicted and rendered

location fields using a ratio of 1 : 3.

To balance the individual terms in the system loss

L = Ldet + Lcross-entropy + αLC + βLTC + γLLF + δLFM , (7.5)

we assign unit weights to classification losses and non-unit weights to regression losses.

Thus, we combine the unmodified Detection losses (Ldet) of the generalized Faster/Mask

R-CNN framework and the Descriptor CNN cross-entropy loss (Lcross-entropy) with the

weighted Center (LC), Triplet-Center (LTC), Location Field (LLF), and Feature Mapping

(LFM) losses. We experimentally set α = 0.01, β = 0.1, γ = 10, δ = 0.01, and use a

margin of m = 1.

We consistently orient, scale, and translate all 3D models. In particular, we rotate all

3D models to have common front-facing, up, and starboard directions. Additionally, we

scale and translate all 3D models to fit inside a unit cube centered at the coordinate origin

(0, 0, 0) while preserving the aspect ratio of the 3D dimensions. This 3D model alignment

is not only important for training our approach but also for the evaluated metrics. For

example, computing the modified Hausdorff distance and the 3D IOU between two 3D

models is only meaningful if they are consistently oriented, scaled, and centered.

7.3.2 Comparison to the State of the Art

We are the first to present results for 3D model retrieval on Pix3D, Comp, and Stanford.

For this purpose, we compare our approach to a baseline method [10] and a state-of-the-art

method [85] which is our approach presented in Chapter 5. Since [10] and [85] assume that
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seen 3D models unseen 3D models

Method Dataset Category AccD0.5 AccTop-1 AccTop-10 dHAU dIOU dHAU dIOU

[10]
Pix3D bed 99.0%

19.4% 46.6% 0.0821 0.3397 0.0960 0.2487
[85] 35.1% 83.2% 0.0385 0.5598 0.0577 0.3013
Ours 64.4% 89.0% 0.0152 0.8074 0.0448 0.3490

[10]
Pix3D chair 91.5%

17.3% 49.1% 0.0559 0.3027 0.0843 0.1334
[85] 41.3% 73.9% 0.0305 0.5469 0.0502 0.1965
Ours 58.1% 81.8% 0.0170 0.7169 0.0375 0.2843

[10]
Pix3D sofa 96.9%

21.7% 52.2% 0.0503 0.3824 0.0590 0.3493
[85] 44.1% 89.8% 0.0197 0.7762 0.0294 0.6178
Ours 67.0% 94.4% 0.0075 0.9028 0.0178 0.7472

[10]
Pix3D table 91.2%

12.0% 34.2% 0.1003 0.1715 0.1239 0.1047
[85] 33.9% 66.1% 0.0607 0.4500 0.0753 0.1730
Ours 53.3% 80.1% 0.0288 0.6383 0.0482 0.2573

[10]
Pix3D mean 94.6%

17.6% 45.5% 0.0722 0.2991 0.0908 0.2090
[85] 38.6% 78.3% 0.0374 0.5832 0.0531 0.3222
Ours 60.7% 86.3% 0.0171 0.7663 0.0370 0.4095

[10]
Comp car 99.9%

2.4% 18.2% 0.0207 0.7224 0.0271 0.6344
[85] 10.2% 36.9% 0.0158 0.7805 0.0194 0.7230
Ours 20.5% 58.0% 0.0133 0.8142 0.0165 0.7707

[10]
Stanford car 99.6%

3.7% 20.1% 0.0198 0.7169 0.0242 0.6526
[85] 11.3% 42.2% 0.0153 0.7721 0.0183 0.7201
Ours 29.5% 69.4% 0.0110 0.8352 0.0150 0.7744

Table 7.1: Experimental results on the Pix3D, Comp, and Stanford datasets. We provide results
for 3D model retrieval from both seen (in training dataset) and unseen (ShapeNet) 3D model
databases given unseen test images. We significantly outperform the state of the art in all metrics
and datasets. A detailed discussion of the reported numbers is presented in Section 7.3.2.

objects are already detected in 2D, we use the detections given by our approach for a fair

comparison. The results are summarized in Table 7.1, where we significantly outperform

the state of the art in all metrics and datasets.

First of all, we correctly detect 95% of all objects in the images on average (AccD0.5),

since object detection is tightly integrated into our approach. In fact, our Location Field

CNN is initialized with weights trained for instance segmentation [96] on COCO [165] and

all evaluated categories are present in COCO.

Next, we evaluate two different retrieval setups: First, we use all 3D models from the

respective dataset as a 3D model database for retrieval (seen 3D models). In this case, we

retrieve the correct 3D model (AccTop-1) for more than 60% of all test samples on average

on Pix3D. This is a significant improvement of more than 20% absolute compared to the

state of the art. Also, the retrieval accuracy quickly raises if we consider the top ten

ranked 3D models (AccTop-10).

In contrast, the retrieval accuracy on Comp and Stanford is significantly lower for all

evaluated methods. This is due to the considerably smaller variation in the overall 3D
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shape of cars compared to chairs, for example. Thus, many 3D models of cars have a

similar appearance in a number of 3D poses and can only be discriminated by extremely

fine-grained details like wheel rims or radiator grill structures. Such pixel-level information

is usually discarded by CNNs.

However, by analyzing the 3D mesh similarity between the ground truth 3D model and

the top retrieved 3D model (dHAU and dIOU), we observe that our approach consistently

achieves high performance across all datasets and categories. To put the reported numbers

in perspective, we compute the mean of the modified Hausdorff distance (0.1236) and the

3D IOU (0.0772) for all pairs of 3D models in the training datasets. These numbers

represent the expected accuracy for picking a random 3D model. For both metrics, the

3D mesh similarity of our retrieved 3D model is around ten times better compared to

picking a random 3D model. Additionally, we significantly outperform the state of the art

by up to 50% relative considering dHAU.

Second, we perform retrieval using previously unseen 3D models from ShapeNet [33]

(unseen 3D models). If 3D models are present in the respective dataset and in ShapeNet,

we exclude them for retrieval from ShapeNet to evaluated retrieval from an entirely unseen

database. Since the correct 3D model is not in the database in this case, the achievable

performance is limited. Thus, the reported numbers are slightly worse compared to re-

trieval from a previously seen 3D model database. Still, the performance is much better

compared to picking a random 3D model. In fact, for some categories, e.g., Stanford cars,

our approach retrieves more accurate 3D models from an unseen database than the state

of the art from a database seen during training.

7.3.3 Qualitative Results

The quantitative performance of our approach is also reflected in our qualitative results.

First, Fig. 7.4 shows examples of our predicted location fields. We upscale and pad the

predicted location fields to match the input image resolution. The overall 3D shape is

recovered well in the location fields but fine-grained details like the side mirrors of the car

or thin structures like the frame ornaments of tables and beds are missed.

Next, Fig. 7.5 shows qualitative results for 3D model retrieval from ShapeNet. Con-

sidering the top ten ranked 3D models, we observe that the retrieved 3D models have a

consistent and accurate overall 3D shape and geometry.

Finally, Figs. 7.6 and 7.7 present examples for 3D model retrieval from both seen

and unseen databases. In addition, we show that location fields provide all relevant in-

formation to also compute the 3D pose of objects. For this purpose, we sample 2D-3D

correspondences from the location fields and solve a PnP problem during inference. The

projections onto the image show that both our retrieved 3D models and our computed

3D poses are highly accurate. Our approach naturally handles multiple objects in a single

image. However, all evaluated datasets only provide annotations for a single object per

image, as shown in Fig. 7.7.



7.3. Evaluation 109

Image LF (X) LF (Y) LF (Z) Image LF (X) LF (Y) LF (Z)

Figure 7.4: Qualitative examples of our predicted location fields. For each example image, the
top row shows the ground truth and the bottom row shows our prediction. The overall 3D shape
is recovered well but fine-grained details like the side mirrors of cars or thin structures like the
frame ornaments of tables and beds are missed.
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Image GT 1 2 3 4 5 6 7 8 9 10

Figure 7.5: Qualitative results for 3D model retrieval from ShapeNet. From left to right, we
show the input image, the ground truth 3D model, and the top ten ranked 3D models. The overall
3D shape of the retrieved 3D models is consistent and accurate.

7.3.4 Ablation Study

To understand which aspects of our approach are crucial for performance, we conduct an

ablation study. For this purpose, we perform experiments on Pix3D which is the most

challenging dataset because it provides multiple categories and has the largest variation

in object scales and 3D poses. In particular, we train our approach using different setups

and evaluate the mean performance across all categories. The results of this experiment

are summarized in Table 7.2.

If we train our approach without synthetic data, i.e., train our Descriptor CNN purely

on predicted location fields, the performance decreases significantly. Since training data

is limited, we do not see location fields from many different 3D poses during training in

this setup. As a consequence, the Descriptor CNN suffers from overfitting.

Next, if we predict location fields at half of our proposed resolution (28× 28× 3) the

performance drops significantly. In this case, fine-grained structures, e.g., thin legs of a

chair, cannot be recovered due to the limited spatial resolution.

Optimizing a pure cross-entropy loss without our proposed combination of Center

loss [291] and Triplet-Center loss [101] results in a small performance decrease. This shows

that our proposed Descriptor loss presented in Eq. (7.3) indeed learns more discriminative

embeddings than classification alone since it explicitly minimizes intra-class variance and

maximizes inter-class variance.
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Image GT from seen from unseen Image GT from seen from unseen

Figure 7.6: Qualitative results for 3D pose estimation and 3D model retrieval from both seen and
unseen databases. We project the retrieved 3D model onto the image using a 3D pose computed
from the predicted location field by solving a PnP problem. For the ground truth 3D model, we
use the ground truth 3D pose. In fact, location fields provide all relevant information to jointly
address both tasks.
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Image GT from seen from unseen Image GT from seen from unseen

Figure 7.7: Qualitative results for 3D pose estimation and 3D model retrieval from both seen and
unseen databases. We project the retrieved 3D model onto the image using a 3D pose computed
from the predicted location field by solving a PnP problem. For the ground truth 3D model, we
use the ground truth 3D pose. In fact, location fields provide all relevant information to jointly
address both tasks. Our approach naturally handles multiple objects in a single image. However,
all evaluated datasets only provide annotations for a single object per image.
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Method AccTop-1 dHAU dIOU

Ours w/o synthetic data 55.0% 0.0219 0.7156
Ours half-res LFs 58.7% 0.0204 0.7370
Ours w/o (T)CL [101, 291] 59.9% 0.0175 0.7621
Ours w/o Mapping [218] 60.0% 0.0174 0.7630
Ours multi-view 60.9% 0.0173 0.7686
Ours 60.7% 0.0171 0.7663

Table 7.2: Ablation study of our method on the Pix3D dataset. Exploiting synthetic data in
the form of rendered location fields during training and employing location fields with sufficient
resolution to capture thin structures are the most important aspects for increasing performance.

Training without Feature Mapping [218] only slightly decreases performance. This is in

part due to the fact that we also address the domain gap by aggressively augmenting and

degenerating rendered location fields during training of our Descriptor CNN to simulate

predicted location fields.

Finally, if we do not use our learned center descriptors but multi-view descriptors for

matching, the performance almost remains the same. In this case, we match against 100

descriptors computed from location fields rendered under different 3D poses instead of a

single center descriptor for each 3D model. This exhaustive comparison has a much higher

computational complexity than our proposed approach and considerably increases the size

of the retrieval database. In fact, using center descriptors is not only significantly faster

but also achieves better performance considering dHAU. This experiment confirms that

our approach indeed learns pose invariant 3D shape descriptors.

7.3.5 Failure Modes

Fig. 7.8 shows failure modes of our approach. Most failure cases relate to incorrect location

field predictions. For example, if the 3D pose of the object in the image is far from the 3D

poses seen during training, or if multiple objects are detected as a single object in a complex

occlusion scenario, we cannot predict an accurate location field. In other failure cases, we

predict an accurate location field but retrieve a 3D model from a different category due

to ambiguous geometries in different categories.

While the detection branch of the generalized Faster/Mask R-CNN framework predicts

a category for each detected object in an RGB image, we do not use this information during

3D model retrieval because there is a category ambiguity for many objects. For example,

it is unclear if a couch with sleeping functionality is a sofa or a bed (see Fig. 7.6, left

column, last example). We want to retrieve 3D models with accurate geometry without

category restrictions. However, the predicted category can also be used in our approach to

narrow the retrieval down to 3D models from a single category and speed up the matching.
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Image LF (X) LF (Y) LF (Z) from seen from unseen

Figure 7.8: Failure cases of our approach. For each example image, the top row shows the ground
truth and the bottom row shows our prediction. Most failure cases relate to incorrect location field
predictions. If the 3D pose of the object in the image is far from the 3D poses seen during
training (first and second example), we cannot predict an accurate location field. The location
field prediction can also fail in complex occlusion scenarios if multiple objects are detected as a
single object (third example). In other cases, we predict an accurate location field, but retrieve a
3D model from a different category due to ambiguous geometries in different categories, e.g., table
instead of chair (last example).



7.4. Conclusion 115

7.4 Conclusion

Learning a common embedding of RGB images and 3D models for single image 3D model

retrieval is difficult due to limited training data and the domain gap between real and

synthetic data. For this purpose, we map RGB images and 3D models and to a common

low-level representation in the form of location fields from which we compute pose invariant

3D shape descriptors. In this way, we bridge the domain gap and benefit from training

on synthetic data. We evaluate our proposed approach on three challenging real-world

datasets (Pix3D, Comp, and Stanford) and significantly outperform the state of the art

by up to 20% absolute.
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In the previous chapters, we presented methods for estimating 3D poses and retrieving

3D models for objects given single RGB images in the wild. The quality of these predictions

can be visually assessed by reprojecting retrieved 3D models under estimated 3D poses

back onto the input RGB image, as shown in the evaluation sections of the previous

chapters. By investigating our predictions in this way, we observe that the overall quality

of our reprojections is high. However, looking closely at the examples, we observe that our

renderings do not precisely align to the objects in the RGB images because our predictions

are not accurate enough in many cases.

To overcome this limitation, we present a novel 3D pose refinement approach based

on differentiable rendering for objects of arbitrary categories in the wild. Our approach

establishes a feedback loop between single RGB image inputs and reprojected renderings

based on our predicted 3D pose and 3D model outputs. In contrast to previous refinement

methods, we make two main contributions: First, instead of comparing real-world images

and synthetic renderings in the RGB or mask space, we compare them in a feature space

optimized for 3D pose refinement. Second, we introduce a differentiable renderer that

learns to approximate the rasterization backward pass from data instead of relying on a

hand-crafted algorithm. For this purpose, we predict deep cross-domain correspondences

117
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between RGB images and 3D model renderings in the form of what we call geometric

correspondence fields. These correspondence fields serve as pixel-level gradients which

are analytically propagated backward through the rendering pipeline to perform gradient

descent directly on the 3D pose. In this way, we precisely align 3D models to objects in

RGB images which results in significantly improved 3D pose estimates. We evaluate our

approach on the challenging Pix3D dataset and achieve up to 55% relative improvement

compared to state-of-the-art refinement methods in multiple metrics.

8.1 Introduction

Initial 3D Pose Geometric Correspondence Field Refined 3D Pose

Figure 8.1: Given an initial 3D pose predicted by a feed-forward network, we predict deep cross-
domain correspondences between RGB images and 3D model renderings in the form of a geometric
correspondence field to refine the 3D pose using differentiable rendering.

Recently, there have been significant advances in single image 3D object pose estima-

tion thanks to deep learning [85, 191, 279]. However, the accuracy achieved by today’s

feed-forward networks is not sufficient for many applications like augmented reality or

robotics [86, 288]. As shown in Fig. 8.1, feed-forward networks robustly estimate the

coarse high-level 3D rotation and 3D translation of objects in the wild given a single RGB

image but fail to predict fine-grained 3D poses [306].

Thus, it is natural to introduce a refinement stage that improves the accuracy of

predicted 3D poses by aligning 3D models to objects in RGB images. In this context,

many refinement methods train a network that directly predicts 3D pose updates in a

forward pass given the input RGB image and a 3D model rendering under the current

3D pose estimate [159, 217, 313]. In contrast, more recent methods explicitly optimize

an objective function that is conditioned on the input RGB image and renderer inputs

like the 3D pose of an object instead [134, 200]. These methods require differentiable
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rendering [171] to backpropagate gradients computed in the image space to render inputs

but yield more accurate 3D pose updates because they exploit knowledge about the 3D

scene geometry and the projection pipeline for the optimization.

However, existing approaches based on differentiable rendering have significant short-

comings because they rely on comparisons in the RGB or mask space. First, methods

which compare images and renderings in the RGB space require photo-realistic 3D model

renderings [171]. Generating such renderings is difficult because objects in the real world

are subject to complex scene lighting, have unknown reflection properties, and are sur-

rounded by cluttered backgrounds. Moreover, many 3D models only provide geometry but

no textures or materials which makes photo-realistic rendering impossible [258]. Second,

methods which compare images and renderings in the mask space need to predict accurate

masks from RGB images [134, 200]. Generating such masks is difficult even using state-

of-the-art approaches like Mask R-CNN [96]. Additionally, masks discard valuable shape

information which makes 2D-3D alignment ambiguous. As a consequence, differentiable

rendering methods based on comparisons in the RGB or mask space are not robust in

practice. Finally, computing gradients for the non-differentiable rasterization operation in

rendering is still an open research problem and existing approaches rely on hand-crafted

approximations for this task [102, 134, 171].

To overcome these limitations, we compare RGB images and 3D model renderings in a

feature space optimized for 3D pose refinement and learn to approximate the rasterization

backward pass in differentiable rendering. In particular, we introduce a novel network

architecture that jointly performs both tasks. Our network maps real-world images and

synthetic renderings to a common feature space and predicts deep cross-domain corre-

spondences in the form of Geometric Correspondence Fields (see Fig. 8.1). Geometric cor-

respondence fields hold 2D displacement vectors between corresponding 2D object points

in RGB images and 3D model renderings similar to optical flow [48]. These predicted

2D displacement vectors serve as pixel-level gradients that enable us to approximate the

rasterization backward pass. By accumulating the pixel-level gradients for the projected

geometry and propagating the resulting geometry-level gradients backward through the

remaining differentiable parts of the rendering pipeline [134], we compute accurate gra-

dients that minimize an ideal geometric reprojection loss for renderer inputs like the 3D

pose, the 3D model, or the camera intrinsics (see Section 2.1.2.2).

Our approach has three main advantages: First, we can leverage depth, normal, and

location field [288] renderings which provide 3D pose information more explicitly than

RGB and mask renderings [159]. Second, we avoid task-irrelevant appearance variations

in the RGB space and 3D pose ambiguities in the mask space [87]. Third, we learn to

approximate the rasterization backward pass from data instead of relying on a hand-crafted

algorithm [102, 134, 171].

To demonstrate the benefits of our novel 3D pose refinement approach, we evaluate

it on the challenging Pix3D [258] dataset with different object categories. We present

quantitative as well as qualitative results and significantly outperform state-of-the-art
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feed-forward 3D pose estimation and competing refinement methods in multiple metrics

by up to 70% and 55% relative. Finally, we combine our refinement approach with our

feed-forward 3D pose estimation (see Chapter 6) and 3D model retrieval (see Chapter 7)

methods to predict fine-grained 3D poses for objects in the wild without providing initial

3D poses or ground truth 3D models at runtime given only a single RGB image. To

summarize, our main contributions are:

• We introduce the first refinement method based on differentiable rendering that does

not compare RGB images and 3D model renderings in the RGB or mask space but

in a feature space optimized for the task at hand.

• We present a novel differentiable renderer that learns to approximate the rasteriza-

tion backward pass from data instead of relying on a hand-crafted algorithm.

8.2 Learned 3D Pose Refinement
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Figure 8.2: Overview of our system. In the forward pass ( ), we generate 3D model render-
ings under the current 3D pose. In the backward pass ( ), we map the RGB image and our
renderings to a common feature space and predict a geometric correspondence field that enables
us to approximate the rasterization backward pass and compute gradients for the 3D pose that
minimize an ideal geometric reprojection loss.

Given a single RGB image, a 3D model, and an initial 3D pose, we compute iterative

updates to refine the 3D pose, as shown in Fig. 8.2. For this purpose, we first introduce

the objective function that we optimize at runtime (see Section 8.2.1). Then we explain

how we compare the input RGB image to renderings under the current 3D pose in a

feature space optimized for refinement (see Section 8.2.2), predict pixel-level gradients

that minimize an ideal geometric reprojection loss in the form of geometric correspondence

fields (see Section 8.2.3), and propagate gradients backward through the rendering pipeline

to perform gradient descent directly on the 3D pose (see Section 8.2.4).
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8.2.1 Runtime Object Function

Our approach to refine the 3D pose of an object is based on the numeric optimization of

an objective function at runtime. In particular, we seek to minimize an ideal geometric

reprojection loss

e(P) =
1

2

∑
i

‖proj(Mi,Pgt)− proj(Mi,P)‖22 (8.1)

for all provided 3D model vertices Mi. In this case, proj(·) is an abbreviated notation of the

projection function proj(Mi,K,R, t) (see Section 2.1.2.1) that assumes K is constant and

denotes the 3D pose parameters, i.e., R and t, as P for simplicity. Hence, Pgt represents

the ground truth 3D pose.

It is clear that arg min e(P) = Pgt. Thus, our goal is to efficiently minimize e(P) using

a gradient-based optimization starting from an initial 3D pose estimate. To compute

gradients for the 3D pose parameters, we calculate the Jacobian of e(P) with respect to

P and apply the chain rule, which yields the expression(
∂e(P)

∂P

)
(Pcurr) =

∑
i

[
∂proj(Mi,P)

∂P

]T (
proj(Mi,Pgt)− proj(Mi,Pcurr)

)
, (8.2)

where Pcurr is the current 3D pose estimate and the point where the Jacobian is evaluated.

In this case, the term
[
∂proj(Mi,P)

∂P

]T
can be computed analytically because it is simply a

sequence of differentiable operations. However, the term (proj(Mi,Pgt)−proj(Mi,Pcurr))
cannot be computed analytically because the ground truth projections proj(Mi,Pgt) are

unknown at runtime and can only be observed indirectly via the input RGB image.

However, for visible vertices, this term can be computed from a geometric correspon-

dence field (see Section 8.2.4). Thus, we introduce a novel network architecture that learns

to predict geometric correspondence fields given an RGB image and 3D model renderings

under the current 3D pose estimate in the following sections. Moreover, we embed this

network in a differentiable rendering framework to approximate the rasterization back-

ward pass and to compute gradients for renderer inputs like the 3D pose of an object in

an end-to-end manner, as shown in Fig. 8.2.

8.2.2 Refinement Feature Space

The first step in our refinement approach is to render the provided 3D model under the

current 3D pose using the forward pass of our differentiable renderer (see Fig. 8.2). In

particular, we generate depth, normal, and location field [288] renderings. These repre-

sentations provide 3D pose and 3D shape information more explicitly than RGB or mask

renderings which makes them particularly useful for 3D pose refinement [87]. By concate-

nating the different renderings along the channel dimension, we leverage complementary

information from different representations in the backward pass rather than relying on a

single manually selected type of rendering [171].
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Next, we begin the backward pass of our differentiable renderer by mapping the input

RGB image and our multi-representation renderings to a common feature space. For

this task, we use two different network branches that bridge the gap between the real-

world image domain and the rendered image domain, as shown in Fig. 8.2. Our mapping

branches use a custom architecture based on task-specific design choices:

First, we want to predict local cross-domain correspondences under the assumption

that the initial 3D pose is close to the ground truth 3D pose. Thus, we do not require

features with global context but features with local discriminability. For this reason, we

use small fully convolutional networks which are fast, memory-efficient, and learn low-

level features that generalize well across different objects. Because the low-level structures

appearing across different objects are similar, we do not require a different network for

each object [217] but address objects of all categories with a single class-agnostic network

for each domain.

Second, we want to predict correspondences with maximum spatial accuracy. Thus,

we do not use pooling or downsampling but maintain the spatial resolution throughout the

network. In this configuration, consecutive convolutions provide sufficient receptive field

to learn advanced shape features which are superior to simple edge intensities [136], while

higher layers benefit from full spatial parameter sharing during training which increases

generalization. As a consequence, the effective minibatch size during training is higher than

the number of images per minibatch because only a subset of all image pixels contributes

to each computed feature. In addition, the resulting high spatial resolution feature space

provides an optimal foundation for computing spatially accurate correspondences.

For the implementation of our mapping branches, we use fully convolutional networks

consisting of an initial 7× 7 Conv-BN-ReLU block, followed by three residual blocks [99,

100], and a 1× 1 Conv-BN-ReLU block for dimensionality reduction. In this way, we map

both RGB images and multi-representation renderings to W ×H×64 feature maps, where

W and H are the spatial dimensions of the respective input image. This architecture

enforces two properties which are crucial for 3D pose refinement in the resulting feature

space: Local discriminability and high spatial resolution.

8.2.3 Geometric Correspondence Fields

After mapping RGB images and 3D model renderings to a common feature space, we

compare their feature maps and predict cross-domain correspondences. For this purpose,

we concatenate their feature maps and use another fully convolutional network branch to

predict correspondences, as shown in Fig. 8.2.

In particular, we regress per-pixel correspondence vectors in the form of a geometric

correspondence field (see Fig. 8.1). Geometric correspondence fields hold 2D displacement

vectors between corresponding 2D object points in RGB images and 3D model renderings

similar to optical flow [48]. These displacement vectors represent the projected relative 2D

motion of individual 2D object points that is required to minimize the reprojection error
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and refine the 3D pose. A geometric correspondence field has the same spatial resolution

as the respective input RGB image and two channels, i.e., W ×H × 2.

If the ground truth 3D model and 3D pose are known, we can render the ground truth

geometric correspondence field for an arbitrary 3D pose. For this task, we first compute

the 2D displacement

∇mi = proj(Mi,Pgt)− proj(Mi,Pcurr) (8.3)

between the projection under the ground truth 3D pose Pgt and the current 3D pose Pcurr
for each 3D model vertex Mi. We then generate a ground truth geometric correspondence

field G(Pcurr,Pgt) by rendering the 3D model using a shader that interpolates the per-

vertex 2D displacements ∇mi across the projected triangle surfaces using barycentric

coordinates (see Section 2.1.1.3).

In our scenario, predicting correspondences using a network has two advantages com-

pared to traditional correspondence matching [95]. First, predicting correspondences with

convolutional kernels is significantly faster than exhaustive feature matching during both

training and testing [312]. This is especially important in the case of dense correspon-

dences. Second, training explicit correspondences can easily result in degenerated feature

spaces and requires tedious regularization and hard negative sample mining [38].

However, in many cases local correspondence prediction is ambiguous. For example,

many objects are untextured and have homogeneous surfaces, e.g., the backrest and the

seating surface of the chair in Fig. 8.1, which cause unreliable correspondence predictions.

To address this problem, we additionally employ a geometric attention module which

restricts the correspondence prediction to visible object regions with significant geometric

discontinuities, as outlined in white underneath the 2D displacement vectors in Fig. 8.1.

We identify these regions by finding local variations in our depth, normal, and location

field renderings.

For this task, we slide a small kernel across the renderings and detect rendering-specific

intensity changes larger than a certain threshold within a local 5× 5 window to construct

a geometric attention mask wa. In particular, we compare the window center to all

neighboring window locations to compute the geometric attention weight

wax,y = max
u,v∈W

(
δR
(
R(Pcurr)x,y, R(Pcurr)x−u,y−v

))
> tR (8.4)

for each pixel location. In this case, R(Pcurr) is a concatenation of depth, normal, and

location field renderings under the current 3D pose Pcurr, (x, y) is a pixel location, and

(u, v) are pixel offsets within the window W . The comparison function δR(·) and the

threshold tR are different for each type of rendering. For depth renderings, we compute the

absolute difference between normalized depth values and use a threshold of 0.1. For normal

renderings, we compute the angle between normals and use a threshold of 15◦. For location

field renderings, we compute the Euclidean distance between 3D points and use a threshold
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of 0.1. If any of these thresholds applies, the corresponding pixel (x, y) in our geometric

attention mask wa becomes active. Because we already generated these renderings before,

our geometric attention mechanism requires almost no additional computations and is

available during both training and testing.

For the implementation of our correspondence branch, we use three consecutive 7× 7

Conv-BN-ReLU blocks followed by a final 7 × 7 convolution which reduces the channel

dimensionality to two. For this network, a large receptive field is crucial to cover corre-

spondences with high spatial displacement.

During training of our system, we optimize the learnable part of our differentiable

renderer, i.e., a joint network f(·) consisting of our two mapping branches and our cor-

respondence branch with parameters θ (see Fig. 8.2). Formally, we minimize the error

between predicted f(·) and ground truth G(·) geometric correspondence fields as

min
θ

∑
x,y

wax,y‖f(I,R(Pcurr); θ)x,y −G(Pcurr,Pgt)x,y‖22 (8.5)

In this non-linear least-squares optimization problem, wa is a geometric attention mask,

I is an RGB image, R(Pcurr) is a concatenation of depth, normal, and location field

renderings generated under a random 3D pose Pcurr produced by perturbing the ground

truth 3D pose Pgt, G(Pcurr,Pgt) is the ground truth geometric correspondence field, and

(x, y) is a pixel location.

In particular, we first generate a random 3D pose Pcurr around the ground truth 3D

pose Pgt for each training sample in each iteration. For this purpose, we sample 3D

pose perturbations from normal distributions and apply them to Pgt to generate Pcurr.
For 3D rotations, we use absolute perturbations with σ = 5◦. For 3D translations, we

use relative perturbations with σ = 0.1. We then render the ground truth geometric

correspondence field G(Pcurr,Pgt) between the perturbed 3D pose Pcurr and the ground

truth 3D pose Pgt as described above, generate concatenated depth, normal, and location

field renderings R(Pcurr) under the perturbed 3D pose Pcurr, and compute the geometric

attention mask wa. Finally, we predict a geometric correspondence field using our network

f(I,R(Pcurr); θ) given the RGB image I and the renderings R(Pcurr), and optimize for the

network parameters θ.

In this way, we train a network that performs three tasks: First, it maps RGB images

and multi-representation 3D model renderings to a common feature space. Second, it

compares features in this space. Third, it predicts geometric correspondence fields which

serve as pixel-level gradients that enable us to approximate the rasterization backward

pass of our differentiable renderer.

8.2.4 Learned Differentiable Rendering

In the classic rendering pipeline, the only non-differentiable operation is the rasteriza-

tion [171] that determines which pixels of a rendering have to be filled, solves the visibility
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Figure 8.3: To approximate the rasterization backward pass, we predict a geometric correspon-
dence field (left), disperse the predicted 2D displacement of each pixel among the vertices of its
corresponding triangle (middle), and normalize the contributions of all pixels. In this way, we
obtain motion gradients for projected 3D model vertices (right).

of projected triangles, and fills the respective pixels according to a shading computation

(see Section 2.1.1.3). This operation raises one main challenge: There is no inherent rela-

tionship between the vertex locations of a projected triangle and the attribute used to fill

the pixels covered by this triangle. The rasterization backward pass must convert pixel in-

tensity gradients to vertex motion gradients [134]. However, this conversion has no closed

solution and can only be approximated.

We solve this problem using geometric correspondence fields. Instead of actually dif-

ferentiating a loss in the image space which yields per-pixel intensity gradients, we use a

network to predict per-pixel motion gradients in the form of a geometric correspondence

field, as shown in Fig. 8.2. To obtain per-vertex motion gradients, we simply accumulate

all per-pixel motion gradients for the projected triangle vertices of the 3D model, as il-

lustrated in Fig. 8.3. Formally, we compute the motion gradient of a projected 3D model

vertex mi as

∇mi =
1∑

x,y
wax,yw

i
x,y

∑
x,y

wax,yw
i
x,y f(I,R(Pcurr); θ)x,y .

∀x, y : mi ∈ 4IndexMapx,y

(8.6)

In this case, f(I,R(Pcurr); θ) is a geometric correspondence field predicted by our network

f(·) with frozen parameters θ given an RGB image I and concatenated 3D model ren-

derings R(Pcurr) under the current 3D pose estimate Pcurr, wa is a geometric attention

mask, wi is a barycentric weight for mi, and (x, y) is a pixel position. We accumulate

the 2D displacement vectors for all positions (x, y) for which mi is a part of the trian-

gle 4IndexMapx,y that is visible at this position. For this task, we generate an IndexMap

which stores the index of the visible triangle for each pixel during the forward pass of our

differentiable renderer.

Our predicted per-vertex motion gradients ∇mi approximate the second term

in Eq. (8.2) that cannot be computed analytically (also see Eq. (8.3)). In this way,



126 Chapter 8. 3D Pose Refinement with Geometric Correspondence Fields

our approach combines many local per-pixel 2D displacement vectors into per-vertex

motion gradients and further uses these to compute accurate global 3D pose gradients

considering the 3D model geometry and the rendering pipeline. As our experiments

in Section 8.3 show, predicting local 2D displacement vectors is easier than directly

predicting global 3D pose updates and generalizes better to unseen data [159, 313].

Finally, during inference of our system, we perform iterative updates to refine Pcurr. In

each iteration, we compute a 3D pose gradient by evaluating our refinement loop presented

in Fig. 8.2. For our implementation, we use the Adam optimizer [138] with a small learning

rate and perform multiple updates to account for noisy correspondences and achieve the

best accuracy.

8.3 Evaluation

To demonstrate the benefits of our 3D pose refinement approach, we evaluate it on the

challenging Pix3D [258] dataset which provides in-the-wild images for objects of different

categories. Details on the evaluated dataset are presented in Chapter 4. In particular,

we quantitatively and qualitatively compare our approach to state-of-the-art refinement

methods in Section 8.3.2, perform an ablation study in Section 8.3.3, combine our refine-

ment approach with our feed-forward 3D pose estimation (see Chapter 6) and 3D model

retrieval (see Chapter 7) methods to predict fine-grained 3D poses without providing ini-

tial 3D poses or ground truth 3D models in Section 8.3.4, and investigate failure modes

in Section 8.3.5. We follow the evaluation protocol of previous work [86] and report the

median error (MedErr) of multiple geometric distances:

Rotation: The 3D rotation distance

eR =
‖ log(RT

gtRpred)‖F√
2

(8.7)

represents the minimal angle between the ground truth rotation matrix Rgt and the pre-

dicted rotation matrix Rpred [279].

Translation: The 3D translation distance

et =
‖tgt − tpred‖2
‖tgt‖2

(8.8)

gives the relative error between the ground truth translation tgt and the predicted trans-

lation tpred [109].
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Pose: The 3D pose distance

eR,t = avg
M∈M

dbbox
dimg

·
‖transf(M,Rgt, tgt)− transf(M,Rpred, tpred)‖2

‖tgt‖2
(8.9)

represents the average normalized Euclidean distance of all transformed 3D model points

in 3D space [105, 109]. Each 3D point M of the ground truth 3D modelM is transformed

using the ground truth 3D pose (Rgt and tgt) and the predicted 3D pose (Rpred and tpred).

This distance is normalized by the relative size of the object in the image using the ratio

between the ground truth 2D bounding box diagonal dbbox and the image diagonal dimg,

and the L2-norm of the ground truth translation ‖tgt‖2.

Projection: The 2D projection distance

eP = avg
M∈M

‖proj(M,K,Rgt, tgt)− proj(M,K,Rpred, tpred)‖2
dbbox

(8.10)

is the average reprojection error normalized by the ground truth 2D bounding box diagonal

dbbox [288]. In this case, each 3D point M of the ground truth 3D model M is projected

to a 2D location using the ground truth projection parameters (K, Rgt, and tgt) and

the predicted projection parameters (K, Rpred, and tpred). In this work, we assume the

intrinsic matrix K to be known.

8.3.1 Implementation Details

To train our refinement network, we resize and pad images to a spatial resolution of

256× 256 while maintaining the aspect ratio. In this way, we are able to combine images

with different aspect ratios in the same training batch. For our mapping branches, we

adapt a ResNet-50 [99, 100] architecture. We utilize all layers up to the end of the first

stage but use a stride of 1 for all convolutional layers and discard max pooling layers. For

our correspondence branch, we use a channel dimensionality of 64 for all convolutional

layers except the output layer.

During training of our system, we optimize our joint network f(·) consisting of our

two mapping braches and our correspondence branch on random 3D pose perturbations,

as described in Section 8.2.3. In addition to these artificial 3D pose perturbations, we

employ different forms of data augmentation like mirroring, affine transformations, and

independent pixel augmentations like additive or multiplicative noise for the RGB image.

To regularize this loss, we use L2 weight decay with a factor of 1e−5. We train our

network f(·) for 1500 epochs using the Adam optimizer [138] with an initial learning rate

of η = 1e−3. We use a minibatch size of 8 and decrease the learning rate by a factor of 5

after 1000 and 1400 epochs.

3D model vertices belonging to self-occluded triangles [134] or to visible triangles which

are masked out by our geometric attention module do not receive gradients. However, since
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the geometry is fixed, providing gradients for a subset of all 3D model vertices is sufficient

to perform 3D pose refinement.

8.3.2 Comparison to the State of the Art

We compare our approach to state-of-the-art refinement methods. For this purpose, we

perform 3D pose refinement on top of an initial 3D pose estimation baseline. In partic-

ular, we predict initial 3D poses using our feed-forward approach presented in Chapter 6

(Baseline) which is the state of the art for single image 3D pose estimation on the Pix3D

dataset. We compare our refinement approach to traditional image-based refinement with-

out differentiable rendering [313] (Image Refinement) and mask-based refinement with

differentiable rendering [134] (Mask Refinement).

RGB-based refinement with differentiable rendering [171] is not possible in our setup

because all available 3D models lack textures and materials. This approach even fails if

we compare grey-scale images and renderings because the monochrome image intensities

at corresponding locations do not match. As a consequence, 2D-3D alignment using a

photo-metric loss is impossible.

For Image Refinement, we use grey-scale instead of RGB renderings because all avail-

able 3D models lack textures and materials. In addition, we do not perform a single

full update [313] but perform up to 1000 iterative updates with a small learning rate of

η = 0.05 using the Adam optimizer [138] for all methods.

For Mask Refinement, we predict instance masks from the input RGB image using

Mask R-CNN [96]. To achieve maximum accuracy, we internally predict masks at four

times the original spatial resolution proposed in Mask R-CNN and fine-tune a model

pre-trained on COCO [165] on Pix3D.

8.3.2.1 Quantitative Results

First, Table 8.1 presents quantitative 3D pose refinement results for individual categories

on Pix3D. In this experiment, we provide the ground truth 3D model of the object in

the image for refinement. For completeness, we additionally report the detection accuracy

AccD0.5 which gives the percentage of objects for which the intersection over union between

the ground truth 2D bounding box and the predicted 2D bounding box is larger than

50% [303]. We do not make 3D pose predictions or perform 3D pose refinement for objects

which are not detected by the baseline [86]. However, the reported MedErr metrics are

computed over all samples, both detected and not detected.

Compared to the baseline, Image Refinement only achieves a small improvement in the

3D rotation, 3D translation, and 3D pose metrics. There is almost no improvement in the

projection metric (MedErrP ) as this method does not minimize the reprojection error.

Traditional refinement methods are not aware of the rendering pipeline and the underlying

3D scene geometry and can only provide coarse 3D pose updates [313]. In our in-the-wild

scenario, the number of 3D models, possible 3D pose perturbations, and category-level
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Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Baseline [86]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [313] 4.65 5.45 4.60 3.38
Mask Refinement [134] 3.03 4.04 3.07 2.00
Our Refinement 2.40 1.84 1.45 1.28

Baseline [86]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [313] 7.10 5.31 3.68 3.34
Mask Refinement [134] 4.42 4.89 3.17 1.79
Our Refinement 2.96 1.77 1.23 1.17

Baseline [86]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [313] 4.30 3.87 3.15 2.54
Mask Refinement [134] 2.97 2.89 2.25 1.54
Our Refinement 2.28 1.36 1.19 1.08

Baseline [86]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [313] 9.81 7.07 5.80 5.40
Mask Refinement [134] 3.81 4.44 3.34 2.27
Our Refinement 2.59 2.00 1.48 1.55

Baseline [86]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [313] 6.46 5.43 4.31 3.67
Mask Refinement [134] 3.56 4.06 2.96 1.90
Our Refinement 2.56 1.74 1.34 1.27

Table 8.1: Quantitative 3D pose refinement results for individual categories on the Pix3D dataset.
In this experiment, we provide the ground truth 3D model for refinement. We outperform existing
methods across all categories and all metrics by a large margin.

appearance variations is too large to simulate all permutations during training. As a

consequence, this method cannot generalize to examples which are far from the ones seen

during training and only achieves small improvements.

Next, Mask Refinement improves upon Image Refinement by a large margin across

all metrics. Due to the 2D-3D alignment with differentiable rendering, this method com-

putes more accurate 3D pose updates and additionally reduces the reprojection error

(MedErrP ). However, we observe that Mask Refinement fails in two common situations:

First, when the object has holes and the mask is not a single blob the refinement fails

(see Fig. 8.7, 2nd and 3rd row). In the presence of holes, the hand-crafted approximation

for the rasterization backward pass accumulates gradients with alternating signs while

traversing the image. This results in unreliable per-vertex motion gradients. Second, sim-

ply aligning the silhouette of objects is ambiguous as renderings under different 3D poses

can have similar masks. The interior structure of the object is completely ignored. As a

consequence, the refinement gets stuck in poor local minima. Finally, the performance of

Mask Refinement is limited by the quality of the predicted masks [96].

In contrast, our refinement overcomes these limitations and significantly outperforms

the baseline as well as competing refinement methods across all metrics by up to 70% and
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(b) Retrieved 3D models

Figure 8.4: Evaluation on 3D pose accuracy at different thresholds. We significantly outperform
other methods on strict thresholds using both ground truth and retrieved 3D models. The curves
show that our approach performs especially well in the fine-grained regime.

55% relative. In fact, we do not only increase the mean performance over all categories

but also achieve state-of-the-art results for each individual category. Using our geometric

correspondence fields, we bridge the domain gap between real-world images and synthetic

renderings, compute accurate global 3D pose updates, and precisely align both the object

outline as well as interior structures.

Our approach performs especially well in the fine-grained regime, as shown in Fig. 8.4a.

In this experiment, we plot the 3D pose accuracy AccR,t which gives the percentage of

samples for which the 3D pose distance eR,t is smaller than a varying threshold. For strict

thresholds close to zero, our approach outperforms other refinement methods by a large

margin. For example, at the threshold 0.015, we achieve more than 55% accuracy while

the runner-up Mask Refinement achieves only 19% accuracy.

8.3.2.2 Iterative Refinement

In this section, we analyze the iterative refinement behavior of different methods. Fig. 8.5

shows the performance of different refinement methods after varying numbers of iterations.

In this experiment, we report the 3D pose metric MedErrR,t as a function of the number

of 3D pose updates. The baseline does not perform iterative updates, thus, the MedErrR,t
is constant for different iterations.

For Image Refinement [313], the accuracy increases until 20 iterations but then starts

to decrease. After the first couple of coarse refinement steps, the predicted updates are

not accurate enough to refine the 3D pose but start to jitter without further improving the

3D pose. Moreover, for many objects the prediction fails and the iterative updates cause

the 3D pose to drift off which results in high MedErrR,t for large numbers of iterations.

Empirically, we obtain the best overall results for this method using only 20 iterations.
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Figure 8.5: Evaluation on 3D pose refinement after varying numbers of iterations. In contrast
to other methods, our refinement achieves a consistent improvement upon the baseline, increasing
with the number of iterations, as discussed in Section 8.3.2.2.

Thus, we only perform Image Refinement with 20 iterative 3D pose updates in all other

experiments. For all other methods based on differentiable rendering, we achieve the best

accuracy after the full 1000 iterations.

For Mask Refinement [134], we observe an opposite effect. In the beginning, the

accuracy decreases but then the performance increases. This is due to degenerated masks

predicted from RGB images by Mask R-CNN [96]. The mask prediction often fails to

capture fine-grained and thin structures, e.g., ornaments and legs of a bed (see Fig. 8.6).

These degenerated masks cause large gradients during refinement and quickly pull the 3D

pose away from the reasonable initial estimate predicted by the baseline (also see Fig. 8.7,

2nd and 3rd row). After five iterations the refinement on samples with correctly predicted

masks counteracts this effect and the performance improves.

Image
Ground Truth Predicted Ground Truth Baseline [86] Mask Ref. [134]

Mask Mask 3D Pose 3D Pose 3D Pose

Figure 8.6: Typical failure case of Mask Refinement [134]. Degenerated predicted masks cause
large gradients during refinement and quickly pull the 3D pose away from reasonable initial es-
timates by the baseline. As a consequence, the 3D pose refinement using Mask Refinement fails
(also see Fig. 8.7, 3rd row).

In contrast to other refinement methods, our approach achieves a consistent improve-

ment upon the baseline, monotonically increasing with the number of iterations. As ex-

pected, the accuracy saturates for large numbers of iterations. Empirically, we achieve
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Method Time per Iteration

Image Refinement [313] 86.5 ms
Mask Refinement [134] 29.7 ms
Our Refinement 36.0 ms

Table 8.2: Average computation times of different refinement methods for a single iteration using
a Titan X GPU. For all evaluated methods, the execution time for computing a single 3D pose
update is within the same order of magnitude.

maximum accuracy by performing 1000 3D pose updates using the Adam optimizer [138]

with a learning rate of η = 0.05.

Finally, Table 8.2 compares the computation times of different refinement methods.

Image Refinement evaluates two large ResNet-style networks [99] during inference and,

thus, is the slowest of our evaluated refinement methods.

Mask Refinement generates a mask rendering, computes a loss in the mask space, and

performs the backward pass of its differentiable renderer in each iteration. This method

is the fastest in our evaluation since the target mask predicted from the input RGB image

by Mask R-CNN [96] does not change during refinement. It is only predicted once before

the iterative process and the inference time of Mask R-CNN is not considered in this

experiment.

Our refinement is only marginally slower than Mask Refinement because we just eval-

uate our efficient network branches in addition to the forward and backward pass of our

differentiable renderer in each iteration. However, all evaluated refinement methods show

comparable execution time within the same order of magnitude for computing a single 3D

pose update.

8.3.2.3 Qualitative Results

The significant quantitative performance improvement of our refinement method com-

pared to the state of the art is also reflected in numerous qualitative examples presented

in Figs. 8.7 to 8.9. Our approach precisely aligns 3D models to objects in RGB images and

computes 3D poses which are in many cases visually indistinguishable from the ground

truth. Even if the initial 3D pose estimate (Baseline) is significantly off, our method can

converge towards the correct 3D pose (see Fig. 8.7, 1st row).

Finally, Fig. 8.10 illustrates the high quality of our predicted geometric correspondence

fields. Our predicted 2D displacement vectors are highly accurate for many different

objects and scales, even though we address objects of all categories with a single class-

agnostic network. We restrict the correspondence prediction to visible object surface

regions with significant geometric discontinuities which are identified by our geometric

attention module. The examples also show our computed geometric attention masks

outlined in white underneath the 2D displacement vectors.
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Ground Truth Baseline [86] Image Ref. [313] Mask Ref. [134] Our Ref.

3D Pose 3D Pose 3D Pose 3D Pose 3D Pose

Figure 8.7: Qualitative 3D pose refinement results for objects of different categories. We project
the ground truth 3D model onto the image using the 3D pose predicted by different methods. Our
approach overcomes the limitations of previous methods and predicts fine-grained 3D poses which
are in many cases visually indistinguishable from the ground truth.
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Image
Ground Truth Baseline [86] Image Ref. [313] Mask Ref. [134] Our Ref.

3D Pose 3D Pose 3D Pose 3D Pose 3D Pose

Figure 8.8: Qualitative 3D pose refinement results for objects of different categories. We project
the ground truth 3D model onto the image using the 3D pose predicted by different methods. Our
approach overcomes the limitations of previous methods and predicts fine-grained 3D poses which
are in many cases visually indistinguishable from the ground truth.
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Image
Ground Truth Baseline [86] Image Ref. [313] Mask Ref. [134] Our Ref.

3D Pose 3D Pose 3D Pose 3D Pose 3D Pose

Figure 8.9: Qualitative 3D pose refinement results for objects of different categories. We project
the ground truth 3D model onto the image using the 3D pose predicted by different methods. Our
approach overcomes the limitations of previous methods and predicts fine-grained 3D poses which
are in many cases visually indistinguishable from the ground truth.
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Baseline [86] Ground Truth Predicted

3D Pose Geo. Corr. Field Geo. Corr. Field

Baseline [86] Ground Truth Predicted

3D Pose Geo. Corr. Field Geo. Corr. Field

Figure 8.10: Qualitative examples of our predicted geometric correspondence fields. Our pre-
dicted 2D displacement vectors are highly accurate. Our computed geometric attention masks are
outlined in white underneath the 2D displacement vectors.
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Rotation Translation Pose Projection

Method
MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Ours less receptive 3.01 2.12 1.75 1.56
Ours fewer layers 2.84 1.98 1.58 1.41
Ours shallow features 2.76 2.00 1.55 1.42
Ours without attention 2.70 1.92 1.45 1.37
Ours only MASK 2.98 1.85 1.44 1.41
Ours only LF 2.57 1.80 1.39 1.31
Ours only DEPTH 2.60 1.77 1.38 1.29
Ours only NORMAL 2.58 1.76 1.36 1.30
Ours 2.56 1.74 1.34 1.27

Table 8.3: Ablation study of our method. Using components which increase the discriminability
of learned features is most important for the performance of our approach.

8.3.3 Ablation Study

To understand the importance of individual components in our system, we conduct an

ablation study in Table 8.3. For this purpose, we modify a specific system component,

retrain our approach, and evaluate the performance impact.

If we use smaller kernels with less receptive field (3 × 3 versus 7 × 7) or fewer layers

(2 versus 4) in our correspondence branch, the performance drops significantly. Also,

using shallow mapping branches which only employ a single Conv-BN-ReLU block to

simulate simple edge and ridge features results in low accuracy because the computed

features are not discriminative enough. If we perform refinement without our geometric

attention mechanism, the accuracy degrades due to unreliable correspondence predictions

in homogeneous regions.

Next, the choice of the rendered representation is important for the performance of

our approach. Using masks only performs poorly because masks discard valuable shape

information which makes 2D-3D alignment ambiguous. In contrast, depth, normal, and

location field renderings increase the accuracy. Finally, we achieve the best accuracy by

exploiting complementary information from multiple different renderings by concatenating

depth, normal, and location field renderings.

8.3.4 3D Model Retrieval

So far, we assumed that the ground truth 3D model required for 3D pose refinement is

given. However, we can overcome this limitation by automatically retrieving 3D models

from single RGB images. For this purpose, we combine all refinement approaches with

our 3D model retrieval method presented in Chapter 7, where the 3D model database

essentially becomes a part of the trained model. In this way, we perform initial 3D pose
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Detection Rotation Translation Pose Projection

Method Category AccD0.5

MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Baseline [86]

bed 99.0

5.07 6.68 5.18 3.42
Image Refinement [313] 4.65 5.86 4.41 3.38
Mask Refinement [134] 4.40 5.32 4.21 2.69
Our Refinement 2.95 2.75 2.18 1.83

Baseline [86]

chair 95.2

7.36 5.49 3.90 3.32
Image Refinement [313] 7.15 5.21 3.67 3.35
Mask Refinement [134] 7.22 6.32 4.53 3.31
Our Refinement 4.89 2.87 2.04 2.19

Baseline [86]

sofa 96.5

4.40 4.96 3.78 2.57
Image Refinement [313] 4.34 3.75 3.02 2.54
Mask Refinement [134] 3.33 3.00 2.34 1.63
Our Refinement 2.60 1.60 1.42 1.19

Baseline [86]

table 94.0

10.18 7.72 6.17 5.54
Image Refinement [313] 9.73 7.23 6.22 5.68
Mask Refinement [134] 6.92 6.34 5.52 4.85
Our Refinement 4.73 3.38 2.93 3.49

Baseline [86]

mean 96.2

6.75 6.21 4.76 3.71
Image Refinement [313] 6.47 5.51 4.33 3.74
Mask Refinement [134] 5.47 5.25 4.15 3.12
Our Refinement 3.79 2.65 2.14 2.18

Table 8.4: Quantitative 3D pose refinement results for individual categories on the Pix3D dataset.
In this experiment, we retrieve 3D models for refinement using our method presented in Chapter 7.
We outperform existing methods across all categories and all metrics by a large margin.

estimation, 3D model retrieval, and 3D pose refinement given only a single RGB image

at runtime. This setting allows us to benchmark refinement methods against feed-forward

baselines in a fair comparison.

The corresponding results are presented in Table 8.4 and Fig. 8.4b. Because the

retrieved 3D models often differ from the ground truth 3D models, the refinement perfor-

mance decreases compared to the case of given ground truth 3D models. Differentiable

rendering methods lose more accuracy than traditional refinement methods because they

require 3D models with accurate geometry.

Still, all refinement approaches perform remarkably well with retrieved 3D models.

As long as the retrieved 3D model is reasonably close to the ground truth 3D model in

terms of geometry, our refinement succeeds. Our method achieves even lower 3D pose

error (MedErrR,t) with retrieved 3D models than Mask Refinement with ground truth

3D models. Finally, using our joint 3D pose estimation-retrieval-refinement pipeline, we

reduce the 3D pose error (MedErrR,t) compared to the state of the art for single image

3D pose estimation on Pix3D (Baseline) by 55% relative without using additional inputs.

A summary on the refinement performance of different methods using both ground truth

3D models and retrieved 3D models is shown in Table 8.5.
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Rotation Translation Pose Projection

Method Input
MedErrR MedErrt MedErrR,t MedErrP
·1 ·102 ·102 ·102

Baseline [86] RGB Image 6.75 6.21 4.76 3.71

Image Refinement [313] RGB Image + 3D Model 6.46 5.43 4.31 3.67
Mask Refinement [134] RGB Image + 3D Model 3.56 4.06 2.96 1.90
Our Refinement RGB Image + 3D Model 2.56 1.74 1.34 1.27

Image Refinement [313] + Retrieval [87] RGB Image 6.47 5.51 4.33 3.74
Mask Refinement [134] + Retrieval [87] RGB Image 5.47 5.25 4.15 3.12
Our Refinement + Retrieval [87] RGB Image 3.79 2.65 2.14 2.18

Table 8.5: Summary of our quantitative results on the Pix3D dataset. In the case of provided
ground truth 3D models, our refinement significantly outperforms previous refinement methods
across all metrics by up to 55% relative. In the case of automatically retrieved 3D models (+
Retrieval [87]), we reduce the 3D pose error (MedErrR,t) compared to the state of the art for
single image 3D pose estimation on Pix3D (Baseline) by 55% relative without using additional
inputs at runtime.

8.3.5 Failure Modes

Finally, Fig. 8.11 shows failure modes of our approach. We observe that our refinement

method does not converge if the initial 3D pose is too far from the ground truth 3D pose.

In this case, we cannot predict accurate correspondences because our computed features

are not robust to large viewpoint changes and the receptive field of our correspondence

branch is limited. Also, strong image noise and duplicate or ambiguous structures in the

image confuse our refinement. In these cases, our method sometimes fails and aligns the

3D model to wrong parts of the RGB image.

In addition, occlusions cause our refinement to fail because there are no explicit mech-

anisms to address them. Neither traditional refinement methods [159, 181, 313], nor dif-

ferentiable rendering based refinement methods [134, 171, 200], nor our approach employ

explicit mechanisms to deal with occlusions. For example, one issue across all evaluated

methods is that they align renderings to real-world images but occlusions are only present

in the real-world images while the renderings are always un-occluded. Also, simply train-

ing methods based on feed-forward CNNs on occluded objects is in practice not sufficient

to handle occlusions [198]. However, we specifically plan to address occlusions in the future

by predicting occlusion masks and correspondence confidences.

8.4 Conclusion

Aligning 3D models to objects in RGB images is the most accurate way to predict 3D

poses. However, there is a domain gap between real-world images and renderings which

makes this alignment challenging in practice. To address this problem, we predict deep

cross-domain correspondences in a feature space optimized for 3D pose refinement and

use differentiable rendering to combine local 2D correspondences into a global 3D pose

update. Our method outperforms existing refinement approaches by up to 55% relative
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Figure 8.11: Failure cases of our approach. If the initial 3D pose is too far from the ground truth
3D pose (1st row), if the image is degraded by strong noise (2nd row), or if there are duplicate or
ambiguous structures in the image (3rd row), our refinement does not converge. In these cases, we
cannot predict accurate correspondences in the form of geometric correspondence fields and align
the 3D model to wrong parts of the RGB image.

and can be combined with feed-forward 3D pose estimation and 3D model retrieval to

predict fine-grained 3D poses given only a single RGB image. Finally, our novel learned

differentiable rendering framework can be used for other tasks in the future.
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In this final chapter, we draw conclusions by summarizing our contributions presented

in Chapters 5 to 8 and discussing future research directions.

9.1 Summary

In this thesis, we advanced the state of the art in single image 3D vision for objects in

the wild. We presented novel methods for estimating different 3D properties which con-

tribute to a holistic 3D scene understanding. Our methods perform object detection, 3D

pose estimation, 3D dimension estimation, 3D model retrieval, and estimation of camera

intrinsics given only a single RGB image. All of our proposed methods use sophisticated

combinations of deep learning and geometry to leverage prior information via learning

while exploiting geometric constraints on the desired solutions.

We first introduced a novel 3D pose estimation and 3D model retrieval approach for

objects of arbitrary categories in Chapter 5. This method estimates the 3D pose of an

object from predicted virtual 2D-3D correspondences in a category-agnostic way. In par-

ticular, our method predicts the 3D coordinates of the 3D bounding box corners of an

object as well as their 2D image locations and recovers the 3D pose using a PnP algo-

rithm. We then showed that the 3D pose of an object provides an effective prior for 3D

model retrieval by comparing RGB images of objects only to 3D model renderings under

141
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our predicted 3D pose. Utilizing this prior significantly increases the retrieval performance

while reducing the computational complexity. Further, we showed that our approach is

efficient at runtime as it supports offline pre-computed 3D shape descriptors for 3D model

retrieval.

In Chapter 6, we proposed improvements to the 3D pose estimation part of our ap-

proach introduced in Chapter 5. In particular, we integrated our 3D pose estimation

method into an object detection pipeline to deal with multiple objects at different scales

in a single image. Additionally, we augmented our system to estimate the camera focal

length and presented a joint optimization which enforces a geometric consensus between

predicted 3D poses and the focal length. In this way, we exploited the geometric prior

given by the focal length for 3D pose estimation and significantly improved our 3D pose

estimates. Finally, we compared different forms of 2D-3D correspondences for 3D pose es-

timation. In addition to sparse 2D-3D bounding box corner correspondences, as presented

in Chapter 5, we evaluated dense 2D-3D correspondences in the form of location fields.

In Chapter 7, we proposed improvements to the 3D model retrieval part of our approach

introduced in Chapter 5. In particular, we presented a novel approach to compute 3D

shape descriptors. This method first maps RGB images and 3D models to a common

pose aware low-level representation in the form of location fields and then computes pose

invariant 3D shape descriptors for retrieval. We showed that this method learns more

discriminative 3D shape descriptors, effectively exploits training on a virtually infinite

amount of synthetic data, and yields visually interpretable intermediate predictions that

unblackbox our system. This results in increased 3D model retrieval performance while

significantly reducing the size of the offline pre-computed 3D shape descriptor database

compared to our previous approach presented in Chapter 5.

Finally, we presented a novel 3D pose refinement strategy based on differentiable ren-

dering in Chapter 8. By reprojecting our retrieved 3D models under our predicted 3D

poses computed as described in Chapters 5 to 7, we established a feedback loop which we

used to improve our predicted 3D poses. Our method compares RGB images and 3D model

renderings in a feature space which is optimized for 3D pose refinement and additionally

learns to approximate the non-differentiable rasterization backward pass in differentiable

rendering. We showed that this method precisely aligns 3D models to objects in RGB

images and computes 3D poses which are in many cases visually indistinguishable from

ground truth 3D poses.

Our methods gradually contributed to a joint system that infers a semantic 3D recon-

struction of a scene given only a single RGB image. This system is able to detect multiple

objects of arbitrary categories at different scales, estimate a 3D pose for each object, re-

trieve a 3D model for each object, predict the focal length of the camera, and jointly

refine all predictions using differentiable rendering. In this way, we achieve a compact but

detailed high-level 3D scene understanding with rich semantics and object hierarchies that

paves the way for a host of applications.
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9.2 Future Directions

While our proposed methods achieve remarkable performance in many scenarios, there

is always room for improvement. In the following, we discuss possible future research

directions to improve the accuracy and robustness of single image 3D vision for objects in

the wild.

Large-Scale Datasets: Today, state-of-the-art approaches in almost all computer vi-

sion disciplines are data-driven [96]. Many of these approaches including our proposed

methods internally rely on deep learning systems. However, deep learning systems require

massive amounts of data to achieve high performance. Data is the fuel for their success.

In fact, the simplest and most effective strategy to improve the accuracy and robustness

of learning-based systems is to provide them with more data during training.

While there are large-scale datasets for 2D object recognition tasks like classifica-

tion [233] or detection [165], data in the form of 2D images with 3D annotations is scarce,

as discussed in Chapter 4. One reason for this dilemma is that labeling 3D properties

for 2D images is hard and time-consuming [288, 303]. Labeling 3D properties requires

domain expertise and numerous 3D labels have many interacting degrees of freedom that

cannot be annotated independently of each other. For example, to provide a complete 3D

labeling for an arbitrary image captured in the wild, an annotator needs to reconstruct

the entire scene in 3D which possibly requires crafting a 3D model for each object from

scratch using computer-aided design.

As a consequence of this cumbersome annotation process, not only the amount of

available images with 3D labels is limited but also the quality of the annotations is in-

sufficient [302]. In many cases, images are only partially labeled, inaccurately labeled, or

even mislabeled such that there is a high degree of label noise in the data. Due to this

lack of data, deep learning systems for 3D tasks have not seen the same success as deep

learning systems for 2D tasks. Thus, efficient but accurate 3D labeling techniques are a

fundamental future requirement. Ideally, automated or semi-automated labeling of 3D

properties should be exploited to speed up the annotation process.

However, large-scale datasets are not enough. In fact, we require datasets that densely

sample and accurately represent the distribution of natural images encountered in specific

tasks. For example, a dataset consisting of a billion 2D images with perfect 3D annotations

showing the same dining room with a table and four chairs is not sufficient to train a

model that accurately and robustly detects arbitrary chairs in the wild. In this context,

our experiments showed that deep learning systems fail if the examples encountered during

testing are far from the examples seen during training. Thus, we require datasets that

resemble the diversity of the actual problem.

Synthetic Data: One strategy to satisfy the thirst of deep learning systems for data is

to rely on synthetic data during training [257]. Generating RGB images by rendering 3D
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scenes provides perfect and free 3D annotations. However, there is a significant domain

gap between real-world RGB images and rendered RGB images which limits the benefit

of synthetic data in practice, as discussed in Chapter 4.

This domain gap is caused by a variety of different reasons. For example, many 3D

models only provide geometry but no textures or materials [302, 303]. In contrast, 3D

models with color information often provide unrealistic textures and materials [33]. Many

rendering pipelines use simple shading computations based on naive reflection assumptions,

rely on primitive lighting, and ignore real camera effects [4]. Moreover, many 3D models

are rendered in isolation. Thus, the rendered 3D scene only consists of a single 3D model

and there are no geometrically plausible occlusions, shadows, or indirect light sources.

Further, many renderings are poorly integrated into natural image backgrounds in a post-

processing step [257] or entirely lack backgrounds [185]. As a consequence of these naive

rendering setups and over-simplified assumptions, many rendered RGB images are not

photo-realistic and do not mirror the distribution of natural images.

However, there is a large amount of 3D content with a high degree of realism but it

is currently too difficult to access or not effectively used. For example, the CARLA [49]

simulator provides an open-source platform for autonomous driving research in which many

objects interact in physically plausible ways in a realistic setup. Similarly, Habitat [239]

is a simulation platform for research in embodied artificial intelligence. Moreover, modern

video games provide complex simulations with sophisticated shading and advanced physics.

While many top titles are closed source, some games offer APIs to extract information1 and

there are even successful attempts to extract 3D labels during the simulation [227, 228].

Finally, many 3D artists target hyper-realism. They use complex 3D scenes, physically-

based materials, realistic textures, full global illumination [52, 129], and advanced com-

positing to generate renderings which are visually indistinguishable from real-world images.

This kind of 3D content is typically generated for advertisements, movies, and architec-

tural scenes2. However, gathering photo-realistic renderings with perfect and free 3D

annotations from existing 3D content is a promising future direction to efficiently collect

data and improve the accuracy and robustness of learning-based approaches.

Beyond Supervised Learning: In this work, we focused on supervised learning, where

pairs of corresponding inputs and outputs are available during training. However, there are

techniques that do not require manually assigned output labels for learning. For example,

self-supervised learning methods [78, 79, 289] automatically generate labels for training

data without human intervention. In this case, known constraints between multiple cam-

eras [219], fixed objects in video streams [160], or defocus cues [92] can be exploited to

generate supervision. Further, unsupervised learning [106] is a way to discover patterns

without providing labels. In this way, concepts like 3D pose can be learned from con-

strained collections of data [120, 133, 226]. Finally, reinforcement learning [261] makes

1https://www.projectcarsgame.com
2https://www.cgarchitect.com

https://www.projectcarsgame.com
https://www.cgarchitect.com
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it possible to learn an algorithm to address tasks like 3D pose estimation [148]. In sum-

mary, learning beyond supervised samples is a promising future direction to increase the

generalization of single image 3D vision systems.

Network Architectures for 3D Tasks: In recent years, deep learning systems have

significantly improved the state of the art across different computing disciplines like speech

recognition [107] and image processing [99]. In this context, many breakthroughs arose

from the active participation of lots of researchers in extremely competitive benchmark

breaking challenges like ImageNet classification [233]. Specifically, there has been a run

on designing neural network architectures that increase classification performance.

However, the success of certain architectures in popular benchmarks has led to a para-

dox transfer learning trend in computer vision. In particular, many researchers adopt

network architectures trained for one task and only make minimal changes to address

another task, e.g., only adjust the output layer dimensionality. In this way, they hope

that (1) architectural advances on the original task transfer to improved performance on

the new task, (2) feature extraction learned on the original task compensates for limited

training data on the new task, and (3) a pre-trained model reduces the training time and

makes it possible to train a large network with limited computational resources by freezing

a significant number of weights in early layers. For example, many 3D pose estimation

approaches [85, 217, 257, 279] build on network architectures that are over-engineered for

the task of ImageNet classification [99, 146, 250].

While the capacity of these network architectures is large enough to approximate many

functions well, this strategy is not optimal. In fact, the architecture of a network provides

a strong prior but different tasks have different requirements. For example, translation in-

variance, e.g., encouraged by pooling layers, is a beneficial property for classification tasks

but not for detection tasks, where the precise spatial location of features is important. Ob-

ject detection, in turn, benefits from translation equivariance, where spatial input transla-

tions produce proportional spatial features translations. Similarly, network architectures

that enforce rotation equivariance could provide a useful prior for 3D tasks [55, 56, 295].

Thus, specifically designing architectures for 3D tasks has the potential to significantly

improve the accuracy and robustness of single image 3D vision in the wild.

However, instead of hand-crafting network architectures based on empirical trial and

error, the architecture of a network can also be seen as an optimizable hyperparameter.

In this way, neural architecture search [54] can be performed to learn architectures that

are optimized for a particular task.

Differentiable Geometric Algorithms: Continuing the idea of the previous para-

graph, a deep learning system is not limited to a sequence of convolutional and fully

connected layers. In fact, a series of diverse differentiable modules can implement more

complex algorithms while exploiting domain expertise. In this context, formulating geo-

metric algorithms in a differentiable way makes it possible to effectively address problems
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which are inconvenient to solve using conventional interconnected neurons. For example,

differentiable implementations of geometric transformations [96, 124], 2D keypoint detec-

tion and description [38, 47, 310], or robust estimation techniques like RANSAC [23, 25, 26]

provide advanced functionality for complex but end-to-end trainable systems. While there

have been successful attempts to make many geometric algorithms differentiable and in-

tegrate them into deep learning systems, there is still plenty of room for improvement.

Finally, differentiable rendering [171] is a powerful concept that provides inverse graph-

ics capabilities by computing gradients for 3D scene parameters from 2D image observa-

tions, as shown in Chapter 8. A differentiable renderer provides a universally applicable

tool for single image 3D vision that avoids the need for complex and specialized hand-

crafted systems. However, even though numerous approximations for differentiable ren-

dering have been proposed [102, 134, 167], the problem is still considered unsolved.
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[51] M. Dubská, A. Herout, R. Juránek, and J. Sochor. Fully Automatic Roadside Cam-

era Calibration for Traffic Surveillance. IEEE Transactions on Intelligent Trans-

portation Systems, 16(3):1162–1171, 2015. (page 48)

[52] P. Dutre, P. Bekaert, and K. Bala. Advanced Global Illumination. CRC Press, 2018.

(page 9, 23, 53, 144)

[53] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing &

Modeling: A Procedural Approach. Morgan Kaufmann, 2003. (page 24)

[54] T. Elsken, J. H. Metzen, and F. Hutter. Neural Architecture Search: A Survey.

arXiv:1808.05377, 2018. (page 35, 39, 145)



152

[55] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis. Learning SO(3)

Equivariant Representations with Spherical CNNs. In European Conference on Com-

puter Vision, pages 52–68, 2018. (page 46, 145)

[56] C. Esteves, A. Sud, Z. Luo, K. Daniilidis, and A. Makadia. Cross-Domain 3D

Equivariant Image Embeddings. In International Conference on Machine Learning,

pages 1812–1822, 2019. (page 43, 145)

[57] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The Pascal

Visual Object Classes (VOC) Challenge. International Journal of Computer Vision,

88(2):303–338, 2010. (page 54)

[58] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D Object

Reconstruction from a Single Image. In Conference on Computer Vision and Pattern

Recognition, pages 605–613, 2017. (page 45)

[59] O. D. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT

Press, 1993. (page 21, 47)

[60] L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene

Categories. In Conference on Computer Vision and Pattern Recognition, pages 524–

531, 2005. (page 10)

[61] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection

with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(9):1627–1645, 2009. (page 10, 37, 38, 42)

[62] J. Feng, Y. Wang, and S.-F. Chang. 3D Shape Retrieval Using Single Depth Image

from Low-Cost Sensors. In IEEE Winter Conference on Applications of Computer

Vision, pages 1–9, 2016. (page 62)

[63] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.

Communications of the ACM, 24(6):381–395, 1981. (page 10, 25)

[64] J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes, and E. Angel. Computer

Graphics: Principles and Practice. Prentice Hall Professional Technical Reference,

2002. (page 22, 23)

[65] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall

Professional Technical Reference, 2002. (page 7, 19)

[66] K. Frankish and W. M. Ramsey. The Cambridge Handbook of Artificial Intelligence.

Cambridge University Press, 2014. (page 1)



BIBLIOGRAPHY 153

[67] Y. Freund and R. E. Schapire. A Desicion-Theoretic Generalization of On-Line

Learning and an Application to Boosting. In European Conference on Computational

Learning Theory, pages 23–37, 1995. (page 38)

[68] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete Solution Classification

for the Perspective-Three-Point Problem. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 25(8):930–943, 2003. (page 10, 25)

[69] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets Robotics: The

KITTI Dataset. International Journal of Robotics Research, 32(11):1231–1237, 2013.

(page 52)

[70] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, and W. T. Freeman. Unsu-

pervised Training for 3D Morphable Model Regression. In Conference on Computer

Vision and Pattern Recognition, pages 8377–8386, 2018. (page 48, 49)

[71] R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learning a Predictable and

Generative Vector Representation for Objects. In European Conference on Computer

Vision, pages 484–499, 2016. (page 47, 53, 62, 98, 99)

[72] R. Girshick. Fast R-CNN. In International Conference on Computer Vision, pages

1440–1448, 2015. (page 31, 39)

[73] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation. In Conference on Computer

Vision and Pattern Recognition, pages 580–587, 2014. (page 39)

[74] R. Girshick, P. F. Felzenszwalb, and D. A. Mcallester. Rich Feature Hierarchies

for Accurate Object Detection and Semantic Segmentation. In Advances in Neural

Information Processing Systems, pages 442–450, 2011. (page 38)

[75] G. Gkioxari, J. Malik, and J. Johnson. Mesh R-CNN. In Conference on Computer

Vision and Pattern Recognition, pages 9785–9795, 2019. (page 11, 39, 45)

[76] X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedfor-

ward Neural Networks. In International Conference on Artificial Intelligence and

Statistics, pages 249–256, 2010. (page 33)

[77] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural Networks. In

International Conference on Artificial Intelligence and Statistics, pages 315–323,

2011. (page 29)

[78] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised Monocular Depth

Estimation with Left-Right Consistency. In Conference on Computer Vision and

Pattern Recognition, pages 270–279, 2017. (page 144)



154

[79] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into Self-

Supervised Monocular Depth Estimation. In International Conference on Computer

Vision, pages 3828–3838, 2019. (page 144)

[80] G. H. Golub and C. Reinsch. Singular Value Decomposition and Least Squares

Solutions. In Linear Algebra, pages 134–151. Springer, 1971. (page 24)

[81] G. H. Golub and C. F. Van Loan. Matrix Computation. The John Hopkins University

Press, 1996. (page 24)

[82] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

(page 2, 10, 27, 28, 31, 32, 33, 35)

[83] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Nets. In Advances in Neu-

ral Information Processing Systems, pages 2672–2680, 2014. (page 2)

[84] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial

Examples. In International Conference for Learning Representations, pages 1–8,

2015. (page 2)

[85] A. Grabner, P. M. Roth, and V. Lepetit. 3D Pose Estimation and 3D Model Retrieval

for Objects in the Wild. In Conference on Computer Vision and Pattern Recognition,

pages 3022–3031, 2018. (page 46, 76, 77, 80, 85, 99, 105, 106, 107, 118, 145)

[86] A. Grabner, P. M. Roth, and V. Lepetit. GP2C: Geometric Projection Parameter

Consensus for Joint 3D Pose and Focal Length Estimation in the Wild. In Interna-

tional Conference on Computer Vision, pages 2222–2231, 2019. (page 8, 9, 37, 99,

118, 126, 128, 129, 130, 131, 133, 134, 135, 136, 138, 139, 140)

[87] A. Grabner, P. M. Roth, and V. Lepetit. Location Field Descriptors: Single Image

3D Model Retrieval in the Wild. In International Conference on 3D Vision, pages

583–593, 2019. (page 37, 119, 121, 139)

[88] B. Graham. Fractional Max-Pooling. arXiv:1412.6071, 2014. (page 34)

[89] F. S. Grassia. Practical Parameterization of Rotations using the Exponential Map.

Journal of Graphics Tools, 3(3):29–48, 1998. (page 22)

[90] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A Papier-Mâché
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