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Abstract

Granular materials are well-known to humanity since its dawn and are ubiquitous in ev-
eryday lives. Huge amounts of energy and resources are spent daily for handling and
manufacture of such materials. Numerical modelling of processes involving granular ma-
terials are widespread, their relevance in prediction and optimisation of the former well
recognised by the scientific community. The aim of this thesis is to develop numerical
models to replicate and study the behaviour of processes involving the manufacturing of
granular materials, in particular screw conveying, relevant in the field of the pharmaceuti-
cal industry.

The first chapter is a thoroughly introduction to the three main components of this thesis:
granular materials, screw conveyors and the numerical tools used here to model them. In
the second chapter we model a section of screw conveyor and we study the particle flow
inside. We show that, for certain operational parameters of the device, a consistent flow
of particles against the direction of conveying is established for partially-filled conveyors,
hindering the device transport efficiency. The critical fill level above which this backward
flow begins is shown to be dependent on the screw geometry, while its magnitude depends
on the fill level itself. The third chapter deals with a new approach in the modelling of roll
compaction, where Discrete and Finite Element Methods are used in conjunction. By using
the former to model powder conveying and the latter to model powder compaction, the
particle flow entering the compaction region is modelled at the particle level, transformed
into continuous fields and used as time-dependent inlet conditions for the compression
model. Our approach exploits the strengths of both methods, since they are both applied
to the region they are naturally suited to model, thus increasing the predictive capacity of
roll compaction modelling if compared to the results of both methods independently. In
the fourth chapter we develop a new framework to automatically calibrate a Discrete Ele-
ment model of cohesive powders. The aim is to allow a more realistic modelling of systems
involving cohesive materials manufacturing, such as most pharmaceutical processes related
to solid dosage forms. The calibration consists of faithfully replicating powder rheology
experiments to capture the bulk behaviour of the materials, the particle properties then
used to model powder flow in manufacturing processes thus enabling a higher predictive
model. We demonstrated that our automated iterative method, based on rational physical
assumptions and a precise order of execution, can satisfactorily calibrate powders from free
up to very badly flowing. The fifth chapter introduces our first steps in the modelling of
plastic, deformable and breakable particle clusters. These clusters will be used in upcoming
models to study complex particle behaviours such as attrition and agglomeration during
feeding, or such as deformation and breakage during compression. The inter-particle inter-
action law used in the numerical model is exploited to obtain a highly precise analytical
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model, enabling us to carefully craft particle clusters with desired size and porosity. One
of many promising applications of this model, and the ability to create clusters with a
precise structure, will be the realistic modelling of granules undergoing die compaction.
Lastly, a conclusion with a short recapitulation of the main findings of the former studies
is presented. The next steps in each of the topics presented, as well as the future research
directions we would like to undertake, are explained and discussed.
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Chapter 1

Introduction

“If you find yourself in the Valley of Despair,
try something new and different.”

Sid Meyer

The key elements of this work are three: granular materials, screw conveyors and nu-
merical particle models. Granular materials, like grain, sand and flour, are well-known to
humanity since its dawn and are ubiquitous in everyday lives. On the other side screw con-
veyors are very simple devices known since millennia, and are among the simplest tools to
exploit mechanical leverage as a mean of transporting materials. Finally, numerical models
of particulate ensembles are a relatively recent field of study, especially when compared to
the first two, and are aimed to study the physics of particle ensembles.

How could these elements “fit” together into a coherent research project? The answer is very
simple: because physics of granular materials is “hard” and still poorly understood [27].
Not only does their physical behaviour lay somehow in between the ones of solids and flu-
ids, but most of the times their dynamics is actually duplicitous. By nature they are also
composed of a very high number of smaller elements, making the analysis of the ensemble
very complicated. At some point in the evolution of granular systems the ensemble could
not be described by average physical parameters, but the dynamics of every single element
must be taken into account independently. For instance, the flow of corn through a funnel
can stop if the elements, while converging towards the outlet, reach a stable configuration
due to their shape and to friction. This phenomenon, known as arching, is very common,
and is an example of a flow which state cannot be described statistically, since the sudden
interruption of the flow is caused by a collective motion of discrete elements reaching a
static equilibrium configuration. Now, if we model each element as a rigid body, the dy-
namics of each of the former is described by a set of 12 equations, hence the necessity of
numerical techniques to cope with the astronomical amount of operations needed to solve
the equations of motion and fully describe the system.

Handling and manufacturing of granular materials is the backbone of many processes, and
each one involves a transport stage where they have to be moved from one point to an-
other [93]. One of the most efficient and extensively used device is screw conveying [93]. By
transforming mechanical torque into a longitudinal push these devices transport granular
matter in many industrial applications. The ability to predict and optimise the outcome of



Chapter 1. Introduction

every stage of the production is of the upmost importance, and the feeding stage is not an
exception. The material conveying stage is usually regarded as the “bottleneck” of every
production line since the inflow of raw or partially manufactured materials sets the pace
of every manufacturing process [93]. When the feeding stage involves granular materials it
inherits the complicated nature of the latter, and becomes a natural candidate for being
modelled numerically by means of particle simulations.

There are many ways to model granular ensembles, depending on which aspects one wants
to investigate and on the scale of the phenomenon. Nevertheless, since for most phenomena
the dynamics of single elements is essential in determining the collective behaviour of the
ensemble, one of the most widespread numerical technique used to model such systems is
by means of Discrete Elements Method (DEM). In such models the granular material is
represented by a collection of solid rigid bodies, most of the times spheres, that interact
with one-another via dissipative elastic forces upon collision. This method is simple yet
very effective in modelling granular systems, since it can resolve the dynamics of single
grains at the particle level including their main energy loss mechanism due to friction.

In essence, the study presented in this thesis work deals with numerical particle mod-
els applied to the study of manufacturing processes involving screw feeding of granular
materials.

1.1 Granular matter

A granular material can be defined as matter composed of a high number of discrete,
macroscopic and solid sub-components: the grains. These grains are not subject to dy-
namics driven by thermal fluctuations, and are characterised by dissipative interactions,
the most common being friction forces. Therefore granular matter comprises materials
which sub-components can vary in range from micrometres to several kilometres in size
(figure 1.1), and is a quite peculiar state of matter since it can exhibit a broad range of
behaviours with precise and distinctive features. According to the scales of the system
and to the forces involved, granular materials can behave like solids, liquids or gases [5].
Tightly packed cobblestones can sustain the weight of pedestrians or vehicles for hundred
of years, thus behaving like a solid. A frozen clump of snow detaching from a mountain
summit will avalanche downstream, flowing like a fluid. Huge clouds composed of ice and
debris of many sizes orbit around planets and form rings such as the ones around Saturn,
their motion similar to gases.

Like fluids granular assemblies can exhibit phase transitions. Unlike the former they are
not driven by temperature, but rather by differences in packing density, mobility or ar-
rangement. In fact, for the granular systems studied in the work presented in this thesis,
temperature is irrelevant in determining the physics of the system, and is therefore not
included in the numerical models. Thermal effect such as kinetic energy dissipation due to
collisions between grains are modelled instead by a viscous damping force proportional to
their relative velocity upon collision. These kinetic energies and the grains inertia dictate
the magnitude of the energy scales relevant for physically describe granular systems. An-
other dissipation mechanism is key to granular assemblies, and is due to frictional forces
between the particles. When packed and at rest, the friction between each single compo-
nent allows the ensemble to sustain a considerable amount of compressive force. Therefore



1.1. Granular matter

Figure 1.1: Examples of granular solids with different packing and particle size distribu-
tions: sand and pyramids. Both behave like solids and can sustain an incredible amount of
weight, although the former is easier to fluidise. Source: Wikipedia, the Free Encyclopedia.

there are two main elements dominating the physics of granular matter: the inertia of its
components and the dissipative interactions at play.

1.1.1 Why we do study granular systems

Granular matter is the second most manipulated material after water, which makes it an
obvious subject of study. However, despite its ubiquitous appearance in everyday life, a
comprehensive understanding of the behaviour of granular materials is still eluding us.
The reasons behind our still incomplete knowledge are multiple and intertwined. First
of all, most granular assemblies are composed of a large number of constituents: a single
teaspoon full of usual granulated sugar (approximately 4 mg) contains, on average, up
to 10 particles. Studying the dynamics of such ensembles requires a large amount of
computational power, since the number of particles in commonly used systems is far above
the millions. In the context of pharmaceuticals manufacturing, for instance, most of the
raw solid dosage forms of the processed materials are in the form of powders with size well
below the millimetre. Resorting to statistical approaches, like in thermodynamics, is not
always possible since granular systems do not necessarily have local reference equilibrium
states |7,22,43], making statistical averaging unsuitable. If we consider an enclosed volume
of gas, there is a typical relaxation time after which, despite atoms still being in motion
through the container, any random partition of the volume is equal to another. The same
is not true for granular systems. First of all the only equilibrium state of a granular gas
is the one with zero kinetic energy, and secondly a wide variety of instabilities will emerge

3
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while reaching equilibrium. Each of these lead to local anisotropies such as clustering
[7,32,60,152], and the system will be characterised by local transient states with respective
characteristic times, making a definition of a local equilibrium state impossible. Similarly
granular systems lack a universal separation scale: the typical transport mechanism of
grains does not have a predefined relation with the average grain size, and the same is
true for relevant fields [7,43]. For example, when computing the average stress tensor
in a granular flow, the result depends on both averaging volume and averaging interval.
Certain particles can exhibit mean free paths macroscopically larger than the average,
a feature not found in thermodynamic of fluid systems that are not in a critical state.
Another element of complexity is given by the complicated interactions between particles.
Frictional, dissipation, plastic and adhesive forces all contribute to a highly non-linear
dynamics at the particle level. The picture is even more complicated if a fluid is present:
even a small amount of fluid, leading to the formation of liquid bridges [162], completely
changes the dynamics of the system [78,121]. Collisions involving granular materials can
also dissipate energy very fast: rubber balls do not bounce on sand. Finally, granular
systems can exhibit different states of matter as previously mentioned, and different states
can coexist in a single, relatively small system [32,60]. A simple example of such a system is
a hourglass, where sand flows from an upper container into another below, passing through
a funnel wide only a few particles size. The upmost layers, far from the funnel, and the
downmost, below the flowing layers sedimenting at the bottom, are physically analogous
to solids: the velocity fluctuations are negligible and they support the material above.
When approaching the funnel the layers of sand progressively fluidise and start flowing
downwards, their velocity dependent on their distance from the hourglass walls: material
in contact with the former will flow slower and eventually stop, an aspect of dynamics that
reminds laminar flow of fluids. Finally, once the sand grains overcome the funnel, they
free-fall towards the bottom of the container, and during this motion they enter the kinetic
regime dominated by single-particles collisions. Since the motion of the particles is not
confined by the neighbouring ones, the stream tends to expand radially like gases and the
dynamics is dominated by convection.

1.2 Screws and screw conveyors

Screws are simple mechanical devices aimed to transform a rotational motion into a linear
one, by transforming rotational torque into a longitudinal force [93]. The invention of
such devices dates back to Ancient Egypt before the third century BC, but there is no
unequivocal historical source attributing their creation to a precise figure. In its first con-
ception the screw was used as a water pumping device to lift water from the Nile or other
water sources into irrigation ditches. Unlike modern conveyors these devices consisted of a
continuous tube coiled around a middle axis, with their bottom edge submerged to allow
the fluid to partially fill the lowermost sections. Gravity, in conjunction with the peculiar
helical geometry, prevented the water trapped inside to flow back, and allowed a way more
efficient transport than via bucket. When spun around its axis the parallel flights presents
themselves to the material inside as independent contiguous containers moving towards
the front end of the device, thus transporting the former in the same direction.

It was with the Greek mathematician Archimedes that the device was introduced into An-
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cient Greece, after he described the tool at his return from a journey in Egypt. Archimedes
also innovated its design, giving the screw conveyor its modern layout with a helicoidal flat
surface wrapped around a middle shaft enclosed by a hollow cylinder (see figure 1.2). This
renewed design would prove to be very efficient also in the transport of granular materials,
but the application of screw conveyors for such usages had to wait until the 20th century.
In fact, throughout history, screws as transport devices were only used for transporting
fluids, besides their usage as simple machines for gaining mechanical advantage. The first
application to the conveying of grains had to wait until 1945, when innovator Peter Pakosh
invented the first prototype of modern grain augers. Since then the adoption of screw con-
veyors in transport of granular materials rose constantly and became one of the standard
operations in handling of such substances.

Al
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Figure 1.2: Archimedes’ screw from Chambers’s Encyclopedia (Philadelphia: J. B. Lip-
pincott Company, 1875). Source: Wikipedia, the Free Encyclopedia.

1.2.1 Modern screw conveyors

Screw conveyors, interchangeably called screw feeders, saw numerous technological and de-
sign upgrades to answer precise and specific necessities of the systems they are part of, and
are now very different from their ancestors [93|. First and foremost the geometry of the
screw flight can differ depending on the material transported. The thickness of the flight
is directly proportional to the amount of longitudinal back pressure the screw can sustain.
If the material transported is dense and poorly flowing, it will oppose a considerable re-
sistance when conveyed, and as a consequence the screw threads must be proportionally
sturdier to overcome potential damage. The material composing the conveyor itself also
depends on the specific application required. However, for the sake of simplicity we can
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imagine screws built out of steel, since they are predominant in feeding processes. Also
the pitch capacity can be changed to meet the necessary robustness, but is mainly related
to performance [114,151], wether it being related to amount of throughput, throughput
periodicity, or power consumption. The former is defined as the amount of free volume
per screw pitch, i.e. as the free space that can be occupied in a screw longitudinal section
correspondent to a screw full revolution. The screw pitch length [, also referred to as screw
lead (or simply lead), is the axial advance of a screw during one complete turn. Clearly,
a wider free volume can host more material reflecting in a higher amount of stress acting
on the flights, but also determines the maximum amount of material that can be conveyed
per screw revolution. If we assume the content to behave like a perfectly flowing solid,
halving the pitch length will result in half volumetric throughput per screw turn, and so
on. However, since granular materials in motion do not behave like solids, the mechanics
of granular material convection is way more complicated [113,151]. For instance the screw
clearance is defined as the space comprised between the screw flight tips and the inner sur-
face of the external casing. Material occupying such region is not directly conveyed by the
screw, but can be transported only by contact with neighbouring flowing elements. When
transporting fluids the clearance should be kept as small as possible to avoid back-flowing,
as much as viscosity and friction between mechanical parts allows. However, during han-
dling of granular materials the clearance is an important parameter to account for, since
a too small width can cause transported particles to remain trapped within, resulting in
damaged products [109], increasing torque requirement, higher wear of the device and even
jamming.

Another aspect to be considered is how much of the energy transferred by the screw to
the conveyed material is translated into longitudinal push and how much into a rotation
around the screw’s axis [113|. To have an efficient device as much mechanical work spent
as possible should be converted into the former. To quantify this ratio the screw heliz
angle ~y is introduced. If we imagine a screw of fixed radius R (figure 1.3), increasing pitch
length results in a more stretched helicoidal structure, i.e. the normal to the screw flight
gets progressively less parallel to the screw axis and more pointing outward. The tangent
of the helix angle is defined as the ratio between the longitudinal advance of one point on
the screw and the circumference it travels during one revolution tan(y) = I/27R. Clearly
higher v translates into a higher ratio of longitudinal versus rotational energy transfer,
and therefore into a more efficient process. However, properties of the transported ma-
terial and process characteristics usually pose a limit to both maximum helix angle and
feeding efficiency.

Depending on the system screws can have a single or multiple flights, and conveyors can
comprise multiple screws at once. Increasing the number of flights increases the robustness
of the screws, but when conveying cohesive materials might lead to product accumulation
between adjacent flights. To avoid such effect usually conveyors are designed to host two
screws next to one another, especially when fine powders are involved in the process. In
twin screw conveyors part of the active conveying volume of both screws overlap, creating
a self-cleaning effect where one screw scoops away powder that might be adhering to the
other. Active conveying volume comprises the free volume enclosed in a cylindrical shell
circumscribed to the screw, i.e. the volume of material directly pushed by the flight mo-
tion.

The flight surface topology is yet another variable to be taken into consideration (figure



1.2. Screws and screw conveyors

Figure 1.3: Mesh of coarse-concave screw section used in DEM simulations of powder
feeding. In the inset a visualization of the helix angle and its dependence on the screw
geometry. The flight slope reduce the powder compression during transport, especially
relevant for cohesive powders.

1.3). The force exerted by the screw rotation is directed along the normal vector to its
surface and determines the flow of the transported material. In case of cohesive powders
the latter can be highly compressible, since the packing fraction of such materials is lower
than others with same particle size distribution but lower cohesiveness. Since the screw is
pushing the powder in a certain direction, the maximum pressure the former is exerting
on the latter will be acting in the same orientation. Changing the shape of the screw flight
can reduce not only the active conveying volume but also the pressure exerted, limiting the
local compaction of the powder. In fact, when handling poorly flowing cohesive powders, it
is often better practice to reduce the conveying efficiency in term of optimal helix angle and
free volume to limit local powder agglomeration, that could lead to clogging or jamming.
Most of the times, during handling of granular materials the inlet of screw conveyors is
connected to a hopper. Hoppers are containers where grains or powders are deposited and
temporarily stored with an open section on the bottom. From the latter the material can
flow inside the conveyor and is dragged away towards its intended destination [65,173].
The mass of powder contained also provides a certain pressure against the lower layers, en-
hancing the flow inside of the screw barrel. Since this pressure is proportional to the mass
contained, during the emptying of the container the driving pressure steadily decreases,
leading progressively less material inside the conveying region and a proportionally lower
mass throughput. To avoid this steady decrease in throughput modern conveyors can be
equipped with a controlling device monitoring the mass outflow in real time, and tuning
the screw speed accordingly to keep a constant feeding rate. If, from one side, hoppers
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and related instruments simplify the feeding process, removing the constant need to input
materials into the conveyors, on the other they can significantly alter the feeding process.
Components of granular matter can be very frictional, have high aspect ratios, exhibit
cohesive behaviour and even charge electrostatically. All of these aspects can compromise
the feeding performance even before the material reaches the screws by jamming the hop-
per. Consistent effort is regularly spent in improving and optimising hoppers connected
to screw conveyors, such as reshaping their geometries and adding agitators to fluidise the
powders inside. The latter consist of moving mechanical parts aimed to keep the material
contained in the hopper in a flowing state, thus preventing local powder agglomeration
that could eventually hinder or prevent it from entering the screw barrel. Given the tight
connection between screw conveyors and hoppers in powder and grains processing, and
given the extent of how the latter affect the performance of the former, they are usually
regarded as unique systems. Thus referring to screw conveyors in the context of certain
processes implies the presence of an inlet hopper, and pharmaceutical manufacturing is an
example.

All of the elements enumerated above, while being only a simplified and reduced selection
of the many aspects involved in screw feeding, can give a perspective of how complicated
the study of such process is, despite the very simple principles behind it. The most im-
portant lesson to be learned is that conveyors are designed specifically to meet precise
requirements in the context of selected manufacturing processes. For this reason material,
process and device become intertwined, and it would be incorrect to focus a study on a
single aspect aside from the other. This complicated dependency makes the formulation
of mechanistic models of feeding very complicated, and usually valid for a very narrow
range of material properties and screw operational parameters. The inability to formulate
comprehensive mechanistic models motivated researchers to find different aims to study
these systems. Among these, one of the most prominent is numerical models. Constant
improvement in computational resources enables progressively more accurate and larger
scale computer simulations of granular material manufacturing processes, and screw con-
veying is no exception. Not only the complexity of such systems makes numerical models
an important tool of study in the field, but there are also two additional reasons that make
numerical simulations an exceptionally valuable tool: the ability to “see inside” and the
capacity to selectively tune and change single material parameters. These two aspects will
be explained in detail in the upcoming section.

1.2.2 Feeding in pharmaceutical manufacturing

A substantial part of pharmaceutical industry’s manufacturing is devoted to processing
of solid dosage forms consisting of powder blends below 0.5 mm in size. Active Phar-
maceutical Ingredients (APIs), i.e. the biologically active components of pharmaceutical
formulations aimed to achieve a therapeutic effect, are predominantly poorly flowing par-
ticles with high cohesiveness, and as such pose a challenge for every manufacturing stage.
Since they are very difficult to handle they are usually mixed with excipients into blends to
greatly improve their manufacturability. Generally speaking pharmaceutical excipients are
defined complementary to API, i.e. are all inert drug components that have no biological
effects, but optimize formulations for manufacturing and delivery. Examples of excipients
can be lubricants, disintegrants, carriers, and so forth.
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In the context of feeding, APIs are mixed with lubricants to form blends with improved
flowing capabilities. Achieving a precise, constant and reliable transport process is essential
in pharmaceutical manufacturing [12] mainly for two reasons. Firstly: quality standards
for pharmaceuticals are the strictest that can be found in industry. Drugs must be admin-
istered with great precision to guarantee the efficacy of a therapy, and the amount of API
in each dosage form (i.e. the form in which a certain pharmaceutical is delivered and ad-
ministered) usually don’t exceed the order of milligrams. A too low dosage can compromise
the effectiveness of a cure, a too high one can cause severe collateral effects, and both pose
serious risks for patients’ health. Therefore the high quality standards, and the necessity of
strict and precise workflows at every stage of the manufacturing. Secondly API are among
the most expensive substances on the market: drugs often exceed the 1000 €/g market
value, making them 20 times more expensive than gold, priced around 50 €/g. Downtime
and failures during drugs manufacturing entails a considerable cost, a factor that must be
accounted for in the production stage.

The necessity of a stable, reliable and coherent pharmaceutical manufacturing process is
the motivation behind the study of such systems. However, since most pharmaceutical
solid dosage forms involve powders composed of small cohesive substances, handling and
processing of these materials is very challenging. This makes the dynamics involved in the
process very complicated, and led the scientific community to explore numerical models
for their study aimed to a better understanding of the underlying physics. At the present
time, a couple of decades after the dawn of this field of research, numerical models are
a widespread tool for understanding such problems, and are well-established methods for
process optimisation and design.

1.3 Discrete Element Method (DEM)

Discrete Element Method, also known as Distinct Element Method or Discrete Particle
Method (DPM), is a widespread numerical technique for modelling granular ensembles.
Firstly developed in 1979 as a tool to numerically study granular assemblies [23], DEM is
now a well-known and unanimously recognized numerical technique to model and study sys-
tems comprised of many distinct independent components in mechanical interaction with
one another. In this context DEM belongs to the subgroup of “soft sphere” models, where
simulated particles are allowed to overlap with one another to mimic local deformations
due to collisions. In reality, traditionally disregarding brittle breakage, local deformations
between particles are very small, and therefore overlaps between DEM particles should be
kept proportionally small. Each particle of the ensemble is modelled as an independent
entity that can interact with others and with solid boundaries by means of prescribed
physical laws, and can be subject to external force fields like gravity.

Given the complexity of granular systems numerical methods are frequently the best option
available to gain scientific insight. Here discrete particle methods have the advantage on
continuum numerical models since are naturally suited to simulate ensembles of elemen-
tary components [101]. Despite traditionally the latter cannot arbitrarily deform or break
under pressure, but will be set in motion and forced to rearrange if allowed to. Local parti-
cle phenomena with macroscopic effect such as force chains are easily observed in discrete
simulations, but are very hard to capture in continuum ones. Since complex rheologies are
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not well-established, local particle-scale phenomena that are critical for the mechanics of
granular ensembles cannot be captured with continuum models. Thus the dominance of
DEM among numerical models applied to the study of granular systems.

DEM has an “edge” over real particle systems as well. In fact it is impossible to perform
direct measurements on single grains of a large bulk, and is also extremely complicated to
observe the internal structure of these systems despite its importance. This is the afore-
mentioned advantage of being able to “look inside” and extract every needed information
on the dynamics of each single particle, while most experiments can only gather informa-
tions at the bulk level. This means that the latter can only give information concerning
macroscopic observables, like the material flow function, that are determined by statistical
averages of phenomena acting at the particle scale, such as friction. How to observe the
motion of lower layers of soil during a landslide? In DEM the dynamics of each particle
is simulated continuously, and data such as forces acting on each particles, their position
and their velocity at any moment in time are able to be accessed. Being able to “see what
happens inside” paved the way for important understanding in the behaviour of granular
matter, making DEM an invaluable research tool. Moreover, each material parameters
modelled numerically can be arbitrarily changed to observe the impact of the former on
the system under study. This ability is of extreme importance and has no equal in real
experiments. For this reason DEM can be used for sensitivity analyses, where input pa-
rameters describing material characteristics are systematically varied and the consequent
variations in the macroscopic behaviour of the system observed. For instance, let’s imagine
that one is interested in the angle of repose (i.e. the slope of the heap of a material let to
fall under gravity onto a plane, as in figure 1.4) of a certain blend of granular materials.
Experiments are performed, and the angle of repose measured, but the relative concentra-
tion of the blend components has to be changed to meet a certain requirement from the
manufacturing. Now, instead of performing a new set of experiments, DEM can be used
to guess the new value of the angle of repose for the new blend instead. This approach
is not only faster, but also saves materials otherwise used to perform the experiments,
thus reducing costs and wastes. The obvious caveat is that the numerical model must be
reliable in simulating the physics of the system. The fitness of such models must therefore
be ensured, and this is done via calibration and validation, as explained in the upcoming
sections.

Figure 1.4: Piling of monomodal uniformly polydisperse frictional spheres under the
effect of gravity. Colour gradient according to particle size.
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1.3.1 Generalities on DEM

Exactly modelling real systems via DEM is unfeasible with modern technology: not only
the number of particles in typical granular assemblies is extremely large, but also further
complications due to shape, particle size distribution (PSD) and complex interaction modes
can arise. Simplification is therefore necessary, and in many simulated systems particles
can be modelled as perfect spheres without losing important predictive capabilities. The
problem of the high particle number arises when considering that DEM models particles
as single entities, and therefore the equations of motion for each one of the former must
be solved at every integration step. From the dynamics of rigid bodies we know that in 3
dimensions there are 12 dynamic variables to be computed (position, velocity, orientation
and angular velocity), resulting in 12 equations to be solved for each particle. This without
considering the time required to search through all particles to determine which ones are in
contact, such that overlaps and the resulting forces between the former can be computed.
The only possible solution, without changing the simulation domain, is to upscale the par-
ticles, a technique also referred to as coarse graining. Considering the former teaspoon of
sugar, if we are to simulate the system with particles of double the size, the number of
particles required would decrease of a factor 8, i.e. a net 3-10* fewer equations to solve
each integration step. When performing such approximations one must ensure that the
increased size of the components are not altering the physics of the systems, and sometimes
this is not straightforward to verify. Artefacts eventually introduced by scaling part of the
modelled system go under the name of finite size effects, and must be avoided to grant a
qualitative validity of the model.

Lastly, when considering dense granular flows the effect of air in the interstices between
particles can usually be neglected if inertia dominates the particles motion, i.e. if parti-
cles are sufficiently packed or dense that eventual drag forces due to the air flow can be
neglected. If this is the case, the inter-particle forces to be considered in the models can
be reduced to simple inelastic binary collisions in the presence of gravity. This will not be
the case in systems where gaseous flows or fluids determine important features of the flow,
such as particles suspensions and fluidised beds. For all the systems studied presented in
this work the effect of air between the particles can be neglected, and only interactions due
to particle collisions will be considered.

With these simplifications, at each force integration time step all forces acting on every
particle ¢ in the ensemble will be computed, and will obey to Newton’s second law:

25
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where 7; is the particle position, ¥; its velocity and m; its mass, f;c is the total contact
force acting on the particle due to collisions with other bodies, f;N € is the total force due
to non-contact interactions (like, for instance, electrostatic forces) and ﬁB is the resultant
of all the body forces acting on the particles, such as its weight m;g. Now that the total
force acting on each particle at a certain time ¢ is known, both their new velocity and new

position at the subsequent integration time t 4 dt are computed by solving the equations
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of motion for every particle:

47 (t)
dt?

T (t + dt) = T; (t) + dt (1.2)
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where dt is the integration time step, and the accelerations are computed from equation
(1.1). The latter is of great importance and should be chosen sufficiently small to avoid
numerical instabilities. The usual rule-of-thumb is to choose dt such that the average
particle collision time is 50 times bigger that the former. A detailed and thorough analysis
of DEM would be out of the scope of this work, firstly because such numerical model is used
by the scientific community since over 40 years [23] and is very well known and established,
and secondly because there is already a substantial amount of literature published. We
refer the interested reader to [84| and references therein for a more exhaustive overview
of the method. The same set of equations as (1.2) and (1.3) for the rotation dynamics of
a rigid body are also affecting the dynamics and are solved in a similar fashion, but are
omitted here for sake of brevity.

The contact and non-contact forces f;C and are the terms of equation (1.1) that
sees the most theoretical investigation when it comes to improving DEM models, since
they are the ones that need to be improved or modified to include more complicated
interactions between the particles. In this thesis, besides gravity, only contact forces f ¢
will be considered in the models presented, and will be the ones to be briefly described
in some parts of the text. The most basic form of interactions used in DEM to mimic
the contact dynamics between particles are of three kinds. Firstly there are repulsive
forces, needed to prevent particles from collapsing into one another, and are proportional
to the particles overlap during their collision. Secondly there are friction forces, that limit
the tangential relative motion of particles against one another, thus limiting the local re-
arrangement of particles and allowing complex structures such as heaps to be modelled
(figure 1.4). Lastly we encounter viscous interactions, adding a resistive force depending
on the relative velocity of particles, aimed to mimic the energy dissipation of bodies due
to thermal effects during collisions.

fiN C

1.3.2 The link to reality: validation and calibration

Scientific theories must be validated by experiments and the same holds for numerical
models. DEM validation is undertaken by preforming simulations of the same setups or
scenarios as in experiments. Then parameters that can be measured in the experiments are
then compared with the ones gathered from the simulations. The closer the agreement the
better the model and the more reliable its predictions. Despite the conceptual simplicity
validation of a DEM model is usually challenging.

First and foremost DEM parameters needed to describe particle behaviour are numerous,
and most of them have great impact on the outcome of the simulations. Some parameters
can be estimated via physical arguments or from experience, such as the particle restitu-
tion coefficient. Others parameters can be directly measured from experiments, such as
the density of materials. All the remaining ones must then be determined via an expensive
trial-and-error simulation procedure consisting of a sensitivity test. Here simulations are
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repeated for different combinations of input material properties until a matching combina-
tion is found. This approach can be very time consuming since a whole DEM simulation
must be carried out for each combination, when the first are very computationally expen-
sive and the latter can be many.

Another difficulty that arises during such validations is due to multiple solutions of the
validation simulations. Since many values are used as trial states, it can happen that more
than one combination leads to the required results below a reasonably small error threshold.
When this happens there is no way to choose among these multiple combinations unless
via physical considerations. If none of the parameters are physically unplausible there is
no unique solution, and more tests should be performed. This is also why experience and
experiments should always be preferred to material parameters sensitivity tests, and are
invaluable tools to complement numerical modelling.

Lastly a successful validation does not imply, a priori, that a validated model will be able
to perform in an arbitrarily different setup. On the contrary, validation tests are relative to
a certain material with precise properties in the context of a single device. This means that
if the model is validated via a set of experiments employing a certain material, the former
will not be able to predict the performance of the same device operated with a different
substance. The same is true if the same material is used but in a different device. If either
granular material or device are changed, the validation procedure must be repeated. The
value of validated models resides in the former being able to predict the outcome processes
ran with different operating conditions, albeit relatively close to the values used for model
validation. For instance, let’s assume that a screw feeding model has been validated for
screw velocities of 10, 20 and 50 rpm, and each of the tested velocities led to results in
agreement with the experiments. It is reasonably safe to assume that the model will be
able to predict the performance of the same feeder loaded with the same powder for all
screw velocities between 0 and 60 rpm. However this assumption becomes increasingly
questionable the more we move from the tested range, and ceases to hold if macroscopic
effects are expected to happen in between two tested values.

Validation involves the results of the numerical model, therefore happens after the model
has been implemented and ran. Calibration, on the other hand, is a stage that comes
before the implementation of the model itself, and is practically independent from it. As
we have seen validation can be a prohibitively long stage, especially if processes involve a
high amount of material or run for a long time. Calibration would, in principle, avoid this
issue by finding the exact combination of particle properties that would allow to perfectly
replicate the behaviour of the material numerically [20]. The key assumption is that even
the experiments aimed to characterise the physical behaviour of granular materials are
unable to test single particles, but only bulk properties. Therefore is pointless to focus on
single particles behaviour, but the target should be to replicate flow and structural proper-
ties as measured in these unit tests. Assuming one is able to replicate the latter, particles
calibrated in such way should in principle exhibit the same behaviour when used to model
an actual process. Obviously the better the agreement between calibration experiments
and simulations, the better should the modelled process agree with the real one.

These calibration experiments come in great variety, from compression (figure 1.5) to shear
tests, from packing to air permeability tests, and so on. Tests performed to characterise
the granular material for numerical calibration should cover every possible aspect of the
physics implemented in the model. For instance, if cohesive powders are implemented, a
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Figure 1.5: Snapshot of DEM compression test. Particles are contained inside a cylin-
drical casing (not shown) and compressed by displacing the top plate. Particles coloured
according to vertical stress.

rheology test specifically aimed to measure the tendency of particles to adhere should be
included in the calibration. The range of conditions tested for each parameter must also
cover the material states occurring in the studied operations, since the range of validity
of extrapolated parameters is not known beforehand, exactly as for numerical validation.
Calibrating powders with compression tests where they are compacted up to 1kPa of pres-
sure is completely useless if in the model they will be subject to stresses up to 10kPa.

As with validation, DEM powder calibration is a very complex and lengthy task, but the
latter has three main advantages on the former: lower computational costs, intrinsic val-
idated tests and reusable results. Lower costs are related to the size of the equipment.
Rheology tests require an amount of material of the order of 1 to 100 grams, orders of
magnitude smaller than the amount involved in actual processes. Secondly since the simu-
lations are designed to match the experiments, the model is by definition validated. Same
pros and cons of validation routines apply here. The real game changer is the reusability
of calibration results. Since now flow and structure properties are matched by replicat-
ing rheology experiments, the fundamentals dynamics of a specific powder is assumed to
be captured. The results are independent on the process one will end up modelling, and
calibrated powders should in principle automatically replicate the correct outcome of the
latter. Numerical calibration of a certain powder is then performed once and for all, and its
results applied whenever this material needs to be modelled. As usual a special care must
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be given to avoid finite size effects, since avoiding the former while performing numerical
calibration tests does not imply they won’t show up in the model of a different operation.

1.3.3 The problems in screw feeding modelling

DEM is a very powerful model for studying granular assemblies, but is a model nonetheless,
and as such it comes with intrinsic limitations. Depending on the aspects of a problem
at study one has to choose between scale or precision. For example both calipers and
carpenter’s rulers are instruments for measuring lengths, the first with greater precision
and smaller scale, the opposite for the second. It really comes to what we want to measure
and up to what precision that drives us in the choice of the instrument: a caliper is very
precise in measuring the diameter of threaded bolts, but will be useless in measuring the
length of a dining table. Vice versa a ruler might be able to measure the first with a higher
measurement error, provided that its sensitivity allows it, but is more suited in measuring
the second. DEM works in a similar way: if macroscopic bulk quantities are to be measured,
and the local interactions between grains are not relevant, then a larger system with coarse
grained particles can be the choice. However if the details of the particulate structure at
a grain scale are the aim, then particles as close to real ones should be employed, and the
physics modelled be as rich as possible, at the price of a smaller simulated domain. Clearly
in both approaches any finite size effect introduced by either scaling must be avoided.
That being said, numerical modelling of screw feeders by means of particle-based methods
face three main problems:

o Common industrial feeders cannot be modelled without resorting to coarse graining.
If we imagine a common industrial feeder with mass throughputs of the order of
kilograms per hour, the capacity of its hopper is of the order of decades of kilograms.
Substances composing average pharmaceutical powders have a density laying around
1.5g/cm?, and if we assume an average size of 100m and particles perfectly spherical
we would need an amount of particles of the order of 10'3. This astronomical number
of particles cannot be modelled with any modern computer in a reasonably affordable
time, thus forcing to resort to coarse graining and either upscaling the particles or
modelling only a region of the device.

o All parts of a feeder are intertwined, and cannot be separated without altering the
system. This point is key and has to do with the complexity of the feeding process.
Feeders are complex systems and each section is in dynamic equilibrium with the
neighbouring ones. Each of the latter can be imagined as a continuous flow of material
through a system with inlet and outlet boundary conditions. Outlets of intermediate
sections will serve as inlets for the following ones, and in a fluid dynamics fashion
we can impose mass and momentum conservation between each section. Similarly
local change in mass flow will cause a change in the stress fields and vice versa. For
instance, the rate of fed material depends on the mass outflow from the hopper, but
the screws exert a back pressure that constantly limit the former.

o Aspects relevant to the macroscopic behaviour happen at the particle level. This is a
consequence of granular materials dynamics being governed by local single particles
interactions. A practical example is the buildup of layers of particles inside the screw
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casing. As mentioned a certain clearance between barrel and screw is necessary to
avoid damage or jamming, and its width depends on the nature of the material trans-
ported. Cohesive materials will likely stick to the inner surface of the barrels and
reducing the clearance, with two main effects: decrease of conveying capacity and in-
crease of mean residence time. The first is simply a consequence of the reduced barrel
cross-section available for particle flow and is connected to a systematic decrease of
the mass throughput. The second is due to the first powder fed being the principal
component of this stationary layer of particles. These will occupy the clearance and
be compacted by the upcoming ones, thus being the first to enter the system but
likely the last to exit. These so-called dead flow zones are characterised by stagnant
material, responsible for long tails in the mean residence time distribution (RTD) of
mass inside the device. This is an important issue during continuous manufacturing
since makes the product hard to trace, which is a necessary feature in the production
of drugs. Long tails in the RTD can negatively affect product quality, and makes
tracing and control of products much harder.

It is evident that these issues cannot be addressed all at once since they are complemen-
tary to one another, therefore having a high fidelity numerical model capturing most of
the physics at play is unfeasible with present-day computational tools. Nevertheless very
important insights on the process can be obtained with such models, despite the inher-
ent approximations, consistently increasing our understanding of the underlying physics.
These all contribute to the global picture like small pieces of a puzzle, and allowed consis-
tent optimisation and improvement of devices and operations, at the mere price of taking
results cum grano salis.

1.4 Structure of the dissertation

The structure of this thesis work reflects both the practical needs in term of screw convey-
ors modelling in the context of pharmaceutical manufacturing and the current direction
taken by the DEM community in terms of modelling of granular materials.

In the second chapter we study the dynamics of particle flow inside a screw conveyor sec-
tion, and how screw geometry and friction affect the latter. We show that, for partially
filled single screw conveyors, the screw shaft size plays a key role in the conveying efficiency
of the device. The screw continuously lifts particles above the shaft while pushing them
along the feeding direction, and if screw filling level and shaft size allow it, they might leap
over the shaft and fall into the following screw pitch. This mechanism is shown to hinder
the conveying efficiency since these particles experience a constant back flow against the
conveying direction.

In the following chapter we present a methodology for modelling roll compaction by com-
bining DEM with Finite Element Method (FEM). While FEM is most suited to numerically
model compaction, it cannot model the flow of granular materials, and needs precise and
realistic information about the material inflow inside the compaction region. During roll
compaction powder is fed by a screw feeder towards the compacting rolls. The flow in-
herited by the former is inducing an non-isotropic powder bulk density leading to periodic
density fluctuation in the compacted ribbon. The non-homogeneous periodic flow field was
modelled via DEM and used as inlet boundary conditions for FEM, allowing to model the
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Figure 1.6: Vertical section of deformable and breakable particle cluster: the primary
DEM particles (in green and only plotted in the top-left quadrant for sake of clarity) form
a mechanically stable porous agglomerate. The interstitial space between the former (in
blue) is highlighted by a regular cubical lattice of smaller particles.

periodic ribbon fluctuation observed in the experiments.

In the fourth chapter we describe a framework for automatic calibration of cohesive pow-
ders for use in DEM. Many processes involving granular materials frequently include man-
ufacturing or handling cohesive powders. If DEM wants to reliably model such systems,
numerical models with adhesive interactions must be adopted. The community is still
lacking a standard, widely accepted method for the calibration of DEM particle properties
of such materials, especially when it comes to pharmaceutical powders. We gave our con-
tribution to this effort by developing an automatic powder calibration routine, validated
with four increasingly cohesive powders of common pharmaceutical usage.

The fifth chapter introduces the next steps of our research efforts, presenting upcoming
work concerning a DEM model of deformable and breakable particle clusters (figure 1.6).
Initially this framework was conceived to model attrition, deformation and agglomeration
of particles during feeding of granular material. However, while progressing with the devel-
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opment, we realised that such model could be used to implement composite particle clusters
to study, among other things, the dynamics of crushing, deformation and agglomeration
of particles during die compaction. The current stage of the modelling, where structural
properties of the clusters are predicted analytically, is presented and numerically validated.
Future directions that we will like to investigate will be introduced as a conclusion of this
chapter.

In the last chapter we present a short recapitulation of the main findings of the former
studies. Future directions and topics for studies connected to the work presented are briefly
introduced here as well.
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Chapter 2

DEM study of granular transport in
partially filled horizontal screw
CONVEYOors

Abstract!

A Discrete Element Methods model of a horizontal screw conveyor was developed and used
to study the volume flow rate of granular materials. The volume throughput was monitored
as a function of two operating parameters: the conveyor’s filling level and the screw’s
rotating speed. For a steady flow, which is slow enough to avoid particle centrifuging, the
volume throughput is linearly proportional to the screw velocity. However, the dependence
on the relative filling level is non-linear. The particles, which are lifted laterally by the
rotating blade, are often confined to one side, between the shaft and the casing. However,
if the particle level is sufficiently high, the particles leap over the middle shaft into the
previous screw thread (which is behind the original one), decreasing the throughput. These
two major effects have strong impact on the particle levels to the left and the right side of
the shaft and the relative velocity in relation to the screw’s surface and geometry.

Our study aimed to investigate the relationship between the particle volume flow rate and
the relative shaft size, as well as the influence of the friction coefficient between particles
and walls on the efficiency of the device. The numerical results may be used for determining
the optimal operating parameters in order to maximize the conveyor throughput efficiency
based on the shaft’s relative size.

"With minor corrections from: L. Orefice, J. G. Khinast, Powder Technology 305, 347-356 (2016).
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Chapter 2. DEM study of granular transport in partially filled horizontal screw conveyors

2.1 Introduction

Screw conveyors are simple mechanical devices for transporting material. The mechanical
components consist of an external shell (generally cylindrical) and a rotating helicoidal
surface (screw) inside. Depending on the material that needs to be transported, the blade
can be coiled around a cylindrical shaft (which is commonly the case) or can have multiple
threads [127|. The rotational velocity of the spinning blade can be varied to achieve the
desired material throughput. If necessary, the conveyor can be kept horizontal or inclined
at any desired angle, which has impact on the back mixing [102]. Screw conveyors are
widely employed in the industry to transport solid or semi-solid granular materials and their
applications range from feeding apparatuses (typically from a filled hopper [30,65]) to lifting
devices, such as grain augers [110,113,114] or water lifting pumps. In addition, materials
may be de-watered or dried during transport. Despite the mechanical simplicity, the physics
of the particle transport inside a screw conveyor is not trivial. As a consequence, the feeding
(typically done with screw feeders) is often considered a bottleneck in many industrial
processes since the dependence of the flow rate (in kg/h) on the material properties (and
processing history) as well as on operating and design parameters is not explicitly known.
Moreover, it is difficult to achieve a constant (non-pulsating) transport, especially at low
throughput rates.

Many studies have been conducted to achieve a better understanding of the process. The
first pioneering studies [114| concerning screw conveyors dealt with the volume flow rate of
grains dragged vertically from a hopper by an inclined screw, and on how the inclination
and the speed of the latter affects the volumetric efficiency of the device. The radial
clearance between the screw blade edges and the cylindrical conveyor not only affect the
volume throughput, but also can lead to grain damage during transportation, as pointed
out in [109]. An analysis of the motion of the conveyed granular material is then analysed
in [113|, where the flow of the grains inherited by the screw rotation is related to the
shape of the latter. Since screw feeders usually drag material from filled augers, part of the
existing literature deals with the study of screw conveyor drag from those devices, aiming to
relate the screw design to the drag uniformity [30,65,173]. The power consumption during
feeding also poses important constraints in the design procedure, and thus the necessity
to study the torque requirements, and the related power consumption, as a function of
different process conditions and screw speeds [110, 114, 172]. With the development of
computers and the corresponding increase in computational capacity, the conveying process
begun to be modelled and studied numerically, mostly through Discrete Elements Method
(DEM) modelling [23]. One example is [102], where the performance of screw conveyors is
systematically studied for different screw inclinations, velocities and filling levels. Recent
numerical studies also focus on screw design to achieve improved particle mixing [106] by
studying how particle diffusion is affected by adding supplementary helices in the screw.
Lastly, particle properties play a central role in the feeding process; in particular cohesive
materials pose practical complications when moved by screw feeders because of both their
lower flowability and their tendency to arch and jam. Numerical studies of this topic can
be found in [57,58].

Our paper aims to numerically investigate the volume throughput (flow rate) and the
volume throughput efficiency of partially-filled horizontal screw conveyors, focusing on the
wide variety of particle flow behaviour and its effects on the conveying process. Especially,
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we tried to understand the granular flow dynamics in the rotating screw. Data gathered
from systematic simulations of a horizontal screw feeder via DEM were used to study the
volume throughput of spherical particles enclosed in a screw conveyor. By varying the two
main operating conditions (the screw rotational speed and the particle filling level), we
examined how the particle flow rate is affected by the size of the screw shaft relative to the
screw casing and by the relative friction between the particles and the feeder’s mechanical
components.
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Figure 2.1: Screw conveyor schematics. Front view a): the external solid line represents
the screw casing (Rc = 1.95 cm) while the dashed one the edge of the screw blade (Rp =
1.75 cm). The inner solid lines represent the 3 different screw shafts employed in the
simulations (as explained further on): black (Rg = 0.95 cm), blue (Rg = 1.15 cm) and red
(Rs = 0.75 cm). The blade section has been omitted for the sake of clarity. Side view b):
the dot-dashed line represents the screw rotation axis, while the inner solid lines represents
the 3 different shafts like in a).

In short, during forward transport in the screw the flowing particles continuously avalanche.
The direction and profile of these avalanches are determined by the conveyor’s geometry
and the particle friction, as well as by interplay with the particle filling level. At screw
speeds that prevent particles from centrifuging, with increasing filling level, the particles
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are lifted by the screw blade and pushed to one side, according to the blade’s surface
geometry [113]. At certain filling ratios, the particles lifted and pushed aside can remain
confined between the middle shaft and the external cylindrical wall of the conveyor. This
phenomenon, hereinafter referred to as “side confining”, is responsible for a highly efficient
material transport. However, at higher filling ratios, the particles lifted while fed forward
may cross over the middle shaft into the next thread of the screw. These dynamics, termed
particle “back-flow”, becomes systematic after a certain filling threshold, reducing the mass
throughput of the device.

A Dbetter understanding of these processes can help to optimize the filling level of screw
conveyors and may lead to higher transportation efficiency. It thus can have a practical
application in the industrial sectors that apply those process conditions.

2.2 Model details

The data were gathered via DEM simulations of an infinitely-long enclosed screw conveyor.
The screw blade was modeled as a helicoidal surface with a radius of Rg = 1.75cm,
a thickness of § = 0.5cm and a pitch length of [ = 3cm. The total screw length was
L = 15cm, for an overall n = 5 screw turns. Periodic boundary conditions in axial
direction were imposed, effectively yielding an infinitely long conveyor. The screw shaft
and casing were concentric cylinders centered along the z-axis with radii Rg = 0.95cm
and Ro = 1.95cm, respectively. Thus, there is a significant clearance between screw
and housing in order to avoid too high shear rates. The screw schematics are showed in
figure 2.1. In our simulations, the screw conveyor components are modelled by means of
stereolitographical triangulation method (STL), the geometry been taken from a Komarek
B050H horizontal lab press conveyor [94]. The particles are modeled as spheres with a
uniformly distributed radius of rp = 0.1lcm +10%, whose interaction follow the Hertzian
spring-dashpot model with Young’s modulus Y = 5MPa and Poisson’s ratio vpgisson = 0.45
(roughly corresponding to rubber balls). Every 0.05s a snapshot of the particle positions
and velocities was taken. The particle-particle and particle-conveyor coefficients of friction
were set to upp = 0.5 and ppo = 0.25, respectively. The simulations used for this study
were performed using the open source DEM particle simulation code LIGGGHTS [1].

In each simulation, particles were loaded into the conveyor up to the full filling and were
allowed to settle using the effect of gravity (pointing along the negative y-axis). Next,
depending on the desired filling level € (see figure 2.2), the particles were removed and the
screw was set into motion. The screw rotation velocity w ranged from 27 to 48 rpm and
was low enough to prevent centrifuging on the particles. The filling level was defined as a
dimensionless parameter, depending on the screw casing radius, as

Y

. 2.1
Re| . (2.1)

€

where y is the height of the top layer of particles inside the conveyor. Thus, —1 < € < 1 by
definition. The filling ratios analyzed ranged from 5% to 100% of the full loading capacity,
in constant increments of 5% between subsequent simulation runs. Data gathering began
when the system reached a steady state for 10s. Three sets of data were gathered: the
particle mean velocity v, the particle level on the screw axis hz and hp (figure 2.3a) and
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rp [mm]
1.10

Figure 2.2: Snapshots of particles in the conveyor: projection on the plane normal to the
rotation axis (z = 0 cm), rotation is in clock-wise direction. Top row: particles’ position
after loading, settling for four filling ratios (from left to right: al) 20%, a2) 40%, a3) 60%
and a4) 80%). The colour indicates the particles’ radius, rp, uniformly distributed around
1mm. Bottom row: Particle positions in the same systems after ¢ = 2.0s of screw motion
(w = 48rpm). The particles are coloured according to their radial velocity, v,. Particles
confined to one side are clearly visible in b2) and b3), while back-flowing particles are
clearly noticeable cases b3) and b4). The mechanical components of the screw conveyor
were omitted for clarity.

the mean volume throughput (V).

The particles’ mean velocity is obtained as a temporal average of the total particle velocity
every 0.5s (i.e., over 10 snapshots). To compute the particle level, the conveyor was divided
into 75 sections along its axis, each one 2rp = 2mm long, where the highest particle
position was computed for the left and right sides of the screw axis. Subsequently, the
mean maximum height was evaluated and averaged over time every 0.5s (same temporal
average as the particles’ velocities) for the left and right sides of conveyor to give hy, and hgr
(see figure 2.3a). The particle height levels were rescaled to the dimensionless coordinate
system based on the full filling of the screw. Finally, the mean volume throughput (V)(e, w)
was evaluated by computing the mean volume of particles crossing 5 axial sections of the
system, located one screw thread length from one another (figure 2.3b) and then averaged
in time.
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Figure 2.3: Snapshot of the system at t = 2.0s for filling level ¢ = —0.1 and screw velocity
w = 48rpm, with particles colour based on the size. Flowing direction is along the positive
z semiaxis. a) projection on the x-y plane. The dashed lines represent the particles’ height
levels and the dot-dashed line is the initial level of particles. b) projection on the y-z plane
of a section of the conveyor. The distance between dashed lines represent the length of
one screw thread [. For the particles’ level evaluation, for a better resolution of the top
layer each one of these threads was divided into 15 slices. ¢) 3D view of the former section
including the feeding screw elements. Both b) and ¢) are mirrored with respect to the y-z
plane, to have the particles visually flow from left to right.

2.3 Results

2.3.1 Particle volume flow rate

We expected the volume throughput (flow rate) to be directly proportional to both the
screw speed and the filling level. Since the velocity regimes studied in this paper are
relatively low (to prevent the particles from centrifuging inside the conveyor), we expected
the relation between the particle throughput and the screw velocity to be linear [124],
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ie., V(e, w) o< w. Moreover, neither the “particle side confining” nor the “back-flow” were
expected to play any role at low fillings since these effects only occur when the particle
height is roughly at the shaft level. The confining and back-flow have different filling
thresholds, the former taking place before the latter. At high fillings, we expected the
back-flow of particles to approach a constant value since the particles’ level is constant
above the screw shaft. Similarly, at high e, the side confining should disappear since
the leaping particles should fill the right side of the conveyor. Our simple considerations
suggested a non-linear dependency of the throughput on the filling: V(e, w) x f(e€).

w [rpm]
48.0 ¢ 40.0 = 343 a 30.0 v 26.7

Figure 2.4: Mean volume throughput as a function of the filling level at various screw
velocities (connecting lines provided as eye guide). The solid vertical line represents the
shaft top edge position; the dot-dashed line is the screw axis.

Figure 2.4 shows the volume throughput as a function of the filling level for various angular
velocities of the screw. Surprisingly, the throughput shows a maximum and a minimum
for all rotation rates, and it is at a local minimum when ¢ is close to the shaft’s top edge.
The reasons for this are the following: the layer of particles on the conveyor’s left side
is not uniform along the screw axis and has a peak close to the screw’s blade, which is
constantly lifting the particles (see figure 2.3b and c). Because of this non-uniformity, the
particles leap over the shaft at only a fraction of the length rather than along the entire
length, for which it is required that the particle level € be constantly higher than the shaft
top edge level ps = Rs/Rc = 0.49. Therefore, we expected to reach the minimum volume
throughput when the back-flow acts along the entire length, which takes place when the
initial filling level coincides with the shaft top level, i.e. € = pg. For filling ratios higher
than this threshold the contribution of the back-flow on the volume throughput becomes
constant. In contrast, higher filling ratios imply a higher throughput for any given screw
velocity. Therefore, we observe an increase in the throughput for € > pg.

Note that in starve-fed conveyors the volume throughput is constant, corresponding to
a horizontal line. Thus, in a certain range of throughputs, different fill ratios may be
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achieved, since the horizontal line has three intersections, i.e., at low-, intermediate- and
high-fill levels. This phenomenon is called multiplicity and can have significant impact on
the control and processing of materials [70].

2.3.2 Effect of relative shaft size

In order to validate this assumption, the same set of simulations was repeated for two shaft
sizes set at R§ = Rg + 2rp (relative ratio of 0.59 and 0.38, respectively), i.e. one mean
particle diameter bigger or smaller than the initial shaft.

The volume throughput normalised with respect to the screw angular velocity is shown
in figure 2.5. The curves attributable to the same shaft size collapse into one, suggesting
that the volume throughput is linearly proportional to w as hypothesized. What is more,
it was confirmed that the rescaled size pg is a critical parameter for determining the slope
of (V)(e,w)) and, in particular, its local extreme. For a smaller shaft (depicted in red in
figure 2.5), since the threshold of the particle back-flowing along the entire pitch length
is reached at lower fillings, the local minimum of the throughput is displaced towards the
left. The opposite is true for a shaft with a bigger radius (blue curve).
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Figure 2.5: Mean volume throughput normalised with respect to screw velocity as a
function of filling level for various shaft sizes. Curves for different rotation rates collapse
(i.e., for 26.7 rpm, 30 rpm, 34.3 rpm, 40 rpm, 48 rpm). The continuous vertical lines
represent the shaft top edge positions in the three cases. The colours refer to the three
shaft sizes. The curves belonging to the same shaft ratio pg coincide, which indicates the

linear dependence of (V) on w.
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Particle top layer height

Since we identified pg as a key parameter for the particle back-flow, the next step was to
study how the particles’ top layer height changes with respect to the operating parameters
e and w for different pg ratios.

1.0~

w [rpm]
0 48.0 ¢ 40.0 0 343 A 30.0 Vv 26.7

B 0s=0.38 W ps=0.49 W ps=0.59

Figure 2.6: Particles’ left hy, (upper branches) and right hr (lower branches) levels as a
function of filling level for the three shaft sizes. Data points for different velocities at the
same pg overlap. The vertical grid lines represent the top (right) and bottom (left) edges
of the shaft e = £pg, with different colours referring to the respective shaft sizes. (Note
that for e = 1 the dimensionless height does not reach exactly 1, since particle levels are
counted at the particle center and due to the initialization of the DEM simulation.)

Figure 2.6 shows the particles’ left and right height levels as a function of the initial filling
level. The results indicate a small deviation in the height at various screw velocities and
the same pg due to the low-velocity regime chosen for the simulations. The slope of hr,
(upper branches in figure 2.6) indicates that the shaft size has no effect on the increment
in height on the side of the conveyor, where the screw lifts the particles due to an interplay
between the friction of the particles and the helix angle v of the screw. This angle depends
on the radial distance r between the measuring point and the screw axis and is defined as
the angle between the projection of the blade on the y-z plane and the vertical y-axis:

v = tan™! <27ZW) (2.2)

The value of « is at its minimum near the external case and reaches the maximum ap-
proaching the middle shaft. The helix angle intrinsically determines the geometry of the
screw blade and provides a measure of transport efficiency of the screw conveyor [113].
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The height to which the screw can lift the particles is also affected by friction. Due to fric-
tion with the particles (particle-wall friction coefficient ppc) the blade drags the conveyed
material higher up acting against gravity.

The higher the inter-particle friction pupp is, the more granular material can sustain itself.
In our case, the difference between the various shafts, and consequently in the difference in
the mean helix angle v, is not enough to play an important role. In addition, the coefficient
of friction does not depend on the relative velocity between the blade and the particles
(provided it is non-zero). Therefore, hy, is dominated by friction effects and is not affected
by either pg or w. The small differences observed around € ~ 0.1 are due to the particle
leaping, triggering the back-flow in the smaller shafts earlier than in bigger ones.

The situation is completely different for hr. The initial slope of the curve is flatter com-
pared to Ay, due to the screw geometry, which continuously pushes the particles to the left,
but still independent on pg for € < —pg. However, as soon as the filling level approaches
ps, the particles that are pushed to the left side remain between the left side of the con-
veyor and the shaft. This is due to the discrete size of particles in granular assemblies
and the particles’ friction coefficient. As a result, the slope of hp clearly flattens once
€ > —pg, especially for the bigger shaft (blue), until the particles begin to back-flow due
to € closing towards pg. Thereafter, the particles that back-flow from the preceding screw
section begin to fill the right side, and the height difference between hy, and hr decreases.
As soon as back-flow becomes uniform along [, the slope of hr for € > pg returns to its
former value.
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Figure 2.7: Ratio hr/hy of the particle levels at various velocities (data points) and
their average (dashed lines) as a function of filling. Particles confined on the left side

for —ps < € < 0 are responsible for the slope change. The scatter of data at 5% filling
(e = —0.9) is due to a high fraction of particles located below the screw bottom tips.
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The amount of particles pushed from the right side to the left is determined by two fac-
tors: the screw helix angle v and the particle friction coefficients upp and pupco. These
two parameters are also responsible for the slope of the particle’s avalanche due to this
transversal motion. The slope of the hr/hz curve in figure 2.7 confirms this. As soon as
the shaft’s presence does not interfere with particles’ level (i.e., when |e| > pg), the slope
of hr/hr is the same regardless of the filling level, except for a small fluctuation due to
the circular shape of the container. Investigating the particles’ avalanches in this specific
system is outside the scope of this paper and may be the topic of future studies.

Particle velocities

To achieve a better understanding of the particle flow, we examined the particle velocity.
The component in the feeding direction v, (hereinafter referred to as the axial velocity) is
higher near the screw axis. The axial velocity is the component of the overall velocity that
should be maximized since the closer it is to the screw’s axial velocity vV (i.e., the veloc-
ity along z-direction at which the screw surface moves due to its rotation around its axis),
the more efficient the feeding process is. The radial component of the velocity defined
as vp = ||(vg,vy)|| is responsible for the particle displacement through the circular ring
enclosed between the shaft and the casing. Since the radial velocity does not contribute to
the particle motion along the feeding direction, is irrelevant for conveying purposes.

As we observed, the screw blade lifts the particles at every transition, generating a contin-
uous avalanche motion. Because of its shape, the direction of the avalanching particles is
normal to the screw’s surface and can be split into a longitudinal (along the z-direction)
and a transversal (in the x-y plane) components. Their velocity components are v, and v,,
respectively (depicted in figure 2.8a and b). Their time averages at the various operational
parameters w and € are shown normalised by their respective screw component velocities
defined as follows

l Rc + Rs
VI =w oy v = w — (2.3)
The axial velocity increases along with the filling up to € = —pg and remains constant

at higher filling levels as soon as € > (pg + 1)/2. Figure 2.8c shows the ratio v,/v,
as a function of operating parameters. The slope of the curves reflects the trend of its
components, exhibiting two plateaus for —pg < € < 0 and € > (pg + 1)/2. Although the
data points are more scattered up for € < 0 (i.e., less than a half-filled screw) for various
screw velocities, the mean ratio (dashed lines) clearly indicates that the smaller the shaft
is, the more efficient the particles are conveyed, regardless of the filling level and of the
screw velocity.

Conveying efficiency

Next, we aimed to establish how various shaft size ratios affect the particle levels and
their velocities, since both aspects contribute to the volume throughput and its efficiency
in different ways. First, there is a particle height difference, which is directly related to
ps. The higher pg is, the later the particle back-flow begins and the longer side-confining
continues, increasing the rate of axial transport. Secondly, the wider the shaft is, the
further the particles remain from the screw axis, leading to a higher mean helix angle ~
and a more inefficient particle conveying.
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Figure 2.8: Particle mean velocities with respect to filling for various shaft size ratios
(colours) and screw velocities (marker symbols). a) normalised mean axial component, b)
normalised mean radial component, and ¢) mean axial versus mean radial velocity ratio.
Differences at 5% filling (¢ = —0.9) in b) is for the same reason as in figure 2.7. The vertical
grid lines are: bottom edge of the shaft (left), screw axis (middle dashed) and mean screw
blade radius (right), with the color referring to the respective pg-ratio.

To determine which configuration results in the most efficient process, we plotted the
conveying efficiency defined as the ratio of the mean volume throughput to the mean
maximum throughput:

,o _Niew) -
(Vmax) (e, w)

The mean maximum throughput is defined as follows:

e ) = Y (0 = 50 22(0) = 59 (w) 25)

where S(e) is the screw cross section initially occupied by the particles (e.g. see figure
2.2a) and vi°" has been defined in equation (2.3), the first equality holding since the
mean throughput is averaged over multiple screw turns. Note that the normalization in
figure 2.9 was not performed with respect to full filling, since <Vmax> is also a function of
€, and represents the maximum achievable volume throughput for given initial filling level.
The shape of the curves in figure 2.9 is similar to the velocity ratio v,/v, in figure 2.8c,
with the same two plateaus. The data points represent the volume throughput efficiency
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(equation (2.4)) while the dashed curves are rescaled taking into account the particles
packing fraction, which was assumed to have a constant value of 0.63. The conveying
efficiency n is always higher for smaller shafts, indicating that the back-flow of particles
and the side confinement play a secondary role, compared to the mean axial velocity ,.
The efficiency reaches its maximum at —pg < e < 0, where it is  ~ 0.7 for pg ~ 0.5, and
decreases to n ~ 0.45 at the full filling (taking into account the packing fraction).
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Figure 2.9: Screw-conveying efficiency with respect to operating parameters for the three
shaft sizes (different colors). Data points represent the simple normalised volume through-
put according to equation (2.4). The dashed curves are rescaled with a constant packing
fraction of 0.63. The vertical grid lines are the same as in figure 2.8.

Partially-filled screw conveyors reach the maximum conveying efficiency within a precise
filling interval, which is unaffected either by the screw velocity w (provided that it is low
enough to avoid particle centrifuging) or by the relative size of screw shaft relative to the
external casing pg. In addition, for given operating parameters (e€,w), the most efficient
device is the one with the lowest screw shaft-to-casing ratio pg. This holds true if the mean
size of the conveyed particulate is much smaller than the typical geometric parameters of
the screw (pitch length, shaft diameter, blade radial length, casing diameter, etc.) to avoid
finite size effects.

2.3.3 Effect of the particle-conveyor friction coefficient

As in every particle-based system and industrial process concerning mechanical components
in motion, friction plays an important role. Its contribution affects the dynamics of the
system and plays a major role with regard to the efficiency of the screw conveyor. As such,
we investigated how the friction coefficient affects the throughput in the system and to
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which extent.

In our case, there are three friction coefficients: the inter-particle friction ppp, the friction
between the mechanical components of the conveyor and the particles ypc and the friction
oo between the various parts of conveyor. Since in practice we cannot change the friction
between the conveyed material components and since in our model there is no contact
between the rotating screw and the external casing (making the model de facto independent
on pucc), we only investigated ppc. To that end, we applied the settings described in the
previous section, except that the screw speed had a constant value of w = 34.3rpm, a
constant shaft-casing size ratio of pg = 0.5, and upc varied in an interval of [0.15,0.55].

N W b

V [cm®/s]

Hpc
W 015 W 0.25 | 0.35 W 0.45 W 0.55

Figure 2.10: Mean volume throughput as a function of filling level for various particle-
conveyor relative frictions upc (ps = 0.5). The continuous vertical line represents the
shaft top edge position; the dot dashed line is the screw axis.

The volume throughput for various filling levels and various ppc¢ is shown in figure 2.10. As
expected, the volume throughput is inversely proportional to the relative friction coefficient.
At higher friction, the curves converge to a lower limit, which is the least amount of volume
throughput achievable under the system operating conditions. This value depends on the
relative shaft size pg and on the screw shape given by «. The physical interpretation of
having a lower-bounded volume throughput is simple: once the friction becomes higher,
the relative tangential velocity of the particles with respect to the screw surface will tend
to zero. Thus, for increasingly high friction coefficients, no further reduction in the volume
throughput can occur (and the normal velocity stays constant as well). For lower friction
coefficients, not only the volume throughput is higher, but the curve extrema are displaced
toward higher fillings. The reason can be understood observing the particles levels.

Particle top layer height

As mentioned above, friction impacts the particle height. The higher the friction, the more
strongly particles are dragged to the left side, leading to a higher hy. The level cannot
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Hpc
B 015 W 0.25 W 0.35 W 045 W 0.55

Figure 2.11: Particle left (dashed lines) and right (filled lines) heights as a function of
filling level for various particle-conveyor relative frictions upc (ps = 0.5). The continuous
vertical line represents the shaft edge position; the dashed line is the screw axis.

be raised arbitrarily high by friction, since frictional forces have an upper bound and act
only tangentially relative to the blade surface. Therefore, h; must be upper-bounded, the
maximum value being reached after a certain ppc threshold for a given filling.

The relationship between the maximum h; and ppc is complex. It depends on upp, v
and the geometry of the system and, for the sake of brevity, we chose not to investigate it
further. The minimum value of Ay, is limited as well, since there is always a non-null lifting
contribution from the screw determined by the normal component to the screw surface,
being a function of «v. The same logic can be applied to the right level hr. The higher
the friction, the lower is the level, since the drag to the opposite side is higher. Both the
higher and lower values of hr are limited as well due to the aforementioned extremes in
hr.

The difference in the vertical drag due to friction with the blade can be observed in figure
2.11. Higher drags (and thus higher left levels) at a higher friction were observed for
—ps < e <0, where the upper drag against gravity occurs and the particle side-confining
mechanism dominates. The different slopes of h; impact also hp (filled lines) in the
0 < € < pg region: the higher the level of particles dragged due to friction for a given
filling, the earlier they will hop over the shaft and raise the right side level.

The slope of particle avalanches (i.e., the difference in height between left and right side)
was also modified for low filling levels, as shown in figure 2.12. The vertical drag of the
screw blade clearly depends on the geometry, given by «, and the friction coefficient ppc
and, indirectly, on the filling level. In fact, the lifting force exerted by the screw is a
function of the angle v which also depends on the relative position of the screw blade.
The normal vector 7(r,¢) to the latter rotates in the x-y plane around the axis with
the same period of the screw. While its component along the z axis depends on the
radial position and is completely determined by ~, it is unaffected by the blade’s relative
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Figure 2.12: The ratio hr/hy for various relative friction coefficients ppc and pg = 0.5
as a function of filling. For ¢ < —pg the friction affects the transversal avalanche slope,
while for € > pg the inter-particle friction pupp (constant) plays the major role. The scatter
found at 5% filling is due to a high fraction of particles laying below the screw bottom tips.

position. On the contrary, the component along g/, which is the direction of gravity, is
proportional to the angle ¢ between the blade projection on the x-y plane and the —y
semiaxis: f, oc sin¢. Similarly, the component normal to the blade along the & semiaxis
has a m/2 phase shift from the former: 7, oc cos¢. Therefore, at low fillings ¢ < —pg,
the transversal (perpendicular to axis) component 7, which is responsible for the height
difference, is at its maximum. Consequently, the impact of the relative friction pupc on the
height ratio hr/hy is higher for small filling levels (figure 2.12). At high filling levels, the
avalanche is dominated by inter-particle collisions and the slope of the particle avalanche
is affected by pupp. Since the latter was kept constant in this set of simulations, the hr/hr
slope is the same for € > pg, as confirmed by numerical data. The region —pg < e < 0
has confining mechanics, while the leaping effect begins at 0 < ¢ < pg. The threshold is

slightly affected by the particle-conveyor friction for the reasons stated above.

Particle velocities

The plot of the components of the mean particle velocities normalised with respect to the
factors in equation (2.3) are shown in figure 2.13. The behaviour of the velocity is the
same as observed in the former set of simulations, in that the particles’ mean axial v, and
radial o, velocities have a plateau at —ps < € < 0 and for € > (pg + 1)/2, with the same
underlying physics. Lower friction translates into lower heights (and thus in a more stable
confining phenomenon), which results in a higher mean axial velocity (figure 2.13a). For
reasons stated above, since the normal component of the screw is responsible for the axial
velocity, there is a lower limit to ¥, at higher friction coefficients.

The most notable effect of lower friction is its extension to higher fillings of the upper
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Figure 2.13: Particles’ mean velocities with respect to the filling level for various particle-
conveyor relative frictions and ps = 0.5. a) normalised mean axial component, b) nor-
malised mean radial component and ¢) mean axial versus mean radial velocity ratio. Fluc-
tuation at 5% filling in b) due to a high fraction of particles below the screw bottom tips.
The vertical grid lines are: bottom edge of the shaft (left solid), screw axis (middle dashed)
and mean screw blade radius (right solid).

threshold that are responsible for the plateau due to the side confinement. This happens
due to a flatter profile of particles in the x-y plane, and the leaping state is reached for
higher € the lower the friction. In fact, the lower the friction, the less the particles will
be dragged against gravity when in contact with the screw blade. Therefore, the particle
profile along the axis will be flatter. Because of this, the maximum height is lower due
to mass conservation, and the leap-over will be triggered at higher filling ratios for lower
friction coefficients. The radial velocity component is inversely proportional to the axial
one, as described above (the closer the particles are to the shaft, the faster they move
along the z-axis and the lower the radial velocity is), with a longer plateau in the side
confinement region (—ps < e < 0) at lower friction coefficients.

With regard to the velocity components ratio v,/v, (figure 2.13c), the effect of friction
appears to be significant. In the —ps; < € < 0 region, the ratio doubles when ppc is within
the range of 0.15 — 0.55, and the optimal conveying region further extends to values of
e > 0. As stated above, the velocity ratio is lower for higher particle-conveyor friction
coefficients, the latter being almost non-influential under the lower plateau regimes for
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e > (ps+1)/2 (since ppp dominates the frictional effects rather than ppc).

Conveying efficiency

Finally, we considered the effect of friction on the conveying efficiency (figure 2.14). The
axial profiles in figure 2.13 are very close in shape to the particle volume conveying efficiency
in figure 2.14. The top-plateau extension to higher e values is as also observed for lower
particle-conveyor friction coefficients, since the threshold typically found around € = 0 for
the particle height levels and velocities is shifted towards a higher filling level.

The maximum of the volume conveying efficiency is still found in the region —pg < e < C,
where C' € [0, ps] and is reduced to 0 at high ppc, while tending to pg when upc — 0.
The value of the efficiency ranges from n ~ 0.65 for upc = 0.55 to n ~ 0.75 for upc = 0.15
(with a constant packing fraction of 0.63). For higher relative friction coefficients, the
efficiency collapse to the same curve, as seen for the particle volume throughput in figure
2.10.
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Figure 2.14: Screw conveying efficiency with respect to operating parameters for various
particle-conveyor components friction coefficients (pg = 0.5). Solid lines represent the
simple normalised volume throughput according to equation (2.4), the dashed lines rescale
the latter with a constant packing fraction of 0.63. The vertical grid lines are the same as
in figure 2.13.

2.4 Discussion

Despite the mechanical simplicity of screw conveyors, a detailed analysis of the granular
material motion in such devices is complex. The screw’s geometry makes it impossible to
reduce it to a quasi-2D system, which is, for instance, possible for rotating tumblers and
inclined chutes. The horizontal inclination of the conveyor disrupts the cylindrical symme-
try of the system since gravity pushes the particles in the preferred direction. Moreover,
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the behaviour of dynamic granular systems has to be considered, making the conveying
process strongly dependent on the particles’ relative friction coefficients, particle size dis-
tribution and finite size effects.

As sketched in figure 2.5, the volume throughput is linearly proportional to the screw ro-
tating speed; therefore the velocity w has no effect on the conveying efficiency as defined
in equation (2.4). This result is valid in the assumption of a reasonably low screw velocity
to avoid particle cataracting or centrifuging. The interaction between particles and screw
shaft determines a characteristic particle motion, which manifests itself in a non-linear
dependence of the throughput on the filling level (figure 2.4). There are 4 main filling
ranges, within which the particles have systematic behaviours, depending on the geometry
of the screw through the parameter pg:

e ¢ < pg: the particles do not interact with the screw’s middle shaft. Blade-casing
clearance adds systematic fluctuations to the particles’ levels and velocities. Friction
and screw shape play a major role in determining the particles’ avalanching and their
dynamics.

e —ps <€ < C,C € [0,ps]: the particles are confined to one side, between the
external casing and the shaft. The friction determines the constant C and is inversely
proportional to it. Axial avalanching is enhanced. The conveying efficiency reaches
its maximum and remains roughly constant.

e C <e<(ps+1)/2: the confined particles are lifted and leap over the middle shaft,
falling into the next screw thread and contributing to the transversal avalanching.
The particle back-flow is characteristic to this region. Volume throughput and effi-
ciency are significantly reduced, the former reaching the local minimum.

e (ps+1)/2 < e < 1: the particles back-flow is uniform along the entire screw sec-
tion length, and the transversal avalanching reaches the maximum. The conveying
efficiency reaches its minimum and becomes constant.

The relative shaft size and friction between the particles and the mechanical components
of the conveyor directly affect throughput and efficiency. Moreover, they determine the
thresholds of the filling regions. We established that, regardless of the operating parame-
ters, both the volume throughput and the conveying efficiency are inversely proportional
to the shaft’s relative size compared to the conveyor as well as to the particle-conveyor
friction coefficient. Thus, highly-polished steels will increase conveying efficiency compared
to rougher materials.

Our work provided the following insights, which can be useful for screw conveyor design
and operating parameters tuning:

e At screw speeds that prevent particle cataracting or centrifuging, the volume through-
put linearly depends on the screw rotating velocity, while the efficiency does not
depend on it.

e The conveying efficiency is maximized at a filling ratio around 50%, with this value
being shifted due to particle-screw relative friction.

e The friction between the conveyor components and the transported material should
be minimized to improve both throughput and efficiency.
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e Regardless the operating parameters, a smaller shaft always translates into a higher
throughput and efficiency.

e In a certain range of throughputs, multiple fill levels can result in the same volume
throughputs (i.e., the system exhibits multiplicity).

2.5 Conclusions

In this study we performed a set of Discrete Element Method simulations, modelling the
transport of a granular material by a screw conveyor. The screw rotation velocity and
the initial particle filling level are used as operating parameters to study the mean volume
throughput of the device. Different screw shaft radii were employed in this numerical
study to show how the shaft size compared to the conveyor one is a determinant factor
for the flow of the conveyed material. The conveyor operating parameters directly affected
the particles’ height levels and relative velocities with respect to the screw blade, both of
which are key aspects with regard to throughput and efficiency. Because of the peculiar
frictional properties of granular materials, we identified four different filling intervals where
the flow exhibits typical patterns, such as a side-confining and a back-flow mechanisms.
The extension of those filling regions is unaffected by the screw velocity, but is modified
by the friction coefficient.

Our work can provide useful insights in both the design and the operational parameter
tuning of starved-fed screw conveyors, widely employed, among others, in grain transport
devices and mining.

Future work will address the numerical study of transport properties of such a system for a
bi-disperse particle mixture, and the interplay between the particle dynamics dependent on
the filling ratio and size segregation. Moreover, it is intended to perform an experimental
validation of the proposed model, relating the particle and design properties to the particle
flow rate. Since the setup of the experiment is not straightforward, and the validation
requires a high number of experimental data points, the experimental validation of the
results presented in this paper will be a separate study and will be the topic of future
publications.
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Chapter 3

A combined DEM & FEM approach
for modelling roll compaction process

Abstract!

Roll compaction is a continuous manufacturing process aiming to produce particulate gran-
ules from powders. A Roll press typically consists of a screw feeding system, two rolls and
a side sealing. Despite its conceptual simplicity, numerical modelling of the process is chal-
lenging due to the complexity involving two different mechanisms: feeding by the screw and
powder compaction between the rolls.

To represent the materials’ behaviour both in the feeding zone and in the compaction area, a
combined three-dimensional Discrete Elements Method (DEM) and Finite Elements Method
(FEM) is developed in this work. The DEM, which is a more suitable method to describe
the flow of granular material, is used to model the motion of particles in the feeding zone.
As the granular material deforms under high pressure between rolls, FEM offers a more
versatile approach to represent the powder behaviour and frictional conditions. In the pro-
posed approach the DEM and FEM are treated as complementary methods, enabling us to
take advantages of the strengths of both.

In this proposed approach, the time dependent velocity field of the particles at the end of the
screw feeder is evaluated as a continuous field using the Coarse Graining (CG) framework,
which was used as input data for the FEM model. FEM is then used to simulate the powder
compaction in between the rolls, and the resultant roll pressure and ribbon relative density
are obtained.

"With minor corrections from: A. Mazor, L. Orefice, A. Michrafy, A. de Rycka, J. G. Khinast, Powder
Technology 337, 3—-16 (2018).
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3.1 Introduction

Roll compaction is a process designed to compact fine powders to produce particulate gran-
ules, and it pertains to continuous manufacturing procedures. During the process, powder
is subjected to high pressure from the rolls, leading to the formation of compacted ribbons,
which are later milled into granules. The ribbon’s relative density largely influences the
compactibility of granules and subsequently the final solid dosage form (i.e., compacted
tablets) properties. Therefore, relative density is commonly used as a critical quality pa-
rameter of the roll compaction process. In order to ensure the consistency, repeatability
and quality of the final dosage form, it is important to avoid heterogeneity of the produced
ribbon.

A typical roll compactor consists of a single rotating screw, which feeds the material into
a gap between two counter-rotating rolls and cheek plates on the sides to avoid leakage.
The conveying of powder towards the rolls have a large influence on the roll compaction
process. Experimental work showed that the delivery of powder by a screw feed is linearly
related to the screw speed [48,130]. An appropriate compaction is reached and maintained
with a screw to roll speed ratio laying in a specific range. Simon and Guigon [48| also
showed that by using a single feed screw, the compacted ribbon was neither homogeneous
along the ribbon’s width nor in time. Moreover, these fluctuations have the same period
of the screw rotation. The impact of the screw motion on the compaction process is rele-
vant for the ribbon properties, albeit not in a trival way. Not only does the screw design
affect particle flow [113| and mixing [106], but also powder properties play an important
role [57,58,130]. In addition, the behaviour of simple screw feeders will differ as soon as
they are coupled with other devices, which will alter the flow properties and the pressure
distributions inside. A numerical example can be found in [97].

Numerous studies investigated analytically the roll compaction process. The most well-
known analytical model is the Johanson model [63], which is able to determine the pressure
along the roll surface, torque and separating force of the rolls, based on the physical char-
acteristics of the powder and dimensions of the press. The main limitation of the classical
Johanson model is that it does not include the important process parameters of roll and
screw speeds, which led to the extension of this model by Reynolds et al. [111]. However,
these models are only one-dimensional and do not take into account the non-uniformity of
the conveying of powder and as a result the non uniform roll pressure and ribbon’s density
distribution. Bi et al. [10] attempted to overcome this limitation by extending Johanson’s
model to account for a non-uniform powder velocity in the nip region. However, their result
is of little experimental use because the model developed introduces a high variability in
the predicted pressure peak, and because the estimation of a key parameter of the model
cannot be measured experimentally.

To resolve this, Finite Elements Method (FEM) modelling was adopted to simulate the
roll compaction process, starting with plane strain two-dimensional cases [24, 28,95, 98],
followed by the development of three-dimensional models to provide greater insight into
the pressure and density distribution during the roll compaction processes [25,90,94,99].
In these models, the effect of the screw feeder is approximately represented by a uniform
or oscillatory inlet feeding pressure at the entry angle. Liu and Wassgren [80] implemented
a mass-corrected version of Johanson’s model analogous to [10] in a two-dimensional FEM
model, yet based on two experimentally-determined fitting parameters. The results show
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a better agreement with the experimental pressure profile when compared to the original
Johanson’s model. However, the model still relies on experimental data, and only uses an
arbitrary constant feed pressure, which does not account for the complex pressure pattern
created by the screw conveyor. Michrafy et al. [94] investigated the effect of a constant
inlet feeding velocity on the roll compaction process using cheek plates, which resulted in
higher pressure and relative density in the middle of the ribbon compared to the edges.
Cunningham et al. [25] compared a uniform inlet feeding velocity to a linearly decreasing
velocity from the centre to the edges, where both cases have no friction between powder and
cheek plates. In the case of uniform inlet feeding velocity, the maximum roll pressure and
relative density were the same along the ribbon’s width. Using a non-uniform inlet feeding
velocity, the powder is fed rather in the middle than at the edges, and consequently results
in higher maximum roll pressure, shear stresses and relative density in the middle of the
ribbon. These results are comparable with experiments only with the understanding that
the conveying of powder in between rolls have a direct effect of the process. In conclusion,
in all of the previous FEM models of roll compaction the inlet velocity or feed pressure
values are chosen arbitrarily and do not represent the effect of screw feeding. Therefore,
features associated to the periodic feeding, such as a non-uniform conveying in both space
and time, are still unaccounted for.

The numerical modelling of the roll compaction process remains challenging due to the
complexity involving two different mechanisms: the feeding by the screw conveyor and the
powder compaction between the rolls. On one side, the incoming particle flow is a key
parameter strongly influencing the compaction process, since it dictates the pace of the
process and affects the homogeneity of the compacted ribbon. On the other hand, the
material deformation under high stress, and the frictional conditions in the compaction
region, are the fundamental quantities needed to model the system.

In order to address these issues, we developed a combined three-dimensional Discrete El-
ements Method (DEM) and FEM methodology. DEM is naturally suited to model the
conveying process and will be used to study the particle flow in the feeding zone. The
results will be used as boundary inlet conditions for the FEM modelling of the compaction
process, which is the best approach to study the compaction of porous materials under
high pressure. In our work, the DEM and FEM are treated as complementary methods:
combining them in the study of roll compaction enables us to take advantage of their
strengths in the regions where they are respectively best suited. The aim of our study is
therefore to improve the existing numerical models, leading to a more realistic description
of the process which will head us to a better prediction of the final ribbon quality.

3.2 Materials and methods

3.2.1 Roll compaction design and process parameters

This work is based on the Komarek BO50H Laboratory Press (K.R. Komarek Inc., Wood
Dale, IL, USA) shown in figure 3.1. The Komarek roll compactor is constructed with a
horizontal screw conveyor and two counter-rotating rolls with fixed side seals (i.e. cheek
plates) in between. The process parameters of minimum gap width between rolls, rolls
speed and screw speed were set to oy = 0.2cm, wr = 6rpm and wg = 48rpm, respectively.
Further details about the roll press dimensions can be found in table 3.1.
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Figure 3.1: Komarek BO50H roll compactor; a) Top view and b) Side view (w/o feed
barrel and side seals)

3.2.2 Powder

The powder used in this work is microcrystalline cellulose (MCC) (Avicel PH 101, FMC
BioPolymer, Philadelphia, PA, USA). MCC is one of the most important and widely em-
ployed excipients in the pharmaceutical industry. It has excellent compressibility proper-
ties and is used as diluent for drug formulations in the tableting process [18,56]. The true
density of the powder blend was determined using a helium pycnometer (Accupyc 1330,
Micromeritics Instrument Corp., Norcross, GA, USA) as pyue=1.56 g/cm?.

3.2.3 Discrete Element Method

The Discrete Element Method [23] is a numerical method for computing the dynamics
of a large ensemble of small components, typically spherical particles. Particles interact
with each other according to a special interaction law and can be influenced by external
force fields, such as gravity. In addition, they interact with geometrical objects, which are
generally located inside the simulation domain (e.g., walls or pipes) and may affect their
movement. The interaction law governing the forces experienced by objects upon collision
commonly accounts for an elastic repulsive term (due to the rigidity of the bodies) and a
dissipative term (due to friction). In a DEM simulation, contacts between the objects at
each time step and forces generated by the collisions are computed. Next, the dynamics of

42



3.2. Materials and methods

Table 3.1: Komarek B0O50H roll compactor dimensions.

Part Symbol Size [cm]
Screw feeder
Screw length ls 15
Pitch length ly 1.95
Flight thickness tsf 0.5
Flight diameter dsy 3.5
Shaft diameter dss 1.9
Casing diameter de 3.8
Roll press
Rolls diameter dpr 10
Rolls width WR 3.8
Minimum gap width Omin 0.2

the components are evaluated and the equations of motion are integrated, with the position
and velocity of objects being updated accordingly. This is repeated at each time step for
the entire duration of the simulation.

Discrete Element modelling is suitable for studying the flow of solid particulate materials
since the detailed dynamics of every single particle are determined at any moment and the
physics of the macroscopic medium is based on it. However, the results greatly depend on
the interaction laws between the objects. For instance, accounting for the particle deforma-
tion or breakage caused by high pressure is difficult as is the modelling of a (realistically)
large ensemble of particles due to very high computational cost. As such, although the
DEM model in this study is unsuitable for modelling the compaction process, it can be em-
ployed to model the particle flow transported by the screw conveyor inside the compaction
region.

Contact model and parameters

In DEM simulations, objects interact according to the well-known Hertzian spring-dashpot
contact model [14,55]. We used rigid, frictional, non deformable spheres of uniformly dis-
tributed poly-disperse radius in the range rp + 10% to model the powder particles and
for the compactor components we employed frictional, non-deformable stereolitographical
(STL) meshes. The mean particle radius was chosen such that every particle could fit
through the gap of 0.2cm between the screw blade and the conveyor casing (see table 3.1),
with the polydispersity eliminating crystallisation effects between particles that may affect
the flow [123,154]. A common practice in DEM is to use mesoscopic particles in the sim-
ulations, i.e., much bigger than the ones in the experiment. We observed that the particle
size is not affecting the velocity profile of the particles inside of the screw, and therefore
the size chosen is the biggest possible one fitting through the screw clearance (the distance
between the screw blade and the casing) to reduce the computational expense. However,
we monitored the forces acting on the particles and their overlap to guarantee that no
jamming occurred. The interactions account for sliding and rolling friction. In our model,
the particles were composed of Micro-Crystalline Cellulose (MCC) and the compactor’s
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Table 3.2: Parameters used in the DEM simulations.

Parameters and material properties Symbol Value
Particle mass density [g/cm?] pp 1.56
Particle mean radius [cm] rp 0.09
Particle Young’s modulus [Pa) Yp 1.0- 10
Conveyor Young’s modulus [Pal Yo 1.8-10
Particle Poisson ratio [—| vp 0.30
Conveyor Poisson ratio [—| Vo 0.30
Particle-particle restitution coeff. || epp 0.83
Particle-conveyor restitution coeff. [—| epc 0.80
Particle-particle sliding friction coeff. [—| usfl,iging 0.53
Particle-conveyor sliding friction coeff. || ,u%iging 0.20
Particle-particle rolling friction coeff. [—| u?};l,ing 0.25
Particle-conveyor rolling friction coeff. [—] u;)gmg 0.10
Screw operational velocity [rpm]| ws 48
Rolls operational velocity [rpm] WR 6
Gap width [cm] ] 0.36
Time step [s] ot 5.0-1076
Data output interval [s] At 0.01

components material was steel, material properties taken from [52,75,76,116,176]. We
recorded the DEM simulation data every 2-10% time steps of length 6t, resulting in a time
interval of duration At between the monitored snapshots. The simulation parameters and
the material properties are reported in table 3.2. The simulations used for this study were
performed using the open source DEM particle simulation code LIGGGHTS [71].

Discrete Element Model

A schematic representation of the DEM model of the compactor is shown in figure 3.2,
all the geometry parameters being listed in table 3.1. Each simulation is composed of 3
distinct phases: loading, transient and steady flow.

During the loading phase, the system is filled with particles. To this end, 7500 particles
were loaded into a parallelepipedal volume inside the hopper (A) every second of physical
time. As soon as they reached the bottom, the screw (B) dragged them towards the com-
paction region (D) that gradually began to fill. The screw velocity during this phase was
a fraction of the one used at full speed during the compaction process, and the rolls speed
was set to zero. A wall prevented the particles from exiting the compaction region through
the inter-rollers gap. The loading phase continued until both the compaction region and
the hopper were completely filled with particles.

Once the desired fill level was achieved, the transient phase began and the wall blocking
the exit through the gap between the rolls (E) was removed. Both the screw and the roll
velocities were set to their operational values of wg and wpg respectively, and the particles
began to flow through the gap. The particle loading in the hopper remained unchanged
in order to keep it constantly full and to preserve the overall number of particles in the
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system at around 8 - 10%. The purpose of this phase is a transition from the static loading
phase to the steady state phase.

The steady-state regime is reached when there are negligible fluctuations both in the mean
volumetric flow and in the mean axial velocity of the particles measured along certain
planes normal to the axis. A snapshot of the steady-state system is illustrated in figure
3.3. As it can be seen, the axial velocity of the particles, which is almost uniform inside the
screw barrel, quickly drops as soon as they approach the compaction region inlet, where
they experience a considerable back-pressure due to a high density in this area. Regions of
low velocity are located against the back wall of the compaction chamber. The particles’
velocity rises as they approach the gap, where they are compacted (in reality) and are
expelled. In this flowing regime, the data of interest were recorded along the inlet plane
(C) between the screw conveyor and the compaction region and averaged, as explained
below.

y [em]

10
Z [cm]

Figure 3.2: Schematics of the RC implemented in the DEM model. A: hopper. B: screw
conveyor. C: compaction region inlet (transition area from DEM to FEM modelling). D:
compaction region. E: counter-rotating compaction rolls (the rotation direction is indicated
by the arrows).

The purpose of the DEM model is to simulate the particle flow at the inlet of the com-
paction region, and not other quantities of central importance for the compaction process,
such as the pressure. This is due to the fact that the interaction laws are not suitable for
the modelling of this aspect. Moreover, FEM is the natural tool to approach a study of the
pressure distribution. For this reason, to avoid too high particle overlap in the neighbour-
hood of the screw tip, and consequent unphysical behaviour of the particle dynamics, the
gap size in DEM is much bigger than the respective FEM and experimental counterparts.
A bigger gap allows the particles to easily flow out from the compaction chamber, prevent-
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ing them from overlapping under the pressure exerted by the screw rotation. In addition,
the gap has to be small enough to avoid the compaction chamber to empty which would
lead to an inhomogeneous packing of the inflowing particles. Similar constricted outflow
conditions have been already used in the literature, e.g., in [97].

Because of this artefact the particles in the inflow region are densely packed but still in a
free-flow condition, granting the applicability of the Hertz-Mindilin interaction law. As a
consequence, the powder density at the inlet corresponds to tapped MCC, which justifies
the FEM inlet density assumption. Lastly, since both the geometry of the inlet and the
density of the powder are the same in both DEM and FEM, and the velocity field, by
definition, coincides, both volumetric and mass throughputs at the inlet of the different
models match.

vz [cm/s]

l1.5

1.0

. 0.5

0

I -0.5

Figure 3.3: Vertical section of one snapshot of the system at steady-state, the particles
are coloured according to their axial velocity v,.

3.2.4 Finite Element Method (FEM)

In this work, FEM is used to investigate the effect of screw feeding velocity on the roll
compaction process by obtaining the magnitudes and directions of stresses and strains. The
FEM model was solved as a steady-sate problem using the Arbitrary Lagrangian-Eulerian
(ALE) adaptive meshing in Abaqus/Explicit v6.14. The ALE adaptive mesh domain for
steady-state problems is used to model material flowing through the mesh, and consist of
two Eulerian boundary regions (inflow and outflow), connected by a Lagrangian or Sliding
boundary region [26].

FEM model

The FEM model is based on the geometry of the desired roll compactor. In the case
of the Komarek press, the roll’s diameter and width are dp = 10cm and wrp = 3.8cm
respectively, and defined as analytic rigid surfaces. The minimum gap width between the
rolls remains fixed during FEM modelling, having a value of d,,,;;, = 0.2cm. Once sketching
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the press dimensions, the region between the rolls is discretized and meshed by 80,000
C3D8R three-dimensional continuum reduced integration elements. The FEM model of
the roll compactor can be visualized in figure 3.4. It is important to mention that due to
the non symmetric feeding velocity, the model was constructed fully without taking into
account symmetry conditions, which are usually applied to reduce computational costs.

(a) (b)

Figure 3.4: Visualisation of the (a) Back inlet nodes and (b) Entire FEM model.

Boundary conditions

In FEM, introducing the powder into the roll compaction system is possible by two different
boundary conditions: either pressure or velocity inlet. Applying a non-uniform pressure on
each element face in an ALE adaptive mesh domain causes a separate Lagrangian boundary
region. Since Lagrangian corners are formed where Lagrangian edges meet, all nodes will
follow the material in every direction, and each region becomes nonadaptive [26]. On the
other hand, by assigning a non-uniform nodal velocity boundary condition to the inlet
Eulerian region (figure 3.4), there is no alteration of the nodes to be nonadaptive and
therefore was the approach chosen for this work. The inlet material density was set to
be the tapped powder density as a result of the screw feeding. The MCC Avicel PH 101
tapped density prapped is about 0.47 g/ cm?®, which corresponds to an initial relative density
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prel of 0.3. In addition, the rolls rotational boundary condition of +0.63rad/s about the
z-axis was defined to represent wg.

As mentioned previously, the ALE method enables working both with the advantages of
Lagrangian and Eulerian elements in the same part [9]. While the inlet and outlet surfaces
are defined as Eulerian regions, the surfaces that are in contact with the rolls are defined as
sliding surfaces. The contact between the powder mesh and the outer surfaces representing
the sealing and rolls is defined as surface-to-surface with Coulomb friction coefficient for a
non lubricant case of u = 0.4 [90,95,99|.

Constitutive model for continuum modelling

In our FEM modelling, the behaviour of the powder, considered as a continuous, porous,
compressible material, is described using the density-dependent Drucker-Prager Cap
(DPC) model [51,54] and implemented by an external user-defined VUSDFLD Fortran

subroutine.
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Figure 3.5: Density-dependant Drucker-Prager Cap model [90].

Assuming the material is isotropic, the model consists of three different parts: a shear
failure surface F; representing shearing flow, a cap surface F. representing an inelastic
hardening for plastic compaction and a transition zone F; between the two surfaces, pro-
viding smooth surface to avoid singularities in the modelling. The shear failure is simply
described by a straight line on the p-q plane and defined as:

Fs=q—d—ptanf =0 (3.1)
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The slope of the line represents the friction angle 5, and the intersection with the q axis
represents the cohesion, d. Here p represents the hydrostatic pressure (i.e. negative mean
stress) and ¢ the Von Mises equivalent stress. They are both obtained from the stress
tensor o as follows:

b= %tr (o) (3.2)

= \/ % (01— 02" + (02~ 03)* (03— 00 (3.3)

The cap yield surface is obtained by analyzing the stress state of the loading and unloading
path in die compaction and written as:

2
FCZ\/(p_Pa)2+<1+a—RZ/COSﬁ> — R(d+ P,tan ) (3.4)

Where P, is the evolution parameter representing the material hardening and softening, R
is the cap eccentricity, and « is the smoothing transition constant that is used to define the
smooth transition between the shear failure surface and the cap. In this work, an arbitrary
transition parameter of a=0.01 was chosen (typically 0.01< a <0.05) to avoid numerical
singularities.

As mentioned previously, a transition surface F; should be applied and defined as follows:

F = \/(p— P)?+ [q— (1 - COOS‘5> (d+PatanB)r — a(d + P, tan B) (3.5)

Based on standard calibration method, the density-dependent DPC model (figure 3.5) was
obtained. Further information regarding the DPC model and an extended detail on the
calibration method used in this work can be found in a previous study [90].

3.2.5 Coarse graining

Information gathered via DEM modelling of the system is, by definition, discretised (e.g.,
every particle has a specific velocity computed at every time step). However, for the data
to be used as an inlet condition for FEM modelling of the compaction region, every discrete
physical quantity of interest has to be transformed into a continuous 3D field. We chose
to obtain continuous data from a discrete set via Coarse Graining (CG) [44,158].

Let us assume we have L particles in our domain, labelled with an integer subscript j =
1,2,...,L. According to the definition, at every point r = (z,y, z) of the system and at
any time ¢, we can define a coarse grained density field g(r, A;¢) of a physical observable
of interest (e.g., velocity) ¢(r;t) as:

ar, Ast) =Y ;) d(r — 15, ) (3.6)

Jj=1

where ¢ is the coarse graining function, which depends on the coarse graining length A > 0,
and r; is the position of particle j.
The function ¢(r, A) is defined as a continuous symmetric even function, centred in r, with

49



Chapter 3. A combined DEM & FEM approach for modelling roll compaction process

Table 3.3: Axial positions for volumetric throughput evaluation (also compare with figure
3.2 for the sake of clarity).

Description Axial position [cm]
Inside the screw barrel zo = 12.00
Compaction region inlet z1 = 15.00
Rolls-compaction walls contact point z2 = 16.50
Mid point between zo and z4 z3 = 18.75
Rolls gap z4 = 21.00

finite support and normalized to unity. The suitable choices for such a function can be a
Heaviside, a Gaussian or a Lucy function [82]. The choice of graining function does not
significantly affect the fields, provided it is not highly anisotropic or singular. However,
the value of the coarse graining scale, dictated by the choice of A, is the main parameter
of interest of the framework, determining the spatial resolution of the averaging process
and the related fields. As smoothing function, we used a Lucy polynomial, so that in 3D
we obtain:

3
o(r.28) = o x(rl, A) (1 " 3”2”) (1 - ‘Z”) . (3.7)

Here x(||r||,A) is the support of the function, ie., x(|r],A) = 1 for [r]] < A and
X(||r]|, A) = 0 elsewhere.

In this paper, the main quantity of interest for the DEM model is the particle velocity field
v(r;t), which in the CG framework is defined as

_p(rst) _ Xjny vimyo(r — 1, A)
[_)(I‘; t) Zﬁ:l mi (b(I‘ — I, A) ’

(3.8)

The numerator of equation (3.8) is the coarse grained momentum density field p(r;¢) and
the denominator p(r;t) is the mass density field. It has been shown in [44, 158] that
for mass and momentum densities defined according to equation (3.6), defining a coarse
grained velocity such as equation (3.8) guarantees both mass and momentum conservation.
Hereinafter, coarse grained quantities are indicated with a bar on the top, while their
explicit dependence on the coarse graining length A is omitted for the sake of brevity.

3.3 DEM results

As stated above, to obtain a general result, data gathering from DEM simulations has to be
performed when the system is in steady state. To this extent we need to choose a quantity
which behaviour and evolution in time is able to determine the state of the system. Let
us define V(z;t) as the volumetric throughput at time ¢ across a planar section of the
system normal to the screw axis in the axial position z. Analogously let’s define the mean
volumetric throughput across the same plane averaged along 10 seconds of steady state
as Vst€ady(2)  The volumetric throughput V(z;t) at time ¢ is computed by summing the
volume of particles crossing these sections in between the two subsequent time steps ¢ and
t+ At.
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At t = 10.0s the velocities of screw and rolls are set to their operational value (transient
state), but the system needs some time to self-adjust before it reaches a steady state. We
defined the system to be in steady state when the relative deviation of the volumetric
throughput from the steady state value

‘V(z; t) — VSteady(z)‘
Vsteady(z)

E(V(xt) = (3.9)

tends to zero across the whole domain.

The quantity X(V(z;t)) is computed across 5 different planes perpendicular to the flow
direction, enumerated in table 3.3, and plotted as a function of time in figure 3.6. Since the
volumetric throughput linearly depends on the mean axial component of the velocity, the
latter follows the same trend. Both of them reach steady state with variations X(V (z;t))
being negligible after 10s of transient state (i.e. after ¢ ~ 20.0s). Data collection and coarse
graining occur during 5 screw turns (highlighted in red in figure 3.6), corresponding to a

data gathering period of 53)—7; = 6.25s, beginning at ¢t = 23.75s.
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Figure 3.6: Relative deviation 3(V'(z;t)) of the volumetric throughput across a section
of the system as a function of time. The values are computed in 5 different axial planes
explained in table 3.3. When X(V(z;t)) ~ 0 the system is considered to be in steady state,
which was reached after 20s in this case. The data gathering time interval is highlighted

in red.

3.3.1 From discrete to continuum (coarse graining and time averaging)

For the purpose of our study, we computed the particle velocity field as a function of time
via coarse graining of the DEM data that corresponds to the plane perpendicular to the
screw axis located at the tip of the screw conveyor (at z = z1). In this area the particles
flowed from a cylindrical casing of radius R = 1.95c¢m into the compaction region with a
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square section of width w = 6cm.

A planar cut perpendicular to the screw axis is taken at time ¢ = 28.0s and shown in
figure 3.7a, the particles being coloured according to their inflow velocity v,. The blade
components and the chamber walls have been omitted for the sake of clarity, but their
presence is hinted by the particles with a smaller cross section (since the latter can only be
in contact with the former and not passing through). For instance, the particles around
the inflow ring are in contact with the chamber wall, the ones along the circle in the middle
are in contact with the middle shaft, and the ones enclosed in the circular sector on the
top right are in contact with the blade flat edge. The particles in those regions are almost
stagnant, since they are not directly pushed forward by the inflowing ones. The velocity
along the feeding direction exhibits a broad range of values, varying from around 1.5cm/s
close to the screw blade to —0.5¢cm/s occasionally throughout the domain. In the annular
inflow area v, is not constant, but peaks under the blade (on the right side) and decreases
steadily as moving clockwise to a minimum value of 0.5cm/s. This happens because in
the figure the screw rotation direction in clockwise, and the particles directly in contact
with the blade have a higher velocity. These “faster” particles should, in reality, undergo
a pre-compaction process driven by the screw pressure, as assumed by the most common
analytical models [63,111|. However, this feature cannot be replicated by our model due to
the inter-particle interaction used. Finally, because of their discrete nature, and because
of the back pressure experienced, the inflowing particles naturally rearrange their position
with respect to one another, which is the reason why some of them are moving slightly
backward (depicted in dark blue). Nevertheless, on average, the net inflow of particles into
the compaction region is positive, as shown below.

Once the DEM flow data were obtained, we defined a spatial grid where the CG fields
were evaluated. Two factors have to be accounted for when choosing the extension of grid:
spatial resolution and avoidance of boundary effects. To obtain a better resolution of the
fields, the inter-nodal distances in the grid da and dy have to be reasonably smaller than
the CG length A. At the same time, the grid size [ has to be small enough (with respect
to the compaction section w) for the presence of external wall not to affect the velocity
field. To that end, we restricted the CG region such that the particles in contact with the
cheek plates were at least at distance A from the edge of the grid. Therefore, to account
for both conditions, CG length A and grid length [ need to satisfy

max (dz,dy) < A < % - é — max(r;) (3.10)
where r; is the radius of the j-th particle.
The velocity field was evaluated along a planar grid composed of Nx = 39 and Ny = 25
nodes along the x and y directions, respectively. For the coarse graining region we chose
a square of side [ = 5cm to obtain an inter-nodal distance of do = [/(Nx + 1) = 0.125cm
and dy = 1/(Ny + 1) ~ 0.192cm in the two directions and set A = 2.5rp = 0.225. These
values satisfy both sides of Equation 3.10. Such a choice for the CG length prevents scale
dependencies of the velocity fields on the particle scale, as reported in [156]. The cho-
sen grid illustrated in figure 3.7b is superimposed on the DEM data slice, where the red
boundary outlines the region within which the particles contribute to the average over the
selected grid. The resulting velocity field can be seen in figure 3.7c: after coarse graining,
all information about the discrete components of the system is lost.

52



3.3. DEM results

3 O 3P TITE N
-.a) ’ -b)= )
20 - ] 25, e AR s
E:.: i 'U-,.!b.
1r: 1 16 K g
—_ [ —_ = Y
5 o 1 5o fe
> [ g > e RRRNNNNACEN NNANY O
all NS 1 -1E :
_op T
—3bee e LT TATIE T LT
-3 -2 -1 -1 0 1 2 3
x [cm]
vz [cm/s]
I 15
=3 1.0
O,
>
0.5
0
-0.5

X [em]

Figure 3.7: Schematic illustration of the coarse graining process along the plane z = z; for
one snapshot of DEM simulation, with the particle direction of flow towards the reader and
the screw rotating clockwise. Here a snapshot of the system has been taken at t = 28.0s,
particles and field are coloured according to the axial component of the velocity v,. a)
Slice of the system as modelled via DEM. The plotted region is the entire section of the
compaction region of width w at the tip of the screw. b) Superimposition of the grid
where the fields are computed, the thick black square being the coarse graining region of
side [. The red line represents the boundary around the plane within which the particles
contribute to graining. ¢) Contour plot of the 3D field based on data coarse graining.
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Figure 3.8: 3D plots of time-averaged CG axial velocity component computed for 3 screw
positions. The absolute time corresponding to each snapshot is: a) t* = 0, b) t* = Tg/3
and ¢) t* = 2Tg/3.
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Nevertheless, even if the velocity field is spatially averaged, it still depends on the par-
ticular configurations of discrete components from which it originated: the effect of their
distribution prior to graining is reflected in the averaged fields. For example, a gradient
of the velocity field due to a particle with a higher (or lower) speed is located around the
position of the former (see the red and blue peaks on the top-right of figure 3.7¢ and com-
pare it to figure 3.7a). Generally, the velocity field should be as unaffected by a particular
realisation of the system as possible. For this purpose, the spatially averaged fields can be
further averaged in time, exploiting the periodicity of the flow due to the screw rotation.
Assuming that the velocity field at reference time ty should be the same at all other times
to+ kTs (Ts = 27 /wg being the rotation period of the screw and k any positive integer),
the time averaged CG velocity field is computed as follows:

N

(¥ (r; to)) Z r; to + (n — 1)T%). (3.11)
=1

In our study we averaged in time over N = 5 screw turns. The final result was the particle
flow during a single screw rotation split into T's /At — 1 = 124 snapshots. In the remainder
of this paper, quantities averaged over time in this way are indicated with angular brackets
(). Figure 3.8 shows the time-averaged CG axial velocity component (v, (r; t*)) for three
screw positions at inlet location z1, where t* € [0;Ts[ is the absolute time of a screw
rotation. It is clear that the localised gradients in a single CG snapshot (figure 3.7c) were
completely smoothed out by time averaging.

3.3.2 Results and discussion

In our study, we paid particular attention to two main aspects of the particle flow: the
mean of the velocity components, indicating in which flow directions the particles generally
move and with which magnitude, and their periodicity, showing to which extent the flow
is affected by the periodic screw motion and how deeply into the compaction region this
effect extends.

Since the contact law is unsuitable for modelling the high-pressure region close to the gap,
we considered data up to point z3. For the mean velocity we exploited the cylindrical
symmetry of the system, still undisturbed by the presence of the rolls, and observed the
cylindrical components of the former defined as

Vg T+ Uy Yy t):vzy—vyx' (3.12)

vp(r; 1) = V(T3
r(r3t) /$2+y2 o /$2+y2

According to our definition, the angular component of the velocity vg(r;t) has a positive
sign when it is concurrent with the screw rotation. In figure 3.9 we plotted the time average
of the particles velocity components as a function of their position along the z" axis.

The mean radial component of the velocity is roughly zero both inside the conveyor case
and in the first part of the compaction region up to z (in yellow in figure 3.9). From
this point onwards, its value is constantly negative, even if its magnitude is much smaller
than the axial component, due to the pressure exerted by the rolls pushing the particles
towards the i = 0 plane. The angular component has a constant value inside of the screw
barrel, as expected (e.g., at zp highlighted in blue). Its value starts to rapidly decrease
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Figure 3.9: Time averaged cylindrical components of the particle velocity as a function
of the axial position. The 3 highlighted sections correspond to the first 3 positions of table
3.3: zgp in blue, z; in red and zo in yellow.

close to the inlet region z; (in red in figure 3.9) and approaches zero at z > z. Although
the mean velocity along the feeding direction is constant along the entire screw length,
it decays abruptly as soon as the particles are affected by back pressure due to the bulk
effect in the first section of compaction region z; < z < z3. From z onwards, the mean
axial velocity constantly increases due to the combined effect of the pressure on particles
exited by the conveyor and the rolls drag. Therefore, on average, the axial component of
velocity is dominant inside the compaction region, while inside the screw barrel, far enough
from the inlet, the flow is uniform with no net transport in the radial direction. The flow
in the screw barrel can be compared with the experimental findings in [150] by means of
x-ray penetration. The axial flow of the tracer particles observed in [150] is constant along
the screw length, with small oscillations when the powder meets the screw blade edge.
These oscillations are factored out in our analysis because we averaged along the whole
screw section. The radial motion of the tracer particles observed in the referenced paper is
also shown to be almost negligible, and concentrated mainly around the screw blade edge.
This is also consistent with our model, predicting an almost negligible mean radial velocity
inside the barrel.

A much more detailed picture emerges if we analyze the flow as a function of time. To
monitor the particle movement, we observed the cartesian components of the mean velocity
along the planes zg, 21 and zo. While the axial component of velocity evaluated as such is
roughly constant, the movement of particles coplanar to these sections is periodic in time.
The velocity component v,(t) as a function of time along 5 screw rotations is plotted in
figure 3.10. The velocity v, (t) oscillates simultaneously with the same period Ts of the
screw. Interestingly, this oscillation also persists inside of the compaction region (yellow
data points) and is likely to be responsible for the inhomogeneity of the powder bulk prior
to compaction. The same oscillatory behaviour of the particles inside of the compacted
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Figure 3.10: Mean cartesian component v,(r;t) of the particle velocity along 3 axial
sections as a function of time. The data correspond to the axial positions highlighted
in figure 3.9 with the same color code. The component vy(r;t) has the same periodic
behaviour, with a phase difference of 7/2.

region has been observed experimentally in [48]. It is this inhomogeneity that leads to the
observed anisotropy in the compacted ribbon, as the following sections explain with the
help of Finite Element modelling.
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Figure 3.11: Plot of velocity field and the transition from CG result to FEM inlet
boundary condition for t* = 0. Axial velocity component v, values for a) DEM coarse
graining result and b) Corresponding FEM inlet nodes.
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3.4 From CG to FEM

In order to implement DEM results into the FEM model, several step are performed using
MATLAB®. First, the function “ndgrid” is being called in order to define a new rectangular
grid in N-D space, which represents the FEM inlet mesh.

In the output [z,y] = ndgrid (zmin : hx : Tmazs Ymin : Y : Ymaz ), the coordinates of the
(,7)-th node are (z;,y;) = (Tmin + (i — 1) hx, Ymin + (7 — 1) hy). Now that the new grid
is formed to represent the FEM mesh, the DEM data is transferred. This is done via the
"Interp2" function, which returns interpolated values of the DEM grid into the new FEM
grid. The interpolated value at a query point is based on a cubic interpolation of the values
at neighbouring grid points in each respective dimension.

For an equally spaced data, most interpolation functions are in the following form:

g(x) = Z cru(x — ) (3.13)

k

where the sampled data is described as ¢ = f(x) for a given sampled function f at an
interpolation node x; and u is the cubic interpolation kernel. For convenient reasons, the
distance between the point to be interpolated and the grid point being considered is defined
as s = (v — xy).
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Figure 3.12: Schematic illustration of the procedure assigning axial inlet velocity inter-
polated values into the FEM model. The red arrows shows the direction in which values
are read in the data file and being assigned into the FEM back nodes.

The following cubic convolution interpolation kernel (equation (3.14)), proposed by R.Keys
[68], is symmetric and defined by piecewise cubic polynomials in the intervals |s| < 1 and
1 < |s] < 2. For |s| > 2, the kernel is zero. This kernel offers a third-order convergence and
guaranteed superiority to nearest-neighbor (first order) and linear interpolation (second
order) [104].

sls® = 3lsP? + 1 s| <1
u(s) = —L[sPP+3s|2 —4]s|+2 1< |s| <2 (3.14)
0 |s| > 2
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The kernel function u(s) is centered at point z, the location of the point to be interpolated.
The interpolated value g(z) is the weighted sum of the discrete neighboring points (2 to
the left and 2 to the right) scaled by the value of interpolation function at those points.
For two-dimensional interpolation (i.e., Bicubic interpolation), the one-dimensional func-
tion is applied in both directions. It is a separable extension of the one-dimensional in-
terpolation function. The Bicubic interpolation algorithms interpolate from the nearest
sixteen mapped source pixels. Obtaining an interpolated value for a given point is done in
two steps. First an interpolation is done along the x-direction using the 16 grid samples.
The following step is interpolating along the y-direction using the interpolated points from
the previous step.

AY

(2) (b) (©)

Figure 3.13: 3D plots of the axial velocity component v, in the FEM model (right seal
removed for better visualisation) for 3 screw positions, with a counter-clockwise rotation.
The absolute time corresponding to each snapshot is: a) t* = 0, b) t* = Ts/3 and c)
t* =2Tg / 3.

The above algorithm is applied to the DEM CG data at each time interval At during a
screw period, resulting in a total of 124 matrices of 61x20 (i.e., 1220 elements) correspond-
ing to the FEM inlet nodes (figure 3.4b). The velocity values for each absolute time t*
are then represented as an array in a separate file. Figure 3.11 illustrates the previously
described steps of constructing a new grid, which correlates to the FEM mesh and inter-
polates the values from the DEM results.

The new interpolated data is then implemented as a FEM nodal velocity boundary con-
dition in Abaqus/Explicit using an external user-defined VDISP Fortran subroutine. At
each absolute time t*, the VDISP subroutine is being called and assigns the corresponding
interpolated velocity values from the previously saved data file into the FEM model in a
chronological order to the predefined inlet nodes (figure 3.12).

3.5 Results and discussion

Results obtained by DEM simulation (section 3.3), showed that the flow of powder being
conveyed to the rolls, varies in velocity due to the oscillation of the screw. This is in fact
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the main cause attributed to the inhomogeneity of the compacted ribbon, resulting in a
“snake-wise” light transmission pattern [48]. Our results demonstrates the importance of
combining DEM & FEM methods to obtain a more realistic model of the process.

3.5.1 Transition From DEM (CG) to FEM

In the previous section, the multi-scale approach was described in order to investigate the
behaviour of granular material in roll compaction, by combining DEM at the micro scale
into the FEM macro scale level. Figure 3.13 visualizes the result of the numerical transition
method, which was used to gap between the different scales and used as input data in FEM
modelling. By comparing the axial velocity component v, in the FEM inlet nodes (figure
3.13) with the CG results (figure 3.8), it can be seen that feeding velocity field values and
pattern are almost identical with some discrepancies due to the counter pressure from the
rolls (except for t* = 0 in figure 3.13a). Therefore, it is possible to successfully implement
the DEM data into the FEM, and to represent the velocity of the powder entering the
compaction region.

3.5.2 DEM & FEM combined simulation

By implementing the CG DEM results into the FEM, a numerical study on the effect of the
screw blade position and the inhomogeneous inlet feeding velocity on the roll compaction
process was conducted. The resulting contact pressure and relative density (figure 3.14)
are distributed non-homogeneously in the minimum gap region and vary with time as a
result of the inlet feeding velocity. The maximum contact roll pressure and relative density
positions in the minimum gap region vary with simulation time along the ribbon’s width.
It can be noted that the 3D axial velocity plot does not correspond to the pressure and
density values at the minimum gap due to the fact that the influence of the inlet velocity
takes effect only at a later stage. This means that, due to the distance between the inlet
region and the minimum gap region, there is a certain phase shift between the sinusoidal
pattern of the inlet velocity and the contact roll pressure and relative density.

In order to evaluate and quantify this variation during the process and consequently on
a compacted ribbon, the values were monitored at two different positions with a distance
of 5 mm from the left and right side seals. Initially, the values of relative density and
contact pressure are increasing gradually as powder is being delivered in between the rolls.
At around t* = 3s, the roll compaction reaches a steady-state condition, where the mean
values of the relative density and of the roll pressure at the minimum gap region remain
constant. Results obtained with our combined approach showed that the inlet feeding
velocity has a direct effect on the resulting pressure and density distribution. For a specific
time, the contact pressure and relative density values at one side of the ribbon are higher
with respect to the other. Moreover, a sinusoidal pattern of the roll pressure and relative
density during compaction is observed, having a period equal to the screw rotation period.
Due to numerical reasons, the results are obtained and plotted only for the material which
is still in contact with the roll, up to the narrowest gap region [99]. Therefore, in order to
illustrate the resultant roll compacted ribbon, multiple sliced snapshot at the gap region
were taken at intervals of At = 0.05s and assembled together. As can be seen clearly in
figure 3.15, higher powder feeding rate in one side resulted in higher contact pressure and
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Figure 3.14: 3D plots of FEM modelled parameters for 2 time steps: t* = 2.35s (left
column) and ¢* = 2.9s (right column). The depicted values are: powder axial velocity (top
row), contact pressure (middle row) and relative density (bottom row) at the outlet of the
compaction region.

relative density on the same side under the rolls. This can be explain by transporting
higher amount of mass into one side, thus increasing the nip angle which will ultimately
result in higher compaction force and density.
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Figure 3.15: Multiple sliced snapshots of the a) relative density and b) contact pressure
values obtained by the combined DEM-FEM simulations at the minimum gap region be-
tween t = 2.00s and ¢ = 3.75s. The two highlighted positions A and B are the positions at
5 mm from the side seals and where the values are evaluated.

3.6 Conclusions

Roll compaction is a complex process involving two main parts, powder conveying using
a screw feeder and compaction between two counter rotating rolls, where the powder
undergoes large deformation. In this work, a combined DEM-FEM multi-scale approach
was developed in order to investigate the behaviour of granular material in roll compaction.
DEM was used to model the flow of granular material through the screw conveyor into the
compaction zone. The DEM simulation was successfully used to model the behaviour of
particles in a screw feeder and to obtain the highly inhomogeneous (although periodic in
time) velocity field at the interface between the screw feeder and the compaction region.
Then, FEM was applied to simulate the powder compaction in between the rolls and to
study the effect of the inhomogeneous inlet feeding velocity due to the screw feeder. The
combined DEM-FEM methodology clearly shows the resultant inhomogeneous roll contact
pressure and relative density over the rolls width, resulting in a “snake-wise” pattern over
time. This behaviour is reflected in an inhomogeneously compacted ribbon. Moreover, the
sinusoidal pattern of the roll pressure and relative density during roll compaction has a
period equal to the screw rotation time.

Combining both DEM and FEM methods to model the roll compaction process allows us
to take advantage of the strength of both methods in order to describe complex processes,
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and enables us to achieve a more realistic model of both the process itself and of the final
product quality. The methodology proposed can be used to study how process parameters,
such as screw and roll speeds, will likely affect the ribbon density and homogeneity. In
addition, this coupled approach can be a useful tool to guide future design optimisations,
with the aim to diminish the effect of the screw driven flow on the compaction final product.
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Chapter 4

A novel framework for a rational,
fully-automatised calibration routine
for DEM models of cohesive powders

Abstract!

A new framework for calibration of DEM models of cohesive materials is presented. DEM
simulations are a widespread numerical tool for modelling granular assemblies and related
processes, but require careful calibration to give realistic predictive results. To this aim
routine small-scale laboratory tests are used to investigate powders Theology while limiting
resource investment, in conjunction with a rational approach to reduce computational costs
as well. A specific order in numerical tests and calibrated variables is defined, enabling the
implementation of an automatic iterative routine to calibrate material parameters from a
given dataset. This method is successfully applied to calibrate four common increasingly
cohesive powders of pharmaceutical relevance. Our framework saves an important amount
of computational expense when compared to traditional parameters design space approaches,
and proved to be able to calibrate very cohesive powder exhibiting plastic bulk volume loss
of up to 25% (after uniazial consolidation up to 10kPa).

1With minor corrections from: L. Orefice, J. G. Khinast, Powder Technology 361, 687-703 (2020).
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DEM models of cohesive powders

4.1 Introduction

Powders and granular materials are ubiquitous in everyday life, as well as in industry and
manufacturing processes. Granular materials greatly range in size according to the prod-
ucts and the respective processes. Mining and rock industries, for instance, deal mainly
with particles of size ranging from centimetre to metre, food industry mainly processes
particles ranging from millimetres (grains) to several tens of micrometers (food additives
and powders), while pharmaceutical processes involve powders typically below the 100 pm
size as well as larger granules and pellets.

The last decades have seen a progressively growing application of numerical methods to
model the behaviour of granular materials and processes in which they are involved; among
all of modelling approaches, the Discrete Element Method [23] (DEM) is one of the most
commonly used. With growing computational capacity DEM has been successfully em-
ployed to tackle problems of increasing magnitude and complexity. First and foremost,
modern computers can handle simulations with orders of magnitude of over a million par-
ticles [13,19,45,73,108,128,149]: the possibility to handle such a high number of particles
enabled the study of systems composed of many particles without resorting to scaling, con-
sequently achieving unprecedented resolutions. By nature, spheres are the tridimensional
objects easiest to model, and their intrinsic symmetry allow predicting reciprocal collision
in a straightforward way by simply computing their relative distance. However granular
materials exist in a broad variety of shapes, and approximating the former by means of
spheres [160] can, in many cases, completely alter the physics of the system under consider-
ation. If that is the case, the simpler solution is to model particles by means of a clumped
ensemble of spheres [62], to mimic the shape of real particles in more detail. The previous
method, despite being efficient, cannot be used for every application, displaying intrinsic
limitations as the sphericity of the granules under study decreases [87]. The only solution
here is to use particles which faithfully replicate the true shapes [13,46, 73,133,167, at
the price of computational costs. Originally, the interaction models of particles in DEM,
despite being slightly different [74, 84|, were purely repulsive: upon contact the particles
experience a force that will tend to separate them, proportional to the relative overlap due
to the undergoing collision. These simple models have been extended to include adhesive
interactions, both on contact and at short range, that can arise due to van der Waals or
electrostatic forces, liquid bridges, etc. [64, 83,126, 139)].

For certain problems pure DEM is not able to correctly predict the behaviour of the parti-
cles; exemplary cases are whenever the interaction with fluids surrounding particles cannot
be neglected but must be accounted for [61,120], or when thermal effects and heat ex-
change are relevant to the process [164]. All of the former refinements to the original DEM
implementation are not mutually exclusive, but can be combined to model processes and
granular assemblies increasingly rich and diversified in physical phenomena.

However, despite the variety of models, all DEM implementations share the same necessity
for both proper calibration and validation [86]: a numerical method is considered to be
reliable only if it can replicate the real behaviour of the granular material up to an arbi-
trary extent. Model calibration consists of the careful choice of the (many) material input
parameters needed to reflect the real behaviour of the particles in the numerical simulation,
and happens before the actual modelling of the process under study. In contrast, model
validation is performed by comparing a set of experimentally studied test cases to their
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simulated counterpart to evaluate if both match. Since this step needs data from the model
itself it is carried out after a certain set of simulation runs. Although equally important, in
many circumstances it is either impracticable or impossible to validate a modelled process,
especially if the latter involves a very large amount of expensive material. An example
comes from the pharmaceutical industry [103]: processes at industrial scale frequently in-
volve kilograms of powder that can be extremely expensive (> 1000€/g). Therefore, an
experimental test case specifically aimed to model validation is unfeasible. However, cal-
ibration of the modelled powder is affordable even for pharmaceutical applications, since
the amount of material needed is of the order of magnitude of dozens of grams [153].
There is plenty of literature concerning DEM calibration [15,20,21,117,118,171]. Because
of the large number of material attributes to be set, and the experimental challenge of
measuring certain properties independently [34], calibration techniques focus only on se-
lected parameters, while others have to be chosen reasonably a priori. These parameters
also depend on which interaction model is chosen, as briefly explained earlier. Addi-
tionally, since it is often impossible to measure single particle properties, experimental
data used for the model calibration mainly refers to bulk particle properties (a technique
known as bulk-calibration approach). Use of statistical tools for the calibration procedure
is widespread [107,161,165].

Despite the extensive usage of DEM in the pharmaceutical context, there is no standard-
ised calibration technique for pharmaceutical blends. Moreover, a framework capable of
successfully calibrating cohesive powders from small and relatively inexpensive laboratory
measurements is not in place.

The ambition of this study is to develop a new calibration procedure based on routine
small-scale laboratory experiment, to successfully calibrate both cohesive and non-cohesive
single-component powders of pharmaceutical relevance. The idea is use only small amounts
of material that are typically available during early development phases. Additionally, this
procedure must be able to correctly capture the complex rheology without reliance on the
particle shape, using only simple sphere models to represent the actual particles. This
necessity arises since the calibrated powders will be used in the modelling of industrial-
scale processes, where ensembles of the order of > 106 particles are required. Therefore, at
the current state of computational capacity, only spherical particles can ensure reasonable
particle numbers beyond a million particles. Our method will thus focus on the numerical
calibration of the most relevant parameters involved in the experiments, such as friction
coefficients and internal spring stiffnesses, while other quantities, such as particle size and
plasticity, will be carefully estimated via physical arguments based on packing structures
and relative properties. After the relative relevance is assigned to the calibrated vari-
ables, the order of the tests composing the numerical routine will be determined. Of key
importance in this work will be to completely automatise the whole calibration process,
consequently minimising computational effort and avoiding both a systematic parameter
study and trial and error procedures. This framework will constitute the backbone of future
developments, where multi-component pharmaceutical blends, and perhaps non-spherical
elements can be considered. This will be included in the procedure.

In the first part of the study the experimental setup and the relevant tests will be briefly de-
scribed. The adhesive elasto-plastic interaction model will be shortly introduced, mainly
focusing on its main features. The second part will explain and motivate the choice of
the material properties calibrated in our framework. Some of the former will be inferred

67



Chapter 4. A novel framework for a rational, fully-automatised calibration routine for
DEM models of cohesive powders

I
s

Figure 4.1: Small-scale laboratory devices used for powder characterisation experiments:
the AoR tester (left) and the FT4 Powder Rheometer (right).

before the actual numerical calibration procedure has begun via physical arguments. Sub-
sequently, the precise order to follow in performing the numerical tests is explained, deter-
mining the order in which the parameters are calibrated. The results of the experiments
will be presented in the fourth part, while in the last part the results from the numerical
calibration tests will be presented and compared with the experiments.

4.2 Experimental setup

Two experimental devices will be used for the small-scale routine rheological characterisa-
tion of the pharmaceutical powders: an angle of repose (AoR) tester and a FT/ Powder
Rheometer [33]. These are standard tools employed for powder characterisation in the
pharmaceutical industry, and are used in this study to maximise its usability. The usage
of these specific instruments does not affect the proposed framework, which remains valid
as long as the tools used for the experiments are faithfully replicated in the numerical
models.

The AoR tester consists of a glass funnel that will be filled with the powder to test and an
underlying circular glass plate, with a radius of 5cm. During the filling phase the outlet is
closed to prevent the powder from escaping the container. Once the latter is full, the small
shutter closing the outlet is removed and the powder let to settle above the glass plate.
To enhance the powder flow and prevent arching an agitator is slowly moved in a circular
motion. When all the powder exited the container and piled underneath, the height of
the powder pile is measured and compared with the size of the underlying plate to get an
estimation of the angle of static repose a.

The FT4 powder rheometer can perform compression and shear tests. The toolset used
is composed of a fixed cylindrical casing of height Hy = 1.90cm and radius R = 1.25cm,
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Figure 4.2: Optical microscope images of the commonly employed powders used for
laboratory testing: a) lactose monohydrate (LAC), b) microcrystalline cellulose (MCC)
and c) ascorbic acid (ASA).

containing the powder bed, and of a piston, located on top of the powder bed, able of
moving along the axial direction and of rotating in the plane normal to its axis. Sensors
connected to the latter measure the pressure P exerted by the piston on the powder, its
position H (or compression A = Hy— H) and the torque 7 at any time. Both experimental
devices are shown in figure 4.1.

Four different powders of pharmaceutical interest have been used to obtain experimental
data to test our numerical calibration method: engineered mannitol Pearlitol® 160 C for
(MAN) from Roquette Fréres, lactose monohydrate Capsulac® 60 (LAC) from Molkerei
Meggle Wasserburg GmbH & Co. KG, microcrystalline cellulose Avicel® PH-102 (MCC)
from FMC BioPolymer and ascorbic acid (ASA) from Miihlenchemie GmbH & Co. KG.
Engineering on mannitol powder was performed to achieve a better flowability of the parti-
cles. All particles besides the latter are illustrated in figure 4.2. The powders were selected
to have different flowability, regardless of other properties: the first two can be considered
free-flowing, while the last two are progressively more cohesive. The reason behind this
selection is the problem we want to precisely tackle: the calibration of cohesive powders
to be used in numerical models based on a spherical particle geometry, via DEM. Shape
and size distribution were not considered here, as the aim was to create a consistent,
industrially-relevant workflow from small-scale testing to prediction of in-process powder
performance. Therefore, for our approach a detailed characterisation of the powders is not
relevant, and will be omitted for sake of brevity. Since the materials used are standard
ingredients of pharmaceutical manufacturing, we refer readers to examine the extensive
literature, including [119].

4.3 DEM model and interaction parameters

The numerical simulations were carried out using the open source discrete element code
Mercury DPM [2,140,159]. General aspects of DEM are well-known [84], and we refer the
reader to the hefty literature. The tangential sliding friction interaction and the viscous
damping implemented are the standard used in DEM linear spring-dashpot models, and
are not discussed here for the sake of brevity. The rolling resistance model used here is the

69



Chapter 4. A novel framework for a rational, fully-automatised calibration routine for
DEM models of cohesive powders

F ~
J_ A . 6amax = 1/3 6*max ////K 6
& - = Y
O 6Bmax = 2/3 6" max | F
6Vmax = 6*max |
& i
& |
< ;
) i
&0 %& )
0 N\ Omin : 6
_> ” 5 o—o—e -
6% oo i Omax
i
|
&
|
.\\ﬁ < ~
s

Figure 4.3: Schematic graph of the normal piecewise hysteretic force F'| as a function
of the overlap § for two colliding particles. Different colours indicate different dmax /0.

ratios, which lead to different values of k., dg and dmin.

same reported in [83,84]. It is however worth to briefly introduce the interaction law used
in our simulations, since it is key to understand the calibration procedure.

The discrete particles modelled are interacting via an adhesive elasto-plastic model, pre-
sented in [83|, which is a linearised version of the more complicated constitutive model
that can be found in [146,147|. Despite some concern has been expressed regarding the
asymptotic response of the model [142], the latter has valuable predictive capacity [58],
and its simplicity made it the constitutive model of choice for this work. The main feature
of this inter-particle interaction is to add an adhesive (attractive) interaction to the parti-
cles upon collision. The strength of the attractive force is hysteretic in nature, depending
on the particle overlap during the collision: the higher the relative particles overlap, the
stronger the resulting cohesive bond. When two particles collide, the normal force acting
between them is given by

ky if ke (8 — 80) > kpd
Fi=F -ii=k (6—0) ifhkyd>ke(d—3)>—keo (4.1)
—k. S if —k.d > ke (6 — &)

where 0 is the overlap between the colliding particles and 7 is the normal vector, i.e. the
vector along which the collision occurs. With k, we indicated the plastic stiffness, i.e. the
elastic constant during the force loading phase leading to plastic deformations, with k. the
elastic stiffness, i.e. the stiffness of the elastic spring during the initial particle detachment,
and with k. the cohesive stiffness, i.e. the proportionality constant of the attractive branch
of the force. The hysteretic normal force described by equation (5.1) is sketched in figure
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5.1. (We point out that our notation for the spring stiffnesses slightly differs from the
original one [83]; choice made for the sake of clarity).

Upon contact the overlap between the colliding particle § is growing, and the particles
experience a normal repulsive force of magnitude k,é (coloured line of slope k,). At a
certain point a maximum penetration depth dpyax is reached, and the distance between
the particles starts to increase. The maximum overlap is stored in memory as a history
parameter, and is necessary for the computation of the maximum attractive normal force.
The unloading force acting on the particles follows a steeper slope k. until the overlap
Omin = (ke —kp)Omax/(ke+k.) is reached. The inter-particle force becomes attractive during
the unloading phase, for overlaps smaller than §p as indicated in figure. The maximum
cohesive force, of magnitude k.dmin, is reached at § = dmin, and decreases for smaller
overlaps. Other forces can start acting on the particles during the collision, for instance
due to contacts with a third particle, and change the overlap of the former pair. If this is
the case, the hysteretic normal force will move along a reloading branch of slope k.. In our
model we only considered contributions to the hysteretic force from inter-particle collisions,
neglecting non-contact interactions at negative overlaps (e.g., from liquid bridges).

If no other forces are acting on the two colliding particles, there is a point d9 = (1 —
kp/ke) dmax where the unloading branch intersects the abscissae axis for which F| = 0,
i.e., the particles are in equilibrium. This behaviour is analogous to a plastic contact
deformation, where the particles irreversibly deform and stick to one another forming a
stable bond. The equilibrium point depends linearly on the history parameter dpax, and
increases accordingly. However, real particles undergoing plastic deformations have a more
complicated behaviour, e.g. they can become stiffer the more they are compressed, and
reaching the plastic equilibrium at proportionally smaller overlaps dg. A refinement of
the model, accounting for a stiffness k. depending on the maximum overlap, is therefore
needed. For this reason an additional model parameter, the dimensionless plasticity depth

¢, is introduced and a maximum penetration depth 6, is defined as

* o kénax 27‘1'7’]'
(Smax(d)) - kénax _ k’p ¢ i + Tj . (42)

Here 7; and r; are the radii of the colliding particles and is the maximum elastic
stiffness, used as a model parameter instead of k.. The latter is instead defined as a
function of the history parameter as

max
ke

max __ dmax *
ke (5max) _ {kp + (ke kp) 0 ax Omax < 5max (4'3)

k,énax 5max > §*

— “max

providing a stiffer “hard core” for deformations larger than 9} ... The effect that the intro-
duction of ¢ has on k., dg and dpi, are clearly visible in figure 5.1. This refinement makes
the collision behaviour more realistic but relies on an additional parameter, increasing the

hysteretic normal force model parameters count to four: k,, k***, k. and ¢.

4.4 DEM parameters and calibrated variables

The calibration of meso-scale particles to faithfully replicate the physics of real powders
is extremely complicated, both practically and conceptually. The reason behind this is
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Figure 4.4: Illustrative example of prescribed pressure steps P (black) used during powder
rheology tests. In this figure the former is provided only as eye-guide for comparison with
the rest (the actual values used are explained in the upcoming sections, and are the same
for all materials). During compression tests the compression height A (red) is measured,
while during shear tests the piston torque 7 (blue) is measured instead. The data plotted
were gathered during rheology tests on MAN, and will constitute the target values for the
calibration simulations. Because of hysteresis the slope of both A and 7 does not exhibit
the same symmetry and regularity of the prescribed P.

complex and is related to the nature of granular materials. Firstly, the results of small-
scale laboratory tests aimed to measure the powders’ bulk behaviour always depend on
a high number of particle properties, each one of the latter affecting the measurements.
For example, when performing shear testing, not only the friction parameters are impor-
tant to determine the torque acting on the rotating shell, but also the particle shape and
size distribution, the ensemble arrangement and configuration inside of the container, the
inter-particle cohesion forces, the aeration of the particle bulk, and so on.

Though experiments can be designed and performed to limit the number of particle prop-
erties affecting the measurements (i.e., to allow for a clearer understanding on how single
particle properties affect the bulk behaviour), macroscopic behaviour will always be deter-
mined by a combination of microscopic quantities. Secondly, granular materials have an
intrinsic hysteretic nature, i.e., the status of a granular system depends on its history. For
example, a granular material will behave differently after subsequent compression cycles,
a property that is well-known and exploited, for instance, during the making of snowballs
or die compaction processes. For this reason, when calibrating the meso-scale particles via
a compression experiment, it is not enough to measure the pressure after a single com-
pression instance, but measurements should be done after subsequent compression steps to
carefully capture the elastic response of the bulk [137]. To explore the plastic behaviour,
data gathering has to be performed while the piston is decompressing or shearing the par-
ticle bed, since plastic adhesive interactions can only be observed during tensile tests.
Ideally, during uniaxial compression a discrete set of points P; = (H Ai) should be mea-
sured while loading, reloading and unloading the powder. An example of such an ideal
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test is depicted in figure 4.4, where target pressure steps are predefined and the piston dis-
placements measured when cycling through the former. During pressure increase repulsive
inter-particle interactions are dominant, while cohesive effects can be neglected. The same
is not true while the pressure is decreased: cohesive interactions allow the system to reach
mechanical equilibrium before the particles detach, further separation leading to an at-
tractive force. During uniaxial compression only repulsive forces F'| > 0 can be measured
because the piston, while retracting, cannot exert a pulling force. To test the attractive
branch F'| < 0 a shear test has to be performed, where the traction applied is sufficient for
the particles to detach above the point of plastic equilibrium (the point §p in figure 5.1).
During a shear test, the measured points 7; = (Ti, B) are distributed in analogy with their
counterparts P;, as indicated in figure 4.4. As previously, a set of target pressures is set,
but the torque experienced during shearing is measured instead.

The particle properties needed to set up a DEM model are numerous:

e particle shape, average size and size distribution;

e particle density;

e four interaction parameters, i.e., three spring stiffnesses and the dimensionless plas-
ticity depth;

e sliding, rolling and torsional friction coefficients;

e restitution and damping coefficients

For sake of simplicity the particle shape is assumed to be perfectly spherical, while the
particle size follows a uniform distribution of mean r and extrema r & 10%. Even if the
distribution is mono-modal, polydispersity is needed to avoid long-range crystallisation
effects arising from mono-dispersed particle ensembles [123,154], which would alter the
physics of the system.

Of the remaining 11 parameters only 10 are independent, due to contact dynamics of DEM:
particle mass, spring stiffness, restitution coefficient and damping parameter are all related
by a constitutive equation [84], therefore limiting the number of independent variables be-
tween the former to three. In our model we fixed particle mass (through size and density)
and restitution coefficient, while keeping the spring stiffness as independent variable to be
calibrated. Because of our choice, the damping viscous coefficient is implicitly determined
by the former parameters and does not need to be explicitly chosen.

The 10 independent parameters left needed for the DEM model have to be either measured,
calibrated or estimated. Particle density p is obtained by direct experimental measure (in
our case we used values specified by suppliers), while particle average size is chosen to be
the highest possible to limit the simulation time, provided the particles to be small enough
to prevent the system from exhibiting finite-size effects. Details will be provided in the
upcoming sections. Maximum elastic spring stiffness k*** and restitution coeflicient e are
fixed a priori to limit the minimum collision time ¢. and, with it, the overall computation
time. The time step dt chosen for the integration of the equations of motion satisfies the
usual DEM requirement dt < t./50 necessary for granting numerical stability. The collision
time is obtained by solving the dynamics equations of a damped harmonic oscillator [84]
of spring stiffness k***. Rolling friction coefficient pr has to be calibrated, but is regarded
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as a less-impactful parameter when compared to sliding friction. Its initial value is fixed
to 0.10, and will only be changed if the first iteration of the calibration of pg will not con-
verge, as explained later. Since we model spherical particles, the resistance these oppose
to torsion can be negligible when compared to the resistance exhibited versus either rolling
or sliding [34]. For this reason the torsion friction coefficient is neglected and set to zero.
All the remaining four variables have to be calibrated: plastic k, and cohesive k. spring
stiffnesses, dimensionless plasticity depth ¢ and coefficient of sliding friction pug. A list
of the former DEM parameters is provided in table 5.1 (the values reported for the cali-
brated parameters, highlighted in brackets, are the ones chosen prior to calibration, and
are updated on-the-run). Since kI** is fixed, from now on the other spring constants will
be expressed in dimensionless form as k = k [ kX,

An important note regarding the choice of the friction coefficients has to be made: in our
study the friction coefficients of the walls have been set equal to particles’ counterparts.
This assumption, albeit not accurate [107], does not force us to guess what the friction
between particles and walls might be, therefore not affecting the final calibration results
with variables chosen a priori. In teh context of our framework, the only case when this
might play a role is during the modelling of the FT4 rheometer. This device, however,
is naturally designed to limit the effect due to direct contact between its elements and
the powder, and the tests performed are dominated by particle-particle interactions. For
instance, during compaction and shear experiments, there is always a layer of powder in
the interstice between casing and the powder directly displaced by the piston motion. For
this reason the impact of neglecting a detailed particle-wall friction model is greatly re-
duced. Clearly, when calibrated DEM particles will be used for modelling other devices,
the relative friction coeflicient between the former and the materials composing the latter
should be separately determined as well.

4.5 Preliminary parameter estimation

DEM simulations are computationally expensive, and the amount of simulations needed
for the calibration grows with the number of parameters to be estimated. To optimise
the procedure, it would be ideal to rely on constitutive laws according to which calibrated
parameters are connected, or to limit the range of parameter values spanned by the for-
mer. In addition, parameters such as the average particle radius r, can be chosen through
physical considerations involving a specific set of simulations, independent from the cali-
bration simulations routine, that have to be performed as a first step. This first part of
the calibration procedure is independent on the specific material to be calibrated, relying
only on physical considerations, and can therefore be regarded as a general first step for
every future calibration following this same framework.

From this point onward both particle deformation (or overlap) ¢ and piston displacement
A will be expressed in dimensionless form as 6 = § /7 and A=A /Hy respectively.

4.5.1 Particle size and particle number

The total number of particles N used in the simulation of the powder rheometer is deter-
mined by the average particle size r and by the cylindrical casing volume Vi = 7R?H,,
and is of high practical interest, since it affects the computational expense of the simu-
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Table 4.1: List of DEM parameters used in the simulations.

Parameter Symbol Unit Source Value
Average radius r cm Inferred 3.125 - 1072
True density P g/cm? Measured [1.44; 1.69]
Max elastic stiffness krax N/m Set 5-103
Restitution coefficient e — Set 0.50
Dim.less plastic stiffness k;p — Calibrated (0.1)
Dim.less cohesive stiffness ke — Calibrated (1073)
Sliding friction coeflicient pg — Calibrated (0.5)
Rolling friction coefficient pg — Calibrated (0.1)
Dim.less plasticity depth ¢ — Inferred —

lations. We determine the particle size from the rheometer setup because, as it will be
explained in the subsequent sections, the numerical model for the AoR test does not im-
pose any constraint on the particle size.

Since the particle size distribution is uniform, we can approximate the total volume of
particle Vl;wt as

N
Vit =" Vi m NV, = (3p Vey (4.4)
i=1

where N is the total number of particles of average volume Vp and (3p is the 3-dimensional
packing fraction of the particle ensemble inside the cylindrical casing of volume Vy. In-
verting the previous relation, and introducing the dimensionless cylinder-to-particle size
ratio A = R/r, the total number of particles needed to fill the cylindrical casing is

3H,

N=—
4R

Gp A2 (4.5)
The number of particles scales with a power law N oc A3, therefore being very sensitive to
variations of the average particle radius, and linearly with the casing volume.

To save computational time we chose r to be as big as possible provided that the system
does not exhibit finite size effects. The 3-dimensional packing fraction is the bulk quantity
we investigated to determine if the system is affected by the latter: (3p should not depend
on the particle size. To this avail we performed different simulations where the F'T4 casing
was filled with non-cohesive particle ensembles of different ratios A, and compared the 3D
packing fractions obtained in this way. In every numerical test performed, particles are
loaded into the geometry in random positions, providing them from being in contact with
any previously inserted object. They then settle due to gravity, rearranging in a configu-
ration analogous to particles poured inside a container. The other interaction parameters
used are the ones presented in table 5.1. We explored a broad range of integer values of
A, the resulting packing fraction measured after the particle settled is plotted in figure 4.5
along with the total number of particles.

The value of (3p reaches a plateau for A > A\; = 40, the latter being the threshold above
which the system is scale-invariant. Above A; the packing fraction becomes constants and
very close to 0.60. This threshold on A is the maximum particle radius we can use for our
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Figure 4.5: Numerically computed packing fraction (3p (triangle markers) and total
number of particles N (square markers) as a function of the ratio A. (3p reaches a plateau
for A > A\ = 40 where (3p = 0.60 (indicated by the dashed line). The total number of
particles follows the power law N oc A3; the solid line depicts equation (4.5) for a packing
fraction (5, = 0.60.

simulation, i.e., rmax = R/ = 3.125 - 10~2cm. To save computational time we then set
the average particle radius for the future numerical calibration to r = ryax, leading to a
total number of particles N ~ 4.2 - 104

4.5.2 Plasticity depth and linear scale-invariant approximation

The dimensionless plasticity depth ¢ is central in determining the behaviour of the mate-
rial since it is related to the penetration threshold &Zax: for smaller particle overlaps they
behave plastically, elastically otherwise. In addition to the threshold, it also affects how
the plastic branch k), is interpolated to the elastic one k. due to equation (5.3). Besides
its importance in determining the particle dynamics at the microscopic level, ¢ plays an
even more important role in determining the macroscopic behaviour of the bulk. To un-
derstand the macroscopic behaviour, we need to relate the local particle deformation 5 to
the deformation of the ensemble A.

Since the particle deformation is related to the piston displacement, we can reasonably
assume the maximum average particle deformation <5>max to be proportional to the max-
imum the piston displacement Amax. If we consider the simplest arrangement of particles
inside the casing, a crystalline configuration where identical particles are perfectly piled
on top of one another (see figure 4.6), they will form N, vertical layers of particles of
height 2r each. Assuming r < Hp, the number of vertical layers is deduced from the
cylinder height as Nj, ~ Hy/2r. Assuming a homogeneous deformation of the particle bed
upon compression, every particle will endure a maximum relative deformation given by
Amax ~ 2Np () max = Ho(0)max/r, which implies <(§>max ~ Apax. Plugging this relation-
ship into (5.3), imposing (§)max < 0%, and solving for ¢ we obtain

¢ 2 Gmin = (1 - kjp) Amax- (46)
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crystal

Figure 4.6: Visual comparison between the cross-section of a region inside non-cohesive
particle bulk after settling (left) and an ideal ordered crystal configuration (right). The
particles involved have the same radius, the variability of the cross-section on the left being
due to the 3D arrangement of the spheres.

The physical meaning of the former inequality is the following: to have, on average, a
plastic behaviour at the particle level, the plasticity depth has to be set greater than a
minimum threshold value ¢, which in turn only depends on the rescaled plastic stiffness
k:Ap and on the maximum relative piston compression Apax.

For small bulk compressions like the ones performed in our small-scale rheological exper-
iments (P < 10kPa) we can assume, for ¢ > ¢min, A > A and a tightly packed bed, the
linearity between microscopic and bulk deformations to hold for every step of the particle
bed compression

(8) ~ A. (4.7)

This can be used to relate the microscopic interaction force parameters F' and 5 to the
macroscopic ones P and A measured experimentally. Because of the interaction law used
the inter-particle force is piecewise linear, and such will be the relation between pressure
and piston displacement for any point

F(F, (5)) ~P(P, A). (4.8)

During loading, if we consider the pressure between piston and the upmost particle layer
we can write

F SN k6 Ngk,(8)n
P=_ = =0 p’l% P S 4.
S S S (49)

where (0) v is the average deformation of the Ng particles composing the upmost layers
and S is the cylindrical casing cross-section. At the maximum compression pressure Ppax
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we have that (§) g &~ dmax, and we can use relation (4.7) to obtain

Ng kpr Amax

Pmax% S

(4.10)
The pressure can oscillate and have a non-linear behaviour in the initial stage of the
compression due to small particle rearrangement. However, once the latter interlock into
a stable structure, for pressure values small enough not to alter the physical properties of
the material (e.g., like during sintering or extrusion), the pressure can be considered to be
a linear function of the piston displacement.

Because of hysteresis, the mechanical equilibrium point Fy = (O, (30>) ~ Py = (0, Ao)
is met for (30> > 0 (see figure 5.1); therefore under the aforementioned conditions we can
expect a similar behaviour macroscopically. This is exactly what is observed in reality
during compression of granular materials. Since both loading and unloading branches
intersect at point Prax = (Pmax, Amax) we can assume

~ ke (Amax — Ao). (4.11)

This last equation enables us to guess which elastic spring stiffness k. is needed to com-
pletely unload the piston at a dlsplacement Ay after the particle bed was compressed down
to Apax with a plastic stiffness kp, and will be of great help during the interaction pa-
rameters calibration. Since k. is determined by equation (5.3), we actually have a closure
relation between k, and ¢. Substituting (5.4) into (5.3) and using the linear relation (4.7)
gives:

~ - - Arnax
ke = kp+ (1= ky)? (4.12)
o
Now solving for ¢ gives us
A~ 2 A~ 2 ~

1—k,)" & 1—kp)” Amax

o = M max = % (4.13)
ke — k (C—-1)k,

where we defined the proportionality constant C' = K e/ 15 = Apax/ (A / ( A max — Ag) from
equation (4.11). Simply put, ¢* is the value of the d1men510nlesa plasticity depth needed
to totally unload the plston at a displacement Ao after a compression down to Amax > Ao
of particles of stiffness kp. Because of this relation we can manipulate the local deformations
in response to a compressive force to control the bulk compressibility by simply tuning ¢.
4.7.

4.6 Calibration procedure

Once we fix the dimensionless plasticity depth ¢ according to equation (4.13) there are
only 3 variables left to be calibrated, namely sliding friction coefficient p1g, plastic spring
stiffness k: and cohesive spring stiffness k.. Since the parameters to be calibrated affect
the numerical simulations in different ways and magnitude, the simulations need to be
performed in a precise order. This procedure will limit the effect of parameters yet to

78



4.6. Calibration procedure

(Mga NE? k;; k:)initial
v

o > AOR test

DO ¢

Compression test

Shear test

teeeod (R, sy ke) > (W, g, ke)?
!
n

End

Figure 4.7: Diagram of the numerical calibration procedure. The boxes represent the
main calibration steps, while the calibrated variables are encircled; the first box is for
defining an initial set of uncalibrated variables, denoted by an asterisk. If a calibration
step is successful the flow follows the solid arrow, while if the calibration step fails, the
flow goes back to a previous step following the dotted line.
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Table 4.2: Sensitivity of numerical calibration tests on calibrated parameters.

Calibration Test s k, ke
Angle of repose Yes No Yes
Compression Yes Yes No
Shear Yes Yes Yes

be calibrated on the current calibration routine focusing on a specific variable, and will
allow calibrating variables in a selective way. Which calibrated parameter affects which
calibration test is noted in table 4.2.

Since the granular material is in a state of tight packing during each calibration test, the
static friction coefficient pg is strongly affecting the system in every single one. Both
compression and shear tests are performed on particles enclosed in a cylindrical casing and
subject to compressive forces. In this state the pressure exerted on the particle naturally
builds up, and the plastic spring stiffness k:;, plays an important role. On the contrary,
during the static angle of repose test the powder is let to settle on top of a horizontal plate,
and is therefore in a free-surface state, where k?p plays a secondary role when compared
to friction [20,47,81,125,168|. The importance of cohesion forces in this test depends on
the nature of the powder tested, while friction strongly affects the results independently
of the cohesiveness of the particles. The cohesive branch of the force is activated when the
particles are subjected to tension. By definition, a compression test cannot exert tensile
forces: after compression the particle bed will recover part of its initial volume until a final
equilibrium state is reached, but the cohesive branch determined by k. will not play any
role. For this reason the cohesive stiffness k. cannot, according to the model, be calibrated
via compression tests. However, since the slope of the reloading branch is instrumental in
determining the mechanical equilibrium point Py, the compression test simulation has to
be executed before the shear test. Because of the variability of the AoR test dependency
upon k;c, this test will be the first to be performed, followed by compression and shear
tests respectively. The main stages of the numerical calibration framework are sketched in
figure

4.7 Results and discussion

4.7.1 Laboratory tests

The experimental measurement of the angle of repose is done by measuring both the pow-
der heap height, formed by the powder bulk falling through the tester, and the radius of
the powder pile; the angle of repose exp is computed by taking the arc tangent of their
ratio. Measurements have been repeated 3 times, and the results are reported in table 4.3.
Pictures of the powder testing phase are shown in figure 4.8 for LAC and ASA to highlight
the extreme slopes of the heaps obtained due to the effects of friction and cohesion.

For the uniaxial compression test a set of 16 data points with prescribed pressures were
defined, distributed as in figure 4.4. The data points from the experiments Peyp used to
calibrate the model are taken at each plateau, where both pressure and piston displace-
ment are measured. The initial target pressure was set to 5kPa, followed by steps of 1kPa
increases up to a total of 10kPa; afterwards two decompression steps followed, both de-
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Table 4.3: Angle of repose test, experiment results.

n. test MAN LAC MCC ASA

Test 1 24.57° 28.37° 36.50° 53.67°
Test 2 25.51° 29.25° 37.23° 54.07°
Test 3 24.20° 28.81° 36.50° 53.67°
Average 24.76° 28.81° 36.75° 53.81°

Figure 4.8: Pictures of the AoR testing phase for LAC (left) and ASA (right). The high
cohesiveness of the latter makes its slope steep and craggy, especially when compared to
the broad smooth surface of the LAC pile.

creasing the pressure by 2kPa. The bulk is then re-compressed and de-compressed following
the same pattern reversed: two compression steps of 2kPa and five smaller de-compression
steps of 1kPa each. At this point the piston is unloaded until zero pressure is measured,
where the last data point Py is taken. The pressure-deformation curves obtained from the
experimental data are depicted on the top row in figure 4.9. The final objective of the
compression test calibration is to reproduce how the bulk deformation is related to the
applied pressure. Since the materials tested have different rheology and packing configura-
tions, the initial piston height, below which the pressure starts to steadily increase, is likely
to differ. For this reason the experimental data points are all shifted to have an initial
pressure of 0.05P,x at A = 0. This approach does not alter the outcome of the test since
the rheology depends on the link between P and A and not on the initial powder height,
but allows to use the same initial particle bed height Hy for every simulation.

The shear cell test is aimed to measure the magnitude of the resistive forces while the
granular ensemble is subject to shear, and the mechanical measure is the torque needed
to rotate the upper layers of the powder. In the model the resistive forces experienced are
due to both inter-particle friction and cohesion, the first activating when particles move
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Figure 4.9: Top row: experimentally measured Pey, curve for a) free-flowing and b)
cohesive materials, the arrows indicating the compression test cycle. Note the different
scale of the powder deformation with a) (maximum deformation ~ 1.5 — 2.0%) and b)
(around 25%). The difference in the tested powders’ volume loss is due to their diverse
compressibility, while the different slope between loading and unloading branches is a clear
indication of hysteresis. Bottom row: experimentally measured 7oy, curve for c) free-
flowing, d) moderately cohesive and e) very cohesive powders, the arrows indicating the
shear test cycle. The slope of the curve connecting the data points collected during the
piston rotation (dashed lines) is linear, and can be interpreted as the macroscopic friction
coefficient pung. A different offset is instead dependent on the macroscopic cohesiveness of
the material, denoted by the displacement of Tex, during decompression.

along their contact plane, the second when their relative distance increases due to the flow
of the neighbouring bulk. The torque measurement is made in the same casing where the
uniaxial compression test was carried out. The same target pressure steps are defined but
in addition, once they are reached, the piston tip is rotated at a constant angular velocity
of wexp = 0.3°/s until it spans an angle of fexp, = 60°. During this circular motion the
torque Texp experienced by the piston is measured, and is plotted in the bottom row of
figure 4.9 as a function of the piston measured pressure Peyp,. To calibrate the model both
sliding friction pg and cohesive stiffness k. are tuned to reproduce the behaviour of the
torque-pressure curve T(T, P) at the selected data points.

4.7.2 Numerical calibration I — angle of repose

The AoR measurement was performed via a funnel tester (figure 4.1), but a numerical coun-
terpart cannot be implemented due to the particles being too cohesive and jamming the
funnel. In the experiment the powder is forced to flow through by rotating an impeller, but
the same experiment would not work numerically and make the model unstable. For this
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Figure 4.10: Front view of the DEM angle of repose simulation snapshots after particle
loading a) and during discharge b) with starting particle properties k0 = 1072, g = 0.50
and pup = 0.10. The solid lines in the middle represent the fixed base to support the final
particle heap. The dashed lines in a) represent the removable walls that will allow the
particles to fall, the latter being deleted if crossing the simulation boundaries indicated
by the corners at the edges. The inset c) is a snapshot of the final pile after discharge
during the last AoR iteration for the calibration of MAN (kjg = 1073, pug = 0.20 and
pr = 0.10 leading to an angle of repose ayina = 24.52°), the dashed lines indicating the
average experimental value of the angle for visual comparison. On the left and in the inset
particles are coloured according to size, on the right according to speed.

reason, instead of using a funnel tester, we implemented a draw down test. We are aware
of the possible discrepancies between angles of repose measured in different tests [8,118],
but this eventual discrepancy is going to be averted by re-calibrating the friction coeffi-
cients during the shear test. In this framework the angle of repose test is used to find a
preliminary value of the friction coefficients, that are later adjusted via shear test. The
step of finding a preliminary friction coefficient is necessary since it affects the compression
tests.

The geometry implemented for the DEM simulation of the AoR test consists of a rectan-
gular box inside of which the particles are loaded, similar to the device used in [177]. The
size of the system depends on the average particle size: the length of the box Lo = 1407
and its width Wyox = 20r are all defined as a function of r. Periodic boundary condi-
tions are imposed along the width direction, to prevent the particles from interacting with
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Figure 4.11: Profiles of the surface of the formed powder heaps for each material. Last
iteration of the numerical AoR test routine is shown. Each point represents the position of
the highest particle in each bin, averaged along the whole width of the system. The solid
lines represent cexp for each powder as reported in table 4.3. For colour coding and plot
markers refer to the legend in figure 4.9.

side walls during the discharge leading to a non-uniform particle bed slope across the box
width. The bottom of the box is composed of a fixed plate in the middle, covering the
whole width but only Lpjate = 1007 long, and of two removable shutters on both sides of
length Lgputter = 20r. The amount of particles loaded is chosen to have a particle bed
height Haor ~ 120r, leading to around 5.3 - 10* spheres. Since the geometry of the system
scales directly with the particle size, the number of particles needed in the AoR test sim-
ulation is constant and independent on the particle size.

A front view of the setup after the initial particle loading is shown in figure 4.10a. The
removable walls are indicated by dashed lines, while the solid lines in the middle represent
the fixed plate, the simulation domain being indicated by the corners on the sides. Once
the particles are loaded and settled, the shutters and the side walls are removed letting
the particles fall under the effect of gravity. Particles are removed as soon as they cross
the simulation domain to save computational time. A snapshot of the discharge process,
taken 0.1s after the walls removal, is shown in figure 4.10b. The time the particles need to
form a stable pile depends on their cohesiveness, therefore the simulation is stopped only
when every particle is still after which the slope of the heap can be measured. In the inset
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Table 4.4: Angle of repose test, numerical results.

MAN LAC MCC ASA
Qexp 24.76° 28.81° 36.75° 53.81°
Ofinal 24.52° 28.56° 36.95° 53.47°
Efinal 0.96 % 0.86 % 0.54 % 0.63 %
Niterations 7 3 11 19
IR 0.10 0.10 0.10 0.30
k0 10-3 10-3 102 3.0- 1072
plibrated 0.20 0.28 0.25 0.24

the final configuration of the particles is depicted for the last iteration of the test during
calibration of MAN, to be compared with the AoR value from the experiment indicated
by dashed lines.
As discussed previously lép plays no important role in the determination of «, but the
same is not true for kAC. Therefore, we need to decide what value to use for the cohesion
stiffness, knowing that it will affect the value of the calibrated ps by altering the angle
of repose [4,41]. To define the initial cohesion stiffness k¥ to use, we assumed an inverse
relationship between the former and the angle of repose. Three different cases are provided:
for a < 30° we set k¥ = 1073, for 30° < o < 50° we have k0 = 5- 1073 and finally for
a > 50° the initial stiffness is set to kjg = 1072, The initial rolling friction coefficient u%
is instead kept the same for each case. These are only starting values to allow a faster
convergence to a solution, since they will be modified as well if a solution is not met, as
we will soon explain.
The calibration procedure for the AoR test exploits the monotonic dependence of o on
ws [20,77,81,168|, and is carried out as follows: the first two simulations are run with fixed
friction coeflicients H}g = 0.50 and ,u% = (.05, leading to the angles of repose a; and aq,
respectively. The initial value of the following computation is then set to u3 = (,u}g —I—M%) /2
resulting in an AoR g, satisfying a1 > a3 > as. Now for every computed angle o, given
1 > 3, the relative deviation

i(ag) = 1% = el (4.14)

Olexp

between the AoR obtained and the target ceyp is computed. If g; (ai) < 04, the latter
being an user defined tolerance, the calibration is considered successful, and p§ is used
as static friction coefficient in the subsequent simulations. If this is not the case the cy-
cle is iterated, and the new friction coefficient tested chosen via the bisection method:
,uis = (ug_l + ,u,fg_Q) /2. This procedure is repeated until the desired convergence is met.
Being this test the first of the set, we chose the very stringent threshold o, = 0.01. Since
cohesion affects the AoR in a complicated manner, especially for poorly flowing powders,
it can happen that the first guess u}g leads to a value a1 smaller than the target one. If this
is the case, the rolling friction coefficient is increased by an amount ,u% and the simulations
are repeated. In case convergence is still not met, ugr is increased by the same amount
until either the former reached the maximum allowed value of 0.50 or the angle of repose
converged to the desired value. If this is not the case, then up is re-set to its initial value
,u(])% while the cohesion stiffness is increased by an amount k0, and so on. The rolling fric-

c?
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Figure 4.12: Snapshot of the settled powder bed prior to a compression test. The
confining walls (bottom base, top piston and enclosing cylindrical wall) are not shown for
the sake of clarity. Particles are coloured according to size as in figure 4.10a.

tion coefficient is then progressively increased before the cohesion stiffness is changed, until
Q1 > Qexp. This situation occurred, for instance, in the cases of both cohesive powders.

To evaluate « all particles after the discharge are binned according to their position in-
side a grid along the zy plane,  being the longitudinal direction and y the transversal.
The grid meshes are squares of size 2r, for a total of 50 and 10 bins along the x and y
directions respectively. Inside of these the position of the highest particle is computed,
and « is calculated by considering the average height difference of the highest particles in
neighbouring bins along the z direction. The height profile of each powder bed at the end
of each respective final calibration routine is plotted in figure 4.11, where the (Z, 2) coor-
dinates of the particles on top are averaged across neighbouring bins along the y direction.
The results of the numerical AoR tests are summarised in table 4.4. Calibrated values of
the sliding friction coefficient ufgalibrated are different for each material as expected, rolling
friction and cohesion differing as well in case of more cohesive materials. We reported as
well the number of iterations njterations Of the AoR calibration cycle necessary to satisfy
E(Ot) < g, for every powder tested, including the runs leading to an increase of either M%

or kY.
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4.7.3 Numerical calibration IT — powder rheometer

Powder rheometer simulations are substantially different from the former: not only they
are considerably lengthier, but also various experiment data points must be met at once.
The DEM model of the cylindrical casing for powder rheometer simulations is a faithful
representation of the experimental counterpart described previously. Particles are loaded
inside a cylindrical casing of radius R and let to settle, the ones laying above the powder
bed heigh Hy subsequently removed. An image of the settled powder bed before tests are
performed is provided in figure 4.12. The topology of the piston surface depends on the
test ran: flat for compression tests, with blades protruding perpendicularly to the surface
for shear tests. Both geometries are faithful representations of the real pistons used in
the experiments. During both tests, the velocity of the piston along its axis is set to
10~ % min /dt, Tmin being the smallest particle in the system, to ensure numerical stability
and a quasi-static compression regime.

During each rheometer calibration cycle every selected experiment data points has to be
met, and to do so the relevant DEM parameters can be tuned several times. These tunings
are performed very slowly, by an amount equal to 10~ times the actual calibrated variable
every 5 time steps, to ensure the system stability. In case of compression tests the plastic

stiffness kAp is tuned to match the pressure PeiXp at each compression height A _ . During

exp*
shear tests, both sliding friction pg and cohesive stiffness k. are tuned to match the torque
Teixp at each piston pressure Peixp. At the end of each cycle, to determine if the parameters
are successfully calibrated, both the mean relative deviation of calibrated variables, and
the deviation of their mean from their starting value are computed. For a certain calibrated

variable x the former are respectively expressed as follows:

L3y o' = (@)
elr) === 4.15
@)= == (415)
[(z) — 2

r) = ——F— 4.16
(@) = L2 (416
where L is the number of calibration points (in our case L = 15). If the routine does
not converge, a new numerical calibration cycle is performed from a new starting value
2%|hew = (x) of the calibrated variable. Calibration cycles are iterated until one of the

following progressively less-stringent criteria is met:

e both e < 0, and ¢ < o, where o, is a user-define threshold, meaning that calibration
is successfully achieved within the defined desired tolerance

e . < 1073, since further iterations will be pointless given that -Z'O’new will always
coincide with 20 for every subsequent run

e a defined maximum number of iterations nj is met.

In practice, if convergence within the threshold € < ¢, cannot be met, the routine can
either stop because of the condition ¢ < 1073, signifying that the cycle successfully settled
to an average value of x albeit not being able to satisfy the desired precision, or exit after
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ny unsuccessful calibration trials. These multiple conditions ensure the robustness of our
calibration method while, at the same time, reducing the computational costs as much
as possible. In this work we set ny = 5 and we chose o, = 0.05, a suitable compromise
between speed and precision.

A dynamic, albeit slow, tuning of material properties will impact the loading history of
the system since it will change the bulk properties of the material. When increasing k};
the granular solid becomes stiffer, when increasing ug or k. the powder bulk becomes
more consolidated. The precise effect on the bulk properties is out of the scope of this
paper, but it could work similarly to a sintering process [85]. To contrast the artefacts
that the dynamic calibration might have had on the bulk is important to follow two steps.
First: a new settling phase must be executed at the beginning of each calibration step.
Different material properties lead to different packings properties of the particles, and the
latter affect bulk and flow behaviour. For this reason loading a previously settled particle
bed but with new parameters to save computation time should be avoided. Second: the
final validation test case, where the numerical calibration test are run without material
parameters tuning, is a necessary step to ensure that the calibrated model behaves properly
without any eventual disturbance due to parameters dynamic tuning.

Uniaxial compression

The compression test simulation is height driven, meaning that the piston is moved until
it reaches a prescribed compression A; data point, the pressure being monitored at every
time step and computed according to

1 2.
P= Y F -z (4.17)

iEM

where the sum runs over the set M of all particles ¢ exerting a force F} against the piston.
Once the latter reaches the desired height, if the pressure P! is below the target pressure
Py, the plastic stiffness k, is increased until the former reaches the target value. On the

contrary, if P* > P!

exp’ k:p is decreased accordingly. Figure 4.13a shows the numerical data
from the last performed calibration cycle for each powder (i.e., k;; is still dynamically varied
if needed). Marked data points are the ones to be matched during the calibration, and are
the same highlighted in figure 4.9 (the whole data from the compression experiment are
shown as well for comparison). It is of particular importance to match the correct overall
powder plastic deformation after compression, which by definition determines the powder
elastic recovery as well. In order to do so, the calibration curve must intercept the P =0
axis of figure 4.13a at the same point where the experiment data curve does. As it can be
observed, both the behaviour along most of the calibrated data range and the final powder
plastic deformation are in excellent agreement with the experiment. Numerical results
differ from the experiments mostly during the loading phase, but this must not surprise:
real particles have different shape and broader size distribution, resulting in a different
packing state. However, when they interlock under the piston pressure, the elasto-plastic
behaviour is almost perfectly captured by the numerical model.

A front snapshot of the powder bed is also shown on the left of figure 4.13 to visualise the
overall plastic deformation of the powder bed: the uncoloured particles in the background
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Figure 4.13: Numerical data from the last iteration of rheology calibration cycles for each
powder tested (from top to bottom, MAN, LAC, MCC and ASA). To the left is a frontal
snapshot of the system before (white particles in the back) and after (coloured according to
material, in front) the compression test as a visual proof of the powder permanent plastic
deformation. In the middle columns a) is plotted the piston pressure P as a function of bed
relative deformation A from initial bed height Hy (solid coloured lines represent numerical
data, dashed black ones represent experiments). The rightmost columns b) show the torque
7 measured during shearing as a function of pressure P (experiment data omitted for sake
of clarity). For colour coding, plot markers, and data points used for the calibration in a)
and b) refer to figure 4.9.
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represent the modelled particles before the last compression cycle, while the superimposed
coloured ones are the mechanically stable configuration after the piston is released after
the calibration. The accurate prediction of the piston unloading point validates equation
(4.13) and the theoretical framework of section 4.5.
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Figure 4.14: Mean calibrated parameters as a function of the number of calibration cycles
iterations (from top to bottom, MAN, LAC, MCC and ASA). From left to right: a) <kAp>
calibrated during compression tests, b) (ug) and ¢) (k) both calibrated at the same time
via shear tests (dashed lines connecting calibration points displayed as eye-guide). The
initial values (/{;2, ,u%, k;g) are used for Miteration = 0, while for subsequent iterations the
averages of the calibrated values from the previous one are used instead. The vertical error
bars represent the absolute calibration errors (z)ne () (solid) and a9(zy) (dotted) for
every calibration iteration n relative to each respective calibrated variable, as defined in

equations (4.15) and (4.16). Colour coding and markers style are the same of figure 4.9.

Results from the performed compression calibration routines are plotted in figure 4.14a
for each material tested. The initial value for the plastic spring stiffness is set to k:g and

the calibration routine ran. Both calibration errors e(k,) and ¢(k,) computed from the 15
different stiffnesses k}, are obtained for each data point are plotted as error bars on top of

each initial stiffness value. The mean value <k:p> converges to a stable value where both
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0.2 0.4 0.6 0.8
Vol WR

Figure 4.15: Particle tangential velocity vg normalised by wR from a small sample of
angular width 7/4 when sheared by an angle 27/3 immediately after the rearrangement
stage, during the last numerical shear test of ASA. The particle sample is generated by
selecting all the ones contained in a slice 2r thick and them following their path for a
time t = 27 /3w, where their projection on the rotation plane is indicated for first and last
tracing time step. The shearing direction is indicated by the arrow, the colouring is given
by applying a semi-transparent circular tracer of radius 2r over every particle at each time
step, indicating their normalised tangential velocity.

~ ~

e(ky) < o, and t(kp) < o for ny <5 for each material. Usually most of the displacement

from k;g towards the final value is covered in the first calibration cycle, as can be seen by

~

the rapid decrease of ¢(k)) (dotted error bars) in the first couple of cycle iterations. Since
values of k}, can still differ from one another, although oscillating around the progressively

~

more accurate estimation <k:p>, the first error measure e(kp) (indicated by dashed error

~

bars) usually decreases slower than ¢(k,), and is responsible for most cycle iterations. This

~ ~

is also why the condition e(k,) < oy, = L(kp) < T but not vice-versa.

The final values of the variables involved in the calibration routines, as well as the number
of iterations niserations Needed for the algorithm to converge, are reported in table 4.5 (the
plasticity depth used is calculated via equation (4.13)). In both non-cohesive materials

~

the convergence criterion met was the most stringent €(k,), while for the cohesive powders

tested a condition o,; = 0.05 is too strict, and therefore, only the condition on L(k;)) was
P

~

met. Nevertheless an agreement of ¢(k,) < 0.10 was obtained in both cohesive cases, even
if compression of ASA led to a significant change in volume of up to 25%.
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Shear test

During the shearing phase of this test we used a piston angular velocity w = 10 Wexp =
/60 rad/s, a value higher than the experimental counterpart to considerably reduce the
computation time. This choice does not alter the outcome of the test since the inertial
number Z is anyway small enough to ensure a quasi-static flow [36,72| (for the parameters
range of this study Z ~ 4.0 - 107°). In addition, numerical tests were ran with smaller
rotational speeds for comparison and no relevant difference was observed.

Unlike the previous, this test is pressure driven: the piston is displaced downwards until the
prescribed pressure point is met, and kept constant until the desired torque is achieved. The
piston is then rotated at a constant velocity wexp and the torque along its axis computed

according to
Tz(Zﬁix}i>-é (4.18)

where R; is the position of the particle with respect to the piston axis. Before tuning
either pug or k. a particle rearrangement phase is performed, where the piston is let to
rotate for a time T' = 2r/vg(l) while keeping the pressure constant. Here vy(l) = wl is
the tangential velocity of the piston at some point [ along its radius. To fix the latter,
we chose | = R/ V2, i.e., the point on the radius that, via its circumference, divides the
piston surface in a smaller circle and a concentric ring of equal surface. By doing so, after
a time T' = 2v/2/w), on average at least half of the particles directly sheared by the piston
were displaced by at least a distance 2r. This measure is taken to ensure that most of the
powder bed rearranged due to the piston motion before the parameters tuning is started.
Despite this, for the most cohesive powder, particles still redistribute during the first stages
of the calibration, as shown in figure 4.15 for ASA.

Like with compression, each experimental data point must be met during each cycle lead-
ing to multiple tunings of the same variable, but this time ug is calibrated only during
compression while k;c only during decompression. It is important to tune the former sep-
arately since they both proportionally contribute to 7. In addition, since two variables
are responsible for the calibration, the range of values they can assume each cycle must
be restricted around their initial value, to prevent them for diverging. For instance, let’s
assume that pg was temporarily set to 0 during the ongoing cycle, and anyway 7° > Téxp.
If now ke happens to be tuned for the data point 5 + 1, it can happen that, since ug = 0,
il < ngpl, so the routine will try to reach the target data point by increasing k.. In the
next cycle, since k. was increased, the torque cannot be possibly met when tuning pg since
the stiffness was increased from the previous iteration, and so on. To avoid this artefact
both pg and k. are allowed to vary only up to 10% from their respective initial calibration
cycle value u% and k0. This strategy is not biasing the calibration scheme since on one
side the intervals of allowed values follow the trend of (;ug) and (k.); on the other side it is
not affecting the computation of neither € nor ¢, which are the defining quality parameters
for the shear calibration.

Numerical data from the last performed shear calibration cycle are shown in figure 4.13b
for each tested powder. The simulated results are in good agreement with the whole range
of experiment data (indicated by solid markers) for MAN, LAC and MCC. For the most

cohesive ASA, 7 is overestimated during the compressive phase of the shear test, but is in
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Table 4.5: Numerical results of rheology calibration routines for a chosen kM = 5.0- 103
N/m.

MAN LAC MCC ASA
(kp) 1.78 - 1071 3.11-107¢ 4.92-1072 6.20-1073
¢ 0.020 0.021 0.137 1.360
Etinat (Kp) (%] 4.32 3.50 5.95 8.99
teinat (Kp) %] 0.86 4.80 0.01 0.03
Niterations 3 4 2 2
Exit condition € € L L
(us) 0.216 0.283 0.243 0.211
(ke) 1.08-1073 9.46 -10~* 9.57-1073 3.13-1072
Efinal (115) %] 2.98 8.67 9.54 0.20
tinal (1) %] 3.99 4.03 2.31 0.45
Efinal (Ke) %) 2.53 6.12 6.98 7.97
tinal (Ke) (%] 0.98 5.38 3.32 0.04
Niterations 3 ) 5 5
Exit condition € ny ny ny

good agreement along the whole second phase when P is decreased. How the calibrated
averages (ug) and (k) evolve through different iterations of the calibration cycle is shown
in figure 4.14b and 4.14c respectively. It can be noticed how the previously explained in-
terplay between tuning of ug and k. still affect the simulations in the case of low-cohesive
powders, albeit in a minor part due to the variation limitation: an increase in pg is usually
followed by a decrease in k. and vice-versa. Calibration of MAN converges the fastest
satisfying both eMAN(16) < 0.05 and eMAN(E,) < 0.05 after 3 iterations. The stiffer LAC
shows a converging behaviour, but does not manage to successfully overcome the stringent
threshold of o = 0.05 while Niterations < 9, and therefore, the cycle is interrupted by hitting
the n; exit condition. The slope of the calibrated averages hints at a likely convergence
for ny > 5. MCC showed the least accurate results, probably due to the needle shape
of the real particles (see figure 4.2) that assume different packing configurations, while
under shear, from spheres, and can easily suffer fracture when subjected to shear and high
pressure. In this case, as well as for ASA, the exit condition met was on ny. For the latter
the condition EASA(MS) < 0.05 is surprisingly met after the first iteration, albeit the initial
high value of (454 (). However, due to a constant high variability in (k)54 throughout
each iteration, convergence could not be met with the chosen threshold.

The final calibrated values are reported in table 4.5. The numbers show that, despite 3
powders not converging below o = 0.05, the relative error associated to calibrated variables
was never above 10%, which is a proof of the capabilities of such a calibration procedure.

4.8 Numerical validation

A numerical validation of the model constitutes the last step of this work. Instead of using
a third device to compare the behaviour of calibrated powder to experiments, which would
introduce additional variables to be calibrated such as the friction coefficients between
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Figure 4.16: Numerical data from the validation simulations for each powder tested (from
top to bottom, MAN, LAC, MCC and ASA). Colours and structure are the same of figure
4.13 and data comes from single simulation runs where material parameters (reported in
table 4.5) are not tuned but are kept fixed. The former constitute the validation of this

calibration framework.

powders and the device’s material, we chose a faster and simpler way to test the calibration
results. Such approach will also limit time and resources expenses and material waste.
Since the powder rheometer tests constitute the backbone of the calibration procedure,
a last simulation of both compression and shear tests is ran with the calibrated powders.
This time powder properties are not dynamically adjusted to meet the required data points,
but they are left with their original calibrated values of table 4.5 throughout the processes.
Target piston heights are met and the pressure measured; comparing the latter to the values
measured in the experiments (figure 4.9) will constitute the validation of the calibration

process.

Data from the set of validation simulations is plotted in figure 4.16 on top of the experiments
results. The model shows a very good prediction of both compression and shear behaviours
for non-cohesive particles along the whole experiment data range.
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4.8. Numerical validation

Table 4.6: Relative errors between numerical validation rheology tests of calibrated pow-
ders and experiment data.

MAN LAC MCC ASA
x(P) %] 8.04 3.26 8.48 12.95
x1(P) %] 4.80 4.61 13.79 11.18
Xru (P) [%] 10.20 2.36 4.95 14.13
x(7) (%] 13.65 14.31 26.49 34.64
xi(7) [%] 17.38 19.66 31.93 69.30
Xeu () (%] 11.16 10.75 22.86 11.53

powders the compression simulation manages to capture very well the behaviour of real
materials, especially in the reloading and unloading regions, and gives a very accurate
prediction of the final plastic deformation of the powder bed. Since we are using a linear
interaction model, the loading branch of the curve is naturally becoming a straight line,
which might differ from the first measured points at lower compressive pressures. The
same behaviour is found in the shear cell, where the rheology is better captured during
the unloading and re-loading phases, especially for the most cohesive material tested. The
relative error

1 & | A
x(z) = T Z ?pz (4.19)

is used to quantify the how good pressure and torque match their counterparts in the
compression and shear tests respectively, and are reported in table 4.6. Since the biggest
discrepancy is found during the loading phase, the relative error evaluated only during
loading xi(z) and only during reloading and unloading x,.y(z) are reported as well. As
expected cohesive powders are the toughest to calibrate, and after the validation run carry
the highest relative error. The validation of the compression tests shows a good agreement
with the experiments since x(P) < 10% for each powder besides ASA, which behaviour
xasA(P) < 13% is still in acceptable range. Shear tests show a good qualitative agreement
but a worse quantitative one, and are the most affected by the discrepancy during the load-
ing phase. The whole data range gives x(7) < 15% for non cohesive powders, which drops
at Xru(7) < 11% if we remove the loading branch from the error computation. MCC is the
worst behaving of the tested materials under shear, mainly due to its shape and probably
due to breakage during testing (as seen by the different slopes in the shear test experiment
in figure 4.9), and the relative error ranges around 26%. Finally, the most cohesive ASA
powder shows a high relative error xaga (7) < 35%, that is however greatly reduced below
12% when disregarding the loading branch.

The systematic discrepancy in the loading behaviour was likely introduced by the require-
ment to meet the correct permanent plastic deformation of the bed, which led to tuning
¢ alongside with k,. This artefact cannot be avoided if a linear interaction model is used.
A refinement of the model to address this will be the topic of future studies, but such
behaviour demonstrates that using many calibration points for each test is necessary to
capture the complex rheology of powder materials. For instance, simply matching the
maximum compression point and the final powder bed height from a compression test will
likely lead to an oversight of the initial plastic behaviour, especially for cohesive materials.
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Moreover effect due to particle shape and electrostatic forces, altering the packing config-
uration of the powders and its response to compression and shear, are also very likely to
affect the tests during the loading stages. These aspects cannot be neglected if a more
faithful representation of the experiment has to be achieved.

4.9 Conclusions

A new, robust, rational and fully-automatised method for the calibration of DEM param-
eters for modelling cohesive powders is developed and presented. These parameters are
calibrated by performing numerical models of routine small-scale laboratory experiments,
such as angle of repose, compressibility and shear tests, that must replicate the outcome
of their real counterparts, and are specifically designed to capture the complex hysteretic
behaviour of granular materials.

To be considered successful each calibration routine must converge towards each of the 15
data points selected from each rheology tests. For testing and validating this new approach
four powders of pharmaceutical relevance are used for the laboratory tests, ranging from
free-flowing to highly cohesive.

Certain parameters, such as particle average size and plasticity, rather than being cal-
ibrated, are selected according to physical arguments, and are intimately connected to
calibrated variables and the geometry of the testing devices. Others, such as maximum
elastic stiffness and restitution coefficient, are chosen a priori to limit the computational
cost of the procedure, but in a range of values physically meaningful. The four parameters
directly calibrated, sliding and rolling friction and plastic and cohesive stiffness, are then
related to their relative impact on the calibration tests, leading to a precise order according
to which the simulations of the latter have to be performed.

The automatic calibration routine then intends to iteratively converge to a solution within
a chosen maximum number of iterations, with two possible positive outcomes: either all the
selected quality attributes, such as the absolute mean deviation of calibrated parameters,
are below the user-defined acceptance threshold, or the former still stabilise to a constant
value, albeit outside the desired boundaries. This second mode enables the algorithm to
continue with the subsequent tests in case the variables are distributed around a stable
mean value, which can be important, since the desired precision might sometimes be too
high to be achieved. The routine ends successfully when every numerical test converged,
and then returns the calibrated values found with the associated statistical deviations. In
case convergence is not met within the allowed numbers of iterations, the last calibrated
value is chosen and the procedure goes on until all parameters are calibrated.

In our study we managed to successfully calibrate all four materials tested, including the
highly cohesive powder exhibiting a compressibility of up to 25%), which is at the boundary
of the validity of DEM modelling capabilities. Despite certain tests not converging within
the chosen numbers of iterations, every calibrated variable at the end of the cycles had an
associated relative error below 10%, proving the potential of this framework. Our new ap-
proach is more physically sound when compared to a traditional parameter space partition
type of calibration, and calibrated parameters are univocally determined (no multiplicity
in the solution that can instead occur in the latter). On top of this, our method converges
faster, making it an ideal candidate to become a standard procedure for bulk calibration
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approaches in this field of study.

An additional validation of this approach will constitute the next step of our study: the
behaviour of a DEM model of a manufacturing process will be compared with the exper-
iment, after the powder has been calibrated with this framework. The extension of this
calibration technique to the calibration of blends, including mixtures with different average
particle size, will be the topic of upcoming studies. Inclusion of non-spherical particles to
the model is also planned.
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Chapter 5

Deformable and breakable DEM
particle clusters for modelling

compression of plastic and brittle
porous materials — model and
structure properties

Abstract!

A new framework for DEM modelling of deformable and breakable particles is presented. In
our approach, real-life particles are modelled as agglomerates (or clusters) of many DEM
particles forming spherical clumps and interacting via a linear elasto-plastic force. Such
interaction provides a finite equilibrium overlap, resulting in mechanically stable clusters
after agglomeration. Since inter-particles bonds are elastic, clusters can be used to model
particles or structures that can deform elastically, plastically or break. Different clusters
can bond as well, providing the basis for modelling complex particle agglomeration. The
framework is described, and key structural properties of clusters are defined and analytically
related to DEM components packing and their material properties. These relations are
numerically validated showing a very good agreement, enabling clusters to be designed with
a precise structure. Applications of this model range from particle deformation and breakage
to porous structures, from soil mechanics to die compaction and tableting.

"With minor corrections from: L. Orefice, J. G. Khinast, Powder Technology, in press.

99



Chapter 5. Deformable and breakable DEM particle clusters for modelling compression of
plastic and brittle porous materials — model and structure properties

5.1 Introduction

Many physical systems are comprised of granular materials. Upon compression, materials
deform either elastically, plastically or via brittle fracture, i.e., breakage. For example, dur-
ing pharmaceutical manufacturing [3,105,115,131] or in the study of soil mechanics [50,163],
the behaviour of individual particles has significant impact on the final product or the me-
chanical responses of the macroscopic system [59]. In many cases the ability to deform
before breaking constitutes the main factor leading to final product quality [105,131,138|.
For instance, during die compaction of pharmaceutical powders or granules, the individ-
ual components deform plastically to occupy the neighbouring interstices left in the bulk,
before potentially fracturing, and eventually forming a bond with neighbouring particles.
Both deformation and breakage are thus equally important when modelling such systems,
and neither should be neglected.

The numerical techniques mainly used for modelling deforming bodies, such as Finite El-
ements Method, are unable to model their breakage without relying on complex couplings
with other numerical techniques. Thus the computational expense of modelling a large col-
lection of bodies is unfeasible. To address these limitations the deformable and breakable
particles are here modelled as composite entities comprising many cohering elementary
components. These composite particles, interchangeably labelled here as clusters or ag-
glomerates, can be used to model grains with either a simple or a compound structure,
such as a sand pebble or a pharmaceutical granule, respectively. The constitutive smaller
elements, modelled via Discrete Elements Method (DEM), will be the fundamental in-
dependent, spherical “bricks” these bodies are composed of, their interaction determining
hardness and plasticity of the clusters.

Modelling of composite particles undergoing impact or uniaxial compression breakage is a
relevant approach in the literature, among which DEM has an important role especially
in the latest years [6,16,17,29,35,42,49,69,79,88,91,96, 122, 134,141, 143, 148, 155, 174].
The ability to access dynamic variables and stress configuration of every particle con-
stituting each cluster is a key factor in understanding their deformation and breakage
behaviour. The discrete nature of these agglomerates gives DEM an advantage on fi-
nite methods in studying brittle breakage, since crack propagation and fragment dis-
tributions derive naturally from particle and material properties and their configura-
tion [17,29,35,49,79,88,96, 134,141, 148,174]. For these reasons DEM simulations have
been broadly used to study breakage problems in the past.

Given the flexibility of DEM, many properties of the original (composite) particles can be
designed, such as shape and size distributions of the components [29,69,134,143,155,174].
These have been shown to play a fundamental role in describing the breakage dynam-
ics, but inevitably introduce additional complexity to the model. For instance, the effect
of multi-modal elementary particle size distribution on breakage patterns is non-trivial
and adds an additional complication since the spatial arrangement of the biggest particles
within the agglomerates will affect the fracture as well [69,134,155]. The same goes for the
clusters shape. Clearly high aspect ratios or fractal configurations are altering hardness
and breakage patterns, but precise descriptors of these quantities must be defined and
controlled, and the decreasing symmetry makes the problem dependent on the clusters
orientation [29,143,174].

One of the main problems faced by every DEM model is validation, where the numerical
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model is tested and compared to experiments. Validation of models is becoming easier
thanks to the progressive refinement and diffusion of 3D printing technology in recent
years, greatly simplifying some formerly used techniques of agglomerate manufacturing for
strength testing [135,136]. Clusters with regular [37] and random [39] structures can be 3D
printed and used in breakage experiments to gather stress-strain and damage ratio data
from both compression and impact tests. These valuable data can be used to calibrate
DEM models from the single bond up to the whole cluster meso-scale [38,40].

The model we present is intended to bridge a gap between simplicity and broad physical be-
haviour of compressed particulate matter. The fundamental element of the model consists
of spherical clusters comprised of monodispersed elementary DEM particles interacting
with one another via a linear piecewise elasto-plastic harmonic force. Since the bonds
between components are soft, the agglomerates can deform, yet maintain their mechanical
stability, before eventually breaking if forces separate their components beyond the break-
ing point. Partial elastic recovery is also a response of the model thanks to the elastic
bounds. The force is stable and attractive for finite overlaps. Therefore, the structure of
clusters is naturally porous and the latter can be tuned by properly setting the interaction
parameters. A final property is that particle cohesion acts both inter- and intra-clusters,
and will be a built-in feature of the model allowing applications of the former to numerical
study dry agglomeration and compaction.

In summary, with the approach used we can represent a real-life particle (crystal, agglom-
erate, pellet, granule) via a cluster (consisting of many DEM particles). The properties
of the real-life particle can be emulated by changing the cluster properties (e.g., solid,
low-porosity particles or porous granules achieved via fluid-bed granulation). Many such
clusters with different size and shape can be considered, and thus, the physics of multiple
real-life particles during compaction can be modelled.

Part of this work is devoted to a precise definition and analysis of structural properties of
the clusters generated, such as size, mass fraction and density. Tools to numerically mea-
sure these mesoscopic properties and the inner components homogeneity and isotropicity
are provided as well. Moreover, since the force law used allows the prediction of the final
average overlap between particles composing each cluster, cluster size and mass fraction
are analytically related to DEM particle properties in a very simple way. This allows the
creation of clusters each with a precisely defined structure to properly mimic real-life par-
ticle ensembles of arbitrary size distribution and internal void fraction.

The structure of this article is the following. After a brief description of the interaction
model used, the final average elementary particle overlap within clusters is computed from
the force law. The Clusters’ structural parameters are then defined with respect to pri-
mary particles properties, details on their formation are provided, and their homogeneity
is tested alongside isotropicity. A theoretical part is then following where cluster size and
mass fraction are analytically related to number of DEM particles per cluster and their
plasticity. These relations are then tested in two different ways by modelling clusters with
a broad variety of size and porosity. Finally, future development stages of the model are
enumerated, and two examples of future studies adopting this cluster model are provided.
The goal of the present work is to provide the first steps in the development of a plastic
and brittle DEM-particle compound model of varying porosity, capable of both deforming
and breaking under stress, and agglomerating with others to form stable connected bod-
ies. Thus, compaction of both, plastic and brittle, materials can be studied using a novel
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Figure 5.1: Schematic plot of the normal hysteretic force F, as a function of the overlap
0 for two colliding particles. Colours indicate the dynamics of particles with increasing
maximum overlaps dmax, leading to proportionally higher elastic stiffnesses k. and larger
equilibrium overlaps dg.

approach.

5.2 Elasto-plastic interaction law

Since DEM modelling is widespread in the literature, and in use by the scientific commu-
nity since years [23|, the details on how the technique works are omitted for the sake of
brevity. The interaction law used in our model is a linear spring-dashpot model [84], with
a linearised piecewise function to determine the normal interaction force [83, 84|, which
we will briefly introduce. Employing a piecewise function for the normal force to mimic
inter-particle cohesion is no novelty [146, 147|, and we opted for a linear model to sim-
plify the theoretical formulation of the study. Some objections regarding the asymptotic
response of the model have been raised [142], but its simplicity and its valuable predictive
capacity [58] justify the choice of the interaction law. In principle, any cohesive interaction
model can be used with this framework with the proper adjustments of the algebra. The
DEM material parameters used for primary particles and the force integration time step
used in the simulations are reported in table 5.1. To perform the simulations used in this
study the open-source DEM code MercuryDPM [2,157] was used.

The piecewise structure of the normal force F'| allows to model different behaviours of
the particles when colliding, as depicted in figure 5.1. At the moment of contact, two
particles have a negative relative velocity, and the overlap between the former (since DEM
is a soft-sphere model) increases in time. In this regime the normal force is repulsive and
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proportional to the overlap d, with a proportionality constant k,, defined as plastic stiffness.
This harmonic interaction implies that at some point the relative velocity will decrease to
zero and become positive, indicating that the distance between the colliding particles is now
increasing with time, the maximum penetration depth met by the particles being defined
as Omax. At this stage of the collision, the interaction law switches to its second branch
where the elastic spring constant is now the elastic stiffness k.. Following figure 5.1, the
ke branch will intersect the F'; = 0 axis at an overlap g, and decreasing the overlap below
this value will result in an attractive (negative) normal force. This behaviour is analogous
to a plastic contact deformation, where the particles irreversibly deform and stick to one
another forming a stable bond, the equilibrium point depending on the history parameter
dmax. Upon further increase of distance the force becomes attractive with a constant slope
until a minimum overlap i, is reached. If that is the case the interaction switches to its
third and final branch, where the attractive spring stiffness drops to k., defined as cohesive
stiffness. Multiple reloading instances can happen during a single collision, each one of
these characterised by a reloading stiffness k.. The three branches of the normal force are
chosen at any point during the collision according to

kp o if ke (6 —80) > ky o
F| = ke(6—00) ifkyd > ke (6 —080) > —ked (5.1)
—ke§ if k6 > ke (6 — do)

where consistency requires k, < k.. For the reader’s convenience we point out that our
notation differs from the original one in 83| to allow a more intuitive interpretation of each
spring stiffness role in the interaction. The analytical value of the equilibrium overlap dg
will be of particular importance in this study, given by

8o = (1 — ky/ke) Omax.- (5.2)

Real particles undergoing plastic deformations have a more complicated behaviour, be-
coming stiffer the more they are compressed, and reaching the plastic equilibrium at pro-
portionally smaller overlaps dg. The model can be refined by introducing a maximum
penetration depth ¢}, below which the elastic stiffness is interpolated between £, and a
maximum elastic stiffness £J'** as

k, + k,(ranax —k 5{?“ Omax < 5;‘;1 x
ke (Omax) = { kfnax( ) 5 R (5.3)
e max — Ymax"*

Figure 5.1 illustrates the force behaviour for 3 increasing maximum overlaps 45 ,, < §ax <
Smax = 0%, depicted with different colours. According to equation 5.3, the elastic stiff-
nesses will be proportionally higher, and respectively k& < keﬁ < ki = kP> leading
through equation 5.2 to the increasing equilibrium overlaps d§ < 55 < &) = 0} respec-
tively. In our notation we mark with * values of the overlaps such that dpax > 07 .., i-€.,
collisions that will experience elastic repulsion proportional to kJ"**.

The penetration threshold 6}, is defined as a function of spring stiffness and reduced
radius of the colliding particles, and proportional to a constitutive model parameter ¢
defined as dimensionless plasticity depth, according to the following relation:

max o
k7 277

i+

5;ax(¢) = kmax — g, ¢ (54)
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Table 5.1: DEM parameters used for the model.

Density [kg/m?] 1500
Restitution coefficient | | 0.5
Dissipation coefficient [Ns/m] 6.0-1073
Plastic stiffness [N/m| 500
Maximum elastic stiffness [N/m] 1000
Cohesion stiffness [N/m] 500
Sliding friction coefficient |- | 0.5
Rolling friction coefficient | - | 0.3
Torsion friction coefficient |- | 0.0
Time step [s] 1.0-10°¢

In the former 7; and r; are the radii of the two colliding particles. The plasticity depth
determines at what relative overlap the interaction between colliding particles transitions
from plastic to elastic, and ranges between 0 and 1.

From this point onwards we will be working with dimensionless units for the sake of con-
venience: spring constants will be rescaled as k = k JE2®* and lengths will be rescaled as
L=1L /7, where r is the average particle radius.

5.3 The equilibrium overlap

The main relations of the previous section will be now expressed in dimensionless form as
a function of dp. This last quantity is key in our framework, since we want to study the
properties of stable clusters after agglomeration, i.e., when the average overlap between
particles forming the clusters will satisfy <5> — bo. We also consider the primary particles
to be mono-disperse with radius r.

Under these assumptions equation (5.4) becomes

O = &/ (1= k). (5.5)

This is the threshold deformation above which every overlap increment leads to a perfectly
elastic response, and therefore have no effect on the final equilibrium deformation. Inserting
the latter and equation(5.3) into (5.2) allows us to express the value of dy as a function of
primary particles properties l;:p and ¢:

(1—kp)281§ax Smax < &

8(] - ];:P¢+(1_kp)28max 17kp (56)
'y [
¢ (5max Z 17];:1) .

This relation is plotted as a function of ¢ and 5maX for three different values of l;‘p in figure
5.2, where the variables domain is limited to the physically meaningful values ¢ € [0;1]
and pax € [0; 1].

A couple of considerations arise from equation (5.6). First of all equation (5.5) defines a
critical overlap value above which o = 50 = ¢. Second a certain final overlap do can be
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Figure 5.2: Contour plots of final theoretical value of equilibrium particle deformation 5o
(contour values indicated in white on the plots) as a function of ¢ and Smax for l;:p = 0.50.
* . of equation (5.5): below &g
is given by the first case of equation (5.6), above by the second.

The diagonal thick line is the critical maximum overlap o

reached for different values of ¢, although a higher plasticity will require a higher maximum
overlap to be reached during the cluster formation. Finally, the equilibrium overlap only
depends on the ratio l;p between plastic and maximum elastic particle stiffness, both being
model parameters inputs.

These considerations have some practical implications in clusters formation. First of all,
the compressive force magnitude needed during the agglomeration to achieve a certain )
does not need to be known a priori. This because equation (5.5) gives us the necessary
threshold we need to meet, and all that is needed is to monitor (§) and ensure that it
reaches its target value by increasing the compressive force as needed. Secondly, since ¢
is the maximum achievable final overlap, it is convenient to choose both the former and

105



Chapter 5. Deformable and breakable DEM particle clusters for modelling compression of
plastic and brittle porous materials — model and structure properties

/%p such to minimise the (5max> needed whenever possible, ensuring numerical stability and
reducing computational costs. Lastly, since 30 depends on the ratio k,/kX**, and not
simply on k,, a value of the former suitable for any desired cluster radius can always be
found. For instance, since k, has to be univocally defined to replicate macroscopic cluster
properties, such as hardness, k2"®* can be chosen arbitrarily to meet the requirement (5.5)
only affecting the computational costs.

5.4 Cluster definition and structural properties

A spherical cluster Cp is defined as a set of N smaller primary components P;
N
Cy =Cn (:R) = | J Pi(6ii7) (5.7)
=1

arranged in a spherical configuration, the latter being bounded together by the attractive
branch of the inter-particle interaction force (5.1). Each component i is a common DEM
spherical particle of radius r that can follow a certain distribution of choice. For this study
we will employ monodisperse particles to simplify the theoretical modelling effort. The use
of polydisperse or multi-modal particle size distributions would definitely change structural
properties of the agglomerates (88,134, 155]; the latter most certainly deviating from the
theory developed here. The position of each particle is indicated by &;, while the cluster
centre is found by computing the centre of mass of the particles ensemble

N — N —
5= Zz‘:l mi%i _ Zz‘:l 04 (5.8)
Zi]\il mg N

where m; = %7? rf’ p; is the mass of particle ¢ and p; its density. The second equality follows
by assuming constant radius r and density p for each particle.

Like in reality, an accurate definition of the cluster size is non trivial [11], especially since
the topology of its surface is, by nature, highly irregular. To define the cluster radius
R we start by finding the furthest primary particle from ¢ and computing its distance
dmax = max(||6; — 0f|) from the latter. This quantity is used to define the subset M =
{Pi (6}-; 7‘) | d; > dmax — 7‘} of particles belonging to the cluster external shell such that their
distance d; = ||0; — d]| from the centre of mass is larger than dpy.x — 7. Now R is defined
to be the average distance of the former from the centre of mass:

> lloi — ]

R= == (5.9)
A slice of a cluster C50g passing through its centre is shown at the top of figure 5.3. Primary
particles sections are depicted in light green while R is indicated by the thick circle enclosing
the former, and is computed according to equation (5.9). The volume enclosed inside this
spherical shell and not occupied by particles constitutes the void fraction v = 1 — ¢ of the
cluster, and is shown in light blue.
It was established [6,17,69,88,91,112,134,155] that the compound internal structure is a key
aspect to consider when numerically modelling particle breakage via DEM. In particular,
particle porosity is inversely proportional to its structural strength. Since the ability to
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Figure 5.3: Cross-section of a cluster Csgp through o (indicated by the cross), the thick
solid circle representing the cluster radius R. Top: cross-sections of the particles is coloured
in light green, while the empty space enclosed in the clusters is in light blue, the latter
contributing to the cluster void fraction v. Bottom left: cluster volume analysis via lattice
grid points; points inside cluster volume coloured as above. Bottom right: volume analysis
with random Monte Carlo points generated inside the cluster boundary, colours as above.
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create a defined internal structure is a key feature of the cluster model, a consistent and
precise way to determine the mass fraction ¢ must be established. For an ensemble of
hard spheres the latter can be easily computed by taking the ratio between particles and
cluster volumes. However, the error associated to such measures of { increases with the
overlap between particles, and since our model consists of soft spheres with appreciably
high overlap we must rely on different means for computing the void fraction. Using
an analytical method to calculate the mass fraction based on computing the overlapping
volume of each spheres cannot be applied if three of the former share some of this volume,
and therefore we will rely on statistical numerical methods. In our approach we tested and
used two methods, i.e., a grid method and a Monte Carlo approach.
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Figure 5.4: Relative error of numerically computed volume ratio from the analytical value
of /6 for both grid and Monte Carlo approaches. The latter scales significantly better
than the former following a 1/v N power law.

The grid method consists in generating a 3D grid of points arranged in a regular cubic
lattice of side length 2R centred around ¢. The number of grid points Ngyiq is determined
by the grid length L = (Ngrid)l/ 3 which in turn gives the grid spatial resolution A\ =
(L —1)/2R. If we define the number of grid points contained in the cluster volume as
./\/gcrid and, among those, the ones falling inside of at least one of the primary components
particles gfildj , it is obvious that Ngrig C Ngcrid C ./\/'gfi]; , and the mass fraction can simply
be expressed in this way by (gria = Ngfiﬁ /J\/gcrid. An illustrative example is given in the
centre of figure 5.3 where a square grid of L = 50 is superimposed to the cluster cross-
section. Grid points laying outside of the cluster boundary are not shown, while those
belonging to Ngfiﬁ are coloured in green and those not contributing to (giq in blue.

The Monte Carlo approach works in a similar fashion: a number of random points Nyc
are chosen inside the cluster volume, and if they are within at least one of the primary
components particles they will sum up to Nﬁg . The mass fraction computed with this
approach is then (yc = /\/'I\%g /Nuc. A number Myc = 502 of randomly generated points
on the planar cut of the cluster are shown at the bottom of figure 5.3, the colouring
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following the same rule as in the previous example. To be noted that in both examples
the same number of points are generated Ngiq = NMvc.
Obviously both Ngrid and Myc are instrumental in determining how good the estimation
of ¢ will be for each respective method. To evaluate their computational efficiency both
methods are used to compute the volume ratio between a cube of unitary length and its
inscribed sphere. The volume ratio between the two is given analytically by %77(%)3 /03 =
/6, and the relative error in the numerical computation estimated from the former as
N grows is shown in figure 5.4. Since we are studying a 3-dimensional system the Monte
Carlo method performs better since the method is inherently dimensionality-free, with its
error scaling as N ~1/2 following the central limit theorem, falling below a relative error of
0.1% at Nyic > 105, The grid method proves to be less efficient since it scales linearly in
every dimension, meaning that in 3D its error will scale like N —1/3 and we managed to
fall below 1% only around Ngiq =~ 2.7 - 107. Thus, analysing the clusters internal structure
via random Monte Carlo points has proven to be more efficient. However, according to
the application a regular distribution of grid points might be desirable as well, for instance
when the topology of the clusters pores is needed. Since this paper will focus on average
structure properties we will use the Monte Carlo approach to compute the mass fraction,
that will be given by
_ M
Muc

where we will use Myic = 10%. However, when plotting the clusters internal structure (see
figure 5.5 we will rely on the grid technique with a grid length L = 300.

Finally, the expression of the cluster radius, given by equation (5.9), will allow us to
correctly set the density pp of the cluster’s components to meet a target cluster density p.
To replicate the behaviour of an actual object its inertia must be matched in the model.
Let pirue be the true density of the object, mirye its mass and Vipye its volume. Imposing
R to coincide with the radius of the object Riye, the real and modelled clusters will have
the same mass if m¢ = prueV = NppVp. Simplifying and re-arranging, the value of the
components is easily found to be

(5.10)

RS
PP = Ptrue W (511)

This value for the components density, based on the real mass of the object, is unaffected
by their overlap, which is a necessary feature of the model. Because of the random yet
homogeneous spatial distribution of the components inside the cluster, the moment of in-
ertia of the latter can be considered to match the one of a constant density sphere. These
parameters, alongside with properties determining dynamics and breakage patterns pre-
sented in a follow-up to this article, allow the model of agglomerates of arbitrary scale.
A softer and highly porous cluster can be used to mimic the behaviour of pharmaceutical
granules or pellets, while tighter and harder agglomerates can be used to replicate single
real particles or rocks.

Three clusters Cs9p and different plasticity depths are depicted in figure 5.5. The initial
particle position before their formation (explained in the next section) is the same for each
set of particles, as well as every other DEM particle parameter with the only exception of
¢. It is recognisable that there is a different final inter-particle overlap after the agglom-
eration process, due to different ¢ leading to different equilibrium overlaps dy. A higher
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Figure 5.5: 3D representation of clusters Csog after agglomeration with different plasticity
depths: top ¢ = 0.01, middle ¢ = 0.15 and bottom ¢ = 0.30. In the left column 3D front
view of the cluster. Higher average overlaps are clearly visible for higher ¢ due to the
consequently higher dy. In the middle and right columns is a 3D section of these clusters
of width r centred along a center plane. Similarly to figure 5.3, here spheres of radius r/20
are placed at every grid point used for the computation of the mass fraction with the grid
method. In the central column only grid points inside of DEM particles are plotted, in the
right one only those outside.
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average overlap between components naturally leads to a higher mass fraction, computed
numerically via (5.10), and equal to ¢ = 0.60,0.75 and 0.91 for the three displayed clusters
respectively. To better visualise the clusters internal structure and how it is affected by
changing ¢, a slice of thickness r is cut around the plane ¢ = 0, and the grid points con-
tained in this volume shown figure 5.5. When a node falls inside of a DEM particle, the
corresponding sphere is coloured alike the respective cluster, and displayed in the second
column of figure 5.5. Vice versa, nodes laying outside the components are displayed on
the right column and colour-reversed. In the first case these points belong to Ngfiﬁ and
contribute to the mass fraction computation, in the second they constitute the comple-
mentary set Ngcrid ﬂNgLrJiﬁ and thus counted for the void fraction. Visualising grid nodes in
this way allows a quick but detailed glimpse of the clusters internal structure and topology.
Small ¢ results in a high porosity distributed homogeneously inside the cluster’s volume,
leading to a connected network of pores. Increasing ¢ proportionally decreases the void
fraction, eventually leading to isolated hollow regions inside the structure. There are still
a few connected paths crossing the cluster interior, but the pores are way narrower and
intricate. Given their internal porous structure, clusters can then be used to model systems
of porous materials, with useful applications for the study of catalysts or other particulate
materials. In all cases the distribution of hollow regions is homogeneous and isotropic, due
to the initial homogeneous random distribution of particles and to the isotropic centripetal
force. This spatial distribution is instrumental for the theoretical part of the model, and
will be discussed in the next session.

5.5 Cluster formation, homogeneity and isotropicity

Clusters formation is composed of 3 stages: initial particle loading, isotropic compression
and relaxation. During the loading phase each primary particle is loaded inside a spherical
region in a random position, such that none of the former is in contact with another
[29, 35,49, 96, 134, 144, 148,169, 174]. The radius of this region is chosen to be 2r /2N,
which is twice the radius of a sphere filled with N not overlapping primary particles with a
packing fraction of 0.5. This ensures that an initial configuration for loading the particles
is likely to be found. Alternatively particles could also be loaded in precise predefined
location if the aim is to have a regular crystalline structure [17, 66,91, 166, 175]. The
choice depends on the applications of the model [88]. Since we are interested in modelling
pharmaceutical powders and granules, an unstructured internal composition structure is
our choice, requiring a random initial distribution of particles. In the second phase a
centripetal force directed towards the centre of mass of the loaded ensemble is activated
and slowly increased until the average particle overlap satisfies (6) > 6%,.. Finally, the
relaxation phase begins, where this force is slowly decreased and the particles’ velocity
is damped until the system is static and in mechanical equilibrium. Velocity damping is
required to prevent the cluster from spinning, which is likely to occur when particles are
subjected to central forces.

This procedure ensures the formation of homogeneous and isotropic clusters, in the limit
of high N and an initial distribution as random and uniform as possible. As we will
see in the upcoming sections, these two properties are key in the formulation of a simple
predictive theory of clusters properties. To test these structural properties two quantities
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Figure 5.6: Descriptors of cluster homogeneity g and isotropicity ¢ as a function of
primary particles distance from the centre of mass for a cluster Cigog with ¢ = 0.15. The
circles show the numerically computed mass-fraction ¢ inside spheres of radius d normalised
by the value at d = R —1 as used in this work. Clusters are homogeneous and isotropic
given d > 4 but show boundary effects for d > R — 1 due to their finite size.

are computed: the radial distribution function g to test the homogeneity [89,129,170] and
a slightly modified version of the closing vector 5 to test the isotropicity [145]. The first
is a commonly used tool to test the homogeneity of granular assemblies, and is defined by
the ratio between the density of particles inside a spherical shell and the overall particle
density, as a function of the distance between the shell and a reference point. In our case
we compute the number N; of particles inside concentric spherical shells S; of constant
thickness AR = 0.1 centred in ¢ and of volume V. Defining c?l as the distance of S; from
0 we can write

. V N; N; k3
d) = — L a1 5.12
AN =NV anaeak (12

This function oscillates heavily in the neighbourhood of d; — 0, since V; at such close
distance from d'is of the same order of magnitude of Vp, reaches a plateau g ~ 1 when (and
if) the cluster bulk is homogeneous, and sharply decreases to zero outside V. The closing
vector is instead defined as the sum of the position vector of an ensemble of particles with
respect to a reference point. For our study we are interested to verify that for sufficiently
large R the clusters are isotropic, and therefore will evaluate E for all particles N;,~ which
distance from &'is below d;. In this way we can compare both descriptors of clusters internal
structure as a function of the same quantity. Normalising and rescaling results in

s @9

2 a

‘. (5.13)



5.6. Analytical model of cluster structure parameters

This function is defined in the interval [0, 1] and tends to zero for isotropic clusters. Every
particle that is not “balanced” by counterparts on the opposite side of the centre of mass
gives a contribution of up to 1/N; regardless of its distance from 0. This means that
asymmetric protrusions on the surface of the clusters would increase £ by an amount
proportional to R~3. This feature is important since asymmetries on the cluster surface due
to a single particle can be neglected, in the context of isotropy, for relatively big clusters,
while for comparatively small clusters this is not the case. Simply put, £ numerically
quantifies the isotropicity of a granular assembly since particles at the opposite sides of
0 factors one-another out in the sum, while those next to one-another will add a similar
contribution.

Both equations (5.12) and (5.13) are plotted in figure 5.6 (the latter translated for the sake
of readability) for a cluster C1900 with ¢ = 0.15. Both descriptors oscillate heavily for d< 4
and subsequently stabilise around 1 indicating reasonable homogeneity and isotropicity. In
case of g we see a sharp decrease towards 0 starting around d~ R— 1, while the value of £
remains unchanged and becomes constant for d > R. These behaviours at distances above
the cluster size had to be expected: since there are no more particles to be added to the
statistics g must vanish due to the factor 62_2, while ¢ will only see null increments.
Another important aspect can be deduced from figure 5.6: the range at which clusters
can no longer be considered homogeneous due to their finite size. The threshold lies
around R — 1, after which the lack of particles on the outside of the cluster boundary will
introduce finite size effects to any statistical measurement. For this reason the boundary
for the statistical computation of ¢ via equation (5.10) will not be the cluster radius, but
only R-1.

To demonstrate that R — 1 is the correct boundary for evaluation of equation (5.10),
data from numerically computed ¢ are shown in figure 5.6 for linearly increasing spherical
boundary radius given by d. In the plot the former are normalised by the value computed
at d = R — 1 and used in the rest of this work, to allow an easier comparison with g
and £. Like the latter ( reaches a plateau for 4 < d<R- 1, therefore showing that
the upper extremum is indeed the correct distance to consider when measuring clusters
internal structure properties. Both tests via g and &, as well as the comparison with (,
have been performed for every cluster simulated and show the same behaviour, but are not
plotted here for sake of brevity.

5.6 Analytical model of cluster structure parameters

We now have the definition of clusters structural properties and the tools to numerically
measure them, as well as a method to test their inner spatial arrangement. This would be of
limited usefulness if these descriptors would not allow us to prescribe structure properties
of clusters before their formation. In this section we will then attempt to analytically relate
final clusters properties to DEM model parameters via simple geometrical considerations.
Since the density is related trivially by equation (5.11) we only have to study R and C.

By using the normalised cluster radius we do not have to worry about primary particles
size: R varies linearly with r, so for fixed N to achieve a target cluster size it is sufficient to
only scale primary particles size proportionally. Besides N only ¢ is involved in determining
the cluster parameters due to equation (5.6) and to how we perform the agglomeration,
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providing us, a priori, the average particle overlap. Only their relative spatial arrangement
is the last factor needed for the link. Of the two DEM parameters (N , d)) the first is
an extensive quantity while the second is intensive, and the same holds true for clusters
parameters (I:{, C). We therefore expect the relation between ¢ and ¢ to be independent
from both R and N.

In the limit of vanishing inter-particle overlaps and for a homogeneous and isotropic bulk, ¢
can be calculated numerically as the ratio between total volume of components and cluster

C(SHO < _NVp N
TV R

(5.14)

For increasing overlaps this volume ratio will increase, and eventually tend to a value
greater than unity as soon as <5> surpasses a certain threshold dependent on (y. This rela-
tionship also involves the size distribution of particles, a dependency that was circumvented
in this work by choosing a mono-disperse size distribution and that will constitute a case of
study for future research. With the previous assumptions (j is constant and independent
from the cluster size, i.e. is intensive, and represents the packing of the single particles
inside the cluster, and is the link between (N , <b) and (R, ¢ ) we need. For vanishing (3> the
cluster radius will also become independent from the average overlap, and by re-arranging

equation (5.14) can be expressed as

r A 1/3
RO Ry~ (?;) (5.15)

where Ry is the cluster radius as zero overlap.

Given the cluster homogeneity ( represents the probability to find a particle in any point
of the cluster bulk, and the same holds true for ¢ for (§) — 0. The number of particles np
encountered when crossing the cluster diametrically passing through its centre will then
be proportional to (y and to its diameter 2]:20, and does not depend on the direction we
choose because clusters are isotropic. Since, during their formation, we compress clusters
isotropically along their radius, the radial force will mostly displace particles towards &
but not away from one another. This means that np can roughly be considered constant,
SO np =~ (ORO. Now an isotropic diametral compression A = 2(1%0 — R) would result
in an average particle deformation of <5> = A /2np, where the last factor 2 accounts for
each particle being deformed twice along the direction of compression. Putting everything
together we finally arrive at the expression for R at finite particle overlaps

R = Ry — ¢y Ro (h). (5.16)

The former equation relates, at any point, the radius of the cluster to the spatial arrange-
ment of its components (p, their number N and their average overlap <(§)

The way to analytically determine ¢ can be carried out only for <(§> — 0, i.e. when equation
(5.14) is valid. In case of particles overlap the total particle volume should account for the
missing AVp contained in the spherical caps originated by each contact, proportional to
(5>2 and to the coordination number C of the system. The latter can only be measured
numerically, especially in case of polydisperse particle size distributions, and poses a prob-

lem in the analytical estimation of (. However, since the contributions of AVp to { are
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Figure 5.7: Numerically computed cluster mass fraction (pgy as a function of ¢ for
varying N. The dot-dashed line represents ¢ evaluated via equation (5.14), the dashed
one via equation (5.17). The asymptotic limits ¢ = 0 and ¢ = 1 are highlighted with
black solid lines, the cross (4) indicating the intercept ¢ = (p = 0.593 computed via linear
regression.

~

quadratic in (J), by taking a first order approximation at small overlaps we get rid of the
additional term AVp, and therefore

CmCo+ 3¢ (). (5.17)

Equation (5.17) anyways grows slower than N/R?® which is an improvement, from the for-
mer, towards the actual behaviour of (, since the mass fraction asymptotically tends to 1
for increasing overlaps. When studying clusters structure we are mostly interested in the
final cluster radius, rather than its evolution during the formation stage, and given that we
impose Smax > S:;laxv we will from now on implicitly refer to the final radius when writing
R and assume (50> = ¢, unless explicitly specified otherwise.

In the previous framework we explicitly neglected the effect of friction during the cluster ag-
glomeration phase [132]. Inter-particle friction forces play a central role in determining the
structure of granular assemblies [67], but a systematic study of their effect in the context
of this work is beyond the scope of this paper. Both rolling and sliding friction contribute
to the initial configuration of primary particles inside the clusters, and consequently (o.
Negligible friction coefficients lead to (5 ~ 0.66, i.e. around the value of random tight
packing, while with our choice (see table 5.1) we reached packings of (y ~ 0.59, consis-
tent with random loose packing configurations. This result is expected, since frictionless
primary particles can re-arrange freely during clusters agglomeration, therefore reaching
higher bulk densities, while frictional ones will interlock due to jamming effects leaving
wider interstitial voids. Since (3 depends on friction and initial arrangement of primary
particles, it must be computed numerically once the former are set, as explained in the
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Table 5.2: List of parameters design space for explicit and implicit numerical testing of
clusters theory.

explicit N ={1,2,5,10,15} - 10

scheme ¢ ={1,2,5,10,15,20,25,28,30} - 102

implicit R={4,6,8,10,12}

scheme ¢ = {65,70,75,80,85,90} - 102

constant r=50-10""m &, =k, =05
parameters

next section.

5.7 Clusters theory numerical validation

To validate the previous theoretical framework, both equations (5.16) and (5.17) must be
validated. To do so, a twofold approach will be followed. In the first, DEM parameters
are explicitly set in the models and clusters successively generated. After agglomeration
the cluster properties are measured and compared to the predicted values following from
the initial DEM particle properties dataset used. The second, implicit, approach requires
the initial specifications of desired final clusters properties instead. Here the DEM initial
parameters are implicitly determined by inverting (5.16) and (5.17) and automatically set
as a function of the desired characteristics. In both cases 3 simulation runs are performed
for each setting of parameters, where a different initial spatial distribution of particles is
used to add statistical significance to the results. From this point onwards every numerical
parameter measured via DEM will be obtained by averaging over these 3 runs. The latter
are not explicitly marked with different symbols to avoid cumbersome notations.

Table 5.2 summarizes the parameters used for numerical testing of the previous theory. In
case of the explicit validation scheme, N and ¢ are systematically varied throughout this
set of simulations. At the end of each simulation both R and ¢ are evaluated according
to equations (5.9) and (5.10) and compared to (5.16) and (5.17) respectively. To compare
numerical data of N and ¢ gathered during implicit simulations scheme we need to invert
both the former as a function of R and ¢ to obtain

oty

_(—Co
¢ = 32

(5.19)

where the brackets | - | indicate the integer part of the argument. During numerical vali-
dations r = 5-10~*m and k;p = k. = 0.5 are kept constant to reduce the total number of
cases tests needed, but this without loss of generality. In addition, at the end of each test
the relative deviation |(§) — ¢|/¢ is computed to ensure that the agglomeration process
reached the critical threshold (5.5), resulting in no deviation above 5% for all data sets.
In general, a higher amount of particles implies a higher variability of the final (5> from ¢
due to the resulting bigger size.
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Figure 5.8: Contour plot of cluster radius R dependency as a function of DEM particle
parameters N and ¢ for {y = 0.593. Each white dot represents a point in the (N , (]5)
particle properties phase space selected for theory validation in the explicit scheme.

To quantify the agreement between expected values of a parameter x and the correspond-
ing numerical results two descriptors are used: the mean relative deviation €(z) across the
3 replicate simulation runs and the relative displacement ¢(x) between theoretical or target
and measured values. Both are defined respectively as

ex)=Y [z = @) (5.20)

i=1,2,3 ()

L(x) _ ‘(.CC> - xtheory/target‘ (521)

Ttheory /target

where z; is the numerical value of parameter  measured in the i-th simulation run and (z)
is the mean value of all the former. Depending on whether the test is explicit or implicit
the mean value of the studied parameters is compared with either the expected theoretical
value Tiheory Or With the target one Tiarget respectively. In the upcoming plots of numerical
results € is depicted with black vertical bars, while all values of both € and ¢+ computed for
each parameter couple tested are reported in appendix for sake of brevity.

Both (5.16) and (5.17) depend on the initial mass fraction (o, inherited by particle size
distribution and initial spatial arrangement, which is a key parameter to properly describe
the final clusters. Since there is no analytical expression for (g, its value must be computed
numerically as follows. According to (5.17) and (5.6) the relationship between ¢ and ¢ is
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linear for small ¢, and can be expressed in the form { = m¢o + ¢, where m and ¢ indicate
slope and intercept of the linear approximation respectively. By comparing the two it
is evident that (y is simply given by the intercept ¢ of the linear regression line. The
numerical data set used to estimate (y this way is the same used to investigate the theory
following the explicit scheme, since the setup variables depend on simple DEM parameters
and ( is computed a posteriori.

Figure 5.7 shows the evolution of { computed numerically via equation (5.10) for the
parameters set indicated in table 5.2. The intercept computed with this numerical dataset
gives ¢ = 0.593 with a coefficient of determination R? = 0.986, and is indicated in figure
with a cross. Given this result, we set (y = 0.593, corresponding to a random loose
packing configuration [132], that will be used from now on to compute each cluster related
parameters. The linear trend in ¢ is clearly visible by comparing the dataset to ¢ (dashed
line), demonstrating the validity of equation (5.17) in the range of ¢ explored, and its
independency on N for values satisfying R > 1. The dot-dashed line shown in figure
5.7 is instead the value of ¢ computed via equation (5.14), i.e., without any correction to
account for particle overlaps. As it can be seen when comparing with the numerical data
the linearised expression for ¢ is a way better analytical expression for the cluster mass
fraction. In addition the decrease in slope expected for increasing <5> is still negligible in
the range of ¢ explored, giving an additional motivation for using the linearised expression
(5.17).

5.7.1 Explicit validation tests

Now that we found a numerical value for (y, we can compute the cluster parameters (I:Z, ¢ )
as a function of (N , gb) according to the previous theoretical framework, and investigate
if the former holds by comparing predicted and numerical values obtained via DEM. The
parameters design space explored in the explicit validation scheme is illustrated in figure
5.8, where highlighted are the selected trial data points of table 5.2.

The cluster radius estimated according to the theory (5.16) is compared to its counterpart
measured via DEM according to (5.9) in figure 5.9a. As expected R decreases linearly with
¢ (data for increasing ¢ displaced in the direction of the arrow), since an increase in the
latter translates into a higher equilibrium overlap, leading to a higher average particle over-
lap after agglomeration. Higher number of components N per cluster obviously increase
its size, but also determines a better agreement between equation (5.9) and DEM results
(as shown in figure 5.14. This has to be expected since increasing N implies a higher R/r
ratio, and a consequent more homogeneous distribution of particles into the cluster given
the higher size ratio. Conversely, lowering R via decreasing N results in a worse fit due to
the increasing finite size effect. This is reflected by the displacement ¢(R) being inversely
proportional to N (figure 5.14. The mean deviation €(R) between statistical replicates
seems to be relatively unaffected by either N or ¢, while the latter seems to proportionally
lead to an increase in ((R).

When comparing the mass fraction, the fine resolution chosen for (5.10) allows us to esti-
mate ( with great precision, although not giving us information on the internal distribution
of the pores. As plotted in figure 5.9b the expected mass fraction ( is in good accordance
with the numerical results. Porosity is independent on NN for the range explored, a fact
that we not expect to change for even higher number of particles due to the arguments
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Figure 5.9: Comparison between theoretically expected values Rtheory and (iheory and
numerically measured counterparts Rpgy and (pgw, respectively in (a) and (b). Colour
refers to particle number per cluster IV, with the direction of increasing plasticity depth ¢
indicated by the arrow. In both cases theoretical values agree well with DEM data, with
agreement for R getting better for increasing N. Since ¢ is only function of particle size
and initial spatial distributions its value does not change with N for a sufficiently high
ratio R, as confirmed by both (iheory and (prm.

119



Chapter 5. Deformable and breakable DEM particle clusters for modelling compression of
plastic and brittle porous materials — model and structure properties

Ntheory /103 (%o =0.593)

2.0
12

10

1.5

060 065 070 075 0.80 085 0.90
4

Figure 5.10: Contour plot of particles number N as a function of cluster macroscopic
parameters R and ¢ for {y = 0.593. Each white dot represents a point in the (R, ¢ ) cluster
properties phase space selected for theory validation in the implicit scheme.

stated above for the behaviour of R. Logically increasing ¢ sees a proportional increase
of ¢, since the higher the final stable overlap the smaller the pores left within the cluster.
As for its counterpart, €(¢) seems to be independent on variations of either N or ¢, as
displayed in figure 5.14. The behaviour of ¢(¢) is however more complicated, showing an
increase at both ends of the N and ¢ tested. This determines a “sweet spot” where the
deviation is at its minimum for N = 500 and ¢ € [0.10;0.15].

Magnitudes of both €(¢) and ¢(¢) being below 4% for every tested value in the explicit
framework demonstrates how well equation (5.17) agrees with the numerical results for
the range of parameters tested. As expected a discrepancy from the theory is found at
the lower end of N since finite-size effects start playing a role, given the lower R/r ratio.
This seems to affect ((R) but not ¢(R), an additional proof of the clusters homogeneity
and isotropicity. Nevertheless for N = 500 and above ¢(R) falls as well below 4%, thus
ensuring the validity of the predictive theory.

5.7.2 Implicit validation tests

The implicit validation test works in a similar way: a set of points in the design space
is defined, and simulations of cluster agglomeration performed accordingly. This time,
however, the final desired cluster properties R and ¢ are set as input parameters, and the
model automatically tunes N and ¢ accordingly via equations (5.18) and (5.19). The set
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Figure 5.11: Comparison between target values Rtarget and Carget and numerically mea-
sured Rpgy and (pEM, respectively in (a) and (b). Colour refers to target cluster radius
Rtarget~ In both cases target values agree well with DEM data, with the only exception of
a systematic error for Rtarget = 4 due to finite size effect. Since ( is only function of size
and spatial distributions of particles, its value does not change with N for a sufficiently
high ratio R> Rcrit, as confirmed by both Ciarget and (prm-
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of points chosen for this test is shown in figure 5.10 on top of the contour plot showing N
as a function of the implicit particle parameters phase space explored.

The model response to a target final cluster radius Rtarget is very reliable, as shown in
figure 5.11a. The predicted values are very close to the measured ones Rprw after agglom-
eration, and the fitness of the prediction is not substantially affected by different target
mass fractions (arget. This has to be expected, since inspection of equation (5.18) reveals
that N depends on ¢ only via the term 4(y — (; a very weak dependency given the value of
(o and the range of { explored. It is also noticeable how the fit is getting worse for lower
R. As mentioned, the cause of this deviation is due to emerging finite size effect, due to
the comparable scale of cluster and its components. For these tests both ¢(R) and ¢(R)
sharply increase for decreasing target R accordingly, with E(R = 4) > 10% (see figure 5.14.
Because of the aforementioned weak dependence of R on ¢, both e(R) and «(R) seem to
be unaffected by the tuning of the former except for low R.

N B N B BN #IF“"O[_S;

0.20

0.15

0.10

0.05

0

-0.05

Figure 5.12: Front view of single cluster Csgp uniaxial compression between a fixed bottom
and a mobile piston on top. Particles are coloured according to the total force they are
subject to.

A very good agreement is also found when comparing target and measured mass fractions
¢ for the implicit test, sketched in figure 5.11b. Again statistical replicates do not show
significant discrepancies from one another, leading to a very small ¢(() for every parameter
tested. Variations of target ¢ do not affect the quality of the output, since both €(¢) and
t(¢) show no dependency, as it was for the target R. Again finite size effects are only
responsible for the rise in deviation and displacement. The latter reaches values above 5%
only for R = 4, and becomes negligible for R>8.

Results from the implicit tests show that the model allows a reliable prediction of clus-
ters properties after agglomeration, and precise target structural properties can be met,
provided that finite size effects are avoided. According to our results noticeable discrep-
ancies (above 5%) in the modelled clusters properties are found only for Rtarget < 8. By
interpolating the data shown in figure 5.14, to ensure a reliable formation of clusters with
deviations below 5% one must ensure ]A%target > 7.5, while setting Rtarget > 5.5 is sufficient
to achieve deviations below 10%. These considerations become important, among many
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others, when one has to choose r given the size of the clusters to be modelled.

Figure 5.13: Snapshots of die compaction of 40 independent Cygg clusters inside a cylin-
drical barrel (only the bottom shown for sake of clarity). Snapshots are taken before (top),
at maximum (bottom left) and after (bottom right) compression. Particles of each cluster
have the same colour to easily follow them visually between different compaction stages.

5.8 Future applications

The scope of this paper is to illustrate a new methodology to model particles via agglom-
erates possessing a plastic behaviour, thus being able to deform and break. For practical
reasons it is desirable to infer precise structural properties of the former prior to the model
implementation, which constitutes the second part of this paper. Applications for such a
model are not illustrated in detail here for sake of brevity, but will be briefly introduced
to give context and perspective to this modelling effort. The first step to be taken will
be to develop a model for particles and granules breakage [49,53,91,122,134,143,155] in
a pharmaceutical context [35,100]. When compressed, such materials deform plastically
during the first instances of the force loading, eventually fracturing when above a certain
load. Figure 5.12 shows a uniaxial compression test of a single cluster Csqp under a force
of 1.5N. The cluster model shown in this paper is suited for modelling particles having
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an initial plastic behaviour since the bonds between their elementary components are not
rigid, but can re-arrange in response to external forces. Clusters are mechanically stable
during each stage of compression, regardless of their eventual deformation.

Since clusters inherit physical properties from equation (5.1) for small stresses applied they
will initially deform and then recover their initial configuration once the external pertur-
bation is removed. Moreover, since elementary particles can form stable bonds, clusters
are ideal to model particle agglomeration processes such as die compaction [35,88,92,122].
When compressed together particles belonging to different clusters can form stable cohe-
sive bonds, mimicking particles dry agglomeration under compression. In figure 5.13 three
snapshots are taken from a die compaction simulation test that was performed to test
the model capabilities in capturing the physics of dry agglomeration. Walls composing
the boundary geometry are interacting with particles via a linear spring-dashpot interac-
tion, therefore no adhesion between the former is implemented. Here 40 Cygg clusters with
¢ = 0.10 are compressed together with a pressure up to 1.7MPa and then let to slowly
recover elastically. After compression, the initially independent clusters now form a stable
agglomerated ensemble of cylindrical shape. The model still needs many refinements to
properly capture the dynamics of die compaction, but these preliminary results are a step
in the right direction.

5.9 Conclusions

We presented a framework for the implementation of deformable and breakable particle
clusters in DEM. DEM particles are agglomerated together to form a cluster via a strong
centripetal force. After the latter is slowly decreased to zero, elasto-plastic inter-particle
forces keep the cluster together, the relative distance between components determined by
an input parameter. Details on how to define and numerically measure cluster structural
properties are provided and explained.

A theory is then developed, where clusters macroscopic variables, such as radius, mass
and mass fraction, are related to DEM particle parameters such as number, density and
plasticity. To validate the theory two approaches are followed: explicit and implicit. In
the first approach, particle parameters are given as input and expected final clusters prop-
erties are compared to numerical results of agglomeration. In the second approach, desired
clusters parameters are used as input, the model automatically exploiting the theoretical
framework to set the needed DEM parameters. Final cluster properties are then compared
to the target ones. Both approaches confirm the theoretical modelling presented, provided
the size ratio between cluster and particles to be above R = 5.5 to avoid high deviations
of structural parameters from the expected ones due to finite size effects. This will allow
users of this model to design clusters with precise size and porosity to carefully mimic
particles or granules of specific structural properties.

Finally two applications of this model are briefly presented: uniaxial compression of single
particle of granule and die compaction. Despite still being at the stage of feasibility tests,
the simulations performed show this framework to be promising in the presented contexts.
In particular, the ability to deform plastically while maintaining mechanical stability is
relevant during compression of plastic or semi-plastic materials, such as soil and pharma-
ceutical powders. Attractive bounds can also be established between particles of different
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clusters, paving the way to DEM models of complex particle agglomeration.

The presented framework is going to be developed further in multiple directions. On the
one hand we will implement clusters with higher aspect ratios and polyhedral shape, as
well as the underlying theory, to allow the modelling of a broader range of particles. On
the other hand it is our objective to theoretically relate clusters’ dynamic variables to
particle properties, such as restitution and friction coefficients, that need collision tests to
be measured. Finally, cluster properties relevant to particle breakage, such as hardness
and compressibility, will be related to DEM counterparts such as particles stiffnesses, to
allow a reliable usage of clusters in the context of particle breakage. All of these aspects
will constitute the necessary steps towards the development of a numerical model of die
compaction based on the particle clusters presented.

5.10 Appendix: quantification of numerical errors

Error quantifiers e and ¢ from equations (5.20) and (5.21) respectively, computed for both
R and ¢, are here displayed in figure 5.14 for each set of parameters tested and type of
validation run. Cells are colour-coded depending on the magnitude of the discrepancy:
from blue to red for increasing value.

All but two values of ¢(R) and €(¢) are below 3%, indicating that a different initial distri-
bution of particles is not altering the final cluster properties. This is consistent with our
expectations, and a further confirmation of both the assumption of initial particle homo-
geneity and isotropy in space. Values of ¢(R) and ¢(¢) show a dependency on the cluster
size instead: to have values systematically lower than 5% a value of R>Tis required. This
is not surprising either since the theory developed here relies on the modelling of clusters
as continuous, homogeneous and isotropic bodies. These approximations become progres-
sively less accurate the smaller the size ratio between clusters and elementary components.
When this is not the case ¢ rapidly decreases for both cluster structure parameters and
the numerical results agree very well with the expected ones, confirming the validity of the
theory developed in this work.
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Conclusion and outlook

“Who we are is but a stepping stone
to what we can become. ..”

DE:HR

The final part of this thesis is dedicated to a concise recapitulation of the main findings of
the works exposed previously, and how they can be exploited to increase our understanding
of the of the modelled device and improve the related processes. Since science is mostly
made of small steps, the perspective of future research is an important element of the
bigger picture. For this reason the continuation of the research topics presented will be
briefly illustrated as well.

6.1 Main findings

The numerical investigation of the dynamics of frictional granular materials transported
inside a partially filled periodic screw conveyor led to the following insights:

e There is an active interplay between the screw geometry and the fill level, mediated
by the particle friction, that affects the transport efficiency of the feeder.

e For certain geometry related filling levels, the motion of the screw actively generates
a backward flow of particles, hindering the conveying efficiency but intrinsically
improving the mixing during the transport.

e Due to the back-flow mechanism established, the mass flow is not a monotonic func-
tion of the filling level, but exhibits an inflection depending on the screw shaft size
and on the particle friction.

The DEM-FEM framework for the numerical study of roller compaction provided the
following results:

e This newly proposed approach succeeded to model the final compacted ribbon, while
at the same time capturing the density distribution periodic anisotropy of the latter
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inherited by the complex flow of the material inside the device.

e The coarse graining technique was established to be the ideal tool to transform
discrete flow data into continuous fields, while maintaining all the aspects of the
dynamics inherited by an intrinsically discrete motion of particles.

e Physical indicators of steady-state granular flow were successfully identified in the
context of the studied device, allowing a physically sound and consistent data gath-
ering and averaging in space and time.

Calibration of DEM model parameters for cohesive powders is a topic as important as it
is complicated. The work dedicated to this subject gave promising results:

e A rational and fully automatised calibration method has been designed, where the
number of parameters to be calibrated has been reduced as much as possible via
physical considerations and by exploiting the properties of the cohesive interaction
model used.

e Numerical replicates of rheology tests are executed in a precise order to limit the
effect of parameters yet to be calibrated on the ongoing calibration cycle, where
variables are dynamically tuned during the simulation to save computational time.

e The calibration procedure was validated and the results are mostly in good agree-
ment with the experiments, especially for noncohesive materials or for the unloading
branches of compression and shear tests.

The development of a new method to generate deformable and breakable particle com-
pounds opened exciting new perspectives that need further extensive studies. The relevant
findings concerning their structure and their properties are listed below:

e By exploiting the properties of linear piecewise elasto-plastic inter-particle inter-
action laws in DEM, mechanically stable clusters of primary DEM particles can
be generated, with the additional feature that their elasto-plastic bonds are both
deformable and breakable, while being at the same time way more computationally
efficient than usual multi-sphere based models of composite particles.

e Clusters structural parameters such as density, size and mass fraction are defined,
and the tools to carefully compute the naturally-inherited clusters porosity are
explained and compared.

e Via physical and geometrical considerations, and exploiting the properties of the
inter-particle interaction law, the structural parameters of clusters are analytically
related to the DEM material parameters of their components, relation then is also
validated up to a very high accuracy.
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6.2

Future directions

e In the context of screw feeding several directions will be explored, motivated by

the importance of such devices and the consequent increasing interest towards
their numerical modelling. Given the computational burden due to the size of
such devices, the main investigation technique will still rely on DEM modelling
of periodic screw sections. Feeding of cohesive materials deserve large interest,
especially when it comes to conveying efficiency, mass flow and mean residence time
analysis. Single and twin screws will also be compared to identify analogies and
differences in the dynamics of the granular flow. Often DEM codes use triangulated
geometries to model the mechanical elements of devices, such as the screw. This
approximation simplifies the modelling of complicated surfaces, but introduces
artifacts such as local roughness and uneven surfaces. Artifacts decrease with a
finer triangulation, but this makes the model more computational expensive. An
alternative is to model, whenever possible, surfaces as analytically designed screws,
i.e. geometries implemented via mathematical equations rather than a discretisation
via triangulation. This direction will also be a topic of upcoming study, since it is
reasonable to assume that this kind of implementation should be both more precise
and computationally faster than the usual one achieved via triangulated surfaces
insertion.

The DEM-related part of the study proved challenging for two main reasons: the
computational expense required and the numerical stability. Both issues can be
addressed at the same time in two different ways, resulting in possible follow-ups
to this study. First and foremost, the whole roller compaction process could be
implemented in DEM, including the compaction region. This approach would rely
on cohesive particles, eliminating the numerical instability due to over-pressurising
purely elastic particles in the compaction region while still achieving a target
mass-flow. If successful, the coupling with FEM would become unnecessary, but
the reduction in computational costs would be minimal since DEM is, by far, the
most expensive of the two methods. On the other side flow fields could be extracted
from DEM models of particles with different material properties and analytically
related to the latter. This would provide the FEM model with the needed boundary
conditions, while making the DEM model non-essential and avoiding most of the
computational expenses.

DEM material properties calibration is of extreme importance, and is a primary
focus in modelling effort lately, as demonstrated by recent trends in the related
scientific literature. Upcoming efforts in this topic are planned and follow-ups
studies are already subject of study. First and foremost the calibration procedure
needs improvement: despite the rational approach and the save in computational
time there are still discrepancies between numerical results and experiments,
especially during the powder rheometer loading stages. A further improvement to
the calibration will be to add a dynamic angle of repose tester, such as a rotating
tumbler, both in the rheology characterisation experiments and in the numerical
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calibration routine. This additional test aims to a more precise measurement and
calibration of inter-particle friction and cohesion that should not strongly depend
on the particle stiffness, to be added to the standard routine for both experimental
material characterisation and DEM numerical calibration. Finally the framework
will be extended to the calibration of blends, hopefully allowing the extrapolation
of flow properties and parameters for blends with different relative concentration of
single components.

e Precise characterisation of clusters interaction parameters such as hardness, ductility,
elasticity, fragmentation under compression and many others are yet to be carefully
defined, and will be the next step in the study of such model. At the same time an
analytical model of single clusters uniaxial breakage will be developed and compared
to experimental results of single particles and single granules crushing experiments
for validation. Once brittle fracture response has been added, the interplay between
two different behaviour under compression, plastic deformation and brittle breakage,
will be studied as a function of DEM material input parameters, and compared to
breakage and deformation theories for solid matter. As a final aim, such clusters will
be used to model die compaction and tableting processes, focusing on the properties
of the final mechanically stable compound generated after compaction and how these
relate to clusters attributes.

6.3 A personal take

I owe to my former doctorate advisor the addition of a small personal perspective on the
modern conception of scientific work, its direction and its role in the university and in the
rapidly evolving modern society. However, as much as I wish to honour his legacy, I will
only be able to add a small personal take to the conclusion of my thesis work, rather than
a whole, more exhaustive and philosophically valuable chapter to the latter.

I think my personal experience in my PhD journey was quite peculiar, as cliché this state-
ment may sounds. Not only I was leaving my Country, but I was also completely changing
environment and field of study, transitioning from theoretical physics to process and chem-
ical engineering. From a purely theoretical and fundamental academic background I was
switching to a semi-industrial, more practical oriented environment. The topics of my
future research were also completely new to me: my background in Bose-Einstein conden-
sation and quantum mechanics was totally useless if applied to classical physics of granular
materials or Discrete Element models, of which I was lacking even the most fundamental
knowledge. I also had no basic experience in process engineering, nor about the pharma-
ceutical manufacturing processes I would soon have started to study.

However, I soon realised that despite the new area of study my main obstacle was not un-
derstanding the fundamentals, but rather the classification of concepts and ideas. Physics,
which, to me, is the most beautiful, intriguing and fundamental discipline of them all,
was giving me the basis for understanding problems, but provided me with a very specific
lexicon through which to express my ideas. In my new environment there were people
with different backgrounds, mostly engineering and pharmacy, each with their own jargon,
perspectives and classifications. Some of them had an experienced and exhaustive lexi-
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con, and were able to describe every aspect of the problem in a precise technical manner,
with terms that were as complicated as meaningless to me. However, despite a complete
technical description of the problem, their understanding of the underlying physics was
missing, of the “essence” of the problem lacking. This was peculiar to me until I realised
that language works in a similar way. To communicate human beings need common terms
a selected group of people agreed upon, encoded and transmitted to future generations.
These vocabularies constantly evolve and expand, but must be translated to others if peo-
ple that come from afar, or that share different roots or cultures are to communicate.
This reminded me of a brilliant quote from a genius mind: Richard Feynman [31]|. In an
extract from a famous interview in 1981 he explains his point of view about names and
understanding;:

Looking at a bird he [my father| says, “Do you know what that bird is? It’s a
brown throated thrush; but in Portuguese it’s a ..., in Italian a ...,” he says
“in Chinese it’s a ..., in Japanese a ...,” etcetera. “Now,” he says, “you know
in all the languages you want to know what the name of that bird is and when
you’ve finished with all that,” he says, “you’ll know absolutely nothing whatever
about the bird. You only know about humans in different places and what they
call the bird. Now,” he says, “let’s look at the bird.” [...| Now that’s a deep
understanding — he doesn’t give me a name, he knew the difference between
knowing the name of something and knowing something. . .

This was exactly how I perceived the situation at the beginning of my journey, and how
I still experience it whenever people from different backgrounds and experience interact
and collaborate. And I feel it to be a recurrent theme embedded in modern society that is
but a heavy hollow burden we should learn to get rid of. Science, collaborations and every
relationship depend and are based on communication: success is therefore only achieved
by bridging through the different ways of expression and connecting to the actual meaning.
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