
Hans-Jürgen Schröttner, BSc.

Modular Production Processes

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Nikolaus Furian

Institut für Maschinenbau- und Betriebsinformatik
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Siegfried Vössner

Krottendorf, December 2020



This document was written in Overleaf compiled with pdfLATEX2e and
biber and is based on the LATEX template from Karl Voit (TU Graz).

Translational aid by Dictionary.Com [Dic20] and DictLinguee [Lin20].

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)


Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used to best of my knowledge and belief.

After it has become common to look for mistakes in the past of famous
personalities, especially to harm them by toring apart diploma and doc-
toral thesis, and it may be that I become more famous in a musically
and politically way, I further declare, that all not-cited parts stem from
my own intelligence. I have no intent, neither inventive nor financial, to
knowingly use someones knowledge without citing.

The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

iii





Dedication

To mum and dad who always supported me in my educational career,
despite the rocky road with all its obstacles.

v





Abstract

Since the beginning of the second industrial revolution through the
development of the conveyor belt by Henry Ford, the basic idea of
production has not changed ever since.

Due to changing requirements, nowadays one has to face several different
drive technologies for one type of vehicle1 and furthermore a number of
varying equipment.

This makes it hard to plan production lines efficiently containing all
necessary work stations for all types, because of the fact that most of
them will be skipped and cause unused production time.

The so-called modular production deals with this problem and tries to
find a way to finalize a vehicle with specialized equipment in the most
efficient way.

This thesis describes the status quo in modular production, ideas how to
solve problems occurring in production lines, and resulting practical expe-
rience planning a modular production line using Petrinets. Furthermore
the practical implementation of this thesis also deals with simulation of
modular structures in automotive industries.

1to keep the expressiveness of this thesis general, a product the production is about
will be named vehicle

vii





Acknowledgements

I want to thank Univ.-Prof. Dipl.-Ing. Dr.techn. Siegfried Vössner for the
possibility to write a Master Thesis at the Institut für Maschinenbau- und
Betriebsinformatik. Due to the fact that he is as fond of styrian folk music
as me, we started talking at an event at the Vienna Hofburg and discussed
possible upcoming master’s thesis topics.

Special thanks go to my supervisors Ass.Prof. Dipl.-Ing. Dr.techn. Nikolaus
Furian and Dipl.-Ing. Dr.techn. Dietmar Neubacher who stood by with ad-
vice and assistance. Furthermore they were a big help when discussing
challenging parts of the thesis and when I needed help with the imple-
mentation of the simulation framework Mr. Furian invented.

I also want to thank Prof. Franck Pommereau of the Université d’Évry in
France. He helped me at a technical dead end using the Python library
Snakes for calculating and drawing Petrinets.

ix





Contents

Affidavit iii

Dedication v

Abstract vii

Acknowledgements ix

I. Initial Situation 1

1. Initial Situation 3
1.1. Historical Overview of Production . . . . . . . . . . . . . . 3

1.2. Case Study Magna . . . . . . . . . . . . . . . . . . . . . . . 4

II. Theoretical Basis 7

2. Theoretical Basis 9
2.1. Modular Production . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Modular Production discussed . . . . . . . . . . . . 12

2.1.2. Reasons for Modular Production Lines . . . . . . . 13

2.1.3. Problems and Questions inventing Modular Pro-
duction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Petrinets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Event Triggered Simulation . . . . . . . . . . . . . . . . . . 16

III. Research Concepts 19

3. Research Concepts 21
3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1. Building Instruction . . . . . . . . . . . . . . . . . . 22

3.1.2. Sequence Diagram . . . . . . . . . . . . . . . . . . . 22

3.1.3. Petrinet Computation . . . . . . . . . . . . . . . . . 24

3.1.4. Simulation Model . . . . . . . . . . . . . . . . . . . 25

xi



Contents

3.2. Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1. Petrinet Experimental Setup . . . . . . . . . . . . . 29

3.2.2. Petrinet Real Data of Magna Steyr. . . . . . . . . . . 34

3.2.3. Basics of Data Acquisition and Visualization Tool . 35

3.3. Challenging Problems . . . . . . . . . . . . . . . . . . . . . 37

3.4. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1. Stock per Skill . . . . . . . . . . . . . . . . . . . . . . 40

IV. Development of the Simulation Environment 43

4. Development of the Simulation Environment 45
4.1. Structure Creation . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Data Acquisition and Preparation . . . . . . . . . . . . . . 48

4.3. Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1. Expectations . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2. Basic Definitions . . . . . . . . . . . . . . . . . . . . 53

4.4.3. Implementation . . . . . . . . . . . . . . . . . . . . . 54

4.4.4. GUI Explanation . . . . . . . . . . . . . . . . . . . . 58

4.4.5. Code Explanation . . . . . . . . . . . . . . . . . . . . 60

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

V. Appendix 63

A. Drafts 65

B. Lists 73

C. Code Snippets 75
C.1. Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1.1. Petrinet Exporting . . . . . . . . . . . . . . . . . . . 76

C.2. C# Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.2.1. Import and Export Execution . . . . . . . . . . . . . 80

C.2.2. Excel and XML Serialization Classes . . . . . . . . . 82

C.2.3. Graph Generation . . . . . . . . . . . . . . . . . . . 89

C.2.4. Visualization . . . . . . . . . . . . . . . . . . . . . . 92

C.2.5. Simulation . . . . . . . . . . . . . . . . . . . . . . . . 93

C.3. XML Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.3.1. Hierarchical Structure of Excel Data . . . . . . . . . 99

Bibliography 103

xii



List of Figures

1.1. History of Industry [Sup] . . . . . . . . . . . . . . . . . . . 3

2.1. Different production systems [ABD11] . . . . . . . . . . . . 10

2.2. Different manufacturing principles of Lödding [Löd16] . . 12

2.3. Draft of a modular production line . . . . . . . . . . . . . . 13

2.4. Draft of a possible combination of modular production
and conveyor belt . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Consumer-Producer-System with a Petrinet . . . . . . . . . 16

2.6. Comparing two production systems . . . . . . . . . . . . . 17

3.1. Overview of the applied methodology . . . . . . . . . . . . 21

3.2. Example of steps with predecessors . . . . . . . . . . . . . 24

3.3. Example Petrinet of task B . . . . . . . . . . . . . . . . . . . 24

3.4. Structure of Simulation Model . . . . . . . . . . . . . . . . 26

3.5. Process of an item in simulation . . . . . . . . . . . . . . . 27

3.6. Different variants of assembling a Lego transmission . . . 30

3.7. Best path critical component . . . . . . . . . . . . . . . . . . 31

3.8. Best path just-in-time supplier . . . . . . . . . . . . . . . . 31

3.9. Best path with new routing . . . . . . . . . . . . . . . . . . 32

3.10. Assembly of a differential gear . . . . . . . . . . . . . . . . 33

3.11. Assembly directly on axles . . . . . . . . . . . . . . . . . . 33

3.12. First draft of original Magna data . . . . . . . . . . . . . . 35

3.13. Petrinet of Magna data drawn by Python script . . . . . . 36

3.14. Overview of the stock-per-skill approach . . . . . . . . . . 41

3.15. Stock-per-skill example with one item . . . . . . . . . . . . 42

4.1. UML class diagram for handling the data input . . . . . . 47

4.2. Screenshot of the data preparation part of the software . . 49

4.3. Zoomed screenshot of the data visualization part of the
software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4. Petrinets at different kind of visualization options . . . . . 52

4.5. Overview of the simulation part of the developed software 55

4.6. A work place with one skill and its corresponding queue . 58

4.7. A work place with three different skills and the corre-
sponding queues . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8. Overview of overfilled queues and work places . . . . . . 59

xiii



A.1. Pseudo Data Draft Overview . . . . . . . . . . . . . . . . . 66

A.2. Pseudo Data Draft Detail . . . . . . . . . . . . . . . . . . . 67

A.3. Simulation Draft of Checklists . . . . . . . . . . . . . . . . . 68

A.4. Simulation Draft of Control Unit . . . . . . . . . . . . . . . 69

A.5. Simulation Draft of Machines and Queues . . . . . . . . . 70

A.6. Simulation Draft of Workstations and Workplaces . . . . . 71

B.1. Pseudo Data Draft Overview . . . . . . . . . . . . . . . . . 74

B.2. Pseudo Data Draft Detail . . . . . . . . . . . . . . . . . . . 74

List of Tables

3.1. List of example tasks . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Calculated list of predecessors by algorithm 1 . . . . . . . 23

4.1. Test setting for test cases . . . . . . . . . . . . . . . . . . . . 56

4.2. Test cases to proof simulation functionality . . . . . . . . . 57

4.3. Test results of previous test setting . . . . . . . . . . . . . . 57

List of Algorithms

1. How to calculate a sequence-diagram out of working steps 23

2. How to put requests to the right queue . . . . . . . . . . . . 28

3. How to handle clients in right queues . . . . . . . . . . . . . 28

xiv



Part I.

Initial Situation





1. Initial Situation

1.1. Historical Overview of Production

Production has accompanied mankind from the very beginning. However,
one can only speak of automated production since the industrial revolu-
tion in the 1760s. More precisely, it was Henry Ford over a century and a
half later who invented automated assembly lines through the conveyor
belt. This point in time will later be count to the period of Industry 2.0
(figure 1.1).

Figure 1.1.: History of Industry [Sup]

Thematically this is still far away from modular production but it once
formed the basis for what nowadays is called automotive industry.

Apart from special forms of production like custom-made, in the major case
since then every resource (no matter whether workmen, machines or tools)
in a typical assembly line has precisely to do the same comprehensible
job of his qualification over and over again.

This has several advantages:

• A resource (worker, machine, tool) does exactly the work its qualifi-
cation is made for

• The quality of the assembled product increases

3



Chapter 1. Initial Situation

• The throughput rate increases
• The logistics are relieved as the components, materials and working

resources have to be delivered to a certain work place
• The whole production line is more manageable

This represents the status quo in automotive industries. But nowadays
a manufacturer has to face the challenge of a variety of variants and
has to think of how to use these described advantages in a new way of
production.

1.2. Case Study Magna

Magna Steyr1 is known as an assembler company for different well-
known car manufacturers. In this case study the Mercedes G class (in
Austrian slang still known as Puch G) is used as an example car with a
variety of challenging variants.

At present there are following different types available:

• Civil version
• Military version
• Luxury AMG improved version

One can imagine how complicated it can get to develop an assembly line
for these different types.

And each type can be build up with one of these existing or future power
trains:

• Diesel or Gasoline
• Hybrid
• Pure electrical
• Hydrogen

When considering also the different variants of power train of these types,
a production line planning gets complex.

Now the question is, how this complexity can be solved in both a most
effective and efficient way.

1Magna Steyr https://www.magna.com

4

https://www.magna.com


Chapter 1. Initial Situation

Therefore the concrete questions of this master thesis are:

How can an existing assembling process be optimized through mod-
ularization?
How can Petrinets help in design and execution?
How can a simulation with different scenarios be build up to gain
decision making information?

The result should help to answer questions and making decisions about
changing production strategies.

5





Part II.

Theoretical Basis





2. Theoretical Basis

The theoretical part describes the basis of partly independent topics and
already explored data, which joined together represent the necessary
knowledge for the research part and creating an own methodology.

2.1. Modular Production

Modular Production basically is a way to assemble parts of a product (in
this certain case of a vehicle) in locally independent workplaces. Seen
more specifically these parts also can be assembled in a random sequence
which makes the assembling a bit of a counterpart to a typical production
line.

In the research community, foremost for industry, it has gained some
interest in the last decade. Even if until now it was more a theoretical
subject, there are several approaches how to challenge the new require-
ments.

In 1997 Rogers and Bottaci [RB97] described the reason and need of
a new production system with the emergence of new requirements in
automotive industry. They name the variety of product variants and
demands, shorter product life-cycles and increasing competition as the
main reasons why a conventional production line reaches its limits.

Lara, Trujano and Garcia-Garnica [LTG05] name the emergence of new
technologies and the globalization with a stronger competition as a
reason for an upcoming big restructuring process which requires more
modularity.

The authors of Modularity concepts for the automotive industry: A critical
review [Pan+08] describe it in a similar way. They say analogous:

There will be a change from high production volume and low flexi-
bility to products with a high variety of variants produced in small
numbers.

9



Chapter 2. Theoretical Basis

They further describe that the switch to modular production is already
taking place in automotive industry, as parts for example like engine,
transmission and axles have already been outsourced to suppliers. Also
a big topic which would not be noticed is, that many manufacturers
do have a platform concept which could be compared with modular
processes. They mention explicitly the vw-Group as the leader of platform
concepts and an example how modules of products can be combined with
conventional conveyor belts.

At the moment nearly every big car manufacturer makes use of such
a platform concept to save costs in planning, production and at least
servicing.

Different Production Systems

The authors Abderrahmane, Benyoucef and Dahane [ABD11] go into
more detail about production systems and name three different ones (in
figure 2.1):

• FMS - Flexible Manufacturing System
• RMS - Reconfigurable Manufacturing System
• DMS - Dedicated Manufacturing System

Figure 2.1.: Different production systems [ABD11]

While linear production lines can be count to DM-systems, where a
certain component is produced in large numbers, the before described
platform concept can already be found in the RMS sector. Reconfigurable
in this case means, that the production can be adopted to the need of the
market very quick.

Flexible Manufacturing Systems [ABD11] describe the kind of systems,
which can be seen as real modular production lines.

10



Chapter 2. Theoretical Basis

Difference of Flexibility

There are several publications about how flexibility, especially in manu-
facturing, can be seen.

Hyun and Ahn for example [Hyu92] analogous describe three different
categories: long-, middle- and short-term. In scientific language these are
also known as strategic, tactical and operative. Following their statements
long-term describes the flexibility of a production line to market changes,
middle-term on the other hand to varying production velocity. Short-term
or operative flexibility is according to them the ability to change parts of
the production line itself and thereby gain a high variation of products.

Citing Granados [Gra12], flexibility in manufacturing distinguishes be-
tween routing and machine flexibility. Routing flexibility implies that
assembling components can take different routes to get finished. Machine
flexibility on the other hand describes the circumstance, that different
machines are able to do the same working steps which results in a better
capability of each work place and finally a better load balancing and
production throughput.

In Manufacturing Flexibility Swamidass [Swa00] says clearly, that one has
to distinguish between flexibility of a single machine and flexibility of
a whole plant. He also lists in more detail, that plant level manufacturing
flexibility consists of hard technologies, soft technologies, design and
manufacturing infrastructure.

Summing up, all these authors describe the flexibility in manufacturing as
a measurement of reacting on changing requirements, either on environ-
mental (market, customer, product) or on production level (machines).

Comparison of Manufacturing Principles

Lödding describes in his book Verfahren der Fertigungssteuerung [Löd16]
several manufacturing principles. In figure 2.2 the three of the five named
principles (Werkbankprinzip, Werkstättenprinzip, Inselprinzip) can be count
to the family of modular production lines. Fließprinzip describes the
typical conveyor belt and Baustellenprinzip more a manufacturing of low-
number-products like specialized or handmade cars.

In case of this thesis, the Inselprinzip can be seen as what will be called
modular production in the rest of the thesis.

11



Chapter 2. Theoretical Basis

Figure 2.2.: Different manufacturing principles of Lödding [Löd16]

2.1.1. Modular Production discussed

Modular production can be seen as a possibility of how components
are put together to form a vehicle. Instead of a typical conveyor belt,
at modular production so-called modular workstations represent the
assembly places (figure 2.3).

Every workstation has its specialized skills to assemble a certain modular
part, independent of other modular workstations in time and effort.

Compared to other modular manufacturing principles, like Werkbankprinzip
and Werkstättenprinzip [Löd16], here the workstations do have varying
skills and thereby represent a certain flexibility for routing items through
the production line.

One idea is also a combination of Fließprinzip and Inselprinzip. In detail
this means to assemble the vehicle in a conveyor belt as long as there are
overlapping working steps and move then the assemblies to separated
places.

12



Chapter 2. Theoretical Basis

Figure 2.3.: Draft of a modular production line

2.1.2. Reasons for Modular Production Lines

As mentioned before, the basic idea of assembly lines with conveyor belts
hasn’t changed significantly over the last centuries. On the other hand
assemblies manufactured on this lines changed though.

Automotive industry nowadays is facing different kinds of drive train
from a usual internal combustion engine over hybrid solutions to electri-
cal or hydrogen powered engines. But also the variety of variants more
and more needs a higher focus.

For an assembly line it is no problem to fit up different types of cars with
different variants and equipment while the body of the vehicle is still the
same.

It becomes challenging in one of these example cases:

• The drive train or important parts differ
• The needed working steps don’t overlap with working steps of

other assemblies
• The separated working stations hold the assemblies for a different

span of time.

As normal operated conveyor belts have to skip a working step in these
named cases, this can cause unnecessary expenditure of time and costs.

13



Chapter 2. Theoretical Basis

Developing a combination of conventional and modular production lines
like in figure 2.4 can help avoiding these challenging problems.

Figure 2.4.: Draft of a possible combination of modular production and conveyor belt

Nevertheless, with modular production comes also a number of chal-
lenges:

• Planning
• Transport
• Handling workstations
• Routing of components
• Logistic of assembling parts, material and workers
• Scheduling

14



Chapter 2. Theoretical Basis

2.1.3. Problems and Questions inventing Modular
Production

The reason why modular production lines are not focused much more till
now is, because the conventional conveyor belt is efficient in most cases.
Especially when the variety of types is very low.

A change of the production strategy needs a high effort and also re-
structuring in the whole company. This starts with human resource
management and ends up with handling the supply chain.

The risk of failing can be very high in case of poor planning, which could
cause a horrendous impact for the producing company.

Simulations can help making decisions at which point of the assembly
process a switch from conveyor belt to modular production makes sense
or what benefit can be expected.

Summing up, one has to think about the risk, the overall impact and the
benefit changing the production line.

2.2. Petrinets

The so-called Petrinets were founded by Carl Adam Petri in the 1960th
and are widely used for different applications of modelling. Foremost it
is a modelling language for concurrent systems [CGL16] which allow a
step-wise representation of processes in a graphical way. Their execution
semantics can be described by an exact mathematical definition

A Petrinet consists of places (states), transitions and arcs (edges) connecting
them. A transition (rectangle) can have one or more places (circular) as
input and and also one or more as output linked. Edges between two
transitions are as impossible as between two places. The edges do have
weights which are decisive as to whether a transition switches or not.

Simply explained, if there are enough elements waiting in a place, namely
at least the amount the transition is expecting, the transition is able to
switch. Due to parallelism and enabling multiple transitions at the same
time, the order can never be known in which the transition switches. So
Petrinets are non-deterministic [PR08].

Petrinets can help in a simplified way to represent the process behind
modular production lines. Subsequent the results of visualizing Petrinets
with the framework of Franck Pommereau [Pom15] can be found in the
next chapter.

15



Chapter 2. Theoretical Basis

Figure 2.5.: Consumer-Producer-System with a Petrinet

Figure 2.5 represents an example of the producer-consumer-system
[EET20]. A transition produce with a place ready to produce as input is
waiting to switch. As soon as the place ready to produce contains at least
one token (filled circular in the place circular), the transition switches. At
the transition the working process is done and the token moves on to the
next place ready to deliver where it is again waiting for the next transition.
In a place there can be zero or a multiple number of tokens. The direction
of the edges describe the potential way of the tokens.

2.3. Event Triggered Simulation

An important point in this thesis is to simulate and prove the method-
ology. The basis for this is the hccm-framework [Fur+14] which is an
enhancement of the known discrete event simulation.

hccm stands for Hierarchical Control Conceptual Models. Basically the
standard approach

• a condition is fulfilled
• entity is chosen from a queue
• activity will be triggered

would be sufficient for components waiting to be handled by a work
place or a machine.

In HCCM - A Control World View for Health Care Discrete Event Simulation
[Fur+14] the authors describe the use of a fourth approach to the al-
ready known three ones (event scheduling, activity scanning and process
interaction) in discrete event simulation.

16



Chapter 2. Theoretical Basis

The simulation concept of the named authors replaces conditional activities
and queues by a hierarchical control tree [Fur+14]. In their paper it is used
for health care simulation at a hospital. The time-dependent priorities
and skill-dependent working steps described in this example do have a
certain similarity to the requirements of modular production.

The idea is to have so-called control units with activities as leaves, and
that general rule sets replace the dispatching through conditions. The
gained flexibility is exactly the approach which is needed in modular
production lines, when queues and work places do have certain skills.

Furthermore hccm-framework offers the possibility that components can
wait in several queues of parallelized working stations at the same time.
What has to be mentioned, that the queues in the simulation framework
are not equal to physical stocks before working places or machines. These
queues are more an approach of how to register an item at a new modular
work place to get processed as soon as the machine is idle.

In figure 2.6 a simulation basis for both, a typical linear production line
and a modular production line, can be seen. Comparing the two of them,
one can see that there is no typical queuing for working stations. As
mentioned before, the routing of items should be instant so that there
is no need of physical queues between working stations. Whereas the
control unit will hold queues to manage unfinished items.

Figure 2.6.: Comparing two production systems

In addition to that in a linear production line the routing is straight

17



Chapter 2. Theoretical Basis

forward whereas a control unit in simulation has to handle the flexible
routing (which is done by registering items in the before mentioned
queues). Therefore the control units have the knowledge about idle and
working machines, waiting (registered) and processed items, and the
need of material and resources for each working step in their responsible
area. Reacting on these information leads to flexible routing of all kind
of resources. Berndt Brehmer summarizes decisions based on previous
events as dynamic decision making[Bre92].

18



Part III.

Research Concepts





3. Research Concepts

The research first deals with the methodology how the knowledge of the
theory can be joined together to an approach for modular production.
Furthermore it considers if Petrinets1 can help in calculating and pre-
senting modular production processes, and finally ends in the theoretical
basis for event triggered simulation.

3.1. Methodology

The basic idea is to find a way how an existing building instruction could be
the input of a simulation and is exemplary shown in figure 3.1. Therefore
the steps of a building instruction are transformed into a sequence diagram
which is the base of a Petrinet. Finally the simulation is fed with the data
of the Petrinet.

Figure 3.1.: Overview of the applied methodology

1models of discrete and mostly distributed systems

21



Chapter 3. Research Concepts

Task Predecessor

A Start
B Start
C Start
D A, B, C
E A, B, C
F A, B, C
G F
H G
I D, E, H

Table 3.1.: List of example tasks

3.1.1. Building Instruction

The building instruction is essential to describe the time schedule when,
how and in which order components are assembled. Modularity in pro-
duction lines as described in this thesis demands following require-
ments:

• Every step in the building instruction has to know its must-have-
criteria, a so-called predecessor

• To make parallelization possible, at least one step has to have more
than one predecessors

• Every step has the knowledge of all needed resources (tools, mate-
rial, operating resources)

• Logically related steps are joined in groups (like tasks or worksta-
tions)

The next table 3.1 can be seen as an example of tasks, which in a serial
way can be seen as positions at a conveyor belt. Such a task combines
several steps of assembling.

3.1.2. Sequence Diagram

When having the information, which must-have-criteria has to be fulfilled
to start a new task, a sequence diagram can be build up. Therefore

22



Chapter 3. Research Concepts

Task Predecessor

A Start
B Start
C Start
D A, B, C
E A, B, C
F A, B, C
G A, B, C, F
H A, B, C, F, G
I A, B, C, D, E, F, G, H

Table 3.2.: Calculated list of predecessors by algorithm 1

following algorithm (1) is used.

Algorithm 1: How to calculate a sequence-diagram out of work-
ing steps

Data: list of working steps
Result: sequence diagram of working steps
while count of steps in list >0 do

actualStep = take the topmost step from list;
if actualStep has predecessors then

if the predecessor is START-flag then
Continue;

else
forall predecessors of actualStep do

Get the list of predecessors;
Add this list to the predecessors of actualStep;
Call this algorithm for every predecessor
recursively till every predecessor is a START-flag;

end
end

end
end

The expected output is a list 3.2 with recursively gained predecessors.
Compared to the simple list before, now every step knows every of its
predecessors (for example task I consists of all previous steps).

In figure 3.2 this list is shown as graph. Here one can see a possible
parallelization of steps at A - B - C and D - E - F—G—H due to the
must-have-criteria of predecessors.

23



Chapter 3. Research Concepts

Figure 3.2.: Example of steps with predecessors

3.1.3. Petrinet Computation

As shown in figure 3.3 with a hypothetical task B a Petrinet is not simply
a sequence diagram with a higher granularity. Through the edge weight it
further consists of information a transition needs to switch. In the case of
this thesis, the Petrinet is able to represent all our necessary information
needed in a simulation. Here steps are shown as transitions and all kind
of resources as states (places), whereas in a sequence diagram simply the
order of steps is represented.

Figure 3.3.: Example Petrinet of task B

With all this information in the Petrinet, one can see at the first glance
which states (resources, previous steps, and so on) are necessary to switch
a transition, which in this case means to fulfill a working step.

24



Chapter 3. Research Concepts

3.1.4. Simulation Model

As a Petrinet is more a mathematical modeling language than a graphical
representation, the simulation is so to say the execution of it. So drawing
a Petrinet is always just a snapshot of a comprehensive sequence of
activities.

The simulation extends the Petrinet with the factor of time. An infor-
mation that a transition needs several states to switch causes further
requirements in simulation.

An extension to theoretical models in simulation is, that there are physical
workplaces which execute the working steps. To stay as dynamic as
possible workplaces should have skills, whereas a skill represents a task
or a set of working steps the working place can process.

Identification of Objectives

According to Robinson [Rob08], objectives can be distinguished by mod-
eling objectives and general objectives. Last ones describe the simulation
model as a tool [Fur+14].

In this case this objectives could be:

• Modeling:

– Item gets processed in the way the sequence diagram shows
– Every item gets processed by the number of machines equal to

the number of needed skills
– Machines/workplaces can have more than one skill
– No large deviation between average lead time and minimum

lead time

• General:

– Run-time of simulating a week in less than one hour
– Graphical visualization of queuing

Outputs

The output of a simulation set can be summarized in numbers and should
prove or refute the modeling objectives. These measurands could be:

• Minimum lead time
• Maximum lead time
• Average lead time
• Average waiting time of an item in queues
• Distribution in percent of waiting and processing time

25



Chapter 3. Research Concepts

Input Factors

The input values consists of lists of data containing following informa-
tion:

• Ordered items (complete production list of day/week)
• List of working steps for each order-item
• List of skills (all needed skills)
• List of work places (machines)
• Resources

Model Structure

The simulation model consists of following structure-items:

• Activities and events
• Items with checklists (client)
• Workplaces with skills (server)
• Queues
• Request Activities and Events Lists (RAEL)

The figure 3.4 shows the level of detail of the model.

Figure 3.4.: Structure of Simulation Model

Remarkable about this structure is, that workplaces and queues are enti-
ties with skills. The ControlUnitQueuingModel represents the control unit
which is responsible for steering processing and queuing management.

By splitting the entities to the ones shown in figure 3.4, following respon-
sibility also can be defined:

26



Chapter 3. Research Concepts

• EntityClient
A component knows which steps it has fulfilled and which are still
needed

• EntityWorkplace
A workplace (or machine) knows its own skills and processes com-
ponents waiting for these skills

• EntityQueue
A queue holds entities and handles input and output calls through
fifo (first-in-first-out) principle

• ControlUnitQueuingModel
A central control unit puts queued components to idle machines
and incomplete components to queues

Individual Model Behavior

In figure 3.5 one can see the process of an item in simulation. The state
diagram starts with an already ordered item arriving in production line
to get served.

Figure 3.5.: Process of an item in simulation

As mentioned before, not every workplace but every skill has its own
stock. That means, that the relation between workplace and queue is an
m:n relation. The control unit will do a lookup in 1:n queues (namely for
each skill) for each workplace, and every single queue can hold entities
for 1:n different workplaces.

27



Chapter 3. Research Concepts

The algorithm 2 describes, how requests are put in the queues in the
ControlUnitQueuingModel. Important part in here is, that the next needed
skills of the item are identified and following the item is put to every
queue of these skills.

Algorithm 2: How to put requests to the right queue
List getServedList = get all activities from RAEL-list which are
waiting to get served;

foreach item in getServedList do
List requestingSkills = get all next possible requesting skills of
item;

List fittingQueues = get all queues for all items of
requestingSkills;

foreach queue in fittingQueues do
put item to queue;

end
end

Furthermore in the ControlUnitQueuingModel a waiting item is assigned
to the next idle workplace (machine). As the algorithm 3 shows, the
intersection of skills of idle workplaces and waiting items for this skills
has to be found.

Algorithm 3: How to handle clients in right queues
foreach idleWorkplace in workplaces do

List skillsOfWorkplace = get all skills of idleWorkplace;
List queuesOfSkills;
ForEachskill of idleWorkplace Queue queue = get queue for
this skill out of all queues;

if item count of queue >0 then
add queue to queuesOfSkills;

end
if item count of queuesOfSkills = 0 then

Continue;
else

Queue fullestQueue = get queue out of queuesOfSkills
with largest count of holded items;

EntityClient client = get first item of fullestQueue;
ActivityGetServed newService = create new Activity with
(idleWorkplace, client, skillToProcess);

start event of newService with simulation engine;
end

end

28



Chapter 3. Research Concepts

System Behavior

Basically after initialization, for each item in the order list an activity
get-served is created after every certain time span (random). This activity
is registered in the RAEL (Requested Activities and Events Lists) list.

In the custom rule set of the control unit, the logic of queuing and
processing is done. Therefore every time an event is triggered, activities
from the RAEL list are put to the queues of the skills they need to be
processed. The decision to which queues the item is put, is based on the
fact, that all previous steps are done and all necessary resources are available.
For every idle work place (machine) the control unit looks up waiting
items in the associated queues.

At the workplace the items are processed for a certain time. After finishing
the working steps, again an activity is created for the item whether of
type get-served or finished.

3.2. Research

3.2.1. Petrinet Experimental Setup

Starting with a trivial example a building instruction of a LEGO trac-
tor is used. Usually not only in LEGO building instructions but also in
automotive industry parts are assembled following a linear serial pro-
cedure which is set at the beginning. That has the consequence that no
separate modules can be found in a usual building process and a process
of assembling cannot be changed later.

To locate modules and figure out case dependent assembling processes, a
part of the transmission of the LEGO tractor is build up in three different
ways.

A simplification of any modular production and different paths of assem-
bling can be shown by following experiment in figure 3.6.

The transitions are drawn as rectangles with a description whereas the
states are drawn as circles with either label start or end or a picture
describing the waiting parts.

The three variants with their described transitions are:

• Assembly variant A

– A1 - assembly of spur gear and axle
– A2 - attaching perforated sheet and small gearwheel

29



Chapter 3. Research Concepts

Figure 3.6.: Different variants of assembling a Lego transmission

– A3 - attaching big stopper and small stopper

• Assembly variant B

– B1 - assembly of axle, big stopper and small stopper
– B2 - attaching perforated sheet and small gearwheel
– B3 - attaching spur gear

• Assembly variant C

– C1 - assembly of axle, small stopper and small gearwheel
– C2 - attaching perforated sheet and big stopper
– C3 - attaching spur gear and axle

The result of this experiment shows a parallel building instruction with
possible ways to part into modules. Furthermore some conclusions can
be read out of analyzing these paths and lead to the following figures
which describe advantages of using modular production instead of a
conventional one.

Following some examples of dynamic best paths at run-time will be
shown:

• Critical component
• Just-in-time supplier
• New routing at run-time

In figure 3.7 the big gearwheel is a critical component which can be
assembled as available. If it is in stock, the next transmission can be

30



Chapter 3. Research Concepts

assembled in variant A. If not, variant B or C can start assembling other
components till the critical component is in stock again.

Figure 3.7.: Best path critical component

In figure 3.8 the components axle, big stopper and small stopper are
delivered from the same supplier. To improve the stock workload and
optimize just-in-time delivery variant B can be focused at assembling.

Figure 3.8.: Best path just-in-time supplier

In figure 3.9 a case is shown where missing resources, tool failures or an

31



Chapter 3. Research Concepts

employee loss cause problems in finishing the component. A dynamic
routing at run-time would suggest to go for variant B or variant C to not
stop the whole production.

Figure 3.9.: Best path with new routing

One can imagine that more agility to react to a supplier by modular
production leads to more overhead in managing the production logistic
itself.

An advantage of modularizing the production process could also be the
detection of similar or equal working steps. In figure 3.10 the green areas
represent such a case. In modular production lines this will lead into a
consolidation of the working steps Attaching C and Attaching E.

The blue area shows a possibility of outsourcing some working steps to
different production location or even to a supplier. Such a decision could
be caused at run-time by workload balance of modular working stations
or by cost and time reasons.

The described decision between in-house production and outsourcing
is shown in a detailed way in figure 3.11. For example a production
manager could do a best-path-calculation due to following reasons:

• Is there a critical component which could be outsourced?
• Could this critical component cause a blocking state in the produc-

tion line?

32



Chapter 3. Research Concepts

Figure 3.10.: Assembly of a differential gear

• How about varietal purity? May an outsource be more efficient
due to special needs of workers qualification, material or tools/ma-
chines?

Summing up, a Petrinet could help to localize critical components (states/-
places as circular pictures) and can be a decision support for outsourcing
or rearranging the assembly of these components.

Figure 3.11.: Assembly directly on axles

33



Chapter 3. Research Concepts

3.2.2. Petrinet Real Data of Magna Steyr.

The described data of the Lego tractor is a base for handling the original
data of Magna Steyr. This data of Magna consists of different inputs:

• Working steps
• Workstations
• Workers
• Material
• Working tools
• Operating resources

The goal is now to use the prior knowledge to handle this data. Subse-
quent the Petrinet should be the basis for a simulation of the modular
production line. Before refactoring the building instruction the compo-
nents for building a Petrinet have to be explored.

In this case states and transitions can be separated as follows (also
described in German due to original data in excel sheet):

• States

– Activity status (Vorgangsstatus)
predecessor, finishing a transition, component

– Working tool (Werkzeug)
– Material and prefabricated part (Material/Bauteil)
– Operating resources and supplies (Betriebsmittel/Betriebsstoffe)
– Worker and qualification (Mitarbeiter/Mitarbeiterqualifika-

tion)

• Transitions

– Process of one or more working steps
– Include mandatory criteria (states that have been passed through

at this point of time)

Identifying the columns in the excel sheet as states and transitions leads
us to the first Petrinet shown in figure 3.12.

34



Chapter 3. Research Concepts

Figure 3.12.: First draft of original Magna data

3.2.3. Basics of Data Acquisition and Visualization Tool

To get a bigger picture and a more detailed view of the original data
at the same time, the Petrinet is drawn by a self-written Python-script
(listed in appendix C.1.1) which handles the load of data automated.

For that a Python-script has been developed which uses the packages
Pandas2 and Snakes [Pom] to handle the data and draw the Petrinet.

The output of the script (figure 3.13) gives a first impression how a
Petrinet could look like when calculated and drawn automatically. It
also already shows that some states are necessary for more than one
transition.

2Python Pandas https://pandas.pydata.org

35

https://pandas.pydata.org


Chapter 3. Research Concepts

Figure 3.13.: Petrinet of Magna data drawn by Python script

36



Chapter 3. Research Concepts

3.3. Challenging Problems

As the tendency of the draft shows and the excel sheet3 may let expect, a
building instruction without possible previous working steps leads into
a straight-forward Petrinet without meaning.

Looking at the Petrinet-draft, output of the Python-script and the excel

data, there are several problems to work with this dataset:

• Anonymized data
The data is anonymized and full of aliases.

• Illegible data
One can not read and follow the meaning of the Petrinet as workers,
material and components have nearly the same naming and cannot
be distinguished from one another at a glance.

• Serially running events
All the working steps follow a serial process. It is not clear if the
previous working step is really necessary or if another way of
assembly is possible.

• Assembly due to history
The assembly process is already fully planned without a possibility
to get information of a necessary previous task for modularization.

3confidential data of Magna Steyr, not publishable

37



Chapter 3. Research Concepts

3.4. Concepts

As described in 3.3 the data is not suitable to work with. To get an
idea of how modular production can be planned, simulated and finally
evaluated, a pseudo dataset has to be created.

Requirements for such a dataset can be listed as following: (whereby the
italic written parts are not available yet, but the structure of the original
data is still used):

• Working step
• Worker
• Material
• Working tools
• Operating resources
• Workstation (physical place)
• Skills of a workstation
• Previous working steps (must have criteria)

As the italic written parts are not available yet in the original Magna
dataset, this information must be generated at development time before
the building instructions are created.

For simulating a modular production line the data basis previous work-
ing steps is essential. This determines a must-have-criteria for each
working step and makes modularity possible.

The pseudo data excel sheet has also to fulfill following requirements:

• Usability

– Building instruction of a real world object
– Easy and imaginable parts so that a holistic view is clear
– Clear and readable description
– Parallelizable working steps
– Expandable at run-time to make differences visible in simula-

tion

• Special criteria

– Different Types of vehicles to represent original data
– Little differences in working steps should represent one mod-

ule
– Automatism for n:m relations
– Working steps should contain at least one quality check
– At least one working step which does not appear in other types

38



Chapter 3. Research Concepts

– An order list has to be implemented with different types to
represent the Drehscheibe at Magna’s data and to influence the
simulation later.

To create easy understandable, imaginable and readable data, an engine
assembly instruction of an oldtimer Steyr 290 tractor is used.

Paying attention to all these requirements, the pseudo data consists of
following columns:

• Production Steps

– Brand
– Type
– Working Step ID
– Working Step Description
– Working Step Kind (work or check)
– Working Station (Skills)
– Material
– Operating Resources
– Working Tools
– Previous Working Steps

• Working Places

– Physical Working Place
– Working Station (Skills)

• Working Stations

– Station
– Description

• Order List

– Order ID
– Type

Dealing with the designed draft data some special insights can be deter-
mined. First of all some points like must-have or previous working steps
have to be considered at planning time. Secondly additional components
like material, operating resources and working tools have to be unified to
make sense in the Petrinet. Next the modules should be chosen meaning-
ful for production flexibility. Finally if the data fits, a Petrinet can help
simulating a modular production to show bottlenecks and improvable
sections.

The whole list of working steps in the pseudo data can be found in the
appendix at B.1 and the working stations at B.2.

39



Chapter 3. Research Concepts

3.4.1. Stock per Skill

There are several approaches how to handle waiting items and idle work
places:

• Every work place has its own stock set up like a queue where items
wait to get handled.

• All items wait in one queue and idle work places do their lookup
there.

• Every skill has its own stock.

The first one is basically a good approach, but not adequate if a work
place has more than one skill. The problem here is, if a machine at a work
place fails, items are waiting in the stock and cannot be handled by other
machines. In this case a higher intelligence has to check all stocks of all
work places the whole time which leads to an additional effort.

The second one is only properly for a small number of work places. If
the count of them grows, blocking states and race conditions can occur
when they try to fetch an item from the stock.

The third approach is the most suitable for this challenging problem. In
several experiments at development time it turned out, that the impact of
one faulty work place on the whole production line is very low, if every
skill has its own stock. The stock-per-skill approach is shown in detail in
figure 3.14.

Items do have an internal checklist consisting of skills they still need to
get processed. Item 1 still needs the skills A, B and C. So it is added to all
three stocks of needed skills.

If a work places switches his state to idle, he does a lookup for a new
item in the stocks of his skills - A and C. When fetching for example Item 1
it is removed of stocks so that it could not be fetched a second time by a
different work place.

An example for one item running through this process can be found in
figure 3.15. The different colored states (cyan, magenta, yellow) show the
approach, that an item is put to every needed skill.

The advantages of this stock-per-skill approach are:

• Machine failure
A machine failure is not a problem at all, because just one item gets
stuck. As there is no stock for the work place itself, no redistribution
is necessary. And also if once a work place is closed completely,
no stock has to be dispersed additionally or removed from the
control-unit-logic.

40



Chapter 3. Research Concepts

Figure 3.14.: Overview of the stock-per-skill approach

• Load balancing
If there are many work places with the same skill, the work places
fetch the items of the largest stock (with their corresponding skills).
So for same skills it could not happen that one work place is idle
and the other one has a full stock due to delays.

• Overall view
A production manager can see at glance if there is a need to add or
remove work places for a certain skill.

• Management
No additional management overhead to check items in stocks is
necessary if a work places switches to idle.

• Scalable
This approach is scalable as the number of stocks grow with the
number of skills and not with the number of work places.

41



Chapter 3. Research Concepts

Figure 3.15.: Stock-per-skill example with one item

42



Part IV.

Development of the Simulation
Environment





4. Development of the
Simulation Environment

Besides the practical work of researching and generating ideas, this
chapter deals with the implementation of findings out of theory and
resulting experiments.

The main intention is to create a software which is able to fulfill following
points:

• Dynamic data acquisition of existing building instructions
• Visualization of the gained information as a Petrinet
• Simulation of a complete production plan for a specific set of mod-

ules, production steps and work stations

The purpose is on the one hand to visualize a modularized building
process and on the other hand simulate it to gain more information and
find a best path solution.

4.1. Structure Creation

First consideration is how to create a structure which will meet all the
requirements for all meta information about already existing information
and logical conclusions. The challenge hereby is to keep the managing
overhead very low. Otherwise the through modular production gained
benefits will be dissolved at the same time by the additional effort.

Before explaining the solution approach, it is necessary to explain the
most important elements (discussed in draft A.3):

• Production Step - Arbeitsschritt
A production step describes the smallest working unit when as-
sembling components and consists of an ID and a description. It
belongs to a single work station, knows for which type of vehicle
it is mandatory, which previous production steps have to be ful-
filled before starting and which materials, operating resources and
working tools are needed.

45



Chapter 4. Development of the Simulation Environment

• Work Station - Arbeitsstation
A work station describes both, a set of production steps to finish
an assembling section and a skill which a physical work space or
machine is able to handle.

• Physical Work Space - Physischer Arbeitsplatz
The physical work space can be seen as a modular working place. It
has certain skills (work stations) which it can handle. So one can say
the combination of a modular working place with a certain worker
and a certain machine represents a qualification to fulfill certain
production steps. This physical work space is exchangeable and
regardless of location.

• Type - Bautyp
The type of vehicle is required to filter the necessary production
steps. In the order list the ordered item is just described as a type
of vehicle.

• Previous Production Steps - Vorausgehende Arbeitsschritte
This is the most important property to create a modularizable
structure. It describes the necessary production steps up to this
point in time before starting with the actual step. Depending on
this also a parallel structure can be possible.

• Order List - Auftragsliste
The order list is simply the list of production (for customers, market,
stock). It consists of the order number or a date and the ordered
type of vehicle.

• Checklist - Arbeitsschrittkontrollliste
The checklist is a virtual created object for each and every ordered
item in the order list. It consists of work stations to be done and can
not be found in the data list. It is a kind of ToDo-list representing
the completion status of the vehicle. Depending on the checked
items a vehicle is registered at the queues of the missing production
steps.

• Additional Meta Data
A production step also consists of certain materials, operating re-
sources and working tools.

The uml class diagram1 in figure 4.1 represents only the necessary classes
in an overview for handling the data input described before.

Due to this structure, a dynamic changeable data input is guaranteed.

1drawn with http://app.creately.com

46

http://app.creately.com


Chapter 4. Development of the Simulation Environment

Figure 4.1.: UML class diagram for handling the data input

47



Chapter 4. Development of the Simulation Environment

4.2. Data Acquisition and Preparation

The main entry point of the data acquisition part is represented by
the DataHandler. This class is a singleton to ensure only one central
responsibility for data input from excel on the one hand and data output
as xml on the other hand. Furthermore the calculation of the previous
steps and the generation of the Petrinet graph is done here.

As described before the data is represented by an excel list. To gain all
the data from the worksheets, an automated serializer [Micb] is used. To
write all the data objects in a reusable style the xml serializer of .net is
used.

The source code how the import and export are executed can be found in
the code section at C.2.1 whereas the examples of the serializeable classes
for excel and xml can be found at C.2.2. This is a short overview of how
automated import and export can be done with serialization attributes
as prefix of every class-property. The xml output roughly looks like the
shortened file which can be found at C.3.1.

The result of import is an ExcelData object which consists of lists of
ProductionSteps, WorkPlaces, WorkStations and OrderItems. The Ex-
celData itself can return a full production list represented by a Queue.
Every element of this Queue is a OrderItemWithCheckList containing
all ProductionSteps for this ordered item. The hierarchical structure of all
ProductionSteps of a certain type can be seen in figure 4.2.

Besides import and export the DataHandler is also responsible for cal-
culating previous steps of every production step and finally generate a
graph out of these information. In the code snippet at C.2.3 one can see
how the for the visualization needed graph is generated. It consists of
nodes like ProductionStep, Material, Resource and WorkingTool and the
linking between them represented by edges.

The challenge hereby is to get a correct graph for every kind of building
type, including the correct equipment and correctly display the relations
between states and transitions.

By having this graph a building instruction is modular, as every Produc-
tionStep has knowledge about its must-have predecessors.

48



Chapter 4. Development of the Simulation Environment

Figure 4.2.: Screenshot of the data preparation part of the software

49



Chapter 4. Development of the Simulation Environment

4.3. Visualization

The visualization part is a way to present the calculated graph in a
readable way to the user for each building type. As the hierarchical way
(before described tree-view or xml-output) is simply confusing if the
dynamic data is changed, the as Petrinet drawn graph gives an overview
of modules, the needs of every production step (resources, material,
working tools) and the connections between each other.

Furthermore the reason for the Petrinet graph is to put this information
into the simulation later.

The figure 4.3 shows a Petrinet with standard options. The Microsoft
MSAGL Graph Viewer [Mica] is used for drawing and offers several use-
ful functions like moving states and transitions with automatic redrawing,
zooming, saving and so on.

The circular objects consisting of a character and a number represent
the states in the Petrinet which describe a finished transition. The transi-
tion itself is represented by a rectangular surrounded description of the
production step.

The transition also can require different input-states like

• Materials (green states),
• Working Tools (blue states) and
• Operating Resources (orange states).

The diamond states describe checking points which represent a special
production step every component has to pass at this point.

The most important point at visualizing the graph is that one can change
the settings so that for example just production states and transitions
are drawn, a so-called basic Petrinet. As the code snippet at C.2.4 shows,
the visualization part has only to call the graph generation in the Data-
Handler. The visualization itself is done by the Microsoft Graph-Viewer
[Mica].

By selecting or deselecting Materials, Operating Resources or Working
Tools one can get a detailed view from each point of view. The figure 4.4
illustrates two examples with just states of firstly materials and secondly
working tools.

50



Chapter 4. Development of the Simulation Environment

Figure 4.3.: Zoomed screenshot of the data visualization part of the software

51



Chapter 4. Development of the Simulation Environment

Figure 4.4.: Petrinets at different kind of visualization options

52



Chapter 4. Development of the Simulation Environment

4.4. Simulation

4.4.1. Expectations

To put the modular production line, which is shown by the Petrinet, to the
test with real variables an event triggered simulation is used. Therefore
the HCCM-framework which is described in the theory part [Fur14]
is integrated in the developed software (code-usage and extension of
Nikolaus Furian’s Health-Care-Simulation).

There are several questions which should be answered by the expected
results for someone who may use the simulation:

• Can any bottlenecks be found by the simulation?
• What are the effects of changing the number of working stations?
• What is the impact if the skills of the working stations are changed?
• When having different building types which each have a different

number of production steps - what are the effects if the order list
changes?

• What are the effects of changed requirements of materials, working
tools and production resources? What about delivery difficulties?

• Can machine or working station failures be compensated at run-time?
• What does the state of a queue show? Is there a direct relation between

full queues and a too small number of physical working places with
the needed skills?

• Can the dynamic data input (excel-list) help to react in run-time to
change production steps, modules, work places or working station-
s/skills?

If the simulation is build up as dynamic and realistic as possible to deliver
answers on these questions, possible scenarios can be drawn up and the
simulation can be used in reality.

4.4.2. Basic Definitions

Therefore as in the visualization part with Petrinets some requirements
have to be designed. They overlap in some points but do have some more
software-development-specific expectations.

• Definition of work places
A work place is the physical representation where a worker assem-
bles certain materials with special working tools at a certain time to
components.

53



Chapter 4. Development of the Simulation Environment

A work place can represent several working stations (skills), but
only a specific one at a given time.

• Definition of working stations
A working station is a description of how to do a certain job with
certain skills in a spatially undefined place.
A working station consists of a set of production steps.
A working station (set of skills) can be offered at several work
places.

• Definition of production steps
A production step is the smallest possible work performed on a
component.

• Definition of order lists
An order list is a listing of construction types ordered by the cus-
tomer or market.

• Work places do have queues (waiting bays) where components are
waiting to be processed.

• A work place does a look-up in all queues of his skills if there is any
waiting component and picks up the one with the oldest timestamp.
The fetching works after a FIFO (first in first out) principle.

The draft A.5 shows an overview how basically the simulation process
should work. The order list is a sequence planning list which building
types (here Steyr T188, T190 and T290) are requested by the customer.
For each building type there is a specific building instruction which
production steps have to be fulfilled. With this information the simulation
is fed.

4.4.3. Implementation

As seen in A.4 the work stations A, B and C can be done in a parallel
way. How parallelization and queues work together in the simulation can
be seen in the next figure 4.5.

This figure also shows the basic design of queues and work places and
furthermore the finishing states of order items.

54



Chapter 4. Development of the Simulation Environment

Figure 4.5.: Overview of the simulation part of the developed software

55



Chapter 4. Development of the Simulation Environment

Skill Description Processing Time [sec]

X Quality Check 300

A Engine Block 2800

B Piston 1000

C Crankshaftk 2400

Table 4.1.: Test setting for test cases

Verification of Simulation with Test Setting

To show that the implementation of the simulation works correctly, a
verification is necessary. The difference[Eas] between verification and
validation is, that at verification the correctness of functional requirements
of the simulation tool is proven and at validation the output accuracy is
tested. As in this case no real data is available, the implementation of the
model is verified with the created pseudo data.

Therefore a set of 3 different cases is tested. Conditions for these cases
are:

• Transport latency has to be zero
• Input data (especially order data) remains the same at all test cases
• Processing time of each Workstation remains the same at all test

cases
• A, B and C can be done parallel, X is a quality check which has A,

B and C as predecessor
• Number of ordered items set to 100
• New order item every 2800 seconds
• Minimum processing time 6500 second
• Processing time for skills like in 4.1
• Test case distribution like in 4.2

Simulating the given test cases with the predefined test setting leads to
the results in table 4.3.

Interpretation of Results

When looking at table of results 4.3, the functionality of the simulation
model and consequently the simulation itself is proven.

In case of Alpha the skills are evenly distributed and so the average queue
length is in a normal spectrum. Also the average processing time does not
deviate much from the minimum production time.

56



Chapter 4. Development of the Simulation Environment

Test Case Work Place Skills

Alpha AP 1 X
AP 2 A, B, C
AP 3 A, B, C
AP 4 A, B, C

Bravo AP 1 X
AP 2 A, B, C
AP 3 B, C
AP 4 B, C

Charlie AP 1 X
AP 2 B, C
AP 3 B, C
AP 4 B, C

Table 4.2.: Test cases to proof simulation functionality

Test Case

Minimum
Production
Time [sec]

Minimum
Processing
Time [sec]

Maximum
Processing
Time [sec]

Average
Processing
Time [sec] Skill

Average
Queue
Length

Alpha 6.500 8.500 16.100 9.900

A 1

B 2

C 2

X 0

Bravo 6.500 14.900 23.900 17.700

A 5

B 1

C 1

X 0

Charlie 6.500 ∞ ∞ ∞

A 100

B 2

C 2

X 0

Table 4.3.: Test results of previous test setting

57



Chapter 4. Development of the Simulation Environment

In case of Bravo the skill A, which needs the most production effort, is
represented just in one working place. This leads to a higher average queue
length of skill A and a much higher average processing time.

Case Charlie cannot finish any item due to no skill A in any of the work-
ing places. Finally every item is waiting in queue of skill A. Remarkable is,
that every item finishes skill B and C because of the special stock-per-skill
technique and the fact, that through this technique every item is waiting
in all queues of needed skills.

4.4.4. GUI Explanation

The GUI of the simulation is an important part to visually show how the
simulation works.

Taking the figure 4.6 as example, one can see the physical work place
AP 7 which has the skills to do working station G. Furthermore there is
a tractor of type T190 in light blue completed to two-thirds at present in
the work place and gets assembled. In the queue for working station G
are two further vehicles waiting to get served.

Figure 4.6.: A work place with one skill and its corresponding queue

In comparison to that in figure 4.7 the work place AP 3 with the skills for
working stations A, B and C fetches his next item from one of the three
corresponding queues. And as the three work stations A, B and C are
parallelized, one can see that the items in queue C and B contain items
with different completetion states (can be seen on the circular pieces).

The figure 4.8 shows an overview of queues which are overfilled. This
can for example result from a to high input rate of new ordered items to
the production line and can be localized in the GUI at a glance.

58



Chapter 4. Development of the Simulation Environment

Figure 4.7.: A work place with three different skills and the corresponding queues

Figure 4.8.: Overview of overfilled queues and work places

59



Chapter 4. Development of the Simulation Environment

4.4.5. Code Explanation

In the appendix the most important code snippets of the simulation part
are attached at C.2.5. As the name indicates, the whole simulation is
build up on events. So for every state change an event is thrown.

Initially activities like ActivityGetServed build the basis who call state-
change-events like Start and End. With their inherited classes of re-
quests (QueingRequest, FinishedRequest), which are specialized ac-
tivities, they are handled in the ControlUnit. The ControlUnit is also
responsible for the different machines (physical work places) and the
stocks (queues of working stations).

The difference to the original framework of HCCM health care is, that
the different entities have skills (EntityClient, EntityQueue, EntityWork-
Place).

So a normal procedure can be described as following:

• Initially the ControlUnit creates the pyhsical work places. After-
wards every work place gets it set of skills/working stations.

• A request can be thrown centrally from ControlUnit or from the
order item (EntityClient) itself.

• A order item (EntityClient) which still has unfinished production
steps in its checklist, will be added to all queues of the skills which
can be done next (graph of previous needed steps).

• Everytime a machine (work place) is idle, the ControlUnit creates
a new ActivityGetServed with the certain machine and a corre-
sponding order item who still needs one of the machine skills in its
checklist.

• As there is a stock-per-skill-implementation, the ControlUnit has to
check all corresponding queues of the machine’s skill set and take
the longest waiting order item (EntityClient).

• After finishing the production step, the machine throws a finished
event, the step is set to done in internal checklist of the order item
(EntityClient) and it will be enqueued to the queues of still needed
skills.

60



Chapter 4. Development of the Simulation Environment

4.5. Conclusion

After uniting the parts of theory and ideas to this practical approach, in
summary, several findings can be noted.

Firstly there is a lot of scientific information concerning modular produc-
tion, several papers also for the case in automotive industry. But none of
them provides an approach fitting the case that a production line is used
for specialized varieties of vehicles. There are approaches from modular
platforms of the vehicle itself to outsourced modules. But having modular
work stations inside a manufacturers area which can be accessed in a
random way seems to be an unexplored topic.

Secondly Petrinets indeed can help representing and calculating graphs
for this challenge. Although in practical case and for simulation there is
a need of much more additions to handle such a production line. This is
where the theory reaches its limits.

Thirdly in research part there were found some ideas like stock-per-
skill and checklists of items (vehicles) which indeed could be helpful
approaches for real-life systems.

Fourthly the simulation is able to show in different cases and setups the
bottlenecks and possible occurring problems in a production line. Due
to the ability to react quickly on the dynamic data input, the simulation
setup can be changed quickly. Furthermore the HCCM-framework is
supportive to run the simulation with real-time data (like needed time
span) in either slow motion or fast forward.

Finally the described possibilities and inventions still means an overhead
for a production manager. He has to handle all the requirements of work
stations and the logistic behind all resources. Nevertheless, the developed
software can be a comfortable help in simulating and planning production
line and - with a few simple changes - also a tool and mechanism to keep
control.

61





Part V.

Appendix





Appendix A.

Drafts

65



Chapter A. Drafts

Figure A.1.: Pseudo Data Draft Overview

66



Chapter A. Drafts

Figure A.2.: Pseudo Data Draft Detail

67



Chapter A. Drafts

Figure A.3.: Simulation Draft of Checklists

68



Chapter A. Drafts

Figure A.4.: Simulation Draft of Control Unit

69



Chapter A. Drafts

Figure A.5.: Simulation Draft of Machines and Queues

70



Chapter A. Drafts

Figure A.6.: Simulation Draft of Workstations and Workplaces

71





Appendix B.

Lists

73



Chapter B. Lists

Figure B.1.: Pseudo Data Draft Overview

Figure B.2.: Pseudo Data Draft Detail

74



Appendix C.

Code Snippets

75



Chapter C. Code Snippets

C.1. Python Code

C.1.1. Petrinet Exporting

1 import pandas as pd

2 from pandas import ExcelWriter

3 from pandas import ExcelFile

4 from collections import defaultdict

5

6 import os

7 import subprocess

8 import re

9 import string

10

11 import snakes.plugins

12 snakes.plugins.load(’gv’, ’snakes.nets’, ’nets’)

13 from nets import *

14

15 # function for data input

16 def readExcel ():

17 # reading the Excel worksheet

18 Steyr = pd.read_excel(’Input \\ DataSteyr.xlsx’,

sheet_name=’Steyr ’)

19

20 # filtering the type

21 # T190 and T290 will be filtered away , T188 remains

22 Steyr = Steyr[Steyr.Bautyp != ’T190’]

23 Steyr = Steyr[Steyr.Bautyp != ’T290’]

24

25 # creating a list of working step IDs

26 global arbeitsschritteIDs

27 arbeitsschritteIDs = Steyr[’Arbeitsschritt -ID’]. unique ()

28 idsDict = defaultdict(list)

29

30 # creating a dictionary of IDs

31 for element in arbeitsschritteIDs:

32 key = ’’.join([ele for ele in element if not ele.

isdigit ()])

33

34 if key in idsDict.keys():

35 idsDict.setdefault(key , []).append(element)

36 else:

37 idsDict.update ({key : [element ]})

38

39 # creating a dictionary of working step IDs and the

corresponding description

40 global arbeitsschritteDict

41 arbeitsschritteDict = dict(zip(Steyr[’Arbeitsschritt -ID’

], Steyr[’Arbeitsschritte ’]))

42

43 # debug -output of the working steps dictionary

76



Chapter C. Code Snippets

44 print(arbeitsschritteDict)

45

46 # creating a dictionary with working steps and their

corresponding previous workingsteps (must -have’s)

47 global abfolgeDict

48 global abfolgeDictComplete

49 abfolgeDict = dict(zip(Steyr[’Arbeitsschritt -ID’], Steyr

[’Vorausgehende Arbeitsschritte ’]))

50 abfolgeDictComplete = defaultdict(list)

51

52 # the abfolgeDictComplete dictionary consists of the

direct previous working steps

53 # and also of all of the required steps

54 for key in abfolgeDict.keys():

55 element = abfolgeDict[key]

56 values = str(element).split(",")

57 values = [item.strip() for item in values]

58

59 valuescomplete = list()

60 for val in values:

61 if val.strip () in idsDict.keys():

62 ids = idsDict[val]

63 for id in ids:

64 valuescomplete.append(id)

65 else:

66 valuescomplete.append(val)

67

68 abfolgeDictComplete[key] = valuescomplete

69

70 # debug -output of the complete previous steps dictionary

71 print(abfolgeDictComplete)

72

73

74

75 # function for creating the Petrinet

76 def createPetrinet ():

77 petrinet = PetriNet("PetriNet for Magna")

78 print ("Starting ...")

79

80 # adding so -called places/stati to the Petrinet

81 # here the working step IDs are places/stati

82 for status in arbeitsschritteDict.keys():

83 petrinet.add_place(Place(status))

84

85 print("Added all stati ...")

86

87 # adding all transitions to the Petrinet

88 # here the working step descriptions represent the

transitions

89 for transition in arbeitsschritteDict.values ():

90 petrinet.add_transition(Transition(transition))

91

77



Chapter C. Code Snippets

92 print("Added all transitions ...")

93

94 # adding all inputs between places and transitions

95 for status in abfolgeDictComplete.keys():

96 transition = arbeitsschritteDict[status]

97 petrinet.add_input(status , transition , Variable("x")

)

98

99 print("Added all inputs ...")

100

101 # connecting all transitions and places in the petrinet

due to the information of previous working steps

102 for status in arbeitsschritteDict.keys():

103 transition = arbeitsschritteDict[status]

104 for vorgaenger in abfolgeDictComplete[status ]:

105 if vorgaenger != ’nan’:

106 vorgaenger_transition = arbeitsschritteDict[

vorgaenger]

107 petrinet.add_output(status ,

vorgaenger_transition , Variable("y"))

108

109 print("Added all outputs ...")

110

111

112 # removing old output files if exist

113 if os.path.exists("Output \\ Steyr.png"):

114 os.remove("Output \\ Steyr.png")

115

116 # drawing the Petrinet into a new output file

117 try:

118 petrinet.draw("Output \\Steyr.png", place_attr=

draw_place , trans_attr=draw_transition , arc_attr=draw_arc

)

119 print("Finished drawing.")

120 except Exception as ex:

121 print("Error: " + str(ex))

122

123 try:

124 subprocess.call("\" Python 3.7 Conda \\ Library \\bin\\

graphviz \\dot\" -T png \".\\ Output \\Steyr.png.dot\" -o

\".\\ Output \\ Steyr.png\"")

125 except Exception as ex:

126 print("Error2: " + str(ex))

127

128

129

130 # help -function for drawing a place/status

131 def draw_place (place , attr):

132 # setting the place/status name

133 attr[’label’] = place.name

134

135 # setting the attribute -color

78



Chapter C. Code Snippets

136 if place.name in str(arbeitsschritteDict.keys()):

137 attr[’color’] = ’#00 FF00’ #green color

138

139 # help -function for drawing a transition

140 def draw_transition (trans , attr):

141 if str(trans.guard) == ’True’:

142 attr[’label’] = trans.name

143 else:

144 attr[’label’] = ’%s\n%s’ % (trans.name , trans.guard)

145

146 # help -function for drawing an arc (removing description)

147 def draw_arc(arc , attr):

148 attr[’label ’] = ""

149

150

151 # main -function calls the data input and the visualization

152 def main():

153 readExcel ()

154 createPetrinet ()

155

156 if __name__ == "__main__":

157 main()

79



Chapter C. Code Snippets

C.2. C# Code

C.2.1. Import and Export Execution

1

2 public class DataHandler

3 {

4 /// <summary >

5 /// Imports the data from Excel worksheet and returns

an ExcelData object.

6 /// </summary >

7 public ExcelData ImportFromExcel(string path)

8 {

9 try

10 {

11 // creating a new NPoi -Excel -mapper and

reading the needed colums from worksheet

12 Mapper mapper = new Mapper(path);

13 List <ProductionStep > productionSteps = mapper

14 .Take <ProductionStep >("Produktionsschritte

")

15 .Select(x => x.Value)

16 .ToList ();

17 List <WorkPlace > workPlaces = mapper

18 .Take <WorkPlace >("Arbeitsplaetze")

19 .Select(x => x.Value)

20 .ToList ();

21 List <WorkStation > workStations = mapper

22 .Take <WorkStation >("Arbeitsstationen")

23 .Select(x => x.Value)

24 .ToList ();

25 List <OrderItem > orderItems = mapper

26 .Take <OrderItem >("Auftragsliste")

27 .Select(x => x.Value).

28 ToList ();

29

30 return new ExcelData(productionSteps ,

workPlaces , workStations , orderItems);

31 }

32 catch (IOException io)

33 {

34 Debug.Assert(false , "ImportFromExcel - Can ’t

access file because it ’s opened or protected.");

35 }

36 catch (Exception ex)

37 {

38 Debug.Assert(false , "ImportFromExcel");

39 }

40

41 return new ExcelData(new List <ProductionStep >(),

new List <WorkPlace >(), new List <WorkStation >(), new

80



Chapter C. Code Snippets

List <OrderItem >());

42 }

43

44 /// <summary >

45 /// Writes the given ExcelData object to an xml -file (

object structure).

46 /// </summary >

47 public void WriteToXML(string path , ExcelData

excelData)

48 {

49 XmlTextWriter writer = null;

50 try

51 {

52 writer = new XmlTextWriter(path , Encoding.UTF8

);

53 writer.Formatting = Formatting.Indented;

54 writer.Indentation = 4;

55

56 // calculating previous production steps

57 RecalculatePreviousSteps(excelData.

ProductionSteps);

58

59 // serializing the ExcelData object to an xml -

object and writing it to file

60 XmlSerializer serializer = new XmlSerializer(

typeof(ExcelData));

61 serializer.Serialize(writer , excelData);

62 }

63 catch (Exception ex)

64 {

65 Debug.Assert(false , "WriteToXML");

66 }

67 finally

68 {

69 writer.Close();

70 }

71 }

72

73 /// <summary >

74 /// Recalculates all previous working steps of each

production step in the given list.

75 /// </summary >

76 private void RecalculatePreviousSteps(List <

ProductionStep > productionSteps)

77 {

78 // creating a list of all possible (distinct)

working steps

79 List <string > allsteps = ProductionStep.

GetWorkingStepsDistinct ();

80 allsteps.Remove("END");

81

82 foreach (ProductionStep item in productionSteps)

81



Chapter C. Code Snippets

83 {

84 var groupsteps = item.PreviousWorkingSteps.

Except(allsteps);

85 var replacedgroupsteps = allsteps.Where(step

=> groupsteps.Any(groupstep => step.StartsWith(

groupstep)));

86

87 item.PreviousWorkingSteps = item.

PreviousWorkingSteps

88 .Except(groupsteps)

89 .Union(replacedgroupsteps)

90 .ToList ();

91 }

92 }

93 }

C.2.2. Excel and XML Serialization Classes

1

2 public class ProductionStep

3 {

4 /// <summary >

5 /// Represents the Status in a PetriNet

6 /// </summary >

7 private string _productionStepID;

8 [Column("Arbeitsschritt -ID")]

9 [XmlAttribute("ID")]

10 public string ProductionStepID

11 {

12 get

13 {

14 return _productionStepID;

15 }

16 set

17 {

18 _productionStepID = value;

19 AllWorkingSteps.Add(value);

20 }

21 }

22

23 [Column("Marke")]

24 [XmlAttribute("Brand")]

25 public string Brand { get; set; } = "";

26

27 [Column("Bautyp")]

28 [XmlAttribute("BuildingType")]

29 public string BuildingType { get; set; } = "";

30

31 /// <summary >

32 /// Represents the Transition in a PetriNet

33 /// </summary >

82



Chapter C. Code Snippets

34 [Column("Arbeitsschritt -Beschreibung")]

35 [XmlElement("ProductionStepDescription")]

36 public string ProductionStepDescription { get; set; }

= "";

37

38 [Column("Arbeitsschritt -Typ")]

39 [XmlAttribute("ProductionStepType")]

40 public ProductionStepType ProductionStepType { get;

set; } = ProductionStepType.Work;

41

42 [Column("Arbeitsstation")]

43 [XmlElement("WorkingStation")]

44 public string WorkingStation { get; set; } = "";

45

46

47 /// <summary >

48 /// Represents the corrected MaterialList

49 /// </summary >

50 private string _materials = "";

51 [Column("Material")]

52 [XmlIgnore]

53 public string Materials

54 {

55 get

56 {

57 return _materials;

58 }

59 set

60 {

61 _materials = value;

62

63 if (MaterialList ?. Count > 0)

64 {

65 AllMaterials.AddRange(MaterialList);

66 }

67 }

68 }

69

70 [XmlArray("MaterialList")]

71 [XmlArrayItem("Material")]

72 public List <string > MaterialList

73 {

74 get

75 {

76 return _materials?

77 .Split(new[] { ’,’, ’;’ },

StringSplitOptions.RemoveEmptyEntries)?

78 .ToList ()

79 .Select(x => x = x.Trim())

80 .ToList () ?? new List <string >();

81 }

82 }

83



Chapter C. Code Snippets

83

84 /// <summary >

85 /// Represents the corrected ResourcesList

86 /// </summary >

87 private string _resources = "";

88 [Column("Betriebsmittel")]

89 [XmlIgnore]

90 public string Resources

91 {

92 get

93 {

94 return _resources;

95 }

96 set

97 {

98 _resources = value;

99

100 if (ResourcesList ?. Count > 0)

101 {

102 AllResources.AddRange(ResourcesList);

103 }

104 }

105 }

106 [XmlArray("ResourcesList")]

107 [XmlArrayItem("Resource")]

108 public List <string > ResourcesList

109 {

110 get

111 {

112 return _resources?

113 .Split(new[] { ’,’, ’;’ },

StringSplitOptions.RemoveEmptyEntries)?

114 .ToList ()

115 .Select(x => x = x.Trim())

116 .ToList () ?? new List <string >();

117 }

118 }

119

120 /// <summary >

121 /// Represents the corrected WorkingTools

122 /// </summary >

123 private string _workingtools = "";

124 [Column("Werkzeug")]

125 [XmlIgnore]

126 public string WorkingTools

127 {

128 get

129 {

130 return _workingtools;

131 }

132 set

133 {

84



Chapter C. Code Snippets

134 _workingtools = value;

135

136 if (WorkingToolsList ?. Count > 0)

137 {

138 AllWorkingTools.AddRange(WorkingToolsList)

;

139 }

140 }

141 }

142

143 [XmlArray("WorkingToolsList")]

144 [XmlArrayItem("WorkingTool")]

145 public List <string > WorkingToolsList

146 {

147 get

148 {

149 return _workingtools?

150 .Split(new[] { ’,’, ’;’ },

StringSplitOptions.RemoveEmptyEntries)?

151 .ToList ()

152 .Select(x => x = x.Trim())

153 .ToList () ?? new List <string >();

154 }

155 }

156

157 /// <summary >

158 /// Represents the corrected PreviousWorkingSteps

159 /// </summary >

160 private string _previousSteps;

161 [Column("Vorausgehende Arbeitsschritte")]

162 [XmlIgnore]

163 public string PreviousSteps

164 {

165 get

166 {

167 return _previousSteps;

168 }

169 set

170 {

171 if (string.IsNullOrEmpty(value))

172 {

173 _previousSteps = "";

174 }

175 else

176 {

177 _previousSteps = value;

178 PreviousWorkingSteps = (_previousSteps ??

"")

179 .Split(’,’)

180 .ToList ()

181 .Select(x => x = x.Trim())

182 .ToList ();

85



Chapter C. Code Snippets

183 }

184 }

185 }

186

187 [XmlArray("PreviousWorkingSteps")]

188 [XmlArrayItem("PreviousWorkingStep")]

189 public List <string > PreviousWorkingSteps { get; set; }

= new List <string >();

190

191 /// <summary >

192 /// Represents all existing WorkingSteps

193 /// </summary >

194 [XmlIgnore]

195 private static List <string > AllWorkingSteps = new List

<string >();

196 public static List <string > GetWorkingStepsDistinct ()

197 {

198 return AllWorkingSteps

199 .Distinct ()

200 .ToList ();

201 }

202

203 /// <summary >

204 /// Represents all existing Materials

205 /// </summary >

206 [XmlIgnore]

207 private static List <string > AllMaterials = new List <

string >();

208 public static List <string > GetMaterialsDistinct ()

209 {

210 return AllMaterials

211 .Distinct ()

212 .ToList ();

213 }

214

215 /// <summary >

216 /// Represents all existing Resources

217 /// </summary >

218 [XmlIgnore]

219 private static List <string > AllResources = new List <

string >();

220 public static List <string > GetResourcesDistinct ()

221 {

222 return AllResources

223 .Distinct ()

224 .ToList ();

225 }

226

227 /// <summary >

228 /// Represents all existing WorkingTools

229 /// </summary >

230 [XmlIgnore]

86



Chapter C. Code Snippets

231 private static List <string > AllWorkingTools = new List

<string >();

232 public static List <string > GetWorkingToolsDistinct ()

233 {

234 return AllWorkingTools

235 .Distinct ()

236 .ToList ();

237 }

238

239 /// <summary >

240 /// States whether the ProductionStep is done or not

241 /// </summary >

242 [XmlIgnore]

243 public bool StepDone { get; set; } = false;

244 }

245

246

247 public class WorkPlace

248 {

249 [Column("Arbeitsplatz (physisch)")]

250 [XmlElement("PhysicalWorkPlace")]

251 public string PhysicalWorkPlace { get; set; }

252

253 /// <summary >

254 /// Represents the physical work space (modular work

place)

255 /// </summary >

256 private string _workStation;

257 [Column("Arbeitsstationen (organisatorisch),

Faehigkeiten des Arbeitsplatzes")]

258 [XmlIgnore]

259 public string Skills

260 {

261 get

262 {

263 return _workStation;

264 }

265 set

266 {

267 if (string.IsNullOrEmpty(value))

268 {

269 _workStation = "";

270 }

271 else

272 {

273 _workStation = value;

274 WorkStations = (_workStation ?? "")

275 .Split(’,’)

276 .ToList ()

277 .Select(x => x = x.Trim())

278 .ToList ();

279

87



Chapter C. Code Snippets

280 if (WorkStations ?. Count > 0)

281 {

282 AllWorkStations.AddRange(WorkStations)

;

283 }

284 }

285 }

286 }

287

288 /// <summary >

289 /// Represents a list of handleable WorkStations (

skills) at this WorkPlace

290 /// </summary >

291 [XmlArray("WorkStations")]

292 [XmlArrayItem("WorkStation")]

293 public List <string > WorkStations { get; set; } = new

List <string >();

294

295

296 [XmlIgnore]

297 private static List <string > AllWorkStations = new List

<string >();

298 public static List <string > GetWorkStationsDistinct ()

299 {

300 return AllWorkStations

301 .Distinct ()

302 .ToList ();

303 }

304 }

305

306 public class WorkStation

307 {

308 [Column("Arbeitsstation")]

309 [XmlAttribute("ID")]

310 public string ID { get; set; }

311

312 [Column("Bezeichnung")]

313 [XmlAttribute("Description")]

314 public string Description { get; set; }

315 }

316

317 public class OrderItem

318 {

319 [Column("Auftragsnummer")]

320 [XmlAttribute("ID")]

321 public string OrderID { get; set; }

322

323 [Column("Bautyp")]

324 [XmlAttribute("BuildingType")]

325 public string BuildingType { get; set; }

326 }

88



Chapter C. Code Snippets

C.2.3. Graph Generation

1 public class DataHandler

2 {

3 /// <summary >

4 /// Creates and returns the graph containing the

Petrinet which will be drawn in the visualisation part.

5 /// This method needs therefore a list of production

steps (working steps for a specific type)

6 /// and export options wich contain the styling for

visualization.

7 /// </summary >

8 public Graph GeneratePetriNet(List <ProductionStep >

productionSteps , ExportOptions exportOptions = null)

9 {

10 // recalculating all previous working steps of

each given production step

11 RecalculatePreviousSteps(productionSteps);

12 // creating a new graph for the Petrinet

13 Graph petrinet = new Graph("PetriNet");

14

15 if (exportOptions == null)

16 {

17 exportOptions = new ExportOptions ();

18 }

19

20 // gaining all transitions with following stati

21 foreach (ProductionStep step in productionSteps)

22 {

23 Node transition = new Node(step.

ProductionStepDescription);

24 transition.Restyle(NodeType.Transition);

25

26 // decision of node type for correct styling

27 Node status = new Node(step.ProductionStepID);

28 switch (step.ProductionStepType)

29 {

30 case ProductionStepType.None:

31 status.Restyle(NodeType.StartStop);

32 break;

33 case ProductionStepType.Work:

34 status.Restyle(NodeType.Status);

35 break;

36 case ProductionStepType.Check:

37 status.Restyle(NodeType.StatusCheck);

38 break;

39 }

40

41 petrinet.AddNode(status);

42

43 if (step.ProductionStepType !=

ProductionStepType.None)

89



Chapter C. Code Snippets

44 {

45 petrinet.AddNode(transition);

46 petrinet.AddEdge(transition.Id, status.Id)

;

47 }

48 }

49

50 // gaining all transitions with previous stati

51 foreach (ProductionStep step in productionSteps)

52 {

53 foreach (string previousStep in step.

PreviousWorkingSteps)

54 {

55 if (! petrinet.Edges.Any(x => (x.Source ==

previousStep && x.Target == step.

ProductionStepDescription) || (x.Source == step.

ProductionStepDescription && x.Target == previousStep))

&&

56 step.ProductionStepType !=

ProductionStepType.None)

57 {

58 petrinet.AddEdge(previousStep , step.

ProductionStepDescription);

59 }

60 else if (step.ProductionStepType ==

ProductionStepType.None)

61 {

62 petrinet.AddEdge(previousStep , step.

ProductionStepID);

63 }

64 }

65

66 // decisions if Material/Resource/WorkingTool

are checked and should be added to the graph

67 if (exportOptions.Material)

68 {

69 foreach (string materialname in step.

MaterialList)

70 {

71 Node material = new Node(materialname)

;

72 material.Restyle(NodeType.

StatusMaterial);

73

74 petrinet.AddNode(material);

75 petrinet.AddEdge(materialname , step.

ProductionStepDescription);

76 }

77 }

78 if (exportOptions.Resource)

79 {

80 foreach (string resourcename in step.

90



Chapter C. Code Snippets

ResourcesList)

81 {

82 Node resource = new Node(resourcename)

;

83 resource.Restyle(NodeType.

StatusResource);

84

85 petrinet.AddNode(resource);

86 petrinet.AddEdge(resourcename , step.

ProductionStepDescription);

87 }

88 }

89 if (exportOptions.WorkingTool)

90 {

91 foreach (string workingtoolname in step.

WorkingToolsList)

92 {

93 Node workingtool = new Node(

workingtoolname);

94 workingtool.Restyle(NodeType.

StatusWorkingTool);

95

96 petrinet.AddNode(workingtool);

97 petrinet.AddEdge(workingtoolname , step

.ProductionStepDescription);

98 }

99 }

100 }

101

102 return petrinet;

103 }

104 }

91



Chapter C. Code Snippets

C.2.4. Visualization

1 public partial class MainWindow : Window

2 {

3 private void RedrawVisualization ()

4 {

5 if (cbVisualizeData.SelectedItem == null)

6 {

7 MessageBox.Show("No redrawing due to no

selection of visualizing data.", "No redrawign",

MessageBoxButton.OK , MessageBoxImage.Information);

8 return;

9 }

10

11 // getting all production steps of the filter

building type (steps for "all" and steps for the

selected "type")

12 List <ProductionStep > filteredSteps = _excelData.

ProductionSteps

13 .Where(x => x.BuildingType.ToUpper () == "ALLE"

|| x.BuildingType == cbVisualizeData.SelectedItem.

ToString ())

14 .ToList ();

15

16 // getting the Graph of the DataHandler

17 petrinetViewer.BackColor = System.Drawing.Color.

White;

18 petrinetViewer.Graph = DataHandler.Instance.

GeneratePetriNet(filteredSteps , _exportOptions);

19

20 _exportOptions.HasChanged = false;

21 }

22 }

92



Chapter C. Code Snippets

C.2.5. Simulation

1 public class ActivityGetServed : Activity

2 {

3 /// <summary >

4 /// Overrides the state change at start. Server is not

idle , and end event is triggered.

5 /// </summary >

6 override public void StateChangeStartEvent(DateTime

time , ISimulationEngine simEngine)

7 {

8 double serviceTimeMinutes = ((

SimulationModelQueuing)ParentControlUnit.

ParentSimulationModel).ServiceTime;

9

10 Server.IsIdle = false;

11 simEngine.AddScheduledEvent(EndEvent , time +

TimeSpan.FromMinutes(Distributions.Instance.Exponential

(serviceTimeMinutes)));

12 }

13

14 /// <summary >

15 /// Overrides the state change at end. Server is set

idle again

16 /// </summary >

17 override public void StateChangeEndEvent(DateTime time

, ISimulationEngine simEngine)

18 {

19 Server.IsIdle = true;

20

21 Client.OrderItemWithCheckList.SetRequestAsDone(

WorkingStation.ID);

22

23 HashSet <string > nextrequests = Client.

OrderItemWithCheckList.GetNextRequestsForQueue ();

24

25 if (nextrequests.Count == 0)

26 {

27 this.EndEvent.SequentialEvents.Add(new

EventClientFinished(ParentControlUnit , Client));

28 ParentControlUnit.RAELFinished.Add(new

FinishedRequest("Finished", Client));

29 }

30 else

31 {

32 ParentControlUnit.AddRequest(new QueingRequest

("GetServed", Client , time));

33 }

34 }

35 }

36

37

93



Chapter C. Code Snippets

38

39 public class EventClientArrival : Event

40 {

41 /// <summary >

42 /// Overriden state change of the event. Request for

service is made , next client arrival is scheduled

43 /// </summary >

44 /// <param name="time">Time the client arrives </param >

45 /// <param name=" simEngine">SimEngine responsible for

simulation execution </param >

46 protected override void StateChange(DateTime time ,

ISimulationEngine simEngine)

47 {

48 #region Using order list of ExcelData

49

50 // next arrival is scheduled

51 if (( ParentControlUnit as ControlUnitQueuingModel)

._productionQueue.Count > 0)

52 {

53 EntityClient nextClient = new EntityClient ((

ParentControlUnit as ControlUnitQueuingModel).

_productionQueue.Dequeue ());

54 EventClientArrival nextClientArrival = new

EventClientArrival(ParentControlUnit , nextClient);

55

56 double arrivalTimeMinutes = ((

SimulationModelQueuing)ParentControlUnit.

ParentSimulationModel).ArrivalTime;

57

58 simEngine.AddScheduledEvent(nextClientArrival ,

time + TimeSpan.FromMinutes(Distributions.Instance.

Exponential(arrivalTimeMinutes)));

59

60 ParentControlUnit.AddRequest(new QueingRequest

("GetServed", Client , time));

61 }

62 else

63 {

64 // adding the last Request

65 ParentControlUnit.AddRequest(new QueingRequest

("GetServed", Client , time));

66 }

67 }

68 }

69

70

71

72 public class ControlUnitQueuingModel : ControlUnit

73 {

74 public Queue <OrderItemWithCheckList > _productionQueue

= new Queue <OrderItemWithCheckList >();

75 public ExcelData Exceldata;

94



Chapter C. Code Snippets

76

77 /// <summary >

78 /// Number queues to be modeled

79 /// </summary >

80 public List <EntityQueue > Queues { get; set; }

81

82 /// <summary >

83 /// Number servers to be modeled

84 /// </summary >

85 public List <EntityWorkPlace > WorkPlaces { get; set; }

86

87 /// <summary >

88 /// Basic constructor , entities are added to model

89 /// </summary >

90 /// <param name="name">Name of control </param >

91 /// <param name=" parentControlUnit">Root control unit ,

null in this example </param >

92 /// <param name=" parentSimulationModel">Simulation

model control belongs to </param >

93 /// <param name=" numberQueues">Number queues to be

modeled </param >

94 /// <param name=" numberServers">Number servers to be

modeled </param >

95 public ControlUnitQueuingModel(string name ,

ControlUnit parentControlUnit , SimulationModel

parentSimulationModel , ExcelData excelData) : base(name

, parentControlUnit , parentSimulationModel)

96 {

97 Exceldata = excelData;

98 Queues = new List <EntityQueue >();

99 WorkPlaces = new List <EntityWorkPlace >();

100 _productionQueue = excelData.GetFullProductionList

();

101

102 List <string > workplaces = WorkPlace.

GetWorkStationsDistinct () ?? new List <string >();

103

104 for (int i = 0; i < workplaces.Count; i++)

105 {

106 EntityQueue newQueue = new EntityQueue(

workplaces[i]);

107 AddEntity(newQueue);

108 Queues.Add(newQueue);

109 }

110 EntityQueue finishedQueue = new EntityQueue("

Finished");

111 AddEntity(finishedQueue);

112 Queues.Add(finishedQueue);

113

114 for (int i = 0; i < excelData.WorkPlaces.Count; i

++)

115 {

95



Chapter C. Code Snippets

116 SkillSet skillset = new SkillSet(excelData.

WorkPlaces[i]. WorkStations);

117 EntityWorkPlace newWorkPlace = new

EntityWorkPlace(excelData.WorkPlaces[i].

PhysicalWorkPlace , skillset);

118 AddEntity(newWorkPlace);

119 WorkPlaces.Add(newWorkPlace);

120 }

121 }

122

123 /// <summary >

124 /// Arrival stream of clients is initialized

125 /// </summary >

126 /// <param name=" startTime">Start time of simulation </

param >

127 /// <param name=" simEngine">End time of simulation </

param >

128 protected override void CustomInitialize(DateTime

startTime , ISimulationEngine simEngine)

129 {

130 EntityClient nextClient = new EntityClient(

_productionQueue.Dequeue ());

131 EventClientArrival nextClientArrival = new

EventClientArrival(this , nextClient);

132

133 double arrivalTimeMinutes = ((

SimulationModelQueuing)ParentSimulationModel).

ArrivalTime;

134

135 simEngine.AddScheduledEvent(nextClientArrival ,

startTime

136 + TimeSpan.FromMinutes(Distributions.Instance.

Exponential(arrivalTimeMinutes)));

137 }

138

139 /// <summary >

140 /// Custom rule set , basically incoming clients are

assinged to queues with minimum length

141 /// and clients are selected from front of queues by

FIFO (so FIFO within a single queue and FIFO

142 /// of queue fronts)

143 /// </summary >

144 /// <param name="time">Time rules are executed </param >

145 /// <param name=" simEngine">SimEngine responsible for

simulation execution </param >

146 /// <returns ></returns >

147 protected override bool PerformCustomRules(DateTime

time , ISimulationEngine simEngine)

148 {

149 #region Handle finished clients

150

151 if (RAELFinished.Count > 0)

96



Chapter C. Code Snippets

152 {

153 EntityQueue finishedQueue = Queues

154 .Where(x => x.Identifier == "Finished")

155 .First();

156

157 foreach (var item in RAELFinished.Cast <

FinishedRequest >().Select(x => x.Client).ToList ())

158 {

159 finishedQueue.HoldedEntities.Add(item);

160 }

161

162 RAELFinished.Clear();

163 }

164

165 #endregion

166

167 #region Put requests to right queue

168

169 List <QueingRequest > getServedRequests = RAEL.Where

(p => p.Activity == "GetServed").Cast <QueingRequest >().

ToList ();

170

171 foreach (var servedRequest in getServedRequests)

172 {

173 HashSet <string > nextRequests = servedRequest.

Client.OrderItemWithCheckList.GetNextRequestsForQueue ()

;

174 IEnumerable <EntityQueue > fittingQueues =

Queues.Where(queue => nextRequests.Contains(queue.

Identifier));

175 EntityQueue correctQueue = fittingQueues

176 .Where(queue => queue.HoldedEntities.Count

== fittingQueues.Min(x => x.HoldedEntities.Count))

177 .FirstOrDefault ();

178

179 if (correctQueue != null)

180 {

181 correctQueue.HoldedEntities.Add(

servedRequest.Client);

182 RemoveRequest(servedRequest);

183 }

184 }

185

186 #endregion

187

188 #region workplaces handle clients in right queues

189

190 foreach (var workplace in WorkPlaces.Where(

workplace => workplace.IsIdle))

191 {

192 List <string > skills = workplace.SkillSet.

Skills

97



Chapter C. Code Snippets

193 .Select(x => x.Skill)

194 .ToList ();

195 var bestQueues = Queues

196 .Where(queue => skills.Contains(queue.

Identifier));

197 int maxCount = bestQueues.Max(x => x.

HoldedEntities.Count);

198

199 if (maxCount == 0)

200 {

201 continue;

202 }

203 else

204 {

205 EntityQueue bestQueue = bestQueues

206 .Where(queue => queue.HoldedEntities.

Count == maxCount)

207 .FirstOrDefault ();

208

209 EntityClient client = (EntityClient)

bestQueue.HoldedEntities.First ();

210 bestQueue.HoldedEntities.RemoveAt (0);

211

212 WorkStation workstationToDo = Exceldata.

WorkStations.Where(x => x.ID == bestQueue.Identifier).

FirstOrDefault ();

213

214 ActivityGetServed newService = new

ActivityGetServed(this , client , workplace ,

workstationToDo);

215 newService.StartEvent.Trigger(time ,

simEngine);

216 }

217 }

218

219 #endregion

220

221 return false;

222 }

223 }

98



Chapter C. Code Snippets

C.3. XML Files

C.3.1. Hierarchical Structure of Excel Data

1 <?xml version="1.0" encoding="utf-8"?>

2 <Data xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:

xsi="http://www.w3.org/2001/XMLSchema-instance">

3 <ProductionSteps>

4 <ProductionStep ID="START" Brand="Steyr" BuildingType="

Alle" ProductionStepType="None">

5 <ProductionStepDescription>Start - Initialisierung</

ProductionStepDescription>

6 <MaterialList />

7 <ResourcesList />

8 <WorkingToolsList />

9 <PreviousWorkingSteps />

10 </ProductionStep>

11 <ProductionStep ID="A01" Brand="Steyr" BuildingType="Alle

" ProductionStepType="Work">

12 <ProductionStepDescription>Motorblock bereitstellen</

ProductionStepDescription>

13 <WorkingStation>A</WorkingStation>

14 <MaterialList>

15 <Material>Motorblock</Material>

16 </MaterialList>

17 <ResourcesList />

18 <WorkingToolsList />

19 <PreviousWorkingSteps>

20 <PreviousWorkingStep>START</PreviousWorkingStep>

21 </PreviousWorkingSteps>

22 </ProductionStep>

23 <ProductionStep ID="A02" Brand="Steyr" BuildingType="Alle

" ProductionStepType="Work">

24 <ProductionStepDescription>Buechsen-O-Ringe einbauen</

ProductionStepDescription>

25 <WorkingStation>A</WorkingStation>

26 <MaterialList>

27 <Material>O-Ringe</Material>

28 </MaterialList>

29 <ResourcesList>

30 <Resource>Motoroel</Resource>

31 </ResourcesList>

32 <WorkingToolsList />

99



Chapter C. Code Snippets

33 <PreviousWorkingSteps>

34 <PreviousWorkingStep>A01</PreviousWorkingStep>

35 </PreviousWorkingSteps>

36 </ProductionStep>

37

38 <ProductionStep ID="C01" Brand="Steyr" BuildingType="Alle

" ProductionStepType="Work">

39 <ProductionStepDescription>Pleuellager an Pleuelboecke

anbringen</ProductionStepDescription>

40 <WorkingStation>C</WorkingStation>

41 <MaterialList>

42 <Material>Pleuellager (Bockseite)</Material>

43 </MaterialList>

44 <ResourcesList>

45 <Resource>Motoroel</Resource>

46 </ResourcesList>

47 <WorkingToolsList />

48 <PreviousWorkingSteps>

49 <PreviousWorkingStep>START</PreviousWorkingStep>

50 </PreviousWorkingSteps>

51 </ProductionStep>

52

53 <ProductionStep ID="X01" Brand="Steyr" BuildingType="Alle

" ProductionStepType="Check">

54 <ProductionStepDescription>ueberpruefungsschritt -

Befestigungskontrolle</ProductionStepDescription>

55 <WorkingStation>X</WorkingStation>

56 <MaterialList />

57 <ResourcesList />

58 <WorkingToolsList />

59 <PreviousWorkingSteps>

60 <PreviousWorkingStep>A01</PreviousWorkingStep>

61 <PreviousWorkingStep>A02</PreviousWorkingStep>

62 <PreviousWorkingStep>A03</PreviousWorkingStep>

63 <PreviousWorkingStep>B01</PreviousWorkingStep>

64 <PreviousWorkingStep>B02</PreviousWorkingStep>

65 <PreviousWorkingStep>B03</PreviousWorkingStep>

66 <PreviousWorkingStep>B04</PreviousWorkingStep>

67 <PreviousWorkingStep>B05</PreviousWorkingStep>

68 <PreviousWorkingStep>B06</PreviousWorkingStep>

69 <PreviousWorkingStep>C01</PreviousWorkingStep>

70 <PreviousWorkingStep>C02</PreviousWorkingStep>

71 <PreviousWorkingStep>C03</PreviousWorkingStep>

100



Chapter C. Code Snippets

72 <PreviousWorkingStep>C04</PreviousWorkingStep>

73 <PreviousWorkingStep>C05</PreviousWorkingStep>

74 <PreviousWorkingStep>C06</PreviousWorkingStep>

75 <PreviousWorkingStep>C07</PreviousWorkingStep>

76 </PreviousWorkingSteps>

77 </ProductionStep>

78

79 </ProductionSteps>

80 <WorkPlaces>

81 <WorkPlace>

82 <PhysicalWorkPlace>AP_2</PhysicalWorkPlace>

83 <WorkStations>

84 <WorkStation>A</WorkStation>

85 <WorkStation>B</WorkStation>

86 <WorkStation>C</WorkStation>

87 </WorkStations>

88 </WorkPlace>

89

90 <WorkPlace>

91 <PhysicalWorkPlace>AP_4</PhysicalWorkPlace>

92 <WorkStations>

93 <WorkStation>D</WorkStation>

94 </WorkStations>

95 </WorkPlace>

96 </WorkPlaces>

97 <WorkStations>

98 <WorkStation ID="X" Description="ueberpruefung" />

99 <WorkStation ID="A" Description="Motorblock" />

100 <WorkStation ID="B" Description="Kolben" />

101 <WorkStation ID="C" Description="Kurbelwelle" />

102 <WorkStation ID="D" Description="Kurbelgehaeuse" />

103 <WorkStation ID="E" Description="Nockenwelle" />

104 <WorkStation ID="F" Description="Zylinderkoepfe" />

105 <WorkStation ID="G" Description="Ventildeckel" />

106 <WorkStation ID="H" Description="Kruemmer" />

107 <WorkStation ID="I" Description="Finalisierung" />

108 </WorkStations>

109 <OrderItems>

110 <OrderItem ID="BT_0001" BuildingType="T188" />

111 <OrderItem ID="BT_0002" BuildingType="T190" />

112 <OrderItem ID="BT_0003" BuildingType="T290" />

113 <OrderItem ID="BT_0004" BuildingType="T190" />

114 <OrderItem ID="BT_0005" BuildingType="T190" />

101



Chapter C. Code Snippets

115 <OrderItem ID="BT_0006" BuildingType="T190" />

116 <OrderItem ID="BT_0007" BuildingType="T290" />

117 <OrderItem ID="BT_0008" BuildingType="T188" />

118 <OrderItem ID="BT_0009" BuildingType="T190" />

119 <OrderItem ID="BT_0010" BuildingType="T190" />

120 </OrderItems>

121 </Data>

102



Bibliography

[ABD11] Bensmaine Abderrahmane, Lyes Benyoucef, and Mohammed
Dahane. “Process plan generation in reconfigurable manu-
facturing systems using adapted NSGA-II and AMOSA.” In:
Aug. 2011, pp. 863–868 (cit. on p. 10).

[Bre92] Berndt Brehmer. “Dynamic decision making: Human control
of complex systems.” In: Acta Psychologica, Volume 81, Issue 3.
1992, pp. 211–241 (cit. on p. 18).

[CGL16] Zhu En Chay, Bing Feng Goh, and Maurice Ling. “PNet: A
Python Library for Petri Net Modeling and Simulation.” In:
2016, pp. 24–30 (cit. on p. 15).

[Dic20] Dictionary.Com. German-English Dictionary. 2020. url: http:
//dictionary.com/ (cit. on p. ii).

[Eas] Easterbrook. The difference between Verification and Validation.
url: https://www.easterbrook.ca/steve/2010/11/the-
difference- between- verification- and- validation (vis-
ited on 12/21/2020) (cit. on p. 56).

[EET20] Claudia Ermel, Karsten Ehrig, and Gabriele Taentzer. TU
Berlin. 2020. url: https://www.user.tu-berlin.de/lieske/
tfs/projekte/petrieditor/details.htm (cit. on p. 16).

[Fur+14] Nikolaus Furian et al. “A conceptual modeling framework
for discrete event simulation using hierarchical control struc-
tures.” In: In Proceedings 28th European Conference on Modeling
and Simulation pp 206-2013. 2014, pp. 206–213 (cit. on pp. 16,
17, 25).

[Fur14] Nikolaus Furian. “HCCM - A control world view for health
care discrete event simulation.” In: In Proceedings 28th Euro-
pean Conference on Modeling and Simulation pp 206-2013. 2014,
pp. 206–213 (cit. on p. 53).

[Gra12] Victor Granados. “Modelling and optimization of flexible
manufacturing systems.” PhD thesis. July 2012 (cit. on p. 11).

[Hyu92] J. Hyun. “A Unifying Framework for Manufacturing Flexibil-
ity.” In: 1992 (cit. on p. 11).

103

http://dictionary.com/
http://dictionary.com/
https://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation
https://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation
https://www.user.tu-berlin.de/lieske/tfs/projekte/petrieditor/details.htm
https://www.user.tu-berlin.de/lieske/tfs/projekte/petrieditor/details.htm


Bibliography

[Lin20] Linguee. German-English Dictionary. 2020. url: https://www.
linguee.de/ (cit. on p. ii).

[Löd16] Hermann Lödding. Vol. 4. Springer, 2016, p. 124 (cit. on pp. 11,
12).

[LTG05] A. Lara, G. Trujano, and A. Garcia-Garnica. “Modular produc-
tion and technological up-grading in the automotive industry:
a case study.” In: Int. J. Automotive Technology and Management,
Vol. 5, No. 2. 2005, pp. 199–215 (cit. on p. 9).

[Mica] Microsoft. Microsoft MSAGL Graphic Viewer. url: https://
github.com/microsoft/automatic-graph-layout3 (visited
on 11/18/2020) (cit. on p. 50).

[Micb] Microsoft. Microsoft NPOI Excel Mapper. url: https://github.
com/donnytian/Npoi.Mapper (visited on 11/18/2020) (cit. on
p. 48).

[Pan+08] J. Pandremenos et al. “Modularity concepts for the automotive
industry: A critical review.” In: CIRP Journal of Manufacturing
Science and Technology 1 (2009). 2008, pp. 148–152 (cit. on p. 9).

[Pom] Franck Pommereau. Snakes. url: https://snakes.ibisc.
univ-evry.fr (visited on 11/19/2020) (cit. on p. 35).

[Pom15] SNAKES: a flexible high-level Petri nets library. Springer, 2015

(cit. on p. 15).

[PR08] Carl Adam Petri and Wolfgang Reisig. “Petri net.” In: 2008,
p. 6477 (cit. on p. 15).

[RB97] G.G. Rogers and L. Bottaci. Modular production systems: a new
manufacturing paradigm. 1997. url: https://link.springer.
com/article/10.1023/A:1018560922013 (visited on 11/10/2020)
(cit. on p. 9).

[Rob08] Stewart Robinson. “Conceptual modelling for simulation Part
I: Definition and requirements.” In: Journal of the Operational
Research Society 59 (2008), pp. 278–290 (cit. on p. 25).

[Sup] Supertek. url: https://en.supertek.de/products- and-
services/machine-and-plant-engineering/industry-4.0

(visited on 12/01/2020) (cit. on p. 3).

[Swa00] Paul M. Swamidass. “Manufacturing Flexibility.” In: Innova-
tions in Competitive Manufacturing. Springer, 2000, pp. 117–136

(cit. on p. 11).

104

https://www.linguee.de/
https://www.linguee.de/
https://github.com/microsoft/automatic-graph-layout3
https://github.com/microsoft/automatic-graph-layout3
https://github.com/donnytian/Npoi.Mapper
https://github.com/donnytian/Npoi.Mapper
https://snakes.ibisc.univ-evry.fr
https://snakes.ibisc.univ-evry.fr
https://link.springer.com/article/10.1023/A:1018560922013
https://link.springer.com/article/10.1023/A:1018560922013
https://en.supertek.de/products-and-services/machine-and-plant-engineering/industry-4.0
https://en.supertek.de/products-and-services/machine-and-plant-engineering/industry-4.0

	Affidavit
	Dedication
	Abstract
	Acknowledgements
	Initial Situation
	Initial Situation
	Historical Overview of Production
	Case Study Magna


	Theoretical Basis
	Theoretical Basis
	Modular Production
	Modular Production discussed
	Reasons for Modular Production Lines
	Problems and Questions inventing Modular Production

	Petrinets
	Event Triggered Simulation


	Research Concepts
	Research Concepts
	Methodology
	Building Instruction
	Sequence Diagram
	Petrinet Computation
	Simulation Model

	Research
	Petrinet Experimental Setup
	Petrinet Real Data of Magna Steyr.
	Basics of Data Acquisition and Visualization Tool

	Challenging Problems
	Concepts
	Stock per Skill



	Development of the Simulation Environment
	Development of the Simulation Environment
	Structure Creation
	Data Acquisition and Preparation
	Visualization
	Simulation
	Expectations
	Basic Definitions
	Implementation
	GUI Explanation
	Code Explanation

	Conclusion


	Appendix
	Drafts
	Lists
	Code Snippets
	Python Code
	Petrinet Exporting

	C# Code
	Import and Export Execution
	Excel and XML Serialization Classes
	Graph Generation
	Visualization
	Simulation

	XML Files
	Hierarchical Structure of Excel Data


	Bibliography


