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Abstract

A smart city is an urban area that consists of a large number of information systems
handling services across diverse domains, such as economy, environment, health, living,
mobility, and security. These information systems are often realized as client-server sys-
tems offering their clients various resources via different service interfaces. Many services
such as smart parking, renting or sharing vehicles, placing orders via mobile applications,
or accessing online data streams are already part of our everyday life. However, carefully
examined, there is low interaction between different client-server systems of contrasting
domains, which has resulted in the creation of a massive number of independent appli-
cations. Additionally, a lack of standardization, environmental restrictions, and specific
use case requirements impede the usage of standard service access methods. Finally, due
to an interplay of heterogenous data processing systems, also secure and privacy conform
data-processing poses a challenge.
We envision pervasive computing technologies to facilitate seamless interaction between

service providers, their users, and the environment. The aim is to address more clients,
make services and their resources accessible more efficiently and securely, and save time
when booking, redeeming, or merely utilizing services, thus facilitating users’ daily ac-
tivities. This leads us to our main research question: How can we provide people with
personalized and secure cross-domain service access? In this thesis, a multi-layered service-
oriented platform is presented, paving the way for a paradigm shift towards “smart city
as a service”. It enables businesses and their pre-existing client-server systems to issue,
forward, redeem, and exchange digital services seamlessly. Distinct authentication and
authorization mechanisms are integrated into the platform to comply with diverse envi-
ronmental restrictions and application requirements. Furthermore, a particular focus is
on secure data aggregation while preserving the users’ privacy. The overall platform is
designed, implemented, and evaluated in the course of several industrial projects. Per-
formance measurements as well as acceptance and usability studies have been conducted
successfully. Our evaluation results show that our cross-domain service management sys-
tem achieved low execution times, along with high system acceptance and usability levels.
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Zusammenfassung

Eine “smart city” ist ein städtisches Gebiet, das sich aus einer Vielzahl an Informati-
onssystemen aus unterschiedlichen Domänen, wie z.B. Wirtschaft, Umwelt, Gesundheit,
Wohnen, Mobilität und Sicherheit zusammensetzt. Diese Informationssysteme werden oft
als Client-Server-Systeme umgesetzt, die ihren Clients über diverse Serviceschnittstellen
unterschiedliche Ressourcen anbieten. Viele Services wie Smart Parking, das Ausleihen von
Fahrzeugen, das Aufgeben von Bestellungen über mobile Anwendungen oder der Zugriff
auf Data-Streams gehören bereits zu unserem Alltag. Bei sorgfältiger Prüfung zeigt sich
jedoch, dass die Interaktion zwischen verschiedenen Client-Server-Systemen unterschied-
licher Domänen gering ist, was zu einer massiven Anzahl unabhängiger Anwendungen
führt. Außerdem erschweren mangelnde Standardisierung, diverse Umgebungseinschrän-
kungen und spezifische Use-Case-Anforderungen den Einsatz von Standardmethoden für
den Zugang zu diversen Services. Darüber hinaus stellt sichere und datenschutzkonforme
Datenverarbeitung, aufgrund des Zusammenspiels heterogener Systeme, eine Herausforde-
rung dar.
Die nahtlose Interaktion zwischen Service Providern, ihren NutzerInnen und der Umge-

bung soll erleichtert werden. Es sollen mehr User angesprochen, Ressourcen leichter und
sicherer zugänglich gemacht sowie Zeit bei der Service-Buchung, Service-Einlösung oder
Service-Nutzung gespart werden. Dies führt uns zu unserer Hauptforschungsfrage: Wie
können wir personalisierten und sicheren domänenübergreifenden Service-Zugang ermög-
lichen? In dieser Dissertation wird eine mehrschichtige, Service-orientierte Plattform vorge-
stellt, welche den Weg für einen Paradigmenwechsel hin zu “smart city as a service” ebnet.
Sie ermöglicht Service Providern und ihren bereits bestehenden Client-Server-Systemen die
Ausgabe, Weiterleitung, Einlösung und den Austausch digitaler Services. Entsprechend un-
terschiedlicher Umgebungsrestriktionen und Anwendungsanforderungen werden mehrere
Authentifizierungs- und Autorisierungsmechanismen in die Plattform integriert. Darüber
hinaus wird ein besonderer Schwerpunkt auf die sichere Datenaggregation unter Wahrung
der Privatsphäre der NutzerInnen gelegt. Das resultierende System wurde im Rahmen
mehrerer Industrieprojekte designt, implementiert und evaluiert. Performance-Messungen
sowie Akzeptanz- und Usability-Studien wurden erfolgreich durchgeführt. Unsere Evalu-
ierungsergebnisse zeigen, dass unser domänenübergreifendes Service-Management-System
sowohl niedrige Ausführungszeiten als auch eine hohe Systemakzeptanz und Benutzer-
freundlichkeit erreicht hat.
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1 Introduction

This thesis elaborates on several aspects of providing personal and secure access to hetero-
geneous services and their related digital and physical resources. The introductory chapter
lists the thesis’ remarks in section 1.1 and points out motivational aspects within section
1.2. Subsequently, the problem statement (1.3) and the scientific contributions (1.4) are
discussed. An outline of this doctoral thesis is given in section 1.5.

1.1 Thesis Remarks

This thesis was carried out at Graz, University of Technology, Institute of Technical In-
formatics, in cooperation with the industrial partner CISC Semiconductor GmbH and its
subsidiary companies COYERO GmbH and COYERO Inc. While the Institute of Tech-
nical Informatics offers research and education on modern networked embedded systems,
CISC is an international company within the fields of automotive, radio-frequency identi-
fication (RFID), and Internet of Things (IoT) based in Klagenfurt and Graz (Austria), as
well as Mountain View, California (US). CISC’s expertise in the IoT domain lies in secure
BLE and NFC application services for smartphones and embedded devices, as well as the
design and implementation of distributed cloud-based systems. Being involved in joint
R&D activities with major companies in the IoT sector and partners in the area of mi-
croelectronic systems, CISC handles the increased system complexity with its widespread
system know-how from embedded to the cloud layer. Furthermore, this thesis has profited
from the influence of European and Austrian projects and the close cooperation with well-
known organizations in the field of IoT and connected services, including partners from
universities, municipalities, and industry.

1.2 Motivation

Information and Communications Technology (ICT) plays an essential role in our increas-
ingly connected world. Multiple independent service providers and their heterogeneous
client-server systems are distributed across urban areas and provide people with different
services. Various methods for accessing services and their resources via interaction with
corresponding infrastructural elements are already part of today’s cities. Fig. 2.1 depicts
a few service examples, spanning from locally available services (e.g., getting access to re-
sources such as parking lots or vehicles) to online services (e.g., ordering food or receiving

1



1 Introduction

Figure 1.1: “Smart city as a service” – Interconnecting heterogeneous services and infrastructural
elements within urban areas is important for providing seamless, secure, and privacy-
preserving resource access (adapted from [35])

permission to access sensory data streams). We envision a new paradigm shift towards
“smart city as a service”; seamless interaction between service-oriented systems, users, and
the environment shall be possible. The primary challenge now is to overcome the diverse
jungle of independent service-oriented information systems by defining a common strategy
for sharing service-related data across one or multiple applications. This can be seen as an
opportunity to extend the functionality of existing client-server applications and facilitate
heterogeneous cross-domain service and resource access within metropolitan areas.

1.3 Problem Statement
Providing an interrelationship between heterogeneous client-server systems across different
hardware and software layers concerning personalized access is not trivial. Different com-
munication standards, environments, systems and subsystems, and consequently, diverse
use cases and ways to access, manage, and redeem services complicate the matter. Com-
plementary to this, security risks and privacy concerns often impede the evolvement of
new technologies. Due to these restrictions and issues, this thesis’ main research question
is: How can we provide people with personalized and secure access to services and their re-
sources coming from client-server systems of different domains? This high-level question
and its associated challenges can further be subdivided into three coherent subtopics:

2



1 Introduction

1. Trusted cross-domain service exchange. Interaction between service providers
beyond their domain and application area is difficult to achieve. One reason for this
is a lack of standardization. While many custom-tailored solutions for specific appli-
cation areas exist, there is no common strategy for exchanging service-entitlements
of distinct domains across different or even single applications. Usually, each ser-
vice provider can address only a specific set of services and users per application.
What can be done from a technical standpoint to facilitate collaboration between
different client-server systems? Additionally, in business applications, participants
such as different companies may identify but not fully trust each other. Enhancing
trust in the sense of data integrity, confidentiality, and availability for inter-domain
transactions is essential. Last but not least, customers tend to be creatures of habit.
Once they are used to specific services and know how to obtain and handle them,
they often no longer look around for new services without an incentive, a specific
reason, or an advantage. Conversely, users often do not know which new services and
corresponding offers are available. How can service providers from different domains
incentivize users to make use of new services?

2. Heterogeneous ways to access different resources. Due to various applica-
tions, use cases, and environmental restrictions regarding connectivity, no standard
authentication and authorization procedures for heterogeneous resource access is ap-
plicable. Nevertheless, different methods to facilitate seamless access to local and
digital resources in different environments are required.

3. Secure and privacy-preserving data collection. Due to various ubiquitous in-
formation processing systems, we have to deal with a growing data privacy awareness
of users and regulatory institutions. Increasingly stringent data protection rules en-
force the correct use and processing of user-related data. However, since abstraction
comes with information loss, it is difficult to determine which abstraction level is re-
quired to guarantee user data privacy while still aggregating enough information to
let a system perform its tasks correctly. Furthermore, while the transition to a more
connected world gives rise to new possibilities, new problems such as security issues
arise. Therefore, secure processes are required to establish a trusted relationship
between different distributed devices. Different security aspects from the embedded
to the cloud level, including secure key management and data distribution, must be
addressed.

Overcoming these limitations is critical for providing scalable solutions to interconnect-
ing heterogeneous client-server systems and improving the interrelationship between their
services, users, and the environment in a secure and privacy-preserving way.

3
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1.4 Contributions

The overall scientific contributions of this thesis are summarized in the following para-
graphs. Each aspect is covered by a dedicated design chapter. Parts of the elaborated
concepts were integrated into the distributed service platform COYERO1. Its primary
system model from 2017, explained in section 2.2, was our starting point.

Service Co-Modality – connect and gamify:
Client-server-based systems are widely used to manage and offer services of different kinds.
However, their offers in the form of products and services often have a scope limited to
a single company or a small set of vendors. The lack of standardization and the result-
ing jungle of heterogeneous implementations impede an easy exchange of business-related
data with other independent systems. In order to introduce new means of collaboration,
the general idea is to provide a common trusted overlay on top of existing client-server
systems whose purpose is to anonymize and share services in the form of digital service-
entitlements across independent service providers, their systems, and users. The overall
platform, its advantages, limitations, and how it can be utilized to map different user
and service-related datasets while at the same time preserving the users’ anonymity are
described in this thesis. Furthermore, we leverage the tamper-resistant properties of the
blockchain and smart contracts to protect sensitive transactions against fraudulent ma-
nipulation and to introduce service-based agreements to the overall system. Additionally,
gamification concepts are taken into account. They often aim towards goals of marketing
and can, therefore, be used in special-offer strategies. Especially in urban areas where
many independent information systems come together, it is all the more important to
provide higher collaboration between different service providers in order to exploit the full
potential of an extensive inter-company service-based reward system.

Ubiquitous access; local and online authentication and authorization:
Authentication and authorization are essential functions concerning service and resource
access. However, different environmental situations and use cases impede the usage of a
single standard resource access scheme. In this thesis, a distributed middleware was elab-
orated, responsible for issuing, canceling, and redeeming digital tokens. Depending on the
environmental circumstances, different token types can enable local or online redemption
of digital vouchers to access physical and virtual resources.

Adaptive privacy and end-to-end secured data aggregation:
Given increasingly stringent data protection rules and increased privacy awareness of users,
special attention must be paid to how user data is processed. This is especially important
when it is passed across multi-layered cloud environments and systems of independent

1https://www.coyero.com (last access: 1st December 2020)
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service providers. This part of the thesis focuses on an approach for letting users adapt
the data aggregation flow during the runtime of a mobile application according to their
privacy preferences while still providing mechanisms to anonymize the data collected.
Additionally, often data of confidential nature has to be handled. Therefore, end-to-end
security methodologies are essential. Various protection schemes on different hardware
and software layers have to be taken into account for finding the optimal security design
for the desired application. A case study has been conducted based on a design-space-
exploration tool that identified a set of potential hardware and software building blocks
for secure system design.

1.5 Outline
This thesis is organized as follows. Chapter 2 gives an overview of our terminology, the
basic system model, important security attributes and mechanisms, wireless communica-
tion protocols, and related research and development projects. Consequently, chapter 3
discusses existing work in the areas of interoperable connected systems and smart access.
The subsequent chapter 4 presents our platform’s requirements, a system overview, and
explanations of its subcomponents. While section 4.4 takes into account the architectural
descriptions from papers [88, 89, 90], section 4.5 covers the design concepts elaborated
within the work [86]. Eventually, section 4.6 incorporates ideas discussed in [87, 91]. Im-
plementational details are provided in chapter 5, while an evaluation of the overall system
is given in chapter 6. Consequently, the summarized ideas beyond the state of the art
and information on future work are pointed out in chapter 7. Finally, more details on the
published work related to this thesis are presented in chapter 8.
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2 Background
This chapter provides definitions of key terms as well as technical and organizational
background information related to this thesis.

2.1 Terminology
The following section comprises the essential terms used in this thesis and how they are
defined within the scope of this work.

• Access. Combination of authentication (the process of confirming that someone is
who he/she claims to be) and authorization (the process of verifying if someone is
allowed or has the permission to perform a specific action).

• Service. In economics, a service is a transaction where no physical goods are trans-
ferred from a seller to a buyer. By contrast, in the context of software architectures,
the term service refers to reusable software functionalities. In this thesis, the term
service addresses software components responsible for the issuance, cancellation, re-
demption, or generally speaking, the management process of digital entitlements
used for accessing physical or digital resources (products, data, etc.).

• Service Provider. A service provider manages a set of services. These services are
linked to a specific domain. In this sense, a parking-service provider is in charge of
services related to parking, and a mobility-service provider provides mobility-specific
services.

• Resource. Resources can be defined as physically or digitally available goods, such
as products or licenses.

• Token. Tokens are digital data structures created by software and assigned a certain
purpose, e.g., providing authentication or authorization.

• User. A user is a person who utilizes a device and its application.

2.2 Basic System Model
Fig. 2.1 shows the basic system model based on the COYERO system that will accompany
the reader through this thesis. It consists of a client-server module that enables information
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exchange between clients (service requester) and servers (service provider). Furthermore,
an additional kiosk unit is part of the overall system model for enabling service redemption
and consequent resource access.

• Client. This entity acts as an interface for requesting and obtaining services.

• Kiosk. A kiosk is a validation authority and service redemption unit. It authenti-
cates and authorizes a client to redeem services and access the requested resources.

• Server. The server is a central computer that communicates with client and kiosk
devices and keeps them synchronized. It is responsible for managing (issuing, for-
warding, canceling, etc.) different services.

Figure 2.1: Basic system model: service requester (client), redemption unit (kiosk), service
provider (server)

2.3 Security Attributes
The Confidentiality-Integrity-Availability (CIA) triad summarizes the most important se-
curity aspects of information security. The following attributes are important to ensure
an appropriate level of security [13]:

• Confidentiality. Information should remain confidential. Only authorized entities
should be able to access data.

• Integrity. Ability to protect data from fraudulent, unauthorized changes.

• Availability. Probability that the system performs its intended function when it is
required.
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The compliance of secondary security attributes is also important for protecting systems
against cyberattacks. The following examples complement the attributes mentioned be-
fore:

• Authenticity. Integrity of a message (content, time of emission, etc.) and its origin.

• Nonrepudiability. Integrity and availability of the identity of the sender or receiver
of a message.

• Accountability. Integrity and availability of the identity of a person or device that
performed a specific operation.

2.4 Distributed Ledger Technology
A blockchain is a type of distributed ledger, i.e., a peer-to-peer network architecture
consisting of a distributed database that is shared and synchronized across all network
participants. There is no central authority to manage this database, reducing the risk of
a single point of failure. Data uploaded to the blockchain network (as a transaction) is
aggregated into blocks linked to each other. The first block is called the genesis block. It
defines the properties of the blockchain as well as the underlying consensus algorithm. The
consensus algorithm specifies under which criteria valid blockchain entries are generated
with the involvement of network authorities. No single party has control over the data.
Depending on whether the majority votes in favor of accepting a new block containing
multiple transactions, the block is appended to the blockchain or rejected. The consensus
mechanism should be designed in a way that acting against the rules does not pay off.
Blockchains can be public. In this case, information is available in the public domain, and
any of the network participants can verify transactions. Alternatively, blockchains can be
private. In this case, only a set of authorized individuals can process new transactions.
A combination of both methodologies is called a federated blockchain. Here, only people
with an explicit invitation are authorized to participate in the process of reading, writing,
or verifying transactions. The distributed ledger may support smart contracts for estab-
lishing a relationship between different parties. A smart contract is software that runs
on the distributed ledger, consisting of inputs, deterministic outputs, custom data struc-
tures, and trigger-conditions. It can be utilized to create additional rules according to the
requirements of the underlying application. A deployed contract is assigned to a random
blockchain address. It is used as a reference to invoke the contract and its functions.
Smart contracts are executed by the blockchain nodes due to processing transactions by
the network validators, for example. Results are stored as transaction onto the blockchain.
Transactions cannot be deleted or altered due to the blockchain’s tamper-resistant design
relying on cryptographic primitives such as hash functions, asymmetric cryptographic sig-
natures, etc. However, the blockchain also comes with a few disadvantages. Consensus
algorithms are highly use case and application area dependent. Additionally, since all
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transactions or at least parts of them are stored across different machines, and in most
cases, the execution of transactions is triggered on all verifying units, this results in an
increased overhead regarding memory and computational power. Additionally, public
blockchain transactions are generally slower compared to traditional database solutions.
These problems aggravate scalable blockchain-only implementations [25, 28].

2.5 Bluetooth Low Energy
Wireless connectivity is often considered the key functionality in IoT devices, but at the
same time, it is a vital contributor to power consumption. Moreover, the plurality of
available wireless standards generally poses severe challenges concerning the compatibility
between collocated networks. Therefore, energy efficiency and interoperability are the
significant challenges in connectivity for the IoT.
Bluetooth Low Energy (BLE) is a short-range wireless technology. The Bluetooth Spe-

cial Interest Group (SIG) defines its specifications. Due to its power-saving design, its
widespread use, and its robustness against obstacles, it is used in many IoT applications.
The following information about BLE was derived and adapted from [38].

Attribute Protocol (ATT) and Generic Attributes Profile (GATT):
The ATT is a stateless protocol for discovering, reading, and modifying data on a peer
device. Depending on the use case and the Bluetooth unit’s offered features, a device
can act as a client or server. Data is always stored on the server and can be accessed
and modified by the client. When a client wants to read an attribute or write to it, it
will be addressed by its handle. Subsequently, the server will respond with the attribute
value or an acknowledgment. The GATT is built on top of the ATT and uses it as its
transport protocol. The GATT defines a framework for transferring data between devices
using concepts like services, characteristics, and descriptors:

• Services. Attributes on a GATT server are grouped into read-only services. A
GATT service breaks up data into logical entities.

• Characteristics. Characteristics are data containers that are included in a service.
They consist of at least the characteristic-declaration and the characteristic-value.

• Descriptors. Characteristics may include descriptors. A client may read a descrip-
tor to get additional information on the characteristics and their values. Alterna-
tively, a client may also write to a descriptor in order to configure a specific charac-
teristic. Depending on its value field, notifications or indications can be switched on
or off.
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Generic Access Profile (GAP)
The GAP is the highest level of the BLE stack and provides a framework consisting of
roles, modes, and procedures that allow BLE devices to discover each other, broadcast
data, establish secure connections, and perform other operations according to the prede-
fined standard. The GAP roles define the system’s topology. A broadcaster only broad-
casts data without requiring any confirmation or acknowledgment. It does not support
connections to other devices. By contrast, the observer role listens for advertising packets
from broadcasters without actually connecting to the device. Similar to BLE broadcaster
and observer roles, a peripheral sends advertising packets that may be received by a cen-
tral device. Additionally, the central role is designed to initiate and manage multiple
connections, whereas the complementary peripheral role is used by devices that wait for
others to connect to it. After establishing a connection, further data can be transferred.

2.6 Related European and National Projects

Parts of this thesis have been performed within different funded research projects de-
scribed in the following paragraphs. Among these are the European Union’s Horizon 2020
projects Smart-Taylored L-category Electric Vehicle demonstration in hEterogeneous urban
use cases (STEVE) under grant agreement No. 769944 (see subsection 2.6.1) as well as
Secure Connected Trustable Things (SCOTT) under agreement No. 737422 (see subsec-
tion 2.6.2). Additionally, other research aspects have been elaborated within the research
program Secured Trustworthy IoT Platform (STIP), funded by the Austrian Federal Min-
istry for Digital and Economic Affairs (BMDW) under the program COIN-Programmlinie
“Netzwerke” under agreement No. 867914 (see subsection 2.6.3).

2.6.1 STEVE

The H2020 project STEVE1 is composed of 21 partners – a network of cities, industry,
and research facilities. The primary idea of STEVE is to design, implement, and evaluate
a human-centric approach to electro-Mobility-as-a-Service (eMaaS). The goal is to pro-
vide low-cost and financially sustainable electric vehicle solutions and “gamified” services
combined with a dedicated mobile, universal access solution to enhance users’ awareness
and engagement, as well as vehicle energy efficiency (TRL 5-8). The developed technolo-
gies are pilot-tested during extensive demonstration phases in the four STEVE lighthouse
cities Turin and Venaria in Italy, Calvià in Spain, and Villach in Austria.

1http://www.steve-project.eu (last access: 13th May 2020)
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2.6.2 SCOTT
SCOTT2 is an H2020 project with 57 key partners from twelve countries. Its focus lies
in providing efficient solutions for wireless, end-to-end secure, and privacy-preserving con-
nectivity (TRL 6-7). SCOTT focuses on sensor/actuator networks and wireless communi-
cation in mobility, smart infrastructure, and health, thus addressing challenges regarding
trustable automated vehicles and Industry 4.0. SCOTT is based on fifteen industrial use
cases emphasizing cross-domain applications and heterogeneous environments.

2.6.3 STIP
The deployment of new applications and services is often hindered by technology barri-
ers such as security problems regarding communication and data access, complex privacy
management, or lack of interoperability due to various standards. The Austrian BMDW
funded project STIP3 addresses the development of an open technology framework for
end-to-end secured IoT solutions. Five Austrian partners work on secure data exchange
solutions from the chip level to the application level with product personalization fea-
tures and secure key management. Furthermore, cloud-based secure data collection, data
analysis, and selective decision support for secure communication with the application are
addressed within this project.

2https://scottproject.eu (last access: 13th May 2020)
3http://stip.tech (last access: 13th May 2020)
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The following paragraphs mark the entrance to our related work chapter giving an overview
of the different topics the thesis discusses. The ubiquitous usage of connected objects and
their interoperability aspects, for example, are essential to establish seamless cooperation
between different distributed systems within a smart city (see section 3.1). Complementary
to this, secure access methodologies, including aspects such as authentication, authoriza-
tion, and data privacy, play a crucial role in emerging technologies (see section 3.2).

3.1 Interoperable Connected Systems in Smart Cities
We are living in the era of interoperable ICT systems. According to [73], interoperabil-
ity is the “ability of things to interact for a specific purpose, once their differences have
been overcome”. Another definition of interoperability states that only if cooperation be-
tween all systems is ensured and solutions are made to eliminate the discrepancy between
all components can interoperability regarding efficient information exchange be achieved
within the resulting system of systems [22]. The ubiquitous interaction of interoperable,
connected systems – in short IoT [12] – is an integral part of the technological progression
we are experiencing. In 2017, an increase of 31% of IoT devices was reported compared
to the previous year [39]. This trend is expected to lead to around 75 billion devices
by 2025 [100]. Due to the advancement of the IoT, the usage of various digital applica-
tions is growing tremendously [64, 69, 113]. In further consequence, the implementation
of digitalization strategies can also be observed within cities, with the aim of enhancing
the citizens’ quality of life and optimizing their resources. This is important, given that
in 2014 already 54% of people worldwide lived in cities. According to predictions, the
urbanization level will reach 66% by 2050 [105]. Various areas of life are affected by this
development: food processing, transportation, education, agriculture, healthcare, energy,
or waste management, for example, gradually transforming cities into smart cities. Ac-
cording to Bakici et al. [15], a smart city is a high-tech intensive and advanced city that
connects people, information systems, and city elements using new technologies to create
a sustainable, greener city, competitive and innovative commerce, and an increased life
quality. Other smart city definitions, also including platform-designs for a ubiquitous data
exchange and enhanced collaboration between different services, exist [2, 24, 36, 94, 115].
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Wireless Sensor Networks. Sensory devices, handhelds, and particularly Wireless
Sensor Networks (WSNs) play an important role in the growth of the IoT and directly
contribute to the Big Data age due to their data collection and forwarding capabilities. As
their hardware has become cheaper, more powerful, and less power-hungry in the last few
years, wireless sensor networks are widely deployed [19, 83, 114]. For example, Zanella et
al. [116] implemented a distributed sensor platform, in which standard protocols and data
formats allow interoperability among different systems. By contrast, paper [5] discussed
a distributed cross-layer protocol for facilitating efficient retrieval of distributed sensory
data in the context of a smart city via WSNs.
The proposed architecture of this thesis’ platform was designed, taking into account

the usage of embedded and mobile devices (e.g., edge nodes, gateways, smartphones) to
gather, process, and forward data. In contrast to the work listed above, not only the
data transfer on embedded layers is discussed, but also the data flow in conjunction with
different server and cloud systems.

Service Distribution. Efficient data aggregation and exchange with sensory devices
form the basis of many Service-Oriented Architecture (SOA) approaches. The SOA elab-
orated within paper [7] provides efficient distribution of internet services. Access nodes
act as service publishers on which an unstructured peer-to-peer (P2P) overlay network is
created to provide geo-localized lookup functions. The work proposes an implementation
using a distributed hash table for efficiently forwarding services based on the geographical
position of resources and users. Another paper [8] discusses a SOA composed of several
layers that support mobile applications and services. On the one hand, the infrastruc-
ture layer contains all network and location-based service systems. On the other hand,
the information layer acts as an information repository. Furthermore, the service layer
offers location-based services to users on the stakeholder layer. Finally, the business layer
communicates vertically with all layers and applies rules to participating applications and
systems. Efforts to increase the interoperability of heterogeneous service-oriented systems
have also led to the creation of lightweight web services that can be used to manage sen-
sory data [32]. The elaborated framework allows users to connect to multiple data sources
using different data adapters and query data from them. These sources may consist of ex-
isting sensors and IoT platforms, different databases, and data located on local machines
or clouds. By contrast, Petrolo et al. [84] worked on increasing horizontal interoperability
between different vertical IoT platforms. Their VITAL platform uses virtualized unified
access interfaces with different connectors and drivers. It relies on the domain-independent
W3C SSN ontology to harmonize the semantics of different IoT systems and provides the
possibility to use service-queries across different platforms. Dedicated object handlers
point to physical resources that can be selected, filtered, and provided to the user.
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In contrast to the work discussed above, we not only use a lookup table for efficient
service forwarding but also apply privacy-preserving transformations on services and users
of different client-server systems. The SOA of this thesis is also composed of different layers
for better code-reusability and separation of concerns. We designed a software overlay
with dedicated service, data, and service provider layers to increase the interoperability
of heterogeneous services. Easier software integration and access to services of different
platforms are achieved via middleware and a RESTful interface. Additionally, a web-based
interface provides service providers with a more comprehensive service distribution and
management view.

Mobility Services. Most SOAs provide generic approaches to handle city data and ser-
vices, while others are more specialized. The SMARTY platform described by [6] focuses
on mobility-related services, such as route planning, realtime traffic monitoring, parking
reservation, car- and bike-sharing, carpooling, etc. Physical sensors are deployed in the
urban area (e.g., CO2 sensors, temperature sensors) to provide SMARTY with environ-
mental data. It also collects user-related data from (i) smartphone apps (e.g., position,
service utilization) communicating to the SMARTY cloud and from (ii) social media posts
and messages. By contrast, paper [74] proposes a mobility management platform for
connected cities. It allows city governments to formulate mobility policies that should
positively influence the travel behavior of people. The authors integrate their framework
into existing applications that enable the utilization of city resources. Data on mobile
devices is collected and evaluated to adapt route planning for users, for example.
The examples mentioned above provide concrete mobility-related implementations. The

service handling concepts described in this thesis are embedded within one mobility app for
accessing mobility-related data and services. On top, our platform provides an interface
for securely uploading data collected from the environment. However, not only mobility
services but also other services can be managed by our platform. Furthermore, customiz-
able policies between service providers enable condition-dependent service-creation and
related incentivization strategies.

Development Layers. Some SOAs also provide an additional development layer for
defining new applications, such as the work described by Wu et al. [111]. Users can create
queries to retrieve sensory data stored on both Structured Query Language (SQL) and
NoSQL database clusters for scalability reasons. The data can be visualized, and users may
develop applications on top of it. A task scheduler takes the resulting web-based services.
Communication with other systems is established via a RESTful application programming
interface (API). Another example is described by the authors of [21]. They worked on an
Open Service Gateway Initiative (OSGi) based middleware platform that offers an API
for building web-based applications. Communication between IoT devices is leveraged
by creating and handling generic data structures for event channels (publish/subscribe
mechanisms), states, content, and web-services.
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In this thesis, we do not provide a fully programmable development layer; however,
context-aware conditions can be defined on our cloud layer for introducing automated
service handling based on transactions and collected datasets.

Big Data Processing. Other scientific SOA publications focus on the influence and
impact of Big Data handling strategies. Authors of [33] worked on a Big Data based
platform. It embeds different data processing modules for data collected in cities by
smart devices. IoT-agents connect to the IoT middleware and serve as a gateway to data-
collecting devices. IoT-brokers act in between IoT agents, the Big Data repository, and
the CityModel Server. The Big Data processing module utilizes Apache Spark to pro-
cess the Big Data repository (e.g., data aggregation or data mining). A dedicated API
allows applications to perform queries and subscribe to data streams. The platform of
Vilajosana et al. [107], for instance, focuses on data management and service hosting. Big
Data techniques are applied to collect data streams and analyze data. Predictions and
inferences are derived from the data. The platform provides an API that enables third-
party applications to access the data stored within the framework. The paper [97] includes
a presentation of a comprehensive platform for a smart city. It executes tasks related to
data collection, storage, analysis, system control, and user interaction. The platform is
a cooperative system where different communities (administrators, experts, urban service
providers, city managers) can share data and information. Lee and Rho [61] worked on a
spring-framework-based three-layered architecture towards Big Data processing. Next to
a presentation layer that visualizes data and controls devices of the device layer, there is
also a processing layer for analyzing, aggregating, and filtering data. It consists of mid-
dleware that provides a data acquisition interface for sensors and processing devices. The
evaluated data is collected for service management, including autonomic service discovery
and deployment.

Also our platform provides software components for data collection, processing, and
interpretation, distributed across different embedded devices and cloud-layer units. How-
ever, our primary focus was not on data mining and handling of diverse datasets. Com-
pared to the publications described above that put little effort into security, we investigated
end-to-end security mechanisms. We conducted a case study to introduce secure yet ef-
ficient data collection and forwarding at early development phases. The outcome of our
analysis phase was applied to devices and communication protocols on different IoT-layers.

Semantic Webservices. The idea of encapsulating a system’s functionality within an
appropriate interface and advertising it as services is not new [30]. Semantic web service
paradigms have been trying to enhance automated service discovery, service access, ser-
vice combination, and web services management for years. Both industry and academia
are working on mechanisms to provide machine-understandable representations of ser-
vices and their behavior [18, 31]. The smart city platform elaborated by Girtelschmid et
al. [48] uses semantic technologies for enhanced flexibility in system configuration and
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adaptation. The performance loss associated with reasoning tools is mitigated by also
adding Big Data processing methods. The paper [72] describes how service-based mid-
dleware can provide techniques to implement and deploy smart city services. The service
description information is based on Web Service Description Language (WSDL). An inter-
face between cloud services (mining, analytics, optimization, simulation) and fog services
(storage, caching, streaming, processing, configuration, monitoring, measurement) is pro-
posed. While a global broker service maintains all services in the environment, local broker
services manage information about the fog’s available services. Invocation services include
the messaging system between different services, and location-based services contain all
connected devices’ positions. Finally, security services mainly include information regard-
ing authentication and authorization.
We work on a service cloud layer for online and offline redeemable services across client-

server systems of different domains. While the papers described above elaborate semantic
web-service handling techniques, we focus on more strict service syntax rules for fast
data handling on the server-side and straightforward interpretation for the system’s users.
Nevertheless, our service-related generic data structures are extended with a dynamically
definable subpart that can be used for applying semantic methodologies.

Interoperable Clouds. Interoperable cloud networking is also becoming increasingly
important. Different approaches already exist that provide APIs for managing virtual
objects or combining existing collaboration tools [27, 99]. Complementary to these, other
approaches focus on combining heterogeneous cloud systems for a more standardized shar-
ing between different datasets across geographically distributed resources. Zou et al. [118]
describe how a federated marketplace can provide participants with access to different
resources regarding data, memory, and computational resources. The design and imple-
mentation are based on federated Comet spaces. These are distributed shared memory that
all users and providers can access and observe for enabling information sharing. A man-
agement space is used to handle different resources and exchange any operational messages
to discover resources, announcing changes, or routing users’ requests to the appropriate
site(s). Besides, execution spaces are created on-demand to satisfy the computing needs
of the users. Authors of [1] work on a cloud abstraction and service marketplace platform
backed by several heterogeneous service clouds. The service consumer module provides a
conversational interface to consumers. It queries the service knowledge base for service so-
lutions, while the service provider module serves to simplify the on-boarding of new service
providers and the update of marketplace services. Finally, the service marketplace mod-
ule manages various kinds of metadata of the service knowledge base obtained from any
service characterization. Among other things, it comprises marketplace support services,
including service composition tools (service registry, graphical tooling, service descriptor
exporter).
In our case, an additional service-overlay acting as a ubiquitous service-entitlement mar-

ketplace is introduced for issuing, accessing, and enabling the exchange of datasets and
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services. Compared to other approaches listed above, an advantage of our system is that
the real, human-readable user data remains at the base system, enabling an increased
anonymity level. Furthermore, since shared data is prone to malicious changes, we in-
troduced an additional layer relying on distributed ledger technology for tamper-resistant
transaction handling.

Hybrid Blockchain Approaches. Blockchains can be used to increase transactional se-
curity. Like the projects discussed in this paragraph, many of today’s developed prototypes
describe a hybrid approach between a traditional cloud environment and a blockchain part.
Authors of [119] combine blockchain and off-blockchain storage to construct a personal
data management platform. The collected data is encrypted and sent to an off-blockchain
key-value database. Only a hash value is retained, pointing to the data on the blockchain.
The data can be queried by using the key associated with it. Every time a user subscribes
to a service, a new transaction specifies the access permissions, and another contains the
hash of the data. Another blockchain-based implementation, discussed by [77], supports
data accountability and provenance tracking. A data subject (person) authorizes a data
controller (organization) to access personal data. Consequently, the data can be forwarded
to a data processor (organization). The subject subscribes to the data controller using
smart contracts that manage the data usage policy in question, store data-hashes, and
transfer it to the controller. For each new contract, the subject uses a new blockchain
address to prevent the linkability of the contracts created with each controller. Further-
more, the subject must maintain a list of all addresses and the respective nonce established
with each controller or processor. Further work focuses on managing electronic medical
records distributed across different data providers [14]. In this case, the hybrid blockchain
approach gives patients an immutable log and access to their medical information across
providers and treatment sites. Hashed data pointers are stored on the blockchain to guar-
antee that the data cannot be altered. Additional query strings are intended to be executed
on the corresponding data provider’s server to retrieve the data again. The authors of pa-
per [63] describe a procedure for secure drone communication, focusing on data assurance
and resilience. Again, a distributed blockchain storage is used together with a traditional
cloud-based system. The system forwards the hashed data records collected from drones
to the blockchain network and generates a blockchain receipt for each record stored in the
cloud.
In this thesis, the elaborated cloud overlay is extended with an additional permissioned

blockchain/smart contracts part to profit from (i) increased execution speed compared to
a blockchain-only approach and (ii) enhanced protection against fraudulent changes. The
interface between the central and the decentralized blockchain storage is established via
smart contracts.
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3.2 State of the Art Access Methodologies

An increased level of connectivity may not only lead to advantages but also to issues
in the areas of security, privacy, and ethics [11]. As stated in [41], especially security
is one of the main challenges engineers have to face when implementing successful IoT
solutions. Every poorly secured device connected online can serve as a potential entry
point for cyber-attacks, compromising the system and exposing data [93]. Slack security
methodologies can also lead to unsafe or even lethal scenarios (e.g., automotive hacks
described in [71, 106]). Therefore, paving the way for robust and trustable ICT becomes
all the more important.

Security by Design. IoT layers that consider different levels of secure data processing
are being researched, like for example: data collection [42] by sensor nodes, data forward-
ing via gateways [102], and data storage and analysis of cloud services [23]. Other work
focuses on analyzing specific security aspects, e.g., hardware devices and security threats,
as discussed in [81] and [92], respectively. Effort has also been made to describe the whole
end-to-end data flow of such connected systems [49]. Design Space Exploration (DSE)
tools can be applied to enhance a system’s quality in the early development phases. They
are used to help designers consider system components related to their power consump-
tion, performance, and security requirements [59]. These tools can generally be classified
through their applicability in either individual component integration [54, 59], or overall
system design [101, 117]. Analyses at a later stage of system development are also pos-
sible. Authors of [66] performed a security and privacy study. Each design platform can
be divided into functional units that are then evaluated on predefined security cases. The
analysis is done on real-world applications and security attacks.
The system that we present handles the security levels mentioned above as a one-entity

framework, enabling secure interfaces implicated on different IoT-levels. A novel DSE tool
with specified security constraints and formulated attack scenarios presented as Bayesian
attack graphs has been used in the course of a case study to amplify the design phase of
our SOA’s data-collection part.

Access Control. Security and privacy are important metrics for many smart city applica-
tions and platforms [16, 53, 55]. Especially authentication and access control mechanisms
are crucial for enabling trusted communication for the IoT [3, 4, 76]. Different scientific
contributions utilize digital tokens for authentication and authorization procedures. In
the research paper [37], for example, the authors propose a token-based authentication
procedure for IoT devices. The tokens are used to access specific resources for a prede-
fined time. The protocol relies on lightweight operations such as XOR and hash functions,
reducing the computational effort. Other approaches also use hash and XOR techniques
for establishing authenticated communication, especially for computational-constrained
devices [17, 108]. The authors of the paper [20] also discuss a token-based authentication
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scheme. In their case, it is applied together with the MQTT protocol to remain compati-
ble with constrained devices. First, publishers/subscriber send their username/password
credentials to a token authentication server. A JSON Web Token is issued, forwarded to
the publisher, and stored locally. It is used for further authentication instead of periodi-
cally triggering a re-authentication with the original credentials and requiring the MQTT
broker to keep track of all sessions. The Stack4Things architecture from [26] provides
authentication, authorization, and delegation mechanisms. Authentication is enforced via
the identify service Keystone. It validates a set of credentials (username, password, API-
key, for example) supplied by a client. In case the credentials are validated successfully,
an authentication token is issued. The client can use this token for further API calls. The
issued tokens are merged with roles assigned to a client. Agents validate them to check if
the client is authorized to execute a specific operation on an IoT node. Each API call has
a corresponding line in a policy JSON file that determines which level of access applies.
Ouaddah et al. [79] proposed an access control framework for IoT environments. Their
model uses RESTful web services to enforce different security policies. Organizations may
determine which published resources they want to protect. Consequently, these resources
are assigned to a URI. Other organizations can contact the resource holder and define
authorization rules via an access control policy.
This thesis covers multiple authentication and authorization aspects. Compared to the

approaches mentioned above, we worked on a more comprehensive approach, providing
various token types for condition- and use-case-dependent online and offline authentication
and authorization methodologies. Our authorization handling does not only provide ac-
cess to resources available online but also offline. For each resource, dedicated entitlement
objects define granular authorization rules.

OAuth2.0 Authorization Tokens. Regarding distributed authorization, one way to
enable it across different systems and applications is with the OAuth 2.01 protocol. Com-
panies like Google or Facebook utilize it to handle authorization across different web
services, for instance. However, it is also part of scientific research papers. Examples in-
clude distributed privacy-preserving authorization handling in e-Health applications where
different pseudonyms are introduced for each user [103] as well as the use of OAuth 2.0
to increase the security for API access in order to provide more robust protection against
fraudulent users [67]. OAuth 2.0 can also be applied in the context of resource-constrained
IoT devices. The authors of the paper [96] describe a gateway-approach that collects in-
formation provided by smart devices. It controls the access requests to the datasets via
OAuth 2.0 authorization. Another example is discussed by paper [34]. It describes an IoT
setup and proposes a framework for enabling IoT devices to utilize an external OAuth
2.0 authorization framework based on HTTP/CoAP without implementing the protocol
handling on each device. Additionally, paper [47] demonstrates how IoT protocols such as

1https://oauth.net/2/ (last access: 13th August 2020)
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MQTT can be (i) integrated into existing Web API management models and (ii) enhanced
with a software API gateway for access control, monitoring, etc. Additionally, an OAuth
2.0 and OpenID Connect part are included for client registration and token handling. Fi-
nally, a Mosquitto MQTT broker provides an open-source messaging broker.
We extended our token management system that is addressable via a RESTful interface

with a dedicated OAuth 2.0 support layer. This enables client devices to receive data from
virtual entities while only relying on one central authentication and authorization center.
While the approaches described above primarily focus on authorization aspects, we also
took different authentication mechanisms into account.

Local Authentication. Efforts have been made to study local authentication mecha-
nisms. The work from [95] provides an approach for identity authentication in cities. A
single access key is created that combines identity, payment, access, and ticket related in-
formation. The access key is stored locally on a specific computing device such as a smart
card or smartphone and is used to authenticate the user via interaction with a backend
access system. Dmitrienko et al. [43] discussed the topic of secure offline access using a
mobile car-sharing application as an example. The user needs to utilize two authentica-
tors to pass the authentication step of the car’s lock. The first authentication factor is a
user key created during the user’s registration, while the second factor is an access token
issued and downloaded to the client device during the online booking procedure. On the
client-side, the user key is hosted by the secure-element-provider. The token itself is stored
within the host environment that, in this case, is a smartphone app.

We provide local authentication with authentication-tokens issued and cryptographi-
cally signed by a trusted central party. In combination with service-based-tokens, they
allow not only offline authentication but also enforce local authorization policies.

Certificate-based Authentication. There is also significant research interest in
certificate-based authentication mechanisms. However, since X.509 certificates may be
hard to apply on resource-constrained IoT devices, Park et al. [80] propose a concept for
simplifying certificate structure to make them more suitable for IoT devices. Panwar et al.
[60] worked on a security mechanism for the IoT using digital certificates with datagram
transport layer security (DTLS). Authentication is achieved via digital certificates that
are issued by a certificate authority. The client/server authentication procedure includes
mutual exchange and verification of certificates. Piro et al. [85] elaborated a lightweight
service access strategy between service-publisher and service-user devices. A device
may advertise an interest-packet, including information about the content that should
be shared. Any interested node may respond with the device’s public key/certificate
(checked by authority), the cryptography algorithm intended to be used for additional
encryption, and other security-related information. Authenticity is achieved via crypto-
graphic signatures. The publisher signs the hashed data packages. Finally, a node verifies
the authenticity of the data with the publisher’s public key.
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All anonymized tokens created by our platform are based on a custom public key
infrastructure (PKI) that forms the security basis of the platform’s access methods. The
tokens are issued and signed by a trusted central authority and validated before being
redeemed against the resource in question.

Distributed Authentication. Further research efforts have been invested into dis-
tributed authentication mechanisms applying variants of the Kerberos protocol [70].
Periera et al. [82] propose an access control framework on service level for power-
constrained devices. It merges the idea of Kerberos and RADIUS access control systems.
There are two steps: authentication and access control. The users are first authenti-
cated based on their credentials like a shared key, password, or another validator. On
successful authentication, the CoAP-NAS is informed of the users and their permissions,
the timestamp of a ticket, etc. The CoAP access server sends a ticket to the user for
future requests. In the access control step, the server will only respond with the correct
message if the request message has a valid ticket; otherwise, it will generate an error
response. Complementary to this, authors of [46] designed a grid authentication model
based on Kerberos and Hierarchical ID-based Cryptography (HIBC). The overall model is
divided into various trust domains with different parameters. The first level trust domain
applies the Kerberos mechanism, while the second level trust domain applies the HIBC. It
enables a private-key generator (PKG) to distribute their workload to a lower-level PKG.
Therefore, user authentication and key delivery can happen locally. The authentication
method between different domains is Kerberos-based since the Kerberos ticket can deliver
the second level trust domain parameters.
A primary advantage of such distributed registration/login mechanisms is that au-

thentication can be granted without exposing critical user and device data. Therefore,
we rely on a Kerberos-based registration procedure for connecting client devices to our
central service-overlay over an already trusted server unit. By doing so, we keep user data
transfer to a minimum and allow privacy-preserving registration of clients.

Data Privacy. Due to increasingly stringent data protection rules, like the European
General Data Protection Regulation (GDPR) [45] or the Data Security Circulation Con-
vention from China Academy of Information and Communications Technology (CAICT)
in 2016, data privacy has become ever more important. Data is constantly collected. Or-
ganizations analyze and optimize it or create new services based on it. However, people
often have little control or knowledge of what data is stored or shared. According to
the overview given by [29], different anonymization procedures were developed, such as
`-diversity [68], t-closeness [62], δ-presence [78], ε-differential privacy [44], etc. However,
too strong anonymization may make the original data useless for many applications. K-
anonymity techniques are often applied to reduce the risk of identification while retaining
enough data to work with [65, 98, 109, 112]. This is achieved using generalization (at-
tributes are generalized to reduce specification) and suppression (attributes are completely
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removed) methods. The elaborated model from [29] includes an effective k-anonymity
algorithm combined with a k-means clustering algorithm to increase anonymized data di-
versity. The k-means algorithm clusters a group of data into a predefined k value. Initial
cluster centers are selected randomly. The process keeps reassigning the data objects in
the dataset to the cluster center based on the distance between the data object and clus-
ter centers until a predefined condition is met. Complementary to these anonymization
techniques, researchers work on different approaches to assess and manage data privacy
within connected systems [104]. Paper [58], for example, analyzes the personal informa-
tion flow through telematics systems inside cars. It distinguishes between an embedded
approach where cars connect directly to the internet and an integrated approach rely-
ing on mobile devices for accessing different services. The approach from Apolinarski et
al. [9] provides context-aware security and a privacy module for enabling users of mobile
applications to manage their privacy settings. Acquisition and sharing of sensitive data
(e.g., user location) can be avoided or limited. Furthermore, collected data may be obfus-
cated for limiting data precision according to user-defined privacy policies. The policies
interact with a semantic data management unit deployed on mobile phones as part of a
smartphone app. The initial privacy policy can be derived from context sharing settings
in social networks, for example, and adapted afterward. Regarding data exchange, en-
cryption protocols can be integrated into the communication process as BASE plugins. A
shared secret is exchanged for symmetric encryption. PIKE is used to exchange shared
secret keys using Facebook, or Google Calendar [10]. Finally, the shared data is made
available to a data discovery registry. While the techniques mentioned above focus on
anonymizing data, other approaches try not to store any privacy-critical data at all. The
system described by Mylonas et al. [75] enables developers to write Android-code and
deploy it to Android devices, alongside the distributed SmartSantander platform. They
assign a unique identifier to smartphones and only store the device model and Android
version but do not collect other privacy-critical user data for the registration.
Summarized, also the federated data and service management approach discussed in

this thesis avoids the storage of confidential data in the first place. The transfer of user
data is bypassed due to a distributed registration mechanism. Furthermore, a dedicated
cloud-based abstraction layer is in charge of creating new anonymized service objects and
efficiently mapping them to the real data that remains on the connected client-server
systems.
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This chapter gives an overview of the technologies that resulted in this thesis’ platform.
First, different requirements are defined in sections 4.1 and 4.2. Consequently, starting
from the basic system model of section 2.2 an extended system model is explained in
section 4.3. Its functionality is elaborated in more detail in the subsequent sections 4.4,
4.5, and 4.6.

4.1 Functional Requirements
Taking into account the problem description of section 1.3, functional requirements (FRs)
were derived:

FR1 Cross-domain service management. First, a SOA shall be elaborated for man-
aging digitally and physically available resources and their corresponding service-
entitlements. Second, while many custom-tailored solutions for specific application
areas exist, there is no common strategy or standard interface for enabling digital
service-entitlement exchange between different client-server systems. This exchange
shall be enabled between service providers, service providers and clients, and clients
by employing a virtual service marketplace layer.

FR2 Data management. The SOA shall provide mechanisms for client and server ap-
plications of different businesses to upload and edit service and user-related datasets.
Also, service-related permission settings shall be editable.

FR3 Cross-domain rewarding system. Users tend to be creatures of habit. Once
they are used to services and are familiar with obtaining the corresponding resources,
they often no longer look around for new services without a specific reason or an
advantage. It should be possible for service providers to define different strategies
for motivating users to access new services based on their service-usage behavior and
preferences.

FR4 Ubiquitous resource access and control. Different services and their resources
shall become accessible by client users. Regarding the redemption procedure of
service-entitlements, not only the access to digitally but also to physically available
resources should be handled via application and use-case dependent authentication
and authorization schemes.
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FR5 External Access. External applications should be able to access the service-
oriented platform via dedicated software libraries in combination with an online
reachable API. Furthermore, a web-based registration and control mechanism should
be provided to avoid time and cost consuming integration procedures.

4.2 Non-Functional Requirements

Next, non-functional requirements (NRs) of this thesis’ platform are derived. They are
discussed in the following paragraphs:

NR1 Interoperability. Different platforms and systems must operate with each other.
The interexchange of services between independent service providers shall be im-
proved by providing a common federated service overlay that can be accessed via
an online reachable interface. It shall consist of an abstraction layer for abstracting
and equating different datasets and a service and data exchange layer.

NR2 Context Awareness. Context-aware middleware for clients shall be elaborated. In
this sense, according to the environmental setup and the actual service, an appropri-
ate redemption method should be applied, choosing from local and online applicable
wireless procedures. Additionally, it shall be possible to define condition/context-
dependent rules for the automatic creation of service-entitlements.

NR3 Privacy. The platform collects and manipulates different datasets. Due to increas-
ingly stringent data protection rules and increased privacy awareness amongst users,
privacy-preserving data exchange is crucial for client-server systems that intend to
exchange user data with each other. User data privacy shall be protected while
still providing means to collect enough non-anonymized information to perform the
system’s tasks. Furthermore, the clients’ privacy awareness shall be increased by
providing an interface to overview the current privacy policy. Complementary to
this, privacy by design shall be enabled by supplying the technical means to adapt
the clients’ data aggregation flow according to the users’ preferences.

NR4 Security. Interfaces to other systems may lead to security risks such as disclosure
of confidential data, fraudulent data manipulation, repudiation scenarios, or system
failures, especially when secure authentication and authorization are not provided.
Dedicated security mechanisms are required to enable trusted communication be-
tween different server and client-server applications. On the one hand, end-to-end
secured communication shall be provided for confidential data. On the other hand,
also data integrity has to be taken into account. There should be the possibil-
ity to protect obtained and redeemed services and transaction-related data against
changes. In regards to data availability, the risk of data loss shall also be avoided.
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NR5 Scalability. The overall SOA shall be able to scale with a growing number of users,
services, and transactions.

NR6 Configurability. Service-entitlements shall be adaptable and re-configurable in
order to be compatible with different authentication and authorization schemes.

4.3 System Model Overview
A basic system model composed of client, kiosk, and server devices was described in section
2.2. It was extended with new concepts and ideas in this thesis, resulting in the system
depicted by Fig. 4.1. An overview of the most important communication participants is
given in the following, while each part’s design aspects are discussed on the subsequent
pages.

• Client. The client is a mobile device running an application and representing a user.
It offers the possibility to obtain digital service-entitlements. They can be redeemed
in different ways by communicating with kiosk units for accessing locally or online
available resources. Depending on the client’s requirements and use case, it may
run different applications, e.g., a mobile parking app for booking parking tickets, a
restaurant app for ordering food, or a web app for obtaining and visualizing sensory
data.

• Embedded Kiosk. Embedded kiosks are physically available devices within reach
of clients. Service entitlements can be redeemed by communicating to them and
the Connected Services Engine (CSE). In case of a successful authentication and
authorization procedure, client users are granted permission to access physically
available resources. Depending on the underlying application, an embedded kiosk
can be an embedded device (e.g., part of a parking control unit for a gated parking
use case) or a mobile device (e.g., smartphone used by an officer for an attended
parking use case).

• Virtual Kiosk. If the unit responsible for triggering the redemption process is part
of a server, it is called a virtual kiosk. Clients can redeem their service entitlements
directly online (including secure authentication and authorization) without local
interaction with other devices, e.g., to get access to data stored online.

• App Server. An application/business server communicates with client and kiosk
devices and provides them with application-dependent functionality (e.g., login/reg-
istration, visualization of user and service data). User and product relevant data
is stored on a dedicated database. If an app server wants to communicate to other
app servers for achieving cross-domain service exchange, interaction with the CSE
is required. In this case, the CSE enters a one-to-many relationship with connected
app servers.
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• Connected Services Engine (CSE). The heart of the CSE is a cloud part, also
referred to as the core server or core layer. It communicates to clients, kiosks, and
app servers. Furthermore, the CSE provides dedicated middleware that enables local
communication between clients and kiosks and online communication to the core
server via a RESTful interface. The CSE manages cross-domain service-entitlements.
It is a token issuer and token handler. It provides mechanisms for issuing different
tokens for online and local authentication and authorization. Furthermore, it is
the highest authority that decides if a redemption procedure is valid or not (online
redemption handler). To exchange services between client-server systems of different
domains, a service mapping functionality is part of the CSE that can be utilized
together with service offer and agreement procedures. Moreover, the CSE provides
an inter-system transaction watchdog that keeps track of past transactions. An
additional blockchain and smart contracts layer enforces transaction security. Last
but not least, a front-end management tool facilitates the docking process of other
systems and provides further data-management capabilities.

• Blockchain The blockchain emerged as a tamper-resistant tool with excellent in-
tegrity protection and traceability features. A smart contracts based interface en-
ables the interaction between the blockchain part and the other systems of the plat-
form.

• Sensor Node. An embedded device that collects sensory data securely in constant
intervals. Other tasks include the processing of this data.

• Gateway. A trusted communication participant that applies different local and
online communication techniques for exchanging data between sensor nodes and
virtual kiosks.
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Figure 4.1: Extended system model overview
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4.4 Service Co-Modality
This section presents a generic service handling and exchange concept for client-server
systems. The general idea is to enable service providers and their systems to publish their
services on a common layer and access other cross-domain services through it. Besides,
their clients should profit from various service-entitlements and access the underlying
digitally and locally available resources via context-aware service redemption methods
further explained in section 4.5. Fig. 4.2 provides a high-level overview of this.

Figure 4.2: Clients access resources by redeeming service-entitlements from service providers that
publish and distribute their services via the Connected Services Engine

The resulting service-oriented architecture is composed of two major sublayers.

Application/Business Layer:
An application or business layer is a self-contained system composed of different subsys-
tems that are all part of the same business. By default, it has no direct interfaces to
systems outside of its domain or application area. In our scenario, all components of a
typical client-server system are grouped into a business layer. In the simplest case, a busi-
ness layer is composed of a client device and an application server. Based on our basic
model of section 2.2 also an optional kiosk unit for redeeming services may be part of this
layer. A business layer’s functionality is based on the respective application area of the
service provider. For establishing a connection to other business layers, a common trusted
layer, the core layer, is introduced.

Core Layer:
The core layer or core cloud is the server part of the CSE. It seamlessly interconnects
services of different business layers with each other. From an architectural perspective,
it is attached on top of existing business layers, abstracts user and service-related data,
and handles different resource access methods. Communication with clients, kiosks, and
application servers of a business layer is established via a RESTful interface. The core
layer is mainly composed of two sublayers, the tokenization layer (4.4.1) and the federation
layer (4.4.2). Additionally, see 4.4.3 for an associated distributed ledger part and 4.4.4 to
get an overview of possible gamification principles provided by the core layer.
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4.4.1 Tokenization Layer

Fig. 4.3 gives an overview of the core layer. The left part depicts the tokenization layer.
This layer represents the entry point for devices on the business layer. It not only provides
access control functionality but also takes care of abstracting user and service data.

Figure 4.3: The core layer and its subparts: tokenization layer with access control and data ab-
straction and federation layer with transaction and cross-domain service handling

4.4.1.1 Access control

Direct communication between clients and the core layer, as well as application servers and
the core layer, can be established via API-key authenticated RESTful HyperText Transfer
Protocol (HTTP) requests. The API-keys are included in the HTTP header (Authorization
field) and encoded in Base64. The core server issues them after a distributed registration
mechanism is completed.

Integration between the application server and core layer:
A service provider may register at the core layer to create an authenticated connection be-
tween it and his business layer. Service provider specific information (e.g., email, password,
company name, address, etc.) and a client-app specific identifier (e.g., Android app-ID)
need to be submitted as well as a REST-endpoint that can be used by the core-layer to
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contact the application server. Subsequently, an account is created, and the following
datasets are generated automatically on the core layer:

• application-ID (a-ID). Identifies services of a specific service provider. Each service
provider has a unique a-ID.

• API-key. Key used for authenticating the application server when interacting with
the core layer over a RESTful HTTP interface.

• Wallet. In order to increase the level of trust of transactional data, an optional
blockchain layer is introduced. In this case, each business server is involved in the
consensus procedure of service-based transactions. Please refer to subsection 4.4.3
for more details on the blockchain approach.

Integration between client and core layer:
The integration of the application client into the overall platform foresees several steps. It
is assumed that (i) the client and application server can communicate over an authenticated
channel and (ii) the service provider has already conducted the core layer’s registration
procedure described above and is, therefore, able to access the core layer’s REST interface.

Eventually, a distributed registration procedure can be applied between the client, appli-
cation server, and core server, according to Fig. 4.4. As soon as the client and application
server are authenticated, the client device may generate an Elliptic Curve Cryptography
(ECC) keypair and trigger the distributed registration procedure by sending its public key
to the application server. Subsequently, the application server requests a ticket generation
on the core layer by submitting the client’s public key. Next, the core server issues a one-
time registration ticket bound to the client device via its previously sent public key. The
response is received by the business server and forwarded to the device. Consequently, the
ticket can be redeemed by the client at the core cloud. An anonymized core user entity is
created identifiable via a dedicated user-ID (u-ID). Eventually, the client receives a device
and user-bound API Key to authenticate all further REST-based calls to the core server.
Furthermore, an Authentication-Token (A-Token) is created for local authentication to
kiosk devices. More information on the A-Token and other token types can be found in
subsection 4.5.1. Finally, the client device may directly communicate to the core layer and
authenticate itself by submitting the previously received API-key.

4.4.1.2 Data Abstraction

The tokenization layer enforces data abstraction. Dedicated core layer objects are created,
and a privacy-preserving data mapping between the business layer and core layer is used
to address the right user, service, and application on the business layer. The distributed
registration mechanism pointed out in Fig. 4.4 triggers the creation of an anonymous
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Figure 4.4: Distributed registration procedure between client, application server, and core server

core user entity. Any user-related data, such as names or emails, remain at the business
layer. By contrast, services on the core layer are stored as service-entitlements, digitally
representing an item, product, license, or another resource. Service-entitlements are linked
to the business layer’s application identifier (a-ID), the identifier of the original service on
the business layer called service-ID (s-ID), and the core user entity (over a u-ID) who is
entitled to utilize or consume the service.
A privacy-preserving mapping is deployed for linking service-entitlements to the

intended users on the business layer. Fig 4.5 depicts a mapping table stored on the core
server. It contains the anonymized user identifier of the application layer (e.g., email or
username). It is hashed together with a cryptographic salt, mitigating password attacks
like rainbow tables. Additionally, the core user and a unique app identifier are stored in
this table for addressing the right client app. There are two ways how entitlements are
issued for clients. On the one hand, when a client obtains a service on the business layer,
this triggers the entitlement generation on the core layer. On the other hand, a service
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Figure 4.5: Privacy preserving mapping between business layer and core layer [90]

provider may trigger the creation of entitlements via the federation layer and link it to one
of his clients (see 4.4.2). After a service-entitlement has been created, dedicated tokens
can be derived and passed to the client device. These tokens act as digital tickets for
authorizing clients to access available resources. This topic is elaborated in more detail in
section 4.5.

The exchange or sharing process of a service-entitlement from a business-layerorigin to a
business-layerdestination can be enabled if its u-ID field is edited. By adding a new identifier
or simply changing it, the service-entitlement is linked to another core user. Thus the
service also becomes accessible to another user on the business-layerdestination due to the
mapping described before. While the core server provides the exchange/sharing interface,
the procedure itself must be triggered by a device on the business layer. Which service-
entitlements are allowed to be forwarded from business-layerorigin to business-layerdestination
has to be specified by the corresponding business layers.

4.4.2 Federation Layer

The federation layer is the second sector of the core layer (see the right part of Fig. 4.3).
It can be considered a virtual cross-domain service marketplace for distributing service-
entitlements to client and kiosk devices and creating conditions on how these services are
handled. The federation layer is in constant interaction with the tokenization layer. As
soon as service providers have completed the registration process described in 4.4.1.1, they
are authorized to publish federated services.
The creation of federated services and, in further consequence, the possibility to issue

corresponding service-entitlements for clients can be enabled via direct interaction of the
service provider with the web-front-end of the core layer. Alternatively, the application
server’s API-key can be used to trigger a service-synchronization procedure between the
application server and the federation layer. During this process, the primary service
identifier (s-ID) for mapping each service between business and core layer, as well as
descriptive information (e.g., name, type, price) in the form of key/value pairs for higher
flexibility and platform independence, are submitted.
All service-related transactions involving the core layer are logged via a transaction

registry. Service transactions differ in their type, distinguishing between issuing, can-
celing, forwarding, and redeeming service-entitlements. Each transaction consists of a
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timestamp and refers to the corresponding service-entitlement that contains information
about the application (a-ID), the core users on the client and the kiosk side (u-ID), and
the service (s-ID) in question.

Figure 4.6: Overview of the core layer’s federation features (adapted from [90])

Registered service providers can manage their service-entitlements on the federation
layer. The use case diagram of Fig. 4.6 gives a functionality overview. Summarized, we
distinguish between two ways of federated service exchange – the service offer and the
service agreement approaches.

Service Offer:
Service providers are authorized to publish service-entitlements on the federation layer.
Other service providers can view services or obtain corresponding cross-domain service-
entitlements on demand. It is also possible to distribute them to core-users of their domain.
The transaction registry and the anonymized business-core mapping form the basis for
relating cross-domain service-entitlements from core users to the rightful users on the
business layer.

Service Agreement:
Registered service providers may also establish service agreements. A service agreement
extends the service offer functionality by automatically issuing entitlements in a context-
aware manner. Fig. 4.7 depicts the agreement creation procedure. An agreement is created
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when a service provider subscribes to an offer and specifies a trigger condition. For exam-
ple, the condition may specify how many service-entitlements of a service provider need
to be acquired or redeemed before a rewarding service-entitlement is issued. The informa-
tion, whether the condition is met or not, can be retrieved by evaluating specific datasets,
such as the core layer’s transaction table, for instance. In this sense, after each update
of the transaction table, the core layer queries all corresponding agreements and checks if
one of the conditions is met by equalizing them with the transaction history. As soon as
a condition is fulfilled, the rewarding service-entitlement specified inside the agreement is
obtained by the host service provider’s system. Receipts are generated to inform partic-
ipating service providers about the issuing process of a new service-entitlement. Finally,
it is linked to the corresponding user that fulfilled the condition.

Figure 4.7: Agreement creation flow between a client, two different business layers, and the core
layer

Further examples elaborated in combination with user incentivization techniques are
discussed in section 4.4.4.
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4.4.3 Trusted Traceability

The design approaches of the previous chapter describe how service-entitlements can be
made accessible to different business layers on-demand or in an automated, condition-
dependent way. Now the Blockchain technology is integrated into the core layer as an
additional software building block for enabling tamper-resistant service exchange between
different service providers. Service transactions shall be uploaded to the blockchain via
smart contracts. This prevents duplicate transactions, non-repudiation of the redemption
process, and other fraudulent manipulations since data added to the blockchain can no
longer be modified. Additionally, we have advantages in terms of data integrity and
data availability due to the blockchain’s decentralized nature. General information and
explanations about blockchain technology can be found in section 2.4.

Ethereum:
Ethereum has been chosen for our blockchain approach. It is a popular blockchain and
offers different consensus mechanisms and smart contract capabilities. It is composed of
miners, full nodes, and light nodes. Light nodes rely on full nodes for security and can
validate states by downloading and verifying block headers. Full nodes comprise the whole
blockchain database. A subset of these validate all blocks and execute the smart contracts.
Ethereum comes with different consensus protocols [110]. The most common are Proof of
Work, where miners put work into solving a puzzle, and Proof of Stake, where stakeholders
bet on whether a particular block is added or not. By contrast, with Proof of Authority,
a set of approved authorities decides whether a transaction is valid or not.

Blockchain Design Decisions:
We defined the blockchain to be semi-private. Such a blockchain is called consortium
blockchain. This has additional advantages in terms of speed, network scope, and autho-
rization handling compared to completely public approaches. Eventually, the consortium
Ethereum blockchain has been selected in combination with the Proof of Authority al-
gorithm Clique. This setup is beneficial for systems where the participants (e.g., different
businesses) may identify but not fully trust each other. In this sense, nobody is allowed
to participate in the process of reading, writing, or verifying transactions without an ex-
plicit invitation. Each application server owns a private/public keypair for blockchain
interactions. The blockchain wallet containing a cryptographic keypair is generated dur-
ing the registration procedure of a service provider and its system (see 4.4.1.1 for more
details). The public key is used to generate a blockchain address that serves as a public
user identifier. It also identifies deployed smart contracts. Furthermore, each application
server on the business layer participates as a sealer in the consensus mechanism. Fig.
4.8 gives an idea of which datasets from the core layer are uploaded to the blockchain
via smart contracts. In this context, data accessible by multiple business layers is stored
on the distributed network, such as federated services available for the service offer ap-
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Figure 4.8: Smart contracts are used for storing cross-domain related service data onto the
blockchain, such as federated services, service agreements, and transaction history
entries [89]

proach, service agreements, as well as transaction-related history entries (e.g., creation,
redemption, cancellation, forwarding of service-entitlements).
For each service transaction, a key-value pair is uploaded to the blockchain through a

smart contract. While the key field is composed of the a-ID and a timestamp, the value
field consists of the hashed transaction entry. Additionally, a blockchain receipt is gener-
ated and forwarded to the corresponding application server. This enables the validation
and tracking of past transactions while ensuring their integrity. A set of transactions is
merged to create a new block that is evaluated by the sealers. If the block is accepted,
it will be integrated into the existing Ethereum blockchain. Due to the blockchain’s
cryptographic functionalities, data uploaded once cannot be altered anymore, which is
advantageous if non-repudiation is a vital requirement, but may be problematic for han-
dling service agreements (4.4.2) that should expire or need to terminate. Therefore, a
one-time cancellation-request functionality has been included that can be used to set the
agreement’s validation state to false. This procedure disables the agreement permanently,
without deleting it. The described blockchain layer can be attached optionally to the
core layer. Please note that besides the advantages mentioned above, it produces a higher
computational overhead due to the business layers’ constant interaction for reaching con-
sensus.
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4.4.4 Service Incentivization

Gamification concepts are a possibility to integrate playful elements to non-game contexts.
They often aim towards marketing goals and can therefore be used to apply special offer
strategies [40, 56]. Especially in urban areas, many independent information systems
are available. Incentivizing users to consume different kinds of services via unique offers
and a dedicated loyalty system may benefit users and participating companies. The core
layer provides service providers with services of different companies and the possibilities
to (i) define condition-dependent rewarding strategies or (ii) directly distribute service-
entitlements to their users. These concepts can be used to apply different gamification
techniques. We will name a few examples on the basis of use case descriptions.

Example Service Offer:
Loyal customers can be rewarded with the goods and services of other companies via the
service offer approach. Fig. 4.9 supplements the following example use case.

A client user drives to a shopping mall by car. He successfully parks it in the
underground garage and enters the mall. After a while, he also enters a restaurant.
Both merchants (restaurant and parking service providers) cooperate over the core
layer of the CSE. They know about the other provider’s services and are authorized to
issue cross-domain vouchers (service-entitlements). When the client orders food, an
employee or the restaurant manager may forward him a parking service-entitlement
to reward him for his loyalty. The service-entitlement can be used to exit the shopping
mall for free or for better parking conditions [90].

Summarized, service provider A (restaurant) forwards a digital voucher (service-
entitlement) to one of his customers that authorizes him to use the service (parking)
of service provider B (garage) without applying time and cost consuming mutual integra-
tion procedures.

Figure 4.9: Incentivation example – service offer approach [90]

Example Service Agreement:
The service agreement approach enables service providers to define rules for reacting to
users’ specific app-usage and purchase behavior. The reward is issued automatically with-
out having to claim it when the rewarding condition is met. Conditions can be specified
according to the data accessible by the core layer. Fig. 4.10 summarizes the service
agreement approach with a service-consumption example.
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Condition A (service-consumption): A client user rents e-cars from a car rental
agency regularly. As part of an e-mobility campaign, e-bike services are advertised.
A new service agreement between the car and bike providers is established. As soon
as a client user has rented an e-car a few times, a rewarding service is automatically
unlocked. He receives an e-bike-rental service-entitlement that can be redeemed for
a free e-bike ride.
Condition B (service-usage): A client user such as a tourist, for example, downloads
and installs a mobility app. He uses it to rent a car for the weekend and is now on
the way to his destination. In case the application’s location services are enabled,
and location-specific data is shared, he may receive additional services based on his
location. For example, if the user is near a museum with his vehicle, he could get a
discount for the museum admission.

Due to the global transaction registry of the federation layer, it is possible to trace which
services were initially obtained and consumed by whom. Only the business layer knows
the user’s true identity due to the privacy-preserving processing of the core layer. If more
data is available (see section 4.6) also specific service-usage conditions could be created.
The core layer’s generic gamification approach can be extended with additional features
on the business layer, like an agreement tracker. If this is the case, the service providers
can keep track of the completion state of all agreements their users are involved in. The
same is true for clients if the interface of the business layer is adapted accordingly.

Figure 4.10: Incentivation example – service agreement approach [90]

Example Custom Rewarding Mechanisms:
Each business layer may use the generic core layer as a basis to create customized, reward-
ing strategies. Services of different service providers could be provided for a single app,
e.g., a mobile application that provides a route planner using different mobility services
(public transportation, e-cars, etc.) as depicted in Fig. 4.11. This approach could be
extended with a point-based system, like in the following use case example:

The client user wants to reach a specific destination. One of the city’s goals is
to reduce CO2 emissions. Therefore the city transportation app suggests different
transportation schemes for reaching his destination. The user may be rewarded for
traveling with environmentally-friendly transportation means, making trips with such
vehicles more attractive. The more environmentally friendly the chosen vehicle is,
the more points he would get that could again be exchanged for other (federated)
services.
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Figure 4.11: Incentivization example – custom rewarding mechanism

4.5 Ubiquitous Authentication and Authorization
Different methods for accessing locally and digitally available resources are part of today’s
smart cities. However, the problem is that due to environmental and use case restrictions,
no standard access method can be applied. This part of the thesis complements section
4.4 by defining different methods for secure authentication and authorization between
client and kiosk devices and the corresponding server infrastructure. The concepts are
based on the issuing, validation, and redemption processes of digital tokens (see 4.5.1).
Depending on the service type and the process of how to access the underlying local
or digital resources, we distinguish between distinct access methodologies explained in
subsections 4.5.2 and 4.5.3, respectively. Table 4.1 gives examples of services, their types,
and accessible resources.

Table 4.1: Examples of services, types, and resources

Service Type Resource
Unlock e-bike Local Bike

Enter parking lot Local Parking Spot
Start a charging cycle Local Charging Station

Get permission for reading datastream Digital Sensory Data

4.5.1 Token Types for Authentication and Authorization

The core layer described in the previous sections is now extended. It becomes a certification
authority in charge of managing digital tokens. Tokens are digital objects that act as
tickets for authenticating devices and entitle them to consume resources of different kinds,
available locally or digitally. First, tokens are issued and signed by the core server. The
elliptic curve secp256r1 (prime256v1, NIST P-256) is used for cryptographic signatures.1
After the tokens have been created, they are assigned to a core-user entity. Due to the

1According to the 2018 ECRYPT-CSA recommendation (https://www.keylength.com/en/3/; last access:
8th June 2020) this type of curve is recommended at least until 2028.
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established interface between the client and the core server, tokens can be forwarded to
the client. During the redemption process, they are transferred to kiosk entities, where
they are validated. Eventually, after the client passed all authentication and authorization
checks, access to the resource specified by the corresponding service-entitlement is granted.
A more detailed explanation of different token types can be found on the following pages.

4.5.1.1 Authentication-Token (A-Token)

An A-Token is core-user-bound and responsible for securely authenticating a client device
when communicating with another device over a local channel. It is created in the course
of a distributed Kerberos-based mechanism during the client’s registration explained in
4.4.1.1. Subsequently, it is forwarded to the client and stored locally. It can be trans-
mitted to other devices via local data transmission protocols without an active internet
connection, for example. An A-Token object is composed of the following elements (see
the left part of Fig. 4.12):

• ID: Unique device-bound identifier.

• Public Key: Public key of the device that requested the A-Token.

• Signature: Cryptographic signature of the core server.

• Attributes: Additional attributes for storing application-related datasets.

• Validity Period: Timestamp providing information on the token’s validity period.

Figure 4.12: Overview of the A-Token for local authentication and the S-Token for local autho-
rization (adapted from [86])
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4.5.1.2 Service-Token (S-Token)

All business and service relevant data is transformed into a service-entitlement object
stored online on the core layer, as discussed in section 4.4.1.2. In case a local copy of
it is required for enabling offline authorization, a Service-Token (S-Token) is derived
from the entitlement-object and core-server signed. In this case, the unique IDs from
the entitlement-object that identify the service (s-ID) and the corresponding application
(a-ID) are embedded into the S-Token. Each S-Token is mapped to one A-Token and
authorizes a client device to access a certain resource. Summarized, the S-Token consists
of the following elements (see the right part of Fig. 4.12):

• ID: Unique device-bound identifier.

• A-Token ID: Identifier used as a reference to the corresponding A-Token.

• Signature: Cryptographic signature of the core server.

• Attributes: Additional attributes for storing application-related datasets, e.g. (i) (s-
ID) and (a-ID) to identify the corresponding service and application, (ii) redemption
type for local BLE or HTTP redemption (see subsection 4.5.2), (iii) required local
redemption range, (iv) entitlement-state (valid, invalid, redeemed, canceled), (v)
entitlement-flag (consumable, persistent, non-redeemable).

• Validity Period: Timestamp providing information on the token’s validity period.

4.5.1.3 OAuth-Token (O-Token)

The previously mentioned tokens are used to access locally available resources involving a
client and an embedded kiosk device. By contrast, the O-Token – based on the OAuth 2.0
protocol2 – is utilized to authorize digital data exchange between a client and a virtual
kiosk (backend). In both cases, the central core server is responsible for authorization
management. Also, the O-Tokens are issued by the core server. Their structure is defined
as follows (see Fig. 4.13):

• Scope: The scope determines which data the receiver of the token is allowed to
access.

• Validity Period: Timestamp providing information on the token’s validity period.

• Value: The value field is the token identifier.

• Token Type: It tells how the token is going to be used to access the resource. Our
concept foresees the usage of bearer type tokens; thus, access to the resource is only
given to the token’s bearer.

2https://oauth.net/2/ (last access: 13th August 2020)
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Figure 4.13: Overview of the O-Token for online authorization procedures [86]

The OAuth 2.0 protocol specifies several grant types that define how the OAuth access
token can be retrieved. In our case the client credentials flow3 is performed between
client and core layer. The initial client request for obtaining an O-Token contains a client-
ID, a client-secret, an access-token-URI (specifies where the O-token is being requested
from), and the scope-information (defines which resources are being requested).

4.5.2 Local Service Redemption

Concerning local service redemption, clients, the core server, and embedded kiosks inter-
act with each other. As discussed in section 4.3, an embedded kiosk is an application
running on a mobile or a stationary device embedded into the infrastructure. During local
service redemption, (i) clients are authenticated, and (ii) their entitlements are validated.
If all checks are passed, the client is authorized to access a locally available resource.
Redemption channels can be established via BLE (4.5.2.1) or HTTP (4.5.2.2), thus fore-
seeing different checks to confirm the client’s physical presence. In both cases, the client’s
S-Token is transmitted to the core server after the client has passed an authentication
procedure. Subsequently, the entitlement validation phase starts where several checks on
the token and the corresponding service-entitlement are conducted (e.g., signature check,
validity period check, affiliation check).

4.5.2.1 Local BLE Redemption

The communication between the client and the embedded kiosk (redemption unit) is es-
tablished via BLE. Mutual authentication is provided with a dedicated challenge-response
mechanism that counters eavesdropping and replay attacks. It is depicted in the blue part
of the sequence diagram in Fig. 4.14. Both A-Tokens (in this example A-TokenC and
A-TokenEK) are exchanged, checked for their validity, and verified with the server’s public

3https://oauth.net/2/grant-types/client-credentials/ (last access: 13th August 2020)
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key. Furthermore, the client generates a random number (challenge CC) and challenges
the embedded kiosk to sign it with its private key before it is sent back to the client. The
received signature is verified against the random number CC by using the kiosk’s public
key embedded into the previously exchanged A-TokenEK. If this verification is successful,
the ownership of A-TokenEK is proven. The same method is also applied to A-TokenC.
This challenge-response protocol is part of our middleware and can be used independently
of the underlying communication protocol (BLE, Near Field Communication (NFC), etc.),
enabling a higher level of modularity and reuse.
If the mutual challenge-response protocol is passed, the authorization part starts,

pointed out in the green block of the sequence diagram of Fig. 4.14. First, the embed-
ded kiosk checks if the S-TokenC belongs to the rightful user by comparing it to the
A-TokenC. Second, the S-Token’s signature is verified with the core server’s public key.
Consequently, the embedded kiosk triggers the online redemption by involving the core
server via a RESTful HTTP interface. The kiosk authenticates itself with its API-key and
submits its and the client’s A-Tokens and the client’s S-Token. Eventually, the core server
conducts different checks. The most important checks are discussed in the following:

1. Validity period: It is checked if the S-TokenC has expired by comparing its timestamp
field with the current date and time.

2. Service State: Emphasis is laid on whether the state of both EntitlementC and its
corresponding S-TokenC are valid or not. Additionally, it is verified if the entitlement
is redeemable according to its specified properties.

3. Device State: The devices of the client and the kiosk are derived from their A-Tokens.
Their state has to be valid.

4. Relation User and Entitlement: This check verifies if the client device’s user is the
same as the entitlement-holder.

5. Relation Business Layer: Since different business layers can be connected to the
core layer, this check assures that both client and kiosk devices are part of the same
business layer.

Finally, the core server performs an update of the transaction-database and informs
the embedded kiosk and the client about the successful redemption procedure. This part
of the program sequence of Fig. 4.14 has been visualized in a simplified form with a
“Redemption Success” reply.

4.5.2.2 Local HTTP Redemption

Depending on different technology and use case requirements, communication over a direct
local channel between client and embedded kiosk is not always an option. In the local
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Figure 4.14: Local BLE redemption flow between client, embedded kiosk, and core server

HTTP redemption case, the core server takes care of the authentication, validation, and
redemption of the client’s tokens instead of the embedded kiosk. Compared to the BLE
redemption case (see 4.5.2.1) the client requires an active internet connection for carrying
out RESTful HTTP calls.
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Fig. 4.15 points out the overall program sequence. First, the client’s position data
consisting of latitude and longitude coordinates are retrieved. GPS and network lookups
are conducted for a more accurate and error-resistant estimation of the client’s physical
location. While for GPS the location information is retrieved using satellites, in the other
case, the location is based on cell tower availability and Wireless Fidelity (Wi-Fi) access
points. The client submits its location information to the server together with its A-Token
and S-Token. Authentication is provided with its API-key. Consequently, the core server
performs several validation steps similar to the checklist of the local BLE redemption
method discussed in 4.5.2.1. Complementary to it, the submitted coordinates are also
checked against the possible redemption range of the S-Token. If all tests are passed, the
core server contacts the corresponding locally available kiosk device via a push notification.
This completes the redemption process by granting the client-user access to the requested
resource.

Figure 4.15: Local HTTP redemption flow between client, embedded kiosk, and core server
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4.5.3 Virtual Service Redemption
If the redemption process aims to obtain digital data packets stored online, virtual kiosks
are used. A virtual kiosk is a server-side application that holds data (e.g., sensory or
mobility data) of one specific service provider. It also acts as a redemption place where
clients can obtain the data in question by redeeming digital tokens over a REST-based
interface. The authorization procedure of a virtual kiosk is based on the open-standard
protocol OAuth 2.0 [57]. The central core server is responsible for managing the authoriza-
tion process between clients and virtual kiosks. It issues O-Auth-Accesstokens (O-Tokens)
derived from service-entitlements for client devices (see 4.5.1.3). This grants the clients
access to specific datasets when validated and redeemed at virtual kiosks (e.g., distribution
of vehicles used in a specific city, temperature value stream). An overview of the program
sequence is given in the following paragraph and by Fig. 4.16:

1. A client wants to access data stored online. This data is owned by a service provider
running a virtual kiosk that trusts the core server. The virtual kiosk only shares the
data with whoever has the permission (a valid O-Token) to access it. Therefore, the
client requests an O-Token from the core server.

2. An authentication request is triggered by the core layer.

3. The client authenticates itself via its API-Key and sends the requested credential
data to the core layer. The O-Token generation process follows the OAuth 2.0 Client
credentials flow.

4. The O-Token is issued by the core layer and sent to the client.

5. The O-Token is forwarded from the client to the virtual kiosk. It specifies which
resource the client would like to access.

6. Before data is exchanged, the validity of the O-Token has to be verified. The virtual
kiosk does not know or explicitly trust clients, but it trusts the core server, which
receives the token.

7. The core layer validates the O-Token and sends the validation results back to the
client device.

8. If the O-Token is validated successfully, the virtual kiosk shares the requested re-
source with the client.

With this distributed approach, it is possible to store application-related data on the
service provider side only. Clients and virtual kiosks can communicate directly without
a trust relationship between them by involving the core layer as a central authorization
center. In case confidential data should be exchanged, there is the possibility of using
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Figure 4.16: Virtual redemption flow between client, virtual kiosk, and core server [86]

multiple virtual kiosks: the data itself stored on one virtual kiosk and the decryption
key on another virtual kiosk. This way, the described concept also supports end-to-end
encryption methodologies since clients and virtual kiosks would be the only entities that
can access the data.

4.6 Privacy Preserving and Secure Data Aggregation

In the previous sections, we discussed a platform that enables the exchange of various
services. It also provides different means to authenticate and authorize users to access
various resources. Complementary to that, this chapter focuses on the privacy-preserving
aggregation of data and how it is processed and postulated throughout the overall platform.
For more details please refer to subsection 4.6.1. Additionally, a design-space-exploration
driven approach for end-to-end secured data collection is pointed out in subsection 4.6.2.

4.6.1 Adaptive Privacy

As already explained in section 4.4, the user data stored on the business layer is never
forwarded to the core layer. Only anonymous IDs linked to the user and services of the
business layer are stored on the core layer. Privacy is a very individual topic since what
is considered highly private by one person might not be considered private by another.
Therefore, it is essential to provide a mechanism to let the user have a say in what data
is shared. On the one hand, from the perspective of a client user, there should be
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the possibility (i) to get an overview of the data that is collected during the usage period
of a mobile application and (ii) to adapt the data flow according to the user’s privacy
preferences. From the perspective of a service provider on the other hand, access
to the stream of shared anonymized data would help (i) to optimize their services and
(ii) to issue customized offers. Dedicated rewarding mechanisms (see subsection 4.4.4)
may incentivize users to share more data. In this sense, the more permissive the privacy
settings are, the more services may be unlocked.
According to the user’s privacy preferences, a new concept is proposed for sharing data

collected during the runtime of a client’s application in a privacy-preserving way. The data
shall be shared with the federation layer (4.4.2) and made accessible to all participating
service providers connected to it for context-aware service-entitlement creation.

4.6.1.1 Privacy Token

A new generic data-structure is introduced – the Privacy-Token (P-Token). It provides
information about the type of data the client user shares during the runtime of the ap-
plication. Just as in the case of the A-Token (4.5.1.1), S-Token (4.5.1.2), and O-Token
(4.5.1.3), the P-Token is issued by the core server. It is used to approve data sharing of
clients through local and online communication channels. The P-Token is depicted by Fig.
4.17 and consists of the following entries:

Figure 4.17: Overview of the P-Token acting as interface for managing the privacy of clients

• ID: Unique P-Token identifier

• A-Token ID: Reference to the client’s A-Token. Via this link the corresponding
device, its public key, and the core user are known.

• Signature: The entire object is signed by the core-server.
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• Privacy Label: A privacy label is subdivided into a category and a privacy level.
One P-Token may consist of multiple privacy labels. More details are discussed in
4.6.1.2.

• Validity Period: Indicator how long the P-Token is valid. The data shared by users
is visible to other participating service providers for as long as the validity period is
not exceeded, or clients do not change their privacy settings.

4.6.1.2 Privacy Labels

In order to cope with different privacy requirements, various privacy labels are specified by
the core layer. They consist of privacy categories and privacy levels and are part of each
P-Token. On the one hand, privacy categories refer to the type of data being collected
and are influenced by the application. Categories may be but are not limited to areas
such as health, mobility, entertainment, education, shopping, and social data areas, for
instance. On the other hand, the privacy level defines to which extent personal data is
shared. Level A is the most strict level regarding data aggregation, while higher levels are
more permissive. Applying this generic concept to a mobility app, for example, results in
the following setup. Shared data may consist of mobility (e.g., destination address, ticket
expiration date) and personal datasets (e.g., gender, age) without uniquely identifying a
person. For example, the privacy levels for mobility data could be defined as follows:

• Level A: The mobility services offered by the application can be used. However, no
mobility data is shared with the core layer.

• Level B: Vehicle-based data is collected (e.g., type of vehicle, usage period) and
shared on the core layer.

• Level C: In addition to vehicle-based data, trip-based data (e.g., GPS, destination
address) is collected during the driver’s/rider’s journey and shared with participating
service providers.

Fig. 4.18 summarizes the overall concept. The datasets submitted via the P-Token
may be used by service providers of different domains (App-ServerA, App-ServerB, App-
ServerC) to create new offers and agreements. Since the P-token is linked to the user’s
A-Token, it is possible to issue service-entitlements for the right clients without knowing
their real identity. While some data is required to guarantee the application’s correct
functioning and thus the minimum privacy level is set by the application by default, other
data may be optional for optimizing service offers (4.4.2) for the client. Suppose the user
decides upon a higher privacy level and thus consents to the application to share data with
the core layer. In that case, the P-Token may be submitted directly to the core server
at specific trigger points of the client application (e.g., obtainment, usage, redemption of
services) or locally to kiosk devices. If the validation of the P-Token is successful, and
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Figure 4.18: P-Token application scenario (adapted from [87])

if the privacy levels allow it, the core server accepts the transferred data. Last but not
least, the data is stored inside the federation layer of the core server, where other service
providers can access it.

4.6.2 End-to-End Secured Data Transfer Study

Often data of confidential nature has to be exchanged; thus, end-to-end security strategies
should be taken into account. It is important to consider protection schemes on different
hardware and software layers at early development phases to find the optimal design for
the application and avoid problems such as inappropriate security levels, performance
issues, and longer time-to-market cycles.
The virtual kiosk was described in subsection 4.5.3. Now the cycle of data collection

and redemption is completed by explaining a mechanism of aggregating data and securely
forwarding it to a virtual kiosk. A case study has been conducted based on a security-
aware DSE framework [50] that takes our system definition as input and identifies a set
of potential hardware and software building blocks with specific security and performance
properties for key management and distribution. Based on these exploration phase results,
a proof of concept was integrated into the overall platform. The data collection system is
oriented towards the system architecture of common IoT systems, depicted by Fig. 4.19
and described in the following:

• Edge Node – Data Collector. A power and computational resources constrained
device. It collects data via sensors from the local environment at constant intervals.
It encrypts all data it retrieves before forwarding it to other devices.
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• Gateway – Device Connector. The gateway acts as a connecting unit between
edge devices and the virtual kiosk. It receives data from locally available edge
devices, optionally extends the data bundle by adding additional information, and
forwards it to the virtual kiosk. The gateway is a trusted communication participant
but cannot read the received encrypted data.

• Virtual Kiosk – Data Repository. This server is the direct point of contact for
the gateway device and receives the secured data package. The virtual kiosk can
decrypt the received data. Furthermore, it can communicate to the core layer, which
acts as an authorization unit for distributing data services to interested systems, as
described in subsection 4.5.3.

Figure 4.19: Communication participants for end-to-end secured communication. Edge nodes send
encrypted messages to a gateway that forwards the data to a virtual kiosk unit for
further processing

This basic high-level system is taken into account for the following design-space-
exploration driven procedure, consisting of three phases: definition (4.6.2.1), exploration
(4.6.2.2), and selection (4.6.2.3).

4.6.2.1 Definition Phase

The DSE framework takes various information as input. In our case, the system’s func-
tionality was modeled as a task graph, and possible hardware components were defined.
Furthermore, attack scenarios were modeled as Bayesian attack graphs (BAGs) on the
whole end-to-end communication path. In each attack graph, the designer had to define
certain attack goals an attacker aims to reach, adding to each goal a threshold to limit
the goal’s attack success probability [91]. Different security options were also considered
as inputs for the framework. They comprise symmetric and asymmetric cryptographic
algorithms (different keys and lifespans), task encapsulation, and tamper-safe storage op-
tions to secure data packets on the application layer. Regarding the transport layer,
the transmitted data packets must be confidential and authentic. The edge nodes should
send their measured sensory data to the gateway using BLE, while the gateway commu-
nicates over Wi-Fi. Finally, different scalable provisioning schemes were considered by
the framework: (i) key injection at the time of manufacturing; (ii) key fetch by the edge
node from the cloud via the gateway; (iii) direct key fetch from the cloud.
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4.6.2.2 Exploration Phase

The DSE tool calculates the secure system partitioning and task mapping. It determines
the set of security constraints using the attack graphs and the given task graph. The secu-
rity constraints state that only those solutions are considered secure for which the attack
goals’ success probabilities do not exceed their individually set thresholds. Depending on
its configuration, the DSE tool provides different solutions from which the designer may
choose depending on his performance and security requirements. Each solution represents
the whole system and is depicted as a point in the scatter plot in Fig. 4.20. The solutions
are ordered according to their average attack success probability and system performance
and normalized to the fastest solution’s performance. They are colored according to the
number of attack goals reached by the attackers; green indicates secure and red less secure
solutions. Solution-examples are pointed out in the following:

Edge node and gateway solutions:
“The framework proposes for a security optimal edge node to place all functions (except the
BLE packet transmission) on the SE with the highest Common Criteria security certification.4
Considering the performance optimal yet secure solution, the framework suggests the imple-
mentation of the functionality on an MCU supporting HWC and HWF. It proposes placing a
certificate on a SE with the highest-rated security mechanisms and deriving a session key for
the symmetric encryption and authentication of the BLE packets. For the gateway, the frame-
work proposes the usage of hardware components providing the same security mechanisms.
For the gateway, it also suggests the usage of session keys derived from a certificate placed on
the SE. ” [91]

Virtual kiosk / cloud solutions:
“The framework suggests as the most secure solution for the cloud service, an HSM exclusive
implementation. For the performance optimal secure solution, the framework proposes the
implementation of the service’s functionality on a server platform offering HWC and HWF
and the storage of certificates and key material on an HSM extension. The framework sug-
gests securing the communication between the gateway and cloud service using symmetric
cryptography.” [91]

Provisioning solutions:
“[...] the framework selects approach (i) to be the most secure. Approach (ii) is the least
secure one, caused by potential intrusion attacks on the gateway capable of disclosing the key
material during provisioning. In contrast, approach (iii) is a good candidate for achieving
both security and flexibility under the premise that the edge device can connect to the internet
directly.” [91]

4https://www.commoncriteriaportal.org/ (last access: 29th August 2020)
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Figure 4.20: Design space exploration solutions for the overall system design. Each point repre-
sents a solution and indicates how many attack goal thresholds have been exceeded.
The solutions are sorted by the normalized performance and the average attack suc-
cess probability [91]

4.6.2.3 Selection Phase

According to the solutions depicted by Fig. 4.20 (i) the most secure solution comes with an
average success probability (ASP) of 0.0074, (ii) the least secure with an ASP of 0.0376, and
(iii) the fastest secure solution with an ASP of 0.0148. The latter solution has been chosen
from all solutions calculated by the DSE tool due to a very low average success probability
on the attacker side. In this case, the edge node and the gateway use a microcontroller unit
(MCU) and a secure element (SE) for storing the sensitive key material and for providing
hardware-based cryptography (HWC) and task encapsulation. For the provisioning of
the edge node devices with key/certificate material, the direct injection during device
manufacturing by the OEM was selected. The injected credentials are of asymmetric
nature. Furthermore, the SE is responsible for creating session keys. The edge nodes
communicate with the gateway using BLE. In addition to our application-layer encryption,
BLE Security Mode 2 / Security Level 2 is used to enforce authentic communication.
Mutually authenticated pairing is included in this process. For the secure realization of
the virtual kiosk, a server platform that supports HWC, hardware-based firewall (HWF),
and a Hardware Security Module (HSM) extension for the secure storage of the server’s
certificates and secret keys has been chosen. Communication is established via an HTTPS
channel, secured via the mutual TLS protocol.
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5 Implementation
This chapter gives an overview of the technologies and software projects that resulted in the
SOA discussed in this thesis. The descriptions comprise information on communication
aspects (5.1), the mobile applications (5.2), the service redemption and data collection
procedures (5.3), and the application and core servers (5.4). Each implementation building
block is introduced with a short context and use case preview illustrating the concepts
described in chapter 4.

5.1 Communication
Regarding device to device communication methodologies, we built upon standard wireless
communication protocols (e.g., BLE, HTTP). We added dedicated connection establish-
ments, mutual security checks, and a custom payload format on top. This avoided us the
implementation of larger communication stacks from scratch while maintaining a high in-
teroperability level.

Local communication is established over BLE. All data sent over BLE is encoded in
TLV-format. TLV elements can be placed inside the message body in any order since
they can be identified through their Type/Tag byte. Another advantage compared to
static encoding mechanisms is that data of variable length can be transmitted because the
length information is part of the encoded package. Finally, the TLV format depicted in
the following causes little overhead despite the additional tag and length bytes.

• Type: Unique byte-code of 1-byte length indicating the kind of data following next.

• Length: Holds the size of the value field. Since the length has a size of 1 byte, the
maximum possible length of a data-fragment is 255 bytes.

• Value: Actual data bytes.
By contrast, HTTP requests and responses are JSON-encoded, a generic data-

exchange encoding scheme. Since its syntax is small and light-weighted, this has ad-
vantages on memory consumption and execution speed. JSON is built on two generic
structures that can also easily be interpreted by software and people:

• Collection of name/value pairs, e.g., object, record, struct, dictionary, hash
table, keyed list, array.

• Ordered value-list, e.g. array, vector, list, sequence.
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5.2 Mobile Apps
Client and kiosk apps were developed as Android applications with a minimum API level
of 26 that corresponds to the Android version 8.0 or newer. The Android apps’ application
logic was programmed in Java and Kotlin, while parts of the user interface were elaborated
within XML files. The middleware and the common libraries that enable the authentica-
tion and authorization procedures described in section 4.5 were also programmed in Java
and Kotlin. This enables a higher level of compatibility with the mobile Android applica-
tions and the software of the server logic. The implemented cloud concepts of subsections
4.4.1 (access control, data abstraction) and 4.4.2 (service exchange) were used to integrate
and handle different mobility services.

One app – different services: the app (client) acts as a service wallet combining services
of different service providers. It has been realized within the H2020 project STEVE (2.6.1)
and combines different cross-domain mobility services within one mobile application.

Light-electric vehicles, so-called quadricycles, were provided by the company JAC-Italy
Design Center SRL1. Their proprietary solutions were adapted by Politecnico di Torino2

and Infineon Technologies Austria AG3. A telematics unit and dedicated control logic
has been added for providing location and connectivity features, thus enabling vehicle-to-
infrastructure communication and bi-directional data exchange to an application server
from Vem Solutions S.r.l.4 over the public mobile network. Additionally, e-bikes and
corresponding charging stations were adapted by SYCUBE GmbH 5 to be usable for a
seamless micromobility experience for clients. Two application layers, one for the quadri-
cycle service provider and the other for the e-bike service provider, were introduced.
The client and kiosk apps became part of each application layer communicating to the

corresponding service provider’s application server. Furthermore, both application layers
were connected to the core layer, enabling the creation of local and online service access
mechanisms and easier data exchange across the application servers. Figures 5.1 and 5.2
show the client app and the integrated mobility services of Villach in Austria as well as of
Turin in Italy. As soon as a service is booked/reserved, a service-entitlement is created, and
a corresponding token is issued and forwarded to the user’s service wallet (see Fig. 5.3)
where it can be managed. This includes redemption mechanisms subdivided into locking
and unlocking of the vehicle as well as cancellation of the service-entitlement. More about
the implementation of our redemption mechanisms is discussed in section 5.3.

1https://www.mesap.it/associati/jac-italy-s-r-l/ (last access: 30th July 2020)
2https://www.polito.it (last access: 30th July 2020)
3https://www.infineon.com/cms/austria (last access: 30th July 2020)
4https://www.vemsolutions.it (last access: 30th July 2020)
5http://www.sycube.at (last access: 30th July 2020)
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Figure 5.1 Quadricycle and
e-bike services in
Villach (AT)

Figure 5.2 Quadricycle and
e-charging services
in Turin (IT)

Figure 5.3 Service wallet –
interconnection of
different services

Different apps – different services: The interconnection of service platforms enables shar-
ing mechanisms of services across different client and kiosk devices and applications.

A clientorigin user may forward obtained services to another clientdestination user according
to the mapping principle described in section 4.4. In this implementation of the client
app, the wallet view of Fig. 5.3 is used to trigger the forwarding feature. The clientorigin
user has to press and hold the service entry that should be shared. According to Fig.
5.4, this opens a dialog for entering the recipient’s email address. In case the recipient is
a registered clientdestination user of a compatible business-layer, the forwarding process is
carried out. The email address is used as an identifier for the business-layer to retrieve the
user’sdestination core identifier. The same mechanism can also be used by the kiosk device
to forward a rewarding service to a clientdestination device, for instance. Please note that
in case the client devices are in close proximity, BLE could be used to directly transfer
the user’sdestination core identifier.
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Figure 5.4: Implementation of the service forwarding feature

5.3 Service Redemption and Data Collection
Based on the explanations of section 4.5 different token-usage scenarios were implemented.
According to section 4.6, also data collection mechanisms were taken into account.

The digitalization and generic handling of service-entitlements throughout their lifetime
facilitates the realization of different applications and use cases in regard to service access
and redemption.

The core layer enables different functionalities, such as service obtainment, redemption,
and cancellation. These generic mechanisms were adapted to the STEVE client mobility
app’s requirements for accessing light-electric vehicles (quadricycles) and e-bikes. Four
service-categories are distinguished to access a mobility-resource: (i) book (reserve the
resource for a predefined time, in our case 30 minutes), (ii) cancel (release the booked
resource), (iii) start (unlock the resource and start a session), and (iv) stop (lock the
resource and finish the session).
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The following tables depict how the overall functionality is split across all communication
participants. Table 5.1 shows the services for the quadricycles in Turin. For unlocking
or locking a quadricycle with the STEVE client app, the session view shown in Fig. 5.5
can be used. The start button triggers the unlocking procedure, while the stop button
is responsible for requesting the locking mechanism. Consequently, the connection to the
mobile kiosk app of Fig. 5.6 (local redemption unit) is established. For more details
regarding the local BLE redemption procedure, please refer to 4.5.2.1.

Table 5.1: Service functionality for managing and accessing quadricycles in Turin split across client
& kiosk, app server, and the core server

Category Client & Kiosk App Server Core Server
book getVoucher() obtainResource() createEntitlement()
cancel discardVoucher() cancelResource() cancelEntitlement()
unlock localRedemptionBLE() startTicketing() redeemEntitlement()
lock localRedemptionBLE() stopTicketing() redeemEntitlement()

By contrast, Tables 5.2 and 5.3 summarize the main actions for the quadricycle and
e-bike use cases in Villach. Due to the implemented context-awareness, the client han-
dles these vehicles via the local HTTP redemption procedure described in 4.5.2.2. Fig.
5.7 shows the client app’s session view for the e-bikes that can be used to trigger the
redemption flow in case the location checks are passed successfully.

Table 5.2: Service functionality for managing and accessing quadricycles in Villach split across
client & kiosk, app server, and the core server

Category Client & Kiosk App Server Core Server
book getVoucher() obtainResource() createEntitlement()
cancel discardVoucher() cancelResource() cancelEntitlement()
unlock localRedemptionHTTP() startTicketing() redeemEntitlement()
lock localRedemptionHTTP() stopTicketing() redeemEntitlement()

Table 5.3: Service functionality for managing and accessing e-bikes in Villach split across client &
kiosk, app server, and the core server

Category Client & Kiosk App Server Core Server
book getVoucher() obtainResource() createEntitlement()
cancel discardVoucher() cancelResource() cancelEntitlement()
unlock localRedemptionHTTP() startRide() redeemEntitlement()
lock localRedemptionHTTP() stopRide() redeemEntitlement()
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Figure 5.5 Client device –
quadricycle session
management

Figure 5.6 Kiosk device –
mobile redemption
unit

Figure 5.7 Client device –
e-bike session
management

In addition to different local redemption methods, the virtual redemption described in
4.5.3 was applied in the course of the STIP project (2.6.3). In this case, the redemption
process aims to obtain digital data packets stored on virtual kiosks. Table 5.4 shows all
communication participants and their interaction. The core server is used as an autho-
rization center that allows trusted third parties (clients) to obtain data stored on virtual
kiosks.

Table 5.4: Service functionality for accessing data stored online split across client & kiosk and the
core server

Category Client & Kiosk Core Server
request getVoucher() createEntitlement()
cancel discardVoucher() cancelEntitlement()
receive virtualRedemption() redeemEntitlement()
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Complementary to the virtual redemption mechanism, an end-to-end secured data collec-
tion strategy from embedded devices to virtual kiosks was designed. Subsequently, a multi-
layered data collection system for virtual kiosks was implemented, considering the results
of the design-space-exploration procedure of 4.6.2.3.

As an edge node, a Raspberry Pi 3 Model B device with an integrated DHT22 temperature
and humidity sensor was used. The secure element EdgeLock SE050 was attached to the
edge node. It works as an HSM and increases the host controller’s security concerning
cryptographic key and certificate management and distribution. The SE050 connects and
communicates to the host MCU using the chip’s I2C interface. The host MCU runs the
application logic and controls all cryptographic operations (encrypting, signing, hashing,
etc.). The latter was achieved through software integration of the SE050 support package6.
Regarding wireless connectivity, the Raspberry Pi’s integrated BLE chip was utilized to
establish local communication to the gateway. The gateway itself is a Raspberry Pi 4
Model B controller that supports BLE and has an integrated Wi-Fi module and Ethernet
port used for HTTPS calls to the virtual kiosk server. The virtual kiosk server was real-
ized as an Amazon EC2 instance and extended with the AWS Cloud-HSM. The server’s
application connects to the HSM using mutually authenticated TLS channels established
by the HSM client software. Fig. 5.8 shows the system setup of the embedded layer con-
sisting of two edge nodes (two devices on the right side) and a gateway unit (left part).

Figure 5.8: End-to-end secured data aggregation system setup: the host controllers are equipped
with the secure element EdgeLock SE050

6https://www.nxp.com/webapp/Download?colCode=SE050-PLUG-TRUST-MW (last access: 22nd July
2020)
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On top of the anonymization of the users’ identity, users should be allowed to see and
choose which kind of data should be shared on the cloud layer, resulting in new service-
offers or service-agreements.

According to subsection 4.6.1 different privacy levels were defined in the course of the
SCOTT project (2.6.2). The user can decide which type of data is shared globally with
participating service providers while still masquerading his true identity. A dedicated user
interface was elaborated within the settings view of the mobile client app. In the menu’s
penultimate line, the privacy settings can be changed (see Fig. 5.9). A privacy label
example has been discussed in 4.6.1.2. The proof of concept depicted by the figure below
is based on it. In this context, a C-privacy-level means that mobility data (vehicle-based
and trip-based data) is shared with the core layer. The shared data can be visualized
via the web-front-end shown in section 5.4. Consequently, service providers can create
service-offers or service-agreements, e.g., issue a digital voucher to a museum if the user
is nearby with his rented e-bike.

Figure 5.9: Privacy settings within the mobile client application
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5.4 Cloud – Application and Core Servers
The implementation of our servers (e.g., application and core) are based on the Spring
Boot framework7 and are programmed in Java and Kotlin. The servers were realized as
Amazon EC2 instances8 in combination with the AWS Elastic Beanstalk9 service. Besides,
the relational database service10 was used to store user, service, and token data inside a
SQL database. Additionally, the concept of sharding was applied for better scalability.
By using these tools, our cloud layer provides elasticity for all deployed services.

A web-front-end/dashboard was implemented for (i) enabling an easier registration for ser-
vice providers and their business layers to the core server of the CSE and (ii) providing a
management user interface.

The user interface of the web-front-end was developed with Vaadin, an open-source plat-
form for developing web applications11. Fig. 5.10 depicts parts of the registration form.
After the registration process, service providers are authorized to connect their mobile and
server applications to the core layer. Consequently, federated services can be managed via
the web-front-end (see Fig. 5.11 as an example). Furthermore, the web-front-end handles
agreement specifications defined in subsection 4.4.2. It provides the possibility to spec-
ify trigger conditions and resulting actions for automated service creation. There is also
the possibility of sending a push notification to the service receiver. Fig. 5.12 shows the
action trigger dialog. Additionally, a service provider may also create and forward feder-
ated services manually. With these approaches, incentivization-techniques as described in
subsection 4.4.4 can be implemented.

The core server provides secured interfaces to devices on a business layer, among these,
clients, kiosks, and application servers.

The application servers and the application clients/kiosks access the core server’s func-
tionalities through a RESTful HTTPS interface. Basic HTTP authentication is applied
to every call using a secret personal API key that is passed as a username within the
authorization header. The only exception is the client and kiosk registration process on
the core server. In this case, the registration-ticket is used for identifying the device until
the corresponding API-key is issued. Regarding token management (see 4.5.1 and 4.6.1),
the overall platform relies on Public-Key-Infrastructure (PKI) mechanisms used together
with ECDSA as signature algorithm and SHA256 for hashing data.

7https://spring.io/projects/spring-boot (last access: 5th September 2020)
8https://aws.amazon.com/ec2 (last access: 4th November 2020)
9https://aws.amazon.com/elasticbeanstalk/ (last access: 4th November 2020)

10https://aws.amazon.com/rds/ (last access: 4th November 2020)
11https://vaadin.com (last access: 5th September 2020)
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Figure 5.10: Dashboard registration view

Figure 5.11: Dashboard services overview

The tamper-resistant properties of the blockchain, combined with smart contracts, were
leveraged and resulted in new software building blocks. They can optionally be used to pro-
tect sensitive transactions against fraudulent manipulation as described in subsection 4.4.3.
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Figure 5.12: Action trigger user interface

For a proof of concept, a local Ethereum blockchain was installed on a Linux-based
computer, including the PoA Clique consensus algorithm. The Go Ethereum protocol –
available as terminal client Geth12 – was utilized to create all blockchain nodes, accounts,
and the genesis block. A boot node running on a static IP address has been initialized.
Participating nodes can use it as a reference to find other nodes despite their dynamic IP
addresses.
A smart contract interface between the Java/Kotlin-based application code and the

Ethereum blockchain was established via the web3js library13. Smart contracts were pro-
grammed in Solidity 14. For Ethereum, smart contracts are a collection of code (functions)
and data (states) stored at specific addresses. Once the network approves a smart-contract-
transaction, it is installed on all nodes. In order to embed the contract into the server
application, it was compiled using Solidity’s solc-compiler. The resulting output files are
transferred into Java wrapper classes with the Epirus command line interface15 and inte-
grated into the application.

12https://geth.ethereum.org (last access: 2nd September 2020)
13https://web3js.readthedocs.io (last access: 2nd September 2020)
14https://solidity.readthedocs.io (last access: 2nd September 2020)
15https://docs.epirus.io/sdk/cli/ (last access: 2nd September 2020)
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In this thesis, a SOA has been designed and implemented for handling service-entitlements
of different domains in a secure and privacy-preserving way. Different aspects of the result-
ing distributed system, mainly consisting of client, kiosk, and server units, are discussed
and evaluated in this chapter. Regarding our evaluation process, we have applied a four-
step approach. First, we resolve our functional and non-functional requirement definitions
within section 6.1 to get insights into the functionality achieved by the final system.
Second, we evaluated the performance of the implemented solution through time mea-
surements, focusing on the most critical processes (6.2). Third, based on the findings of
our time measurements, a quantitative user acceptance survey has been conducted. This
was done to estimate the impact of the CSE on the systems communicating with it (6.3).
Fourth, we prepared and supervised usability analyses involving different probands. In
this context, the usage-effort to complete specific goals has been assessed (6.4). This final
part extends our acceptance section’s results by revealing the new system’s advantages
and limitations compared to the original one.

6.1 Requirements Resolved
Within this section, functional and non-functional requirements are resolved. First, we
will discuss our resolved functional requirements (FR), that were listed in section 4.1.

• FR1 resolved – cross-domain service management: A service-oriented ar-
chitecture has been elaborated for issuing, obtaining, canceling, exchanging, and
forwarding service-entitlements across client-server systems. Service-entitlements
are digital objects that form the basis of resource access mechanisms for client and
kiosk devices. They specify which resource can be accessed by whom and under
which circumstances. The resulting SOA consists of a common service overlay that,
additionally, acts as a service-marketplace where federated service-entitlements, due
to their generic nature, can be created and shared across client-server systems of
different domains.

• FR2 resolved – data management: Service-entitlements are created via interac-
tion with the connected client-server system over a RESTful interface or directly via a
web-front-end-view provided by the SOA.With these interfaces, service-entitlements,
and generally speaking data of the core layer (e.g., core user or service provider data),
can be managed.
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• FR3 resolved – cross-domain rewarding system: Cross-domain service re-
wards can be obtained through service offer and service agreement approaches. In
the first case, a service provider is authorized to obtain federated service-entitlements
on demand and link them to their users. In the latter case, the service offer function-
ality is extended by providing conditions for issuing service-entitlements automati-
cally. These conditions are based on transactional data or other datasets collected
during the usage period of the underlying application.

• FR4 resolved – ubiquitous resource access and control: Regarding resource-
access, service-entitlements and the core-user-entities are transformed into different
tokens responsible for authenticating and authorizing clients to access digitally or
physically/locally available resources.
Local resource access is achieved via the redemption of S-Tokens between clients,
embedded kiosks, and the core server. Two approaches are distinguished. First,
communication between the three components can be established via a custom re-
demption protocol based on the local wireless communication protocol BLE. Second,
also HTTP redemption is possible. In this case, the core server takes care of the
authentication, validation, and redemption of the clients’ tokens instead of the em-
bedded kiosk. Furthermore, a check of the client’s physical location is conducted via
the interpretation of GPS signals and a network lookup.
Online resource access by clients is enabled via virtual kiosks and the core server
through the redemption of O-Tokens. Virtual kiosks are data holders and act as
redemption units where the data of interest can be obtained.

• FR5 resolved – external access: Firstly, the CSE introduces a RESTful API for
enabling client-server systems to communicate to the core cloud. Secondly, the CSE
consists of dedicated middleware for easier integration of the overall functionality. It
enables local communication between clients and kiosks and online communication
to the core server. Thirdly, a web-based dashboard provides a management user
interface for service providers.

Next, non-functional requirements (NR) of section 4.2 are resolved.

• NR1 resolved – interoperability: From an architectural perspective, the core
layer of the CSE is put on top of different business layers that may consist of client,
kiosk, and server units. It enters a one-to-many relationship with them that is es-
tablished via a RESTful interface. The core layer of the CSE is subdivided into two
major submodules, the tokenization layer (4.4.1) and the federation layer (4.4.2).
The first represents the entry point for external applications and provides access
control and abstraction features. It normalizes incoming datasets for more efficient
and standardized communication between different business layers. The latter en-
ables mechanisms for sharing and issuing cross-domain service-entitlements. These
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services can be exchanged by first storing data related to the business layer into
an obfuscated mapping table. Second, the mapping table can be used to relate
service-entitlements to other business layers.

• NR2 resolved – context-awareness: The CSE acts as authorization centre. Dif-
ferent use cases are possible, depending on the available resources. On the one hand,
clients can access local resources by (i) directly communicating to locally available
kiosk units (4.5.2.1) or (ii) indirectly by first talking to the core cloud that contacts
the locally available kiosk in case all checks are passed (4.5.2.2). On the other hand,
digital goods can be obtained at virtual kiosks utilizing an OAuth-based approach
(4.5.3). This context awareness is possible since our CSE allows granular permission
settings for each service. Furthermore, in conjunction with the core cloud, the agree-
ment approach enables condition-dependent creation of service-entitlements based on
transactional data. These conditions could also be based on aggregated application-
data as long as it is made available to the core layer.

• NR3 resolved – privacy: The client’s registration process on the core layer fore-
sees a Kerberos-based distributed login procedure that also involves the server of the
business layer (4.4.1.1). This procedure ensures that only anonymized user data is
passed to the core, from which core-user and core-device objects are derived. The
link between real and anonymized information is revocable at any time. Subse-
quently, all tokens are linked to the core objects, while the business layer remains in
complete control of the real user data (4.4.1.2). Furthermore, the topic of privacy
labels has been elaborated. In our context, they define what kind of information the
user can expect to be shared by using a client application. According to us, a more
standardized definition of privacy labels will form the basis for standardization au-
thorities, companies, and users to evaluate the respective application. The definition
of standardized privacy labels exceeds the scope of this thesis. However, the concepts
discussed in subsection 4.6.1 provide information on privacy-preserving data aggre-
gation and transfer and take example-privacy-labels as inputs. This was realized by
introducing a new data structure called P-Token. According to the users’ preferences
and the mobile application in use, privacy labels can be viewed and adapted, as well
as the associated data sharing flow.

• NR4 resolved – security: A confidential data collection strategy has been elab-
orated based on a security-aware design space exploration method. Following the
exploration phase’s results, an example system was implemented where data col-
lected by embedded devices is sent to a server-based virtual kiosk in an end-to-end
secured manner (4.6.2). Regarding resource access, tokens are responsible for au-
thenticating and authorizing client devices. They are not encrypted but obfuscated.
This results in faster data transmission and less computational overhead. A token
can, in any case, only be redeemed by clients when the authentication checks by
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(i) kiosks and (ii) the core server (API-key based authentication procedure) were
successful. Regarding data integrity, the tokens discussed in this thesis are based
on a PKI with the core server as the root of trust. All tokenized data is signed via
ECDSA by the core server and verified in the course of the redemption process be-
tween clients, kiosks, and the core server (4.5). Additionally, the integrity of the core
layer’s transactions can be protected with a blockchain and smart contracts software
building block added to the CSE. Due to the blockchain’s tamper-resistant proper-
ties, data, once uploaded, cannot be changed anymore (4.4.3). The resulting system
ensures that service providers control their transactions and have transparency over
all transactions involved. Finally, since transaction-based data is stored decentral-
ized on the blockchain network, a single point of failure and data losses are avoided,
benefitting data availability.

• NR5 resolved – scalability: The number of active server instances is adapted
according to the computational needs of the core cloud. Regarding storage, the
central core cloud relies on an SQL-based database because of properties such as
atomicity, consistency, isolation, and durability. The concept of sharding is applied
to provide scalability for growing database scenarios. When a query is received,
the database can quickly refer to the desired shard index without scanning the
entire database. Additionally, multiple database instances are used to reduce data
availability failures. Transactional data is also saved on the distributed ledger.

• NR6 resolved – configurability: Service-entitlements are represented as generic
objects assignable to clients. They can be revoked but also transformed into tokens
for applying different online and offline redemption procedures. Furthermore, specific
parameters were integrated to dynamically define authentication and authorization
behavior according to the underlying application’s requirements.

6.2 Performance Measurements

We measured the execution times of the distributed registration, token creation, and
service redemption processes (actions) involving different communication participants:
a client device (client), an embedded kiosk device (kioskembedded), a virtual kiosk unit
(kioskvirtual), the application server (serverapp), and the core server (servercore). Table 6.1
depicts the measured timings of our system, including average and standard deviation
(Timeavg±), 90 percentile (Time90%), and maximum (Timemax) timing values in millisec-
onds (ms). Each action was performed 100 times. A Xiaomi Mi Mix 3 smartphone with
Android 8.0.0 (client) and a Sony Xperia Z5 with Android 7.1.1 smartphone (kioskembedded)
have been used. All server units were set up as separate Amazon EC2 server instances, as
described in section 5.4.
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Table 6.1: Average and standard deviation (Timeavg±), 90 percentile (Time90%), and maximum
(Timemax) measured timing values in milliseconds (ms) of the distributed registration,
token creation, and redemption procedures

Action Devices Timeavg±
[ms]

Time90%
[ms]

Timemax
[ms]

Distributed Registration client�serverapp�servercore 2670±146 2818 2978
Creation/Obtainment A-Token client�serverapp�servercore 1097±86 1202 1252
Creation/Obtainment S-Token client�serverapp�servercore 1233±55 1293 1348
Creation/Obtainment O-Token client�servercore 542±12 557 560
Creation/Obtainment P-Token client�servercore 890±15 908 914

Local BLE Redemption client�kioskembedded�servercore 1634±105 1726 1749
Local HTTP Redemption client�servercore�kioskembedded 978±64 1051 1055

Virtual Redemption client�kioskvirtual�servercore 493±29 516 553

As Table 6.1 shows, the client’s distributed registration procedure, which also involves
the serverapp and the servercore, took less than three seconds on average. A part of this
registration involves the creation of an A-Token. The token’s issuing procedure includes
the ticket creation triggered by the application server. The client redeems the ticket at the
core server, where, in further consequence, user and device entities are created. As long as
an A-token does not exceed its validity period, this procedure does not have to be repeated.
Next, there is the S-Token creation triggered by a client device. Each time a service on
the application layer is obtained, an S-Token is issued. The client communicates to the
application layer, which contacts the core layer for creating the S-Token. It is linked to the
right user and his A-Token and pushed to the corresponding client device. The creation of
the O-Token and P-Token are faster due to direct communication between the client and
the core server. Furthermore, Table 6.1 shows the local and virtual redemption procedures’
timings, also taking into account the authentication steps as described in our design section
4.5. Our SOA does not have any rigid real-time requirements. However, it is still essential
that the overall performance does not negatively impact system acceptance and usability
due to prolonged reaction times. Summarized, the measured execution timings are in
the range of seconds. These measurements suggest that the overall system performance
contributes to a seamless system-usage and user experience with its short waiting times.
These findings will be substantiated and further discussed in the following section 6.3 via
a dedicated acceptance survey.

6.3 Acceptance Evaluation
Another evaluation goal of this thesis was to measure the user acceptance level of the CSE
by observing its indirect impact on the client application. A quantitative usability study
has been conducted to retrieve the provided services’ acceptance level. For this purpose,
an in-app questionnaire was created in cooperation with Carinthia University of Applied
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Sciences1. The questionnaire evaluates if the provided services were (i) useful, (ii) satisfy-
ing, and (iii) if the users would recommend the utilized services. For the implementational
aspects of the survey, we integrated the tool Zoho-Survey2 as web-view into our mobility
app discussed in chapter 5. Fig. 6.1 shows parts of the mobile in-app questionnaire.

Figure 6.1: In-app questionnaire view

The mobile app was used during the STEVE project’s demo phases in Villach (Austria)
and partially in Venaria and Turin (Italy). Fig. 6.2 gives an overview of the active Android
app users from 1st May 2020 to 8th November 20203. In Italy, 23 surveys were filled out
(quadricycle drives) during the first project test phase, while in Austria, a total of 181 in-
app questionnaires (104 quadricycle drives, 77 e-bike rides) were completed in the course
of the second test phase. During these demo phases, the mobile app asked the user to
complete the survey after using a mobility-related service. The questionnaire’s goal was
to quantify the system’s acceptance criteria based on three service-related questions. The
questions and their results are discussed on the following pages.

1https://www.fh-kaernten.at (last access: 10th September 2020)
2https://www.zoho.com/survey (last access: 10th September 2020)
3Statistic downloaded from https://play.google.com/console (last access: 30th November 2020)
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Figure 6.2: Active Android devices running the mobile client app in Austria and Italy from May
2020 to November 2020

Question I – Was the mobility service useful to you?
This question aims to ascertain whether the used systems and their related mobility ser-
vices benefit the user. The app-user could choose between eleven options, ranging from
0 (not useful) to 10 (very helpful). Fig. 6.3 depicts the results collected in Italy (quadri-
cycles) and Austria (e-bikes and quadricycles) as single stacked bars, giving information
on the distribution of the results in %. The legend at the bottom of the figure maps the
results to the percentage of users who voted for it. The diagrams show that the imple-
mented service had a very high usefulness rate. For all cities and mobility services, more
than 72% of all testers have graded the usefulness level of the used services with 7 points
or higher.

Question II – How satisfied were you with the mobility services used?
The idea behind this question was to find out to what extent the app users’ expectations
correspond to the actual service usage. For this question, the input modalities, as well
as the format and type of the responses, were the same as for question I. The resulting
diagrams of Fig. 6.4 show the question’s results that underline a high satisfaction rate of
the implemented services: More than 73% of all testers graded their satisfaction level with
7 points or higher.
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Figure 6.3: Client survey results – distribution of the usefulness level in %

Figure 6.4: Client survey results – distribution of the satisfaction level in %
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Question III – Would you recommend the mobility service you used?
This final question depicts the users’ willingness to recommend the utilized app and its
services, providing feedback about the overall system’s acceptance level. In this case,
the app-user could choose between two options, “rather yes” or “rather no”. Fig. 6.5
summarizes the outcome of all results collected in Austria and Italy via pie charts. The
three diagrams show that most users (87,01% - 91,30%) recommend the utilized system
and its offered services.

Figure 6.5: Client survey results – distribution of the recommendation readiness in %

Our quantitative user acceptance study revealed a high acceptance rate of the used
system. This leads us to the conclusion that our implementation and the associated low
waiting times illustrated in the previous section 6.2 had a positive impact on the overall
system’s acceptance level.

6.4 Usability Assessment

Usability testing cycles have been conducted to assess the effects of the CSE’s implemented
features on the underlying systems. By doing so, we were also able to deduce the effort
associated with reaching specific goals while using our system. In concrete terms, those
systems acting as user interfaces, such as the mobile app and the web-front-end, have been
assessed by a diverse set of people.
Our probands were selected based on the specification of our target group. According

to our definition, the target group comprises technophile people with a particular inter-
est in trying out new technologies, such as new smartphone apps, but are unwilling to
use inconvenient software that requires a lot of effort or engagement. According to our
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target group’s requirements, we chose ten probands to evaluate our approaches, including
employees from CISC Semiconductor GmbH, Graz University of Technology, and people
with a non-technical background. The evaluation criteria were the quality of the imple-
mentation regarding application-handling and the corresponding usage-effort associated
with completing specific goals while using the provided applications. The system’s re-
sults elaborated in the course of this thesis were compared with the distributed COYERO
framework and its applications as they were back in 2017.
The comparison between the new and old applications was not a trivial matter since

several software-aspects and service handling processes had been changed and enhanced
in this thesis. Therefore, the following evaluation does not claim to provide a holistic
comparison of all designed and implemented features. Nevertheless, we were able to get
valuable indications of the new system’s benefits. The involvement of users was thoroughly
investigated and validated for the following parts of the mobile application.

1. Service obtainment and cancelation. Users were asked to obtain two different
mobility service-entitlements and to cancel one of these subsequently. Services for
handling resources of different service providers can be accessed within one applica-
tion by using the new system. By contrast, different accounts have to be created
in case of the previous system, and different apps to be used to complete this task.
Due to the additional federation layer of our new SOA faster cross-domain service
obtainments can now be achieved. While users obtained one service-entitlement just
as fast as in the original version, our updated core layer showed its advantages in
the case of multiple service obtainments, enabling the average user to reach the goal
62% faster compared to the prior system.

2. Service sharing. The service sharing and forwarding functionality has been em-
bedded as a new functionality into the core server of the SOA. To achieve the same
functionality, the old system has to trigger the service-entitlement cancellation logic,
followed by a new service-entitlement obtainment request. In the new system, this
can be done significantly faster due to our cross-domain service mapping. Summa-
rized, the average user was 185% faster by using the new system for forwarding a
service-entitlement.

3. Service redemption. The system of 2017 was specialized on local BLE redemp-
tion. By comparing only this redemption method with our updated BLE redemption
procedure, users were on average 14% slower with the new system. This slowdown
results from the fact that the new redemption building block became context-aware
and now supports multiple modes, increasing the overall complexity and thus also
slightly increasing the initial waiting times before the right redemption method is
initiated. Next to the local BLE redemption, the new redemption building block
provides additional local HTTP and OAuth 2.0 based redemption procedures.
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Consequently, our probands were asked to try out the system from the perspective of a
service provider. Again, the users tried to solve a few tasks using the prior and the new
systems. For both usage scenarios, the probands underwent a tutorial first.

1. Service provider registration. A dedicated dashboard view connected to the
core system of the CSE can now be used to facilitate the registration process of
a new service provider and its system. While merchant-related data must still be
entered manually, the remaining registration is processed automatically regarding
the creation of the business layer API key or the REST-endpoint setup, for instance.
In the original platform, these tasks involve several manual steps in order to achieve
the same goal. Therefore, the average user was 379% faster with the new system
compared to the prior one.

2. Gamified service-usage. The goal of these test runs was to issue a rewarding
service for a specific user. Since an automated service creation is not part of the
older system, several manual adaptions have to be done. On average, users were
245% faster with the new system since services could be generated in the form
of service-offers directly via the dashboard. Additionally, the new system provides
the possibility to set automated service-creation triggers for enabling entitlement-
issuing when predefined conditions are met. Furthermore, it should be noted that
the original system is only capable of addressing users of one business layer at a
time, providing no cross-domain interrelationship.

3. Service Management. The specific task was to create, edit, and delete a specific
service-entitlement. Since the user interface has been improved, the average user
was 85% faster when using the new system.

Despite a higher level of complexity, the new SOA was significantly faster on average
compared to the prior system. Our results underline the high usability aspect of the
developed system.
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7 Conclusion
This chapter concludes this doctoral thesis by briefly summarizing all scientific contribu-
tions (7.1) and emphasizing potential future work and research (7.2).

7.1 Summary
Everyday life is becoming ever more connected to the digital world. Information services
and applications run on an extensive set of different systems and constantly interact with
people and their environment.
This thesis presented the design, implementation, and evaluation of a SOA with a par-

ticular focus on secure and privacy-preserving service-exchange and service-access method-
ologies. In our case, services were represented as generic digital entitlement objects used
to access physical or digital resources (products, data, etc.). We introduced a service
interlay for client-server systems – the CSE – that we subdivided into a tokenization
layer for access control and abstraction as well as a federation layer for exchanging cross-
domain service-entitlements. Third-party service providers can connect their client-server
systems via a RESTful API and dedicated middleware and upload their services to a ubiq-
uitous ecosystem, where service consumers are allowed to acquire, forward, and redeem
service-entitlements. Regarding context-aware resource access and the overall redemp-
tion procedure, different tokens were proposed. While the A-Token enables mutual offline
authentication, the S-Token is responsible for authorizing a client to access a physically
available resource. Complementary to these, the O-Token is used for getting access to
distributed online-resources. Finally, the P-Token has been introduced for managing the
client user’s privacy settings. The thesis also considered privacy-preserving data aggre-
gation and sharing and how the data is processed and postulated throughout the overall
platform. Different privacy labels can be specified by the CSE to cope with diverse pri-
vacy requirements. Finally, a security-design study for end-to-end secured communication
completed the value chain of online data collection and redemption.
The evaluation of our SOA was subdivided into four parts. First, all requirements

explained at the beginning of this thesis were resolved. Second, the timings of the most
critical processes were measured. Third, the acceptance evaluation results, which have
been conducted based on an in-app survey, were discussed. Fourth, the overall usability
and the associated usage-effort have been evaluated compared to the prior system via
usability testing cycles with different probands. Our findings revealed low waiting times
and high acceptance and usability levels of our developed system.
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7.2 Future Work
This doctoral thesis contributes to state-of-the-art SOAs, providing promising solutions
for distributed service-access procedures. However, it does not claim to be exhaustive or
provide a holistic view of smart city management platforms. The following paragraphs
show the current limitations of the overall platform and propose ideas concerning future
work.
Related to context awareness, many platforms and their applications adapt their behav-

ior according to external conditions to achieve fault-tolerance, choose the most suitable
program execution flow, or improve efficiency regarding data processing and storage, for
instance. As discussed, our platform provides different context-aware service access and
redemption methodologies. BLE, as elaborated within subsection 4.5.2 has been one of the
main actors for enabling local authentication and authorization procedures. Our commu-
nication protocol was designed in a generic way to be used independently of the underlying
communication protocol. Nevertheless, full integration of other communication techniques,
such as Ultra-Wideband (UWB) or NFC, would extend our set of service access and re-
demption procedures. Also, privacy-preserving data handling was one of the topics of
this thesis. The elaborated CSE does not directly utilize user-specific information of the
connected business layers and focuses on a distributed, anonymized service mapping (see
4.4.2). We also proposed aggregation techniques for confidential data as part of section
4.6, without explicitly linking it to the business-layer entities. Nevertheless, additional
anonymization techniques, as described in our related work section, could be considered
for the storing process of the collected data. Complementary to privacy-preserving data
collection, additional techniques related to the efficient processing of massive amounts of
data could be taken into account. We already implemented methods to store and inter-
pret data in a scalable manner. However, since the data collection techniques discussed
in this thesis provide diverse datasets, semantic data interpretation for better extracting
the meaning of information would be advantageous and could be included in the overall
platform. Last but not least, smart city platforms often provide a set of tools for granular
development, maintenance, and management of custom applications. Therefore, a future
add-on for our SOA could provide service providers with a sandboxed development en-
vironment for a more granular specification of service-agreements and their service and
condition handling.
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Additionally, this thesis is supplemented by the following peer-reviewed papers:

G. Lukas Gressl, Alexander Rech, Christian Steger, Andreas Sinnhofer, and Ralph Weiss-
negger. “Security Based Design Space Exploration for CPS.” in: Proceedings of the
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Fig. 8.1 depicts all publications and maps them to the corresponding design sections
discussed in this thesis.

Figure 8.1: Overview of contributions and related publications of this thesis
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Abstract. Due to the increasing need for networked systems we can
observe a rapid advance of IT-solutions in various sectors. However, most
of the developed systems are custom-tailored solutions for specific prob-
lems and application areas, leaving us with a set of diverse frameworks.
The resulting jungle of heterogeneous systems makes it difficult to find
common interfaces for interconnecting the underlying businesses with
each other, especially in regard to Smart City concepts. We envision a
new paradigm shift towards “Smart City as a service” fueled by increased
interoperability between different services with an additional emphasis on
privacy-preserving data processing. This would contribute to a new level
of connectivity between the environment, service providers, and people,
facilitating our daily activities and enhancing the level of trust of the
users. In order to achieve interoperability in the context of smart, con-
nected cities, we propose the design of a generic, platform-independent
novel architecture for interconnecting heterogeneous systems, their ser-
vices, and user pools.

Keywords: Interoperability · Connected services · Data privacy
Smart City

1 Introduction

The need for stronger interrelationships between different services is constantly
increasing. However, when interoperability between independent systems has
to be established, we face several issues. One major problem is that systems
tend to be tailored to a specific application area, so boundaries are often rigid
and inflexible and only users of one specific application are addressed. Second,
combining two or more systems can be a considerable challenge and, if inte-
gration is indeed attempted, integration methodologies can be very time- and
cost-consuming which in turn results in longer time-to-market cycles. Third,
when different parties have to share user-related datasets, special attention has
to be paid to the correct use and processing of the data, especially in view of
the increasingly stringent data protection laws.
c© Springer Nature Switzerland AG 2018
Y. Xiang et al. (Eds.): IDCS 2018, LNCS 11226, pp. 64–74, 2018.
https://doi.org/10.1007/978-3-030-02738-4_6
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A Smart City is a place where many different information systems come
together. At first glance, some of these systems are already embedded into our
daily lives. Smart services such as managing parking facilities, renting e-bikes or
placing orders via mobile applications are already feasible in many cities. How-
ever, closely examined there is poor or almost no interaction between services of
different kinds, as for the above mentioned, for instance. Therefore, in order to
cope with the increasing amount of heterogeneous services in a Smart City, per-
vasive computing technologies should offer collaboration methodologies among
businesses and their users to enable benefits for all participants involved. This, in
further consequence, would contribute to a new level of connected services within
cities, enabling businesses to collaborate more easily with each other. Due to this
cooperation, more users could be addressed, resulting in additional advantages
in terms of higher revenue. In contrast, users are provided with easier access to
different, independent services. More specifically, users may save time and profit
from additional offers, which in the end facilitates their daily activities.

We call into question the current situation where businesses are limited to
a predefined scope regarding their services and users. We want to increase col-
laboration between independent entities through a federated solution, so that
multiple parties do not have to completely adapt to each other’s requirements
in order to achieve mutual benefits. In further consequence, to accomplish a
paradigm shift towards “Smart City as a service” we are working on a generic,
platform-independent architecture that gives businesses and their applications
access to a predefined set of services of other participating service providers. To
avoid high integration costs, the functionality to enable this federated solution
shall be offered as additional software layer to pre-existing systems. Additionally,
since data needs to be shared across multiple parties, the privacy of the users
shall be protected by abstracting their real identity.

This paper is organized as follows. Section 2 describes related work while
Sect. 3 discusses design choices of our architecture and gives an overview on its
components. Last but not least, Sect. 4 summarizes our ideas and offers sugges-
tions regarding future work.

2 Related Work

Everyday life is becoming evermore connected to the digital world. Informa-
tion services and applications run on an extensive set of different systems and
are in constant interaction with people and their environment. Federated con-
cepts are essential for increased system and business relationships. In order for
these systems to communicate seamlessly with each other and to overcome the
heterogeneity between them, interoperability is becoming increasingly impor-
tant. Especially due to the increasing need for networked services from different
businesses, interoperability is required ever more. According to IEEE the term
interoperability is the “ability of two or more systems or components to exchange
information and to use the information that has been exchanged” [1]. A more
generic definition of interoperability is given by [2]. It is the “ability of things to
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interact for a specific purpose, once their differences have been overcome”. This
definition tries to expand the concept where a system is simply composed of
single components, by saying that a system may also consist of multiple diverse
autonomous subsystems. Only if cooperation between all systems is ensured and
solutions are made to eliminate discrepancy between all components, can inter-
operability be achieved within the resulting system of systems [3].

In this context, a Smart City can be viewed as a larger system overarching
diverse subsystems, which on their own act as autonomous components that
should work together seamlessly. New concepts for information sharing among
different services as well as for enhancing collaboration between Smart City
services are being analyzed and elaborated [4,5].

The connection of different services is also a topic that is being elaborated
by the Horizon 2020 STEVE project. The focus of the project is to implement
and test a human-centric approach to electro-Mobility-as-a-Service (eMaaS), by
connecting different e-vehicle solutions and “gamified” services for enhancing
users’ awareness, engagement and vehicle energy efficiency [6].

The idea of encapsulating an organization’s functionality within an appro-
priate interface, advertising it as services, and trying to connect it with other
similar services is not new [7]. In this sense, semantic web service-paradigms have
been trying to enhance automated discovery, access, combination, and manage-
ment of web services for years. Both academia and industry are researching ways
to provide machine understandable representations of services, their properties,
capabilities, and behavior [8,9].

Furthermore, interoperable networking is becoming increasingly important
to concatenate different backends. There already exist a few approaches on how
to combine heterogeneous cloud systems for sharing different datasets across
geographically distributed resources and for better cooperation between different
services [10–12].

Especially in the electronic marketplace area, the notion of interoperability is
often closely associated with the term integration. From the perspective of service
providers, pure integration methodologies may be advantageous: If businesses
merge into clusters they often have a decreased management overhead with less
setup and maintenance costs for instance. However, the downside is that such
integration technologies and frameworks are often associated with high adaption
costs, especially for businesses with rigid standards [13].

In our opinion, we do not only need new concepts for merging multiple sys-
tems and their services, which often proves to be difficult, costly or time consum-
ing. More importantly, we need to emphasize on technologies that give multiple
independent businesses the possibility and freedom to interconnect each others’
services with negligible adaption costs for maximized mutual benefit. A collabo-
ration of different service providers also means that each company may address
more users. In this context, the more companies work together and exchange
data, the more important data privacy protection rules become, especially in
light of increasingly stringent data protection rules like the European General
Data Protection Regulation (GDPR) [14]. Therefore, increased interoperability
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should not only offer advantages such as easier cooperation between multiple
independent businesses, but also adequate data protection for end users.

3 Design of Architecture

This section is about the design of our proposed architecture. First, requirements
are discussed and an overview on our architecture is given in 3.1. Afterwards,
the architecture’s business layer components and the core layer components will
be described more detailed in Sects. 3.2 and 3.3.

3.1 Architectural Overview

Our proposed architectures addresses the following topics:

– Interoperability. Collaboration between different independent businesses and
service providers shall be improved. Nowadays we do not have much coopera-
tion between independent businesses, e.g. parking provider with a restaurant,
or a museum with a car-rental service. No matter which product or which
service a company offers, it would be beneficial if companies were able to uti-
lize services from other businesses for increased collaboration between them
as well as for addressing more users, and for offering more services to them.
An example use case would be the following: A user authenticates himself at
a parking gate using his smartphone for getting access to the shopping mall.
As soon as he enters the garage, he receives a new service in form of a digital
restaurant voucher, pushed onto his phone. In this example, two independent
businesses, a garage provider and a restaurant, collaborate by sharing their
users and services. The reverse case is also possible: a user getting a parking
voucher as reward for eating in a restaurant.

– Integration cost. It is time consuming to define agreements between compa-
nies and to elaborate common interfaces. Therefore, the platform shall pro-
vide ways to facilitate this agreement process. Pre-defined interfaces shall be
provided for faster integration and shorter time to market cycles.

– Data Privacy. When data, especially user-related data needs to be passed
between different parties for enabling collaboration, privacy aspects become
more important. In this context, only anonymized user data shall be passed
between companies and the link between real and anonymized data shall be
revocable at any time in order to be compliant with data protection rules.

With these requirements in mind we now present and discuss the structure of
our architecture, which will be described more precisely in 3.2 and 3.3. Figure 1
provides a high-level overview. The overall architecture consists of at least one
business layer as well as a core layer, both of which are further subdivided into
several components.

Each business layer is managed by a company and contains service and user
related datasets. Generally speaking, it consists of client and vendor applica-
tions as well as of a corresponding server unit that offers application specific

88



8 Publications Paper A - IDCS 2018

68 A. Rech et al.

functionality. While the client application is adapted to the user’s needs, such
as giving an overview on current services, the purpose of the vendor application
is to provide and manage these services. Both applications operate in constant
interaction with the business layer which provides them with application specific
functionality and keeps the data synchronized across all devices.

Regarding the core layer’s position in the proposed architecture, it is placed
on top of a business layer. It can be reached by the components of the business
layer via a RESTful interface. The idea behind the concept of the core layer is to
provide a common trusted layer responsible for abstracting products and services
from various business layers in order to establish an interrelationship between
multiple heterogeneous businesses. Even if a company already utilizes its own
business layer and corresponding applications, it should be feasible to commu-
nicate to the core layer in order to create new means for interacting with other
service providers or rather other business layers. As interrelationships between
different businesses involve a lot of time and effort for all participating busi-
nesses, we see the need for enhancing this integration and cooperation process
in regard to speed and costs. Therefore, the entities of the business layer shall be
extended by dedicated software libraries defining how to interact with the core
and its subcomponents: the Tokenization and the Federation layer.

In order to interconnect different platforms and to anonymize datasets com-
ing from different business applications, we introduce the Tokenization layer. Its
task is to abstract application specific data of the business layer such as product
and user data for bringing down all datasets to a common denominator, and
increasing the level of privacy of the end users. After this abstraction process
a mapping between the anonymized and the real data is created and stored
at business side. This means that only the business layer which triggered the
tokenization process of the data in the first place, may access the derived data
from the core layer. Last but not least, there is an additional module called
Federation layer. It is responsible for creating and managing services between
different vendors. Furthermore, it is able to arrange trusted agreements between
independent parties. This makes it possible to automate the issuing process of
services as soon as predefined conditions are met.

3.2 Business Layer Components

The business layer provides users with features based on the respective applica-
tion area of the system and the corresponding service provider. In summary, it
consists of the three key components described below. Companies who already
utilize their own business layer, may establish a link to the core via the RESTful
interface.

Client Application. The mobile client app is used by customers of a specific
vendor, shop or company. Together with application specific features it offers
a user interface for acquiring services, e.g. parking app for booking parking
tickets, restaurant app for ordering food. Regarding the redemption process of
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Fig. 1. Architectural overview

the acquired service we distinguish between two cases, depending on the spe-
cific application area and the service type in question. On one hand, the client
application may redeem the service by directly communicating to the vendor
application. In a parking use case, the drivers may redeem their parking voucher
directly at the embedded vendor application of the parking gate. On the other
hand, services can also be redeemed directly via an online interface without
additional interaction of other devices (online food delivery).

Vendor Application. The vendor-side application functions as front-end for ser-
vice providers to manage both their user pools as well as their services. Depend-
ing on the use case, the vendor application decides on how the services should
be redeemed, e.g. online via server requests or by first communicating locally
to a specific device. Just as with the client application, the vendor application
works closely with the application server.

Application Server. The application server communicates with client and vendor
devices and keeps them synchronized. On one hand, it is responsible for managing
the users of the client application. On the other hand, it offers the possibility to
manage shop- and service-relevant data on vendor side. If a business decides to
cooperate with other service providers, interaction with the core layer, which is
explained in the following, is required.
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3.3 Core Layer Components

The goal of this layer is to seamlessly interconnect different services, thus con-
tributing to a new level of interrelationships in the context of Smart City applica-
tions. The idea is to attach it on top of an existing system as an additional trusted
ubiquitous layer that can be reached via a predefined set of REST calls. It is
subdivided into two parts which will be described in the following. Figure 2 gives
an overview on the most important components of the core layer, while Fig. 3
describes the high-level-interrelationship between the most important datasets
of the different layers.

Fig. 2. Overview of core layer subdivided into Tokenization and Federation layer

Tokenization Layer. This layer provides the entry point for external applica-
tions. In the first place, the business layer of a system may use it for enabling
cooperation with other applications. Since each company usually has its own
implementation, this layer is mainly there to abstract the datasets coming from
different businesses. This abstraction process converts the information received
from the application layer into a mapping of several IDs that uniquely identify
businesses, their services and users. Additionally, the Tokenization layer keeps
log of transactions via the Transaction Handler. Each transaction refers to the
participating users on client and vendor side and the acquired or redeemed ser-
vices in question. According to the specified use case, the Tokenization layer may
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also communicate with the Federation layer to issue new services in form of enti-
tlements or goods. The Tokenization layer distinguishes between two different
token types:

– AccessToken. The user- and device related AccessTokens are managed by the
Access Controller. They are issued in the course of a distributed Kerberos-
based authentication procedure and signed by the core layer. Furthermore,
they are responsible for providing user devices with authentication when com-
municating with the core layer and for countering eavesdropping and replay
attacks.
The real user data stored on the business layer is never forwarded to the core
layer, but converted into anonymous IDs which are linked with the AccessTo-
kens. Only the business in charge of the creation of the user account knows
the user data, thus anonymizing the user’s identity for all other participating
businesses.

– ServiceToken. All business and service relevant data is transformed into a
signed ServiceToken by the Entitlement Manager. Just as for the user data,
also in case of service data, unique IDs are derived, identifying the service and
the company. Each ServiceToken belongs to one AccessToken, authorizing a
specific user to utilize a certain service. Furthermore, it can be determined
which entity purchased or redeemed which services, and how many of them,
via the Transaction Handler.

Fig. 3. Overview of interrelationship between datasets of business, Tokenization and
Federation layers

Federation Layer. The Federation layer is an interface for interconnecting ser-
vices from different businesses. It can be considered as federated service market
place where businesses can place their products and services for special condi-
tions or purchase services from other participants. Consequently, this coopera-
tion enables companies to offer a wider range of services. Combined with gami-
fication methodologies, goods and services of other companies can be forwarded
as rewards to customers, enhancing both user satisfaction as well as revenue for
the participating service providers. The Federation layer operates in interaction
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with the Tokenization layer and utilizes the tokenized data, including AccessTo-
kens and ServiceTokens, to address services and users. In contrast to the actual
user data which is only stored on business layer side, some product and company
relevant data has to be forwarded from the Business layer to the Federation layer
to be utilized by other interested businesses. In this sense, obligatory fields such
as the name of the company and its address, have to be submitted together with
optional key value pairs identifying the corresponding company’s products and
services. In summary, the Federation layer handles the services under discussion
in two different ways:

– Offer. A service provider utilizing the Federated layer is authorized to publish
specific services in this domain, stored as offers. Other providers are able to
search for offers and acquire them. This layer functions as a market place
where products and services can be found according to specific key words
such as name, price, or category, for instance. Providers may acquire them
and a new ServiceToken would be generated inside the Tokenization Layer.
In further consequence, the link between the ServiceToken and the user’s
AccessToken will be established, enabling the user to utilize the service. In
this sense, loyal customers can be rewarded with goods and services of other
companies, e.g. a user who rented an e-bike gets an additional voucher for
visiting a museum.

– Agreement. The idea behind agreements is that there should be the possibil-
ity to issue entitlements, aka ServiceTokens in an automated way. As soon as
businesses subscribe to an offer, it becomes an agreement and is extended by
specific datasets identifying the interested party as well as a condition that
specifies under which circumstances the execution of the agreement should
be triggered. A condition specifies how many goods or services of a company
need to be acquired by a user before a reward is issued, or which specific
service needs to be redeemed in order to trigger a reward, for instance. In
any case, every time a customer acquires new services or redeems them, new
transaction history entries will be generated inside the Transaction Handler
of the Tokenization layer. Subsequently, it will be determined if the predefined
condition is met through interaction between the Tokenization and the Fed-
eration layer. If so, the good or service specified inside the agreement block,
will be acquired by the subscribed vendor and forwarded to the customer
who triggered the current transaction. Furthermore, customers and vendors
can keep track of the service-completion-state by utilizing the entries of the
Transaction Handler as reference. An additional advantage for customers is
that, even if they do not actively track the completion state, they can still
receive rewards in an automated way.

4 Conclusion and Future Work

On account of poor integration methodologies, high integration costs, and rigid
system interfaces, the widespread use of ubiquitous Smart City applications is
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still in its inception. In order to overcome these problems we are currently work-
ing on a generic software platform for increasing the cooperation between par-
ticipating heterogeneous systems, service providers and user pools. In this paper
we gave an overview on our proposed architecture, mainly subdivided into a
business and a core layer. The core layer can be seen as additional layer that can
be put on top of existing networked systems and enables them to exchange their
services. Furthermore, in regard to user-data privacy, especially in view of strict
data protection laws, we introduced a Tokenization Layer which task it is to
reconcile user- and business-related datasets coming from arbitrary application
servers. The user data itself is masqueraded and saved in a privacy-preserving
way. In contrast, the Federation Layer provides means for service-based collab-
oration between independent companies.

The design of the architecture presented in this article is a starting point for
us. Parts of the framework discussed in this paper will be evaluated within the
European Union’s Horizon 2020 project STEVE. Future work will concentrate
on a research on semantic service oriented architectures to extend the interfaces
between the business and core layer in a more dynamic way. Additionally, we
are currently investigating on how to increase the level of trust between differ-
ent entities. Blockchain in combination with smart contracts could therefore be
suitable for our plans.
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versity of Technology. A part of this work has been performed in the European Union’s
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A Novel Embedded Platform for Secure and Privacy-Concerned
Cross-Domain Service Access

Alexander Rech1, Markus Pistauer2, and Christian Steger3

Abstract— Connected driving is a hot topic in the automotive
industry and a leverage to push new Mobility as a Service
(MaaS) methodologies, making vehicles an essential part of
the Internet of Things (IoT). However, these new technologies
often lead to security risks and privacy concerns, especially
due to the increasing number of datasets exchanged between
vehicles, drivers, and local infrastructure. Furthermore, the
possibilities for vehicles to access heterogeneous services offered
by different service providers are often limited due to rigid
system boundaries. In this paper we present a novel feder-
ated service management concept for increased interoperability
across distinct services in the field of Smart Mobility and
Smart Cities. Our approach provides secure authentication and
authorization between cars, their drivers, and other information
systems, while retraining the level of privacy according to the
users’ preferences. The scalability and dynamic configurability
of the solution and the elaborated proof-of-concept will set
it apart from application-centered gateways to an embedded
generic platform by virtue of its modular software design.

I. INTRODUCTION

In addition to different car-to-car communication concepts
car-to-x methodologies have now also become increasingly
important. New smart mobility approaches are being elabor-
ated, fueled by the increasing need of new soft- and hard-
ware methodologies and stronger interrelationships between
different services. In the automotive sector we can also
find more and more subsystems exchanging data with the
outside world. As a result, cars are becoming ”things” in
the IoT and thus also a part of a Smart City, where many
different information systems come together. However, more
data exchange between a vehicle and the local infrastructure
also implies more concerns in terms of security and privacy.
Moreover, systems today tend to be tailored to a specific
application area, with the result that boundaries are often
rigid and inflexible preventing the building of synergies
between heterogeneous service providers, their services and
users. We now face a critical need for innovations, as secure
authentication and authorization to different heterogeneous
Smart City services as well as personalized data access
become more and more important for cross-domain use
cases, especially in the fast growing car-to-x sector.

Personalized access. In this paper we propose a concept
for managing user- and service-related data in automotive
application scenarios and address the lack of privacy control.

1Alexander Rech is with CISC Semiconductor GmbH, Graz, 8010,
Austria and Graz University of Technology, Department of Technical
Informatics, Graz, 8010, Austria a.rech@cisc.at

2Markus Pistauer is with CISC Semiconductor GmbH, Klagenfurt, 9020,
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The concept enables drivers to adapt the data flow during
their driving session according to their privacy preferences.
The more permissive they are, the more services may be
unlocked, tailored to the driver’s data.

Connected services. We call into question the current
situation where systems are limited to a predefined scope
regarding their services and users. Based on the privacy-
centered approach, an additional federated service concept is
introduced for accessing and redeeming heterogeneous Smart
City services according to the users’ privacy settings. In this
sense, services of different providers shall be accessible via
a trusted cloud-based approach.

Overcoming the offline transition phase. In order to
overcome the current non-connected, internet-less transition
period in the automotive sector, the communication interface
of the embedded proof-of-concept includes the usage of the
proximity-based wireless technology Bluetooth Low Energy
(BLE). On one hand, it is used to connect the vehicle to
the driver’s mobile phone which acts as gateway to the
cloud via a RESTful interface. The phone is responsible
for the initialization process of the hardware including the
actual user binding and adaption of service- and privacy-
related data. On the other hand, BLE is utilized to enable
communication to local infrastructure for redeeming services
obtained.

Embedded proof-of-concept. The proposed software con-
cepts were integrated into a hardware module which fulfills
the demand for increased flexibility, robustness and config-
urability. The embedded demonstrator reflects the ongoing
trend for property sharing – in our case car sharing – and
focuses on personalized access. Additionally, the framework
enables the vehicle to access other services, related to
parking, ordering food (drive-in-restaurant), or leisure events
(cinema, museum), for instance. Our work shows that a
connected unit inside a car offers possibilities to bring the
connected Smart City paradigm to the automotive sector and
thus contributes to a new level of connected mobility within
cities, while preserving end user privacy aspects.

This paper is organized as follows. Section II shows
related work while section III discusses the design choices
of our approach. Section IV consists of implementational
aspects and a performance evaluation. Finally, section V
summarizes our ideas and gives information on future work.

II. RELATED WORK

Everyday life is becoming ever more connected to the
digital world. Not only are information services and applic-
ations running on an extensive set of different systems and
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are in constant interaction with people and their environment,
also the number of wireless connections is growing exponen-
tially around the globe. It is estimated that nearly 25 billion
devices will be connected to the internet by 2020 and 50
billion devices by the year 2050. Most of these devices will
offer wireless communication interfaces leading to the expan-
sion of wireless areas and the development of novel wireless
methodologies [1]. New wireless concepts and frameworks
are being developed, such as DEWI. This proposes a locally
adaptable and trusted wireless communication bubble for
the IoT, where many wireless communication standards are
integrated [2]. API-based approaches are a common strategy
to interconnect different IoT systems, spanning from access
control and area network systems to complex systems that
bring together different vendors’ solutions. This can be done
by connecting IoT endpoints to IoT platforms or gateways
which enable the transport of data between multiple devices
that would otherwise be unable to communicate with each
other. Due to the widespread use of smartphones and their
wireless interfaces (Wi-Fi, Cellular, BLE, NFC) they can
be used as gateways to connect devices to the internet.
BLE is an especially good candidate when power-constrained
embedded devices come into play. The work illustrated
by paper [3] presents a smartphone-based gateway solution
responsible for retrieving data from wearable sensors over
BLE as well as storing it to a central cloud storage in real-
time. An even more generic gateway approach is shown by
the project fabryq presented in the paper [4]. It addresses
the problem of increased complexity which arises when
developing systems responsible for establishing communic-
ation between embedded devices and servers over gateways.
By contrast, other approaches involve mobile phones to
enable offline communication to cars for secure access in
car-sharing application scenarios, by leveraging the phones’
local wireless capabilities [5]. Other mobility concepts focus
on connecting different e-vehicle solutions. The Horizon
2020 project STEVE for instance, designs and implements
a system for connecting different mobility and ”gamified”
services [6]. Complementary to this approach is this work
[7], which focuses on a more generic method for intercon-
necting different Smart City services via a trusted cloud-
based concept. While security considerations are not new
in the context of connected systems, many implementations
present new security challenges. Every poorly secured device
or subsystem that is connected online can serve as a potential
entry point for cyber-attacks, compromising systems as well
as exposing data [8]. Slack security methodologies can have
especially severe consequences in the automotive sector.
Since this sector is becoming increasingly connected (75%
of European cars will be connected by 2020 [9]), security
vulnerabilities can lead to unsafe or even lethal scenarios, as
described in [10], [11]. An increased level of connectivity
may not only lead to security problems, but may also evoke
major privacy concerns for drivers. As a result, a reluctant
connected vehicle user / buyer group of 25% will persist in
the next few years, according to the survey ”My Car My
Data” [12], leaving one out of four cars unconnected. This

makes paving the way for robust, dependable and trustable
transport systems all the more important. The paper [13]
analyzes how personal information flows through typical
telematics systems, distinguishing between an embedded
approach where cars connect directly to the internet and an
integrated approach relying on mobile devices for access-
ing different services. Connected cars are able to receive,
process, and send large amounts of data. Since this data
may not only be related to the vehicle, conclusions about
the drivers and their habits (e.g. their destinations, daily
routines, etc.) may be derived. Consequently, this causes
potential privacy implications for drivers, especially when
data is aggregated from several data-sets and shared across
various companies, such as car dealers, car rental companies,
insurance companies or mobile device and service providers
[14]. For a higher level of trust, privacy preserving data
management techniques have been studied extensively [15].
New techniques are being elaborated that use clustering
algorithms as a pre-process to further improve the diversity
of anonymized data [16].

III. DESIGN CHOICES

A. Distributed system key components

The main objective of our proposed generic solution is to
enable cross-domain sharing of heterogeneous services for
the driver of a vehicle in a secure and privacy-preserving way.
The general idea of the framework is to derive anonymized
tokens (authentication-, privacy- and service-tokens) from
user and service data and manage their lifecycle (creation,
storage, and transfer) among all entities. A custom public
key infrastructure (PKI) forms the basis of the platform’s
security and ensures the identity of all communication parti-
cipants. Signatures are created and verified with the Elliptic
Curve Digital Signature algorithm (ECDSA). The distributed
system design, partly based on the architectural proposal of
[7], is depicted in Fig. 1 and explained in the following. The
elaborated embedded demonstrator inside the vehicle will be
referred to as “eClient” in this paper.

Fig. 1. Distributed system overview.
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• Client. A mobile personal device representing a user
who owns digital tokens and exchanges them for goods
and services at corresponding kiosk devices via BLE.
It acts as a digital service-wallet and offers an interface
for obtaining services and managing the user’s privacy
rules.

• Kiosk. A mobile or stationary device that represents a
terminal that can also be embedded into infrastructure
(e.g. a parking gate). A kiosk device acts as a validation
authority. It receives and validates tokens in order to
authenticate users and authorize them to access goods
and services.

• eClient. An embedded unit that can be placed inside
a vehicle to enhance connectivity to its surroundings.
It uses a client device without the need of an active
internet connection to synchronize user and service data
over BLE. Additionally, it is able to redeem the obtained
services at kiosk devices.

• Application server. This server communicates with
client and kiosk devices and keeps them synchronized.
It offers application specific functionality and holds the
real user data (e.g. email, name, etc.), as well as product
and service related datasets (e.g. type, price, etc.) on
application level.

• Federated Cloud. This works as a certification author-
ity (CA) and token management system for issuing,
signing, and monitoring tokens and maintains a trans-
action record database. The server’s certificate is signed
by an external root CA and is imported in all system
entities’ trust CA stores, meaning it is globally trusted.
Client and kiosk devices use public key pinning for the
root certificates to prevent the issuance of malicious
server certificates by tampered CAs. The idea behind the
Federated Cloud is to provide a common trusted layer
responsible for abstracting users, products, and services
from different application servers and sharing the an-
onymized datasets across the participating systems. In
this sense, the real data always remains on application
layer level, while only tokenized data is processed
inside the Federated Cloud. Different application layers
(incl. application server and corresponding apps) of
independent service providers may join the Federated
Cloud via a RESTful interface and offer their services
to other service providers or users.

B. Wireless communication interfaces

The overall system provides personalized and secure ac-
cess to goods and services wirelessly via BLE and a RESTful
interface. Which communication interface is used by which
device is also depicted in Fig. 1.

• Representational State Transfer (REST). REST is a
software architectural style for implementing web ser-
vices relying on HTTP. Client and kiosk devices as well
as their corresponding application server communicate
to the Federated Cloud via a RESTful API.

• Bluetooth Low Energy (BLE). BLE is a short-range
wireless technology. It greatly benefits IoT applications

due to its power saving design, the coexistence of
connectionless (broadcaster and observer roles) and
connection-based (peripheral and central roles) data
transfer procedures, its robustness against obstacles, and
compatibility with smartphones [17]. In our case BLE
is used in two different ways, enabling local communic-
ation without the need of an active internet connection.
On the one hand, it is utilized for the initialization
process of the eClient (peripheral) by communicating
to the mobile client (central), thus synchronizing user-
and service-centered data between both devices. On the
other hand, it is used for the actual transaction and
redemption handling between a client/eClient (central)
and a kiosk device (peripheral).

C. Secure authentication

Authentication between devices as well as data-integrity
are provided through authentication tokens (A-tokens) and
a dedicated challenge-response protocol. An A-token is an
extended certificate, tied to a particular device. It is server-
signed and consists of the device’s public key, a validity
period, and token properties. A client or kiosk device’s A-
token is issued in the course of a distributed Kerberos-
based authentication procedure involving a user-login on
the application server. A one-time-ticket is issued that can
be redeemed together with the device’s public key during
the registration procedure at the Federated Cloud. Finally,
the device receives an A-token as well as an API key for
accessing the Federated Cloud’s REST-based interface.

In order to check the right ownership of A-tokens, a
challenge-response procedure is applied when two devices
communicate with each other via the BLE channel. First,
A-tokens (in this example A-tokenAlice and A-tokenBob) are
exchanged and verified with the server’s public key. Alice
generates a random number (challenge CA) and challenges
Bob to sign it with his private key before it is returned to
Alice. Furthermore, the received signature is verified against
the random number CA by using Bob’s public key embedded
into the previously exchanged A-TokenBob. If the verification
is passed, the ownership of A-TokenBob was proven. In case,
both devices are already initialized and thus, in possession
of an A-token, the same procedure is also applied for A-
tokenAlice before further data is exchanged. See Fig. 2 for
more details regarding the challenge-response mechanism.

Since all packages passed between the devices do not
contain any sensitive data but only tokenized user and service
datasets, an additional encryption layer is not required. This
implies benefits such as less computational efforts for all
communication participants and faster data transmission.

D. Adaptive authorization of different services

We distinguish between two generic methodologies when
talking about authorization. On the one hand, our concept
foresees the usage of user-centric privacy-tokens (P-
tokens), which manage the driver’s privacy level. On the
other hand, service-related service-tokens (S-tokens) repres-
ent a digital ownership of an item or service. They are issued
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Fig. 2. A-token based challenge response mechanism.

the moment a user obtains a product or service voucher via
the application interface of the client. Both token types are
always issued and signed by the Federated Cloud, bound
to a specific A-Token, and only valid when presented in
combination with the latter.

Furthermore, the S-Token consists of a validity period and
two additional identifiers: one for the corresponding applica-
tion (e.g. parking application, drive-in-restaurant application)
and the other one for the actual service (e.g. right to access
a specific area). They serve as indicators to specify which
S-tokens are redeemable by a specific kiosk device. If these
conditions are met, the appropriate S-token can be sent from
a client or eClient device to a kiosk and be redeemed there.
Consequently, the user is authorized to access the service
for which the tokens stands. Due to the generic nature of an
S-token, services of different kinds can be represented, thus
enabling different use cases. An overview of a few possible
application scenarios is given in the following. A pertinent
schematic description can be taken from Fig. 3.

• Car access. As soon as an A-token and a corresponding
P-token have been transferred to the eClient, thus au-
thenticating a user and binding himself and his privacy
settings to the eClient, the vehicle’s unlocking signal
can be triggered. Since the transfer of the tokens does
not involve an active internet connection on the eClient
side, and each user is able to personalize his dataflow
during the trip with his personal device, this would suite
a car sharing use case. Additionally, all data on the
eClient could be reset after the car-sharing session.

• Smart parking. When a valid parking entitlement is
transferred to the eClient, the vehicle is allowed to
access a parking lot for the validity period of the
entitlement.

• Drive-in-restaurant. If a food voucher is obtained, the
vehicle will be able to redeem the food voucher directly
at the kiosk of a drive-in-restaurant.

Fig. 3. Overview of application scenarios.

By contrast, a P-token contains the datasets the user
wants to share as well as the user’s privacy level which
can be edited via the application interface of the Client.
The P-token is transferred from client to eClient during
the initialization process. The data that can be shared may
include user-related data like gender or age, or trip-based
datasets collected during the car ride, such as information
about the destination, GPS coordinates, etc. depending on the
underlying application. If the user decides upon a low privacy
level and thus consents to the data in question being shared
with other service providers, it is forwarded to the Federated
Cloud and can be used in exchange to issue additional S-
tokens for the driver. The uploaded data is not directly
associated with privacy critical values such as his name or
email-address, but just linked to his anonymized P-token.
In order to cope with different privacy requirements three
privacy levels were introduced:

• Level 2: Only services obtained directly by the user
are accessed. No additional data is shared across the
Federated Cloud.

• Level 1: Drivers may decide whether trip-based (e.g.
GPS, destination) or user-related datasets (e.g. gender,
obtained services) are shared.

• Level 0: User and trip-based data collected during the
journey are shared with participating service providers.

This approach foresees that the application server will
utilize the RESTful interface to send key/value pairs to
the Federated Cloud containing the data in question. Sub-
sequently, the values submitted are linked to the user’s P-
token. They become visible to other participating service
providers for as long as the user does not change his privacy
settings or his A-token or P-token do not expire. In further
consequence, the datasets submitted may be used to create
new offers and entitlements adapted to the user’s needs and
preferences, involving again the Federated Cloud.
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In this context, the use cases mentioned above can be
arbitrarily extended, like in the following example:
Generic interaction with heterogeneous service providers.
In cases when data is shared, service providers may offer
their users additional entitlements for accessing their services
for special conditions. In concrete terms, a car wash agency
(e.g. Application ServerC in Fig. 3) would be able to access
shared data over the Federated Cloud without knowing the
real identity of the driver. For example, when the driver’s
destination address is shared, the car wash agency could
offer him a discounted or free admission to a car wash
session lying on the route to his destination. Consequently,
the derived S-tokenC would be stored on the user’s eClient
and is redeemable at a dedicated kiosk device at the car wash.

IV. IMPLEMENTATION AND RESULTS

A. eClient components

The eClient consists of two complementary components,
the Adafruit Feather M0 board and the Bluegiga BLE112
module. While the Feather M0 acts as control unit and state
machine, the main task of the BLE112 module is to execute
different BLE commands and forward the responses received
back to the Feather M0 over the UART interface. The Feather
M0 is based on the widely spread Arduino platform. It
was picked as host device since the implementation should
remain as portable as possible for similar controllers. The
following software libraries were included into the project:

• BGLib. This library acts as a C wrapper for the event-
driven BGLib protocol used to control the Bluegiga
BLE112 module.

• micro-ecc. This library holds a lightweight ECDH and
ECDSA implementation for 8-bit, 32-bit, and 64-bit
architectures. In our case, the elliptic curve secp256r1
(prime256v1, NIST P-256) was used. According to
the 2018 ECRYPT-CSA recommendation this type of
curve is recommended at least until 2028. The major
advantage of ECDSA is its short cryptographic key
length compared to other algorithms such as RSA. This
enables faster data transfer of keys and certificates and
lower memory requirements.

• Cryptosuite. It is a cryptographic library specialized
on secure hashing and hashed message authentication.
SHA-256 was used in our case.

The eClient provides possibilities to bring the connected
services paradigm to vehicles, without providing a direct
interface to the car. The small form factor of the Feather
M0 (2in x 0.9in) combined with the possibility of attaching
a rechargeable lithium polymer or lithium ion battery over
the JST jack makes it even more portable.

B. Mobile client as gateway

The client acts as an internet-enabled gateway for the eCli-
ent. It was implemented in the form of a Java-based software
library which can be integrated into Android applications.
Regarding Android’s BLE stack all BLE roles are supported
since Android 5.0. The additional possibility to only scan
for specific BLE advertisements was also introduced with

version 5.0. All interactions that would require the eClient
to directly communicate to the Federated Cloud are carried
out by the mobile client instead. In this sense, the eClient
sends out specific BLE advertisements which are noticed
by the client. Subsequently a BLE connection is established
and the actual request is forwarded to the mobile client and
finally, carried out using the REST interface of the Federated
Cloud. Authentication to the Federated Cloud is ensured by
providing a secret API key for basic HTML authentication
in the request, which is issued during the registration of
the device. Next, the server’s response is sent to the client,
processed, and forwarded to the embedded device over BLE.
The server response is formatted in JSON while all data
transferred between the eClient and the gateway is encoded
in the more compact TLV-encoding scheme, conforming to
the following byte format: Type | Length | Value. This format
allows the receiver to decode the information with dedicated
parsing functions without requiring any pre-knowledge of the
size or the semantic meaning of the data.

C. Key and token handling
As soon as the eClient is switched on the initialization

process is started and is responsible for setting up the
BLE module and the board’s pins, and checking if the
cryptographic keys and corresponding A-token or P-token
are already stored on the device. If the device still needs
to be initialized, an ECC key pair (kpriv eClient, kpub eClient) is
generated and stored. The elliptic curve secp256r1 is used for
signing and verifying signatures. Therefore, the private key is
32 bytes and the public key 64 bytes long. As soon as a user
approaches the vehicle with his mobile client a confirmation
log will appear. If confirmed, a BLE connection between
client and eClient is established and the binding procedure
is triggered. First, the eClient verifies the authenticity of the
mobile client:

1) The client sends its device and user-bound A-tokenclient
to the eClient.

2) The expiry date of A-tokenclient is checked by compar-
ing the current date and time with the timestamp value
inside the token.

3) The signature of A-Tokenclient is verified with kpub server
before a challenge response protocol (see section III-
C) is applied to verify if the A-token received really
belongs to the device currently communicating to the
eClient.

The next steps involve the derivation of new tokens for
the eClient from the user-bound A-Tokenclient and the privacy
settings in form of a P-Tokenclient.

4) The eClient sends a data packet containing kpub eClient
to the client, which will forward it together with its
tokens to the Federated Cloud.

5) The server creates a derived A-tokeneClient and P-
tokeneClient where kpub eClient is embedded.

6) The new tokens are sent back to the smartphone client
and forwarded to the eClient through the BLE-channel.

7) Both tokens received are verified with kpub server by the
eClient.
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Next, a unique fingerprint (A-tokenclient fingerprint) of the
mobile client is created by hashing A-Tokenclient with SHA-
256. For further communication this fingerprint is used
together with the previously utilized challenge-response-
protocol to determine if the same device responsible for the
initialization mechanism is communicating to the eClient. Fi-
nally, A-Tokenclient fingerprint, A-TokeneClient, and P-TokeneClient
are stored on the eClient. From this moment on S-tokens
can also be synchronized between the two devices involving
again the Federated Cloud for the derivation process. Last
but not least, the digital services obtained can be redeemed
at corresponding kiosk entities.

D. Performance evaluation

The following three tables provide information about the
timing behavior of the implementation. Average measure-
ment values are reported.

Table I shows the time the token generation process for the
eClient takes. It includes the A-TokeneClient and P-TokeneClient
derivation involving the client and the Federated Cloud and
several verification steps.

TABLE I
MEASURED TIME OF THE A-TOKENECLIENT AND P-TOKENECLIENT

DERIVATION PROCEDURE

Action Time [ms]

Retrieve and verify A-Tokenclient 388
Derive and receive A-TokeneClient and P-TokeneClient 1210

A-TokeneClient and P-TokeneClient verification 421
eClient local data-storing procedure 73

Total 2092

In contrast, the information on the time required for the
verification mechanism between eClient and Client as well
as the creation and reception of an S-tokeneClient is given by
Table II.

TABLE II
MEASURED TIME OF THE S-TOKENECLIENT DERIVATION PROCEDURE

Action Time [ms]

Mutual verification mechanism 1288
Derive and receive S-TokeneClient 442

eClient local data-storing procedure 59
Total 1789

Last but not least, Table III illustrates the timing behavior
of the verification and data transfer procedure between an
eClient and kiosk device, and the online redemption process
of an S-TokeneClient involving the Federated Cloud.

TABLE III
MEASURED TIME OF THE REDEMPTION PROCESS BETWEEN ECLIENT

AND KIOSK DEVICES

Action Time [ms]

Mutual verification mechanism 1194
Prepare data to redeem 533

S-TokeneClient online redemption 452
Total 2179

In summary, the retrieval of the tokens and the redemp-
tion process take around two seconds with the verification
mechanism taking a large part of the total execution time.
However, since the developed prototype does not have any
realtime requirements, the overhead created by the verifica-
tion mechanism is still acceptable. The values represent short
waiting times for the user underlining the usability aspect of
the developed prototype.

V. CONCLUSION AND FUTURE WORK

With the ongoing development and distribution of the
Internet of Things, new car-to-x methodologies have also
become increasingly important. In order to fuel the move-
ment towards MaaS we designed and implemented an em-
bedded prototype that gives cars and their drivers access to
heterogeneous services (car access, smart parking, drive-in
restaurant food-voucher redemption, etc.), while respecting
the drivers’ privacy requirements. In view of the number
of not internet-connected-cars that is still not negligible [9],
[12], our proof of concept takes advantage of the local wire-
less communication standard BLE to overcome the current
non-connected transition phase in the automotive sector. In
this sense, it uses the driver’s mobile phone as a gateway
for a coupling procedure between car and driver and the
synchronization of the tokenized user- and service-related
data. Furthermore, the device is able to redeem obtained
services by communicating to local infrastructure (e.g. park-
ing gates). Secure authentication and authorization as well
as data integrity are enforced via cryptographic standards
such as PKI and ECDSA in order to meet the high demands
on security and privacy. Additionally, all data transmitted
between the devices is issued, tokenized, and monitored by a
central trusted server. Due to the generic nature of the tokens,
services of multiple heterogeneous service providers can
be represented, offering the possibility to arbitrarily extend
MaaS application scenarios (e.g. drivers get a digital ticket
for a car wash lying on their route). Finally, the evaluation
of the transmission timings revealed low protocol execution
rates – on average of approximately two seconds – thus
highlighting the prototypes overall usability. Future Work
will concentrate on defining a secure interface between the
embedded proof of concept and the vehicle’s on-board unit.
In this way, additional services may be unlocked for the
driver of the vehicle, due to the larger number of available
data. Furthermore, we intend to increase the level of trust
between participating service providers with a distributed
smart-contracts-based approach.
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Abstract—As our world is becoming increasingly connected,
secure and seamless cross-domain access to heterogeneous
services is becoming more and more important. However, coop-
eration between client-server based systems in the sales domain
is often difficult to achieve due to a lack of standardization as
well as limited trust between service providers. Furthermore,
the demand for anonymization techniques is becoming more
important due to tighter regulations and increased privacy
awareness of users. This is especially relevant when data needs
to be shared by several parties. In this paper we describe a
software service platform designed to increase collaboration
between different cross-domain services. The general idea is
to provide a common trusted layer for existing client-server
systems that can be used for anonymizing and sharing services
in the form of digital entitlements across independent service
providers, their systems, and users, while ensuring secure
authentication and authorization. Furthermore, we leverage
the tamper-resistant properties of the blockchain and smart
contracts in order to protect sensitive transactions against
fraudulent manipulation and to introduce service-based agree-
ments to the overall system.

Keywords-Connected Services; Blockchain; Access Control;
Security; Privacy;

I. INTRODUCTION

Today’s service redemption systems are often designed
as client server applications that are tailored to specific
application scenarios. Due to rigid system boundaries, time
and cost consuming integration procedures, and the lack of
trust between different service providers there is often no
intention of providing the possibility to share services across
different domains and their systems. Additionally, public
awareness of data privacy has risen significantly over the
past few years and the value of data ownership has become
a matter of intense public awareness and of ever greater
importance to individual citizens. We want to increase the
scope of businesses regarding their services and users and
propose a platform for managing cross-domain services. The
overall platform can be used for two scenarios: an inter-app
approach, where services in form of digital entitlements are
exchanged between independent platforms, and a single-app
approach, where heterogeneous services are integrated into
one application. Fig. 1 illustrates our idea. On the one hand,
a parking application focused on issuing parking permits and
a charging app that by contrast is responsible for authorizing

Figure 1. Digital entitlements can be exchanged between independent
applications: inter-app and single-app cross-domain service exchanges are
feasible.

the user to charge his vehicle may cooperate with each other.
In this sense, when a costumer redeems a specific service
from one service provider, additional offers from another
independent service provider could be unlocked as a reward,
redeemable at the corresponding redemption unit (parking
gate, charging station). On the other hand, a route planer
app, for instance, may suggest several possibilities to reach
the user’s destination by integrating and combining differ-
ent mobility services (e-bikes, car-sharing, public transport,
etc.). These approaches would not only benefit the customer
and result in a higher user satisfaction, they would also
yield benefits for participating vendors in terms of a larger
advertising scope and additional sales. From a technical
standpoint, the platform that is described in this paper pro-
vides secure authentication, authorization, and accounting
for applications of different kinds. In order to incentivize a
cooperation between different service providers, trustability
shall be further enhanced by leveraging blockchain and
smart contract methodologies enabling transaction security,
traceability, and data protection against fraudulent changes.
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A blockchain is a peer-to-peer network architecture; a
distributed database fully shared across multiple entities
that does not have a central authority to manage it. All
database entries are synchronized across all network par-
ticipants, reducing the risk of single point of failures. Data
is collected into blocks which in turn are linked, starting
from a predefined genesis block which defines the properties
and the underlying consensus mechanism of the blockchain.
Consensus on the validity of blockchain transactions is
achieved with a dedicated consensus algorithm, executed by
a set of network authorities that is designed in such a way
that acting against the rules does not pay off. Depending
on whether the majority votes in favor of accepting a new
block containing multiple transactions and datasets or not, it
is added to the blockchain or rejected. Blockchains can be
either public, where transactions are verified by an indepen-
dent group of network participants, or private, where only a
set of authorized individuals can process new transactions.
A mixture of both would be federated blockchains. They
do not allow any person to participate in the process of
reading, writing, or verifying without an explicit invitation.
This concept behind federated blockchains is particularly
interesting in business applications in which the participants,
such as different companies, may identify, but not fully
trust each other. In order to specify additional rules on
how different companies, aka service providers, interact with
each other, smart contracts can be used. A smart contract is a
computer program running on top of a blockchain, consisting
of inputs, deterministic outputs, and trigger-conditions. They
are able to process and store arbitrary datastructures. When
a contract is deployed, it is assigned a random address that
is used in future transactions as a reference to invoke the
contract’s functions. It stores its results as transactions in
the distributed ledger. They cannot be deleted or altered by
fraudulent entities due to the tamper-resistant design of the
blockchain (cryptographic primitives such as hash functions,
asymmetric cryptographic signatures, etc) [1], [2].

By leveraging these blockchain and smart contract prop-
erties we are presenting a platform for enabling tamper-
resistant service exchange between vendors. Due to this
collaboration, services from one service provider can be
made accessible to another independent service provider,
who would be able to obtain and forward them to his
customers on demand or in an automated way, as soon
as certain prerequisites are fulfilled. Transactions including
issuance, obtainment, and sharing of cross-domain services
are uploaded to the blockchain via smart contracts. We
believe our approach to be very general and applicable to a
wide range of use cases, paving the way for a new level of
interconnectivity between different cross-domain services.

II. RELATED WORK

The following papers build their approaches on the
Ethereum blockchain. Ethereum is a virtual computer, aim-

ing to be a decentralized world computer by offering smart
contract capability. The network is composed of miners,
full nodes, and light nodes. Light nodes rely on full nodes
for security and can validate states by downloading and
verifying block headers. Full nodes comprise the whole
blockchain database. A subset of these validate all blocks
and execute all contracts. Users submitting transactions to
the Ethereum blockchain hold a private/public keypair. The
public key is used to generate a blockchain address that
serves as a public user identifier as well as an identifier for
deployed smart contracts. Ethereum comes with different
consensus protocols [3]. The most common are Proof of
Work (Etash), where miners put work into solving a puzzle,
and Proof of Stake (Casper) where stakeholders bet on
whether a certain block is added or not. In contrast, in Proof
of Authority (Clique) a set of approved authorities decides
whether a transaction is valid or not.

Independent of the actual application area or use case,
many blockchain approaches focus on combining non-
blockchain access-permission systems with the distributed
ledger technology for increased security. One approach
couples blockchain and off-blockchain storage to construct
a personal data management platform in order to control
access permissions to private data collected by a service.
The collected data is encrypted and sent to an off-blockchain
key-value store. Only a hash is retained, acting as pointer
to the data on the blockchain. The data can be queried by
the user or the service using the key associated with it.
Subsequently, the blockchain verifies if the digital signature
belongs to either the user or the service. Every time a users
subscribes to a service a new transaction specifies the access
permissions and another contains the hash of the data [4].
Another approach focuses on the management of electronic
medical records of patients distributed across several data
providers. The authors’ blockchain implementation gives
patients an immutable log and easy access to their medical
information across providers and treatment sites. In order to
guarantee that the data is not altered, hashed data pointers
are stored on the blockchain with an additional query string
which is intended to be executed on the corresponding server
of the data providers [5]. Data assurance and resilience are
also crucial security requirements in cloud-based IoT appli-
cations. The authors of this paper [6] describe a procedure
for secure drone communication, focusing on the integrity
of the collected data. Again, the blockchain is used together
with a traditional cloud-based system. Instead of registering
the drone to the blockchain, they anchor the hashed data
records collected from drones to the blockchain network
and generate a blockchain receipt for each record stored
in the cloud. Another IoT-blockchain approach focuses on
effective and trusted data distribution across several devices.
All blockchain-related operations are forwarded to a gate-
way, which is responsible for managing access control and
endpoint authentication. Devices may act as information
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providers and also as consumers, identified by a globally
unique identifier. Every device that generates an information
item may forward its hash to the blockchain. The idea
of this solution is that IoT service providers store access
control policies that protect sensitive data in access control
providers (ACPs) and in return ACPs generate secret keys
(using a hash with the device’s locally available identifier as
input). The path to the access control policies (e.g. URL) is
known by the devices [7]. Many of today’s blockchain-based
prototypes, like the projects mentioned above, have one thing
in common: the hybrid approach between a traditional cloud
environment and blockchain layer, where hashes are pushed
to the blockchain for verifying the actual data stored inside
a traditional database. By doing so, the advantages of both
methodologies can be combined, such as speed on the one
hand, and enhanced data protection on the other hand.

Other approaches mentioned in the following paragraph
discuss design choices and limitations especially for per-
missioned blockchain types, such as hard coded consensus
algorithms, mainly utilized for industrial applications [8].
Hyperledger Fabric, for instance, is an open-source project.
It is a general-purpose permissioned blockchain system
which also can be seen as a distributed operating system
for permissioned blockchains [9]. The authors of another
paper propose an architecture based on satellite chains that
are able to run different consensus protocols in parallel,
making governance models more easily adaptable. Nodes
join a specific satellite chain if they want to interact with
other particular nodes. Each satellite chain maintains its own
private ledger and prevents any node that is not part of the
satellite chain from receiving or accessing transactions [10].

More and more cities are adopting smart city concepts
to enhance the living quality of their citizens and optimize
the resources of cities regarding healthcare, transportation,
energy, and education, for instance. The paper [11] describes
how service-based-middleware for cloud and fog comput-
ing may enhance smart city technologies. In this sense,
applications running in specific spots in cities can utilize
locally available edge-computers, end-user devices, or other
nearby edge devices to access different city services and
to facilitate cooperation between diverse systems. Another
approach attempts to decrease the heterogeneity of pre-
existing systems, by concatenating their services and user
pools on application level in a privacy preserving way [12].
In fact, data privacy is becoming more and more important
due both to an increasing public privacy awareness and to
increasingly stringent data protection rules. For example,
in 2016, the European Union passed the General Data
Protection Regulations (GDPR) [13]. Research is also being
done on privacy preserving data management techniques.
New concepts are being elaborated that use clustering algo-
rithms as a pre-process to further improve the diversity of
anonymized data [14].

III. DESIGN

Our proposed solution, which is partly based on the design
of [12], is a software platform for secure authentication,
authorization and accounting of heterogeneous services in
the form of digital entitlements for client-server redemption
systems. It is a central place for service management, with
additional decentralized control instances responsible for the
integrity and availability of transaction-based data.

A. Requirements

Privacy preserving identification and authentication.
When data, especially user-related data needs to be passed
between different entities, privacy aspects become more
important. Therefore, only tokenized user data should be
exchanged and the link between real and anonymized data
should be revocable. Additionally, each device needs to be
authenticated when communicating to the federated plat-
form.

Service authorisation management. A device has always
to be authorized to use or redeem a specific service, which
should be represented as a generic entitlement object. These
entitlements should be assignable to devices, be revocable
at any time, and be redeemable by dedicated control units.

Service co-modality. The interexchange of services be-
tween independent service providers shall be improved by
providing a federated service layer where services and
agreements between heterogeneous service providers can be
defined, obtained, and subsequently forwarded to users and
their devices.

Data integrity. All components interacting with each
other should rely on PKI mechanisms. In this sense, cer-
tificates as well as all tokenized data should be signed
by a trusted authority and be verifiable against fraudulent
changes. Additionally, the integrity of agreements and trans-
actions shall be further protected by leveraging blockchain
and smart contracts capabilities.

Decentralized consortium consensus. A decentralized
consensus algorithm shall be used to decrease the chance
of misuse of the network by a malicious party. By relying
on a consortium consensus approach additional advantages
in terms of speed, network scope, and authorization han-
dling should be achieved compared to completely public
approaches.

Data availability. The risk of data loss should be dras-
tically minimized, due to the distributed character of the
blockchain. In this sense, each node shall maintain a local
copy of the ledger. Furthermore, the framework should
ensure that service providers control their transactions and
have transparency over all agreements they are involved in.

Trusted traceability. Obtained and redeemed services
as well as transaction-related data should be traceable by
uploading a fingerprint to the distributed network.
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B. Architectural Overview

Our platform is divided into two main parts, a business
layer and a core layer. While the business layer is further
composed of an application client and an application server
unit, the hybrid core layer consists of a central cloud and
a decentralized blockchain part. An overview of the entire
system is given in Fig. 2. The business layer provides
users with application-specific features, depending on the
application area of the system. The application server of
this layer interacts with the client devices and keeps them
synchronized. It holds real user data (e.g. email, name, etc.),
product and service related datasets (e.g. type, name, price,
etc.), and offers application specific functionality (login, data
processing, etc.), which may vary depending on the underly-
ing business (parking provider, charging provider, etc.). The
redemption unit can be part of the application server (online
redemption) or outsourced to a dedicated device (parking
gate). One or more business layers may communicate with
the core cloud over a RESTful interface. The main tasks of
the core cloud are abstraction (tokenization) and distribution
of heterogeneous services across different business layers.
Two types of tokens responsible for authentication and
authorization are distinguished:

• Authentication-token (A-token): Authentication be-
tween application clients and the core layer is managed
via A-tokens. They are issued during the registration
process of the application client on the core layer. A-
tokens are tied to a specific device, core-server-signed
and consist of the devices public key, a validity period,
and token properties.

• Service-token (S-token): The digital ownership of an
item or service is represented by S-tokens, which can be
compared to digital tickets or entitlements. They can be
unambiguously associated with a service provider via
an application-Id (a-Id) and a concrete service from the
application layer via a service-Id (s-Id). The creation
of an S-token can be triggered in two different ways.
On the one hand, when an application client obtains a
service on the application layer this triggers the token
generation request on the core layer via a REST call.
On the other hand, a service provider may trigger the
creation of S-tokens and forward them to user devices
on the application layer. After the issuing procedure
of an S-token, they are bound to an A-token. If the
A-token expires or is invalidated all corresponding S-
tokens are invalidated too.

The core server works as a certification authority (CA) and
signs all tokens. The servers certificate is in turn signed by an
external root CA and is stored on all participating systems’
CA stores (it is globally trusted). Application clients utilize
public key pinning for the root certificates in order to prevent
malicious server certificates to be issued by tampered CAs.
Furthermore, the core server features a federated market-

Figure 2. Platform overview: the core layer is attached on top of business
layers and responsible for issuing, sharing, and redeeming services.

place layer where services (e.g. authorization to enter a
parking lot, redeem a food voucher, trigger the start of
charging session) can be put, obtained by other service
providers, and forwarded as anonymized S-tokens to their
users. Supplementary to this, the decentralized blockchain-
unit that is part of the core layer and addressable via a smart-
contract based interface. It acts as a trusted, tamper-resistant
storage facility for cross-domain transactions (S-token ex-
change). Additionally, agreements between service providers
of different business layers can be defined for automating
the creation and forwarding procedure of S-tokens as soon
as the pre-defined conditions are met. Due to the distributed
design of the blockchain, all transaction-based service data is
available to multiple entities and protected against fraudulent
changes. Consensus is reached by means of a Proof of
Authority approach, involving participating service providers
(with their corresponding application servers) as sealers.

C. Interaction Between App and Core

We shall now describe the interaction between the ap-
plication and the core layer. In this we will emphasize the
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.

Figure 3. Interaction between the business layer and the core layer from
the perspective of service providers and their users.

interplay with the blockchain layer. An overview of the most
important features of the system and its actors is given by
Fig. 3.

Establish a connection between business and core
layer. The first step for a service provider to establish a
connection from his business layer to the core foresees a
registration on the core layer. This involves the submission
of merchant related data and the app-identifier of the client
application (e.g. Android application id) via a dedicated
REST interface. Subsequently, a service provider specific
application Id (a-Id) is issued as well as a dedicated API-key
for further interactions from the service provider side with
the core layer over the RESTful interface. Furthermore, a
blockchain wallet (private-public keypair) is generated since
each service provider or rather application server is involved
in the consensus procedure of service-based transactions.
The private key is used to sign blockchain transactions, while
the public key is utilized for identification purpose. After
the registration a service provider is finally authorized to
publish, obtain, and forward federated services. In order to
publish a federated service, descriptive fields (name, price,
etc.) and a unique service-Id (s-Id) are submitted from the
application layer. Subsequently, the service becomes visible
for other service providers (uniquely identifiable via a-Id and
s-Id).

Figure 4. Privacy preserving mapping of a user object between business
layer and core layer – confidential data remains on the business level.

The integration of the application client into the overall
framework can be done next. First, a successful login of the
application client to the application server is necessary. The
specific mechanism can vary depending on the underlying
application. After this step, the registration between the
application client and the core layer is triggered by the appli-
cation server by sending a registration request. Subsequently,
the core server issues a one-time registration-ticket bound
to the end-user device, which is forwarded to the device
through the application server. The ticket can be redeemed
directly by the application client at the core cloud. Next,
the creation of an anonymized core user entity is triggered,
that is identifiable via a dedicated user-Id (u-Id). Finally,
the device receives a user-bound A-token required for core
server authentication. This distributed login mechanism as-
sures that the core layer never receives user-related data (e.g.
name, email), increasing the level of anonymity and privacy.
The real user data remains on the application layer and is
not distributed.

Creation of service-tokens. S-tokens can be made avail-
able to the user in two different ways: a user obtains
services and entitlements on the business layer or a service
is obtained by a service provider and forwarded to a user.
In the first case, the obtaining of a product on the business
layer side triggers the creation of an S-token on the core
layer by submitting a corresponding s-Id. Consequently, the
S-token is linked with the core-user. Last but not least, a
new transaction entry is generated inside the core layer.
The second case involves the service provider obtaining a
federated service. The moment a service is obtained the
creation of an S-token is triggered and the S-token can be
assigned to the user via his user id (u-Id).
In order that S-tokens can be assigned to the intended user
on the business layer without revealing confidential data of
the user on the core layer, a privacy-preserving mapping
is used. This is depicted by Fig. 4. A dedicated table is
stored on the central core cloud, containing the user identifier
of the application layer (e.g. email) hashed together with a
salt, as well as the anonymized core user. Furthermore, the
application identifier is added in order to address the right
app. If a service provider intends to automate the issuing
process and make it condition-dependent, agreements can
be elaborated by signing a federated service. This triggers a
validation flag that makes the agreement valid. An agreement
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consists of the federated service, additional datasets identify-
ing the interested service provider as well as a condition that
determines under which circumstances the federated service
specified inside the agreement should be issued. A condition
tells how many S-tokens have to be obtained or redeemed
by a user before the service (reward) is issued, or which
specific S-token needs to be redeemed in order to trigger
a reward, for instance. If the agreement’s trigger condition
is met, the federated service specified inside the agreement
is derived to an S-token and forwarded to the client who
triggered the current transaction.

Interaction with the blockchain layer. Each transaction,
which in our context includes either the creation or the
redemption of S-tokens, is stored in a transaction history
table on the core server in an anonymized way. Anonymized
means that each transaction history entry only consists of a
timestamp and different ids that identify the service provider
(a-Id), the actual service (s-Id), and core user entry (u-Id),
without referring to the real data that lies on business layer.
All transactions that involve the obtainment of a federated
service by a service provider, are additionally forwarded as
key-value pairs to the blockchain through a dedicated smart
contract. While the value consists of the hashed transaction
entry, the key is composed of the a-Id and a timestamp. For
each transaction a receipt as well as the key is generated
and forwarded to the service providers of the application
layer. The key provides the data management system with
the ability to access the transactions for additional validation
and tracking of past transactions, while ensuring the integrity
of all transactions. A set of transactions is used to compose a
new block, which will be confirmed by the network’s sealers.
If the block was accepted, it will be integrated into the
existing blockchain, making it part of the tamper-resistant
distributed ledger. Fig. 5 summarizes which data is stored
on the blockchain via smart contracts. In short, all data
that should be accessible to multiple independent parties
(businesses) is saved on the blockchain via smart contracts.
On the application client side, every time the transaction
history is updated, the core layer queries all corresponding
agreements and checks if one of the conditions is met
by equalizing them with the transaction history table. If
the last service that was added to the history table has
resulted in a progress of the agreement’s condition, this
transaction is also forwarded to the blockchain and linked
to the agreement. By this means the service providers can
keep track of the completion state of all agreements they are
involved in. The same is true for application clients if the
interface of the business layer is adapted accordingly. One
of the properties of the blockchain is that data once added
can no longer be removed or changed. This is especially
advantageous when data that should not be altered is stored,
but can pose a problem for agreement handling, since often
agreements should expire after a specific time or need to be
canceled. We took care of this scenario to the extent that

Figure 5. Smart contracts are used to store all cross-domain related service
data onto the blockchain in a tamper-resistant manner.

a one-time cancellation request can be used which sets the
agreement’s validation flag to false. Subsequently, this makes
the corresponding smart contract unusable, by blocking all
further method calls.

IV. IMPLEMENTATION

There are two classes of entities accessing the core servers
functionality: the application servers and the application
clients through a RESTful interface, which is protected by
basic HTTP authentication. Every call has to be authenti-
cated using a secret API key, which is passed as a username
in the basic HTTP authorization header. All communication
between clients and the core server is done over HTTPS.
The only exception is the device registration process, where
a client certificate is not yet available. In this case, the
registration-ticket is used for identifying the user. After
registration, the application client uses an X.509 certificate
for all subsequent TLS connections. The overall platform
utilizes PKI combined with ECDSA as signature algorithm
and SHA256 for hashing data.

We decided to rely on the already widespread Ethereum
blockchain in the context of the blockchain part. We chose
Ethereum’s PoA Clique consensus algorithm, since it is
suitable for achieving cooperation between several service
providers in terms of speed, network scope and authoriza-
tion handling. Each participating service provider becomes
a sealer and is involved in the validation procedure. A
local Ethereum blockchain was installed on Linux-based
machines for the proof of concept we developed. To set
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up the network including creation of nodes, accounts and
the genesis block, the Go Ethereum protocol was utilized.
It is available as standalone terminal client under the name
Geth. The interaction between the JAVA-based application
code and the Ethereum blockchain was established using
the web3js API. It is a lightweight, but highly modular Java
library for working with smart contracts and interacting with
nodes on the Ethereum network. Furthermore, for debugging
the local blockchain network an IPC approach was chosen
by accessing the local geth.ipc file with the Geth client. A
bootnode was used for helping nodes to discover each other,
since each node could have a dynamic IP. The bootnode
itself runs on a static IP and can be used by other nodes as
reference to find participating nodes.

Smart contracts were programmed in Solidity [15], a
high-level programming language for the Ethereum Virtual
Machine. It is statically typed, supports inheritance and
user-defined types. A contract in the sense of Solidity is a
collection of code (functions) and data (states) that is stored
at specific addresses on the blockchain. They have to be
installed in a one-time operation on all nodes by sending
a transaction to the network. Once installed, modifications
are no longer possible. We tested the contracts using the
Remix browser application (www.remix.ethereum.org). In
order to embed it into the server application the contract was
compiled using the solc-compiler. During the compilation
process a binary file and an application binary interface
in JSON format are created. These outputs are required to
generate JAVA wrapper classes with the web3j command
line utility. Finally, these wrapper files can directly be
integrated into an application.

V. SECURITY EVALUATION

Our platform acts as a cross-domain entitlement mar-
ketplace and integrates blockchain technology to further
enhance the level of security and trust between different
service providers. The business layer is composed of a client-
server infrastructure, while the core is attached on top of it to
provide the means for sharing different services. A security
evaluation of the elaborated proof of concept is given in the
following.

User and service related data from the business layer is
tokenized for increased anonymity before being submitted
to the core layer. Furthermore, these tokens are responsible
for security goals such as authentication and authorization.
On the one hand, authentication from the application client
to the core layer is provided through A-tokens, which are
extended certificates, tied to a particular device and issued in
the course of a Kerberos-based authentication mechanism,
ensuring that no real user data is forwarded to the core
server. On the other hand, services are converted to S-tokens
that identify the actual entitlement and the service provider
responsible for the redemption. In our security model, the
core layer communicates with the business layer over an

encrypted channel (HTTPS). The tokens themselves (A-
token, S-token), however, are not encrypted. This reduces
additional computational overhead and is not security crit-
ical, since tokens are only composed of anonymized data.
Furthermore, if an adversary had access to the core layer’s
transaction database he would not learn anything about
the raw data, as it is obfuscated. Regarding transactions,
only anonymized entries consisting of different ids and a
timestamp are stored. Those that should be accessible by
multiple parties are uploaded in a hashed format (SHA-
256) to the blockchain. By doing so, participating service
providers have the possibility to keep track of federated
services and the completion state of agreements. If a device
is lost or stolen, the possibility of spending existing tokens
with that device cannot be prevented. This risk can be
reduced by revoking a devices A-token in a timely manner,
which subsequently invalidates all S-tokens automatically.

The overall architecture uses PKI with ECDSA for iden-
tifying communication participants and verifying the data
exchanged. All tokens are core-server signed and can be
verified with the server’s public key. In order to prevent
the issuance of interacting with a malicious core server
application, clients may use public key pinning. A trusted
root certificate is pre-installed on all devices. Additionally,
all blockchain transactions are cryptographically signed and
ensure that an attacker cannot corrupt the network. Note
that while data integrity is not ensured in each node, since
a single node can tamper with its local copy, we can still
reduce the risk by means of a sufficient distribution of the
data.

The decision making power is distributed from a cen-
tral authority across multiple network participants, which
strongly impedes fraudulent behavior. If hackers tamper with
the block data, the network’s consensus model will ensure
that other nodes reject the bad node. Unlike other consensus
algorithms where the most important resource is computing
power (Proof of Work) or monetary resources (Proof of
Stake) in the case of our Proof of Authority (Ethereum’s
Clique) approach, a set of pre-approved authorities is re-
sponsible for the integrity of the network. This means an
adversary would need to gain control over other sealer’s
machines or persuade them to act maliciously, which makes
an attack vector more improbable. We assume the blockchain
to be tamper-resistant. This requires a sufficiently large
network of trustworthy sealers. Any new service provider
wishing to join the network, must first be approved by the
other sealers, which gives us full control over which nodes
can seal blocks. To make sure a malicious signer cannot
do too much harm to the network any signer can sign at
most one of a consecutive number of blocks. The same
voting is applied when an authority node is removed from
the network.
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VI. CONCLUSION

Cross-domain service exchanges are often difficult to
achieve due to rigid system boundaries and lack of stan-
dardization as well as a scant level of trust and privacy. In
this paper we described a framework for issuing and sharing
services from different application areas in the form of
digital entitlements across heterogeneous applications. Our
platform is subdivided into a business layer composed of a
client-server system, where application specific features lie,
and a core part acting as a common trusted layer for abstract-
ing user and service data as well as for distributing different
entitlements across multiple entities. The predominant trust
mechanism of the platform is a public-key infrastructure
(PKI) that maps an identity to a cryptographic public key
using signed certificates. Authentication of devices as well
as authorization of services are handled with anonymized
tokens. Due to the generic nature of the tokens multiple
heterogeneous entitlements can be represented, shared and
seamlessly integrated in different systems and applications.
Since the blockchain emerged as a tamper-resistant tool with
great traceability and data integrity protection mechanisms,
we extended the core layer with a decentralized blockchain
part. A federated Ethereum-based blockchain with a Proof of
Authority based consensus approach that involves participat-
ing services providers, is used to store and manage federated
services and agreements. The communication between the
centralized cloud and the decentralized blockchain part is
enabled via a smart contracts based interface. Furthermore,
from all transactions, including the issuing, forwarding,
and redemption of cross-domain-services, data pointers are
retained on the distributed ledger for verifying the data
against fraudulent changes. Furthermore, by applying our
framework we incentivize the use of cross-domain rewards.
In this sense, a customer may receive additional offers and
services coming from independent service providers as soon
as pre-defined conditions between different service providers
are met. Regarding future work we will look into end-
to-end security strategies in order to provide means for
exchanging confidential data (e.g. sensitive sensory data)
across heterogeneous systems.
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ABSTRACT
Gami�cation, de�ned as the application of game design principles
in non-gaming contexts, is a powerful tool for making systems last-
ingly attractive by exhausting rewards as soon as speci�c conditions
are met. In the context of online or real world shops, customers
are sometimes rewarded for their loyalty via additional o�ers or
services. These o�ers often incentivize users to consume additional
services and goods. However, most of the time they are limited to a
single or a small set of vendors, which raises the question of how
customers can be motivated to use services of di�erent domains
and service providers. Furthermore, the lack of standardization and
increasingly stringent data protection rules aggravate the exchange
of business related data with other systems. This paper introduces
two patterns. First, a way for increasing joint-marketing purposes
is elaborated focusing on a buying behavior based rewarding ap-
proach. Second, an overlay for existing client-server systems is
described whose purpose is to anonymize and share services in
form of digital tokens across di�erent service providers, their sys-
tems, and users. In summary, said patterns establish the context for
incentivizing the usage of cross domain services.
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1 INTRODUCTION
In the last years new emerging information and communication
technologies have appeared and became part of peoples daily lives
[2, 19, 20]. Smart access via mobile devices to di�erent services
available online (e.g. food order, ticket purchase) or those available
locally (e.g. getting access to parking lots or speci�c areas) is no
rarity anymore [12, 16]. From a business point of view many ser-
vice providers try to arouse the customer’s interest in their services
using special o�ers or rewarding systems of di�erent kinds without
exploiting the full potential of an extensive inter-company reward-
ing system for themselves and their users. This paper discusses
the following questions. How can service providers incentivize
customers to utilize di�erent services across independent compa-
nies? What can be done from a technical standpoint to facilitate a
collaboration between di�erent systems while focusing on privacy
aspects? This is where the concept of gami�cation, which is based
on the act of adding systemic game elements to non-game elements,
comes into play. In our case gami�cation is strongly related to mar-
keting techniques for encouraging the engagement between service
providers, their products, services, and users. It is not competitive
but focuses on cross domain rewards for participating users.

Challenge of gamifying the interconnection of di�erent
products and services. The concept of gami�cation in the sales
domain builds upon the very common loyalty card that many brands
o�er, which keeps the customer rewarded inside the brand. The
concept goes further by providing means to interconnect services
from heterogeneous service providers, yielding bene�ts in terms of
wider advertising scope and additional sales, due to an increased
cross-domain collaboration. In this sense, a cross domain service
exchange and rewarding layer could be utilized by service providers
of heterogeneous domains in order to incentivize customers to
utilize services of di�erent brands.

Challenge of connecting heterogeneous services, while pre-
serving privacy. Due to a variety of ubiquitous information pro-
cessing systems, we have to deal with an increased data privacy
awareness of users. Additionally, stringent data protection rules
such as the European GDPR [5]) enforce protection and anonymiza-
tion of user related data. From a technical point of view, we nowa-
days have to deal with an increasing jungle of heterogeneous sys-
tems. There is no common strategy to combine services and user
pools of di�erent domains in a privacy preserving way. Given
a common trusted layer for client-server systems, strategies for
anonymizing and sharing services in form of digital tokens can be
applied.

Our contribution: Gamifying Connected Services Patterns.
In this paper, we present two patterns: (i) the Incentivizing Cross-
Domain Service Access Pattern and (ii) the Privacy Preserving Service
Access Pattern. The �rst pattern describes the idea of a common
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overlayer for facilitating service and brand cooperation for joint-
marketing purposes and a collective cross domain gami�cation ex-
perience for their customers. In contrast, the second pattern which
is a proposed pattern, focuses on privacy aspects when services of
diverse domains shall be exchanged between di�erent systems and
their users. Both patterns use the canonical way of pattern descrip-
tion. Therefore, the following sections explain the context of the
patterns (sections 2.1 and 3.1), corresponding examples (sections
2.2 and 3.2), the problem and its forces (sections 2.3 and 3.3), the
solution and its accompanying consequences (section 2.4 and 3.4),
and resolved examples (section 2.5 and 3.5). The consequent section
4 is about related work and related patterns, while section 5 gives a
concluding overview of the overall paper.

2 INCENTIVIZING CROSS-DOMAIN SERVICE
ACCESS PATTERN

2.1 Context
It has been and always will be a goal for businesses to provide
means for holding existing users and acquiring new ones. Despite
the businesses’ range of goods and services per se, making special
o�ers is a strategy to arouse the customers’ intrinsic motivation
to remain loyal to a certain service or application. Gami�cation
concepts are a way of integrating a certain level of playfulness in
non-game contexts [4, 7]. They often aim towards goals of market-
ing and can therefore be used for special o�er strategies. In todays
agglomeration areas many independent information systems, such
as systems responsible for providing bike or car rental services, food
ordering, or smart parking, come together. Therefore, it is all the
more important to provide tools for enabling higher collaboration
between di�erent service providers and motivate customers to try
out new services eventually.

2.2 Motivating Example
In order to understand how a user would bene�t from cross domain
rewarding mechanisms let us slip into the role of a user for the fol-
lowing example. Take the case that you are in a place where many
di�erent services and products are available locally like in a shop-
ping mall (see Fig. 1). You as customer can choose between several
services, from parking or charging your car to eating something
or going shopping in di�erent shops, and many other services you
probably do not even know about and haven’t gone to yet. Some
shops have rewarding programs. However, the problem is that these
rewarding mechanisms often only include the products of the corre-
sponding seller which means you get no discounts or special o�ers
for other shops when purchasing them. You also have no incentive
to enter the shops you do not yet know. Wouldn’t it be convenient
being rewarded with cross-domain rewards for your loyalty, maybe
even in a completely automated way as soon as prede�ned condi-
tions are met? For example, you could get a reward from shop A,
by consuming a speci�c number of services from shop B. Wouldn’t
it be advantageous if these o�ers also incorporated stores that you
didn’t know yet, thus making them more attractive for your next
visit? The described use case deals with a wide range of physically
present service providers and shops. However, the same questions
arise also in an online scenario where products, vouchers, etc. can
be obtained via completely virtual channels.

Figure 1: A customer consumes various services from dif-
ferent services providers (food, parking, groceries, etc.).
Since there is no collaboration between di�erent service
providers, he unfortunately is not rewarded for obtaining
cross-domain products.

2.3 Problem
Customers tend to be creatures of habit. Once they are used
to a service and know how to obtain it, they often no longer
look around for new services without an incentive, a speci�c
reason, or an advantage.

2.3.1 Forces.

• Lack of standardization: Interaction/cooperation between
service providers beyond their own application area bound-
aries is di�cult to achieve due to a lack of standardization.
While many custom-tailored solutions for speci�c applica-
tion areas do exist, there is no common strategy for exchang-
ing services of di�erent domains, which also includes the
possibility for cross-domain rewards.
• Service provider behavior: Since service providers do not

want to lose business, they have the tendency to be con-
cerned or at least cautious about cooperating with other
service providers. Therefore their service o�ers often have a
scope limited to a single company or a small set of vendors.
• E�ort-intensive rewarding systems: In case rewarding

systems exist the process of claiming rewards is often asso-
ciated with e�ort for the customers, since they have to be
aware of the current available services and o�ers as well as
their conditions, and must actively claim them.
• Unknown availability of services: Users often simply do

not know which services and corresponding o�ers are avail-
able, especially in the case of services that are available
locally only.

2.4 Solution
A common trusted layer should provide the possibility to (i)
manage services of di�erent domains and service providers
and (ii) enable cross-domain rewards according to the cus-
tomers’ buying behavior.

A common layer on top of existing systems should act in be-
tween di�erent service providers (e.g. brands, merchants, etc.). This
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layer can be seen as a service market place, thus providing the
possibility to publish services and make them visible for other ser-
vice providers of di�erent domains. We call this common layer the
Connected Services Engine (CSE). The CSE should not only main-
tain a list of available services but also introduce the possibility
to enable purchase based cross-domain rewards. It should only be
accessible to participating service providers and their user pools.
Its requirements are depicted in the following:

• Authentication: Only authenticated service providers and
users shall have access to the CSE.
• Authorization: Each service the CSE manages stands for a

speci�c permission (e.g. permission to get a product, redeem
a service, etc.). Therefore, the common layer shall provide
means to trigger the creation of these permissions and to
uniquely associate them with speci�c customers.
• Transaction Handling: The obtainment and redemption

of services as well as transaction-related data should always
be traceable, independent from whom or from which system
the transactions were initially triggered. This is necessary
for applying a purchased-based rewarding mechanism.
• Service Mapping: The CSE should be able to map services

of di�erent domains with di�erent customers. This is re-
quired for a cross-domain service exchange.

A service is the connecting link between a service provider and a
user. These terms are explained in the following:

• Service provider: Entity which de�nes and provides ser-
vices. Each service provider should have the possibility to
list its services on the CSE and to manage their properties
such as price, name, availability, etc. Additionally, a service
provider decides on the scope of his services. The scope de-
termines which additional entities (of other domains and
systems) are allowed to obtain or access the service.
• User: Entity which obtains and consumes services from a

service provider and has the possibility to get cross-domain
rewards according to its purchase behavior. Due to the CSE
the user may not only see services from other domains, but
is also aware of cross-domain o�ers and their condition.
• Service: Product, good, voucher, etc. of a speci�c service

provider. There are two ways of how services can be accessed.
On one hand, users may obtain services directly from the
CSE. On the other hand, service providers may obtain them
and forward them to their users as a reward.

This pattern describes a mechanism for service providers to
grant service access to other service providers while providing the
possibility to trigger cross-domain rewards for di�erent customers.
Fig. 2 gives an overview on the most important communication
participants and their interrelationship. While the user obtains and
redeems services via interaction with a dedicated service provider,
the CSE is the point of contact for di�erent service providers. The
CSE should therefore provide a communication channel for each
participating service provider in order that a description of their
services can be uploaded. Additionally, a global transaction registry
should be maintained on CSE level. It can be used to check which
speci�c service was obtained or redeemed by whom. Cross-domain
rewards can be issued depending on conditions the service provider

may specify as well as the purchase behavior of the user. For ex-
ample, when a costumer obtains speci�c products from one shop
(system A), additional o�ers from another independent shop (sys-
tem B) could be unlocked. In this sense, the CSE is responsible of
keeping track of all transactions and notifying the corresponding
service providers in case conditions for rewards are ful�lled.

Figure 2: Independent service providers may interact with
the Connected Services Engine (CSE) to publish their ser-
vices and distribute cross-domain service rewards for their
users.

Di�erent ways on how service providers and their users may
interact with the CSE are possible (see also [15, 17]), which are
additionally shown in Fig. 3:
• Service O�er. This approach provides registered service

providers (and their systems) with the possibility to forward
services available on the CSE to their users. In this sense,
loyal customers can be rewarded with services of other com-
panies. Via the CSE the service provider is able to get an
overview about other available services, may obtain them,
and forward the permissions to use them as reward to his
user(s) for free or for better conditions. Alternatively, there is
the possibility that a user may directly obtain the federated
service. This approach could also be extended with a point-
based system, meaning that for each service obtainment
the user would be able to gather points, which in further
consequence could be spend on new services.
• Service Agreement. In order to provide a way to react to

speci�c purchase behavior of customers and establish an
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automated service based rewarding system, each purchase
has to be noted inside a transaction table. Additionally, a
table for storing the service trigger conditions should be
created. The main idea behind this is that there should be the
possibility to issue condition-dependent service rewards in
an automated way. The condition, for example, may specify
how many services of a service provider need to be acquired
before a reward is issued. The information whether the con-
dition is met or not can be retrieved by the transaction table.
Due to this transaction table all progresses can be tracked
by the service provider and also their users. Finally, as soon
as a condition is ful�lled, the service speci�ed inside the
agreement can be obtained by the host service provider (and
his system), and forwarded to the corresponding user that
ful�lled the condition. This way, the reward is issued au-
tomatically when the reward condition is met even if the
completion state is not actively tracked.

Figure 3: Overview about Service O�er and Service Agree-
ment procedures involving a user and di�erent service
providers [17].

2.4.1 Consequences.
This section addresses the consequences of the Gamifying Con-
nected Services Patterns pattern, subdivided into bene�ts and liabili-
ties. The bene�ts of this pattern are:
• Due to the additional common layer put on top of existing

systems and the possibility of exchanging cross-domain ser-
vices, multiple services from one service provider can be
obtained/used by other service providers/users, despite the
custom implementations of their systems. This counteracts
force lack of standardization.
• Through the CSE and the possibility to share cross-domain

services more users can be addressed. With a higher user
reach also a higher revenue can be expected by participating

service providers. Additionally, by partnering up with other
businesses or simply referring to their services, new business
relationships can be created. Altogether, this counteracts
force service provider behavior.
• Users can directly be rewarded with cross-domain services

by their service providers, which minimizes the e�ort on
user side and mitigates force e�ort-intensive rewarding
systems. Access to these rewarding services can be trig-
gered by service providers manually (Service O�er) or in an
automated way (Service Agreement) by specifying trigger
conditions.
• The scope property of a service stored on the CSE can be used

by service providers to determine which entities are able to
access a speci�c service, as long as they are able to access the
CSE. In this sense, users may see available services or special
o�ers, which counteracts the force unknown availability
of services.

The liabilities of this pattern are discussed in the following:

• The cooperation between service providers active in the
same sales segment will not increase by applying this pattern.
This is because the pattern focuses on increased readiness to
exchange cross-domain services (see force service provider
behavior).
• The impact of the force unknown availability of services

depends on how many service providers intend to participate
and how they manage the scope property of their services.

2.5 Example Resolved
In order to motivate users to try out new services, di�erent service
providers may apply an inter-company-wide rewarding system
based on the users’ buying behavior. Let us apply the solution
discussed in section 2.4 to the example of section 2.2 for the Service
O�er approach. Assume that you (from a user point of view) want
to go for a shopping spree in a shopping mall (see Fig. 4). You drive
there by car and after successfully parking it in the underground
garage you enter the mall. After a few hours of intensive shopping,
you go to a restaurant to grab some food. Due to the CSE, both
merchants (restaurant and parking service providers) know about
the other party’s services and are able to obtain the permission to
issue corresponding vouchers. The moment you obtain the food,
the employee of the restaurant may reward you with an additional
parking voucher for your loyalty. The voucher can be used to exit
the shopping mall for free (or for better parking conditions). Due
to the global transaction registry of the CSE, it is possible to trace
at any time which services were initially obtained and consumed
by whom. This is also important for billing.

Figure 4: Service provider A (Restaurant) forwards a digital
voucher to one of his customers for accessing the service
(Parking) of service provider B (Garage).
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Another example describing the Service Agreement approach is
shown in Fig. 5. In this case, you purchase di�erent goods from a
certain vendor. As soon as prede�ned conditions are met (e.g. you
have rented a car three times) you will be rewarded automatically
in form of an additional service of another service provider (e.g.
free e-bike ride) without actively having to claim the reward. Again
the global transaction table in combination with the prede�ned
conditions can be used for this.

Figure 5: A user automatically receives a reward (e-bike-
rental voucher) by utilizing or consuming products or ser-
vices from another service provider (car rental) as soon as
prede�ned conditions are met (rented car x-times).

In summary, cross-domain o�ers from di�erent businesses can
be unlocked for customers, depending on their purchase/consuming
behavior.

2.6 Known Uses
In the electronic marketplace area, for instance, integration method-
ologies between di�erent services providers are often associated
with advantages. When businesses merge into clusters they of-
ten have a decreased management overhead with less setup and
maintenance costs, for instance. However, the downside is that
such integration technologies and frameworks are often associated
with adaption costs, especially for businesses with rigid standards
[6]. Nevertheless, more and more centrally managed coalition pro-
grams are elaborated for cross-domain shopping and rewarding
[11, 14, 23]. These approaches enable the customer to collect a com-
mon currency (often point-based) for obtaining speci�c goods and
services of partnered up businesses and merchants. The more goods
and products are consumed, the more points can be unlocked and
credited to the user’s account. The collected points can in turn be
spent on various products, trigger the creation of new coupons, or
be converted to real money through interaction with the rewarding
platform’s mobile app or website. All of the mentioned coalition pro-
grams have one central layer in common where di�erent services
can be obtained and redeemed.

3 PRIVACY PRESERVING SERVICE ACCESS
PATTERN

3.1 Context
In e-commerce environments often client-server systems are used
to engage customers. Among other components, such systems often
consist of a mobile or a web application for the end-user as well as
a corresponding server unit. While the application for the user is
responsible for visualizing and obtaining services, the server-side
application provides a dedicated interface for accessing di�erent
services online as well as the possibility for service providers to
manage user and service related data. These systems are often
tailored for speci�c application areas and target groups, which
implies that their o�ers in form of products, vouchers, or other

services usually have a scope limited to a single company or a
small set of vendors. The context of this pattern foresees that the
Incentivizing Cross-Domain Service Access Pattern has already been
applied, which provides a generic common layer working on top
of di�erent systems. Complementary to it, this pattern addresses
service providers and their client-server systems that intend to
exchange service and user related data in a privacy preserving way
from a technical perspective.

3.2 Motivating Example
In our example we have di�erent client server systems (CSS) com-
ing from heterogeneous domains as well as one common layer,
the connected services engine (CSE). Let’s assume that each CSS
provides the functionality to register and login users as well as the
possibility to let them obtain services of the system’s domain. By
contrast, the CSE - from an architectural perspective - is put on top
of a CSS and can be utilized as service marketplace for obtaining
and forwarding services between di�erent participating systems.
See Fig. 6 for an overview of the architecture. However, the neces-
sary functionality to obfuscate privacy critical datasets has yet to
be integrated.

Figure 6: Interaction between di�erent client server systems
(CSSs) and the overlaying Connected Services Engine (CSE).

3.3 Problem
Due to increasingly stringent data protection rules and an in-
creased privacy awareness on user side, privacy preserving
data exchange is crucial for client server systems in the sales
domain that intend to exchange user data among each other.
In this sense, a lack of privacy preserving information ex-
change may hamper collaboration between di�erent brands,
consequently impeding a federated access to services of dif-
ferent service providers.
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3.3.1 Forces.

• Jungle of diverse data: Diverse datasets from di�erent
client server systems are di�cult to parse and compare with
each other. Services cannot be shared across several systems
and their users without a common basis, rule, or interface.
• Data security: Interfaces to other systems may lead to secu-

rity risks such as disclosure of con�dential data, fraudulent
data manipulation, or system failures, especially when secure
authentication and authorization is not provided.
• Diverse interfaces: For each external server to which a

communication channel should be established, di�erent in-
terfaces have to be integrated. This complicates the integra-
tion procedure and makes the adaption of the host system’s
boundaries more time and cost consuming.
• Abstraction = Information loss: It is di�cult to deter-

mine which abstraction level is required to guarantee the
privacy aspect of user data , while still having enough non-
anonymized information the system needs to perform its
tasks.

3.4 Solution
The proposed pattern provides existing client-server systems
with the possibility to share services with each other and
their user pools in a privacy preserving way. This is done
by introducing a cloud based layer that is responsible for
anonymizing services and users from di�erent client-server
systems. Client-server systems have to register themselves
at the cloud layer that keeps a list of all subscribed entities.
They will be noti�ed of state changes and also regarding the
issuing procedure of service-permissions.

Our starting point is a client server based system (CSS) such
as the ones found in various sales environments. It mainly con-
sists of two components, an application client (user application) for
obtaining services as well as a corresponding application server in-
frastructure where the user and service data is stored and managed.
Companies are often reluctant to carry out severe adaptions of a
systems’ internal functionality and interfaces in order to connect
with other systems. Therefore, an additional trusted layer (CSE) is
introduced and put on top of the CSS. This external cloud-based unit
may interact with di�erent CSSs (e.g. via HTTP) and anonymizes
the data transferred. The explanation of the proposed solution is
divided into three steps. First, the registration procedure of a ser-
vice provider is described, who is responsible for sharing services
across independent parties. Second, the integration of a CSS-user
is explained. This is important for the obtainment of cross-domain
services. Last but not least, the focus will lie on a description of
how cross-domain services can be managed.

Service Registry Phase. The CSE comprises di�erent services
and is responsible for storing them in a global service registry
and providing access to it. The Service Registry Pattern [18] can be
applied for providing means to store and handle a set of di�erent
services. For the following two reasons automated service discovery
mechanisms are not required, neither on CSS nor on CSE side.
First, a CSS only needs to know the location of the CSE. Second,
service providers interested in accessing cross-domain services and
publishing their own services on the CSE can register themselves

by adding their shop, company, and service information, and are
therefore already known. Each service added on the CSE gets a
service identi�er mapped together with a unique identi�er of the
service provider. Additionally, the scope of the added entries shall be
set to private by default. However, it should be possible to lift their
privacy settings and make them public. This way, other providers
are able to �nd services and acquire them.

Registration user. In order to register a user on the CSE for
receiving cross-domain rewards, a trusted communication channel
between client and server of the CSS and the CSE has to be enabled.
A Kerberos based registration procedure can be applied [8]. In
this sense, the CSS is responsible for authenticating the client and
retrieving a session ticket for accessing the interface of the CSE.
Subsequently, an anonymous user entity is created on CSE level
after submitting the session ticket and a unique CSS-user identi�er.
This newly created anonymized entity on CSE does not contain
any speci�c user data like email address or name and is only used
for providing the possibility to route a reward to the right user
on the CSE. The only entity that knows the link between real and
anonymized user objects is the CSS that triggered the registration
procedure. Last but not least, a CSE-access key for the user (e.g. API-
key) is issued that enables further direct communication between
him and the CSE.

Cross-Domain Service Handling. The CSE is composed of
several registries. Due to the distributed login procedure an anony-
mized user registry on the CSE can be maintained. Furthermore,
also services are stored inside the service registry, which should
be made accessible by the CSSs. Each time a client or a service
provider wants to obtain a service, the CSE is noti�ed by the CSS
and triggers the generation of the corresponding access permission.
In this context, a CSE-signed service token is created and transferred
directly to the client. This uniform token is linked to the service,
the corresponding service provider, and the anonymized user entity.
Additionally it has a validity period, authorizing the user to get
access to a speci�c service within the speci�ed time frame. The
corresponding CSS will be noti�ed in case tokens are issued or state
changes occur (e.g. token state switches between VALID, EXPIRED,
REDEEMED, etc.).

Each activity involving the generation or redemption of a ser-
vice can be stored in a transaction registry by the CSE. With this
ever increasing transaction history database it can be determined
which entity purchased or redeemed which speci�c service of
which service provider and how many of them. A single-app ap-
proach where heterogeneous services are integrated within one
application (same CSS user object), as well as an inter-app approach,
where services are exchanged between di�erent independent plat-
forms/applications (di�erent CSS user objects), are feasible. Latter,
requires a privacy preserving mapping between the anonymized
CSE-data and the CSS user entities (containing the real user data,
e.g. mail, name, etc.). The mapping could be stored centrally on the
CSE. In this case, a unique identi�er (e.g. email) of the CSS-user
object in hashed format as well as a unique service provider identi-
�er can be put together with the anonymized CSE-user object. By
calculating the hash of the CSS-user object during interaction of
the CSS and the CSE and comparing it with the already stored one,
the CSE can associate the CSS-user with the correct anonymized
user object. In this way, even if this table is stored on the CSE, only
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the business in charge of the creation of the user account knows
the real user data, while obfuscating the user’s identity for the CSE
and thus also for all other participating businesses. Alternatively,
the link between real user data (CSS-user object) and anonymized
user object (CSE-user object) may be stored directly on each CSS.
In this case, a dedicated communication channel between CSS and
CSE has to be provided to retrieve the required link between these
objects.

3.4.1 Consequences.
This section is about consequences of this pattern, subdivided into
bene�ts and liabilities. The bene�ts of the proposed Privacy Pre-
serving Service Access Pattern are:
• By applying this pattern an increased level of trust can be

achieved due to the fact that no real user information like
name, email, etc. is stored on the CSE. By contrast the CSS
remains in control of the real data. In order to be able to
forward services from the CSE to users of a speci�c CSS,
a mapping between real and obfuscated data is saved in a
privacy preserving way. This counteracts force abstraction
= information loss.
• From an architectural perspective, the CSE is on top of ex-

isting CSSs, thus entering a one-to-many relationship with
them, which is loose by default. Since a CSS communicates
directly to the CSE, without having to interacting with other
systems, the number of adaptions regarding the CSS’s inter-
faces can be reduced. This a�ects force diverse interfaces.
• The overall platform provides means for secure authentica-

tion and authorization. The tokenized service data shared
between systems is signed by the CSE. Furthermore, all CSS
users are registered via a secure distributed registration pro-
cedure to enable a secure link between application client,
application server, and the CLE. These points a�ect the force
data security.
• The force jungle of diverse data is counteracted due to the

abstraction procedure of services and users. The anonymized
tokens on the CSE are harmonized and have a uniform for-
mat.

The liabilities of this pattern are discussed in the following:
• For enabling tailor-made advertisements and service access

additional datasets need to be shared across di�erent parties
(e.g. destination, GPS, gender, age). Furthermore, it is not
possible to carry out a detailed data analysis on CSE layer
since only obfuscated datasets are available. This a�ects force
abstraction = information loss.
• Services are written using a variety of languages, frame-

works, and framework versions. Further interface descrip-
tions are required to facilitate the integration procedure be-
tween di�erent CSSs and the CSE. This a�ects force diverse
interfaces.

3.5 Example Resolved
Fig. 7 shows the interaction between a CSS and the CSE. The CSE
enables the CSS to de�ne and create services inside the service
registry of the CSE. Furthermore, information about the available
services can be retrieved at any time. Each transaction with the CSE

is stored inside a transaction table in order to know which entities
communicated to the CSE. This transaction table is also utilized in
conjunction with rewarding rules/conditions. They can be created
by the CSS and de�ne under which circumstances a user should
be rewarded. Due to the abstraction process and the absence of
user data on the CSE the real identify of each user can be protected.
The CSE is only in possession of an anonymized user entity. Only
the corresponding application server of the CSE knows the real
identity.

Figure 7: Interaction between di�erent CSSs and the overlay-
ing CSE including the handling of cross-domain services in
a privacy preserving way.

4 RELATED WORK
The solution approaches described in this paper are partly based
on the design of the software architectures explained in [15, 17],
where di�erent layers are responsible for abstracting and exchang-
ing service tokens between heterogeneous client server systems.
The interaction between the server-based components of the system
can be realized with the Observer Pattern, responsible for distributed
event handling and the Whiteboard Pattern which is derived from
the former [13]. This pattern de�nes a subject and an observer.
When a subject changes state, all registered observers are noti�ed
and updated automatically. On one hand, the subject is responsi-
ble for maintaining a list of observers and notifying them of state
changes. On the other hand, it is the responsibility of observers
to register themselves on a subject in order to get noti�ed of state
changes and to synchronize their state with the subject’s state as
soon as they are noti�ed. Furthermore, the Service Registry Pat-
tern [18] can to be taken into account, for informing participating
communication participants about all available service instances.
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Furthermore, a Kerberos-based protocol [8] can be used to enable
distributed authentication between client, server, and the CSE. This
authentication scheme follows the basic Pattern of Brokered Au-
thentication [10]. The following patterns are related to the topic
of creating distributed service-oriented applications. The patterns
[21, 22] focus on engineering software for the cloud. By contrast,
[3] elaborates a pattern language for distributed computing, while
[9] focuses on resource management. Also gami�cation method-
ologies have gained popularity in the development of enterprise
information systems [1].

5 CONCLUSION
On account of poor standardization and cooperation between di�er-
ent service providers the widespread use of cross-domain rewarding
approaches is still in its inception. In this sense, today’s rewarding
systems often have a scope limited to a single company or a spe-
cialized application area, and therefore target only a focused set of
users. Furthermore, data privacy is becoming more and more impor-
tant, especially when user related data has to be exchanged between
di�erent systems. In order to increase a gami�ed, federated ser-
vice exchange across several user-vendor systems while preserving
the users’ privacy, the patterns of this paper can be applied. First,
the Incentivizing Cross-Domain Service Access Pattern introduces a
layer –a federated service marketplace– that can be used by service
providers to enable cross-domain service usage. Services coming
from di�erent application areas can be unlocked in a supervised
or automated way for rewarding the loyalty of users, eventually
resulting in the augmented usage of cross-domain services while
simultaneously yielding bene�ts for the participating vendors in
terms of increased advertising scope and additional sales. Second,
the Privacy Preserving Service Access Pattern is based on the �rst pat-
tern and elaborates a method for the privacy preserving processing
of user data between multiple client-server systems. Summarized,
this paper explains a purchase based gami�cation method in or-
der to encourage the engagement between di�erent brands and to
incentivize customers to utilize services from di�erent domains.
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Abstract—Seamless integration of smart devices into our daily

lives is becoming increasingly ubiquitous. In fact, different

methods for accessing infrastructure and mobility services as

well as connected information systems are part of today’s smart

cities. The problem is, however, that due to environmental and use

case restrictions, no standard authentication and authorization

scheme for accessing heterogeneous services (car access, charging,

obtaining sensory data) can be applied. In this paper we present

a distributed service management framework that provides

different means for authentication and authorization to services,

infrastructure, and datasets. The platform acts as a scalable

trusted cloud layer that enables applications to access online

and locally available smart city services. It issues and manages

digital tokens for authenticating and entitling connected devices

to access these services. Our developed proof of concept is a

hybrid system consisting of a multi-layered cloud environment

as well as mobile devices acting as clients (service-holders) and

kiosks (service-redemption units) for redeeming services online

(e.g. access data) or locally (e.g. access area). Even though we use

a multi-layer approach, we achieve short waiting times for the

user underlining the usability aspect of the developed prototype.

Index Terms—Authentication, Authorization, Cross-Domain

Service Access

I. INTRODUCTION

The subject of securely connecting different, independent
smart city services, spanning from topics such as smart access
and Mobility as a Service (MaaS) is being worked on and
makes a big part of the evolution of cities into smart cities.
A service in our case is defined as entitlement for accessing
a specific resource available online or locally, e.g. access a
vehicle, enter a parking lot, be entitled to charge a vehicle
at a charging station, or be authorized to receive specific
data. Due to a variety of different applications, use cases, and
environmental restrictions regarding connectivity no standard
authentication and authorization procedure for heterogeneous
service access is applicable. In order to facilitate seamless
access to locally and online available services and resources
in different environments and for different applications, the
co-modality concept proposed in this paper combines differ-
ent authentication and authorization methodologies. A cloud-
based layer acts as central authentication and authorization
unit, responsible for issuing and managing different digital
tokens, while locally available devices are used for obtaining
and redeeming these tokens.

On the one hand, tokens can directly be distributed to
client devices for enabling local service redemption without
the need of an active internet connection. In this case, the
communication between the client and the redemption unit
is established via the local wireless standard Bluetooth Low
Energy. Secure authentication is achieved via a dedicated chal-
lenge response mechanism. On the other hand, our approach
also provides a secure way for redeeming services online.
Regarding distributed authorization, we take advantage of the
open-standard protocol OAuth 2.0. It is used to let client
devices access data sets and services from remote servers.
This is done via a RESTful interface and a dedicated access
token, which is issued online and grants the clients access
to specific datasets (e.g. sensory data). This way, application
related confidential information (data, encryption keys, etc.)
may remain on service provider side, without the need of
storing them in one central place. At the same time the risk
of single point of failures is minimized.

This paper is subdivided into the following sections. Section
II discusses related work while section III presents the design
choices of our approach. Subsequently, section IV is about im-
plementational aspects and section V includes a performance
evaluation of our proof of concept. Last but not least, we
summarize our ideas and give information on future work in
section VI.

II. RELATED WORK

Today we are dealing with an ever increasing amount
of connected devices and their applications. The so-called
Internet of Things (IoT) is an integral part of the technological
progression we are experiencing nowadays and it interconnects
heterogeneous smart devices with each other. Experts expect
the market value of IoT applications to reach 14.4 trillion
dollars by 2022 [1].

Especially agglomeration areas profit from the interaction
between smart connected devices. This interaction facilitates
the provision of smart city services (e.g. smart parking,
improved traffic congestion and waste management) thus
accelerating the development of ordinary cities into smart,
connected cities. In this context, paper [2] defines a cross
domain protocol for facilitating efficient retrieval of distributed
sensory data in the context of a smart city. Paper [3] proposes
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a mobility management platform for connected cities. It allows
city governments to formulate mobility policies that let them
influence the amount of people that visit certain spots in their
city. They integrate their framework into existing applications
that enable the utilization of city resources. Data of mobile
devices is collected and evaluated in order to adapt route
planning for users, for example.

Efforts to increase the interoperability of heterogeneous
systems has also led to the creation of a lightweight web
service that can be used to manage sensory data [4]. The
service allows users to connect to multiple data sources by
making use of different data adapters and querying data from
several sources. These sources include already existing sensor
and IoT platforms as well as running databases and data
located on local machines or clouds.

Since data transfer between different devices is at the heart
of IoT applications, also tamper-resistant authentication and
authorization mechanisms play an important role for trusted
data exchange in both local device communication and device
to cloud interaction [5], [6]. Paper [7] provides an approach for
identity authentication in smart cities. An access key is created
by combining different authentication types, enabling access
to different services with one single device. This access key
is stored on a specific computing device (e.g. a smartphone
or a smart card) which subsequently authenticates itself on a
backend access management system.

Regarding distributed authorization, one way to enable it
across different systems is with the OAuth 2.0 protocol. It can
be used to enable distributed authorization between a variety
of applications. Service providers like Google and Facebook
utilize it to handle authorization across different web services,
for instance. The OAuth 2.0 protocol is also focus of scientific
research. Examples include distributed privacy preserving au-
thorization handling in e-Health applications where different
pseudonyms are introduced for each user [8] as well as the
use of OAuth to increase the security for API access in order
to provide stronger protection against fraudulent users [9].

Since secure and distributed authorization is important also
for the IoT, OAuth can be applied in this context. The authors
of paper [10] describe how IoT systems may utilize OAuth 2.0
to authorize themselves. They point out that controlled access
to constrained resources is problematic because conventional
solutions for cloud and web services are difficult to utilize.
This is mainly due to missing bandwidth and computationally
constrained devices. To mitigate this problem, the authors
propose a gateway which collects information provided by
smart devices and controls the access requests to the datasets
via OAuth 2.0 authorization. Similar to this, paper [11] focuses
on OAuth in an IoT setting to facilitate the integration of this
protocol for constrained devices. It proposes a framework for
enabling IoT devices to utilize an external OAuth authorization
framework based on HTTP/CoAP without having to imple-
ment the logic on each device.

III. DESIGN

This chapter explains the design of the overall framework,
starting with the architectural setup (III-A) and wireless com-
munication interfaces (III-B). Depending on the specific ser-
vices or infrastructural requirements the redemption procedure
can be done online (III-C) or offline (III-D).

A. Design of platform and its key components
The high level objective of our solution is to provide differ-

ent methods for accessing heterogeneous services. We distin-
guish between local and online redemption methodologies for
authorizing systems and their users to access infrastructural
and cloud-based services. Depending on the application and
the use case, different sets of tokens for authentication and
authorization can be created and are managed by a central
trusted cloud-layer. A custom public key infrastructure (PKI)
in combination with local authentication and authorization
tokens form the basis of the platform’s offline security-
capabilities and ensure the identity of all communication
participants. OAuth 2.0 is integrated into the framework for
distributed online authentication and authorization. The design
of our framework – partly based on the architectural proposal
of [12] – is depicted in Fig. 1 and discussed in the following:

Fig. 1. Overview of the distributed platform subdivided into a cloud part as
well as client and kiosk devices interacting with each other via BLE and a
RESTful interface.

����

122



8 Publications Paper E - ETFA 2019

• Client. The client represents a user application (e.g. web-
application, mobile smartphone app, etc.) that obtains
digital tokens which can be redeemed in different ways
to get access to various services. It is possible to redeem
them offline by communicating to the local environment
(e.g. get access to a parking lot). Alternatively, services
can also be redeemed online in order to become entitled
to receive and visualize specific data. Depending on the
underlying application this can be a bus ticket or the
entitlement to receive sensory data stored on different
servers, for example.

• Kiosk. A kiosk entity acts as a validation authority and
service redemption unit. It receives and verifies digital
tokens for authenticating and authorizing users to access
different services. The services that are redeemable by
kiosk entities are managed by service providers. We
distinguish between two different kiosk types:

– Embedded Kiosk. An embedded kiosk interacts with
a client device for authenticating users, verifying
their entitlements, and authorizing them to access
local services via cryptographically secured tokens
transmitted over Bluetooth Low Energy. The em-
bedded kiosk is an application running on a mobile
device (e.g. supervised parking use case; attendant
checks parking permit) or a stationary device em-
bedded into the infrastructure (e.g. parking gate;
embedded device checks parking permit).

– Virtual Kiosk. The virtual kiosk is a server-side
application that holds data (e.g. sensory or mobility
data) of one specific service provider. It also acts as
a redemption place where the data in question can be
obtained by clients by redeeming digital tokens over
a RESTbased interface. The authorization procedure
of a virtual kiosk is based on the OAuth 2.0 protocol
[13]. An access token is sent to the client after
authentication. It can be forwarded to the virtual
kiosk for validation and redemption. Subsequently,
the requested data is provided by the virtual kiosk.
The data that is managed by a virtual kiosk is defined
by the corresponding service provider via a REST
interface to the cloud. In case of encrypted data
where the sensitive information and the actual key is
stored on different systems our concept supports the
usage of multiple access tokens and virtual kiosks.

• Cloud. The cloud environment described in this paper
is subdivided into an application layer and a core layer.
The application layer is a server that remains in constant
interaction with client and kiosk devices. It is adapted
according to the underlying system of the correspond-
ing service provider. In contrast, the core layer acts
as trusted layer responsible for providing the necessary
means – including token creation and management –
for local and online authentication and authorization to
different services. Which entitlements can be obtained by
clients and redeemed at kiosks can be managed by the

corresponding service providers through a REST-based
interaction between the application layer and the core
layer. These layers are described in the following passage:

– Application Layer. Clients and kiosks interact with
the application layer. It keeps them synchronized
and is in charge of application specific functional-
ity and data management (user, products, services).
A RESTful interface enables the creation and the
management of different service provider accounts
and their services. Furthermore, it is the connecting
element to the core layer.

– Core Layer. The core layer acts as certification
authority and is in charge for issuing and signing
different digital tokens that can be used for authenti-
cating users and authorizing them to access different
services available locally or online. It also acts as
token validator, which is needed to assure that an
unauthorized user cannot access any service or data.
This layer implements the OAuth 2.0 authorization
protocol for entitling clients to access online re-
sources located on virtual kiosks. This is done by
utilizing the OAuth scopes definitions that describe
what data clients may access. The application layer
as well as devices such as clients and kiosks com-
municate over a REST interface with the core layer.

B. Wireless communication interfaces

The framework discussed in this paper enables and manages
access to different services. Depending on the use case and the
application, local wireless communication over BLE or online
communication via REST can be established. The paper [14]
forms the basis of these communication interfaces.

• Bluetooth Low Energy (BLE). BLE is a short-range
wireless technology. It benefits IoT applications due to its
power saving design, the coexistence of connectionless
(broadcaster and observer roles) and connection-based
(peripheral and central roles) data transfer procedures,
its robustness against obstacles, and compatibility with
smartphones [15]. It is used for the transaction and re-
demption handling between a client device (BLE central
role) and an embedded kiosk device (BLE peripheral role)
without the need of an active internet connection.

• Representational State Transfer (REST). REST is a
software architectural style for implementing web ser-
vices that rely on the HTTP protocol. Clients as well
as virtual kiosk devices communicate to the cloud via a
REST-based interface.

C. Online service redemption

Our approach provides a secure online redemption mech-
anism to access data stored on different servers. Entitlement
management to access data and services is part of the core
layer, while the virtual kiosks are responsible for the redemp-
tion mechanism and for providing the data in question (e.g.
mobility data).
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Our cloud environment includes an OAuth 2.0 part for
managing the redemption procedure of online services. In
this context, the cloud creates a valid OAuth-access-token

(O-token) which purpose is to entitle a specific application
to access certain datasets of another entity. The request for
receiving the O-token specifies the grant type that determines
which of the OAuth 2.0 authentication flows is used. In our
case the authentication relies on the client credentials flow.
Therefore, an additional client-ID as well as a client-secret
have to be submitted. Last but not least, also an accessTo-
kenUri (specifies where the O-token is being requested from)
and the scope (defines which resources are being requested)
are included in the request. If the authentication mechanism
was successful, the O-token is forwarded from the core layer
to the client. The token contains a validity period and the scope
of the data that the client is allowed to access. The token also
consists of a value-field, which functions as a token-identifier.
In contrast, the token type specifies how the token will be used
to access the resource. In our implementation it is a bearer
type token, meaning that access to the resources is given to
the bearer of the token. Fig. 2 summarizes the data fields of the
O-token. Finally, the token can be redeemed by the client at a
corresponding virtual kiosk in order to gain access to the data
the O-token specifies. No additional authentication on client
side is required. Through interaction with the core layer, the
virtual kiosk is able to validate the O-token, which guarantees
that the client is entitled to access the resources.

Fig. 2. Overview of an OAuth-access-token responsible for an online
authorization procedure

The following example summarizes the protocol flow from
above, which is also depicted in Fig. 3. The client wants to
access a set of sensory data about the distribution of vehicles
used in a specific city. This data is held by a service provider
running a virtual kiosk. He only shares the data with whomever
has the authority to do so. This authority is given by the core
layer in form of an O-Token. The client authenticates himself
on the core layer and receives the required authorization token
(O-token). The client now sends the token to the virtual kiosk
to get access to the sensory data the kiosk holds. Latter doesn’t
trust the client, but the core layer. Therefore the token is
forwarded to the core layer in order to verify its authenticity.
If the token is indeed valid, the virtual kiosk grants the client
access to the resource by sending him the data requested.

Fig. 3. Online Redemption Procedure between a client and an embedded
kiosk involving the core layer

If the data that is located on the virtual kiosk (VK1) is
confidential, the possibility of making use of multiple virtual
kiosks (VK2) exists. This offers the possibility of encrypting
the data on VK1 and storing the key for decryption on VK2.
Before the client may access and use the data on VK1, he first
has to get the entitlements O-tokenVK1 and O-tokenVK2. After
authenticating himself on the core layer, O-tokenVK2 can be
redeemed against the decryption key on VK2 and O-tokenVK2
may be utilized to receive the encrypted dataset. Finally, the
data can be decryption locally with the received cryptographic
key. This way, the described concept also supports end-to-end
encryption methodologies.

D. Offline service redemption
Our concept does not only provide a service online-

redemption approach as described in the previous subsection
III-C, but foresees also the usage of secure offline authenti-
cation and authorization based on the concept of [14]. This
enables the redemption of different services between mobile
clients and embedded kiosks in areas without or limited net-
work access (e.g. underground garage). Data transfer between
devices is done via the local wireless standard BLE. We dis-
tinguish between two token types that are initially distributed
to client devices by the core layer through interaction with
the application server. An overview of the data model of the
tokens, which will be discussed in the following paragraph, is
given in Fig. 4.

An entitlement-token (E-token) represents a service and is
issued and signed by the core server. It consists of a service id
and an application id to uniquely identify the corresponding
service and is linked to an authentication-token.

An authentication-token (A-token) is bound to a particular
user account and device. It includes the public key of a client
device, a validity period, and the core server’s signature. A
client or embedded kiosk device’s A-token is issued in the
course of a distributed registration mechanism, first involving
an application-specific user-login on the application layer.
Subsequently, a one-time-ticket is fetched by the application
layer and passed to the client or the embedded kiosk. It can
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be redeemed with the device’s public key at the core-layer.
Finally, the device receives an A-token as well as an API key
for accessing the core layer’s REST-based interface; a trusted
link between the local device and the cloud layers has been
established.

Fig. 4. Overview of an authentication-token and an entitlement token for
local authentication and authorization.

The redemption of an E-token involves the interaction of
an embedded kiosk. During this event the client’s A-token
and the E-tokens that should be redeemed are transferred
to the embedded kiosk. For checking the authenticity of the
two communication participants a challenge-response protocol
is applied between them [14]. First both A-tokens (in this
example A-tokenC and A-tokenEK) are exchanged, checked
for their validity, and verified with the server’s public key.
Next, the client generates a random number (challenge CC)
and challenges the embedded kiosk to sign it with his private
key before it is sent back to the client. Furthermore, the
received signature is verified against the random number CC.
This is done by using the kiosk’s public key that is embedded
into the previously exchanged A-TokenEK. If this verification
was successful, the ownership of A-TokenEK was proven.
Before exchanging data, the same method is also applied for
A-tokenC. Fig. 5 shows details about the mutual challenge-
response procedure. If the mutual challenge response protocol
is passed, E-tokens are sent from the client to the embedded
kiosk. The kiosk checks their signature and validity period.
Last but not least, the redemption of the E-tokens is triggered
by the embedded kiosk by involving the core server via a
REST interface.

IV. IMPLEMENTATION

Regarding our proof of concept the client app and the
embedded kiosk were implemented as Android applications,
while the virtual kiosk as well as the cloud layers were im-
plemented as Java applications. Clients, kiosks and application
servers access the core layers functionality through a RESTful
interface, protected by HTTPS. During the distributed regis-
tration procedure an A-token and an API-key are issued. Con-
sequently, the core layer requests are authenticated via basic
HTTP authentication, utilizing the previously received API key
that is passed as a username in the basic HTTP authorization
header. The overall architecture relies on PKI combined with

Fig. 5. Mutual challenge response protocol between a client and an embedded
kiosk [14].

the Elliptic Curve Digital Signature algorithm (ECDSA) and
SHA256 for hashing data. Regarding ECDSA, the elliptic
curve secp256r1 (prime256v1, NIST P-256) has been used.
A web-based interface is used for service providers to create
and manage the services that should be available for clients
and redeemable at kiosk entities. It was programmed with
Vaadin, a Java UI framework and library for web application
developments. Regarding the usage of the OAuth 2.0 protocol,
the Java library “spring-security-oauth2” was imported into
the project, that provides authentication and access-control
modules.

V. PERFORMANCE EVALUATION

The following tables provide information about the timing
behavior of our implementation. Each action was performed
100 times. The indicated values are the average of the mea-
surements of each action. The performance evaluation of the
offline service redemption was carried out on two Android
smartphones: Xiaomi Mi Mix 3 with Android 8.0.0 (client
device) and Sony Xperia Z5 with Android 7.1.1 (embedded
kiosk device). Both the application layer as well as the core
layer were set up as separate AWS server instances. This is
also where the virtual kiosk part was integrated.

Table I shows our timing values regarding the token han-
dling for local service redemption between a client and an
embedded kiosk. First, the A-Token is created during the
distributed registration procedure on the core layer. The issuing
procedure of an A-token includes the ticket creation triggered
by the application layer. It is redeemed by the client at the
core layer, where in further consequence user and device
entities are created. As long as an A-token does not exceed its
validity period, this procedure does not have to be repeated.
Next, there is the E-token creation. Each time a service on
application layer is obtained an E-Token is issued. The client
communicates to the application layer which contacts the core
layer for creating the E-token. It is linked to the right user and
his A-token and pushed to the corresponding client device.
If the A-Token and the E-Token are on the device they can
be redeemed at embedded kiosks. The mutual authentication
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TABLE I
MEASURED TIME OF LOCAL SERVICE REDEMPTION BETWEEN CLIENT,

CLOUD, AND EMBEDDED KIOSK

Action Time [ms]

Creation & Obtainment A-Token 1097
Creation & Obtainment E-Token 1233

Local Authentication 1267
Redemption E-Token 244

Total 3841

procedure described in III-D and the redemption of the E-token
on the core server take around 1.5s. Summarized, our approach
– excluding the one-time operation of receiving an A-token,
but including the creation of an E-token, local authentication,
and the redemption procedure – takes less than three seconds.

In contrast, the timing values in Table II include the
issuing process of an O-Token and the online redemption.
During the online authentication the user is authenticated on
application layer via a dedicated access token. Subsequently,
if the verification is successful, the OAuth client credentials
flow is triggered which verifies a client-ID and client-secret
on core layer side. This takes approximately 0.5s. Next, the
O-Token is created on the core cloud and forwarded to the
client device. The redemption of the O-Token includes the
sending of the O-Token from the client to the virtual kiosk,
and its validation. Once the O-Token has been validated
successfully it is redeemed by the core layer. Subsequently,
the virtual kiosk sends the resource to the client, which in
our example was a data package of 1MB size. The total time
required for retrieving and redeeming the authorization token
is approximately 1.5s.

TABLE II
MEASURED TIME OF ONLINE SERVICE REDEMPTION BETWEEN CLIENT,

CLOUD AND VIRTUAL KIOSK

Action Time [ms]

Online Authentication 445
Creation & Obtainment O-Token 542

Redemption O-Token 171
Obtainment resources (1MB data package) 368

Total 1526

Summarized, the measured execution times are in range
of seconds due to a special focus on tamper-resistant data
exchange. However, this is still suitable from a usability
perspective.

VI. CONCLUSION AND FUTURE WORK

As the subject of providing secure access to heterogeneous
services plays a major role in the further development of smart
cities but no standard method can be applied because of dif-
ferent application requirements and environmental restrictions
regarding connectivity, we introduce an approach to seamlessly
access local and online services and resources (car access,
smart parking, access to mobility data, etc.). Authentication
and authorization management is provided by a multi-layered
cloud environment that issues digital tokens for client devices

(e.g. smartphones) which can be exchanged for accessing
certain services or data packages at dedicated redemption
units. Different token types are utilized to handle online
and offline redemption approaches. The offline redemption
process relies on a challenge response mechanism to au-
thenticate client devices to locally available redemption units
(embedded kiosks), which in turn entitle them to consume the
actual service. By contrast, the online redemption procedure
integrates the OAuth 2.0 protocol for securely authorizing
clients to access data or services that are located on remote
servers (virtual kiosks). While the communication between
local devices is handled via Bluetooth Low Energy, the online
communication is established through a RESTful interface.
The performance evaluation of our framework’s service ac-
cess procedures fulfills the demand on low execution times
regarding usability. Future work will investigate secure data
transmission strategies that incorporate the embedded sector,
mobile devices, and different cloud instances, while focusing
on end-to-end security.
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Abstract—An increasing amount of sensory data, often of
confidential nature, is exchanged day by day: from the sensor
and actuator layers over smart gateways to the business logic
and analytics level. Robust yet efficient security measures play
an essential role in this interaction. However, the complexity of
securely connecting different building blocks of a distributed,
multi-layered systems is considerable. Security methodologies
are often applied at a late stage of system development, posing
problems such as inappropriate security levels, performance
issues, and longer time-to-market cycles. Addressing possible
security properties already in the design phase of a security-
critical system helps to mitigate these problems. In this paper,
we discuss a distributed, multi-layered IoT data collection system
that enables data aggregation and exchange from the embedded
level up to different cloud instances while supporting end-to-end
secured communication. The system was designed in the course
of a case study where we used a design-space-exploration tool for
identifying secure processes in regard to key management and
distribution. Based on our analysis results, a distributed proof of
concept was developed. Subsequently, the most critical processes
of the individual layers were evaluated regarding security and
execution speed.

Index Terms—Cyber Security; Embedded System Design; IoT
Systems;

I. INTRODUCTION

The Internet of Things (IoT) revolution is ongoing and
has gained significant attention over the last few years. This
revolution is based on the availability of vast amounts of
information coming from the data sensed and transmitted
by intelligent connected objects. While the transition to a
more connected world gives rise to new possibilities, new
problems such as security issues crop up. To ensure secure
generation, storage, and usage of confidential data during the
pre-personalization process of a connected device and during
the runtime of its application, dedicated protection schemes
on hardware and software levels have to be leveraged. This
can be especially challenging in the case of multi-layered
distributed systems due to an increasing level of complexity,

the more communication participants and diverse systems are
involved. However, several security problems and risks can
be mitigated or even avoided by laying a particular focus on
security already in the design phase of a system. This paper
describes how to design and implement a multi-layered IoT
data collection system for end-to-end secured communication.
A case study has been conducted based on a design-space-
exploration (DSE) tool that takes our system definition as
input and identifies a set of potential hardware and software
building blocks for secure system design. Consequently, secure
communication methods are selected and implemented for
establishing a trusted relationship between all devices of the
distributed IoT system. Summarized, the main topics discussed
in this paper are:

System definition. We define the key components of a typi-
cal IoT data collection system, including devices from a lower
to the top level of an IoT system. While edge nodes act as data
collectors, a dedicated gateway device enables communication
to the cloud. The overall system includes the usage of local
and online wireless data transmission techniques.

Design-space-exploration. Based on our initial, high-level
system setup, different system design proposals with distinct
security and performance properties for key management and
distribution are derived by using a DSE tool. The functionality
of the system is illustrated as a task graph based on the
requirements of the actual application, while the architectural
design is described by hardware components connected with
communication buses. Consequently, possible attack scenarios
are modeled to facilitate the system design decision.

Distributed proof of concept. A distributed proof of
concept that fulfills the demand for efficient, yet secure data
transfer is implemented according to the received DSE analysis
results. Last but not least, the overall system is evaluated,
taking into account execution times and the achieved security
level.
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II. RELATED WORK

The ubiquitous usage of smart services can be seen through
a positive trend describing an exponential increase in the
number of IoT devices that are present today. In 2017, an
increase of 31% of IoT systems was reported compared to
the previous year, with the numbers expected to rise in the
upcoming years [1]. To assess and increase the quality of
such IoT-systems, design-space-exploration (DSE) tools can be
applied. They are used to aid designers in considering system
components related to their performance, power consumption,
and security features at early development phases [2]. These
tools can generally be classified through their applicability in
either individual component integration [2], [3], or the overall
system design [4], [5]. Novel approaches are applied during
the security evaluation for the work given in this paper. These
include an automated DSE with specified security constraints
and formulated attack scenarios presented as Bayesian attack
graphs (BAGs) [6]. Ultimately, we use these tools to present
an original use case for an IoT system design that already
takes into account different IoT layers and elements, individual
element security, and end-to-end communication security.

IoT layers, which consider different levels of data process-
ing, are being researched through: data collection [7] by sensor
nodes, data forwarding via gateways [8], and data storage and
analysis with cloud services [9]. The work of interest in this
field is focused on the node network architecture, communica-
tion, and security, among other characteristics. The system that
we present in this paper handles the mentioned characteristics
as a one-entity platform. This platform is described through
a use case which enables secure interfaces implicated on all
levels.

Today, there exist several limiting factors for a successful
IoT solution, such as inadequate security protection. As stated
in [10], security in IoT, even to this day, presents one of the
main challenges that the designers have to face. This comes
from two design issues: implementing secure solutions in
resource-constrained IoT devices, and the complexity increas-
ing proportionally with the size of the network. Additionally,
a well-designed system should not only be able to handle in-
formation security, but also ethical and privacy concepts [11].
A root-of-trust is required to ensure reliable communication
and operation of a secured IoT product [12].

In the work illustrated by the papers [13] and [14], the focus
is given in analyzing only specific aspects of security, e.g.,
hardware devices and security threads, respectively. Similarly,
particular research interest is also given on the IoT middleware
[15]. A middleware is explained as a software system that
resides between an IoT device and its application. The paper
goes into a survey analysis on the state-of-the-art middleware,
which includes security, privacy, and trust concepts. While the
work itself predicts the future development of the security
analysis, it only gives insight into one characteristic (middle-
ware) of the whole platform.

In addition to the security analyses on different layers of
IoT, efforts have been made in studying the end-to-end data

security-flow of such systems [16]. Each design platform can
be divided into different functional units of interest, which are
then evaluated on pre-defined security cases [17]. The anal-
ysis is done on real-world security attacks and applications.
However, some works present a more pessimistic view of the
end-to-end focused security, proposing instead an evaluation
extension on the communication endpoints [18].

Further research efforts have shown that authentication and
authorization procedures play a crucial role in guaranteeing
trusted data processing in IoT devices [19]. As a result of
many vulnerabilities usually found in IoT city deployment, a
broad interest is given to secure authentication, key exchange,
and their handling in smart city environments. The paper [20]
deals with how the access key is stored and handled with
the communication devices. Additionally, a problem in the
integration of IoT products and services in smart cities is often
seen through the environmental restrictions regarding connec-
tivity. Various services might require separate secure access
methodologies for accessing both local and online resources.
Paper [21] provides an approach where the authentication and
authorization management administers digital tokens. These
tokens are used for accessing locally available resources via
Bluetooth Low Energy and online resources via a dedicated
RESTful HTTP interface.

While the paper presented in this section are significant in
addressing different aspects of IoT security, they do not present
a concluded solution for the overall end-to-end IoT security. In
the further context of this paper, an end-to-end secured system
is presented. The implementation and evaluation are based on
the results of a DSE approach.

III. SYSTEM DEFINITION

In the following paragraphs, we define the key components
of our IoT data collection system. While subsections III-A and
III-B describe the layers and devices of our system, subsection
III-C is about wireless data transfer methods. The described
system forms the starting point for our DSE-based analysis in
chapter IV.

A. Embedded Layer

The embedded layer is composed of two entities, edge
nodes, and gateways (see Fig. 1).

• Edge Node. An edge node shall work as a secure sensor
device. It collects sensory data from the local environment
at constant intervals. It is one anchor of trust in our
end-to-end communication scenario. The sensor node
provides encryption and data authentication. Eventually,
the data should be forwarded to the cloud. However,
since edge node devices in IoT data collection systems
are often constrained in terms of computing power and
energy, more complex tasks such as big data processing
or communication over the internet itself are outsourced
to other devices. Instead, a power-saving local wireless
protocol should be used to forward secured data packages
to a nearby, less resource-constrained gateway device.
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• Gateway. The gateway’s primary purpose is to act as a
connector between edge devices and the cloud layer. It
should communicate with local edge nodes, but also the
cloud layer over the internet. The gateway is a trusted
communication participant but is not supposed to read
the received encrypted data.

Fig. 1. Embedded layer overview: multiple edge nodes mark the start point for the
end-to-end data transmission. They forward the collected data over a local wireless
channel securely to a nearby gateway.

B. Cloud Layer
The cloud layer consists of two types of server instances

(see Fig. 2)
• Business Server. This server is the direct point of contact

for the gateway device and receives the secure data
package. It is the second anchor of trust in our end-
to-end communication, meaning that it can decrypt the
received data. Furthermore, it may provide an interface
for other server applications (third party cloud) to retrieve
the collected data.

• Third Party Cloud. This cloud instance is operated
by an external service provider who wants to access a
specific data stream and execute some operations on it.
The received raw data can be utilized for new tasks or
to enhance existing ones (e.g., creating higher levels of
automation) with dedicated analytic and business intelli-
gence. Examples of different techniques include statistical
modeling, data mining, exploratory analysis, predictive
analytics, or diagnostic methods in general.

C. Wireless communication interfaces
Wireless connectivity is often considered as the key func-

tionality in IoT devices, but at the same time, it is a major
source of power consumption. Moreover, the plurality of wire-
less standards generally poses severe troubles concerning the
compatibility between collocated networks. Therefore, energy
efficiency (edge nodes are generally resource-constrained) and
interoperability (the gateway has to support communication
between edge nodes and the business server) are the major
challenges in connectivity for IoT. The following communica-
tion schemes are proposed to support efficient communication
between constrained embedded nodes with the cloud:

Fig. 2. Cloud layer overview: the business server receives the secured data from the
embedded layer and acts as second anchor of trust in our end-to-end communication.
Multiple third party cloud units may access the datasets for further analyses and
evaluations.

• Local Data Transmission. Bluetooth Low Energy (BLE)
is a short-range wireless technology. Especially due to
its power-saving design, its widespread use, and also its
robustness against different obstacles, it is used in many
IoT applications [22]–[24]. In our scenario, it can be
utilized to enable low power communication between
multiple edge nodes and the more powerful gateway
device.

• Online Data Transmission. Representational State
Transfer (REST) is a software architectural style for im-
plementing web services relying on HTTP. The gateway
device communicates to the cloud layer via a RESTful
interface. Furthermore, the different cloud endpoints may
also use a dedicated REST API to enforce bidirectional
communication.

IV. SECURITY MEASURES

We used a special security-aware DSE (SaDSE) framework
[25] to find the optimal design for the proposed system
described in section III. We used the SaDSE framework
as it was provided and utilized it to perform a prefiltering
of the solution space for system designs that satisfy our
requirements. We used the framework’s features to model the
system’s functionality as a task graph, the possible hardware
components, the attack scenarios as Bayesian attack graphs
(BAGs), and the feasible security mitigation options. In each
BAG, the designer must define certain attack goals an attacker
aims to reach, adding to each goal a threshold to limit the
goal’s attack success probability. Each attack aims at a distinct
task in the functional view. Each hardware component in the
architectural description comes with certain capabilities to
withstand incoming attacks. This mitigation is expressed by
lowering the attacks’ success probabilities for all attacks aim-
ing at the tasks mapped to the said hardware component. This
mitigation influences the goals’ attack success probabilities.
Figure 3 gives an overview of the SaDSE tool, showing its
inputs and the generated outputs.
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Fig. 3. SaDSE framework overview, taken from [25]. Hardware components are
described as processing elements (PE). Tasks (Ts) are described in the task graphs.
Attacks (As) describe the attack scenarios.

The SaDSE tool calculates the secure system partitioning
and task mapping based on its inputs. It thereby determines
the set of security constraints using the BAGs and the given
task graph. It only allows solutions that fulfill the security
constraints. The security constraints state that only solutions
are considered to be secure for which the attack goals’ success
probabilities do not exceed their individually set thresholds.
Depending on its configuration, it provides the most secure
solution, or secure solutions with either optimal performance
or optimal power consumption, for instance. We designed both
the system’s embedded and cloud layer using this SaDSE tool.
The following paragraphs describe the different system designs
modeled with the framework and the solutions it identified.

A. Design-Space-Exploration Phase

In the early system design, we used the SaDSE framework
to determine secure solutions based on possible security at-
tacks against the overall system, divided into an embedded
and a cloud layer. Furthermore, we assessed how to provision
the devices with key material. For each device in our two
layers, we provided different hardware and software variants
selectable by the framework. For both layers, possible com-
ponents stem from the considerations described in Section III.
Embedded Layer. The hardware components for the sensor
module comprise a micro-controller (MCU), a sensor module,
a Bluetooth Low Energy (BLE) radio, and an optional secure
element (SE). The gateway consists of an MCU, a BLE radio,
a WiFi radio, and an optional SE. The MCU supports a trusted
execution environment and comes with software-based cryp-
tography (SWC) or with side-channel proof hardware-based
cryptography (HWC). The SE comes with HWC, a hardware-
based firewall (HWF) for task separation, and tamper-proof
storage.
Cloud Layer. The business server is realized on a corre-
sponding Hardware Security Module (HSM), a secured server
platform, or on a basic server platform. The HSM supports

HWC, a firewall, and tamper-proof storage. The secured
server platform realization comes with an HSM support but
performs security non-sensitive tasks on a less secure, but more
performant platform. The basic server solution only supports
SWC.

In the following, we give an overview of the system’s
functionality, the security attacks considered during the early
system design, and the solutions proposed by the framework.

B. End-to-end Security from Edge Nodes to Cloud Services

The sensor system requires secure data transfer throughout
the whole communication path from the edge nodes to the
cloud service. Enforcing these requirements, we modeled po-
tential attack scenarios on the distinct layers. Secure solutions
found by the tool for the individual layers are explained.
Data Security Mechanisms:
For securing the data packets transferred between the edge

nodes, the gateway, and the cloud services, we provided the
framework with several security primitives. They comprise
symmetric and asymmetric cryptographic algorithms, task
encapsulation, and tamper-safe storage. For the cryptographic
algorithms, the framework can choose from several different
secret keys. These secret keys differ in their lifetime (from
several minutes to years) and can derive from one another.
Potential key disclosure attacks threaten each key used by the
system under design. The lifetime of the secret key determines
the motivation of the attacker to read it out. With its disclosure,
all cryptographic actions performed with the key are rendered
insecure. Hence, the location where the designed system stores
the secret keys dramatically influences the overall system’s
security. For the security primitives used by the system to
secure the transferred data, we provided the framework to
select from a set of keys: asymmetric and/or symmetric keys,
modeled as master or session key, which derive from the
master keys.
Communication Security Mechanisms:
Using the SaDSE framework, we designed our system on both
the embedded and cloud layer. We focused on the security
of the communication between edge nodes and gateway, and
between gateway and cloud. Furthermore, we also considered
the communication between distinct cloud services. Thereby,
we explicitly modeled the attack scenarios on the whole end-
to-end communication. The next paragraphs describe these
attack scenarios, the transferred information that must be
secured, and the solutions proposed by the framework.
Embedded Layer. The edge nodes send their measured sen-
sory data to the gateway using BLE. An adversary must not
be capable of extracting the sensed data. Furthermore, each
edge node must be capable of authenticating itself before
forwarding the sensor information.

• Attack scenarios. Potential attack scenarios on the em-
bedded layer comprise the sniffing of the BLE communi-
cation, the injection of faked BLE packets, the intrusion
into the edge node’s and the gateway’s software stack, and
the tampering with the edge node’s hardware (including
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a potential secret key exposure). The attacker may be
capable of brute-forcing cryptographic algorithms that
use small encryption keys. The attacker finally aims
at reading out the sensitive sensor data, exposing the
encryption keys, and faking the sensor data of edge nodes.

• Proposed solutions. Considering the communication at-
tacks, the framework automatically discards all plain-text
communication. The framework proposes for a security
optimal edge node to place all functions (except the
BLE packet transmission) on the SE with the highest
Common Criteria security certification.1 Considering the
performance optimal, yet secure solution, the framework
suggests the implementation of the functionality on an
MCU supporting HWC and HWF. It proposes placing
a certificate on a SE with the highest-rated security
mechanisms and deriving a session key for the symmetric
encryption and authentication of the BLE packets. For the
gateway, the framework proposes the usage of hardware
components providing the same security mechanisms. For
the gateway, it also suggests the usage of session keys
derived from a certificate placed on the SE.

Cloud Layer. The gateway sends the received sensory data
to the business server, which distributes it further via the
cloud services using a WiFi connection. The transmitted data
packets must be confidential and authentic. The communica-
tion between different cloud services must also be secured.
Therefore, cloud services must perform an authentication
process to establish secure communication among each other.
This authentication can be realized by a direct authentication
process or a central authentication service.

• Attack scenarios. Similar to the attacks in the embedded
layer, the cloud layer attacks comprise the sniffing of the
WiFi communication, the injection of faked packets, and
the logical intrusion into the server software stack. Fur-
thermore, the attacker might be able to break encryption
and authentication, which rely on small cryptographic
keys. Potentially, the attacker may also be capable of
faking a service’s identity against the server, and of
intruding the central authentication service’s software
stack. The attack goals on the cloud layer comprise
reading out the sensor data, faking sensor data of edge
nodes, and hijacking the central authentication service.

• Proposed solutions. The framework suggests as the most
secure solution for the cloud service, an HSM exclusive
implementation. For the performance optimal secure so-
lution, the framework proposes the implementation of the
service’s functionality on a server platform offering HWC
and HWF and the storage of certificates and key material
on an HSM extension. The framework suggests securing
the communication between gateway and cloud service
using symmetric cryptography. For the cloud service au-
thentication process, the framework suggests as the most
secure solution, the direct authentication process. The
authentication process using the central authentication

1https://www.commoncriteriaportal.org/

service comes with the drawback that a successful attack
on the service renders all authentications insecure. This
bottleneck enforces the use of highly secure components
and redundancy mechanisms for the realization of this
service.

C. Provisioning of embedded devices

The solutions described in the preceding paragraphs rely
on various secret keys for performing secure communica-
tion and authentication between the different entities of the
system. The secure provisioning of secret keys is crucial to
guarantee the system’s security throughout its whole lifetime.
Disclosure of a secret key can render the whole system’s
security methodologies useless. Hence, we put a particular
focus on also securing the provisioning process. We modeled
this process using the SaDSE framework, considering three
scalable approaches for the key provisioning: (i) key injection
at the time of manufacturing; (ii) key fetch by the edge node
from the cloud via the gateway; (iii) direct key fetch from the
cloud.

• Attack scenarios: The potential attack scenarios consider
the intrusion into the key provisioning service, the ex-
traction of the key material, the injection of key material
during the communication, and the physical compromise
of the key provisioning process. The potential attacker
aims at comprising and manipulating the injected keys.

• Proposed solutions: Based on these attack scenarios, the
framework selects approach (i) to be the most secure.
Approach (ii) is the least secure one, caused by potential
intrusion attacks on the gateway capable of disclosing the
key material during provisioning. In contrast, approach
(iii) is a good candidate for achieving both security and
flexibility under the premise that the edge device can
connect to the internet directly.

D. Selection Phase

For selecting the appropriate system design, we focused on
the evaluation of the most secure, the least secure, and the
fastest secure solution. The most secure solution comes with
an average success probability (aspavg) of 0.0074, the least
secure with an aspavg of 0.0376. The fastest secure solution
comes with an aspavg of 0.0148. The average attack success
probability is calculated as follows: aspavg =

PN
i=0 aspi

N ,
where aspi is the attack success probability of the attack goal
i and N is the number of all attack goals. An attack goal
is represented as a leaf in a BAG. The aspi is calculated as
the unconditional probability distribution (UPD) of attack goal
i, using the Bayesian chain rule. Depending on the hardware
component selection, the goal’s UPD exceeds or falls below
its threshold. We normalized the system performance to the
performance of the fastest solution. The colorization of the
solutions represents the number of exceeded attack goals.
Based on the solutions proposed by the framework, we decided
to base our implementation on the fastest secure solution.
Hence, we made the following design choices:
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• Embedded Layer. For the edge node, we decided to
use an MCU and a SE for storing the sensitive key
material and for providing HWC and task encapsulation.
The gateway is also composed of the same elements. The
edge nodes communicate with the gateway using BLE. In
addition to our application-layer encryption, BLE offers
authenticated pairing with data signing on link-layer.

• Cloud Layer. For the server realization, we use a server
platform supporting HWC and HWF and an HSM ex-
tension for the secure storage of the server certificates
and the secret keys. The server platform and the cloud
services use certificates to authenticate each other. They
secure their communication using symmetric cryptogra-
phy. They exchange the symmetric keys using asymmetric
cryptography based on the certificates.

• Key Provisioning. For the provisioning of the edge node
devices with key / certificate material, we selected the
direct injection during device manufacturing. We chose
this approach as the SaDSE tool calculated it to be the
most secure solution. Especially at this security-critical
phase, a highly secure solution is necessary. An injected
asymmetric key can be used to wrap and in further
consequence, to exchange symmetric session keys for
data encryption on the application layer.

V. IMPLEMENTATION

This section describes the most important components on
the hardware and software side that have been used to realize
the proposed outcome of our DSE phase discussed in chapter
IV.

A. Hardware Part

The hardware part of our proof of concept consists of edge
devices, a gateway module, a business server, and a third-party
cloud.

• Edge Device. A Raspberry Pi 3 Model B device was
used as an edge device. Its integrated BLE 4.2 chip was
utilized for establishing local communication with the
gateway. We integrated an HTS221 sensor for retriev-
ing temperature data. Additionally, the edge device was
extended with the secure element SE050. It works as a
secure access module to increase the security of the host
controller. The SE050 connection to the host MCU is
established using the chip’s I2C interface. The host MCU
runs the application logic and controls all cryptographic
operations (encrypting, signing, hashing, etc.).

• Gateway. The gateway, in our case, was a Raspberry Pi
4 Model B controller. Next to his BLE capabilities, it
also has an integrated WiFi module, an Ethernet port,
and the possibility to be extended with a GSM module for
enabling online access. It belongs to the more powerful
embedded devices and can handle multiple connections
and operations simultaneously.

• Business Server and Third Party Cloud. These
server/cloud instances were realized as Amazon EC2

instances. The AWS CloudHSM is a cloud-based hard-
ware security module that can be enabled to create and
manage cryptographic keys on the AWS cloud. The
application on the server connects to the HSM using
mutually authenticated TLS channels established by the
HSM client software.

B. Software Part
Complementary to the hardware part, the following software

libraries were included into the project:
• SE050 Support Package. It is a comprehensive set of

resources that offers libraries on how to correctly interact
with the SE050 chip for different MCUs.2

• BlueZ. A C-library that supports the core Bluetooth
layers and protocols.3

• Spring Boot. This is a framework for developing stand-
alone server applications.4

• Fuel. It is an HTTP networking library for Java/Kotlin,
which supports asynchronous and blocking HTTP re-
quests.5

Fig. 4 gives an overview of the most important tasks
executed between the devices that participate in the end-to-end
secured communication. As discussed, the key provisioning on
the edge node is conducted at the time of manufacturing in a
trusted environment, inducing an RSA-2048 keypair onto the
device. From a temporal perspective, this is done before the
actual program routine. For data encryption on the application
layer, symmetric session keys (AES-256) are utilized. RSA is
used for wrapping the symmetric key, before distributing it to
the corresponding communication participant.

Regarding the data transfer in general from an edge node to
the gateway, the edge node advertises its presence by acting
as BLE advertiser. The gateway device (BLE scanner) may
initiate a connection attempt. BLE Security Mode 2 / Security
Level 2, including BLE-bonding, is used to enforce security
by authenticated pairing with data signing. As pairing-method,
the LE-Secure-Connection Passkey procedure is applied. As
soon as the gateway receives the encrypted data package over
BLE, the connection is closed again. Next, the communication
between the gateway and the business server platform is
established via HTTP and secured using the TLS protocol
(incl. mutual authentication). This way, authentication of the
devices and encryption of the communication channel can be
provided. If the TLS handshake was successful, the data is
uploaded to the server and stored securely. The services of
the business server are hosted on a server platform with HSM
support. The business server forms the end of our end-to-
end secured communication. In respect of the sensory data
collection process, edge nodes retrieve sensory data once per
minute. The collected data is aggregated with an additional
device identifier, the type of the collected sensory data (e.g.,
temperature, humidity, etc.), and a counter for reducing the

2https://www.nxp.com/webapp/Download?colCode=SE050-PLUG-TRUST-MW
3http://http://www.bluez.org
4https://spring.io/projects/spring-boot
5https://github.com/kittinunf/Fuel
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risk of replay attacks before being encrypted and forwarded.
In case a third-party service provider requests data from the
business server, it will be decrypted by the business server after
applying an application-dependent authentication scheme. For
our proof of concept, an API-key based authentication scheme
was used. Eventually, the data is sent to the third-party server.

Fig. 4. General overview of the end-to-end secured data flow from edge nodes over
the gateway, up to the business server.

VI. EVALUATION

In this section, our results of section V are discussed
regarding performance and attack success probability. Figure 5
consists of the proposed solutions returned by the DSE frame-
work. Each solution represents the whole system, including the
components on both the embedded- and the cloud-layer, and is
depicted as a single point on the scatter-plot. The solutions are
ordered according to their average attack success probability
and system performance normalized to the performance of
the fastest solution. The solutions are colored according to
the number of attack goals reached by the attackers. We only
considered the green solutions found by the DSE framework
for the implementation of the secure sensor system. These
solutions are considered to be secure. We additionally mea-
sured the execution times of two implementations, one secure
and one without security means. They are also part of Figure
5. The fastest solution is depicted in the right lower corner
area, while the fastest secure solution is located in the left
third of the solution space. The measured performance results
of our secure solution are depicted in Table I. It illustrates
the timing behavior of the most important processes executed
across the embedded and the cloud layer. The application logic
is mainly based on the program sequence described in Fig. 4.
Average timings of 50 measurement cycles are reported. Each
measurement cycle involves the interaction of four edge nodes
and one gateway device. The sensing-cycle-task of the sensor

Fig. 5. Solutions found by the DSE framework for the overall system design.
Each point represents a solution. The point’s color indicates how many attack
goal thresholds have been exceeded. The solutions are sorted by the normalized
performance and the average attack success probability.

node includes the encryption of the collected data. The BLE-
channel opening measurement between the edge node and the
gateway describes how much time passes from the moment
the sensor advertisement is captured by the gateway, including
also the BLE authentication procedure until data packages are
ready to be forwarded. Enabling the RESTful channel between
the gateway and the business server over HTTP comprises
also a TLS mutual authentication phase (total average time
of 432 ms). Last but not least, the communication between
business and third party servers (authentication via an API key,
decryption by the business server, data transfer to the third-
party server) takes 84 ms in total. The size of the encrypted
payload is 24 bytes.

TABLE I
MEASURED TIME – SECURE APPROACH ACCORDING TO CHAPTER V

Action Devices Time [ms]
Sensing cycle Edge node 342

Open ChannelBLE Edge node � Gateway 1,431
DatatransferBLE Edge node � Gateway 49

Open ChannelREST Gateway � ServerBusiness 419
DatatransferREST Gateway � ServerBusiness 13

Open ChannelREST ServerBusiness � Server3rd party 72
DatatransferREST ServerBusiness � Server3rd party 12

All actions All devices 2,338

TABLE II
MEASURED TIME – NO SECURITY

Action Devices Time [ms]
Sensing cycle Edge node 319

Open ChannelBLE Edge node � Gateway 1,173
DatatransferBLE Edge node � Gateway 44

Open ChannelREST Gateway � ServerBusiness 268
DatatransferREST Gateway � ServerBusiness 11

Open ChannelREST ServerBusiness � Server3rd party 27
DatatransferREST ServerBusiness � Server3rd party 10

All actions All devices 1,852
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In our second evaluation step, all security means were
deactivated, and new measurements were taken, e.g., no en-
cryption, no authentication, etc. In keeping with this, Table
II gives an overview of all timings without dedicated security
means. Again, the average timings of 50 measurement cycles
are shown. Due to the absence of additional encryption, the
payload size is 15 bytes. In summary, our secure solution
achieved short waiting and transmission times. Compared to
the timings of the no-security variant, we have a minimum
timing overhead for our setup (consisting of a total of 5
devices) despite our security-heavy implementation.

VII. CONCLUSION AND FUTURE WORK

With the ongoing development and distribution of the In-
ternet of Things, secure and trusted communication becomes
ever more important. In this paper, we designed, implemented,
and evaluated an IoT data collection system, with a special
focus on secure communication through different IoT layers.
While our embedded layer is composed of edge nodes (data
collectors) and a gateway device (cloud connector), the cloud
layer consists of a central authorization server and third-party
cloud units, where data can be analyzed and monitored. Our
design phase was amplified by the use of a design-space-
exploration tool, identifying different secure processes at an
early stage of system development. Based on the results of
this exploration phase, a proof of concept was implemented
and evaluated in regard to attack success probability and
performance. Our results reveal short waiting times for our
setup with a minimal time overhead compared to the imple-
mented non-secure variant. Future work will concentrate on
an additional scalability evaluation, which will examine the
effect of an increased number of communication participants
on metrics such as security and execution time.
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