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Abstract

In this work Python code will be introduced, that allows the cal-
culation of the magnetic field of facet bodies, based on analytical
formulas. Chapter 1 gives a short introduction into magnetic sys-
tem design and computational magnetism. These two topics form
the context of this thesis and provide insights into the motivation
behind this work. The theoretical part of this thesis in chapter 2
treats relevant aspects of computer science and efficient program-
ming and discusses the theory of magnetism. Section 2.1 delves
into the inner workings of a computer and, in addition to that,
introduces the fundamentals of high-performance programming
in the context of Python. The part on the theory of magnetism,
discussed in section 2.2, showcases the derivation of the scalar mag-
netic potential of a triangular facet from the underlying Maxwell
equations. With that knowledge the theoretical path from the mag-
netic scalar potential of a facet towards the magnetic field of a facet
body is outlined in section 2.3. Chapter 4 presents the validation
of the proposed code. This validation includes the comparison of
the results of the field calculation to another already published
analytical solution and to a state of the art finite element method
simulation. These results are analysed in terms of accuracy and
beyond that the performance of the different methods s discussed.
Following the validation, in chapter 5 a review of the findings and
a conclusion is provided.
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Kurzfassung

Diese Arbeit stellt Python Code vor, der in der Lage ist das Magnet-
feld eines Facettenkörpers anhand analytischer Formeln zu berech-
nen. In Kapitel 1 werden die Begriffe ”magnetic system design“und

”computational magnetism“eingeführt. In diesem Kontext wird die
Motivation hinter dieser Arbeit vorgestellt. Der theoretische Teil
der Arbiet beleuchtet Grundsätze der Computerwissenschaft und
des Magnetismus. In Abschnitt 2.1 wird die Funktionsweise mod-
erner Computer besprochen und es wird auf die Grundlagen der
Programmierung in Python eingegangen. Im Abschnitt über die
Theorie des Magnetismus 2.2 wird die Herleitung des skalaren
magnetischen Potentials einer dreieckigen Facette von den zu-
grundeliegenden Maxwell Gleichungen besprochen. Ausgehend
von diesem skalaren Potential wird im Abschnitt 2.3 gezeigt, wie
man das Magnetfeld eines Facettenkörpers berechnet. Das Kapitel
4 behandelt die Validierung des vorgestellen Codes. Diese bein-
halted den Vergleich der Ergebnisse der Magnetfeldberechnung
mit mehreren Methoden. Zum einen werden die Ergebnisse mit
einer anderen, bereits publizierten analytischen Lösung verglichen.
Zum anderen findet ein Vergleich mit einer state-of-the-art Finite-
Elemente-Methode Simulation statt. Die Ergebnisse werden unter
den Aspekten der Genauigkeit und Geschwindigkeit diskutiert.
Auf die Validierung folgend werden im Kapitel 5 die Erkenntnisse
dieser Arbeit besprochen und eine Conclusio gefasst.
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1. Motivation

This first chapter gives an introduction into magnetic system design
and computational magnetism. It will provide context and moti-
vation for this work by discussing the applications of magnetic
systems and how research in this area benefits from the use of fast
analytical formulas. Furthermore, the appeal of facet bodies in the
context of magnetic systems will be discussed, and the motivation
behind the Magpylib package, to which this work presents an
extension, will be introduced.

1.1. Magnetic System Design

The design of magnetic systems is an important topic in many
industries and applications [1, p. 201ff]. A magnetic system con-
sists of magnetic sources and sensors, positioned in a way that
enables the measurement of diverse system properties [2, 3, 4].
The determination of position, orientation and rotation are prime
examples of industry applications of magnetic sensor systems [5,
p. 27ff]. The appeal of using magnetic materials in different sensor
applications originates from distinct properties of the magnetic
field itself. The first is that magnetic field sensing is not reliant on
physical contact. This is an advantage in many mechanical setups,
since contactless measurement means that there is no mechani-
cal wear, neither of the magnet source nor of the sensor, which
enables long lifetimes [6]. The second defining characteristic of
the magnetic field, which gives magnetic sensors an edge over
optical measurement approaches for example, is that the magnetic
field permeates many materials. For that reason, contaminants like
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1. Motivation

dust or oil, have a negligible impact on the measurement, which
lessens the need for environmental contamination control [7]. This
robustness against environmental factors make magnetic sensor
systems cheaper and easier to realize, and therefor more attractive
for industrial applications, all while still enabling high resolution
sensing [8].

1.2. Computational Magnetism

Having listed the benefits and some application of magnetic sys-
tems, this short section is dedicated to the introduction of computa-
tional magnetism. Computational magnetism investigates ways to
simulate magnetic fields and materials, using the power of modern
computers and algorithms to deepen the understanding of mag-
netic systems and aid magnetic system design [9]. There are two
main approaches to the computer based calculation of the magnetic
field. The first one is the numerical simulation of magnetic systems
via the finite element method, or FEM. While being the most versatile
option, the nature of the FEM, which will be discussed in more
detail in section 4.3.1, leads to long computation times. In cases
where one wants to understand a given system and the complex
interactions like demagnetization or electromagnetic interference in
it, the FEM approach is the method of choice. In such cases, where
the design of the magnetic system is already given, the longer com-
putation time is not of big concern. The second approach, which
is pursued in this thesis, is to create a simplified model of the
magnetic system by disregarding demagnetization phenomenons
and by only treating homogeneous magnetizations. By doing so,
an approximation of the real setup is derived, which is describable
by analytical formulas. The use of analytical formulas in contrast to
the numerical approaches of the FEM enables rapid computation
of the magnetic field. With very small computation times for the
fields of these idealized systems, many new application are possi-
ble. One of these applications is the optimization of such magnetic
systems. Optimization in this context targets the measurability of
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the magnetic field and the detectability of changes to the magnetic
field, which can be used to extract geometric parameters of the sys-
tem. One example where such optimizations were employed is this
paper on the improvement of 1D linear position measurements by
field shaping [10]. Another real world magnetic sensing applications
is tracking the motion of a 3-axis joystick [11]. In this case the man-
ufacturing tolerances of the components involved in the analyzed
3-axis joystick give rise to a multi-variable optimization problem.
Such a problem is only treatable in a reasonable time frame, if
the field evaluating functions can be computed very quickly. With
high-performance functions to do so, complex optimization prob-
lems can be solved and new applications of magnetic systems can
be developed.

1.3. Facet Bodies

Before explaining the motivation behind the treatment of facet
bodies, the term facet body has to be defined. A facet body, in the
context of this thesis, is a three dimensional body, whose surface
is describable by triangular facets. This work introduces Python
code, that enables the calculation of the magnetic field of such
bodies, and treats the assumptions these calculations are based on.
The extension of analytical methods towards more complex shapes
will come at a time when magnet forms beyond simple geometries
become more common. The technique of additive manufacturing
for example, gives the possibility to create magnetic materials,
customized to a specific problem [12, 13]. Combined with the
potential to rapidly calculate the magnetic field of such a magnet,
even before production, optimization of the magnet geometry is
enabled.
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1.4. Magpylib

Magpylib [14] is a

Free Python package for calculating magnetic fields of
magnets, currents and moments (sources), which pro-
vides convenient methods to create, geometrically ma-
nipulate, group and visualize assemblies of [magnetic]
sources. [15]

It was developed by Michael Ortner, one of the supervisors of this
thesis, with the goal to make computational magnetism more acces-
sible by providing an easy-to-use interface to build and compute
magnetic systems. Part of the considerations on accessibility are
the platforms, on which Magpylib is available and the amount
of prior knowledge the end user needs. For that reason Python,
which is wide spread across the scientific community, was chosen
as a programming language and by only using NumPy [16] be-
yond standard Python, compatibility with most operating systems
is ensured. Another founding principle of Magpylib is the focus
on the performance of the implemented methods. Therefore, the
calculation of the magnetic field for every implemented magnetic
source is based on analytical formulas.
The targeted applications of Magpylib are twofold. On the one
hand, the easy-to-use interface enables utilization in an educa-
tional setup. The possibility that “with Magpylib, the field is only
three lines of code away” [14] provides a quick and easy way to
visualize magnetic fields and therefor help the understanding of
this topic by students. On the other hand, the foundation on high-
performance analytical formulas enables research applications, that
are not possible with standard FEM approaches.
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2. Theory

After learning about the motivation behind the Magpylib project
and what benefits the proposed facet solution promises, this chap-
ter treats the theoretical basis for the practical implementation.
Therefore, a brief detour into computer science is taken, during
which the basics for high-performance computation in Python are
explored. In this context the benefits of the NumPy library will
be discussed too. Furthermore, the fundamentals of the theory of
magnetism are revisited, before the specific theory used to calculate
the magnetic field of a right triangle with special positioning is
introduced. The last part of this chapter deals with the formal-
ism that enables the calculation of the magnetic field of a general
triangle.

2.1. Computer Science Basics

In this section the subset of computer science basics which is rele-
vant for this thesis will be discussed. The scope of this discussion is
limited to the introduction of concepts necessary for understanding
performance oriented computing in general and in Python espe-
cially. Therefore, in a first step the performance critical hardware
components of a computer are highlighted. In addition to that, a
closer look at how a computer handles instructions and data is
taken. The final section will treat good software development prac-
tices and following general valid advise Python specific aspects
will be discussed.
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2. Theory

2.1.1. How a Computer Works

In order to understand what it takes to achieve high-performance
computation, it is necessary to understand how a computer works
on a basic level. The following paragraphs will introduce the ab-
stract structure of a computer and thereafter add details on the
individual components. For further information on different as-
pects of the hardware structure of a computer the reader is referred
to a selection of excellent textbooks on that matter [17, 18, 19].

Prior to any discussion of a modern computer, its basic structure
has to be established. In the most general sense a computer con-
sists of a processor capable of performing mathematical operations,
a memory system responsible for storing data, and an interface
connecting the processor and the memory [20]. To explore the
interplay between these components it is advisable to follow the
path of data. When a computer is instructed to execute an op-
eration, it has to perform multiple steps. First it has to decode
the request, which involves translating the desired operation into
machine code1, and potentially deconstructing complex operations
into chains of simpler ones. Then the processor needs data to work
on. Therefore, it sends a request for data to the memory system,
which subsequently routes this data through possibly multiple
layers of memory and interfaces to the processor. With both the
instructions and the data loaded, the processor can operate on
the data and write the final result back through the interfaces to
memory. The performance of such a system depends on multiple
factors. Foremost, in an ideal system with an infinitely fast memory
system the maximum achievable performance is still limited by
the capabilities of the processor. This, while sounding obvious, has
to be kept in mind, especially when comparing the performance
between different systems. In a real world scenario the memory
system will not work perfectly, i.e. infinitely fast, which gives rise to
a bottleneck: keeping the processor fed with data to work on. This
complication is known as the von-Neumann bottleneck or memory

1the language the processor understands
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wall [21]. Mitigating the effects of this bottleneck is a multifaceted
problem, where beyond technical hardware aspects and program-
ming practices also economic constraints in the semiconductor
industry are to be respected [17, ch. 2.1]. The important hardware
aspects are memory speed, memory size, interface width, latency,
and in some sense space constraints. On the software side efficient
programming practices are expected - which will be treated in
section 2.1.2. The compromises on the memory side can be illus-
trated by the memory hierarchy [18, p. 4], [17, App. B]. It is depicted
in figure 2.1 and lists various types of memory, annotated with
their relative cost and performance. In general, the higher up the
hierarchy a storage type is, the faster but also the more expensive
it is.

Figure 2.1.: Schematic of the storage hierarchy, annotated with relative perfor-
mance, price and capacity built into a system.

On the top of the memory hierarchy is a memory type called
processor registers. This is the fastest type of memory built into a
computer and it is directly connected to the processor. The small
physical distance between the memory and the processor enables
a broad interface and minimizes latency, i.e. the delay between the
processor requesting data and receiving it. Furthermore data stored
in registers can be directly accessed by the processor, without going
through another layer of the memory system [19, ch. 2].

7
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Below the registers in the hierarchy, there is the processor cache. The
cache, like the registers, is built onto the CPU die but further away
from the processing units. Although it is slower than the registers,
it is still a very fast type of memory. Processor cache memory in
itself is tiered, meaning there are different cache levels with increas-
ing size but decreasing speed. In modern CPUs there are usually
two to three levels of cache, with level 1 being the highest up in
the hierarchy, i.e. closest to the CPU.
The next step down from the processor cache is the dynamic Ran-
dom Access Memory, often abbreviated by only RAM. RAM is not
integrated into the CPU, which entails an increase in latency and
additionally it is much slower than either of the on-die memory
types. Its benefit is the relatively low cost and the capacity in which
it is available. Often RAM is referred to as the systems main memory,
since every program that is running, is stored in RAM.
On the levels below RAM, there are non-volatile mass-storage
types, like hard disks or SSDs2, which are of no interest for this
thesis. For a more extensive treatment of computer memory Jacob,
Ng and Wang’s Memory Systems [18] is recommended.
An overarching theme when going up the memory hierarchy is
the increase in performance but decrease in memory capacity that
is actually built into a system. This is the result of a trade-off be-
tween performance and economic cost. For maximum performance
the whole storage infrastructure of a computer would consist of
register- or cache-like memory. The higher production expense
of high-performance memory and the increase in CPU-chip size
would lead to an enormous cost increase. Furthermore, as stated
above, the computational performance of a system is not only de-
pendent on the memory system but also on the capability of the
processor. A storage system that provides data to the processor
at a higher rate than the processor can handle is economically
inefficient. Therefore, only the amount of any memory type is built
into a system that is necessary to achieve the required performance.
This especially holds true for registers and cache, since the amount
of these memory types is not controllable by the end-user. In ad-

2Solid State Drive
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dition to the structure of the storage hierarchy, it is important to
know that data which is called by the processor, is copied from
main memory through the different levels of cache to the registers
[18, p. 63]. This is relevant for one principle of high performance
computing that is going to be introduced in the following.

The principle of locality is an important topic in high performance
computing, and is extensively exploited in this thesis. It states
that a computer performs better, when data is called that has
been called recently or that lies next to some data that has been
processed lately [18, p. 63 f.]. The first part is referred to as temporal
locality and is intuitive: data that is still located in a lower level
memory3 is accessed faster than data that has to be fetched from
main memory, due to latency and bandwidth limitations. The
second one, called spatial locality, is a side effect of the way memory
is organized and how systems load data. Data is stored in fixed
size pieces of multiple bits called words, and the cache is organized
into also fixed sized patches of storage cells called cache lines.
Usually cache lines are larger than a single word and every time
new data is copied from RAM into cache, a full cache line is
copied. This means that besides the data specifically requested,
also neighboring data is copied into the faster cache. Therefore,
when this neighbouring data is requested later, it already lies
in cache and is quickly available to the processor. Especially the
spatial locality is important for this work and will be addressed
again, when talking about the physical location of data stored in
the basic NumPy object, the nd-array.

Having discussed the way data gets to the processor, the next
step is to shed light on the way the CPU treats that data. Since
this is a vast topic, only the concepts directly connected to this
thesis will be mentioned. One of the basic terms needed for this
discussion is an instruction. It instructs the processor to perform
particular operation(s) on specific data. In the context of this work,
such operations can be memory related, like setting a register to
a specific value, or an arithmetic or logic operation. Beyond that

3closer to the processor
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there are various other instructions, enabling diverse functional-
ities of a processor, but too extensive to be detailed here. An in
depth discussion of instructions on Intel processors, accompanied
by introductory details, can be found in [22]. All instructions a
processor can execute are combined in its instruction set [22, ch.
3]. There are two philosophies regarding processor design and
size of an instruction set. On the one hand there are CISC - or
complex instruction set computer - architectures. These processors
include many highly specialized instructions, accepting that these
are used less often. On the other hand there are RISC, or reduced
instruction set computer, architectures. These only support a lim-
ited set of more simple instructions, and achieve the functionality
of the specialized instructions of CISC systems by smartly com-
bining multiple simpler but faster operations. Modern processors
are not purely CISC or RISC based, but implement ideas from
both philosophies. An example for such processors is the Woodcrest
series by Intel [23]. Furthermore, the supported instruction set of
a new generation of processors differs from its predecessor. This
generational evolution and sometimes expansion is driven by new
demands in applications and improvements in processor design.

One notable extension to the instruction set of modern proces-
sors was the introduction of SIMD-operations. SIMD as defined in
Flynn’s taxonomy [17, ch. 1.1] stands for single instruction multiple
data. This describes a processor’s ability to apply one operation not
only to one data word but to several data words at once. Processors
supporting SIMD instruction have specialized registers, capable of
storing arrays of data. SIMD instructions enable improved perfor-
mance for many operations. Beside multimedia processing, linear
algebra calculations benefit especially from the advantages SIMD
provides.
Since linear algebra is deeply fundamental and performance criti-
cal to many scientific calculations Basic Linear Algebra Subprograms,
BLAS in short, were introduced. BLAS are highly optimized sub-
routines, aimed at minimizing the computational cost of linear
algebra operations by efficient implementation of the best avail-
able algorithms. An additional benefit of the existence of these
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standardized libraries is, that processor manufacturers are able to
optimize their design for these algorithms and thereby further in-
crease performance. For a further reaching introduction into BLAS
and the basics of computational linear algebra, the textbook by
Nassif, Erhel and Phillipe on that topic is recommended [24].
Up to this point the fundamentals of high-performance program-
ming, that are not controllable by the developer, were introduced.
The next section will treat the steps one can take during program
development to enable fast execution speeds.

2.1.2. Efficient Programming

After the short introduction of the hardware aspects of high perfor-
mance computing, the next step is to discuss a subset of principles
on efficient programming. In this section the path to computation-
ally efficient code will be laid out and key methods available in the
Python programming language will be discussed.

When solving a programming problem, the first working version
will rarely be fast. This is the starting point on the endless quest
for optimal performance. There are some general rules to consider
before and during code optimization. When aiming for fast code it
is recommended to keep this quote, attributed to Donald E. Knuth,
in mind:

Premature optimization is the root of all evil.

It captures the essence of the following guideline. When writing
high performance code:

• first make it work.
• then make it right.
• finally make it fast (enough).

In code development, the first step should always be to make it
work. This means to write code that consistently and in all known
edge cases gives the expected result. Test driven development, like
detailed in Govindaraj’s textbook [25], is a good practice to ensure
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that this goal is achieved. Usually when reaching a working code
version, it will be unstructured and hard to read. This is when one
should make it right. Making it right involves refactoring the code4

and ensuring that a consistent programming style is used. The
availability of adequate documentation will enable future work
on the code, either by the original developer or by someone else.
After making it right performance testing should take place and
the developer has to decide if the code is fast enough. Timing and
profiling are the main tools to assess this. If the current code version
does not fulfill the performance requirements, optimization should
take place.

How to optimize

There are many routes for optimization, all of which should be
accompanied by profiling and unit testing5. In the following, gen-
eral approaches to increase performance are listed, and thereafter
Python specific means will be discussed. The first impulse when
confronted with code that runs too slowly should always be to
look for algorithmic improvements. Implementing a more efficient
algorithm has a high potential for performance enhancement, al-
though it can also be a very time consuming effort. An upside of
implementing a better algorithm by oneself is the possibility to
adept to the specific problem one faces. Another approach is to
build on the work of others and import code provided by third
parties. This can be a quick remedy, especially for more complex
algorithms that are commonly used. Such algorithms are usually
well tested and often are already highly optimized. Nevertheless,
some care has to be taken, like with every third party software,
since there might by problems that the original developer has not
accounted for. Finally, when all the resources the current program-
ming language offers are exhausted, there is often the possibility

4rearranging code segments without changing the functionality
5testing if the code produces the expected result
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to tie in code from lower level languages for performance critical
sections.

How to optimize in Python

In this section the routes for optimization will be discussed in the
context of Python. The main focus here will lie on the last option
of tying-in code from lower level languages and the possibility
of compiling Python code. Nevertheless, the general options of
algorithmic improvement and import of third-party code are also
available in Python. In fact the open-source nature of Python and
its broad use in many scientific areas has led to many projects
that provide highly optimized algorithms. Additional details on
the development of high-performing Python code can be found in
Gorelick and Ozsvald’s book on high performance Python [26].

One main disadvantage of pure Python is its relative slowness
when performing numerical operations. This has two major rea-
sons, explained in detail in chapter one of Gorelick and Ozsvald’s
High Performance Python [26, ch. 1] or in this blog post by Jake van
der Plas [27].
The first is the absence of static typing, i.e. the initialization of a
variable with a fixed data type. Instead, variables in Python can
change data type and lists or tuples can contain various data types.
While undoubtedly useful in most circumstances, when dealing
with large arrays with entries of identical data type, having to
check every entry’s type degrades performance.
The second factor contributing to Pythons inferior performance
is the way Python executes code. Python is an interpreted lan-
guage. Interpreted code in general has performance disadvantage
compared to compiled code. This is based on the fundamental dif-
ference between these two ways of translating human written code
into machine language. Interpreters translate programs line-by-
line, while compilers perform the translation before the program is
executed. From a performance standpoint interpretation is worse,
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since the processor has to wait for the interpreter to finish its trans-
lation. Furthermore, since the interpreter only sees one line at a
time, it lacks the possibility for automatic optimization.
An additional peculiarity of Python is the Global Interpreter Lock, or
GIL. The GIL complicates the application of multi-threading, and
can be a performance hindrance for heavily parallel operations.
A more detailed description of the inner workings of Python is
given in Jake van der Plas’ handbook on data science [28] or the
official Python documentation [29]. There are a few popular ways
to keep the general high development speed of Python programs,
but increase its execution speed. Five of them are introduced in the
following.

PyPy is the first in the list. PyPy [30] replaces the standard Python
interpreter, which is written in C, with a JIT6 compiler written in
Python itself. Just-in-time compilers perform the compilation while
the program is executing. In most cases this compilation results in
faster execution, compared to standard Python. There are also a
few downsides to PyPy. It is build on a reduced set of the Python
functionality, called the RPython language, and is therefor not fully
compatible with all Python programs and libraries.

Cython is a project dedicated to connecting C and Python [31].
It enables easy integration of existing C functions into Python
programs, but also the generation of fast C code from Python code
by including type declaration. One main reason to use Cython is the
possibility to write functions in Python, enjoy the easy development
environment, and then ”translate” this function into a C-extension,
which is significantly faster.

F2Py is the Fortran equivalent of Cython [32]. F2Py itself is part
of NumPy, which will be discussed later in more detail. The F2Py

6just-in-time
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project enables the integration of Fortran routines in Python, by
means of an extension module.

Numba is a project aimed at increasing the speed of numerical
calculations [33]. It works by JIT-compiling Python functions via
the LLVM compiler [34] directly to machine code. The charm of
Numba is the ease of use. In the ideal case, one just adds a decorator
to a Python function operating on NumPy arrays, and achieve a
significant performance increase.

NumExpr is a very specialized compiler, targeting large array
operations [35]. It works by parsing single expressions and smartly
breaking down big arrays into smaller blocks. This results in more
efficient cache usage and NumExpr also enables the distribution of
the calculation across multiple CPU cores.

Since one of the main goals of the Magpylib project is to create an
easy to use tool, running on a wide range of computers, and even
under different operating systems, the decision was made to stick
to the standard Python library only with the addition of NumPy.
Given a specific use case, employing one of the above mentioned
projects, may yield significant performance improvements, at the
cost of flexibility.

NumPy

NumPy [36] is one of the non-standard modules that enable vast
performance increases in Python. Since it is heavily used in this
thesis, a more detailed introduction is provided here. Additional
insight into the inner workings of NumPy can be found at the
official project page [37]. More information on the history and
motivation behind NumPy is provided in the first chapter of Travis
E. Oliphant Guide to NumPy [16].
NumPy has a few distinct features, that make it ideal for high-
performance numerical computing. The first is centered around the
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basic NumPy object, the nd-array. In NumPy data is organized into
arrays. Such an array, like a Python list can be multidimensional,
with the significant difference that a NumPy array stores data of
only one data-type. This way the dynamic type checking needed in
a Python list, as well as the overhead associated with it, can be
avoided. Another property differentiating nd-arrays from Python
lists is the way NumPy physically stores data. Whereas in standard
Python lists, not the data itself but pointers to the data’s memory
address are stored, data in NumPy arrays is stored in a contiguous
block in memory. When operating on elements of the array in a
serial fashion, the spatial locality of data leads to an increase in
performance. The full potential of NumPy is unfolded when one
performs the same operation on the whole array simultaneously.
This leverages the SIMD capabilities of modern CPUs and in com-
bination with the removal of the dynamic type checking leads to a
significant performance increase. Another way the use of NumPy
enables faster execution speeds is the utilization of the integrated
NumPy universal functions, ufunc in short. These are functions writ-
ten to perform operations, like many linear algebra operations, on
nd-arrays. Since most of scientific and high-performance comput-
ing in Python relies on NumPy, these ufuncs are highly optimized
and can be used to increase performance over a standard Python
implementation. These functions are often written in C or Fortran
and make use of underlying BLAS libraries. For further informa-
tion on NumPy, with the focus on data science, chapter 2 of Jake
van der Plas’ Python Data Science Handbook [28] is recommended.

This concludes the discussion of computer science related topics in
this thesis. In the next section the fundamentals of magnetism will
be introduced.

2.2. Magnetism Basics

In this section the classical theory of magnetism will be revisited
and the aspects on which this thesis builds will be highlighted. The
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discussion will start with the microscopic Maxwell equations but
omit the introduction to these formulas. For a extensive introduc-
tion to these equations and a broader treatment of the fundamental
theory of magnetism, Griffiths’ Introduction to Electrodynamics [38],
Jackson’s Classical Electrodynamics [39] and Purcell’s Electricity and
Magnetism [40] are recommended.

The microscopic Maxwell equations, connecting the microscopic
electric and magnetic fields E and B with the total charge and
current densities ρ and j are listed below.

∇ · E =
ρ

ε0
(2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇×B = µ0j + µ0ε0
∂E
∂t

(2.4)

Albeit these microscopic equations describe the whole of electro-
magnetic phenomena perfectly, most applications can be described
by a macroscopic formalism, that is easier to handle. In the follow-
ing the introduction of macroscopic quantities will be motivated.
An impediment to working with the microscopic equations are
the high spatial and temporal variation rates of the E− and B−
fields. One can circumvent the cumbersome treatment of these
fluctuations by assuming that the spatial and temporal extent of
the region of interest is comparatively large. In that case one can
simplify the calculation by averaging the E− and B− field over
a suitably large volume and time frame. Denoting this average
determination by 〈. . .〉, leads to the definition of the macroscopic
fields E and B.

〈E〉 = E (2.5)
〈B〉 = B (2.6)
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Assuming the averaging is commutable with spatial and tempo-
ral derivations, the macroscopic Maxwell equations follow from
equations (2.1) to (2.4).

∇ · E =
〈ρ〉
ε0

(2.7)

∇ · B = 0 (2.8)

∇× E = −∂B
∂t

(2.9)

∇× B = µ0〈j〉+ µ0ε0
∂E
∂t

(2.10)

In the macroscopic equations the averaged total charge and current
densities 〈ρ〉 and 〈j〉 appear. Close inspection of the physical origins
of these densities warrants the subdivision into free and bound,
denoted by the indices f and b [41].

〈ρ〉 = ρ f + ρb (2.11)

〈j〉 = j f + jb (2.12)

The meaning of those terms and the implications on the formalism
will be discussed in the following. First the difference between free
and bound charges will be described.
An example for free charges are the conduction electrons in a metal.
In the presence of an external electric field, they accelerate in one
direction and form a macroscopic current. Bound charges on the
other hand are restricted to a specific area in the material. This
does not mean, that they can not move, but rather that they are
subject to a strong rebounding force. A familiar example of such
a property are dielectric materials in a capacitor. The electric field
dislocates positive and negative charges, without resulting in a
sustained macroscopic current. This behaviour gives rise to (or
orients already existing) electrical dipoles, which can be described
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by the total electrical dipole moment per unit volume or polarization
P. Mathematically the relation between the polarization P and the
bound charge density ρb reads

−∇ · P = ρb (2.13)

Combining equations (2.11), (2.13) and (2.22) leads to the introduc-
tion of the electric displacement field D

ε0∇ · E = ρ f + ρb

ε0∇ · E = ρ f −∇ · P
∇ · (ε0E + P) = ρ f ⇒

D = ε0E + P . (2.14)

Equation (2.14) is called the constitutive equation of electrodynam-
ics. Similar to the charge density, also the current density can be
subdivided into a free current density j f and a bound current den-
sity jb [40, ch. 11.10]. The free current is the macroscopic flow of
charges, like the current sent around a wire by a battery. For the
bound current, there are two contributions. The first one follows
from the time derivative of equation (2.13). This reads

∂ρb
∂t
−∇ · ∂P

∂t
= 0 . (2.15)

This equation is reminiscent of the continuity equation and there-
fore it stands to reason to define a the polarization current density
jP as

jP =
∂P
∂t

. (2.16)

Careful inspection of equation (2.15) reveals an interesting possibil-
ity. One can add a divergence free term and still fulfill the equation.
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This in fact necessary to achieve a general solution to equation
(2.15). The term that is missing is called jM, where the subscript M
stands for magnetization. As stated, the divergence of jM vanishes

∇ · jM = 0 . (2.17)

This current density describes the orbital motion of electrons
around the nucleus. In the classical picture, such a motion consti-
tutes a tiny current loop, which according to Biot-Savart law gives
rise to a magnetic field [38, ch. 5.2]. The classical picture also ex-
plains the attribution of jM to the bound current density. The orbital
electrons do not contribute to a macroscopic current flow. There-
fore, the bound current density jb summarizes the polarization and
magnetization current densities.

jb = jP + jM (2.18)

With jM an important concept was introduced: the magnetization
M, further treatment of which can be found in [42]. Analogous to
the polarization P, the magnetization M describes the total mag-
netic dipole moment per unit volume. The relationship between
the magnetization current density jM and the magnetization M is
given by

∇×M = jM . (2.19)

With this knowledge one can define another field describing mag-
netic behaviour, the H-field, via an equation that is called the
constitutive equation of magnetism.

H =
B
µ0
−M (2.20)

At this point it is necessary to clarify which quantity is meant
when talking about the magnetic field and how to call B and H.
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A historical recap of the study of magnetism, that also touches
on this topic can be found in Daniel C. Mattis’ chapter History of
Magnetism [43].
Commonly the B-field is called magnetic flux density or magnetic
induction and is measured in units of Tesla (T). For the H- field
the names magnetic field strength/intensity or magnetizing field are
used and it is measured in A/m. Mathematically, there is no am-
biguity (see eq. (2.20)) and the derivation outlined in this chapter
acknowledges the B-field as the fundamental microscopic quantity,
with H being a useful auxiliary field. There are several contributing
factors to why there is no clear convention which quantity should
be called the magnetic field. The first follows from equation (2.20). In
free space, where the magnetization M is zero, the B- and H-field
only differ by a constant factor µ0, the permeability of free space.
Therefore, examination of the magnetic field outside magnets gives
no indication whether the B- or the the H-field is to be preferred.
The second is encoded in equation (2.25), which is yet to be derived.
Nevertheless one can verify by inspection of the formula that in the
absence of a time varying electric displacement field the relation

∇×H = j f (2.21)

holds: a free current density creates an H-field. Since free current
densities are often what is experimentally controlled, it becomes
reasonable to treat the H-field as the magnetic field.
Summarizing it can be stated, that according to the theoretical
derivation, the B-field is the fundamental quantity, but in an ex-
perimental setup, where a magnetic field is produced from a free
current density, the H-field is the intuitive description [40, ch. 11.10].
In the remainder of this thesis when talking about the magnetic
field in free space the distinction between B and H will be omitted.
In that scenario the special case of equation (2.20)

B = µ0H
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holds and there is no benefit to explicitly differentiate. When treat-
ing the magnetic field inside a material, the B- and H-field will be
named explicitly, since the magnetization M has to be taken into
account.

With every quantity needed to describe the macroscopic Maxwell
equations being introduced, they are collected in the following. In
analogy to the microscopic equation eq. (2.1) to (2.4) they read:

∇ ·D = ρ f (2.22)

∇ · B = 0 (2.23)

∇× E = −∂B
∂t

(2.24)

∇×H = j f +
∂D
∂t

(2.25)

With D and H being defined by the constitutive equations

D = ε0E + P (2.26)
B = µ0H + µ0M . (2.27)

The difficulty when solving equations (2.22) to (2.25) is to find
expressions for P and M since they are not externally imposed.
Furthermore, they are affected by the external fields E and H. In the
description of this behaviour, one has to distinguish between cases,
where an unambiguous functional relationship exists, and more
complex cases. The first kind are para- and dia-magnetic, as well as
dielectric materials. For such materials the relations between E and
P, and H and M are described by the susceptibility χ

P = ε0χeE (2.28)
M = χmH (2.29)
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with the subscripts e and m denoting the dielectric and magnetic
susceptibility respectively. The distinction between para- and dia-
magnetic is based in the sign of χ. Positive susceptibilities describe
paramagnets, while negative susceptibilities are associated with
diamagnets. For most isotropic materials and small external fields,
the susceptibilities can assumed to be constant. This implies that
relations (2.28) and (2.29) in such cases simplify to linear relations.
Permanent magnets constitute the complex case mentioned above,
in which the relation between M and H is ambiguous and equation
(2.29) is an inadequate description. This means, that knowledge
of the externally imposed H-field and is not sufficient to deduce
the resulting magnetization. In addition to the external field, the
magnetization history of the material has to be known. The be-
haviour of the magnetization in permanent magnets is described
by a hysteresis. A broader discussion of susceptibilities can be found
in chapter 6.4 of Griffiths’ Introduction of Electrodynamics, a more
quantum mechanical treatment is laid out in chapter 8 of Ibach and
Lüth’s book on solid state physics [44] and a comprehensive intro-
duction is given in Fazekas’ Lecture Notes on Electron Correlation and
Magnetism [45]. An example of a book which discusses hysteresis
phenomena is The Science of Hysteresis by Giorgio Bertotti and Isaak
D. Mayergoyz [46].

Having discussed the general macroscopic Maxwell equations, the
next step is to introduce the restrictions under which the theoretical
basis of this thesis is developed. When solving problems in the
realm of magnetism, a vector potential A is often introduced, which
is implicitly defined by

B = ∇×A . (2.30)

This definition is warranted, since

∇ · (∇×V) = 0 (2.31)

holds for any vector field V. From that follows directly, that every
B defined by equation (2.30) fulfills the Maxwell equation (2.23),
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which legitimizes the introduction of the magnetic vector potential
A.
In the absence of free currents and time varying electric fields, a
special case of equation (2.25) emerges. With these assumptions
equation (2.25) simplifies to

∇×H = 0 . (2.32)

In that case a magnetic scalar potential Φm can be defined by

H = ∇Φm . (2.33)

Analogous to the introduction of the vector potential A, the scalar
potential Φm is legitimized by the vector identity

∇×∇V = 0 . (2.34)

which holds for every scalar field V. In the following section the
explicit calculation of Φm will be provided. It is important to be
stated, that this magnetic scalar potential is only applicable in the
magnetostatic case, where there are no free currents. Otherwise its
introduction is not warranted.

2.3. The Magnetic Field of a special
Triangle

In this section the procedure to calculate the magnetic field of a
homogeneously magnetically charged triangle will be derived. This
derivation is based on the work of Rubeck et al. [47], who found
an analytical expression for a specific setup. In their work they also
laid out how to build on their solution to treat a more general case.
This extension will also be discussed.
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Potential Theory

The start for the derivation of the formula for the H−field is
Appendix B in Griffith’s Introduction to Electrodynamics on potential
theory and the Helmholtz theorem [38, App. B]. It states that any
well-behaved vector field can be described by a scalar and a vector
potential. Griffith writes [38, p. 582ff.]:

If the divergence and the curl of a vector function F(r)
are specified, and if they both go to zero faster than
1/r2 as r → ∞, and if F(r) goes to zero as r → ∞, then
F(r) is given uniquely by:

F = −grad U + curl W (2.35)

with U and W, called the scalar and vector potential
respectively, given by:

U(r) ≡ 1
4π

ˆ ∇′ · F(r′)
‖ r− r′ ‖d3r′ , (2.36)

W(r) ≡ 1
4π

ˆ ∇′ × F(r′)
‖ r− r′ ‖ d3r′ . (2.37)

The corollary to this theorem also stated in the Appendix B [38, p.
582ff.], is of importance for this thesis:

Any (differentiable) vector function F(r) that goes to
zero faster than 1/r as r → ∞ can be expressed as the
gradient of a scalar plus the curl of a vector:

F =−∇
(

1
4π

ˆ ∇′ · F(r′)
‖ r− r′ ‖d3r′

)
+∇×

(
1

4π

ˆ ∇′ × F(r′)
‖ r− r′ ‖ d3r′

)
.

(2.38)
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Note that the volume integrals in this formulation reach from −∞
to +∞ and the differentiation with respect to the primed variable
within the integral.

To obtain a formula for the magnetic scalar potential Φm equation
(2.38) is adapted to the H-field. Utilizing that in the context of
this thesis7 the curl of H vanishes (see eq. (2.32)) and applying the
constitutive relation (2.20) it follows that

H = −∇
(

1
4π

ˆ −∇′ ·M(r′)
‖ r− r′ ‖ d3r′

)
= −∇Φm

⇒ Φm =
−1
4π

ˆ ∇′ ·M(r′)
‖ r− r′ ‖ d3r′ . (2.39)

Since the volume integrals in equation (2.39) have to be evaluated
over the whole R3, they are not optimal for practical usage. In
the following, formulas that only need to be evaluated over the
volume of a given magnet V, will be derived. In the derivation an
idealization is assumed: for ease of calculation it is presumed that
the magnetization falls off discontinuously at the boundary of the
magnet, like proposed by Jackson in his Classical Electrodynamics
[39, p. 196f.].
There he starts with equation (2.39)

Φm =
−1
4π

ˆ ∇′ ·M(r′)
‖ r− r′ ‖ d3r′, (2.39)

which has to be evaluated over the whole space. Using the idealiza-
tion of a discontinuous magnetization an advantageous result can
be achieved. The integration region in (2.39) can be divided into
three regions. The first is the inner region of the magnet, denoted
by V. The second is an infinitely thin region around the surface
of the magnetic region ∂V. The last one is the outer region, which,
since it is empty, does not contribute to the potential. By applying

7no electric fields and no free current density
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Gauß’s theorem to the surface region, and defining an effective
magnetic surface charge density σm as

σm = n ·M , (2.40)

Jackson’s calculation results in

Φm =
−1
4π

ˆ
V

∇′ ·M(r′)
‖ r− r′ ‖ d3r′ +

1
4π

˛
∂V

σm

‖ r− r′ ‖da′ (2.41)

with n being the outward-directed surface normal vector.
For a homogeneous magnetization the volume integral gives no
contribution and the problem simplifies to a two-dimensional sur-
face integral. Jackson explicitly states that the result in (2.41) con-
stitutes a special case and that the introduction of a surface charge
should be used carefully.

Magnetic Potential of a Triangle

With equation (2.41) a formula that is applicable to the special case
of a homogeneously magnetically charged triangle was found. The
constraint that σm is constant is fulfilled when the triangle is part
of the surface of a homogeneously magnetized body. The uniform
magnetization also causes the first term in equation (2.41) to vanish.
Therefore the equation simplifies to the formula found in the paper
by Rubeck et al. [47]:

Φm =
σm

4π

¨
S

1
‖ r− r′ ‖dS . (2.42)

It has to be noted, that equation (2.42) is not truly a physical so-
lution for the magnetic scalar potential, since the integral in the
derivation is defined over a closed surface (see equation (2.41)).
Nevertheless, the integral over the closed surface can be split up
into the sum of multiple integrals over parts of the surface, and
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in that context equation (2.42) has to be interpreted: as the contri-
bution of a surface facet to the total scalar magnetic potential of a
magnetic body.

The configuration of interest is now a right triangle with side
lengths a and b, lying in the x-y-plane, with the catheti of the
triangle defining the x- and y-axes. There are two cases for such a
configuration. One with the right angle on the x- and the other with
the right angle located on the y-axis. This distinction is necessary,
to enable the calculation of arbitrary triangles, as will be described
in the next subsection. The observation point, where the magnetic
field is calculated is located on the z-axis.

(a) Triangle of Rubeck Type A (b) Triangle of Rubeck Type B

Figure 2.2.: Triangles of Rubeck Type A and B. Annotated by the definition of
the geometry parameters a, b and c as well as the local coordinate
system.

From equation (2.42) the field components for a triangle of type
A can be derived. The detailed derivation can be found in the
Appendix A.
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Hx,A =
σm

4πµ0

{
−b

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
+

1
2

ln
(

Dabc + b
Dabc − b

)}
(2.43)

Hy,A =
σm

4πµ0

{
a

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
− 1

2
ln
(

Dac + a
Dac − a

)}
(2.44)

Hz,A =
σm

4πµ0

{
arctan

(
a Dabc

bc

)
− |c|

c
arctan

( a
b

)}
(2.45)

Here the abbreviations

Dabc =
√

a2 + b2 + c2

Dab =
√

a2 + b2

Dac =
√

a2 + c2

were used.

In the case of a type B triangle, the field equations have to be
slightly modified:

Hx,B =
σm

4πµ0

{
b

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
− 1

2
ln
(

Dbc + b
Dbc − b

)}
(2.46)

Hy,B =
σm

4πµ0

{
−a

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
+

1
2

ln
(

Dabc + a
Dabc − a

)}
(2.47)

Hz,B =
σm

4πµ0

{
− arctan

(
b Dabc
−ac

)
− |c|

c
arctan

(
b
a

)}
(2.48)

Calculating the Magnetic Field of a general Triangle

With the introduction of formulas (2.43) to (2.45) and (2.46) to (2.48)
the theoretical foundation for the implementation presented in this
thesis is laid. From these equations, describing the special case of
right triangles with a specific location of the observation point, a
generalization can be derived. The idea was also introduced in the
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paper by Rubeck et al. [47] and is based on a geometric decom-
position of an arbitrary triangle. The start of this decomposition
is a setup of a homogeneously magnetically charged triangle and
an observation point, that does not lie in the plane of the triangle.
Such a configuration is shown in figure 2.3.

The first step in the decomposition is to orthogonally project the
observation point P onto the plane and the edges of the triangle.
This defines four right angle points RAPi. The subscript denotes the
target of the projection, i.e. either the plane or the edge between
the specified corners. These projections are displayed in figure 2.4,
where both the 2D and 3D view are shown.
Given these right angle points, one can define 6 right triangles, each
of which has one corner in the projection point on the plane RAPP.
Another corner always lies in one of the projection points onto the
edges. The edges of these newly specified sub-triangles define the
x- and y- axis in the local coordinate system of the sub-triangle.
Hence, depending on the type of sub-triangle, the formulas (2.43)
to (2.45) or (2.46) to (2.48) can be applied. The sub-triangle defined
by the points RAPP-RAPAC-C is shown in figure 2.5.
As mentioned above, the magnetic field of each of these sub-
triangles can be calculated by the equations corresponding to the
Rubeck type of the triangle. The Rubeck types are defined by figure
2.2. For the calculation it is assumed, that all sub-triangles have the
same magnetic charge density σm as the original triangle. Using
the superposition principle, one then can express the field of the
original triangle as the sum of the fields of the sub-triangles, with
appropriate sign. Rubeck proposed in section IV of his paper [47]
that the sign of each sub-triangle can be deduced by inspecting its
relative location with respect to the original triangle:

a right [sub-]triangle is counted positively if the right
[sub-] triangle covers (or covers partially) the [original]
triangle . Otherwise it is counted negatively.

For the example triangle from figure 2.3 all six right sub-triangles
are collected in figure 2.6. In this figure the top view of this setup
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is displayed for better clarity. Furthermore, the sub-triangles are
colored according to their sign.

Figure 2.3.: Setup of a general triangle A-B-C and observation point P.
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(a) 3D view of the triangle and all projection points.

(b) 2D view of the triangle and all projection points.

Figure 2.4.: View of the triangle and all projection points in 2D and 3D. RAP in
this context stands for Right Angle Point and emphasizes, that the
point is the orthogonal projection of the observation point P onto
the respective plane or triangle edge.
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Figure 2.5.: The sub-triangle defined by the points RAPP-RAPAC-C is high-
lighted in blue. Additionally, the local coordinate system of this
sub-triangle is drawn.

(a) Sub-triangle RAPP − RAPAC − C. The
blue color indicates, that the sign of this
triangle is positive.

(b) Sub-triangle RAPP − RAPBC − C. The
blue color indicates, that the sign of this
triangle is positive.
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(c) Sub-triangle RAPP − RAPAC − A. The
red color indicates, that the sign of this
triangle is negative.

(d) Sub-triangle RAPP − RAPBC − B. The
red color indicates, that the sign of this
triangle is negative.

(e) Sub-triangle RAPP − RAPAB − A. The
red color indicates, that the sign of this
triangle is negative.

(f) Sub-triangle RAPP −RAPAB −B. The red
color indicates, that the sign of this trian-
gle is negative.

Figure 2.6.: Top view of all 6 right sub-triangles obtained by the geometric
decomposition of the setup shown in Figure 2.3. Each sub-triangle
is colored according to its sign, i.e. if it counts positively (blue) or
negatively (red) to the magnetic field of the original triangle.
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This concludes the chapter on the theoretical introduction. In this
chapter a detour into computer science and programming basics, as
well as an detailed derivation of formulas describing the magnetic
field of a homogeneously magnetically charged triangle was given.
The next step is an in-depth discussion of the algorithm used to
implement this calculation in Python.
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3. Introduction to the
Algorithm

The aim of this chapter is to explain the implementation of the
magnetic field calculation in Python. The original Python code can
be found in Appendix B. While the code presented in the appendix
is capable of accepting multiple facets and observation points, this
discussion will start with the case of one facet and one observation
point. After the detailed description of the algorithm employed to
compute this non-vectorized case, a separate section will treat the
peculiarities of the vectorization.

3.1. Algorithmic Outline

Before discussing the algorithm in detail, a summary of the struc-
ture of the presented code is given. In the following, each step will
be discussed separately. The first point, the extraction of the inputs,
will be pushed to section 3.3, since it is only a matter of interest if
more than one facet or observation point is involved.

• Extract the inputs
• Calculate the orthogonal projection of the observation point

onto the triangle plane.
• Sort and rename the triangle points with respect to the obser-

vation point and oriented plane normal.
• Calculate the orthogonal projection of the observation point

onto the triangle edges, which defines six right sub-triangles.
• For each of these sub-triangles:
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3. Introduction to the Algorithm

– Calculate the Rubeck type and the sign in the geometric
decomposition

– Calculate the geometry parameters and the local axes
– Calculate the field in the observation point in the lo-

cal coordinate system and transform it into the global
coordinate frame

• Add the fields of all sub-triangles with their respective sign
• return the total field

For the next sections, it is assumed that the inputs include the
three triangle vertices, called T1, T2 and T3, the observation point
P, a normalized and outward pointing plane normal vector n and
a magnetic surface charge density σm. How to derive the last two
parameters will be discussed in section 3.3.

3.2. Steps of the Algorithm

3.2.1. Projecting the Observation Point onto the
Triangle Plane

The first step in the case of one facet and one observation point is to
find the projection of the observation point P onto the plane of the
triangle. To achieve this, the orthogonal distance of the observation
point from the plane is calculated, by taking the inner product of
the vector from one of the triangle vertices Ti to P with the plane
normal n. Then a vector parallel to the plane normal n and with
this length is subtracted from the observation point. The result of
this subtraction is the projection point in the plane of the triangle
RAPP. Written mathematically this reads

RAPP = P− ((P− Ti) · n) n (3.1)

A three dimensional graphical visualization of the projection is
given in Figure 3.1
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3.2. Steps of the Algorithm

Figure 3.1.: Three dimensional representation of the orthogonal projection of
the observation point P onto the plane of the triangle defined by
the points T1, T2 and T3. n denotes the normalized outward pointing
plane normal vector.

3.2.2. Sorting the Triangle

Following the determination of the projection onto the triangle
plane, the corners of each triangle can to be sorted. The decision
to sort the triangle corners was made to ensure consistency and
the ability to rely on the knowledge of the order of elements in
an array. The triangle is sorted according to the following pattern.
First, a coordinate frame is defined, in which the projection of the
observation point RAPP lies in the origin, the triangle lies in the x-
y-plane, and the oriented plane normal n defines the positive z-axis.
In this system three vectors are defined. Each vector starts at the
projection of the observation point and ends at one of the triangle
corners. One of these vectors is selected as reference and then the
oriented angle in the range of −π to π to the other two vectors is
calculated. A detailed discussion of the meaning of the oriented
angle follows in the next subsection. With the angles between these
vectors known, new names are assigned to the triangle vertices. The
corner with the largest oriented angle is assigned to the variable
A, the one with the smallest oriented angle to the variable B and
the remaining point to the variable C. Note that the standard
convention of counting angles counter-clockwise is used. Put in
non mathematical terms, this means that when standing in RAPP

39



3. Introduction to the Algorithm

and with n defining up: A is the far left triangle vertex, while B
is the far right one. The remaining middle vertex is renamed C. A
graphical representation of this sorting is given in Figure 3.2.

Figure 3.2.: Two dimensional representation of the sorting of the triangle T1-
T2-T3 with respect to the projection of the observation point onto
the triangle plane RAPP and the plane normal vector n. ϕ denotes
the oriented angle. In this case n points out of the paper plane
towards the reader. Note: n defines the up-direction, and P does not
necessarily lie above the triangle. A detailed discussion of n is given
in section 3.3.

Calculating the Oriented Angle between two Vectors

An important step in the sorting of the input triangle is the calcula-
tion of the oriented angle between two vectors. This is not a trivial
task, since this is not a well defined problem with only two input
vectors1. To fully define the system, additionally the direction of
the right handed plane normal vector has to be given, or in simpler
terms, the up-direction has to be specified. In the problem at hand,
an oriented plane normal vector is already defined by the outward
pointing surface normal vector n. This n is repurposed here to play
the part of the right handed plane normal to the plane specified by
the two input vectors. Given two vectors and up being defined by
the normalized plane normal, the oriented angle can be calculated

1because the cross product is not commutative
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by the following method. The presented procedure was proposed
by the user Adrian Leonhard on the StackOverflow forum [48].
Using the definition of the dot product and the cross product, one
can compute the unoriented angle α between the two vectors v1 and
v2 in two different ways:

cos (α) =
v1 · v2

‖v1‖ ‖v2‖
, (3.2)

sin (α)n1 =
v1 × v2

‖v1‖ ‖v2‖
, (3.3)

with n1 being the normalized right handed cross product between
v1 and v2

n1 =
v1 × v2

‖v1 × v2‖
, (3.4)

and equation (3.3) following from the connection between the
norm of the cross product and the sine of the angle between two
vectors

‖v1 × v2‖ = sin (α)‖v1‖ ‖v2‖ . (3.5)

In a two dimensional and orthonormal coordinate system, where
v1 is the positive x-axis and both v1 and v2 are anchored in the
origin, the oriented angle β from v1 to v2 is related to α by

β =

{
α, for v2 ending in quadrant I or II
2 π − α, for v2 ending in quadrant III or IV

. (3.6)

Knowing the symmetry and periodicity of the trigonometric func-
tions

cos(φ) ≡ cos(−φ) ≡ cos(2π − φ) , (3.7)
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sin(φ) ≡ − sin(−φ) ≡ − sin(2π − φ) , (3.8)

the unoriented angle α in equations (3.2) and (3.3) can be replaced
by the oriented angle β:

cos (β) =
v1 · v2

‖v1‖ ‖v2‖
, (3.9)

± sin (β)n1 =
v1 × v2

‖v1‖ ‖v2‖
, (3.10)

with the plus-minus sign indicating the cases from equation (3.6).
To get rid of the plus-minus sign equation (3.10) can be multiplied
by the normalized oriented plane normal vector n, known from the
input. The inner product of n1 and n yields another plus-minus
sign under the same conditions for the orientation of v2 relative to
v1. This cancels the plus-minus sign introduced in equation (3.10).
Dividing the modified (3.10) by (3.9) and using the definition of
the tangent leads to

tan (β) ≡ sin (β)

cos (β)
=

(v1 × v2) · n
v1 · v2

. (3.11)

Inverting the tangent finally yields the formula for the oriented
angle β between the vectors v1 and v2

β = arctan
(
(v1 × v2) · n

v1 · v2

)
. (3.12)

In the implementation care has to be taken, that the arctan function
returns the angle in the correct quadrant, which is ensured by
using numpy.arctan2().
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3.2.3. Projecting the Observation Point onto the
Triangle Edges

After the sorting of the triangle corners, the next step is to find
the projection of the observation point onto the triangle edges. By
performing this projection after sorting, the order of the projection
points is known. A similar procedure to finding the projection onto
the triangle plane is implemented. For each edge of the triangle
a corner X on this edge is chosen, and the vector towards the
observation point P is calculated. Furthermore, the vector towards
the other corner on that edge Y is defined. Then the inner product
of the vector from the triangle vertex to the observation point and
the normalized edge vector vXY, which is given by

vXY =
Y− X
‖Y− X‖ , (3.13)

is computed. This gives the length of the projection of (P-X) onto
the edge. Therefore, the distance of the projection point from the
corner is known and one can go this distance in the direction of
the edge unit vector vXY. Mathematically put this reads

RAPXY = X + ((P− X) · vXY) vXY . (3.14)

Figure 3.3 shows a graphical interpretation of formula (3.14).

3.2.4. Defining the Sub-Triangles

Having sorted the triangle facet and knowing all projection points,
one can now define the six right sub-triangles of the geometric
decomposition described section 2.3. For the implementation of
the code it was advantageous to have the corners and also the
sub-triangles put in order. The order and the constituting points of
the sub-triangles are listed in Table 3.1.
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Figure 3.3.: Three dimensional representation of the projection of the observation
point P onto the triangle edge. vAC is the normalized edge vector,
colored in green.

Table 3.1.: Ordered list of all six sub-triangles.
n . . . numbering of the sub-triangle
Pi . . . ith corner of the sub-triangle
RAPP . . . projection of observation point onto triangle plane
RAPXY . . . projection of observation point onto triangle edge

defined by the corners X and Y.
n P1 P2 P3
1 RAPP RAPAC C
2 RAPP RAPBC C
3 RAPP RAPAC A
4 RAPP RAPBC B
5 RAPP RAPAB A
6 RAPP RAPAB B

3.2.5. Calculating the Field of each Sub-Triangle

After sorting the original facet and finding all projection points, the
next step is to calculate the contribution to the field of each sub-
triangle. Before performing the field computation, the Rubeck type2

and the geometry parameters for equations (2.43) to (2.48) have to
be extracted. Following the field calculation in the local coordinate

2see Figure 2.2
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system, the result has to be transformed into the global coordinate
frame and added up correctly. Therefore, the local coordinate basis
and the sign from the decomposition3 are needed. The following
subsections treat the derivation of these parameters.

Find the Rubeck Type of the Sub-Triangle

Before assigning the geometry parameters to the sub-triangles,
the Rubeck type of each sub-triangle has to be known. The type
can be obtained by inspecting the orientation of the sub-triangles
plane normal vector. The sub-triangles plane normal is consistently
defined by

nst = (RAPXY −RAPP)× (X−RAPXY) , (3.15)

with the index st standing for sub-triangle and X being the triangle
vertex that is part of the respective sub-triangle. This sub-triangle’s
surface normal is either parallel of anti-parallel to the outward
pointing surface normal n, defined with the input. In the parallel
case the sub-triangle is of type A. In the anti-parallel case it is of
type B.

Rubeck Type =

{
A, if nst is parallel to n
B, if nst is anti-parallel to n

.

Find the Sign of the Sub-Triangle

Obtaining the sign used in the geometric decomposition is more
involved. The intuitive way described in the paper by Rubeck et al.
to assign every sub-triangle that overlaps with the original triangle
a positive sign, is not easily implementable. A computationally

3see section 2.3 and Figure 2.6
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light-weight solution for right and acute triangles was found, by
inspecting all possible locations of RAPP relative to the facet. One
of these configurations is shown in Figure 2.6. The calculation of
the sign is based on three aspects:

• Does RAPP lie in a big or a small sector of the original triangle?
• Does RAPP lie inside the triangle?
• Where on the edge, relative to the corner, does RAPXY lie?

Before engaging the procedure used to determine these factors, it
has to be defined what a big and what a small sector is. In Figure 3.4
a configuration of a triangle, labeled according to the systematic
laid out in the paragraph on sorting, is shown. The two edges
crossing in the point C define a cone, in which RAPP is lying. Note
that this assumption is only always true, if the triangle is acute or
right and the corners are sorted. Such a cone has one distinguished
sector: the one containing the triangle. This sector is called the
big sector, whereas the other one is called the small sector. The
terminology big and small was created during discussion about the
code and then adopted without any deeper meaning.

Figure 3.4.: Subdivision of the plane into a big (blue) and a small (green) sector,
relative to the sorted triangle A-B-C. Sorting ensures that RAPP
does not lie in one of the white sectors.

Within the big sector a further distinction can be made: if RAPP
lies inside the triangle or not. Both the questions in which sector
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RAPP lies, and if it is located within the triangle can be answered
by inspecting the same quantities. For that a local two dimensional
coordinate system is defined, with the edges of the triangle defining
the axes. This coordinate system is not necessarily orthogonal, nor
is the basis, consisting of the vectors from C to the other corners,
imperatively normalized. Nevertheless, in this coordinate system -
depicted in Figure 3.5, the point RAPP can be written as a linear
combination of the basis vectors, with p and q as constants.

RAPP = C + p(A−C) + q(B−C) (3.16)

Figure 3.5.: Local coordinate system based on the triangle A-B-C.

Subtracting C and renaming

v0 ≡ RAPP −C ,
v1 ≡ A−C ,
v2 ≡ B−C

leads to the equation

v0 = p v1 + q v2 . (3.17)

Taking the inner product of both sides once with v1 and once with
v2 yields a linear system of equations for p and q.
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v0 · v1 =p v1 · v1 + q v2 · v1 , (3.18)
v0 · v2 =p v1 · v2 + q v2 · v2 . (3.19)

It has to be kept in mind, that v1 and v2 are in most cases whether
orthogonal nor normalized. Solving by substitution leads to

p =
(v0 · v1) (v2 · v2)− (v0 · v2)(v2 · v1)

(v1 · v1) (v2 · v2)− (v1 · v2)(v2 · v1)
, (3.20)

q =
(v0 · v2) (v1 · v1)− (v0 · v1)(v1 · v2)

(v1 · v1) (v2 · v2)− (v1 · v2)(v2 · v1)
. (3.21)

With p and q known, it can be deduced if RAPP lies in the big or
small sector of the triangle. Moreover, if it lies in the big sector,
one can inspect if it is within the triangle. The condition for RAPP
lying in the big sector is that p and q are positive. There is no
need to check both parameters, since they have the same sign by
construction. The conditions that the parameters have to fulfill for
RAPP to be inside the triangle are

p, q ≥ 0 , (3.22)
p + q ≤ 1 . (3.23)

It is important to note that the second condition is only valid, if
the basis vectors are not manually normalized.
As mentioned above, another aspect influencing the sign of the
triangle is the position of the projection point on the edge. The sign
depends on the direction of the vector pointing from the triangle
corner to the projection point and two cases are differentiated. They
are best described using the inner product and the sign function
σ. With X being the triangle vertex that is part of the sub-triangle,
Y the second vertex on the edge and RAPXY the projection point
onto that edge, the condition reads mathematically
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σ((RAPXY − X) · (Y− X)). (3.24)

This formula returns the information if the vectors (RAPXY − X)
and (Y− X) are parallel (+1) or anti-parallel (-1). This corresponds
to RAPXY being located on same side of the corner X as the second
vertex on that edge Y or on the opposite side. A graphical depiction
is given in Figure 3.6.

Figure 3.6.: Visualization of the possible location of the projection point RAPXY
on the triangle edge defined by the vertices X and Y. The point X is
part of the inspected sub-triangle. If RAPXY lies on the green section
of the edge, equation (3.24) equals +1, while if RAPXY lies on the
blue section of the edge, equation (3.24) equals -1.

In Table 3.2 the complete formulas to obtain the signs of the six
sub-triangles are listed. The sub-triangle number n refers to the
order established in Table 3.1.

with

σ(BigSmall) =

{
+1, if RAPP in big sector
−1, if RAPP in small sector

,

and
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Table 3.2.: Formulas for the signs of each sub-triangle occurring in the geometric
decomposition. n gives reference to the numbering of the sub-triangles
established in Table 3.1. These equations only give the correct result,
if the original facet is a right or acute triangle.

n Formula for the sign of the sub-triangle
1 always +1
2 always +1
3 σ((A−RAPAC) · (A−C)) σ(BigSmall)
4 σ((B−RAPBC) · (B−C)) σ(BigSmall)
5 σ((A−RAPAB) · (A− B)) σ(BigSmall) σ(InOut)
6 σ((B−RAPAB) · (B−A)) σ(BigSmall) σ(InOut)

σ(InOut) =

{
−1, if RAPP inside triangle
+1, if RAPP outside triangle

.

Calculating the Geometry Parameters and Local Basis

Once the type and signs of the sub-triangles are known, the ge-
ometry parameters can be extracted. This has to be done after the
inspection of the sub-triangle types, because the parameters a and b
as well as the local basis are assigned differently depending on the
Rubeck type of the sub-triangle. Based on the type, the geometry
parameters a, b and c as well as the local basis vectors xlocal, ylocal
and zlocal can be calculated. With X being the triangle vertex that is
part of the sub-triangle and Y, the other corner on that edge, the
geometry parameters are defined by

a =

{
‖RAPXY −RAPP‖, if type A
‖X−RAPXY‖, if type B

,

b =

{
‖X−RAPXY‖, if type A
‖RAPXY −RAPP‖, if type B

,
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c = ‖P−RAPP‖ ,

and the normalized local basis vectors by

xlocal =


RAPXY−RAPP
‖RAPXY−RAPP‖

, if type A

X−RAPXY
‖X−RAPXY‖

, if type B
,

ylocal =


X−RAPXY
‖X−RAPXY‖

, if type A

RAPXY−RAPP
‖RAPXY−RAPP‖

, if type B
,

zlocal =
P−RAPP

‖P−RAPP‖
.

Calculating the Partial Field in the Local Coordinate Frame and
transform them into the Global Coordinate System

With all geometry parameters, types and local axis known, the
magnetic field can be calculated first in the local coordinate system
of every sub-triangle and then in the global coordinate frame of
the whole system. The calculation in the local coordinate system
follows equations (2.43) to (2.45) or (2.46) to (2.48), depending
on the Rubeck type of the sub-triangle. The derivation of the
transformation into the global coordinate system is presented in
the following.
Starting in the local coordinate frame, denoted by the subscript l,
the magnetic field of one sub-triangle can be written as

Hl = ∑
i

Hi ei,l = Hx ex,l + Hy ey,l + Hz ez,l (3.25)
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with Hi being the result of the field equations and ei,l the local
basis vectors. Since the global coordinate system ei,g is a complete
basis, the local unit vectors can be written as a linear combination
of the global ones.

ei,l =
∑j(ei,l · ej,g) ej,g√

∑j(ei,l · ej,g)2
(3.26)

In the present case, also the local basis is complete and orthogonal
and so the denominator in equation (3.26) equals 1 and will there-
fore be omitted. Using the notation in the global coordinate frame,
where the ith component of the jth global basis vector is a δi,j, the
local coordinate basis can be written as:

ei,l =

 ei,l · ex,g
ei,l · ey,g
ei,l · ez,g

 . (3.27)

Substituting this expression into equation (3.25) yields the magnetic
field in the global coordinate frame

Hg = Hx

 ex,l · ex,g
ex,l · ey,g
ex,l · ez,g

+ Hy

 ey,l · ex,g
ey,l · ey,g
ey,l · ez,g

+ Hz

 ez,l · ex,g
ez,l · ey,g
ez,l · ez,g


(3.28)

The last expression, needed to be calculated, is the inner product of
the local and global basis vectors. In the present case, the local basis
was derived from points in the global coordinate frame. Therefore,
the inner product of any local basis vector with the ith global basis
vector is equivalent to the ith component this local basis vector,
denoted here by square brackets. Incorporating this knowledge
into (3.28) yields
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Hg = Hx

 ex,l[0]
ex,l[1]
ex,l[2]

+ Hy

 ey,l[0]
ey,l[1]
ey,l[2]

+ Hz

 ez,l[0]
ez,l[1]
ez,l[2]

 (3.29)

where the Python convention of starting indexing at 0 is used.
Having transformed the field of each sub-triangle into the global
coordinate frame, the field of the original facet can be calculated
by adding the fields of the sub-triangles with their respective sign,
specified in Table 3.2.

3.3. Extracting the Inputs and Vectorization

The final section of this chapter treats the peculiarities of vectoriz-
ing the proposed code. Thanks to the utilization of NumPy arrays
and NumPy universal functions, the entire algorithm presented in
this chapter is already built for vectorized input. In the following,
the way the input arguments of the field-calculating function are
manipulated to enable the calculation of the magnetic field of a
multi-facet system in many observation points will be presented.
Prior to that, the input structure of the code listed in Appendix B
will be discussed. This function has three inputs, which are consis-
tent with the existing Magpylib package. These inputs are MAG,
DIM and POSO and are discussed separately in the upcoming
paragraphs.

MAG abbreviates Magnetization. Since the goal of this code is to
calculate the magnetic field of facet bodies, the decision was made
to select the magnetization of the simulated magnet as an input,
instead of the surface magnetic charge σm - which is in most cases
not directly accessible by the user. The derivation of σm from the
magnetization is possible through equation (2.40) and the outward
pointing surface normal vector n used in this equation will be
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retrieved from the input DIM in the next paragraph. MAG is of
size (k× 3), specifying the three components of the magnetization
of the simulated body for the k facets of that body. If one wants
to calculate the magnetic field of a multi-magnet setup, the MAG
input is extended to include ki entries along the 0th dimension for
the ki facets of the ith body.

DIM gives the dimensional input, i.e. the location of the triangle
vertices and an implicit specification of the outward pointing sur-
face normal vector. DIM is of size k× 4× 3 and contains 4 points
for each of the k facets. The first three points define the vertices of
the triangle T1, T2 and T3. The fourth point was chosen to represent
a point lying within the magnet, to which the facet belongs. This ap-
proach was chosen for two reasons. One reason was, that knowing
one point inside the magnet provides sufficient information4 to
deduce the outward pointing surface normal vector n. The second one
was, that the position of a point lying within the magnet is easier
to specify for the end user than the outward pointing surface normal
n. The calculation of n, is a multi-step process. First, the unoriented
surface normal nu is calculated by taking the cross product of two
edge vectors (T1 − T2) and (T1 − T3)

nu = (T1 − T2)× (T1 − T3) . (3.30)

Then a vector, pointing out of the magnet, is defined, called vout.
This vector starts at the point inside the magnet Pin and ends at
one of the triangle vertices, in this case T1.

vout = T1 − Pin (3.31)

The outward pointing surface normal vector n can then be calcu-
lated by multiplying the normalized unoriented plane normal nu
with the sign of the inner product between nu and the outward

4if the body is convex

54



3.3. Extracting the Inputs and Vectorization

pointing vector from equation (3.31). Using the sign function σ this
reads

n = σ (nu · vout)
nu

‖nu‖
. (3.32)

This way, by providing the three vertices of a triangle and a point
inside the magnet as an input, the outward pointing surface normal
vector, can be calculated. Furthermore, using (2.40) the surface
magnetic charge σm of the facet can be computed.

POSO is the simplest of the three inputs. It is an k × 3 array,
listing the observation points.

Vectorization In the vectorized case of multiple facets and multi-
ple observation points, the inputs have to be modified so that the
resulting arrays of MAG, DIM and POSO have the correct structure
to be plugged into the the algorithm described in section 3.2. This
restructuring has to ensure that in the end, the field of every facet
in every observation point is calculated. In the general case, there
are k facets belonging to potentially more than one magnet, and
l observation points. Using the abbreviations M for MAG, D for
DIM and P for POSO, the manipulation of the input arrays with
numpy.tile() and numpy.repeat() is visualized in Figure 3.7. After
the manipulation of all three inputs (MAG, DIM, POSO), the ith

entry along the 0th dimension corresponds to the calculation of the
magnetic field of one facet in one observation point. The whole
arrays then describe the calculation of the magnetic field of every
facets in all observation points.
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(a) Using numpy.tile() to stack the input array describing the magnetization (MAG) l times
along the 0th dimension.

(b) Using numpy.tile() to stack the input array describing the facets (DIM) l times along
the 0th dimension.

(c) Using numpy.repeat() to repeat the input array describing the observation points
(POSO) k times along the 0th dimension.

Figure 3.7.: Manipulation of the input arrays to enable vectoriziation. k gives
the number of facets, which contribute to the magnetic field and l
is the number of observation points, in which the magnetic field is
computed.
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4. Validation

In this chapter the validation of the proposed code will be pre-
sented. It involves three distinct setups that will showcase the
correctness and usefulness of the facet code. The first of these
setups is a magnetic cuboid. This constitutes a case, in which ana-
lytical solutions are already available and therefore, the magnetic
field calculated by the facet code can be verified. The second case is
the computation for a triangular prism. With this setup the advan-
tages of the newly introduced facet solution over existing analytical
solutions will be shown. The third case is the comparison to a state
of the art finite-element-method (FEM) simulation, describing a
complex array of permanent magnets. This should provide fur-
ther confidence into the general applicability of the facet solution
and give an estimate of the performance increase that is to be
expected.

4.1. Validation in the Cubic Magnet Case

The first configuration in which the proposed facet code was vali-
dated is an ideal permanent magnet1 of cubic form. The facet solu-
tion was compared to Magpylib [14], which represents an approach
using analytical formulas for cuboid magnets. In preparation of
the facet solution, the surface of this cube was divided into 12 right
triangles. For the comparison of the calculated magnetic fields, it
was chosen to define a set of observation points, located in a plane
above the magnet. In each of these observation points the relative

1without demagnetization
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deviation of the norm of the magnetic field and the angle between
the fields calculated by both solutions was evaluated. Furthermore,
a simple timing of the computation time was performed.

4.1.1. Setup of the Cubic Magnet

Since cuboid magnets are already included in the Magpylib pack-
age, the calculation of the reference solution only needed the cre-
ation of a Box magnet source with the appropriate geometric pa-
rameters and magnetization. In this case the dimensions of the
magnet were set to

DIM = (1, 1, 1)mm ,

and the magnetization was defined along the +z axis

MAG = (0, 0, 1000)mT .

The optional parameters were not set, which means that the center
of the cube was in the origin and no rotations were applied. The
plane of the observation points was chosen to be the z = 1 mm
plane, with the x- and y-coordinates of the observations point lying
on an equally spaced grid. The grid reached from -5 mm to +5 mm
and had 50 grid points along each axis. One slight adaptation
from a perfectly symmetrical grid was that the x-coordinates were
shifted by 10 nm in +x direction to avoid a bug in the code. How
this bug manifests will be discussed in the upcoming section on
known issues in section 4.4.

4.1.2. Comparison in the Cubic Magnet Case

In the following Figure 4.1 the relative deviation from the Magpylib
cuboid solution and the angle between the two results is shown.
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4.2. Validation in the Triangular Prism Case

The relative deviation of the norm of the magnetic fields H was
calculated by

∆rel =

∥∥H f acet −Hmagpylib
∥∥∥∥Hmagpylib

∥∥ . (4.1)

The angle between the two solutions was calculated by

α = arccos

(
Hmagpylib ·H f acet

‖ Hmagpylib ‖ ‖ H f acet ‖

)
. (4.2)

Since the angular deviation is displayed on a logarithmic scale, the
absolute value of α was taken before plotting.

These figures show, that the result obtained by the facet solution is
in good agreement with the already published Magpylib cuboid
solution. An upper limit for the relative deviation of the total
magnetic field in the examined plane is 10−12. The orientational
deviation in this setup is smaller than 10−11. Moreover, the time it
took to perform the calculation of the magnetic fields was extracted,
using the perf counter function form the time library. Only the code
line with the call to the field calculating function was timed. For
this configuration the facet code was slower than the Magpylib code
by about a factor of 50. This performance result was to be expected,
since the facet code involves many geometric operations.

4.2. Validation in the Triangular Prism Case

After showing that the newly introduced facet solution yields
results in accordance with the already published Magpylib solution,
the next step was to show its advantages over the cuboid solution.
Therefore, the field of a prism with a right triangle as a base
was calculated. For the facet solution, the surface of the prism
was subdivided into 8 right triangles. For the Magpylib solution,
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(a) Relative difference in the norm of the magnetic field on a logarithmic scale.

(b) Angular difference between the magnetic fields on a logarithmic scale.

(c) Top view of magnetic cube. Note the unequal axis representation.

Figure 4.1.: Comparison of the difference in the norm 4.1a and the orientation
4.1b between the magnetic fields calculated by the Magpylib cuboid
solution and the proposed facet code for the cubic case. White areas
indicate identical results. In Subfigure 4.1c the magnetic cube is
depicted for reference.

the prism was approximated by n cuboids. The comparison not
only involved the evaluation of the difference in the norm and
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direction of the magnetic field, but also a convergence analysis
of the approximation by cuboids. Furthermore, each step of this
analysis was compared to the performance of the facet solution.

4.2.1. Setup of the Triangular Prism Magnet

As mentioned above a permanent magnet with the shape of a
triangular prism was simulated. The geometry of the prism was
defined by the side lengths of the right base triangle and the height.
For this comparison the side lengths of the base were chosen to be
1 mm each, and the height of the prism was also set to 1 mm. Once
again the magnetization was defined as 1000 mT in +z direction
and the center of the prism was located at (+1

6 ,−1
6 , 0) mm. An

approximation of the prism by 10 cuboids is shown in figure 4.2.

4.2.2. Convergence Analysis Triangular Prism

The first step in this comparison was to analyse the convergence of
the approximation by cuboids. Therefore, a line above the magnet
was defined and the norm of the field along this line was calculated,
once by the facet solution and once for each discrete setup. Then
the relative difference to the facet solution was calculated by

∆n =

∥∥Hn −H f acet
∥∥∥∥H f acet

∥∥ (4.3)

with the subscript n denoting the number of cuboids involved in the
approximation. This is a suitable convergence criterion, since it was
shown in section 4.1.2 that the facet solution gives the correct result
for the field calculation. With increasing number of cuboids the
approximation should converge to the value of the facet solution,
and ∆n should fall below ≈ 10−10. For this comparison the x-
coordinates of the observation points were equally spaced between -
5 mm and +5 mm with the y- and z-coordinate fixed to 0 and +1 mm
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(a) 3D view of the approximation of the triangular prism by n = 10 cuboids.

(b) Top view of the approximation of the triangular prism by n = 10 cuboids.

Figure 4.2.: Approximation of a triangular prism by n = 10 cuboids.

respectively. In figure 4.3 the relative difference from the facet
solution is plotted for increasingly fine approximations. Each line
is labeled with the number of cuboids used in the approximation,
n.

62
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Figure 4.3.: Relative deviation from the facet solution for several degrees of dis-
cretization. n is the number of cuboids involved in the discretization.

The results shown in figure 4.3 are as expected: with a bigger
number of cuboids approximating the prism, the deviation from
the analytical solution gets smaller. Nevertheless, even with 105

cuboids, the deviation is still in the range of 10−5, which indicates
an insufficiently fine approximation. Furthermore, the indirect
proportionality between n and the relative difference in this range
is evident. Another important aspect of this comparison was the
time it took each method to calculate the magnetic field. In the
following bar diagram, figure 4.4, the timing of the field calculating
function for each discrete setup, tn is displayed in multiples of the
duration of the facet calculation t f acet. This quotient is called τ

τ =
tn

t f acet
.

The performance comparison shown reflects the results of only
one simulation run. Nevertheless, subsequent iterations of this
comparison showed similar results and therefore, a sophisticated
statistical analysis was omitted.

As is clearly visible, when aiming for a combination of maximum
accuracy and performance for non-cuboid magnet shapes, the facet
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Figure 4.4.: Performance analysis of the cuboid discretization. Each bar gives
the time it took to simulate an array of n cuboids, approximating
the triangular prism in multiples of the computation time of the
facet solution. The bars are annotated by the rounded values of the
quotient τ.

solution introduced in this thesis prevails over the existing cuboid
solution. Furthermore, it also allows for more complex shapes of
magnets, which is a major benefit.

4.2.3. Comparison in the Triangular Prism Case

For n = 105 a more detailed analysis of the deviation from the facet
solution was performed. In figure 4.5 the relative and orientational
deviation of the discretized-cuboid solution to the facet solution
are shown. The 50 × 50 observation points in which the fields
were calculated were located on the same shifted grid as in the
cubic case. The x- and y-coordinate of the observation points were
equally spaced between -5 and +5 mm, while the z-coordinate was
fixed to 1 mm. Again the x-coordinate was shifted by 10 nm to
avoid a special case.

As was to be expected after the convergence analysis, the relative
difference from the approximation by n = 105 cuboids to the facet

64



4.2. Validation in the Triangular Prism Case

(a) Relative difference in the norm of the magnetic field.

(b) Angular difference between the magnetic fields.

(c) Top view of magnetic triangular prism. Note the unequal axis representation.

Figure 4.5.: Comparison of the difference in the norm 4.5a and the angular devi-
ation 4.5b between the magnetic fields calculated by the Magpylib
cuboid approximation with n = 105 and the proposed facet code for
the triangular prism. In subfigure 4.5c the magnetic triangular prism
is depicted for reference.

solution is in the range from 10−5 to 10−6, which is significantly
worse than in the cubic case (see Figure 4.1).
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4.3. Complex Magnet Array

The last validation step presented in this thesis was the calculation
of a complex magnet array and the comparison of the result to
a state of the art FEM simulation. Before discussing the specific
example, the following section briefly introduces the basic concepts
of the finite element method.

4.3.1. Finite Element Method

The finite element method, FEM in short, is a numerical procedure,
able to find approximate solutions for complex problems in physics
and engineering. The basis for this method is the subdivision of
space into a mesh of nodes and the numerical solution of a system
of equations, resulting from this discretization.

A basic ingredient of the finite element method is the finite element
approximation. It is based on the fact that one can approximate any
desired function to arbitrary accuracy by a sufficiently large set
of simple basis functions. In the case of FEM these functions are
called shape functions and their defining characteristic is that they
are only non-zero in a small region of space. This region is called
the finite element. The center of each finite element lies on one node
and it is bound by the nearest neighbors of this node. For each
node a shape function is defined which has to fulfill two conditions.
First, the value of the function has to be 1 at its node and secondly
it has to be zero on every other node. A visualization of a one
dimensional case with linear shape functions is shown in figure
4.6.

Having defined such a basis of shape functions, it is possible
to approximate any function ϕ(r) in a given region by a linear
combination of these form functions ψi(r) with suitable weights
ωi
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4.3. Complex Magnet Array

Figure 4.6.: Set of shape functions ψi on several nodes xi. Adapted from Comsol
multiphysics cycopedia [49]

ϕ(r) ≈∑
i

ωi ψi(r). (4.4)

Each of these form functions ψi(r) corresponds to a node in the
mesh and fulfills the condition listed above. To achieve a better
approximation, the number of nodes has to be increased, which
is called mesh refinement. Having defined a set of nodes and shape
functions, the unknown quantities left in equation (4.4) are the
weights ωi. Inspection of formula (4.4) at an arbitrary node j reveals
that the weight ωj has to be equal to the value of the desired
function at this node ϕ(rj).

ϕ(rj) ≈∑
i

ωi ψi(rj) (4.5)

ϕ(rj) ≈∑
i

ωi δij = ωj (4.6)

Therefore, the problem of correctly approximating the original
function reduces to finding the weights of this linear combination
of basis functions.
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In order to solve this in the context of physical systems, one has to
first discuss the weak formulation of differential equations. In the fol-
lowing the introduction of the weak formulation is motivated, and
then a specific example is discussed. Often the derivation of the
differential equation is too strict, in the sense that it excludes phys-
ically possible solutions on the basis of insufficient differentiability
[50]. In real systems, such discontinuities in a derivative can be
caused by different material parameters when crossing a material
boundary. The physical solution to such a problem will not satisfy
the differential equation and therefore, a less strict version of the
equations describing the system is needed. The weak formulation
of a differential equation exactly does that. To attain the weak form
of a differential equation, one has to multiply the equation by a so
called test function and thereafter integrate over the whole region
of interest. By doing so one loosens the requirement of the solution
to fulfill the differential equation in every point, and replaces it
by the condition that the solution has to fulfill the equation in
an integral sense [49]. As an example for this procedure one can
examine the combination of Gauß’ law for magnetism (2.23), the
constitutive relation of magnetism (2.27) and the definition of the
magnetic scalar potential Φm (2.33)

−∇ · (µ0(∇Φm + M)) = 0 (4.7)

with M being the magnetization. To find the weak formulation of
this differential equation, one has to multiply equation (4.7) with a
test function ϕ and integrate over the volume of interest Ω.

ˆ
Ω
−∇ · (µ0(∇Φm + M))ϕ dV = 0 (4.8)

The left side can be integrated by parts to transfer the derivative
to the test function. This, with additional application of Gauß’
theorem to the resulting second term gives
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4.3. Complex Magnet Array

ˆ
Ω
(µ0(∇Φm +M)) · ∇ϕ dV +

ˆ
∂Ω
−(µ0(∇Φm +M)) ·n) ϕ dS = 0

(4.9)

This is the weak formulation of the differential equation (4.7).
A magnetic scalar potential Φm, which fulfills this equation for
every suitable test function, is called weak solution. In this case the
Galerkin method can be applied, which works by expressing the
desired solution Φm and the test function ϕ in terms of the same
basis ψi. Explicitly these definitions read

Φm(r) ≈∑
i

Φm,i ψi(r) , (4.10)

ϕ(r) ≈∑
i

ϕi ψi(r) . (4.11)

Equation (4.9) has to hold for arbitrary test functions ϕ. Because of
equation (4.11), this requirement is fulfilled if it holds for every ba-
sis functions ψj separately. Inserting (4.10) and (4.11) into equation
(4.9) yields

∑
i

ˆ
Ω
(µ0(Φm,i∇ψi + M)) · ∇ψj dV

+∑
i

ˆ
∂Ω
−(µ0(Φm,i∇ψi + M)) · n)ψj dS = 0

(4.12)

Evaluating (4.12) on each of the m nodes constitutes one equation
in a system of m× m unique equations. The unknowns in these
equations are the Φm,i s - the values of the desired solution function
on the respective node. The only thing left is to solve this system
of equations. While not being a trivial task, it is in many cases
possible to apply numerical methods to solve such a system of
equations. Additional introduction and discussion of the finite
element method can be found in [51] and [52].
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4.3.2. Setup of the Complex Magnet Array

Having introduced the basics of FEM, the last validation step of the
facet solution can be discussed. For that reason a complex magnet
array, spelling “SAL+TUG”, was defined. Each of the letters consti-
tutes an ideal permanent magnet with a magnetization of 1000 mT
in +z-direction. A depiction of this setup is given in figure 4.7. For
the facet solution, the surface of this magnet array was divided
into a total of 236 facets. The FEM simulation was performed with
Ansys© Maxwell.

4.3.3. Comparison in the Complex Magnet Array
Case

To compare the facet solution to the FEM simulation it was decided
to compute the norm of the magnetic field along a line above the
array. The line spanned from -30 mm to +30 mm in x-direction and
had y- and z-coordinates of 0 mm and 4.61 mm respectively. Along
this line 264 equally spaced observation points were defined. In
figure 4.8, the result of both the FEM as well as the facet simulation
are shown.

As can be seen, the two methods show good agreement, which
further underscores the validity of the facet solution. A better
understanding of the difference between the two solutions can
be obtained by inspecting the relative difference. In figure 4.9 the
relative difference, calculated by

∆r =
‖ H f acet −HFEM ‖
‖ H f acet ‖

(4.13)

is shown.

This analysis shows that both methods agree withing 1%. It has
to be noted, that the better interpretation of this difference is that
the FEM is within 1% of the facet solution, since the facet solution
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4.3. Complex Magnet Array

(a) View of the complex magnet array.

(b) View of the complex magnet array from a different angle.

Figure 4.7.: Depiction of the complex magnet array used in the simulation.

is based on analytical formulas. Accuracy was not the primary
interest for this comparison. This was the performance of each
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Figure 4.8.: Values of the norm of the magnetic field H on 264 points along the
line y = 0 mm, z = 4.61 mm. Calculated by the proposed facet code
(blue) and by Ansys© Maxwell (red). Below the plot of the norm of
the magnetic field, a front view of the magnet array is given on the
same x-positions for reference.

method, and in this regard the facet solution showed its benefits.
One simulation run of the FEM took

tFEM = 14 min 17 s ,

while the facet solution only took

t f acet = 0.51 s .

For the presented case these results constitute a speedup by a factor
of

tFEM

t f acet
≈ 1700 . (4.14)
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Figure 4.9.: Relative difference ∆r between the FEM simulation and the facet
solution, for 264 points along the line y = 0 mm, z = 4.61 mm.

A thorough discussion on how to interpret this performance in-
crease is warranted by the fundamental difference of the two meth-
ods analyzed. In the following this discussion is started by contrast-
ing the two methods and listing the performance affecting aspects
of the examined system for each approach.

The performance of the FEM is closely tied to the desired quality
of the approximating solution. As mentioned in Section 4.3.1 a more
accurate solution is obtained if a finer mesh and therefore, more
nodes are analysed. Since a larger number of nodes corresponds
to a larger system of equations that has to be solved, achieving
a more accurate FEM solution takes more time. Another aspect
affecting the performance of the FEM in the discussed scenario
is the the air gap between the observation points and the magnet.
The number of nodes scales with the simulated volume, and since
this volume increases with a larger air gap, the computation time
becomes longer. In the presented case, the air gap was deliberately
chosen to be very small, in order to minimize the disadvantage of
the FEM.

The performance of the facet solution is dependent on the num-
ber of input facets and the number of observation points. As men-
tioned in section 3.3 for k facets and l observation points, the proce-
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dure described in 3.2 has to be performed k× l times. Because the
whole code is vectorized, the computation time is not proportional
to the number of inputs. In Figure 4.10 the time it took the facet
code to calculate the field of one facet in l observation points is
shown, to emphasize this characteristic of the presented code. The
final caveat needed to be addressed in the performance comparison
is the shape of the magnet array in figure 4.7. This shape is very
beneficial to the facet solution, since there are large even surfaces
which are easily describable by triangles. When dealing with round
surfaces, a similar problem like the one discussed in section 4.2
would occur. To accurately describe a round surface by triangles,
many facets would be needed, which would result in a trade-off
between computation time and minimizing the approximation
error.

Figure 4.10.: Double-logarithmic plot showing the scaling of the computation
time t. Computed was the magnetic field of one facet on a grid
containing l points. In blue the timing of the vectorized code is
shown t(l). For reference the red line shows a linear increase tlinear,
following formula (4.15).

The linear increase shown in Figure 4.10 represents the linear
slope
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tlinear(l) = l · t(l = 0) . (4.15)

The plot shows the scaling advantages of the vectorized code, and
is in line with the findings in the paper introducing Magpylib [14,
Fig.6(b)].

4.4. Known Issues

Before concluding this thesis, it is necessary to discuss known short-
comings of the introduced code. During the testing and validation
of the results, two separate issues were identified.

In-plane Observation Point The first issue occurs, when the ob-
servation point lies in the plane of the facet. In such a case the
distance from the observation point to the plane is zero. This leads
to divergent terms in the equations for the H-field (2.43) to (2.45),
which was already addressed in the original paper by Rubeck et al.
[47]. For the case of c = 0, they write:

The normal component of the magnetic field Hz is dis-
continuous in crossing the surface . It is reasonable to
take Hz = 0 for c = 0 . It must also be pointed out
that the field components Hx and Hy are undefined for
c = 0 (the plane of the polygon). The divergent terms
cancel analytically when all the right triangles of a poly-
gon are combined together. It was analytically verified
on the case of the rectangle and numerically for other
polygonal shapes (the divergent terms are simply not
calculated).

In the current implementation, presented in this work, this case
was handled by returning a warning to the user. This approach was
taken because the whole calculation, for possibly multiple facets
and many observation points, is performed in a vectorized fashion.
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This special case only renders the calculation in the specific observa-
tion point invalid, but does not effect other observation points. One
way to correctly handle this special case without significant perfor-
mance decrease, would be to employ Boolean indexing. However,
this would add another layer of complexity to the code and un-
fortunately there was too little time to implement and thoroughly
test this approach. Adding the capability to deal with in-plane
observation points is planned for the future, and would increase
the applicability of the proposed solution. An example where this
issue manifests is the case of the triangular prism from section
4.2. In the presented validation the grid of the observation points
was shifted slightly. In Figure 4.11 the calculation of the relative
difference with equation for both the symmetrical as well as the
shifted grid is shown.

In this case, the observation points in the plane

y =
b
a

x (4.16)

lie exactly in the plane of one of the facets, and therefore represent
the special case, where c = 0, In this case the calculation fails, and
several Python exceptions are raised, which was expected.
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(a) Special case with in-plane observation point. Calculation on a perfectly symmetrical grid.

(b) Calculation on a equally spaced grid, but the x-component of the observation point is shifted
by 10 nm.

(c) Location of the triangular prism.

Figure 4.11.: Visualization of the c = 0 special case. Subfigure 4.11a shows a
perfectly symmetrical grid, while Subfigure 4.11b is shifted by
10 nm in +x-direction. The white points in figure are the points
where the calculation failed. Subfigure 4.11c shows a top view of
the triangular prism. Note the unequal axis representation.

Bug encountered during Validation As mentioned in the pre-
sented validation the x-coordinates of the observation points were
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shifted slightly away from a perfectly symmetrical grid. Calculating
the magnetic field of the cubic setup on a symmetrical grid, without
the shift, resulted in subfigure 4.12a. For comparison the original
calculation on the shifted grid is shown in subfigure 4.12b.

Some data points appear in white, because the relative difference
vanishes and a logarithmic scale was used. Figures 4.12a shows,
that the calculation tends to fail along the plane

y = −b
a

x (4.17)

in the chosen coordinate frame. This behaviour was encountered for
different parameters a and b. It is noteworthy, that the calculation
produces an apparently correct result on the second diagonal

y =
b
a

x (4.18)

and that no Python exceptions were raised in this case.

This concludes the discussion of the results and the validation of
the proposed facet code. The next section will provide a summary
and conclusion of the insights achieved in this thesis.
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(a) Special case, which leads to false results. Calculation on a perfectly symmetrical grid.

(b) Calculation on a equally spaced grid, but the x-component of the observation point is shifted
by 10 nm.

(c) Location of the cube

Figure 4.12.: Visualization of bug in the cubic magnet case. Subfigure 4.12a
shows a perfectly symmetrical grid, while subfigure 4.12b is shifted
by 10 nm in +x−direction. Note the different ranges in the two
plots. The white points in figures are the points where relative
difference was 0. Subfigure 4.11c shows a top view of the cube.
Note the unequal axis representation.
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This chapter presents a summary and discussion of the key find-
ings of this thesis. It will focus on the insights gathered from the
presented validation and provide context and interpretation.

The proposed method for the analytical calculation of the magnetic
field of hard magnetic facet bodies is based on formulas (2.43)
to (2.48), published by the group of Rubeck [47]. Based on this
theoretical ground an algorithm is introduced, which by means of
a geometric decomposition, is able to compute the magnetic field
of a homogeneously magnetically charged right or acute triangle. By
exploitation of the superposition principle and the use of efficient
code through vectorization and the NumPy library, it was possible
to write a function, that is able to perform the field computation of
hard magnetic facet bodies in a rapid fashion.

The correctness of the results produced by the facet code were
analysed via comparison to another already published analytical
solution - the Magpylib cuboid [14]. This comparison is described in
section 4.1.2 and figure 4.1 and shows the excellent accordance of
the two methods. Although no extensive performance comparison
was performed, a simple timing revealed a performance advantage
of the Magpylib solution in the range of one order of magnitude.
One source of the slightly inferior performance of the facet code
is the necessity of the geometric decomposition. While every step
in this decomposition is computationally light-weight, the amount
of steps prior to the evaluation of field calculating functions (2.43)
to (2.48) produces significant performance overhead cost. The time
consumed by the geometric decomposition was analyzed by the
use of profiling during code optimization. A detailed discussion of
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the results of this profiling was beyond the scope of this work and
is therefore not presented explicitly.

A showcase of the advantages of the newly introduced facet code
over existing solutions, was the analysis of a magnetic triangular
prism. This setup could only be approximated with the Magpylib
cuboid solution and the investigation of this case revealed the
advantages of the proposed facet code. While it is not possible to
achieve an accurate and fast result with the cuboid approximation,
the facet solution retains both the performance as well as the accu-
racy of the analytical formulas. In figure 4.4 the computation speed
advantage of the facet solution over the cuboid approximation is
shown. Figures 4.3 and 4.5 provide a deeper analysis in terms of
accuracy.

The final validation step was the comparison of the facet solution
to a state of the art finite element method simulation of a complex
magnet array, which is shown in figure 4.7. In figures 4.8 and 4.9 a
comparison of the calculated magnetic field of this array is shown.
The data presented in these figures further underscore the validity
of the fields computed by the proposed facet solution. Furthermore,
for this exact setup, a performance analysis revealed, that the
facet code outperformed the state of the art FEM simulation by a
factor of ≈ 1700. At the end of section 4.3.3 some context is given
on how to interpret this performance increase. This discussion
addresses the fundamental difference between the two calculation
methods and highlights aspects of the presented case that affected
the performance. For the facet code, the scaling with the number
of inputs was explicitly mentioned. With the context from section
3.3, figure 4.10 shows the impact of vectorized code on the scaling
with more inputs. Section 4.4 gives an overview of the two edge
cases, in which the proposed facet code is known to produce the
wrong result. One of them represents a limitation of the underlying
analytical formulas, while the second one is probably related to
the implementation and needs further analysis.

In this thesis a Python function is presented that is able to cal-
culate the magnetic field of hard magnetic facet bodies. Due to
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performance oriented programming and the application of ana-
lytical formulas, the presented code provides fast computation
times without sacrificing accuracy. Future research, built on the
foundation of the proposed facet code, could enable improvements
in magnetic system design and applications of computational mag-
netism. Which applications this could be, will be discussed in the
next chapter - the outlook.
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In this final chapter, an outlook to possible applications of the
proposed facet code will be given.

As mentioned in the chapter Motivation, the availability of high-
performance code to calculate the magnetic field of facet bodies
enables new applications in the field of magnetic system design.
Beyond the calculation of complex magnet shapes, the presented
facet code could be used to expand the applicability of analytical
methods beyond the case of ideal homogeneously magnetized per-
manent magnets. Using the facet solution it is possible to define
small polyhedral elements, which discretize a given magnet vol-
ume. In that way, the calculation of inhomogeneous magnetization
can be treated. Another application of this discretization would
be the treatment of demagnetization. Given a magnetic material,
build from discrete elements, for which the remnant permeability
is known, the self interaction and therefore, the demagnetization
can be approximated.
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Appendix A.

Derivation Rubeck Formulas

In chapter 2.3 formula (2.42) for the magnetic scalar potential Φm
was derived. Since one is interested in the magnetic field, not the
scalar potential, equation (2.33) can be applied

H = ∇Φm .

Then, according to Rubeck et. al. [47] the three components of H
for type A triangles can be written as:

Hx,A(r) =
σm

4πµ0

¨
S

r · i
r3 dS

=
σm

4πµ0

ˆ x=a

x=0

ˆ y=bx/a

y=0

−x
(x2 + y2 + c2)3/2 dxdy ,

(A.1)

Hy,A(r) =
σm

4πµ0

¨
S

r · j
r3 dS

=
σm

4πµ0

ˆ x=a

x=0

ˆ y=bx/a

y=0

−y
(x2 + y2 + c2)3/2 dxdy ,

(A.2)

Hz,A(r) =
σm

4πµ0

¨
S

r · k
r3 dS

=
σm

4πµ0

ˆ x=a

x=0

ˆ y=bx/a

y=0

c
(x2 + y2 + c2)3/2 dxdy ,

(A.3)
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with r = −x i− y j + c k. In the following the integration of each
of the components will be performed step by step. For Hx,A one
starts by pushing the prefactor to the left side:

4π µ0 Hx,A(r)
σm

=

ˆ x=a

x=0

ˆ y=bx/a

y=0

−x
(x2 + y2 + c2)3/2 dydx . (A.4)

Here two integrals can be defined and solved subsequently

I1,x(x) =
ˆ y=bx/a

y=0

1
(x2 + y2 + c2)3/2 dy , (A.5)

I2,x =

ˆ x=a

x=0
−x I1,x(x)dx . (A.6)

The integral I1,x can be solved by substituting

y =
√

x2 + c2 tan (u) . (A.7)

Therefore, the integration measure and the limits of the integration
can be written as

dy =
√

x2 + c2 (1 + tan2(u))du , (A.8)

u(y = 0) = 0 , (A.9)

u
(

y =
b x
a

)
= arctan

(
b x

a
√

x2 + c2

)
. (A.10)

Putting this substitution back into I1,x yields
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I1,x =

ˆ arctan
(

b x
a
√

x2+c2

)
0

√
x2 + c2 (1 + tan2(u))

((x2 + c2) + (x2 + c2) tan2(u))3/2 du .

(A.11)

Collecting terms and expressing the tangent by the quotient of sine
and cosine results in

I1,x =
1

x2 + c2

ˆ arctan
(

b x
a
√

x2+c2

)
0

1(
1 + sin2(u)

cos2(u)

)1/2 du . (A.12)

Expanding the fraction in the denominator, using the trigonometric
identity then resolving the compound fraction finally leads to

I1,x =
1

x2 + c2

ˆ arctan
(

b x
a
√

x2+c2

)
0

cos (u)du . (A.13)

Integrating and evaluating the boundaries yields

I1,x =
1

x2 + c2 sin
(

arctan
(

b x
a
√

x2 + c2

))
. (A.14)

Using

sin (arctan (x)) =
x√

1 + x2
, (A.15)

and plugging this into equation (A.14) gives

I1,x =
1

x2 + c2

b x
a
√

x2+c2√
1 + b2 x2

a2 (x2+c2)

. (A.16)
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Collecting terms simplifies the equation to

I1,x(x) =
b x

(x2 + c2)
√
(a2 + b2) x2 + a2c2

. (A.17)

Now that the first integration step is finished, the second integral
can be calculated. Inserting (A.17) into (A.6) gives the starting point
for the evaluation of the second integral.

I2,x = −b
ˆ x=a

x=0

x2

(x2 + c2)
√
(a2 + b2) x2 + a2c2

dx . (A.18)

This integral can again be solved by substitution. Replacing

x√
(a2 + b2) x2 + a2c2

= u , (A.19)

and therefore

x =
acu√

1− (a2 + b2) u2
, (A.20)

u(x = 0) = 0 , (A.21)

u(x = a) =
1√

a2 + b2 + c2
, (A.22)

and

dx =

(
(a2 + b2) x2 + a2c2)3/2

a2c2 du . (A.23)

Combining the substitution of dx with the integral I2,x yields
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I2,x = −b
ˆ 1/

√
a2+b2+c2

x=0

x2 ((a2 + b2) x2 + a2c2)3/2

a2c2 (x2 + c2)
√
(a2 + b2) x2 + a2c2

du .

(A.24)

Cancellation and pulling constant factors in front of the integral
simplifies to

I2,x = − b
a2c2

ˆ 1/
√

a2+b2+c2

x=0

x2 ((a2 + b2) x2 + a2c2)

x2 + c2 du . (A.25)

Adding 0 to the numerator in the form of ±c ((a2 + b2) x2 + a2c2),
enables splitting the integral into two parts:

I2,x = − b
a2c2

ˆ 1/
√

a2+b2+c2

x=0

(x2 + c2) ((a2 + b2) x2 + a2c2)

x2 + c2 du

+
b

a2c2

ˆ 1/
√

a2+b2+c2

x=0

c2 ((a2 + b2) x2 + a2c2)

x2 + c2 du .

(A.26)

Canceling x2 + c2 in the first term and c2 in the second one, com-
bined with substituting x from (A.20) yields

I2,x = − b
a2c2

ˆ 1/
√

a2+b2+c2

x=0

(
a2c2u2(a2 + b2)

1− u2(a2 + b2)
+ a2c2

)
du

+
b
a2

ˆ 1/
√

a2+b2+c2

x=0

a2c2u2(a2+b2)
1−u2(a2+b2)

+ a2c2

a2c2u2

1−u2(a2+b2)
+ c2

du .

(A.27)

Cancellation of a2c2 in both integrals leads to
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I2,x = −b
ˆ 1/

√
a2+b2+c2

x=0

(
u2(a2 + b2)

1− u2(a2 + b2)
+ 1
)

du

+b
ˆ 1/

√
a2+b2+c2

x=0

u2(a2+b2)
1−u2(a2+b2)

+ 1
a2u2

1−u2(a2+b2)
+ 1

du .

(A.28)

Resolving the fractions and collecting terms simplifies to

I2,x = b
ˆ 1/

√
a2+b2+c2

x=0

(
−1

1− u2(a2 + b2)
+

1
1− u2b2

)
. (A.29)

Both the terms have the form

I =
ˆ

1
1−m2u2 du , (A.30)

which can be factorized and integrated like

I =
ˆ

1
1−m2u2 du (A.31)

=

ˆ
1

(1 + mu) (1−mu)
du (A.32)

=
1
2

ˆ
1

1 + mu
+

1
1−mu

du (A.33)

=
1

2m
ln
(

1 + mu
1−mu

)
+ C . (A.34)

The integration of (A.29) and evaluation within its limits results
in
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I2,x =
−b

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
+

1
2

ln
(

Dabc + b
Dabc − b

)
, (A.35)

with the abbreviations

Dabc =
√

a2 + b2 + c2 ,

Dab =
√

a2 + b2 ,

Dac =
√

a2 + c2 .

Therefore, equation (A.1) evaluates to the formula found by Rubeck
et.al

Hx,A =
σm

4πµ0

(
−b

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
+

1
2

ln
(

Dabc + b
Dabc − b

))
.

(A.36)

Integration of equation for the y-component can be performed
similarly to the derivation for the x-component. Starting by pushing
the factors to the other side of equation (A.2)

4π µ0 Hy,A(r)
σm

=

ˆ x=a

x=0

ˆ y=bx/a

y=0

−y
(x2 + y2 + c2)3/2 dydx . (A.37)

By exchanging the order of integration, and adjusting the integra-
tion limits, this can be written as

4π µ0 Hy,A(r)
σm

=

ˆ y=b

y=0

ˆ x=ay/b

x=0

−y
(x2 + y2 + c2)3/2 dxdy , (A.38)
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which can be written as two integrals

I1,y(y) =
ˆ x=ay/b

x=0

−1
(x2 + y2 + c2)3/2 dx , (A.39)

I2,y =

ˆ y=b

y=0
−y I1,y(y)dy . (A.40)

Integral I1,y(y) can be solved by substituting

x =
√

y2 + c2 tan(u)

and evaluates to

I1,y(y) =
ay

(y2 + c2)
√
(a2 + b2)y2 + b2c2

. (A.41)

The steps resemble the derivation from (A.5) to (A.17). Therefore,
I2,y looks like

I2,y =

ˆ y=b

y=0
−y

ay
(y2 + c2)

√
(a2 + b2)y2 + b2c2

dy , (A.42)

and can be solved the same way as integral (A.18). Following the
steps from above ((A.18) to (A.35)) the equation for Hy,A is found

Hy,A =
σm

4πµ0

{
a

2Dab
ln
(

Dabc + Dab
Dabc − Dab

)
− 1

2
ln
(

Dac + a
Dac − a

)}
(A.43)

Integration of the z-component again starts with pushing the pref-
actors in equation (A.3) to the right-hand side:
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4π µ0 Hz,A(r)
c σm

=

ˆ x=a

x=0

ˆ y=bx/a

y=0

1
(x2 + y2 + c2)3/2 dydx , (A.44)

which can be written as to integrals:

I1,z(x) =
ˆ bx

a

y=0

1
(x2 + y2 + c2)3/2 dy , (A.45)

I2,z =

ˆ x=a

x=0
I1,z(x)dx . (A.46)

The evaluation from I1,z(x) is equivalent to the derivation per-
formed from (A.5) to (A.17) and results in

I1,z(x) =
b
a

1
(x2 + c2)

x√
a2+b2

a2 x2 + c2
. (A.47)

This expression can now be integrated over dx to calculate I2,z

I2,z =

ˆ x=a

x=0

b
a

1
(x2 + c2)

x√
a2+b2

a2 x2 + c2
dx , (A.48)

by substituting

tan (u) =
a
b

√
a2 + b2

a2
x2

c2 + 1 , (A.49)

and hence

x√
a2+b2

a2 x2 + c2
dx =

(
1 + tan2 (u)

) abc
a2 + b2 du , (A.50)
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x2 + c2 =
(

1 + tan2 (u)
) b2c2

a2 + b2 . (A.51)

With these substitutions (A.48) reads

I2,z =
b
a

a2 + b2

b2c2
abc

a2 + b2

ˆ u(x=a)

u(x=0)

1(
1 + tan2 (u)

) (1 + tan2 (u)
)

du .

(A.52)

After cancelling fractions this simplifies to

I2,z =
c
c2

ˆ u(x=a)

u(x=0)
1du . (A.53)

The integration limits follow from (A.49) and read

u(x = 0) = arctan
( a

b

)
(A.54)

u(x = a) = arctan
( a

bc
Dabc

)
(A.55)

Evaluation of (A.53) with these limits and taking the prefactor into
account yields the equation found in Rubeck’s paper for Hz

Hz,A =
σm

4πµ0

{
arctan

(
a Dabc

bc

)
− |c|

c
arctan

( a
b

)}
(A.56)

The equations for type B triangles (2.46) to (2.48) can be derived
analogously. The derivation only differs in the use of the geometry
parameters a, b and c, according to figure 2.2.
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Code Listing

1 import numpy as np

2 # import numpy functions into the local namespace

3 # for readability and for small performance

improvement (no need to call numpy namespace)

4 from numpy import absolute ,arctan2 ,argsort ,array ,cross ,

empty ,empty_like ,isclose ,log

5 from numpy import newaxis ,ones ,pi ,sign ,size ,sqrt ,

swapaxes ,tile ,zeros_like

6 from numpy.linalg import norm

7

8

9 def get_n_plane(T1 ,T2 ,T3 ,inner_point):

10 ’’’Compute the normalized outward pointing normal

vector to the plane defined by triangle T1 , T2 and

T3.

11

12 Outward in this context is indirectly defined by

the input "inner_point", which gives a point inside

13 the magnet to which T1 , T2 and T3 define a surface

facet. In the workflow this function is used in, it

is

14 easier to give an inner point rather than an outer

point.

15 To calculate the normalized outward pointing normal

vector , one first calculates one of the two plane

normals ,

16 by taking the cross product of two plane vectors -

in this case T1-T2 and T1 -T3.

17 This vector is the unoriented plane normal:

un_plane

99



Appendix B. Code Listing

18 Then a vector is defined , that - by construction -

points out of the magnet: vector_out.

19 Taking the sign of the inner product of the ’

unoriented ’ plane normal and the outwardpointing

vector

20 indicates if they both point outward (+) or if

un_plane points inward (-).

21 Given this information one can multiply the

unoriented plane normal with this sign , and

therefore

22 calcuate the outward pointing plane normal , which

then only has to be normalized.

23

24 Inputs: /kxl = number of facets x number of

observation points/

25 T1: (kxl ,3) ndarray float64 First

triangle point defining the plane

26 T2: (kxl ,3) ndarray float64

Second triangle point defining the plane

27 T3: (kxl ,3) ndarray float64 Third

triangle point defining the plane

28 inner_point: (kxl ,3) ndarray float64 Point

inside the magnet , to which

29 T1 ,

T2 and T3 define a surface facet

30 Outputs:

31 n_plane (kxl ,3) ndarray float64

normalized outward pointing , plane normal vector

32 ’’’

33

34 # get the unoriented plane normal | see eq .(3.30)

35 un_plane = cross(T1-T2, T1-T3)

36

37 # get an outward pointing vector | see eq .(3.31)

38 vector_out = T1-inner_point

39

40 # get the sign of the projection of vector_out onto

un_plane

41 sig = sign(np.sum(un_plane*vector_out , axis=1,

keepdims=True))

42

43 # correctly oriented (sign) and normalized plane

normal | see eq .(3.32)

44 n_plane = sig*un_plane/norm(un_plane , axis=1,
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keepdims=True)

45

46 return n_plane

47

48

49 def orthogonal_projection_plane_3D(T1 ,P,n_plane):

50 ’’’Get the orthogonal projection of a point onto a

plane in 3D.

51

52 This is done by subtracting the component

orthogonal to the plane from the vector P-X, where

53 X is an arbitrary point on the plane (in this case

T1).

54 The plane is defined by T1 and the normalized plane

normal vector n_plane.

55

56 Inputs: /kxl = number of facets x number of

observation points/

57 T1: (kxl ,3) ndarray float64; First

triangle point defining the plane

58 P: (kxl ,3) ndarray float64; Point to

be orthogonally projected onto the plane defined

59 by T1

and n_plane.

60 n_plane: (kxl ,3) ndarray float64;

normalized plane normal vector

61

62 Output:

63 RAP_plane: (kxl ,3) ndarray float64;

Projection of P onto the plane

64 ’’’

65 # calculate the component of P-T1 that is

orthogonal to the plane

66 # -> the projection of P-T1 onto n_plane

67 h = np.sum((P-T1)*n_plane , axis=1,keepdims=True)

68

69 # calculate the orthogonal projection of P onto the

plane | see eq .(3.1)

70 RAP_plane = P-h*n_plane

71

72 return(RAP_plane)

73

74

75 def getOrAngle3D(V1 ,V2 ,n_plane):
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76 """ Calculate the oriented angle FROM V1 TO V2 for 3

D vectors.

77

78 See subsection section 3.2.2

79 Inputs: /kxl = number of facets x number of

observation points/

80 V1: (kxl ,3) ndarray float 64; first

input vector

81 V1: (kxl ,3) ndarray float 64;

second input vector

82 n_plane: (kxl ,3) ndarray float 64;

normalized outward -pointing plane normal vector

83

defining the "up direction"

84

85 Outputs:

86 oriented_angle: (kxl ,) numpy float64;

oriented angle from V1 to V2 in radians

87 in

range [-pi;pi]

88 """

89 #precalculate the arguments of arctan2 for

readability

90 #numerator

91 arg1 = np.sum(cross(V1 , V2)*n_plane ,axis =1)

92 #denominator

93 arg2 = np.sum(V1*V2 ,axis =1)

94 #calculate the oriented angle in the right quadrant

with arctan2 | see eq .(3.12)

95 oriented_angle = arctan2(arg1 , arg2)

96

97 return oriented_angle

98

99

100 def triangle_sort(T1 ,T2 ,T3 ,RAP_P ,n_plane ,num):

101 ’’’Function to consistently sort three input points

representing the corners of a triangle.

102

103 This function assures that T1 ,T2 and T3 are

consistently sorted like follows:

104 In the local coordinate system with n_plane

pointing in +z direction ,

105 the points are sorted so that when looking from

RAP_P towards the triangle
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106 A is the far left point , B is the far right point

and C is the middle point.

107

108 Inputs: /kxl = number of facets x number of

observation points/

109 T1: (kxl ,3) ndarray float64; First

triangle point

110 T2: (kxl ,3) ndarray float64; Second

triangle point

111 T3: (kxl ,3) ndarray float64; Third

triangle point

112 RAP_P: (kxl ,3) ndarray float64; Right

angle point of the global observation point

113 onto

the triangle plane

114 n_plane: (kxl ,3) ndarray float 64;

normalized plane normal vector

115 num: kxl int

116

117 Outputs:

118 A: (kxl ,3) ndarray float64; Leftest

triangle point

119 B: (kxl ,3) ndarray float64; Rightest

triangle point

120 C: (kxl ,3) ndarray float64; Middle

triangle point

121 ’’’

122

123 #put the points into an array to sort them

afterwards (see numpy argsort)

124 points = array([T1 ,T2 ,T3])

125

126 #calculate the angles between RAP_P -T1 and RAP_P -T1

, RAP_P -T2 and RAP_P -T3 respectively

127 angles = zeros_like(T1)

128 # angles [:,0] always 0 by construction

129 angles [:,1] = getOrAngle3D(RAP_P -T1 , RAP_P -T2 ,

n_plane)

130 angles [:,2] = getOrAngle3D(RAP_P -T1 , RAP_P -T3 ,

n_plane)

131 # get the indices that sort the angles -array

132 angle_indices = argsort(angles , axis =1)

133

134 # ran = range(num) for correctly indexing the axis
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=1 dimension of points

135 ran = range(num)

136 # asign the points in the described way

137 A = points[angle_indices [:,2],ran ,:]

138 B = points[angle_indices [:,0],ran ,:]

139 C = points[angle_indices [:,1],ran ,:]

140

141 return A,B,C

142

143

144 def orthogonal_projection_tria_edges_3D(A,B,C,P):

145 ’’’Returns the orthogonal projection of a point P

onto all three edges of the triangle A-B-C.

146

147 This is done by first calculating the normalized

triangle edge vectors and

148 the vectors pointing from the corners to the point

P. Then the inner product

149 of the corner -to-P vectors with the normalized edge

vectors gives the distance the

150 projection point is from the corner. Going this

distance from the corner point in the direction

151 of the normalized edge vector yields the desired

projection -/right -angle -point.

152

153 Inputs: /kxl = number of facets x number of

observation points/

154 A: (kxl ,3) ndarray float64; Leftest

triangle point

155 B: (kxl ,3) ndarray float64; Rightest

triangle point

156 C: (kxl ,3) ndarray float64; Middle

triangle point

157 P: (kxl ,3) ndarray float64;

Observation point

158

159 Outputs:

160 V5 (3*kxl ,3) ndarray float64; Array

containing the right angle points:

161 RAP_AB: (kxl ,3) ndarray float64;

orthogonal projection of P onto A-B

162 RAP_AC: (kxl ,3) ndarray float64;

orthogonal projection of P onto A-C

163 RAP_BC: (kxl ,3) ndarray float64;
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orthogonal projection of P onto B-C

164 ’’’

165

166 # normalization of triangle edge vectors

167 # array of edge vectors

168 V1 = array ([(A-B), (A-C), (B-C)])

169 # array of normalized edge vectors

170 V2 = V1/norm(V1 , axis=2, keepdims=True)

171

172 # projection on edge lines

173 # array of corner points

174 V3 = array([A, A, B])

175 # array of vectors pointing from corners to P

176 V4 = array ([(P-A), (P-A), (P-B)])

177 # calculating the projection point | see eq

.(3.14)

178 V5 = V3 + np.sum(V4*V2 , axis=2, keepdims=True)*V2

179

180 return V5

181

182

183 def InOut_BigSmall_Fun(A,B,C,RAP_P ,num_facets):

184 ’’’Determine if RAP_P lies inside our outside the

triangle A,B,C and if RAP_P lies in a the big or

small sector of this triangle.

185

186 RAP_P = RAP_P

187 ------- InOut -------

188 define a local coordinate system by putting C into

the origin and defining

189 A-C and B-C as the local basis.

190 Then RAP_P can be written as

191 # RAP_P = C + p*(A-C) + q*(B-C)

192 subtracting C and renaming RAP_P -C -> v0; A-C -> v1

; B-C -> v2 yields:

193 v0 = p*v1+q*v2

194 taking this equation and performing the dot product

(.) once with v1 and once with v2 results in the

following

195 system of equations :

196 # v0.v1 = p*v1.v1+q*v2.v1

197 # v0.v2 = p*v1.v2+q*v2.v2

198

199 solving this yields:
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200 # p = [(v0.v1)*(v2.v2) -(v0.v2)(v2.v1)] / [(v1.v1)*(

v2.v2)-(v1.v2)(v2.v1)]

201 # q = [(v0.v2)*(v1.v1) -(v0.v1)(v1.v2)] / [(v1.v1)*(

v2.v2)-(v1.v2)(v2.v1)]

202 the conditions for RAP_P lying in the triangle is

that all of the following are true

203 # p > 0

204 # q > 0 # q always has same sign as p

205 # p + q < 1

206

207 ------- BigSmall -------

208 Big sector: RAP_P lies in the same sector as the

triangle

209 Small sector: RAP_P lies in the opposite sector the

triangle

210

211 This is equivalent to p > 0.

212

213 Inputs: /kxl = number of facets x number of

observation points/

214 A: (kxl ,3) ndarray float64; Leftest

triangle point

215 B: (kxl ,3) ndarray float64; Rightest

triangle point

216 C: (kxl ,3) ndarray float64; Middle

triangle point

217 RAP_P: (kxl ,3) ndarray float64;

Projection of the observation point onto the

triangle plane

218

219 Outputs:

220 InOut: (kxl ,1) ndarray float64; Array

describing if RAP_P is inside (-1) or outside (1) the

triangle

221 BigSmall: (kxl ,1) ndarray float64; Array

describing if RAP_P is in the big (1) or small (-1)

sector of the triangle

222 ’’’

223 # define the vectors

224 # must NOT be normalized. Else condition is

meaningless

225 v0 = RAP_P -C

226 v1 = (A-C)

227 v2 = (B-C)
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228

229 # precalculate some dot products

230 v0_v1 = np.sum(v0*v1, axis =1)

231 v0_v2 = np.sum(v0*v2, axis =1)

232 v1_v2 = np.sum(v1*v2, axis =1)

233 v1_v1 = np.sum(v1**2, axis =1)

234 v2_v2 = np.sum(v2**2, axis =1)

235

236 # calculate the constants p and q

237 p = (v0_v1*v2_v2 -v0_v2*v1_v2)/(v1_v1*v2_v2 -v1_v2

**2)

238 q = (v0_v2*v1_v1 -v0_v1*v1_v2)/(v1_v1*v2_v2 -v1_v2

**2)

239

240 # allocate output

241 InOut = ones((num_facets ,1))

242 BigSmall = -ones((num_facets ,1))

243

244 # bigsmall condition

245 bool_index = p>0

246 BigSmall[bool_index] = 1 #Big

247

248 # inout condition

249 bool_index2 = np.logical_and(bool_index ,(p+q) <1)

250 InOut[bool_index2] = -1 # inside

251

252 return InOut , BigSmall

253

254

255 def getLenUnit(V):

256 ’’’ compute length and unit vector of given input

vector ’’’

257 # calculate the side length

258 ab = norm(V,axis =2)

259 # catch ab == 0 case

260 bool_index = np.logical_not(isclose(ab ,0))

261 # determine the normalized vector describing the

triangle edge

262 # keep the newaxis indexing , because for ab the

dimension reduction is intended

263 # set xy to 0 if ab==0 and calculate normally

otherwise

264 xy = np.zeros_like(V)

265 xy[bool_index] = V[bool_index ]/ab[bool_index ][:,
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newaxis]

266 return ab , xy

267

268

269 def get_Rubeck_parameters(A,B,C,P,RAP_P ,RAP_AB ,RAP_AC ,

RAP_BC ,n_plane ,num):

270 ’’’Calculate all parameters of the sub -triangles

necessary to apply the Rubeck2013 formula.

271

272 These parameters are the geometry parameters a,b

and c, if the sub -triangles are Type A or B,

273 and the sign to correctly sum up the partial fields

.

274 For the calculation of the field of the (!) acute or

right (!) A-B-C triangle in the observation point P

275 A-B-C has to be divided into 6 right triangles:

276 #RAP_P -RAP_AC -C

277 #RAP_P -RAP_BC -C

278 #RAP_P -RAP_AC -A

279 #RAP_P -RAP_BC -B

280 #RAP_P -RAP_AB -A

281 #RAP_P -RAP_AB -B

282 For each of these 6 triangles the geometry

paramters a,b and c as well as

283 their Type (A or B) and their sign (+1 or -1) are

calculated.

284 In addition to that also the local x-,y- and z-axes

for each triangle are returned.

285 These are needed to transform the field from the

local coordinate system into the global one.

286

287 Inputs: /kxl = number of facets x number of

observation points/

288 A: (kxl ,3) ndarray float64;

Leftest triangle point (see sorting)

289 B: (kxl ,3) ndarray float64;

Rightest triangle point

290 C: (kxl ,3) ndarray float64;

Middle triangle point

291 P: (kxl ,3) ndarray float64;

Observation point

292 RAP_P: (kxl ,3) ndarray float64;

orthogonal projection of P onto triangle plane

293 RAP_AB: (kxl ,3) ndarray float64;

108



orthogonal projection of P onto A-B

294 RAP_AC: (kxl ,3) ndarray float64;

orthogonal projection of P onto A-C

295 RAP_BC: (kxl ,3) ndarray float64;

orthogonal projection of P onto B-C

296 n_plane: (kxl ,3) ndarray float64;

normalized outward -pointing plane normal vector

297

298 Outputs:

299 Rubeck_as: (kxl ,6) ndarray float64;

Geometry parameters a for each sub -triangle

300 Rubeck_bs: (kxl ,6) ndarray float64;

Geometry parameters b for each sub -triangle

301 Rubeck_cs: (kxl ,6) ndarray float64;

Geometry parameters c for each sub -triangle

302 x_local: (kxl ,6,3) ndarray float64; local

x-axis for each sub -triangle

303 y_local: (kxl ,6,3) ndarray float64; local

y-axis for each sub -triangle

304 z_local: (kxl ,6,3) ndarray float64; local

z-axis for each sub -triangle

305 Rubeck_signs: (kxl ,6) ndarray float64; Sign

of each sub -triangle , denoting its contribution

306 to

the total triangle

307 maskA: (kxl ,6) ndarray bool; Array

containing the boolean info if a sub triangle is

type A

308 maskB: (kxl ,6) ndarray bool; Array

containing the boolean info if a sub triangle is

type B

309 ’’’

310

311 # order of subTriangles per facet:

312 #rap -rap_AC -C

313 #rap -rap_BC -C

314 #rap -rap_AC -A

315 #rap -rap_BC -B

316 #rap -rap_AB -A

317 #rap -rap_AB -B

318

319 # get Rubeck Types (for each subTriangle)

----------------- | see 3.2.5

320 # get the type by inspecting if the oriented plane
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normal (n_plane) is parallel (Type A: type = 1) or

321 # antiparallel (Type B: type = -1) to (RAP_XY -

RAP_P cross X/Y-RAP_XY) (-> order matters !)

322 #

323 # calculate this in fully vectorized fashion by

contructing large arrays on which the same

operations are performed

324 # V1 "first" leg of the triangle for cross product

325 V1 = array ([RAP_AC -RAP_P , RAP_BC -RAP_P , RAP_AC -

RAP_P , RAP_BC -RAP_P , RAP_AB -RAP_P , RAP_AB -

RAP_P ])

326 # V2 "second" leg of the triangle for cross product

327 V2 = array ([C-RAP_AC , C-RAP_BC , A-

RAP_AC , B-RAP_BC , A-RAP_AB , B-

RAP_AB ])

328 Rubeck_types = sign(np.sum(cross(V1 , V2 , axis =2)*

n_plane , axis =2)).T # transpose for dim consistency

329

330 # get a mask for type A and B to correctly asign

the parameters

331 maskA = Rubeck_types == +1

332 maskB = Rubeck_types == -1

333

334 # get Rubeck signs (for each subTriangle)

----------------- | see 3.2.5

335 Rubeck_signs= ones([num , 6])

336 # test inside or outside and Big or small sektor

337 InOut ,BigSmall = InOut_BigSmall_Fun(A, B, C, RAP_P ,

num)

338 #rap -rap_AC -C and rap -rap_BC -C are always +1,

compute remaining 4

339 V3 = array ([(A-RAP_AC)*(A-C), (B-RAP_BC)*(B-C), -(A

-RAP_AB)*(A-B)*InOut , -(B-RAP_AB)*(B-A)*InOut ])

340 Rubeck_signs [:,2:] = BigSmall*sign(np.sum(V3 , axis

=2)).T

341

342 # compute a,b,c and local unit vectors

--------------------

343 # triangle edge vectors (for all subTriangles)

344 V4 = swapaxes(array ([RAP_AC -RAP_P , RAP_BC -RAP_P ,

RAP_AC -RAP_P , RAP_BC -RAP_P , RAP_AB -RAP_P , RAP_AB -

RAP_P ]), 0, 1)

345 V5 = swapaxes(array ([C-RAP_AC , C-RAP_BC , A-RAP_AC ,

B-RAP_BC , A-RAP_AB , B-RAP_AB ]), 0, 1)
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346 lengthV4 ,unitV4 = getLenUnit(V4)

347 lengthV5 ,unitV5 = getLenUnit(V5)

348

349 # assign a-b-c parameters

350 Rubeck_as = empty ([num ,6])

351 Rubeck_bs = empty ([num ,6])

352 # distance P to RAP_P

353 Rubeck_cs_0 = norm(P-RAP_P , axis=1, keepdims=True)

354 if any(isclose(Rubeck_cs_0 ,0)): # find a better way

to catch c == 0 special case

355 print(’warning! small c in at least one facet ’)

356 # tile for arr shape (num ,6)

357 Rubeck_cs = tile(Rubeck_cs_0 ,(1,6))

358

359 # assign a and b paramters

360 Rubeck_as[maskA] = lengthV4[maskA]

361 Rubeck_as[maskB] = lengthV5[maskB]

362 Rubeck_bs[maskA] = lengthV5[maskA]

363 Rubeck_bs[maskB] = lengthV4[maskB]

364

365 # local unit vectors

366 x_local = empty([num ,6,3])

367 y_local = empty([num ,6,3])

368 # zaxis is always normalized P-RAP_P.

369 # tile for array shape (num ,6,3)

370 z_local = tile (((P-RAP_P)/Rubeck_cs_0)[:,newaxis

,:],(1,6,1))

371

372 # assign local x and y axis

373 x_local[maskA] = unitV4[maskA]

374 x_local[maskB] = unitV5[maskB]

375 y_local[maskA] = unitV5[maskA]

376 y_local[maskB] = unitV4[maskB]

377

378 return Rubeck_as ,Rubeck_bs ,Rubeck_cs ,x_local ,

y_local ,z_local ,Rubeck_signs ,maskA ,maskB

379

380

381 def Rubeck_formula_A(a,b,c):

382 ’’’Formula to calculate the field of a

homogeneously charged right triangle of type A,

after Rubeck2013.

383

384 Function accepts array input
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385 Inputs: /kxl = number of facets x number of

observation points/

386 a: (kxl ,) ndarray float64; side length

of the right triangle

387 b: (kxl ,) ndarray float64; side length

of the right triangle

388 c: (kxl ,) ndarray float64; distance of

the observation point to the triangle corner

389

390 Outputs:

391 field: (kxl ,3) ndarray float64; field vector

in the observation point

392 ’’’

393

394 Dab = sqrt(a**2+b**2)

395 Dac = sqrt(a**2+c**2)

396 Dabc = sqrt(a**2+b**2+c**2)

397 Hx = (-b/2./ Dab)*log((Dabc+Dab)/(Dabc -Dab)) + 1/2.*

log((Dabc+b)/(Dabc -b))

398 Hy = (a/2./ Dab)*log((Dabc+Dab)/(Dabc -Dab)) - 1/2.*

log((Dac+a)/(Dac -a))

399 Hz = arctan2 ((a*Dabc),(b*c)) - absolute(c)/c*

arctan2(a,b)

400 field = array ([Hx,Hy,Hz]).T

401 return field

402

403

404 def Rubeck_formula_B(a,b,c):

405 ’’’Formula to calculate the field of a

homogeneously charged right triangle of type B,

after Rubeck2013.

406

407 Function accepts array input

408 Inputs: /kxl = number of facets x number of

observation points/

409 a: (kxl ,) ndarray float64; side length

of the right triangle

410 b: (kxl ,) ndarray float64; side length

of the right triangle

411 c: (kxl ,) ndarray float64; distance of

the observation point to the triangle corner

412

413 Outputs:

414 field: (kxl ,3) ndarray float64; field vector
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in the observation point

415 ’’’

416 Dab = sqrt(a**2+b**2)

417 Dbc = sqrt(b**2+c**2)

418 Dabc = sqrt(a**2+b**2+c**2)

419 Hx = (b/2./ Dab)*log((Dabc+Dab)/(Dabc -Dab)) - 1/2.*

log((Dbc+b)/(Dbc -b))

420 Hy = (-a/2./ Dab)*log((Dabc+Dab)/(Dabc -Dab)) + 1/2.*

log((Dabc+a)/(Dabc -a))

421 Hz = -arctan2 ((b*Dabc),(-a*c)) - absolute(c)/c*

arctan2(b,a)

422 field = array ([Hx,Hy,Hz]).T

423 return field

424

425

426 def Bfield_FacetV(MAG , DIM , POSO):

427 ’’’Calculate the field of homogeneously "

magnetically charged" triangles defined by point

arrays

428 T1 -T2 -T3 in the observation points P.

429

430 Therefore do the following steps (vectorized):

431 - calculate the orthogonal projection of P onto

the triangle plane.

432 - sort the triangle corner points for

consistency.

433 - calculate the orthogonal projection of P onto

the triangle edges.

434 - now the input triangles is devided into 6

smaller right triangles.

435 - get the geometry parameters , the local axes ,

the Rubeck Types and the sign of the sub -triangles.

436 - calculate the field in the local coordinate

system for each sub -triangle.

437 - transform the local fields into the global

coordinate frame.

438 - sum the sub -triangles back up according to

their sign.

439 Inputs: /k = number of facets; l =

number of observation points/

440 MAG: (k,3) ndarray float64;

Magnetization of the body the facet belongs to

441 in

the global coordinate frame
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442

sigma is derived from MAG

443 DIM: (k,4,3) ndarray float64; Array

describing the geometry of the system

444 4:

three triangle points and 1 point describing "inside

"

445 POSO: (l,3) ndarray float64;

Observation Point

446

447 Outputs:

448 field_return: (l,3) ndarray float64; total

field of all facets in points P in global basis

449 ’’’

450

451 #####################################

452 # enables the vectorized calculation | See Section

3.3

453 # number of input facets and observation points

454 num_facets_in = size(DIM , axis =0)

455 num_POSOs = size(POSO , axis =0)

456

457 # tile and repeat input according to figure 3.7

458 DIM = np.tile(DIM ,[num_POSOs ,1,1])

459 MAG = np.tile(MAG ,[num_POSOs ,1])

460 POSO = np.repeat(POSO ,num_facets_in ,axis =0)

461

462 # num = kxl

463 num = size(DIM , axis =0)

464 ####################################

465

466 # extract the input points

467 T1 = DIM[:,0]

468 T2 = DIM[:,1]

469 T3 = DIM[:,2]

470 inner_point = DIM[:,3]

471

472 # compute outward pointing plane normal vector |

See Section 3.3 DIM

473 n_plane = get_n_plane(T1 , T2 , T3 , inner_point)

474

475 # get right angle point (projection point) of P

onto triangle plane | See 3.2.1

476 RAP_P = orthogonal_projection_plane_3D(T1, POSO ,
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n_plane)

477

478 # sort T1 ,T2 ,T3 to enable Rubeck formula

application | See 3.2.2

479 A,B,C = triangle_sort(T1 , T2 , T3 , RAP_P , n_plane ,

num)

480

481 # get the orthogonal projections of P onto the

triangle edges | See 3.2.3

482 RAP_AB ,RAP_AC ,RAP_BC =

orthogonal_projection_tria_edges_3D(A, B, C, POSO)

483

484 # get the geometry parameters , the local axes , the

Rubeck types and the signs | See 3.2.5

485 a,b,c,x_local ,y_local ,z_local ,Rubeck_signs ,maskA ,

maskB = \

486 get_Rubeck_parameters(A, B, C, POSO , RAP_P ,

RAP_AB , RAP_AC , RAP_BC , n_plane , num)

487

488 # initialize arrays to store the local fields of

the sub -triangles

489 field_local_part = empty((num ,6,3))

490

491 # calculate the field for both types for all sub -

triangles

492 field_local_part[maskA] = Rubeck_formula_A(a[maskA

], b[maskA], c[maskA ])

493 field_local_part[maskB] = Rubeck_formula_B(a[maskB

], b[maskB], c[maskB ])

494

495 # transform field of each sub -triangles from

respective local to global | See 3.2.5

496 field_global_part = empty_like(field_local_part)

497 field_global_part [:,:,0] = field_local_part [:,:,0]*

x_local [:,:,0]+ \

498 field_local_part [:,:,1]*

y_local [:,:,0]+ \

499 field_local_part [:,:,2]*

z_local [:,:,0]

500

501 field_global_part [:,:,1] = field_local_part [:,:,0]*

x_local [:,:,1]+ \

502 field_local_part [:,:,1]*

y_local [:,:,1]+ \
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503 field_local_part [:,:,2]*

z_local [:,:,1]

504

505 field_global_part [:,:,2] = field_local_part [:,:,0]*

x_local [:,:,2]+ \

506 field_local_part [:,:,1]*

y_local [:,:,2]+ \

507 field_local_part [:,:,2]*

z_local [:,:,2]

508

509 # sum up the contributions from the sub -triangles (

careful signs)

510 field_return = np.sum(field_global_part*

Rubeck_signs [:,:,newaxis], axis =1)

511

512 # calculate prefactor for outputing the H-field

513 sigma = np.sum(n_plane*MAG , axis=1, keepdims=True)

514 prefactor = sigma /4/pi

515

516 # field of each facet in one point with correct

unit

517 field_facets = prefactor * field_return

518

519 # sum up the field of all facets IN ONE POINT and

store in an array

520 # one row for each oberservation position (POSO

) and one column for each dimension

521 field_total_array = np.empty ([num_POSOs ,3])

522

523 for i in range(num_POSOs):

524 field_total_array[i,:] = np.sum(field_facets[i*

num_facets_in :(i+1)*num_facets_in ,:],axis =0)

525 return field_total_array
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