
Thomas Woger, BSc

Intelligent Methods for
Software Release Planning

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Alexander Felfernig

Institute for Softwaretechnology

Graz, December 2020

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-
dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe.

Datum Unterschrift

iii

Acknowledgement

First of all, I would like to thank my supervising professor Univ.-Prof. Dipl.-Ing.
Dr.techn. Alexander Felfernig for his continuous feedback and helpful support
through the creation process of this thesis.
I also want to acknowledge and thank Dipl.-Ing Müslüm Atas, who supported
me with helpful suggestions and discussions during the implementation of this
application.
Furthermore, I would like to give my profound appreciation to my parents, who
steadily supported me through the years of my study.
In addition, I’m grateful for all my friends, who turned my study into an incredible
experience and finally, I would like to thank my girlfriend Tamara. She encouraged
me through the writing process and gave me the necessary motivation to finish this
thesis.

Thomas Woger
Graz, 2020

v

Abstract

During the creation of releases for products or projects, companies are confronted
with complex decisions. They must determine the appropriate requirements which
have to be added to the releases at the correct time. The preferences of all stake-
holders must be considered during the planning. At the same time, stakeholders
must also consider their available resources for the releases. Therefore, methods are
needed to support the planning of the releases, including, involving the stakehold-
ers more during the planning and observing the available resources. This thesis
introduces a release planning approach, which takes into account the preferences
of stakeholders during the planning process. Stakeholders can decide on different
criteria such as business relevance or effort of requirements. These evaluations
build the base for the prioritisation and assignment of requirements to releases. The
prioritisation is determined using the relevance values of requirements, which are
calculated with the help of Multi-Attribute Utility Theory (MAUT). During the eval-
uation process, stakeholders are supported by recommendations and techniques
that help to achieve consensus. Furthermore, dependencies between requirements
and the availability of the resources are considered during release planning.

vii

Zusammenfassung

Während der Releaseplanung für Produkte oder Projekte sind Firmen oft mit
schwierigen und komplexen Entscheidungen konfrontiert. Dabei müssen die Ent-
scheidungsträger die richtigen Requirements auswählen, die zur richtigen Zeit in
den Releases implementiert werden sollen. Hierbei müssen vor allem die Wünsche
der Stakeholder während der Planung berücksichtigt werden. Zur gleichen Zeit
müssen aber auch die verfügbaren Ressourcen im Auge behalten werden. Aus
diesem Grund werden Methoden für die Releaseplanung benötigt, die einer-
seits die Stakeholder während der Planung mehr einbinden und andererseits
die verfügbaren Ressourcen im Auge behalten. In dieser Arbeit wird ein Ansatz
zur Releaseplanung vorgestellt, welcher die Stakeholder während der Priorisierung
der Requirements stärker einbindet. Die Stakeholder können während der Planung
die Requirements anhand verschiedener Kriterien wie Business-Relevanz oder
Aufwand bewerten. Diese Bewertungen bilden die Basis für die Priorisierung der
Requirements und die daraus resultierenden Zuweisungen zu den Releases. Die
Priorisierung wird anhand der Relevanzwerte der Requirements durchgeführt. Die-
se Werte werden mit Hilfe von Multi-Attribute Utility Theory (MAUT) berechnet.
Dieser Ansatz berücksichtigt die verschiedenen Wichtigkeiten von Stakeholdern
anhand von Gewichten. Die Stakeholder werden während des gesamten Abstim-
mungsprozesses durch Empfehlungstechniken und Techniken zur Unterstützung
des Gruppenkonsens begleitet. Des Weiteren werden die Abhängigkeiten zwischen
Requirements und die Verfügbarkeit von Ressourcen während der Zuteilung der
Requirements zu Releases berücksichtigt.

ix

Contents

Abstract vii

1 Introduction and Motivation 1

2 Related work 5
2.1 Planning game . 5

2.2 Evolve II . 6

2.3 IntelliReq . 8

3 System architecture and overview 11
3.1 Architecture . 11

3.2 Employed technologies and patterns 13

3.2.1 Spring . 13

3.2.2 Spring Boot . 13

3.2.3 Spring MVC . 14

3.2.4 Spring Security . 14

3.2.5 Spring Data . 15

3.2.6 Thymeleaf . 15

3.2.7 MySQL . 15

3.2.8 WebSocket API . 16

3.2.9 JavaScript . 16

3.2.10 jQuery . 17

3.2.11 Stomp . 17

3.2.12 Bootstrap . 17

3.2.13 D3.js . 19

4 Used algorithms 21
4.1 Majority voting . 21

4.2 Average voting . 22

4.3 Median voting . 23

4.4 Least distance (LDIS) voting . 24

4.5 Multi Attribute Utility Theory (MAUT) 24

4.6 Interface for further algorithms . 26

xi

Contents

5 Procedure of release planning 27
5.1 Planning flow . 28

5.2 Registration and login . 30

5.2.1 Profile Page . 31

5.3 Projects . 33

5.3.1 Project overview . 33

5.3.2 Project detail . 34

5.4 Stakeholder . 37

5.4.1 Assignment . 37

5.5 Requirements . 39

5.5.1 Requirement overview . 40

5.5.2 Modelling . 41

5.5.3 Dependencies . 43

5.5.4 Evaluating a requirement . 44

5.5.5 Recommendation . 47

5.5.6 Support for finding a consensus 50

5.6 Releases . 51

5.6.1 Release overview . 52

5.6.2 Release detail . 53

5.6.3 Assignment of requirements 54

6 Issue recognition and notifications 57
6.1 Issue overview . 57

6.2 Issue creation . 59

6.2.1 Automatic issues created by the system 59

6.2.2 Issues created manually by stakeholders 60

6.3 Notifications and visualization of conflicts 61

7 Statistics 65
7.1 Requirements assigned to releases . 65

7.2 Disagreement of requirements . 66

7.3 Optimisation chart . 68

8 Release optimisation and diagnosis 71
8.1 Prioritisation . 71

8.2 Dependency resolution . 74

8.3 Assignment process . 76

8.4 Diagnosis . 80

9 Evaluation 83

xii

Contents

10 Conclusion 85
10.1 Results . 85

10.2 Future work . 85

Appendix 89
List of Figures . 89

List of Tables . 90

Bibliography 93

xiii

1 Introduction and Motivation

Despite the fact that software solutions nowadays are important for almost every
business, many software projects fail. The failure of these projects can have different
causes. Possible factors for a project’s failure include cancelled projects, exceedance
of the project budget or the lack or incomplete delivery of the required features
[WK04; BB05; LV01]. Furthermore, poorly defined requirements or poorly planned
resources can lead to project failures [WK04; Cha05]. An simple example of a poorly
planned resource is the lack of availability of developers.

The previously listed failures are associated with the first phase of the software
development process: Requirement Engineering. Suboptimal requirement engi-
neering is considered one of the major reasons, why projects fail and is therefore
one of the most critical ones [HL01; JBK04]. There are various projects, such as
OpenReq1, which are trying to address the problems of requirement engineering.
The OpenReq Requirements Engineering project is a EU Horizon 2020 project with
the aim to build efficient recommendation and decision systems for the support
of requirement engineering processes [Fel+17]. The main tasks of requirement
engineering are organisational activities for quality assurance, the election and
definition of requirements, negotiation and release planning [Som10; Fel+13].
In the release planning phase, requirement defects can occur. In a requirement
defect, the software works as expected on the developers’ side, but it may be too
difficult for the users to use or the customers may not be completely satisfied [LV01].
Much work must be invested to solve these issues in the implementation phase. The
costs can be up to 100 times more expensive than solving these defects during the
analysis phase [BB05]. Improving the defining and collecting requirements must be
an important goal to reduce these costs. For this reason, requirement engineering
is considered one of the most important and challenging phases of a software
project [Fel+13]. These facts also illustrate why there is an increasing demand for
smart solutions to advance the requirement engineering process [Fel+10b; Ren+13;
MT09]. Therefore, the following work focuses on the release planning part of the
requirements engineering process.

1https://openreq.eu/ (Retrieved 18.10.2020)

1

1 Introduction and Motivation

The main task of release planning is to create a schedule for predefined require-
ments, which should be implemented during a predefined release period [REP03;
Fel+13; Fel+18b]. During this process, companies are often confronted with the
challenge of choosing the right requirements for the next releases [BRW01; RB05].
A release plan must fulfil different criteria. The plan must fit into the budget, not
exceed available resource capacities and availabilities. The plan should provide
a maximum business value for the company, by considering the preferences of
stakeholders and by considering the dependencies between requirements [RS05;
Sva+10]. Therefore, the company must master different challenges during the plan-
ning process for the next releases.
Important stakeholders also often perform pressure on the company to select their
favoured requirements [Dag+05]. These stakeholders frequently have different opin-
ions about the importance of the requirements. This leads to even more complex
decision processes [RM05]. Furthermore, it is often not possible to implement all
requirements, due to different bottlenecks [Akk+08; Ruh10].
Complex and large software projects often lack efficient triage processes [Fel+13].
The term ’triage’ originates from the medical field. In the medical context, victims
of catastrophes are categorised into three different groups [Dua+09]. All victims
who have no chance of recovery are in the first group. The second group includes
those who recover with the help of treatment, and the last group includes those
who can recover without any treatment [Dua+09]. When this process is used in the
context of release planning, the demands that must be fulfilled have to be identified,
in order to obtain an optimal release [Dav03; Fel+13].
By considering the restrictions of a release plan, stakeholders must prioritise re-
quirements [Dua+09]. To receive favourable solutions, studies have demonstrated
that such decisions should be made by the affected groups [And98; JBK04; CC12].
For this purpose, stakeholders must work together to achieve a feasible solution
[LQF10]. To accomplish this challenge, the stakeholders need intelligent support in
the prioritisation of requirements.

If a release plan is suboptimal, for example, it does not take into account cus-
tomer preferences, customers could be dissatisfied, which could cause the project
to fail [BRW01; HL01]. Additional costs triggered by suboptimal release plans can
increase the total project cost by up to 40% [Lef97]. This argument reveals, that
release planning is a complex process with many involved stakeholders, in which
the effective prioritisation and planning of the suggested requirements is extremely
important.

Different models are available for the creation of a release plan. Two known
approaches for the creation of a release plan are ad-hoc-planning and systematic-
planning [Lin+08]. For efficient planning, the ad-hoc-approach is already out of
date because software technologies are growing so fast that managers are not able

2

to productively handle those changes [JBK04]. There are also models which were
created by the combination of these two approaches, named hybrid approaches
[RM05]. These models combine the knowledge of experts with the strength of
mathematical models [RN04]. These hybrid models try to demonstrate that the
mathematical models alone are not enough and that the knowledge of experts is
also needed to make correct decisions for the release plan.

A general guideline for a software life cycle with the planning process exists,
but this guideline does not describe how the requirements can be assigned to
achieve optimal business value [08; RS05]. For this reason, different release plan-
ning techniques have been created (like [BRW01; Akk+08; RN04; Ruh10; RM05;
Nin+14]). These models focus on different criteria, which influence the quality of
the release plan.

Release plan optimality can be affected by several criteria. These criteria include
business value and quality of the requirements as well as stakeholder preferences
[Akk+05; Ruh10].
Promising hybrid approaches are the combination of the involvement of the stake-
holders’ opinions of the requirement’s importance with the use of linear program-
ming techniques [RS05; Akk+08]. To achieve effective prioritisation of requirements,
these should be evaluated on various criteria. Some useful prioritisation criteria are
consistency (no incompatible requirements), feasibility and effort for the implementa-
tion, and reusability in future projects [Fel+13].
During requirements prioritisation, conflicts between the preferences of individual
stakeholders can occur. To resolve these conflicts, tools must support mediation
between the conflicting parties [Nin+14; Fel+11].

This thesis presents the Intelligent Release Planner (IRP) application, a software to
support release planning decisions of managers. The software guides users through
the whole release planning process. The basis of the model utilises on hybrid ap-
proach. Stakeholders evaluate requirements based on different evaluation (interest)
dimensions. In this context, a recommender system helps stakeholders to determine
the significant requirements in a large collection and to generate a useful decision
[Bur02; BFG11]. Stakeholders have a platform to discuss the requirements during
the prioritisation process. They are also able to state advantages or disadvantages
of the requirements (pro/con analysis), which should help to achieve a consensus.
Furthermore, the developed release planning software includes automatic conflict
detection. If the stakeholder evaluations are contradictory, stakeholders are encour-
aged to resolve the conflict on the basis of a recommendation.

The remainder of this thesis is organised as follows. In Chapter 2, similar re-
search projects for release planning are presented. Next, Chapter 3 addresses the

3

1 Introduction and Motivation

software architecture of the system, and all important technologies, which were
used for the system, are described. In Chapter 4, all the used algorithms are pre-
sented. The procedure of release planning with all its steps in the implemented
software is demonstrated in Chapter 5. This chapter starts with the definition
of the projects, continues to the evaluation of the requirements and ends in the
representation of the planned releases. Chapters 6, 7 and 8 deal with more specific
topics of the release planning software. In Chapter 6, the recognition of conflicts
between stakeholder preferences and their representation is demonstrated. All
available statistics, which should help the responsible managers to select the pre-
ferred releases, are described in Chapter 7. Chapter 9 presents a related paper,
which analyses argumentation-based interfaces. Finally, Chapter 10 provides a brief
conclusion and discusses issues for future work.

4

2 Related work

This chapter provides an overview of existing methods and tools that support an
efficient release planning.

2.1 Planning game

In agile software development, the term ’planning game’ is well known. The
approach is embedded in extreme programming (XP) [BG00]. The development
team and business’ representatives arrange user stories in such a way that they can
be published in the next release.
In consideration of the business’ value, the selection of the stories for a release is
based on the estimates of the development team [FHC06]. Determining the scope for
the next releases is performed in iterations, with a combination of the developers’
estimates and business’ priorities [BG00]. Therefore, the planning goal is to achieve
maximum business value by selecting the most important stories of a software.
During the game two parties are involved. These sides are the development team
and customers, and each party has its own responsibilities and members [PEM03;
Kar+04]. On the business side, the business team must decide about [BG00]:

• Scope - What should be implemented?
• Priority - Prioritisation of the stories.
• Composition of the releases - Which stories must be included to obtain

maximum business value?
• Dates of releases - When is the best time to introduce the release to gain a

benefit for the business?

On the other side, the developers must decide about [BG00]:

• Estimates - Duration of the feature implementation.
• Consequences - Impacts of software architecture decisions on the business.
• Process - Organisation of the team.
• Detailed scheduling - Defining the implementation sequence of stories in a

release.

5

2 Related work

According to Beck [BG00], the planning game is structured into three phases. In the
first phase, the ’Exploration phase’, an overview of the system’s functionalities is
given and the stories are defined. In this phase the business side defines the stories,
and the development team estimates the stories and if necessary, divides them into
smaller software pieces.
The second phase is the ’Commitment phase’. In this phase, the business side
defines the priority of the stories, which are also evaluated by the development
team with regard to their risks. The business team defines the next release on the
basis of this information.
The last phase is the ’Steering phase’. Based on the learning of the development
and business side, the release plan is constantly being updated. Therefore, in each
iteration, the most appropriate stories are selected. In this context, old stories can
be replaced by new stories. Furthermore, the stories are re-estimated by the devel-
opment team if there were new insights.

The planning game is easy to apply and delivers a prioritised sequence of fea-
tures. Furthermore, studies have demonstrated that the approach works well in
projects with a smaller number of features, but in larger projects the approach
becomes more complex and the failure rate increases [ARS04; Kar+04].

One of the biggest differences between the IRP application and the planning game
approach is that all prioritisations are made in a group of stakeholders, who must
be present during the prioritisation process. In the IRP application, stakeholders
are supported by recommendation technologies. Unlike the IRP application, which
can handle bigger releases, the planning game is especially useful for small release
circles and a small number of features.

2.2 Evolve II

Evolve II is a systematic decision support approach to create a release plan [Ruh10].
The method is an enhancement of Evolve, which was first presented in [GR04].
Evolve II has been developed under the assumption that the isolated formulation
of mathematical models or the isolated selection and knowledge of the decision
makers are not sufficient to create a high-quality release plan.
Therefore, Evolve II combines computational strength of computers with expert
knowledge. To determine solutions, integer linear programming (ILP) [Sch86]
techniques are employed [Ruh10].
The Evolve II approach follows an evolutionary problem-solving process, which is
organised in three phases [Ruh10]:

6

2.2 Evolve II

• modelling,
• exploration, and
• consolidation.

Based on real world problems, models are created during the ’modelling’ phase,
which build the input for computational algorithms. In the modelling phase, possi-
ble features are defined with a description as well as all their dependencies. Also,
budget and resource constraints are determined [Ruh10; ARS04].
Next, is the ’exploration’ phase, where the goal is to gain a greater knowledge of the
problem’s structure and to reduce the number of solutions. During the exploration,
iterations occur to determine the possible alternative solutions out of a large set of
solutions. The determination is executed with the help of pre-defined criteria and
using optimisation techniques [Ruh10].
The last phase is ’consolidation’. This phase relies on expert knowledge and know-
how of human decision makers. Alternative solutions from the exploration phase
are checked by experts. The decision makers evaluate the solutions and select the
most appropriate one [Ruh10].

In the background of the three phases, 13 steps are being performed [NR14].
Five of them are optional. These steps are predominant, where the suggested al-
ternative plans are defined and analysed in more detail taking into account the
available resources.
The mandatory steps start with the definition and selection of the features and the
planning of the weights used as planning criteria [Ruh10]. After these stages, the
features are prioritized by the stakeholders according to the defined voting criteria
[NR14]. Based on the prioritisation and resource constraints, alternative release
plans are created. These plans are prioritised by the stakeholders and a final plan is
selected.

To summarize, Evolve II is a complex approach for release planning. The method
provides the possibility to plan more than one release and intensively involves
the stakeholders during planning. Evolve II also allows the definition of resource
constraints and dependencies between features. This method is integrated in the
ReleasePlannerTM system [Ruh10].

The IRP application, developed within the scope of this thesis, is also based on the
combination of expert knowledge and optimisation approaches. In Evolve as well
as IRP, stakeholders are involved in early phases of release planning. In addition
to the Evolve approach, the stakeholders in the IRP application are supported by
recommendation technologies, which determine recommendations based on the
preferences of other stakeholders.
Furthermore, the IRP application offers a platform for discussions to support the

7

2 Related work

achievement of a consensus amongst the stakeholders.

2.3 IntelliReq

IntelliReq was introduced by Felfernig et al. [Fel+11] to assist in various require-
ment engineering challenges. The tools target is to support the early phases of
requirements engineering by modelling and prioritising requirements [Nin+14].
Different recommendation technologies are applied during the engineering process.
The tool’s output is a consistent set of requirements with corresponding dependen-
cies, estimates, prioritisations, and planned releases [Nin+14].
During the requirement engineering process, stakeholders are strongly involved
in IntelliReq and can define and adapt their preferences [Fel+11]. Stakeholders
can discuss their preferences and see recommendations for the requirements. The
prioritisation of requirements is also performed by stakeholders. During the priori-
tisation phase, a consensus must be present for each requirement [Nin+14].
In IntelliReq, requirements are modelled with a description, evaluations with
regard to predefined criteria and dependencies [Nin+14] The detailed view of a re-
quirement is depicted in Figure 2.1. The stakeholders can also view the preferences
of other stakeholders and can discuss their evaluations. The recommendation of
preferences is made by group recommendation technologies, more precisely with
the help of the majority voting heuristic (see also Chapter 4) [Nin+14].
IntelliReq employs model-based diagnosis (MBD) of inconsistencies [Rei87; FSR13]
to identify conflicts between stakeholder preferences [Nin+14]. To display the status
of preference elicitation, traffic lights are introduced. These lights are also employed
to indicate other issues in a requirement model or release. If a traffic light is red, it
signals that further evaluations or actions are required.
The assignment of requirements to releases is performed by stakeholders. If there
are still unassigned requirements, the system can suggest an assignment. Based on
group recommendation techniques, it is also possible to let the system assign all
requirements to releases automatically [Nin+14].
Summarizing, IntelliReq offers a wide spectrum of functionalities to support
requirement engineering. The quality of release plans as well as the time effort for
planning can be improved by using recommendation technologies. Furthermore,
the diagnosis of conflicts and support of finding a consensus between stakeholders
can improve the quality of the release plans.

The biggest difference between IntelliReq and the IRP application developed
in this thesis is the involvement of the stakeholders. While stakeholders can discuss
requirements and evaluations in both applications, IRP supports also stakeholders
with giving approvals or disapprovals to comments of other stakeholders. All the

8

2.3 IntelliReq

Figure 2.1: Detailed view of a requirement with all its criteria and corresponding evaluations of
stakeholders. [Nin+14]

9

2 Related work

positive and negative comments and arguments are also taken into account in the
recommendation of the requirements and the release plan (see Chapter 8).

10

3 System architecture and overview

This chapter presents the system architecture of the implemented release planning
software IntelligentReleasePlanner (IRP). The composition of the software modules
and the employed software technologies are discussed. In Section 3.1, the system
structure of the software with the whole data flow is presented. Thereafter, in Sec-
tion 3.2 all relevant technologies used for the implementation of the IRP application
are discussed.

3.1 Architecture

The architecture of the software is based on a client-server model. The main
advantage of this model is, that the user only requires a web browser on his or her
computer. Furthermore, the user does not have to install the IRP application on his
or her computer or mobile device.
The architecture is based on the MVC model of Spring (see Section 3.2.3). The data
flow of the software in combination with Spring is complex and depicted in Figure
3.1. Figure 3.1 lists all steps, which are performed by the IRP application. The data
flow follows thirteen steps:

1. After the user enters the application URL or submits a form, a HTTP request
is sent to the server.

2. The Dispatcher Servlet receives the request from the client. This component is
the front Controller and receives all incoming requests. After the reception of
the call, the Dispatcher delegates the request to the corresponding component.
In this case, the receiving component is the Handler Mapping component.

3. The Handler Mapping component serves as a consultant for the Dispatcher.
The Handler must find the correct recipient for the request. For this purpose,
the Handler parses the URL and routes the request to the correct Controller
with the corresponding Handler method.

4. The responsible Controller processes the incoming request. In this step, the
task is to prepare the correct model for the view. If necessary, additional
business logic is applied.

5. The Service Layer provides the connection to the repository queries.

11

3 System architecture and overview

Figure 3.1: Architecture of the IRP system.

6. To retrieve the information from the database, the Data Access Layer (DAO)
is utilised. This layer utilises the Spring Data framework (see Section 3.2.5).

7. The database delivers the data requested from the query.
8. The result is returned to the Service in the predefined format.
9. If necessary, additional operations are performed on the result and then

passed on to the calling Controller.
10. The gathered information is still in a raw format and therefore handled back

to the Dispatcher.
11. To create the appropriate page, the Dispatcher forwards the data to the View

Resolver.
12. The View Resolver determines the correct view with the help of the view

name.
13. The view is responsible for the presentation of the data and creates the

response with the provided data in HTML format. Therefore, the attribute
values of the models are set in the view and in order to generate the views in

12

3.2 Employed technologies and patterns

the IRP software, the Thymeleaf template engine (see Section 3.2.6) is utilised.
In the end, the web browser displays the rendered page.

The Dispatcher Servlet is the central contact point for all requests. Before the
request can be processed by the Dispatcher, the data is revised by filters of the
Spring Security framework (see Section 3.2.4). The filters determine whether the
requesting user is authorized and authenticated, and only if this is the case, the
request is forwarded. If the user is not authenticated, he or she is rerouted to the
login page (see Section 5.2). To ensure effective security, this behaviour is applied
to each request, .

3.2 Employed technologies and patterns

This section presents the employed software technologies in the IRP software. The
thirteen main technologies are presented in the following subsections, which are
predominantly JAVA1 and JavaScript (see Section 3.2.9) based frameworks.

3.2.1 Spring

The Spring2 framework is an open source library and was developed for the Java
environment. The framework attempts to improve and relieve the development
process for software applications. One of the main features of Spring is the usage
of the inversion of control pattern (IoC). The framework with its containers manages
the lifetime and resource allocation for an object.

3.2.2 Spring Boot

One of the Spring projects is Spring Boot3. The project is built on the top of the
Spring framework and the starting point for the creation of various applications.
Spring Boot enables developers to more easily set up and configure new web-based
and standalone applications. To arrive at a runnable application in Spring, several
configuration and XML files must be created manually. These configurations are
now done in the background by Spring Boot.
Additional main features of Spring Boot are ’standalone’ and ’opinionated’. Spring
Boot is absolutely ’standalone’. Only by running one command the application

1https://java.com/en/ (Retrieved 01.10.2020)
2https://spring.io/ (Retrieved 01.10.2020)
3https://spring.io/projects/spring-boot (Retrieved 01.10.2020)

13

3 System architecture and overview

is started on an embedded web server. For this purpose, the framework contains
various embedded web servers, which do not have to be configured.
At the ’opinionated’ feature Spring Boot creates configurations for the included
third-party libraries by itself, so a developer does not have to invest time to set up
the libraries each time.

3.2.3 Spring MVC

The Spring Model View Controller (MVC)4 framework is one of the first Spring
projects and is utilised to build Java web applications and RESTful web services.
MVC is a design pattern, which defines three interconnected components:

• Model: manages the data of the application.
• View: responsible for the representation of data.
• Controller: validates input commands and manages models and views.

The pattern specifies that in an application the Model must be separated from the
View and the Controller. This separation enables a parallel development of the
individual components and an easy reuse of the code. Spring provides its own
implementation of the pattern.
The core of the framework is based on the Front Controller pattern with the Dis-
patcher Servlet. The Dispatcher receives the input of the user and searches for the
responsible Controller. The distinction between Controllers is defined by the URL.
Therefore, all the methods of the Controllers, which should be available to user
requests, are mapped with an URL. The Controller is then responsible for further
processing of the request.

3.2.4 Spring Security

Spring Security5 is a project of Spring. The project provides authorization and au-
thentication features for Java applications. Furthermore, the framework provides a
huge number of authentication features and customization options. The framework
also provides protection against known attacks such as cross site request forgery.
Spring Security is applied in the IRP software for the authentication of users and
an automatic decryption of user passwords. Before a request is forwarded to a
servlet, it must run through the security filters of the framework and only then the

4https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html (Retrieved
01.10.2020)

5https://spring.io/projects/spring-security (Retrieved 01.10.2020)

14

3.2 Employed technologies and patterns

request is routed to the correct servlet. The framework is also responsible for the
encryption and decryption of passwords.

3.2.5 Spring Data

Spring Data6 enables developers to easily access various relational and non-
relational databases. First, developers must only define a repository interface and
the framework automatically creates the according repository. After the definition
of these interfaces, Spring Data generates the data access to the databases in the
background. Furthermore, database schema updates are executed easily with the
Spring Data framework.
Spring Data can dynamically derive database queries only by defining method
names in the interfaces. Therefore, simple queries do not have to be created manu-
ally anymore.
Furthermore, the framework provides extensive auditing possibilities. Due to these
advantages, Spring Data is utilised for all database accesses in the IRP software.

3.2.6 Thymeleaf

Thymeleaf7 is employed in the IRP application for the dynamic generation of
the HTML5 views. The framework is a server-side Java template engine and is
applicable for web-based and standalone applications. One of the main benefits
of the engine is the complete integration of the Spring framework. Therefore, it is
possible to combine the models of Spring with the Thymeleaf templates.
Thymeleaf provides the same possibilities as JSP and JSTL, but the use of Thymeleaf
is much easier and not as complex as with JSP. Furthermore, many other templates
can be processed, such as text, JavaScript, or CSS files.

3.2.7 MySQL

MySQL8 is employed as database technology for the IRP software. MySQL is a
broadly used database system also available as Open Source distribution. The
complete communication between application and database is handled with the
Spring Data framework (see Section 3.2.5).

6https://spring.io/projects/spring-data (Retrieved 01.10.2020)
7https://www.thymeleaf.org/ (Retrieved 01.10.2020)
8https://www.mysql.com/ (Retrieved 01.10.2020)

15

3 System architecture and overview

3.2.8 WebSocket API

In the IRP application, the WebSocket API9 from Spring is utilised to provide a
group chat function to stakeholders. A WebSocket is a bi-directional and persistent
connection between a client and a server [FM11].
The WebSocket can be initiated by a request of the web browser over http. When
the connection is established, both sides can send data to each other, until the
connection is closed by one of these sides. In IRP, the API is utilised for the server
side, and Stomp (see Section 3.2.11) is utilised for handling of the connections on
the client side.

3.2.9 JavaScript

JavaScript10 is a dynamic and interactive script programming language and pre-
dominantly employed to generate or modify web pages. With the help of JavaScript,
HTML elements can be changed or inputs validated. The scripts of the program-
ming language are executed in the clients’ web browsers. Therefore, no additional
requests to the servers are required to modify a current page.
JavaScript also provides the possibility to present the content in a well formatted
structure. These structures can be tabs, dialogues, or tables. Furthermore, not all
the content must be displayed instantly to the user, so that the content is only
visible after clicking on a button or after hovering over an image. These controlling
possibilities allow presenting web sites more clearly, and only if required, additional
information is displayed. After the client receives the content of the page from
the server, the client is responsible for the appropriate presentation of the site.
Therefore, the server must only send the data to the client and must not care about
the representation, which also saves computation time.
The JavaScript functions can be ’registered’ on events of the user input. Thus, it is
possible to recognize mouse clicks or text inputs immediately and react accordingly.
Additionally, animations can be created with this technology.
JavaScript is the basis for several large and extensive frameworks. Examples thereof
are jQuery (see Section 3.2.10) and the styling framework Bootstrap (see Section
3.2.12).
In IRP, JavaScript is employed for an improved and dynamic user interface appear-
ance. Also, form validations are made with this framework.

9https://docs.spring.io/spring-framework/docs/5.0.x/spring-framework-
reference/web.html#websocket-server (Retrieved 01.10.2020)

10https://www.w3schools.com/js/default.asp (Retrieved 01.10.2020)

16

3.2 Employed technologies and patterns

3.2.10 jQuery

jQuery11 is a JavaScript library which provides an effective and easy access to HTML
elements. The library also supports developers with an effective event handling,
AJAX communication, and animations. With the improvement of the use of AJAX
calls, requests to the server are easy to implement. jQuery also provides various
plugins for an improved user interface handling. Therefore, this library was utilised
in the IRP application to access HTML elements.

3.2.11 Stomp

The simple text-orientated messaging protocol (STOMP)12 provides an interopera-
ble format to connect clients with servers. With the help of WebSockets, the clients
can exchange data with message brokers of servers. The protocol is available on
various client and server platforms and in different programming languages.
IRP employs the JavaScript version of the protocol in combination with the Web-
Socket API (see Section 3.2.8).

3.2.12 Bootstrap

Bootstrap13 is a JavaScript (see Section 3.2.9) and CSS-based framework to improve
the user interface appearance in web browsers. With the help of this framework, a
responsive design can be created easily. The framework also provides many design
templates, buttons, forms and navigation elements. Bootstrap is compatible with all
modern web browsers and can be integrated easily in all HTML views. Furthermore,
Bootstrap plugins for various user interface functions are available. Some of the
important features of Bootstrap, which are included in the IRP software, are:

• grids,
• tabs,
• modals, and
• datatables.

With the help of the Grid feature, the application gains a responsive design, which
also improves the view for mobile devices. The user screen is partitioned by
Bootstrap into twelve columns per row, which is demonstrated in Figure 3.2. If
there are more than twelve columns in a row, the columns are wrapped to a new

11https://jquery.com/ (Retrieved 01.10.2020)
12http://stomp.github.io/stomp-specification-1.2.html (Retrieved 01.10.2020)
13https://getbootstrap.com/ (Retrieved 01.10.2020)

17

3 System architecture and overview

Figure 3.2: Partitioning of the screen by Bootstrap in different column sizes.

line. Depending on the screen width of the browser, the columns are adjusting their
widths by themselves. If there is a demand of larger columns, they can be merged
to larger columns. Depending on the screen size, Bootstrap enables to define the
size of the merged columns. The adjustable size feature has the advantage that
on smaller screens more columns can be merged so that the whole content is still
displayed in a row.
The IRP software uses the Tabs feature on almost every page. The advantage of
tabs is that they provide an effective overview of the content. This is especially
important if information units are connected to each other, but the number of data
entries is too high to fit on one page.
To obtain an effective overview of the content, not all information is displayed
from the beginning. For this purpose, Modals are employed. The information is
displayed in own dialogues after clicking the button. When the dialogue appears,
the background turns grey and the focus of the user is directed to the modal. In the
IRP application, modal dialogues are utilised for different purposes. For example,
they are employed to confirm user decisions, such as the deletion of requirements,
or to offer a selection dialogue for adding responsible stakeholders to a requirement
or project.
The Boostrap DataTables14 are based on basic HTML tables, but they are extended
with additional features and styles. The functions for the tables are provided by an
own library. DataTables enable displaying a large number of connected data in a
structured and well formatted way. Furthermore, the table provides a pagination
function, such that not all data rows are listed at once. The rendering is done by

14https://datatables.net/manual/styling/bootstrap (Retrieved 01.10.2020)

18

3.2 Employed technologies and patterns

the library and allows to modify each column of the table individually.
These are only the most important features of Bootstrap. There are many more
functions available in the framework.

3.2.13 D3.js

D3.js15) is a JavaScript (see Section 3.2.9) based library, which enables developers to
visualise data in diagrams. The library also offers the possibilities to create tables or
interactive SVG charts. The libraries base relies on basic web standards. Therefore,
no additional frameworks are required, and the library can be employed in all
modern web browsers. The framework binds data to the DOM and transforms
them according to the defined settings. One of the main advantages of the library
is the flexibility of the settings for charts. The data can be transformed in every
imaginable chart and, if required, also be animated.
Examples and the libraries structure are presented in Chapter 7.

15https://d3js.org/ (Retrieved 01.10.2020

19

4 Used algorithms

Aggregation strategies (also called social choice functions) are important for group
recommendation scenarios [Mas11; Fel+17]. These functions aggregate stakeholder
preferences in a way that an acceptable suggestion for the stakeholders can be
achieved [Mas11; Fel+17].
With the use of aggregation functions a stronger consensus between stakeholders
can be achieved [Fel+11; Mas11]. Furthermore, the quality of decisions can also be
increased [Ste+13; Ste+15].

In the following sections, five group recommendation algorithms (aggregation
strategies) are presented. These are majority voting, average voting, median voting,
least distance and MAUT.
These algorithms represent basic group recommendation heuristics and were al-
ready applied in various application domains [Mas11; FN12; Ste+13].

In the following sections, examples for the recommendation approach are pro-
vided. The examples consist of five stakeholders (S1, .., S5) and three requirements
(R1, R2, R3). In this context every stakeholder states his or her preferences with
regard to the given set of requirements. Stakeholder preferences are represented as
individual evaluations of interest dimensions. An evaluation is always associated
with exactly one stakeholder. Stakeholders evaluate requirements on a scale from
1 (very unimportant) to 5 (very important). For an easier understanding of the
heuristics, only one voting criterion is used in the example evaluation process,
which is the priority criterion.

4.1 Majority voting

This algorithm focuses on the most popular item of an evaluation [Mas04a; Sen+11;
Fel+18b]. Therefore, the algorithm chooses the preference with the highest evalu-
ation [Mas11]. Even though the algorithm is simple, it is still powerful in group
decision making, because a majority is behind a recommendation [HK05; Fel+11].
In the context of release planning, the algorithm returns a recommendation for a
criterion, which represents the majority stakeholders [FN12]. Each recommendation

21

4 Used algorithms

is related to exactly on requirement.

An example of the recommendation of a priority is demonstrated in Table 4.1.
In this example, it is shown that requirement R2 should have priority 5, since this
priority was preferred by the majority of the stakeholders.

Requirement S1 S2 S3 S4 S5 Recommendation
R1 1 3 2 5 2 2
R2 5 4 5 5 2 5
R3 2 1 1 3 2 1

Table 4.1: Recommendation of the priority, according to the majority heuristic.

Studies have demonstrated that this heuristic performs well with a small eval-
uation scale and that it is not possible to manipulate the recommendation [Fel+11;
FN12; Jam04; Nin+14]. The heuristic prevents the manipulation of the result, be-
cause it does not intensively consider individual evaluations. In other algorithms
high or low evaluations can increase or decrease the overall rating dramatically.

4.2 Average voting

This algorithm calculates the average value (see Formula 4.1) for the group recom-
mendation of a requirement [FN12]. For the calculation of the recommendation,
the heuristic sums up all evaluations of the requirement, evals(r), and divides the
result by the number of the evaluations for the requirement. If the result is a floating
number, the final result is, depending on the value, rounded (see Formula 4.2).

AVG(r) =
∑v∈evals(r) v
|evals(r)| (4.1)

Recommendation(r) =
{
bAVG(r)c AVG(r) < 0.5
dAVG(r)e AVG(r) ≥ 0.5 (4.2)

An example of a recommendation based on average voting is presented in Table 4.2.

This heuristic performs effectively with homogeneous groups, where evaluations
are similar to each other [Mas11]. If evaluations are diverse, the result of the rec-
ommendation is often not accurate [Mas11]. The problem is that average rating is
manipulable and as a consequence, high or low evaluations can change the result
dramatically [Jam04].

22

4.3 Median voting

Requirement S1 S2 S3 S4 S5 Recommendation
R1 1 3 2 5 2 3
R2 5 4 5 5 2 4
R3 2 1 1 3 2 2

Table 4.2: Recommendation of the priority, according to the average heuristic.

4.3 Median voting

This algorithm determines the median value (see Formula 4.3) for the group recom-
mendation of a requirement. As a preparation for the calculation, all evaluations,
evals(r), are ordered from the smallest value to the largest. To detect the middle of
the set, Formula 4.4 is applied. Depending on the set’s count, n, whether or not it
is even, the value, x, is set. If the set is even, the next larger value is chosen. The
result of the heuristic is then the middle value of all evaluations [Mas11].

An example of a recommendation based on median voting is presented in Table 4.3.
The algorithm shows that for this example 5 is the recommended priority of R2,
because this evaluation is exactly in the middle of the ordered set of evaluations.

MED(r) = evals(r)
[x

2

]
(4.3)

x =

{
n + 1 odd
n + 2 even (4.4)

Requirement S1 S2 S3 S4 S5 Recommendation
R1 1 3 2 5 2 2
R2 5 4 5 5 2 5
R3 2 1 1 3 2 2

Table 4.3: Recommendation of the priority, according to the median heuristic.

This heuristic is not manipulatable, because it separates the lower half from the
higher half of the evaluations [Mas11]. Therefore, single divergent evaluations can
not change the outcome. To change the result of this algorithm dramatically, more
than half of the evaluations must be manipulated.

23

4 Used algorithms

4.4 Least distance (LDIS) voting

This heuristic (see Formula 4.5) determines the priority, p, with the lowest overall
distance to other evaluations, v, in a set of evaluations, evals(r), for a requirements
group recommendation [Ste+15]. If there exist two or more lowest distance priori-
ties, the lowest priority is then chosen for the recommendation.

An example of a recommendation based on the priority evaluation criterion is
presented in Table 4.4. The algorithm shows that for this example 5 is the priority
recommendation for R2, because the sum of the distances of this evaluation has the
lowest value.

LDIS(r) = argmin(p, ∑
v∈evals(r)

|v− p|) (4.5)

Requirement S1 S2 S3 S4 S5 Recommendation
R1 1 3 2 5 2 2
R2 5 4 5 5 2 5
R3 2 1 1 3 2 2

Table 4.4: Recommendation of the priority, according to the least distance heuristic.

Studies have demonstrated that the least distance algorithm provides good re-
sults for homogenous group decisions [FN12; Mas11].

4.5 Multi Attribute Utility Theory (MAUT)

To prioritise requirements, the priority criterion alone is mostly not sufficient. There
are also other important factors such as feasibility, cost or the risk for the implemen-
tation. To take into account all these criteria for the recommendation, the MAUT
model [KR93] can be applied. The model supports the derivation of a utility value
in group-based settings [Ste+15; Fel+18a]. The formula for the calculation of the
utility value is shown in Formula 4.6.
To distinguish between the criteria and to define their importance, each criterion,
c, has an assigned weight, w(c). For example, it is more important that a release
is feasible than a maximised profit. Also, to distinguish between the evaluation
importance of stakeholders for a requirement, r, stakeholders can also have different
weights, w(v).

24

4.5 Multi Attribute Utility Theory (MAUT)

MAUT creates a sum of all individual MAUT values from all evaluations, v ∈
evals(r). First, the sum of the preferences for all criteria is created. In this context
eval(v, c) refers to a requirement-specific preference of a stakeholder for a specific
criterion, c. Each criterion is normalised to a scale 1..10 where 1 = very low and 10

= very high.

An example of the evaluation of requirements is presented in Table 4.5. To demon-
strate the algorithm, the previous Table 4.4 has been extended with a second
criterion, the feasibility (F) criterion. The bold evaluations indicate that a stakeholder
has a higher importance for a requirement and therefore has a higher weight. The
bold evaluations have a weight, w(v), of 2 and all others a weight of 1.

Utility(r) =
∑v∈evals(r) w(v) ∗ ∑c∈criteria eval(v,c)∗w(c)

∑c∈criteria w(c)

∑v∈evals(r) w(v)
(4.6)

Furthermore, each criterion has its own weight, which are shown in Table 4.6.

Requirement S1 S2 S3 S4 S5

P F P F P F P F P F
R1 1 2 3 3 2 3 5 3 2 2

R2 5 4 4 3 5 3 5 5 2 4

R3 2 1 1 3 1 2 3 2 2 2

Table 4.5: Example evaluations for the MAUT algorithm. P = Priority, F = Feasibility

Priority Feasibility
Weight 2 1

Table 4.6: Example weights of evaluation criteria.

Utility(R1) =
∑v∈evals(r) w(v) ∗ ∑c∈criteria eval(v,c)∗w(c)

∑c∈criteria w(c)

∑v∈evals(r) w(v)

=
1

1 + 2 + 2 + 2 + 1
∗
(

1 ∗ 1 ∗ 2 + 2 ∗ 1
2 + 1

+ 2 ∗ 3 ∗ 2 + 3 ∗ 1
2 + 1

+ 2 ∗ 2 ∗ 2 + 3 ∗ 1
2 + 1

+ 2 ∗ 5 ∗ 2 + 3 ∗ 1
2 + 1

+ 1 ∗ 2 ∗ 2 + 2 ∗ 1
2 + 1

)
=

1
8
∗
(

4
3
+

18
3

+
14
3

+
26
3

+
6
3

)
=

1
8
∗ 68

3
= 2.83

(4.7)

With the provided evaluations in Table 4.5, the utility values of the requirements
are calculated. An example of the calculation of the utility value for a requirement,

25

4 Used algorithms

R1, is presented in Formula 4.7. The further utility values of the requirements are
R2 = 4.16 and R3 = 1.83. According to the calculated utility values, the requirement
R2 has the highest relevance. R2 is then followed by R1 and R3.

During the optimisation process in the IRP software, the MAUT algorithm is
employed for the prioritisation of the requirements (see Chapter 8.1).

4.6 Interface for further algorithms

There are many further group recommendation algorithms available [Mas04b;
Mas11; Ata+18]. In this context, the architecture of the IRP system was chosen,
so that the implementations of existing recommendation algorithms can be easily
added, extended, or replaced.

26

5 Procedure of release planning

The demand from customers for new and improved product features is omnipresent
[Ruh10]. The selection of the appropriate features for the next releases to satisfy
customer needs is often challenging. Many parameters must be considered in the
context of feature selection, which is the major motivation for intelligent release
planning support.

The assignment of requirements to releases during release planning must be accom-
plished in such a way that all conditions such as risk and technical constraints are
satisfied [ARS04].
Ruhe and Saliu [RS05, p.47] have stated the four main characteristics of an effective
release plan:

• ’provide maximum business value by offering the best possible blend of
features in the right sequence of releases,
• satisfy most important stakeholders involved,
• be feasible with available resources, and
• reflect existing dependencies between features.’

These characteristics show that many specifications must be fulfilled and considered
for an effective release plan. First, the time horizon and objects for the planning
must be identified [RM05]. Furthermore, the dependencies of the requirements and
releases as well as the involvement of stakeholders during the planning process
must be considered.
Deciding which requirement should be implemented in which release is often a
challenge. Existing dependencies between requirements are particularly difficult to
detect and require the involvement of special dependency detection functionalities
[Fel+17; Tsa14].

On the other hand, an effective release plan can save up to 30% of the prod-
uct development budget [Ruh10]. According to Ruhe [Ruh10], a release plan also
has further benefits:

• Reduction of risk: With continuous planning, future risks can be detected
more easily and quickly. There is more time to identify countermeasures to
reduce risks [Ruh10].

27

5 Procedure of release planning

• Reduction of uncertainty: By analysing the release plan, ambiguities can be
detected and reduced [Ruh10].
• Support for better decisions: By gathering information during planning and

defining the responsibilities for the completion of tasks, more effective deci-
sions can be made [Ruh10].
• Providing information: When being confronted with the release plan, all

stakeholders receive an overview of the next steps of the product [Ruh10].

A release plan also provides information regarding future directions and depen-
dencies in the project [Ruh10]. These benefits and advantages demonstrate that a
detailed release plan is important. However, to achieve these benefits, continuous
investment in planning must be made.

In this context, the IRP system aims to provide the following support:

• support managers in the definition of requirements,
• support managers in the recognition of dependencies,
• support managers in the involvement of stakeholders in the requirement

prioritisation process,
• support stakeholders with recommendations,
• support stakeholders in the identification of a consensus, and
• support managers in the optimisation of releases.

The following sections present the procedure of release planning in the IRP ap-
plication. Section 5.1 provides a complete overview of the planning process. The
follow-up sections present all release planning steps in detail. Thereafter, special
functions such as conflict detection (see Chapter 6) and release optimisation (see
Chapter 8) are presented.

5.1 Planning flow

The IRP process consists of nine steps. The whole planning flow with all its steps
and their connections is shown in Figure 5.1.

1. Planning Project Settings: Defining all necessary project parameters. This
step includes the definition of all involved stakeholders. Furthermore, the
project’s start and end date as well as a formal description of the project must
be defined. Furthermore, all evaluation dimensions for the requirements (see
Section 5.5.4) are defined here.

2. Define releases: All releases which must be planned, are created with the key
parameters of releases. These key parameters consist of a start and end date of

28

5.1 Planning flow

Figure 5.1: Overview of the IRP release planning flow with all steps and connections.

29

5 Procedure of release planning

the release, a formal description, and the available resource capacity for the
release.

3. Modelling requirements: In this step, the requirements with their key param-
eters, which are candidates for the next releases, are created. The parameters
are an exact description of the requirement and the already known dependen-
cies between the requirements.

4. Assignment of responsible stakeholders: Requirements can have responsible
stakeholders. These stakeholders should have solid background knowledge
about the requirements.

5. Evaluating requirements: Every stakeholder can evaluate requirements. Re-
lated decisions can be supported by recommendations. During the evaluation,
stakeholders can present positive or negative comments (see Section 5.5.6)
about a requirement.

6. Conflict resolution: During the evaluation process, conflicts between indi-
vidual stakeholder preferences can occur. These conflicts are presented, and
stakeholders should try to achieve a consensus.

7. Assignment of requirements to releases: The project manager can manually
assign requirements to releases.

8. Optimisation: The system displays optimisations for the releases in order
to achieve a higher business value. In addition, the current assignment of
requirements to the releases is analysed and further conflicts are revealed.

9. Final plan: At the end, a final plan is created.

Steps 6 and 8 demonstrate that the process can also move backwards. If a refinement
is needed, managers can return to the modelling and evaluation steps. In the
following sections, a detailed description of the individual steps is given.

5.2 Registration and login

When the user enters the application URL, a login page is displayed, which is
presented in Figure 5.2. If the user had no account until now, he or she can switch
the active tab to the Register tab.

All actions in the IRP software require a valid account. Therefore, before a user is
allowed to use the IRP software and collaborate on projects, he or she must register.
For registration purposes, new users must enter following personal information:

• first name,
• last name,
• email,
• username,

30

5.2 Registration and login

• password,
• confirm password, and
• password reset question.

The system determines if the entered username is available. The password must be
at least six characters long. If one of the criteria is not fulfilled, an error message is
displayed to the user. If the user forgets his or her password a question must be
answered to reset the password. Therefore, the user must create a reset question
and a corresponding answer. After successful registration, the user can log in.

Figure 5.2: Login page of the IRP software.

5.2.1 Profile Page

After the successful registration of the user, he or she is always able to edit his or
her personal information. To achieve this, the user must select the ’Profile Settings’
option of the menu of the header, which is illustrated in Figure 5.3.
In the header, the user is also able to change the language of the application. At the

31

5 Procedure of release planning

moment, German and English are available, whereas the primary language of the
software is English.

Figure 5.3: Header of the IRP application with the profile settings menu.

After the user is on the profile page, which is presented in Figure 5.4, he or she can
adapt his or her personal information.

Figure 5.4: Profile page of ’Max Mustermann’, a user of the IRP application.

Besides the data which were entered during the registration, the user can also add

32

5.3 Projects

a profile picture and enter his or her skills.
The profile picture of the current logged-in user is always displayed in the header
of each page. Furthermore, the profile pictures are also displayed in the tables of
assigned stakeholders (see Section 5.4.1).
In the ’Skills’ text box, tags can be added. These tags describe and highlight users’
special knowledge. For example, if the user is an expert in creating database
schemes and queries, that user has a ’Database’ tag. With the help of those tags,
managers are supported during the selection of stakeholders (see Section 5.4.1)
responsible for specific requirements.
On the profile page, the user can change the password.

5.3 Projects

A project contains all the requirements and releases for a specific product. A user in
the IRP application can collaborate in various projects. The role of the collaboration
can range from a domain expert to the manager of the project.

5.3.1 Project overview

After a successful login, the user is redirected to the project overview. All projects
for which the user has been added as a stakeholder, are listed in this overview.
Figure 5.5 presents an example of the project overview.

To provide the user a short overview of the projects, every record of the list
displays the name, release statistic, and start and end dates of the projects. The
’Releases finished’ column compares the completed releases with the number of all
available releases of the project.

Depending on the stakeholder’s role, two different buttons are presented. If the
user is the creator of the project, he or she can delete the project. If this is the case,
a button with a trash bin is visible to the user. Otherwise, the user can only leave
the project. After the stakeholder leaves the project, he or she is not able to see the
project anymore, unless another stakeholder adds him or her again.
On the project overview page, the users are also able to create new projects using
the ’Create project’ button.

33

5 Procedure of release planning

Figure 5.5: Project overview of the IRP application.

5.3.2 Project detail

After clicking on a project in the project overview (see Section 5.3.1), the stakeholders
are redirected to the detail page of the project. A project detail page always consists
of four configuration tabs. The tabs are the following:

• Requirements (see Section 5.5),
• Releases (see Section 5.6),
• Issues (see Chapter 6), and
• General.

In the ’General’ tab, configurations for the project can be made, which are illustrated
in Figure 5.6.

34

5.3 Projects

Figure 5.6: Detail page with the selected ’General’ tab of a project in the IRP application.

This tab is grouped into five sections.
The first section, the ’Basic Settings’, defines the name of the project and the start
and end date. A description can be added to give the stakeholders an overview of
the project. Furthermore, a picture can be assigned to the project. This picture is
then presented in each list of the project.
The next group is the ’Requirement properties scheme’. Here, all MAUT evaluation
criteria with a description are listed, as shown in Figure 5.7.

35

5 Procedure of release planning

Figure 5.7: Detail view of the ’Requirement properties scheme’ section.

This group contains all the evaluation criteria for requirements. The project manager
can add or remove criteria. Furthermore, detailed settings for the criteria can
be defined. These settings can be evaluation scales and the weight of MAUT
evaluation criteria (see Chapter 8). Further information regarding evaluation criteria
is presented in Section 5.5.4.
The ’Stakeholders’ group provides the possibility to add and manage all the
stakeholders of the project. More information about the stakeholders is presented
in Section 5.4.
The ’Stakeholders’ group is followed by the ’Statistics’ group. In this group, three
statistics are available for the project. More information about related diagrams is
provided in Chapter 7.
The last group is the ’Attachments’. Here, different project-relevant files can be
provided for users. A detailed view of the ’Attachments’ group is presented in
Figure 5.8. Depending on the file type, the files are displayed differently.

36

5.4 Stakeholder

Figure 5.8: Detail view of the ’Attachments’ section.

5.4 Stakeholder

A stakeholder is someone who is affected by or affects the outcome of the releases
of a project [Ruh10]. As already mentioned, affected stakeholders often put pressure
onto managers of a project to provide their favoured requirements earlier [Dag+05].
This shows that the decisions regarding the assignment of requirements to releases
often can become complex [RM05].
Therefore, to achieve a feasible and effective solution, stakeholders must work
together. Thus, it is preferred to involve them during the planning process. In the
IRP application, stakeholders are involved during the modelling and prioritisation
of requirements.

A problem of involving stakeholders during requirements prioritisation is that
not every stakeholder has the same importance and knowledge about requirements
and the project [RS05]. Therefore, different approaches exist to classify stakeholders
and to give a higher weight to the evaluations of ’important’ stakeholders [BRW01;
RS05].

5.4.1 Assignment

To enable stakeholders to collaborate in a project, they must be added as stakehold-
ers to the project, which can be achieved in the ’Project Detail’ page in the ’General’
tab. Figure 5.9 presents a view of a project with assigned stakeholders. In this view,
the manager can add and remove stakeholders from the project.

To add stakeholders, the ’Add stakeholder’ button must be pressed. Then, a modal

37

5 Procedure of release planning

Figure 5.9: List of stakeholders, who were added to a project in the IRP application.

dialogue with all available stakeholders appears (see Figure 5.10). This list is filter-
able by the names and the skills of stakeholders.

The IRP application provides the possibility to add stakeholders as ’responsible
stakeholders’ to individual requirements, because of their knowledge or importance.
These responsible stakeholders are more involved in the added requirements. If
there is new information available for the requirements, such as further descrip-
tions or additional attachments, the responsible stakeholders receive notifications.
Furthermore, since the responsible stakeholders have more knowledge, their evalu-
ations are given more weight during the prioritisation process (see Chapter 8.1).
Only stakeholders, who were already added to the project can be assigned to a
requirement as responsible stakeholders.

38

5.5 Requirements

Figure 5.10: List of stakeholders, who can be added as responsible stakeholders to a project in the
IRP application.

5.5 Requirements

Sommerville and Sawyer [SS97, p.4] have provided a definition for requirements:

’Requirements are defined [...] as a specification of what should be
implemented. They are descriptions of how the system should behave,
or of a system property or attribute. They may be a constraint on the
development process of the system.’

Therefore, requirements can be viewed as decision alternatives for the functionality
of the product [AW03].

39

5 Procedure of release planning

Features are utilised to provide communication and understanding between cus-
tomers and developers [Ruh10]. Features are abstract and are often one or more
capabilities of a system, which present a value to the users [WB13]. Usually, a
feature consists of several requirements.
An example of a feature or requirement is ’Support for the consensus finding
during the requirements evaluation process’. The abstract description is enough
for a user but not for the developers. Therefore, a feature is divided into several
smaller requirements to gain more detailed information. The division of the smaller
requirements is implemented as follows:

• providing a chat with comment function,
• highlighting positive and negative comments with different colours, and
• providing a recommendation for each evaluation criterion.

5.5.1 Requirement overview

The first tab of the project details is the ’Requirements’ tab. All requirements of the
project are listed here. The overview with its classification of the requirements is
presented in Figure 5.11.
A requirement can have four different states:

• new,
• planned,
• completed, and
• rejected.

In the ’new’ state, a requirement was recently created and has not been assigned to
a release. In the ’next’ state, the requirement has been assigned to a release. In the
’completed’ state, the work for the requirement has been finished. Requirements
can also be ’rejected’, which is possible, for example, if the requirement is out of
the scope of the project or if the functionality is already provided by the product.
’Rejected’ requirements are still listed in the overview to provide a history of all the
rejected requirements.

40

5.5 Requirements

Figure 5.11: Overview of the ’Requirements’ tab in the IRP application.

5.5.2 Modelling

The modelling of a requirement is performed in four sections. A requirement
detail view, in which users can manage and model the requirement information,
is presented in Figure 5.12. In the first section, ’Information’, the users are able
to define a short name for the requirement. After the creation of a requirement,
the system assigns the requirement a unique ID. This ID should help the user to
identify a requirement throughout the project. In addition, a textual description
of the requirement must be added. Furthermore, users have the possibility to add
tags to a requirement, which has the advantage that the requirement can be more
appropriately classified by its attributes. Through the classification with tags, the
system can provide an overview of the requirements.
In the ’My Evaluation’ section, stakeholders can evaluate the MAUT criteria (see
Section 5.5.4). More information and a detailed view of this modelling section is
provided in Section 5.5.4.
Every stakeholder can evaluate requirements, but the requirements can also have

41

5 Procedure of release planning

Figure 5.12: Detailed view of a requirement in the IRP application.

’Responsible Stakeholders’. These stakeholders are added to a requirement due to
their special knowledge or their connection to the requirement. The assigned user
is then more involved during the modelling of the requirement.
He or she receives notifications (see Chapter 6) if some information has been
changed or added. Furthermore, this user’s evaluations are weighted higher than
those of other stakeholders.
The last modelling section is ’Attachments’. Here, different relevant files for the
requirement can be provided.

42

5.5 Requirements

5.5.3 Dependencies

Dependencies are used to describe relationships between requirements [Fel+13;
Tsa14]. The importance of dependencies has been demonstrated by a study by
Carlshamre et al. [Car+01]. The study, which analysed software projects, has re-
vealed that only about 20% of the analysed requirements had no dependency on
other requirements. This indicates that dependencies are important during the
planning process and that they must be carefully considered during the assignment
of requirements to releases. Further impacts include a dramatic increase in the
follow-up costs if dependencies are identified to late [Fel+17].
In the IRP system, stakeholders can model three different types of dependencies:

• requires,
• coupled, and
• excludes.

The ’requires’ or ’weak precedence’ dependency defines that for requirements A
and B, B must be in the same release as A or at least in a previous release [Ruh10;
VMT+07], which means that B cannot be later than A. Such a dependency makes
sense, for example, if there are requirements such as ’Overview of registered users’
(A) and ’Registration of users’ (B). If A requires B, the dependency declares that
requirement A makes only sense, if users can already register on the system.
A ’coupled’ dependency defines that for requirements A and B, both requirements
should be in the same release because of the strong connection to each other
[Ruh10]. In this case, requirement A requires B, and B requires A. An example
of such a dependency is that a user has to log in to a system (A), but to be able
to log in, he or she must register (B) first. Therefore, these requirements are only
meaningful if they are implemented in the same release.
The ’excludes’ dependency, expresses that requirement A or B is allowed in a re-
lease, but not both [VMT+07; VDL98]. This dependency defines, that if requirement
A is in release C, requirement B cannot be in the same release and vice versa.

The modelling of the dependencies in the IRP system can be made in the ’De-
pendency’ tab of the requirement detail view and is illustrated in Figure 5.13.

43

5 Procedure of release planning

Figure 5.13: Detail view of an assignment of a dependency to a requirement in the IRP application.

5.5.4 Evaluating a requirement

Providing the ideal solution that satisfies the customers’ expectations is not easy.
Many aspects such as timelines, resources, and especially costs must be considered
during planning. Knowing which requirement should be assigned to which release
is a difficult process. Therefore, different techniques for the prioritisation of require-
ments exist [Dua+09].

One of these techniques is to categorise requirements in three different prior-
ity groups [Bra90; Dua+09]. Such a categorisation can be mandatory, desirable, or
inessential. Requirements which must be in a software such that many stakehold-
ers are satisfied are mandatory. If there are not enough mandatory requirements
included in the software, stakeholders and customers will not accept the software.
All requirements which are marked as ’desirable’ have a benefit for the software but
are not necessary. These requirements increase the satisfaction level of stakeholders
but not as much as mandatory requirements.
Easy implementation and usage are benefits of this categorisation, but the small
evaluation scale can be a problem for larger and more complex projects [Dua+09].

Other techniques use scoring methods to calculate a priority value [Dua+09].
One of these techniques is described by Wiegers [Wie99]. In this technique, the

44

5.5 Requirements

manager evaluates requirements on a scale from 1 to 9. The evaluation is based on
the values of cost and risk of the implementation. The problem in this approach is
that during the evaluation of the requirements, no stakeholders are involved, so the
manager does not know if the customers will be completely satisfied at the end.

Other techniques extend the presented approaches through the involvement of
stakeholders during the evaluation process. With these techniques, stakeholders can
evaluate a specific criterion such as the priority of a requirement. After completing
an evaluation step and with the help of maximisation algorithms, the evaluated
requirements can be prioritised [RS05; Ruh10].

In the IRP application, all stakeholders are encouraged to evaluate the available
requirements. The prioritisation is based on a multi-score method, which means
that all requirements have more than one interest dimension. The available criteria
with their evaluation scales are introduced in the following section. To maximise the
outcome of the evaluation process and to obtain the best result for each requirement,
stakeholders are supported by group recommendations, which are described in
Section 5.5.5.

Evaluation criteria (interest dimensions)

The selection of requirements for a release is difficult. The challenge for the selection
is to obtain the best requirements for a specific release. Therefore, requirements
must be prioritised. To create an appropriate prioritisation, various prioritisation
criteria must be considered [Ruh10; Fel+13]. Example evaluation criteria are the
urgency of a requirement and various types of risks such as user acceptance. Further
criteria, which should be considered for the prioritisation, are costs and effort of the
implementation of the requirement.

The IRP application provides three evaluation criteria at the start of the project,
which are listed in Table 5.1. These criteria are defined by the system and cannot be
deleted, but managers are able to add further criteria (see Section 5.3.2).
An example of the evaluation section of the requirements is displayed in Figure
5.14. This figure demonstrates, that a manager has added an additional evaluation
criterion: cost. An indicator displays the status of an evaluation. If it is green, the
evaluation of the current criterion is consistent with the evaluations of other stake-
holders. If there is a conflict between the evaluations of different stakeholders, the
indicator turns red, and an issue is created (see Chapter 6).
The criteria have different evaluation scales, which enable an improved user experi-
ence, and the system obtains more detailed information about the criteria where
necessary. An overview of the scales, which are created by the system, with a

45

5 Procedure of release planning

Figure 5.14: Detail view of the evaluation section with all evaluation criteria of a requirement in the
IRP application.

corresponding description are presented in Table 5.1. Except for the effort criterion,

Name Description Scale
Business relevance Business relevance of the

mentioned requirement.
1 =>Low relevance; 10

=>High relevance
Effort Effort in hours to develop

the mentioned requirement
1 =>Low effort; 50 =>High
effort

Risk Risk of not being able to
successfully implement the
mentioned requirement

1 =>High risk; 10 =>Low
risk

Table 5.1: System evaluation criteria of a requirement with their descriptions and scales.

each criterion has the same 10-point evaluation scale. The maximum implementa-
tion effort of a requirement can be 50 hours, which corresponds to one and a half
working weeks of a developer. If the effort exceeds 50 hours, it indicates that the
requirement is too complex and must be split up into smaller pieces. These settings
can be changed by the manager.

46

5.5 Requirements

5.5.5 Recommendation

This section presents different decision support approaches and the recommenda-
tion technique, which is integrated in the IRP application.
Decision support or recommender systems are already used in different environ-
ments (e.g., health care or logistics) and are often in action for complex or dynamic
areas [Ruh10]. These systems try to generate more transparent decisions and to
provide new decision alternatives for all stakeholders.

Burke [Bur02] has described a recommender system as:

’any system that produces individualized recommendations as output
or has the effect of guiding the user in a personalized way to interesting
or useful objects in a large space of possible options’.

Furthermore, recommender systems can identify and provide items to users when
the environment is already too complex and not easy to understand for a user,
therefore he or she is not able to make a decision [Bur00; BFG11; Nin+14].

One of the key purposes of group recommender systems is to provide recom-
mendations in group decision scenarios such as software release planning [Fel+11].
Furthermore, these systems are often able to visualize the preferences of group
members and to reveal conflicts. With the help of those systems, quality assurance
can be improved [Fel+13]. However, it must be considered that recommendation
systems are only supportive technologies and are not able to resolve inconsisten-
cies. For this reason, communication between the individual stakeholders is still
important and cannot be automated by systems. Consequently, release planning
processes depend heavily on the information which is provided and exchanged by
stakeholders.

Recommendation techniques

In this section, five types of recommendation techniques are presented. These
techniques are used to support stakeholders in their decisions. The techniques are
content-based filtering (CBF) [PB97], clustering [Wit+16], collaborative filtering (CF)
[Kon+97], group recommendation (GR) [JBK04] and knowledge-based recommen-
dation (KBR) [Bur00; FB08].

In a CF [Kon+97] recommender system, items are suggested to a stakeholder,
which were already rated highly by similar users. This technique is a frequently
used recommendation technique and collects the ratings of nearest neighbours of
the current user [Fel+13; Nin+14]. The neighbours of a user can be users with a

47

5 Procedure of release planning

similar rating behaviour for similar products, which means that if users A and B
evaluated requirements in a similar fashion, user A also receives suggestions for
requirements which were rated positively by B [Nin+14].
Collaborative filtering also supports the stakeholders in their understanding of
requirements. The system can present information of stakeholders, which is helpful
during the evaluation process. Furthermore, other requirements, which might also
be interesting for a stakeholder, can be identified by the recommender system. A
basic implementation of CF is user-based CF [Kon+97]. In this implementation, the
k-nearest neighbours are determined. In user-based CF, neighbours are users who
are interested in similar requirements [Kon+97]. The technique creates a prediction
of a rating for the stakeholder with the help of the votes of the nearest neighbours.

Another recommendation technique is content-based filtering (CBF) [PB97]. In
this approach, previous preferences for items are evaluated to recommend new
items [Fel+13]. Examples of preferences can be previously viewed categories or
frequently used keywords. An example of this approach is online shops. After
the customer has bought or viewed an item of a specific category, the system
recommends further products of this category.
In the context of release planning, this approach can be used to determine similar re-
quirements or to suggest previous requirements of other projects for reuse purposes.

Clustering can be used to identify similar items. An example of clustering is
the k-means algorithm [HTF09]. The number of clusters, which are searched by the
algorithm, is described by k.
In the context of release planning, clustering can be used to find similar require-
ments. For example, to determine the similarities between requirements, it is
possible to extract the textual description. Then, with the help of the descriptions
and distance metrics, clusters can be formed by the algorithm. The result provides
similar requirements in the individual clusters.

With the help of knowledge-based recommendation (KBR), a group of items can be
suggested to users [Bur00]. Different formal knowledge types are evaluated for the
determination of these items [Nin+14].
For the recommendation of items, pre-defined rules are used by the system [FB08;
Fel+13]. The rules allow to explain why items have been recommended and/or
why no recommendations could be found [Fel+09]. A user specifies some criteria,
and the system recommends an item according to those criteria.
In the context of release planning, this technique can be used to assist consistency
management [Fel+09; Fel+10a]. Consistency management is important in cases
where it is not possible to determine a release plan. This situation is possible when
the preferences of stakeholders are contradictory.

48

5.5 Requirements

The last technique discussed here is group recommendation [JBK04; Fel+11]. These
technologies recommend items to a group of stakeholders. For example, the recom-
mender system suggests a restaurant for dinner to a group of users.
Group recommenders try to achieve or at least support a consensus among all
group members [Nin+14]. By considering different aspects of decision-making, such
as the evaluation of decision alternatives, group recommender systems support
the decision process [JBK04; Nin+14]. The technique uses heuristics to determine
relevant alternatives for the group.
In the context of release planning, a group recommender system is important for
the evaluation and selection of requirements. The reason is that the system attempts
to foster consensus between the stakeholders by providing a plan acceptable for all
stakeholders.

Recommendation approaches in IRP

In the IRP application, requirements are specified on a textual level. Stakeholders
can evaluate each requirement against various evaluation criteria. The application
provides a recommendation for each criterion.
For this purpose, group recommendation techniques are used to support stake-
holders in the construction of their preferences. For the support of the requirement
evaluation, the system uses basic recommendation functionalities, which are based
on heuristics. A recommendation of a criterion (evaluation dimension) of a require-
ment in the IRP application is illustrated in Figure 5.15.
The recommendation is only visible to the stakeholders when they hover over the
blue information icon. Then, a small hint is displayed to the user with a basic
description and a recommendation for the current criterion.

To recommend a evaluation value to stakeholders, a combination of two algorithms
is used (see Formula 5.1). The two algorithms were already presented in Chapter 4,
the median heuristic (see Section 4.3) and the least distance method (see Section 4.4).

Recommendation(r) =
{

Median(r) con f lict(r) == true
LDIS(r) con f lict(r) == f alse (5.1)

Depending on the evaluation condition of the requirement, the system uses the
heuristic with the most appropriate aggregation approach. First, the system checks
whether a conflict exists for a specific criterion. If there is a conflict, the median
heuristic (see Section 4.3) is used by the system; this has the advantage that the
conflicting evaluations do not affect the recommendation too much. Due to the
fact that the least-distance heuristic (see Section 4.4) is more manipulatable, this
heuristic is only applied if there is no conflict for the given criterion [FN12].

49

5 Procedure of release planning

Figure 5.15: Recommendation of the effort criterion in the IRP application.

5.5.6 Support for finding a consensus

The recommendations depend on a high quality of information contributed by
stakeholders. Effective release planning heavily relies on the exchange of informa-
tion and the interaction between stakeholders [PC08; Fel+13].

Therefore, in addition to the recommendation of individual criteria, the IRP system
provides a chat to support the identification of a consensus. This chat relieves the
communication and discussions between the stakeholders. Each requirement has its
own chat in the detail view, which is displayed in Figure 5.16. This feature allows
stakeholders to discuss each requirement separately.
A comment can be positive, negative, or neutral. The messages are highlighted
differently depending on the type of message. Positive messages are marked green,
negative ones are marked red, and neutral ones are marked grey. With this method,
stakeholders can see at first glance the different meanings of the comments.
If a new chat message for a requirement arrives, all the responsible stakeholders
are informed. More information about notifications is provided in Chapter 6.

Every chat message consists of five parts. The profile picture of the transmit-
ting stakeholder is displayed on the left side of a message. Next, the username with
the chat message is visible.
An important key feature of the chat is that stakeholders can provide their support
for comments. The support of stakeholders is displayed by likes or dislikes of

50

5.6 Releases

Figure 5.16: Chat regarding a requirement of the IRP application.

comments. This way, important comments can be highlighted, and the consensus
of the stakeholders can be indicated. Positive and negative comments are also
influencing the prioritisation of requirements (see Chapter 8).
Furthermore, every chat message contains a time stamp. The messages are sorted
chronologically, meaning that the newest messages are at the top of the chat window.
This sorting allows the stakeholders to see the newest messages first.

5.6 Releases

Using release planning, smaller development periods are performed sequentially
[GR04]. As a result, instead of only one big release with all functionalities, smaller
releases are published. The greatest benefit of this method is that more important

51

5 Procedure of release planning

requirements can be delivered first. Therefore, the definition of releases is important
because they specify a schedule for the implementation of requirements [REP03].
Important properties, which must be considered for the releases, are the develop-
ment time and resources, such as the capacity and staff availability.

5.6.1 Release overview

The second tab of the project detail view is the ’Releases’ tab. In this tab, all the
created releases of the current project are listed. The release overview with its
classification of the releases is illustrated in Figure 5.17. The form contains four
different sections with tables. Each section represents the state of the corresponding
releases. Therefore, a release has four possible states:

• new,
• planned,
• completed, and
• rejected.

Figure 5.17: Release overview in the IRP application.

In the ’new’ state, a release was recently created, and no requirement has been
assigned to this release yet. In the ’planned’ state, at least one requirement has
been assigned to the release. In the ’completed’ state, all the requirements have

52

5.6 Releases

been finished. Releases can also be ’rejected’, which is possible, for example, if the
release is out of scope of the project or the release was mistakenly created. They are
still listed in the overview to provide a history of all rejected releases. If a release is
rejected and already had some requirements assigned, then all requirements will
be removed from this release and receive the state ’new’.
Furthermore, the list enables stakeholders to see at first glance the available capacity
and the planned implementation duration of releases. Each table also provides a
search and sort function for the releases.

5.6.2 Release detail

By clicking on a release in the release overview, a detail view is displayed. An
example of a detail view is presented in Figure 5.18.
Each release has some basic properties: ID, name, start and end dates, maximum
capacity, status, and a description. The ID always starts with ’Rel#’, followed by an
individual number. The start and end dates of the release indicate the development
period of a release. To be able to plan resources, each release also has its own
maximum capacity, which is described in hours. This capacity implies that the sum
of all the added requirements is not allowed to exceed this value. Furthermore,
each release features its own ’Attachment’ section, where further information can
be added. Another field on the form is the status field. This is a read-only field that
is set by the system through different events.
The managers are also able to reject a release. By pressing the button ’Reject’, the
status of the release is set to be rejected, and all assigned requirements are removed
from the release.
If the implementation of the assigned requirements of a release has been finished,
the release can be completed by the managers. For this purpose, the button ’Com-
plete’ is available to the managers. This button is only visible if the release is in the
’planned’ state. After the activation of the button, the release and all its assigned
requirements are set to the ’completed’ state.

53

5 Procedure of release planning

Figure 5.18: Release detail view in the IRP application.

5.6.3 Assignment of requirements

The second tab (’Assigned Requirements’) of the release detail view enables man-
agers to add requirements to the release. An example of the view with an ’Add
Requirement’ dialogue is presented in Figure 5.19.
The ’Assigned Requirements’ view contains a table with all the requirements which
were assigned to this release. With the button ’Add Requirement’, a dialogue ap-
pears where all requirements in the state ’new’ and with valid evaluations are listed.
The requirements are ordered by their IDs. Multiple requirements can be added at

54

5.6 Releases

Figure 5.19: The assignment of a requirement to a release in the IRP application.

once to the release. As soon as requirements have been added to a release, the state
of the requirements changes to ’planned’. The status of the release also changes to
’planned’. Furthermore, it is possible to lock the release assignment of requirements.
To achieve this, the button ’Close Assignment’ is provided.

55

6 Issue recognition and notifications

Conflicts and inconsistencies often occur during group decisions [Fel+17]. The
reason is that stakeholders must agree on the release assignment of requirements.
An example of such an inconsistency can be that two stakeholders have completely
opposite preferences regarding the release assignment of a requirement [Fel+17].
Not only the assignment of requirements creates possible inconsistencies, but also
evaluations. The whole group must agree on a given set of evaluations. Therefore,
it is important to support the identification of a consensus between stakeholders.
Approaches to support this are conflict detection and diagnosis techniques [FSZ12;
Rei87]. These techniques can find conflicts between the preferences of stakeholders
and provide possible solutions [Fel+17].

This chapter focuses on diagnosis and visualization aspects of conflicts in the
context of release planning. In the first section, the issue panel, which provides
an overview of all the issues in the project, is presented. The next section demon-
strates the creation of issues. Furthermore, this section provides an overview of
all automatically created issues on the basis of an example. In the IRP application,
stakeholders are also able to create issues manually, which is demonstrated in
Section 6.2.2. The notification feature, which visualises conflicts and informs all
stakeholders about new chat messages, requirements or new information data,
is presented in Section 6.3. A further diagnosis approach for the optimisation of
releases is presented in Chapter 8.

6.1 Issue overview

Each project features its own issue overview, which is visible to all members of a
project. All project-relevant issues are listed in this view. An example of an issue
overview is provided in Figure 6.1. The issues are sorted by their creation dates
and the newest issues are displayed at first. This sorting enables stakeholders to see
the latest and most relevant issues at first glance.
Each issue consists of five parts:

• Name: A short title, which describes the topic of the issue

57

6 Issue recognition and notifications

Figure 6.1: Issues overview page in the IRP application.

• Description: A longer text, which provides a more thorough understanding
for the issue
• Assigned to: An issue can be assigned to a requirement or a release. This field

displays the ID field of the related component with the corresponding issue
• Responsible stakeholders: Displays all affected stakeholders of this issue
• Created on: Lists the month and the year when the issue was created

The stakeholders can navigate to the affected component by clicking on the name
in the ’Assigned to’ column.

An issue can be in the state ’open’ or ’resolved’. Depending on this state, the
representation of the issues changes. The message of the issue is displayed in a
light grey if the issue is already resolved. If the text is still in black, this indicates
that the stakeholders must still complete some tasks to resolve this issue. Open
issues are also listed in other parts of the application (see Section 6.3).

58

6.2 Issue creation

To view only relevant and open issues, stakeholders are able to filter the list
of issues. The stakeholders can filter the issue list to only see open issues by using
the checkbox ’Only open issues’. Furthermore, it is possible to only display issues
which were assigned to the current stakeholder. In addition, combination of both
filters is possible.

6.2 Issue creation

There are two different ways to create issues in the IRP application. Issues are cre-
ated either by the system or manually by the stakeholders. The modes are presented
in the following sections.

6.2.1 Automatic issues created by the system

Automatic issues are created by the system because of specific inconsistencies in
stakeholder preferences. Areas in which it is possible that issues occur are the
assignment of requirements to releases and evaluation of requirements.

If too many requirements are assigned to a release, the sum of the capacity of
the assigned requirements may exceed the maximum capacity of the corresponding
release. This result means that the developers are not able to implement all require-
ments, or the managers must re-plan the resources for this release. Therefore, the
system automatically creates an issue. By creating an issue, managers are informed
and can react accordingly.

The other area which is monitored by the system is the evaluation of require-
ments. If a stakeholder has a preference which is too different from the other
evaluations, an issue is created for all affected stakeholders. The creation of issues
supports finding a consensus among stakeholders and improving the quality of the
preferences. Each criterion of the evaluation section is monitored individually by
the system. This monitoring means that stakeholders who are affected by an issue
can concentrate on the discussion of the affected evaluation criterion. An example
of a conflict with regard to a criterion is presented in Figure 6.2.

Table 6.1 lists examples of stakeholder preferences related to the criterion effort.
Furthermore, the average value of the preferences is provided. As already discussed
in Chapter 5.5.4, stakeholders can evaluate the effort criterion within a range from
1 to 50. A conflict regarding a preference of a stakeholder for a specific criterion
of a requirement, Re, is defined in Formula 6.1. The average of all preferences is

59

6 Issue recognition and notifications

Figure 6.2: Visualization of the conflicts in the evaluation panel in the IRP application.

S1 S2 S3 S4 S5 S6 AVG
R1 40 30 35 40 45 20 35

Normalised 8 6 7 8 9 4 7

Table 6.1: Example of stakeholders’ evaluations for the effort (max. value 50) criterion. The average
value for the requirements were calculated and all preferences were normalised (base =
10.

compared to the individual preference, pre f , of a stakeholder. The deviation of the
preference is not allowed to be less than or greater than 2. If a deviation exceeds the
limit, an issue is automatically created by the system. All criteria are normalised to
a base of 10.

Con f lict(Re) =

{
true pre f > AVG + 2 or pre f < AVG− 2
f alse otherwise (6.1)

According to Formula 6.1, the preference of S6 does not conform to the specification
and produces an issue. After a new evaluation, the system checks each preference
for a constraint violation. If there is a violation, the system creates an issue for the
stakeholder.

6.2.2 Issues created manually by stakeholders

In addition to automated issued generation, user can create issues also manually.
This feature is also intended to support the finding of a consensus between the
stakeholders by highlighting conflicts. There can be various reasons for users to

60

6.3 Notifications and visualization of conflicts

manually create an issue.
If in the opinion of a stakeholder a requirement has been assigned to the wrong
release, the stakeholder can create an issue and assign this to the responsible man-
ager. Another example of a manually created issue could be that a stakeholder
wants a further evaluation of a criterion. Then, the stakeholders who were as-
signed to the issues must discuss the criterion. Another reason for an issue could be
missing information, such as lack of sufficient description or additional attachments.

To create a manual issue in the IRP application, a user must navigate to the
issue overview page. The form for a manual issue is pictured in Figure 6.3.

Figure 6.3: The manual issues creation in the IRP application.

At the manual creation, the user enters a title and a description of the issue. Further-
more, either a release or a requirement must be associated with the issue. During
the next step, the user selects all the stakeholders who will be notified that a new
conflict exists. The ’Responsible stakeholders’ field is a multi-select field, which
means that more than one stakeholder can be selected, and supports the user with
an auto-complete.

If a conflict has been resolved, it can be marked as ’resolved’. For this reason,
a ’Resolve’ button exists for every manually created issue in the issue overview.
After the issue is closed, the issue is no longer displayed at the assigned release or
requirement (see Section 6.3).

6.3 Notifications and visualization of conflicts

Notifications were introduced to keep all stakeholders of a project updated. These
notifications help the stakeholders identify changes at the requirements and releases
very quickly.
Notifications are created for following events:

• a new issue,
• new chat message,

61

6 Issue recognition and notifications

• the addition of a responsible stakeholder to a requirement, and
• new attachments for a requirement or release.

The system distinguishes between issue- and event-based notifications. For event-
based notifications, such as a new chat message, an orange dot appears. The first
time that a stakeholder is able to see the notification information is on the project
overview page, which is illustrated in Figure 6.4. The orange dot is always present
at the left side of the project name. If the user hovers over the dot, a tooltip is
displayed with the count of new event-based notifications.

Figure 6.4: Visualization of notifications and issues on the project overview page.

Notifications guide users to the triggering origin. This means, that the notification
is shown in each tab and section which is associated with the source requirement
or release. An example of this guidance is displayed in Figure 6.5. In this example,
the event notification leads the user to ’Req#2’.

62

6.3 Notifications and visualization of conflicts

Figure 6.5: Visualization of conflicts on the project page.

For issues, a red badge is displayed on the right side of a name, which is also
presented in Figure 6.5. The badge contains a number indicating the number of
conflicts for that area. Users can immediately see all the areas with a high number
of conflicts.
Conflicts in the evaluation panel are also visualised. This visualization displays
open issues for all criteria of a requirement. Each criterion has its own issue in-
dicator. For this purpose, a red dot with a cross inside was introduced. The dot
visualises a conflict for this specific criterion. However, if the dot is green, every-
thing is acceptable, and the preferences of the stakeholder are consistent with the

63

6 Issue recognition and notifications

preferences of other stakeholders.

A difference between event-based and issue-based notifications is the duration
of the visibility of the notifications. An event-based message disappears after the
affected stakeholder has seen it, but an issue does not disappear until it is re-
solved. The reason is that event-based notifications only help users as informational
messages. On the other hand, issue notifications warn the stakeholders about
inconsistencies and mark these areas until the inconsistencies have been resolved.

64

7 Statistics

Statistics are mathematical equations and important in many application areas.
Such areas can be medical, financial, or also production related. For example, in
the medical field, medications are tested, and statistical evaluations are executed to
assure that the medication is helpful and not hazardous.
Statistics are applied to collect, analyse, interpret, and visualise raw data. With the
help of these methods, large datasets can be simplified, which helps users to better
understand the analysed aspects.

By visualization of data, the users can recognize abnormal changes in the dataset
at first glance. Keeping these facts in mind, the IRP application offers users three
different statistics with a visualization of the datasets.
The statistics reach from the assignment of the requirements to the releases, up
to the disagreement between the requirement evaluations. All these statistics are
accessible via the project detail page.
In the following sections, all statistics are presented with a description and a
visualization example.

7.1 Requirements assigned to releases

The ’Requirements assigned to Releases’ statistic displays a brief overview of all
planned releases. The statistic is visualised as a bar chart. The statistic displays
which requirements are in the state ’new’ or ’planned’ as well as the number
of assigned requirements for each release. This visualization helps managers to
easily see the distribution of requirements over releases. Also, an overview for
those releases, which have only a small number of requirements, is given. A small
number of assigned requirements is mostly a sign of free capacities in a release.
These capacities can be filled up with available requirements.

For the implementation of these statistics the JavaScript library d3js (see Chapter
3.2.13) is utilised. This library provides the possibility to visualise data with the
help of HTML, CSS, and SVG.

65

7 Statistics

To create a chart with d3js, each line must be created by the code. The IRP ap-
plication creates the axes and the bar elements separately. An example of the
visualization is presented in Figure 7.1.

On the x-axis of the chart, the IDs of the analysed releases are displayed. The
ID of the release is chosen as label, because it distinctly identifies the releases.
Another reason for this is, that the name of the release could be too long for the
labels. On the y-axis, the number of assigned requirements to a release is displayed.
In Figure 7.1 it becomes apparent, that ’Rel#1’ contains 8 requirements and ’Rel#2’

Figure 7.1: Example statistic: assigned requirements to a release.

contains six. Furthermore, ’Rel#3’ has no requirements, which indicates that more
requirements can be planned for this release.

Users can see a description of the statistic by clicking on the ’Show more in-
formation’ button. After pressing this button, a text with a description for this
statistic will be displayed.

7.2 Disagreement of requirements

The ’Disagreement of Requirements’ statistic is important to gain a detailed
overview of the rating behaviour of all project members. By analysing the rat-

66

7.2 Disagreement of requirements

ing data, managers gain insight into preferences of stakeholders.
For a manager it is important to stay informed about the level of disagreement
between all project stakeholders [Ruh10]. If the disagreement between stakeholders
is high, it is often a signal that there are problems and that further analyses are
required. On the other hand, if the disagreement is low, it is an effective indicator
that the consensus for this specific requirement is strong. Therefore, this statistic is
an effective analysis option to detect problems and to revise the overall consensus
of the stakeholders. To analyse the consensus of each criterion, managers can select
the criteria separately.

As at the ’Requirements assigned to Releases’ (see Section 7.1) statistic, the d3js
(see Chapter 3.2.13) library is employed for visualization. An example of the visual-
ization of this statistic for the ’priority’ criterion is demonstrated in Figure 7.2.
The d3js library creates the minimum and maximum points of preferences of all
stakeholders separately as well as the connection between the average preferences.
On the x-axis of the chart, the IDs of the analysed requirements are displayed. This
statistic analyses all requirements in the state ’new’ and ’planned’. Furthermore,
the statistic also includes all requirements without an evaluation. The inclusion
of non-evaluated requirements has the benefit, that the managers can see all re-
quirements at first glance, which have not been evaluated until now. On the y-axis,
the evaluation scale of the selected criterion is displayed. The maximum value
corresponds to the maximum evaluation value of the selected criterion.
For each requirement, three value points are created by the system. The highest
point with the largest value represents the largest preference for this criterion
and requirement. The point in the middle of the dataset represents the average of
all preferences, and the lowest point displays the value with the least preference
for this criterion. A strong consensus among stakeholders can be assumed, if the
distance between all points is small.

According to this description, it becomes apparent that in Figure 7.2, require-
ment ’Req#2’ has the largest disagreement in the context of the priority criterion.
This is an indicator for managers to revise the requirement. Possible problems
could be that the requirement is not well defined or that a discussion between the
stakeholders is necessary. On the other hand, the evaluation of ’Req#3’ seems to be
well accepted by the stakeholders.

To support users in understanding this statistic, a description is provided. Af-
ter pressing the ’Show more information’ button a text with a description for this
statistic is displayed.

67

7 Statistics

Figure 7.2: Statistic of requirements based on the disagreement between stakeholder preferences for
a specific criterion.

7.3 Optimisation chart

The ’Optimisation’ chart is important to obtain an overview of the planned releases.
The chart compares the relevance values of releases, which were manually planned
by managers.
This statistic provides a useful feedback for managers regarding the quality of the
releases. If the relevance values of the optimal calculation are higher than the man-
ual relevance values, this indicates, that improvements are possible. Furthermore, it
could indicate, that there are still conflicts. The exact calculation of relevance values
is exemplified in Chapter 8.

For the creation of this chart, the JavaScript library Chart.js1 was employed. This
library is easy to utilise and to integrate in HTML sites. The rendering of the chart is
done in a canvas element. Chart.js creates the charts with the help of configurations.
This has the advantage, that developers do not have to create the objects themselves
and only must specify the configuration for the chart. At the moment, Chart.js
supports eight different chart types (e.g. bar, line, scatter). The design of these
charts can be efficiently changed and also legends for the diagram can easily be
created with this library.

The ’Optimisation’ chart is a chart with two lines, which is presented in Fig-
ure 7.3. The base builds the relevance value of the requirements, which is presented

1https://www.chartjs.org/ (Retrieved 01.12.2020)

68

7.3 Optimisation chart

in Formula 8.2 of Chapter 8. In Chapter 8, an example of the calculation of the
relevance values is presented.

On the x-axis of the chart, the IDs of the analysed releases are displayed. Here
the ID is chosen as label, because it clearly identifies the releases. This graphic
displays all releases that are in the ’new’ or ’planned’ state. On the y-axis, the
relevance values of the releases are displayed. The relevance values of the releases
are composed of the sum of the relevance values of the added requirements.
If the user hovers over a release, a legend appears for that release, which displays
the optimal and manual relevance values for that specific release.

Figure 7.3: Chart for the optimisation of planned releases.

In Figure 7.3, it becomes apparent that there is a large gap between the opti-
mal and manual relevance values for ’Rel#1’. For optimal calculation the legend
displays a relevance value of 102.54 and for the current releases 48.97. This can
be an indicator for managers, that important requirements are assigned to wrong
releases. Furthermore, the chart demonstrates that the relevance value between
’Rel#2’ and ’Rel#3’ is stagnating. A stagnation is possible, when the analysed
release contains no requirements. If the relevance values stagnate, the manager
can plan or create further requirements for this release. It is also visible that the
optimal calculation starts with a large value but increases not much higher. The

69

7 Statistics

reason for this are the assigned requirements. At the beginning, important require-
ments with a large relevance value are assigned to earlier releases and the later
the releases are planned, the lower the relevance values of the requirements become.

An exact analysis and diagnosis of the planned releases is provided by the ’Show
improvements and diagnosis’ button. The managers also receive in this page sugges-
tions for improvements of the planned releases. The optimisation and improvement
page is presented in Chapter 8.

70

8 Release optimisation and diagnosis

Release plans often possess many constraints. These restrictions can be concerning
available resources, deadlines, or the interdependencies between requirements.
Because of those constraints, release plans require decisions regarding the release
order of requirements [Fel+13]. To support managers in their decisions, all require-
ments are prioritised by stakeholders. By prioritising requirements, all unimportant
items are separated from the important ones, but this is only one of the first steps.
Managers must then consider the dependencies between requirements and the
availability of resources.

Managers always try to achieve the maximum business value from the planned
releases by considering all constraints. In addition, they attempt to satisfy all im-
portant stakeholders. Therefore, they assign the requirements with the highest
priorities to early releases. The planning is challenging for managers due to a
possibly large set of constraints [Fel+13]. For this reason, optimisation algorithms
are needed. The algorithms can help to improve the assignment of requirements
to releases. This improvement can be achieved by considering all the stakeholder’
preferences for the requirements and their dependencies.

This chapter is organised as follows. In Section 8.1, the prioritisation of the re-
quirements is presented. This section also presents the algorithm for the calculation
of relevance values; this calculation is demonstrated by an example.
The next section reveals how all the dependencies of a requirement are detected
and resolved by the system.
In the last section, the assignment of requirements to releases is presented.

8.1 Prioritisation

One way to systematically analyse the importance of requirements is prioritisation.
A ranking can be derived from this prioritisation. This process is often not easy due
to inconsistencies between the evaluations of stakeholders, but with the utilisation
of consensus and recommendation techniques (see Chapter 5.5.5), the prioritisation
process can be streamlined.

71

8 Release optimisation and diagnosis

To achieve an optimal assignment of requirements to releases, all requirements are
prioritised according to the stakeholders’ evaluations. For the ranking of require-
ments, a relevance value is created. The creation of the relevance values is based on
Multi Attribute Utility Theory (MAUT) (see Chapter 4.5). This approach enables the
utility value calculation of an item, which is described by more than one criterion.
Furthermore, available criteria and stakeholder evaluations can be differentiated
with regard to their importance.
The IRP application differentiates between two stakeholder types. These types are
’project stakeholders’ and stakeholders ’responsible’ for specific requirements (see
Chapter 5.4). Depending on the type of stakeholder, the weights, w(v), for calculat-
ing the relevance value are different, which is shown in Formula 8.1. Formula 8.1
demonstrates, that stakeholders who are assigned to a requirement have a weight
of two for this specific item and all others have a weight of one.

w(v) =
{

2 assigned as a responsible stakeholder to the requirement r
1 otherwise (8.1)

During the evaluation process and when no additional criteria have been added,
stakeholders state their preferences regarding a requirement in three different
evaluation criteria (see Chapter 5.5.4). The criteria can have different weights (see
Table 8.1).

Name Weight
Business relevance 1.5

Effort (h) 2.0
Risk 1.0

Table 8.1: Evaluation criteria of a requirement with corresponding weights.

The criterion Effort has the highest relevance. This criterion has a weight of 2. The
Business relevance follows with a weight of 1.5. The criterion Risk hast the lowest
importance. The reason for this distribution is that the IRP application focuses more
on the operability than on possible failures of the releases.

At least one stakeholder must evaluate each requirement such that a relevance
value can be derived. An example of a evaluation result is presented in Table 8.2.
Table 8.2 displays the result of the evaluation process for the following example
with five stakeholders and four requirements. The bold evaluations indicate that
a user is a responsible stakeholder for a requirement and therefore has a higher
weight. The criteria are defined with their abbreviation from left to right: Business
relevance (BR), Effort (E) and Risk (R). Because of the high priority and low risk

72

8.1 Prioritisation

Stakeholder R1 R2 R3 R4
BR E R BR E R BR E R BR E R

S1 5 35 8 4 20 6 8 30 2 8 45 3
S2 4 30 7 6 15 7 9 35 3 6 30 3

S3 2 40 8 6 10 8 9 25 5 7 45 3

S4 2 40 9 3 15 9 8 30 2 3 50 2
S5 3 45 9 3 35 8 9 35 2 6 40 4

Table 8.2: Example of a result of the evaluation process for requirements.

evaluations, it is already apparent that requirement R3 received the highest evalua-
tions. After the evaluation process is completed, the system calculates the relevance
value for the requirements.

The relevance value is determined using the utility approach MAUT (see Chapter
4.5) and determined through the consideration of positive and negative comments
for the requirement. The calculation of the relevance value for a requirement is
demonstrated in Formula 8.2.

Relevance value(r) = MAUT(r) + AB(r) (8.2)

The positive and negative comments to a requirement are considered with an
argumentation-based (AB) value. This value includes all agreements to a comment,
which were given by other stakeholders. The consent of other stakeholders is
represented as likes (see Chapter 5.5.6).
To determine the AB value, a base value for the comments is created by the system.
The calculation is presented in Formula 8.3.

AB(base value) = ∑
cp∈comments(pos)

 ∑
l∈Likes(cp)

l − ∑
d∈Dislikes(cp))

d

+ 1

− ∑

cn∈comments(neg)

 ∑
l∈Likes(cn)

l − ∑
d∈Dislikes(cn))

d

+ 1

 (8.3)

In this formula, all the positive and negative comments with all their likes and
dislikes are considered in the calculation. This formula checks if the sum of the
positive comments, cp, with all their likes, l, and dislikes, d, is greater than the sum
of all negative comments, cn. During the calculation of the base value, a rule is
applied to Formula 8.3, which is presented in Formula 8.4.

value =

{
value i f

(
∑l∈Likes(cp) l −∑d∈Dislikes(cp)) d

)
+ 1 > 0

0 otherwise
(8.4)

73

8 Release optimisation and diagnosis

With this rule, negatively rated comments, which are stated as dislikes, have no
influence on the overall AB value. After the creation of the base value, the AB value
listed in Table 8.3 can be determined.

Base value of the comments Value
≤ 2 0.2

> 2 & < 5 0.5
> 5 1.0

Table 8.3: The AB value depending on the calculated base value of the comments.

Table 8.3 presents all the AB values for the comments. These values are added when
the positive comments predominate the negative comments. However, negative
comments also influence the relevance values. If the negative comments predomi-
nate the positives, the relevance value is decreased by the AB value.

By using Formula 8.2, the following relevance values in decreasing order can
be derived for the requirements from Table 8.2:
R3 = 6.28, R2 = 4.89, R4 = 4.53 and R1 = 2.83.
As assumed, R3 receives the highest relevance value. The following requirement is
R2 followed by R4. These two requirements are close to each other. In this case, a
positive or negative comment could change the ranking of the requirements. The
last position is occupied by R1.

8.2 Dependency resolution

During the modelling of requirements, stakeholders define constraints between
individual requirements (see Chapter 5.5.3). These constraints are used to describe
the relationship between the requirements [Fel+13; Tsa14]. Since dependencies
define whether requirements are related or mutually exclusive, not all requirements
can be implemented in the same release. Therefore, the system must resolve and
consider the constraints during the optimisation process to be able to recommend
the most effective solution [FB08; RS05].

An example of the definition of some dependencies between the requirements
of this example is provided in Table 8.4. Table 8.4 indicates that requirement R3

is associated with two requirements in the form of ’requires’ dependency. Fur-
thermore, R2 has two ’requires’ dependencies. R4 has no dependencies and can
therefore be excluded for the dependency resolution.

74

8.2 Dependency resolution

Requirement Requires
R3 R1, R2

R2 R1, R3

R4

Table 8.4: Examples of requirements and related constraints.

To be able to consider all dependencies, the system builds a dependency tree
for the specific requirement. In this example, the system starts with the requirement
R3. All steps which are performed by the system and the final dependency tree are
displayed in Figure 8.1. The system starts with the requirement R3 and adds it as

Figure 8.1: An example of the creation of a dependency tree.

the root of the tree. In this case, the system analyses all the ’requires’ and ’excludes’
dependencies of R3. During the analyses, the system finds the requirements R1 and
R2, which are connected via ’requires’ dependencies. These two requirements are
added as children of R3 to the tree in Level 1. Next, the dependencies of R1 and R2

are analysed by the system. At this level, the system detects that R2 has ’requires’
dependencies with R1 and R3. These two requirements are then added to Level
2. Furthermore, the system checks if there are existing relationships. The system
recognises that R3 is already in the same path at the higher nodes and therefore,
a strong relationship exists between R2 and R3. In the next step, the application
analyses Level 2. The first requirement is R1, which has no dependencies and is
therefore not further analysed. However, R3 has dependencies, but these dependen-
cies have already been added. In this case, the dependencies of R3 are no longer
considered on the lower levels.
Next, the algorithm starts from the second level of the tree and checks if the prede-
cessor of the current node and at least one child is already registered for the same
release. If this is the case, the current node is also registered for the same release.
The finished result for R3 is that R3 must be in the same release as R2, and R1 must
be at least in an earlier or the same release as R3.
This procedure is repeated for all created requirements until each requirement has

75

8 Release optimisation and diagnosis

its dependency tree.

8.3 Assignment process

In order to achieve the greatest value for the business, an optimal assignment of
requirements to the releases is important. During the assignment, various factors,
such as the dependencies of the requirements and capacity of the releases, have to
be considered. Therefore, a process is applied to achieve an assignment with all
constraints considered, which is presented in Figure 8.2. The process consists of
nine steps and various decisions. The steps are explained in this section.

76

8.3 Assignment process

Figure 8.2: Process of the IRP application to assign available requirements to releases.

77

8 Release optimisation and diagnosis

During the release planning it must be clarified, which requirement must be as-
signed to which release. For this purpose, the relevance values of the requirements
(see Section 8.1) build the base for the assignment. Therefore, the first task of the
process, the Relevance value calculation and prioritisation task, is to calculate the
requirements relevance values and prioritise requirements according to the values.
The aim of the approach is to have requirements with higher relevance values in
the earlier releases rather than requirements with lower relevance values. Therefore,
the approach sorts the requirements according to their relevance value and starts
the assignment with the requirement with the highest relevance value.
Once the relevance values have been calculated, a further step is required before
the requirements can be assigned to the releases. To be able to assign requirements
to releases, managers need to know how long the implementation of a requirement
takes, thus the capacity consumption of the requirements must also be calculated,
which is performed in step two, Calculation of implementation durations. Oth-
erwise, the sum of the capacities of the assigned requirements could exceed the
available capacity of the release.
The IRP application uses a modified average algorithm for the calculation of the
implementation duration, h(r), of a requirement, which is shown in Formula 8.5.
The calculation considers the weight of the stakeholders, w(v), too.

h(r) =
∑v∈evals(r) h(v) ∗ w(v)

∑v∈evals(r) w(v)
(8.5)

By using Formula 8.5 the following implementation durations (h) were created for
the requirements from Table 8.2: R1 = 38.13, R2 = 20, R3 = 30 and R4 = 43.13.

After the implementation durations and relevance values were created for the
requirements, the requirements can then be assigned to releases. The assignment is
performed iteratively, whereas the steps 3 to 8 are repeated until every requirement
is assigned to a release or marked as unassignable. In the third step, Requirement
selection & Release 1 the approach takes the first requirement from the prioritised
requirements and the release with the earliest release date.
Before a requirement can be assigned to a release, all dependencies must be re-
solved. For this reason, before a requirement can be assigned, all its ’coupling’ or
’requires’ requirements must be in the same or a previous release and its ’exclude’
requirements must be in another release. Therefore, a dependency tree is created
for the current requirement, which is presented in Section 8.2. The resolution of
the dependencies is performed in step four, Dependencies resolvement, of the
assignment process.
Depending on the current requirement, whether it has dependencies or not, differ-
ent steps are performed next. In order for the current requirement to be assigned,
all dependencies have to be resolved. The assignment of dependent requirements

78

8.3 Assignment process

is executed in step five, Assignment of dependent Requirements. In step five, the
dependent requirements also pass through the steps three to eight. If not all depen-
dent requirements were assigned after step five, the current requirement is marked
as ’unassignable’ in step six, Marking of Requirement as unassignable, and the
process starts again with step three and the next requirement. If a requirement has
no dependencies or all dependent requirements were assigned successfully, the
system performs further checks. The system then verifies that no dependencies are
violated and the capacity of the currently selected release is not exceeded.
When all preconditions are fulfilled, the current requirement is assigned to the
release, which is executed in step eight, Assigning Requirement to Release. Oth-
erwise, if the current requirement does not fit into the release and another release
is available, the next one is tried for the assignment of this requirement.
The next release is selected in step seven, Selection of the next Release. The pro-
cedure is repeated until all requirements are assigned to a release or marked as
unassignable. At the final step nine, Final Releases, all requirements are added to
the available releases.

To demonstrate the process flow, two releases are available for this example, which
both have a maximum capacity of 100. After the process has been applied to the
requirements, the following release assignment appears, as demonstrated in Table
8.5. After the prioritisation and calculation of the capacity, the application with the

Release Maximum Capacity Planned Capacity Requirements Sum of the relevance values
Release1 100 88.13 R1, R2, R3 14.00

Release2 100 43.13 R4 4.53

Table 8.5: The result of the requirement assignment to releases.

assignment of the requirement starts with the highest relevance value, which is R3.
However, R3 has a ’coupled’ dependency with R2, which indicates that they must
be in the same release; R3 also has a dependency with R1. For the developers to
implement R3, R1 must also be completed. Since all three requirements fit into the
same release, all three will be added to Release1. The last requirement which is
evaluated by the system is R4. R4 has no dependencies, but the available capacity
of Release1 is not sufficient for this requirement; therefore, the system adds this
requirement to Release2.
The result is that Release1 has three requirements with a planned capacity of 88.13.
If an additional requirement would be created that would not exceed the capacity
of Release1, it could be added to this release. Release2 also has enough free capacity
for further requirements.

79

8 Release optimisation and diagnosis

8.4 Diagnosis

In the IRP application, managers can manually assign requirements to releases. The
assignment of managers does not guarantee that there are no constraint violations
or that there are no better assignment possibilities available. With the help of
the application-created releases (see Section 8.3), the system can compare the
assignments of managers. The IRP application allows managers to analyse their
planned releases. They can check whether the assignment of the requirements to
the releases is optimal or whether there are possible improvements.
The diagnosis page can be accessed via the button ’Show improvements and
diagnosis’ (see Chapter 7.3). An example of the page is displayed in Figure 8.3. The
analysis is made for each planned release, and Figure 8.3 demonstrated that two
releases were analysed. The figure indicates that the requirements have not been
assigned perfectly. For each release, the maximum capacity is illustrated on the
diagnosis page. Furthermore, the requirements relevance values, overall capacity
consumption and optimisation suggestions are displayed.

Figure 8.3: The diagnosis page of the IRP application for two releases.

The following criteria are checked by the system: capacity of a release, dependency

80

8.4 Diagnosis

violations and assignment of requirements to a release. First, the system determines
whether the maximum capacity of a release has been exceeded or if there is too
much free capacity left. If one of those possibilities is the case, the application then
displays the results in the ’Diagnose’ box. An overview of all results is displayed in
this box.
The dependencies are analysed in the next step. In case of a violation, a resolution
suggestion is shown next to the requirement.
The last step is the analysis of the requirement assignments. The system compares
the managers’ requirement assignments with the systems’ calculated assignment.
If an improvement could be made, the system displays the suggestion next to the
affected requirement.
Furthermore, managers can apply all suggestions to the requirements with the
button ’Use improvements’. Then, all improvements are applied to the analysed
requirements.

81

9 Evaluation

The impact of argumentation-based interfaces as presented in this master thesis
(see Chapter 5.5.6) has been evaluated, for example, in Samer et al. [SSF20]. The
major results of this study can be summarized as follows.

The aim of the study, presented in Samer et al. [SSF20], was to show how argumenta-
tion-based user interfaces can improve the quality of software requirement prioriti-
sation. Therefore, an empirical evaluation was performed in Samer et al. [SSF20]
to demonstrate the positive impact of argumentation-based interfaces. The evalu-
ation revealed that argumentation-based user interfaces improve communication
frequency between stakeholders. Due to higher communication frequency, a better
refinement of requirements was achieved, which led to an increased stakeholder
knowledge regarding the underlying software requirements.

Furthermore, argumentation-based interfaces increase the interaction rate on re-
quirements, which means that stakeholders change (create, update, delete) their
evaluations more often. The reason for this is increased information exchange and,
as a consequence, increased stakeholder knowledge. This leads to more decision
relevant information, such as qualitative arguments, for stakeholders. In this con-
text, requirements are more frequently evaluated.

The evaluation showed that the success rate of projects can increase by argumentation-
based interfaces. This is possible since argumentation-based interfaces foster a more
detailed requirement analysis. Furthermore, by having all decision-relevant infor-
mation available, requirements are better refined and prioritized.

Summarizing, argumentation-based interfaces can improve decision quality [SSF20].
This is achieved by fostering communication and information exchange between
stakeholders. With this, stakeholders have more decision-relevant information
available, which leads to a higher-quality prioritization.

83

10 Conclusion

This chapter presents the results of this master’s thesis and possible future work
and improvements.

10.1 Results

During this master’s thesis, various goals were achieved.
A web-based application was created to involve the stakeholders at the early stages
of the requirements’ release selection. The users could create and manage releases.
For this purpose, an argumentation-based MAUT ranking was introduced. The
MAUT-based ranking enabled the stakeholders to evaluate for more evaluation
criteria, which had the positive impact that the evaluation of the requirements
could focus on different business values.

During the ranking process, the stakeholders were also supported in their decisions
through recommendation techniques. Furthermore, a diagnosis of the require-
ments and dependencies was implemented to detect possible conflicts early in the
evaluation process. A further improvement is the statistics for releases and the
optimisation functions.

To support reaching a consensus among stakeholders, a chat was introduced.
In this chat, requirement-relevant discussions could be held, and the advantages or
disadvantages of a requirement could be stated. The stakeholders were also able
to agree or disagree on arguments through likes or dislikes. These metadata were
then used to calculate the optimal relevance value of a requirement during the
prioritisation process.

10.2 Future work

An improvement for the application could be the introduction of a trophy or point
system for the users. The user could receive trophies through effective prioritisa-

85

10 Conclusion

tions or by evaluating on many requirements. The trophies could provide a positive
motivation for the stakeholders. This motivation could lead to a higher partici-
pation rate in the evaluations. Users could then also be suggested as responsible
stakeholders for certain requirements based on previous assignments or trophies
received.

A point for improvement is the reuse of requirements. The system could rec-
ommend already existing requirements through some metadata. The metadata
could then be used to identify possible requirements which could fit into the cur-
rent project [Fel+13]. The identified requirements would then be suggested to the
manager. This approach could be based on CBF (see Chapter 5).

Another improvement could be the suggestion of more than one release plan.
Each release plan could focus on different criteria or resolve the dependencies
differently. By providing more plans, a manager could select the one which is
most appropriate for the company, or stakeholders could evaluate the plans. This
evaluation could also be done through more evaluation rounds. An approach was
already presented by Ruhe in [Ruh10].

Another approach could be the clustering of the requirements into different cate-
gories, such as a category for ’views’. This clustering could enable the managers to
assign stakeholders with specific experiences in this topic to the requirements as
responsible stakeholders. Because of their expert knowledge, a more effective pri-
oritisation could be achieved. On this topic, the system could also suggest possible
responsible stakeholders for a requirement. The suggestion could be based on the
metadata of the stakeholders and requirements.

The introduction of a staffing module could be another improvement. With the help
of this module, available developer resources could be planned efficiently because
not all the resources are needed at the same time and should only be involved at a
specific point. Depending on the focus of the business value, different approaches
are available [RRZ09; Kap+08].

86

Appendix

87

List of Figures

2.1 IntelliReq requirements detail view 9

3.1 Architecture of the IRP system . 12

3.2 Bootstrap grid system . 18

5.1 Overview of the IRP release planning flow with all steps and con-
nections. 29

5.2 Login page of the IRP software. 31

5.3 Header of the IRP application with the profile settings menu. 32

5.4 Profile page of ’Max Mustermann’, a user of the IRP application. . . 32

5.5 Project overview of the IRP application. 34

5.6 Detail page with the selected ’General’ tab of a project in the IRP
application. 35

5.7 Detail view of the ’Requirement properties scheme’ section. 36

5.8 Detail view of the ’Attachments’ section. 37

5.9 List of stakeholders, who were added to a project in the IRP application. 38

5.10 List of stakeholders, who can be added as responsible stakeholders
to a project in the IRP application. 39

5.11 Overview of the ’Requirements’ tab in the IRP application. 41

5.12 Detailed view of a requirement in the IRP application. 42

5.13 Detail view of an assignment of a dependency to a requirement in
the IRP application. 44

5.14 Detail view of the evaluation section with all evaluation criteria of a
requirement in the IRP application. 46

5.15 Recommendation of the effort criterion in the IRP application. 50

5.16 Chat regarding a requirement of the IRP application. 51

5.17 Release overview in the IRP application. 52

5.18 Release detail view in the IRP application. 54

5.19 The assignment of a requirement to a release in the IRP application. 55

6.1 Issues overview page in the IRP application. 58

6.2 Visualization of the conflicts in the evaluation panel in the IRP
application. 60

6.3 The manual issues creation in the IRP application. 61

89

List of Figures

6.4 Visualization of notifications and issues on the project overview page. 62

6.5 Visualization of conflicts on the project page. 63

7.1 Example statistic: assigned requirements to a release. 66

7.2 Statistic of requirements based on the disagreement between stake-
holder preferences for a specific criterion. 68

7.3 Chart for the optimisation of planned releases. 69

8.1 An example of the creation of a dependency tree. 75

8.2 Process of the IRP application to assign available requirements to
releases. 77

8.3 The diagnosis page of the IRP application for two releases. 80

90

List of Tables

4.1 Recommendation of the priority, according to the majority heuristic. 22

4.2 Recommendation of the priority, according to the average heuristic. 23

4.3 Recommendation of the priority, according to the median heuristic. 23

4.4 Recommendation of the priority, according to the least distance
heuristic. 24

4.5 Example evaluations for the MAUT algorithm. P = Priority, F =
Feasibility . 25

4.6 Example weights of evaluation criteria. 25

5.1 System evaluation criteria of a requirement with their descriptions
and scales. 46

6.1 Example of stakeholders’ evaluations for the effort (max. value 50)
criterion. The average value for the requirements were calculated
and all preferences were normalised (base = 10. 60

8.1 Evaluation criteria of a requirement with corresponding weights. . . 72

8.2 Example of a result of the evaluation process for requirements. . . . 73

8.3 The AB value depending on the calculated base value of the comments. 74

8.4 Examples of requirements and related constraints. 75

8.5 The result of the requirement assignment to releases. 79

91

Bibliography

[08] “ISO/IEC/IEEE International Standard - Systems and software en-
gineering – Software life cycle processes.” In: IEEE STD 12207-2008
(2008), pp. 1–138. doi: 10.1109/IEEESTD.2008.4475826 (cit. on p. 3).

[Akk+05] Marjan van den Akker et al. “Determination of the Next Release of a
Software Product: an Approach using Integer Linear Programming.”
In: CAiSE Short Paper Proceedings. Jan. 2005 (cit. on p. 3).

[Akk+08] J.M. Akker et al. “Software product release planning through optimiza-
tion and what-if analysis.” In: Information & Software Technology 50 (Jan.
2008), pp. 101–111. doi: 10.1016/j.infsof.2007.10.017 (cit. on pp. 2,
3).

[And98] Steve Andriole. “The politics of requirements management.” In: IEEE
Software 15 (Dec. 1998), pp. 82–84. doi: 10.1109/52.730850 (cit. on
p. 2).

[ARS04] Amandeep, Günther Ruhe, and Mark Stanford. “Intelligent Support for
Software Release Planning.” In: Product Focused Software Process Improve-
ment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 248–262.
doi: 10.1007/978-3-540-24659-6_18 (cit. on pp. 6, 7, 27).

[Ata+18] Muesluem Atas et al. “Liquid Democracy in Group-based Configura-
tion.” In: Jan. 2018 (cit. on p. 26).

[AW03] Aybüke Aurum and Claes Wohlin. “The fundamental nature of require-
ments engineering activities as a decision-making process.” In: Informa-
tion and Software Technology 45 (2003), pp. 945–954. doi: 10.1016/S0950-
5849(03)00096-X (cit. on p. 39).

[BB05] Barry Boehm and Victor R Basili. “Software defect reduction top 10

list.” In: Foundations of Empirical Software Engineering: The Legacy of
Victor R. Basili 426.37 (2005) (cit. on p. 1).

[BFG11] Robin Burke, Alexander Felfernig, and Mehmet H Göker. “Recom-
mender Systems: An Overview.” In: Ai Magazine 32 (2011), pp. 13–18.
doi: 10.1609/aimag.v32i3.2361 (cit. on pp. 3, 47).

[BG00] Kent Beck and Erich Gamma. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2000 (cit. on pp. 5, 6).

93

https://doi.org/10.1109/IEEESTD.2008.4475826
https://doi.org/10.1016/j.infsof.2007.10.017
https://doi.org/10.1109/52.730850
https://doi.org/10.1007/978-3-540-24659-6_18
https://doi.org/10.1016/S0950-5849(03)00096-X
https://doi.org/10.1016/S0950-5849(03)00096-X
https://doi.org/10.1609/aimag.v32i3.2361

Bibliography

[Bra90] John W Brackett. Software Requirements. Tech. rep. CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1990 (cit.
on p. 44).

[BRW01] Anthony Bagnall, Victor Rayward-Smith, and I.M. Whittley. “The next
release problem.” In: Information and Software Technology 43 (Dec. 2001),
pp. 883–890. doi: 10.1016/S0950-5849(01)00194-X (cit. on pp. 2, 3,
37).

[Bur00] Robin Burke. “Knowledge-Based Recommender Systems.” In: Ency-
clopedia of library and information systems 69 (2000), pp. 175–186 (cit. on
pp. 47, 48).

[Bur02] Robin Burke. “Hybrid Recommender Systems: Survey and Experi-
ments.” In: User Modeling and User-Adapted Interaction 12 (Nov. 2002),
pp. 331–370. doi: 10.1023/A:1021240730564 (cit. on pp. 3, 47).

[Car+01] P. Carlshamre et al. “An industrial survey of requirements interde-
pendencies in software product release planning.” In: Proceedings Fifth
IEEE International Symposium on Requirements Engineering. Aug. 2001,
pp. 84–91. doi: 10.1109/ISRE.2001.948547 (cit. on p. 43).

[CC12] Iván Cantador and Pablo Castells. “Group Recommender Systems:
New Perspectives in the Social Web.” In: Recommender Systems for
the Social Web. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 139–157. isbn: 978-3-642-25694-3. doi: 10.1007/978-3-642-25694-
3_7 (cit. on p. 2).

[Cha05] Nicolas Charette. “Why Software Fails [Software Failure].” In: IEEE
Spectrum 42 (2005), pp. 42–49. issn: 0018-9235. doi: 10.1109/MSPEC.
2005.1502528 (cit. on p. 1).

[Dag+05] J. Dag et al. “A Linguistic-Engineering Approach to Large-Scale Re-
quirements Management.” In: Software, IEEE 22 (Feb. 2005), pp. 32–39.
doi: 10.1109/MS.2005.1 (cit. on pp. 2, 37).

[Dav03] Alan M Davis. “The art of requirements triage.” In: Computer 36 (2003),
pp. 42–49. doi: 10.1109/MC.2003.1185216 (cit. on p. 2).

[Dua+09] Chuan Duan et al. “Towards automated requirements prioritization
and triage.” In: Requirements Engineering 14.2 (2009), pp. 73–89. doi:
10.1007/s00766-009-0079-7 (cit. on pp. 2, 44).

[FB08] Alexander Felfernig and Robin Burke. “Constraint-based recommender
systems: technologies and research issues.” In: Proceedings of the 10th
international conference on Electronic commerce. ACM. 2008, p. 3 (cit. on
pp. 47, 48, 74).

94

https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1109/ISRE.2001.948547
https://doi.org/10.1007/978-3-642-25694-3_7
https://doi.org/10.1007/978-3-642-25694-3_7
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1109/MS.2005.1
https://doi.org/10.1109/MC.2003.1185216
https://doi.org/10.1007/s00766-009-0079-7

Bibliography

[Fel+09] Alexander Felfernig et al. “Plausible Repairs for Inconsistent Require-
ments.” In: vol. 9. 2009, pp. 791–796 (cit. on p. 48).

[Fel+10a] Alexander Felfernig et al. “Diagnosing Inconsistent Requirements
Preferences in Distributed Software Projects.” In: Software Engineer-
ing (Workshops). 2010, pp. 495–502 (cit. on p. 48).

[Fel+10b] Alexander Felfernig et al. “Recommendation and Decision Technolo-
gies for Requirements Engineering.” In: Proceedings of the 2nd Inter-
national Workshop on Recommendation Systems for Software Engineering.
Association for Computing Machinery, 2010, pp. 11–15. doi: 10.1145/
1808920.1808923 (cit. on p. 1).

[Fel+11] Alexander Felfernig et al. “Group Decision Support for Requirements
Negotiation.” In: International Conference on User Modeling, Adaptation,
and Personalization. Springer. July 2011, pp. 105–116. isbn: 978-3-642-
28508-0. doi: 10.1007/978-3-642-28509-7_11 (cit. on pp. 3, 8, 21, 22,
47, 49).

[Fel+13] Alexander Felfernig et al. “An Overview of Recommender Systems in
Requirements Engineering.” In: Apr. 2013, pp. 315–332. isbn: 978-3-
642-34418-3. doi: 10.1007/978-3-642-34419-0_14 (cit. on pp. 1–3, 43,
45, 47, 48, 50, 71, 74, 86).

[Fel+17] Alexander Felfernig et al. “OpenReq: Recommender Systems in Re-
quirements Engineering.” In: Proceedings of the Workshop Papers of i-Know
2017: co-located with International Conference on Knowledge Technologies
and Data-Driven Business 2017 (i-Know 2017): Graz, Austria, October 11-12,
2017. Oct. 2017, pp. 1–4 (cit. on pp. 1, 21, 27, 43, 57).

[Fel+18a] Alexander Felfernig et al. “Configuring Release Plans.” In: Proceedings
of the 20th Configuration Workshop, Graz, Austria, September 27-28, 2018.
2018, pp. 9–14 (cit. on p. 24).

[Fel+18b] Alexander Felfernig et al. Group Recommender Systems - An Introduction.
Springer, Cham, 2018. isbn: 978-3-319-75066-8. doi: 10.1007/978-3-
319-75067-5 (cit. on pp. 2, 21).

[FHC06] Brian Fitzgerald, Gerard Hartnett, and Kieran Conboy. “Customising
agile methods to software practices at Intel Shannon.” In: European
Journal of Information Systems 15 (2006), pp. 200–213. doi: 10.1057/
palgrave.ejis.3000605 (cit. on p. 5).

[FM11] Ian Fette and Alexey Melnikov. The WebSocket Protocol. RFC 6455. RFC
Editor, Dec. 2011, pp. 1–71. url: https://tools.ietf.org/pdf/
rfc6455.pdf (cit. on p. 16).

95

https://doi.org/10.1145/1808920.1808923
https://doi.org/10.1145/1808920.1808923
https://doi.org/10.1007/978-3-642-28509-7_11
https://doi.org/10.1007/978-3-642-34419-0_14
https://doi.org/10.1007/978-3-319-75067-5
https://doi.org/10.1007/978-3-319-75067-5
https://doi.org/10.1057/palgrave.ejis.3000605
https://doi.org/10.1057/palgrave.ejis.3000605
https://tools.ietf.org/pdf/rfc6455.pdf
https://tools.ietf.org/pdf/rfc6455.pdf

Bibliography

[FN12] Alexander Felfernig and Gerald Ninaus. “Group Recommendation
Algorithms for Requirements Prioritization.” In: 2012 Third International
Workshop on Recommendation Systems for Software Engineering (RSSE).
2012, pp. 59–62. doi: 10.1109/RSSE.2012.6233412 (cit. on pp. 21, 22,
24, 49).

[FSR13] Alexander Felfernig, Monika Schubert, and Stefan Reiterer. “Personal-
ized Diagnosis for Over-Constrained Problems.” In: IJCAI 10.5591/978-
1-57735-516-8/IJCAI11-454. 2013, pp. 1990–1996 (cit. on p. 8).

[FSZ12] Alexander Felfernig, Monika Schubert, and Christoph Zehentner. “An
efficient diagnosis algorithm for inconsistent constraint sets.” In: Arti-
ficial Intelligence for Engineering Design, Analysis and Manufacturing 26

(2012), pp. 53–62. doi: 10.1017/S0890060411000011 (cit. on p. 57).

[GR04] Des Greer and Guenther Ruhe. “Software Release Planning: An Evolu-
tionary and Iterative Approach.” In: Information and Software Technology
46 (2004), pp. 243–253. doi: 10.1016/j.infsof.2003.07.002 (cit. on
pp. 6, 51).

[HK05] Reid Hastie and Tatsuya Kameda. “The Robust Beauty of Majority
Rules in Group Decisions.” In: Psychological review 112 (2005), pp. 494–
508. doi: 10.1037/0033-295X.112.2.494 (cit. on p. 21).

[HL01] Hubert F. Hofmann and Franz Lehner. “Requirements engineering
as a success factor in software projects.” In: IEEE Software 18 (2001),
pp. 58–66. issn: 0740-7459. doi: 10.1109/MS.2001.936219. url: https:
//doi.org/10.1109/MS.2001.936219 (cit. on pp. 1, 2).

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.
isbn: 978-0-387-84858-7. doi: 10.1007/978-0-387-84858-7 (cit. on
p. 48).

[Jam04] Anthony Jameson. “More than the Sum of Its Members: Challenges for
Group Recommender Systems.” In: Proceedings of the Working Conference
on Advanced Visual Interfaces. Association for Computing Machinery,
2004, pp. 48–54. doi: 10.1145/989863.989869 (cit. on p. 22).

[JBK04] Anthony Jameson, Stephan Baldes, and Thomas Kleinbauer. “Two
methods for enhancing mutual awareness in a group recommender
system.” In: Proceedings of the working conference on Advanced visual
interfaces. ACM. 2004, pp. 447–449. doi: 10.1145/989863.989948 (cit.
on pp. 1–3, 47, 49).

96

https://doi.org/10.1109/RSSE.2012.6233412
https://doi.org/10.1017/S0890060411000011
https://doi.org/10.1016/j.infsof.2003.07.002
https://doi.org/10.1037/0033-295X.112.2.494
https://doi.org/10.1109/MS.2001.936219
https://doi.org/10.1109/MS.2001.936219
https://doi.org/10.1109/MS.2001.936219
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/989863.989869
https://doi.org/10.1145/989863.989948

Bibliography

[Kap+08] Puneet Kapur et al. “Optimized staffing for product releases and its
application at Chartwell Technology.” In: Journal of Software Maintenance
and Evolution: Research and Practice 20 (2008), pp. 365–386. doi: 10.1002/
smr.379 (cit. on p. 86).

[Kar+04] Lena Karlsson et al. “Requirements prioritisation: an experiment on
exhaustive pair-wise comparisons versus planning game partitioning.”
In: Proceedings of the 8th International Conference on Empirical Assessment
in Software Engineering (EASE 2004). Vol. 10. 2004, pp. 145–154. doi:
10.1049/ic:20040407 (cit. on pp. 5, 6).

[Kon+97] Joseph A Konstan et al. “GroupLens: Applying Collaborative Filtering
to Usenet News.” In: Commun. ACM 40 (1997), pp. 77–88. doi: 10.
1145/245108.245126 (cit. on pp. 47, 48).

[KR93] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives:
Preferences and Value Trade-Offs. Cambridge University Press, 1993. doi:
10.1017/CBO9781139174084 (cit. on p. 24).

[Lef97] Dean Leffingwell. “Calculating Your Return on Investment from More
Effective Requirements Management.” In: Cutter IT Journal 10 (Apr.
1997) (cit. on p. 2).

[Lin+08] Markus Lindgren et al. “Key Aspects of Software Release Planning
in Industry.” In: Apr. 2008, pp. 320–329. isbn: 978-0-7695-3100-7. doi:
10.1109/ASWEC.2008.4483220 (cit. on p. 2).

[LQF10] Soo Ling Lim, Daniele Quercia, and Anthony Finkelstein. “StakeNet:
Using Social Networks to Analyse the Stakeholders of Large-Scale
Software Projects.” In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1. Association for Com-
puting Machinery, 2010, pp. 295–304. doi: 10.1145/1806799.1806844
(cit. on p. 2).

[LV01] Soren Lauesen and Otto Vinter. “Preventing Requirement Defects: An
Experiment in Process Improvement.” In: Requirements Engineering 6

(2001), pp. 37–50. doi: 10.1007/PL00010355 (cit. on p. 1).

[Mas04a] Judith Masthoff. “Group Modeling: Selecting a Sequence of Television
Items to Suit a Group of Viewers.” In: vol. 14. 2004, pp. 93–141. doi:
10.1023/B:USER.0000010138.79319.fd (cit. on p. 21).

[Mas04b] Judith Masthoff. “Group Modeling: Selecting a Sequence of Television
Items to Suit a Group of Viewers.” In: User Modeling and User-Adapted In-
teraction 14 (Feb. 2004), pp. 37–85. doi: 10.1023/B%3AUSER.0000010138.
79319.fd (cit. on p. 26).

97

https://doi.org/10.1002/smr.379
https://doi.org/10.1002/smr.379
https://doi.org/10.1049/ic:20040407
https://doi.org/10.1145/245108.245126
https://doi.org/10.1145/245108.245126
https://doi.org/10.1017/CBO9781139174084
https://doi.org/10.1109/ASWEC.2008.4483220
https://doi.org/10.1145/1806799.1806844
https://doi.org/10.1007/PL00010355
https://doi.org/10.1023/B:USER.0000010138.79319.fd
https://doi.org/10.1023/B%3AUSER.0000010138.79319.fd
https://doi.org/10.1023/B%3AUSER.0000010138.79319.fd

Bibliography

[Mas11] Judith Masthoff. “Group Recommender Systems: Combining Individ-
ual Models.” In: 2011, pp. 677–702. doi: 10.1007/978-0-387-85820-
3_21 (cit. on pp. 21–24, 26).

[MT09] Walid Maalej and Anil Kumar Thurimella. “Towards a Research Agenda
for Recommendation Systems in Requirements Engineering.” In: 2009
Second International Workshop on Managing Requirements Knowledge. 2009,
pp. 32–39. doi: 10.1109/MARK.2009.12 (cit. on p. 1).

[Nin+14] Gerald Ninaus et al. “INTELLIREQ: Intelligent Techniques for Software
Requirements Engineering.” In: Proceedings of the Twenty-first European
Conference on Artificial Intelligence. ECAI’14. Prague, Czech Republic:
IOS Press, 2014, pp. 1161–1166. isbn: 978-1-61499-418-3. doi: 10.3233/
978-1-61499-419-0-1161 (cit. on pp. 3, 8, 9, 22, 47–49).

[NR14] Maleknaz Nayebi and Guenther Ruhe. “An Open Innovation Approach
in Support of Product Release Decisions.” In: Proceedings of the 7th
International Workshop on Cooperative and Human Aspects of Software En-
gineering. CHASE 2014. Hyderabad, India: Association for Computing
Machinery, 2014, pp. 64–71. isbn: 978-1-4503-2860-9. doi: 10.1145/
2593702.2593709 (cit. on p. 7).

[PB97] Michael Pazzani and Daniel Billsus. “Learning and Revising User Pro-
files: The Identification of Interesting Web Sites.” In: Machine learning
27 (1997), pp. 313–331. doi: 10.1023/A:1007369909943 (cit. on pp. 47,
48).

[PC08] Pearl Pu and Li Chen. “User-Involved Preference Elicitation for Product
Search and Recommender Systems.” In: AI Magazine 29 (Dec. 2008).
doi: 10.1609/aimag.v29i4.2200 (cit. on p. 50).

[PEM03] F. Paetsch, A. Eberlein, and F. Maurer. “Requirements engineering and
agile software development.” In: WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. 2003, pp. 308–313. doi: 10.1109/ENABL.
2003.1231428 (cit. on p. 5).

[RB05] B. Regnell and Sjaak Brinkkemper. “Market-Driven Requirements Engi-
neering for Software Products.” In: Engineering and Managing Software
Requirements (Jan. 2005). doi: 10.1007/3-540-28244-0_13 (cit. on p. 2).

[Rei87] Raymond Reiter. “A Theory of Diagnosis from First Principles.” In:
Artificial Intelligence 32 (1987), pp. 57–95. doi: 10.1016/0004-3702(87)
90062-2 (cit. on pp. 8, 57).

98

https://doi.org/10.1007/978-0-387-85820-3_21
https://doi.org/10.1007/978-0-387-85820-3_21
https://doi.org/10.1109/MARK.2009.12
https://doi.org/10.3233/978-1-61499-419-0-1161
https://doi.org/10.3233/978-1-61499-419-0-1161
https://doi.org/10.1145/2593702.2593709
https://doi.org/10.1145/2593702.2593709
https://doi.org/10.1023/A:1007369909943
https://doi.org/10.1609/aimag.v29i4.2200
https://doi.org/10.1109/ENABL.2003.1231428
https://doi.org/10.1109/ENABL.2003.1231428
https://doi.org/10.1007/3-540-28244-0_13
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2

Bibliography

[Ren+13] Dominik Renzel et al. “Requirements bazaar: Social requirements
engineering for community-driven innovation.” In: 2013 21st IEEE
International Requirements Engineering Conference (RE). 2013, pp. 326–
327. doi: 10.1109/RE.2013.6636738 (cit. on p. 1).

[REP03] Günther Ruhe, Armin Eberlein, and Dietmar Pfahl. “Trade-off Anal-
ysis for Requirements Selection.” In: International Journal of Software
Engineering and Knowledge Engineering 13.04 (2003), pp. 345–366. doi:
10.1142/S0218194003001378 (cit. on pp. 2, 52).

[RM05] Guenther Ruhe and J. Momoh. “Strategic Release Planning and Eval-
uation of Operational Feasibility.” In: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. Feb. 2005, 313b–313b.
doi: 10.1109/HICSS.2005.561 (cit. on pp. 2, 3, 27, 37).

[RN04] Guenther Ruhe and An Ngo-The. “Hybrid Intelligence in Software
Release Planning.” In: Int. J. Hybrid Intell. Syst. 1 (Sept. 2004), pp. 99–
110. doi: 10.3233/HIS-2004-11-212 (cit. on p. 3).

[RRZ09] Md. Mainur Rahman, Guenther Ruhe, and Thomas Zimmermann.
“Optimized assignment of developers for fixing bugs an initial eval-
uation for eclipse projects.” In: 2009 3rd International Symposium on
Empirical Software Engineering and Measurement. 2009, pp. 439–442. doi:
10.1109/ESEM.2009.5316025 (cit. on p. 86).

[RS05] Guenther Ruhe and Moshood Saliu. “The Art and Science of Software
Release Planning.” In: Software, IEEE 22 (Dec. 2005), pp. 47–53. doi:
10.1109/MS.2005.164 (cit. on pp. 2, 3, 27, 37, 45, 74).

[Ruh10] Günther Ruhe. Product Release Planning: Methods, Tools and Applications.
Auerbach Publications, June 2010. isbn: 9780429126772. doi: 10.1201/
EBK0849326202 (cit. on pp. 2, 3, 6, 7, 27, 28, 37, 40, 43, 45, 47, 67, 86).

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley
Interscience Series, 1986 (cit. on p. 6).

[Sen+11] Christophe Senot et al. “Evaluation of Group Profiling Strategies.” In:
IJCAI International Joint Conference on Artificial Intelligence. Vol. 2011.
2011, pp. 2728–2733. doi: 10.5591/978-1-57735-516-8/IJCAI11-454
(cit. on p. 21).

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, 2010. isbn:
978-0-13-703515-1 (cit. on p. 1).

[SS97] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good
Practice Guide. Jan. 1997 (cit. on p. 39).

99

https://doi.org/10.1109/RE.2013.6636738
https://doi.org/10.1142/S0218194003001378
https://doi.org/10.1109/HICSS.2005.561
https://doi.org/10.3233/HIS-2004-11-212
https://doi.org/10.1109/ESEM.2009.5316025
https://doi.org/10.1109/MS.2005.164
https://doi.org/10.1201/EBK0849326202
https://doi.org/10.1201/EBK0849326202
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-454

Bibliography

[SSF20] Ralph Samer, Martin Stettinger, and Alexander Felfernig. “Group Rec-
ommender User Interfaces for Improving Requirements Prioritization.”
In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation
and Personalization. Association for Computing Machinery, July 2020,
pp. 221–229. doi: 10.1145/3340631.3394851 (cit. on p. 83).

[Ste+13] Martin Stettinger et al. “WE-DECIDE: A Decision Support Environment
for Groups of Users.” In: Recent Trends in Applied Artificial Intelligence.
2013, pp. 382–391. doi: 10.1007/978-3-642-38577-3_39 (cit. on p. 21).

[Ste+15] Martin Stettinger et al. “Counteracting Serial Position Effects in the
CHOICLA Group Decision Support Environment.” In: Proceedings of
the 20th International Conference on Intelligent User Interfaces. Association
for Computing Machinery, 2015, pp. 148–157. isbn: 9781450333061. doi:
10.1145/2678025.2701391 (cit. on pp. 21, 24).

[Sva+10] Mikael Svahnberg et al. “A systematic review on strategic release
planning models.” In: Information & Software Technology 52 (Mar. 2010),
pp. 237–248. doi: 10.1016/j.infsof.2009.11.006 (cit. on p. 2).

[Tsa14] Edward Tsang. Foundations of Constraint Satisfaction: The Classic Text.
BoD–Books on Demand, 2014. isbn: 978-3-73-572366-6 (cit. on pp. 27,
43, 74).

[VDL98] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. “Man-
aging Conflicts in Goal-Driven Requirements Engineering.” In: IEEE
Transactions on Software Engineering 24.11 (1998), pp. 908–926. doi:
10.1109/32.730542 (cit. on p. 43).

[VMT+07] Cristina Vicente Chicote, Begoña Moros, Ambrosio Toval, et al. “REMM-
Studio: an Integrated Model-Driven Environment for Requirements
Specification, Validation and Formatting.” In: Journal of Object Technol-
ogy 6 (2007). doi: 10.5381/jot.2007.6.9.a22 (cit. on p. 43).

[WB13] Karl Wiegers and Joy Beatty. Software Requirements. Microsoft Press,
2013. isbn: 978-0735679665 (cit. on p. 40).

[Wie99] Karl Wiegers. “First Things First: Prioritizing Requirements.” In: Soft-
ware Development 7.9 (1999), pp. 48–53 (cit. on p. 44).

[Wit+16] Ian H Witten et al. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2016 (cit. on p. 47).

[WK04] Linda Wallace and Mark Keil. “Software project risks and their effect
on outcomes.” In: Communications of the ACM 47 (2004), pp. 68–73. doi:
10.1145/975817.975819 (cit. on p. 1).

100

https://doi.org/10.1145/3340631.3394851
https://doi.org/10.1007/978-3-642-38577-3_39
https://doi.org/10.1145/2678025.2701391
https://doi.org/10.1016/j.infsof.2009.11.006
https://doi.org/10.1109/32.730542
https://doi.org/10.5381/jot.2007.6.9.a22
https://doi.org/10.1145/975817.975819

	Abstract
	Introduction and Motivation
	Related work
	Planning game
	Evolve 2
	IntelliReq

	System architecture and overview
	Architecture
	Employed technologies and patterns
	Spring
	Spring Boot
	Spring MVC
	Spring Security
	Spring Data
	Thymeleaf
	MySQL
	WebSocket API
	JavaScript
	jQuery
	Stomp
	Bootstrap
	D3.js

	Used algorithms
	Majority voting
	Average voting
	Median voting
	Least distance (LDIS) voting
	Multi Attribute Utility Theory (MAUT)
	Interface for further algorithms

	Procedure of release planning
	Planning flow
	Registration and login
	Profile Page

	Projects
	Project overview
	Project detail

	Stakeholder
	Assignment

	Requirements
	Requirement overview
	Modelling
	Dependencies
	Evaluating a requirement
	Recommendation
	Support for finding a consensus

	Releases
	Release overview
	Release detail
	Assignment of requirements

	Issue recognition and notifications
	Issue overview
	Issue creation
	Automatic issues created by the system
	Issues created manually by stakeholders

	Notifications and visualization of conflicts

	Statistics
	Requirements assigned to releases
	Disagreement of requirements
	Optimisation chart

	Release optimisation and diagnosis
	Prioritisation
	Dependency resolution
	Assignment process
	Diagnosis

	Evaluation
	Conclusion
	Results
	Future work

	Appendix
	List of Figures
	List of Tables

	Bibliography

