
Mario Innerkofler, BSc

Learning Knapsack

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Eranda Dragoti-Cela, Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.

Institut für Diskrete Mathematik

Nikolaus Furian, Ass.Prof. Dipl.-Ing. Dr.techn.

Institut für Maschinenbau- und Betriebsinformatik

Graz, December 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

In this master thesis we take a look at applications of machine learning techniques to the
weakly NP-hard 0-1-knapsack problem. Applications of these techniques to combinato-
rial optimization problems opened a new and well diversified field of research. We explain
and demonstrate two entry points for machine learning into the knapsack problem. The
first entry point is a direct end-to-end approach where we aim to learn solutions or
merely the optimal profit directly from given instances. The second approach is rather
indirect and consists in applying machine learning within well established algorithmic
frameworks. In this regard we aim to learn node-selection rules used in a branch-and-
bound algorithm so as to obtain optimal solutions quickly. We however will show that
under mild assumptions the best-first search strategy provides a minimal search tree for
a fixed basic variant of a branch-and-bound algorithm. Still a learned node-selection
rule can be used in a heuristically truncated branch-and-bound algorithm. The goal of
such an algorithm is to find good (or optimal) solutions quickly and skip the algorithmic
proof of optimality by only exploring a hopefully small subtree of a respective search
tree.

Kurzfassung

In dieser Masterarbeit befassen wir uns mit Anwendungen Maschinellen Lernens auf
das schwach NP-schwere 0-1-Rucksackproblem. Die Anwendung dieser Techniken auf
kombinatorische Optimierungsprobleme hat ein neues Forschungsfeld eröffnet, welches
vielschichtige Ansatzpunkte verfolgt. Wir adressieren und demonstrieren zwei verschiedene
Ansatzpunkte, welche dem Maschinellen Lernen Einzug in das Rucksackproblem gewähren.
Als erstes wählen wir einen direkten Ansatz, welcher darin besteht, optimale Lösungen,
oder als Alternative nur deren Kosten, direkt auf Basis der gegebenen Instanz zu lernen.
Ein zweiter, indirekter Ansatz ergibt sich, indem man Techniken des Maschinellen Ler-
nens in etablierte Algorithmen einflechtet. Wir legen das branch-and-bound Regime zu-
grunde und versuchen, Knotenauswahlstrategien zu lernen, um Optimallösungen schnell
zu entdecken. Jedoch können wir zeigen, dass bereits unter schwachen Vorausset-
zungen in einem speziell konfigurierten branch-and-bound Algorithmus die best-first-
seach Strategie einen minimalen Suchbaum liefert. Nichtsdestotrotz können gelernte
Knotensuchstrategien in heuristisch abgebrochenen branch-and-bound Verfahren ver-
wendet werden. Jene zielen nämlich nur darauf ab, eine gute, oder sogar optimale,
Lösung schnell zu finden und verzichten auf den algorithmischen Beweis der Optimalität,
wodurch wir nur einen möglichst kleinen Teil des Suchbaums erkunden wollen.

I

Acknowledgments

I would like to express my great gratitude towards my parents Daniela and Wilhelm.
Only by their generous support I am able to fully enjoy the excellent education offered
by TU Graz and KFU Graz. My parents offer any assistance to the greatest extent
possible. My equally magnificent brothers Manuel and Stephan deserve a special thanks
for providing help, company and support at any time.

Second of all allow me to thank my dear friends and also my dear colleagues from the
student’s council SIGMA Graz. You made the last years quite memorable, allow me to
grow personally and offer any kind of assistance when needed.

Collective thanks also goes to the professors at TU Graz and KFU Graz who I was hon-
ored to learn from during the course of my studies. In particular let me point out the
outstanding quality of guidance offered by my supervisors professor Dragoti-Cela and
professor Furian.

At last I would like to thank Amber Foster for offering linguistic support during writing.

II

List of Figures

3.1 Handwritten digits; Bishop [6, p.2] . 30
3.2 biological neuron; Neves, Gonzalez, Leander Karoumi [30] 46
3.3 ANN neuron; Mitchell, Machine Learning 47
3.4 SNN; example . 48
3.5 biological neural network; Neves et al. [30] 49
3.6 unfolding RNN; Goodfellow et al. [13, p.376] 59
3.7 LSTM-cell; Goodfellow et al. [13, p.409] . 61
3.8 seq-to-seq RNN; Goodfellow et al. [13, p.378] 64
3.9 seq-to-1 RNN; Goodfellow et al. [13, p.382] 65

4.1 DNNC-pto; PR-curve on test set . 77
4.2 DNNC-pto; performance in BB . 78

5.1 RNNC-red; item predictions . 84
5.2 RNNC-red; wrong item predictions . 84
5.3 RNNC-red; sets of perf. pred.; Venn diagrams 91
5.4 TBB; incumbent updates . 94

III

List of Algorithms

1 A branch-and-bound algorithm for KP (BB) 12
2 Generating the full branch-and-bound tree for KP 14
3 Reconstruct the minimal branch-and-bound tree 24

4 Stochastic gradient descent (SGD) . 35
5 Stochastic gradient descent with momentum (SGDM) 36
6 Root mean square propagation (RMSprop) 36
7 Adaptive moments (Adam) . 37

8 Generating a random instance of KP . 74

9 ρ − r local search heuristic . 86
10 ρ − r local search hybrid heuristic . 88

IV

List of Tables

3.1 Gaussian, Poisson, binomial, and exponential are in EDM 38
3.2 Def, confusion matrix . 70

4.1 DNNC-pto; architecture . 75
4.2 PTO-prediction, evaluation on test set . 76
4.3 PTO-prediction, performance in BB . 80

5.1 profit prediction model architectures . 82
5.2 RNNC-red; architecture . 83
5.3 RNNC-red; bit error . 83
5.4 RNNC-red; classification report . 85
5.5 RNNC-red; confusion matrix . 85
5.6 solution prediction heuristics, bit-errors . 89
5.7 TBB, duration . 93
5.8 profit-prediction; DNN-full, DNN-red, RNN-full, RNN-red 96
5.9 profit-prediction; RNNC-red . 96
5.10 profit-prediction; local search (hybrid) . 97
5.11 profit-prediction, TBB . 98

V

VI

Contents

1 Introduction 1
1.1 Machine learning meets combinatorial optimization 1
1.2 The contribution and outline of this elaboration 2
1.3 Basics and notations . 3

2 The knapsack problem 6
2.1 The 0-1-knapsack problem (KP) . 6
2.2 Solving the 0-1-knapsack problem . 7

2.2.1 Greedy and linear relaxation KP . 8
2.2.2 Branching rules for KP . 10
2.2.3 Branch-and-bound algorithm for KP 11
2.2.4 Node-selection rules . 18
2.2.5 Optimal node-selection rules . 19
2.2.6 Performance and phases of a branch-and-bound algorithm 25

3 Introduction to machine learning 29
3.1 Notations for data . 31
3.2 Modeling in a machine learning context . 33

3.2.1 Stochastic gradient descent methods 34
3.3 Regression . 38
3.4 Linear classification . 40

3.4.1 Binary logistic regression . 42
3.4.2 Multi logistic regression . 44

3.5 Artificial neural networks (ANN) . 45
3.5.1 (Simple) neurons . 46
3.5.2 Single layer neural networks (SNN) 47
3.5.3 Feed-forward neural networks (FFNN) 51
3.5.4 Recurrent neural networks (RNN) 57

3.6 Other modeling techniques . 65
3.7 Assessing the quality of models . 67

3.7.1 Assessing the fit of regression models 68
3.7.2 Assessing the fit of classification models 68

VII

4 Learning node selection rules 73
4.1 Training and test data . 74
4.2 Learning PTO . 75
4.3 Using PTO prediction within BB . 77

5 ML-aided heuristics for KP 81
5.1 Training data and test data . 82
5.2 Learning optimal profit . 82
5.3 Learning solutions . 82

5.3.1 Local search heuristic . 86
5.4 Truncated branch-and-bound algorithm for KP 92
5.5 Evaluation of predicted profits . 95

6 Implementation 99
6.1 Setting up a branch-and-bound algorithm 99
6.2 Setting up the ML-tasks . 100

6.2.1 Learning profits and solutions . 100
6.2.2 Learning node-selection rules . 102

6.3 Real time component . 102
6.4 Heuristics . 103

7 Conclusion 104

VIII

Chapter 1

Introduction

In the recent past, the field of machine learning has risen to significant popularity far
beyond the mathematics and computer science circles. The term machine learning seem-
ingly spreads a mystical aura and reports of superhuman capabilities as evident in almost
any kind of media outlet. Indeed the capabilities and, more importantly, the ways in
which we use these techniques seem to justify the adoration of this data driven tool. May
it be the support provided to medical personnel for disease diagnostics, the ability to
accurately model the human behavior, or maybe only a funny facemask being perfectly
rendered on any user’s image – machine learning is present in our everyday lives.

1.1 Machine learning meets combinatorial optimization

The machine learning paradigm increasingly pierces through the shell of established
mathematical work. In this elaboration we integrate machine learning further into the
field of combinatorial optimization. Not long ago (2018) Bengio, Lodi and Prouvost
announced that this rendezvous is strongly believed to be the beginning of a new era
in the field [5]. Our small piece of contribution concerns the knapsack problem which
is one of the most prominent and well researched combinatorial optimization problems.
Bengio et al. proposed several entry points for machine learning into a combinatorial
optimization context [5]. One is via end-to-end methods which directly take an in-
stance as input, do some machine learning, and propose a solution. Another approach
is learning properties of a given problem which help us to solve the problem more
efficiently. For example, we may aim to predict the best suited solution method. The
third lever presented is using a model within a well known (potentially exact)
technique serving as a framework. It follows the goal of learning decisions to be made
within the algorithm to find better (or optimal) solutions (more quickly). For instance
Balcan, Dick, Sandholm and Vitercik discussed learning variable selection rules within a
fixed branch-and-bound framework such that a small branch-and-bound tree is produced
while leaving all other parameters untouched [2].

1

1.2 The contribution and outline of this elaboration

In the following we will present techniques which follow the fixed framework approach
and which follow the end-to-end approach.

Concerning the fixed framework approach, we also move in the context of branch-and-
bound and focus on the node-selection policy. He, Hal and Jason discuss such
learning rules which try to reach optimal nodes as quickly as possible [14]. In the case of
the knapsack problem however, we will constructively prove that under relatively weak
additional assumptions on the instance and when using a particular variant of a branch-
and-bound algorithm, the best-first-search strategy is optimal with regard to producing
small trees. This is mainly due to the fact there is an lp-solution for the knapsack
problem which admits only one fractional variable giving rise to a trivial branching rule.
It allows for establishing a global upper bound (w.r.t. set inclusion) for all branch-and-
bound trees which contain any conceivable branch-and-bound tree all with respect to a
fixed instance. To the best of our knowledge such a result has not been available yet.

Moreover we will show that such an optimal selection policy has some room for mistakes
and needs not find an optimal node in the quickest possible way. It will turn out
that the best-first-search strategy fully exploits this room for mistakes and hence is the
worst optimal node selection in this regard. Spinning on this result we still can make
use of learned node-selections in a heuristically truncated branch-and-bound
algorithm. It follows the novel goal of quickly detecting optimal nodes for knapsack
and serves us as an entry point into the field of heuristics.

In this field we will furthermore introduce some examples of end-to-end methods.
Some of these methods provide us with an associated solution while others simply es-
timate the profit disregarding the interpretation of packing items. Martini [29] demon-
strated that this can work well for knapsack, but we will encounter certain obstacles
which we will address. For example, by using a local search heuristic on the prediction
we are able to construct an input better than the greedy solution on average.

Hopefully the reader is now excited for a journey into the intersection of machine learning
and combinatorial optimization. Throughout the first chapters we will present the basics
and some notable results in the respective fields. Later on, we will focus on the modeling
tasks and evaluate our findings. At the very end we will permit a glimpse into the
technical realization of such a machine learning project which may help a beginner
getting started with the minimal amount of frustration necessary.

2

1.3 Basics and notations

Notations and conventions

Definition 1.1.

(1) By [n] ∶= {k ∈ N ∣ 1 ≤ k ≤ n} we denote the discrete interval containing all integers
between 1 and n.

(2) Recall the convention of setting max∅ ∶= −∞ and min∅ =∞
(3) For vectors x ∈ Rn we denote xi the i-th component of x. Elements in Rn are

column-vectors. For matrices A ∈ Rm×n we denote Aj the j-th column (unless
specified differently) and by Aij the i-j-th entry. By ei ∈ Rn we denote the i-th unit
basis vector ei = (0, . . . ,0,1,0, . . . ,0) where a 1 is at the i-the position.

(4) For a set X we denote by 2X the power set of X being the set of all subsetes of
X. By (X

k
) we denote the elements in 2X having cardinality k. By Xk ∶=X × ⋅ ⋅ ⋅ ×X

we denote the k-fold cartesian product of X being the set of k-tuples of X.

Directed and undirected graphs

Definition 1.2. Undirected graphs

(1) Given an undirected regular graph G = (V,E). The vertex set or node set of a
specified graph is denoted by V (G) = [n] and the edge set is denoted by E(G) ⊆
(V
2
) = {{vi, vj} ∣ vi, vj ∈ V, i /= j}. For vertices v and edges e we may shorthand write

u ∈ G and e ∈ G meaning u ∈ V (G) and e ∈ E(G). The empty graph (∅,∅) is simply
but sloppily denoted by ∅. We measure the size of a graph by the number of vertices
and denote it by ∣G∣ = n.

(2) The neighborhood NG(u) of a node u is defined by N(u) = {v ∈ V (G) ∣ {u, v} ∈
E(G)} being a set of nodes adjacent to u. If the underlying graph is clear from the
context we shorthand denote the neighborhood by N(u) ∶= NG(u). The degree du
of a node u in the graph is defined as the cardinality of its neighborhood ∣N(u)∣.

(3) Given another graph H the subgraph inclusion H ⊆ G denotes V (H) ⊆ V (G)
and E(H) ⊆ E(G). For subsets of vertices U ⊆ V (G) the graph induced on U by
G is defined by G[U] = (U,E(G[U])) where E(G[U]) ∶= {{u, v} ∣ u, v ∈ U ∧ {u, v} ∈
E(G)}.

Definition 1.3. Directed graphs

(1) A regular directed graph D = (V (D),E(D)) is defined by a vertex set V (D) = [n]
and a set of directed edges E(D) ⊆ V (D)2/{(v, v) ∣ v ∈ V (D)}.

(2) A path in sequence notation is defined by by P = (v1, . . . , vk) and the path is defined
as a directed graph by P = (V (P),E(P)) ∶= ({v1, . . . , vk},{(vi, vi+1) ∣ 1 ≤ i ≤ k − 1}).
The first and respectively last nodes v1, vk are called the start and end of P and P
is called a v1-vk-path. The number of edges k−1 in P defines the length k−1 of the
path.

3

(3) Two directed graphs H,G are contained as subgraphs H ⊆ G if V (H) ⊆ V (G)
and E(H) ⊆ E(G). If one of G,H, say H, is an undirected graph, the subgraph
inclusion H ⊆ G is defined by disregarding the orientation of edges meaning we
identify (u, v) ∼ {u, v}. First and foremost, a path P is said to be in an undirected
graph G if P is a path with P ⊆ G.

(4) Finally, this allows us to define the distance of vertices u, v in G as the minimal
length of an u-v path in G or ∞ if no u-v-path exists by convention.

Definition 1.4. Rooted trees

(1) A tree T is an undirected, acyclic, and connected regular graph.

(2) A root r ∈ V (T) is a specialized vertex in a tree and thus defines a rooted tree
Tr = (V (T),E(T), r). Demanding the existence of a root in a rooted tree implies
that every rooted tree is non-empty. If Tr consists only of one vertex we call Tr trivial.
In rooted trees a direction of edges e = (u, v) is naturally defined by arranging the
tuple (u, v) such that the distance (i.e. number of edges) between u and r is less
than the distance between v and r. u is called the ancestor or predecessor of v and
v is called the descendant or child of u. Distinct nodes having the same ancestor
are called siblings. The depth of a node v is defined as the distance to the root r

(3) A tree T ′r is called a rooted subtree of a rooted tree Tr if and only if T ′ ⊆ Tr and
r ∈ T ′ is defined as the root of T ′ ∶= T ′r.

(4) Paths starting in the root r are called trajectories. Given two trajectories which
both contain a common node but each respective trajectory contains a distinct child
of the node. Then the common ancestor is called the fork of the trajectories.

(5) Leaves in rooted trees are defined as nodes having no descendants. With this
convention, a trivial rooted tree Tr has a root of degree zero which is also a leaf.
If Tr is non-trivial the set of leaves is exactly the set of degree-one vertices. Nodes
which are not leaves are called inner nodes.

Definition 1.5. (Canonically rooted) binary trees
A tree T = (V (T),E(T)) is called a binary tree if it either consists of a single vertex or if
it consists of a vertex and two edges respectively ending in two new binary trees. Binary
trees can be regarded as canonically rooted trees as follows. In trivial binary trees
the root is defined as the only vertex in the tree, and in non-trivial binary trees the root
is defined as the unique vertex having degree two. Unless specified differently we from
now on always identify binary trees as canonically rooted trees. The unique canonical
root allows using notation T = (V (T),E(T)) also for canonically rooted binary trees.
Having this canonical rooted binary tree available, we can equivalently define binary
rooted trees as a rooted tree where each node has either two or zero descendants.

4

Function spaces

Definition 1.6. Space of continuous functions
By C(X) = {f ∶ X → R ∣ f continuous} we denote the vector space of continuous
functions on a subset X of a finite-dimensional Banach-space. For f ∈ C(X) we define
the supremum norm by ∣∣f ∣∣X = supx∈X ∣f(x)∣.

Definition 1.7. Lp-spaces

(1) We define the Lp-norm of a function f ∶ Rm → R as ∣∣f ∣∣p,µ = (∫Rm ∣f(x)∣pdµ)
1
p .

(2) The Lp-space is then defined as Lpµ(Rm) = {f ∶ Rm → R ∣ ∣∣f ∣∣p,µ <∞}

Definition 1.8. dense subsets
We call a subset S ⊆ Q dense in the metric space (Q,d) if for all q ∈ Q and each ε > 0
there is an s ∈ S with d(q, s) < ε. If (Q, ∣∣.∣∣) is a normed space we use the induced metric
d(x, y) = ∣∣y − x∣∣.

Special functions and properties

Definition 1.9. Sigmoidal function
We call a function f ∶ R→ R sigmoidal if limx→∞ f(x) = 1 and limx→−∞ f(x) = 0

Definition 1.10. λ-increasing and λ-decreasing functions
Given some λ > 0. We call a function f ∶ (a, b) → R a λ- (strictly)-increasing function if
there exists u ∶ (a, b) → R (strictly) increasing with ∣f(x) − u(x)∣ ≤ λ ∀x ∈ (a, b). If, in
contrast, u is (strictly) decreasing, we call f a λ-(strictly) -decreasing function .

Definition 1.11. The sigmoid function σ
Let σ ∶ R → (0,1) be defined by σ(x) = 1

1+e−x . This function is also called the sigmoid
function, the logistic function or also the logistic sigmoid function. Images σ(x) ∈ (0,1)
under this function can be interpreted as a probabilities.

Definition 1.12. Softmax
The softmax is a well known function and defined as follows.

softmax ∶ Rk → (0,1)k

(y1, . . . , yk)↦ (exp(y1)
∑ki=1 exp(yi)

, . . . ,
exp(yk)

∑ki=1 exp(yi)
)

By construction ∣∣softmax(y1, . . . , yk)∣∣1 = 1 and thus each image can be interpreted as
a probability vector.

5

Chapter 2

The knapsack problem

Knapsack problems are among the most popular and most investigated combinatorial
problems. The typical setup for a knapsack problem is a given finite set of items
where each item has an associated profit and an associated weight. The goal is to
find a composition of the items which maximizes the sum of the profits while the sum of
weights does not exceed a certain weight threshold. Variants may require certain bundles
of items being packed or allow packing items multiple times. Because of the popularity
of knapsack problems, the available literature treating this topic is vast. For example
Martello and Toth [28], Kellerer, Pferschy, and Pisinger [22] or Martello, Pisinger and
Toth [27] provide literature which exclusively treats Knapsack Problems in great detail
and generality. We base this section on the excellent book on combinatorial optimization
by Korte and Vygen [25, p.459 ff.].

Concerning the hardness of knapsack problems, Karp showed that already a very
simple version of a Knapsack Problem is (weakly) NP-hard [21]. This makes knapsack
problems candidates for experimentation with heuristics and approximation algorithms.
Indeed for the simple version being mentioned Ibarra and Kim (1975) constructed an
approximation algorithm of arbitrary accuracy ε running in polynomial time O(n2 1ε)
where n is the number of items, see Korte et al. [25, p.464 ff.]. Not only are knapsack
problems interesting from an academic perspective but also in practice they find many
applications. Let us formally introduce the simple version of a knapsack problem and
let us discuss some properties relevant for our further proceedings.

2.1 The 0-1-knapsack problem (KP)

We are given a set of items having associated a respective weight and a profit. The task
in the 0-1-knapsack problem KP is to determine a combination of items which maximize
the sum of profits while the sum of weights does not exceed a given capacity.

Definition 2.1. 0-1-knapsack problem (KP)
Let c1, . . . , cn ∈ R>0, w1, . . . ,wn ∈ R>0 be profits, respectively weights of items [n], n ∈ N.
Furthermore let W ∈ R>0 be a given capacity of the knapsack.

6

(1) Let the objective function be denoted by c(x) ∶= ∑ni=1 cixi = ctx and denote the
weight function by w(x) ∶= ∑ni=1wixi = wtx. The 0-1-knapsack problem is defined by
the task of solving the following integer program.

c∗ ∶= max{ctx s.t. wtx ≤W, x ∈ {0,1}n} (KP)

The constraints xi ∈ {0,1}, 1 ≤ i ≤ n, are called integrality constraints and
w(x) ≤W is called the capacity or weight constraint. While the optimal profit c∗

is unique for any given instance an optimal solution x∗ and its weight w∗ ∶= w(x∗)
may not be unique.

(2) An element x ∈ {0,1}n is called a binary vector or a packing. Whenever a binary
vector x satisfies the capacity constraint w(x) ≤W we call it feasible or (an) integral
(solution/packing). An item i is said to be included, packed or contained in a
packing x if xi = 1 and otherwise we say i is excluded or not contained. Vectors
x ∈ [0,1]n having at least one component xi ∈ (0,1) are called fractional.

(3) Denote by bi ∶= ci
wi

the benefit of the respective items i, 1 ≤ i ≤ n.

Permanent Assumption 1.
From this point onward we assume the following without loss of generality. For any
given instance of KP the items are labeled according to b1 ≥ ⋅ ⋅ ⋅ ≥ bn, the profits are
scaled by the maximum providing max1≤i≤n ci = 1 and the weights are scaled by the
capacity allowing us to assume W = 1. Furthermore we may assume wi ≤ W, 1 ≤ i ≤ n
or equivalently max1≤i≤nwi ≤ W because items i having wi > W can not occur in any
feasible solution and thus can be discarded. In this way all weights are in (0,1] and
reflect the percentage of the consumed capacity W if packed.

2.2 Solving the 0-1-knapsack problem

The branch-and-bound method is a very generally defined method for solving hard
combinatorial optimization problems. In order to apply it to a certain problem we need
to specify the individual components which define such a method.

First of all, we require an initial feasible solution. In the case of the 0-1-knapsack
problem this is a binary vector which obeys the weight constraint and therefore offers
a lower bound on the optimal objective function value. Throughout a branch-and-
bound algorithm, the set of feasible solutions is split repeatedly by applying a so-called
branching rule on the problem. In order to decide whether one shall further apply
branching a method for computing upper bounds is required. A sufficiently small
upper bound shows there is no optimal solution in the considered subset and we no
longer consider the subproblem. In this case we say the subproblem is fathomed or
pruned. There are also further cases in which subproblems can be pruned. We can
apply pruning if an optimal solution of the subproblem which is integral is found or if
no integral feasible solution exist for the subproblem. After pruning and branching a
node-selection rule is applied which tells which subproblem is considered next.

7

We define commonly used methods which serve the above purposes with the goal of
defining a basic version of a branch-and-bound algorithm for solving KP. This
concrete version is referred to as BB. As mentioned the hardness of the 0-1-knapsack
problem was first shown by Karp and it justifies to proceed with the introduction of a
branch-and-bound method [21].

2.2.1 Greedy and linear relaxation KP

The concept of constructing a greedy-solution is a general method being described
by incrementally improving an objective by the locally best option. In regard to KP
the greedy method provides a solution in linear time which approximates the optimal
solution up to a factor of 2, see Korte et al. [25, p.462]. This solution which is called
the greedy solution plays an important role in the initialization of a branch-and-bound
algorithm which we will present.

Conversely the linear relaxation of integer programs is a common technique ap-
plied in order to obtain upper bounds. A linear relaxation embeds the feasible integral
points in a convex subset of a real vector space. It allows for finding upper bounds via
methods like linear programming corresponding to possibly fractional vectors. Perhaps
the most natural way to perform such an embedding is by simply dropping the inte-
grality constraints of the considered integer program. Hence this particular relaxation
is referred to as the natural linear programming relaxation of an integer program.
The reason for looking at upper bounds in the context of integer programming is the
aim to prove that certain subproblems do not contain an optimal solution. This event
justifies to discard the considered subproblem by applying a prune by bound which is
one of several pruning rules. Smaller upper bounds are wishful in this regard since they
lead to more sensitive pruning.

Definition 2.2. Greedy solution
Given an instance of KP.

(1) The greedy-solution xgreedy is defined by going through the items ordered starting
from the most to the least beneficial where an item is included if it fits.

(xgreedy)i = 1 if
i−1
∑
j=1

xgreedyj wj +wi ≤W and (xgreedy)i = 0 else, 1 ≤ i ≤ n

A greedy-solution can be computed in O(n) via the weighted median as it is pointed
out by Korte et al. [25, p.462]. A straight-forward sorting method provides the
greedy solution in O(n log(n)) and for small instances this may be preferable due
to its simplicity. In particular if the items are already sorted accordingly this simple
method also takes O(n) time.

(2) The profit and weight of the greedy solutions cgreedy ∶= c(xgreedy), wgreedy ∶= w(xgreedy)
are called the greedy-profit respectively the greedy-weight. An instance is called
greedy-optimal if the greedy solution is optimal c∗ = cgreedy.

8

Definition 2.3. Critical item
Given an instance of KP where ∑ni=1wi >W meaning it is not feasible to pack all items.
In such instances a critical item k ∈ [n] is defined and the associated variable xk is
called the critical variable. By packing the items in a greedy fashion the critical item
is given by k ∶= min{j ∈ [n]∣ ∑ji=1wi > W}. It is the first item which does not fit in
the partly packed knapsack. Note that for any fixed ordering of items k according to
non-increasing benefits the greedy solution is unique. However, from the point of a given
instance KP the ordering and thus also the greedy-solution is not unique in case two
benefits coincide.

Definition 2.4. Linear relaxation of the 0-1-knapsack problem (LP)
By dropping the integrality constraints we obtain the natural linear programming re-
laxation LP for a given instance of KP as already mentioned above. In this way, we
formally define the relaxed problem LP also called the fractional knapsack problem
as in Korte et al. [25, p.459].

clp ∶= max{ctx s.t. wtx ≤W, x ∈ [0,1]n} (LP)

Lemma 2.5. Solving LP
Given an instance of KP. A solution to the natural linear programming relaxation can be
determined directly without using commonly known methods for solving linear programs
like the simplex method or inner point methods.

(1) If W < ∑ni=1wi let k be the critical item. Let x≤ = (1, . . .1,0 . . .0) be the packing
of all items {1, . . . , k − 1} and denote by c≤,w≤ the associated profit and weight
respectively. By xf we denote the (fractional) packing which packs a proportion

xfk ∶=
W−∑k−1i=1 wi

wk
∈ [0,1) of the critical item k and no other item xfi ∶= 0, i /= k. Then

according to Dantzig (1957) a solution to LP is given by xlp ∶= x≤+xf [12]. Again
clp,wlp denote the associated profit and weight respectively.

Note that in the considered case clearly W = wlp. In this way xlp packs items in the
greedy fashion and takes the largest possible fraction of the critical item k subject
to feasibility. Furthermore, note that x≤ is feasible providing a lower bound not
larger than the greedy profit. If xfk = 0 then xlp is an optimal packing (in particular
integral) for KP.

(2) If W ≥ ∑ni=1wi we define xlp ∶= (1, . . . ,1) the all-ones solution and clearly it is optimal
for both KP and LP.

(3) We call an instance of KP integral or lp-optimal if xlp is an integral solution. In
this case xlp = xgreedy and in particular the optimal profit is provided by both greedy
and lp solution cgreedy = c∗ = clp. Therefore lp-optimality implies greedy-optimality.
The converse is only true if W ≥ ∑ni=1wi or if xfk = 0. Having fixed an ordering of
the items we call KP fractional whenever it is not integral. Note that by Permanent
Assumption 1 instances KP are always feasible and xlp can be constructed.

9

(4) Computing xlp can be done in O(n) by distinguishing the cases necessary to con-
struct xlp and in the appropriate case we determine the critical item by weighted
median as in Definition 2.2. Similarly a straight-forward method provides xlp in
O(n logn) and in case the items are sorted, we merely require O(n).

2.2.2 Branching rules for KP

Generally the partitioning of the feasible set into several subsets is called branching.
Balcan et al. [2] showed that branching rules are a powerful leverage point for reducing
the computational cost of branch-and-bound algorithms. There does not exist a generally
preferable branching rule and a variety of strategies and rules is available.

When engineering a branching rule, typically a trade off between the number of sub-
sets in the partitions, the number of times a particular subset needs to be partitioned
until a pruning rule applies, and the computational cost for calculating the partition is
encountered. All these parameters may largely influence the performance of a branch-
and-bound algorithm.

One popular and simple branching rule for general integer programs introduces com-
binations of inequalities xk ≤ ⌊xlpk ⌋ and xk ≥ ⌈xlpk ⌉ to define the subsets comprising the

partition. Thereby xk is a fractional variable and xlpk ∈ R/Z is its value in an lp-solution.
By the close relation of the partitioning schema to variables we may say we branch on
variables. In different branching rules often times a close analogy to other structures
of the problem can be drawn and analogous terminology is used.

For KP we will explicitly define and use this natural branching rule. For a binary
integer program these inequalities reduce to fixing fractional variables to zero,
respectively one. Since KP not only can be formulated as a binary integer program,
but also has an lp-solution xlp with at most one fractional variable (see Lemma 2.5),
this branching rule reduces to fixing xk to zero, respectively one defining two subsets.

Definition 2.6. Knapsack problem with fixed item set
Consider an instance of KP as in Definition 2.1. Kolpakov and Posypkin introduced
the following useful framework allowing for a neat definition of the branching-rule being
used for the 0-1-knapsack problem [24, p.100].

(1) Let I ⊆ [n] be a set of fixed items and accordingly define the set of unfixed items
N ∶= [n]/I. For fixed items we are given constants θi ∈ {0,1}, i ∈ I. For items
i ∈ I a value θi = 1 reflects the demanded inclusion of item i while θi = 0 reflects
its exclusion. By conventionally setting θi = 0 ∀i ∈ N a binary vector θ ∈ {0,1}n
is defined. Together with I the vector θ defines which items are fixed and unfixed
and which items in the given I are included or excluded. Therefore the tuple (θ, I)
uniquely determines the feasible set of a subproblem KPI,θ of the original instance.

(2) By wI,θ ∶= ∑i∈I θiwi, cI,θ ∶= ∑i∈I θici we denote the fixed weight respectively the
fixed profit of the subinstance KPI,θ. The quantity W −wI,θ is called the residual
or spare capacity.

10

(3) The subproblem KPI,θ is defined by optimizing the same objective function over
the smaller feasible sets as follows.

c∗I,θ ∶= max{ctx s.t. wtx ≤W, xi ∈ {0,1} ∀i ∈ N,xi = θi ∀i ∈ I} (KPI,θ)

(4) The corresponding linear relaxation LPI,θ is given as follows.

clpI,θ ∶= max{ctx s.t. wtx ≤W, xi ∈ [0,1] ∀i ∈ N,xi = θi ∀i ∈ I} (LPI,θ)

(5) The optimal solution of KPI,θ is denoted by x∗I,θ and the optimal solution of LPI,θ is

denoted by xlpI,θ The respectively associated weights are denoted by w∗
I,θ ∶= w(x∗I,θ),

wlpI,θ ∶= w(xlpI,θ) and the respectively associated profits are denoted by c∗I,θ ∶= c(x
∗
I,θ),

clpI,θ ∶= c(x
lp
I,θ).

(6) When fixing items we can identify a potentially infeasible fractional 0-1-knapsack
problem which we call the unfixed part of KPI,θ.

max{∑
i∈N

cixi s.t. ∑
i∈N

wixi ≤W −wI,θ, xi ∈ {0,1} ∀i ∈ N}

By adding the fixed profit and by appropriately inserting the respective variable
values in a vector we reconstruct the optimal profit and the associated optimal
solution of KPI,θ from the respective unfixed part.

(7) Regarding a solving method for KPI,θ we may encounter infeasibility of the unfixed
part and thus also of KPI,θ if W − wI,θ < 0. This situation can be detected easily
and for feasible unfixed parts we can apply the same results and assumptions
as stated for the usual KP. In particular, Lemma 2.5 allows for constructing lp-
optimal solutions in polynomial time. We say KPI,θ is infeasible if the unfixed
part is infeasible. We call feasible instances of KPI,θ integral and fractional if the
unfixed part has the corresponding property. Similarly the critical item of KPI,θ is
the critical item of the unfixed part which exists only if not all unfixed items fit in
the unfixed instance. Otherwise the optimal solution is easily given by including all
unfixed items.

2.2.3 Branch-and-bound algorithm for KP

In the following, we compose the previously defined components into a specific variant
of a branch-and-bound algorithm, referred to as BB, for solving KP. For the short time
remaining until we formally define the act of selecting subproblems in Definition 2.17 we
treat this aspect of the branch-and-bound algorithm BB as a blackbox.

Permanent Assumption 2.
From this point onward we restrict ourselves to instances of KP where all benefits are
pairwise distinct and items obey the unique labeling according to c1

w1
> ⋅ ⋅ ⋅ > cn

wn
.

11

Definition 2.7. A branch-and-bound algorithm for KP
The following algorithm based on the general branch-and-bound schema presented in
Korte et al. solves an instance of KP [25, p.584].

Algorithm 1: A branch-and-bound algorithm for KP (BB)

Data: KP
Result: c∗ optimal profit

1 Initialize a timer t = 1 ;

2 Compute cgreedy the greedy profit of KP and set the incumbent cinc ∶= cgreedy;
3 Initialize the set of active nodes N1 = {KP}.;
4 while Nt /= ∅ do
5 Select a node KPt =KPI,θ ∈ Nt and form the current tree Tt as in Definition

2.8 ;
6 if KPI,θ is infeasible then
7 prune by infeasibility:
8 pass ;

9 else if KPI,θ is integral then

10 if clpI,θ > cinc then
11 prune by new incumbent:

12 Update cinc ∶= clpI,θ
13 else
14 prune by integrality:
15 pass ;

16 else if KPI,θ is fractional then

17 if clpI,θ > cinc then
18 branch:
19 Get k ∶= kI,θ the critical item of KPI,θ;
20 Define subproblems KPI∪{k},θ (exclusion), KPI∪{k},θ+ek (inclusion) ;

21 Add the new active nodes Nt ∶= Nt ∪ {KPI∪{k},θ,KPI∪{k},θ+ek}
22 else
23 prune by bound:
24 pass ;

25 Next round active nodes Nt+1 = Nt/{KPI,θ};
26 Increment the timer by one t + + ;

27 return c∗ ∶= cinc

Definition 2.8. branch-and-bound tree
Given an instance of KP.

(1) All branch-and-bound algorithms naturally define a rooted binary tree T called a
branch-and-bound tree. KP=KP1 defines the root and all encountered subprob-
lems define the vertex-set. Two nodes are connected by an edge if one subproblem

12

was obtained from the other by branching. The leaves in the branch-and-bound tree
are called pruned nodes and the inner nodes are called branched nodes.

(2) The node at which cinc ∶= c∗ is updated is called the optimal node. The corre-
sponding time is denoted by t∗. The trajectory to this node is called the path to
the optimal node (PTO) and it may consist only of one node in case the initial
solution is optimal.

(3) If we refer to the set of active nodes Nt at a time t we more precisely mean Nt
before having picked a new (current, active) node Kt ∶=KPI,θ ∈ Nt and before having
potentially added new nodes by branching. Furthermore, we say the current node
KPt is processed at time t. The act of processing a node refers to deciding if the
branching rule or an according pruning rule is being applied to KPt.

(4) At all times 1 ≤ t ≤ N in the algorithm we track rooted subtrees
Tt = T [KP1, . . . ,KPt] ⊆ T in an online fashion by adjoining the current node to
the node which generated KPt by branching. At time t = 1 only the root KP was
processed thus far and it forms T1. The sequence of trees Tt, 1 ≤ t ≤ N satisfies
T1 ⊆ ⋅ ⋅ ⋅ ⊆ TN = T where each tree Tt differs from Tt by the node KPt+1 which is
processed at the respective time 1 ≤ t ≤ N − 1. Trees of the form Tt are called
(branch-and-bound) trees at time t or current (branch-and-bound) trees in case t is
clear from the context.

Lemma 2.9. Branch-and-bound trees generated by BB are well defined
For a given instance KP the branch-and-bound tree defined as above in Definition 2.8
is well defined if it generated by BB. This means at any run of BB with the same
parameters provides the same branch-and-bound tree.

Proof.
Recall that by the Permanent Assumption 2 we have determined a unique labelling of
items according to b1 > ⋅ ⋅ ⋅ > bn. Therefore the solution of subinstance LPI,θ constructed
according to Lemma 2.5 is uniquely determined. In particular the critical item k =
min{j ∈ [n] ∣ ∑ji=1wi > W as defined in Definition 2.3 is uniquely determined. In this
way, the integrality of a node is well defined while the feasibility is well defined regardless
of the Permanent Assumption 2. Therefore, any subproblem KPI,θ can be associated
with a well defined state of being integral, fractional, or infeasible. By this level of
uniqueness, we achieve that subproblems which are generated by branching are uniquely
determined with regard to a given instance KP. In particular, because of the Permanent
Assumption 2 the unique ordering of items provides a unique sequence of critical items
of potential branching candidates along any trajectory.

It is left to verify that the same set of nodes is branched in every run of BB. At time
t = 1 the incumbent cinc is unique by an application of the greedy method to KP. Since a
potential critical item k of KP is unique in particular a subsequent set of active nodes N2

is uniquely determined. In an inductive fashion suppose that both the incumbent at time
t−1 and the set of active nodes generated for the next round Nt are uniquely determined.
Then the node-selection rule selects the same node KPI,θ being uniquely identified by

13

(I, θ) in every run of BB. Therefore when processing KPI,θ at a time 2 ≤ t ≤ N we
obtain the same well defined state of KPI,θ and in particular potential application of the
branching rule is determined by KP.

Definition 2.10. Full branch-and-Bound tree
Given an instance of KP. We define the full branch-and-bound tree Tfull algorith-
mically as follows.

Algorithm 2: Generating the full branch-and-bound tree for KP

Data: KP
Result: Tfull

1 Define Tfull as one vertex KP being the root;
2 while Tfull has a fractional leaf do
3 Get a fractional node with no children KPI,θ;

4 Get xlpk ∈ (0,1) its fractional variable.;
5 Connect two newly generated nodes KPI∪{k},θ, KPI∪{k},θ+ek to KPI,θ by an

edge ;

6 return Tfull ;

We denote the vertex-set of Tfull by Nfull ∶= V (Tfull) and call it the set of admissible
nodes for KP. Note that analogously to Lemma 2.9 the tree Tfull is well defined. In
particular, we point out that subproblems KPI,θ generated as defined above are obtained
according to branching on items i ∈ I. Items in I became critical at the according
subproblem along the trajectory to KPI,θ in an ordering specified merely by KP.

Lemma 2.11. All branch-and-bound trees grow in Tfull
Let KP be an instance of knapsack. Let T be an arbitrary branch-and-bound tree
generated by using BB and an arbitrary node selection rule. Then Tfull is well defined
and T ⊆ Tfull.

Proof.
The result is proven analogously to Lemma 2.9.

Lemma 2.12. Structure of Tfull
For a given instance KP the full branch-and-bound tree Tfull is a binary tree. All inner
nodes of Tfull are fractional nodes and all leaves of Tfull are either infeasible or integral.

Proof.
Clearly Tfull is a binary tree since we append either two or zero new descendants to
nodes. By construction we thus obtain a leaf KPI,θ if and only if we do not append
new descendants which is the case only if the node is not fractional. The first case for a
non-fractional instance KPI,θ is infeasibility. In case of feasibility xlpI,θ exists. However
xlpI,θ must be an integral packing since we did not append new descendants.

14

Remark 2.13.

(1) Tfull is generated analogously to a branch-and-bound tree according to Defi-
nition 2.8 by a slight alteration. Instead of performing a prune by bound, we apply
branching, and the case of pruning by a new incumbent is integrated to the case of
pruning by integrality. Thus Tfull can be obtained by BB if we assume the initial
solution to be the all-zero solution. We then select nodes particularly poorly by
avoiding integral nodes as long as possible in order to avoid pruning by bound.

(2) The above structural result 2.12 motivates thinking of applying BB as growing trees
T1 ⊆ ⋅ ⋅ ⋅ ⊆ TN = T ⊆ Tfull into a large binary tree Tfull. Tfull is the universal branch-
and-bound tree associated with a worst case performance of BB applied on KP. In
fact, the existence of such a universal tree structure for KP is merely reasoned by
a trivial branching rule which receives a uniquely determined branching variable by
Permanent Assumption 2. In particular, Tfull is independent of the choice of initial
solutions, the choice of upper bounds, and of the node-selection rule. More notably,
branch-and-bound trees T generated analogously to BB but by using alternatives of
all parameters except for the branching rule which still satisfies T ⊆ Tfull and most
implications still apply in a similar fashion.

(3) When using the branching-rule as defined in Definition 2.7 we can only avoid explor-
ing the entirety of Tfull by pruning trajectories by bound. The application of a
prune by bound depends on the quality of upper bound and on the quality of the
current incumbent. Regarding the generation of upper bounds as a fixed parameter
throughout the algorithm, we may at runtime only leverage the node-selection in
order to increase cinc quickly.

(4) In variants of branch-and-bound algorithms for solving other combinatorial problems
there might be further degrees of complication and a tree analogous to Tfull
may not be attainable. For instance having several fractional variables at a node or
having non-binary integral variables opens questions about defining such a full tree.
It may well be the case that a suitable assumption which provides us well defined
branch-and-bound trees only based on a given instance does not exist or at least
is not as straight forward to come up with. In particular, objects associated with
integral variables which are indistinguishable are considered problematic. For KP we
already revealed but successfully resolved this issue. In case of the strong assumption
of unique relaxed solutions, this issue can also be resolved. In this instance, there
is potential for several candidate branching variables to form a uniquely determined
set. From this point onward, it is conceivable for a definition of Tfull to be achieved
by adding all possible branching variants in the form of a descendant. In case
we choose to compute upper bounds via natural linear programming relaxations,
the next step of proving that indistinguishable subproblems can not be formed in
a cyclic fashion is straightforward as upper bounds decrease along trajectories by
uniqueness. In the case of KP we are also able to prove this behavior without
assuming unique lp-solutions quite technically as follows. Avoiding constants lp-
bounds along trajectories will become a crucial detail in the proofs of further results.

15

Lemma 2.14. Strict monotonicity of trajectories in Tfull
Given an instance KP and an inner node KPI,θ of Tfull. Then the lp-bound at a
descendant KP ′

I,θ of KPI,θ is strictly smaller than the lp-bound at KPI,θ.

Proof.
Without loss of generality we identify KPI,θ as KP. We prove this result by a fully
fledged case distinction. Since KP is fractional, there exists a critical item k ∈ [n] and
the critical variable defined by Lemma 2.5 is (xlp)k ∈ (0,1). The descendant which we
denote by KPI,θ may be infeasible, or in case of feasibility all or no one item might fit. If
KPI,θ is infeasible however, the inequality is clear. So suppose KPI,θ is feasible meaning
it has a non-negative capacity 0 ≤W − θkwk.

(1) If θk = 0 we have 1 = (xlp)i = (xlpI,θ)i, 1 ≤ i ≤ k − 1, (xlpI,θ)k = 0. If k = n we

get (xlpI,θ)n = 0 < (xlp)i ∈ (0,1) providing a strict decrease of lp-profit. So suppose

k < n and by (xlp)kwk > 0 some (xlpI,θ)i > 0, k + 1 ≤ i ≤ n. We express the residual

weight W −∑k−1i=1 wi = x
lp
k wk ≥ ∑

n
i=k+1(x

lp
I,θ)iwi > 0 estimated by feasibility of xlpI,θ. We

subtract the common summands∑k−1i=1 ci from both bounds and compare equivalently
by using descending benefits as follows.

ckx
lp
k = ck

W −∑k−1i=1 wi
wk

= bk(W −
k−1
∑
i=1

wi) ≥ bk(
n

∑
i=k+1

(xlpI,θ)iwi) =

n

∑
i=k+1

(xlpI,θ)ibkwi >
n

∑
i=k+1

(xlpI,θ)ibiwi =
n

∑
i=k+1

(xlpI,θ)ici

(2) If θk = 1 we obtain an instance with capacity 0 ≤W−wk by having assumed feasibility
of KPI,θ. By 0 ≤ W − wk we in particular have 2 ≤ k. The characterization of the
critical k item provides k minimal such that∑ki=1wi >W . Therefore∑k−1i=1 wi >W−wk
and the critical item in KPI,θ exists 1 ≤ kI,θ and occurs earlier kI,θ ≤ k − 1. We thus

have a solution of KPI,θ of the form (xlpI,θ) = (1, . . . ,1, fI,θ,0, . . .0,1,0 . . . ,0) where

fI,θ =
W−wk−∑

kI,θ−1
i=1 wi

wkI,θ
∈ [0,1) at position kI,θ and 1 at position k for including k.

The all-zero and all-one vectors could potentially be of length zero. We estimate the
difference in profit as follows.

16

clp − clpI,θ =
(i) [

k−1
∑
i=kI,θ

ci + bk(W −
k−1
∑
i=1

wi)] − [bkI,θ(W −wk −
kI,θ−1

∑
i=1

wi) + ck] =(ii)

k−1
∑
i=kI,θ

ci +w(bk − bkI,θ) − (bk − bkI,θ)(
kI,θ−1

∑
i=1

wi) − (
k−1
∑
i=kI,θ

bkwi) + bkI,θwk − ck =
(iii)

k−1
∑
i=kI,θ

ci + (bk − bkI,θ)(W −wk −
kI,θ−1

∑
i=1

wi) > 0 ⇐⇒

k−1
∑
i=kI,θ

ci > (bkI,θ − bk)(W −wk −
kI,θ−1

∑
i=1

wi) =(iv) (bkI,θ − bk)wkI,θfI,θ =

ckI,θfI,θ − bkwkI,θfI,θ

In step (i) we cancel the equal terms in both solutions, plug in the expressions for
the fractional variables computed according to Lemma 2.5 and shall not forget ck,
the fixed profit. In step (ii) we factor (bk − bkI,θ) from common summands. In step
(iii) we write ck = bkwk and thus, can factor out an additional (bk − bkI,θ). We look
at the equivalent inequality and in step (iv) note that this is the weight-margin in
KPI,θ admitting the expression in the critical variable fI,θ ∈ [0,1). By positivity of
profits and weights and the fractional variable being in [0,1) we can easily verify

∑k−1i=kI,θ ci ≥ ckI,θ > ckI,θfI,θ − bkwkI,θfI,θ.

Lemma 2.15. Arriving at integral nodes
Consider an instance of KP and the full branch-and-bound tree Tfull. Consider a node
KPI,θ which was constructed from its predecessor by fixing the critical variable k. We
assume without loss of generality the predecessor of KPI,θ is KP by looking at the unfixed
part.

(1) If KPI,θ is obtained by fixing xk = 1 then KPI,θ is integral only if ∑kI,θ−1i=1 wi =W −wk.
This corresponds to the spare capacity being filled exactly by items {1, . . . kI,θ − 1}.

(2) If KPI,θ is obtained by fixing xk = 0 then KPI,θ is integral only if either ∑kI,θ−1i=1 wi =
W −wk or if ∑ni/=kwi ≤W meaning all unfixed items fit with respect to the residual
capacity still being W by xk = 0.

Proof.
The proof of this result is already present along the lines of the proof of Lemma 2.14.
Part of the reversed implication of (2), namely the fact that unfixed instances provide
an integral solution in case all unfixed items fit is already shown in Lemma 2.5. From
the point of search strategies it may be helpful to know scenarios which enable finding
integral nodes since only then we can detect an optimal node.

17

Lemma 2.16. Finding xgreedy in Tfull
Given an instance of KP and the associated Tfull. In Tfull consider a node which is found
when traversing from the root along the trajectory in correspondence to excluding the
critical item attained at each subproblem. Then the leaf at the end of this trajectory is
an integral node with clpI,θ = c

greedy
I,θ = cgreedy admitting the greedy profit with xgreedy =

xgreedyI,θ = xlpI,θ even via the greedy solution.

Proof.
Let xgreedy be the greedy solution. If the root is integral we have an lp-optimal instance
and the statement is trivial by not branching and Lemma 2.5. So suppose the root
is fractional and thus a critical item k exists. We show the statement iteratively by
moving along the considered trajectory. Clearly xgreedyk = 0 in the greedy solution by
definition 2.2. We therefore exclude k and do not decrease the capacity by construction
of subproblems. Hence the greedy-solution at the descendant coincides with the greedy
solution at the root since the same items in the unfixed part fit and θk = 0 ensures also the
fixed items assume the same variable values. This is an invariant in this procedure and
in particular the greedy solution is always contained hindering infeasibility. Therefore
the leaf is integral and Lemma 2.15 applies. The scenarios which result in integrality are
either that all unfixed items fit or that the residual capacity exactly balances the fitting
unfixed items.

2.2.4 Node-selection rules

Let us formally introduce the procedure of selecting nodes. We will then define a notion
of an optimal node-selection for setting up a baseline comparison for node-selections.
In fact we are able to prove the optimality of the well known best-first-search strategy
for solving KP by using BB as defined in Definition 2.7.

Definition 2.17. Node-selection rule
Given an instance KP and the full branch-and-bound tree Tfull. In order to formally
define node-selection rules we construct a family of node-valued functions. These
functions take a current branch-and-bound tree and a set of active nodes as input and
map to some particular node in the set of active nodes.

(1) Let T be a rooted subtree of Tfull which is not the full tree. The neighborhood of
the rooted subtree T (in Tfull) is defined as follows.

NT ∶= {u′ ∈ Tfull/T ∣ u′ descendant of some u ∈ T}
(2) Consider tuples (T,NT) where T is a rooted subtree of Tfull and ∅ /= NT ⊆ NT is a

subset of the neighborhood of T . We collect all such pairs in a set as follows.

TN = ⋃
KP ∋T⊊Tfull

{(T,NT) ∣ ∅ /= NT ∈ 2NT }

NT reflects the maximal set of active nodes if T is a current branch-and-bound tree.
Therefore TN reflects all combinations of a potential current branch-and-
bound tree and a respective set of active nodes. Note that in particular a

18

proper subset NT ⊆ NT could form a set of active nodes if some fractional nodes in
NT ⊆ Tfull were pruned by bound. Furthermore note that it is justified to exclude
empty sets NT since in this case BB has already terminated.

(3) A function S ∶ TN → Nfull which satisfies S(T,NT) ∈ NT ∀(T,NT) ∈ TN is called
a node-selection rule. We conventionally extend the domain of S by setting
S(∅,{KP}) ∶= KP . This allows us to apply S for selecting the root KP at time
t = 1. Note that a node-selection rule has available all information about the current
tree T and has available all information about the active nodes NT in order to select
some KPI,θ ∈ NT .

Examples of node selection rules

Typically node-selection rules are defined implicitly by assuming arbitrary sets of active
nodes and arbitrary current trees. Oftentimes, a tree-search strategy motivates incor-
porating the structure of the current tree into a node-selection rule. Another typical
approach is selecting active nodes based on quantities such as associated bounds. In
practice, a trade off between the number of explored nodes and the computational cost
entailed by canny node-selection rules is expected.

Definition 2.18. Depth-first-search (DFS)
We pop the last element from a stack of active nodes Nt at any time t. Newly generated
pairs of nodes are pushed on the stack such that the preferred problem is on top. If we
push the problem which fixed the critical variable of the predecessor to one we call the
rule DFS-inclusion. When reversing the preference we refer to it as DFS-exclusion.

Definition 2.19. Depth-first-search with restart (DFS-w-r)
We define an additional rule to DFS. If the current node KPt at time t is pruned, we
select an active node KPt+1 from Nt+1 uniformly at random in the next round. In this
way, we restart the search at a random point in the tree whenever we run into a leaf
of the branch-and-bound tree resulting from BB at termination. In the context of search
strategies such an element is called diversification.

Definition 2.20. Best-first-search (BESTFS)
We choose an active node KPt having a maximal lp-bound clpt among all active nodes
Nt. We prioritize integral nodes among nodes having the same bound and use an ar-
bitrary (potentially even random) tie break in case we only have available non-integral
nodes.

2.2.5 Optimal node-selection rules

Having defined a formal concept of a node selection rules S we treat it as a parameter
for BB and fix all other parameters according to Definition 2.7. In the following, we
then aim to minimize the number of processed nodes by tuning this parameter.
It turns out the BESTFS is a minimizer and that minimal trees are unique. Along

19

the way we prove that each branch-and-bound tree generated according to BB contains
unavoidable nodes regardless of the node-selection, see Lemma 2.27. The number of
these nodes directly results from the structure of a given instance and our method of
choice for computing upper bounds. Having available this unavoidable set of nodes
we will prove the optimality of BESTFS in Theorem 2.31 by showing that only these
unavoidable nodes are explored. Finally, in Lemma 2.33 we present a straight-forward
method allowing us to reconstruct the minimal branch-and-bound tree from any given
branch-and-bound tree.

Definition 2.21. Optimal node-selection rule

(1) A node-selection rule S∗ which for a fixed instance KP results in a tree of minimal
size among all node selection rules S when using BB is called an optimal node
selection rule for KP.

(2) The corresponding branch-and-bound tree is called minimal for KP. If a node se-
lection rule is optimal for every instance of KP it is simply called optimal and the
corresponding branch-and-bound trees are called minimal.

Definition 2.22. Closure of a tree
Consider an instance of KP and the corresponding full branch-and-bound tree Tfull.
The closure of a rooted subtree T ⊆ Tfull is defined as the induced subgraph T ∶=
Tfull[V (T) ∪NT] where NT is the neighborhood of T as defined in Definition 2.17. We
conventionally define the closure of the empty tree ∅ ∶= ({KP},∅) as the rooted subtree
containing only the root.

Lemma 2.23. Closures are binary trees
Given KP and a rooted subtree T ⊆ Tfull or T = ∅. Then T ⊆ T ⊆ Tfull and T is a binary
tree.

Proof.
Obviously T ⊆ T ⊆ Tfull holds. Clearly the closure T of T is a tree since it stays
connected by extending T by connecting vertices and it remains acyclic since the closure
is contained in a tree T ⊆ T ⊆ Tfull. We proceed by showing each vertex either has zero
or two descendants. In case T is empty, the closure T consists of only the root and is
a binary tree by definition. In the non-empty case, consider a node v in T . Suppose v
has descendants v′, u′ in Tfull which is a binary tree by 2.12. Descendents which are not
yet present in T are added by closing T . If v has no descendants in Tfull it also has no
descendants in T as T ⊆ Tfull and T ⊆ Tfull.

Definition 2.24. Admissible nodes and truncating Tfull
Given KP and the corresponding full tree Tfull. Let c ∈ R ∪ {−∞,+∞} be a constant.

Analogous to the set of all admissible nodes Nfull we define lpfull ∶= {clpI,θ ∣ KPI,θ ∈ Nfull}
the multi-set of all admissible lp-bounds of KP. We define truncations of these
(multi-) sets as follows.

20

(1) We define the set of all admissible nodes truncated at c as follows.

N (c) ∶= {KPI,θ ∈ Nfull ∣ clpI,θ > c} ⊆ Nfull

(2) We define the full tree truncated at c as follows.

T (c) ∶= Tfull[N (c)] ⊆ Tfull

(3) We define multi-sets of admissible lp-bounds truncated at c as follows.

lp(c) ∶= {clpI,θ ∣ KPI,θ ∈ N (c)} ⊆ lpfull

Obviously all truncated sets are empty if and only if c ≥ clp. If c = −∞ we obtain N (−∞),
T (−∞) and lp(−∞) directly corresponding to all feasible nodes in Tfull.

Lemma 2.25. Structure of truncated trees
Given KP and a possibly infinite fixed constant c ∈ R ∪ {−∞,+∞}. If c < clp the full
tree truncated at c is a rooted subtree of Tfull. Furthermore, truncated trees get smaller
when the constant grows meaning for any two constants c1 ≤ c2 ∈ R ∪ {−∞,+∞} we
obtain T (c2) ⊆ T (c1) (rooted) subtree containment.

Proof.
If c < clp at least the root is contained in N (c). If a node v is in T (c) its predecessor
has an lp-bound larger than clp by Lemma 2.14 and thus also is a node of T (c). Since
T (c) = Tfull[N (c)] is induced on Tfull all nodes are connected to the root and T (c) is a
tree. Similarly for constants c1 ≤ c2 we have N (c2) ⊆ N (c1) and we obtain rooted-tree
containment T2 ⊆ T1 by again being graphs induced on Tfull.

Definition 2.26. Unavoidable tree
Given an instance of KP with optimal profit c∗ and full branch-and-bound tree Tfull.

Define TU ∶= T (c∗) ⊆ Tfull the unavoidable rooted subtree. Nodes in TU are called
unavoidable nodes. More compactly we simply refer to these nodes as unavoidable and
call TU unavoidable.

Lemma 2.27. The unavoidable tree is contained in all branch-and-bound trees
Given KP and a branch-and-bound tree T ⊆ Tfull obtained by BB at termination by
using an arbitrary node selection rule S. Then TU ⊆ T regardless of the node-selection
rule S used in BB.

Proof.
In case N (c∗) = ∅ in particular the root satisfies clp ≤ c∗. Since an optimal solution
exists, Lemma 2.14 implies the root is the optimal node and the instance is lp-optimal
meaning c∗ is admitted at the root and the corresponding solution xlp is integral. In this
case, the unavoidable tree consists merely of the root and is a rooted binary subtree.

21

So suppose N (c∗) /= ∅. First we prove T (c∗) ⊆ T is contained in the branch-and-bound
tree T as a rooted subtree. We extend the containment to the closure T (c∗) = TU later.
Assume to the contrary there exists a node s ∈ T /T (c∗). By s ∈ T ∩ T (c∗) the node s is
not the root and there exists a node t ∈ T ∪T with a descendant t′ ∈ T /T (c∗). Therefore
t is a fractional and must have been pruned by bound when generating T . Therefore,
the lp-bounds at t satisfies lpt ≤ cinc ≤ c∗ for an incumbent cinc available at the time t
was processed. But then t /∈ N (c∗) is a contradiction.

We proceed by showing that even the closure T (c∗) = TU of T (c∗) is contained in T .
So given a node in s ∈ T (c∗) ⊆ T , we must show that if a node s ∈ T (c∗) ⊆ T has
two descendants in Tfull it also has two descendants in T . Then by Lemma 2.11 the

descendants in T coincide with descendants in T (c∗) ⊆ Tfull and T (c∗) ⊆ T follows. If
s has descendants in Tfull the node s is a fractional node by 2.12 and by s ∈ T (c∗) the
lp-bound lps > c∗. At the time s ∈ T (c∗) ⊆ T is processed in BB it is neither pruned
by integrality nor does it provide a new incumbent by being fractional. By lps > c∗ the
node s can not be pruned by bound because incumbents are bounded cinc ≤ c∗ and s is
not infeasible by both having descendants in Tfull and by admitting lps > c∗. Therefore
s was branched at the time it was processed and indeed has two descendants in T .

Remark 2.28.
In summary Lemma 2.23 and in particular Lemma 2.27 show the unavoidable tree TU =
T (c∗) is a binary rooted subtree of Tfull. It is contained in any branch-and-bound tree
regardless of the node-selection when using BB. If we can prove that TU is attained
as a branch-and-bound tree when using BB by finding a suitable node-selection, we
constructively prove that TU is a minimal branch-and-bound tree.

Lemma 2.29.
Given an instance of KP which is solved according to BB by using BESTFS as a node-
selection rule. Denote by t∗−1 ∶= ∣N (c∗)∣ and consider an ordering of respective lp-bounds
clp1 ≥ ⋅ ⋅ ⋅ ≥ clpt∗−1 > c∗ in lp(c∗). The next smaller node in lpfull is clpt∗ ∶= c

∗. Denote by

c̃lpt the lp-bound of the node processed at time 1 ≤ t ≤ t∗ when using BESTFS as a

node-selection rule in BB. Then c̃lpt = clpt , 1 ≤ t ≤ t∗. In particular, at time t∗ an integral
node which admits the optimal profit c∗ is detected.

Proof.
We show the statement by induction. At time t = 1 the root is processed and has
a maximal lp-bound clp1 . Let 2 ≤ t ≤ t∗ − 1 and suppose at time t − 1 the statement
holds. We have processed a contingent of t − 1 nodes which admit the t − 1 largest
lp-bounds. Since nodes can be processed only once, the next chosen node must satisfy
c̃lpt ≤ clpt . Assume to the contrary c̃lpt /= clpt and therefore c̃lpt < clpt . Thus there exists
v ∈ Nfull/{Nt ∪ V (Tt−1)} an unprocessed node which is not active having an lp-bound

clpv ∶= clpt . On the trajectory to v in Tfull we choose s′ ∈ Tfull/Tt−1 a node with minimal
distance to the root. Then s′ is not the root and the predecessor s ∈ Tt−1 of s′ admits
clps > clps′ ≥ c

lp
v by Lemma 2.14. Since s ∈ Tt−1 the node s has already been processed and

22

clps > c∗ ≥ cinc. Thus, at the time s was processed, we branched on s and have available
s′ as an active node. However clps′ ≥ c

lp
v contradicts c̃lpt < clpt = clpv .

In order to prove the “in particular” statement, let t = t∗ and let s′ be an integral node
admitting clpt∗ = c

∗. If t∗ = 1 we have N (c∗) = ∅ and the statement is already shown in
Lemma 2.27. If t∗ ≥ 2 the root is not an optimal but there exists an optimal node s′

having a predecessor s with a strictly larger bound. By the above s ∈ Tt∗−1 is explored
while and has a strictly larger bound than its descendant clps > clps′ by Lemma 2.14. By
the above s′ is not explored at time t∗ − 1. However, s′ is in the set of active nodes
because s is fractional and s ∈ T (c∗) harbors an lp-bound larger than any incumbent
making it impossible to prune by bound. Hence BESTFS has an integral node available
admitting c∗ which is preferably chosen.

Remark 2.30.
Note that while all admissible lp-bounds larger than c∗ are encountered in descending
order when using BESTFS it must not necessarily be the case that the associated nodes
correspond.

Theorem 2.31. BESTFS is an optimal node-selection rule
Let T be a branch-and-bound tree constructed by using BESTFS for an arbitrary in-
stance of KP. Then T = TU and therefore T is a minimal branch-and-bound tree or
equivalently BESTFS is an optimal node-selection. In particular TU is the unique mini-
mal branch-and-bound tree.

Proof.
If we can show T ⊆ TU we have shown the statement since TU ⊆ T by Lemma 2.27.
Assume to the contrary there exists s′ ∈ T /TU . s′ is not the root and assume without
loss of generality s′ has minimal distance to the root. Then its predecessor satisfies
s ∈ T ∩ TU . TU is a binary tree and therefore the sibling of s′ is also not in TU . Hence
s is a leaf in TU . However s has a descendant s′ in Tfull and is therefore feasible and

fractional. We aim to show clps ≤ c∗. If this was not the case, s ∈ T (c∗) and when closing
T (c∗) the descendant s′ would have been added, and we would obtain a contradiction to
assuming s′ /∈ TU = T (c∗). Therefore, indeed clps ≤ c∗ and we apply Lemma 2.29. Thus at
the time s is processed we have available c∗ as incumbent. Hence s is pruned by bound
providing s′ /∈ T , a contradiction. In order to prove the uniqueness we suppose a distinct
minimal branch-and-bound tree T ∗. By Lemma 2.27 TU ⊆ T ∗ and whenever there is a
node in T ∗/TU the minimality is obstructed.

Remark 2.32.
One way to construct the minimal branch-and-bound tree is to use BESTFS as a node-
selection rule in BB. However when having constructed a branch-and-bound tree with a
different node selection already we still are able to reconstruct TU in a simple and fast
way as follows.

23

Lemma 2.33. Reconstruct the minimal branch-and-bound tree
Given and instance KP, let T be any branch-and-bound tree for KP and let c∗ be the
optimal profit.

(1) TU = T (c∗) can be reconstructed by applying the following algorithm.

Algorithm 3: Reconstruct the minimal branch-and-bound tree

Data: T branch-and-bound tree, c∗ optimal profit
Result: TU minimal branch-and-bound tree

1 Find N (c∗) by filtering the nodes of T by lp-bounds;
2 Compute the induced subtree T [N (c∗)] = T (c∗);
3 Compute the closure T (c∗) by appending missing descendants to the feasible

fractional vertices of T (c∗) ;

4 return T (c∗)

(2) The number of nodes of T (c∗) is given by ∣T (c∗)∣ = 2∣T (c∗)∣ + 1.

(3) For any rooted subtree T ⊆ Tfull the inequality ∣T ∣ ≤ 2∣T ∣ + 1 holds.

Proof.

Ad (1) Since T (c∗) ⊆ TU ⊆ T is contained in any branch-and-bound tree we detect
the entirety of N (c∗) within T by filtering. We can compute the closure in a
straight-forward method by directly applying the definition.

Ad (2) If T (c∗) is empty, the statement is clear by convention. In the non-empty case we
observe N (c∗) consists only of fractional nodes which are inner nodes in Tfull
by 2.12. Therefore, they are also inner nodes of the tree T (c∗) by definition.
We recall T (c∗) is a binary tree, see Lemma 2.23. Thus each node in T (c∗)
must have a degree of 3 in the closure except for the root which has degree 2
in the closure. We directly compute the difference of the respective sizes by

∣T (c∗)∣ − ∣T (c∗)∣ = −1 +∑∣T (c∗)∣
i=1 (3 − di) = 3∣T (c∗)∣ − 1 −∑∣T (c∗)∣

i=1 di = 3∣T (c∗)∣ − 1 −
2(∣T (c∗)∣ − 1) = ∣T (c∗)∣ + 1. Rearranging the term immediately yields the result.
Note that we used the well known fact that the sum of degrees of vertices in a
tree is twice the number of edges and the number of edges in trees is one less
than the number of nodes.

Ad (3) By closing an arbitrary rooted subtree, T ⊆ Tfull each node in T has a degree of
at most 3. We analogously compute ∣T ∣ − ∣T ∣ ≤ ∣T ∣ + 1 and prove the claim.

Remark 2.34.

(1) The above algorithm in Lemma 2.33 reconstructs the minimal branch-and-bound
tree TU in O(∣T ∣) from any given branch-and-bound tree T for a fixed instance KP.
The minimal tree (size) is of interest for assessing a node-selection rule. In case
we are only interested in the size ∣TU ∣ = ∣T (c∗)∣ we merely need to determine about

24

half the nodes of TU , namely the nodes in T (c∗). We can then use part (2) of the
above Lemma 2.33 and directly compute ∣TU ∣.

(2) As an alternative to the above algorithm we can obtain TU by solving KP with BB
and by using BESTFS. Let us briefly analyze the running time and justify the use
of the above algorithm. At each node we need to solve the linear relaxation which
takes O(n), see Lemma 2.5. We may use a Fibonacci heap to keep track of the set
of active nodes. In the first ∣T (c∗)∣ iterations, two elements are added per round
(in constant time) by branching and one element is deleted (in logarithmic time) by
selecting an active node. By using Stirling’s formula and Lemma 2.33 we estimate

∑∣T (c∗)∣
t=1 log t ∼ ∣T (c∗)∣ log ∣T (c∗)∣ ∼ ∣TU ∣ log ∣TU ∣. This term reflects the running time

spent merely on keeping track of the active nodes. In total,we have running times
of order Ω(∣TU ∣(log(∣TU ∣)+n)) for solving KP with BESTFS and BB. In particular,
if ∣T ∣ = O(∣TU ∣(log(∣TU ∣) + n)) is relatively small, the above algorithm is preferable
for computing the minimal branch-and-bound tree TU . In case we only aim for the
size ∣TU ∣ we can save an additional factor of 2 as opposed to fully determining TU .

2.2.6 Performance and phases of a branch-and-bound algorithm

In order to assess the performance of a general branch-and-bound algorithm in a more
granular fashion, we define two phases during the algorithm. In the exploration we
have not yet detected an optimal node. In the validation phase an optimal node is found
and the optimality is verified. This can be done for an arbitrary branch-and-bound
algorithm for any given problem but in our case we focus on BB and KP. The duration
(or lenght) of the respective phases and the performance of BB are measured by counting
the number of processed nodes (attributed to the respective phase).

In Theorem 2.36 we show one way to estimate the whole duration of BB, given an
instance of KP. We obtain a lower bound which is only based on the number of nodes
processed in the exploration phase and on the size of the unavoidable tree giving us
insight into the validation phase of BB. In this way we can show the size of the generated
branch-and-bound tree is bounded by a function which is affine linear in the duration
of the exploration phase and the intercept is determined by the number of unavoidable
nodes. In a second result formulated in Corollary 2.38 we revisit the use of BESTFS in
BB and are able to explicitly disclose the phases based on the corresponding tree
truncated at c∗.

Definition 2.35. Phases in BB
For a given instance of KP consider a branch-and-bound tree T which is generated
by employing an arbitrary node-selection rule in BB. Denote by t∗ the time when the
optimal node was detected as defined in Definition 2.8 and denote byKPt the subproblem
processed at time t. Furthermore, let Tfull be the full branch-and-bound tree for KP.
We divide the set of explored nodes V (T) in two disjoint sets called phases.

25

(1) We respectively define the exploration-phase NE and the validation-phase NV
as follows.

NE = {KPt ∣ t < t∗}, NV = {KPt ∣ t ≥ t∗}
In this way, the node KPt∗ , which admits an optimal solution for the first time,
already belongs to the validation phase. We define the tree explored at the end of
the exploration phase by TE = T [NE].

(2) The sizes of these sets of nodes obey 0 ≤ ∣NE ∣ = t∗ − 1 and 1 ≤ ∣NV ∣. We call these
quantities the length or duration of the respective phase.

(3) The following cases can be encountered.

If the lp-bound of KP is clp = c∗, the root is an optimal node by Lemma 2.5 and we
face an lp-optimal instance. Therefore t∗ = 1 and both phases are trivial ∣NE ∣ =
0, ∣NV ∣ = 1. In particular, the branch-and-bound tree is only a singular node.

If clp > c∗ is not lp-optimal, we distinguish cases depending on the quality of the
initial solution being the greedy in BB. If the greedy solution is optimal t∗ = 1
and the root is an optimal node. It is a fractional and branched node by clp > c∗.
The optimal profit is given by the greedy profit cgreedy = c∗ at the optimal node. The
exploration phase is trivial ∣NE ∣ = 0 and the validation phase is non-trivial ∣NV ∣ > 1.

If the greedy solution is not optimal in particular KP is not lp-optimal by Lemma
2.5 and we encounter the optimal node at an integral node not being the root at
a time t∗ > 1. In this case, the optimal profit is given as the lp-bound clpt∗ = c∗ at
the optimal node. The exploration phase is non-trivial ∣NE ∣ > 0 while the validation
phase only might be non-trivial ∣NV ∣ ≥ 1. Note that the optimal node might be the
last active node providing ∣NV ∣ = 1.

(4) By the phases being disjoint, the number of nodes decomposes into summands N ∶=
∣NE ∣ + ∣NV ∣ = ∣T ∣. The number of nodes of T is only one way to measure the
performance of a branch-and-bound algorithm. Since a branch-and-bound
tree T is a binary tree, we can equivalently look at the number of branched nodes
∣T ∣−1
2 being the inner nodes of T . For a more granular running time analysis for BB

for arbitrary node-selection rules S we at least need to incorporate the complexity
of S and refer to remark 2.34. With regard to actual running time BESTFS may be
outperformed by a rule which does not blow up the number of active nodes to an
order O(∣TU ∣) and while introducing a sufficiently small set of additional nodes to
TU . Using stronger upper bounds may entirely change the game since an unavoidable
structure TU = T (c∗) is dependent on lp(c∗).

26

Theorem 2.36. Duration of BB
Given an instance of KP and let S be an arbitrary node selection rule used in BB yielding
the branch-and-bound tree T at termination. Let t∗ be the time the optimal node was
detected and consider TE = Tt∗ the current tree at the end of the exploration phase.

(1) Then T ⊆ T (c∗) ∪ TE .

(2) The size of T is bounded by the number of unavoidable nodes and the duration of
the exploration phase by ∣T ∣ ≤ 2t∗ + 2∣N (c∗)∣ − 1. In particular we can estimate the
duration of the validation phase ∣NV ∣ ≤ t∗ + 2∣N (c∗)∣.

Proof.

(1) We partition the nodes of T in NE ⊍NV . For nodes s′ ∈ NE ⊆ TE the inclusion is
clear. So suppose s′ ∈ NV meaning at the time s′ is processed we have available the
optimal profit as incumbent cinc = c∗. If clps′ > c

∗ we have s′ ∈ N (c∗) ⊆ TU = T (c∗).
So it remains to show the statements for nodes s′ ∈ NV with lps′ ≤ c∗. If s′ is the
root it is contained in TU . Otherwise assume an ancestor s of s′. If lps > c∗ we
have s ∈ N (c∗) feasible and fractional and obtain s′ ∈ TU by closure. If lps ≤ c∗
we distinguish two more cases. If s ∈ NE we get s′ ∈ TE by closure. Otherwise we
encounter s ∈ NV with lps ≤ c∗. But this implies we prune s by bound and s′ /∈ T , a
contradiction.

(2) We can compute a rough estimate on the total duration by using Lemma 2.33 and
estimate ∣T ∣ ≤ ∣TU∪TE ∣ = ∣TU ∣+∣TE ∣−∣TU∩TE ∣ ≤ ∣TE ∣+∣TE ∣−1 ≤ 2∣N (c∗)∣+1+2(t∗−1)+1−
1 ≤ 2t∗+2∣N (c∗)∣−1 where ∣N (c∗)∣ is the number of unavoidable nodes independent
of the node-selection S. In particular we can write ∣T ∣ = ∣NE ∣+∣NV ∣ ≤ 2t∗+2∣N (c∗)∣−1
and thus obtain ∣NV ∣ ≤ t∗ +2∣N (c∗)∣ by ∣NE ∣ = t∗ −1. Note that ∣TU ∣ = 2∣N (c∗)∣+1 is
tight and the estimate on ∣TE ∣ depends on the structure of TE where large degrees
in TE reduce the error.

Remark 2.37.
This results shows that processing nodes which are in T (c∗) in any phase does not
obstruct the potential optimality of a node-selection rule. This is somewhat relaxing as
in particular one has some room for mistakes in the exploration phase and in general
only moving along PTO is not required. In particular BESTFS demonstrated that this
is not necessary. In particular, if T (c∗) does not only consist of one PTO optimal node
selection rules are not unique. In contrast, if a node-selection rule explores nodes outside
of T (c∗) in the exploration phase, these mistakes are punished by having to add up to two
nodes. So in this regard BESTFS admits the most generous exploration phase among all
optimal node-selection rules. Note that the somewhat degenerate (nonetheless wishful)
case of optimal roots does not obstruct this claim.

27

Corollary 2.38. Phases when using BESTFS in BB
Consider an instance of KP solved by using BESTFS in BB. Let T be the branch-and-
bound tree and suppose that the optimal node is detected at time t∗. If the initial
solution is not optimal we have T (c∗) = NE with ∣N (c∗)∣ = t∗−1 and ∣NV ∣ = ∣NE ∣+1 = t∗.
In total we obtain ∣T ∣ = 2t∗ − 1 = 2∣NE ∣ + 1. If the initial solution is optimal NE = ∅ and
NV = 2∣N (c∗)∣ + 1.

Proof.
We apply Theorem 2.31 in order to obtain T = TU = NE∪̇NV and estimate the sizes by
using Lemma 2.33. By Lemma 2.29 we visit an integral node which admits the optimal
profit at time ∣T (c∗)∣ + 1. If the initial solution is not optimal, the exploration phase
lasts ∣T (c∗)∣ steps. If the initial solution is already optimal still the unavoidable tree TU
needs to be fully explored.

28

Chapter 3

Introduction to machine learning

The field of machine learning (ML) became popular in recent decades for extracting and
modeling patterns in data. We take a brief history excursion referring to James, Witten,
Hestie and Tibshirani [20, p.6].

Brief historical overview

The development of machine learning techniques can be traced back to the 1930s when
Fisher proposed the linear discriminant analysis. Not much later, further linear
methods such as logistic regression were introduced. By the end of the 70s, the class
of generalized linear models, containing the logistic regression model and similar,
had been defined. Until the 80s, one was primarily concerned with linear models as the
non-linear models were computationally infeasible. When the computation power be-
came widely available during the mid-80s, more modern methods such as classification
(Breiman, Friedman, Olshen and Stone) were introduced. In 1986, the class of general-
ized linear models was extended further by generalized additive models (Hastie and
Tibshirani). Ever since, these types of methods are continually developed and used in
all kinds of applications.

Prominent applications of machine learning

For instance, Amazon uses ML techniques for performing speech recognition in their
smart home appliances. Google utilizes the modeling power to perform large scale data-
analysis. Even in more manageable tasks such as filtering of spam-mails or face
recognition used in recent generations of smartphones the machine learning paradigm
is present. Notable machine learning models can handle any input of the right format
and have the ability to automatically abstract certain soft rules describing the data.
Referring to the example of Amazon’s Alexa the ability to handle differently pitched
voices perhaps spoken at various speeds is remarkable. Another remarkable example
is the capability of modern face-recognition techniques to recognize a user’s face under
different lighting conditions or after having altered the face such as by wearing sunglasses.

29

Introductary example to a machine learning task

The example in Bishop’s book [6, p.2] shall serve us as an introductory example to trace
down the machine-learning workflow. We will take a closer look at notable aspects of
this exemplary process in the subsequent sections.

Figure 3.1: Handwritten digits;
Bishop [6, p.2]

Suppose we have a huge collection of 28 × 28 im-
ages which all represent one hand-written digit as
it is shown in Figure 3.1. Our task is to extract
the digit which is displayed in the image. For
the example’s sake, suppose we aim to automate a
scanning of sheer amounts of handwritten zip codes
which shall be stored in a database. Our first at-
tempt may be to define a fixed set of rules which
describe a digit. In practice however it is virtually
impossible to represent each version of a written

digit by a fixed set of exceptions and rules. It may well be that a very similar looking
version of a digit can not be associated with a number because the set of fixed rules
misses a layer of abstraction. Thus we should at least aim for a model which is able to
suggest a feasible label for any 28× 28 input image. In a sense we wish to determine a
set of continuous soft rules.

Speaking a bit more abstractly we want to define a parametric function f(x, θ) which
assigns to each 28×28 image x the represented digit. We make some rough assump-
tions on the form of f(., .) and tune the model by finding suitable parameters
θ by applying suitable mathematical techniques. In order for this to be feasible we need
to fix some basic assumptions on the architecture of the model. In order to evaluate
the quality of the model for being able to optimize the parameters and perhaps assess
the quality of the model, suitable measures are required. This is done by introducing
a so-called loss-function L(f(x, θ), y) which in our example measures the distance of a
suggested digit f(x, θ) and an original known digit y. Equipped with this framework we
need a set of n images xi where we already have correctly abstracted the depicted digit
yi. We now minimize the average loss 1

n ∑L(f(xi, θ), yi) with respect to θ by using a
suitable optimization technique. Having tuned the model accordingly, we can evaluate
the model f(., θ) on any number of further examples and achieved an automation
of zip-code scanning. If the model managed to reasonably abstract the images we expect
a correct assignment for many but probably not all input instances.

Along this way there are some modeling choices to be made and we have to keep certain
pitfalls in mind. Throughout the following sections we aim to cover the basics of machine
learning in order to be able to successfully set up a machine learning task. We primarily
are targeted towards neural networks and only briefly peek at other notable machine
learning techniques.

30

Machine learning paradigms

The above example follows a specific machine learning paradigm called supervised
learning. In order to convey the broadness of machine learning we refer to Bishop and
briefly introduce other prominent machine learning paradigms [6, p.3].
The essence of supervised learning methods is having a training set with already known
predictions. We select a model-type and fit on the training set usually by using non-linear
optimization techniques. The two main categories of supervised learning techniques are
classification and regression. In classification, we generate predictions within a finite
predefined set of values called class labels. In a regression task we allow the predictions
to be real vectors of one or several dimensions.

A further branch of machine learning is the unsupervised learning. The data for
unsupervised learning is not equipped with a predicted label beforehand but the model
shall figure out meaningful labels on its own. One of the typical examples is clustering.
It aims to assign to each data-point one or more labels which represents the membership
in a cluster. The model a priory only has a set of vague assumptions such as a notion of
closeness within a cluster and a notion of distance between clusters and targets the task
only regarding the global demands perhaps not even specifying a number of clusters to
be expected. In this way, the learning happens with a large degree of autonomy hence
the name.

Arguably, the most degree of freedom is experienced in reinforcement learning paradigm
(Sutton and Barto, 1998). We do not specify a global notion of what the success of a pre-
diction is but we introduce a local notion of reward which accumulates by each action the
model takes. The model takes an action by traversing states in a defined environment.
It tries to identify which actions are preferable at a given state in order to achieve a max-
imal sum of rewards when reaching a final state. One fun application of this paradigm is
learning to play computer games typically achieving superhuman skills. Another more
serious example is the chatbot Tay (Microsoft, 2016) being quickly discontinued since
apparently the most outrageous aspects of twitter are associated with large rewards.

3.1 Notations for data

The driving force of machine learning is data. Thus an integral part of an introduction
to machine learning is introducing suitable notations and a discussion of formats of
data. Many machine learning techniques live up to their full potential only if the data
is suitably preprocessed. Since the aspect of data preprocessing is quite contained in
our application we guide towards Zheng and Casari who carefully treat and cover this
topic in their book [34]. Details regarding the actual implementation are discussed in
chapter 6. This section is dedicated to the basic notions and notations necessary for the
mathematical aspects following the conventions in Bishop [6, xi ff.].

31

Definition 3.1. Data points and data matrix

(1) Given {x1, . . . xn} ⊆ Rm a set of n ∈ N data points of dimension m ∈ N. Define
X ∶= (xT1 , . . . , xTn)T ∈ Rn×m called the data matrix. The element xij ∈ R in this
way is the j-th element of the i-th data-point xi being stored in form of a row in X.
Columns correspond to so called features, see Definition 3.2 below.

(2) Let y ∈ Rn denote another vector corresponding to data points xi perhaps given in
form of a data matrix X ∈ Rn×m. The component yi of y is called the label, response
or target of the data-point xi. A tuple (xi, yi) is called a labeled data point and a
set {(xi, yi) ∣ 1 ≤ i ≤ n} containing only labeled data points is called labeled data.
Depending on the context the labels may be restricted to be discrete.

Definition 3.2. Features and feature space
The term feature in a machine learning context is widely used and refers to a (statistical)
attribute of the (suitably transformed) input data. For instance, when encountering
data being associated to persons, we may standardize the height of a person and call the
standardized height a feature.

The procedure of selecting features, the so called feature engineering, is part of pre-
processing the data at hand. Offering an outlook, in a more general setting one might
have to apply encoding and decoding techniques to even mathematically capture the
problem at hand (e.g. text processing). While in feature engineering there are certain
guidelines, techniques, and best practices, one still heavily relies on the domain knowl-
edge of the practitioner. Selecting a set of suitable dimensions of the m-dimensional
data cube is a predominating factor at this stage and is known as dicing the data.

Referring to Bishop, we merely provide the formalities to mathematically capture the
feature engineering stage since it is not really an issue in our setup [6, p.137 ff.]. The
interested reader is referred to Zheng et al. who strive for a comprehensive introduction
to feature engineering [34].

(1) Let {φj ∶ Rm → R, ∣ j ∈ [M − 1]}} be a finite set of functions and conventionally
set φ0 ≡ 1 to the always-one function. The φj , 0 ≤ j ≤ M − 1, are called the basis
functions.

(2) The vector-valued function φ(x) = (1, φ1(x) . . . , φM−1(x)) ∶ Rm → RM is called the
feature space mapping. It shall be understood as a transformation of the input-
data. In this context the input-data is called the raw data. Images φ(xi) ∈ RM of
the raw data-points xi are called feature vectors.

(3) We define the design matrix as the data matrix of the transformed data
Φ = (φ(x1), . . . , φ(xn))T ∈ Rn×M .

32

Remark 3.3. Data preprocessing
Needless to say an actual machine learning task starts at least one step earlier. Before
feature engineering can be applied it is necessary to achieve a certain quality of data
by cleaning. This oftentimes has to do with getting rid of faulty rows of a data matrix.
Since this type of action does not reduce the dimension m of the data cube this action is
also called slicing the data. At this stage, one heavily relies on visualization techniques
and statistical methods for outlier detection for example. This is not a big concern in
our sterile working environment but in practice makes up a large proportion of an ML
task. It typically is stated that 80 to 90% of effort in a data science task is spent on
preprocessing the data showing that the actual installment of a suitable model is only a
small piece in the puzzle.

Definition 3.4. Padding
By padding we generally understand the concatenation of artificial digits to a data-point
x. This measure can be interpreted as a feature-space mapping
φ(x) = (p1, . . . , pk, x, p′1, . . . p′k′). We say we pad x with (p1, . . . , pk) at the beginning and
with (p′1, . . . p′k′) at the end. Oftentimes, zeros and ones are the digits of choice. Padding
is mainly a convenience measure and allows for compact notation. Some models also
are able to learn that zeros and ones do not carry any information. In this case one can
train a model with respect to a large worst case input dimension and evaluate points of
smaller dimension via padding as well.

3.2 Modeling in a machine learning context

In order to embed the machine-learning task in a more formal mathematical framework
let us address the underlying assumptions and goals of machine learning. Being equipped
with the formal environment we dive into the fitting or training of models which is
also called the learning (phase). As already hinted in the introductory example in
Section 3 the parameters are typically optimized by applying non-linear gradient descent
techniques. We base this section on the excellent book on deep learning by Goodfellow,
Bengio and Courville [13, p.275 ff.].

Goals and assumptions in machine learning

We assume an underlying distribution pdata of labeled data points. In general we do not
know pdata but instead we have available a sample of n points {(x1, y1), . . . , (xn, yn)}.
This sample is called the training set where the associated empirical distribution p̂data
approximates the original distribution. The training set is used to derive a model
for pdata and in this way there is a natural gap by only working with a sample and its
empirical distribution.

A machine-learning model is a parametric function f(x; θ) = ŷ ∼ y approximating the
true label y via a prediction ŷ. f can be evaluated for any x which merely assumes
the right format. For measuring the closeness of labels y, ŷ we assume a very general
performance-measure P . As most times the true performance measure P is intractable

33

with regard to mathematical optimization we work with an indirect measure. We
pick up on the loss function L already being hinted in Section 3. L is required to
admit reasonable optimization properties and shall be tightly correlated to P . The loss
function sometimes even has better modeling properties as opposed to P and not only
preferred with regard to mathematical properties. A loss-function typically is defined
via averaging over the point loss terms L(f(x; θ), y) ∶= 1

n ∑
n
i=1L(f(xi, θ), yi) and in the

following we focus only on loss functions having this particular form. We define the (true)
risk associated to the model as expected loss E(x,y)∼pdata(L(f(x; θ), y)) = J∗(θ). The
risk tells how well the model with the respective choice of the parameters θ fits the true
distribution pdata. Naturally wish to minimize the risk with respect to θ yielding a precise
model. However pdata is typically unknown and we estimate the true risk by the
empirical risk E(x,y)∼p̂data(L(f(x; θ), y)) = 1

n ∑
n
i=1L(f(xi, θ), yi) = J(θ) involving the

empirical distribution. The minimization of the empirical risk is the appropriate
formal concept being executed by fitting a model and it substantiates the learning of the
data.

We often evaluate the quality of the fitted model by means of an independent test set.
The test set is also interpreted as a sample from pdata but it was not used for training.
The gap we observe when evaluating on the training set and the test set gives insight
into the generalization capabilities of the model.

3.2.1 Stochastic gradient descent methods

As mentioned above, gradient descent methods are predominately used for fitting (non-
linear) models. By the form of loss functions averaging the per point losses already
the mere evaluation of loss functions and their derivatives can be a costly endeavor.
Reasonable sizes for training data ranges from thousands to millions of samples. In order
to speed up the gradient update, one samples only a small batch of data points. The
gradient can be approximated from this random batch by a straightforward scaling and
thus in and off itself is a realization of a random variable. In the following, we introduce
this stochastic gradient approach and highlight the commonly used versions all being
based on this idea.

Definition 3.5. Stochastic gradient descent (SGD)
We aim to approximate the gradient ∇θL by drawing uniform random samples {x′1, . . . x′n′}
of fixed size 1 ≤ n′ ≤ n. These samples are called mini-batches and n′ is called the batch
size. We refer to Goodfellow et al. [13, p.294] where a standard variant of stochastic
gradient-descent is presented.

34

Algorithm 4: Stochastic gradient descent (SGD)

Data: (εk) ∈ RN sequence of learning rates; θ initial parameter
Result: θ model parameter

1 Initialize time k = 1;
2 while not converged do
3 sample n′ data points {(x′1, y′1), . . . (x′n′ , y′n′)} ⊆ {(x1, y1), . . . , (xn, yn)} ;

4 Approximate the gradient ∇θJ ∼ g ∶= 1
n′ ∑

n′
i=1∇θL(f(x′i, θ), y′i) ;

5 Update parameter θ ∶= θ − εkg;
6 k++

7 return θ

Remark 3.6.

(1) Oftentimes we use the word batch to describe a mini batch and the term batch
size is used for describing the size of a mini batch. This shall not be confused with
a batch referring to the entire data set in the paradigm of deterministic descent
methods.

(2) Using only a single data point at the time for approximating the gradient defines the
concept of online descent methods. Formerly the online methods were also called
stochastic methods but the mini patch methods described in SGD are now also
called stochastic methods. In a practical application of SGD and similar methods
one performs the random sampling by shuffling the training data set. The sampling
is then simulated by picking the subsets {i + 1, . . . , i + n′ − 1}, i ≡ 0 mod n′ where
i is gradually increased. Cycling through the data set once in this fashion is called
learning for one epoch, see Goodfellow et al. [13, p.280]. In each new epoch again the
data set is shuffled randomly. Implementations of SGD variants thus typically ask for
a specification of the batch size and the number of epochs used for training. These
types of inputs which concern the learning phase are called the hyperparameters.

(3) The choice of an appropriate batch-size is often a trade off between number of
iterations and cost of evaluations. A notable observation is motivated by the quick
convergence of standard error σ√

n′
of the random mini batch in comparison to a

singular error σ. The gain in accuracy when drawing batches of size 100 or respective
batches of size 10000 is only a factor of 10 while the evaluation of the larger mini
batch would take 100 times longer. The inaccurate gradient however may add unto
the number of iterations.

(4) The choice of the learning rate is often done by tracking the loss over time and
adapting the learning rate accordingly. A common step size sequence is formed
by linearly decreasing the step size until some fixed time τ is reached and keeping
it constant afterward. There is a theoretical convergence result which guarantees
convergence if ∑k>0 εk =∞ and ∑k>0 ε2k <∞ being satisfied by the proposed sequence
and by constant learning rates.

35

Definition 3.7. Stochastic gradient descent with momentum (SGDM)
We track the motion of the model parameter θ in space and associate a unit mass and
velocity v to the point θ. Motivated by physics we introduce a notion of momentum
being speed times mass. During the optimization we store an exponentially decaying
history reflecting the momentum which partly steers the motion of the optimization
parameter. With this technique we hope to counter the noise in the gradients coming
from sampling and poor conditioning.

Algorithm 5: Stochastic gradient descent with momentum (SGDM)

Data: ε learning rate; θ initial parameter, α momentum parameter, v initial
velocity

Result: θ model parameter
1 while not converged do
2 sample n′ data points {(x′1, y′1), . . . (x′n′ , y′n′)} ⊆ {(x1, y1), . . . , (xn, yn)} ;

3 Approximate the gradient ∇J(θ) ∼ g ∶= 1
n′ ∑

n′
i=1∇θL(f(x′i, θ), y′i) ;

4 Update velocity v ∶= αv − εg ;
5 Update parameter θ ∶= θ + v
6 return θ

Definition 3.8. Root mean square propagation (RMSprop)
This optimization technique incorporates adaptive learning. Component wise, we incor-
porate an exponentially decaying history by looking at the (component wise) squared
gradient. Using this update rule we can quickly traverse flat regions of the objective func-
tion and automatically slow down in steep regions for each individual model parameter
θi.

Algorithm 6: Root mean square propagation (RMSprop)

Data: ε learning rate; θ initial parameter, ρ decay rate, δ small constant for
numeric stability

Result: θ model parameter
1 Initialize r = (0, . . . ,0) while not converged do
2 sample n′ data points {(x′1, y′1), . . . (x′n′ , y′n′)} ⊆ {(x1, y1), . . . , (xn, yn)} ;

3 Approximate the gradient ∇J(θ) ∼ g ∶= 1
n′ ∑

n′
i=1∇θL(f(x′i, θ), y′i) ;

4 Accumulate squared gradient component wise ri ∶= ρri + (1 − ρ)g2i ;
5 Compute parameter update component wise ∆θi = − ε√

δ+ri
gi ;

6 Update parameter θ ∶= θ +∆θ

7 return θ

36

Remark 3.9.
The RMSprop is seen as an adaptation of AdaGrad. AdaGrad incorporates a summed
history and is particularly well suited for optimizing convex functions. In RMSprop we
forget the history quicker by applying an exponential decay. Thus having moved to a
convex location we have a larger influence of the current gradient and try to achieve a
behavior similar to AdaGrad in this convex region.

Definition 3.10. Adaptive moments (Adam)
We use an exponential decay rate and incorporate the first and second moments of
the gradient estimates in a momentum. We introduce a bias correction which shall
compensate for the bias introduced by the initialization. We refer to Kingma and Ba for
more theoretical motivation and a careful analysis [23]. To be clear by ρt1, ρ

t
2 we simply

denote taking the t-th power of constants ρ1 respectively ρ2 .

Algorithm 7: Adaptive moments (Adam)

Data: ε learning rate; θ initial parameter, ρ1, ρ2 decay rate in [0,1) for
moment estimates, δ small constant for numeric stability

Result: θ model parameter
1 Initialize s = r = (0, . . . ,0), time t = 0 ;
2 while not converged do
3 sample n′ data points {(x′1, y′1), . . . (x′n′ , y′n′)} ⊆ {(x1, y1), . . . , (xn, yn)} ;

4 Approximate the gradient ∇J(θ) ∼ g ∶= 1
n′ ∑

n′
i=1∇θL(f(x′i, θ), y′i) ;

5 t++ ;
6 Update biased first moment estimate s ∶= ρ1s + (1 − ρ1)g;
7 Update biased second moment estimate element-wise ri ∶= ρ2ri + (1 − ρ1)g2i ;
8 Correct bias in first moment ŝ = 1

1−ρt1
s;

9 Correct bias in second moment r̂ = 1
1−ρt2

r;

10 Compute parameter update component wise ∆θi = −ε ŝi√
r̂+δ

;

11 Update parameter θ ∶= θ +∆θ

12 return θ

Remark 3.11.
The default parameters for Adam are ρ1 = 0.9, ρ2 = 0.999, δ = 10−8, ε = 0.001. Whenever
we use Adam, we only may adapt the learning rate ε and leave the other parameters on
the default settings.

37

3.3 Regression

Regression tries to model the relation between a set of input variables and a continuous
response variable. We introduce the regression formally as a statistical model and
point out that the systematic component is used as what is called a regression model
in machine learning. Oftentimes the modeling power of straight forward regression is
already sufficient to model relationships in data. Moreover an introduction to regression
will provide a better understanding of more modern approaches which are undeniably
related to basic variants of regression models. We base this section on the book by Dunn
and Smyth [9].

Definition 3.12. Exponential dispersion model family (EDMs)

Let EDM(x; θ, φ) = a(x, θ) exp(xθ−κ(θ)φ) be a probability density function. The param-

eter θ is called the canonical parameter, κ(.) the cumulant function, φ > 0 the
dispersion parameter and a(.) is a normalization function ensuring that EDM
is a density. The exponential dispersion model family EDMs is defined as the family of
all distributions of the above form. An extension to the multivariate case is possible. If
a random variable y has a density of the form EDM(x; θ, φ), we use shorthand notation
y ∼ EDM(θ, φ).

Lemma 3.13.
The Gaussian , Poisson, binomial, and the exponential distributions are members of
EDMs.

Proof.
We simply mention how the parameters of EMD need to be set. The full details are
available in Dunn et al. [9, p.213].

distribution density θ φ κ(θ) a(x,φ)

Gaussian p(x;µ,σ2) 1√
2πσ2

exp((x−µ)2
2σ2) µ σ2 θ2

2
1√
2πσ2

exp(−x2
2σ2)

Poisson p(k;µ) exp(−µ)µk
k! log(µ) 1 µ 1

k!

binomial p(x;µ,m) (m
mx

)µx(1 − µ)m(1−x) log(µ
1−µ)

1
m − log(1 − µ) (m

mx
)

exponential p(x;γ)
exp(− x

γ
)

γ − 1
γ 1 log(γ) 1

Table 3.1: Gaussian, Poisson, binomial, and exponential are in EDM

Lemma 3.14. Expectation and variance of EDM
Given y ∼ EDM(θ, φ). We refer to Dunn at al. who present the expectation and variance
of random variables distributed according to EDM [9, p.216].

E(y) = dκ
dθ

(θ) V ar(y) = φd
2κ

dθ2
(θ) = φdµ

dθ
(θ)

38

Definition 3.15. Regression models
Let x1, . . . , xm, y be random variables and given n independent observations
xi1, . . . , xim, yi, 1 ≤ i ≤ n. Furthermore let βi,wi, oi 0 ≤ i ≤m be real constants.

(1) Let us introduce regression models as in Dunn et al. [9, p.12]. A regression model
assumes E(yi) = µi = f(xi1, . . . , xim;β0, β1, . . . , βm) meaning the mean response is a
parametric function f of the input variables. f is called the systematic part of the
model and has available the so called regression parameters β0, . . . , βm, see . The
random part of the model is compromised by assumptions on the distribution of yi.

(2) Moving on, let us formally define linear regression models again referring to
Dunn at al. [9, p.12]. Regression models of the form µi = f(β0 + ∑mi=j βjxij) are
called linear in the parameters and β0 +∑mi=j βjxij is called the linear predictor. β0
is called intercept (or bias in a machine learning context), and the βi,1 ≤ i ≤ n are
called slopes for the corresponding explanatory variables.

According to Dunn et al. the random part of linear regression models is
defined as follows [9, p.32].

V ar(yi) =
σ2

wi
for all 1 ≤ i ≤ n (LM)

E(yi) = µi = β0 +
m

∑
i=j
βjxij for all 1 ≤ i ≤ n

σ2 denotes the common part of the variance of the yi and the wi are weights.

(3) Referring to Dunn et al. generalized linear models are defined by two conditions
as follows [9, p.211 ff.].

yi ∼ EDM(µi,
φ

wi
), 1 ≤ i ≤ n for all 1 ≤ i ≤ n (GLM)

g(µi) = ηi = oi + β0 +
m

∑
i=j
βjxij for all 1 ≤ i ≤ n

g is a monotonic differentiable function called the link function. In a machine learn-
ing context the inverse g−1 is called the activation function. The oi are called offsets
and the wi are called weights, 1 ≤ i ≤ n.

Lemma 3.16. Maximum likelihood parameters
Given a data-matrix X and labels yi ∼ N(µi, σ) being normally distributed and let
µi = β0 +∑mj=0 βjxj satisfy LM. Furthermore consider the mean squared error as defined
later in Section 3.7.1. Then according to Dunn et al. a parameter vector β which
admits the minimal mean squared error on the given data set is a maximum likelihood
parameter for this normal linear regression model [9, p.174].

39

3.4 Linear classification

The core idea of a classification algorithm is well described by Bishop who we refer to
throughout this section [6, p.43]. The aim of classification is to model a structure of
some given data explaining an assignment of data points to discrete labels which
are comprising the finite and predefined label set T . Such a label assignment is called a
discriminant function and the sets of points having the same label are called classes Ck.
Since we encounter discrete class labels the concept of replacing a relentless true perfor-
mance measure P by an appropriate loss function L is crucial for successful modeling
of classification. In the following, we thus explain how this is done and interpreted in a
meaningful way.

Classification is an instance where optimizing L as opposed to P has many perks which
we will briefly get into. The application of P though is valuable when assessing the fit
of the model, see Section 3.7.2. In the context of classification, we may not merely aim
to model the actual label assignment but moreover we can incorporate more fundamen-
tal aspects. Let us discuss common variants and let us point out the advantages and
disadvantages.

Generative models

One powerful approach is modeling the joint distribution of data points given by
p(x,C). This approach yields us so-called generative models. They allow us to generate
synthetic input data by sampling from the modeled distribution, and we have access
to all aspects of the distribution. Usually these models demand large amounts of data.
One aspect demonstrating the power of generative models is being able to compute the
marginal distribution p(x). By this we can identify unlikely data points which can be
used to perform outlier detection.

Discriminative models

In a typical setup however we can give up some of the power of generative models in
trade for performance. Typically it is sufficient to only model the posterior class
probabilities p(Ck∣x) telling us how likely the corresponding class label for an encoun-
tered data point x is. Approaches which directly model the posterior class probabilities
are called discriminative models, and they form a well established family of models for
classification. The modeling task typically is subdivided into two phases.

In the inference phase we aim to construct a probabilistic model for p(Ck∣x) based on
a training set. In the decision phase, we then take care of the class-label assignment
of data-points based on this probabilistic model.

Having available said probabilistic model in the background as opposed to perhaps a
direct class-label assignment we encounter a variety of advantages. Besides being able
to quantify the certainty of a classification, we can balance data-sets where one
class label is very rare and utilize the thus permitted bias correction. A balanced data

40

set is desirable because intuitively a learning algorithm needs to first of all see sufficiently
many items of each class in order to learn the relation to the respective label. Second
of all a small class may have less impact on the loss function and therefore it is learned
not as thoroughly while large classes may tend to be learned disproportionately well.
However by perhaps artificially balancing the set a bias toward these rare instances is
introduced as the model regards them as overly common. With help of p(Ck∣x) and Bayes
Theorem (Theorem 3.22) one is able to compensate for this effect. Another advantage
lies in the ability to combine several classification models in a meaningful way. For
instance we may want to determine whether a patient has a disease based on a positive
or negative blood test and based on a positive or negative X-ray result. By setting
up tests which estimate a probability of a negative result as opposed to only telling a
positive or negative result, we can carry over the certainty of the individual predictions
to a combined model. This combined model incorporated the individual results in a
naturally weighted way by respecting the significance.

Basics of classification

In this section let us briefly expand the notions for data in order to appropriately for-
malize classification. The notations again are due Bishop [6, p.179 ff.]. For sake of
completeness let us also present the well known theorem of Bayes which is omnipresent
in this particular subfield of supervised learning.

Definition 3.17. Data in a classification context
In a classification context only discrete targets are considered. Given a set of k class
labels T = {0, . . . , k − 1} we denote the class label associated to each individual data
point xi by ti. The vector t = (t1, . . . , tn) is called the target vector. For a set of
labeled data {(xi, ti) ∣ 1 ≤ i ≤ n} equipped with discrete class labels we define classes
Cj+1 = {xi ∣ ti = j, 1 ≤ i ≤ n}. It is common practice to shift the labels by one. The

classes naturally define a partition of the data-set {x1, . . . , xn} = ⊍∣T ∣
j=1 Cj and ∣T ∣ is called

the number of classes.

Definition 3.18. One-hot encoding
Consider t ∈ T a fixed class label. We define the one-hot encoding of t as t̃ = et ∈ R∣T ∣

the t-th unit basis vector. The one-hot encoding is also called a 1-of-K coding scheme.

Definition 3.19. Discriminant function
Given class labels T = {0, . . . , k − 1}. A function f ∶ Rm → T which assigns each data-
point x ∈ Rm to a class is called a discriminant function.

Definition 3.20. Decision regions and boundaries
Suppose we are given a discrimination function f ∶ Rm → {0, . . . , k − 1}. The subsets
Ri+1 = f−1(i) ⊆ Rn, i = 0, . . . , k − 1 are called the decision regions. The boundaries ∂Ri
of these sets are called decision boundaries.

41

Definition 3.21. Linear discriminant function
A discriminant function f ∶ Rm → T is called linear if the decision boundaries are m − 1
dimensional hyperplanes in Rm as defined in Bishop’s book [6, p.179].

Theorem 3.22. Bayes (1763)

For any joint probability distribution p(A,B) we have p(A∣B) = p(B∣A)p(A)
p(B) called Bayes

rule or Bayes Theorem for conditional probabilities [4].

3.4.1 Binary logistic regression

We define a particular generalized linear model namely the binary logistic regression. It
is widely used as a discriminative classification model for the two class case ∣T ∣ = 2. We
will point out that a large class of instances is modeled by binary logistic regression. We
then refer to Banerjee [3] who showed that this class covers all instances being modeled
by logistic regression. Finally we will introduce a function for measuring the fit of a
binary logistic regression which can be used to train a logistic regression.

Definition 3.23. Logistic regression
Let x = (x1, . . . , xm) be a data-point and let β = (β0, . . . βm) be model parameters. Given
two classes C1,C2 and the according posterior class probabilities p(C1∣x), p(C2∣x) where
p(C2∣x) = 1 − p(C1∣x). By this it is sufficient to model only one posterior and typically
we choose C2 on which the label 1 is assumed. We introduce (the systemic component
of) logistic regression according to Bishop as follows [6, p.205].

p(C1∣x) = σ(β0 +
m

∑
i=j
βjxj), p(C2∣x) = 1 − p(C1∣x)

The binary logistic regression is a generalized linear model GLM with assuming the
sigmoid function σ in the role of an activation function.

Definition 3.24. Exponential family
We refer to Banerjee and consider densities of the form p(x; θ, φ) = exp(xT θ−φ(θ))p0(x)
where p0 is a non-negative function [3]. By Fφ = {pφ(x; θ, φ)∣θ ∈ Θ ⊆ Rd} an exponential
family is defined. Fφ is characterized by the function φ being called the log-partition
function or cumulant function.

Lemma 3.25.
Let the class conditional probabilities p(x∣Cj) = p(x; θj , φ) ∈ Fφ, 1 ≤ j ≤ k be members of
the same exponential family Fφ where each parameter θj corresponds to the respective
class Cj , 1 ≤ j ≤ k. Then the posterior class probability is modeled by a logistic regression,
i.e. there exist parameters β0, . . . βm with p(C1∣x) = σ(β0 +∑mi=j βjxj). This result is well
known and we compose a compact proof by referring to Bishop and Banerjee [6, p.203], [3]

42

Proof.

We set a(x) = log(p(x∣C1)p(C1)p(x∣C2)p(C2)) = log(p(x∣C1)p(x∣C2)) + log(p(C1)p(C2)). With Bayes Theorem

(Theorem 3.22) we can easily show p(C1∣x) = p(x∣C1)p(C1)
p(x∣C1)p(C1)+p(x∣C2)p(C2) = σ(a(x)). It remains

to show that the so-called log-odds log(p(x∣C1)p(x∣C2)) have an affine linear representation in x.
This follows from the assumed structure of members of the same exponential family and
the cancellation of mutual factor p0(x) independent of the parameter θ.

Remark 3.26.
Lemma 3.25 demonstrates a criterion which identifies instances where logistic regression
is applicable. Many common distributions satisfy this sufficient condition making the
logistic regression widely usable. However at this point it is not yet known whether a
larger class of distributions can be modeled by logistic regression. Banerjee proved a
relatively simple criterion characterizing all instances which can be modelled [3]. For a
rigorous proof we refer to Banerjee [3].

Definition 3.27. Logistic family
Two densities p1, p2 are said to be in the same logistic family Flog if their log-odds is

affine-linear log(p1(x)p2(x)) = ax + b, a ∈ R
n, b ∈ R.

Theorem 3.28.

(1) Two class conditionals p(x∣Ci), p(x∣Cj) are in the same exponential family if and only
if they are in the same logistic family, see Banerjee [3].

(2) If the log-odds log(p(x∣C1)p(x∣C2)) is affine-linear in x, all class conditionals are in the same

exponential family by part (1) of this theorem and the posterior class probability
is represented by a logistic regression model p(C1∣x) = σ(β0 +∑mi=j βjxj) by Lemma
3.25).

Definition 3.29. Binary cross-entropy loss
Given a data-matrix X = (xT1 , . . . , xTn)T with a target vector t = (t1, . . . , tn). Let ŷi =
σ(β̂0+∑mj=1 β̂jxij) be the estimated labels coming from a logistic regression model. By β̂ =
(β̂0, . . . , β̂m) we denote the parameter vector for the model. We evaluate the likelihood
function for Bernoulli-trials L(t∣β̂) = ∏n

i=1 ŷ
ti
i (1 − ŷi)

1−ti . Then the cross-entropy error
is defined as the negative log-likelihood evaluated for the given data and the considered
model [6, p.206].

E(β̂; t) = − log(L(t∣β̂)) = −∑ni=1 ti log(ŷi) + (1 − ti) log(1 − ŷi)

Note that for minimization with respect to a gradient descent method we need the
gradient of E(β, t) with respect to the parameters β. Evaluated for the model and data
at hand we obtain the following convenient form, see Bishop [6, p.206].

∇βE(β̂, t) = ∑ni=1(ŷi − ti)xi

43

3.4.2 Multi logistic regression

Let us generalize the binary logistic regression to the cases ∣T ∣ = k ≥ 2. This introduces
multi logistic regression also being called softmax regression. The softmax regression
can be embedded in a setup of k − 1 binary logistic regressions and is also encountered
in various more complex models. In this way, the theory concerning binary logistic
regression carries over to the multi class case under certain conditions. In addition we
will introduce a loss function for softmax regression which is well suited for both training
and assessing these models.

Definition 3.30. Multiclass logistic regression
Given k classes T and the probability vector of class posteriors (p(C1∣x), . . . , p(Ck∣x)) ∈
Rk. The probability vector is modelled by applying the softmax on k independant linear
models as follows, see Bishop [6, p.209].

(p(C1∣x), . . . , p(Ck∣x)) = softmax(β10 +∑mi=j β1j xj , . . . , βk0 +∑
m
i=j β

k
j xj).

This model is also called the softmax-regression.

Lemma 3.31.
The softmax-regression is equivalent to k − 1 binary logistic regressions, see [6, p.182].

Proof.
Suppose we are given a vector of posterior distributions satisfying a softmax regression
(p(C1∣x), . . . , p(Ck∣x)) = softmax(β10 +∑mi=j β1j xj , . . . , βk0 +∑

m
i=j β

k
j xj). We aim to identify

k − 1 independent logistic regression models which equivalently model the vector.
By padding x̃ = (1, x) we can define parameters vectors βi = (βi0, . . . , βim) and write the

i-th component of the softmax as p(Ci∣x) =
exp(βTi x̃)

∑kj=1 exp(βTj x̃)
. By cancellation we can intro-

duce β̃k = 0, β̃i = βi − βk and rewrite p(Ci∣x) = exp(β̃ix̃)
1+∑k−1i=1 exp(β̃ix̃)

, p(Ck∣x) = 1
1+∑k−1i=1 exp(β̃ix̃)

.

As p(Ck∣x) = 1−∑k−1j=1 p(Cj ∣x) it is sufficient to model p(Cj ∣x),1 ≤ j ≤ k−1. By dividing we

obtain
p(Cj ∣x)
p(Ck ∣x) = exp(β̃ix̃),1 ≤ j ≤ k−1. Thus term log(p(Cj ∣x)p(Ck ∣x)) = β̃ix̃,1 ≤ j ≤ k−1 is linear

in x̃ and affine-linear in x. By using Bayes Theorem Theorem 3.22 also the log-odds

log(p(x∣Cj)p(x∣Ck)),1 ≤ j ≤ k − 1 are affine linear with an added term log(p(Cj)p(Ck)) independent of
x. Therefore we identified k − 1 binary logistic regression tasks which decide if a label is
in class k or in a different class j, 1 ≤ j ≤ k − 1.

Conversely whenever we find a class k (typically called the pivot) satisfying affine-linear
log-odds against all other classes we can reconstruct the softmax-regression modeling all
posterior class probabilities.

Remark 3.32.
Thus Lemma 3.31 allows us to extend the theory on binary logistic regression to the
softmax regression in the following way. Whenever we are able to identify a class k
which admits affine-linear log-odds to all other posterior class probabilities, there exists

44

a softmax regression which models the posteriors. This is exactly the case if all priors
belong to the same exponential family by the characterization of the logistic family Flog.

Definition 3.33. Cross-entropy loss
Given a padded data-matrix X = (xT1 , . . . , xTn)T meaning xi = (1, xi2, . . . , xim), 1 ≤ i ≤ n
and one-hot encoded target vectors ti collected in a matrix t = (tT1 , . . . , tTn)T ∈ [0,1]n×∣T ∣.
Let ŷi = softmax(β̂1x1, . . . , β̂kxk) be the probability vector for the i-th data point being
estimated by a multi logistic regression with parameter vectors β̂1, . . . , β̂k ∈ Rm+1. We
deduce the likelihood function assuming a Bernoulli distribution similar to the binary
case L(t∣β̂1, . . . , β̂k) = ∏n

i=1∏k
j=1 ŷ

tij
ij . Then the cross-entropy error is defined as the

negative log-likelihood evaluated with respect to a considered model [6, p.209].

E(β̂1, . . . , β̂k; t) = − log(L(t∣β̂1, . . . , β̂k)) = −∑ni=1∑kj=1 tij log(ŷij)

Again we deduce the gradient with respect to some parameter vector βj evaluated for
given parameters β̂1, . . . , β̂k which can be used in a gradient-descent method for fitting
the model [6, p.209].

∇βjE(β̂1, . . . , β̂k; t) = ∑ni=1(ŷij − tij)xi

3.5 Artificial neural networks (ANN)

Neural networks are one remarkable technique suitable for numerous modeling tasks.
In fact Hornik, Stinchcombe and White showed that ANN can approximate every non-
pathological function. Hence it is justified to call neural networks universal approxi-
mators [18]. Another remarkable property of neural networks is their resilience against
the curse of dimensionality which is a serious issue for many other techniques. This
phenomenon constitutes by the exponentially increasing demand of data if the dimen-
sionality is increased. Poggio and Liao [31] could formally prove results in this regard.

Throughout the following sections we give a smooth introduction into the field of neural
networks. We will start at the central building block of these models being a neuron.
We will then compose increasingly more complex models and highlight their capabilities
and drawbacks. When appropriate we will point out further variants of networks while
staying within the respective paradigm. One non trivial task is the act of fitting a
neural network to data. The potential amount of parameters requires specialized
techniques utilizing the network structure in order to achieve reasonable convergence.
In this regard, the generally applicable error backpropagation method turns out to be
helpful allowing for feasible training times. The goal of this section will be to convey
the techniques in sufficient accuracy and detail such that one would be able to build and
train basic neural nets from the ground up. In practice however the widely available
libraries are highly useful and recommended. Still we firmly believe it is important to
look under the hood of neural networks in great detail at least once.

45

3.5.1 (Simple) neurons

The basic building blocks of neural networks are called neurons, units, or nodes. The
analogy to biological nervous systems is evident and helps grasping the fundamental
ideas, see below Figure 3.2. Put simply, a biological neuron receives an electrical impulse
from other neurons and based on this may or may not generate an output signal itself.
This signal in turn is sent to other neurons forming a complex chain of activation and
reaction. The key feature of these networks appears to be the network structure which
lifts the power of the quite simple atomic units being neurons. Learning the networks
forms new links, and if one forgets, the unused links vanish gradually.

Figure 3.2: biological neuron; Neves, Gonzalez, Leander Karoumi [30]

Inspired by this biological construction, mainly computer scientists at first implemented
this core idea in the form of neural networks. Now let us dive into the mathematics of
neurons and in particular define what is called the simple neuron. A neuron may assume
many concrete forms but in general is a function mapping from Rm to R where m
is an input dimension not being specified any closer for now.

While this definition captures any feasible and perhaps even infeasible approach, we
fix a certain structure of neurons admitting wishful properties. The first restriction one
generally imposes on neurons is a two stage composition. In the first state a so-called net
input function (or transfer function) reduces the dimension of an m-fold input vector
to a single number. The second stage is then formed by the application of an activation
function. The activation function serves the task of adding a non-linearity and we will
reason upon this below in Section 3.5.3. Another demand posed on an activation function
is differentiability which is discussed in Section 3.5.3. Typically activation functions also
limit the output range. In case the range is limited to an interval one calls such activation
functions squishing functions.

Now let us restrain this two stage set up even more by demanding the net input function
to simply be a summation. This set of restraints defines the simple neuron. Let us
narrowly expand the view from a simple neuron to its connecting links as depicted in
Figure 3.3.

46

Figure 3.3: ANN neuron; Mitchell, Machine Learning

The idea of links (in a biological sense) is transferred to mathematics in the form of
directed weighted edges (in the sense of graph theory). The neuron being a function is
interpreted as a node in a directed graph. This is the typical abstraction within which
neural networks are being discussed. The direction of edges which connect neurons
implies which neuron sends its output number to another neuron as an input. Sending
an output xi of a neuron i via an edge involves multiplying a parameter wi ∈ R which
reflects the strength of the connection. In this way, a simple neuron embedded in the
network assumes the form of a generalized linear model y = a(∑mi=1wixi). y denotes
the output of the particular neuron, the xi, 1 ≤ i ≤m, are outputs of origin neurons and
the wi, 0 ≤ i ≤ m, reflect the trainable parameters. In this sense, parameters of GLM
exactly correspond to the trainable parameters of ANN.

Note that in order to linearly shift the input of the activation function an artificial bias
neuron corresponding to the added bias parameters (in the sense of linear regression
models) is added. This principle is reflected by adding an artificial neuron which merely
sends a 1. Bias neurons are independent of the input (or context) x and do not receive
any input itself. In this way, the bias neurons enhance the abilities of simple neurons.

3.5.2 Single layer neural networks (SNN)

Let us expand from the simple neuron and its close neighborhood by arranging several
simple neurons in the form of an array. This forms what is called a (hidden) layer. The
output of hidden layers can only be experienced indirectly hence the name. The final
layer in this regard is not hidden and is called the output layer. We refer to Bishop’s
book where a compressed introduction to the following is presented [6, p.225]. In order to
avoid confusion we note that there are many names reflecting one and the same concept
of the following simple neural network. Most notably the terms multilayer perceptron,
and single layer neural network (SNN) are being used. If one was precise perhaps the
most suitable name is single hidden layer simple feed forward neural network. In our
narrow context the abbreviate (SNN) will do.

47

Structure of the simple neural network

In order to point out the feedforward nature of SNN let us accompany a data point
x = (x1, . . . xm) on its journey through an SNN, see Figure 3.4.

Figure 3.4: SNN; example

The starting point of x is being abstracted by m input neurons, each holding some
value xj . Input neurons merely serve the task of feeding forward a point via edges. It
is visible that within the previously mentioned hidden layer there are no connections,
but all possible connections to both neighboring layers are present. Let us fix one of
the h hidden neurons, say i. The neuron i receives its input in form of a weighted
vector (βi0, x1βi1, . . . xmβim) ∈ Rm+1, recall the act of sending inputs via edges. Note
that already the input layer harbors a bias neuron.

This input vector is then processed by simple neurons as defined in Section 3.5.1. By

applying the net activation function in i we obtain a weighted sum s
(1)
i ∶= ∑mj=0 β

(1)
ij xj =

βi0 + β(1)
i xT ∈ R. On s

(1)
i a suitable activation function a(1) is applied providing the

output of neuron i by yi = a(1)(s(1)i). Note that within any layer we generally assume
the same scalar activation function being used in each neuron. Between different layers
the activation function may however vary. We understand all actions within a layer
being taken in parallel and thus compose a vector (y1, . . . yh) being associated to the
hidden layer.

We again add a bias neuron and propagate (1, y1, . . . yh) towards the output layer via
edges meaning we again apply a collection of independent weights. In contrast to the
input layer, the output layer is comprised of simple neurons again performing the tasks
in parallel. In the instance of SNN, we assume the output layer activation functions in
each node to be the identity a(2) ∶= id. The appropriate size (i.e. number of nodes) k of
the output layer matches the size of the target space being modeled by default. Briefly
summarizing the journey of x we look at a particular output neuron κ, 1 ≤ κ ≤ k, where

48

the following equation is providing a comprehensive description. In this notation the yκ
is one component of the predicted output vector of SNN.

yκ = a(2)(
h

∑
j=1

β
(2)
κj a

(1)(
m

∑
i=1
β
(1)
ji xi + β

(1)
j0) + β(2)

κ0)), 1 ≤ κ ≤ k

Please note that in Figure 3.4 the input layer is of size m = 3, the hidden layer is of size
h = 5 and the output layer is of size k = 2. Thus the relation between a 3-fold data point
and a respective 2-fold target vector is being modeled. By the following Figure 3.5 let
us again draw the analogy to biology and look at the composition of a few neurons to a
small biological neural net.

Figure 3.5: biological neural network; Neves et al. [30]

Choosing activation functions

One notable fact concerning hidden layer activation function, is they only enable the full
power of a network if chosen to be non linear. In SNN it is clearly visible that by choosing
a(1) = id we simply obtain a collapsed SNN being a GLM. Perhaps it is also clear that a
scaling of inputs and outputs is realized via the weights being associated to edges. Thus
activation functions which only differ by a multiplied constant to the input respectively
the output form an equivalent class and add the same abilities to ANN. Regarding the
activation function prominent candidates are σ, tanh, id or the rectified linear unit
relu =max(0, .). As it will become clear in Section 3.5.3 the differentiability of activation
function is a common claim. In case of using relu we conventionally set the derivative
in 0 to 0. Typically the hidden layer is named according to the activation function, e.g.
relu-layer, linear-layer (using id), sigmoid-layer or tanh-layer.

In our setup SNN is well suited to perform regression tasks since a(2) = id does not
limit the output range. By a slight alteration of SNN also classification on k classes in
the form of a discriminative model can be performed. Instead of applying a component
wise output activation a(2) we allow for vector-to-vector functions being applied on the
weighted sums present in the output layer. In particular the application of softmax
provides a model suitable for modeling k-fold vectors of class posterior probabilities. In
the case k = 2 a single output neuron with a(2) = σ is sufficient by p(C2∣x) = 1 − p(C1∣x)
and a generalization to vector-to-vector activation is not required.

49

Moving on from SNN

Let us briefly point out the leverage point which allows us to naturally extend the concept
of SNN.

Perhaps most apparent is the addition of hidden layers to the network. The inter-
pretation of neural networks as graphs or sometimes also as stacks of layers is commonly
used and allows us to compactly describe the form of said models. Usually individual
layers are connected to all respective neurons in the neighboring layers. This instance is
called a dense layer.

Another component which can be adapted in SNN are the specific neurons. In order
to dive into this subject, it is convenient to stick with the interpretation of networks as
a stack of layers. For instance a convolutional layer compresses a specific set of outputs
from the previous layer to a single number being well suited to perform image related
tasks. A dropout layer serves the task of adding a random noise avoiding overfitting.
In order to define recurrent layers in Section 3.5.4 we will however again return to the
neuron-level. This version of nodes is able to pick up on sequential information well
suited for text and language processing.

More generally a recurrent neural network can be interpreted as an extension of a network
by adding edges forming loops. This is yet another point of expanding from SNN. Being
able to interpret (simple) recurrent neurons as an addition of self loops allows for training
(simple) recurrent neural networks by relying on well established techniques, see Section
3.5.3 and in particular Section 3.5.4 where we thoroughly introduce recurrent neural
networks.

Let us once more point out the addition of bias neurons which shall expand the
capabilities of neural networks. In the case of using summation as a net input function,
they allow for shifting the input of the activation function. When working with other
types of neurons though this concept may be revised.

Fitting neural networks

Thus far, we were concerned with the structure of neural networks. In order to fit neural
networks to given data we fix some aspects of the model which defines what is called
its architecture. These aspects are the sizes and respective activation functions being
used in the individual layers. Unless specified differently we assume the addition of a
bias neuron in each layer except for the output layer, and we assume all layers to be
dense. In this way when using SNN the only parameters left are the weights of edges
denoted by β. We thus identify a neural network having a fixed specified architecture as
a parametric function f ∶ Rm → Rk. We use the notation f(x;β) = y where x is a data
point and y is the prediction of f evaluated according to the concrete weights β. It is
apparent that neural networks which assume a fixed architecture can be fitted by using
non-linear optimization techniques as presented in Section 3.2.1.

50

3.5.3 Feed-forward neural networks (FFNN)

Having discussed the basic set up of neural networks we employ the leverage point of
adding several hidden layers as suggested in Section 3.5.2. This natural extension allows
the formation of so-called feed forward neural networks (FFNN). Again the terminology
used is not unique across the literature. FFNN can again be defined very generally and
we will settle with a simple but widely used version which we will refer to as the deep
neural network DNN. This instance is perhaps first thought of when neural networks
are being mentioned. DNN (already) allows for astonishing modeling capabilities, see
Section 3.5.3. Moreover they motivate the term deep learning. This term does not
only refer to the depth (i.e. number of layers) of these networks but also reflects the deep
insights into data being permitted by DNN and extensions of such. They are able to pick
up seemingly irrelevant aspects and compose them into strong predictions. However, by
the complexity of these models the predictions can hardly be explained which raises all
sorts of issues – not only regarding the mathematics.

Definition 3.34. Feed-forward neural network (FFNN)
We refer to Goodfellow et al. where a definition of feed-forward neural networks (FFNN)
via a collection of iterated functions is outlined [13, p.168 ff.]. Let D ∈ N denote the
depth of FFNN.

Let f (d) ∶ R(h(d−1)) → R(h(d)), d ∈ [D] be functions called layers mapping between spaces
of dimensions h(d) ∈ N, d ∈ [D] ∪ {0} called the respective layer size (or the width of
the layer or the number of neurons). The last layer f (D) is called the output layer and
all other layers are called hidden layers. The input size is denoted by m ∶= h(0) and
the output size is denoted by k ∶= h(D). An FFNN is defined as a mapping f simply by
iterating the layers as follows.

f ∶ Rm → Rk where f ∶= f (D) ○ ⋅ ⋅ ⋅ ○ f (1) (FFNN)

Each layer d is being interpreted as h(d) individual component functions forming the
neuron in the sense of Section 3.5.1. The neurons comprising one layer are thought of
as acting in parallel.

Remark 3.35.

(1) Note that the notion of an edge in FFNN (in the sense of graph theory) is not clearly
defined at this point. Nonetheless such a notion can be introduced by looking at
which input arguments being the outputs of the previous layer are present in the
individual component functions of a considered layer. In particular, note FFNN does
not call for the multiplication of weight parameters to outputs of neurons, and the
integration of parameters into FFNN can take broad forms.

(2) Note that an FFNN may also be called a deep feed-forward network or a multi-
layer-perceptron in the literature. It captures a broad variety of artificial neural
networks. The very similar term “deep neural network” (DNN) however refers only
to a specific variant of a FFNN and shall not be confused.

51

Definition 3.36. Deep simple feed forward neural networks (DNN)
We define simple deep neural networks (DNN) by restricting the generality of FFNN by
using only simple neurons as follows.

Let y(0) ∶= x ∈ Rm be an input data point and denote by h(D) = k the output size.
Furthermore consider D − 1 hidden layers sizes h(1), . . . h(D−1). In order to define DNN
each hidden neuron is required to assume the form of a simple neuron, see
Section 3.5.1. Thus the i-th output of the d-th layer is given as follows.

f
(d)
i (y(d−1)) = a(d)(β(d)

i y(d−1) + β(d)
i0) = y(d)i , 1 ≤ d ≤D − 1,1 ≤ i ≤ h(d)

Note that the same real activation function a(d) is applied in each neuron of the hidden
layer d ∈ [D−1] but the activation functions may vary between layers. In the output
layer D we more generally allow a vector-to-vector function a(D) ∶ Rk → Rk. This allows
for performing both regression and classification, see Section 3.5.2. The action performed
in the output layer is given as follows.

f (D)(y(D−1)) = a(D)(β(D)y(D−1) + β(D)
0) = y(D).

The β(d), d ∈ [D] are matrices of appropriate size. A single index reflects the extraction
of the corresponding row and a double index reflects the extraction of an according
element. We omit the transpositions for sake of a compact notation.

It is apparent that DNN are a natural extension of SNN by adding dense hidden
layers comprised of simple neurons (except for perhaps the output layer) and in turn
DNN is a special instance of FFNN. The visualization of DDN as a network similar to
Figure 3.4 is evident and the propagation of values along edges corresponds to multipli-
cation of weight parameters. Also the concept of bias neurons which we use by default
shall not remain unmentioned. A DNN is interpreted as a parametric function f(x;β)
mapping from Rm to Rk. This allows DNN to be used as a machine learning model
and parameters are in general being determined by applying nonlinear optimization, see
Section 3.2.1.

Definition 3.37. Identify DNN by architecture

(1) Let us formally introduce classes of DNN which agree up to the parameters. The class
of all DNN having the same architecture is denoted by ℵm(h(1),...,h(D))(a

(1), . . . , a(D)).
The h(d) specify the hidden layer sizes and output size h(D) = k. The a(d) specify the
scalar-to-scalar activation functions and a(D) specifies the vector-to-vector output
activation. m indicates the input size and DNN is determined up to weight
parameters β.

(2) Denote by ℵm(∗,...,∗,h(D))(a
(1), . . . , a(D)) ∶= ⋃D−1d=1 ⋃

∞
h(d)=1 ℵ

m
(h(1),...,h(D))(a

(1), . . . , a(D))

the family of networks mapping from Rm to R(h(D)) by assuming arbitrary hidden
layer sizes. The ∗ shall simply indicate we assume this parameter to be arbitrary.

52

Approximating functions with DNN

Similar to logistic regression and generalized linear models we outline the modeling power
of DNN. Results regarding this are called universal approximation theorems.

One of the first results of this type was due to Cybenko where only one hidden layer of
arbitrary size with sigmoid-activation is assumed [8]. Hornik et al. proved a similar
result in the same year of 1989 which extends to all measurable functions [18]. This
particular result is often referred to as the universal approximation theorem for DNN.
It shows DNN are universal approximators meaning all non-pathological functions can
be approximated in arbitrary accuracy by a suitable DNN.

Maiorov and Pinkus and independently also Ismailov presented results proving that
already a bounded number of neurons is sufficient for universal approximation abil-
ities [26], [19]. There are many further variants of such theorems for instance also
concerning the depth as opposed to the width of DNN.

Theorem 3.38. Cybenko (1989)
If a(1) is continuous and sigmoidal then ℵm(∗,1)(a

(1), id) is dense (w.r.t. supremum norm)

in the space of continuous functions on the unit cube C([0,1]m) [8].

Remark 3.39.
Note that the extension to several output-neurons and specific output-activation is
straight-forward. Similar extensions hold true for the other results of this type. We
will roughly sketch the ideas to prove our assertions.

(1) To obtain the multi-output case on k neurons we can simply copy the hidden layer
k times. The associated weights are independent of each other and we can obtain
arbitrary closeness on all outputs simultaneously.

(2) Suppose we want to approximate g ∈ C([0,1]m) with some g̃ ∈ ℵm(∗,1)(a
(1), a(2)).

Crucially, whenever f ∈ ℵm(∗,1)(a
(1), id) then a(2) ○ f ∈ ℵm(∗,1)(a

(1), a(2)). We can

extend to homeomorphic output activation a(2) as follows. By the theorem and
continuity we can find δ sufficiently small and f ∈ ℵm(∗,1)(a

(1), id) such that whenever

∣∣f − a(2)−1 ○ g∣∣ < δ is close, also the images under a(2) are close ∣∣a(2) ○ f − g∣∣ < ε.
Thus g is approximated arbitrarily well by g̃ ∶= a(2) ○ f ∈ ℵm(∗,1)(a

(1), a(2)).

(3) Furthermore note that the restriction on the unit cube can also be addressed. Sup-
pose we aim to model a continuous function g ∶ X ⊆ Rm → R where X is compact.
Then we can homeomorphically deform X into [0,1]m by a contraction c. We ap-
proximate c by a neural network f1 and use said outputs as inputs for the neural
network f2 approximating g ○ c−1. Note that the activation functions are continuous
and thus also f1, f2 are continuous functions. Via concatenation we obtain a neural
network f1 ○ f2 having three hidden layers which is a continuous function. Now in
order to ensure a small error in the end we need to be able to satisfy ∣∣f1 ○ f2 − g∣∣ < ε
for any small ε. Now by demanding ∣∣Df2∣∣ <M a bounded differential we can esti-
mate ∣∣f2(x) − f2(x + ε′)∣∣ < ε′M =! ε by using a mean value equality. Thus we need

53

to choose f1 such that the errors on it’s output x are at most ε
M which provides a

sufficiently small error at the end.

A slightly dirtier approach would be to use an input transformation which is not
required to be realized by a network. We are using (g ○ c−1) ○ c = f ○ c by assuming
said contraction c and thus have defined some function f . We transform the input
data to c(X) ⊆ [0,1]m and can find a single-hidden layer network approximating
f = g ○ c−1. In particular, this shall point out that preprocessing the data and in
particular scaling data to the unit cube is good practice in the context of neural
nets.

In the following, we display results which bound the required number of hidden neurons.
It shows that a smart choice of activation functions determines the modeling power
whence the hidden layers are sufficiently (but not awfully) large compared to the input
size.

Theorem 3.40. Maiorov and Pinkus (1999)
Let X = [0,1]m ⊆ Rm be a unit cube. Then there is an analytic, strictly increas-
ing sigmoidal function σ̂ with ℵm(3m,6m+3,1)(σ̂, σ̂, id) dense (w.r.t. supremum norm) in

C([0,1]m), [26].

Remark 3.41.

(1) Maiorov and Pinkus presented a constructive proof giving us insight into the choice
of σ̂ [26]. Also a version of the theorem which only demands the function being C∞

instead of analytic is mentioned.

(2) The following result shows that also less hidden neurons are sufficient for arbitrary
approximation quality. Instead of an analytic activation function we only require a
C∞ function which has a slightly more specific monotonicity behaviour.

Theorem 3.42. Ismailov (2014)

(1) Let X ⊆ Rm be compact. Then for any α ∈ R and λ > 0 there is a C∞(R) sigmoidal
function σ̂ which on (−∞, α) is strictly increasing and λ-strictly increasing on [α,∞)
with ℵm(m,2m+2,1)(σ̂, σ̂, id) dense in C(X).

(2) If we restrict to positive α we obtain density on the unit-cube. Meaning let X =
[0,1]m ⊆ Rm be a unit cube. Then for any α > 0 and λ > 0 there is a C∞(R) sigmoidal
function σ̂ which on (−∞, α) is strictly increasing and λ-strictly increasing on [α,∞)
with ℵm(m,2m+2,1)(σ̂, σ̂, id) dense in C([0,1]m).

54

Training of DNN

As already pointed out for SNN in section, 3.5.2 the training of a simple DNN similarly
fixes the architecture and only optimizes the weight parameters being associated
to edges by using a suitable nonlinear optimization technique, see Section 3.2.1. By
typically encountering a large number of parameters, we aim to speed up the training
process by utilizing the underlying network structure in the form of dynamic program-
ming. The technique of error backpropagation implements this and allows for feasible
training times even for relatively large networks. In contrast to the evaluation of DNN
being a forward propagation of a data-point through the network, the parameter updates
are generally thought of as a backwards propagation (hence the name) of error terms
starting with an error measure at the output layer with help of a loss function. In the
following, let us show how this looks in detail.

Lemma 3.43. Error backpropagation (BP or backprop)
Suppose we are given a loss function of the form L(f(x,β), y) = 1

n ∑
n
i=1L(f(xi, β), y)

averaging a per point loss term L(f(xi, β), y). Suppose f ∈ ℵm(h(1),...,h(D))(a
(1), . . . , a(D))

assumes the form of a simple deep neural network with parameters β with the limita-
tion of all a(d) being differentiable activation functions. All notations are according to
Definition 3.36.

(1) Then the gradient at an arbitrary edge is given as follows.

∇
β
(d)
ij

L(f(xi, β), y) = δ(d)i y
(d−1)
j if j ≥ 1 and

∇
β
(d)
ij

L(f(xi, β), y) = δ(d)i for j = 0 the bias neuron.

(2) The quantity δ
(d)
i is called the error at the neuron i in layer d. for d = D the

errors are directly dependent on the loss-function.

δ
(D)
i = ∂L(f(xi,β),y)

∂s
(D)
i

Note that f(xi, β) = f (D)(y(D−1)) = a(D)(β(D)y(D−1) + β(D)
0) = y(D) is indeed a

function in s
(D)
i = β(D)

i y(D−1) + β(D)
i0 and we can apply the chain rule.

(3) For all neurons i, 0 ≤ i ≤ h(d),1 ≤ d ≤ D − 1, in a some hidden layer d the respec-
tive error only depends on the current and subsequent layer. The following
equation encapsulates this observation and gives rise to the dynamic program.

δ
(d)
i = a′ (d)(s(d)i)∑h

(d+1)
j=1 δ

(d+1)
j β

(d+1)
ij

Note that a′ (d) is the derivative function of the univariate a(d).

(4) Thus, summarizing, we can compute the gradient ∇
β
(d)
ij

with respect to any param-

eter β
(d)
ij by computing the errors associated to the last layer as in (2) and then

55

propagating back the error through the layers by using the equation in (3) This de-
fines the dynamic program which is generally referred to as error backpropagation
(BP or backprop).

Proof.
The proof is slightly technical and involves the multivariate chain-rule. Still we regard
the proof being valuable in order to gain insight on how the quantities arise.

Ad (1) We start by calculating the gradient ∇
β
(d)
ij

L(f(xi, β), y) associated to an arbi-

trary edge (j, i) leading to some neuron i in some hidden layer d ∈ [D].

As each s
(d)
i is a function in β

(d)
ij the chain rule is applicable and defines the

error as follows.

∇
β
(d)
ij

L(f(xi, β), y) =
∂L(f(xi, β), y)

∂s
(d)
i

∂s
(d)
i

∂β
(d)
ij

=∶ δ(d)i ⋅
∂s

(d)
i

∂β
(d)
ij

.

The error is thus obtained by looking at the change of the loss when manipulating

the output of the respective net input function s
(d)
i . The inner derivative captures

the change of the net input function if the weight is manipulated. In the case
of a bias neuron j = 0 we merely send a 1 regardless of the context and observe

an direct impact on the net input function
∂s
(d)
i

∂β
(d)
ij

= 1. For other nodes j in the

previous layer the change in loss is proportional to the context
∂s
(d)
i

∂β
(d)
ij

= y(d−1)j .

The context simply is the value being propagated through the considered edge
if x is evaluated. In this regard we again recall that bias neurons are thought of
as neurons sending a 1 and this situation exactly corresponds also for j = 0.

Ad (2) If we plug in d = D we immediately observe the equation in (2). The errors at
the output layer are then propagated backwards through the network. Thus this
explains the initialization of the back propagation.

Ad (3) Now let us determine the remaining errors which results in a full explanation
of the back propagation procedure. Thus suppose d < D and we look at the

subsequent layer d + 1. We track the influence of β
(d)
ij .

β
(d)
ij → s

(d)
i → a(d)(s(d)i)→ (s(d+1)1 , . . . , s

(d+1)
h(d+1))→ ⋅ ⋅ ⋅→ L(f(xi, β), y)

In layer d the parameters β
(d)
ij only influences the computations at one neuron

i via the net input s
(d+1)
i present in i. This term is then passed through the

real differentiable activation function a(d). The obtained output is passed to the

entire subsequent layer where weighted sums (s(d+1)1 , . . . , s
(d+1)
h(d+1)) are computed.

Those are then pushed forward through the network until we finally compute

L(f(xi, β), y). As this sequential analysis entirely captures the influence of β
(d)
ij

56

we can apply the multidimensional chain-rule by factoring out an inner func-

tion (s(d+1)1 , . . . , s
(d+1)
h(d+1)) depending on β

(d)
ij in order to compute the error δ

(d)
i as

follows.

δ
(d)
i =∂L(f(xi, β), y)

∂s
(d)
i

= a′ (d)(s(d)i)
h(d+1)

∑
j=1

∂E(β)
∂s

(d+1)
j

∂s
(d+1)
j

∂s
(d)
i

=a′ (d)(s(d)i) ⋅
h(d+1)

∑
j=1

δ
(d+1)
j β

(d+1)
ij

Note that the error depends on the errors of later layers, the outgoing edge

weights and a quantity a′ (d)(s(d)i) depending on the sensitivity (derivative) of

the activation function at the obtained input s
(d)
i .

Remark 3.44.
As stated in the above point (4), this lemma tells us how we can compute the gradients
with respect to an individual parameter in a neural network by using dynamic program-
ming. The back-propagation can be extended quite easily to non-simple networks which
for example assume vector-to-vector activation functions, disallow biases or disallow cer-
tain edges. Moreover, we will see in the following section that this back-propagation
schema can also be applied in a straight-forward fashion to networks having loops, see
Section 3.5.4.

3.5.4 Recurrent neural networks (RNN)

Regarding a neural network as a graph we extend these models by allowing self-loops
and backward edges. Such networks are called recurrent neural networks (RNN). The
feeding back of previously processed information thus introduces an inherent sequence
notion making RNN well suited for processing sequential data such as speech, text, time
dependent data or similar.

We will first introduce notations regarding sequential data and point out how such
feedback-loop is incorporated in a neural network in terms of mathematics. Again we will
reduce the full generality of RNN and introduce Elman (or simple) recurrent neural
networks. Then we will point out one large problem of this recurrent structure namely
the vanishing (and exploding) gradient problem. Hochreiter and Schmidthuber
addressed this issue among others via constructing a particular kind of gated neuron,
the LSTM-cell [16]. This invention contributed largely to the success of RNN. We
base this section on Goodfellow et al. introducing the key concepts of recurrent neural
networks [13, p.375 ff.]. Furthermore we refer to Schäfer and Zimmermann who provide
approximation results for RNN and a slightly more general notion of RNN [32].

57

Definition 3.45. Time series
Let [τ] be a discrete time window of length τ . We define [∞] ∶= N a time window of
infinite length. An element (x(1), . . . , x(τ)) ∈ (Rm)τ being a a τ -fold vector of elements
in Rm is called a discrete time series of length τ . We understand a time series as a
sequence of data-points.

Definition 3.46. Open time discrete dynamical systems

Given time series (x(1), . . . , x(τ)) ∈ Rm[τ] and (h(0), . . . , h(τ)) ∈ Rh[τ+1] and let f(., ., θ) ∶
Rm ×Rh → Rh be a parametric function satisfying the following set of equations.

h(t) = f(x(t), h(t−1), θ), 1 ≤ t ≤ τ

In this setup f(., ., θ) is called the state transition function, h(t) is called the state
at time t, 0 ≤ t ≤ τ , and x(t) ∈ Rm is called the input or external signal at time t ∈ [τ].

The dynamical system is already determined by the input-data, the initial state h(0)

and the parametric transition function f(., ., θ). An open dynamic system is also called
a dynamic system driven by an external signal. As a side remark, if f does not depend
on the external signal but only on the previous state we call such a dynamical system
autonomous.

Definition 3.47. Recurrent neural network
A recurrent neural network in its full generality is given as a dynamical system. Referring
to Schäfer et al. we present recurrent neural network in the thus resulting so called state
space representation and introduce the associated terminology [32]. We furthermore refer
to Goodfellow at al. who provides a slighly different definition of RNN by disregarding
the output equation [13, p.375 ff.].

(1) A recurrent layer is defined with help of a dynamical system as follows.

h(t) = f(x(t), h(t−1), θ), t ∈ [τ]

Furthermore let the output equations producing an output y(t) ∈ Rk at each time-
step t ∈ [τ] be defined as follows.

y(t) = o(h(t)), t ∈ [τ]

Similar to non-recurrent neural networks o(.) is a generally defined output activation
function mapping between spaces of appropriate dimension. In this way, an RNN
maps a time series (x(1), . . . , x(τ)) to another time series (y(1), . . . , y(τ)).

The states of the dynamic system h(t) are called hidden states. The initial hidden
state h(0) is a model parameter. We interpret an RNN as a function by feeding in the
x(t) and the previous hidden-state h(t−1) in an online fashion and successively obtain
hidden states h(t) and the outputs y(t). The hidden state h(t) therefore resemble a
memory about the past {x(1), . . . , x(t)} and is are also called the context (at time
t), t ∈ [τ]. It is crucial to note that in each time-step the same state transition
function f(., ., θ) is applied.

58

(2) Oftentimes we slightly reduce the full generality of the output activation function and
assume a linear function y(t) = V h(t) where V is a matrix of appropriate, see Schäfer
et al. [32]. In this way we can interpret the output layer as a densely connected layer
and the usual correspondence between weight parameters and edges applies.

(3) We define the Elman RNN, or the simple recurrent neural network (SRNN)
as published in [10] by further reducing the generality of RNN. Let a ∶ R → R be
scalar activation function, U ∈ Rh×m,W ∈ Rh×h be weight matrices and β ∈ Rh a
bias vector. The hidden states are defined component wise and assume the form of
GLM.

h
(t)
i = a(Uix(t) +Wih

(t−1) + βi),1 ≤ i ≤ h, 1 ≤ t ≤ τ

The output equation is a linear transformation using a weight-matrix V ∈ Rk×h.

y(t) = V h(t), 1 ≤ t ≤ τ

Please note that this allows for the Elman RNN to be interpreted as a network with
the usual weight-edge relation. The recurrent layer in this sense is a dense layer.
Moreover the recurrent layer has a self loop at each neuron and in addition has all
possible edges within a layer. Most importantly, note that edge weights are time
independent. In the following, we will present another possible view of Elman RNN
as an equivalent network structure.

Training of SRNN

The essence for being able to train SRNN or similar variants is a technique called un-
folding which allows us to transform a SRNN into a DNN. In the following diagram
the idea is laid out.

Figure 3.6: unfolding RNN; Goodfellow et al. [13, p.376]

Each circle in Figure 3.6 represents an entire recurrent layer and each edge in the diagram
represents having all possible connections between the respective layers. The way in
which we obtain the unfolded RNN (right hand side) from the compact interpretation
using loops (left hand side) is by copying the recurrent layer ∣τ ∣ times. The time invariant
edge weights of SRNN are reflected by copies of the respective edge-weights being placed
in between the hidden layers h(t), t ∈ [τ], of the unfolded network. Moreover, the input
x(t), t ∈ [τ], in this interpretation sends the input via an edge but skips the previous t−1

59

layers which we note is not covered by DNN. Later in Section 3.5.4 we will also include
the output generation and for now omit this part of the network.

This unfolding of an SRNN allows for training by using error back propagation. Com-
bining the unfolding and the application of backpropagation we obtain the so called
backpropagation through time (BPTT) which is one variant of training (simple)
recurrent neural nets. Note that in particular skipping layers is not problematic for this
to work and the updates regarding the copies of edges are simply being added to an
aggregate update.

This however introduces one phenomenon which we only very briefly address. By sum-
ming updates regarding within one run of BPTT we may generate a sequence of updates
referring to the same edge with canceling terms. Since in this instance still parameter
updates are proposed, we may infer that it is not yet optimal and the conflicting pro-
posals elongate or prohibit training. These conflicting updates are for instance being
addressed by Hochreiter et al. [16]. Generalizations of BPTT to other recurrent neural
networks are possible and widely used. We refer the interested reader to Goodfellow et
al. [13, p.384 ff.].

The vanishing/exploding gradient problem

Another more prominent problem which occurs in RNN, in particular when modeling
long time sequences, was addressed and analyzed by Hochreiter in his diploma thesis [15].
When using BPTT, we feed back errors through a perhaps very deep unfolded network
(when modeling long time series). By having associated the same weights between
all hidden layers let us briefly recapitulate the error back propagation formula in
Lemma 3.43 which in this instance allows for simplifications. By encountering only
copies of hidden layers and weights we may also lighten the notation and omit the
subscript indicating the layer for many quantities. By a straightforward computation it
can be shown that the error encountered at a layer d associated to a neuron j0 ∶= i is
given as follows.

δ
(d)
i = ∑h

(d+1)
j1=1 ⋅ ⋅ ⋅∑h

(d+t)
jt=1 δ

(D)
jt ∏t

τ=0 a
′(sd+τjτ

)βjτ jτ+1

It is visible that the weight update for βij depends on products of the βjτ jτ+1 in later
layers. For larger t (earlier stages) the many factors form a very sensitive error term
which is likely to become exponentially large or exponentially small as Hochreiter
elaborated in [15]. By the error terms being directly linked to the sizes of the propagated
gradient, this corresponds to vanishing/exploding gradients being propagated backwards
in time and substantiates the vanishing/exploding gradient problem.

Interpreted on a higher level, only the more recent data points are remembered properly.
The data points which come early in a time-series experience a highly biased gradient
update and thus are not incorporated accurately when learning with BPTT. This is
interpreted as a short term memory effect. Clearly by this instability the training of
RNN by using BPTT is a sensitive and troublesome endeavor which needs be addressed.

60

In order to resolve this Hochreiter and Schmidhuber suggested a clever architecture which
circumvents this problem and moreover addressed conflicting gradient updates [16].

Long short term memory cells (LSTM)

In this section, we refer to Goodfellow et al. [13, p.410] and Hochreiter at al. [16]. The
long short term memory cell (LSTM) is a slightly more complex neuron designed for
RNN. The key feature of LSTM addresses the vanishing/exploding gradient problem
and comprises an in-cell self loop which encapsulates a concept of in-cell memory.
This so-called constant error carousel (CEC) only performs affine linear updates and
thus is robust towards vanishing/exploding gradients as the gradient propagated along
this self loop by BPTT remains constant over time. Therefore this in cell memory does
not get biased over time and counters the short term memory effect. The second key
feature of LSTM addresses the conflicting gradient update problem by implementing a
gating structure regulating the data flow within and between LSTM cells in a context
dependent fashion. This allows for training a context-dependent in-cell filter which only
propagates the relevant (desirable) data for performing the gradient update.

In the following Figure 3.7 let us demonstrate the layout of a single LSTM neuron. Note
that edges are associated with weight parameters being constant over time. A square on
an edge indicates a time delay of one an no square means the quantities are propagated
at the current time step. The LSTM in and of itself is a small neural net and the nodes
within it are specific functions. We will define the particular components more closely
below. For a more theoretical motivation of the design patterns and a careful analysis
we refer the interested reader to the original publication by Hochreiter et al. [16].

Figure 3.7: LSTM-cell; Goodfellow et al. [13, p.409]

61

Definition 3.48. LSTM-layer
We define an LSTM-layer of size h ∈ N by the actions being taken in an individual
LSTM-cell i at a time t and refer to Goodfellow et al. [13, p.410].

By x(t) ∈ Rm we denote the current element in the input time series. By h
(t−1)
j ∈ Rh we

denote the hidden state coming from the LSTM-cell j at the previous time-step t − 1.
For defining the individual architectural elements we require a collection of bias vectors
b, bf , bg, bo ∈ Rh, of input-weight matrices u,uf , ug, uo ∈ Rh×m and of recurrent weight
matrices w,wf ,wg,wo ∈ Rh×h which in total comprises the parameters of an LSTM cell.

(1) The forget-gate f
(t)
i in cell i is defined as follows.

f
(t)
i = σ(bfi +

m

∑
j=1

ufijx
(t)
j +

h

∑
j=1

wfijh
(t−1)
j)

The input data point x(t) at the time t is weighted and all previously generated
hidden states from LSTM-cells 1 ≤ j ≤ h, are incorporated. The bias-term bfi enables
shifting the input of the activation function σ.

(2) The input-gate g
(t)
i is defined similar to the forget-gate as follows.

g
(t)
i = σ(bgi +

m

∑
j=1

ugijx
(t)
j +

h

∑
j=1

wgijh
(t−1)
j)

(3) The cell-state s
(t)
i at evaluation combines the previous cell-state, the previous hid-

den state and the current input data point as follows by using gates.

s
(t)
i = f (t)

i s
(t−1)
i + g(t)i σ(bi +

m

∑
j=1

uijx
(t)
j +∑

j

wijh
(t−1)
j)

The cell-state resembles the in-cell memory, in particular recall the concept of CEC.

Qualitatively speaking, the forget-gate f
(t)
i ∈ (0,1) decides the proportion of the

past memory being carried over. The input-gate g
(t)
i ∈ (0,1) decides how much

information coming from the other cells and external signal via the term

σ(bi +∑
j

uijx
(t)
j +

h

∑
j=1

wijh
(t−1)
j)

should be added to the in-cell memory. The cell-state experiences only affine-linear
updates and implements the CEC as mentioned earlier. It is crucially important to
point out that the gates are acting according to the external signal (i.e. input data
point) and the hidden-state and thus are context sensitive and not constant through
time.

62

(4) The output-gate q
(t)
i and the hidden-state update h

(t)
i are defined as follows.

q
(t)
i = σ(boi +

m

∑
j=1

uoijx
(t)
j +

h

∑
j=1

woijh
(t−1)
j)

h
(t)
i = tanh (s(t)i)q(t)i

The output unit gate q
(t)
i ∈ (0,1) regulates the portion of in-cell memory which is

passed on in the form of hidden state h
(t)
i ∈ (−1,1) to all other cells in the next

time-step. Again we notice the output-gate q
(t)
i is context dependent.

Approximation power of recurrent neural networks

As already for DNN we ask which types of instances can be modeled by using RNN. For
RNN the objects being modeled are time series and thus we ask for approximation results
concerning dynamical systems. We refer to Schäfer and Zimmermann who presented such
an approximation result as follows [32].

Theorem 3.49. Schäfer, Zimmermann (2007)
Let f ∶ Rm ×Rh → Rh be measurable and o ∶ Rh → Rm be continuous. Consider a time
series x(1), . . . , x(τ) and suppose we are given hidden states h(0), . . . , h(τ) and outputs
y(1) . . . , y(τ) which satisfy the following equations describing a dynamical system.

h(t) = f(x(t), h(t−1)), 1 ≤ t ≤ τ

y(t) = o(h(t)), 1 ≤ t ≤ τ

Then there for each ε > 0 there exists a simple recurrent neural network with sigmoidal
activation a = (σ̂, . . . , σ̂) driven by the same external time series x(1), . . . , x(τ) which gen-
erates outputs ŷ(1) . . . , ŷ(τ) and hidden states ĥ(0), . . . , ĥ(τ) that uniformly approximate
the dynamical system. By this we mean ∣ŷ(t)−y(t)∣ < ε, t ∈ [τ] and ∣̂h(t)−h(t)∣ < ε, 0 ≤ t ≤ τ .
The approximating dynamical systems if given as follows.

ĥ(t) = a(Ux(t) +Wĥ(t−1) + β0), 1 ≤ t ≤ τ

ŷ(t) = V ĥ(t), 1 ≤ t ≤ τ

The sigmoidal activation function is defined by component-functions σ̂ ∶ R → R which
are sigmoidal and monotonically increasing. The U ∈ Rh′×m,W ∈ Rh′×h′ , V ∈ Rk×h′ are
weight matrices and β0 ∈ Rh

′
is a bias vector.

Remark 3.50.

(1) Please note that Schäfer et al. used a slightly different definition of sigmoidal namely
that the function tends to ±1 at ±∞ wheres we defined sigmoidal functions to tend
to 0 and 1 respectively. The result however is true in both regards since the weight
matrices can compensate for this altered range of hidden states.

63

(2) The proof presented by Schäfer et al. in [32] involves the universal approximation
theorem for DNN for measurable functions by Hornik et al. (1991) [18] which we
briefly mentioned earlier.

Design patterns for RNN

We aim to demonstrate slight variants of the SRNN which allow us to model various
instances involving time series. Depending whether we generate an output vector y(t) in
each time-step or only propagate the last output vector y(τ), we can deduce two basic
design patterns which both serve distinct purposes.

The first design pattern constitutes by generating a network output y(t) at each
time step t ∈ [τ]. It allows for modeling functions between spaces of time-series and
hence belongs to the realm of sequence-to-sequence models (seq-to-seq).

Figure 3.8: seq-to-seq RNN; Goodfellow et al. [13, p.378]

Figure 3.8 depicts both the compact and unfolded view of an RNN which follows this
seq-to-seq paradigm. Note that similar to Figure 3.6 each node represents an entire
recurrent layer and edges correspond to densely connected layers. Where a respective
letter U,V,W is annotated, edge weights (being constant through time) are applied.
Looking on the left hand side of the figure, x denotes the input data point, h denotes
the hidden state and o denotes a generally defined output neuron mapping into a target
space. The encircled L and y merely denote the act of comparing a target y via a loss
function L in order to perform BPTT. This generally defined framework allows for using
simple input neurons as well as for using LSTM cells. This design pattern may for
instance be applied for modeling relations between time series. Furthermore, the output
generated by o can be propagated to other layers which are then called time distributed
layers since at each time step they receive an input proceeding in an online fashion. In
particular this design pattern allows for stacking several recurrent layers.

64

The second design pattern is based on the idea of only propagating the final hidden
state. It thus provides a summary of a time series after the full input data has been
processed by the recurrent layer. This design pattern can again be followed up by a
neural network which this time does not receive data in an online fashion. By factoring
out the time component this paradigm belongs to the collection of sequence-to-one
models (seq-to-1).

Figure 3.9: seq-to-1 RNN; Goodfellow et al. [13, p.382]

Figure 3.9 uses notation analogous to Figure 3.8. It only represents the unfolded view
of an RNN since the more compact representation can easily be confused with seq-2-
seq unless suitable notations are introduced. By being able to generate a single output
vector (potentially only a single number) as opposed to a time-series this design pattern
can be used to perform regression on a real vector space (potentially of dimension one)
or classification. Note that the idea of simply raveling a time series into a vector and
using DNN may seem equivalent but such time-delayed models inherently are unable
to properly factor out the time component by implicitly having fixed an assignment of
samples at a time x(t) ∈ Rm to the same m neurons. Therefore whenever a trend is
present in a time series but occurs at a different time, a time-delayed model relies on
having seen exactly such a sample before as opposed to RNN recursively modeling the
fresh data points and using hidden states as aggregate memory.

3.6 Other modeling techniques

Besides the previously discussed techniques of which we will only use the neural network
there are a variety of other techniques which are state of the art methods in machine
learning. As it is impossible to adequately represent all techniques in great detail we
roughly explain other prominent models and kindly refer to appropriate literature.

65

Support vector machines (SVM)

One prominent method which can be used for both classification and regression is the
support vector machine (SVM). We refer to Bishop’s book where this method is presented
and discussed [6]. The underlying idea of an SVM is to transform the data into a higher
dimensional space where a linear model is able to perform the task. In this regard
SVM extensively utilizes the feature space mapping as defined in Section 3.1. In
a classification setting the aim is to map the data into high dimensions such that the
classes become linearly separable. In this high dimensional space, we fit a separating
hyperplane typically so that it has maximal distance to the individual classes. The
regression task is a bit more finicky and is built off the classification idea. We surround
the graph, being a surface by what is called an ε-tube by using an error function which is
0 around a small ε-region of the graph. Such a function is called an ε-intensive function.
In this way, points near the graph do not introduce an error and are regarded as well
modeled. Now the graph is again transformed into a higher dimensional space where
this ε-tube contains a linear hyperplane which can be detected by SVM. A notable fact
about SVM is that they do not provide a discriminative classification model but are
decision machines only suggesting a label directly. Another aspect worth pointing out is
the fact that when using suitable transformations, SVM are able to exploit the so-called
kernel trick. The kernel trick basically enables us to avoid costly computations which
would emerge by transforming the data into a higher dimensional space.

Decision trees

Another more intuitive method is realized by decision trees. For full detail about this
technique we refer to Alpaydin and again only point out the key concepts [1]. A decision
tree can be represented as a rooted tree in the sense of graph theory. At each node a
certain decision rule is implemented. A data-point is then propagated from the root
through the tree where the decision rule at each node determines the descendant being
visited next. At each leaf, an output result representing a class label or a numerical
value for regression is stored. The training of a decision tree involves introducing and
pruning nodes and adapting the decision rules such that a training point travels
from the root to a leaf which holds its respective label. Decision trees have the
advantage of being easily interpretable since they can be converted in a construct of
if-else decisions. Decision trees, however, are prone to overfitting. Nonetheless they
find many applications and in particular serve as a basis for ensemble methods (i.e. a
composition of several ML-models into a single one) like random forests.

Pointer networks

Finally, we point out a technique which specifically addressed the modeling of combi-
natorial problems, namely pointer networks. We refer to Vinyals, Fortunato and Jaitly
who first presented this technique [33]. Pointer networks address the limitation of
having a fixed output size when using classical sequence-to-sequence models

66

such as RNN. The way this is circumvented by pointer networks is by embedding an
RNN into a specific architecture. At each time step, the vector formed by all hidden
states of a same sized auxiliary network is transformed into a probability vector by using
softmax. The resulting so-called attention vector is therefore of the same length τ as
the input and the maximal element is interpreted as a recommended item t ∈ [τ]. In
this way, at each time step the maximal probability points at the suggested item which
is again fed into RNN as hidden states. After feeding through the entire time series,
we have τ such recommendations where some items may have been recommended for
several times. In this way, the output vector has a flexible length of at most τ .

3.7 Assessing the quality of models

After preprocessing the data and fitting a model we require measurements and techniques
to evaluate the predictive power of the model. We limit to regression- and two-class-
classification models since later we will only use these two types of methods. The multi
class case can be attained by natural extensions and other machine learning techniques
may require a completely different palette of measurements.

Potential sources of error

We recall the machine learning setting where we assume an unknown underlying distri-
bution pdata of which we have samples training data points. This provides us an empirical
(approximate) distribution p̂data which is used for training by minimizing the empirical
risk.

In order to capture potential pitfall it is good practice to reserve a fraction of the training
data for assessing the model. This test set is not used for training. Having fitted the
model only on the training set we evaluate a performance measure on both the test set
and the training set. In this way, it is assumed for now the test set well represents pdata
and the training set well represents p̂data (i.e. having enough data at hand).

First off, when evaluating on the training set we find how well the model is fit to p̂data.
If this error is large we perhaps used a too simple model, called underfitting, or did
not carefully choose the hyperparameters for training. If the error is small we proceed
by evaluating the test set. If it is large we check a number of implications. Generally
this case indicates a lack of generalization abilities. Then one prominent reason for
observing large errors on the test set but (very) small errors on the training set is
overfitting. This happens if the model assumes a way too large complexity in order to
achieve extremely small errors. One way to address this is by using regularization. A
regularization term basically integrates a measure of simplicity of the model into the loss
and in this way penalizes overly complex assumptions in trade for small improvements
of error by training. Another counteraction is to end training earlier or perhaps to try
a more robust or simple modeling technique after all.

In case pdata is not well represented we should aim for more training data as it is im-
possible to generalize to pdata based on too little information. In case only p̂data is

67

not represented well. The error occurs by insignificant test sample sizes. This can be
countered by using estimates like confidence intervals or simply by splitting off a larger
fraction of the training data.

A second source of error is introduced by fitting a model on p̂data with respect to a loss
function L as opposed to a more accurate error measure P in order to achieve better
optimization properties. This difference is in particular prevalent in classification since
we aim to model probabilities instead of the true class labels. However, in this instance
we simply fit the model according to L on p̂data and evaluate P on the training set being
distributed according to p̂data still. The difference gives us insight into the discrepancies
between P and L which typically is not that much of an issue though. After all we are
interested in minimizing P and thus on the test set it is the measure of choice as opposed
to L. However interpreting P in a classification setup has its own hazards which we will
specifically address in Section 3.7.2.

3.7.1 Assessing the fit of regression models

We look at regression models and measure the error between the modeled and the true
labels. We assume this content to be commonly known and do not refer to specific
literature.

Definition 3.51. Measuring error of regression
Given a data-matrix X and associated a target vector y. Let f(x; θ) be a (systemic part
of a) model for regression on y. We define the following quantities which give insight on
the modeling quality.

1

n

n

∑
i=1

(f(xi; θ) − yi)2 is called the mean-square error (MSE)

1

n

n

∑
i=1

∣f(xi; θ) − yi∣ is called the mean-absolute error (MAE)

1

n

n

∑
i=1

(f(xi; θ) − yi) is called the mean-bias error (MBE)

For the individual measures we identify the respective summands as the per data point
error. Thus may also use other aggregates over the data points for instance providing
the minimal maximal or median error. For the mean we recall the confidence interval
(for unknown variance) given by the end points x ± t∗ s√

n
where t∗ denotes the quantile

being chosen.

3.7.2 Assessing the fit of classification models

In this section we will mainly cover the evaluation of binary classification models. These
can be generalized to the multi class case in many instances. Throughout we assume
a discriminative model f(x, θ) modeling the posterior class probabilities. This canon-
ically gives rise to formulating discriminant functions by using a threshold. First, we

68

will introduce actual performance measures P for the binary classification and refer to
Chicco and Jurman [7]. Whenever assessing a performance it is important to look for
some baseline comparison which tells what one should at least expect. The expected
performance may depend on the particular instance for certain measures whereas oth-
ers are able to maintain comparability between instances. We will particularly aim for
opportunities to improve in this regard to achieve a maximal level of truthfulness.

Evaluation by the discriminant function

In classification it is our primary goal to optimize the actual performance measure P .
The performance measure compares the predicted label to the actual label and mea-
sures the correct guesses. While this may seem like a straightforward task of counting
correct guesses, there are considerations to be made in order to avoid incorrect interpre-
tations. Before evaluating P we shall present the perhaps most natural way to obtain a
discriminant function from a discriminative model.

Definition 3.52. Discriminant function for binary classification
Suppose we are given classes C1,C2 and a discriminative model f(x, θ) ∼ p(C1∣x) providing
an estimate posterior for a given data point x. By T ∈ [0,1] denote a threshold. We
define two-class discriminant functions yT (x) by setting yT (x) ∶= 0 if p(C1∣x) ≥ T and
yT (x) = 1 otherwise.

Definition 3.53. Performance measures for discriminant functions
Given yT (.) a two class discriminant function, a data matrix X and an associated target-
vector t. We refer to ti = 0 as negative and to ti = 1 as positive. We present the following
well established performance measures for yT . Note that the following quantities are
functions in yT ,X, t. If the arguments are clear from the context we omit them for light
notation. We refer to Chicco at al. [7] where an extensive list of the following well known
scores can be found.

(1) In the following I{} is the indicator function.

TP (yT ,X, t) =
n

∑
i=1
I{yT (xi)=1}I{ti=1} the number of true positives,

TN(yT ,X, t) =
n

∑
i=1
I{yT (xi)=0}I{ti=0} the number of true negatives,

FP (yT ,X, t) =
n

∑
i=1
I{yT (xi)=1}I{ti=0} the number of false positives,

FN(yT ,X, t) =
n

∑
i=1
I{yT (xi)=0}I{ti=1} the number of false negatives;

69

We define the number of (actual) positives P = TP + FN and the number of
(actual) negatives N = TN +FP and summarize these basic measures in what is
called a confusion matrix or contingency table.

true class predicted class

positive negative total

positive TP FN P

negative FP TN N

Table 3.2: Def, confusion matrix

(2) We define the accuracy (ACC), the positive predictive value (PPV), the true
positive rate (TPR), the negative predictive value (NPV) and the true nega-
tive rate (TNR) as follows.

ACC = TP + TN
P +N

, PPV = TP

TP + FP
, TPR = TP

P

NPV = TN

TN + FN
, TNR = TN

N

PPV is also called precision, TPR is also called recall or sensitivity, and TNR is
also called specificity. The precision measures the fraction of true positives among
all positive predictions while the recall measures the fraction of true positives which
are identified as such. All the above quantities take values on [0,1] where larger is
better.

(3) We define the F 1-score as the harmonic mean of PPV and TPR. We can generalize
the F1-score to the Fβ-score by taking a weighted harmonic mean.

F1 = 2PPV ∗TPR
PPV +TPR , Fβ = 1

1
1+β2

1
PPV

+ β2

1+β2
1

TPR

These quantities again take values in [0,1] where larger is better.

(4) We define a function which maps the unit interval to points in [0,1]2 by

T → (TPR(yT ,X, t), PPV (yT ,X, t)).

The image of this function is called the precision-recall curve (PR-curve), see
Alpaydin [1, p.492]. By AUC-PR we denote the area under the precision-recall
curve assuming values in [0,1]. We define the no-skill line by a mapping of T to
(T, P

P+N) yielding a constant line in [0,1]2 which we will motivate in Lemma 3.56.
There is no meaningful theoretical interpretation of the PR-curve and alternatives
were suggested by Flach and Kull in [11]. The PR-curve however captures the trade
off between precision and recall when changing the threshold. The AUC-PR aims
to factor out all possible thresholds and gives insight into the predictive power of

70

the model. In general, we look for a PR-curve which moves close to the upper-right
corner and a larger AUC-PR is better. For a specific choice of a threshold T we
obtain a point on the precision recall curve. Typically, we aim to choose T such
that we can not increase the precision or recall without decreasing the other (called
pareto-optimum, or efficient point).

(5) Matthews correlation coefficient (by Brian W. Matthews), also called the phi
coefficient (by Karl Pearson) or mean square contingency coefficient is defined as
follows.

MCC = TP ⋅TN−FP ⋅FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Since MCC takes into account all four class sizes in a contingency table it is often
considered as the most informative and fair score regarding binary classifications.
Chicco et al. [7] advocate for the MCC being preferred over accuracy and F1-score
and we will briefly demonstrate an example where this becomes evident below. Ob-
serve that (TP ⋅ TN) corresponds to the diagonal entries of the contingency table
and FP ⋅ FN corresponds to elements which are not on the diagonal. MCC thus
considers their difference and the denominator simply is the appropriate weighting
factor for limiting the range on (−1,1). Stronger negative MCC scores indicate the
prediction being more of the opposite of the true labels and a more positive MCC
indicates stronger correlation. Values close to zero indicate random classification.
Note that MCC is not defined if one label is never predicted or if the data is single
labeled. In any case, an undefined MCC has a serious implication.

Remark 3.54.

(1) The following reveals the dangers of looking at the accuracy score or even the pre-
cision and recall scores. Suppose we are asked to implement a machine learning
model which shall detect faulty apples in shipments. We evaluate PPV = 0.9990,
TPR = 0.9091, ACC = 0.9083, F1 = 0.9519 which indicates a reasonable predictive
power. The corresponding contingency table is TP = 10000, TN = 1, FP = 10,
FN = 1000. Thus P = 11000 and N = 11 so there is only a small proportion of faulty
apples. Our model is able to detect a 90% of good apples while it was only able
to detect 10% of faulty ones meaning it is a very weak model for rejecting faulty
apples and accepting good ones as we desire. In this situation Matthews correlation
coefficient would indicate the flaws as we obtain MCC = 0.

(2) Besides using MCC another countermeasure to this phenomenon is to derive base
lines for the F1-score and the precision which correspond to so-called no-skill clas-
sification. To that end we introduce random classifiers and compute the expected
scores. We will see how to set up a random classifier in order to obtain the maximal
expected scores among all random classifiers for a problem at hand. Whenever a
classifier exceeds the best scores attainable by random classification, we can claim
the classifier is better than random.

71

Definition 3.55. Random and constant classifiers

(1) Let p ∈ [0,1]. We define a random classifier yp(x) as a random function taking
the value 1 with probability p and taking the value 0 with probability 1 − p.

(2) We define y ≡ 0 the always-zero-classifier and y ≡ 1 the always-one-classifier. Classi-
fiers which always return the same class label are called constant classifiers.

Lemma 3.56. Expected F1-score and expected precision
Given a random classifier yp and data X, t. Denote by π = P

P+N the fraction of positives.

We refer to Flach and Kull stating E(F1(yp,X, t)) = 2pπ
p+π and E(PPV (yp,X, t)) = π,

see [11, p.3,4].

Corollary 3.57.
The F1-score of yp evaluated for any given data-set with 0 < π = P

P+N attains a unique
maximum at p = 1. In particular the F1 score of the always-one classifier is maximal
maxpE(F1(yp,X, t)) = 2π

1+π = F1(1,X, t).

Proof.

We compute ∂
∂p(

2pπ
p+π) =

2p(p+π)+2pπ(1+π)
(p+π)2 > 0 if p > 0. For p = 0 the F1-score is 0 and for

p > 0 the F1-score is positive. Hence the maximum is attained at p = 1. The maximality
of the expected F1 score for the always-one classifier follows since p = 0 on a zero-set.

Remark 3.58.

(1) As we have proven, the always-one classifier provides the same F1 score as the best
random classifier making it suitable for a baseline comparison. Since random and
constant classifiers do not incorporate any information hidden in the data we refer
to such classifiers as no-skill classifiers. They provide us no-skill scores which we can
use for comparing other classifiers. One way we incorporate such a no-skill score is
by drawing a constant line at the no skill precision π reflecting a no-skill precision
recall curve. Thus we can read of the quality of a model by looking at whether
the precision recall curve is above (better) or below (worse) this no-skill line. The
resulting no skill AUCPR clearly is π.

(2) We refer to the previous example and compute an expected F1-score of around 0.9995
and expected precision of about 0.9990. For our classifier of choice we attained
PPV = 0.9990 the no-skill precision and F1 = 0.9519 is worse than the no-skill F1

score. Therefore, if we were to use the always-one classifier we would achieve a better
classification which clearly hints our classifier is not satisfactory.

72

Chapter 4

Learning node selection rules

As proven in Theorem 2.31 BESTFS provides us a minimal branch-and-bound tree
among all node selections when using BB to solve KP. Still a node-selection which
provides us a short exploration phase is not yet found. In fact a polynomial bound
on the number of nodes in the exploration phase could prove P=NP if a node can be
processed and selected in polynomial time as well. We do not hope for such a result
and thus try to at least heuristically minimize the exploration phase by using machine-
learning. We steer a node-selection such that ideally it moves along a PTO. We can use
this to truncate BB at an appropriate point and obtain a heuristic solution. In order
to train a model which aids a node-selection rule we require a training set and maybe a
test set to evaluate the model. To that end we introduce random instances which serve
this purpose. In machine learning it is good practice to scale the inputs leading to the
following assumption.

Permanent Assumption 3.
From this point onward for any given instance of KP we assume the benefits to be scaled
by the maximum bi = bi

max1≤i≤n bi . These quantities are still referred to as benefits. Clearly
in general they no longer coincide with the profit over weight ratios.

Definition 4.1. Random instance
We generate random instances of KP of size n ∈ N with pairwise distinct profits, weights
and benefits. Furthermore, we apply scaling of items such thatW = 1 and max1≤i≤n ci = 1.
We also scale the benefits by the maximum and obtain values in (0,1]. Random instances
thus satisfy all permanent assumptions 1, 2, 3 imposed on KP.

73

Algorithm 8: Generating a random instance of KP

Data: instance size n ∈ N
Result: random instance KP

1 Initialize ci = wi = 1, bi = ci
wi

1 ≤ i ≤ n ;

2 while any ci = cj or any wi = wj or any bi = bj do
3 Sample ci,wi ∼ U(0,1), 1 ≤ i ≤ n until all ci,wi > 0;
4 Sample capacity W ∼ U(max1≤i≤nwi,∑ni=1wi) ;
5 Compute benefits bi = ci

wi
, 1 ≤ i ≤ n

6 Apply scaling ci ∶= ci
max1≤i≤n ci , wi ∶=

wi
W , bi ∶= bi

max1≤i≤n bi , 1 ≤ i ≤ n ;

7 return ci,wi, bi 1 ≤ i ≤ n labelled according to descending order of benefits

This algorithm provides an instance of KP almost surely after one iteration.

Definition 4.2. Tension of an item
We define for each item i of a random instance of KP notions being called tensions which
reflect the existence of similar items. We evaluate the so-called tension with regard to
both profit and weight of items.

f̃w(i) = −
n

∑
j=1
i/=j

log(∣wi −wj ∣) the unnormalized profit tension of item i,

f̃c(i) = −
n

∑
j=1
i/=j

log(∣ci − cj ∣) the unnormalized weight tension of item i.

We obtain the normalized versions of these quantities by dividing the maximum and
refer to these as the weight tension respectively profit tension of item i.

fw(i) = f̃w(i)
maxj f̃w(j) , fc(i) =

f̃c(i)
maxj f̃c(j)

.

Note that the respective tension is finite and positive for random instances KP. For
random instances we can show easily that the tensions are also finite and non-zero in
expectation.

4.1 Training and test data

Data generation

We compute the minimal branch-and-bound tree for 1000 instance for each size n ∈
{25,50,75,100} providing us a training set of 4000 random instances. For generating
a test set we proceed analogously where only 250 random instances for each size n ∈
{25,50,75,100} are considered. The minimal branch-and-bound tree is obtained by using
BB with BESTFS.

74

Slicing and dicing the training/test set

At each node in the tree being an instance KPI,θ we consider the quantities
(fc(k), fw(k), ck ⋅ xk,wk ⋅ xk,wI,θ, cI,θ, cgreedy,wgreedy, di, θk). From left to right the cor-
responding features are called the profit tension (of k), weight tension (of k), profit
contribution (of k), weight-contribution (of k), fixed weight, fixed profit, greedy profit,
depth (of the node) and fixed variable value (of the node). k denotes the critical item,
xk denotes the critical variable value as defined Lemma 2.5 and ck and wk respectively
are the profit respectively weight of the critical item. By respectively multiplying with
xk we obtain the amount of profit/weight to be added to c≤ to obtain an lp-optimal
(however potentially fractional) solution. The tensions fc(k), fw(k) of the critical item
k are defined as above in Definition 4.2. The label vectors for both training and test
set are composed of ones and zeros respectively indicating whether a node was in the
PTO obtained when solving KP with BESTFS. In fact, for training we only consider
branched nodes or nodes pruned by bound and exclude the root since only then
all quantities are defined. The prediction of the root clearly can be set to be 1 and we
explain later how we predict infeasible and integral nodes.

4.2 Learning PTO

We set up a DNN which we refer to as DNNC-pto having the following architecture.

model hidden layer size output layer size types of layers

DNNC-pto 6 2 relu-softmax

Table 4.1: DNNC-pto; architecture

In this way DNNC-pto is used as a discriminative model to predict the conditional
probability of being in PTO based on a given node.

We fit the model as specified in Chapter 6. We evaluate DNNC-pto on the fixed test set
consisting of all nodes of 250 instances as described above. We evaluate scores both over
all test nodes and on slices generated according to depth. The threshold being used to
obtain the considered discriminant function according to Definition 3.52 is T ∶= 0.5.

75

depth mcc recall precision f-1 no-skill precision no-skill f-1-score samples

all 0.68 0.67 0.75 0.71 0.11 0.20 160079

0 to 5 0.26 0.15 0.59 0.24 0.10 0.19 28781
5 to 10 0.50 0.39 0.69 0.50 0.06 0.12 53229
10 to 15 0.65 0.63 0.73 0.68 0.08 0.15 35038
15 to 20 0.72 0.78 0.73 0.75 0.11 0.19 22183
20 to 25 0.76 0.88 0.71 0.79 0.13 0.23 15482

25 to 30 0.80 0.94 0.73 0.82 0.15 0.27 10979
30 to 35 0.82 0.97 0.76 0.85 0.18 0.30 7896
35 to 40 0.83 0.98 0.77 0.86 0.20 0.33 5629
40 to 45 0.87 0.98 0.83 0.90 0.23 0.37 3901
45 to 50 0.90 0.98 0.88 0.93 0.24 0.39 2917

50 to 55 0.93 0.98 0.91 0.94 0.24 0.39 2133
55 to 60 0.94 0.98 0.93 0.96 0.24 0.39 1505
60 to 65 0.95 0.98 0.96 0.97 0.26 0.41 949
65 to 70 0.99 0.99 0.99 0.99 0.27 0.43 590
70 to 75 1.00 1.00 1.00 1.00 0.31 0.48 337

75 to 80 1.00 1.00 1.00 1.00 0.32 0.48 176
80 to 85 1.00 1.00 1.00 1.00 0.24 0.38 68
85 to 90 1.00 1.00 1.00 1.00 0.22 0.36 23
90 to 95 0.00 0.00 0.00 0.00 0.00 0.00 13
95 to 100 0.00 0.00 0.00 0.00 0.00 0.00 4

Table 4.2: PTO-prediction, evaluation on test set

The first row evaluates over all nodes in the test sets. The number of nodes respec-
tively is represented in the sample column. Since the test set is highly imbalanced, we
first and foremost look at MCC indicating a strong correlation between predicted and
actual labels. Recall that the expected precision is exactly the fraction of positives as
proven in Lemma 3.56. We observe that the achieved precision and recall both lie above
the expected scores by a large margin as well.

The subsequent part of the table considers a partition of the test set according
to depths. The MCC throughout the depths suggests that predictions in large depth
become increasingly easy and eventually even become perfect. The fraction of positives
grows closer to 0.5 while the number of nodes shrinks significantly in larger depths. We
note that the maximal depth of a node in an instance with n items is n. In our test set
we have 250 instances of each size {25,50,75,100}. Therefore only 25% of instances can
even produce a node at a depth between 76 and 100, 50 % of instances can produce a
node at a depth between 51 and 100, and so on. This in part explains the sparsity at
increasing depths. On the other hand, predictions close to the root (say depth 0-5) are
quite weak which we should bear in mind when constructing node selection rules using
DNNC-pto.

Now let us evaluate the classification independent of the chosen threshold T = 0.5 used
to obtain the above discriminant function. To that end we look at the corresponding
precision-recall curve.

76

Figure 4.1: DNNC-pto; PR-curve on test set

We observe in Figure 4.1 that regardless of the threshold, we can achieve reasonable
predictions and stay well above the no skill line. Note that we will only use DNNC-
pto as a discriminative model providing us probabilities interpreted as scores. The
probabilities let us order active nodes according to their certainty of being in PTO and
thus naturally define a node-selection rule by choosing nodes with largest probability.

4.3 Using PTO prediction within BB

Now let us employ DNNC-pto in a node-selection rule for BB. As hinted above only
the modeled posterior probabilities of a node KPI,θ being in PTO given the features
observed in the node KPI,θ will be used in our node selection rule. The model DNNC-pto
models this conditional probability which we denote by DNNC-pto(KPI,θ) ∼ p(KPI,θ ∈
PTO ∣ KPI,θ). We will then again solve another set of randomly generated instances
and look at suitable measures which tell us how DNNC-pto performed in this context.

Definition 4.3. DFS-based ML-aided node-selection rules
Given an arbitrary branch-and-bound tree T for an arbitrary instance of KP.

(1) We define the DFS-in-pto node-selection rule by assuming an arbitrary current tree
and an arbitrary non-empty set of active nodes as follows. We push newly generated
nodes on the stack of active nodes such that the node fixing the prior critical variable
to 1 is on top. For the respective node we compute DNNC-pto at insertion if none
of its input arguments as defined in Section 4.1 is null. Otherwise we conventionally
set the modeled probability to 1. Among the two most recent nodes we select the
one having a larger score being the predicted posterior probability. Thus we traverse
through T in a DFS fashion where the decision of going left or right is made by the
model. In case there is only one active node left we perform the unique choice. A
tie-break is performed by preferring the later node in the stack (inclusion) similar
to Definition 2.18.

77

(2) At insertion we evaluate for all siblings KPI,θ,KP
′
I,θ their sibling similarity de-

fined by s(KPI,θ,KP ′
I,θ) ∶= 1 − ∣DNNC-pto(KPI,θ) −DNNC-pto(KP ′

I,θ)∣. We again
use the convention of setting DNNC-pto(KPI,θ) to 1 if some input argument is null.
In this way a pair of leaves in T provides the highest similarity of 1. Another way
to achieve a large sibling similarity is having similar estimated probabilities.

(3) We add a rule to DFS-in-pto in order to obtain the DFS-in-pto with restart
node-selection rule (shorthand DFS-in-pto-w-r). Whenever we run into a leaf of
a current tree T we select an active node KPI,θ among the set of active nodes
which maximizes the product s(KPI,θ,KP ′

I,θ) ⋅ DNNC-pto(KPI,θ). This product
associated to KPI,θ is large whenever it has a high probability of being in PTO and
has a similar sibling. Thus, whenever a DFS-run terminates by running into a leaf,
we jump to an ambiguous but worthy spot instead of exploring the closest nodes
(diversification).

In the following let us evaluate the two newly defined node-selection rules from Def-
inition 4.3 and compare them to their deterministic counterparts. We generate 250
random instances for each size n ∈ {25,50,75,100}. Each instance is solved with all
considered node-selection rules providing a fair comparison on the same set of 1000 test
instances. We look at the sizes of branch-and-bound trees (left hand side) achieved by
some prominent node-selection rules and in particular we are interested in the length of
the exploration phases (right hand side) as defined in Definition 2.35.

Figure 4.2: DNNC-pto; performance in BB

Note that both boxplots are on a logarithmic scale and only show the y-axis from 1
onward. An empty branch-and-bound tree can not be encountered. Moreover an empty
exploration phase implies greedy optimality. In this case the duration (even of the
individual phases) is independent of the node-selection rule being used, see
Theorem 2.36.

78

At first let us consider the left hand side of Figure 4.2 reflecting the total number of
nodes processed during the respective runs of BB. As proven in Theorem 2.31 BESTFS
always achieves the smallest branch-and-bound trees. DFS-exclusion has the worst over-
all performance and even a random restart seems to help improve the performance. By
employing DNNC-pto the performance is improved significantly, and when using the
restart at ambiguous spots, we almost achieve minimal branch-and-bound trees.

Now let us focus on the exploration phase analysis looking at the right hand side of
Figure 4.2. Note that in case that the greedy-solution is optimal, the exploration phase
has length 0. Since we evaluate all node-selection rules on the same set of instances,
the exploration phase analysis shows the behavior of node-selection rules only on non-
greedy optimal instances in our test-set. For now let us focus only on this case. By
Lemma 2.29 BESTFS will explore the entirety of T (c∗) which is the maximal explo-
ration phase for non-greedy optimal instances among all optimal node selection rules,
see Theorem 2.36. By this, any node-selection rule which explores more vertices in the
exploration phase than BESTFS is not optimal and we can see in Figure 4.2 that this
holds true for DFS-exclusion (with restart). They behave non-optimally on many in-
stances. Conversely the ML-aided node selection rules DFS-in-pto (with restart) admit
a shorter exploration phase than BESTFS in median. If we briefly look at the overall
performance (left hand side) we can deduce that still, DFS-in-pto (with restart) does
not behave optimally on all instances since they perform (slightly) worse than BESTFS
in general. Thus there are some nodes outside of T (c∗) being explored by DFS-in-pto
(with restart) which is penalized by up to two additional nodes in the validation phase,
see Theorem 2.36. In this regard the ML-aided node-selection rules find an optimal
solution rather quickly on the typical instance but make mistakes (i.e. exploring outside
of T (c∗)) which increase the number of nodes in the validation phase.

Now let us consider the behavior of the node-selection rules on the greedy-optimal
instances. For the sake of argument suppose we use the all-zero solution as initial
solution which fully exposes the capabilities of node-selection rules. Still the search
behaves the same but we get rid of the concealing case of having optimal roots. The
deterministic DFS-exclusion (with restart) finds the optimal greedy-solution on the first
run of DFS, see Lemma 2.16. Since by Permanent Assumption 2 the greedy solution
is unique, DFS-exclusion (with restart) provide us a minimal exploration phase in this
case. Since the PTO coincides with TE and is contained in TU , Theorem 2.36 implies
that DFS-exclusion (with restart) is optimal on greedy-optimal instances. Considering
the ML-aided node-selection rules we of course can not prove something similar as we
make heuristic choices. However if we recall that we only train DNN-in-pto on PTO
being obtained by BB (using the greedy as initial), we never learned the trajectory to a
greedy-solution and therefore can not expect good performance in the exploration phase
in this case.

79

In the following table we present the corresponding numerical values concerning
Figure 4.2.

total number of nodes length exploration phase samples
mean std median mean std median

n node-selection

25 BESTFS 52.8±5.4 43.9 44 16.0±3.0 24.3 0.0 250
DFS-exclusion 79.6±9.9 80.0 51 45.1±9.2 74.0 0.0 250
DFS-exclusion-w-r 70.4±8.2 66.5 49 31.2±6.9 55.4 0.0 250
DFS-in-pto 64.0±7.3 58.5 49 26.8±6.0 48.0 0.0 250
DFS-in-pto-w-r 59.3±6.3 50.6 47 16.8±3.7 30.2 0.0 250

50 BESTFS 132.1±14.7 118.3 102 51.1±7.9 63.6 33.5 250
DFS-exclusion 266.1±34.0 274.1 187 190.6±31.7 256.1 87.0 250
DFS-exclusion-w-r 193.7±23.5 189.4 141 96.2±18.4 148.8 41.0 250
DFS-in-pto 204.6±29.6 238.8 114 115.9±26.6 214.3 16.5 250
DFS-in-pto-w-r 158.4±18.0 145.4 112 46.4±8.9 71.8 17.0 250

75 BESTFS 194.8±20.5 165.5 147 77.1±10.9 87.9 53.5 250
DFS-exclusion 470.1±63.9 515.5 330 358.9±61.6 497.3 176.5 250
DFS-exclusion-w-r 326.6±37.2 300.4 264 183.2±30.8 248.4 79.0 250
DFS-in-pto 308.1±39.5 318.8 215 181.0±34.4 277.9 44.5 250
DFS-in-pto-w-r 248.0±28.0 225.7 195 79.8±14.2 114.8 39.0 250

100 BESTFS 300.5±34.2 275.5 226 117.5±18.2 147.1 80.5 250
DFS-exclusion 648.6±88.7 715.2 434 470.0±80.9 652.9 212.0 250
DFS-exclusion-w-r 448.9±51.0 411.3 339 227.8±40.0 322.7 92.5 250
DFS-in-pto 520.4±75.3 607.7 283 324.6±69.7 561.9 59.0 250
DFS-in-pto-w-r 371.9±45.6 368.2 246 105.6±21.3 171.5 44.0 250

Table 4.3: PTO-prediction, performance in BB

By looking at the table it becomes more evident that for fixed n the difference of means
and medians for different node selection rules is quite large, in particular regarding the
exploration phase. This indicates the existence of far outliers, meaning some instances
are particularly hard to solve, given a particular node-selection rule is being used. This
observation is particularly pronounced for DFS-in-pto which quickly finds an optimal
node in many instances. However, for some particular instances the search with DFS-
in-pto was widely unsuccessful. For DFS-in-pto with restart, we observe a much more
desirable behavior. The restart rule largely helps the search getting back on track in
case we get lost in these few particularly hard instances.

80

Chapter 5

ML-aided heuristics for KP

A first entry point for machine learning for setting up heuristics for KP is truncating
a branch-and-bound algorithm at a suitable point in time. A second possibility is
directly applying ML to an instance instead of using it to guide a predefined method.
Martini showed multiple such direct applications of neural networks to the knapsack
problem in [29]. We will address the direct prediction of optimal profit and inves-
tigate the influence of additionally providing the greedy and lp-bound to the model. A
more indirect approach for accurately predicting the optimal profit is directly predict-
ing an optimal solution. This approach has the advantage that the predicted profit
is associated with a (potentially infeasible) solution which could be further processed by
using a heuristic such as neighborhood search. In the following section we will present
the models being used and then evaluate model specific properties. For testing we use
the same test set throughout the section. Only at the end we will launch all models on
this test set in order to guarantee a fair comparison of estimated profits.

Permanent Assumption 4.
From this point onward we limit ourselves to instances of KP of size n = 50.

Definition 5.1. greedy-lp-mean estimator
Given an instance of KP. Let clp, cgreedy be the respective lp- and greedy-profit. Then

we define the greedy-lp-mean-estimator as the mean cint−lp ∶= clp+cgreedy
2 .

Lemma 5.2. greedy-lp-mean estimator approximates the optimal value
For the optimal profit c∗ of an instance of KP we have

∣c∗ − cint−lp∣ ≤ 1.

Proof.
By the Permanent Assumption 1 all item profits are in (0,1]. If KP is lp-optimal it is
also greedy-optimal by Lemma 2.5 and the greedy-lp-mean-estimator is c∗. Otherwise
we consider the feasible packing x≤ packing items [k − 1]. Then the associated profits
satisfy c≤ ≤ cgreedy ≤ c∗ ≤ clp. Since xlp packs x≤ and a fraction [0,1) of k, their profits

81

differ by at most one. In particular the profit difference of cint−lp ∈ (cgreedy, clp) and c∗

is at most one.

Remark 5.3.
This justifies using cint−lp as an estimator for c∗ having an absolute error of at most 1.
All subsequently presented models aim to predict an optimal objective function value
which is closer to the optimal objective function value than cint−lp.

5.1 Training data and test data

In order to obtain a training and test set for our model we generate 10.000 random
instances of size n = 50 which are solved with BB using BESTFS. We split off 1.000
instances for testing and the other 9.000 instances are used for training the models.
Whenever we refer to full input data we use the item profits ci, the item weights
wi, the greedy-bound cgreedy and the lp-bound clp as inputs for a model. The reduced
input data uses only the item’s profits and weights. For implementation details like
the format of the data we refer to Chapter 6.

5.2 Learning optimal profit

In this section we aim to directly predict the optimal profit. We use DNN and RNN
similar to Martini in [29]. We use slightly different networks though. This is mainly due
to the smaller size of the instances and the limited computational resources. In addition
to Martini’s work we will also use the greedy and lp-bounds as inputs and investigate
the impact on the quality of predictions. In Table 5.1 we define architectures of RNN
and DNN which are respectively trained on the full and reduced datasets. The models
are called DDN-full, DNN-reduced, RNN-full, RNN-reduced accordingly. For
details and formats of the inputs we refer to Chapter 6.

model hidden layer sizes output layer size types of layers

DNN-full 100-100 1 σ-σ-lin
DNN-reduced 100-100 1 σ-σ-lin
RNN-full 64-32-100-100 1 LSTM-LSTM-lin-lin-lin
RNN-reduced 64-32-100-100 1 LSTM-LSTM-lin-lin-lin

Table 5.1: profit prediction model architectures

5.3 Learning solutions

Let us proceed by defining models which predict solutions for KP. We do so by training a
classifier which models the posterior probability of items for being packed in an optimal
solution. We assess the predictive power in this section and we postpone the evaluation
of the quality of the associated profit predictions later. We introduce one additional
score for comparing vectors as follows.

82

Definition 5.4. bit-error
Given two data-points s, y ∈ Rn. The bit-error is defined as errbit(s, y) = ∑mi=1 I{si/=yi}
where I{} is the indicator function. In case s, y are binary vector the bit-error is equal
to the Manhattan distance errbit(s, y) = ∣∣s− y∣∣1. The bit error allows us to quantify the
dissimilarity of two vectors. In order to evaluate sets of vectors we may aggregate
the per vector bit-error for instance by using mean, median, and standard deviation.

Now let us define the architecture of the discriminative classification model RNNC-
reduced which is based on an RNN. The model follows the seq-to-seq paradigm (see
Section 3.5.4) and the items are fed through the network as a time-series one by one
in an online fashion. The classification is then performed by evaluating the model and
applying a threshold of T ∶= 0.5 as defined in Section 3.7.2.

model hidden layer sizes output layer size types of layers

RNNC-reduced 64-32-100-100 2 LSTM-LSTM-lin-lin-softmax

Table 5.2: RNNC-red; architecture

Having trained the model on the reduced dataset as described in Chapter 6 we perform
all subsequent evaluations on the same test set defined in Section 5.1. Let us evaluate
the bit-errors achieved by RNNC-reduced and compare to the greedy and lp-solutions.

bit-error 0 1 2 3 4 5 6 8 mean std median samples

greedy 420 0 173 227 127 41 11 1 1.81±0.107 1.72 2 1000
lp 0 234 370 284 97 15 0 0 2.29±0.061 0.98 2 1000
RNNC-red 68 305 373 189 59 6 0 0 1.88±0.063 1.02 2 1000

Table 5.3: RNNC-red; bit error

The values in columns of Table 5.3 which are labeled by numbers represent the num-
ber of solutions which have the respective bit-error when being compared to an optimal
solution. In other words, this is a histogram of bit-errors. The mean, standard devia-
tion, and median in each row aggregate the bit-errors over all solutions obtained by the
respective method labeling the row.

First off, note that the evaluation of vector predictions adds a further layer of complica-
tion in comparison to merely evaluating label predictions. The solutions define bundles
of n = 50 items which are evaluated above. We observe that a large proportion of in-
stances is greedy optimal and unfortunately RNNC-reduced does not manage to predict
many solutions (specific bundles of n = 50 items) perfectly. However the bit-errors on
non-perfect predictions are comparably small. This motivated launching a neighbor-
hood search on the set of predicted binary vectors which tries to push solutions towards
feasibility and optimality.

83

Before doing so, let us put all items in a bag (i.e. multi-set) meaning we no longer
consider their belonging to instances. In this sense, in the following we move on from
an evaluation on the instance level to an evaluation on the item level by factoring out
the n = 50 fold bundling.

(a) profit vs. weight (b) profit tension vs. weight tension

Figure 5.1: RNNC-red; item predictions

We plot items as points in a two-dimensional space. The coordinates are defined by the
profit and weight (Figure 5.1 (a)) and respectively the corresponding profit tensions
and weight tensions (Figure 5.1 (b)). A wrong prediction is indicated by a red dot
while a correct prediction is indicated by a green dot. In Figure 5.1 (a) we clearly spot
that wrongly predicted items satisfy a linear correlation of weight and profit. These
items thus have a similar problematic benefit. Focusing on Figure 5.1 (b) there also is
a tendency of wrongly predicting items if both tensions are large. Hence the difficulty
of predicting a packing for RNNC-reduced lies in distinguishing similar items which are
near a certain benefit.

(a) profit vs. weight (b) profit tension vs. weight tension

Figure 5.2: RNNC-red; wrong item predictions

84

In Figure 5.2 we look more closely into the class of wrongly predicted items. We again
plot the items in the respective two dimensional spaces. This time we only plot items with
a wrong prediction. If the bias error is negative we use a blue dot, otherwise we use a red
dot. To be clear the bias error is given by DNNCred(i)−x∗i where DNNCred(i) ∈ [0,1] is
the predicted probability of being in a solution and x∗i ∈ {0,1} indicates if i actually was
in an optimal solution (of some test instance we no longer factor in). By plotting only
wrong predictions the bias error is in [−1,−0.5]∪ [0.5,1]. Negative values correspond to
false negatives and positive values correspond to false positives.

In Figure 5.2 (a) it is visible that items with small profits lightly tend to be false positive
if the weight is smaller and false negative if the weight gets larger. Items where both
profit and weight are rather large do not show a clear tendency. In Figure 5.2 (b)
we observe that by looking only at the respective tension of wrongly predicted items
it is seemingly impossible to identify a pattern for false positives and false negatives.
Considering all item predictions we achieve the following prediction scores on the
item level.

mcc recall precision f-1-score no-skill precision no-skill f-1-score samples

0.918923 0.960778 0.98023 0.970406 0.643 0.782715 50000

Table 5.4: RNNC-red; classification report

In addition to the the no-skill precision, also the following confusion matrix shows that
the classes formed by item labels are imbalanced. We suggest looking at MCC which
is well suited for assessing classifications of imbalanced test sets. We confirm a very
strong correlation between predictions and the truth. In the confusion matrix below
we observe that wrongly classifying positive items seems as likely as wrongly classifying
negative ones.

true class predicted class

positive negative total

positive 30889 1261 32150

negative 623 17227 17850

Table 5.5: RNNC-red; confusion matrix

Concluding, predicting whether an individual item can be found in an optimal solution
or not can be done very reliably via RNNC-red. By using RNNC-red we could therefore
preprocess instances by fixing a subset of items by thresholding according to the pre-
dicted probability. One perhaps would naturally fix items with either very large or very
small probabilities (i.e. rather certain predictions) to the predicted label. Then an exact
method like BB could be applied on the remaining unfixed part, again being an instance
of KP but with fewer items. This could reduce the running time and perhaps yield (close
to) optimal solutions depending on how conservative the threshold probability is chosen.

85

5.3.1 Local search heuristic

In order to leverage the relatively small average bit-error of the vector prediction coming
from RNNC-reduced we employ a simple local search heuristic. From a neighborhood
consisting of all feasible solutions which differ by at most ρ bits we choose one which
maximizes the increase in profit. If no feasible solution is present in the neighborhood,
we return the input. We perform r rounds and thus change up to ρ ⋅ r bits.

Definition 5.5. ρ − r local search heuristic
Given an instance of KP and a potentially infeasible integral solution s ∈ {0,1}n. Let
ρ ∈ N denote the radius of the neighborhood B̃ρ(s) ∶= {y feasible ∣ errbit(s, y) ≤ ρ} and
r ∈ N denote the number of repeats. We perform a best-improvement local search heuris-
tic as follows.

Algorithm 9: ρ − r local search heuristic

Data: KP, binary vector s ∈ {0,1}n, radius and number of repeats ρ, r ∈ N
Result: sρ−r−heu feasible for KP or s

1 for r times do

2 if B̃ρ(s) /= ∅ then

3 Find s̃ ∈ B̃ρ(s) with maximal profit;
4 Update s ∶= s̃;
5 else
6 pass ;

7 return sρ−r−heu ∶= s and the associated profit cρ−r−heu.

Lemma 5.6. Properties of the ρ − r local search heuristic
Given an instance of KP and the optimal profit c∗. Consider a binary vector s ∈ {0,1}n
and the sρ−r−heu constructed according to Definition 5.5. Denote the profit associated
to sρ−r−heu by cρ−r−heu. Then for all ρ, r ∈ N the following statements hold.

(1) The ρ − r local search heuristic has running time O(rnρ+1).
(2) If ρ = r and s1−r−heu is feasible then sρ−1−heu is feasible and cρ−1−heu ≥ c1−r−heu.

If ρ = r and sρ−1−heu is infeasible we have sρ−1−heu = s1−r−heu = s.
(3) sρ−r−heu is feasible if and only if sρ−(r+1)−heu is feasible.

s(ρ+1)−r−heu is feasible if sρ−r−heu is feasible.

(4) The profits cρ−(r+1)−heu ≥ cρ−r−heu.
If sρ−r−heu is feasible we have c(ρ+1)−r−heu ≥ cρ−r−heu.

(5) If errbit(s, s∗) ≤ ρ then an optimal solution is found cρ−r−heu = c∗.

(6) errbit(s, sρ−r−heu) ≤ r ⋅ ρ.

86

Proof.

Ad (1) By dropping the feasibility condition in B̃ρ(s) we estimate

∣B̃ρ(s)∣ ≤ ∣⊍ρi=0{y ∈ {0,1}n ∣ errbit(s, y) = i}∣ = ∑ρi=0 (
n
i
) = O(nρ).

For each binary vector we requite O(n) to compute the profit, the weight and to
check feasibility. Hence, we can determine B̃ρ(s) and a maximizer s̃ in O(nρ+1).
The maximum can be computed at run-time. By repeating this r for times we
end up with a complete running-time of O(rnρ+1).

Ad (2) Let ρ = r. If we deploy the 1-r local search heuristic we update at most 1 bit
in each of the r repeats and thus after r steps errbit(s1−r−heu, s) ≤ r. In the
ρ−1 local search heuristic we consider all solutions with at most ρ different bits,
among which we also find s1−r−heu the output of the 1 − r local search heuristic.

Hence, if s1−r−heu ∈ B̃ρ(s) /= ∅ is feasible then the profit-maximizer sρ−1−heu
determined in the ρ−1 local search heuristic is a feasible solution with cρ−1−heu ≥
c1−r−heu. If sρ−1−heu is infeasible there exists no feasible solution with a bit error
of at most ρ since we exhaustively searched B̃ρ(s). Thus also s1−r−heu is infeasible
and the algorithms both return s.

Ad (3) Since the ρ − (r + 1) local search heuristic also considers changing 0 bits in
each round, we encounter sρ−r−heu. Hence, the feasibility of sρ−r−heu implies
the feasibility of sρ−(r+1)−heu. To prove the inverse, we recall that the algorithm
returns the input if no feasible solution can be constructed hence the infeasibility
is carried over in subsequent rounds.

Regarding the second claim, we similarly argue that sρ−r−heu is considered in
the (ρ + 1) − r local search heuristic. If sρ−r−heu is feasible it appears as a
candidate improvement in the (ρ+1)−r local search thus we output some feasible
s(ρ−(r+1)−heu.

Ad (4) By (3) sρ−(r+1)−heu = sρ−r−heu if both are infeasible. If both are feasible sρ−r−heu
appears as a candidate improvement in the ρ − (r + 1) local search. If sρ−r−heu
is feasible also s(ρ+1)−r−heu is feasible by (3) and it appears as a candidate im-
provement in the (ρ + 1) − r local search hence proving c(ρ+1)−r−heu ≥ cρ−r−heu.

Ad (5) In the ρ − 1 local search heuristic all elements with at most ρ different bits
are encountered. Therefore also an optimal solution which has errbit(s, s∗) ≤ ρ
appears as a candidate. Hence, we have a candidate with the optimal profit and
by feasibility no larger-profit-candidate can appear. Thus cρ−1−heu = c∗. By (4)
this holds true for all subsequent rounds thus cρ−r−heu = c∗

Ad (6) In each of the r round at most ρ bits are changed. The result of each round is
used as input in the new round and again ρ bits may change. Thus in total at
most r ⋅ ρ bits of the input s are changed.

87

Definition 5.7. ρ − r local search hybrid heuristic
Given a binary vector s ∈ {0,1} for KP. Let cgreedy and xgreedy be the greedy profit,
respectively the greedy solution of KP. Consider sρ−r−heu the output of the ρ − r local
search heuristic according to Definition 5.5 when using s as input and let cρ−r−heu be
the corresponding profit. We define the hybrid solution sρ−r−hyb by comparing it to the
greedy as follows.

Algorithm 10: ρ − r local search hybrid heuristic

Data: KP, xgreedy , sρ−r−heu
Result: sρ−r−heu feasible for KP

1 if sρ−r−heu feasible and cρ−r−heu > cgreedy then
2 return sρ−r−heu
3 else

4 return xgreedy

Lemma 5.8.
Let ρ, r ∈ N and consider an instance of KP with optimal profit c∗ and greedy profit
cgreedy. Consider sρ−r−heu and the associated profit cρ−r−heu constructed according to
Definition 5.5 and let sρ−r−hyb and the associated profit cρ−r−hyb be according to
Definition 5.7. Then the following statements hold true.

(1) sρ−r−hyb is feasible for KP.

(2) If already sρ−r−heu is feasible cρ−r−hyb ≥ max(cρ−r−heu, cgreedy).
(3) If KP is greedy optimal cρ−r−hyb = c∗. If already cρ−r−heu = c∗ and sρ−r−heu is feasible

then still cρ−r−hyb = c∗.

Proof.
Since the greedy solution is always feasible, we force a feasible output. If sρ−r−heu is
feasible, sρ−r−heu is the feasible solution with the larger profit by construction and not
worse then the better one. In the case that the greedy solution is optimal, we obtain
cρ−r−hyb = c∗.

We predict solutions s by using RNNC-red from the reduced test-set as specified in
Section 5.1. Furthermore, we consider the greedy-solutions xgreedy of all test-instances.
We use both as respective input for the heuristics defined in Definition 5.5 and Definition
5.7 for all parameter choices (ρ, r) ∈ [3]2. We launch the heuristics on all instances
comprising the test set and display the bit-errors in the following table being composed
analogous to Table 5.3. The prefix of row labels corresponds to the respective (ρ, r) and
in case the hybrid Definition 5.7 is applied we append the syllable -hyb. The postfixes
RNNC-red respectively greedy denote the inputs of the respective heuristics.

88

bit-error 0 1 2 3 4 5 6 7 8 mean std median samples

RNNC-red 68 305 373 189 59 6 0 0 0 1.88±0.063 1.02 2.0 1000
greedy 420 0 173 227 127 41 11 0 1 1.81±0.107 1.72 2.0 1000

1-1-RNNC-red 373 92 122 259 114 36 4 0 0 1.77±0.1 1.62 2.0 1000
1-1-greedy 420 0 173 227 127 41 11 0 1 1.81±0.107 1.72 2.0 1000
1-1-hyb-RNNC-red 500 7 119 208 124 33 9 0 0 1.58±0.107 1.73 0.5 1000

1-2-RNNC-red 465 12 100 251 120 43 9 0 0 1.71±0.108 1.75 2.0 1000
1-2-greedy 420 0 173 227 127 41 11 0 1 1.81±0.107 1.72 2.0 1000
1-2-hyb-RNNC-red 524 1 105 205 122 34 9 0 0 1.54±0.108 1.74 0.0 1000

1-3-RNNC-red 477 0 100 248 123 43 8 1 0 1.71±0.109 1.76 2.0 1000
1-3-greedy 420 0 173 227 127 41 11 0 1 1.81±0.107 1.72 2.0 1000
1-3-hyb-RNNC-red 525 0 106 204 122 34 9 0 0 1.54±0.108 1.74 0.0 1000

2-1-RNNC-red 577 0 1 232 113 58 17 2 0 1.56±0.118 1.91 0.0 1000
2-1-greedy 593 0 2 207 115 60 21 1 1 1.53±0.12 1.94 0.0 1000
2-1-hyb-RNNC-red 623 0 9 186 116 51 15 0 0 1.38±0.115 1.86 0.0 1000

2-2-RNNC-red 578 0 0 232 114 57 15 3 1 1.56±0.119 1.92 0.0 1000
2-2-greedy 595 0 0 207 116 59 19 2 2 1.52±0.121 1.95 0.0 1000
2-2-hyb-RNNC-red 624 0 8 186 117 50 13 1 1 1.38±0.116 1.87 0.0 1000

2-3-RNNC-red 578 0 0 232 114 57 15 3 1 1.56±0.119 1.92 0.0 1000
2-3-greedy 595 0 0 207 116 59 19 2 2 1.52±0.121 1.95 0.0 1000
2-3-hyb-RNNC-red 624 0 8 186 117 50 13 1 1 1.38±0.116 1.87 0.0 1000

3-1-RNNC-red 810 2 6 48 64 58 10 1 1 0.78±0.104 1.67 0.0 1000
3-1-greedy 802 1 3 43 79 57 12 2 1 0.83±0.107 1.73 0.0 1000
3-1-hyb-RNNC-red 824 2 5 45 60 55 7 1 1 0.72±0.1 1.62 0.0 1000

3-2-RNNC-red 866 0 0 4 62 58 8 1 1 0.61±0.098 1.58 0.0 1000
3-2-greedy 849 0 2 8 75 52 11 2 1 0.68±0.102 1.64 0.0 1000
3-2-hyb-RNNC-red 875 0 1 4 58 54 6 1 1 0.57±0.095 1.53 0.0 1000

3-3-RNNC-red 870 0 0 1 61 58 8 1 1 0.6±0.097 1.57 0.0 1000
3-3-greedy 859 0 0 0 75 52 11 2 1 0.65±0.101 1.63 0.0 1000
3-3-hyb-RNNC-red 878 0 1 2 57 54 6 1 1 0.56±0.094 1.52 0.0 1000

Table 5.6: solution prediction heuristics, bit-errors

First of all, let us focus on the number of perfectly predicted solutions which we
can find in the column labeled 0 in Table 5.6. By Lemma 5.8 the number of perfect
predictions when applying the hybrid Definition 5.7 does not get smaller and merely
adds the respective set of greedy-optimal instances to the set of perfect predictions. For
this reason, the application of Definition 5.7 when using xgreedy as input does not have
an effect, and hence, we did not consider it.

Now let us recall what effect one round of the heuristic (Definition 5.5) has. We simply
add all false predictions having a bit-error of at most ρ to the set of perfect predictions
as proven in Lemma 5.6. Solutions with a bit-error of at most ρ thus inevitably
become optimal. In this way, the number of perfect predictions in each row can already
be computed merely from the columns 1 . . . ρ and an application of Definition 5.5 is not
necessary in case we are only interested in the number of optimal predictions obtained
by a one-time application of Definition 5.5. However the underlying optimal solution
is only known after the actual application of Definition 5.5. Since the greedy-solution
never admits a bit-error of 1 the application of the 1 − r heuristic never results in an
optimal solution when using xgreedy as input.

89

Having discussed the behavior of the heuristic on instances with bit-errors of at most
ρ let us move on and take a look at what happens to solutions s, xgreedy having a
bit error larger than ρ. These solutions do not immediately become optimal (except
maybe if the optimal solution is not unique) after one round of the heuristic
(Definition 5.5). By looking at the changing numbers of solutions having a bit error
larger than a fixed ρ and when changing r it becomes evident that the application of
rounds has a large effect on those distant solutions too. Typically there is a feasible and
potentially better solution within a bit-error radius of ρ which becomes the new center of
the neighborhood. However, it is not yet optimal. Moreover it very often is the case that
the new center admits a smaller bit error and in particular many solutions now may admit
a bit-error of at most ρ inevitably becoming optimal in the next round. The improvement
with regard to bit-error is not to be taken for granted. For an update, we choose a feasible
solution only having a maximal profit increase. So besides pushing almost-correct (up
to ρ wrong bits) solutions towards optimality an application of Definition 5.5 literally
draws solutions closer to the optimal one with respect to bit-error. As long as
solutions gravitate towards a smaller bit error an additional round of Definition 5.5 is
promising. For ρ = 1 this seems to be the case for only two times r = 2. For ρ ∈ {2,3} this
effect is exhausted even earlier. Perhaps if r is significantly larger this effect experiences
a renaissance and a trade off between ρ and r has to be faced in any case.

In order to better grasp the application of the hybrid (Definition 5.7) and the relation
of perfect predictions to greedy-optimal solutions, we look at the sets of greedy-
optimal solutions, the sets of perfectly predicted solutions, and their overlap. In other
words we compare the predictive power of the greedy vector to the predictive power of the
(heuristically improved) predictions using RNNC-red. We allow both being improved
by the heuristic but only consider perfect predictions with respect to the individual
methods.

90

Figure 5.3: RNNC-red; sets of perf. pred.; Venn diagrams

Clearly using applying the hybrid (Definition 5.7) to an output of the heuristic (Def-
inition 5.5) simply corresponds to adding the set of greedy-optimal solutions (blue, left
hand circles in venn-diagrams in Figure 5.3) to the set of perfect predictions (orange,
right hand circles in venn-diagrams in Figure 5.3). In this sense, we take the best of both
worlds. Thus the more interesting aspect is looking at the relation between instances
perfectly predicted by the greedy solution (i.e. greedy optimal) and instances which can
be perfectly predicted by applying the plain (and not the hybrid) heuristic
(Definition 5.5) on respective input vectors.

The very few perfect RNNC-red predictions, denoted by s, without applying any
neighborhood search are all achieved on greedy-optimal instances.
For ρ = 1 we observe that the resulting s1−r do not only manage to perfectly predict
more greedy-optimal instances but also some non-greedy-optimal instances.
When using ρ = 2 repetitions do not have any notable effect and the majority of greedy-
optimal instances is perfectly predicted.

91

When using ρ = 3 the repetition seems to again be effective, and the set of perfectly
predicted greedy-optimal instances is almost covered, already for r = 1.

When using the greedy solution xgreedy as input for the heuristic (Definition 5.5) we
only observe an effect for ρ ≥ 2 as discussed above. However in these cases for each r we
observe only slightly weaker predictions as opposed to using s as input.

In conclusion, we recall that the ρ − r local search heuristic has a running time of
O(rnρ+1), see Lemma 5.6. While repetitions only increase the running time by a factor,
their power seemingly is already exhausted after r = 2 steps regardless of the input xgreedy

or s. Increasing the search radius ρ entails polynomial expense but seems very effective.
When using xgreedy it is provably needed to use ρ ≥ 2 to obtain an improvement. Thus
when using xgreedy a minimal running time to achieve an improvement is cubic in n for
fixed r. If we are willing to spend this much or even more computational cost we only
achieve almost as good solutions as when using s as input. In this regard, however, the
greedy solution catches up quite well.

So the leverage of this heuristic in combination with RNNC-red lies in using ρ = 1
and ideally using r ≥ 2 repetitions. This provides quadratic running time for constant
r. Computing the greedy can be done in O(n) and thus applying the hybrid is a cheap
way of getting many optimal heuristic solutions s1−r−hyb in O(rn2). The behavior of the
heuristic (Definition 5.5) and the hybrid (Definition 5.7) with regard to the associated
profit is discussed later.

5.4 Truncated branch-and-bound algorithm for KP

Any branch-and-bound algorithm can be used as a heuristic by interrupting (i.e. trun-
cating) it at a suitable point. If we fetch the current incumbent solution we obtain a
feasible solution which may or may not be optimal but is at least as good as the initial
solution. We will apply this on BB and use a ML-aided node-selection for generating
a heuristic solution for KP. The motivation for employing one of the learned node-
selection rules is that the minimal exploration phase exactly comprises the PTO which
we targeted during learning.

Definition 5.9. A truncated branch-and-bound algorithm (TBB)
We use BB as defined in Section 2.2.3 with DFS-in-pto with restart as defined in Section
4.3. At the first time an active node becomes integral we break the while loop in
BB and force the algorithm to terminate. Afterwards we compare the integral solution
attained at this final node to the initial solution and take the more profitable of the two.

Remark 5.10.

(1) There are many potential events at which truncating BB would be natural. One
such event is the time when the first incumbent update happens. In this setup
we would however explore the entire branch-and-bound tree for greedy-optimal in-
stances because we will never find a better solution. Another reasonable setup would

92

be to run BB until an integral node not worse than the initial solution is detected. In
contrast to our rule, this would allow us to detect several integral nodes and perhaps
dive through the initial struggle.

Recall the evaluation of the ML-aided node-selection rules (see Table 4.3) showed on
the one hand we find an optimal node relatively quickly in a typical instance.
On the other hand, there exist instances where the search for an optimal node is
extensive even when using restarts. We hope to avoid these costly explorations by
truncating at the first integral node which perhaps is found way earlier. In any
case, we can not obtain a worse result than the greedy by comparing to the initial
solution.

(2) Interestingly regarding this heuristic BESTFS is the worst node-selection among
all optimal ones. BESTFS processes all nodes of T (c∗) before an integral node
admitting c∗ is found, see Lemma 2.29 and no optimal node-selection explores nodes
outside of T (c∗) by Theorem 2.36.

(3) A truncated branch-and-bound algorithm generally (if the last node is not the only
active node left) does not provide a proof of optimality which would require
moving through the entire validation phase. Thus even in case the result is an
optimal solution TBB does not inform us whether the solution is optimal.

Having defined TBB let us evaluate the branch-and-bound trees on the test set as de-
fined in Section 5.1 by reevaluating the instances. We look at the sizes of branch-
and-bound trees ∣T ∣ which would have been obtained by BB if it was not truncated,
the length of respective exploration phases ∣NE ∣ and the time until a first integral
node (i.e. prune by integrality or prune by new incumbent) was detected reflecting the
duration of TBB. We perform this evaluation by using several node-selection rules and
discuss their suitability below.

all nodes exploration phase first integral samples
mean std med mean std med mean std med

node-selection

BESTFS 122.6±6.8 109.1 95 45.5±3.7 58.9 25.0 61.8±3.4 54.6 48 1000
DFS-exclusion 231.5±15.8 255.3 133 157.7±14.7 237.4 52.5 18.4±0.7 10.6 18 1000
DFS-exclusion-w-r 182.1±11.6 186.5 121 92.9±9.4 151.4 30.0 18.4±0.7 10.6 18 1000
DFS-in-pto 178.2±11.8 190.5 109 96.1±10.0 161.2 17.5 65.7±4.5 72.2 40 1000
DFS-in-pto-w-r 145.8±8.7 139.7 103 43.5±4.4 70.6 15.0 51.2±3.4 54.3 36 1000

Table 5.7: TBB, duration

First of all, we note that it can well be that the exploration phase is shorter than the
time until an integral node is found. This is exactly the bias being introduced when
having an optimal initial solution being the greedy in our case.

The duration of BB until an integral node is found is exactly the time at which TBB
terminates. In mean, both DFS-in-pto (with restart) are not significantly worse than

93

BESTFS and engaging the restart rule is recommended from a performance point of view.
In particular, the restart rule is actually being applied when solving certain instances.
This means before DFS-in-pto detects an integral node it detects leaves which are either
infeasible or pruned by bound.

Regarding BESTFS it is visible that the proven formula TU = ∣T (c∗)∣ = 2∣T (c∗)∣+1 holds
true. ∣T (c∗)∣ + 1 is exactly the time until the first integral node is detected and T = TU
coincide when using BESTFS, see Section 2.2.5 for proofs and full details. Furthermore
at time ∣T (c∗)∣ + 1 BESTFS is guaranteed to provide an optimal node, also proven in
Section 2.2.5. Therefore, finding an integral node faster than BESTFS is a minimal
requirement we demand from a node-selection rule in order to be used in the truncation
heuristic (Definition 5.9).

Let us briefly discuss the seemingly well performing rules DFS-exclusion (with restart).
It was shown in Chapter 2 that the node corresponding to the trajectory where all items
are excluded provides the greedy solution. In particular this trajectory is traversed by
DFS-exclusion (with restart) first. By breaking at this first integral node being detected,
it is evident that these node-selection rules are not suited for this heuristic besides pro-
viding fast termination (of at most n steps).

Below in Figure 5.4 we look more closely into the choice of the truncation criterion.
We use BB with each node-selection rule of interest to solve the instances in the test
set. For each instance we look at the sequence of incumbent updates. Each updated
profit is normalized by the optimal profit of the respective instance. All sequences are
padded with ones at the end in order to achieve uniform length. We then average over
all instances the respective i-th normalized profit thus obtaining an average sequence
of normalized profits for each respective node-selection rule. The padding of ones
ensures that no bias towards instances with more incumbent updates is introduced when
averaging. We then compute all mean hitting times being the average processing time
until an i-th incumbent update applied. In Figure 5.4 we plot the relation between these
two quantities and interpolate linearly.

Figure 5.4: TBB; incumbent updates

94

We purposefully omit all nodes at which an integral node, but not an incumbent up-
date was encountered. These nodes show that the mean bounds obtained at integral
nodes fluctuate heavily over time and visual insight can hardly be deduced. Figure 5.4
motivates to use TBB in order to strictly improve the initial solution.

Looking at Table 5.7 we can observe that DFS-exclusion (with restart) is able to find
an integral node quickly but Figure 5.4 shows the time until a first incumbent update
can be made is long. DFS-in-pto (with restart) is capable of both, finding an integral
node quickly and it also finds a first improved integral solution quickly. Also note that
the mean hitting times for DFS-in-pto with restart live on the most narrow and early
time frame and DFS-exclusion again admits the exact opposite in this regard. However
the interpretation of the time aspect shall be done with caution because we do not
consider the number of instances which require many incumbent updates. So note that
the large mean hitting times are obtained by (drastically) fewer instances.

Not only does the first incumbent update when using DFS-in-pto happen early, also the
quality of the first new incumbent solution is on average the best besides BESTFS.
While DFS-in-pto with restart provides the best mean incumbents throughout, DFS-in-
pto without restart behaves slightly worse but similar to DFS-exclusion with restart
in this regard. DFS-exclusion provides the weakest mean incumbent updates at each
hitting time. The tendency of achieving large improvements early and running into a
plateau later on is pronounced strongest by DFS-in-pto (with restart).

Focusing on BESTFS we are guaranteed to obtain an optimal solution at the first incum-
bent update (see Lemma 2.29) however still it does not provide a first incumbent update
quickest. We therefore conclude that DFS-in-pto with restart is best applicable in
TBB. BESTFS is also a good choice by the guarantee of an optimal solution but
for an attempt in quickly improving the greedy, it is not as well suited. We finally note
that all mean incumbent updates cinc have an optimality gap cinc

c∗ of less than 1%.

5.5 Evaluation of predicted profits

We dedicate this section to evaluating the profits which are associated with the predicted
solutions. Again we use the same test set as defined in Section 5.1 throughout. We
evaluate the individual techniques defined in this chapter and provide tables which hold
the regarded quantities. We collect the data associate to the respective technique in a
row and the columns reflect aggregates of the per data point bias error. The last column
respectively reflects the number of instances which were predicted using the respective
methods where we always fall back on the same 1000 instances from the test set.

Profit evaluation of DNN-red, DNN-full, RNN-red, RNN-full

First of all, let us evaluate the end-to-end methods which do not have a solution vector
associated. The greedy-lp-mean is a fair baseline comparison for these methods since
it also does not have a concrete solution associated.

95

bias-error mean std median max min samples

greedy-lp-mean 0.011±0.002 0.039 0.014 0.140 -0.195 1000

DNN-full 0.034±0.017 0.276 0.047 0.770 -1.741 1000
DNN-red 0.017±0.029 0.469 0.033 1.373 -2.095 1000
RNN-full 0.011±0.003 0.043 0.019 0.111 -0.218 1000
RNN-red 0.024±0.016 0.252 -0.005 1.263 -0.686 1000

Table 5.8: profit-prediction; DNN-full, DNN-red, RNN-full, RNN-red

It is visible in Table 5.8 that the only reasonable method among these is RNN-full. It
achieves similar results as the greedy-lp-mean having only slightly more deviation and
slightly less min bias error. DNN-full and RNN-red seem to have a similar performance
and DNN-red is practically unusable by having extreme errors and a large deviation.

Profit evaluation of RNNC-red

We move on to RNNC-red which is a model which predicts a solution vector. Therefore
the greedy profit may be considered as a fair baseline comparison.

bias-error mean std median max min samples

greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000

RNNC-red -0.189±0.016 0.264 -0.171 0.909 -1.102 1000

Table 5.9: profit-prediction; RNNC-red

Table 5.9 shows a performance similar to DNN-full or RNN-red which however do not
provide an associated packing. In particular, an RNN seems to be equally well suited for
profit prediction regardless if we demand the profit prediction stemming from a concrete
solution or not.

Profit evaluation of the local search heuristic

We evaluate the heuristic solutions being generated according to the local search heuris-
tics (with hybrid) (Definition 5.5, respectively Definition 5.7). In both cases we use the
greedy-solution xgreedy and the RNNC-red prediction s as an input. Evaluating for pairs
(rho, r) taking all combinations of numbers 1 to 3 provides us the following table which
we subdivide according to different values for ρ and r. The row labels are of the form
ρ-r-input consistent with Table 5.6.

96

bias-error mean std median max min samples

greedy-lp-mean 0.011±0.002 0.039 0.014 0.140 -0.195 1000
greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000

1-1-RNNC-red -0.053±0.004 0.070 -0.024 0.000 -0.376 1000
1-1-greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000
1-1-hyb-RNNC-red -0.035±0.004 0.057 -0.000 0.000 -0.341 1000

1-2-RNNC-red -0.041±0.004 0.061 -0.007 0.000 -0.341 1000
1-2-greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000
1-2-hyb-RNNC-red -0.034±0.003 0.056 0.000 0.000 -0.341 1000

1-3-RNNC-red -0.041±0.004 0.061 -0.006 0.000 -0.341 1000
1-3-greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000
1-3-hyb-RNNC-red -0.034±0.003 0.056 0.000 0.000 -0.341 1000

2-1-RNNC-red -0.03±0.003 0.054 0.000 0.000 -0.335 1000
2-1-greedy -0.03±0.003 0.056 0.000 0.000 -0.454 1000
2-1-hyb-RNNC-red -0.025±0.003 0.048 0.000 0.000 -0.335 1000

2-2-RNNC-red -0.03±0.003 0.054 0.000 0.000 -0.335 1000
2-2-greedy -0.03±0.003 0.056 0.000 0.000 -0.454 1000
2-2-hyb-RNNC-red -0.025±0.003 0.048 0.000 0.000 -0.335 1000

2-3-RNNC-red -0.03±0.003 0.054 0.000 0.000 -0.335 1000
2-3-greedy -0.03±0.003 0.056 0.000 0.000 -0.454 1000
2-3-hyb-RNNC-red -0.025±0.003 0.048 0.000 0.000 -0.335 1000

3-1-RNNC-red -0.008±0.001 0.024 0.000 0.000 -0.184 1000
3-1-greedy -0.01±0.002 0.028 0.000 0.000 -0.225 1000
3-1-hyb-RNNC-red -0.007±0.001 0.022 0.000 0.000 -0.157 1000

3-2-RNNC-red -0.005±0.001 0.019 0.000 0.000 -0.173 1000
3-2-greedy -0.006±0.001 0.021 0.000 0.000 -0.211 1000
3-2-hyb-RNNC-red -0.005±0.001 0.018 0.000 0.000 -0.157 1000

3-3-RNNC-red -0.005±0.001 0.018 0.000 0.000 -0.173 1000
3-3-greedy -0.006±0.001 0.020 0.000 0.000 -0.211 1000
3-3-hyb-RNNC-red -0.005±0.001 0.018 0.000 0.000 -0.157 1000

Table 5.10: profit-prediction; local search (hybrid)

We observe in Table 5.10 that choosing ρ = 1 is not sufficient to outperform the greedy-lp-
mean. However, we already dominate the plain greedy profit which after all is a fairer
benchmark if we ask for an associated solution. After one repetition r = 1 the input
vector s from RNNC-red is worse than launching the heuristic on the greedy solution
xgreedy which in considered case ρ = 1 only results in the input xgreedy. The hybrid is
not worth being discussed separately as it simply takes the better solution of the two
and naturally outperforms both.

Increasing r for ρ = 1 changes the preferred input and s is preferably used. At this point
we can also outperform the (unfair competitor) greedy-lp-mean at least in median. For
ρ = 2 we are even closer to greedy-lp-mean but still have more deviation in the predicted
profits. At ρ = 3 we finally also beat the greedy lp-mean in all categories and repetitions
hardly have an influence on the profit at this point.

97

Profit evaluation of TBB

Now let us discuss the predictions coming from (TBB) as defined in Definition 5.9. Again
we have associated a packing and thus the greedy shall be our primary baseline.
Recall that TBB yields results at least as good as the greedy by construction and we
merely ask how much we can improve.

bias-error mean std median max min samples

greedy-lp-mean 0.011±0.002 0.039 0.014 0.140 -0.195 1000
greedy -0.049±0.004 0.071 -0.014 0.000 -0.454 1000

DFS-in-pto-tbb -0.019±0.003 0.041 -0.000 0.000 -0.318 1000
DFS-in-pto-wr-tbb -0.013±0.002 0.034 -0.000 0.000 -0.271 1000

Table 5.11: profit-prediction, TBB

We observe in Table 5.11 we are able to outperform the the greedy profits in a many
cases and a restart (DFS-in-pto-wr-tbb) is preferable.

Taking the somewhat unfair greedy-lp-mean as comparison we achieve a smaller
median error and less deviation. Also when regarding the span of the error (max minus
min) the method TBB dominates the greedy-lp-mean and the average bias error is quite
close. Note that the unfairness does not only arise by demanding an associated packing
but also has to do with having feasible packing as it is the case for TBB. The predictions
from TBB are in [cgreedy, c∗] while the greedy-lp-mean can deviate in [cgreedy, clp] around
c∗ and we introduce a bias in this way. The mean bias error when using TBB will only
be zero if all predictions are perfect, and the median is only zero if more than half of
the predictions are perfect.

If one would again be only interested in a profit estimation one could empirically
evaluate the expected error of TBB and subtract it. In this way, we enjoy the smaller
deviation in contrast to the greedy-lp-mean and get closer to the optimal profit on
average. The TBB however is not guaranteed to terminate in polynomial time but
perhaps yields faster performance than BB and more accurate estimates than the greedy-
lp-mean which in turn can be computed in O(n).

98

Chapter 6

Implementation

In order to obtain the evaluations presented in chapters 5 and 4, we implement BB as
presented in Definition 2.7. We use the programming language Python (v.3.8.0 64-bit)
where many convenient packages for setting up ML-tasks are available.

We use the IDEs Atom (with suitable extensions), Spyder and Jupyter Notebook for
writing and executing the code. For data science related tasks it is highly recommended
to use some sort of interactive IDE like these. In this way, one can store intermediate
results and data in memory and directly access it for plotting and data manipulation
without having to reload it repeatedly.

The packages are managed using Anaconda. We use Google’s Tensorflow and in
particular the sublibrary Keras for creating, fitting and evaluating the Neural Networks.
For assessing the fit of models, we use the respective metrics which are implemented in
the library scikit-learn. In order to keep track of the data we use the library pandas
which offers SQL-like abilities for processing tabular data. All data is stored using the
package pickle being well integrated to pandas. For storing the models we use Keras.
The data-visualization is done by using matplotlib and seaborn.

All computations are performed on the CPU of a standard Home PC using
Windows 10 64-bit, an Intel Xeon CPU (E3-1231-v3, 3.40GHz, 4 cores, 8 logical cores),
an Nvidia GPU (GeForce GTX 970) and 16GB of RAM.

6.1 Setting up a branch-and-bound algorithm

Both items and nodes of KP are represented as classes in the sense of object oriented
programming. The list of items defining an instance of KP serves as input for BB, and
we can omit the capacity by assuming W = 1 as random instances meet the Permanent
Assumption 1. A notable detail is that we also normalize in particular the benefits by
their maximum which is good practice for inputs of a neural network. The algorithm
BB is not influenced by this. At runtime the nodes are instances of a node class having
attributes such as the fixed weight and profit, the unfixed items, the critical item, the
lp and greedy bounds, and the current incumbent profit.

99

Furthermore BB takes as input a node-selection rule which is an instance of a node-
selection class. Both a potential machine-learning model and a function which selects
nodes from a set of active nodes are stored as attributes. In this way we only need to
load an ML-model before launching BB (potentially many times for benchmarking) and
gain efficiency.

The machine learning model is stored as an instance of an ML model class. It
first and foremost comprises the neural network being used and a getter function which
fetches the correct columns (features) as inputs from a given node. In case an ML-node-
selection is used, we also store the predicted label, the associated estimated probability,
and the sibling similarity (if the node is not the root) in the respective instance of the
node-class. Of course the prediction can only be performed when all quantities of the
model input are defined. In particular, the root and leaves are not predicted. In this
case, we artificially set the PTO-probability to 1 thus preferring leaves (they may offer
a new incumbent) and the root is in PTO anyways.

The output of BB is a pandas dataframe (similar to a MS-Excel table) harboring the
nodes and a dataframe which returns the items being used also in form of a dataframe.
In case we are interested in the actual optimal solution and not only the optimal profit,
we transform the node data frame into a tree where a tree-search algorithm using the
networkx library returns the PTO. In this way we can reconstruct the instance via the
fixed items and again solve the lp in linear time for obtaining the optimal solution. We
explicitly do not store solutions associated with nodes as this substantially adds to the
memory being used.

6.2 Setting up the ML-tasks

In this section we focus on notable details when targeting the ML-tasks of chapters 4
and 5. By using random instances as defined in Definition 4.1 and by scaling the benefit
according to the Permanent Assumption 3 all input features except for the depth used
for DNNC-pto are in [0,1]. Scaling and general preprocessing can greatly influence the
performance of ML models and in our case these preprocessing steps turned out to be
adequate.

6.2.1 Learning profits and solutions

The respective architecture of the models DNN-red, DNN-full, RNN-red, RNN-
full is already defined in Chapter 5. Thus we clarify details about the input-data and
the learning procedure. All inputs are associated with items and we fix an ordering of
the components by benefits as specified in the Permanent Assumption 1. Recall that in
Chapter 5 we only consider instances of size n = 50.

When using DNN we require the input in form of a vector, and therefore, simply
concatenate the profits and weights x = (c1, . . . , cn,w1, . . .wn) ∈ R100. When adding
the lp and greedy bounds as input for DNN we construct input vectors of the form
x = (c1, . . . , cn,w1, . . .wn, c

greedy, clp) ∈ R102.

100

RNN however takes time series as input, and we define a matrix T ∈ R50×2 column-
wise by T1 = (c1, . . . cn) and T1 = (w1, . . .wn). Each row x(t) = (ct,wt) represents the
input at a time 1 ≤ t ≤ τ = 50. In order to add the greedy and lp-bound to the input we
compose T ∈ R50×4 by using x(t) = (ct,wt, cgreedy, clp),1 ≤ t ≤ τ = 50 as inputs throughout
time. In this way at any time the bounds are known to RNN and offer a look ahead and
declares what profit range is being targeted.

Let us now briefly talk about fitting the models.
For the classifier RNNC-red we used the (sparse) categorical cross entropy loss, see below.
For the other four regression models for predicting the profit we used the mean squared
error loss function. The models were fitted by using Adam with its default parameters.
We only adapt the learning rate ε for training the particular models.
For RNNC-red, RNN-red and RNN-full we used ε = 0.01 and for DNN-red, DNN-full we
used ε = 0.001. In each respective training session, we used 50 epochs which in all cases
provided small enough losses to declare convergence. Keras offers a feature which allows
us to track various metrics such as accuracy or mean errors throughout training on the
partly fitted model. Also based on these measures we observed satisfying convergence
behavior.

The input for the models when using Keras is given as a sequence which contains all
the training data points and is identified as a matrix (a 2d numpy array) in case a data
points is a vector (DNN) and as a tensor (a 3d numpy array) in case a data point is a
matrix (RNN). When performing a sequence-to-1 prediction using RNN as the case
for profit predictions, we feed the output of the LSTM-layers in what is called a Dense
layer in Keras. In this way, only the last hidden state of the LSTM layer is propagated.
When performing a sequence-to-sequence task with RNN like we do when learning
solutions, we need to propagate the current hidden state in each time step when using
subsequent layers. In this case, the Keras Dense layer is wrapped in what Keras calls a
Time Distributed layer.

Obeying these pitfalls regarding the input format and the stacking of layers, we can
quite simply define models within Keras Sequential framework which simply lets us stack
layers. In sequence-to-sequence learning we shall not be confused by the use of only two
output neurons (instead of maybe 50 being the other logical choice in our case) when
performing classification. Keras interprets the data points being fed through the network
in an online fashion perfectly corresponding to the mathematical framework. However,
the output of said model is a matrix containing 2-fold rows harboring the estimated
posterior probabilities of each item.

Luckily for classification, Keras performs a one-hot encoding for evaluating the binary
cross entropy loss automatically when using the sparse categorical cross entropy loss,
and the targets can simply be given as a matrix holding all solutions as rows. When
learning the profits of instances, we simply only need to give a vector harboring the
targeted respective profits.

101

6.2.2 Learning node-selection rules

Concerning the model DNNC-pto used for node-selection in Chapter 4 we refer to the
above section where we already discussed how we address null-values in the inputs. The
data format required for the input format of a DNN type model in Keras is already
covered above. We again used Keras and the Adam optimizer to fit the model according
to the sparse categorical cross entropy. We trained for 50 epochs using a learning rate
of ε = 0.01.

6.3 Real time component

One general remark to be made concerns the real time required to set up and perform the
learning tasks and the evaluations. In order to generate the training data it is required
to solve the respective number of instances using BB.

Typically we use BESTFS for generating training/test data by proven minimality.
As proven when using BESTFS we actually could truncate BB at the time the first
integral node is found and obtain a proven optimal solution. This would omit the
validation phase which makes up about half of the branch-and-bound tree, see Section
2.2.6. However, for the sake of flexibility of BB we did not do that.

We achieved real time performances for BB of about (25,12), (50,3), (75,2), (100,1)
given in pairs (instance size, solutions per second). In this way generating the nodes for
training DNNC-pto takes about half an hour (4000 instances), respectively the test set
(1000 instances) is generated in about 7.5 minutes. In order to generate what is called the
full and reduced training set in Chapter 5 we of course only solved the 9000 respectively
1000 instances once and take the according slice of the dataframe when needed. The
training set was generated in about 50 minutes and the test set is computed in about 6
minutes.

Please note that the path when doing an ML task is potentially accompanied by many
dead ends, and we tried various sizes of training and test sets ranging up to 100.000
instances. In this regard incorporating 9000 instances seemed to be a critical number of
instances which still provided sufficient generality (i.e. approximation accuracy of pdata)
to learn the task. In turn 1000 test instances were necessary to achieve a certain level
of significance (i.e. approximation accuracy of p̂data and similarity to pdata).

The real time used for solving KP with BB when using other node selection than
BESTFS can be deduced from Table 4.3. The proportions reflect in real time since
evaluating the relatively small model DNNC-pto is done in practically no time. By
using a node-selection class we need to load the model once before solving many instances
which is a notable contributing factor. Loading the model with Keras can take a few
milliseconds up to seconds for large models.

The real time component is also a limiting factor to the size and types of models which
we used outside of BB. Using Keras and Adam training the DNN models on the
respective sets takes tens of seconds while training the RNN models takes hundreds

102

of seconds. Note that generally RNNs suffer from extensive training costs because by
unfolding the networks when using BPTT, we can end up with very deep networks.In
addition, when using LSTM cells the number of parameters increases by a factor.

6.4 Heuristics

The heuristics local search heuristic defined in Section 5.3.1 is implemented directly
as in the definition. The hybrid can be applied by comparing the associated weight
and profits of the solution in a large dataframe which collects all relevant quantities.
Similarly, we do not implement the branch-and-bound heuristic TBB defined in Section
5.4 explicitly but rather compute the entire tree by using BB as mentioned in Section
6.2.2. We then only a posteriori determine the first integral node and compare it to the
greedy solution being stored in the very first node. The reason being that we aim to
show how much computational costs we save in contrast to fully executing BB which we
can only tell by fully evaluating it. Needless to say, in a real application one only profits
by performing an actual truncation.

103

Chapter 7

Conclusion

Let us briefly recapitulate the contents and motivate further steps which can be taken
in various directions.

Recapitulate Chapter 2

In Chapter 2 we formally introduced the 0-1-fractional knapsack problem. We explained
the setup for a basic branch-and-bound algorithm BB for generating exact solutions. We
showed that the BESTFS node-selection strategy is optimal with respect to the
size of resulting branch-and-bound trees if a standard set of parameters is fixed.

By subdividing the branch-and-bound algorithm BB in phases before and after an op-
timal node is found we have available a finer scope for looking at the performance. In
this regard, we could show results which give insight into what happens in the in-
dividual phases. We showed an estimation of the duration the validation phase can be
made on the basis of an unavoidable subtree and by considering the tree being generated
until an optimal node is found. In case of BESTFS we showed that the unique minimal
branch-and-bound tree can be given explicitly.

Possible refinements and other fields of application

In a subsequent elaboration one could extend this notion of optimality of node-
selection rules to more general combinatorial optimization problems. In order to do so
meaningfully, one requires well defined branch-and-bound trees or at least a well defined
measurement for their size. Similarly, one could observe whether branch-and-bound
trees all grow within a big maximal tree as in Section 2.2.5.

In regard to bounding the size of branch-and-bound trees, see Section 2.2.6, we
state that one can easily improve the estimation ∣T ∣ ≤ 2t∗ + 2∣N (c∗)∣ − 1 (Theorem 2.36)
by properly using inclusion-exclusion as opposed to estimating the sizes of the union by
the sizes of the individual sets. Moreover the subtree containment T ⊆ T (c∗) ∪ TE gives
rise to finer estimations of the upper bound T (c∗) ∪ TE (w.r.t. ⊆). Note that proving
the inverse inclusion does not work by potentially encountering (avoidable) nodes which

104

can be pruned by bound if a good enough incumbent is available. One could therefore
refine T (c∗)∪TE perhaps by partitioning TE into subtrees where the same incumbent is
available and estimate the individual sizes of sets of these avoidable nodes to obtain a
tighter bound.

Recapitulate Chapter 3

In Chapter 3 we introduced the machine learning techniques used for the modeling in
this elaboration. We exclusively referred to the literature in order to offer a smooth in-
troduction. We recalled classical techniques for regression and classification and
presented more modern concepts involving neural networks. In order to get an under-
standing of the modelling capabilities of neural networks, we presented some universal
approximation results (Hornik (et al.), [17], [18], Maiorov et al. [26], Ismailov [19],
Cybenko [8] and Schäfer et al. [32]).

Other promising techniques

For further application of ML in a combinatorial optimization context it is highly rec-
ommended to additionally look into pointer networks which were already successfully
applied for instance to the TSP or to convex hull computations. Furthermore it seems
promising to get familiar with ensemble methods which combine multiple models to
reduce the variance or bias to fine tune a model to a given situation.

Recapitulate Chapters 4, 5

In chapters 4 and 5 we presented various ways of applying ML to the knapsack problem.
The major concern in the context of ML-aided combinatorial optimization perhaps is
finding a suitable framework within which ML models are applied (end-to-end,
finding useful properties, or within an algorithm, see Bengio et al. [5]).

Regarding the end-to-end methods, we pointed out two distinct entry points which
are already widely used. One is via directly predicting optimal profits and the second
one is via predicting an associated solution. The basic ideas concerning the profit pre-
diction are adaptations of Martinis work [29]. In our scenario, the approach of learning
solutions seemed to be preferable. It not only admits profit predictions of equal quality
but straightforward local search heuristics allow to further improve predicted solutions.
Furthermore we analyzed the troublesome items in predicting packings and found they
tend to share a similar benefit and tend to admit both large profit and weight tensions.

Optimizing a node-selection rule in the context of branch-and-bound for the knap-
sack is only interesting from a heuristic point of view (Section 5.4). Still we managed to
get close to an optimal node-selection rule and on a typical instance obtained a reduction
of the duration of the exploration phase.

105

An application of an ML-model for aiding a heuristic is a valid approach already
mentioned by Bengio et al. [5]. We followed this approach and set up a specific truncated
branch-and-bound algorithm TBB which is guided by a ML-node-selection rule. In this
regard we noticed that there is room for improving BESTFS by trying to move along
PTO in the exploration phase. In the greedy-optimal case DFS-exclusion rules behave
optimally in this regard. In this setting ML-aided node-selection rules seem promising to
manage the trade off between quick termination and good quality of heuristic solutions.

Further applications of ML on end-to-end methods

The variant of directly applying ML to an instance of KP (end-to-end method) can
certainly be executed more carefully and larger computational power would perhaps
help too. For instance, Martini conducted this approach more diligently for the knap-
sack problem with n = 200 and showed that indeed satisfactory end-to-end modeling is
possible [29]. As we have seen most instances of size n = 50 are greedy optimal (and thus
solvable in linear time) and the mean of greedy and lp profit is a very good estimator
for such a small problem size. Perhaps at this stage using ML-techniques does not yet
pay off and one is motivated to expand to larger instances. Still the fundamental ideas
apply and can be expanded to other problems at hand.

The learning of optimal solutions can potentially be improved and fully utilized
(in particular on a packing-level as opposed to the item-level) by using different models
and moving onto larger instances. The application of a local search strategy may no
longer be necessary for outperforming reasonable baselines. Still the application of a
local search can be used to improve a prediction, in particular if it is close to optimal. It
may also be interesting to experiment with variable neighborhoods throughout search.
We observed that the leverage of constantly using large neighborhoods is exhausted
quickly. It might be preferable to cover many solutions in the first round by using a
large neighborhood and then switching to a smaller neighborhood allowing for more
repetitions to be performed within the same time.

Further variants of applying ML within a branch-and-bound algorithm

Sticking with learning node-selection rules it may be a good leverage point to use
ensemble methods which can compensate the downsides of individual models. In our case
we observed that our single model for predicting the direction of trajectories traversed in
a DFS-fashion is troubled close to the root. One may be able to find a more specialized
model for these nodes and then fade to another method deeper in the tree or use more
advanced ensemble learning schemata.

Moving to other areas of application within a branch-and-bound algorithm is conceivable
that instead of evaluating lp, one works with estimated profits (perhaps by using one of
the presented end-to-end profit predictions) and obtains heuristic pruning by bound.
One could also heuristically fix a part of the solution (perhaps by using a model similar
to the presented end-to-end solution prediction). This approach would correspond to

106

applying BB only on a subtree of a branch-and-bound tree and thus limiting the
search space by learning a promising root of the subtree. In case of having multiple
fractional variables, learning effective variable selections is an influential leverage
point (see Balcan et al. [2]). Furthermore, the commonly used branch-and-cut method
can be regarded. At a node, the associated upper bound is improved by restraining the
feasible set by inserting hyperplanes which do not cut off an optimal solution. Com-
puting suitable cutting planes can be expensive and perhaps an ML model may yield
good heuristic planes. In the context of knapsack this could for instance be realized
by predicting unfixed items at a node KPI,θ which most likely are not in a subsequent
optimal solution. In fact this is corresponds to (heuristically) skipping nodes along a
trajectory and jumping to a subsequent subtree. Thus we would obtain a local version
of excluding items in a preprocessing step as suggested above (i.e. starting at a subtree).

Applications of ML in other heuristics

Besides adapting the branch-and-bound framework by introducing heuristically learned
rules, further variants of heuristic applications may be to take metaheuristics like simu-
lated annealing as a basis and for instance guide a cooling sequence by an ML-model.
When using tabu search one could model tabu durations and when using hill climb-
ing algorithms one may model a good reentry point. More generally the selection of
new centers in predefined neighborhoods in respective meta-heuristics may promise
increased performance with respect to both computation cost and quality of the solution.

107

Bibliography

[1] E. Alpaydin. Introduction to Machine Learning. MIT Press, 3 edition, 2014.

[2] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. vol-
ume 80, pages 344–353. Proceedings of the 35th International Conference on Ma-
chine Learning, PMLR, 2018.

[3] A. Banerjee. An analysis of logistic models: Exponential family connections and
online performance. Proceedings of the 7th SIAM International Conference on Data
Mining, 2007.

[4] T. Bayes. LII. An essay towards solving a problem in the doctrine of chances. By
the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John
Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of London,
pages 370–418, 1764.

[5] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. arXiv, 1811.06128 [cs.LG], 2018.

[6] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 2007.

[7] D. Chicco and G. Jurman. The advantages of the Matthews correlation coeffi-
cient (MCC) over F1 score and accuracy in binary classification evaluation. BMC
Genomics, 21(6), 2020.

[8] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[9] P. K. Dunn and G. K. Smyth. Generalized Linear Models With Examples in R.
Springer, 2018.

[10] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[11] P. Flach and M. Kull. Precision-Recall-Gain Curves: PR Analysis Done Right.
Advances in Neural Information Processing Systems 28. Curran Associates, Inc.,
2015.

108

[12] D. George B. Discrete-Variable Extremum Problems. Operations Research,
5(2):266–288, 1957.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.

[14] H. He, H. Daume III, and J. M. Eisner. Learning to Search in Branch and Bound
Algorithms. Advances in Neural Information Processing Systems 27. Curran Asso-
ciates, Inc., 2014.

[15] J. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Master’s thesis,
Technische Universität München, Institut für Informatik, Lehrstuhl Prof. Brauer,
1991.

[16] J. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[17] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

[18] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[19] V. E. Ismailov. On the approximation by neural networks with bounded number
of neurons in hidden layers. Journal of Mathematical Analysis and Applications,
417(2):963–969, 2014.

[20] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning: With Applications in R. Springer, 2013.

[21] R. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 40:85–103, 1972.

[22] H. Kellerer, U. Pferschy, and P. David. Knapsack Problems. Springer, 2004.

[23] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

[24] R. Kolpakov and M. Posypkin. Upper and lower bounds for the complexity of the
branch and bound method for the knapsack problem. Discrete Mathematics and
Applications, 20:95–112, 2010.

[25] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 5th edition, 2012.

[26] V. Maiorov and A. Pinkus. Lower Bounds for Approximation by MLP Neural
Networks. Neurocomputing, 25:81–91, 1999.

[27] S. Martello, D. Pisinger, and P. Toth. Dynamic Programming and Strong Bounds
for the 0-1 Knapsack Problem. Management Science, 45(3):414–424, 1999.

109

[28] S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., 1990.

[29] D. Martini. Application of neural network for the knapsack problem. http://tesi.
cab.unipd.it/62965/1/Application_of_NN_for_the_KP.pdf, 2019. [Online; ac-
cessed 17th October 2020].

[30] A. Neves, I. Gonzalez, J. Leander, and R. Karoumi. A new approach to damage
detection in bridges using machine learning. International Conference on Experi-
mental Vibration Analysis for Civil Engineering Structures, pages 73–84, 2018.

[31] T. Poggio and Q. Liao. Theory I: Deep networks and the curse of dimensionality.
Bulletin of the Polish Academy of Sciences: Technical Sciences, pages 761–773,
2018.

[32] A. Schäfer and H. Zimmermann. Recurrent neural networks are universal approxi-
mators. volume 4131 of Proceedings of the 16th International Conference on Arti-
ficial Neural Networks, pages 632–640. Springer, 2006.

[33] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. volume 2 of NIPS’15:
Proceedings of the 28th International Conference on Neural Information Processing
Systems, pages 2692–2700. MIT Press, 2015.

[34] A. Zheng and A. Casari. Feature Engineering for Machine Learning: Principles and
Techniques for Data Scientists. O’Reilly Media, Inc., 1st edition, 2018.

110

