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Abstract

Today, organic electronics comprise a rapidly growing market with a total capitaliza-
tion measured in billions and, if the predictions are correct, this market will continue
to steadily grow in the nearest future. Despite that, some potential applications of
organic semiconductors (OSCs) are still facing substantial technical difficulties. In
this dissertation we will take a close look on one of such applications - organic light
emitting diodes (OLEDs) for lighting.

Lighting requires substantial output power. Operating OLEDs to emit such power
increases the operating temperature. This increase must be particularly carefully
monitored, because the charge transport in organic semiconductors is thermally
activated. That means that higher temperature may cause higher currents and, possibly,
thermal runaway. In this dissertation, we combine the established techniques of drift-
diffusion-based modeling of charge transport and the heat equation to simultaneously
capture both electrical and thermal properties of OLED. To capture the electrothermal
behavior of the organic semiconductor, we use an established mobility model for
hopping transport, which depends on the electric field, charge carrier densities, and
operating temperature.

In the first part of the dissertation we will show how thermal transport parameters
of the layers the OLED consists of influence the operating device temperature and the
current voltage characteristics. The thermal transport parameters considered were the
thermal conductivity of each layer and the effective heat transfer coefficient between
the electrically active organic layers and ambient environment. We found that the heat
transfer coefficient affects the operating temperature most. This indicates that efficient
heat dissipation is of prime importance. Contrary to that, thermal conductivity of
the electrically active layers does not contribute to elevated operating temperatures,
because the layers are thin enough. This implies that the temperature distribution
within the electrically active layer is almost constant, and both charge transport and
light propagation can be optimized without compromising the thermal transport and
vice versa.

In the second part we make an effort to find the possible limitations of the model in
predicting the current-voltage-temperature charactistics. For that, modeling results are
compared to experimental data. We found that particularly the width of the density of
states (DOS) in the OSC has a pronounced effect on both current-voltage and current-
temperature characteristics of the device. With the correct choice of this width the
current-temperature dependence of the considered OLED is reproduced most closely
in voltage regions relevant for elevated operating temperatures. We also found, that
the modeled current-voltage characteristics strongly deviate from the experimental
data in the low-voltage region. Our results suggest that the formulation of charge
injection in our model is not well suited for low voltage operation.
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1 Introduction

1.1 Scope of this thesis

This thesis is dedicated to the theoretical exploration of temperature-related characteris-
tics of Organic Light Emitting Diodes (OLEDs), concentrating on lighting applications.
Lighting is a very specific application for any light source, as it requires a large power
output, which inevitably results in a noticeable heating of the light emitter. The heating
is often considered as an undesired byproduct of useful work performed by electrical
devices. Combining the raw amount of power required to light up the average living
room and the fact that no commercially available lighting device surpasses 50 % power
efficiency, one can understand why lighting always goes hand in hand with heating.

The work presented here was performed as a part of the ThermOLED project and,
as the name suggests, it was aimed to investigate the influence of heating on OLEDs.
The large surface area of OLEDs, which is required to use it as a lighting device,
is a first very distinct feature, that separates them into a different class of devices,
compared to traditional zero-dimensional (LEDs) or one-dimensional (incandescent
bulbs or fluorescent bulbs) sources, and makes it worth to investigate. Large surface
lighting area, compared to traditional point-like sources, imposes a new requirement
on the device, i.e. a uniform surface. It turns out that such a uniformity is hard to
achieve.

The problems related to establishing uniformity partially stem from the fact that
the conductivity of organic materials may change by orders of magnitude depending
on the operating conditions, which include the material temperature. An increased
conductivity may in turn improve the device efficiency due to a decreased energy dissi-
pation. On the other hand, large electric currents may also drive a device into a vicious
cycle, in which an increase in temperature causes a higher electrical current, which
in turn increases heat generation and, consequently, the temperature. In experiments,
such a behavior is frequently observed not on the whole surface of the device but
localized spatially, manifesting itself in local, bright hot spots, which quickly degrade
into black spots.

This means, that the very same effect can either beneficially or detrimentally affect
the device performance. In this thesis, we will combine the established approaches to
theoretically model electric devices with the recent, parametrized models for the elec-
trical conductivity of organic semiconductors to capture the complex device behavior
within a single simulation tool. With that tool, we will explore the aforementioned
features of OLEDs in detail. In particular, we will demonstrate that our simulations
suggest plausible origins of hot spot formation, show the role of the vicious cycle, and
point out ways to further improve the simulations.

In the introduction chapter, I will give a brief overview of existing devices that
are also used (or could be used) for lighting to convince the reader, that OLEDs are
promising candidates for that purpose. In this section, I will also give a brief overview
of OLED properties, their working principles and characteristics.
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1 Introduction

In the methodology chapter, I will provide the complete description of our approach
to model the device. Every detail of the simulations, which was established during the
course of my PhD will be presented there. Note that not every method we used is a
conventional method to model a device, hence, the methodology section might not
only serve as a guide on how to repeat the results obtained in this thesis, but can be
interesting on its own.

In the third section the reader can find a full set of the results obtained from the
simulations, which were prepared using the described methodology. Most of them
are relevant from a purely scientific point of view, i.e. expand our knowledge of
the thermal behavior of OLEDs. They clearly show, which tuning handles are suited
to improve the performance in terms of electrical and thermal material properties.
Some will be dedicated to the comparison of experiment and modeling. This part is
important, as it proves the merit of the overall simulation approach and supports the
original, purely theoretically obtained results. We think that the developed simulation
tool is powerful and can be used for a variety of different tasks for which it is crucial to
assess the impact of device heating. This will be demonstrated with selected showcases.

1.2 OLEDs in the context of lighting devices - a brief
history

During the last two centuries of human history people witnessed a dramatic progress
of science in general. Different scientific branches like mathematics, physics, chemistry
and others finally got a chance to meet and merge into something, which today forms
our understanding of the world. For example, the discovery of quantum mechanics
by physicists lead to a leap in our understanding of molecules and their interactions,
which beforehand was a purely chemistry prerogative. This development in turn
would have been impossible without a solidly developed apparatus of linear algebra,
differential equations, and complex analysis in mathematics.

The rapid progress which took off back then has not lowered in pace yet and this
brought a lot of fancy high tec devices into our everyday life, such as smartphones,
computers, cars, etc. However, in this thesis, we will talk about a topic that did not
develop over the last decade or even century, because humanity knew lighting devices
for most of its recorded history and they were always a cornerstone of its survival. For
most parts of history, lighting was tightly associated with fire.

1.2.1 A Brief history of lighting devices

The revolutionizing invention of incandescent light bulbs in the second half of the 19th
century along with the invention of electricity substantially changed our daily life,
providing us with an easy access to light. Since then, by continuous improvements,
light bulb efficiency has been drastically improved and today it reaches 5.1 % of
idealized 100% light source efficacy. Given that the efficacy is related to the power
efficiency, 5.1% may seem very small. Yet, it still outperforms by orders of magnitude
light sources previously known to humanity [1]. Nevertheless, the process which
allows to extract light from electrical current is thermal radiation, which is not efficient
due to its broad radiation spectrum. Therefore, people started to investigate whether
it is possible to build a light source, for which one can better control the radiation
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1.2 OLEDs in the context of lighting devices - a brief history

spectrum and does not waste a substantial part of it due to electromagnetic radiation
invisible to the human eye. The general world-wide trend since the beginning of
2000th is to phase out incandescent light bulbs, replacing them with more efficient
light sources.

The next important step was made with fluorescent lamps. They work as follows:
Electric current in a gas (generally, mercury) produces UV light, which then causes
a phosphor inside the bulb to glow. There are several reasons, why this process is
inefficient, even though fluorescent lamps are more efficient than incandescent light
bulbs. First of all, there is some heating related to the electric current. Secondly, not all
UV photons excite visible light photons. Last and most important, visible light photons
have less energy than UV photons which excited them. They are generally more costly
in manufacturing, although their price can be compensated by their efficiency around
15 % and they have also 10 to 20 times higher lifetime. However, there is also a number
of disadvantages, not related to the efficacy. First of all, they have a complicated
starting process, which leads to fast degradation if one switches them on and off too
often. They might trigger health problems in general, either when mercury contained
inside spills out or for particular individuals, who are sensitive to their high speed
flickering.

With the continuous development of physics, people discovered electrolumines-
cence phenomena [2], which after 20 years led to the first light emitting diode [3].
Nevertheless practical difficulties delayed the creation of first visible spectrum LEDs,
that were not demonstrated until the 1960th [4], followed by yellow LEDs [5], and
high-brightness blue LEDs [6], initiating commercialization of these devices for light-
ing purposes. Nowadays, we have commercialized solid state lighting devices, which
are suitable for usage in everyday life with the efficacy going up to 25%, while their
theoretical limit is 44%.

The development of organic LEDs (OLEDs) started much later. The first discovery
of electroluminescence of organic material dates back to 1950th [7–10]. After that it
was quite rapidly discovered that organic materials, which were generally considered
to be insulators, can conduct electric currents. The problem with them does not
relate to the charge carrier mobilities, but to the contacts which are required to have
suitable workfunction to inject charge carriers [11–13]. This discovery created a new
field, namely organic electronics. In 1987 eventually, the first practical OLED was
created [14].

Such discovery revolutionized our understanding of LEDs, as it brings an enormous
amount of new organic materials into the field of lighting devices. Since then, inves-
tigations of OLEDs has continued and in 2007 AMOLED matrices, which consist of
OLEDs, entered the market and became widely used in mobile phones, cameras and
TVs [15–18]. However, OLEDs are still not developed enough to become a general
purpose lighting device. Some market solutions already exist, but they are priced
substantially higher than any of the previously mentioned devices. To get enough
lighting output from an OLED to, e.g, light up a room, its surface area should be from
a hundred squared centimeters to a couple of square meters and the lighting should be
homogeneous across the whole surface. Such requirements cannot be easily satisfied
for the reasons we will explain later in this thesis. This still poses a huge problem.
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1 Introduction

1.3 Structure and working principle of OLEDs

In this section, we will talk about the general structure and the operating principle
of OLEDs. Before moving forward, we want to emphasize that in this thesis we are
talking particularly about so-called small molecule OLEDs. There exists another large
class of organic light-emitting devices, polymer organic light emitting diodes [19],
often abbreviated as P-OLED or PLED. There are only few similarities between OLEDs,
POLEDs and inorganic LEDs, thus, for the purpose of this thesis, it makes sense to
start directly with the small molecule OLEDs. Sometimes, however, the comparison
between PLEDs, OLEDs, and inorganic LEDs can be useful to understand a broader
context, as all devices serve the same purpose.

1.3.1 Basic OLED structure

The basic OLED structure is depicted on fig. 1.1 [20]. The organic layer of the device,
called the emitting layer in this figure, is sandwiched between the two electrodes,
cathode and anode. The electrodes provide the emitting layer with two types of
oppositely charged charge carriers. When a voltage is applied, negatively charged
electrons are injected into the emitting layer from the cathode, and positively charged
holes are injected from the opposite side, where the anode is located.

When injected, the charge carriers start to move towards each other due to the
applied electric field. When they meet, they recombine, forming excitons. Excitons,
are an electrically neutral bound pair of electrons and holes. The motion of excitons
is not affected by the electric field applied between the contacts. They can diffuse
through the device until they finally. The decay can involve the emission of a photon
(radiative recombination). Only small fraction of the produced light can escape the
device through the transparent contact, which is often made from indium tin oxide
(see fig. 1.1). Such setup is more common and is often referred to as bottom-emitting
OLED, although it is also possible to manufacture top-emitting structures [21, 22].
Ultimately, the difference between top and bottom emitting structures comes from the
location of transparent contact relative to the substrate.

Substrate

Anode (ITO or metal)

Emitting layer

Cathode (metal)

Light emission

Figure 1.1: Basic OLED setup, adopted from [20]

Processes such as injection, charge transport and recombination are heavily influ-
enced by the energetic landscape for the charge carriers in the material. In the sec. 1.3.5,
we will thoroughly describe the constituents of the energy level diagram and possible
effects, which manifest at interfaces and may result in energy level rearrangements.
In sec. 2.4.2, we will show how the combined influence of all the constituent layers
influences the charge carrier injection. To introduce basic material properties, we will
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1.3 Structure and working principle of OLEDs

first take a look at the extremely simplified energy diagram of an OLED in fig. 1.2,
adopted from [23].

LUMO

HOMO
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E
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A
T
H

O
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E

VACUUM LEVEL

Electron injection

Hole injection

Recombination

ENERGY

POSITION

V

+ -

V

Figure 1.2: Simplified energy diagram of OLED with one organic later under applied bias V. Adopted
from [23]

Applying an external voltage between cathode and anode generates a electrostatic
potentials difference, V, between the contacts, which gradually changes from one
contact to another, introducing a spatially dependent shift in energy levels of LUMO
(for electrons) and HOMO (for holes). LUMO stands for the Lowest Unoccupied
Molecular Orbital, which is most often defines the energy level of an electron in the
material. HOMO in turn is the Highest Occupied Molecular Orbital, which determines
the energy of a hole. Energy level diagrams are normally drawn for electrons. Therefore,
electrons ”want” to move downwards in these diagrams, while positively charged
holes move upwards. Hence, hole and electron injection from the contacts into the
organic layer is hindered by the possible energy offsets to the Fermi levels in the
contacts due to which injection barriers form. Fermi level in the metallic contact
describes the average energy of the charge carrier. After injection, charge carriers start
to drift towards each other. If hole and electron are spatially close they can either form
an exciton which may lead to radiative recombination of the two, or have non-radiative
recombination via, e.g., gap states [24].

However, this simplistic picture does not reflect the complex structure of OLEDs
manufactured today. The efficiency of charge carrier injection, transport, and recombi-
nation can be further improved by properly arranging several different organic layers
between the electrodes, see for example [25]. This improvement can be achieved in a
multilayer setup, where separate layers improve the efficiency of different processes,
fig. 1.3. Following the path from the electrodes inside the device, one first encounters
the electron (EIL) and the hole (HIL) injection layers. They are optionally placed
between the contact and the transport layers to enhance charge carrier injection by
leveraging the injection barrier at the contact [26]. We will elaborate further in the
thesis what are the main constituents of the injection barrier in sec. 1.3.5. For now, it
is sufficient to know that a lower injection barrier allows more charge carriers to get
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1 Introduction

into the device and to potentially recombine. Next, we see the hole transport layer and
the electron transport layer [26], whose function is to supply charge carriers for the
emissive region. These transport layers possess a high mobility for the desired charge
carrier type and may be optionally doped to enhance the transport layer charge carrier
densities [27]. Transport layers are succeeded by the Hole and the Electron Blocking
Layers (HBL and EBL). Their purpose is to prevent the charge carriers from reaching
the opposite electrode [28]. Finally, an emission layer (EML) defines the emission
properties of the device. For example if it consists of or doped by chromophores
with specific energies of triplet and singlet states [29], one can manually change the
emission profile. There can be multiple emission layers, whose individual emission
spectra are superimposed for example to blend several emission wavelength profiles,
to give perfect white emission [30, 31].

ANODE

HTL

ETL

CATHODE

HIL

EBL
EML
HBL

EIL

Figure 1.3: Device setup with a number of additional layers, which can further improve device efficiency
compared to fig. 1.1 and are often used in practice. HIL and EIL are the hole and electron
injection layers, HTL and ETL stand for the hole and electron transport layers. HBL and EBL
are in turn hole and electron blocking layers. EML is the emission layer, which is responsible
for the wavelength profile of light, emitted by OLED.

1.3.2 OLED efficiency

Considering the elaborate design of the OLED layer stack given in fig. 1.3, it is useful
to immediately introduce quantities, which describe the efficiency of an OLED. These
quantities allow to quickly assess the device performance and to compare different
device setups in terms of their efficiency. The OLED can be characterized by its
quantum efficiency, luminous efficacy ηP measured in lm W−1 or current efficiency
cd A−1 [20]. One should further distinguish between ηext, the external quantum
efficiency, and ηint, the internal quantum efficiency. These two are related to each other
as eq. 1.1 [32]:

ηext = ηintηout (1.1)

The external quantum efficiency ηext denotes the inverse ratio between the number
of electrically injected carriers and the number of externally observed photons. It
can be easily measured experimentally [33]. ηout is an outcoupling efficiency and
denotes the inverse ratio between the number of photons generated and the number
of photons registered outside the device. It depends on a chosen device geometry,
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1.3 Structure and working principle of OLEDs

material absorption coefficients, and refractive indices, which are chosen in such a
way that the chance of the photon being reabsorbed or trapped due to total internal
reflection is minimal. A number of techniques can also be employed to improve
this ratio, such as chip shaping [34], the use of patterned substrates [35], photonic
crystals [36], or surface roughening [37]. Finally, the internal quantum efficiency ηint
is defined as the ratio between the number of electrically injected carriers and the
emitted (but not necessarily registered outside) photons. It is determined by a number
of device parameters such as the quality of the active layer, the doping profile, the
defect density, and the uniformity of the layer [33]. Often, ηint can be further divided
into separate constituents, which affect the total IQE multiplicatively [38].

Finally, there is one more constituent for evaluating the performance of OLEDs
when used for lighting purposes, the luminous efficacy. Not all photons, that leave
a light source are within the narrow wavelength range, which can be perceived by
human eye, located between 380 and 740 nm. In fact, even within this range, different
light wavelengths are perceived differently, with the maximum visible intensity located
at the famous peak of green light at 555 nm. The ration of the luminous flux (perceived
power of light) to the total power of the light source, is called luminous efficacy [1].

1.3.3 Charge carrier mobilities

The hole and electron transport layers in fig. 1.3 are extremely important constituents
of OLEDs. The key performance parameter of these layers with respect to their function
is athe charge carrier mobility. By definition (see sec. 2.2.1) the charge carrier mobility
is the proportionality coefficient between the average carrier drift velocity and the
applied electric field. The unit for the mobility in SI is m2/(V s), however, it is also
often measured in cm2/(V s) = 10−4m2/(V s) [39]. A high mobility allows a fast
device operation, as needed for large area electronics with performance meeting
market demands [40–43]. In the particular case of OLEDs, large mobilities can reduce
charge carrier accumulation in the transport layers and allow unobstructed access of
the injected charge carriers into the emissive layer.

Transport regimes

The mobility value is highly influenced by the material structure, which in turn is
determined by the molecular structure and the forces between the molecules. Different
growth conditions also influence formation of different phases [44]. In this thesis we
will not try to cover all possible materials, stuctures and phases as they are described
elsewhere [45]. In organic materials, the intermolecular forces that hold molecules
together, such as hydrogen bonds, van der Waals forces, or forces in the charge
transfer complexes are relatively weak, compared to intramolecular forces or the
forces which are present in inorganic semiconductors [46]. Depending on the strength
and type of these interactions different structures may thus form. Regarding the
charge transport in organic semiconductors there are three relevant structure types: (i)
crystalline layers, or structure with periodic molecule arrangements (ii) polymer, which
are one-dimensional chains of small monomers, tied together with strong covalent
bonds [47], and (iii) amorphous structures. Multiple different material structures can
still be present at distinct phases [48] with distinct properties. Note that high charge
carrier mobilities µ still do not necessarily correspond to a high conductivity σ of
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1 Introduction

the material. Following the textbook definition of condictivity σ = enµ, where e is
elementary charge and n is the carrier concentration [39], one can see that low carrier
concentration may result in a low conductivity despite high values of the mobility.

Ordered DisorderedPolymer chains

Figure 1.4: Difference between localized and delocalized charge transport. In ordered crystals the
electron is delocalized in an electron cloud (pictured in light blue), which is essentially the
probability density ψ∗(x)ψ(x) to find an electron in the position x. It can easily move from
one site to another, in fact, it does not even move between the sites and is spatially delocalized.
In case of disordered charge transport, the wave function is localized around some site,
therefore it is possible for the charge carrier to jump only to another center nearby, where
there is some coupling between wave functions. Thus, to move from one site to another, it
is necessary to make several distinct jumps. In other words, most of the time electron is
localized and can be found on site.

Ordered structures will normally display the highest mobility values. Periodicity is
inherently advantageous for mobility and can lead to band transport; the wavefunction
of a charge carrier in ordered materials, due to the Bloch theorem [49], is periodic with
a periodicity matching that of a crystal lattice and, therefore, is spatially delocalized,
as can be see in fig. 1.4. There are still exceptions from this statement, for instance Mott
insulators [50], where interactions between the charge carriers lead to their localization.
Amorphous materials do not have this property and the electron wavefunction is
localized close to the molecule with only a small overlap between the wavefunctions of
neighboring molecules. Such transport mechanism is called hopping transport [51, 52].
Finally, electrons in polymers may demonstrate a combination of both types of the
charge trasport; efficient movement along the chains and only hopping type between
separate chains.

Hopping and band transport are fundamentally different not only in the resulting
mobility values, but also in the dependence of the mobility on other parameters.
Most notably for hopping transport higher temperature are beneficial for the mobility,
whereas for band transport they are slightly detrimental, see sec. 2.7. This is particularly
important for organic crystals as charge transport in organic crystals often displays
hopping-like properties. Normally, low mobility crystals are described better by
the hopping type transport, while large mobilities are associated with the band
transport [53]. However, one should really be careful and not directly associate the
transport in organics either with the hopping or the band transport. The debates about
actual transport regime in organics are still present in the literature [54].

In this thesis, both transport layers in the device stack will be in the amorphous state,
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1.3 Structure and working principle of OLEDs

where hopping transport is dominant [55]. Despite lower mobility values, amorphous
materials are often chosen for OLEDs, as deposition of thin crystalline layers often
results in inhomogeneous growth [27]. This might create dangerous shortcuts for the
carrier flow, which become even more frequent in the case of large device surfaces.
Moreover, amorphous organic semiconductors in combination with a flexible substrate
can make the whole device flexible [56, 57].

Hopping transport

As described, hopping transport is a type of transport regimes, in which a charge
carrier is localized on the site and its macroscopic movement consists only from the
discrete jumps from one site to another. Note that site itself does not have to be a
one molecule, in fact the site can be only a part of a large molecule or even collection
of molecules. There are several different reasons why charge carrier localization
occurs; however, they are not that important for us, because the disorder in amorphous
materials is present just due to the static disorder [58]. For a more thorough description
one can refer to either [54] review article, which is very recent or [59] which is already
relatively old, but is still incredibly useful.

In essence, the quantities which form the basis of any model, which aims at the
description of macroscopic quantities based on site formalism, are:

• pi(t) is the probability that the site i, located at the point xi is occupied at time t
• Wi,j(t) is the transition rate between sites i and j

The transition rate Wi,j(t) is the most crucial component of hopping transport. If we
would be able to describe the whole system as a collection of sites, assigning each site
a distinct index i, provide transition rates between each pair of sites, and set up initial
condition pi(t = t0), we could follow the evolution of such system. Of course, such
general description cannot provide anything useful in practice. To make the problem
feasible, one needs to (i) parametrize the transition rates and (ii) parametrize the
material structure. Afterwards, one needs to find a way to extract from the resulting
jump rates some useful quantities, such as mobility or diffusion coefficients, because
bare site occupation probabilities pi are not interesting for the macroscopic description.
We will start with the transition rates.

Often, two parametrizations of the transition rates Wi,j between two sites are con-
sidered. Both are using ri,j, the distance between the sites, and εi, the energy of a
charge carrier residing on this site, as a parameters. These equations are: eq. 1.2, Miller-
Abrahams model, and eq. 1.3, Markus jump rate equations [60]. In these equations,
a stands for the localization radius of the charge carrier and ν0 is attempt-to-escape
frequency. Markus equation is a simiplified version of Miller-Abrahams transfer rate
and can be used when the energetic disorder in the system is much smaller that
polaronic activation energy [60].

Wi,j = ν0exp

[
−2

ri,j

a
−
∣∣εj − εi

∣∣+ (εj − εi
)

2kBT

]
(1.2)

Wi,j = ν0exp
[
−2

ri,j

a
−

εj − εi

2kBT

]
(1.3)
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These rates already simplify the problem by a lot. What is left however, is the
parametrization of the system itself, which will in essence describe the distances ri,j
and the site energy εi. The parametrization of the spacial disorder, if present, should
result in random distribution of the site spatial positions xi. It depends a lot on the
morphology of the layer and is normally done to specifically adjust for the material of
interest. The parametrization of energetic landscape, following the pioneering work of
Bässler [61], is often chosen as a Gaussian disorder model, i.e.

εi(x) ∝ exp

[
−1

2

(
Emean − x

σ

)2
]

(1.4)

Having these parametrizations in hand, one can now proceed solving resulting equa-
tions to extract quantities such as mobility, diffusion coefficient and their dependence
on different factors. There are variety of methods to extract quantities of interest, such
as direct solution of Master equation, effective medium model, Kinetic Monte Carlo
equations [62]. On top of that, some percolation approaches exist [63]. Regardless of
the method, used to solve these equations, the mobility appears to be dependent of
three key macroscopic quantities: the temperature, the carrier concentration and the
electric field.

Doping of transport layers

To improve the conductivity of the amorphous layers, doping is often necessary.
Doping is the introduction of impurities (dopants) into an intrinsic semiconductor.
The transport level of the properly selected dopant must be very close to the transport
level of the doped semiconductor, which allows additional charge carriers from the
dopant material to participate in charge transport. The doping of organic materials is
substantially different than the doping of inorganic materials. First of all, the fraction
of dopants in the doped material in organic materials is substantially higher and may
approach several percent molar ratio [27], while such heavy doping normally turns
inorganic semiconductors into metals (degenerate doping). Secondly, in organics not
only a substantial increase of free charge carriers is observed, but also the mobility of
charge carriers rises. This phenomenon manifests itself as a non-linear dependence
of the conductivity on the molecular doping ratio [64]. However, the materials which
will appear later in this chapter and serve us as the source of model parametrization,
were intrinsic, not doped, materials. Despite that doping is often incredibly important
for manufacturing microelectronic devices, it is not that important for the purpose of
this thesis.

1.3.4 Recombination process

As we outlined in sec. 1.3.1, by recombination we understand two different processes.
The first process is when opposite charge carriers meet and form an exciton, a neutral
quasiparticle. After formation, the exciton migrates in the device and finally potentially
generates a photon. It was demonstrated that the exciton movement can be extremely
well described by a diffusion mechanism [65]. Excitons in organic semiconductors
generally have a large binding energy 0.1 − 1 eV [66–68] and it can be associated with
a molecule in an excited state. This excited state typically corresponds to an electron
that has been promoted from the HOMO into the LUMO. Excited molecules induce
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1.3 Structure and working principle of OLEDs

reorganisation of intermolecular distances and polarization of their surroundings [69].
Contrary to that, excitons in inorganic semiconductors normally have a lower binding
energy [70]. The high binding energy leads to substantially different recombination
properties.

Generally speaking, any light emitting process should be related to the change of
energy and momentum of a charged particle. Any such process will involve several
particles and the total (i) energy, (ii) momentum and (iii) angular momentum must be
conserved. These conservation laws would normally forbid the emission of a photon
from a single electron without interaction with its surrounding. In semiconductors, the
most probable event which causes light emission is the recombination of a conduction
electron and a hole [39]. In inorganic semiconductors the energy/momentum conserva-
tion laws are more important, due to presence of custom energy-momentum relations
for electrons and holes. This is not the case however in amorphous organic materials,
which have low mobility and, therefore, low macroscopic momentum values. On top
of that, the absence of a band structure in these materials makes the definition of the
macroscopic momentum of a charge carrier and its conservation harder. Hence, in such
materials, conservation of angular momentum becomes most crucial for light-emission
events.

In amorphous semiconductors, electrons and holes are most of the time localized in
coordinate space due to the nature of hopping transport, sec. 1.3.3. When electron and
hole come together so that the energy of their interaction become substantially higher
than thermal energy kT, they form an exciton. As the exciton consists of two spin 1/2

particles, it can be in either the singlet state, i.e, a state with total spin equal 0 and,
therefore the z-component equal 0, or in the triplet state, with a total spin equal to
one and the z-component being either 1, 0 or −1. Both states have different energies
due to the exchange interaction and spin-orbit coupling [71]. A radiative decay from
a excited singlet state back to the singlet ground state is more likely because it does
not require any further spin transition. The internal quantum efficiency ηint defined in
sec. 1.3.2 denotes the effectiveness of such a process and dictates how many radiative
recombination events are there relative to the total amount of recombination events.

Charge carriers do not have any preferred single-particle spin direction when they
come close enough to each other to form an exciton. This means that the singlet state is
formed only with a probability of 1/4 = 25%. Hence, quantum efficiency of the most
likely S1 to S0 transition, the fluorescence, fig. 1.5-a cannot exceed 25%. Of course, this
circumstance substantially reduces device efficiency. During the last 30 years a variety
of methods has been proposed to improve this efficiency [72]:

• Under certain conditions two formed triplets may form one singlet exciton,
fig. 1.5-b. This is the so-called process of triplet fusion (TF) [73, 74] and it may
improve the theoretical quantum efficiency up to 62.5%, because two triplets will
contribute to one radiative event.
• If one enhances the rate of the triplet-to-singlet transition, e.g., by improving inter-

system crossing (ISC) due to heavy atoms1, it is possible to create phosphorescent
devices, fig. 1.5-c, which can theoretically achieve 100% quantum efficiency. The
drawback is that such triplet states are sufficiently long-lived to decay non-
radiatively by the other triplet [75, 76].

1Heavy atoms improve spin-orbit coupling and thus ease the transition from triplet to singlet state)
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Figure 1.5: Light emission mechanisms in organic semiconductors, involving the lowest singlet S1,
triplet T1 and the singlet ground state S0. Depending on the energy level composition and
the amount of particles, different ways to achieve exciton decay are present. TF corresponds
to the triplet fusion, TADF stands for Thermally Activated Delayed Fluorescence and ISC is
inter-system crossing. See main text for a detailed explanation.

• The recently emerged idea of Thermally Activated Delayed Fluorescence (TADF)
technology is very promising, due to its theoretical ability to turn all exciton
decays into light emission events. The idea behind this process is to minimize
the energy gap between S1 and T1 states by minimizing their exchange energy.
Then, if this energy is less than 0.1 eV, TADF may happen, when the triplet
state becomes a fluorescent singlet state by borrowing thermal energy from the
ambient [77]. This approach also theoretically allows to reach 100 % quantum
efficiency.

1.3.5 Charge carrier injection

Mobile charge carriers in the transport layers must be initially injected from the
electrodes. No matter how well the charge carriers are transported within the transport
layers or how efficient their recombination in the emissive layer is, poor injection will
reduce the device performance. Before methods emerged, which allowed efficient
injection of charge carriers from metals into organic materials, most of them were
considered to be insulators [11, 13]. To this day, surface science directs a lot of effort
towards investigation of metal-organic interfaces. The interfaces, formed between the
electrically active layers may possess properties drastically differ from the materials,
which make up the interface [78, 79].

Interfaces are also proven to substantially impact the electric properties of the
resulting device, especially in the case of OLEDs [80–82]. Additional localized energy
levels may form there and trap charge carriers. The charge carriers in two different
materials also have distinct energies for a given momentum, i.e. energy has to be
dissipated or obtained by the charge carrier while it passes through the interface.
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1.3 Structure and working principle of OLEDs

It is worth mentioning, that the consequences of an energy misalignment could be
devastating for the device and cannot be easily circumvented [83–92]. There are a few
materials, which have a high enough electric conductivity to transport electric current
over large, macroscopic distances, which is required to, e.g., transport electric energy
from the power plant to the power socket. These materials have often misaligned
energy levels with materials of interest, such as Alq3 or α-NPB, as we will see in sec.
1.4.2.

To illustrate how much an interface can influence the injection, we can make a
very rough estimate of the energy level differences in the microelectronics and their
consequences. The elongation of the interface can be anywhere from 10−10m to 10−8m.
Effective forces, acting on the electron with its elementary charge e and an energy
of 1 eV (normally, injection barriers are lower than that value, so it serves as an
upper limit here) as placeholder value can be located anywhere between 108V/m and
1010V/m. These values should be compared to the actual electric fields, which can be
applied in the device. Normally, microelectronic devices operate in the range 0− 100V,
while their thickness is often larger than 100nm. Taking an extremely large voltage of
100V and a thickness of 100nm, the largest estimated field in the device will be then
109V/m. Comparing this field to the effective one, we see that they are at least in the
same order of magnitude. Hence, poor interface can easily become a bottleneck for a
charge transport in the whole device.

From the energy point of view, the quantity which will hinder (or enhance) the
charge transport across the interface is the misalignment of energy levels or an
associated potential or injection barrier. This quantity, however, is in turn composed
of multitude different physical phenomena, which occur at the interface. To start
the description of interface, one must first introduce the concept of energy levels.
The energy level alignment is one of the most important concepts in the field of
microelectronics [93]. During growth, interfaces often influence the structure of the
material, the growth mode, the size of grown crystallites, and even sometimes induce
surface phases (phases, which could not be observed in the bulk material) [94, 95]. We
will start with the least complicated constituent to the energy level diagram, the metal
contact.

To remove an electron from the metal, it needs to have a kinetic energy above
a certain threshold. This threshold was initially discovered with the photoelectric
effect [96] and named workfunction ψ, fig. 1.6-a. In this section we will use a widely
accepted convention, which states that the zero-energy level for the electrical charge is
infinitely far away from any other electro-magnetic sources should be 0. This means, in
turn, that an electron must possess only positive kinetic energy in a vacuum without
any external potentials and its energy within the material should be negative. The
energy level located infinitely far away from the material is called Vacuum level EV .
Vacuum levels for different materials should be the same, as they are located infinitely
far to feel any influence of the material’s internal structures. The electron workfunction
then is just the difference between the vacuum level and the Fermi level ψ = EV − EF.
The Fermi level denotes the energy, at which every site in the material will have
50% chance of being occupied in thermodynamic equilibrium. When measured close
to the surface however, the electron workfunction appears to be different, see for
example [83]. The reason for that is that the electron wavefunction ”spills” out from
the metal surface [97]. This can be seen as a dipole layer, where positive charge comes
from the absence of electrons in the material (which otherwise is electrically neutral)
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Figure 1.6: a) Metal Band Diagram. Ψ represents the substrate workfunction. b) Band diagram of an
inorganic semiconductor (ISC) in contact with the substrate. EA stands for electron affinity,
IE - Ionization energy, ∆ΦBB is a total change of workfunction due to band bending c)
Level diagram of an organic semiconductor in contact with the substrate. SD is the surface
dipole. Note that, in this picture, surface dipoles at the left and right side of the organic
semiconducting layer are oriented in the same direction, resulting in vacuum levels shift in
the same direction. Different vacuum levels on one and another surface give rise to surface
dependent IEs and EAs. d) Level diagram of 2 organic layers, sandwiched between two
metal contacts. HIB and EIB stand for hole and electron injection barrier. EBG is the energy
of the bandgap (fundamental gap).
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and the negative part comes from the electrons outside.
Such dipole layers will appear several more times in this section, as they can appear

due to a variety of different phenomena, in particular at interfaces. Therefore it is
important to understand their influence on the energy level alignment within the
device. An infinite sheet of dipole moment per area, with a sheet density of d̄, will
not produce any long reaching electric fields, but will create a sharp step in the
electrostatic energy [98] of a size −qd̄/ε0. However, (i) in reality the material surface
is not infinitely extended and (ii) a dipole is just the first order approximation to the
distribution of charges in the electrically neutral system. The first observation is not
critical, as the lateral elongation of the injected charge carrier will normally be much
smaller than the electrode surface. The second issue signals that what is seen as a
point dipole from a distance, may turn into complex charge density arrangement,
especially close to it. This may cause some non-trivial injection behavior [93].

In the case of semiconductors, in addition to the Fermi level, two more quantities play
a role, the electron affinity and the ionization energy of the material, i.e. energy gain/loss
when an electron is added/removed from the semiconductor, fig. 1.6-b. In one particle
picture, these can be well approximated by the positions of conduction band minimum
and valence band maximum. As the material should be electrically neutral, the Fermi
level is located in such a way, that the total amount of positively and negatively
charged particles in conduction and in valence bands is equal. For an undoped
semiconductor that means that it is located approximately in the middle of the gap.
However, most inorganic semiconductors for microelectronics are doped, shifting
Fermi level away from the center of the band gap. As in the case of metals, surface
dipoles may appear and change energy level diagrams, for instance, due to surface
reconstructions or terminations, see for example [99]. Moreover, dangling bonds on
the surface or surface reconstructions may trigger charge carrier rearrangements at the
interface [100]. In an energy diagram these rearrangements are captured as a bending
of the valence/conduction bands close to the surface. While bend bending is crucial
for the device work and cannot be dismissed [101], it is also caused by accumulation
or depletion of mobile charge carriers. The resulting band bending might, therefore,
change when the device is not in thermodynamic equilibrium.

In organic semiconductors, the situation becomes even more complicated, fig. 1.6-
c. First of all, the actual position of the energy levels may change with geometry
relaxation [83]. Here, the average time required for geometry relaxations TR and its
relation to the average time scale TP of the process of interest determines whether
that process may change the positions of the energy levels or not. For instance, the
timescale of a photoionization processes is much smaller than TR and no geometric
relaxation will happen. Ionization energy and electron affinity in that example are
called vertical. On the other hand, charge transport is a slow process with timescale
higher than TR and will, therefore, behave as if positions of the levels were different.
These positions are called adiabatic. This is important for us, as the first process may
be used to experimentally determine vertical levels, while in our work we have to use
the adiabatic ones, due to the process of interest.

There are also a variety of different effects, which could further shift the levels
in OSCs. For instance, dielectric screening within monolayers or the formation of
finite-width bands due to the interaction of the molecules. Another crucial aspect is
the formation of dipole layers. Due to the complex structures of organic molecules,
they can easily possess polar constituents, which contribute to an inherent molecular
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dipole. Even the most common C-H bonds bonds are polar. Once these dipoles arrange
regularly into layers, e.g. at interfaces, they may decisively affect transport. Then they
either lead to unsurmountable barriers [102] in case, where dipoles shifts energy levels
even further apart increasing the length of inhection barriers. Alternatively, dipole
layers may shift energy levels at interface closer together to form perfect, barrier-free
contact. In that case, dipole layers counteract the inherent injection barrier.

The deposition of an organic material on the metal surface leads to further effects.
Screening effects are increased due to the presence of the metal surface, chemical
interactions between organic molecules and substrate turn on, and molecules can
change their geometry due to interactions with the surface [93]. All these effects
combined will change the ionization energy and electron affinity at the interface.
Furthermore, there will always be interfacial charge rearrangements, leading to the
formation of so-called bond dipoles fig. 1.6-d.

Surface science strives to successfully describe interfaces and to determine injection
barriers. This task is however not a primary focus of that thesis. To determine injection
barriers we will only refer to experimentally obtained values, that combine all the
complicated physical interactions that lead to the particular value of the barrier. The
shape of the barrier will come from studies, which were able to successfully describe
injection into OSCs, however, in the chosen methodology they will never appear
explicitly.

1.4 Reference OLED setup

In the previous section, we were looking at the general structures and working princi-
ples of OLED devices without referring to any particular device structures. However,
in the present work, we limited ourselves only to one particular device structure,
which was realized experimentally as a part of our project by our collaboration part-
ners. The experimental side of ThermOLED project (848905) which was funded by
the Österreichische Forschungsförderungsgesellschaft mbH (FFG), was performed by
the Materials Institute of Joanneum Research ForschungsGesmbH. The experimental
setup was manufactured by Dr. Manuel Auer-Berger. Consequently, the experimental
part was supported by MSc. Florian Kolb and Dr. Roman Trattnig. The manufactured
experimental setup served as a reference to compare theoretical and experimental
results. In this section, we will describe the device setup and quantify some important
device parameters which emerged already in previous sections.

1.4.1 Device Setup

For the simulations in this work, we used a specific device setup, which is shown in
fig. 1.7. The setup has been inspired by the similar work on the heat dissipation in
OLEDs [103]. Light in this setup is emitted from the top surface. Compared to the
general device setup, shown in fig. 1.3, it possesses two additional injection layers.
Hole/electron blocking layers are absent. The central Alq3 layer (full chemical structure
is depicted in fig. 1.8-(b)) serves both as electron transport layer and as emission layer,
i.e., light-emitting events primarily are located here. This results in the emission of
green light (which is perceived best by the human eye). α-NPB in fig. 1.8-a represents
the hole transport layer. Silver layers serve as contacts on both sides. The top silver
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Figure 1.7: Schematic depiction of a device, which was experimentally manufactured within the project.
This device was the basis for the comparison between experiment and modeling. For a
description of particular layers see the main text. Most of values, which were used in the
modeling will be equal to or justified by the correspoding layers or interfaces, emerging in
this experimental setup.

layer is thin enough for light to pass through, which is a requirement for the light
emission.

A thin Alq3 layer on top of the device serves to improve the outcoupling of light. It
does not affect the electric properties of the device as it is located on the ”other” side
of injecting contact. The thin 1 nm calcium layer serves as a cathode, with electrons
provided by the silver layer above. A direct injection of holes from silver to α-NPB
is highly inefficient as the energetic barrier for this process is approximately 1.2eV.
Therefore, it is required to add some transition layer in between. Molybdenum oxide
is a very prominent material to reduce this barrier and to improve hole injection
injection [104]. The reason why, despite having bad injection properties, silver is still
used as bottom contact is its high reflectivity. In a top-emitting device setup it is
required that light, which is emitted from the emitting layer in all directions, does not
propagate back into the substrate, e.g., a silicon wafer, but is reflected. A silver layer
with its high reflectance is very well suited for that purpose.

1.4.2 Level alignment in the reference device

Some of the quantities in fig. 1.6-d can be easily obtained from the literature:
Alq3. EHOMO = −5.7eV, ELUMO = −3.0eV
α-NPB. EHOMO = −5.5eV, ELUMO = −2.5eV [105].
Ag. Silver workfunction, according to [106] is equal to 4.5 eV.
However, following the discussion in sec. 1.3.5, it is obvious that these values are not

sufficient to estimate the actual injection barriers. Moreover, from fig. 1.7 one can spot
two thin layers between the contacts and the corresponding transport layers, namely, a
1 nm Ca layer at the top contact and molybdenum oxide at the bottom.

A first educated guess to estimate values of the barriers can be made, following
the investigations presented in [107]. In this article, Fermi levels were measured for
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Figure 1.8: Organic molecules, which are used in the OLEDs studied in this thesis. (a) - N,N’-
Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine, or in short α-NPB, (b) - Tris(8-
hydroxyquinoline)aluminum(III), or Alq3 in short.)

different metal contacts and different organic materials with Ultraviolet Photoelectron
Spectroscopy; the authors present the position of the Fermi level relative to the HOMO
level of the corresponding organic semiconductor. In the case of silver and Alq3, this
relative position equals to 2.2 eV. Simple calculation using the value of fundamental
gap then results in a value of the injection barrier for electrons: Ee = −3.0 − (−5.7 +
2.2) = 0.5eV. In the case of HOMO levels of α-NPB, the article gives a value for the
injection barrier for holes of Eh = 1.7 eV . The value is enormous and will not allow
any hole injection from the Ag contact to the device.

This simplistic calculation is still far away from the real values of injection barrier
due to presence of additional layers between contacts and organic layers. In fact,
the thin Ca layer in this OLED setup could be considered as the cathode, while the
relatively thick molybdenum oxide layer on top of the silver layer is placed there to
assist the injection. [20].

For hole injection, two different methods to circumvent the large injection barrier are
often considered. The first option is to perform injection through the indium-tin oxide
(ITO), with a workfunction of 4.9 − 5.2eV and with a corresponding injection barrier
0.3 − 0.6 eV. Also, ITO is transparent and, therefore, can serve as emitting surface of
the OLED. There are no problems with ITO, however, silver is a much better conductor
and could potentially reduce the hot spot formations, by keepeing the electrostatic
potential more homogeneous across the device surface. If one wants to have silver
as the anode, the important constituent for injection is the molybdenum oxide, fig.
1.7. This material has bee n shown to drastically increase injection from silver to an
α-NPB layer [104, 108–110]. Moreover, the injection efficiency for this material changes
substantially with the thickness of the layer. From [104] one can deduce that the
resulting injection barrier should be in the region 0.4 − 0.6eV. Throughout this thesis
we will set it equal to the 0.5 eV.

The electron injection however is harder to assess. Current consensus on the nature
of the substantial injection improvement with the ultrathin Ca layer is the formation
of a large number of additional interface states, which cause a pinning of Fermi
level [111, 112]. The formation of such states can be clearly observed with UPS.
Fermi level pinning is demonstrated clearly in works, in which different metals
with significantly different work functions were chosen to serve as contacts (2.0 eV
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difference across all samples) which in the presence of the Ca layer resulted in a
very small difference (< 0.1 eV) in the values of the injection barriers [113]. Similar
effects have been observed in the case of electron injection from an Al cathode into the
Alq3 layer, when a LiF interlayer is introduced to enhance electron injection [114–116].
Rather than LiF, also other Cs or Li containing compounds can be utilized [117].

This inevitably leads us to the problem, that we cannot provide here a solidly
determined value for the electron injection barrier, which could also be backed up
by some experimental results. We will describe and explain in sec. 2.8, that it is
therefore convenient to assume equal injection barriers for the electrons and holes for
the purpose of this thesis.

1.5 Active layer degradation

A crucial problem for most of organic devices and for OLEDs in particular is the
degradation of their performance over time. For OLEDs, two main sources of degra-
dation were found. The first is cathode degradation due to moisture [118–120]. The
second is thermal degradation of organic layers [121–127]. Moisture degradation can
be treated in a variety of ways, from proper encapsulation of the device from ambient
to nanoscale patterns on the OLEDs surface, which retract moisture [128]. Thermal
degradation is more crucial for the device performance. There are several reasons
why OLEDs suffer so much from it, even though LEDs have similar problems. The
most important stand-alone issue of OLEDs relates to the fact that the charge carrier
mobility in organic semiconductors increases with temperature [61]. In inorganic
devices actually the opposite happens [39]. Therefore, the thermal properties of layers
and interfaces become extremely important [129–140].

To emphasize the importance of thermal degradation, we refer the reader to article
[125]. In this work, ITO / CuPc / NPB / Alq3 OLEDs were fabricated and heated
up under either nitrogen, N2, or oxygen, O2, atmosphere. Afterwards, the influence
of temperature on the device was assessed using atomic force microscopy, which is
able to detect even slightest changes in the surface morphology. Authors observed
substantial morphological changes in the Alq3 layer for temperatures higher than 70◦C.
In the case of α-NPB even temperatures of 60◦C were enough to sufficiently damage
the transport layer. Notably, that such profound changes in the device morphology
happened after a less than an hour and without the flow of electrical currents. This
hints us to the possibility, that a real OLED must be either always cooled or operated
under low voltage conditions.

Using OLEDs for lighting immediately poses another challenge: the larger the
device surface the harder it becomes to maintain lighting homogeneity across the
whole area. Real devices turn out to be extremely susceptible to such local temperature
variations [131], which occur mainly for two reasons. The first reason is that transparent
electrodes will normally have higher sheet resistances, which in turn lowers the locally
available bias from the contact towards the surface. This can be counteracted with a
highly conductive mesh, see for example [141]. In our case we are using the silver as
an anode, so the local variations might be not so pronounced. The second reason is
the dependence of the mobility on temperature, as outlined previously. Numerous
techniques were employed to theoretically describe this phenomenon, most notably
the ones described in [131,142–145]. We will discuss the dependence of the mobility on
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temperature insec. 2.7. However, we are not familiar with any modern drift-diffusion
analysis of the problem, where full electrothermal properties of the OLED device
would be taken into account. Low efficiencies and high prices of currently available
OLED panels are a direct consequence of degradation and efficiency problems.

These issues, related to OLED degradation are the primary motivation for the
present work. To properly address these problems, one requires to model the device
behavior including such important phenomena as its electric and thermal behavior
including their strong interplay in organic layers.
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Note that some sections of the methodology were part of my publication [146] and its
preprint version available on arxiv.org [147] These publications were a joint effort of me
and my co-supervisor Dr. Karin Zojer. In these papers I developed the topic, provided
all the calculations shown and designed the figures. The papers were co-written
by Karin Zojer and me. As these papers contain a number of usefully formulated
explanations, I am using these formulations in section 2.8. These verbatim passages
are marked accordingly with quotes.

This chapter collects and motivates all model equations used to simulate the trans-
port of charge, heat and the time evolution of the electrostatic potential in OLEDs.
Then, we will describe our approach to numerically solve the selected model equations.

The numerical simulation, written in the Fortran which uses the methodology
described in this chapter will be available on GitHub. One can use the following URL
to clone it: https://github.com/GeorgiiKrikun/ThermOLED.

The heat transport equation and drift-diffusion equations for charge transport attain
the form of a continuity equation. This is highly convenient because different equations
can be described using the same language and can be solved using similar numerical
approaches. We will briefly describe them and associated notations here.

A continuity equation, in its general form in three dimensions reads as follows:

∂ρ(x)
∂t

+∇J(x) = S(x) (2.1)

where x is a three-dimensional position vector, ρ(x) is the density, t is the time, J(x)
stands for the flux and S(x) for the source. Note that we intentionally do not specify
density, flux or source of what quantity is described.

When integrated over volume and with the help of the divergence theorem, one
can deduce that the continuity equation is the differential form of a conservation
law [148]. That implies, that conserved physical quantities, such as charge, energy
and particles 1 should satisfy a continuity equation. This is the reason, why time
and position dependence of any conserved quantity could potentially be cast in a
continuity equation, with an appropriate choice of density, flux and the source terms.

The density term ρ(x) can stand for the density of any quantity which should be
conserved without the source term. The flux J(x) is then associated with the flux of the
chosen density. Finally, a source term S(x) is the way to add or remove the quantity
from the system. We will clarify previous definitions of continuity equations provided
in literature with examples of how they will be used in this work. Charge carrier
densities and thermal energy will correspond to a density terms. Charge carrier fluxes
and the thermal flux act as a flux terms. The source term in the case of charge carriers
will describe generation and recombination phenomena, while the source term in the
heat equation will describe device heating due to the electric current. Finally, a process

1In fact, it holds even for quantum mechanical fields, for instance, electron wavefunctions
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2 Methodology

where charge carriers are injected from the outside is covered by the border condition
to a continuity equation.

Continuity equations in their common form originate from the Boltzmann transport
equation (BTE). To adopt its potential to describe a material one is required to define
(i) (quasi-)particles, whose propagation results in transport of some macroscopic
quantity and (ii) the particle momenta and coordinates. For instance, in conventional
semiconductor materials, which bear a periodic structure, propagation of electrons
in the conduction band and holes in the valence band will be responsible for charge
transport. Phonon propagation will result in heat transport. However these definitions
are difficult for amorphous semiconductors.

Due to Heisenberg’s uncertainty principle, particles do not simultaneously possess
both sharply defined momenta and coordinates. This implies that the BTE, when used
to deal with quantum mechanical systems, holds an innate problem that cannot be
solved in this formalism. Nevertheless, it can still be justified for periodic systems in
which the Bloch theorem holds. It states, that in a periodic medium a particle wave-
function ψ(x) can be separated into a periodic part u(x), with the periodicity of the
crystal structure, and a plane wave e−ikx, where k stands for particle quasimomentum.
This definition of particle momentum allows to still employ the BTE, though some
additional actions might be necessary [39].

In our case, the medium does not possess any periodicity, so it is hard to justify a
BTE-based description of charge and heat transport. Therefore, derivations presented
in this section will either be non-conventional ones or ones which thoroughly avoid the
assumptions employed in BTE, due to the amorphous nature of materials of interest.

2.1 Maxwell equations and continuity equations

In this section we are going to derive the continuity equation for moving charges
from the Maxwell equation. As in OLEDs we are going to deal with moving charged
particles, we should account for their electromagnetic interaction. If we want to
continue thinking in the terminology of continuity equations, the density in the
continuity equation is naturally associated with the charge density. The flux in this
case corresponds to an electric current. We can assume that the charged particles in
the material are independent and that they interact only via the electric field. Under
this assumption, the motion of charges can be described classically by the Maxwell
equations.

To this aim, we should start from the Maxwell equations in dielectric media, eqs. 2.2
- 2.5.

∇ ·D = ρ (2.2)
∇ · B = 0 (2.3)

∇× E = −∂B
∂t

(2.4)

∇×H = J +
∂D
∂t

. (2.5)

This is a macroscopic version of the Maxwell equations, which already accounts
for the possible electric and magnetic polarization in the medium with functions D
being the displacement field and H the magnetizing field. These two vector fields
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2.2 Drift-Diffusion equations

are composed as a linear superposition of the outer fields and polarization fields.
Polarization can be further decomposed into a spontaneous polarization that is present
without an external electric field and a field which reflects the reaction of the material
to the applied external field.

We will not proceed with a full derivation here, but rather provide it in the appendix
sec. 6. The important parts of this derivation for us will be (i) assumptions, made to
derive the following equations and (ii) the actual equations. We will start with the
assumptions.

• The system at hand is required to be small and we are looking for effects on a
large time scale, i.e., for stable and time-independent solutions.
• The velocities of the charged particles are substantially lower than the speed of

light. 2

• Charged particles do not interact magnetically.

These assumptions yield several equations, out of which two equations will be
important for us, eq. 2.6 and eq. 2.7.

divE =
ρ

ε
(2.6)

The eq. 2.6 is the so-called Poisson equation and inherently links together the electric
field E, charge density ρ and the dielectric constant ε3. Essentially it means that if
one knows the charge carrier density and has a way to solve eq. 2.6, then one knows
the electric field distribution in the material. It is also important to note that it is also
very similar to a continuity eq. 2.1, that lacks the time-dependent density term. This
reminiscence will allow to apply the same solution methods as to all other continuity
equations.

The second eq. 2.7

divJ +
∂ρ

∂t
= 0 (2.7)

is the continuity equation for the charge density. It states that charge is always
conserved in the entire system, as no source term exists.

2.2 Drift-Diffusion equations

A solution of eq. 2.7 requires a connection between the electric current J and the charge
density ρ. In semiconductors, the total charge density normally consists of several
contributions, such as holes, electrons, dopants e.t.c. Hence it is useful to formulate a
dedicated continuity equation for each kind of mobile charge.

In this section, we will provide the Drift-Diffusion equations, which are commonly
used to connect electron n(x) and hole densities p(x) to their respective fluxes Je(x)
and Jh(x). Note that the commonly used form of the drift-diffusion equations is based

2Both requirements are for the same purpose, namely that the characteristic timescale, on which
system may change is considerably smaller than the size of the system divided by the speed of light. In
essence, if this requirement is fulfilled we can put the speed of light c being equal to infinity

3which describes the relation of the electric field to the displacement field
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on the BTE, whose underlying assumptions are in conflict with the nature of hopping
transport.

In sec. 2.2.1, we will provide a general argumentation of why drift-diffusion equa-
tions should hold no matter what is underlying charge transport mechanism. After-
ward, we will provide a full mathematical derivation of them from the basic equations
of hopping transport.

2.2.1 Physical justification of the approach

This section aims at explaining, why Drift-Diffusion equations on the macroscopic
level logically connect carrier flux to the carrier density. On microscopic level, different
approaches can be chosen with very promising results [149]. However, they cannot be
applied on the scale of a macroscopic device due to the required large computational
resources.

In the following Gedankenexperiment, we look at some infinitely extended material,
in which charge carriers are localized (as in amorphous organic semiconductors) and
only one type of mobile charge carriers exists. For the experiment, we will consider
only positive charge carriers for simplicity, i.e. holes. When a constant electric field is
applied to this system, charge carriers accelerate in the direction of the electric field.
This acceleration however cannot last forever, otherwise, we could observe devices
under constant bias with ever-increasing current, whereas in reality steady current is
observed. Therefore, there should exist some mechanism that counteracts acceleration,
so that only one possible current is realized for every applied voltage. The variable,
which connects the electric field E to the average charge carrier velocity < v > is
called charge carrier mobility µ, eq. 2.8

< v >= µE (2.8)

This relation, multiplied by the charge carrier density, yields the charge carrier flux
Jdri f t, eq. 2.9.

Jdri f t(x) = µρ(x)E(x) (2.9)

What would happen if the material is not infinite, i.e. charge carriers cannot move
forever and have to stop at some point due to the presence of boundaries? The only
conceivable mechanism which may counteract drift motion due to the electric field
in thermostatic equilibrium is the diffusion of charge carriers. Every charge carrier
possesses certain thermal energy and moves randomly in all possible directions with
an average velocity being called the thermal velocity. Any spatial gradient of a charge
carrier density will create a flux associated with this thermal motion because the
randomness of this process should eventually distribute charge carriers equally in the
material:

Jdi f f (x) = − f
(

∂ρ

∂x

)
(2.10)

Therefore, we can cast these terms Jdri f t(x) + Jdi f f (x) that counteract each other,
into eq. 2.11 for charge carrier density ρ:

µρE + f
(

dρ

dx

)
= 0 (2.11)
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2.2 Drift-Diffusion equations

where f is the function which determines the diffusion flux as a function of a
charge gradient. The shape of this function f can be deduced from statistical physics.
According to Boltzmanns law, the distribution of particles under a applied potential
energy U(x) should be proportional to exp(−U(x)/(kT)). Therefore, the solution of
eq. 2.11 adapts the form ρ0 · exp(Ex). Then eq. 2.11 turns into eq. 2.12.

µρ0Eexp
(

Ex
kT

)
+ f

(
ρ0

E
kT

exp
(

Ex
kT

))
= 0 (2.12)

This equation implies that the function f should be a purely linear function of its
argument, f (t) = Dt = −µtkT. Here we introduced a diffusion constant D which acts
as the proportionality coefficient between the diffusion current and the gradient of
carriers. Therefore, on top of eq. 2.9, we can state here two more equations. eqs. 2.13 -
2.14:

Jdi f f usion(x) = −D∇ρ(x) (2.13)

D = µkT (2.14)

The eq. 2.9 shows the dependence of the charge carrier flux on the electric field. One
important remark here is that the mobility, in general, should not be constant, but can
be a function of different system properties.

The eq. 2.13 shows the dependence of charge carrier flux on their density. This
equation will remain the same for negative charges, because diffusion naturally always
goes in the direction where there are fewer charge carriers.

Boltzmann

Fermi-Dirac

Narrow DOS
Wide DOS

Fermi Level

D
O

S

Figure 2.1: Fermi-Dirac and Boltzmann distributions in the energetic region of several kT’s around
chemical potential. Note that the difference between the two is pronounced for a low values
of energy, however, when a particle energy increases to 3kT, this difference disappears.
In these circumstances, the wide density of states, contrary to the narrow one, may have
non-vanishing concentration of states in the region, where distributions show substantial
difference. This is one of the main reasons for Einstein relation to fail even in a case of
thermodynamic equilibrium.

Finally, eq. 2.14 connects mobility and diffusion constant and is named after Einstein.
Note it relies on two substantial assumptions. First of all, the charge carriers are
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assumed to obey the Boltzmann distribution. Even though charge carriers with half
spin should obey the Fermi-Dirac distribution, the Boltzmann distribution is acceptable
when bands are located sufficiently away from Fermi energy, > 3kT, fig. 2.1. However,
as amorphous organic semiconductors do not possess exact band energy but rather
energy levels that are spread across the energetic landscape, this approximation may
fail in case of a wide density of states. As 1kT corresponds roughly to 25meV at
room temperature, the difference between HOMO and LUMO levels is of the order of
1eV, therefore, the Boltzmann distribution should very well approximate Fermi-Dirac.
However, if both HOMO and LUMO correspond to a wide density of states, this
assumption may fail.

Einstein’s equation was derived in the case of thermodynamic equilibrium and is
not strictly true in case there is an electric current in the system. Realistically, Einstein
relation fails when charge carrier densities are extremely high, > 1026m−3 which we
never observed during simulations. The width of the DOS for the materials of interest
is in the range 0.01eV - 0.15eV. Finally, under large applied voltages most contribution
to the current comes from the drift, eq. 2.9, making errors in determining diffusion
currents insignificant.

Due to that, we will use the Einstein relation bearing in mind that we have low
diffusion currents and low charge carrier densities.

2.2.2 Drift-diffusion equations in the hopping transport scenario

One can find various ways to obtain drift-diffusion equations starting from the Boltz-
mann transport equation. However, when we talk about hopping transport, we cannot
use the BTE at all, because the momentum of the electron is not well defined. Rather,
the electron is assumed to hop swiftly between sites and to dwell most of the time
on a site without any macroscopic momentum. Therefore, we need to derive these
equations for hopping transport. This will serve two purposes, (i) we can be sure that
the drift-diffusion approach can be applied to the problem at hand and (ii) we will
have an idea of how various microscopic parameters are connected to the macroscopic
picture.

Fortunately, one derivation was already suggested by A. Liemant [150], but unfortu-
nately, this article did not get attention we think it deserves, which might be related to
quite elaborate mathematics he uses in his article. We will explain it here to relate the
derivation to the physical context of the problem and to give the essential physical
motivation for the steps performed. Hence, we will cover only the most important
steps. For the full derivation, refer to [150].

Note that drift-diffusion equations in the conventional form were already success-
fully used to study device transport in organic semiconductors [151–153], so the form
of drift-diffusion equations which we will arrive at in this section for hopping transport
are not expected to be notably different.

Derivation of drift-diffusion equations for hopping transport

The crucial starting point is to introduce two time and coordinate scales. The first
scale would be a microscopic t′ time and microscopic x′ coordinates. Macroscopic
coordinates are related to the microscopic ones with a scaling ansatz eq. 2.15, where ε
is some small number.
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2.2 Drift-Diffusion equations

t = ε2t′, x = εx′ (2.15)

The microscopic coordinate x′ represents locations, the distance between which is
around 1 unit of length. It ensures that mathematical operations performed on x′

will not change x′ by several orders of magnitude. In turn, x is a macroscopic scale
in which the distance between sites appears to be very small, i.e. in the order of the
value of ε. For instance, in organic semiconductors, the convenient microscopic scale
would be 1 nm, which is close to the average distance between molecules. A suitable
macroscopic scale in could be meter as a length unit.

The relation for the timescale t is distinctively different because the scaling parameter
ε enters squared in the relation. In a random walk process (both hopping transport and
diffusion fall under this category), the average squared distance from a starting point
< R2 > is proportional to the time T, needed to cover distance R; the proportionality
constant between them is the diffusion constant D: < R2 >= DT. Therefore, if we
want our scaling procedure to be consistent among several scales, we need to introduce
it differently for the time and spatial coordinates.

Then, we can introduce a hopping rate w which generally depends on the dis-
tance between two sites and the energy of these sites. A hopping rate is an inverse
probability of hopping and represents the number of hops performed per unit of
time. A fairly general starting point would be to factorize the hopping rate from the
point x with energy E to the point y with energy Q into a purely distance-dependent
part (accounting for tunneling, whose rate rapidly decreases with distance) and an
energy-dependent part (thermally activated jumps):

w(x, E, y, Q) = r(|x′ − y′|) · s(x, E, y, Q) (2.16)

This equation is defined on the microscopic timescale and gives the number of hops
per time t′. Basically, r is a microscopic diffusion term while s is a macroscopic term,
which accounts for any applied external potential.

These two terms are subjects to different constraints. The function r should give
identity when integrated over the whole landscape:

S0 =
∫

R3
r(|x′|)d3x′ = 1 (2.17)

As the diffusion current should be finite, a second requirement is imposed:

S2 =
∫

R3
|x′|2|r(|x′|)d3x′ < ∞ (2.18)

Finally, to be able to find a steady operation state for a given macroscopic rate s, we
ought to be able to establish the steady state condition with a smooth, large scale
electrostatic potential, which does NOT depend on the local energetic/spatial disorder,
eq. 2.19.

exp
(
−E + eφ(x)

kT

)
s(x, E, y, Q) = exp

(
−Q + eφ(y)

kT

)
s(y, Q, x, E) (2.19)

This equation is closely related to detailed balance for the Boltzmann Transport
equation, hence, we refer to it as a detailed balance.
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Before proceeding it is also convenient to define two other quantities which will
play an important role: (i) a local density of states (DOS) g(x, E) which should be
normalized, eq. 2.20, (ii) a concentration of sites N′(x), which can be both micro- and
macroscopic, see eq. 2.21 and (iii) an occupation function ft(x, E) , which describes
the local site occupation.

g(x, E), where
∫ ∞

−∞
g(x, E) dE = 1 (2.20)

N′(x) = ε3N(x) (2.21)

With all these parameters, one can define a relative to the amount of available states
carrier density ht(x) and a charge density ρt(x):

ht(x) =
∫

ft(x, E)g(x, E)dE (2.22)

ρt(x) = eN′(x)ht(x) (2.23)

Using the quantities defined above we can write down the hopping rate equation

∂ ft′(x, E)
∂t′

=∫
R3

∫ [
− ft′(x, E)(1− ft′(y, Q))

][
s(x, E, y, Q)r(|x′ − y′|)

][
g(y, Q)N(y)

]
dQd3y+∫

R3

∫ [
(1− ft′(x, E)) ft′(y, Q)

][
s(y, Q, x, E)r(|x′ − y′|)

][
g(y, Q)N(y)

]
dQd3y

(2.24)

The integrand in the equation corresponds to fluxes between x and y. Fluxes are
composed of (on the example of x → y flux). Hopping rates s(x, E, y, Q)r(|x′ − y′|),
which are weighted by the local density of sites g(y, Q)N(y) and multiplied by the
probability that both the site ”from” is occupied and the site ”to” ft′(x, E)(1− ft′(y, Q)
is unoccupied. The occupation function is obtained from the second condition, which
implies that the density in thermal equilibrium should be equal to the Fermi-Dirac
distribution.

Now, one can Taylor expand the integrands in eq. 2.24, in powers of |y− x|:∫
r(|y′ − x′|)u(y)d3y = ε3u(x) + ε5 S2

6
∆u(x) (2.25)

The function u(x) contains the remaining y-dependent terms in the integrand. Note
that after expansion, microscopic timescales are gone, which causes an additional ε
terms to appear.

In a next step eq. 2.24 is multiplied by eN(x)g(x, E) and integrated over the energy E
to obtain a relation between the charge density and the flux, i.e., to obtain a continuity
equation:

∂ρt(x, E)
∂t

=
eV[ ft](x, x)

ε2 +
1
6

S2e∆yV[ ft](x, y)
∣∣∣∣
y=x

(2.26)

Function V[ f ](x, x) integrates over all possible hops for every possible energy from
point x to point y:
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V[ f ](x, y) =
∫ ∫

N′(x)N′(y)
[
− f (x, E)(1− f (y, Q))s(x, E, y, Q)

+ f (y, Q)(1− f (x, E))s(y, Q, x, E)
]

g(x, E)g(y, Q) dQdE
(2.27)

Because the constant ε is small, eq. 2.26 is essentially a two-scale equation. The first
term is large while the second one should be only taken into account if the first term
is absent. It can be shown that it is the case if one invokes here the detailed balance
eq. 2.19 and sets the occupation function f (x, E) to the Fermi-Dirac distribution. This
will also require a proper choice of the chemical potential µ(x) in the Fermi-Dirac
distribution.

Invoking detailed balance results in an elongated expression for V[ f ](x, y), which is
symmetrical with respect to the interchange of x and y. We denote the double integral
in eq. 2.27 as I(x, y). Every energy-independent factor, which can be pulled out of the
double integral is denoted as b(y)− b(x), precisely:

b(x) = exp
[

µ(x, h(x)) + eφ(x)
kT

]
(2.28)

This factor b(x) contains the local chemical potential µ(x) and the local relative charge
carrier density. Combining that with the relation:

∇y I(x, y)
∣∣∣
y=x

= 0.5∇x I(x, x) (2.29)

one can explicitly express the remaining term of the right hand side of the eq. 2.26:

∆yV[ f ](x, y)
∣∣∣
y=x

= ∇x [I(x, x)∇xb(x)] = ∇x [b(x)I(x, x)∇xlog(b(x))] (2.30)

Combining these equations and introducing some definitions, we can finally arrive
at the drift-diffusion equation for hopping transport, eq. 2.31.

∂ρ

∂t
= ∇J (2.31)

and eq. 2.32

J = D∇ρ− µNρ∇N′ − µΘρ∇Θ + µψρ∇eψ (2.32)

The current density equations contain four terms: a diffusion term D∇ρ, drift
term µψρ∇eψ, a term µNρ∇N′ accounting for possible inhomogeneities in the local
concentration of sites, and a term µΘρ∇Θ that accounts for the change in the local
DOS. The new potential Θ comes from the parametrization of the local density of
states g(x, E) into gΘ(x)(E) 4.

The constants D, µN,µΘ,µψ, introduced in eq. 2.32 are related to each other as
follows:

D : µN : µΘ : µψ = ρ :
∂ρ

∂N
:

∂ρ

∂Θ
:

∂ρ

∂ψ
(2.33)

4This parametrization is not always possible, but for the task in hand it is more than enough.
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And D can be formally calculated from the following expression:

D(x, h) =
S′2N′(x)

6∫∫ exp[(µ(x, h)− E)/kT]s(x, E, x, Q)gΘ(x)(E)gΘ(x)(Q)

(1 + exp[(µ(x, h)− E)/kT])(1 + exp[(µ(x, h)−Q)/kT])
dEdQ

/
∫ exp[(µ(x, h)− E)/kT]gΘ(x)(E)

(1 + exp[(µ(x, h)− E)/kT])2 dE (2.34)

(2.35)

In which D is the diffusion constant, the parameter µψ is the familiar drift mobility.
Two other mobilities µN, µΘ are related to new driving potentials N and Θ.

The presented equations represent a complete description of the hopping transport
on the macroscopic level provided that all quantities entering them are known. Un-
fortunately, in reality most of these parameters are either unknown or can be only
roughly estimated. A possible choice of these parameters will be shown in the next
section.

Drift-diffusion equations in the particular case of amorphous organic
semiconductors

Equation 2.32 contains four different driving potentials, two of which are not present
in the conventional drift-diffusion equations. The ∇N′ term is related to spatial inho-
mogeneities in the site distribution. Although spatial inhomogeneity is common for
organic semiconductors, one is required to provide the exact probability distribution
of that inhomogeneity to obtain a numeric result. The actual extent of this term may be
revealed from averaging the outcome of several simulations, each of which is initiated
with the random distribution of site densities N′i , i.e. a task that is far beyond the
scope of this thesis. We decided to discard this potential term, because it is expected
to play a subordinate role in the total current and it is difficult to account for. Starting
from now, we consider that N′(x) = const and therefore ∇N′(x) = 0.

The term related to Θ is more complicated and cannot be readily discarded. Basically,
it stems from the assumed spatial dependence of density of states: g(x, E) = gΘ(x)(E).
This assumption is justified in organic amorphous materials, in which the DOS is

considered to be either Gaussian or exponential, i.e. DOS(E) ∝ exp(−E− E0

σ2 ) or

DOS(E) ∝ exp(−αE). For organic materials it is regularly assumed that the den-
sity of states is normally distributed with a fixed width. Therefore, the whole term
proportional to ∇Θ is irrelevant for bulk transport.

However, it is still important for the interfaces where two layers come in contact.
Then, the DOS may experience a ”jump” in width from one material to another. We
will take a closer look at the interfaces afterward, because they should be implemented
differently from the bulk simulation. If we focus on bulk transport, we are left with
only two terms - the drift and diffusion current densities.

Furthermore, the parameters µψ and D cannot be directly obtained from eqs. 2.34 -
2.33. Their determination requires us to account for effects, that were not considered
in this derivation. For example, if a charge carrier gets trapped in a deep energy level,
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it can be easily pushed out due to the electric field exerted by another charge carrier.
These microscopic interactions are not considered in the macroscopic picture, but
rather must be obtained in experiments, Monte-Carlo modeling [154] or analytical
approaches [155–158]. Such studies can give a more precise picture of how mobility
depends on all external and material parameters. We are using a very particular
model for the mobility as a function of temperature, charge carrier density, and
applied electric field [159], which has been proposed based on the solution of a master
equation for hopping transport. This model can be straightforwardly implemented
in the device simulation, where it is necessary to quickly and precisely calculate
mobilities as a function of all the parameters.

Note that apart from Monte-Carlo and master equation there are also some percola-
tion theory approaches to determine the mobility for hopping transport [63, 160].

The only parameter we need to provide is the diffusion constant. From eq. 2.33, one
can derive a generalized Einstein relation [161], which connects the mobility and with
the diffusion constant:

µφ(ρ)

D(ρ)
=

∂logρ

∂µ
(2.36)

This equation reproduces the previously derived Einstein relation eq. 2.14 in the
particular case of small concentrations of charge carriers with n << N, where n is the
concentration of charge carriers and N is the concentration of sites. In the course of the
performed simulations, we never exceed charge densities larger than n = 1025 m−3,
while the site concentration is N = 1027 m−3. Therefore, we can safely use the regular
Einstein relation for the simulations.

If one also takes into the account the existence of two charge carriers (electrons
and holes), eqs. 2.31 - 2.32 become eqs. 2.37 - 2.38, where n, p are concentrations of
electrons and holes respectively, and µe and µh are the corresponding mobilities.

Jh = µh

(
−p∇φ− ∇p

kT

)
(2.37)

Je = µe

(
n∇φ− ∇n

kT

)
(2.38)

Finally, we account for the generation and recombination of electrons and holes.
We will expand on this term later in sec. 2.5 together with the source terms for other
equations. However, we already have the means to introduce this term in its general
form. According to already shown eq. 6.8, the charge should be conserved. As electrons
and holes possess opposite charges, generation and recombination should enter the
drift-diffusion for electrons and holes equations in a similar manner.

The generation rate G should increase the number of charge carriers when no
charge flux is present precisely by the amount of generated particles. Conversely,
recombination R should decrease the number of particles. That means that in the case
of absent particle flux J = 0 we get:

∂ρ

∂t
= G− R

Where ρ stands either for electron n or hole p density. Comparing this equation with
eq. 2.31, we can finally write down the drift-diffusion equations:
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∂p
∂t

+∇
[

µh

(
−p∇φ− ∇p

kT

)]
= G− R (2.39)

∂n
∂t

+∇
[

µe

(
n∇φ− ∇n

kT

)]
= G− R (2.40)

2.3 Heat equation

2.3.1 Fourier law

The heat equation is the last equation required for the modeling and it also has the
form of a continuity equation. The quantity which is conserved in the scenario of heat
propagation is the heat energy. Heat energy is the energy of disordered motion and
vibrations of molecules. When one part of the material is heated more than another,
molecular interactions will tend to average thermal energy and, eventually, equilibrate
the temperature throughout the material. Macroscopically, this process can be seen as
a flux of heat energy from more heated to less heated regions. The relation between
the gradient of the driving potential (temperature) and the flux (thermal energy flux)
might be complex, but can be as well linearized by truncating a Taylor expansion at
the linear term: q(∇T) = q0 − κ∇T + O((∇T)2), where q is the heat flux in Joules
per unit area per unit time, T is the temperature and κ is the tensor that connects one
vector (gradient of temperature) with another (thermal flux).

There are constraints for both quantities q and thermal conductivity κ. When the
gradient of temperature is absent, there should be no heat flux in the absence of
other driving potentials. Moreover, coordinate inversion symmetry requires that there
should be no distinct flow direction, i.e. q0 = 0. Furthermore, the thermal conductivity
is required to be a scalar, otherwise any rotations will change the tensor while the
physical system would be the same. As the last requirement, heat should always
propagate from hot regions to the cold ones, i.e. we need a negative sign in front
of the linear term. Summarizing everything, we arrive at the equation q(∇T) =
−κ∇T + O((∇T)2). Without the quadratic term, this equation is called the Fourier
law:

q(∇T) = −κ∇T (2.41)

2.3.2 Fourier law in OSC

Even though there are no physical reasons to a priory neglect non-linear in temperature
terms, several reasons supporting it. First of all, the temperature region of interest
for the thesis is room temperature +/- 40 degrees, which realistically corresponds
to the conditions of the devices. Secondly, the thermal conductivity κ of amorphous
organic semiconductors is barely investigated, especially its temperature dependence.
Moreover, κ may change depending on the manufacturing process.

For any ordered material, the transport can be described as being carried by different
quasi-particles. For example, if one is talking about an electrically active material, such
as metal for example, it will have a large number of very mobile charge carriers, which
can carry a lot of energy (conduction electrons). These types of materials are the best
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heat conductors with a thermal conductivity ranges from 50 to 1000 Wm−1K−1. Then,
if the material is not inherently conductive, there are only a few charge carriers that
can transport the heat. Then, phonon transport takes over. Phonon is the quasi-particle,
which can be obtained by diagonalizing the Hamiltonian of inter- and intra- molecular
interactions in the harmonic approximation. Phonon thermal transport is rarely as
effective as electron thermal transport and it resides in the range of 0.1 - 100 Wm−1K−1.

Amorphous semiconductors and materials described above differ due to the absence
of macroscopic order. They generally possess much fewer electrons which in turn are
less mobile. Phonons, which can exist, have a very small wavelength and are localized
in single molecules rather than being spread over the material. Phonons at molecules
can only excite phonons on nearby molecules. This type of heat transport is very
slow. Generally all materials with this type of heat transport do not exceed thermal
conductivity values of glass 1 Wm−1K−1. Therefore, only diffusive thermal transport
is possible in such materials and it is well described by thermal conductivity.

2.3.3 Heat equation

The explicit formulation of the heat equation is based on the continuity equation,
because eq. 2.41 established the connection between flux and temperature. To utilize
this connection in a continuity equation, we first identify what the driving potential
and the flux are.

As a thermal flux, κ∇T corresponds to the amount of energy transferred per unit
surface per time, the driving potential should have the units of an energy density, i.e.,
that potential should have a unit of energy per unit volume, and should be connected
to temperature. There exist two physical constants which connect both. The first
constant is the heat capacity cp which describes the amount of heat energy which is
contained in 1 kg of a given material. Then, we convert mass units to volume units
utilizing the mass density of the material ρ. Multiplying these two constants by the
temperature yields the heat energy density for a given temperature, Eheat = ρcpT. This
quantity has a correct dimensionality and can be inserted into the heat equation as a
source.

Unlike the drift-diffusion equations, where a current is injected into the system
via boundary conditions, the most important source of heating is located in the
device rather than in the ambient environment. Electric current heats the device
and establishes a heat power concentration Q(x), which will in turn depend on the
electrical properties of the device in the position x.

The resulting equation is eq. 2.42. We will discuss the additional terms which
contribute to the Q term later.

ρcp
∂T
∂t
−∇(κ∇T) = Q (2.42)

2.4 Boundary conditions

Each of the transport equations stated in the previous sections requires boundary
conditions to obtain a numerical solution. One requires one condition for each order
of the equation and for every variable.
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Top contact
(Electron injection) z

x

z=0

z=L

Bottom contact
(Hole injection)

Figure 2.2: Coordinate system we use throughout this thesis. The exact direction of x and y axis is
not important, as all the equations are identical under point inversion symmetry, as the
equations of interest do not contain pseudo-scalars or axial vectors. The direction of the
z-axis is important, because the two contacts will have different boundary conditions applied.
The z-axis points from the bottom contact to the top.

The boundary conditions are introduced on the fixed boundaries, and we should
first introduce the coordinate system, fig. 2.2 to relate to particular boundaries.

In this section, we will be mainly interested in the boundary conditions on the z
axis, because this is the direction of current flow in our setup. This leads to a situation,
in which the derivatives of all quantities with respect to x and y axes are considerably
lower than the corresponding derivatives of quantities along the z axis. Therefore,
unless stated specifically, we will apply periodic boundary conditions along the x and
y axis.

2.4.1 Boundary conditions for Poisson Equations

The bias applied externally to the device in an experiment can be seamlessly introduced
into the Poisson equation by fixing the potentials on both sides of the device z = 0
and z = L. As only relative values of the electrostatic potential are important we
choose the electrostatic potential at the top contact z = L to be zero. If we fix one of
the boundaries, the second boundary condition accounts for the externally applied
bias. Therefore we impose boundary conditions eq. 2.43 and eq. 2.44 on the Poisson
equation.

φ(r)
∣∣∣
(z=0)

= V (2.43)

φ(r)
∣∣∣
(z=L)

= 0 (2.44)

Note that the boundary conditions at contacts do not necessarily need to be constant,
but can retain a dependence on the position within the xy plane. Then, the right hand
side of eq. 2.43 should be a function of x and y. A possible example of such a situation
is large surface area devices, to which the bias is applied via a small wire. In that case
we cannot call xy plane a contact, but the same boundary condition can be applied.
The sheet resistance of the contact layer then might be sufficiently large to cause a
non-negligible voltage variation.
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2.4.2 Drift-diffusion equation boundary conditions

In sec. 1.3.5, we described the injection barrier in thermodynamic equilibrium, which
will inevitably form between the contact and the organic material. Here, we would like
to describe what happens to the potential barrier in the presence of external electric
field.

Contact

OSC

Fermi level

HOMO

Figure 2.3: Effective electrostatic potential acting on holes (dashed line), when an external bias is
applied. The light gray area corresponds to the immediate vicinity the contact, the dark
shaded to the OSC. The area in between corresponds to the interface. The solid line shows
the level alignment in a bias-free situation.

In fig. 2.3 we show schematic depiction of the combined potential barrier 1.3.5,
which is imposed on the charge carrier when it is injected. In case of a metal contact,
the offset refers to the difference between the energy of the electron (LUMO) or hole
(HOMO) transport level (dark-gray shaded) and the Fermi level of the metal (shaded
light gray). We assume here that without superimposed external field, the energy of
the charge carrier effectively changes in a step-like manner and the interface does not
extent beyond a few intermolecular distances. Treating such an offset in energy with
the help of a generalized potential within the drift-diffusion equations, as suggested
by Sutherland and Hauser [162], fails as the energy barrier are typically too large
(cf. Section 1.3.2.) Therefore, this interface region should be treated with adequately
chosen boundary conditions, that also account for the case that no current can be
injected.

A common way to treat such a boundary is to set the electric current across the
interface for a given shape of the injection barrier, as this current connects the drift-
diffusion equations that describe the layers on each side of the interface. Such a current
consists of several components [163–167]:

• Charge carriers can overcome the barrier due to thermal excitations. Charge
carriers in the metal are not sitting exactly at the Fermi level, but are smeared
out across a certain energy region due to the temperature. Hence, part of them
may have enough energy to overcome the existing potential barrier. We will call
this current thermal injection current.
• The thermal injection current will not vanish for a vanishing applied bias. To

counterbalance the thermal injection current in equilibrium, another contribution
is required, which is called the interface recombination current.
• In quantum mechanics, charge carriers may tunnel through a potential barrier.

This effect manifests itself the stronger the thinner the potential barrier is. We
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will call the current, associated with tunneling from the contact to the OSC
as tunneling current. Contrary to the thermal current, it does not require any
counterbalancing part. Without any bias, barrier bending does not happen and
the width of the potential barrier becomes infinite, making tunneling impossible.
• When a reverse bias is applied, charge carriers do not experience any potential

barrier on their way and can freely move from the OSC to the contact. In this
scenario, the reverse current flow will be limited by the bulk conduction and
will be called backdrift current. The contributions of a backdrift current are only
relevant for reverse bias, i.e. for temporarily high charge-carriers accumulations
near the barrier.

In [164] an expression, which jointly accounts for thermal current and interface
recombination was derived. It is worth noting, that there are different approaches, for
instance, in [163] every contribution mentioned above was implemented separately.
These two approaches are not strictly equivalent, but converge to the same injection
currents, especially for low driving fields, because first approach is only directed to
improve thermal current.

Using these expressions, we implemented all the described constituents for the
injection currents. The net thermal injection current density (the interface recombina-
tion contribution is taken into account self-consistently in that approach) reads as eq.
2.45 [164],

JThermal = 4ψ2N0eµEexp(−φB/kBT)exp( f 0.5) (2.45)

where f is the reduced electric field, eq. 2.46

f =
eErc

kBT
(2.46)

and ψ is a function of this reduced field f and is derived according to eq. 2.47,

ψ( f ) = f−1 + f−0.5 −

√
1 + 2

√
f

f
(2.47)

rc is a Coulomb radius, which represents the distance between two opposite charges,
at which the attraction energy becomes higher than thermal fluctuations (in other
words, charges which get closer than this radius will bind together due to the electro-
static force). rc is given by eq. 2.48

rc =
e2

4πεε0kBT
(2.48)

N0 is the density of charge carriers at the contact, and φb is the energy barrier between
contact and transport layer.

The tunneling current density can be obtained with the Wentzel–Kramers–Brillouin
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approximation applied to the Schrödinger equation, eqs. 2.49 - 2.51 [163]

Jtunneling = Jt

(
E(L)

Ett(y)

)2

exp
(
−Etv(y)

E(L)

)
(2.49)

Jt =
eφ2

B
9(πa0)2h̄R

(2.50)

Et =
4φ3/2

B

3ea0
√

R
(2.51)

In these equations a0 is the Bohr radius and R is the Rydberg constant. The functions
t(y) and v(y) can be determined according to eqs. 2.52 - 2.53.

v(y) = (1 + y)1/2

[
E

(√
1− y
1 + y

)
− yK

(√
1− y
1 + y

)]
(2.52)

t(y) = (1 + y)−1/2

[
(1 + y)E

(√
1− y
1 + y

)
− yK

(√
1− y
1 + y

)]
(2.53)

E and K in eqs. 2.52 - 2.53 are elliptic integrals.
The numerical integration to obtain E and K is extremely slow and inefficient and

it can potentially slow down the calculations. However, it is not necessary, however,
to calculate them directly, because there exists extremely fast converging iterative
equations to do so [168]. Their exact implementation is presented in the appendix at p.
138.

In these equations, parameters like the mobility µ and the dielectric permittivity ε
are material parameters. They are set to the same values as used for bulk transport.
Other parameters, such as the electric field E and the temperature T are obtained on
the fly from the bulk transport simulations. However, there are several parameters
that are injection-specific. These parameters and their default values are described in
the table below. If not stated otherwise, we use these default values from the table for
the parameters. Charge carrier density value was set to be equal to be charge carrier
density in silver, according to [169]. For the values of injection barrier we picked the
values, determined in 1.3.5.

Note that the table also considers the barrier at the organic-organic interface. In our
simulations, the barrier is described by thermal injection eq. 2.45. Initially, we were
treating organic/organic interface as a part of a bulk simulation, but this approach
seemed to provide unsatisfactory results, because in this case the effective electric field
at the organic interface depends on the discretization. The electric field, determined
from the simulation, is proportional to the potential difference δφsim, which is modified
by the potential barrier at the interface φint and is always larger than 0.2 eV in the case
for a forward bias. It is also inversely proportional to the discretization δz. If one casts
this observation into the following equation

Ee f f ective =
δφsim

δz
+

δφint

δz
(2.54)

one can deduce that while the simulated potential difference δφsim will decrease with
discretization, the interface potential difference δφint will remain the same. Therefore,
the electric field at the interface suddenly becomes dependent on the discretization.
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Therefore, we described the currents across the interface as thermal injection cur-
rents, which do not depend on discretization and, thus, provide steady results. The
derivation of thermal injection neither requires the disordered nature of the material
to inject to, nor an ordered nature of the material to inject from. The situation is
different for the tunneling current because the W.K.B. approximation requires wave
functions to be expanded in a delocalized fashion. This can be justified in case of
metal/organic equation, because at least one side can be considered as semi-infinite,
however, it is hard to justify it when there can be no delocalized wavefunctions from
both sides. Because of that, we decided to disregard the tunneling current across the
organic-organic interface.

2.4.3 Problems with the tunneling injection

The injection currents described above possess one very serious issue. We discovered
this problem only after investing substantial amount of time into the modeling and
comparing them to experimental ones. The issue is in essence a combination of
inadvertence of the author combined with a inaccurate description of the injection
current in the source article.

If one takes a look on the [163], the tunneling injection is described using a Gaussian
Unit system [170]. In the thesis on the other hand, due to the presence of coupling
between multiple phenomena which are often described in different units, International
unit system [171] is employed. Often, when one is dealing with electrodynamics
problem, it is useful to adopt Gaussian unit system, as it changes units of charge
in the way, that electrostatic attraction force between two charges does not have a
dimensional proportionality coefficient:

FCoulomb =
q1q2

r2 (2.55)

Where q1 and q2 are the charges of the particle and r is the distance between two
charges.

Normally, conversion between the two units is trivial. One can use general rules for
the conversion described e.g. in [170]. However, if one performs this conversion for
the tunneling injection eq. 2.53, the resulted formula still is incorrect. The problem is
not obvious, as the resulting current value will not be absurdly different from ones
expectation and probably stems from some omitted dimensional constant which is
equal to 1 in the Gaussian unit system. For example, actual tunneling current value
at 2.5 V for the set of parameters used here for modeling is around 0.1 A/m2, while
incorrect formula gives a value of 5 A/m2. Moreover, as we will see in the sec. 4.4,
the contribution to the total injection current from the thermal injection under large
bias will be actually larger than the (both correct and incorrect) tunneling current. For
somebody, who is not too familiar with actual experimental values of the current in
the low-voltage regime (and I had in fact no prior knowledge in OLEDs at start of my
work in the project), the fact that the tunneling current is too large is quite subtle.

The issue does not makes the equation useless. What one still can do is to calculate
the tunneling injection current in the following way:

1. Convert the model quantities into the Gaussian system
2. Calculate the injection current using eq. 2.49
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3. Convert the resulting current values back into SI units

As calculating elliptic integrals is much more expensive task from the computation
time perspective than these unit conversions, it does not noticeably impact a perfor-
mance. This is the way the tunneling injection was eventually implemented into the
simulation and it drastically improved the correspondence of the modeling results to
the experimental ones.

The problem was noticed only in the last year of my work on the project, when I
finally got my hand on the experimental results obtained for this device. Unfortunately,
this meant that all results had to be recalculated with the new injection implementation,
and this alone took me several months to do. Some of the calculations, presented in
the thesis, were not adjusted for this issue and we will explicitly mention when it
happens.

Furthermore, in the sec. 4.4 we will describe another set of problems related to the
injection currents, that surfaced only after the mistake in the injection current was
discovered and were never not accounted for. This means, that any results in the thesis
will be affected by incorrect injection model in some way and one should always keep
that in mind. On the bright side however, we will show in ch. 4 that these problems
often do not negate general conclusions and only the results, related to low voltage
regions, must be adjusted. High voltages are in fact described quite precisely by our
model, as well as the current dependence on temperature. Elevated temperatures will
only appear under sufficiently high currents, which in turn exist only under large
applied biases. Therefore, most of the results should be adjusted for the phenomenon
but not completely discarded.

2.4.4 Boundary conditions for the heat transport equation

This section is dedicated to a physically sensible way to implement boundary condi-
tions for the heat transport equation, eq. 2.42. We will start with two major assump-
tions:

• There exists some fixed ambient temperature T0 which cannot change irregardless
of the actual amount of heat produced by the device.
• The boundary conditions should only depend on the difference between the

temperature at the boundary of the device TD and the ambient temperature T0.

T
T

D
0Air

Heat flow

Figure 2.4: Difference between the actual device temperature TD and the ambient temperature T0.
In operating conditions, the device will be in contact with air, which can also store and
transport heat. A thick air layer between ambient and the device guarantees a pronounced
linear proportionality between TD − T0 and the value of heat flow from the device to the
ambient environment.
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From these two assumptions and the fact, that heat should always flow from the
warmer to the cooler region and no flow should be observed when these temperatures
are equal, we imply that the dependence of heat outflow q from the edge of the device
to the environment can be assumed in the form q = f (TD − T0); where sign( f (TD −
T0)) = sign(TD − T0). However there are two problems with these equations, as
indicated in fig. 2.4. First, if the device produces a lot of heat, enough to noticeably
increase its temperature, the generated heat will raise the temperature close to the
device surface. Therefore, the region, in which T0 is attained, should be located far
away from the device surface.

That means, that the function f should depend not only on the properties of the
device itself, but also on a number amount of supplementary parameters which are
dictated by the ambient environment. Examples of such parameters would be air
humidity, the thickness of the air layer, whether there is some convection or wind,
which takes away the hot air near the device, etc. Moreover, it will depend on the
properties of the device-air interface, for example, on the surface area of the device
(which will change for example if it is rough). There are some works in the direction
to take into account all these properties, most notably [172–174]. Such large number of
free parameters make it impossible to treat everything numerically within reasonable
amount of time, therefore, we are required to make some reasonable approximation
for the border conditions.

To get this approximation, we expanded our candidate function f into a Taylor
expansion with respect to TD − T0. Due to the second assumption, f (0) should be
zero, i.e., the expansion starts from the linear term. The leading linear term may also
vanish in case of ballistic transport regime, which was already observed in a variety of
different materials [175–179]. The reason for ballistic transport is the absence of almost
any interactions between particles which carry heat so that practically free particles
can carry energy infinitely far without a noticeable energy cost. Nevertheless, diffusive
transport dominates in materials relevant for OLEDs. Then the particles, which carry
the heat, are scattered very often. Technically, that means that the scattering-free length
for particles is much lower than the characteristic length of the macroscopic region
where we expect the temperature to change. Correspondingly, in that regime, the
linear term in a Taylor expansion will assume the governing role.

We further consider that the actual ambient environment will be located at some
distance from the device, i.e. the thermal conductivity of air is going to play a crucial
role. Air transports heat in a very pronounced linear behavior with fixed low thermal
conductivity of 0.02W/mK. In the Results chapter we will derive eq. 3.12, which states,
that in this scenario the thermal conductivity of air will play the most important role.
Thus, its linear thermal transport behavior with respect to TD − T0 will be dominating
contribution to the function f .

Thus, we arrive to the following form of boundary conditions for the heat equation:

q(L) = h(TD − T0) (2.56)
q(0) = h(T0 − TD) (2.57)

Note the sign change in eq. eq. 2.57. It is necessary to account for the fact that thermal
flow is a vector quantity and at the left boundary its direction will be opposite from
the right one. We will call h the heat transfer coefficient or, shortly, h-coefficient. These
boundary conditions are also known as Newton boundary conditions and they appear
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in problems of mathematical physics, in which a linear approximation for the actual
evolution across the boundary region is sufficient.

Note here that organic/organic interfaces, in general, may exhibit heat conducting
properties that are distinctively different from that of the materials [180] due to
different phonon/electron dispersion relations in both materials. However, the heat
transfer between two amorphous organic materials will not be hampered to the same
degree by disparate phonon dispersions due to the localized nature of wavefunction.
Moreover, we did not found any studies which would accurately measure heat transfer
between α-NPB and Alq3. Even if we could, question would arise whether they are
applicable or not, as deposition procedure may as well influence the resulting value
of heat transfer coefficient. Finally, in the results chapter we will show that most
heat will be generated on the interface, fig. 3.4. This implies that most of the heat
generated on the interface will be not go through the organic/organic interface, but
rather propagate towards contacts to be dissipated. Therefore, we decided to treat any
interface between two amorphous organic materials according to the average of their
bulk thermal conductivities.

2.5 Source terms in continuity equations

Generation and recombination terms

To capture electron/hole recombination, we use Langevin [181] recombination rates,
eq. 2.58.

R(r) =
e (µe(r) + µh(r))

ε0εr(r)
n(r)p(r) (2.58)

The recombination is proportional to the sum of the mobilities. The sum of the two
mobilities determines the relative speed of two oppositely charged particles towards
each other due to their mutually attractive electric field. This electric field is modified
by the dielectric permittivity ε of the material, which appears in the denominator. If
one of the charge carriers is much more mobile than the other, the nominator will be
dominated by the large mobility. The more charge carriers are available, the larger the
recombination becomes.

Langevin recombination rates tend to overestimate recombination because they
neglect many other processes which may occur [182]. Nevertheless, it approximates
the recombination reasonably well and permits a straightforward interpretation due
to its simple form.

As we are not interested in any effects, which could provide a substantial gen-
eration rate (as for instance in solar cells), we keep a very low generation rate of
1010 particles/s/m3 in the simulations to aid convergence under low biases.

2.5.1 Joule and recombination heating

The source term in the heat equation is crucial for the whole simulation because
it introduces heat generation due to the electric current and recombination, and it
increases the operating temperature. We consider two main heat sourcesJoule heating
and non-radiative recombination heating. Though thermoelectric effects may also
be present and contribute to heat generation, we found these contributions to be
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negligible after preliminary testing, because thermoelectric constants in the organics
are in a order of 0.5mV/K [183], which is a very small number, compared to the
driving voltages and temperatures in the device.

Joule heating

Energy

Position
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2
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Energy

Position
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2

3

(a) (b)

Figure 2.5: Schematic illustration of hopping transport mechanism. Charge carrier performs a hops
between energy sites, the probability of which is determined mostly by the sites energy
difference. (a) and (b) correspond to the situation without and with electric field applied
respectively.

Joule heating is the most impactful mechanism of heating. Usually, it is described
as the amount of energy that charge carriers transfer to the material due to inelastic
scattering while moving through the media. However, scattering is an inappropriate
description for charges in OSC, because they are most of the time localized on a site
and rarely (compared to the time spent on one site) hop to other sites.

The mechanism of dispersing energy is, therefore, different. If we look at fig. 2.5,
we see that an electron, while moving through the disordered energy landscape, loses
and obtains energy with each hop. When the electron performs a hop upwards in
energy, it has to borrow thermal energy from the material and when it descends, it
has to give this energy back to the material. If there is no external potential applied,
fig. 2.5-a, the energy landscape is on average flat and the electron returns the same
amount of energy that it borrowed from the system.

However, an externally applied field shifts the energy levels of the sites, fig. 2.5-b.
Therefore, an electron, moving from site 1 to site 3 will pass an energy corresponding
to the difference between the site energies to the system. The shift of energy levels
corresponds to the electric field E at the point and the total energy dissipated by all
charge carriers Q is also proportional to the current J, as it describes total amount of
charge carriers,

Hence, although the mechanism is different from the case of ordered materials,
Joule heating should maintain its conventional form, eq. 2.59.

Q = J · E (2.59)

The current density is fed into this equation from the drift-diffusion equations and
the electric field from the Poisson equation, creating a direct coupling between the
modeling equations for charge and heat transport.

Recombination heating

Accounting for recombination heating is also straightforward in a macroscopic picture.
The actual processes, which drive this recombination, should be described quantum
mechanically. Generally they are quite complicated to describe, particularly because
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of the bare fact that this kinetic process should involve a lot of particles. However,
in macroscopic equations recombination heating is a manifestation of energy con-
servation. To conserve the energy when two charge carriers are removed from the
charge densities considered in the drift-diffusion equation, the energy they possess
should be transfered into heat equation (otherwise, the total system energy changes).
What energy do electron and hole posses? First of all, as they are moving through
the media, they have kinetic energy. Secondly, due to the fact that recombination of
an electron and a hole involves an electron being removed from the LUMO and a
hole being removed from the HOMO (or, in other terms, electron just falls down
from the LUMO level to the HOMO level), there should be some energy released in
the process, which is equal to the difference between HOMO and LUMO. Due to
complicated electrostatic interaction between electrons and holes, and local changes to
the energetic landscape they induce, the recombination energy always differs from
the EHOMO − ELUMO energies. This process is known as the formation of exciton and
is very important for instance in the solar cells, in which the ability of such particles
to move around in the device before recombination happens allows extraction of the
exciton energy. We will refer to energy of an exciton as recombination energy, ER.

Basically, the recombination term in the drift-diffusion equation tells us, how many
charge carriers are recombining in the given volume per second. If one multiplies it by
the recombination energy, one obtains the amount of energy released due to recombi-
nation. Finally, if one multiplies it also by (1− η), with η being the internal quantum
efficiency, one obtains the amount of heat energy dissipated due to recombination in
the element volume per unit time:

QR = (1− η)ERR (2.60)

2.6 Discretization methods

The equations derived so far can be solved analytically only for a narrow subset of
specific cases. For instance, we will show an analytic solution to the heat equation
in sec. 3.1.3, but this will require us to make several serious assumptions. Numerical
methods to solve differential equations, on the other hand, require us to discretize
the spatial region of interest. To do so, one can divide this region into small volumes
Vi and assume that any quantity of interest F(x) is constant within this region,
F(x ⊆ Vi) = Fi. In this work, we use the Finite Difference Method, where the shapes
of the volumes are restricted to rectangule, as schematically shown in fig. 2.6.

We will demonstrate the discretization procedure on the example of the two di-
mensional case, however, equations presented in the previous chapter have to be
discretized for 3+1 spatial and time dimensions. We use the two dimensional ex-
ample for two reasons: it is easy to plot explanatory two-dimensional figures, and,
contrary to one dimension, it can already describe discretization of partial derivative
equation. As illustrated in fig. 2.6, every axis is divided into subsections. The region
of interest is divided into N subsections (x0; x1), (x1; x2), ..., (xi; xi+1), ..., (xN−1; xN),
where xN = Lx. This is done for every the other axes. Then, every quantity F(x) in
the simulation assumes a constant value Fi,j = F(xi, yi) at every subvolume, depicted
as gray rectangle. The discretization rectangle for the point xi, yj is chosen in such a
way, that the point (xi, yj) is located in the center of the rectangle. This is done with
regards to the points, located on the boundary; for example, F0,0 should be located
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exactly in the bottom left corner. Therefore the actual distribution of F(x) becomes
approximated by a set of values on the mesh. The discretization of the volume requires
also the discretization of spatial derivatives.

x

y

x0 xi Lx

y0

yj

Ly
Lx

xi yjF(      ) = Fi,j,

Figure 2.6: Schematic illustration of the discretization of a two dimentional rectangular region.

Besides space, also the time variable t requires discretization. We are generally
interested in the steady state of the system, which is reached by the system with no
quantities change in time. The timescale to reach a steady state is between seconds
and minutes of real-time. When one turns on an OLED, its operating state evolves
with time. At first, charge carriers are injected and form a steady state charge carrier
distribution after a short time. However, the electric current heats the device. While
the device heats up slowly, the increase in temperature, changes carrier distributions
and electric fields inside the device. Finally, when the heat outflow balances the heat
generation, the device reaches a steady state. In our model, we assume that this steady
state can be reached. Note that, in reality, the time required for the device to reach
a steady state is long enough to permit slow device degradation, which means that
steady state might actually never be observed.

Whatever quantity F(x, t) is described by the equations, steady state implies that
it does not change overtime and, hence, dF(x,t)

dt = 0. There are two main methods to
solve equations for a steady state. The first method is to explicitly set F′t (x, t) = 0 and
solve the remaining discretized system of equations. This method works when the
remaining system of equations can be solved easier and in a shorter time than the
full system, for instance, when the remaining equations are linear. We cannot use this
method due to the exponential dependence of the mobility terms and the injection on
temperature.

The second method is to keep the time derivatives in the equations and let the
system evolve in time until it reaches a steady state. The discretized equations provide
the connection between the value of quantity F in the current timeframe t and a
timeframe a little later t + ∆t.

As to the best of our knowledge, no strict proof of the uniqueness and existence
of solutions to the system of equations 2.6, 2.40, 2.39 and 2.42 exists. We checked for
each simulation that different initial conditions lead to the same steady state solutions
within numerical accuracy.
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2.6.1 Discretization of the continuity equations in its general form

The continuity equation in its general form with all derivatives explicitly outlined
reads as eq. 2.61.

∂ρ

∂t
+ ∑

c=x,y,z

∂Jc

∂c
= S (2.61)

The derivative in terms of discretized variables utilizes the definition of a derivative
as ∂F

∂x = limdx→0
f (x+dx)− f (x)

dx .
To discretize derivatives with respect to time, we, therefore, replace the time deriva-

tive with the finite difference expression, eq. 2.62.

∂F
∂t

discretization−−−−−−−→ F(t + ∆t)− F(t)
∆t

(2.62)

We need a discretization of second derivatives because the fluxes in the continuity
equations are often constructed from the derivatives of other quantities. The second
derivative in one dimension requires three points for discretization. Therefore, it can
be calculated based on the given mesh point and its two neighbors. To obtain the
necessary equations, one needs to consider the second derivative as the discretization
of first derivative at points xi − (xi − xi−1)/2 and xi + (xi+1 − xi)/2. The resulting
equations for the second derivative then look like eq. 2.63.

F′′ii
discretization−−−−−−−→ 2

F(xi+1)−F(xi)
xi+1−xi

− F(xi)−F(xi−1)
xi−xi−1

xi+1 − xi−1
(2.63)

One straightforward example to demonstrate the discretization in a device is the
heat equation 2.42. At this point, we need to abandon our example of two-dimensional
discretization scheme, because following equations will be used in the actual mod-
eling. This means, that every derivative is now exapned into either eq. 2.62 for
one-dimensional derivative or eq. 2.63 for the second order of derivative. We can again
explicitly expand heat transport equation into partial derivatives:

ρcp
∂T
∂t
− ∑

c=x,y,z

(
∂κ

∂c
∂T
∂c

+ κ
∂2T
∂c2

)
= Q (2.64)

The first term in the brackets becomes important only when the mesh point of
interest is located on a heterojunction where the thermal conductivity changes. We
equip three coordinates x,y,z with the corresponding discretization indexes i,j,k and
denote κt

i,j,k, Tt
i,j,k, Qt

i,j,k, ρt
i,j,k, cp

t
i,j,k, as discretized qunatities corresponding to terms,

that are contributing to the heat transport equation at the moment of time t. We then
can arrive at the following iterative formula for the time propagation of heat equation,
in which the second and third term in square brackets correspond to an expansion
of the derivatives in terms of the first coordinate x in eq. 2.64. The four other terms
which correspond to two remaining coordinates are collapsed into three dots after the
expression. The full equation can be found in the appendix.
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Tt+∆t
i,j,k = Tt

i,j,k +
∆t

ρi,j,kcpi,j,k

[
Qt

i,j,k +
κi+1,j,k − κi−1,j,k

xi+1 − xi−1

Tt
i+1,j,k − Tt

i−1,j,k

xi+1 − xi−1
+

+2κi,j,k

Tt
i+1,j,k−Tt

i,j,k
xi+1−xi

−
Tt

i,j,k−Tt
i−1,j,k

xi−xi−1

xi+1 − xi−1
+ . . .

] (2.65)

The equation presented allows one to advance the temperature forward at every
discretized point in time. Note that all quantities on the right hand side of that
equation are given for this moment of time t. Our iteration method is called Euler
forward method. It is known, that the forward Euler method suffers from stability
issues, i.e., there exists a certain critical timestep ∆tC, above which such an iterative
scheme will not converge but will rather oscillate and diverge [184]. However, we
cannot use the more robust Euler backward method, because it yields and intractable
system of equations.

2.6.2 Specific aspects related to discretizing Poisson equation

The Poisson equation cannot be cast straightforwardly into a discretized form like
the iteration scheme Eq. (2.64) for the discretized heat trannsfer equation. One of
the reasons is that the Poisson equation lacks a time derivative. Conventionally, an
iteration scheme is employed that is customized for the Poisson equation. Applying
steps related to eqs. 2.63 - 2.64 for the finite difference discretization, straight-forwardly
yields an iterative scheme that relates the electrostatic potential at a position (i,j,k),
φi,j,k to the nearby potentials I(φi+1,j,k, φi−1,j,k, . . .) [185]. When applied to every point,
the scheme will result in a full iteration for all mesh points. After several full iterations,
the scheme will be converged. This discretization scheme is very stable.

However, when combined with the solvers for the other continuity equations, this
scheme adversly affects the convergence speed upon changing the discretization.
Denominators (as in 2.65) in discretization equations are now totally dependent on
discretization volume and can change a lot, depending on the discretization scheme.
For the Poisson equation alone, the scheme self-controls its convergence. However, this
- as such - appealing property slows down the overall convergence, when the scheme
is used together with other schemes that have a fixed convergence speed. Therefore,
we sought for another type of discretization scheme, that allows us to control the
convergence speed in the same way as for the continuity equations even if we sacrify
numerical stability.

A very straightforward way to do so is to add the time derivative of the potential in
the Poisson equation so that it will resemble the heat equation 2.66.

∂φ

∂t
−∇εr∇φ =

e(p− n)
ε0

(2.66)

We can do so, because we are interested only in the steady state solution, where
time derivative vanishes and the equation left is the Poisson equation. We then use
the same discretization scheme for the Poisson equation as we applied to the heat
equation. Introduction of the timestep does not influence the steady state, but gives us
an invaluable handle for us to control Poisson equation convergence. Utilizing this
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handle, we can put convergence of Poisson equation on par with other equations. The
exact discretized equations can be found in the appendix.

2.6.3 Specific aspects related to drift-diffusion equation

The drift-diffusion equations eq. 2.40 & eq. 2.39 correspond to regular continuity
equations (alike the heat transport equation). In practice, however, the discretization
scheme akin to the one we used previously for heat transport equation yields unsatis-
factory results for the drift-diffusion equations, because the charge carrier densities
may change in the device by orders of magnitude. Such large changes can be readily
illustrated with the following notion: The charge carrier density, i.e., the occupation
of the available electronic states in trap-free semiconductor in thermal equilibrium is
well-described with a Boltzmann distribution. If charges are spatially redistributed,
e.g., due to an electrostatic potential, the local occupation will change exponentially.
The stronger the electric field, the more pronounced is the diffence in occupation
between close-by locations. Consequently, strongly inhomogenous charge density
profiles may form across the device. Furthermore, also barriers located at interfaces or
contacts contribute to inhomogeneous charge carrier distributions, as they cause local
charge accumulations.

To account for large differences between adjacent mesh points, one can use a
specific discretization scheme, namely the Scharfetter-Gummel method [186–189]. The
idea behind this method is simple, yet extremely efficient. In this section we will
demonstrate how it works for one spatial dimension and for electrons; the three-
dimensional equations are shown in the Appendix.

Let us start with the drift-diffusion expression for the x-component of the electric
current density (eq. 2.40) multiplied by the elementary charge −e, where every quantity
apart from the elementary charge is time and spatially dependent.

Jx = enµE + De
∂n
∂x

(2.67)

We will discretize every quantity in this equation apart from the charge carrier
density, which will remain as spatially changing quantity, on the interval [xi; xi + 1];
the density will be located in the middle between these two points xi+0.5 = xi +
0.5(xi+1 − xi)

Jx
t
i+0.5,j,k = −enµt

i+0.5,j,kEt
i+0.5,j,k + Dt

i+0.5,j,ke
∂n
∂x

(2.68)

Any discretized quantities are constants in the discretized cells. Therefore, we can
treat them as constants in the differential equation above. Consequently, eq. 2.68

corresponds to a simple first order linear differential equation an′ + bn = c in n,
which can be easily treated analytically. To arrive at the analytical solution, the current
density is considered as a known constant. There will be one more free parameter after
integrating the differential equation. Hence, we are left with two unknowns, i.e., the
integration constant and the current density. Eq. 2.68 allows us to extract the electric
current from two electron densities n at xi and xi+1. In turn, the current entering as
flux permits to solve the continuity equation. We will not show the whole solution
procedure here, because this simple linear equation as such is easy to solve and the
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process of determining all constants is quite tedious [190]. Finally, the discretized
current density reads as follows:

Jx
t
i+0.5,j,k =

eDt
i+0.5,j,k

xi+1 − xi

[
nt

i+1,j,kB

(
e(φt

i+1,j,k − φt
i,j,k)

kBT

)
−

−nt
i,j,kB

(
−

e(φt
i+1,j,k − φt

i,j,k)

kBT

)] (2.69)

where

B(x) =
−x

1− ex (2.70)

One assumption which was used to derive this equation is the validity of Einstein
relation eq. 2.14, which we assume to be valid throughout this work. This is the
reason why the Scharfetter-Gummel discretization scheme does not explicitly contain
the mobility, as it is assumed to be related to the diffusion coefficient. It is possible,
however, to keep it explicitly in the discretization scheme, e.g., when the Einstein
relation fails or when the mobility displays an involved dependence on the field- and
a charge carrier densities.

Now we have the current between two points, therefore, we have the charge carriers
density in two neighboring points. We now can finally write down the full discretiza-
tion scheme for the drift-diffusion equations. As previously, we will write the scheme
only for electrons and performed on the x coordinate. Terms, corresponding to other
coordinates, and equations, corresponding to the holes, can be found in the Appendix.
First, we write down the drift-diffusion equation for electrons eq. 2.71, which is eq.
2.40, in which the electric current is explicitly placed instead of the drift-diffusion term
to prepare it for the Scharfetter-Gummel discretization. The charge carrier flux can be
obtained from the electric current by dividing it by the elementary charge, which in
case of electrons is −e, which results in the minus sign before the divergence term.

∂n
∂t
−∇

(
J
e

)
= G− R (2.71)

Discretizing this equation at points xi, yj, zk, we can obtain the following iterative
scheme, where three dots correspond to the discretization of the two other axes.

nt+∆t
i,j,k = nt

i,j,k + ∆t

[
Gt

i,j,k − Rt
i,j,k +

Jt
i+0.5,j,k − Jt

i−0.5,j,k

0.5e(xi+1 − xi−1)
+ . . .

]
(2.72)

This way of writing down the discretized continuity equations, keeping the electric
current instead of drift-diffusion term, has a very specific advantage: it is easy to
insert boundary conditions. As we described in sec. 2.4.2, the conditions on device
boundaries are described by the current inflow from the contacts. Therefore, to account
for the boundary conditions we just have to insert the correct injection current in eq.
2.72 for any mesh point on the boundary.
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2.7 Mobility in drift-diffusion equation

For simulations of organic semiconductors we require the charge carrier mobility,
which depends on the electric field strength, on the temperature and on the charge
carrier density. Assuming the validity of the Einstein relation, these dependencies
are also transferred to the diffusion constant. The dependencies are governed by the
properties of the material. We used the unified mobility model presented in [159]. In
this model the total mobility can be expanded into the product of several functions:

µ(T, p, E) = µ(T) fp(T, p) fE(T, E) (2.73)

µ(T) = µ0c1exp
[
−c2σ̂2

]
(2.74)

µ0 =
a2ν0e

σ
(2.75)

fp(T, p) = exp
[

0.5
(

σ̂2 − σ̂
) (

2pa3
)δ
]

(2.76)

δ = 2
ln
(
σ̂2 − σ̂

)
− ln(ln4)

σ̂2 (2.77)

fE(T, E) = exp

0.44
(

σ̂3/2 − 2.2
)√1 + 0.8

(
Eea
σ

)2

− 1

 (2.78)

c1 = 1.8 · 10−9 (2.79)
c2 = 0.42 (2.80)

Note that this thesis will not attempt to perform simulations with mobility values
that exactly match the experimentally reported ones. Rather, either a representative
mobility value or an illustrative range of mobilities will be considered. The main reason
is that mobility values extracted from experiments depend on the acquisition method
and sample preparation, even for nominally identical devices. This is particularly
well exemplified with an interlaboratory study [191, 192] that has been dedicated to a
reliable determination of mobilities from space-charge-limited currents. In this study,
preparation, measurement, and mobility extraction was done by different groups
for the same target materials. The resulting mobility values are scattered within two
orders of magnitude. This scatter in mobility values can be reduced, and the authors
present a measurement protocol which aims at reducing it, but not necessarily entirely
prevented.

2.8 Device symmetrization

Considering the large number of different parameters required by the modeling, our
initial step aims at reducing the number of free parameters. This was done by a device
symmetrization procedure.

Actual devices contain two main layers, namely the electron (ETL) and hole (HTL)
transport layers. In the experimental OLED setup, fig. 1.7, the thicknesses of both layers
are almost equal. They possess different electric and thermal parameters, which leads
to the fact that certain layers might be more or less important for device performance
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than others. To have a more general starting point, we decided to eliminate this
inequality and set the device to be symmetric from every point of view. In essence,
”we seek a model device for our simulations, that serves three purposes: (i) The device
layout should support the setup of a toy model with which the role of the heat
transfer coefficients h towards the environment and the heat conductivities κ of the
organic layers can be conveniently distinguished. (ii) The toy model should operate
with a strongly reduced amount of parameters so that the impact of charge and heat
transport can be disentangled best. (iii) It must be possible to straight-forwardly extent
our toy model to accommodate more involved device structures with our modeling
methodology.” [146]

We propose that devices that are symmetrized as will be shown below serve this
purpose. In terms of electric properties we demand a balanced current. ”This condition
of balanced current halves the amount of necessary electrical parameters. If realistic
parameters are imposed for one layer, only parameters of the second layer require an
adjustment to balance the current. In practice, the adjusted parameters are either the
electron or the hole mobility in their respective transport layer or the offset between
either the electron or the hole transport levels. ” [147]

”In the next step, we construct the device to be symmetric from a thermal point
of view.” [147] ”As there is no differentiation between the top (encapsulation) and
bottom (substrate) anymore, we can use a common effective heat transfer coefficient h
rather than distinguishing between hL and hR. To guarantee the desired symmetric
distribution of the heat density, two conditions must be fulfilled. Firstly, the layers
from both sides of the device center must have equal thermal conductivities κ. With
having reduced our thermal parameters to κ and h, we can more clearly track their
impact on the device temperature and performance. Secondly, also the electric current
density responsible for heat generation must be equal in the layers left and right of
the device center.” [146] ”We propose that such symmetric devices are ideal starting
points to monitor the impact of subtle changes in the coupling between charge and
heat transport.” [146]

It is important to note that the current in the device, independent of the actual
parameters in corresponding layers, should still be constant across the layers due to
charge conservation. Nevertheless, we still have to impose symmetric charge transport
parameters, to obtain a symmetric heating profile. This is because heating, as described
by eq. 2.59 and eq. 2.60 depends on the variety of electric parameters as well.

Note that in the OLED structure we aim to model, the ETL has a lower charge
carrier mobility than the HTL. Therefore, holes from the anode penetrate the HTL
and recombine with electrons on the other side. That means that the heating profile
and heat transport will be shifted towards the region of the ETL and, inherently, the
thermal conductivity of the ETL will be of higher importance compared to the one
of the HTL. This property of an actual device 5 is not captured in the symmetrized
model, as it corresponds to asymmetric heat generation and temperature profiles.

In summary, the parameters which we set equal in both layers are:

• Thickness of hole and electron transport layers.
• Mobilities of holes in the HTL and electrons in the ETL.
• Mobilities of electrons in the HTL and holes in the ETL.

5For example, due to the fact that the emission spectra origins from Alq3, which performs the
function of ETL, the spectra of light is much closer to the one of Alq3 than HTL
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• Injection barriers for both charge carriers from opposite sides, i.e. hole injection
barrier at the anode and electron injection barrier at the cathode.
• Injection barriers associated to the heterogeneous organic/organic interface. The

HOMO and the LUMO levels of both ETL and HTL are adjusted in the way,
that the barrier for holes and electrons at the interface are equal for holes and
electrons.
• Thermal conductivity κ and heat transport coefficient h.

2.9 Default simulation parameters

At the thesis, the reader will see a multitude of different simulation results. Most of
these simulations were performed under the same set of parameters and in this section
we will specify the default set of parameters to make this investigation reproducible
and to not bother the reader with the same parameters over and over. Sources or,
in cases where could not provide reliable source, justifications for most values are
provided in the respective sections of the thesis, where these parameters are first
introduced. However, some of them are not covered and we will discuss them briefly
after showing the resulting table 2.1.

Parameter Description Default value
N0 Density of charge carriers at contact 1028m−3

φB Injection barrier 0.5 eV
φB Injection barrier for minority carriers 2.2 eV
φB Organic/organic interface barrier 0.2 eV
µ Mobility of majority carriers 10−9 m2/(Vs)
µ Mobility of minority carriers 10−10 m2/(Vs)
µ Thermal conductivity of organic 1 W/(mK)
a Intermolecular distance 1 nm
σ Disorder parameter 55 meV
ρ Material density 2490 kg/m3

cp Specific heat capacity 800 J/(kgK)
εr Relative dielectric permittivity of organic materials 3.5

Table 2.1: Default parameters, which were used in the simulation, if not stated otherwise

Mobility of minority carriers are normally hard to find, as every experimental study
is overly concentrated on extracting only the mobilities of majority carriers. We just set
it by one order of magnitude lower than the mobility of the majority carriers to ensure
that even when minority charge carrier penetrate the organic/organic barrier, it is still
hard for them to reach the opposite contact. Disorder parameter was set to that specific
value after the investigation, which was performed in ch. 4. Specific heat capacity was
taken from [193]. However, material density ρ and specific heat capacity cp do not
actually influence our results, despite being a parameter in the heat transport equation
2.42. The reason for this is that they come as the prefactor to the time derivative of
temperature which is equal to 0 in the steady state, which we are interested in. As
such, changing the material density and specific heat capacity is akin to changing the
timestep in the heat transport equation, which in turn has no influence on the steady
state until it converges.
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Most of the results which were obtained and described in this chapter were published
in the Journal of Applied Physics in 2019, with the preprint available at arxiv.org
[146, 147] which were a joint effort of me and my co-supervisor Dr. Karin Zojer. In
these papers I developed the topic, provided all the calculations shown and designed
the figures. These papers were co-written by Karin Zojer and me. As these papers
contain a number of usefully formulated explanations, I am using these formulations
in section 3.1.3. These verbatim passages are marked accordingly with quotes.

In this chapter we will demonstrate the results obtained from the simulations. We
will show how our modeling approach, established following all the steps outlined in
the methodology section, can offer a description of physical phenomena that cannot
be achieved with other modeling techniques and provides valuable insight into what
is actually happening inside the OLED. In this chapter, the electrothermal coupling
will always be present to demonstrate its strong influence on the device behavior.
Later we will dedicate a separate chapter 4 to the comparison between experiment
and modeling, where the electrothermal coupling will be off, however, temperature
dependence still will be present. First, we describe findings in the theoretical part of
our work and then, using the limited experimental data we got our hands on, we
will look at the validity of the results presented here. It is worth to immediately note
that most of the results, which were obtained in this chapter, qualitatively will not
be changed by the conclusions of ch. 4. However, some of them can definitely be
improved quantitatively and in ch. 4 we will describe exactly how.

3.1 Influence of thermal transport parameters on device
temperature

One of the most important parameters which determine the device usability is the
operating temperature. Generally speaking, there is a variety of different ways to
assess device properties, for instance, via the external quantum efficiency, i.e., the
relative amount of charge carriers which actually recombine radiatively, or via the
number of available charge carriers for a given applied voltage, etc. As in OLEDs there
exists a tight coupling between every phenomenon, it is impossible to find the ”root”
quantity that every other depends on. Under these circumstances, it is sensible to
focus on familiar, experimentally measurable quantities, such as the device operating
temperature. In this section, we will deliberately focus only on temperature and leave
other parameters aside.

For that purpose, we will need to assume in this chapter that some of the device
parameters, which could be influenced by temperature are fixed. We will take a very
specific device structure which will be the same α− NPB / Alq3 layer composition
that is shown in fig. 1.7. The layer thickness as well as the injection barriers at the
contacts will not change throughout this investigation.
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For the purpose of this section, our device is considered as 1-dimensional. When
turning to a one-dimensional description, we can derive some analytic equations
which can precisely describe the results.

3.1.1 Device parameters responsible for the temperature increase

First and foremost, we need to state which device parameters are responsible for heat
dissipation. As in this section the device structure is fixed, we have only a few handles
to change the device temperature.

• Applied bias: The larger is the applied bias, the higher is the electric current,
which in turn is directly resposible for the heating of the device.
• Thermal conductivity κ of the organic layers: It determines, how fast excess

heating propagates to the device boundaries. Technically, κ may be different for
different organic layers. We set it equal in both layers, to comply with the device
symmetrization, 2.8.
• Heat transfer coefficient h: It determines how fast excess heat can dissipate from

the edge of the device to the ambient environment.

Without further altering the device structure, these are the only parameters that can
play a role in the modeling of heat dissipation. We want to benchmark, which of the
parameters are important and which are not. The voltage is a very distinct parameter.
Compared to the other two, it can be readily altered over a very large range without
any special treatment. However, in reality one wants to work with a fixed optimal bias,
at which the device efficiency is maximized. Thus, we will look at fixed voltages and
device temperature as a function of the two other parameters.

3.1.2 Maximum temperature as a function of thermal transport
parameters

As we outlined above, we now investigate what happens with the device for a given
voltage. To obtain simulation results the default parameters described in sec. 2.9 were
used in this section. The only default parameter we will change for our purposes will
be the thermal conductivity of the organic layers κ. To determine, which parameter
values produce an elevated temperature, we performed the following preliminary
analysis. We discretized the parameter space of h and κ with a coarse discretization
grid such that parameters varied by two orders of magnitude. This was done under the
applied bias value of 12 V, which was the highest experimental value of applied bias
(the experimental part will come later in ch. 4). Heat transfer coefficient was discretized
between 10−10 to 1010 W/(m2K), with thermal conductivity ranging between 10−5

to 105W/mK. With this approach, we obtained for most simulations a temperature
increase that was either being negligible or the simulation diverged to T = ∞. In the
first case, the heat outflow is just too efficient and there are no possible scenarios of
how the given device heating can increase the temperature. Diverging temperatures
occur due to the exponential dependence of the mobility on temperature. Too much
generated heat, i.e. more heat is generated than the device can dissipate, causes
overheating. Overall, we found that different combinations of the h-coefficient from
102W/(m2K) to 105W/(m2K) and the thermal conductivity ranging from 10−4W/mK
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3.1 Influence of thermal transport parameters on device temperature

to 1W/mK can result in noticeable, but not extreme temperature increase. Based
on that, we discretized the corresponding parameters even finer, performed the
simulations again in that region and from them extracted the maximum temperature
value. Results for the V = 14 V can be seen in the right panel fig. 3.1.

This figure shows, how the maximum temperature depends on the thermal conduc-
tivity κ and heat transfer coefficient h. As we expected, higher h-coefficient lowers the
temperature in the device. When the value of heat transfer coefficient becomes smaller
the temperature quickly increases, until the simulation does not converge anymore.
What is more intriguing, the x-axis of the plot is in logarithmic scale to better capture
the whole discretization region, therefore low values of h-coefficient correspond to
smaller distance between the ticks. That means that the temperature actually ramps
up in the low h-coefficient region even faster than one perceives from this plot. If the
device temperature is already higher than the room temperature, a small change in
the heat transfer coefficient (i.e., small changes in the ambient environment or the
contact to the heat-absorbing surface) may quickly destroy the OLED.

We also see that different thermal conductivities have an overall impact on tem-
perature, however, unless κ reaches very low values of around 10−4W/mK, these
changes are barely noticeable. High thermal conductivities definitely support the heat
dissipation by decreasing the operating temperature, but they do not seem to be that
important after the value of 10−3W/mK. This is best seen with the blue and black
curves, which correspond to the values of 10−2 and 1W/mK respectively, and which
are exactly on top of each other. This is important, because realistic values of the
thermal conductivity for organic layers are in the range of 0.1 - 10 W/mK [193–195],
hence never approaching the small value of 10−4W/mK. In essence, for a particular
chosen device setup, there are absolutely no reason to differentiate between materials
using the thermal conductivity, because any material will do the job. We will generalize
this statement to other possible device setups later in the sec. 3.1.3, where we will
derive an analytic approximation to the problem of the heat dissipation.

It is also useful to understand what is exactly different in organic semiconductors
and why the mobility dependence on temperature plays such a huge role. To demon-
strate that, we also performed some simulations without a temperature-dependent
mobility, to emphasize the peculiar consequences for OLEDs it brings. The comparison
between the two can be seen in the left panel of the fig. 3.1.

This plot gives us a clear idea of why temperature control became such a huge
topic in organic semiconductors. When the mobility is temperature-dependent, the
temperature ramps up more steeply and assumes systematically higher values for
a given h-coefficient. We call this effect a vicious cycle: a higher temperature lead
to a higher mobility, which in turn leads to a higher electric current, which will
heat up device even more and further raise the temperature. If this cycle can be
counterbalanced by the efficient heat outflow, the OLED can be stable, otherwise
the thermal degradation will quickly destroy the device. It was suggested, that the
elevated temperature could be beneficial for the device [131] as it increases the mobility
of transport layers. However, with the data presented here we doubt that it is possible.
Apparently, an elevated temperature in the device may stem only from the insufficient
heat outflow; in such circumstances, the temperature becomes really unstable and a
small changes of the h-coefficient may result in a burnout.

The behavior presented is preserved across a large voltage range. To begin, one
can take a look at the fig. 3.2, which was obtained for 13 V applied bias, which

63



3 Simulation results

M
ax

im
u

m
 T

em
p

er
at

u
re

, K

Heat transfer coefficient, W/(m K)2

1
10
10
10
10

-2

-3

-3.5

-4

Thermal conductivity
lowers

M
ax

im
u

m
 T

em
p

er
at

u
re

, K

Heat transfer coefficient, W/(m K)2

Mobility depends
on temperature

Mobility is 
constant

Figure 3.1: Maximum temperature as a function of heat transport coefficient for an applied bias of
14 V. (a) Solid line corresponds to different maximal device temperatures obtained for a
temperature dependent mobility. The dotted line corresponds to a constant mobility. There
are no more points for the solid line below h = 3.16 103 W/(m2K) because maximum
temperature in this region diverges when further decreasing the heat transfer coefficient.
(b) Mobility dependent curves, where different colors correspond to the different thermal
conductivities, value is given on the legend in W/mK. One can see previously described
temperature skyrocketing if looks on the red line corresponding to thermal conductivity.

unsurprisingly shows the same behavior, as the voltage is nearly the same. However,
this plot illustrates nicely the incredibly sharp temperature rise for a small change of
the heat transfer coefficient h, approaching the value of 380 K right after 320 K.

102 103 104 105

300

320

340

1
10
10
10
10

-2

-3

-3.5

-4

M
ax

im
u

m
 T

em
p

er
at

u
re

, K

Heat transfer coefficient, W/(m K)2

Figure 3.2: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
13V. Different colors correspond to the different thermal conductivities, value is given on
the legend in W/mK.

Interestingly, the abrupt behavior of temperature vs h-coefficient is still in place when
the values of applied bias are smaller. We found the range of voltages from six to nine
Volts particularly intriguing, fig. 3.3. As we picked up the discretization range of the
h-coefficient and the thermal conductivity to give substantial temperature elevations
under applied bias of 12 V, there is no question why the curves corresponding to 6 V
are almost flat. We are certain, that lower values of the h-coefficient could still provoke
the increase of the temperature. We are not doing that deliberately, as this figure serves
as a nice starting point. At seven Volts we see already that the temperature rises at
the value of h-coefficient 102.5W/m2K and for the previous value of 102W/m2K the
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3.1 Influence of thermal transport parameters on device temperature

simulation already does not converge. At eight Volts nothing changes substantially
and we just see an overall temperature increase. But with the final plot obtained for
the value of V = 9V we see again the enormous jump of the operating temperature
at the value of heat transfer coefficient h = 102.5W/m2K. We were lucky enough to
get some very high temperature simulations, which were able to converge. The black
curve, corresponding to the value of thermal conductivity κ = 1W/mK converged to
373K.

This abrupt temperature increase is prompting us to think, that all non-converged
points in this simulations are just belonging to the high temperature, and this is
indeed the case. It is fairly easy to distinguish between the simulation which did not
converge due to numerical instability and the one which did not converge due to high
temperature. First one normally shows oscillating behavior before it diverges, while
other simulations behave as it will converge until around 360 K and then, without
any oscillations it displays large temperature increase. The first type of divergence
can be normally counterbalanced by a lower timestep, while the second one cannot.
Later in this section, we will show the simulation behavior over time on a particularly
intriguing simulation. It should convince the reader that we are indeed having the
problems not with a numerical integration method, but rather with the fundamental
device property.
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Figure 3.3: Maximal device temperatures as a function of heat transfer coefficient for an applied biases
of 6− 9V. Different colors correspond to the varied thermal conductivities, value is given
on the legend in W/mK.

We show the corresponding plots for the whole range of 1 V to 15 V in appendix
sec. 6.

In fig. 3.4 we inspect what happens inside the device when the thermal conductivity
changes and how the thermal conductivity influences the electric quantities and heat
generation. We are particularly interested in thermal conductivity for two reasons. First,
because low values of the thermal conductivity have a pronounced influence on how
temperature is spatially distributed within the device. Second, it is possible to obtain
distributions of several different quantities under the same driving voltage which is
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3 Simulation results

much harder for the h-coefficient, whose influence is more substantial. Without having
these distributions obtained for the same voltages, it is hard to decouple influences of
different parameters.
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Figure 3.4: Distributions of heating density, temperature, electric field and charge carrier densities
inside the device and their dependence on the thermal conductivity. Electric field and
charge carrier densities do not change noticeably when thermal conductivity changes, so we
show only one distribution for each. Plots were obtained under 13V applied bias. Thermal
conductivities are given in the units of W/mK.

The first effect it has is the increase of the maximum temperature. It is caused by
the increase of the temperature in the middle of the device, while the temperatures
on the both edges are nearly the same (upper right panel). This in turn happens for
two distinct reasons. The first and obvious one is that thermal conductivity directly
influences the temperature distribution. However, the second reason is more interesting
and, as one can see in the top-left panel, with changes of thermal conductivity there
are overall changes in the heating profile. This changes are not very pronounced
but still are present. This in turn happens due to (i) the electric field distribution
and (ii) due to charge carriers distribution in the device. The electric field is lowest
near the contacts and is elevated at the organic/organic interface (lower left panel).
Due to charge carrier accumulation at the contact, the electric field there is lower
than in the device. The large electric field at the interface is explained by the large
charge carrier accumulation, present at the interface (lower right panel). As the Joule
heating is proportional to the total current, which is constant across 1-dimensional
device, and to the electric field, Joule heating density profile will change due to the
local changes in the electric field. However, neither charge carrier distribution nor the
electric field distribution in the device are not changing noticeably due to different
thermal conductivities, that is why one cant see different thermal conductivity plots
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3.1 Influence of thermal transport parameters on device temperature

for these distributions. The change in the heating density profile comes therefore from
the recombination heating, which explicitly depends on the mobility value and the
increase of current density.

As we mentioned previously, it is relatively complicated to find a voltage, under
which a substantial temperature elevation occurs and, at the same time, h-coefficient
can be varied. We found one voltage point V = 10V, which allows us to capture in
the same plot five different heat transfer coefficient values from 103 to 105W/m2K for
the thermal conductivity value of 1W/mK. However, this decision has its drawback,
because temperature variations are not that large as in fig. 3.4 and, therefore, thermal
effects are less pronounced. The thermal conductivity value of 1W/mK leads to
constant temperature distribution within the device. However, the electric field and the
carrier densities will change now, compared to fig. 3.4. To account for these changes,
we separated carrier densities into two different plots and removed the temperature
plot. The results one can see in fig. 3.5.
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98

110

3
3

3

Figure 3.5: Distributions of heating density, electric field and charge carrier densities inside the device
and their dependence on the h-coefficient. Plots were obtained under 10V applied bias.
The two highest h-coefficient values, 104.5 and 105W/m2K do not change the distributions
noticeably and are on top of each other. Hence, they are both colored black. However, values
from 104 (green), 103.5 (red) and 103 W/m2K (blue) are actually introducing some changes
in at least one of the plots, so they are color coded.

In the figure, h-coefficient value correspond to uniform temperature distribution
across the device. Temperature values for heat transfer coefficient from low to high are
equal: 308 K (blue), 301 K (red), 299 K (green), 298 K (black), 298 K (black). We expect
that the value of h-coefficient cannot directly influence the distributions and can only
influence them via temperature increase. This explains why the two highest values
of h = 104.5W/m2K and h = 105W/m2K, depicted black in the plots, are directly on
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3 Simulation results

top of each other for every distribution. Nevertheless, we see that 10 K temperature
difference between lowest and highest values of heat transfer coefficient result in
pronounced changes in heating. As in the case of thermal conductivity, this change
must be directly related to the mobility increase, which would in turn result in the
larger current and more recombination events. Hence, this is the clear manifestation
of the vicious cycle, because the increase in the temperature results in the increase
of heating density within the device (which will, of course, produce even larger
temperature). The electric field distribution cannot display such pronounced change,
because the electrostatic potential is fixed on the boundaries. Nevertheless, it deforms
when the temperature increases, which is best seen for a small value of h = 103W/m2K.
This deformation is in turn a result of the change in the carrier densities. We see that
the elevated temperature results in the overall increase of carrier densities within the
device. This happens due to the larger injection, which is in turned amplified by a
larger mobility values, which prevent carrier accumulation on the interface.

Influence of the heat transfer coefficient on the current-voltage characteristics

To show how the operation changes with applied bias, we turn to inspect the current,
as (i) current-voltage characteristics are easily accessible in the experiment and (ii) the
current should be severely influenced by the device temperature. To minimize the
influence of other quantities, we set the thermal conductivity to 1W/mK, so that the
temperature inside the device is constant. We control device cooling with the heat
transfer coefficient h, fig. 3.6.

A small applied bias does not change the temperature at all (top panel). However,
when the bias increases, the temperature starts rising and it ramps up very steeply
close to some critical point. For higher voltages we were unable to obtain any current,
as the simulations were diverging. The bottom panel demonstrates, how the current-
voltage characteristics depend on the value of the heat transfer coefficient h. The
higher h is, the more efficient is the cooling. The flat temperature region from the
top plot, therefore, corresponds to the part of the plot, where all the curves coincide.
Afterward, the temperature starts its rapid elevation, which begins the later the better
the cooling is. Thermal parameters can therefore straightforwardly influence the
device performance and current-voltage characteristics, which are often considered
determined only by electric properties.

Simulation convergence under large voltages

In this section we have mentioned several times the convergence issues. To illustrate
them better, we picked one particular simulation with heat transfer coefficient h =
102.5W/mK2, which perfectly serves this purpose. The simulation does not converge
and its convergence ends when the temperature reaches the value T = 380 K, fig. 3.7.

On every panel of the figure, x-axis contains numbers of iterations and is presented
on logarithmic scale. This is done to be able to capture the effects we are interested
in over the large scale. Panel (A) shows the temperature evolution in the simulation
as a function of the iteration number (the timestep of the simulation is constant,
so it is equally fair to relate time and the iteration number). As we can see, the
temperature steadily increases over the course of simulation until it reaches 380 K.
The curve is smooth almost everywhere and experiences the abrupt changes in the
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Figure 3.6: Current-voltage characteristics for different heat transfer coefficients. The top plot correspond
to the current-voltage (black) and temperature-voltage (orange) characteristics for heat
transfer coefficient equal 1000W/m2K. The bottom plot contains current-voltage curves for
different heat trasfer coefficients.
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Figure 3.7: The behavior of the simulation which does not converge due to the high temperature value.
On panel (A) we show the temperature evolution, on panel (B) the relative precision of the
simulation (refer to the text for the explanation) and panel (C) expands the almost invisible
but important region on panel (B).
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3.1 Influence of thermal transport parameters on device temperature

derivative at several points. These points are located the voltage increment of the
simulation, therefore, the heating at these points is abruptly increased. Panel (B)
shows us the maximum relative error of the Scharfetter-Gummel iterations (for charge
carrier densities). By relative we mean that we calculated the difference between the
carrier densities at current and previous iteration at each point and took the maximum
value of the resulting set. We see here clearly, that the plot can be divided in three
separate regions. The first region of the initial convergence displays the continuous
improvement of the precision. When it reaches the precision, which is required for
simulation convergence (10−9), the error bounces and rises again due to the voltage
increment. Then, the error starts to oscillate very quickly. This happens because in this
region the temperature is almost constant and the simulation is already preconverged.
The size of this region is more or less the same, as the precovergence one. This results
in the fast calculations for every next voltage value. To capture better this region, we
also prepared the panel (C), where this region takes the whole plot scale and one can
distinguish between the individual features better.

For anyone, familiar with the drift-diffusion simulations, these both regions must
be familiar. However, in our case, these regions combined are actually a fairly small
part of simulation. When the temperature changes noticeably, we see that the error
of the simulation barely changes across many iterations. With every timestep, due to
the increase of temperature, mobility changes and thus the parametrization of drift-
diffusion equations 2.39 changes. In other words, we are trying to solve the equation
with the iterative scheme, but the equation itself changes every iteration. Nevertheless,
two more times the simulation is able to converge, albeit it requires 10 times more time
to do so than for the whole preconvergence or oscillating regions. However, after the
last change of voltage, this is not the case anymore and the temperature starts to grow
steadily together with the relative error. It is hard to determine that the simulation
had actually entered in this region, because the relative error may still drop for a lot
of time until it rises.

Described here is actually the biggest problem we faced while working with this
model. We were not able to find any parameter which could quickly determine whether
simulation will or will not eventually converge. In the end, most of the computational
time was wasted on simulations which would never converge.

3.1.3 Derivation of an analytic solution to the heat transport
equation

We saw in fig. 3.2 that the thermal conductivity is practically irrelevant for the device
temperature. In fact, ”the thermal conductivity of the organic materials would con-
tribute non-negligibly to the maximum temperature if the organic films were at least a
factor of ten thicker.” [147] However, to prove this for all possible values of thermal
conductivity, heat transfer coefficients, and thicknesses, we will have to conduct a
lot of simulations, covering all possible scenarios. This process will be extremely
inefficient, particularly due to the large computation time of a single simulation for a
given voltage point.

Therefore, to demonstrate the impact of the layer thicknesses, we derived several
analytical equations, which approximate the simulations well and contain all the
key quantities such as the charge transport parameters, the temperature, the layer
thickness, the heat transfer coefficient h and the thermal conductivity κ. It turns out
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that our analytical solution also allows us to directly connect our methodology to
experimentally measurable quantities.

To obtain an analytic relation, the task should be first formulated in a precise
mathematical language. As we already know, the heat generation, due to the electric
current distribution, is not constant in the device and varies from layer to layer and
within the layers. In general, the generated heat density has a profile, which can be
described across layer stacks by a function Q(z), fig. 3.8. Note that we do not require
the assumption of symmetric layer sequence here.

If we know the thermal conductivities of each layer, the heat equation can be
straightforwardly solved using the Greens function G(z, z0) technique. Note that
this is not quantum mechanical Green function, which corresponds to probability
amplitude for particle to propagate from point z0 to the point z. The Green function
approach in the case of partial differential equations describes the reaction of PDE
to the point-like source (heating in case of heat transport equation) and can be used
to derive PDE reaction to any source distribution. The heat equation 2.42 considers

Figure 3.8: Layer description and profile of generated heat as used in the analytic solution. j correspond
to the layer whose temperature we are interested in. j’ corresponds to the layer, whose
thermal contribution we would like to calculate. In the end we are interested in summing
the contributions from each layer, i.e., final result should not depend on the ”primed” layers.

a profile Q(z) of generated heat and the profile of thermal conductivity within the
device, κ(z), i.e., each of the layers possesses its own thermal conductivity. Therefore,
we can safely assume that κ(z) must be piecewise constant, attaining the value of
the thermal conductivity κ(z) = κj, when point z belongs to the layer j. The general
solution of the differential eq. 2.42 with these inputs is given by a Greens function
G(z, z0) that fulfills eq. 3.1. The Green function in this particular scenario describes
the contribution of the point z0 to the temperature at point z.

− d
dz

(
κ(z)

d
dz

Gz(z, z0)

)
= δ(z− z0) (3.1)

If one multiplies eq. 3.1 by Q(z0) and integrates it with respect to z0, one obtains
the following equation:

− d
dz

(
κ(z)

d
dz

(∫ L

0
dz0G(z, z0)Q(z0)

))
= Q(z). (3.2)
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3.1 Influence of thermal transport parameters on device temperature

The term in the inner bracket of eq. 3.2 must be equal to T(z) in the presence of
the heat density distributed as Q(z), because eq. 3.2 corresponds to the heat transfer
equation. Of course, this also means that this term should satisfy the boundary
conditions for the heat equation.

The integration of the piecewise constant function κ(z) can be cast into the summa-
tion over the individual layers. After doing so and imposing the condition of heat flux
preservation across the interfaces, one arrives at the following equation:

T(z) =
N

∑
j′=1

∫ zj′

zj′−1

Q(z0)G(z, z0)dz0. (3.3)

in which zj′ is defined as zj′ = ∑
j′

i=1 Li and Li refers to the thickness of the individual
layers. The Greens function G(z, z0) can then be conveniently written using functions
WL(z) and WR(z) for each layer b :

WL
b (z) =

1
hL

+
b−1

∑
i=1

Li

κi
+
−
(

∑b−1
i=1 Li

)
+ z

κb
(3.4a)

WR
b (z) =

1
hR

+
N

∑
i=b+1

Li

κi
+

(
∑b

i=1 Li

)
− z

κb
. (3.4b)

With the help of WL
b (z) and WR

b (z) the Greens functions GL(z, z0) for z < z0 and
GR(z, z0) for z > z0 read:

GL
j,j′ =

1

∑N
i=1

Li
κi

WL
j (z)W

R
j′ (z0), for z < z0 (3.5a)

GR
j,j′ =

1

∑N
i=1

Li
κi

WR
j (z)W

L
j′ (z0), for z > z0. (3.5b)

The index ”j and z are the coordinates of the layer” [147] at which ”the temperature
is calculated, j′ and z0 correspond to the layer from which one wants to calculate the
contribution to the temperature, fig. 3.8. To obtain the temperature distribution in a
certain layer j at point z for a given heat distribution Q(z0) according to eq. 3.3, one
(i) integrates Q(z0) weighted with the corresponding Greens function Gj,j′(z, z0) with
respect to z0 and (ii) sums the contributions from all layers j′” [147].

Thus far, we were able to obtain the full analytic solution of T(z) for a given Q(z).
However, to use these equations one should first have Q(z), which in turn should
be obtained from electrical simulations because Q(z) can neither be measured or
be approximated analytically in a straightforward manner. Yet a lot of information
about how heat in the device is distributed is known from the numerical calculations,
performed previously. Even though we do not know exactly, how the charge fluxes
and recombination profiles are distributed, but we know their integrated values over
the device from the conservation laws. If one assumes that every charge carrier which
gets into the device recombines and if one can measure the current for a given voltage,
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one can get the total Joule heating from eq. 2.59 and the recombination heating from
eq. 2.60.

Then, the distribution of heat, i.e. the heat density Q(z), can be roughly estimated.
We know that the recombination happens mostly near the interface between the
organic layers. We assume that all recombination happens there and consequently the
heat density equals then Qrec(z) = Qtotal

rec ∗ δ(z− zinter f ace), i.e. a heat density profile of
a rectangular shape with an extremely small width. In contrast, we assume that Joule
heating is equally distributed across the device and equals constant QJoule(z) = QJoule
as indicated in fig. 3.9.

For the rectangular shapes of Q(z) the analytic equations 3.5 obtain a simple form,
because integration over constant values turns into a trivial multiplication of height
and size of the corresponding rectangles, resulting in the total heat. Moreover, the
analytic solution for T(z) predicts the location of the maximum temperature at the
organic/organic interface and the lowest temperatures are assumed on the outer layers
of the device, such as substrate or encapsulation.

Q(z)

z

Joule

Recombination

H2x

Figure 3.9: Assumed distributions of recombination and Joule heating.

After integrating both of the rectangular shapes, we arrive to eqs. 3.6a - 3.6b, where
Huni stands for the height of the rectangle and x is the half-width of the Joule heating
profile.

Tmin = xHuni
1
h

, (3.6a)

Tmax = xHuni

(
1
h
+

L− x
2κ

)
. (3.6b)

”Both temperatures are proportional to the total heat generated in the device,
2xHuni. The surface temperature Tmin is inversely proportional to h, but does not
contain any dependence on the thermal conductivities of the electrically active layers.
The temperature Tmax is determined by two terms, one being inversely proportional
to h and one being inversely proportional to the thermal conductivity κ. This second
term conveys two important insights: First, the thermal conductivity influences Tmax
less when the” [147] ”generated heat density profile is more concentrated, i.e., the
smaller the difference L − x between the thickness L of the layers and the halved
extension x of the heat density profile is. Second, even in a best-case estimation, in
which we insert realistic values L = 150 nm and κ = 0.1 W/mK, (L− x)/κ remains
with ≤ 1.5 W/mK” [146] ”at least an order of magnitude smaller than the 1/h
contribution.” [147]
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3.1 Influence of thermal transport parameters on device temperature

”At this point, the irrelevance of the thermal conductivity κ for thermal transport in
realistically thin organic films has two important consequences. First, the actual bottle-
neck for heat dissipation is the combined thermal transfer between the contacts and
the exterior, i.e., the thermal conductivities of layers being not electrically active and
the associated heat transfer coefficients. Consequently, the layers that are responsible
for electric transport are not relevantly involved in heat dissipation. This implies that
the thermal and electrical properties can be optimized independent of each other in
complementary regions of the device to reach the desired performance. Secondly, the
temperature within the organic layers is uniform, i.e., T(z) = T = const.” [146] This
stems from the fact that the thermal conductivity is responsible for the gradient of
temperature and to say that thermal conductivity is too large for given heat flux is
equivalent to the ”gradient of temperature will be negligibly small”. This finding is
in line with e.g. [196], where authors found only a tiny drop in temperature across
several organic layers.

Summing up our findings, we can safely put all terms containing thermal conductiv-
ity of electrically active layers to zero. Then, eq. 3.6a provides both the maximum and
the minimum temperature. This, in turn, allows us to take a look on a more compli-
cated nonsymmetrical case, when hL is not equal to hR. This is a crucial generalization
because real devices normally will be mounted on a substrate from one side while the
other side (which emits light) will be in contact with air.

For that purpose, one can either repeat the previous derivations or derive the related
equations in a more elegant way. A constant temperature T can be related to the
total amount of generated heat per unit area, Qtot, via the heat balance equation
hLT + hRT = Qtot:

T =
Qtot

hL + hR
. (3.7)

Knowing the current voltage characteristics, I(V), the Joule heat per unit area S,
QJoule, is readily given by

QJ =
IV
S

. (3.8)

The recombination heat per unit area S, Qrec, equals

Qrec =
(1− ηi)IER(eV)

S
. (3.9)

Inserting eqs. 3.8,3.9 into eq. 3.7 for the maximum temperature, we arrive at:

hL + hR =
V + (1− ηi)ER (eV)

Tmax

I
S

. (3.10)

The right-hand side of equation eq. 3.10 does not contain any simulation-specific
quantities and consists of ”quantities which can be assessed by experiment. In contrast
the left-hand side contains quantities that cannot be measured directly, but are crucial
to describe the thermal behavior of the device.

We subjected this relation to a consistency check to reveal, whether we can safely
exclude possible feedback from the heat transported through the encapsulation and
substrate layers on the temperature inside the electrically active layers. To this aim, we
compared the value Tmax extracted from the full simulation with the value obtained
from eq. 3.10, in which we inserted only the current densities obtained from the
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3 Simulation results

simulations. For a realistic thermal conductivity of 0.5 W/mK with” [146] ”a voltage
of 14 V applied, we calculated Tmax from eq. 3.10. eq. 3.10 reproduces the exact
temperature values for a large range of heat transfer coefficients h; for hL + hR ≥
104 W/m2K ” [147] ”the absolute error in predicted temperatures remains below 1 K.
Moreover, the deviation in predicted temperature does not exceed 2.5 K even for the
regions in which elevated temperatures close to overheating are encountered.” [146]
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Figure 3.10: Comparison of temperatures predicted analytically by eq. 3.10 and the ones, obtained
with simulations. For this comparison we used 67 different simulations with random heat
transfer coefficients hL and hR. Shown is the absolute difference between the fully simulated
temperature and the temperature predicted by eq. 3.10 from the simulated current.

”As the results of our simulations are very close to the ones given by eq. 3.10, we
think that the analytical expression can be used as a bridge between the experiment
and complex multi-parameter drift-diffusion modeling.” [146] The analytic equation
(even considering all rough estimates we made) closely reproduces the simulation
results. Moreover, all quantities on the right-hand side of eq. 3.10 are accessible through
experiment and therefore, hL + hR can be estimated for a particular experimental setup.

3.1.4 Relation between electrically non-active layers and heat
transfer coefficient

There is another benefit of the equations presented above. The equations, presented in
this section, can be obtained also from the general Green functions. We can take a look
at the stack of electrically inactive layers located between organics and the ambient,
in fig. 3.11 the left stack of layers. In the absence of heat generation, the value of the
energy flux cannot change. Besides, in case of a one-dimensional energy transfer the
heat flux is constant across the electrically inactive layers. These two assumptions lead
to eq. 3.11.

(Ti+1,i − Ti,i−1) =
Li

κi
(3.11)
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3.1 Influence of thermal transport parameters on device temperature

Figure 3.11: Temperature distribution between the border of electrically active layers and ambient
environment.

According to this equation, the difference between the temperatures at the left
and right interface of a layer is proportional to the layer thickness divided by the
thermal conductivity, which is a straightforward result. Using the definitions from
fig. 3.11, T0 is the temperature on the interface between the ambient environment and
the device and Te is the temperature on the interface between electrically active and
non-active layers. The total temperature change Te − T0 across the stack of layers is
the sum of all temperature differences in the individual layers. T0 assumes the role of
ambient temperature Tambient in the simulations. Therefore, to convert the heat transfer
coefficient h, used in simulations to an he f f , which assumes the electrically inactive
layers as the environment we need to take their contributions into the account. Let
hreal be the heat transfer coefficient between the outermost layer and the ambient. By
definition, Tambient − Te = hrealjheat we can finally arrive to the eq. 3.12.

1
he f f

=
1

hreal
+ ∑

all layers

Li

κi
(3.12)

This equation is very important for modeling for several reasons:

• The thermal impact of electrically inactive layers will manifest itself only in the
change of the heat transfer coefficient from hreal to he f f .
• The effective heat transfer coefficient he f f can be easily calculated using known

parameters, i.e. thermal conductivities of layers and their thicknesses, which are
either fixed in experimental conditions or can be measured. In a worst case, their
value can be approximated.
• The effective he f f enters our transport simulations and the analytical estimates eq.

3.6b. We can now straightforwardly relate it to the real heat transfer coefficient
hreal.

Also note that from eq. 3.12 one can deduce which layers will influence this coeffi-
cient he f f most. Namely, metals, which have a large thermal conductivity [197], will
have a tiny contribution to the corresponding heat transfer coefficient. Finally, this
equation can be easily expanded to additionally include the heat trasfer coefficient
between the individual layers if they are known:
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1
he f f

=
1

hreal
+ ∑

all layers

Li

κi
+ ∑

all inter f aces

1
hinter f ace

(3.13)

Summary

This section provides us with insights on the interplay between operating temperature
and heat transport. First of all, we found that the thermal conductivity of the organic
layers in OLEDs does not play a role in the device self-heating. Existing problems
with self-heating must originate from the insufficient heat dissipation from the device
to the environment. It also means that the temperature is almost constant across
the electrically active organic layers in OLEDs, even when the heating is driving the
device into burn-out. The absence of a temperature gradient is a major assumption in
microscopic modeling approaches, such as Monte-Carlo. We think that this assumption
is well justified. In ch. 4 we will assume a constant temperature in the active organic
layers from the beginning.

Secondly, the thermal behavior of OLEDs can be predicted with analytical calcula-
tions without drift-diffusion modeling. Rather, drift-diffusion modeling takes fully into
account the interplay between mobility, current and temperature. We did not test our
analytical equations against the experiment due to the lack of suitable experimental
data. However, we did our best to populate these equations only with quantities,
which should be easily accessible under lab conditions. As these equations satisfy
also modeling results, we hope that they can build a bridge between experiment and
modeling for the thermal behavior of OLEDs.

3.2 Capabilities of the model: hot spot formation

Before the reader takes a look on this section, we want to warn him that simulations
performed in this section did not account for the injection problems we mentioned
in sec. 2.4.3 and for the organic/organic injection. This is because these simulations
were done in the very beginning of the project and we never found a time to properly
recalculate these slow-converging simulations, which would account to all the findings
of ch. 3 and ch. 4. Initially, simulations in this section were obtained for the injection
current values which were too high and this problem leads to the quantitatively wrong
results. Large injection currents coupled with too small injection barrier between
organic layers lead to e.g. an absence of charge carrier accumulation on organic/organic
interface.

3.2.1 Results of three dimensional simulations with inhomogeneous
potential distribution

We will inspect a 3D simulation of the two-layered device, which is symmetrized
with the procedure presented in sec. 2.8, to highlight spatial effects related to hot
spot formation. As will be shown below, our modeling approach allows us to readily
incorporate plausible reasons for the hot spot formation and to predict and interpret
the location of the spot. The parameters for simulations were picked according to
sec. 2.9, except for thermal conductivity. As we have seen in the previous section, a
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3.2 Capabilities of the model: hot spot formation

realistic thermal conductivity value would make the temperature distribution within
the device almost constant. This is of course an obstacle if we want to actually see
some temperature distribution within the device, hence, thermal conductivity value
was picked equal to 10−3W/mK.

To provoke a hot spot, we assumed that there is a constant change in the voltage
applied to the anode across the lateral dimensions x and y, while the potential at the
cathode remained constant and equal to 0V, fig. 3.12. By that we tried to mimic the
sheet resistance of the anode material. The sheet resistance of a good conductor, like
silver, will not be noticeable on the scale of hundred nanometers. This means that the
modeling in hands would be insufficient to capture hot spot formation. To circumvent
that, the voltage drop we introduced was relatively large and unrealistic for the real
OLED, 200mV over 50nm.
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Figure 3.12: Spatial distribution of the potential applied to the anode of the device to mimic a hot spot.

Such an applied potential imposes an inhomogeneous driving field on the device
because the opposite contact has a potential fixed to 0 V. This inhomogeneous field
enhances the injection in the center of the anode and lowers it towards the edges of
anode. Note that the voltage variance is relatively low (4%), however, as will be shown
below, it results in a pronounced hot spot.

Before we inspect the consequences in the lateral direction, it is useful to consider the
behavior in the perpendicular, z-direction. Even though we are particularly interested
in effects that happen in lateral (x and y) directions, these effects appear ”on top” of
what is happening in the perpendicular direction, because both are closely interrelated.
In other words, current density across z axis is the most prominent, while lateral
changes of current are definitely lower in magnitude.
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Figure 3.13: Schematic indication of selected axes, along which the most data in fig. 3.14 was plotted.
The anode is located at the bottom, cathode at the top. (a1) and (a2) - the device axes, along
which data in fig. 3.14 plotted. (p1) - (p5) correspond to the planes, which were used to
prepare fig. 3.15 and fig. 3.16
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Figure 3.14: Distributions of several different quantities within the device along the z axis. (a) - dis-
tribution of the electrostatic potential (a1), (b) hole and electron concentrations (a1), (c) -
distribution of heating within the device (a1) and (d) temperature distribution (a1). (e,f)
current density in the direction of z-axis in the (e) middle of the device (a1) and (f) in the
corner of the grid (a2), where its absolute value is minimal. z-axis is chosen according to
the fig. 3.13.
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On the panels (a) and (b) in fig. 3.14, the electrostatic potential and electron/hole
concentrations are given along the central perpendicular axis (1) in fig. 3.13. The poten-
tial (a) flattens towards the contacts, where charge carrier accumulation, according to
(b) occurs. This charge accumulation implies, that we have a bulk limited current flow
inside the device. Also, upon taking a closer look, one can notice a slight asymmetry
in the potential, despite the symmetrization procedure. This asymmetry stems from
the non-uniformly applied voltage on one of the contacts.

On the panel (d) one can see the temperature distribution inside the device. The
center of the device is substantially warmer than its borders. This can be related to
two distinct reasons. First, the heating profile also reaches its maximum in the center,
panel (c). The Joule heating is largest there due to the strongest electric field. The
recombination heating is higher where more recombination events occur and naturally
assumes its maximum at the HTL/ETL interface.

Secondly, the heat energy which is created by the electric current propagates towards
the device edges to be dissipated into the ambient environment. The heat generated in
the center travels the largest distance and establishes the largest temperature difference
with respect to the Fourier law 1 (eq. 2.41).

The current density in the device center, in which the applied bias is largest, shown
in the fig. 3.14-c, obtains its maximum at the anode (z = 0) and declines to the cathode.
This lack of homogeneity in the current density implies that there are non-zero lateral
components, fig. 3.16. Thus the current flow somewhere away from the center will
have an opposite behavior, i.e. growing towards the cathode as seen in e.g. fig. 3.14-d,
which depicts current along the axis (2).

To better capture the lateral patters emerging from the inhomogeneous voltage, we
would like to take a look on the changes in temperature in the lateral dimensions also.
However, we found a static 3-dimensional plots for both temperature and currents too
hard to understand, hence we will restrict ourselves to the 2-dimensional temperature
heatmaps, fig. 3.15, using the planes defined in fig. 3.13. Figure 3.15-a shows the
temperature distribution within the xz plane, located in the middle of the device, p1.
It corresponds to the 3.14-d across z-axis and we see no lateral changes across x axis.
However, we know that there are some lateral changes which are hidden behind huge
temperature variations across z-axis.

To circumvent this issue and have better view at the lateral temperature distribution
we performed following trick; from each point (x,y,z) we substracted an average of
the whole plane perpendicular to z-axis, which contains point (0,0,z). This way, large
variations in z directions are canceled by its average and one can see much better the
lateral temperature distribution. The result of that one can see in fig. 3.15-b, which
shows the same region as fig. 3.15-a, but now it is averaged instead of absolute. We
can now clearly see that there are lateral variations of temperature of around 0.3K.
The hot spot visually is closer now to the anode, but this is just an artifact introduced
by averaging. This hot spot just depicts where in the device the maximum lateral
variations are located. Interestingly, the inhomogeneity of temperature distribution is
lower close to the contact than in the center, because excess heat generated there can
be dissipated from the anode side.

Figure 3.15-c shows the same distribution in the xz plane, but located on one of the

1This is due to the fact that the Fourier law states, that the gradient of temperature is proportional
to the heat flux. To get the temperature difference from the temperature gradient, one has to multiply it
by distance, hence the result.
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device surfaces, p2. We see that on the device surface, corresponding to the y = 0 nm,
lateral temperature inhomogeneity is substantially different from the center of OLED.
First of all, the sign of temperature variation is different, which means that this device
surface is colder than in the center. This is consistent with fig. 3.15-b, where device
surfaces are located at x = 0 nm and x = 100 nm and are also colder than the device
center, located at 50 nm. The same effect of smoothing the distribution is happening at
the anode and the cathode due to the present heat outflow surface.

Finally, in the figures 3.15-d,e,f we plotted the temperature variations in the xy
plane for different z values, where z = 0 nm in figure (d), z = 50 nm in figure (e)
and z = 100 nm in figure (f), or p4-p6 respectively. The figures look similar, with
the center of the device being the hottest and it becomes cooler closer towards the
surfaces. However, there are substantial differences between them in the scale; the
largest variations are located in the center, probably this is happening due to the
highest value of absolute temperature there. The anode surface is more inhomogenios,
due to the fact, that the voltage applied is varied on this surface. Finally, the cathode
side seems to be the most homogenious, because it is located on the opposite side of
anode and also correspond to the lowest absolute value of temperatures.

Finally, it is interesting to see what happens under these conditions with the electric
current. Clearly, z-component of the electric current should be higher in the middle
of the device, where the highest bias is applied. From the 3.14 we already know that
injection in twice as low near the anode at the corner of the device compared to the
center. This already implies, that there should also be non-zero lateral components
of the electric current and, due to symmetry of the problem, they should also be
symmetrical around a1, the same as the temperature distribution in the fig. 3.15.
We are not therefore interested anymore in only lateral components, but also in the
z-component. To demostrate it, we prepared the fig. 3.16.

In this figure, one can see the direction of the electric current in the p1 plane.
Correspondingly, x and z components were used to prepare this quiver plot, so the di-
rections of the main axes correspond to the direction of respective components. On the
left hand side, one sees the plot, which was constructed with original scale of x and z
axes. One can see, that there are almost no lateral distributions on electric current. This
is caused by several problems; first of all, as in the case of temperature distributions,
z-axis provides the highest variations of current, hence, it is hard to see anything in
the lateral dimensions on these plots. Secondly, the simulation is 3-dimensional and
the change in z-component must be accompanied by simultaneous changes of current
components across 2 other axes. As simulation is set up simmetrically, the change
of the z-component is equally distributed between the x and y components, further
decreasing variations in the x-direction.

Luckily, quiver plot provides us with separate scale for x and z components, which
again allow us to see the changes in x-component, the right hand side plot in fig. 3.16.
We know that these small changes, when accumulated, provide us with a substantial
difference in the current value as we have seen from fig. 3.14, so we are not hesitant
to change a scale to see them. Intuitively, the plot makes complete sence as the large
injected current in the middle of the device gets distributed to towards the borders.
This large current in the middle is the source of the lateral distributions of temperatures
we have seen in fig. 3.15. Current at the borders is still aligned vertically though - this
is an artifact, as it happens because of periodic boundary conditions, imposed across
the lateral dimensions.
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Figure 3.15: Temperature distributions across different planes in the device. Absolute means absolute
temperature, averaged means that for each value z the mean value of temperature across
xy-axis was substracted to have a better look into lateral distributions. For descriptions,
refer to the text.
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Figure 3.16: The direction of current flow, based on x and z components of the electric current in the
p1-plane. Left plot depicts the direction of current with common component scale for z and
x axes, the right plot has different scale, selected in such a way that x-component becomes
more visible.

However, we did not yet discuss what can be the reasons for such an inhomogeneity
in the lateral dimensions. For instance, when there is some deformation of the layer
structure, which leads to a local decrease of the resistance. A larger electric current
in the vicinity of the deformed structure will lead to an enhanced injection, and
eventually, to the local bright spot. The elevated temperature in the hot spot according
to the eq. 2.80 will locally enhance the mobility, which will even further improve the
injection. 0.3 K temperature elevation in that example happens on the scale of 100 nm,
while real device lateral dimensions can be in the order of centimeters. If this trend
would keep over the macroscopic device, the temperature difference on the scale of
1 cm would then be equal to 0.3 10−2/10−7 = 30000K. Of course, it is not possible
to reach this value, but this simple linearly extrapolated example shows the actual
enormous magnitude of the effect.

Summary

Summarizing this section, we can point out several important conclusions. First, we can
see that a drift-diffusion approach is a capable candidate to theoretically describe hot
spot formations. Even though we do not have a direct comparison to the experiment,
we can see the utility of the method and how easy it is to get insight into what
happens inside the transport layers. Again, we have to remind the reader, that the
results presented here were not adjusted for the injections issues, which were found
much later. They can only serve as a good starting point and an illustrative example
how one can tackle the problem of hot spot formation within the drift-diffusion
formalism. Quantitatively, these results are most probably wrong.

Secondly, one can see that rigid description of the hot spot would require a very
precise understanding of (i) the injection current, as it will play a huge role at the hot
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spot formation and (ii) the mobility of organic layers. When a hot spot is formed, the
injection current in the middle of the device can take over injection current in the rest
of the device, due to a substantial increase in the temperature, electric field and, hence,
the mobility near the hot spot. It will be even more pronounced when the mobility is
larger, as it will allow an easier redistribution of charges in lateral dimensions after
injection. Despite the fact, that the model shows great results in simulating the hot
spot formation, mobility and injection must be described rigorously to move from
qualitatively to quantitatively correct results.
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4 Comparison to the experimental
results

In this chapter, we will switch from a purely theoretical description of the device to
the comparison of modeling results with the experiments. We will see that the device
can operate in several distinctively different operating regimes. Some of them can
be described well with the modeling tools and these are located in the high voltage
region. Contrary to that, we will see that simulations fail in the low voltage regime
and, in particular, at the transition between the two. We were not able to provide a
satisfying solution to these issues. We were able however to pinpoint their source.

4.1 Experimental results and drift-diffusion modeling

In this section, we will take a look at the device behavior when the temperature stays
constant across the device. From the mathematical point of view this means that
the heat transport equation does not evolve with time. Multiple parameters, such as
injection currents eq. 2.45, eq. 2.49, mobility in eq. 2.80 still contain temperature as a
parameter.

From the experiment, we had access to the current-voltage characteristics of a
model OLED device. As current in the organic semiconductors depends also on
temperature, it is useful to clearly distinguish between two types of OLED current-
voltage characteristics. (i) When the device self-heating is present and elevates the total
operating temperature and (ii) when self-heating is absent. The first case was realized
in ch. 3. When the temperature is self-consistently coupled with the electric current,
the current-voltage characteristics are influenced by temperature and vice-versa. That
is, the current is uniquely determined by the applied bias I(V). The second case can be
realized either when the device is artificially cooled to maintain a certain temperature
(its operating temperature is determined by that of cooling element), or when the
device self-heating is negligible. Then its operating temperature is determined by the
ambient. In this case, the current depends not only on the applied bias but also on
temperature I(V, T). This will be the case for the discussion in this chapter due to the
presence of the Peltier element in the experimental setup. Peltier element was installed
below the device layer stack fig. 1.3, so that the bottom silicon substrate was in contact
with it. From the previous ch. 3 we know that with realistic thermal conductivities of
organic layers, there will be no substantial temperature difference between the bulk
of organic layers and the substrate, which has the temperature of the Peltier element.
Therefore, when we are mentioning current-voltage characteristics in this section, keep
in mind that we mean I(V, T0) characteristics under a fixed temperature of T0.

Finally, before the reader takes a look at the results, we want to address in advance
one of the problems which will appear in this chapter. In the figures, depicting a
comparison between experimental and modeling results, one will notice striking
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differences between the two. We felt the need to explain in advance what such
inconsistencies mean, why they appear in this work, and why existing theoretical
descriptions, for instance [63, 130, 140, 149, 151–153, 159, 163, 167, 198, 199], seem to
perform a better job than we do. The reason behind is that our methodology was
aimed at setting up a simulation, which depends on as few fitting parameters as
possible. Due to the nature of fitting experimental data to some theoretical model,
such parameters are often unreliable in case any of the underlying assumptions are
not valid anymore.

The articles cited above manage to get a better correspondence mostly for one
of three reasons: (i) They employ microscopic modeling techniques, such as Monte-
Carlo studies, which are designed to perform better for hopping transport, but fail
to describe large systems; (ii) they extensively use fitting of experimental curves to
some non-fundamental physical values, that change from one setup to another and as
such have dubious usability if one tries to draw general conclusions; (iii) they utilize
equivalent electric circuits to describe the device behavior. Such models tend to change
quickly, when the device structure changes. One can quickly identify inappropriate
fitting parameters: Often, they can be extracted only from existing experimental data
(current-voltage characteristics for our purpose) and there exists no robust way to
get them from another experiment. In contrast, most of the parameters used in this
thesis can be obtained via other techniques 1. In essence, this decision allowed us to
set up the simulation using a multitude of different device parameters, which do not
need to come from the same study. The latter would be especially hard, because our
simulations take into the account the effect of both thermal and electric phenomena.
This decision restricted the freedom to tweak these parameters to achieve better
correspondence between the model and the experiment.

4.1.1 Experimental results

Here, we present the experimental results obtained for an actually manufactured
OLED with a surface area of 2.5mm x 2.5mm. The results that are published here
were obtained by Florian Kolb and Dr. Roman Tratting from the Institute for Surface
Technologies and Photonics of Johanneum Research in Weiz, Austria. The actual device
and measurement setup was designed and manufactured by Dr. Manuel Auer-Berger.
The OLED was manufactured with a layer setup as depicted in fig. 1.3-b, and was
mounted on a Peltier element to control the device temperature during the experiment.
That means that device temperature always corresponds to that of the Peltier element
2

Experimental current-voltage characteristics

In the fig. 4.1, we present the experimental I-V characteristics for the manufactured
OLED for different temperatures of the Peltier element. It is useful to immediately
divide the presented current-voltage characteristics into three regions, which display

1For example, ultraviolet (UPS) and x-ray (XPS) photon spectroscopies give an access to energy
level diagrams and density of states of different materials. From these in turn one can calculate or at
least estimate the disorder parameter eq. 2.8 and the injection barrier eq. 2.49.

2Due to the investigation in chapter 3, we know that realistic thermal conductivities will never be a
bottleneck for thermal transport.
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Temperature 

increases

Figure 4.1: Experimentally obtained device I-V characteristics. Different colors correspond to different
temperatures. Temperature ranges from 5◦C to 85◦C, with a step of 10◦C, resulting in 9

different plots.

substantial differences in the device behavior. To illistrate that, we have chosen an
experimental curve, corresponding to T = 338 K, fig. 4.2.

TURN ON VOLTAGE

LOW VOLTAGE
REGION HIGH VOLTAGE

REGION

Figure 4.2: Three regions in experimental current-voltage characteristics: low voltage regime (lower than
4V), which is best described as a noisy constant current, and high voltage regime (larger
than 8V), where current shows smooth subexponential behavior for every experimental
curve. We will refer to the transition region between the two as a turn on region, which we
call after turn on voltage, where the constant, low-voltage current abruptly starts to display
exponential behavior.

We will give no strict definition where one region ends and another starts, and use
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them mostly to aid the narration. However, it is important to note that similar behavior
was observed also in variety of other different studies. For example, low voltage
behavior is not specific to that experiment, and was observed also elsewhere [200].
The turn-on voltage and the high voltage behavior is also well known for such
devices [201–207]. Turn on voltages are often found in the region in which the flat
band condition is fulfilled, i.e. when the externally applied bias is sufficient to align
the Fermi levels of the cathode and the anode to the same level [199]. In literature, one
may also encounter different definitions of turn on voltage, such as when the device
brightness becomes visible, or the point where the current becomes non-zero on the
linear scale, as in fig. 4.3. As one can see, turn on voltage defined on linear scale is also
located somewhere around 4 V, however it of course may change in the different plot
scales. We think that its initial definition is the most unambiguous and we will stick to
it. The apparently constant currents in the low voltage region are not an experimental
artifact, as the source measuring unit provides reliable current measurements down to
10−9A. An elevated current even at zero bias is a clear indication of leakage currents in
the system. Therefore, we should be careful not to associate the noisy constant current
with our model predictions.

TURN ON VOLTAGE

Figure 4.3: Experimentally obtained device I-V characteristics. Different colors correspond to different
temperatures. Temperature range and color code is the same as in fig. 4.1

Considering the device thermal behavior, one can also see interesting trends. First
of all, the lowest temperature curve (depicted in black), which corresponds to 5◦C, has
a behavior distinctively different from the other curves, in particular in the turn-on
region. This will be useful, when we will try to exclude outliers from the data. The
temperature behavior of curves in both fig. 4.1 and fig. 4.3 is very different between
high and low voltage regimes. In high voltage regime, in particular at 12 V, one
can clearly see the current increase due to temperature elevation. However, moving
towards the low voltage, the curves start to intersect each other. The point obtained for
the higher temperature does not necessarily appear above the lower temperature point.
This is very important, because under no circumstances our model, in which current
is always larger for elevated temperature, would be able to capture such a behavior
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To see this behavior even better, we prepared a plot to observe the dependence of
current as the function of temperature for different voltages, fig. 4.4. The curves are
obtained from the same experimental data as in fig. 4.1. The curve associated with
the low voltage regime (4V) shows an oscillating dependence on temperature. These
oscillations stem from the noise, present at that voltage. For voltages larger than 6V we
observe a relatively smooth exponential increase in current with temperature. It also
seems that the difference between high and low temperatures are smaller for larger
voltages on the logarithmic scale.

V=4V

V=6V

V=8V
V=10V

V=12V

Figure 4.4: Experimentally obtained I-T characteristics. The data in this plot is the same as for the
4.1, but it was rearranged to demonstrate better the device temperature behavior. Different
colors correspond to different voltages.

In our device model, multiple parameters depend on temperature. The impact of
their temperature dependence is strongly related to the applied voltage. We expect
a small current at low voltages and only small concentrations of charge carriers
accumulated in the device. Contrary to that, the overall temperature dependence at
high voltage should be the result of a complicated interplay between bulk and injection
conductivities. Due to the complexity of the interplay and the quality of the measured
data, the high voltage data is a particularly intriguing starting point for analyzing the
impact of specific model parameters.

Influence of different constants on I-V characteristics

To explain the measured current-voltage and current-temperature relations, simula-
tions with varying model parameters are performed. These simulations do not only
indicate which parameters describe the behavior best, they also provide clues about
how selected device parameters will affect the shape of I-V and I-T curves.

To design the necessary simulations, it is useful to first determine the parameters
whose values can be safely tuned. A first parameter is the injection barrier φB from eq.
2.49 and eq. 2.45, related to metal/organic and organic/organic interfaces. A second
parameter is the charge carrier density N0 at the metal contact, which in our case
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4 Comparison to the experimental results

corresponds to the number of free charge carriers in silver in our case and has a well
defined value [169]. However, due to the presence of the additional layers between the
contacts and the transport layers, this parameter is can be safely tuned.

The equation for the mobility (eq. 2.80) yields further degrees of freedom. There
are three parameters to note here: the distances between hopping sites in the OSC,
a, the mobility prefactor, µ0, and the disorder parameter, σ. The distance a cannot
profoundly change, as the material density does not markedly change among organic
semiconductors for. The mobility 3 cannot be directly measured in experiment and has
to be extracted from the comparison of some device model to the experimental I-V
curves 4. The inconsistencies of mobility measurements mentioned in sec. 2.7 give us
some freedom to change parametrization without contradicting experimental values.

Therefore, we have four different parameters to tune the electronic properties of the
device. Discretization of the whole 4-parameter space to find the parameters which
best fit the experimental data is not practically possible, due to the sheer amount
of computation time required. Rather, we prioritized the parameters and focused
on particular features of experimental curves which should be captured best. Out
of all parameters, the disorder parameter has the highest priority, as it profoundly
influences both the thermal and electrical behavior of the device. It will govern the
changes between curves that correspond to different temperatures.

The most interesting feature of experimental curves to capture with the model is the
high voltage behavior. In ch. 3 we applied very high bias (up to 15 V) in the model. Self
consistent models should, hence, very well capture the behavior in the high voltage
regime. We will see in this chapter that the disorder parameter indeed has a profound
influence on the high voltage regime, especially when the temperature dependence is
considered. The next feature to look at would be the turn on voltage. As mentioned
before, it is common among different OLED setups and is easily quantifiable by the
actual value of applied bias where the turn on occurs. The disorder parameter might
be also relevant here, as it is responsible for the rate of exponential increase in mobility
with an applied electric field (which happens only after certain offset Ecritical). Only
if the first two experimental features can be successfully addressed in simulations, it
will be worthwhile to investigate the low-voltage behavior.

Based on these considerations, we first address the disorder parameter. In sec. 4.3,
we will then discuss how the mobility prefactor µ0, the injection barrier φB and the
charge carrier density in the metal contact, N0, influence the I-V characteristics.

4.2 Influence of the disorder parameter on the device
behavior

The disorder parameter within our model can vary between 50− 125meV. Disorder
parameters of less than 50meV cannot be captured within our mobility model [159] so

3In our, model mobility depends both on temperature, carrier density and electric field. However,
for the room temperature, low electric field, and low carrier density, mobility is completely determined
by the mobility prefactor mu0, and it corresponds to the experimentally measured mobility µ. To avoid
references to the mobility prefactor µ0, which does not have any physical meaning, we will only talk
about the experimental value µ, from which one can uniquely determine µ0

4this is not strictly true for instance in case of time-of-flight experiments, however, it does not
account for charge carrier densities
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4.2 Influence of the disorder parameter on the device behavior

that we are not able to investigate this region. Large disorder parameters > 125 meV
make mobility extremely susceptible to the electric field and charge carrier densities
and simulations experience a hard time to converge. We discretize σ in this range with
the steps as low as 5 meV in the region from 50 to 75meV with a coarser discretization
7.5meV between 75 and 125meV. Temperatures are set to the experimental values, i.e.
they range from 278K to 378K with a step of 10K, resulting in 9 different temperatures.
The voltage range extends from 0V to 12V in the experiment and from 0V to 14V in
modeling (to capture also the voltage range from ch. 3). The total current is obtained by
a multiplication of the current density with the total device area of 2.25 cm x 2.25 cm.

One can intuitively understand that a high disorder should decrease the mobility
value, and this is indeed the case for the mobility eq. 2.8. To keep the low field, low
density, room temperature mobility the same across all modeling curves for different
disorder parameters, it was therefore necessary to tune the mobility prefactor µ0.

As a reference we first present the simulated current-voltage curves obtained with
the lowest possible disorder parameter σ = 50meV in fig 4.5 and compare them
qualitatively with the experiment. Note that all the figures we present in this section
are plotted on the same scales for both axes, independent of temperature. First,
we see that the simulations tend to drastically overestimate the current values in
the low-voltage region V < 4 V by an one order of magnitude. Interestingly, the
experimental low-voltage characteristics seem to be independent of temperature,
while the simulated curves shift to the higher current values, when the temperature
increases. In the high voltage region, where the applied bias is higher than 10 V,
the simulations tend to converge to the experimental results, especially for moderate
temperatures, 298 K − 328 K. The problems in fitting the low voltage regime appear
almost in any study, which is not explicitly aimed at this region [198]. However, we
expect the simulated values in the high voltage region to be reasonably close to the
experimental ones. This is considered to be a good sign. We think that they are closest
for moderate temperature values, because most model parameters were measured at
room temperature and might actually possess a temperature dependence which is not
accounted for in the model.

On top of that, one observes a turn on region between the high and low voltages,
where the experimental results quickly catch up in value with the modeling. The
modeling curves however do not show any sign of current drop at these voltages and
are rather very smooth. The first point of the modeling curves, which is located at
V = 1 V, already has a current that is substantially larger than the experimental
one. From this point, the slope of the simulated curves only becomes more and more
gradual, prompting us to think that the turn on voltage in the modeling results is
located around 0 V. This could also explain the difference in temperature behavior in
the low voltage region. The experimental curves do not show a pronounced temper-
ature dependence in the low voltage region, but display it towards higher voltages.
If the simulated curves are all located in the high voltage region, they will display
temperature dependence at any operating point. Finally, note that the drift-diffusion
simulations are a bad candidate to capture a sharp transition in the turn on region,
unless there is a profound rapid change in a model parameter (such as injection or
mobility parameters).

Despite the abscense of turn on voltage on the presented plots, we want to remind
the reader that different definition of turn on voltage may lead to different results.
To be concise, we want to show here also the same plots on the linear scale fig. 4.6.
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4.2 Influence of the disorder parameter on the device behavior

Linear plots, while hiding the bad behavior of the current-voltage characteristics in
the low voltage region due to exponential growth, also show that there are substantial
differences between the modeled and experimental curves, especially under high
temperatures. However, it seems that this difference stems from the fact, that the
experimental curves experience more abrupt change in the turn on region, i.e. the
same problem which was already described for the logarithmic scale.

To develop more intuitive understanding of the effect of the disorder parameter
on the current, in fig. 4.7 we present another set of superimposed experimental and
modeling data, this time for the highest disorder parameter in this investigation,
σ = 125 meV.

The bottom scale of the y-axis in these plots has remained unchanged, as the values
of experimental currents are the lowest, however the maximum is higher due to overall
range of values covered by the modeling curves. This increase of the scale might bring
data closer visually, but every single modeling curve is now actually more distant
from the experimental values as will be demonstrated in the next section. We see
that for the lowest temperature T = 278 K the modeling curve in on the same level
as the experimental one in the high voltage region, as opposed to fig 4.5, where the
experimental results were higher. However, for any temperature value above that, the
modeled current values are substantially larger than experimental ones also in the
highest voltages applied in the experiments. One can clearly see that this disorder
parameter is just too high to be able to describe the experimental data. Also, note that
despite the unfortunate absence of the modeled curve under T = 358 K both in fig.
4.5 and fig. 4.7, simulation actually does not have a problem converging there for any
other value of the disorder parameter (cf. collection in the appendix). One can also see
the same behavior on the linear scale plot 4.8.

Finally, to strengthen the understanding of the influence of the disorder parameter
on the current-voltage characteristics, we present a plot, which contains all the modeled
curves obtained under the different disorder parameter values, fig. 4.9.

The curves in this plot were taken for the temperature value of 308 K, very close
to the room temperature at which most model parameters were obtained. Note that
there are no convergence problem for any value of the disorder parameter and the
whole discretization region is covered. Also, the discretization step changes at 75 meV
and this explains different distances between the bottom and top curves.

First of all, this figure clearly shows that the disorder parameter influence is higher
for the larger voltages. This was expected, as its influence on the mobility grows for
higher electric fields and charge carrier densities [159]. Secondly, we see that distances
between the curves on logarithmic scale are almost equal, the only discrepancy
happens where the discretization step changes. That means that the disorder parameter
inroduces an easily predictable and controllable changes of the device current-voltage
characteristics. The disorder parameter also changes the slope of the curves, which is
steeper for higher voltages. This is also useful, as in fig. 4.5 we see that the slope of
the modeled curves differs from the experimental one, especially at low temperatures.
A proper choice of the disorder parameter might help us to remove this inconsistency.

A coarse screening of all other σ values (c.f. collection in the appendix) reveals that
changes in the disorder parameter affect the behavior of the curves, but it is not being
able to fit either low-voltage behavior or capture turn on behavior. To quantitatively
assess model results in the high voltage regions, we first need the methodology to
compare model and experiment.
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4.2 Influence of the disorder parameter on the device behavior

Disorder
increases

Disorder
increases

Figure 4.9: Disorder parameter influence on the modeled current-voltage characteristics, both on log-
arithmic (left) and linear scale (right). Values of disorder parameter are from 50 meV to
125 meV. For a complete set of values, see description in this section.

4.2.1 Quantitative comparison between theory and experiment

To compare simulations with experiment, we require first a method, to quantitatively
determine which parameter best describes the experimental curves. To this aim, we
utilize Bayesian inference. Let us denote P(σj|Ie(Vi, Tk)) as the probability that the
disorder parameter σj best describes the results the best, that is, the modeling current
I

σj
m (Vi, Tk)) for the given σj is closest to the experimental one Ie(Vi, Tk)). This probability

cannot be directly calculated, however, it can be refactored with a help of the Bayes’
theorem into something which can be calculated:

P(σj|Ie(Vi, Tk)) =
P(Ie(Vi, Tk)|σj)P(σj)

P(Ie(Vi, Tk))
(4.1)

The term P(Ie(Vi, Tk)|σj) is called likelihood and it denotes the probability to ob-
tain the experimental results with a given σj. It requires further assumptions to be
calculated. P(σj) is a prior probability, i.e. the probability that a given σ is the correct
one without any relation to experiment. As we do not favor any value of disorder
parameter over any other, this distribution will be set to uniform, i.e. P(σj) will be
just a constant multiplier. The term in denominator can then be seen as an overall
normalization. Therefore, it will always cancel the constant multiplier of the prior
distribution. With that, eq. 4.1 can be simplified into:

P(σj|Ie(Vi, Tk)) =
1
Z

P(Ie(Vi, Tk)|σj) (4.2)

where Z is a normalization constant. To calculate P(Ie(Vi, Tk)|σj) one needs first to
introduce the random distribution f , which accounts for the difference between the
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4 Comparison to the experimental results

modeling and the experimental results 5, i.e. :

I
σj
m (Vi, Tk))− Ie(Vi, Tk)) = f (4.3)

where f is a random number distributed with some probability distribution f (t).
In principle, it can depend on both V and T, but must not depend on the value of σ.
Otherwise, it could be possible that with some particular choice of this dependence
we would be able to ”prefer” one value of σ over another. That is, the general form of
f can be factored as follows:

f = fV,T(t) = fi,k(t) (4.4)

Which distribution of fi,k(t) may fit to our problem? As we are sure that modeling
results are correct and we know only a little about the error distribution of the
measurement device, we proceed with a guess. For this guess, we have chosen two
distributions:

1. Normal distribution fi,k(t, v) = 1√
2πv2 exp

(
−t2

2v2

)
, parametrized by an arbitrary

value of v
2. Log-normal distribution fi,k(t, v) = 1√

2πv2t2 exp
(
−ln(t)2

2v2

)
The distributions were chosen according to the following criteria. Normal distri-

butions are often used due to the Central Limit Theorem. This theorem states, that
measurements of the quantity, whose distribution possesses an average and a finite
variance, will inevitably converge to a normal distribution of the measured values,
regardless how the actual distribution of the measured quantity looks like.

The log-normal distribution is the derivative of the normal distribution: if the
random value X is distributed normally, then the random value Y = ln(X) has a
log-normal distribution. This distribution was used primarily as a consistency check.
A log-normal distribution captures our expectation that large current values have, in
absolute value, higher measurement errors than low current values, which is exactly
the case for log-normal distribution. Moreover, as most plots presented in this section
are given on a logarithmic scale, the analysis within log-normal distribution yield
the curve which fits the best on logarithmic scale. Thus, results here should also be
consistent with what human perceives from the logarithmic plot.

Note that both distributions do not explicitly contain the values of T and V, that is,
the resulting distribution is single-variable function without parametrization fi,k(t) =
f (t). What we actually need from the analysis in the end is to find which values
of σj results in the largest posterior probability P(σj|Ie(Vi, Tk)). If we consider every
measurement being independent from another, the total probability is just the product
of individual probabilities for every point T and V. Denoting the difference between
experimental and modeling curves as δi,k,j =

(
I

σj
m (Vi, Tk)− Ie(Vi, Tk)

)
:

P(Ie|σj) = ∏
i,k

f (δi,k,j) (4.5)

In case of a normal distribution this equation leads to:

5In other words, in this approach, we describe the difference between experimental data and
modeling as random noise.
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4.2 Influence of the disorder parameter on the device behavior

P(Ie|σj) = ∏
i,k

1√
2πv2

exp

(
−δ2

i,k,j

2v2

)
(4.6)

This equation can be further refactored. We denote N = ∑
j
i,k 1, that is, the amount

of points which are contributing to the total probability. With this, we can further
simplify eq. 4.6:

P(Ie|σj) =

(
1√

2πv2

)N
exp

(
−∑i,k δ2

i,k,j

2v2

)
=

1
Z

exp

(
−∑i,k δ2

i,k,j

2v2

)
(4.7)

Here, we denoted the first factor as Z, as it acts as normalization constant. The
exponential term is the one which describes the probability of encountering Ie as a
function of σ. Note that P(Ie|σj) is maximized when the sum in the nominator in
exponent is lowest, independent of the free parameter v. That is, our analysis arrived
to the least squares method, which states that the model which represents data the
best is the one, which has the lowest standard deviation. That is, we arrive at the final
equation:

σbest = argmin

(
∑
i,k

δ2
i,k,j

)
(4.8)

For the case of a log-normal distribution the distribution ln(Ie) is a normal dis-
tribution and the same argumentation leads to the fact that we can use the re-
sults obtained in eq. 4.7, but on logarithmic scale. For that purpose, we denote
as λi,k,j =

(
ln(I

σj
m (Vi, Tk))− ln(Ie(Vi, Tk))

)
. The corresponding result is then:

σbest = argmin

(
∑
i,k

λ2
i,k,j

)
(4.9)

Determination of the disorder parameter

Applying eq. 4.8 to the modeling and experimental data results in fig. 4.10-a. Standard
deviations are calculated for different values of the disorder parameter for every data
point (i.e. for every temperature and every applied bias). One can see that the resulting
plot shows a marked minimum for a disorder parameter between 55 and 60meV.
Higher values correspond to a rapid increase in the deviation between model and
experiment. Second plot, fig. 4.10-b, correspond to the same data and the log-normal
distribution eq. 4.9. One can see that the disorder parameter, deduced from this plot is
also located between 55 - 60 meV. Both distributions show consistent results for every
other plot in this section. Hence we will limit ourselves to only one plot with normal
distribution for every scenario.

The methodology outlined above is known to be susceptible to outlier data points.
Normal distributions very rapidly decrease away from the mean value. Captured
outlier value may therefore result in a huge shift in the fit. To test if the methodology
yields reliable predictions, one must also identify and remove outliers. The first type
of outliers are currents obtained at low voltage points ( < 8 V), which are either
noisy or contain leakage current contributions. The second type of outlier is the lowest
temperature curve, which does not possess turn on regime. Just to be safe, we also
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Figure 4.10: Standard deviation of the current predicted by the model compared to experiment for
different disorder parameters. (a) and (b) are averaged squared distances between all data
points for all different voltages and temperatures, where (a) correspond to a straightforward
substraction between experimental and model values and (b) corresponds to the difference
of logarithms between the values, exponentiated afterwards to bring plot (b) to the same
scaleas plot (a). The plot (c) is the same as (a) except that data points related to lowest and
highest temperatures are removed from the calculation, together with low voltage region.
(d) On this plot, the analysis determines the standart deviation of the residuals of the slope
between model and experiment.
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4.2 Influence of the disorder parameter on the device behavior

removed the highest-temperature curve, as the simulation results might not be reliable
in that region due to long convergence. Upon excluding all these data points from the
comparison we obtained results in fig. 4.10-c. After that procedure, the minimum at
55meV became even more pronounced, because both lower and higher values of σ
lead to a sharper increase in standart deviation. Therefore, we can draw the conclusion
that (i) σ = 55meV is the disorder parameter which describes the experiment the best
and (ii) the less pronounced difference for separate disorder parameters was coming
from the noise in the experimental data.

Temperature contribution to the device bahavior

As discussed in sec. 4.1.1, we are also additionally interested in how current depends
on temperature when the voltage is fixed. This is valuable for our investigation,
where temperature plays a crucial role, but specifically to cross-check the previously
determined value of the disorder parameter, whose value has the largest influence
on the temperature dependence6. Results, reformatted to depict current-temperature
characteristics, are presented at fig. 4.11, which was obtained for the same value of the
disorder parameter as in fig. 4.5, σ = 50meV.

As the data, used to prepare these plots, is the same as used for current-voltage plots,
we can observe the same behavior. Namely, low voltage modeling results are much
larger than the experimental one and this behavior changes towards high voltage.
However, from these curves one can see that, contrary to IV curves, the temperature
dependence of the modeling curves is quite close to the experimental ones. To see
this even better, we propose to the reader results, where curves are shifted in such a
way, that mean current on a logarithmic scale is the same for both experimental and
modeling curve. One can see the results on fig. 4.12.

From the look on the second plot one can clearly see that our model is capable of
capturing the correct current-temperature dependence. We want to emphasize, that:

• The ability to capture the temperature dependence is quite remarkable, as it
is influenced by several different phenomena, like mobility, diffusion, inor-
ganic/organic and organic/organic injection.
• The complicated thermoelectric coupling, observed in the previous section, did

only occur at large voltages. We correctly capture both (i) current value and (ii)
current-temperature dependence for relevant, larger voltages. Together, it gives
us more confidence, that the results presented in ch. 3 are correct.

Despite that the current-temperature result is clearly beneficial for our confidence
in the presented model, it also raises some questions. First of all, why does the
temperature dependence remains valid, despite an order of magnitude difference
in the current value? To explain that, it makes sense first describe the low-voltage
regime, in which the electric field and the carriers density will be low. Then, the
mobility value should be uniquely determined by the temperature, which is fixed in
this modeling, and the change in the total current due to the temperature change must
come purely from an explicit and implicit (due to the mobility factor) dependence of
the injection current on temperature. Then, it should not come as a surprise that these

6Temperature dependence, which is not parameterized by the disorder parameter, comes as expo-
nential prefactor from eq. 2.45
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4.2 Influence of the disorder parameter on the device behavior
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4 Comparison to the experimental results

two parametrizations, which are in a good agreement with the experiment, result
in a good agreement in our investigation, despite the incorrect current value in that
region. We cannot make the same argument about the high voltage region, where
the electric field and the carrier densities are large enough to substantially change
mobility as in fig. 3.4. However, at that voltage, the experimental current catches up
with the modeling and the initial question does not make sence anymore. This means
that when the interplay between all quantities in the modeling is active, the results are
still correct.

However, there are also some problems with the presented plot. We see that every
modeling curve in the fig. 4.11 appears to have higher slope towards the larger
temperature values, however, experimental ones do not possess this behavior. This can
mean that for the temperatures higher than 348 K the model may be inadequate, but
unfortunately we do not have any experimental data to prove or disprove it.

To be able to see how the current temperature characteristics will change due to
the different value of the disorder parameter, we present here the same plot for the
value of the disorder parameter σ = 125meV, fig. 4.13. In this figure, we present
simultaneously both shifted and not shifted by the mean value of an electric current
modeling results. We see that while the difference is not that noticeable as it were
in case of current-voltage characteristics, it is still definitely present. The slope of
every curve is larger, underestimating current values in the low voltage region and
overestimating it towards the high voltage region. This was expected, as we already
know that the best fit for the disorder parameter value lies around 55meV.

Now we may alternatively determine the disorder parameter from the slope of the
current-temperature characteristics, i.e., from focusing on the change of the current
with temperature. That is, we are using a normal distribution and the quantity of
interest is now the derivative of the current with respect to temperature ∂

∂T Im/e. The
derivative was estimated as the difference between current at the point Tk and Tk+1:

(
∂

∂T
Im/e

)
i,k

=
Ii,k+1
m/e − Ii,k

m/e
Tk+1 − Tk

(4.10)

Standard deviations, calculated this way, are shown on fig. 4.10-d. These standard
deviations assume their minimum at a disorder parameter of 60meV, i.e. quite close
to the previously obtained value equal to 55meV. This means that (i) the model is
consistent as different methods of its evaluation yield consistent results and (ii) we
can trust the disorder parameter value, because the value of 55− 60meV captures both
thermal and electric behavior best.

Other current-temperature plots for different disorder parameters can be found in
Appendix sec. 6.

Last but not least, we want to discuss how the discrepancy between the current-
temperature and the current-voltage plot will influence the results of ch. 3. The fig.
3.6 will be the only one which is directly influenced by new knowledge, as it presents
current-voltage characteristics under presence of self-heating. On the one hand, h-
coefficient values ranging from 103 to 105 W/m2K should still be valid, as the vicious
cycle of self-heating starts in the high voltage region, in which our model can be
applied. However, it is not the case for the low value 102 W/m2K of h-coefficient.
This means that actual abrupt current increase in fig. 3.6 should be shifted towards
higher voltage values, because we always overestimate the current. Nevertheless, the
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4.2 Influence of the disorder parameter on the device behavior
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4 Comparison to the experimental results

correct temperature dependence of the current in the model means that the shape of
the current elevation due to self heating must stay the same. Figures like the fig. 3.2
should remain the same, as we capture correctly high-voltage behavior, however, the
onset of temperature elevations should in fact happen at higher voltages.

4.3 Influence of mobility, interface carrier density and
injection barriers on current-voltage characteristics

Here, we investigate how parameters such as the mobility prefactor µ0, the injection
barrier φB and the density of charge carriers N0 in the contacts affect the current-
voltage behavior. While they will influence the entire current-voltage characteristics,
we are mostly interested in their influence in the low-voltage region. We have already
shown that with a proper choice of the disorder parameter, the simulations at high-
voltage may come very close to the experimental data. We see no reason to carefully
fit the high voltage region to the experimental values, at the same time a large part of
the experimental data is orders of magnitude away from the modeling results. Hence,
the low-voltage and turn on regions must be addressed first.

Another reason not to go use the mobility, interface carrier density, and injection
barriers to fit the experimenal curves best is that the influence of the mobility [208–210]
and the injection barriers [211–214] on the OLEDs performance has been extensively
investigated topic in literature, both from a theoretical and experimental point of view.
It is not surprising, because these parameters are mostly responsible for efficiency
also in inorganic LEDs and are normally viewed as go-to parameters to improve
OLED performance. This means, that we will probably not discover anything new
varying these parameters. What we are, however, extremely interested in is, whether by
changing the parameters of our model we could achieve a turn on behavior. Very few
theoretical works even bother to fit this region, most notably [140, 198, 199]. It is often
either neglected [215, 216] or attributed to the leakage currents [217]. Of course, we
have a leakage in the experimental data, which, however, does not explain the turn on
voltage. Hence, in this section we will only have a quick glance on how current-voltage
characteristics will behave under the changes of model parameters, to see whether
they can trigger anything similar to the low-voltage behavior.

First, we will take a look at the mobility prefactor µ0. We discretized this parameter
from values one order of magnitude lower to one order of magnitude higher than
the reported value ca. 10−9m2/(Vs), that is from 10−10m2/(Vs) to 10−8m2/(Vs).
The related I-V curves are depicted in fig. 4.14. Note that results are obtained for a
temperature of 300 K, and do not contain any electrothermal coupling, i.e. there are
no time evolution in the heat transport equation 2.42.

The mobility increases the total current in the device without introducing a turn-on
behavior. One could argue, that the turn on happens exactly at the point V = 0V, the
behavior we already described at 4.1.1. Rather than displaying a turn-on, the current
in the voltage region between 4 V and 8 V appears to rise less steeply with increasing
voltage. The change in current due to the mobility prefactor µ0 is different at low and
in high voltages, indicating a change in the transport regime7. The higher the mobility
is, the larger is the exponential growth of the current. This effect basically comes

7Under change of the transport regime we mean the change of the exponential dependence of
the current. When the mobility changes, the injection currents must change almost linearly. The drift
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4.3 Influence of mobility, interface carrier density and injection barriers on current-voltage characteristics

Mobility increases

Figure 4.14: Influence of the mobility prefactor µ0 on the current-voltage characteristics. Different curves
correspond to values:µ0 = 10−10, 10−9.5, 10−9, 10−8.5 and 10−8 m2/(Vs).

from less charge carrier accumulation due to (i) easier recombination, as Langevin
recombination rate eq. 2.58 is higher in case the mobilitiy of the charge carriers is
higher and (ii) the more efficient charge carrier transport to the organic/organic
interface [140].

The next parameter we are going to look at is the density of charge carriers N0 at the
contacts, which was discretized between 1027 and 1029 m−3. As described previously,
its value is known precisely [169] for the silver contact, however, from both anode an
cathode sides there are additional layers between silver and trasport layers. Hence, it
looks plausible that it can differ from the exact value of charge carrier density in silver,
equal to 1028m−3. It also makes sense to vary N0 from purely theoretical perspective.
N0 influences only the thermal injection current in eq. 2.45 and as such changes the
balance between tunneling eq. 2.49 and injection 8. On top of that, it increases thermal
injection in a linear manner Jtot ∝ N0 Jth + Jtun making the analysis of its impact simpler.
Results are presented in fig. 4.15.

The influence of N0 on the current-voltage characteristics appears to be less than
that of mobility fig. 4.14. On top of that, the characteristics, corresponding to the lower
values of N0 are becoming noticeably closer to each other. This is probably caused
by low values of the thermal injection current, i.e. the tunneling current Jtun becomes
the leading contribution to the total injection current Jtot. We do not see substantial

and diffusion bulk currents similarly will linearly change, as mobility is proportionality coefficient
between the electric field and the current. Hence, the change in the exponential dependence of the
electric current on IV plot should be caused by the interplay between both. We will call it, for a lack of
better word, as a transport regime

8This of course only happens due to the chosen parametrization, where N0 is a parameter for
the thermal injection but not for the tunneling. Intuitively it is clear that the high charge carrier
concentration at the contact should cause a large tunneling current and vice versa.
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4 Comparison to the experimental results

N0 increases

Figure 4.15: Influence of N0 on the current-voltage characteristics. Different curves correspond to
values: 1027, 1027.5, 1028, 1028.5 and 1029 m−3.

changes in the transport regime for a high voltages and, most importantly, turn on
voltage does not appear in the case of changing N0 either.

The last parameter is the injection barrier that was varied from 0.4 eV to 0.8 eV
with a step of 0.1 eV, fig. 4.16. We see that injection barriers below the value of 0.6eV
drastically lower the current when the barrier increases. For larger barriers, the change
is less pronounced and the curves ”converge” to the 0.8eV one. Note, that an injection
barrier of 0.8 eV is so large that it should prevent any current flow in actual experiment.
This observation indicates, that the considered injection mechanism fail to provide a
plausible trend in terms of injection. In sec. 4.4 we will explore this in more detail.
Injection barrier also does not change carrier transport regime. Most importantly, there
are also no turn on behavior in this case either. As we already mentioned, a lot of
works suggest that turn on appears when the flat band condition is fullfilled [199].
The injection barrier is in essence the only parameter in our simulations which is
somehow related to the energy level diagram and its changes could trigger the flat
band condition. Clearly, this is not the case, moreover, the model dependence on the
injection barrier value is overall suspicious.

To summarize our findings, all three parameters have a pronounced influence on
current-voltage characteristics, but none of them can induce a turn-on behavior. It
is not clear why the injection barrier has such a tiny influence on current voltage
characteristics after certain barrier value. Intuitively, it is clear that higher barriers
should substantially decrease both tunneling and thermal injection currents. The
tunneling of charge carriers into the material should decline as a barrier width grows
and the thermal injection should be weaken by the barrier height. This indicates the
existence of problems with the chosen injection model.
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4.4 Origin of the model behavior at low voltages

Injection barrier increases

Figure 4.16: Injection barrier influence on the current-voltage characteristics. Different curves corre-
spond to values: φ = 0.4, 0.5, 0.6, 0.7 and 0.8eV.

4.4 Origin of the model behavior at low voltages

In the previous section we found that our device model cannot capture scenarios
in which either currents or voltages are small. To possibly provide leads to further
improve our model approach, we inspect more closely which part of the modeling
approach is responsible for the problematic behavior.

Possible reasons for the model to fail in low-voltage region

We were able to come up with four possible reasons why our model cannot reproduce
a turn on voltage.

1. The drift-diffusion equations to describe transport in the organic semiconductor
are not applicable for such thin layers.

2. The mobility model is incorrect.
3. The turn on voltage is related to the barrier at the organic/organic interface, the

properties of which we are not able to capture properly 9.
4. Injection currents from the metal to the OSC are captured incorrectly.

The drift-diffusion model is a macroscopic approximation to the microscopic trans-
port and may, thus, fail. A thorough analysis of reference models including all assump-
tions made therein would be necessary. The same can be said about the mobility model.
Moreover, mobility model we use is widely accepted and passed a lot of benchmarks.
Both aspects are beyond the scope of this thesis.

9Remember, that we use very simple thermal injection model in case of organic/organic interface.
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4 Comparison to the experimental results

The last two reasons, however, are directly accessible within our model setup,
i.e. we can test directly the impact of assumptions by changing the corresponding
values of parameters contained in the model. Assessing the impact of the ill-defined
organic/organic injection turned out to be difficult within our model. In an attempt
to do so, we performed first a simple benchmark test, where we assumed that the
extremely low experimental current values (< 10−5A) at low voltages (V < 4 V)
are limited by the organic/organic interface. This scenario is easy to test - one just
has to explicitly set the current across the interface in the simulation to be equal
to the experimental one, while maintaining the corresponding bias. Unfortunately,
such simulations are difficult to converge. Low currents in the device require a
large charge carrier accumulation near the contact to limit the metal/organic injection.
Therefore, low currents correspond to enormous periods of time to accumulate enough
charge carriers and thus the model never converges. What we observe is a slow but
steady growth of charge carrier density, which persists after several weeks of CPU-
hours. We estimated that the density of charge carriers, which is required to limit
the contact/organic injection to the low current values imposed at organic/organic
interface, should be in the order of 1026−27m−3 10. For such large charge carrier
densities, the mobility model used here and the Einstein relation (eq. 2.14) will not be
valid any more.

Therefore, we will exclusively focus on the injection from the metal to the OSC, as it
is (i) straightforward to investigate, due to the lower amount of free parameters and
(ii) it already displayed a strange behavior for large biases in sec. 4.3.

Inspection of the injection current in the model

To take a deeper look at injection, we need both the simulation results together
with corresponding injection current values. In this way, we can compare the ”bare”
injection current values with the real ones in the simulation and see better, which
injection current may be the root of the problem. The following set of parameters is
required to calculate the total injection current according to eq. 2.45 and eq. 2.49:

• Charge carrier density in the contact N0 *
• Injection barrier φ *
• Mobility prefactor µ0 *
• Temperature at the interface T
• Disorder parameter σ*.
• Charge carrier densities in the p and n. They influence the injection current by (i)

lowering electric field at the interface and (ii) by increasing the mobility 11.
• Electric field at the interface E. In the reference calculation we will assume it to

be equal to the applied bias divided by the device thickness.

To perform the comparison, we took one particular simulation from sec. 4.1.1 with a
disorder parameter σ = 55meV and with T = 297 K. Parameters marked with * are
the ones, which are readily available from the simulation so while doing the following

10This estimation can be easily made by (i) calculating the electric field, which is introduced by a
sheet of charge carriers near interface and (ii) plugging it into the equations for the injection to find the
carrier density value, which would result in the required current value

11We will assume that there are no charge carriers, because due to their complex influence on the
model, it is nearly impossible to make quantitative analysis.
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4.4 Origin of the model behavior at low voltages

comparison their values will be set exactly from the simulated values. Strictly speaking,
other parameters as E, p, and n should be available from the simulation too, but they
were not saved. n and p at the interface were then set to 0. We can then calculate
separately both injection currents for a given bias as well as extract the total current,
fig. 4.17.

We see that the injection in the low voltage region is dominated by the tunneling
current, while the thermal injection current becomes more prominent at large voltages.
At the large voltages, the thermal current is solely responsible for the current injected
into the device, as it exceeds by an order of magnitude the tunneling current. This
result might not be intuitive, as normally opposite happens and the tunneling current
dominates large voltages, see for example [218]. However, there are two reasons
for that to happen. The first reason comes from the fact that the used model for
the thermal injection 2.45 combines both the interface recombination (which lowers
injection) with the actual thermionic injection current. The the recombination at the
interface is specifically made to counterbalance thermionic injection under zero bias
and naturally lowers the injection values there, which explains the low voltage region.

Domination of the thermal injection in the high voltage region is more tricky. The
tunneling injection values depend heavily on the bending of the injection barrier and
its resulting thickness [151] and should eventually become worse under high applied
fields. Intuitively, one can understand that under certain applied biases the injection
barrier will be almost gone. When this happens, we expect the tunneling injection
model to fail. On top of that, the mobility dependence on the electric field starts to
grow much faster [159] when the applied field comes to the region of 108−9V/m.
For the highest applied bias of 15 V the average value of the electric field in 100 nm
device the electric field will be equal to E = 15/10−7 = 1.5108V/m. In other words,
we strongly suspect that we may get to a regime, where the applicability of the
chosen injection models is dubious. Unfortunately, authors of the model [151] have
not provided when the model could fail and we cannot test our suspicions. We will
further see other problems related to the tunneling current, which suggest that future
use of this injection model for such OLED devices might be not an optimal choice.

Note the difference between experimental currents at low voltage fig. 4.1 and the
thermal current at the same bias. As we have a problem for large currents in the low
voltage region, the obvious candidate introducing the error is the tunneling current.
However thermal injection still appears to be too large compared to experimental
results, fig. 4.1. Experimental results show the current value of 10−5 A at V = 4 V,
however, the thermal injection current there is already higher than 10−4 A.

Current-voltage characteristics without tunneling current

Previously, we saw that tunneling injection current is the one, which could possibly
hide the low voltage features. If we remove it, the high-voltage results will not be
invalidated, as the thermal current has the highest contribution to injection in that
region. On the other hand, the low voltage region will not be affected by tunneling
anymore and we may notice something there.

To demonstrate how much tunneling current dominates the injection under low
injection barriers, we prepared several simulations which are made with the same set
of parameters as in fig. 4.16, but the tunneling injection was manually set to zero, fig.
4.18.
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Figure 4.17: Current voltage characteristics of the model (solid gray line), thermal injection current (up-
ward triangles), tunneling injection current (downward triangles) and their sum, depicted
with the circles.

Injection barrier
increases

Figure 4.18: Injection barrier influence on the current-voltage characteristics in case of the absence of
tunneling injection for the same barriers values as on fig. 4.16
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4.4 Origin of the model behavior at low voltages

As one sees from this plot, there are now drastic changes compared to fig. 4.16. First
of all, there is now a clear distinction between different injection barrier values. The
electrical current experiences now a drastic drop with every increase of the injection
barrier by 0.1eV. This was expected due to the exponential dependence of thermal
injection current eq. 2.45 on the injection barrier. It seems that the chosen tunneling
current model heavily homogenizes the results for different values of the injection,
which made the simulation less dependent on the barriers.

Due to the large scale of current axis in 4.18, which is caused by orders of magnitude
changes in the current, it might be hard to distinguish the individual features of each
characteristics. However, overall these characteristics appear to be very similar. To
enable a better visual comparison between low- and high-voltage region, we show a
representative current-voltage curve for the barrier of 0.5 eV in fig. 4.19.

Figure 4.19: Injection barrier influence on the current-voltage characteristics in case of absent tunneling
injection. injection barrier is 0.5 eV

From this figure we see, that the I-V curve still does not possess desirable low-voltage
features. The plot resembles now a smooth exponential dependence. Apparently,
tunneling current did not mask the turn on behavior, in fact, it was responsible for
higher curvature of the plot. At this point, we decided to stop the investigation of
the low voltage results as it became apparent that there is no parameter, which could
cause the simulation to display desired low voltage properties. We would also like to
emphasize the convergence issue we briefly covered in the sec. 4.4. The problem that
the simulation requires large charge carrier accumulation to be converged, but at the
same time one only has very low charge carrier fluxes (due to low overall current)
poses immediate problems to even start solving this issue. On the one hand, one
requires large time steps to account for low charge carrier fluxes, otherwise it will take
too much time to get such simulations converged. On the other hand, large charge
carrier densities may easily result in large diffusion currents, which then have to be
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4 Comparison to the experimental results

accounted for with small time steps. Otherwise simulated values start to oscillate,
which is normala common behavior for forward Euler methods [184].

From our point of view, there are several possible solutions to these problems. The
first solution is to avoid the use of drift-diffusion methods in the low voltage region.
There are other investigations, which successfully describe low voltage region and are
not based on drift-diffusion [198, 199]. The second solution would be to employ better
injection current model which shows correct low voltage behavior. Last but not least,
one may try to find approximate analytical solutions to the particular problem and
use them as a starting point of the simulation. This may allow avoiding the necessary
requirement of small time steps for large charge carrier densities, because precoverged
simulation will not possess large charge carrier fluxes. We could not recommend
however any literature for the last two options.

Summary

In this chapter we performed the analysis of our model against experimental results.
We have demonstrated that the large currents, which appear for large applied biases,
can be captured well within the model. Moreover, the behavior of current when the
device temperature gets higher follows the experimental trend very closely. This is
important, as large temperature elevations due to self-heating happen only when the
electric current through the device is high. However, at low voltages the results were
not consistent with experiments, with deviations by orders of magnitude.

Afterwards, the influence of the model parametrization on the simulation results
was briefly investigated. Our model has a large amount of free parameters and a
full investigation for every possible set of parameters was impossible. Therefore, the
investigation focused on the parameters which can actually be changed in real OLEDs,
such as the mobility of the organic semiconductor, injection barriers from contacts
to the OSC and the amount of free charge carriers in the contact. All of them have a
pronounced influence on the modeling results, however, none of them helps to explain
the low voltage behavior. Under these circumstances, we focused on the parameter,
whose influence on the OLED is rarely addressed - the disorder parameter σ. This
parameter has substantial influence both on the electric and thermal behavior and, as
such, was the most interesting candidate to focus on. We found that a value of disorder
parameter σ = 55meV best describes both the thermal and the electric behavior of the
device studied by our collaborators; furthermore, we robustly extract the same value
for different methods of evaluation.

Last but not least, we tried to identify the source of the incorrect behavior of the
model at low voltages. It was possible to narrow down the culprits to the injection
from the metal into the OSC. We found that large tunneling injection at low voltage
will always be present within the model and this will never allow simulation currents
to approach experimental ones. However, the problem persists even if one removes
the tunneling injection from the model. That indicates that it will be very hard to
account for the low voltage region in drift-diffusion simulation in the absence of more
comprehensive models for the injection currents.
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5 Summary and conclusions

In this thesis, we utilized theoretical modeling of organic light emitting diodes to
explore the thermal behavior of OLEDs, in particular its operating temperature.

For that purpose, a three-dimensional device simulation was developed, which was
capable to capture thermal transport, electric transport within the organic layers of
the device, as well as their interplay. In particular, it is capable to capture in action a
vicious cycle, which is responsible for infamous bright spots on the surface of OLED
devices. It can also include the more conventional thermoelectric effects, however,
their effect is negligible compared to the vicious cycle, as constants responsible for
thermoelectric effects are low in the materials of interest.

The implemented simulation incorporates a novel formulation of drift-diffusion
equations, which were derived directly from hopping transport equations. Despite
that, the resulting drift-diffusion equations kept their shape and we could see that,
indeed, the drift-diffusion equations can be used to describe organic semiconductors.
This approach was already described theoretically but has never to the best of our
knowledge been employed in numerical simulations. For the conditions prevalent
in our simulations, this approach becomes very close to conventional drift-diffusion
equations. Nevertheless, it might be useful to deduce under which conditions drift-
diffusion equations will fail to describe charge transport in amorphous organics, as
one can test every made assumption explicitly. To estimate its full power, one would
require different OLED setup with a significantly varying width of the density of
states.

We investigated the impact of thermal transport parameters of the electrically active
organic layers, such as the thermal conductivity and the heat transfer coefficient,
and their influence on the device temperature. Specifically, we investigated the op-
erating temperature for varying voltages, thermal conductivities of the electrically
active organic layers and heat transport coefficient between them and the ambient
environment. These simulations demonstrate that the voltage and the heat transport
coefficient are the major players responsible for the temperature increase. The thermal
conductivity, however, has no impact, due to the small thickness of the organic layers
(< 100nm). This implies, that the temperature is distributed almost equally along
the perpendicular, stacking axis. This conclusion is crucial, as it is often used as an
underlying assumption in different modeling techniques, e.g, Kinetic Monte Carlo
simulations. It also demonstrates that the real bottleneck for thermal transport in
OLEDs is the heat outflow.

To unlock the capabilities of the 3D device simulation tool, we simulated the impact
of an inhomogeneous voltage applied to a contact. Such an inhomogeneous voltage
may readily lead to a local hot spot. The temperature-activated behavior of amorphous
organic semiconductors makes the effect much more pronounced than in conventional
LEDs. Hot spots are preferentially concentrated near the device contact, which leads to
(and, simultaneously, is caused by) the total injection being dominated by the current,
located near the hot spot. If one would want to continue this investigation, one would
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5 Summary and conclusions

require to (i) dive deeper into the injection current and its temperature dependence,
as this seems to be the most important constituent of the hot spot and (ii) investigate
how the thermal parameters are influencing the device temperature.

In the last part, we utilized the simulations to predict the impact of a given temper-
ature on the device performance. These simulations allow us to assess to which extent
the methodology proposed in this thesis captures observations from the experiment.
While our drift-diffusion simulations are capable of correctly describing the behavior at
higher voltages, they are incapable of describing the extremely low currents at the low
voltage regime and to cover the transition between low and high voltages. We think.
that the root cause for the inconsistencies between measured and predicted currents
is the used description of the tunneling injection current, whose field dependence is
inappropriate.

In the high voltage regime, we successfully determined the parameter, which most
decisively controls the thermal behavior, the disorder parameter. The disorder param-
eter corresponds to the width of the density of states in an organic semiconductor.
It was determined by several different evaluation methods from the comparison of
predicted and measured current-voltage curves, based on Bayesian inference, each
of which consistently leads to the same value. We think that due to its pronounced
influence on the device behavior, any theoretical model should include it alongside
with quiantities which are traditionally considered, such as mobility, injection barriers
or activation energies.
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ner, Björn Lüssem, Karl Leo, Annegret Glitzky, and Reinhard Scholz. Feel the
heat: Nonlinear electrothermal feedback in organic leds. Advanced Functional
Materials, 24(22):3367–3374, 2014. 1.5, 3.1.2
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thermal modeling and field-simulation of oleds for lighting applications i: Algo-
rithmic fundamentals. Microelectronics Journal, 43(9):624 – 632, 2012. THERMINIC
2010. 2.4.4

[175] Joon Sang Kang, Man Li, Huan Wu, Huuduy Nguyen, and Yongjie Hu. Exper-
imental observation of high thermal conductivity in boron arsenide. Science,
361(6402):575–578, 2018. 2.4.4

[176] L. Lindsay, D. A. Broido, and T. L. Reinecke. First-principles determination of
ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?
Phys. Rev. Lett., 111:025901, Jul 2013. 2.4.4

[177] Tianli Feng, Lucas Lindsay, and Xiulin Ruan. Four-phonon scattering signifi-
cantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B, 96:161201,
Oct 2017. 2.4.4

[178] C. Uher. Keeping it cool. Physics (College Park Md.), 6, 2013. 2.4.4

[179] D. A. Broido, L. Lindsay, and T. L. Reinecke. Ab initio study of the unusual
thermal transport properties of boron arsenide and related materials. Phys. Rev.
B, 88:214303, Dec 2013. 2.4.4

[180] S. K. Estreicher, T. M. Gibbons, and M. B. Bebek. Thermal phonons and defects
in semiconductors: The physical reason why defects reduce heat flow, and how
to control it. Journal of Applied Physics, 117(11):112801, 2015. 2.4.4

[181] M. P. Langevin. Ann. Chim. Phys., 28:433, 1903. 2.5

[182] Yiming Liu, Karin Zojer, Benny Lassen, Jakob Kjelstrup-Hansen, Horst-Günter
Rubahn, and Morten Madsen. The role of charge transfer state on the reduced
langevin recombination in organic solar cells: A theoretical study. The Journal of
Physical Chemistry C, 119, 10 2015. 2.5

[183] Matthew J. Carnieb Derya Baranc Lewis M. Cowena, Jonathan Atoyob and Bob C.
Schroeder. Review—organic materials for thermoelectric energy generation. ECS
J. Solid State Sci. Technology, 6:N3080–N3088, 2017. 2.5.1

[184] J. C. BUTCHER. Numerical Methods for Ordinary Differential Equations. 2003. 2.6.1,
4.4

[185] James Nagel. Numerical solutions to poisson equations using the finite-difference
method [education column]. IEEE Antennas and Propagation Magazine, 56:209, 08

2014. 2.6.2

[186] D. L. Scharfetter and H. K. Gummel. IEEE Trans. Electron Devices, ED-16:64, 1969.
2.6.3

132



Bibliography
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6 Supplementary material

Derivation of Poisson equation and current conservation
law

Important to notice our materials of interest are amorphous. Therefore they are
invariant to any coordinate rotation and therefore, cannot have any ”special” direction
with spontaneous polarization, i.e. spontaneous polarization is always zero and we
may have only polarization induced by external field. In general then one speaks
about polarization being some function of electric field. In practice it is often sufficient
to truncate this function at linear term and that is what will assume here. Now we
are left with polarization being linear function of applied field. In principle, linear
connection between two vectors should be a tensor, but here we can again invoke
symmetry argument and finally arrive to conclusion that field inside our material is
some scalar times the applied field. Following common conventions we write D = εE
and µH = B. Permeability µ is very close to 1 in organic amorphous compounds.
Permittivity on the other hand can be quite high, because organic molecules naturally
can be easily polarized.

To proceed we need to use potentials φ and A, which make everything easier when
working with Maxwell equations. Electric and magnetic field can be extacted from
two potentials in the way presented in eq. 6.1 and eq. 6.2. Because only derivatives of
these potentials have physical meaning (in classics) they are not strictly defined we
can also impose additional conditions, which is often referred to as choosing gauge. We
will work in Coulomb gauge, which imposes conditions on vector potential in form
∇ ·A = 0.

E = −∇φ− ∂A
∂t

(6.1)

B = ∇×A (6.2)

Putting this definitions into Maxwell equations and using the Coulomb gauge one
can arrive to set of eqs. 6.3 - 6.6.

∆φ = −ρ

ε
(6.3)

∇ · (∇×A) = 0 (6.4)
−∇× (∇φ) = 0 (6.5)

1
µ
∇×∇×A = J− ε∇∂φ

∂t
− ε

∂2A
∂t2 (6.6)

These equations can be straightforwardly simplified if we assume that there are
no magnetic field in the system. This assumption is reasonable because there are no
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known magnetic phenomena happening in organic amorphous materials. Then left
sides of eqs. 6.4 - 6.6 immediately turn to zero. Then eq. 6.4 is removed from the
system. Moreover, curl of gradient is always zero, therefore eq. 6.5 can be also removed.
We are left with two equations.

Eq. 6.3 is called Poisson equation and it is the equation we were searching for. If
one provides charge density to that equation one can theoretically get electrostatic
potential out of it. Nevertheless, this is yet not the end of the story because electric
field depends on time derivative of vector potential and we still have eq. 6.6. Although
it seems that in this equation it is impossible to decouple different quantities it is
actually not important. To realize that it is actually more beneficial to look at it in more
natural for electrodynamics Gaussian units, eq. 6.7. From here one immediately can
see that time dependence comes from the fact that speed of light is limited. Because
we are looking at small system and we are not really interested in transition process
from one picture to another, in other words, electron and hole velocities in out system
will be much less that the speed of light. This term would be more important if one
would look on plasma oscillations of electron gas under oscillating electromagnetic
field. We are interested in different phenomena, and put speed of light to infinity,
therefore neglecting this term.

∇×H =
1
c

(
4πJ +

∂D
∂t

)
(6.7)

Before we completely forget about this equation it still can serve us purpose of
deriving continuity equation for current density. To do so, one can take divergence of
it. Vector potential will disappear according to Coulomb gauge condition and with
use of Poisson equation one can obtain eq. 6.8 which is in essence the conservation
law of electric charge.

divJ +
∂ρ

∂t
= 0 (6.8)

Charge carrier conservation law written in this differential law and Poisson equa-
tion will be extremely useful for us afterwards and, as I shown here, they are just
consequences of Maxwell equations in certain approximations.

Calculation of elliptic integrals

Here we present fast and efficient FORTRAN 90 functions which were used to calculate
elliptic integrals according to [168].

double precision function ellipticK(x)

double precision, intent(in) :: x

double precision :: a, g, anew, gnew, e

if (x < 0.0d0 .or. x .ge. 1.0d0) then

print*, "x < 0.0d0 or x >= 1.0d0, PRESS ANY KEY TO EXIT,x :", x

read*,

return

end if

a = (1+dsqrt(1-x**2))/2

g = dsqrt(dsqrt(1-x**2))
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e = 1.0d-15

do

anew = (a+g)/2

gnew = dsqrt(a*g)

if (anew-gnew < e) then

exit

end if

a = anew

g = gnew

end do

ellipticK = 3.1415926/(2*anew)

end function ellipticK

double precision function ellipticE(x)

double precision, intent(in) :: x

double precision :: a, g,o, anew, gnew,onew, e

a = (1+dsqrt(1-x**2))/2

g = dsqrt(dsqrt(1-x**2))

e = 1.0d-15

if (x == 1.0d0) then

EllipticE = 1.0d0

return

end if

if (x < 0.0d0 .or. x > 1.0d0) then

print*, "x < 0.0d0 or x > 1.0d0, PRESS ANY KEY TO EXIT, x:", x

read*,

return

end if

do

anew = (a+g)/2

gnew = dsqrt(a*g)

if (anew-gnew < e) then

exit

end if

a = anew

g = gnew

end do

ellipticE = 3.1415926/(2*anew)

a = 1-x**2

g = 1

o = 0

do

anew = (a + g)/2

gnew = o + dsqrt(((a-o)*(g-o)))

onew = o - dsqrt(((a-o)*(g-o)))

if (anew-gnew < e) then

exit

end if
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a = anew

g = gnew

o = onew

end do

ellipticE = ellipticE*anew

end function ellipticE

Full equations for discretized heat equations

Full equation instead of collapsed eq. 2.65.

Tt+∆t
i,j,k = Tt

i,j,k +
∆t

ρi,j,kcpi,j,k

[
Qi,j,k +

κi+1,j,k − κi−1,j,k

xi+1 − xi−1

Ti+1,j,k − Ti−1,j,k

xi+1 − xi−1
+

+2κi,j,k

Ti+1,j,k−Ti,j,k
xi+1−xi

− Ti,j,k−Ti−1,j,k
xi−xi−1

xi+1 − xi−1
+

κi,j+1,k − κi,j−1,k

yj+1 − yj−1

Ti,j+1,k − Ti,j−1,k

yj+1 − yj−1
+

+2κi,j,k

Ti,j+1,k−Ti,j,k
yj+1−yj

− Ti,j,k−Ti,j−1,k
yj−yj−1

yj+1 − yj−1
+

κi,j,k+1 − κi,j,k−1

zk+1 − zk−1

Ti,j,k+1 − Ti,j,k−1

zk+1 − zk−1
+

+2κi,j,k

Ti,j,k+1−Ti,j,k
zk+1−zk

− Ti,j,k−Ti,j,k−1
zk−zk−1

zk+1 − zk−1

]
(6.9)

Poisson equation discretization results

φt+∆t
i,j,k = φt

i,j,k + ∆t

[
e(pi,j,k − ni,j,k)

ε0
+

εRi+1,j,k − εRi−1,j,k

xi+1 − xi−1

φi+1,j,k − φi−1,j,k

xi+1 − xi−1
+

+2εRi,j,k

φi+1,j,k−φi,j,k
xi+1−xi

− φi,j,k−φi−1,j,k
xi−xi−1

xi+1 − xi−1
+

εRi,j+1,k − εRi,j−1,k

yj+1 − yj−1

φi,j+1,k − φi,j−1,k

yj+1 − yj−1
+

+2εRi,j,k

φi,j+1,k−φi,j,k
yj+1−yj

− φi,j,k−φi,j−1,k
yj−yj−1

yj+1 − yj−1
+

εRi,j,k+1 − εRi,j,k−1

zk+1 − zk−1

φi,j,k+1 − φi,j,k−1

zk+1 − zk−1
+

+2εRi,j,k

φi,j,k+1−φi,j,k
zk+1−zk

− φi,j,k−φi,j,k−1
zk−zk−1

zk+1 − zk−1

]
(6.10)

Drift-diffusion equation discretization results for electrons

Jx
t
i+0.5,j,k =

eDt
i+0.5,j,k

xi+1 − xi

[
nt

i+1,j,kB

(
e(φt

i+1,j,k − φt
i,j,k)

kBTt
i,j,k

)
−

−nt
i,j,kB

(
−

e(φt
i+1,j,k − φt

i,j,k)

kBTt
i,j,k

)] (6.11)
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Jy
t
i,j+0.5,k =

eDt
i,j+0.5,k

yj+1 − yj

[
nt

i,j+1,kB

(
e(φt

i,j+1,k − φt
i,j,k)

kBTt
i,j,k

)
−

−nt
i,j,kB

(
−

e(φt
i,j+1,k − φt

i,j,k)

kBTt
i,j,k

)] (6.12)

Jz
t
i,j,k+0.5 =

eDt
i,j,k+0.5

zk+1 − zk

[
nt

i,j,k+1B

(
e(φt

i,j,k+1 − φt
i,j,k)

kBTt
i,j,k

)
−

−nt
i,j,kB

(
−

e(φt
i,j,k+1 − φt

i,j,k)

kBTt
i,j,k

)] (6.13)

Drift-diffusion equation discretization results for holes.

Jx
t
i+0.5,j,k = −

eDt
i+0.5,j,k

xi+1 − xi

[
pt

i+1,j,kB

(
−

e(φt
i+1,j,k − φt

i,j,k)

kBTt
i,j,k

)
−

−pt
i,j,kB

(
e(φt

i+1,j,k − φt
i,j,k)

kBTt
i,j,k

)] (6.14)

Jy
t
i,j+0.5,k = −

eDt
i,j+0.5,k

yj+1 − yj

[
pt

i,j+1,kB

(
−

e(φt
i,j+1,k − φt

i,j,k)

kBTt
i,j,k

)
−

−pt
i,j,kB

(
e(φt

i,j+1,k − φt
i,j,k)

kBTt
i,j,k

)] (6.15)

Jz
t
i,j,k+0.5 = −

eDt
i,j,k+0.5

zk+1 − zk

[
pt

i,j,k+1B

(
−

e(φt
i,j,k+1 − φt

i,j,k)

kBTt
i,j,k

)
−

−pt
i,j,kB

(
e(φt

i,j,k+1 − φt
i,j,k)

kBTt
i,j,k

)] (6.16)

Continuity equations for electrons

nt+∆t
i,j,k = nt

i,j,k + ∆t

[
Gt

i,j,k − Rt
i,j,k +

Jt
i+0.5,j,k − Jt

i−0.5,j,k

0.5e(xi+1 − xi−1)
+

+
Jt
i,j+0.5,k − Jt

i,j−0.5,k

0.5e(yj+1 − yj−1)
+

Jt
i,j,k+0.5 − Jt

i,j,k−0.5

0.5e(zk+1 − zk−1)

] (6.17)

Continuity equations for holes
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pt+∆t
i,j,k = pt

i,j,k + ∆t

[
Gt

i,j,k − Rt
i,j,k −

Jt
i+0.5,j,k − Jt

i−0.5,j,k

0.5e(xi+1 − xi−1)
−

−
Jt
i,j+0.5,k − Jt

i,j−0.5,k

0.5e(yj+1 − yj−1)
−

Jt
i,j,k+0.5 − Jt

i,j,k−0.5

0.5e(zk+1 − zk−1)

] (6.18)

Heat transfer parameters against the maximum obtained
temperature in the device

All plots in this section depict the behavior of maximum temperature in the de-
vice against both thermal conductivity and the heat transfer coefficient for different
voltages.
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Figure 6.1: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
1 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.2: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
2 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.3: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
3 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.4: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
4 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.5: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
5 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.6: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
6 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.

102 103 104 105

Heat transfer coefficient, W/(m^2K)

300

320

340

M
ax

im
um

 te
m

pe
ra

tu
re

, K

0.0001
0.000316
0.001
0.01
1.0

Figure 6.7: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
7 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.8: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
8 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.9: Maximal device temperatures as a function of heat transfer coefficient for an applied bias of
9 V. Different colors correspond to the varied thermal conductivities, value is given on the
legend in W/mK.
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Figure 6.10: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 10 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.
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Figure 6.11: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 11 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.
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Figure 6.12: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 12 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.
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Figure 6.13: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 13 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.
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Figure 6.14: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 14 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.
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Figure 6.15: Maximal device temperatures as a function of heat transfer coefficient for an applied bias
of 15 V. Different colors correspond to the varied thermal conductivities, value is given on
the legend in W/mK.

Experimental and modeling current voltage
characteristics for different temperatures.

In this section we will put the rest I-V curves for different disorder parameters.
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6 Supplementary material
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Experimental and modeling current voltage
characteristics for different temperatures.

In this section we will put the rest T-V curves for different disorder parameters.

10
4

10
2

V 
= 

4 
V

V 
= 

5 
V

V 
= 

6 
V

10
4

10
2

Current, A

V 
= 

7 
V

V 
= 

8 
V

V 
= 

9 
V

28
0

30
0

32
0

34
0

36
0

10
4

10
2

V 
= 

10
 V

28
0

30
0

32
0

34
0

36
0

Te
m

pe
ra

tu
re

, K

V 
= 

11
 V

28
0

30
0

32
0

34
0

36
0

V 
= 

12
 V

Fi
gu

re
6

.2
7

:C
ur

re
nt

-t
em

pe
ra

tu
re

ch
ar

ac
te

ri
st

ic
s

fo
r

d
iff

er
en

t
ap

pl
ie

d
bi

as
es

fo
r

th
e

va
lu

e
of

d
is

or
d

er
pa

ra
m

et
er

eq
ua

l5
0m

eV
.

So
lid

lin
es

co
rr

es
p

on
d

to
th

e
m

od
el

in
g

re
su

lt
s,

d
ot

s
co

rr
es

p
on

d
to

ex
p

er
im

en
ta

l
re

su
lt

s,
d

as
he

d
lin

es
ar

e
th

e
m

od
el

in
g

re
su

lt
s,

sh
if

te
d

to
th

e
av

er
ag

e
d

if
fe

re
nc

e
be

tw
ee

n
m

od
el

in
g

an
d

ex
pe

ri
m

en
ta

lc
ur

ve
s,

em
ph

as
iz

in
g

th
e

te
m

pe
ra

tu
re

be
ha

vi
or

.

159



6 Supplementary material
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6 Supplementary material
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