
 Lorenz Kofler, BSc

Code Refactoring and
Code Complexity Analysis

in Android Applications

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master's degree programme:

Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology

Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, December 2020

2

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated all

material which has been quoted either literally or by content from the sources

used. The text document uploaded to TUGRAZonline is identical to the pre-

sent masterʼs thesis.

Date, Signature

3

Abstract

Nowadays, many companies are concerned about the high maintenance costs of their software.

Complex software is more difficult to maintain. Therefore, software quality is related to

maintenance costs. As a result, by reducing the complexity, the maintenance effort can be re-

duced and thus the costs. Code refactoring and clean coding are well-known methods to reduce

the code complexity. Therefore, the aim of this master’s thesis is to discuss such approaches

and to find ways to evaluate the complexity of code.

Hence, these methods are first discussed theoretically und then applied in the implementation

part. The discussed methods are applied in an Android application of a soccer platform to easier

understand complex parts, to facilitate adding new features and to improve the code quality.

To show to what extent the complexity was reduced, software complexity metrics are calcu-

lated and compared to the subjective perception of the software complexity, which was evalu-

ated by a survey.

The results of the evaluation show that by applying the described methods and techniques to

improve the understandability of code the complexity was reduced. This is also confirmed by

the combination of the subjective and quantitative analysis.

The results of this master’s thesis can help any software engineering team, especially those

programming Java in Android Studio, to identify complex code parts, refactor these parts in

the proposed ways, and write clean code to enhance the quality and understandability, reduce

the complexity, and reduce the maintenance costs in the end.

4

Kurzfassung

Viele Unternehmen müssen sich heutzutage mit hohen Wartungskosten ihrer Software ausei-

nandersetzen. Da komplexe Software auch schwieriger zu warten ist, hängen die Wartungskos-

ten auch von der Qualität der Software ab. Durch gezieltes Reduzieren der Komplexität kann

man den Wartungsaufwand reduzieren und somit auch die Kosten. Bekannte Methoden, um

die Komplexität von Software zu verringern, sind Code Refactoring oder Clean Coding Prak-

tiken. Daher ist das Ziel dieser Masterarbeit, solche Methoden zu analysieren und Wege zu

finden, um die Codekomplexität evaluieren zu können.

Im Zuge dieser Arbeit werden diese Methoden theoretisch behandelt und schließlich im Imple-

mentierungsteil praktisch angewendet. Dafür werden gezielt in der Android-Applikation einer

Fußballplattform die besprochenen Techniken angewendet, um schließlich komplexe Teile

leichter zu verstehen, neue Features leichter einbauen zu können und die Qualität des Codes

aufzuwerten. Um aufzuzeigen, inwiefern sich die Komplexität verringert hat, werden quantita-

tiv erworbene Metriken über Softwarekomplexität mit der subjektiven Wahrnehmung der Soft-

warekomplexität, welche durch einen Fragebogen erhoben wurde, in Beziehung gesetzt.

Durch die Evaluierung wird aufgezeigt, dass sich die Anwendung der theoretisch behandelten

Techniken und Praktiken, um den Code verständlicher zu machen, in einer Verringerung der

Komplexität widerspiegelt. Dies wird auch durch die Übereinstimmung der quantitativen Ana-

lyse mit jener der subjektiven Evaluierung sichtbar.

Die Ergebnisse dieser Masterarbeit können jedem Softwareentwicklungsteam helfen, vor allem

jenen, die Java in Android Studio programmieren, komplexe Codestellen zu identifizieren,

diese nach den vorgeschlagenen Methoden und Techniken zu refactoren und schönen Code zu

schreiben, um die Codequalität und dessen Verständlichkeit zu erhöhen, die Komplexität zu

verringern und die Wartungskosten am Ende zu minimieren.

5

Contents

Abstract .. 3

Kurzfassung ... 4

Contents ... 5

List of Equations .. 8

1 Introduction .. 14

1.1 Goals and Objectives ... 14

1.2 Thesis Overview .. 15

2 Literature Review... 17

2.1 Code Refactoring ... 17

2.1.1 Introduction to Refactoring .. 17

2.1.2 Reasons for Refactoring ... 19

2.1.3 Code Refactoring Along the Development Process ... 21

2.1.4 Testing.. 23

2.1.5 Automated Code Refactoring .. 25

2.1.6 Selected Set of Refactorings .. 25

2.2 Clean Code ... 28

2.2.1 Abstract Class Factory ... 29

2.2.2 Naming Conventions ... 29

2.2.3 Code Smells ... 30

2.2.4 Error Handling ... 32

2.3 Legacy Code .. 33

2.3.1 Working with Legacy Code ... 33

2.3.2 Testing Legacy Code ... 34

3 Implementation Details .. 36

3.1 Naming Convention and Coding Standard .. 36

3.1.1 Defined Naming Convention ... 36

6

3.1.2 Drawable Resources... 37

3.1.3 Coding Standard in Android Studio ... 38

3.1.4 Implementation for Acceptance of Team Members .. 39

3.2 Applied Code Refactoring in Android Studio ... 40

3.2.1 Comprehension Refactoring .. 40

3.2.2 Preparatory Refactoring ... 55

3.3 Removing unused Code and Resources in Android Studio 74

3.3.1 Applying Removal of unused Code and Resources ... 74

3.3.2 Results .. 77

3.4 Exchanging Raster Graphics with Vector Graphics in Android Studio 80

3.4.1 Status Quo .. 81

3.4.2 Applying Exchange of Graphics .. 82

3.4.3 Results .. 82

4 Evaluation .. 86

4.1 Quantitative Evaluation of Code Complexity by Software Metrics 86

4.1.1 Code Complexity Analysis .. 87

4.1.2 Applied Code Complexity Analysis in Android Studio 91

4.2 Community-based Evaluation of Code Complexity .. 96

4.2.1 Survey Preparation and Execution ... 96

4.2.2 Evaluation of the Survey .. 99

4.3 Discussion of the Results ... 104

5 Conclusion ... 109

5.1 Limitations ... 110

5.2 Future Work ... 110

6 Bibliography .. 111

Appendix .. 119

A. Content of the Exported Coding Style Settings in CodeStyle.xml 119

7

B. Results of Code Complexity Metrics Calculations .. 121

C. Questionnaire of Survey .. 124

8

List of Equations

Equation 1: v(G) represents the cyclomatic number of graph G. .. 90

Equation 2: The cyclomatic complexity of program graphs. ... 90

Equation 3: The cyclomatic complexity for methods or subroutines can be simplified as p is

always one. ... 90

Equation 4: For a single-component program it is sufficient to count the predicates and add one

to it ... 90

9

List of Figures

Figure 1: The DesignStaminaHypothesis graphically explained. .. 18

Figure 2: Extracted intrinsic and external refactoring motivators ... 19

Figure 3: In a feature branch which branches from the main line, a commit "Commit F" was

made. .. 22

Figure 4: Merging the feature branch into the main line results in a new commit "Commit E".

.. 22

Figure 5: The rebasing process results in a much cleaner commit history 22

Figure 6: Android Studio dedicates refactoring an own menu item. 26

Figure 7: Android Studio provides needed parameters with suggested names and proposes a

name for the extracted function. .. 27

Figure 8: Encapsulate fields provides the functionality to encapsulate mutable fields 28

Figure 9: Android Studio suggests creating a new class for the selected parameters. 28

Figure 10: Exporting code style settings in Android Studio. ... 38

Figure 11: The implemented coding standard and naming convention is part of the project's

README.md... 39

Figure 12: A typical view with a fixed sized header and tab views below. 42

Figure 13: The new designed full header for a game with detailed content being displayed. . 45

Figure 14: A sketch for the layout with a collapsing header and tabbed views....................... 53

Figure 15: The header states in the profile page of a club ... 54

Figure 16: The old-fashioned profile page of clubs and leagues. .. 56

Figure 17: The mock-ups proposing the new header of the profile page and the new design for

the standings... 57

Figure 18: The finished profile pages of leagues and clubs... 58

Figure 19: The current screens of the live ticker and the timeline screen for an event. 60

Figure 20: The new design rules that the live ticker and the timeline tab should follow. 61

Figure 21: The new design of the fragment showing an event. ... 67

Figure 22: In the games tab only events of the subscribed clubs and leagues are shown. 68

Figure 23: In the new tab that shows all games, the user can filter the results. 69

Figure 24: The users have now the possibility to filter games. ... 70

Figure 25: The news view needs an update to fit to the new design. 71

Figure 26: These mock-ups show the new views for any news. .. 72

10

Figure 27: The new news views fit to the new design very well and offer much more features.

.. 73

Figure 28: To get rid of unused imports a setting exists which tells Android Studio to optimize

imports automatically while coding. .. 75

Figure 29: The configuration for the arrangement of XML attributes..................................... 75

Figure 30: The outcome of finding the usages of the method "open". 76

Figure 31: This file is only referenced in one class. .. 76

Figure 32: The options for rearranging code are ticked singularly for stages one to three. 77

Figure 33: Unused identifiers can also be removed by ticking the option within the command

for removing unused resources. ... 77

Figure 36: The five stages have different outcomes of the changes in line and APK file size.

.. 80

Figure 37: An excerpt of some PNG files within the drawable folder of the project. 81

Figure 38: The news icon in the navbar was previously stored in raster graphics format and is

not optimized for each display resolution. ... 83

Figure 39: The new news icon is optimized for each screen resolution 84

Figure 40: Calculating complexity metrics for folder "java". .. 91

Figure 41: The used dates are chosen to see the improvement of the quantitative measurable

complexity of code. .. 92

Figure 42: Calculated metrics values for the whole project including relative changes and

relative improvement or deterioration. .. 93

Figure 43: Relative change of complexity method and complexity class metrics of the project.

.. 94

Figure 44: Absolute complexity class metrics, complexity method metrics, number of files, and

lines of code of the project. .. 95

Figure 45: Screenshot of the survey giving a good general overview. 97

Figure 46: Boxplot of the results for all questions, whereby the section values 1-5 are used for

slider questions for easier comparison. .. 101

Figure 47: Correlation between questions with rounded values without duplicated values. . 102

Figure 48: Heatmap created by the correlation matrix of the participants of the survey. 102

Figure 49: This pie chart shows the proportions of all answers made including "Don't know"

marked as “?”. .. 103

Figure 50: Stacked column diagram to show the answers made to each question. 103

11

Figure 51: Diagrams of all metrics taken for the project including complexity, dependencies,

number of Java files, lines of code, and the MOOD metrices. .. 122

Figure 52: Experiment to calculate the cyclic complexity for survey question D1. 123

12

List of Listings

Listing 1: An example of how complex fragments were returned before. 43

Listing 2: An excerpt of the XML layout for the header of the game fragment 44

Listing 3: Defined functionality for each container fragment class which is needed for creating

a new instance safely. .. 46

Listing 4: Steps taken to create the tabbed layout within the container fragment class. 47

Listing 5: The functionality which a pager adapter needs to implement to satisfy the

dynamically created tabbed view. .. 48

Listing 6: The FragmentTabFactory defines the method for creating new FragmentTabs 48

Listing 7: The abstract class which defines an interface for creating concrete objects by the

factory. ... 49

Listing 8: An example for handling dynamic tab views according to the tab settings for the

event view. ... 50

Listing 9: A simplified draft for the new collapsing layout with the most important components

and properties. .. 51

Listing 10: Needed functionality for a working collapsing header in pseudo code. 54

Listing 11: An example for a very complex method in which it is very hard to understand its

outcome. ... 63

Listing 12: The refactored choice of a club depending on different settings........................... 64

Listing 13: This method sets the score and time within the header ... 65

Listing 14: According to the phase a new object is created which implements its setting of time

and score accordingly. ... 66

Listing 15: For displaying external content correctly within the news article, the settings needed

to be configured correctly .. 73

Listing 16: Getting a resource identifier by string leads to crashes in case the identifier does

not exist. ... 77

Listing 17: By declaring the integers directly via symbols their usage is recognized 77

Listing 18: The defined coding standard exported by Android Studio as XML. 120

13

List of Tables

Table 1: The defined naming convention for drawable resources. .. 38

Table 2: The description of the different stages in short. .. 79

Table 3: The different stages have influenced the changes in the version control differently. 79

Table 4: The changes of the different stages for Java files. ... 79

Table 5: The changes of the different stages for XML files. ... 80

Table 6: The five stages for cleaning up the project sources folders had effects on the amount

of used drawable files. ... 81

Table 7: The exchanging of graphics ... 83

Table 8: The drawable resource were grouped by their resource type with the usage of defined

prefixes. .. 83

Table 9: The remaining PNG files consist of a complex field image, 18 resources that are not

visible for the user and 51 resources that need to be exchanged in future. 83

Table 10: There are less files that need to be exchanged in future .. 84

Table 11: The comparison between the two snapshots taken in April and November for each

drawable file prefix. ... 85

Table 12: Description of the calculated metrics used within this thesis. 89

Table 13: Dates of the complexity snapshots of the projects each four months over a period of

two years. ... 92

Table 14: A list of all 20 questions with corresponding code, type, and a short description .. 98

Table 15: Statistics about the available questionnaires of the survey which was active for about

two days. .. 99

Table 16: The cleaned data including calculations of average, standard deviation, median, and

mode. .. 100

Table 17: The corresponding hashes within the repository for each version. 121

Table 18: The calculated metrics for versions 1 to 7 each. .. 121

14

1 Introduction

“[…] software systems almost always degrade into a mess.” (Feathers, 2004, p. xiii) claims the

author in the foreword of his book “Working Effectively with Legacy Code”. The problem of

such a mess addressed by Michael C. Feathers is that the software development is slowed down

by it as the readers of the code are not able to work with it effectively. According to Robert C.

Martin (2008) the proportion of reading and writing source code is 10:1. So, to accelerate the

development of software, the understandability of code should be improved. However, Nazir,

Khan, and Mustafa (2010) describe that software systems become increasingly complex from

which suffers the quality including maintainability and understandability. Hence, by actively

increasing the software quality, the maintenance effort can be reduced. To achieve this, code

refactoring techniques can be used, and clean coding principles can be followed (Fowler,

2018). To measure the complexity of code, there are various complexity metrics which can

quantify the degree of complexity for software systems or for individual parts (Kafura &

Reddy, 1987). However, as the understandability of code is related to subjective estimation, it

is also important taking the developer’s perception into account when evaluating the software

complexity. Several studies were conducted not only on the quantitative evaluation of code

complexity and its reduction by code refactoring (Kataoka, Imai, Andou, & Fukaya, 2002;

Leitch & Stroulia, 2003; Ratzinger, Fischer, & Gall, 2005; Moser, Sillitti, Abrahamsson, &

Succi, 2006), but also on the empirical evaluation of its improvement (Wang, 2009; Kim, Zim-

mermann, & Nagappan, 2012). Others have combined empirical data with quantitative

measures to conduct a subjective evaluation (Kafura & Reddy, 1987).

The next paragraphs will provide the goals, objectives, and an overview of this master’s thesis.

1.1 Goals and Objectives

The purpose of this master’s thesis is to evaluate the improvement of code complexity by using

well-known code refactoring techniques and following clean coding guidelines. The evaluation

combines quantitative measurable software complexity metrics with subjective estimations of

software developers collected by a survey. Therefore, we collect and describe theoretical as-

pects of code refactoring, clean coding, design principles and patterns, and the handling of code

that someone else has written. The implementation part of this master’s thesis is conducted in

a medium-sized software system. This platform provides soccer fans content of their favourite

clubs and leagues, including a live ticker of soccer matches, or news. It consists in the front

end of an Angular web application, an iOS application, and an Android application. For this

15

thesis, we improve the Android application of the platform and develop in Java1 using the

Integrated Development Environment Android Studio2. While implementing the defined fea-

tures, we used the refactoring techniques, patterns, and guidelines collected in the literature

review. Moreover, we describe known problems of the application and removed them, like

unused resources, or exchange them, like raster graphics by vector graphics. For evaluating the

change in code complexity by following the described patterns, we use a plugin for Android

Studio and take further six snapshots of the past two years with an interval of four months to

be able to compare the change in complexity over time. For the subjective evaluation, we use

a community-based evaluation technique by sending out an online survey consisting of a ques-

tionnaire which tries to evaluate the improvement of the understandability of the code in a

subjective way by asking some questions about code complexity and decisions made during

the course of the implementation of this master’s thesis. Afterwards, we combine both evalua-

tions to form a subjective evaluation technique described by Kafura and Reddy (1987).

1.2 Thesis Overview

As described above, theoretical aspects needed for the implementation of the defined features

are collected and described in the chapter Literature Review. It includes background knowledge

of code refactoring including motivation for refactoring, conducting refactoring along with

other developers working on the same repository, testing, and a set of selected refactorings,

which are also described for usage in Android Studio. Moreover, design principles, a special

object-oriented pattern, and clean coding principles are presented. The second chapter ends

with suggestions on how to work with complex code that someone else has written. The third

chapter shows the application of the theoretical aspects of the literature review. First, we de-

scribe the developed naming convention and coding standard for the Android project, then we

show applied code refactoring during the implementation of some features including the de-

velopment of them. Not only the results but also the requirements and the previous status of

each of the selected features are shown. After that sub-section, the removal of unused code and

resources in Android Studio is described and the results are shown. Finally, the exchange of

raster graphics with vector graphics is presented at the end of the third chapter.

After the description of the implementation, the fourth chapter, Evaluation, explains code com-

plexity analysis in general and its application on the project. After this, the explanation of the

survey is presented along with its evaluation. Afterward, both results are combined and

1 https://www.java.com/ [accessed on 17 November 2020]
2 https://developer.android.com/studio/index.html [accessed on 17 November 2020]

16

discussed at the end of chapter four. The thesis ends with chapter five, Conclusion, including

a description of lessons learned, the limitations that needed to be faced, and chapter Future

Work concludes this master’s thesis in the end.

17

2 Literature Review

The aim of this master’s thesis is to find ways to reduce code complexity. On the one hand,

suggested ways, which can be found in literature can be applied to enhance code quality which

should not only reduce code complexity regarding quantitative measures but also regarding its

readability. Therefore, code refactoring methods, techniques, and testing are discussed within

the next section. As the understandability of code within the chosen project shall further be

simplified and optimized for humans to read, some clean coding issues are discussed within

the next section. As the implementation must be done in legacy code, which is code that is

written by someone else, some best practices for working with legacy code are described.

2.1 Code Refactoring

Martin Fowler (2018) has published in 1999 a book about code refactoring and explains, that

the term refactoring can be used as a verb or a noun, but both definitions highlight that the

structure of the software is changed and that there is no functional change in the observable

behaviour. He further mentions that this is all done by applying a series of small refactoring

steps and the result should always improve the understandability and reduce the effort to mod-

ify the code. In cases where it is too difficult to refactor, Fowler (2018) suggests rewriting the

code instead, as refactoring should always give a benefit.

Reported by Griswold and Opdyke (2015), refactoring was originally invented at the end of

the 1980s by two graduate students in computer science independently, namely by Bill Opdyke

in Illinois and by Bill Griswold in Washington. They also mention Kent Beck and Ward Cun-

ningham, who mentions Fowler (2018) also for their work with Smalltalk in the 1980s high-

lighting the importance of refactoring. Griswold and Opdyke (2015) connect Martin Fowler

with Bill Opdyke, as he contributes to writing the first version of the refactoring book in 1999.

Kent Beck, on the other side, is said to be the inventor of extreme programming in the same

year, publishing a new development approach with refactoring as a fundamental part of it.

Within the next few sections, some refactoring issues are presented and explained.

2.1.1 Introduction to Refactoring

Refactoring is done because of various purposes. According to Fowler (2018), not only the

design and understandability are improved, but it also helps to fix and to find bugs faster, it lets

the developer program faster and accelerates the overall development time. He explains this

phenomenon by the “DesignStaminaHypothesis”, which is graphically displayed in Figure 1.

On his website (Fowler, 2017) he explains that neglecting design helps to progress faster in

18

software development at first, but at the blue design payoff line this approach will slow down

the progress in the end. Otherwise, if developers choose taking the effort in good design, the

progress will be lower initially, but above the payoff line it will not slow down. Fowler high-

lights, though, that this hypothesis is not objectively proofed.

Figure 1: The DesignStaminaHypothesis graphically explained. Above the payoff line good design is worth. (Fowler, De-
signStaminaHypothesis, 2007)

However, for that reason code refactoring is important as having a good design in the beginning

is often difficult and not possible (Fowler, 2018).

A problem in the daily life of many software developers that Fowler (2018) raises is the fre-

quent lack of understanding of managers. He explains that managers often claim that refactor-

ing does not add valuable features, and therefore, Fowler suggests not telling managers about

refactoring as they may not have the technical awareness to see its advantages for faster devel-

opment in the end.

Martin Fowler (2018) advises that it should be refactored even if the performance gets worse.

Fowler explains further, that even if it really gets much worse, then revising it after the rewrite

process is much easier. Djoudi and Jalby (2018) or Xie, Wolf, and Lekatsas (2003) referencing

Hennessy and Patterson (2007) who calls it the Principle of Locality, speak about the 90-10 or

90/10 rule meaning that a program executes only 10% of code in 90% of total time. This means

that the focus should lie on the readability and understandability and not on performance when

refactoring. Otherwise, a lot of time is wasted as performance optimizations should be focused

mainly on that 10% of code, which can be found by using a profiler monitoring the execution

for time and space consumption and not on the whole codebase (Fowler, 2018). Furthermore,

any bad influence on the compilation time can be ignored, because according to Fowler (2018)

19

a few more compile cycles are ignorable compared to the extra hours a programmer has to

invest to understand poorly written code.

Design patterns are important ways to apply documented best practices to different known

software problems (Kuchana, 2004). In refactoring, though, Fowler (2018) advises not to think,

design and build patterns for possible future needs, but only for the current needs in an opti-

mized way. In case of changing requirements, refactoring should be used to adapt current pat-

terns.

2.1.2 Reasons for Refactoring

Besides the technical reasons like reducing complexity or changing the software design by

identifying and removing antipatterns and bad code smells (Bavota, De Lucia, Marcus, &

Oliveto, 2014; Du Bois, Demeyer, & Verelst, 2004), Bavota, De Lucia, Di Penta, Oliveto, and

Palomba (2015), and Wang (2009) explain subjective reasons for doing refactoring. In the for-

mer paper they say that the main pushing factor is low readability, and by performing refactor-

ing maintainability and readability are improved (Bavota, De Lucia, Di Penta, Oliveto, & Pal-

omba, 2015). The latter paper by Wang (2009) presents an empirical model that shows the

found refactoring motivations which they extracted from interviews with ten software devel-

opers. This model can be seen in Figure 2.

Figure 2: Extracted intrinsic and external refactoring motivators by Wang (2009), retrieved from IEEE Xplore (Wang, What
motivate software engineers to refactor source code? evidences from professional developers - IEEE Conference

Publication, 2009).

Wang (2009) differs between intrinsic and external motivators which push the developers to

refactor. He explains that intrinsic motivators do not offer the affected person an obvious ex-

ternal reward, but the extrinsic ones do. Wang extracted six intrinsic motivators including that

the developers want to have a high quality in their own code, they are motivated by their own

20

self-efficacy and self-esteem as they believe in their potential and they want to improve their

skills through refactoring. The social norm suggests that developers tend to follow develop-

ment practices as they do not want to be isolated. With the last item, Wang wants to highlight

the habit of developers doing practicing refactoring in the daily work.

Wang 2009 counts external punishment by managers to improve quality, the perception that

refactoring leads to an obvious additional value like reusability, the feared additional effort

without refactoring, and good reputation for their technical ability as the six inferred external

motivators. According to Wang, it is often the case that developers get refactoring as their own

task to do. Moreover, he highlights other factors, that vary from organization to organization

like competing developers for the best code to achieve some award.

Besides, other factors influencing the motivation for refactoring are highlighted like the usage

and assessments of refactoring tools, the developer’s personality, or other environmental fac-

tors (Wang, 2009).

In contrast to this, Fowler (2018) describes the reasons for refactoring as an action to a specific

situation. He explains that in cases where new features need to be added, preparatory refactor-

ing can be used to facilitate its implementation, and that it is the best time for refactoring.

Fowler (2018) further mentions another reason can be that this makes it easier to understand

the code. He refers to Ward Cunningham who explains this action of refactoring by moving

the understanding of the code into the written program itself. This situation of not understand-

ing the code is responded to with so-called comprehension refactoring. As result, as Fowler

(2018) states, the code is more understandable not only to the directly affected developer but

also to the following programmers.

Besides the preparatory refactoring and comprehension refactoring, Fowler (2018) mentions

litter-pickup refactoring meaning changing the structure of code motivated by the intrinsic de-

sire of changing malformed code even if it must not be done immediately. These three types

are summarized by Fowler as opportunistic refactorings, which help not only for the current

situation but also for future work on the affected code. Fowler says that refactoring should be

part of the daily work of a developer, planned sessions should be conducted rarely. He high-

lights that refactorings should only be conducted in code that is needed somehow in the future

or in the current situation. Finally, Fowler speaks about refactoring in code reviews. Such code

reviews, especially peer code reviews, can aid in gaining substantial knowledge when con-

ducted in daily work (Spohrer, Kude, Schmidt, & Heinzl, 2013). Spohrer, Kude, Schmidt, and

21

Heinzl (2013) highlight here the combination of peer code reviews and peer programming as

an efficient way to transfer knowledge between team members, where refactoring takes also

place in a more regular habit, according to Fowler (2018).

To summarize it, code refactoring should always have a good reason to be conducted, like

speeding up development by making it easier to add features or fixing bugs, but not only due

to clean up code or other moral reasons (Fowler, 2018).

2.1.3 Code Refactoring Along the Development Process

Fowler (2018) explains that refactoring can fail and therefore it is always important to go by

small steps. He suggests a version control tool. For example, GitLab3, which allows to commit

small changes. He justifies this by saying that the advantage of committing in small steps is

that it is possible to go back to the previous working step in case something went wrong. Fowler

writes that as these commits should be very small, it is important to squash these small commits

to a significantly bigger commit, which can be then pushed to the remote repository. Moreover,

Fowler (2018) sees advantages in committing workable code in small steps that the refactoring

can always be stopped without breaking the code base even if the refactoring may not be fin-

ished. He concludes by saying that correct refactoring does not break code and does not pro-

voke debugging if it is done correctly.

For documentation and maintenance reasons, the changes made should be described within

commit messages. The local commit messages for the small commits can be neglected, but the

squashed commit message should include a meaningful and informative description of the

changes. (Linares-Vásquez, Cortés-Coy, Aponte, & Poshyvanyk, 2015)

To not mess the development process, it is important to create a new branch which means

diverging from the most recent status quo of the product. As a result, it is possible to do refac-

toring without disturbing or changing the mainline. (Chacon & Straub, 2014)

However, as Meyer (2014) calls for continuous integration such feature branches should be

kept short and be merged into the mainline each day. The problem is that refactoring can easily

affect many parts of the codebase, and then merging conflicts can occur (Fowler, 2018). When

doing extreme programming, which is presented by Kent Beck with support by Cynthia Andres

(2004), they suggest using such temporary branches only for few hours as a single code base

3 https://about.gitlab.com/ [accessed on 17 November 2020]

22

is desired. As result, they claim that the code base stays healthy and promises faster develop-

ment.

Chacon and Straub (2014) show two ways to integrate changes into the mainline, namely merg-

ing and rebasing. The following three examples are based on the idea presented by Chacon and

Straub (2014). In Figure 3 a simple, but typical commit history is shown. “Commit F” has

pushed to a separate feature branch, and on the main line there was also pushed a commit called

“Commit M”.

Figure 3: In a feature branch which branches from the main line, a commit "Commit F" was made. On the main line a
commit "Commit M" was made. By rebasing these commits can be combined to one.

By merging these two commits, Chacon and Straub (2014) explain that the original two com-

mits, “F” and “M”, stay, and another merging commit “Commit E” is added as can be seen in

Figure 4.

Figure 4: Merging the feature branch into the main line results in a new commit "Commit E". The problem here is the di-
verged work history.

In contrast to this, Chacon and Straub (2014) show that in case of rebasing the feature branch

on top of the commit in the mainline, an additional commit “Commit E*” is also added, but it

is in line with the mainline meaning that it builds up only on the commit pushed on the main-

line. Chacon and Straub highlight that the snapshots of commits “Commit E” and “Commit

E*” are equal, though. The result of rebasing is shown in Figure 5.

Figure 5: The rebasing process results in a much cleaner commit history but the snapshot of the merging (“Commit E”) and
rebasing results (“Commit E*”) are the same.

23

To conclude, Chacon and Straub (2014) explain that by rebasing a feature branch frequently

onto the mainline, the new commits can be merged cleanly in. As a result, the merge into the

master branch can be applied without conflicts.

2.1.4 Testing

Since clean refactoring should not change the observable behaviour, as explained above

(Fowler, 2018), testing the code is crucial during refactoring. However, as Feathers (2004)

describes, in case there are no tests available, it is also important to preserve the behaviour and

to introduce tests. In addition to this, above all for code that is unknown, the so-called legacy

code which is described further in 2.3 below, Feathers presents an approach to understanding

the code without documentation and without knowing requirements. This approach is declared

to be even better as legacy systems mostly tend to behave differently as defined in any require-

ments or documentation. He calls such new tests in legacy code characterization tests as they

should characterize the system and its behaviour if done correctly and excessively. In case it is

not known what value is returned by a specific function, it is possible to make tests fail first,

and then use the value for the value-check. Feathers also warns that it is important to let bugs

in the system alive during refactoring and fix them later, as the goal is to understand the sys-

tem’s behaviour and not changing the code. Changing the code without tests could lead to new

errors, but by this approach refactoring and bug fixing can be done without harm (Fowler

2018).

Prominent examples of tests are unit tests or integration tests. Brar and Kaur (2015) describe

the differences between these two approaches. While unit testing focuses on the correct func-

tionality of small units, integration tests connect such components to test the interaction be-

tween the individual units. They further say that regarding functionality testing, the focus

should lie on unit testing, which is a so-called white box testing approach. Farcic and Garcia

(2015) explain that white box testing uses knowledge about the software to define tests. They

say that it requires a good internal understanding of the system.

Feathers (2004) also affirms that unit tests should be preferred in contrast to large tests, as large

tests do not localize bugs in that detail, they run longer, and small changes can affect many

parts of the software, so it can lead to many tests fail. However, if choosing unit tests, problems

can be localized more easily, and the test runs do not take that long. He explains that good unit

tests should run fast, meaning that tests which take more than 100 milliseconds are slow unit

24

tests. Additionally, they should not talk to the database, they should not use the network or file

system, and they are not dependent on the environment like a configuration file to be executed.

One famous software development process, where testing is a major part, is test-driven devel-

opment (TDD). It is used in short development cycles and is based on the idea to write first

tests and then implement the code (Farcic & Garcia, 2015). The connection to refactoring is

explained aptly by Beck and Andres (2004) who explain that test-first programming solves a

rhythm problem as developers always know what to do next as the cycle is clearly defined.

They say that first tests are written and fail, then the implementation should make the tests

work, but in case of failing they refactor until the tests succeed. This rhythm is repeated for the

whole development process. The approach of testing first before coding is also used in extreme

programming (Beck & Andres, 2004). Here, regression testing is used to ensure safe code re-

factoring (Cheon, 2014). Basu (2015) states that software changes, as they arise during refac-

toring, can make failing tests in completely other parts of the code, highlighting the importance

to check such side effects. Therefore, regression testing is needed to recheck all defined tests

for their success. Basu explains that this approach helps to find changes in the behaviour of

software but needs a great number of tests and is time-consuming, though.

As for Java, there is a famous open-source framework available invented by Kent Beck and

Erich Gamma called JUnit, which allows to write and run tests easily and is built upon the

xUnit architecture (Clark, 2006). According to Clark (2006) the highlights of JUnit includes

assertions to check expected values, test fixtures to let tests be repeatable, and test runners

which are responsible for the test runs. The written unit tests shall aid in finding breaks or

defects. Cheon says that this framework “encourages a close integration of testing with devel-

opment by allowing a test suite to be built incrementally” (Cheon, 2014). At the time of creation

of this master’s thesis, JUnit 5 with version 5.7.0 is the most recent release4.

To summarize the previous two sections, for efficient and clean refactoring not only testing or

even self-testing code is important, but also the above-mentioned continuous integration

(Fowler, 2018). Fowler says that testing helps preventing the introduction of new bugs if done

correctly and continuous integration prevents from having more work because of merge con-

flicts or other problems related to too different version histories. Fowler further explains that

4 https://github.com/junit-team/junit5/ [accessed on 3 December 2020]

25

these two approaches with refactoring are the fundamentals of extreme programming. Feathers

(2004) also affirms that high code coverage is needed to catch any errors during changing code.

As the focus of this master’s thesis is using automated refactorings of Android Studio, it is not

that important having that many tests or any tests as such refactorings can be trusted (Fowler,

2018). For refactorings that are not automated, this is not the case, though. In the next section,

it is explained how automated code refactoring works in Android Studio.

2.1.5 Automated Code Refactoring

Since Android Studio is founded by JetBrains who are claimed for the automated refactoring

tools in their IntelliJ IDEA5 for developing in Java, automated refactorings in such IDEs are

completely safe, and therefore, testing is not needed for preserving the observable behaviour

in general (Fowler, 2018).

JetBrains (2020) explain, that their IDEs, like the used Android Studio, parse files in two steps.

The structural representation of the program is created as an AST, or abstract syntax tree. The

semantical enhancement is added to the AST by the program structure interface (PSI). Jet-

Brains explains that the nodes of the abstract syntax representation of the program map directly

to the corresponding text passages. As a result, any changes in the AST are reflected in the

corresponding document like insertions, deletions, or reorderings. With this cooperation of the

AST and the PSI, common refactorings, like renaming, usage findings, or TODO findings, to

name some features, are possible.

2.1.6 Selected Set of Refactorings

Fowler (2018) explains several refactorings in his book. Here, a set of them is selected and

presented shortly with the corresponding automated usage in Android Studio. In the following,

the term function also refers to methods for simplicity.

Fowler (2018) firstly presents Extract Function, Inline Function, Extract Variable, and Inline

Variable which extract or inline code from or into functions or variables. Reasons for extracting

functions can be for example long functions, which are functions that consist of more than six

lines according to Fowler. Inlining functions or variables are useful in cases where the content

of them is as clear as the chosen name itself. Extracting a variable provides the possibility of

clarifying complex statements. Moreover, Fowler highlights the advantage of debugging as

variables can be analysed more easily than their code representations. To read the extracted

5 https://www.jetbrains.com/idea/ [accessed on 3 December 2020]

26

functions in a natural flow, Martin (2008) suggests placing the extracted function directly be-

neath the function. If this is not possible, the caller should be in any case above the extracted

function.

In Figure 6, the different possibilities for refactorings in Android Studio are shown. When it

comes to selecting a variable, “Inline Method…” is changed to an activated “Inline Field…”

menu item. The extractions of methods, functions, variables, or constants are visible in the

screenshot. Android Studio offers keyboard shortcuts for many of the refactorings as the default

setting.

Figure 6: Android Studio dedicates refactoring an own menu item.

In Figure 7 an example for extracting a method can be seen. For multiple refactorings, Android

Studio proposes suggestions for names of the affected entities. Moreover, the signature can be

changed directly in the opened window. When it comes to checking the changes, a preview can

be shown.

After these composing refactoring methods (Refactoring.Guru, 2020), Fowler (2018) summa-

rizes the act of renaming a function, adding, or removing parameters, which is available by the

menu item “Change Signature…” in Android Studio as can be seen above, by the term Change

27

Function Declaration. Renaming any named entities in Android Studio is available by the “Re-

name” commands. Fowler suggests a way to find good names by commenting on the purpose

or functionality of the function and then using this comment for creating a new name.

Figure 7: Android Studio provides needed parameters with suggested names and proposes a name for the extracted function.

By "Preview" the intended change can be previewed.

The next two refactoring methods Fowler (2018) describes are related to a variable or field,

namely Encapsulate Variable, making variables only accessed by functions, and Rename Var-

iable. According to Fowler, encapsulating a variable is more important for mutable data, as

immutable data is not needed to be validated or be prevented to be copied, but for mutable data

this holds. In Figure 8 an example of encapsulating fields is shown. The variable dummy is

public and hence, encapsulating here yields a private field with getter and setter which are

automatically preselected.

Fowler (2018) justifies using the presented Introduce Parameter Object, which is available

under the same name for selected parameters in Android Studio, by saying that grouping pa-

rameters improves consistency, reduces the number of arguments. Additionally, it expresses

the relationship between the selected parameters. Android Studio automatically suggests

28

creating a new class for the selected data items, which can be seen in Figure 9. The result is a

complete class with a constructor and getter for the individual fields.

Figure 8: Encapsulate fields provides the functionality to
encapsulate mutable fields and adds getter and setter for

them instead.

Figure 9: Android Studio suggests creating a new class for
the selected parameters.

Fowler (2018) explains much more refactoring techniques not discussed in this literature re-

view like moving entities or others. One of them should conclude the selected set of refactoring

methods, namely Remove Dead Code. This method is needed in case dead code occurs and is

not needed anymore (Fowler, 2018). Fowler suggests that it is better to remove the unused code

because if it is needed in future version control can help. Android Studio aids in discovering

such code smells by highlighting unused or unreachable code. This is further discussed below

in 3.3.

2.2 Clean Code

According to Martin (2008), author of the book “Clean Code”, clean code is code that other

people can easily change, so the readability should be given, tests should be included, and it

should be kept simple without many dependencies, following the Single Responsibility Princi-

ple (SRP). According to Martin (2017) this principle is part of the SOLID principles which

serve as design guidelines to divide data into classes, like functions or data structures. He ex-

plains that the overall goals are flexibility to changes and understandability. Two of them are

29

taken further into account. The first of them is the mentioned SRP which says that there should

be only one reason for each component to be changed, meaning among others that there is no

duplication and the Open-Closed Principle OCP, which means that changing a system should

only be possible by adding new code to it instead of adapting it.

As Kerievsky (2005) describes in the foreword of his book “Refactoring to Patterns”, patterns

always transform programs. This can be visualized by comparing a code before, and after the

use of the pattern. Because of this, patterns are strongly connected to refactoring. The most

relevant pattern for this thesis is explained in the next section.

2.2.1 Abstract Class Factory

As Gamma, Helm, Johnson, and Vlissides (1994) discuss, there are several advantages of using

an abstract factory. On the one hand, it completely isolates concrete implementations. That

means, that the concrete classes are implemented independently from the affected developers,

so they can only manipulate the instances by the methods defined by the abstract interfaces.

Moreover, Gamma et al. say that the class names are not visible to them either and the created

products are only dependent on the passed arguments which are well-known to the developers.

On the other hand, abstract factories enable easy exchanging of the concrete classes as there is

only one point in code where the concrete implementation of the factory appears, namely only

on the instantiation. Additionally, consistency among concrete implementations is implicitly

forced as it uses only one product family whose concrete products implement the same behav-

iour defined by the abstract product. Nevertheless, there is also a disadvantage according to

Gamma et al. In case of another kind of product, all subclasses of the abstract factory and the

abstract factory itself must be extended. However, this is not a problem in case there are no sub

classes for the abstract factory.

2.2.2 Naming Conventions

As Kent Beck (1997) suggests, instance variables should be named according to the role they

play within the program. Collections should be in plural form; all others should be singular.

Consistency is key. The type is also important to tell what the variable can do and how it is

used. But because of readability, variables should be named short and simple. So, in some cases

where it is not clear what type a variable has, it is also possible to include its type. Robert C.

Martin (2008) however, suggests to not do type encodings as objects in Java are strongly typed

and therefore it is not necessary to indicate of which type a variable is. Moreover, clean code

means smaller functions and classes and therefore the context will clearly tell of which type a

30

variable or a class member is. According to Martin, class members should not use prefixes like

“m_”, “m” or “_”. Modern editors can highlight members and even show their types in the

highlighted information. In Android Studio, for example, holding “Strg” and hovering a varia-

ble typically shows its first usage, which means its declaration or even initialization. Much

more important is the choice of a meaningful name (Ritchie, 2007). It should reveal its intent,

it should not encode wrong information in names, like any reserved words, it should be de-

scriptive, like using “source” and “destination” instead of using “a” and “b”, it should be pro-

nounceable and searchable, so no abbreviations and one character names should be used, and,

as mentioned, encodings to show the type should not be used (Martin, 2008). Martin suggests

further that class names should consist of nouns and should not encode general umbrella terms

like “Data” or “Manager”. For methods, however, Martin suggests using verbs singularly or in

combination with nouns. Getter and Setter should be consistent with the corresponding value

and should be prefixed with “get” and “set”, and for Booleans, it should be used “is” according

to JavaBeans’6 accessors of variables (Sun Microsystems Inc., 1997).

Fowler (2018) states that renaming is not complicated in modern IDEs as automated refactoring

tools are often integrated to apply such refactorings using one click. Therefore, he further ex-

plains that any renaming is worth during development to clearly communicate what the code

is doing. Fowler (2018) highlights the importance of choosing the right name, though. He states

that it is always important that the reader knows exactly what a variable is for, or what happens

within an extracted function for example. Even if it takes sometimes multiple tries for choosing

the correct name, Fowler (2018) says that it is always important for extracted functions because

it only makes sense to use this refactoring technique if the chosen function name clearly ex-

plains what the extracted function does in its body without the need to look into it.

In the next section, a selection of unclean code examples is presented.

2.2.3 Code Smells

Fowler (2018) and Kent Beck present a list of 24 bad smells in code in his book, like Mutable

Data, Temporary Field, or Feature Envy, and they refer to parts in code that are not bugs or

errors but “smell badly” because of the uncleanness. However, within this explanation, the

focus lies on selected aspects and is structured differently.

6 https://www.oracle.com/java/technologies/ [accessed on 15 November 2020]

31

To start with, one of the worst code smells is duplicated code. According to Fowler (2018)

code should say exactly what it does but only once, so any redundant code should be removed

to improve the design. Hunt and Thomas (2000) say that redundant code makes it impossible

to develop software reliably. In contrast to this, they suggest following the principle DRY in-

stead, which they derive from “Don’t Repeat Yourself” (Hunt & Thomas, 2000). They say that

only then it is possible to increase understandability and maintainability because knowledge

must be implemented in only one single place. Reasons for duplicate code can be various. Hunt

and Thomas describe four of them, Imposed, Inadvertent, Impatient, and Interdeveloper Du-

plication. When duplication is imposed, the developers feel to be forced to use redundant code.

In case the developers do not actively understand that they duplicate code, Hunt and Thomas

call that inadvertent. Software engineers often are lazy and therefore they copy code leading to

Impatient Duplication. They use the last type for explaining the cases where multiple develop-

ers duplicate code. The problem Fowler (2018) describes is that when there is something to

change within the copied code, the change needs to be done in each of the copied code sections.

Hence, duplicate code is also the source of potential inconsistency (Hunt & Thomas, 2000).

Next, functions are discussed. According to Martin (2008), they should be as small as possible.

He says that each block within a function should only include one line of code, for example, a

function call and that the indent level should not be greater than two for better readability and

understandability. As a result, he says that the name of the function can then be easily chosen.

Moreover, Martin suggests that functions should only do one thing, exactly that thing which is

described by the function’s name. Fowler (2018) states that the maximum number of lines in a

function is six. He advises further not commenting any code but using a function instead, even

for a single line of code. With the help of Extract Method and by using a descriptive name,

documentary value is added implicitly, and the methods are shortened. To prevent from having

the code smell Long Parameter List, Fowler suggests for example the above-described refac-

toring technique Introduce Parameter Object (Fowler, 2018). Martin (2008) suggests only

three types of functions when it comes to the number of arguments, namely niladic, monadic,

and dyadic, meaning holding zero, one, or two arguments. Triadic and polyadic functions

should never be used.

As described above, functions should be as small as possible. According to Robert C. Martin

(2008), the indent should be two at maximum and blocks should never hold more than one

single line. Therefore, local variables should not be introduced that often. Nevertheless, if a

variable is used whose value is returned, Fowler (2018) suggests calling this variable “result”

32

for indicating its purpose. Furthermore, Fowler describes that other locally scoped variables

should be used as little as possible as these temporary variables complicate further extractions.

He suggests using Inline Variable as described above to solve such inconveniences.

Another selected code smell is the use of repeated switch statements. Martin (2008) suggests

solving this problem of having more than one switch statements with the same cases by using

the pattern abstract class factory explained above. Martin states that by instead introducing

these polymorphic objects, which implement the needed functionality in their inherited classes,

the visibility of the implementation is completely hidden from the developers. This opinion is

also expressed by Gamma et al. (1994).

Regarding comments, Fowler (2018) says that there is no need for documenting any function-

ality. In such cases, methods should be better extracted and named as the intended comment as

already described above. Martin (2008) confirms this but explains some exceptions for using

comments, this includes, for example, legal comments to explain the copyright holder for ex-

ample, cases where developers want to warn for some consequences, or TODO comments.

Out-commented code or any separation lines for structuring parts of the code should not be

used.

2.2.4 Error Handling

According to the definition by Oracle (2020), exceptions disrupt the standard execution of a

program. They explain further that this event creates an exception object containing important

information and passing or throwing it to the runtime system. Oracle explains that the runtime

system then searches for a method in the call stack handling the exception. In case there is no

such exception handler defined, the program exits unsuccessfully. In Java, try/catch blocks are

used to handle such situations.

To be able to write clean, robust code, it is important to separate the handling of errors from

the main logic (Martin, 2008). The solution is explained in the next few paragraphs.

Martin (2008) suggests that the exception handler should only handle exceptions as functions

should always do just one thing. He says further, when having a try/catch block, each of the

blocks should call a function implementing the corresponding functionality. Additionally, he

warns against using other techniques than exceptions for handling errors, like error codes, as

this leads to maintenance overhead.

33

Moreover, Martin (2008) presents another problem with the above-mentioned approach. Not

using exceptions forces the user to check for the error immediately after the call. On contrary,

when using exceptions, the handling can be ignored and does not affect the cleanness of the

corresponding code. Furthermore, Martin explains that exceptions should never be checked

directly except for working in critical libraries. This means that the function should not throw

that error explicitly as otherwise, the exception must be checked immediately. This implies that

third-party libraries, which throw exceptions should be explicitly wrapped.

Special handling requires the usage of null. Even if null is common in Java, Martin (2008)

explicitly warns to not return and pass it due to possible null pointer exceptions. Using excep-

tions in case of an error or unsuccess is the cleaner choice.

In the next sub-chapter, legacy code is described and issues about it are discussed.

2.3 Legacy Code

Michael C. Feathers published in 2004 a book in which he presents some suggestions for work-

ing effectively with legacy code. In the foreword, he tells that “software systems almost always

degrade into a mess” (Feathers, 2004, p. xiii). He further states that the change of requirements

is not the single explanation for this degradation as requirements do change and software de-

signs should be built for change. While Feathers calls rotten programs or code without tests

legacy code, Eli Lopian (2018) speaks about the difficulty of defining it for non-programmers.

Moreover, she highlights the fact that each codebase is legacy code, as it has a writing history.

Using bad code as a synonym is also not meaningful enough but summarizes all ideas and

implications in thinking “of legacy code as code that developers are afraid to change” (Lopian,

2018).

The next section explains how to work with such type of code.

2.3.1 Working with Legacy Code

The importance is being able to work with such legacy code that someone else has written, or

saying it more strictly by referencing to Feathers’ foreword in the book, “reversing the entropy”

(Feathers, 2004, p. xiii). Yu, Wang, Mylopoulos, Liaskos, Lapouchnian, and do Prado Leite

(2005) suggested to include refactoring at the beginning of a reverse engineering process of

legacy code. They directly use the Extract Method as explained in 2.1.6 above as a refactoring

technique while using any comments made in the given codebase. The result of this step where

semi-automatically refactorings of IDEs are used is a refactored source code which can be

better analysed for structural problems. They say that all comments are removed by it.

34

However, this approach is dependent on comments, so as they are not complete, Yu et al. ex-

plain the need for further steps to be taken to recover stakeholder goals which they aimed for.

An important aspect in working with legacy code is that the code should never get worse even

if there is no time (Feathers, 2004). Feathers (2004) gives some advice on what to do at a

minimum when working with legacy code. By using the so-called Sprout Method, any new

code should not be written inline, but be extracted with all necessary parameters and an optional

return value. To get this code part under test, TDD should be used. The same holds for Sprout

Class with a constructor and internal functionality. Feathers explains, however, that the prob-

lem here is that there is added always at least one line in the original function. When using

Wrap Method, or Wrap Class, respectively, this is not the case as the original function is

wrapped by another function, which then calls the original function.

According to Feathers (2004), the software is changed because of new features, bugs, design

improvements, or optimization of time or memory. Feathers explains that the standard way of

doing such changes is what he calls “edit and pray” – trying around after changing to check for

any issues. The better solution is “cover and modify” – modifying the code securely by cover-

ing it with tests.

The next paragraphs are dedicated to testing in legacy code and describes its importance, and

how to introduce them in case they are missing.

2.3.2 Testing Legacy Code

Besides the general consideration of the importance of testing during refactoring, as explained

above, Feathers (2004) emphasizes that legacy code is often affected by high dependency. The

problem is that classes that depend on other classes that are hard to test, testing this dependent

class is also hard. So, the proposed solution by Feathers is breaking these dependencies to make

changes easier. But here arises the problem which Feathers calls The Legacy Code Dilemma,

which he explains by saying “when we change code, we should have tests in place. To put tests

in place, we often have to change code.” (Feathers, 2004, p. 15). Feather solves this problem

by an algorithm that consists of finding points to change and points to test, then break potential

dependencies, test the affected code parts, and finally make the changes including refactoring.

Doing this effectively improves the code coverage in testing in the end.

There are two ways of breaking dependencies, on the one hand, sensing is used to get access

to values which are needed for our tests, and, on the other hand, separation to make it possible

testing code which was not possible before (Feathers, 2004). The solution presented for

35

checking the values is so-called fake objects or mock objects. According to Mackinnon, Free-

man, and Craig (2001) mock objects are more complex as they substitute functionality for var-

ious reasons, like the emulation or instrumentation of foreign code. As a result, they explain

that mock objects can be used for testing. They say further that it is important that the code of

mock objects should be as simple as possible and only aid to let unit tests run, as for example

for sensing reasons. Feathers (2004) explains that not only mock objects but also fake objects

need to implement the identified method to test. Therefore, both implement an interface that

the original implementation also implements. While the new real object only calls the function

of the original object, the test object executes simpler functionality. Feathers explains that fake

objects implement further functionality to store values and give these values back to be checked

within the unit test. So, the desired value could be fetched. Mock objects on the other side, are

enhanced by directly asserting the desired values internally, as Feathers describes.

Feathers (2004) speaks about introducing seams, places where behaviour can be introduced

without changing the original code when it comes to separation. Examples are the usage of

subclassing, where a new class that is only used for testing overrides the original method with-

out changing it in place. Feathers calls such a seam an object seam. Moreover, link seams can

be used to change the call of a function by manipulating for example the Java class path.

As already described above, for legacy code, it is important to write characterization tests to

understand the code and change it without changing the actual behaviour while refactoring

(Feathers, 2015). By using the proposed Method Use Rule by Feathers, the testing coverage

can be increased. It tells that developers are only allowed to use a method in case a test exists

for it.

To conclude, using these principles, guidelines, and techniques help to make the code more

understandable, less complex, and more maintainable.

36

3 Implementation Details

For applying the techniques and patterns discussed in the previous section the already mention

medium-sized software project was used. The project is a good example for illustrating one of

the main problems, why refactoring is needed, which Fowler (2018) discusses in his book. He

notes that programmers often follow short-term goals ignoring the architecture or clean coding.

In the case of this project, this is true as the main goal was always adding features. This can be

seen in the timeline of the code complexity evaluation and also in 4.1.2.

As already mentioned, Java can be tested by unit tests using JUnit. In our case, we used version

4.127. However, as described above, automated refactorings in IDEs like the used Android

Studio are completely safe. Therefore, testing is not that important when using the provided

refactoring tools. Furthermore, as already mentioned, testing is not the focus of this master’s

thesis, and therefore not explained in great detail. However, we followed our implementation

guidelines regarding legacy code and TDD when possible.

In the next few sections, we present the implemented naming convention and coding standard,

the applied code refactoring in Android Studio including the presentation of some implemen-

tation examples, the removal of unused resources, and in the end, the exchange of raster

graphics with vector graphics.

3.1 Naming Convention and Coding Standard

As already mentioned above, in a naming convention, it is important to be consistent. Regard-

ing the coding standard, fixed settings should be described to have a consistent code layout

throughout all developers. The defined solutions are explained below. Moreover, we show how

to apply a coding style in Android Studio, and where we show our naming conventions in the

project, so that all developers follow the same rules.

3.1.1 Defined Naming Convention

In the developed convention four practices of writing names are distinguished: mixed case with

lowercase first letter (also called “lowerCamelCase”), mixed case with the first letter capital-

ized (also called “UpperCamelCase”), lower case with underscores separating words and upper

case with underscores separating words.

Like Oracle suggests for Java (Oracle, 1999), we write classes and interfaces in “Upper-

CamelCase”. Methods and variables or class members are written in “lowerCamelCase”. For

7 https://github.com/junit-team/junit4/blob/HEAD/doc/ReleaseNotes4.12.md [accessed on 25 November 2020]

37

names of constants, we capitalize all letters and separate words by underscores. View identifi-

ers (IDs) of Extensible Markup Language (XML)8 files are written in lowercase letters with

underscores as separator between words.

The defined naming convention for member variables is based on the suggestions, for instance

variables of Kent Beck (1997), which are described in 2.2.2. Generally, collections like lists or

hash maps are named in the plural form and describe their usage purpose. Other variable types

like numbers or singular objects are named in the singular form.

Regarding the involvement of the type, the defined convention distinguishes between Views9

and all other types. View names include their type as a prefix in a shortened form. For example,

a TextView10, which shows the title is called “tvTitle” in the Java file and “tv_title” in the

corresponding XML file. So, we decided to use a Hungarian notation for view related variables

to program faster, which means using a lowercase prefix for describing the type of usage of a

variable (Legowski, 1996).

Apart from that, we only force the developers within the team to use descriptive names and be

consistent in naming any entities.

For reasons of simplifications, we use the terminus view for any graphical user interface ele-

ment in the further course of this work.

3.1.2 Drawable Resources

These types of resources are collected within the “drawable” folder of the project. For reasons

of simplification and grouping, we differ between five different types. Depending on the type,

which is derivated by the usage of the drawable and the file type of the resource, we use a

specific prefix. Icons are prefixed by “ic_”, names of pictures or images start with “im_”, vector

drawable icons from Google’s Material Design Icons11, which are converted to XMLs are pre-

fixed by “mt_”, and shapes which are drawable resources that are not icons themselves but can

enhance the design of different views are identified by the prefix “sh_”. Such files were created

solely by writing XML code. As the project is in development, some resources need to be

updated in future to fit the corporate identity. To know which files need to be adapted in the

8 https://www.w3.org/XML/ [accessed on 15 November 2020]
9 https://developer.android.com/reference/android/view/View [accessed on 15 November 2020]
10 https://developer.android.com/reference/android/widget/TextView [accessed on 15 November 2020]
11 https://material.io/resources/icons [accessed on 15 November 2020]

38

future, “td_” is used at the beginning of such raster graphic resource files. A summary of the

defined naming convention for drawable files is displayed in Table 1.

Prefix Derivation Description File Type

_ - The users currently do not see these drawables prefixed
by “_” but they are referenced in the code. no restriction

ic_ "icon" These icons are well-defined vector graphics. XML

im_ "image" These files are images or pictures and base on raster
graphics. JPEG, PNG

mt_ "material" Google Material Design Icons get prefixed by "mt_" after
conversion from SVG to XML. XML

sh_ "shape" Shapes are drawable resources to enhance the design of
views. These files are created purely by XML. XML

td_ "todo"
The prefix "td_" identifies drawables that are in use but
still have to be adapted to the new design and need to be
replaced in future.

JPEG, PNG

Table 1: The defined naming convention for drawable resources.

3.1.3 Coding Standard in Android Studio

In Android Studio, the coding standard or coding style can be adapted in the settings. Under

“Editor” the settings for different file types as Java or XML can be adapted in “Code Style”.

The defined settings can then be exported to an XML file, which can also be imported by the

other team members. In Figure 10 it can be seen how the defined selections can be exported.

For this master’s thesis, the first selection, “IntelliJ IDEA code style XML”, was used. The

generated XML file content can be found in the Appendix.

Figure 10: Exporting code style settings in Android Studio.

39

3.1.4 Implementation for Acceptance of Team Members

The implemented coding standard and the naming convention is part of the README.md.

With the help of this, these two important things are automatically shown in GitLab’s project

overview as displayed in Figure 11. Such team rules are important to be followed due to con-

sistency reasons (Martin, 2008). Hence, placing it at a central point is crucial for the adoption

of the new rules. Moreover, we instructed the participating developers to discuss the conven-

tions and to adapt it accordingly.

Figure 11: The implemented coding standard and naming convention is part of the project's README.md.

Even if there are still loads of badly coded parts or files within the project which do not meet

the conventions, we urge the team members not to refactor the code until they use the code. As

described in 2.1 above, it is best practice to do refactoring only in places where something

needs to be done, like understanding something, as described for comprehension refactoring,

or when somewhere a feature needs to be added, as described for preparatory refactoring. As

40

Martin Fowler (2018) cites a camping adage in his book, “… always leave the campsite cleaner

than when you found it.” (Fowler, 2018, p. 52), refactoring is only needed in case a file is

touched. Therefore, forced code refactoring, or change of names in files that are not currently

needed, is not needed and waste of time in most cases.

3.2 Applied Code Refactoring in Android Studio

Within the project, we identified some complex parts which need urgent a reduction of com-

plexity. As described in 2.1.2, there are several different motivations to do code refactoring. In

this section, some implementations of these two types are described and shown. Besides the

presented examples, we refactored and implemented other parts of the application also, like the

notification listener and enhanced notification settings, but they are not explained in detail here.

While implementing and refactoring the code, we tried to follow the theoretically discussed

clean code principles, like SRP, or OCP, abstract class factory, short methods, and much more,

and the code refactoring techniques, as described above, to code as clean as possible and to

increase the readability while reducing the complexity.

In order not to display real data, we have used fictitious names for all figures and placeholder

images for all logos. The presented listings were taken from the repository of the project,

whereby the copyright owner has approved the usage. Any listings that were not written in the

course of this master's thesis are marked with copyright12.

3.2.1 Comprehension Refactoring

As we know from the definition, comprehension refactoring is used in cases where parts of

code are too complex to understand (Fowler, 2018). Therefore, the aim of this refactoring type

is to make the source code easier to understand. An implementation of the mentioned project

is described in the next section. To further simplify termini, any small written views refer to

their according to view representation, like fragment always refers to Fragment13.

Dynamic Tabbed Layout and Collapsible Header

The app includes several views were tabbed layouts are used. That means, that the fragment

that holds the view includes within itself several other fragments that can be changed by swip-

ing to the left or the right or clicking the tab view titles, respectively. The challenge is now to

make these views dynamic and find a way to load different amounts of tabs. Another problem

12 © by SFA Sport GmbH
13 https://developer.android.com/reference/android/app/Fragment [accessed on 17 November 2020]

41

that we need to solve is that the upper views need to be collapsed in case the user loads more

content and navigates down because otherwise there is too less space for the content on the

mobile screen. Both problems need to be solved within the project. The codebase of these views

is so complicated, though, that it is very hard to reach the goals in a pleasant and fast way

without introducing new bugs. Therefore, we use comprehension refactoring to understand the

architecture of these views and to understand how to cope with the dynamic not only in the

header but also in the tab views. Moreover, a goal here is to remove the bad smell of Interde-

veloper Duplication as described above in 2.2.3, which Hunt and Thomas (2000) use for re-

dundant code, that was introduced by multiple developers. In this case, it means that the devel-

opers tended to copy files and methods simply instead of using inheritance. So, this goal can

be reached by using polymorphism.

Status Quo

In Figure 12 a typical screen is presented. It shows the profile page for a Styrian soccer league

with its five content tabs for news, events, standings, clubs, and information about the league.

The problem at this development status is, though, that it takes much effort to change the code

in a way that the fixed-sized header can be collapsed and that the static tab views can be re-

moved and added dynamically. Not only the many different implementations for all the views,

namely the game view for presenting events, the club profile page, and the league profile page,

but also the understanding of how the implementations work and how to make it possible to

change the code in a safe way without introducing new bugs to the legacy code is difficult.

42

Figure 12: A typical view with a fixed sized header and tab views below.

Before these dynamic tabs, a placeholder was shown to tell the user that there is no content

available or not available yet. Sometimes these messages were completely inadequate. Further-

more, regarding usability, such messages are very distracting and not user-friendly.

Regarding the dynamic tabs, the developers tried to implement it before doing comprehension

refactoring as can be seen in Listing 1. This implementation did work to show a dynamic num-

ber of views in the game fragment but as can be seen, it is very complicated and not very easy

to understand. Many principles are OCP, or SRP are ignored. Moreover, in case there is a

change in logic, it is very difficult to find out what to do next. This code example belongs to

the game pager adapter of type Adapter14 which is responsible for handling the different views

in the tabbed event fragment. Not only the correct fragment instance needs to be returned, but

also the correct name for the tab title and the correct number of views needs to be returned for

the given settings and the passed index or position. So, this code is repeated two times leading

to code duplication. The public static variable “staticEvent” should also be removed.

14 https://developer.android.com/reference/android/widget/Adapter [accessed on 17 November 2020]

43

@Override
public Fragment getItem(int index) {
 Constants.Phase phase = GameFragment.staticEvent.getPhase();
 boolean videoEnabled = GameFragment.staticEvent.getTickerURL() != null;
 boolean lineupEnabled = GameFragment.staticEvent.homeHasLineup() ||
 GameFragment.staticEvent.awayHasLineup();
 if (index == 0) {
 return new GameOverviewFragment();
 }
 if (index == 1 && !isPhaseUpcomingCancel(phase)) {
 return new TimelineFragment();
 }
 if (videoEnabled && ((index == 1 && isPhaseUpcomingCancel(phase)) ||
 (index == 2 && isPregameStartPhase(phase)))) {
 return new VideosFragment();
 }
 if (isGamePhase(phase) && GameFragment.showOverview && ((index == 3 &&
 videoEnabled) || (index == 2 && !videoEnabled))) {
 return new OverviewFragment();
 }
 if ((isGamePhase(phase) && GameFragment.showOverview &&
 isGamePhase(phase) && lineupEnabled &&
 ((index == 4 && videoEnabled) || (index == 3 && !videoEnabled))) ||
 (isPregamePhase(phase) && lineupEnabled &&
 ((index == 3 && videoEnabled) ||
 (index == 2 && !videoEnabled)))) {
 return new LineupGameFragment();
 }
 return new LineupGameFragment();
}

Listing 1: An example of how complex fragments were returned before. © by SFA Sport GmbH

For the collapsible header not only the tangled XML file needs to be understood, which can be

seen partly and shortened in Listing 2, not following any vertical order for neighboured views,

but also the complex code within the game fragment which represents the container for the

header and the tabbed view. These problems apply not only to the event view but also to the

league and club profile pages.

<FrameLayout android:layout_width="match_parent">
 <ImageView android:id="@+id/background_image" />
 <View android:id="@+id/background_image_overlay" />
 <LinearLayout android:id="@+id/header">
 <RelativeLayout>
 <TextView android:id="@+id/event_header_time"
 android:layout_above="@+id/event_header_score" />
 <RelativeLayout android:id="@+id/sponsor_click_listener_holder"
 android:layout_below="@id/event_header_score">
 <TextView android:id="@+id/sponsored_by"
 android:layout_above="@+id/event_header_sponsor" />
 <TextView android:id="@+id/event_header_sponsor" />
 </RelativeLayout>
 <FrameLayout
 android:layout_above="@+id/dummy"
 android:layout_toRightOf="@+id/event_header_score">
 <ImageView android:id="@+id/event_logo_away_team_black" />
 <ImageView android:id="@+id/event_logo_away_team"></ImageView>
 </FrameLayout>
 <TextView android:id="@+id/event_header_team_away_name"
 android:layout_toRightOf="@+id/event_header_score" />
 <LinearLayout android:id="@+id/dummy"
 android:layout_above="@+id/sponsor_click_listener_holder" />

44

 <FrameLayout android:id="@+id/logos_home"
 android:layout_above="@id/dummy"
 android:layout_toLeftOf="@+id/event_header_score">
 <ImageView android:id="@+id/event_logo_home_team_black" />
 <ImageView android:id="@+id/event_logo_home_team"/>
 </FrameLayout>
 <TextView android:id="@+id/event_header_team_home_name"
 android:layout_below="@+id/logos_home"
 android:layout_toLeftOf="@+id/event_header_score" />
 <TextView android:id="@+id/event_header_score" />
 </RelativeLayout>
 <android.support.design.widget.TabLayout>
 </android.support.design.widget.TabLayout>
 </LinearLayout>
</FrameLayout>

Listing 2: An excerpt of the XML layout for the header of the game fragment in the event view where only the IDs and the
references to them were kept for this listing. © by SFA Sport GmbH

Requirements

When viewing a lot of information on a smartphone, it is always important to use the available

space on the screen as much as possible. That means for this problem statement, that the user

should see the most important and revealing information in the beginning when entering a

screen, namely the event view, the club profile page, or the profile page for the league, but

when the user wants to see more specialized content like news, standings, or games, the screen

should be filled with that information while the header shrinks and should only display the very

most important information. To reach this goal, a general solution for all three views should be

found and it should meet all design proposals explained below.

Additionally, there should never be displayed any placeholder for empty screens, but these

empty screens should not be visible in these cases, instead. To put it differently, the goal is to

hide and show all defined views according to given settings. For instance, for future events it

does not make sense to display an empty live ticker view, an empty timeline of the events

within the game, or the not yet published line-ups. To be more specific, the moment of defining

the settings for the tabbed view is before creating the responsible game pager adapter.

In the next few paragraphs, the graphical requirements are presented.

Generally, the developers tend to first draw mock-ups for the graphical interfaces on a black-

board or on paper. Then, after some refinements, they draw the graphical user interfaces within

Figma15, which helps to create designs collaboratively online. The used version within the pro-

ject is totally free. In addition to the easy and fast creation of mock-ups, this browser supported

15 https://www.figma.com/design/ [accessed on 18 November 2020]

45

platform provides a possibility to test the design and to click through the different screens,

comments can be made and be discussed within the platform (Figma, 2020).

To begin with, in Figure 13 the new header can be seen. In this section the focus is on the

mechanism of collapsing the header. The design itself is shown and discussed below in the

examples of preparatory refactoring for the new profile views of the clubs and leagues and the

new event view for games, respectively.

Figure 13: The new designed full header for a game with detailed content being displayed.

In fact, the focus should lie on the structure of this layout to understand its components and to

choose the most important characteristics for refactoring. Generally, the view can be split up

into three main parts, namely the menu bar, the main bar, and the tab bar.

The menu bar is predefined by Android with a fixed size. The main bar consists here of a

centred score and minute view with variable sized content, two fixed-sized images to the left

and to the right, and strings centred to the bottom of each image of variable size. On the bottom

of the header, the dynamic number of tab titles can be found. In short, the height of the header

should be of a fixed size, but when scrolling down on the tab views, the header should shrink

in a way that only the most important information can be seen within the header. More about

these individual details can be found below in section 3.2.2.

Results

After applying comprehension refactoring not only to the files associated with the event but

also to the files for the profile pages of the clubs and leagues, it turned out that the main logic

of the code for the header should be in the class for the container of all the tabbed fragments.

46

These container classes are responsible for the data, which is needed for handling the TabLay-

out16 and the PagerAdapter17.

All necessary data that is needed to load the views of the different tabs, like data for the opened

event in the game view or the instance of the clicked club in its profile page, need to be known

and loaded before creating a new instance of the container fragment. This data gets loaded

within the static open-function or is passed by argument. If this function succeeds, a new in-

stance for the container fragment class will be created.

Within the responsible newInstance-function, the constructor of the container class will be

called. Then, arguments for the new fragment are created. These arguments remain available

even if the fragment gets destroyed or newly created, except the arguments get overwritten or

deleted explicitly18. The data type of these arguments is Bundle19, which maps from a string to

values which are from type Parcelable20. Besides methods for primitive data types as int or

boolean, Bundle provides also methods for objects of type Serializable21, which is an interface

without methods or fields but marks the implementing class and all subclasses as being able to

be serialized and deserialized. An example would be the class representing an event within the

project. To prevent creating a new instance for this class without calling open before, we set

the constructor for the container class and the static newInstance-function to private. This func-

tionality for creating a new instance of the container fragment class is listed in Listing 3.

public static void open(...) {
 onSuccess() {
 SomeFragment.newInstance(...);
 }
}
private static SomeFragment newInstance(...) {
 SomeFragment result = new SomeFragment();
 result.setArguments(createArguments(...));
 return result;
}
private Bundle createArguments(...) {
 Bundle result = new Bundle();
 result.putSerializable(SOME_CONSTANT, ...);
 return result;
}
private SomeFragment () {}

Listing 3: Defined functionality for each container fragment class which is needed for creating a new instance safely.

16 https://developer.android.com/reference/com/google/android/material/tabs/TabLayout [accessed on 18 Novem-
ber 2020]
17 https://developer.android.com/reference/androidx/viewpager/widget/PagerAdapter [accessed on 18 November
2020]
18 https://developer.android.com/reference/android/app/Fragment [accessed on 18 November 2020]
19 https://developer.android.com/reference/android/os/Bundle [accessed on 18 November 2020]
20 https://developer.android.com/reference/android/os/Parcelable [accessed on 19 November 2020]
21 https://developer.android.com/reference/java/io/Serializable [accessed on 19 November 2020]

47

In the overridden onCreateView-method of the already mentioned Fragment class, the layout

for the container class gets inflated, the Bundle arguments get parsed, the tabbed layout gets

setup, and the menu items get updated and not created, as they exist for other fragments also.

Within the setupTabbedLayout-method, the pager adapter is set up at first as it populates the

pages for the corresponding ViewPager22, which represents the layout manager for the tab view

pages. After the creation of the view pager, the tab layout gets set up in the end, which is also

connected to the view pager. This layout is needed, among other things, for listening on tab

selection changes or handling the tab titles including their design.

@Override
public View onCreateView(...) {
 inflateFragmentView(inflater, container);
 parseArguments();
 ...
 setupTabbedLayout();
 updateMenuItems();
 ...
}

private void setupTabbedLayout() {
 setupPagerAdapter();
 setupViewPager();
 setupTabLayout();
}

protected void setupPagerAdapter() {
 SomePagerAdapter.setupViewPager(viewPager);
 pagerAdapter = new SomePagerAdapter(...);
}

Listing 4: Steps taken to create the tabbed layout within the container fragment class.

One crucial thing, which we understood by the comprehension refactoring, is the passing of

the reference to the view pager layout to the pager adapter, which stores this reference stati-

cally. The problem is that the pager adapter needs the containing view, which is the view pager

in this case, in its instantiateItem-method. As the tabbed view is built dynamically, the func-

tionality is changed so that this requirement is satisfied. Such a pager adapter needs to provide

the functionality shown in Listing 5. As the page title is needed before instantiateItem would

be called, this method calls it implicitly before. In case the desired fragment is not null, it can

be returned from the list without doubt. With this technique, each fragment is prevented to be

initialized two times. We found this phenomenon during comprehension refactoring. We re-

vealed that the fragments were constructed two times and therefore, we found a lot of bugs and

could remove them afterwards.

22 https://developer.android.com/reference/androidx/viewpager/widget/ViewPager [accessed on 27 November
2020]

48

protected FragmentTab getFragmentTab(int position) {
 return fragments.get(position);
}

@NonNull
@Override
public Fragment getItem(int position) {
 if (getFragmentTab(position) != null) {
 return getFragmentTab(position);
 }

 return makeFragmentTab(position);
}

@Override
public String getPageTitle(int position) {
 if (getFragmentTab(position) != null) {
 return getFragmentTab(position).getPageTitle();
 }

 return ((FragmentTab) instantiateItem(viewPager, position)).getPageTitle();
}

@Override
public Object instantiateItem(ViewGroup container, int position) {
 if (getFragmentTab(position) != null) {
 return getFragmentTab(position);
 }

 Fragment createdFragment = super.instantiateItem(container, position);

 fragments.set(position, (FragmentTab) createdFragment);

 return createdFragment;
}

Listing 5: The functionality which a pager adapter needs to implement to satisfy the dynamically created tabbed view.

One thing to mention is the method call of makeFragmentTab. It is a method of an interface

FragmentTabFactory, which defines beside of this the method getPageTitle. This interface

defines some functionality that must be implemented by all pager adapters that want to satisfy

the dynamic functionality for their tab views. The interface can be seen in Listing 6.

public interface FragmentTabFactory {
 FragmentTab makeFragmentTab(int position);
 String getPageTitle(int position);
}

Listing 6: The FragmentTabFactory defines the method for creating new FragmentTabs and getting their title for the tab
layout.

As described in 2.2.1 above, this design pattern follows the object creation design pattern ab-

stract factory as the interface provides the possibility to create objects without knowing the

specific classes, whereby the interface FragmentTabFactory represents the abstract factory as

it declares the interface to create tab fragments (Gamma et al., 1994). The TabPagerAdapter,

which we explain in detail below, is a concrete factory as it implements the defined methods

of the abstract factory. The factory creates objects of type FragmentTab which is abstract and

49

defines two methods, namely getPageTitle and logTabSelected. These two methods are crucial

for any tab view. The corresponding interface can be seen in Listing 7. Concrete tab fragments

represent any tab views that are used within the project. During the creation of this master’s

thesis, we implemented in 15 classes the fragment tab interface.

As described in 2.2.1 above, the big advantage of this abstract factory is that the clients only

use the interfaces of the abstract factory and the abstract product classes (Gamma et al., 1994).

public abstract class FragmentTab extends MainActivityFragment {
 public abstract String getPageTitle();
 public abstract void logTabSelected();
}

Listing 7: The abstract class which defines an interface for creating concrete objects by the factory.

“Duplication may be the root of all evil in software.” (Martin, 2008, p. 48), Robert C. Martin

aptly writes in his book. Therefore, a base class is created for eliminating the redundant code

of all tabbed fragment pager adapters. All the functionality shown in listing 5 is implemented

within this abstract class called TabPagerAdapter which extends FragmentPagerAdapter23, and

implements the above presented FragmentTabFactory. At the time of this master’s thesis, three

pager adapters extended this abstract class, namely those for the club profile page, those for

the league profile page, and those for the game or event page.

To handle the tab dynamics, a backend endpoint was added to receive information about what

tabs to show for the fragments. This information is passed to the PagerAdapter by a special

class. The concrete implementation for the game view is partly shown in Listing 8.

23 https://developer.android.com/reference/androidx/fragment/app/FragmentPagerAdapter [accessed on 18 No-
vember 2020]

50

public FragmentTab getGameFragmentTabAtPosition(int position) {
 int index = 0;
 if (overview.isActivated()) {
 if (index == position) {
 return OverviewFragment.newInstance(…);
 } else {
 index += 1;
 }
 }
 if (liveticker.isActivated()) {
 if (index == position) {
 return LivetickerFragment.newInstance(…);
 } else {
 index += 1;
 }
 }
 if (videos.isActivated()) {
 if (index == position) {
 return VideosFragment.newInstance(…);
 } else {
 index += 1;
 }
 }
 if (timeline.isActivated()) {
 if (index == position) {
 return TimelineFragment.newInstance(…);
 }
 }
 return LineupFragment.newInstance(…);
}

Listing 8: An example for handling dynamic tab views according to the tab settings for the event view.

The second problem we need to face is the collapsing header. After the comprehension refac-

toring, it was clear that the layout for all container layouts needed to be adapted. Therefore, the

layout outlined in Listing 9 is chosen.

51

<androidx.coordinatorlayout.widget.CoordinatorLayout>

 <com.google.android.material.appbar.AppBarLayout>

 <com.google.android.material.appbar.CollapsingToolbarLayout
 app:layout_scrollFlags="scroll|exitUntilCollapsed|snap"
 app:contentScrim="@color/white">

 <androidx.appcompat.widget.Toolbar
 app:layout_collapseMode="pin" />

 <LinearLayout>

 <LinearLayout
 android:id="@+id/ll_header">
 ...
 </LinearLayout>

 <LinearLayout
 android:id="@+id/ll_header_collapsed">
 ...
 </LinearLayout>

 <com.google.android.material.tabs.TabLayout />

 </LinearLayout>

 </com.google.android.material.appbar.CollapsingToolbarLayout>

 </com.google.android.material.appbar.AppBarLayout>

 <androidx.viewpager.widget.ViewPager
 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

</androidx.coordinatorlayout.widget.CoordinatorLayout>

Listing 9: A simplified draft for the new collapsing layout with the most important components and properties.

The outermost container is a CoordinatorLayout24 which can handle the desired collapsing

header. The AppBarLayout25 is dependent on the outer CoordinatorLayout and has the Col-

lapsingToolbarLayout26 as child, which is of fixed size. By contentScrim the colour for the

collapsed header can be defined, here white is chosen. Furthermore, that colour is shown when

extending or reducing the size of the header by scrolling gestures. The layout_scrollFlags are

set to “scroll”, which is needed for any scrolling behaviour, to “exitUntilCollapsed” makes the

header be collapsed completely before scrolling any other thing vertically, and “snap” makes

the header never stuck between open and collapsed27. The Toolbar28 element is of the same

24 https://developer.android.com/reference/androidx/coordinatorlayout/widget/CoordinatorLayout [accessed on
17 November 2020]
25 https://developer.android.com/reference/com/google/android/material/appbar/AppBarLayout [accessed on 17
November 2020]
26 https://developer.android.com/reference/com/google/android/material/appbar/CollapsingToolbarLayout [ac-
cessed on 17 November 2020]
27 https://developer.android.com/reference/com/google/android/material/appbar/AppBarLayout.LayoutParams
[accessed on 17 November 2020]
28 https://developer.android.com/reference/android/widget/Toolbar [accessed on 18 November 2020]

52

size as the common toolbar within the app, namely 45 density pixels (dp). The layout_col-

lapseMode set to “pin” makes the view stuck in place on scroll until the header is collapsed

completely29. Therefore, it serves as the white background for the collapsed header.

The ViewPager is the part of the layout where the views will be scrolled. Therefore, to indicate

this to the AppBarLayout, its layout_behavior is set to the predefined string resource “ap-

pbar_scrolling_view_behavior”. As a result, the AppBarLayout knows when to scroll30. One

important detail to mention is that the child tab layouts need to use NestedScrollView with the

same layout_behavior instead of simple ScrollView as outermost layout to work correctly.

Not only the collapsed header and the full header with the detailed information is included

within the nested LinearLayout31, indicated in Listing 9 by their identifiers “ll_header” and

“ll_header_collapsed”, but also the TabLayout which is connected with the ViewPager as dis-

cussed above. In Figure 14 the most important components for the new layout are sketched.

Regarding the Java part for this implementation, we decided to introduce a new abstract class

for the handling of the collapsible header and the dynamic tab views due to redundancy and

maintenance issues as all container of tab views need this implementation, these are the event

page and the profile pages of leagues and clubs. This new class is called TabFragment and

implements all functionality discussed at the beginning of this section for the dynamic tab

views.

29 https://developer.android.com/reference/com/google/android/material/appbar/CollapsingToolbarLayout.Lay-
outParams [accessed on 19 November 2020]
30 https://developer.android.com/reference/com/google/android/material/appbar/AppBarLayout.ScrollingView-
Behavior [accessed on 19 November 2020]
31 https://developer.android.com/reference/android/widget/LinearLayout [accessed on 20 November 2020]

53

 Figure 14: A sketch for the layout with a collapsing header and tabbed views.

For this purpose, we include the setup of the AppBarLayout to the end of the setup of the tabbed

layout shown in Listing 4. Within this setup, an OnOffsetChangedListener32 is added to the

AppBarLayout. This callback is invoked when the header gets scrolled. As can be seen in Lis-

ting 10, there are three different states for the header, namely, “OPEN”, “IN_SCROLL”, and

“COLLAPSED”. The state gets toggled on each vertical offset change, whereby only on the

extrema the state is not “IN_SCROLL”. These three states are important for the design. If the

header is collapsed, the small layout is shown. That is only in case the smallest extremum is

reached. Otherwise, the large layout with detailed information is visible. In case the state is

“IN_SCROLL” the menu items get invisible to not interfere with the content of the header.

32 https://developer.android.com/reference/com/google/android/material/appbar/AppBarLayout.OnOffsetCh-
angedListener [accessed on 17 November 2020]

54

protected enum AppBarState {
 OPEN, IN_SCROLL, COLLAPSED
}

private void setupAppBarLayout() {
 appBarLayout.addOnOffsetChangedListener(new OnOffsetChangedListener() {
 @Override
 public void onOffsetChanged(AppBarLayout appBarLayout, int vertOffset) {
 toggleAppBarLayout(vertOffset, appBarLayout.getTotalScrollRange());
 }
 });
}

private void toggleAppBarLayout(int vertOffset, int totalScrollRange) {
 if (appBarState != getAppBarState(vertOffset, totalScrollRange)) {
 updateLayoutAndState();
 }
}

private AppBarState getAppBarState(int vertOffset, int totalScrollRange) {
 if (Math.abs(Math.abs(vertOffset) - totalScrollRange) == 0) {
 return AppBarState.COLLAPSED;
 }
 if (vertOffset == 0) {
 return AppBarState.OPEN;
 }
 return AppBarState.IN_SCROLL;
}

Listing 10: Needed functionality for a working collapsing header in pseudo code.

An example of all three states in action is shown in Figure 15. As can be seen, also the back-

ground picture is changed slightly on scroll. Here, in the profile page of a club, or also in those

of a league, the colour of the menu items is different in “OPEN” and “COLLAPSED”. This is

handled in the concrete implementations of the abstract class TabFragment.

Figure 15: The header states in the profile page of a club: "OPEN" (left), "IN_SCROLL" (middle), and "COLLAPSED"
(right).

55

In summary, the conducted comprehension refactoring aided in understanding the mechanics

of the container views and the handling of the header. Not only bugs could be found but also

redundancy could be removed by creating some abstract super classes. With the help of abstract

class factory some code and with it the responsibility for the dynamic tab views could be ex-

tracted. We found a general approach for dynamic headers and developed easily after doing the

refactoring.

Some implemented examples for the next type of refactoring are shown in the next section.

3.2.2 Preparatory Refactoring

As already mentioned in chapter 2.1.2, preparatory refactoring is used when new features are

added to an existing code base and the goal is to make it easier to add that feature. Kent Beck

(2012) sums up the intention for such an approach aptly on Twitter33, where he suggests that

refactoring can help to make any change more easily (Beck [KentBeck], 2012). The next few

examples include the most complex parts within the project before we introduced refactoring.

In the next chapters, the applied preparatory refactoring is shown, and the individual changes

are presented.

New League and Club Profile Page

One core aspect of the application is the profile pages of the leagues and clubs. In leagues the

user can see the news, the game list of the league, the standings, the clubs within the league,

and some general information about the league. The profile page of a team shows their news,

their list of games, the standings, their squad, sponsors, and information about the club itself.

Generally, the profile pages did work but there were a lot of code smells within the legacy

code. Not only redundant code but also hundreds of null pointers checks because of a not or-

dered creation of the different pages. Because of asynchronous calls to the backend, there were

also some race conditions. Hence, it was very difficult to find the correct place to fix the bug.

The developers did only look at the bugs registered by Firebase’s Crashlytics34 and added null

pointer checks to the corresponding lines in the code. The code quality degraded that much,

that even in code parts where it is not possible to have a null pointer for a specific variable a

check was added. However, this approach was only used to combat the symptoms and not to

combat the underlying problem. Henceforth, in the refactored code, null pointer checks are

33 https://twitter.com/home [accessed on 27 November 2020]
34 https://firebase.google.com/ [accessed on 30 November 2020]

56

only added in cases where it is necessary. In the next section, the situation before the refactoring

sessions is shortly explained.

Status Quo

Not only the league page but also the club page work nearly as expected, except for some

unwanted behaviour and bugs. However, as can be seen in Figure 16, the design is outdated.

Moreover, as already mentioned above, the header for the profile pages is outdated as well.

The requirements for the revision of the existing screens are explained in the next section.

Figure 16: The old-fashioned profile page of clubs and leagues.

Requirements

To begin with, during refactoring, not only the behaviour shall be preserved but afterwards also

the bugs and null pointer checks shall be removed where possible. The header will be reworked

completely. The background image is not required, the menu shall be adapted, and the header

should be collapsible as described above. A design is not suggested and shall be found auton-

omously. In case the club has a registered reporter, a green crown shall indicate that fact as can

be seen in the mock-up in Figure 17 on the left. Consequently, these clubs seem to be better

57

supported. Regarding the back button the Android design shall be kept and “zu fan.at” is not

needed. The tab “Videos” is not supported by the backend yet and can be ignored. However,

thanks to the revision of the dynamic tab view, the insertion of another tab view is straightfor-

ward. The white follow button shall be coloured complementarily in the case of a missing

subscription with the text “Folgen”. In the more menu, which is indicated by the three dots, a

new design shall be found for the menu points. All other design elements and information like

the rounded edges, the circle around the logo, or the place in the standings shall be implemented

as exact as possible.

For the leagues, the standings shall provide the possibility to show groups and let them select

individually by a dropdown. The selected value shall also include the logo of the league on the

left side. The design of the standings shall be completely redesigned according to the mock-

ups shown below. For the standings on the club profile page, the row of the club shall be col-

oured by “#D2ECDF”, which is a pale variant of the project green. The design for the news tab

is explained below, the other graphical requirements are explained in the next section. All other

tabs shall remain as they are for now.

Figure 17: The mock-ups proposing the new header of the profile page and the new design for the standings. On the right
side the expanded table for desktop views is shown, whereby the names shall be abbreviated in the mobile app.

Results

In Figure 18 the results are shown. In comparison to the presented mock-ups in Figure 17, the

design is nearly the same. During refactoring and developing, though, we decided to show the

followers instead of the rank in the club header. This information is also included within the

league profile page. For the collapsed header we decided to make the background white, show

the logo in the same grey bordered circle as in the open header, and show the full name of the

58

entity, namely the league or the club. For providing the user the possibility to subscribe to the

club or the team even if the header is collapsed, an outlined heart is added. As can be seen in

Figure 18 below in the middle, we increased the padding for single entries within the dropdown

as for broader fingers it is very difficult to click on the desired entry.

 Figure 18: The finished profile pages of leagues and clubs.

As can be easily seen, the layouts of these two pages seem to be very similar. The only differ-

ences between them are the data objects of which the pages are filled, namely league or club

objects, and the tab views. Nevertheless, they display very similar behaviour and design. There-

fore, it was decided to use Extract Superclass refactoring method to unify the similarities of

both profile pages together (Fowler, 2018). The new superclass for both fragments is called

EntityFragment. Even if the name is not perfect yet, the team members of the project accepted

the new name. After creating the new empty abstract superclass, which extends the above men-

tioned TabFragment, LeagueFragment and TeamFragment for the club extend the new super-

class. For extracting similarities, Pull Up Method, Pull Up Field and Extract Function were

used (Fowler, 2018).

In summary, the new EntityFragment prepared only 13 abstract methods that need to be im-

plemented by the subclasses, like getEntityLogoUrl or un-/followEntity. The changes in com-

plexity for entity related classes can be seen in the Appendix.

59

We combined the previously nearly ident but slightly different XML layout files for club and

league to a single fragment_entity.xml file. By this combination, we could eliminate a whole

file, and redundancy could be reduced enormously. Until that time, any single design change

for one profile page had to be done exactly and without errors in the other profile page layout,

also. This can be a source for an inconsistency, which is hard to find as already described above

(Hunt & Thomas, 2000).

New Game Page

One of the most important and complex screens is the event page. Here, the most dynamics

takes place. Not only web sockets are connected to inform about goals and time or event phases,

but also the tabs get displayed according to specific settings. For the user, this page is very

important as it is the core of the whole application – it informs the users about their favourite

clubs at real-time. Because of this, the requirements often changed in past and the code got

very complex and buggy. Therefore, the refactoring reduced its complexity, which can be seen

in the Appendix.

Status Quo

As mentioned above, it was previously not possible to collapse the header. Thus, much space

is wasted, and the behaviour is quite old-fashioned for modern applications. The header itself

is not consistent with the modern design of the whole application. Moreover, the different tabs

only show content in case a game has started, or it starts within the next few hours. As a result,

there are only placeholders shown that say that no content is available yet. The live licker and

the timeline screen need an update. Not only videos do not work but also the icons or the whole

view holders are not appealing as can be seen in Figure 19. The new design is explained in the

next section.

60

Figure 19: The current screens of the live ticker and the timeline screen for an event. The design should be adapted to a new
design.

Requirements

As already shown, the new design of the header is quite simple, without a background image

and can be collapsed on need as discussed for Figure 13. The tab views shall be added only in

case content is available, as also described in 3.2.1. For the live ticker view, the icons shall be

updated and the whole design should follow the design rules that are shown in Figure 20. The

icons are newly designed and shall be displayed larger, like the logo for the clubs. The minute

in which the action took place shall be centred and more apparent to the user. Goals shall be

highlighted in a green colour. This should work not only for simple goals but also for penalties

or freekicks. Furthermore, when clicking on real photos of soccer players, the photo should be

shown in full screen. In case a video post is sent to the frontend, it shall be shown and played

in full-screen mode. For the timeline screen the same logic regarding the colours should be

used as for the live ticker, that means that only goals should be highlighted, and the design

shall be adapted as indicated in the mock-up. The final design that was accepted can be seen in

the next section.

61

Figure 20: The new design rules that the live ticker and the timeline tab should follow.

Results

The refactoring took quite long but as can be seen in the Evaluation, it was worth doing it. Not

only the complexity was reduced, but also the consistency was improved by a lot. Historically,

a mix of different names has formed for different tab views. The container tab for handling the

dynamic tabs and the collapsible header was named GameFragment, the “Übersicht” tab was

named GameOverviewFragment, the “Liveticker” tab was named TimelineFragment, the

“Ereignisse” tab was named OverviewFragment and the “Aufstellung” tab was named

LineupGameFragment. To reach consistency, we refactored not only all the class and layout

files, but also the corresponding constants or variables accordingly. For this purpose, we used

the built-in functionality of Android Studio to refactor all the names safely as described in

2.1.6.

One important change was moving the responsibility of handling the web sockets to the right

place. Within the legacy code, the live ticker fragment was responsible for connecting to the

web sockets and handling the messages. Thus, in case the live ticker fragment is not loaded

before the game due to no content, the header could not go live on kick-off. Moreover, the live

ticker had to inform the overview fragment because of different changes within the view. All

this functionality was centred to the container fragment, that is the GameFragment, and by the

middleman GamePagerAdapter, which handles the different tab fragments, the messages for

new posts or the kick-off got forwarded to the LivetickerFragment and the OverviewFragment.

So, it is much clearer now and bugs are easier to find.

62

One example for very complex code is shown in Listing 11. Within this too long method it is

difficult to find out, which club should be automatically selected in which situation.

private String getDefaultTeamChoice() {
 boolean followsHomeTeam =
 TeamSubscriptions.getInstance().containsKey(event.getHomeTeamId());
 boolean followsAwayTeam =
 TeamSubscriptions.getInstance().containsKey(event.getAwayTeamId());
 boolean followsBothTeams = followsHomeTeam && followsAwayTeam;
 boolean followsNone = !followsHomeTeam && !followsAwayTeam;
 boolean followsBothOrNone = followsBothTeams || followsNone;
 boolean followsSingleTeam = !followsBothOrNone;
 boolean isHomeTeamreporter =
 TeamSubscriptions.getInstance().isTeamReporterOf(
 event.getHomeTeamId());
 boolean isAwayTeamreporter =
 TeamSubscriptions.getInstance().isTeamReporterOf(
 event.getAwayTeamId());
 boolean isTeamReporterOfSingleTeam =
 (isHomeTeamreporter && !isAwayTeamreporter) ||
 (!isHomeTeamreporter && isAwayTeamreporter);
 boolean isTeamReporterForBothTeams = isHomeTeamreporter && isAwayTeamreporter;
 Event.EventFanModStatus homeStatus = event.getFanModStatus(
 event.getHomeFanModData());
 Event.EventFanModStatus awayStatus = event.getFanModStatus(
 event.getAwayFanModData());
 boolean isHomeReporter = homeStatus ==
 Event.EventFanModStatus.STATUS_CONFIRMED ||
 homeStatus == Event.EventFanModStatus.STATUS_SELECTED ||
 homeStatus == Event.EventFanModStatus.STATUS_REGISTERED ||
 event.isHomeTeamReporter();
 boolean isAwayReporter = awayStatus ==
 Event.EventFanModStatus.STATUS_CONFIRMED ||
 awayStatus == Event.EventFanModStatus.STATUS_SELECTED ||
 awayStatus == Event.EventFanModStatus.STATUS_REGISTERED ||
 event.isAwayTeamReporter();
 boolean hasHomeReporter =
 (event.getHomeFanModData().getFanModId() != null &&
 event.getHomeFanModData().getFanModId().length() > 0) ||
 event.getHomeModeratorNames().size() > 0;
 boolean hasAwayReporter =
 (event.getAwayFanModData().getFanModId() != null &&
 event.getAwayFanModData().getFanModId().length() > 0) ||
 event.getAwayModeratorNames().size() > 0;
 boolean bothTeamsHaveReporters = hasHomeReporter && hasAwayReporter;
 boolean noTeamHasReporters = !hasHomeReporter && !hasAwayReporter;

 // past & running
 if (event.isPast() || event.isRunning()) {
 if (followsSingleTeam || isTeamReporterOfSingleTeam) {
 if (isTeamReporterOfSingleTeam) {
 return isHomeTeamreporter ? event.getHomeTeamId() :
 event.getAwayTeamId();
 } else {
 return followsHomeTeam ? event.getHomeTeamId() :
 event.getAwayTeamId();
 }
 } else if (isHomeReporter || isAwayReporter) {
 return isHomeReporter ? event.getHomeTeamId() : event.getAwayTeamId();
 } else if (followsBothOrNone || isTeamReporterForBothTeams) {
 if (bothTeamsHaveReporters || noTeamHasReporters) {
 return event.getHomeTeamId();
 } else {
 return hasHomeReporter ? event.getHomeTeamId() :

63

 event.getAwayTeamId();
 }
 }
 }
 // future
 else {
 if (followsSingleTeam || isTeamReporterOfSingleTeam) {
 if (isTeamReporterOfSingleTeam) {
 return isHomeTeamreporter ? event.getHomeTeamId() :
 event.getAwayTeamId();
 } else {
 return followsHomeTeam ? event.getHomeTeamId() :
 event.getAwayTeamId();
 }
 } else if (isHomeReporter || isAwayReporter) {
 return isHomeReporter ? event.getHomeTeamId() :
 event.getAwayTeamId();
 } else if (followsBothTeams || isTeamReporterForBothTeams) {
 return null;
 } else if (followsNone) {
 return event.getHomeTeamId();
 }
 }

 return null;
}

Listing 11: An example for a very complex method in which it is very hard to understand its outcome. © by SFA Sport GmbH

To understand the outcome, comprehension refactoring is the right way. The outcome by using

well-known refactoring practices like Extract Method or Inline Variable is shown in Listing 12

(Fowler, 2018). When trying to understand the different outcomes, someone only needs to read

the functions and understands what is going on. Of course, the user has to navigate to sub-

methods in case to clarify the purpose for a specific return of a function, but by well-named

methods, this is not necessary in most cases. Moreover, as can be seen above in Listing 11, the

outcome depends always on the event. Therefore, Move Method to the class for representing

an event was used to increase the modularity (Fowler, 2018). It is to say that the method is still

a little bit too long, but as Robert C. Martin (2008) suggests, each block within this method is

only one line long.

public String getDefaultTeamChoice() {
 if (isTeamReporterOfSingleTeam()) {
 return isHomeTeamReporter() ? getHomeTeamId() : getAwayTeamId();
 }
 if (followsSingleTeam()) {
 return followsHomeTeam() ? getHomeTeamId() : getAwayTeamId();
 }
 if (isHomeReporter()) {
 return getHomeTeamId();
 }
 if (isAwayReporter()) {
 return getAwayTeamId();
 }
 if (isPast() || isRunning()) {
 if (bothTeamsHaveReporters() || noTeamHasReporters() ||
 hasHomeReporter()) {
 return getHomeTeamId();

64

 }
 return getAwayTeamId();
 }
 else if (followsBothTeams() || isTeamReporterForBothTeams()) {
 return null;
 }
 return getHomeTeamId();
}

Listing 12: The refactored choice of a club depending on different settings. It is by far easier to understand which team club
is chosen in which situation.

One problem that we needed to understand is when which minute or date is set, and when

which score is shown. Listing 13 summarizes the old solution. As can be seen, the settings are

dependent on the different phases of the event. Not only in the well-named function setHeader-

ByPhase but also within setHeaderScoreTime it can be seen that the score is dependent on the

set phase. The method call isRunning just summarizes many phases and thus, it is also depend-

ent on the phases.

private void setHeaderScoreTime(Event event) {
 int homeScore = event.getHomeScore();
 int awayScore = event.getAwayScore();

 if (homeScore == -1 || awayScore == -1) {
 if (event.isRunning()) {
 scores.setVisibility(View.INVISIBLE);
 } else {
 scores.setText("- : -");
 }
 } else if (event.getPhase() == Phase.HT_RUNNING) {
 if (event.getEventScores() != null &&
 event.getEventScores().getFirstHalfEnd() != null &&
 event.getEventScores().getFirstHalfEnd().HOME != -1 &&
 event.getEventScores().getFirstHalfEnd().AWAY != -1) {
 String scoreTxt = event.getEventScores().getFirstHalfEnd().HOME +
 " : " + event.getEventScores().getFirstHalfEnd().AWAY;
 scores.setText(scoreTxt);
 } else {
 String scoreTxt = homeScore + " : " + awayScore;
 scores.setText(scoreTxt);
 }
 } else {
 String scoreTxt = homeScore + " : " + awayScore;
 scores.setText(scoreTxt);
 }

 time.setTextSize(TypedValue.COMPLEX_UNIT_SP, 12);
 setHeaderByPhase(event.getPhase());
}

private void setHeaderByPhase(Phase phase) {
 switch (phase) {
 case UPCOMING:
 case PREGAME:
 case ENDED:
 setStartDate();
 break;
 case ABORTED:
 setStartDate();
 scores.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
 scores.setText(getString(R.string.game_aborted));

65

 break;
 case CANCELLED:
 setStartDate();
 scores.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
 scores.setText(getString(R.string.game_cancelled));
 break;
 case POSTGAME:
 time.setText(getString(R.string.postgame));
 break;
 case FIRST_BREAK:
 case HT_RUNNING:
 time.setText(getString(R.string.first_break));
 break;
 case SECOND_BREAK:
 time.setText(getString(R.string.second_break));
 break;
 case THIRD_BREAK:
 time.setText(getString(R.string.third_break));
 break;
 case PENALTY:
 time.setText(getString(R.string.penalty));
 break;
 }
}

Listing 13: This method sets the score and time within the header but is too complicated to understand its functionality.
Moreover, if phases change or need to be added, this is very time-consuming. © by SFA Sport GmbH

The goal is now to understand for which phase which score, and time is set. In a broader sense,

the conditional setting of the score depending on the phase is like the other function shown in

the above listing a switch-case of the current phase. Therefore, we have two nearly identical

switch-cases and should handle it correctly as discussed above.

As suggested by Gamma et al. (1994), we create an abstract class factory for each phase. The

implementations of the new abstract class GamePhase need to implement their setTimeText

and setScoreText accordingly. With this introduction of an abstract class factory, it is by far

easier to understand when which one’s score, and time is set, and it is easier to add or adapt a

phase.

private void setHeaderScoreTime() {
 GamePhase gamePhase = makeGamePhase(event.getPhase(), null);
 gamePhase.setScoreText();
 gamePhase.setTimeText();
}

@Override
public GamePhase makeGamePhase(Phase phase, String minute) {
 switch (phase) {
 case UPCOMING:
 case PREGAME_START:
 case PREGAME:
 case ENDED:
 return new GamePhaseNotCurrent(...);
 case ABORTED:
 return new GamePhaseAborted(...);
 case CANCELLED:
 return new GamePhaseCancelled(...);
 case FIRST_BREAK:

66

 case HT_RUNNING:
 return new GamePhaseFirstBreak(...);
 case SECOND_BREAK:
 return new GamePhaseSecondBreak(...);
 case THIRD_BREAK:
 return new GamePhaseThirdBreak(...);
 case PENALTY:
 return new GamePhasePenalty(...);
 case POSTGAME:
 return new GamePhasePostGame(...);
 case RUNNING:
 case FIRST_HALF:
 case SECOND_HALF:
 case FIRST_OVERTIME:
 case SECOND_OVERTIME:
 return new GamePhaseRunning(...);
 }
 return new GamePhaseNotCurrent(...);
}

interface GamePhaseFactory {
 GamePhase makeGamePhase(Phase phase, String minute);
}

abstract class GamePhase {
 ...

 public abstract void setTimeText();
 public abstract void setScoreText();
 ...
}

Listing 14: According to the phase a new object is created which implements its setting of time and score accordingly.

Finally, the new design of the header, the live ticker and the timeline fragment are shown in

Figure 21. By the new collapsible header and the new design decisions, the content can be

shown much clearer to the user and is much more user-friendly than before. Moreover, we

added new functionality like the possibility of showing videos or viewing the photos of players

in the full screen by doing preparatory refactoring beforehand.

Another important revision is that view of the list of games shown in the next section.

67

Figure 21: The new design of the fragment showing an event. Not only the design is aligned to the new standard of the appli-
cation, but also the data is displayed by far clearer and more user-friendly.

New Games Page

The application does not support only leagues and clubs where men play but also supports

youth clubs and clubs where women play. Therefore, it is very important to get the attention of

the user for these games. Thus, the idea is to add another screen to the games view, namely a

separate list for all events that can be filtered accordingly.

Status Quo

Currently, only games of subscribed leagues and teams are shown within the games tab as

shown in Figure 22. As a result, if a user wants to see all the games, which are played on a

specific date or even today, it is not possible yet. The only solution is to go through all the

leagues or clubs. This is unfeasible. Therefore, a possible way to provide this is presented in

the next section.

68

Figure 22: In the games tab only events of the subscribed clubs and leagues are shown.

Requirements

The games view shall be changed to a tabbed view, whereby the existing view shall be titled

“Meine Spiele”. A second tab shall be added with the title “Alle Spiele”. Within this new Frag-

mentTab a horizontally scrollable date picker shall be implemented which is initially set to

“Heute” which means that only events get displayed that are played on that specific day. To

the right six more days shall be displayed, to the left only three past dates shall be supported.

By clicking on a new date, the filter is set accordingly, the games are refreshed, and the hori-

zontal date picker is updated. By clicking on the filter symbol visible in Figure 23, the user has

the possibility to filter for international leagues or for leagues of the Austrian states. Moreover,

it shall be possible to filter for men, women, or youth leagues. Additionally, the filter should

include a selection of Austrian states. Per default, all leagues are displayed. If a filter is set, the

filter symbol is changed to that visible in the screen below. Within the filter screen, the users

should be able to search for clubs and leagues to give them the possibility subscribing to the

entities.

69

Figure 23: In the new tab that shows all games, the user can filter the results.

Results

If comparing Figure 24 with Figure 23, it can be seen that we implemented the design in great

detail. The most difficult part was implementing the horizontal date picker. As there is not

available any library that supports the needed requirements, we implemented it completely

new. A horizontal scroll view without scrollbar holds items which show their given date and

implement a click listener for opening the filter mask. The horizontal scroll view is covered by

a linear layout which holds three equally weighted views. The inner view is transparent, the

outer ones consist of gradient backgrounds that start on the inner side with transparent colour

and end on the outer side with white.

The functionality for searching was already implemented but needed a great adoption as it was

very complex. For supporting the new filter “all”, we refactored the existing code base first.

Furthermore, as the views exist for adding clubs and leagues, the view holder needed an update

for setting the filter instead of clicking through the navigation for clubs and leagues.

To summarize, by smart refactoring the new functionality could be added quite easily while

improving the code base for later adoptions.

70

Figure 24: The users have now the possibility to filter games. In the example shown an filter was already set.

New News

The application is not only presenting events or profile pages of clubs and leagues but also

supports news. This feature is very important for the platform as the user can be informed of

new news by push notifications that lead on click to the application. Therefore, it is very im-

portant to make it possible to also show news of other teams and leagues and also of other

reporters like those of famous newspapers or other platforms.

Status Quo

Currently, the news overview consists only of news of subscribed clubs and leagues. Therefore,

users only see content here in case they are subscribed to clubs or leagues. This approach is not

very user-friendly as they should also see content in the beginning, to get informed about clubs

and leagues and to see the possibilities the application provides. It is the same problem as al-

ready described for the games in the previous section. The user has no possibility to see all

news of all clubs and leagues but would have to go through all entities singularly. Moreover,

the application does not support other types of news and does not show much meta information.

Additionally, it does not provide the possibility to show videos.

71

Figure 25: The news view needs an update to fit to the new design. The pictures do not even have position indicators as com-
monly used nowadays.

Requirements

The new news is a feature that is very important for the success of the application. Not only

providing new meta information like a subtitle or the shortened content but also photo indica-

tors, tags to league or clubs or the possibility to show videos are requirements to building into

the application. The design should be adapted as exactly as possible as presented in Figure 26.

Besides these general requirements, new types of news shall be provided. The backend is able

to send news of reporters of newspapers or other platforms. This means, that it is possible to

receive news that is not created by reporters of leagues or clubs but is written by other reporters

that are called internally “editorials”. Moreover, the application itself can send news. These

new variants of news should be shown in new tabs within the news view. In the middle tab

news of subscribed leagues or clubs shall be shown. Additionally, there shall be another tab for

showing all available news, and a third tab for showing editorial news and news created by the

platform itself. Regarding the photos it should be possible to swipe between the photos not

only in the full screen but also outside in the overview screen. Another feature is that there are

social media embeddings like a posting from other platforms directly within the news article

view.

72

Figure 26: These mock-ups show the new views for any news. Not only the overview is changed but also the opened news
article should be adapted accordingly and support new features.

Results

As shown in Figure 27, the design is implemented very similarly according to the mock-ups.

For receiving new news, we needed to update some API routes, a PagerAdapter for the news

needed to be created which holds the three FragmentTabs. The loading and updating of the

news are implemented in an abstract superclass.

For the picture position indicators, an open-source library was used35. This library makes it

possible to pass by the colours, the size of the dots and the amount at which the dots become

smaller. In our case, this was set to five. As a result, five or fewer dots are of the same size. In

case there are more pictures, there are differences within the sizes as can be seen below.

For showing a video a simple WebView36 was used to load the given Uniform Resource

Locator (URL)37. A problem occurred when more news articles loaded videos. In this case,

the user could play more than one video at a time and it did not stop correctly. Therefore, a

35 https://github.com/hrskrs/InstaDotView [accessed on 25 November 2020]
36 https://developer.android.com/reference/android/webkit/WebView [accessed on 25 November 2020]
37 https://tools.ietf.org/html/rfc1738 [accessed on 25 November 2020]

73

WebChromeClient38 was extended to override the method onHideCustomView. As a result,

the video stops and does not collide with other videos anymore.

We also implemented the feature regarding showing external content like a posting from

Twitter39 or Facebook40. To show the code for displaying external content correctly within

the application we used the settings shown in Listing 15.

webView.getSettings().setJavaScriptEnabled(true);
webView.getSettings().setRenderPriority(WebSettings.RenderPriority.HIGH);
webView.getSettings().setBuiltInZoomControls(false);
webView.getSettings().setLoadWithOverviewMode(true);
webView.getSettings().setLoadsImagesAutomatically(true);
webView.loadDataWithBaseURL(null, data, "text/html; charset=utf-8","utf-8", null);

 Listing 15: For displaying external content correctly within the news article, the settings needed to be configured correctly
and the data needed to be loaded with setting the encoding correctly.

For leading users to linked clubs or leagues the tags help. People are used to click on named

entities to view more about that topic, and as there is some named entity shown in the tag, it

should link to the corresponding endpoint (W3C, 2020).

All in all, the new news views are very important for gaining interest to the platform and ap-

plication. As there is very much content available, the new news helps making the app more

attractive to the user as displayed in Figure 27.

Figure 27: The new news views fit to the new design very well and offer much more features.

38 https://developer.android.com/reference/android/webkit/WebChromeClient [accessed on 25 November 2020]
39 https://about.twitter.com/ [accessed on 27 November 2020]
40 https://www.facebook.com/pg/facebook/about/ [accessed on 27 November 2020]

74

3.3 Removing unused Code and Resources in Android Studio

According to Romano, Vendome, Scanniello, and Poshyvanyk (2020) is the purpose of remov-

ing dead code to enhance software quality, as dead code makes the code harder to modify and

to understand. They say further, that performing issues are less relevant, though. However,

modern compilers remove this bad smell during the optimization phase for code compaction to

reduce the size of code to compile as its removal does not influence the execution behaviour

(Debray, Evans, Muth, & De Sutter, 2000). Nevertheless, the source code stays as it is without

removing these pieces of dead code.

For resource identifiers, Android Studio follows a specific methodology. The Android Asset

Packaging Toolt (AAPT) is used to compile and package the existing identifiers, and the out-

come of this process is optimized for the usage in Android (Google LLC, 2020). The following

explanation and usage description of assigning an identifier to a layout resource in Android is

extracted from the documentation by Google LLC (2019). The android:id41 attribute needs to

be defined by using the syntax “+id/< name>” where “<name>” can be an arbitrary name,

whereby it should follow the defined naming conventions for resource identifiers explained in

3.1 for this application. The AAPT tool then creates an integer corresponding to this alias. In

case this identifier exists already, it will be the same integer as the existing one as the docu-

mentation describes (Google LLC, 2019).

3.3.1 Applying Removal of unused Code and Resources

We cleaned up the source files in five stages. Firstly, the source code within the “src” folder

was simply reformatted by the command “Reformat Code”. By this, the code gets reformatted

in a way that it looks clean, which means that unnecessary spaces or blank lines get removed

without changing the behaviour. Then, in the second stage, we optimize the imports which

means that not only unused imports get removed but also that they are grouped logically and

sorted automatically. To get rid of this bad smell during coding, the best way is to tick the

setting “Optimize imports on thy fly (for the current project)” which can be seen in Figure 28.

41 https://developer.android.com/guide/topics/resources/layout-resource [accessed on 8 December 2020]

75

Figure 28: To get rid of unused imports a setting exists which tells Android Studio to optimize imports automatically while
coding.

We used stage three to rearrange the code. That means, that the source code within the Java

files or XML files follows the rules defined in the code style settings for the project as described

in 3.1.3. Moreover, the entries get rearranged as defined within the settings. The attribute of

type “xmlns:android” namespace will always be arranged before any other “xmlns” attribute

for the configuration shown in Figure 29. This arrangement helps comparing files or individual

views faster.

Figure 29: The configuration for the arrangement of XML attributes.

76

In the next stage, stage four, unused resources got removed. This does not include unused

methods or variables but xml files or drawable files. By right-clicking, any referenceable item,

namely files or identifiers within XML files, and selecting the option “Find Usages”, the usages

of it are displayed as shown in Figure 30 for a method and in Figure 31 for an XML file.

Figure 30: The outcome of finding the usages of the
method "open".

Figure 31: This file is only referenced in one class.

Thus, in stage four unused files got removed but unused variables or methods do not get re-

moved.

In the fifth stage, the last one, we used the same command as in the previous stage but indlucded

unused resource identifiers also. By this, identifiers that are not referenced get removed also as

they are not needed and therefore, these attributes are dead code and hence bad smells.

The first three stages can be executed by right-clicking the “src” folder and selecting “Reformat

Code”. Within the popped-up window which is shown in Figure 32, the option “Include sub-

directories” is always ticked and all places and file masks are scoped. In the first stage, no other

option is selected. In the second stage, “Optimize imports” is ticked. In stage three, “Rearrange

entries” gets ticked. For stages four and five, the “src” folder gets right-clicked again and in

the “Refactor” selections “Remove Unused Resources” is clicked. The option for deleting iden-

tifier declarations gets only ticked for the fifth stage as shown in Figure 33.

77

Figure 32: The options for rearranging code are ticked
singularly for stages one to three.

Figure 33: Unused identifiers can also be removed by tick-
ing the option within the command for removing unused

resources.

3.3.2 Results

A problem occurred after applying the removal of unused resources including unused “@id”

declarations. Within the project, the developers of the legacy code used the method getIdenti-

fier of the class Resources42, which returns the corresponding identifier. As the used aliases are

never referenced directly, the identifier attributes of those views were removed automatically.

We detected this problem only during runtime, as the method returned “0” and thus could not

find a resource. This caused the application to crash. Therefore, we exchanged all dynamically

created identifiers to directly declared integer values as presented in Listing 16 and Listing 17.

for (int i = 0; i < questionBullets.length; i++) {
 questionBullets[i] = fragmentView.findViewById(
 getResources().getIdentifier("question_circle_" + (i + 1),
 "id", getContext().getPackageName()));
 ...
}

Listing 16: Getting a resource identifier by string leads to crashes in case the identifier does not exist. In that case the asso-
ciating attributes were removed automatically as its created symbol was not referenced directly. © by SFA Sport GmbH

The advantage of using the IDs directly is not only the usage recognition but also that it is faster

than searching for the corresponding identifier by name during runtime (Google LLC, 2020).

int[] questionCircleIds = {R.id.question_circle_1, R.id.question_circle_2,
 R.id.question_circle_3, R.id.question_circle_4, R.id.question_circle_5,
 R.id.question_circle_6, R.id.question_circle_7, R.id.question_circle_8,
 R.id.question_circle_9, R.id.question_circle_10};
for (int i = 0; i < questionCircleIds.length; i++) {
 questionBullets[i] = fragmentView.findViewById(questionCircleIds[i]);
 ...
}

Listing 17: By declaring the integers directly via symbols their usage is recognized and the corresponding layout attributes
are not removed automatically.

42 https://developer.android.com/reference/android/content/res/Resources [accessed on 8 December 2020]

78

For the defined stages, the outcome of the clean-up process is summarized within the next

section. For counting the lines and files within the project a plugin for Android Studio called

“Statistic” is used43. To repeat the stages, in stage one the code was reformatted. In the second

stage, we optimized the imports. We conducted the rearrangement of the code in stage three,

and at stage four and five unused resources were automatically removed, whereby we removed

the identifiers in the last stage. Stage 0 represents the data before any cleaning up. We used the

code from the actual productive daily life of the developers. The stages are described shortly

in Table 2.

In Table 3, the effects of the different stages on the changes in the version control can be found.

For the version control, GitLab was used. Whenever a file was affected by the stages, the count

in “Affected Files” is incremented. In the beginning, 938 files are in total within the “src”

folder. After cleaning up there are 850 files left. If a line was added or removed, this is count

in “Insertions” and “Deletions”. The absolute number of changes in lines are presented in

“Changes”. In the beginning and after each stage an Android package (APK) is generated to

see its changes. As this archive file contains all the content for installation of the application

on Android-powered devices, it is interesting if these cleaning up stages influence their size

(Google LLC, 2019). Both files contain all necessary files and resources, like the Android

manifest XML file or the compiled source files, but the release APK is beyond that signed and

optimized (Google LLC, 2020). The signature is created with the platform-specific certificate.

On Table 4 and Table 5, the changes in the different stages for Java and XML files are pre-

sented. There are the total count of Java classes and XML files, the total file sizes, and the

number of lines in total, of source code and blank lines.

If we look at Figure 34, which displays the number of lines and the APK file sizes, we see that

the trend of the APK size is almost the same as that of XML files. This means that the APK

size correlates with the number of lines in the XML files, but not with that of the source code

files. Therefore, we can assume that the APK size only depends on the resource files. But that

means that there are also unused resource files in the APK. The fact that the changes in the

source code do not result in any changes in the APK sizes can be explained by the compilation

process and the optimization. The first stage only affects changes in the version control but

does not change the number of lines. So, here is only formatting. Stages two and three only

cause changes in the Java source code files and the fourth and fifth stages are only relevant for

43 https://plugins.jetbrains.com/plugin/4509-statistic [accessed on 25 November 2020]

79

XML files, with no insertions but only deletions. In total, around 12.82% of XML lines and

0.86% of Java source code lines could be removed. An interesting fact is that the import opti-

mization of stage two does only remove source code lines in Java but does not remove blank

lines. On the other side, the rearrangement of code does mainly remove blank lines in Java

source code files. As a result, the maximum amount of both differs in stages. So, both stages

are important for a cleaner code. In stage four the count of XML files is reduced a lot including

deletions of blank and source code lines. In stage five only identifier get deleted which results

in no deletions of files or blank lines anymore. In brief, the first three stages result in cleaner

code, the last two stages reduce the size of the APK and remove unnecessary resources.

Stage Description
0 Status Quo
1 Reformat Code
2 Optimize Imports
3 Rearrange Code
4 Remove unused Resources
5 Remove unused Identifiers

Table 2: The description of the different stages in short.

 Changes in Version Control APK
Stage Affected Files Insertions Deletions Changes Debug (kiB) Release (kiB)

0 0 0 0 0 11,879.249 8,594.091
1 115 667 654 13 11,879.251 8,594.083
2 143 286 456 -170 11,879.154 8,593.931
3 379 6127 6600 -473 11,879.111 8,594.047
4 93 0 3646 -3646 11,440.339 8,235.610
5 64 0 169 -169 11,432.818 8,229.558

Table 3: The different stages have influenced the changes in the version control differently. The created APKs have different
sizes in each stage.

 Java
Stage Count Size (kB) Total Lines Source Code Lines Blank Lines

0 410 3,047 76,953 59,970 13,579
1 410 3,047 76,949 59,967 13,578
2 410 3,040 76,764 59,784 13,577
3 410 3,039 76,291 59,762 13,104
4 410 3,039 76,291 59,762 13,104
5 410 3,039 76,291 59,762 13,104

Table 4: The changes of the different stages for Java files.

80

 XML
Stage Count Size (kB) Total Lines Source Code Lines Blank Lines

0 329 1,210 29,509 25,128 4,381
1 329 1,210 29,509 25,128 4,381
2 329 1,210 29,541 25,158 4,383
3 329 1,210 29,541 25,158 4,383
4 272 1,057 25,895 22,029 3,866
5 272 1,049 25,726 21,860 3,866

Table 5: The changes of the different stages for XML files.

Figure 34: The five stages have different outcomes of the changes in line and APK file size.

3.4 Exchanging Raster Graphics with Vector Graphics in Android Studio

Images are important and needed resources for nearly any application. It is important to differ

between file formats and choose the correct one in various situations. Nowadays, there exist

two types of formats for graphics, namely raster graphics and vectors graphics (Sakshica &

Gupta, 2015). According to A. Almutairi (2018), the most used file format for raster graphics

is Portable Network Graphics (PNG). It has various features that other common file formats do

not have. Almutairi says further, that regarding vector graphics, Scalable Vector Graphics

(SVG) are the most used types, and that this open standard image format uses XML as basis.

Due to resolution and resizing issues the better format for icons is SVG (Google LLC, 2020).

As stated, different screen densities can be supported without reducing the quality of the im-

ages. Moreover, updating one XML file in Android Studio is easier than maintaining different

81

raster graphics for various screen resolutions. While these vector images are created by the

composition of mathematical forms, in cases where complicated compositions and great detail

is needed, raster or non-line digital images are used (Almutairi, 2018).

3.4.1 Status Quo

The local digital image resources which are used in Android Studio projects are commonly

stored within the “drawable” folder. Before the cleaning up process explained in the previous

section, 172 PNG files and 55 XML files were stored within the folder. During the five stages

explained above, 21 PNG files and seven XML files were deleted due to not being used. The

five JPEG files were not affected. These results are summarized in Table 6.

Graphics Type File Ending Before Clean-up After Clean-up Changes

Raster
.jpg 5 5 0
.png 172 151 -21

Vector .xml 55 48 -7

Table 6: The five stages for cleaning up the project sources folders had effects on the amount of used drawable files.

These resource files are completely inconsistent not only in the design but also in the naming

as can be seen in Figure 35. All in all, the icons are completely differently designed in colour,

structure, and size. Some icons were designed by the developers themselves like the blue left

arrow even if a similar icon exists within the suggested and above-mentioned open Material

Design Icons. Some of the icons are outdated and got an update by the designers of the platform

to introduce consistency and align the icons to the corporate identity. Regarding the naming, it

should be followed the defined naming convention explained in 3.1.2. The exchange of the

resources is explained in the next section.

Figure 35: An excerpt of some PNG files within the drawable folder of the project. The design of the icons, like the size, the
colours, the thickness of lines, are completely inconsistent and not in line with the corporate identity of the platform. The

naming is inconsistent, also. © by SFA Sport GmbH

82

3.4.2 Applying Exchange of Graphics

We explored the whole drawable folder and for each file we chose what should happen with it.

Accordingly, we made a separation between the different types explained in 3.1.2. In case an

icon was redesigned by the designers of the project, we exchanged it by its SVG representation.

To mark those icons which are not visible to the user, we need to explore their usages in code.

For this purpose, context understanding and knowing the features of the application is a pre-

condition. For icons where similar material representations exist, we downloaded the corre-

sponding icon and converted it to XML. For icons that are in use but where no new icon are

designed yet or where it does not exist a double in Google’s Material Design Icons, we used

“td_” as prefix to indicate that to the designers.

The process of converting an SVG to an XML representation is explained in Google’s docu-

mentation for Android app developers in the section titled “Add multi-density vector graphics”

(Google LLC, 2020). By the help of Vector Asset Studio, these conversions are executed. The

Vector Asset Studio is started by right-clicking the drawable folder and selecting “New” and

further “Vector Asset”. The local SVG file is selected, the corresponding prefix and well-de-

fined naming convection conform name is used and the conversion can be initiated finally. A

precondition for using vector drawables is a minimum Application Programming Interface

(API) level of 21. In the project, the minimum is set to 22 at time of this master’s thesis.

3.4.3 Results

The process took a lot of time as each image resource needed to be explored and exchanged if

necessary. The last commit for the first big exchanging process of graphics was made on 13

May 2020. At that point in time, we exchanged about 80 resource files by new SVG based

representations as can be seen in Table 7 and Table 8. The total amount varies among others

because of other changes to the source code during that period like introducing new icons or

shapes. The remaining 70 PNG files consist of one new raster image representation of a field

which is used as a background in the line-up view of a team. Previously, this was a JPEG file.

18 of them are not visible for the user at that point in time and do not need to be updated yet,

and the remaining 51 files need a new design or vector representations in future. These findings

are summarized in Table 9.

83

Graphics Type File Ending Before Exchange After Exchange Changes

Raster
.jpg 5 4 -1
.png 151 70 -81

Vector .xml 48 134 86

Table 7: The exchanging of graphics

Prefix After Exchange
_ 23

ic_ 79
im_ 5
mt_ 7
sh_ 43
td_ 51

Prefix PNG-Files
_ 18

im_ 1
td_ 51

Total: 70

Table 8: The drawable resource were grouped by their re-
source type with the usage of defined prefixes.

Table 9: The remaining PNG files consist of a complex
field image, 18 resources that are not visible for the user

and 51 resources that need to be exchanged in future.

An example of exchanging a PNG file to a newly designed SVG file is shown in Figure 36 and

Figure 37. As can be seen, the PNG representation of the navigation bar icon for news is pix-

eled, which means that is not scalable without loss of quality (Sakshica & Gupta, 2015).

Figure 36: The news icon in the navbar was previously stored in raster graphics format and is not optimized for each dis-
play resolution. Moreover, the design is not as clean as wanted. © by SFA Sport GmbH

In contrast, the news icon below seems to be very sharp. This is because of its data format of

vector graphics. These files are scalable without loss of quality (Sakshica & Gupta, 2015).

84

Figure 37: The new news icon is optimized for each screen resolution, the design is simple and fits to the corporate identity.
To the left, an excerpt of the created XML code is shown.

At the end of the implementation of this master’s thesis on 22 November 2020, we took another

status for the drawable resources as shown in Table 10. Since we took the first status on 13

May 2020, 193 days have passed in which developers changed the resources possibly. During

that time the situation has improved. 14 files in total were eliminated that should have been

changed in future, which can be recognized by the changes of files with the prefixes “_” and

“td_”. 32 new vector graphics were added to the repository which consists of 26 self-created

icons (“ic_”), and six new material icons (“mt_”). The changes in raster graphics images

(“im_”) and shapes (“sh_”) are not that interesting for this thesis.

Prefix 13-May-20 22-Nov-20 Changes
_ 23 21 -2

ic_ 79 105 26
im_ 5 6 1
mt_ 7 13 6
sh_ 43 56 13
td_ 51 39 -12

Table 10: There are less files that need to be exchanged in future; these are files with prefixes “_” or “td_”.

In Table 11 the two status are compared graphically. The outermost prefixes are decreased,

which is positive for the project as minor work needs to be done for exchanging graphics. The

number of files with prefixes “ic_” and “mt_” also increased which is positive for the introduc-

tion of vector graphics within the project. Moreover, their increase and the increase of the

85

number of files with “im_” and “sh_” resources report of the increased features of the project

which is also positive.

Table 11: The comparison between the two snapshots taken in April and November for each drawable file prefix.

All in all, exchanging raster graphics by vector graphics in Android Studio is very easy by the

usage of Android’s Vector Asset Studio. By the help of prefixes, a grouping can be made to

make for example clear which resources need to be refactored, or which resources are limited

in resolution.

23

79

5 7

43
51

21

105

6
13

56

39

0

20

40

60

80

100

120

_ ic_ im_ mt_ sh_ td_

Changes in Amount of Drawable Resource Files
in 193 Days of Developing

13-May-20 22-Nov-20

86

4 Evaluation

According to the IEEE standard (1990) complexity in the context of software engineering is

defined as “the degree to which a system or component has a design or implementation that is

difficult to understand and verify” (IEEE Standards Coordinating Committee, 1990, p. 18).

Thus, the understandability of code is directly connected to its complexity (Kaur, Minhas,

Mehan, & Kakkar, 2009). This means that code which is easy to understand is less complex.

One of the goals of this master’s thesis is to refactor code to and write new clean code. To

evaluate the improvement, methods need to be found, described, and applied.

Several studies were conducted on the quantitative improvement of code complexity by code

refactoring similar to the examples described in the papers by Kataoka, Imai, Andou, and Fu-

kaya (2002), Leitch, and Stroulia (2003), Moser, Sillitti, Abrahamsson, and Succi (2006), or

Ratzinger, Fischer, and Gall (2005). Regarding the subjective measurable quality improvement

by code refactoring there exist also some papers, like those by Kim, Zimmermann, and Nagap-

pan (2012), or Wang (2009).

The methodology used for the evaluation here is an evaluation technique already used by Ka-

fura and Reddy (1987). Therefore, on the one hand, we use software metrics, which are calcu-

lated automatically by a plugin in Android Studio, and, on the other hand, we relate them to

data extracted by developed questionnaires. To be able to relate the outcomes together, we use

real code examples extracted and adapted from the project in the survey.

Thus, in this section, selected code complexity analysis methods are discussed, available tools

in Android Studio get applied, and finally, the improvements of the refactored code parts within

this project are evaluated. Furthermore, the used questionnaire is evaluated. Finally, the results

of the different evaluation methods and their relationship are discussed.

4.1 Quantitative Evaluation of Code Complexity by Software Metrics

To evaluate the quality of software, Kaur, Minhas, Mehan, and Kakkar (2009) suggest using

complexity analysis, as by this evaluation, not only its maintainability but also its reliability

can be quantified. For object-oriented languages, Kaur et al. say that there exist dynamic and

static metrics. In this thesis, only static metrics are used as the focus is on readability, under-

standability, and maintainability. One important complexity method is discussed in detail,

namely Mc Cabe’s Metric.

87

Such tools for analysing software are crucial to finding the most complex parts of a medium or

large software system to find issues and enhance the quality at the end (Aguiar, Restivo, Cor-

reia, Ferreira, & Dias, 2019).

Within the next section, the used metrices are described.

4.1.1 Code Complexity Analysis

For evaluating the complexity of code at various points in time, we use a plugin for Android

Studio. Beside of the used free and open-source tool, we explored another plugin during the

review called CodeMR, which is neither open-source nor freely available44. Even if this tool

shows interesting and valuable graphics and models about the architecture, dependencies, and

code quality, it only offers a few complexity metrics (CodeMR, 2020). Therefore, the plugin

explained below was chosen.

The selected plugin by Leijdekkers and Sixth and Red River Software (2020) is called

MetricsReloaded and the code is freely available on GitHub45. The contributors of this software

are D. Jemerov and B. Leijdekkers. Many papers have used this plugin already for calculating

metrics (Molnar & Motogna, 2017; Saifan & Al-Rabadi, 2017).

Some of the possible complexity metrics are shown in Table 12 with the original description

within the plugin. Leijdekkers has allowed the use of his description in this master’s thesis

personally by email46.

44 https://www.codemr.co.uk [accessed on 29 November 2020]
45 https://github.com/BasLeijdekkers/MetricsReloaded [accessed on 27 November 2020]
46 “Of course you may use the descriptions of the metrics with a reference. I am happy you have found the plugin
useful.“ (Leijdekkers, 3 December 2020, as email response for using the description within this master’s thesis)

88

Abbr. Name Description
OCavg Average oper-

ation complex-
ity

Calculates the average cyclomatic complexity of the non-abstract
methods in each class. Inherited methods are not counted for purposes
of this metric.

WMC Weighted
method com-
plexity

Calculates the total cyclomatic complexity of the methods in each class.

ev(G) Essential cy-
clomatic com-
plexity

Calculates the essential complexity of each non-abstract method. Es-
sential complexity is a graph-theoretic measure of just how ill-struc-
tured a method's control flow is. Essential complexity ranges from 1 to
v(G), the cyclomatic complexity of the method.

Iv(G) Design com-
plexity

Calculates the design complexity of a method. The design complexity is
related to how interlinked a methods control flow is with calls to other
methods. Design complexity ranges from 1 to v(G), the cyclomatic com-
plexity of the method. Design complexity also represents the minimal
number of tests necessary to exercise the integration of the method
with the methods it calls.

v(G) Cyclomatic
complexity

Calculates the cyclomatic complexity of each non-abstract method. Cy-
clomatic complexity is a measure of the number of distinct execution
paths through each method. This can also be considered as the mini-
mal number of tests necessary to completely exercise a method's con-
trol flow. In practice, this is 1 + the number of if's, while's, for's, do's,
switch cases, catches, conditional expressions, &&'s and ||'s in the
method.

Cyclic Number of cy-
clic dependen-
cies

Calculates the number of classes or interfaces which each class directly
or indirectly depends on, and which in turn directly or indirectly de-
pend on it. Such cyclic dependencies may result in code which is diffi-
cult to understand and test.

Dcy Number of de-
pendencies

Calculates the number of classes or interfaces which each class directly
depends on.

Dcy* Number of
transitive de-
pendencies

Calculates the number of classes or interfaces which each class directly
or indirectly depends on.

Dpt Number of de-
pendents

Calculates the number of classes or interfaces which directly depend
on each class.

Dpt* Number of
transitive de-
pendents

Calculates the number of classes or interfaces which directly or indi-
rectly depend on each class.

PDcy Number of
package de-
pendencies

Calculates the number of packages on which each package is directly
dependent.

PDpt Number of de-
pendent pack-
ages

Calculates the number of packages which contain direct dependencies
on each package.

Files Number of
files

Calculates the total number of files in each module.

LOC Lines of code Calculates the number of lines of code in each package. Comments are
counted for purposes of this metric, but whitespace is not.

AHF Attribute hid-
ing factor

Calculates the degree of attribute (field) encapsulation in a project. Es-
sentially, it gives the ratio of how many classes an average field is visi-
ble from, other than the defining class.

89

AIF Attribute in-
heritance fac-
tor

Calculates the degree of attribute (field) inheritance in a project. Essen-
tially, it gives the ratio of what percentage of the available fields on an
average class are due to inheritance, rather than directly defined on
the class.

CF Coupling fac-
tor

Calculates the degree of coupling in a project as a whole. Essentially it
reports what proportion of the classes in a project are used by (couple
to) an average class in the project.

MHF Method hiding
factor

Calculates the degree of method encapsulation in a project. Essentially,
it gives the ratio of how many classes an average method is visible
from, other than the defining class.

MIF Method inher-
itance factor

Calculates the degree of method inheritance in a project. Essentially, it
gives the ratio of what percentage of the available methods on an aver-
age class are due to inheritance, rather than directly defined on the
class. Methods inherited from library classes are not used in the calcu-
lation of this metric.

PF Polymorphism
factor

Calculates the degree of polymorphism in a project as a whole. Essen-
tially it reports on the probability that a given method will be overrid-
den in a subclass.

Table 12: Description of the calculated metrics used within this thesis. The content is the original description of the used
metrics of the plugin provided by MetricsReloaded (Leijdekkers & Sixth and Red River Software, 2020).

To summarize the description by Leijdekkers et al. (2020), the first two metrics OCavg and

WMC are complexity class metrics, ev(G), iv(G), and v(G) calculate their metrics on the method

level. The next five metrics, Cyclic, Dcy, Dcy*, Dpt, and Dpt*, explore the dependencies for

classes, PDcy and PDpt explore them on package level. According to Leijdekkers, Files and

LOC count the number of files, this thesis only focuses on Java files, and lines in the chosen

selection. The last six metrics belong to the metrics for object-oriented design (MOOD) which

measure typical object-oriented patterns on project levels like encapsulation, represented by

the Attribute Hiding Factor (AHF) and Method Hiding Factor (MHF), inheritance, measured

by Attribute Inheritance Factor (AIF) and Method Inheritance Factor (MIF), coupling, shown

by the Coupling Factor (CF), and polymorphism with the corresponding Polymorphism Factor

(PF) (Harrison, Counsell, & Nithi, 1998).

According to Harrison, Counsell, and Nithi (1998), AHF and MHF show the quality of hiding

information which means the degree of code visibility on system-level, therefore AHF should

be optimally at 100%, while a higher MHF means less functionality. However, Harrison et al.

explain that a low value may indicate poor abstraction. They say further, that AIF and MIF

measure directly how many attributes and methods are inherited in relation to the total number

of each, so they should not be too low, which is a sign for a lack of inheritance, and not too

high, indicating extreme inheritance. Harrison et al. explain that CF tells in which degree the

classes of a system are in relation to each other by message passing or a reference to each other

and should be very low, but not too low as a value of zero would indicate only communicating

90

by inheritance or too much redundant code. However, very high coupling factors decrease

maintainability, reusability, and understandability. The last factor, PF, highlights the potential

of introducing polymorphism, so low values should be targeted as mentioned by Harrison et

al. However, as the goal of this master’s thesis is reducing complexity and improving readabil-

ity, these values are not that relevant.

The most relevant metrics for this master’s thesis are those calculating the complexity of meth-

ods and classes. To start with, the cyclomatic complexity v(G) was developed and first de-

scribed by Thomas J. McCabe in 1976 and relies on the control flow graph of methods or

functions (McCabe, 1976). As he states in his paper, his formula is based on the cyclomatic

number given by

𝑣(𝐺) = 𝑒 − 𝑛 + 𝑝

Equation 1: v(G) represents the cyclomatic number of graph G.

with e, n, and p as the number of edges, nodes, and connected components within graph G

(McCabe, 1976). For the directed case, this formula is correct for strongly connected compo-

nents, where each node can be reached from each other node, that means that for each pair of

nodes u and v within the component there exists a path from u to v and vice versa (Nuutila &

Soisalon-Soininen, 1994).

In other cases, where there are a beginning and an end for each component without a connection

back to the initial node such as in typical programs, the cyclomatic complexity is given by

𝑣(𝐺) = 𝑒 − 𝑛 + 2𝑝

Equation 2: The cyclomatic complexity of program graphs.

and can be further simplified to

𝑣(𝐺) = 𝑒 − 𝑛 + 2

Equation 3: The cyclomatic complexity for methods or subroutines can be simplified as p is always one.

if only one connected component exists as for single methods or functions (McCabe, 1976).

McCabe shows further that for structured programs the calculation can be simplified to the

number of predicates within the component plus one as shown in

𝑣(𝐺) = 𝜋 + 1

Equation 4: For a single-component program it is sufficient to count the predicates and add one to it to calculate its cy-
clomatic complexity.

91

with π representing the number of predicates within the program.

Equation 4 is used for the explanation shown in Table 12. As described by Leijdekkers et al.

(2020), the other metrics ev(G) and iv(G) are connected to v(G) and can never be higher than

that. The former shows how ill-structured the explored code itself is, while the latter represents

the interlink to other methods called within the explored code. WMC and OCavg finally sum

the cyclomatic complexities up. According to Leijdekkers et al., the first metric is the total sum

and the second is the average of all methods within each class. They highlight the connection

between testing effort and the number of paths within the class. Hence, the more paths there

are within the control flow graph of the method, the more tests are needed to fully cover the

method by tests.

4.1.2 Applied Code Complexity Analysis in Android Studio

MetricsReloaded can be installed in Android Studio as a plugin. For this master’s thesis, ver-

sion 1.947 was used. After installation, in the menu “Analyze” another option is added called

“Calculate Metrics…”. In Figure 38 the appearing window can be seen. Here, we selected the

folder “java” and chose the option “Complexity metrics”. Besides this, there are a few other

options available, like “JUnit testing metrics” or “Javadoc coverage metrics”. For this evalua-

tion, the options “Complexity metrics”, “Dependency metrics”, “Lines of code metrics”,

“MOOD metrics”, and “Number of files metrics” are applied. (Leijdekkers & Sixth and Red

River Software, 2020)

Figure 38: Calculating complexity metrics for folder "java".

To evaluate the improvement of the refactoring, we calculated the metrics at various points in

time for the project. We evaluated it in the course of two years, taking a snapshot of the

47 https://plugins.jetbrains.com/plugin/93-metricsreloaded [accessed on 30 November 2020]

92

complexity every four months. The dates of the seven evaluations are shown in Table 13. We

copied each of the values manually into a Microsoft Excel48 table and created graphs to show

the changes over the two years.

Version Date
1 22 November 2018
2 22 March 2019
3 19 July 2019
4 15 November 2019
5 24 March 2020
6 28 July 2020
7 24 November 2020

Table 13: Dates of the complexity snapshots of the projects each four months over a period of two years.

To justify these chosen dates, Figure 39 illustrates the most important dates regarding the

change in code complexity. The used dates are chosen to see the improvement of the quantita-

tive measurable quality in the two last snapshots of complexity, because within this period we

removed, on the one hand, the unused resources as explained in 3.3, and, on the other hand, we

started implementing features while taking into account the decisions we made regarding clean

code and other principles as described above. During this time, not only preparatory refactoring

was used excessively, but also comprehension refactoring to understand the legacy code better.

However, it should not be forgotten that other developers continued to develop the application

in the same way as before and that we still added features like the others.

Figure 39: The used dates are chosen to see the improvement of the quantitative measurable complexity of code.

We decided to focus on three different aspects for our evaluation. These are first the package

“adapter”, holding any adapters within the project, secondly, “entity”, which combines any

code which is related to the profile pages of clubs and leagues, and finally the “game” package,

containing code, which is related to the view showing an event. Moreover, to see the changes

in the whole project within these two years, we examine the “java” package containing all Java

code also.

48 https://www.microsoft.com/en-us/microsoft-365/excel [accessed on 4 December 2020]

93

As the main focus for this evaluation lies on the complexity metrics, we will only present those

metrics values including a number of files and lines of code. However, all data that was col-

lected can be explored in the Appendix. Selected metrics values for the project can also be seen

in Figure 40. To be able to compare the metrics in one diagram, we normalized each metrics

by that value at version 1, meaning that we divided the metrics values for versions 2 to 7 by

that value of version 1 as Kafura and Reddy suggest in their paper (1987).

Figure 40: Calculated metrics values for the whole project including relative changes and relative improvement or deterio-
ration.

For evaluating the relative change of the overall complexity of the project, we decided to com-

bine all averaged complexity values for method and class in one diagram each as shown in

Figure 41. The absolute values of the complexity metrics are shown in Figure 42 in form of a

diagram.

94

Figure 41: Relative change of complexity method and complexity class metrics of the project.

95

Figure 42: Absolute complexity class metrics, complexity method metrics, number of files, and lines of code of the project.

96

4.2 Community-based Evaluation of Code Complexity

For the subjective evaluation of complexity, we chose a community-based evaluation tech-

nique, which means that the participants need to have experience in programming. This pre-

condition was asked before starting the questionnaire. We decided to use LimeSurvey49, which

can be freely used for students with an account for KFU Online50. This online survey tool

enables creating questions of different types, like numerical or textual, and can be sent out

online (Apdevries, 2020; Cdorin, 2018). The printed questionnaire can be seen in the Appendix

and is described in the next section.

4.2.1 Survey Preparation and Execution

The questionnaire consists of two different question types. On the one hand, a five-point Likert

scale was used to determine the preferences of the participants regarding the corresponding

statement (Likert, 1932). The possible answers are “Strongly disagree”, “Disagree”, “Neither

agree nor disagree”, “Agree”, “Strongly agree”, and “Don’t know”. On the other hand, there

are listed some code snippets or file name lists extracted and adapted from the real repository

of the mentioned project, which needs to be rated with the help of a numerical slider which

ranges from -50 to 50 and starts at zero. The shown code was asked to be used for the ques-

tionnaire. To evaluate improvements or confirm some design and refactoring decisions made

during the implementation explained above, there are always compared situations without con-

ducted refactorings, with the same situations in which the item was refactored. Indeed, the

listings do not match the history of the repository exactly but are slightly adapted to match the

desired state. This suffices for recognizing a trend for the various questions by this subjective

evaluation. The listings to compare were arbitrarily set to left or right and marked with “A”

and “B” accordingly. The user is given the information that the default value zero means “No

difference” between both examples. Negative values, moving the slider to the left, means pre-

ferring the example marked with “A” with the extreme value of -50. Moving the slider to the

right means preferring listing “B” with the extreme value of 50, respectively. There is also

included a question that serves as an attention test to check for the trustworthiness of the par-

ticipants. In case a participant does not tick “Strongly agree” for the statement “Tick ‘Strongly

agree’ if 2^8 equals 256.”, the corresponding questionnaire gets discarded. In Figure 43 an

excerpt of the online questionnaire is presented. It shows a question with a slider, the question

for checking the attention of the participant, and an excerpt of a standard Likert question.

49 https://www.limesurvey.org/ [accessed on 4 December 2020]
50 https://online.uni-graz.at/ [accessed on 4 December 2020]

97

Figure 43: Screenshot of the survey giving a good general overview. It includes a question with a slider, the "x" button
resets the value to zero, the question for testing the attention of the participant, and another question of type Likert.

The questionnaire consists of twenty different questions grouped by four pages of five ques-

tions each, whereby question number 13 serves as the attention test described above. All ques-

tions need to be filled out to continue, whereby the five numerical slider questions are prese-

lected by the default value 0. The 14 Likert scale questions are not preselected. Some questions

are grouped, some are not, and sometimes questions are negated consciously to increase the

variation of answers. In Table 14 the most important aspects of the questionnaire are shown

with a description of the intention of asking every single question.

98

No. Code Type Intention of Question
1 A1 Likert Importance of naming convention in software project

*2 A2 Likert Importance of naming convention for files
*3 A3 Slider Rating for implemented naming convention for files

4 A4 Slider Rating for implemented naming convention for view related code
*5 A5 Likert Importance of always prefixing class member names
*6 B1 Likert Attitude about cleanliness of long methods
*7 B2 Likert Attitude about extracting method instead of comment
*8 B3 Likert Attitude about repeated switch statements and polymorphism

9 B4 Likert Attitude about long methods and testing (code coverage)
10 B5 Likert Attitude about statement that complex code requires always more effort
11 C1 Likert Attitude about extracting method for simplifying long methods
12 C2 Slider Rating for inlined view variables
13 C3 Likert Attention test

*14 C4 Likert Attitude about long methods and testing (more effort)
*15 C5 Slider Rating for implemented polymorphism instead of switch statements
*16 D1 Slider Rating for extracted methods for simplifying long methods
*17 D2 Likert Attitude about code refactoring if it always pays off

18 D3 Likert Attitude about code complexity and testing effort
19 D4 Likert Attitude about link between maintenance costs and understandability
20 D5 Likert Attitude about enforcing code refactoring to improve code quality

Table 14: A list of all 20 questions with corresponding code, type, and a short description about what the intention of the
individual question is. An asterisk “*” marks questions which are negated according to our opinion.

The survey was sent out on 29 November 2020 and ended on 1 December 2020. The automat-

ically created URL51 was sent out targeted to programmers via social media channels and email.

Participants were asked to send the survey to other software developers. The participants were

only said that the master’s thesis is about code complexity, code of a Java Android application,

and that the survey aims to find out what opinion the software engineering community has

about it. There is no time limit set, but the participant gets informed that the questionnaire takes

up to ten minutes. The survey was conducted completely anonymously. This introduction can

also be seen in the Appendix.

The threshold for stopping the survey was an amount of 50 valid questionnaires, which means

that they need to be filled out completely and question 13 is ticked correctly. It was manually

stopped at an amount of 62 valid questionnaires. In about two days, the questionnaire was

started 83 times in total and 13 of them were not completed as summarized in Table 15.

51 https://survey2.edu.uni-graz.at/778328/lang-en [accessed on 4 December 2020]

99

Started Questionnaires in Total 83
Completed Questionnaires 70
Valid Questionnaires 62

Table 15: Statistics about the available questionnaires of the survey which was active for about two days.

The dataset was exported via a web page in various file formats, whereby the Microsoft Excel

Binary File Format (XLS)52 was used for further evaluation in Microsoft Excel explained be-

low.

4.2.2 Evaluation of the Survey

Firstly, after data collection, we cleaned the data by removing all 13 incomplete questionnaires.

Moreover, we discarded those eight questionnaires where the attention test failed, and the ques-

tion for checking that, question C3, also. Then, we extended each question by the information,

whether it is of type slider or Likert, and whether its question text or statement is negated or

not. The answers are automatically encoded in values 0 (“Don’t know”), and 1 (“Strongly

agree”) to 5 (“Strongly disagree”). To handle answers of type “Don’t know” correctly, we ex-

changed zero values by blank cells. By this, the value is automatically not included in various

calculations explained below. Next, we inverted all answers whose questions were negated

regarding the expected outcome. That means, that value 5 gets 1, value 4 gets 2, and vice versa,

and for slider values, the numbers get inverted. Furthermore, slider values are shifted by 50 to

range from zero to 100.

Now, we conducted a combination of confirmatory data analysis (CDA), and exploratory data

analysis (EDA) (Turkey, 1977). On the one hand, we check our expectation of having as low

results as possible for all questions after cleaning and preparing the data, but, on the other hand,

we also search for new patterns the data can give us by examining it exploratory (Martinez,

Martinez, & Solk, 2010).

First, we calculated the average (“AVG”), standard deviation (“STD”), median (“MED”), and

mode (“MOD”) for the answers to each question as can be seen in Table 16. As the mode for

answers to slider questions is not as interesting as in which section the most answers are given,

the according section is listed instead. The sections are 0 to 19, 20 to 39, 40 to 60, 61 to 80,

and 81 to 100. We set the third section equally to an answer “Neither agree nor disagree” in

Likert scale questions, which is encoded by 3, in further considerations if necessary.

52 https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/ [accessed on 4 December 2020]

100

Table 16: The cleaned data including calculations of average, standard deviation, median, and mode. The mode of questions
of type slider is meant to be that section where the most values are included (here always the section below 20). On the bot-

tom the occurrences of answers for each question are presented. For Likert questions these are “?”, which represents
“Don’t know”, and 1-5, for slider questions these are 1 for 0-19, 2 for 20-39, 3 for 40-60, 4 for 61-80, and 5 for 81-100.

101

On the bottom of Table 16, the occurrences of answers for each question are presented, includ-

ing “Don’t know” answers, indicated by “?”, for Likert scale questions. As already mentioned

above, for Likert scale questions the number of occurrences for answers given in the described

sections are counted, where 1 refers to section 0 to 19, 2 to 20 to 39, 3 to 40 to 60, 4 to 61 to

80, and 5 to 81 to 100. A boxplot of all questions is shown in Figure 44, whereby the section

values 1 to 5 are used for slider questions. As a result, the graphical representation is more

consistent.

Figure 44: Boxplot of the results for all questions, whereby the section values 1-5 are used for slider questions for easier
comparison.

Next, we calculated the correlation between the questions, which we present in a correlation

matrix including the values shown in Figure 45, and the correlation between the participants,

which is only shown by a heatmap in Figure 46. Green fields indicate a positive correlation,

and red fields indicate a negative correlation. To calculate the values, we used Analysis Tool-

Pak53 by Microsoft54 as an add-in in Microsoft Excel. For this calculation, we removed any

questionnaires containing a “Don’t know”, which are in total 13 entries.

53 https://support.microsoft.com/en-us/office/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-
6b40ba1a66b4 [accessed on 5 December 2020]
54 https://www.microsoft.com/en-us/ [accessed on 5 December 2020]

102

Figure 45: Correlation between questions with rounded values without duplicated values.

Figure 46: Heatmap created by the correlation matrix of the participants of the survey.

103

To compare the overall conformity with the statements made, we summarized all answers made

including “Don’t know” answers also and plotted a pie chart presented in Figure 47.

Figure 47: This pie chart shows the proportions of all answers made including "Don't know" marked as “?”. Agreement to
the statements is indicated by green, disagreement is coloured red. The grey section shows a quite neutral opinion.

Finally, we used a stacked column diagram to display the opinion of the community to each

question in Figure 48.

Figure 48: Stacked column diagram to show the answers made to each question.

104

4.3 Discussion of the Results

Throughout the whole two years, the main focus of the project was to add features. Figure 42

shows that all total complexity metrics of the project follow the same trend. While the number

of files and the lines of code get more, the total complexity gets also more. They all follow the

same trend. Regarding the average for method complexity metrics, at the beginning of our

evaluation, the average complexity of the methods and classes was reduced. However, when

looking at the complexity trend for the following snapshots, the complexity is raised in general

except for OCavg. Nevertheless, after that, the complexity is reduced in version 6 for all com-

plexity metrics including number of files and lines of code. As Figure 39 shows, there was

started code refactoring actively, and the unused resources were removed. The greatest reduc-

tion of complexity, however, can be recognized in the last time interval from version 6 to ver-

sion 7. Even if the total complexity values and the number of files raise, not only all average

metrics scores shrink as fast as never before, but also the lines of code get lower. The reduction

of complexity is even for OCavg the strongest. When comparing the trend of the total com-

plexities from version 2 to version 5, it is nearly equal to that from version 6 to version 7.

However, while the average complexity values have at version 5 their maximum, except for

OCavg, that from version 6 to version 7 falls as strong as never before and reaches everywhere

the minimum. So, the overall complexity was reduced extremely.

An overview of the different trends in average complexities gives Figure 41. There it can be

seen at a glance how strong the complexity is reduced from version 6 to version 7 and that they

reach the minimum in the end.

When viewing the MOOD metrics in Figure 49 of the Appendix, it can be seen that the devel-

opment team managed to improve polymorphism which coincides with the implementation of

introducing many inherited classes. This can be seen by comparing version 6 with version 7.

With the knowledge given in 4.1.1, we can say, that we got a lower PF, which is preferable, a

higher MHF, which means abstraction was improved but the functionality was lowered, and

finally, a higher MIF and AIF, which means that inheritance was increased. However, the AHF

is reduced further which should be noticed as the attributes should be hidden optimally 100%.

A solution for that would be the refactoring technique Encapsulate Variable to change all pro-

tected member variables to private and implementing getter and setter methods, instead. As a

result, AHF and MIF would be increased while AIF and MHF would be decreased as explained

above. So, this solution was taken wrongly according to the values. The CF was improved by

105

the code changes as the value is lower now. However, some of the decisions regarding inher-

itance seem to be made too extreme.

Regarding the survey, a variety of answers and opinions is given as can be seen in Figure 46

showing the heatmap of the correlation between the different questionnaires. However, there

are some people included who have a completely different opinion, like IDs 7, 16, 37, or 84.

However, as there are many green fields also, there are many people who share the same

thoughts. If looking at Figure 47 and Figure 48, respectively, it can be clearly seen that the

community answered the questionnaire according to our ideas mostly. This is also confirmed

by the boxplot in Figure 44. However, there are some questions where we expected another

outcome. These are questions A5, B2, D2, and D3.

Starting with the most contrary answer, A5 which says, “Class member names should always

have a special prefix like ‘m’ or ‘_’, as for example ‘private int mWeight’, or ‘private String

_name’. According to Martin (2008), this question should be answered with “Strongly disa-

gree”. However, as this is a subjective question, this is only a suggestion. In C# for example, it

is quite common using the “_” as a prefix for private member variables. However, this has no

further advantage. According to online resources and discussions, it is suggested to “not use a

prefix for member variables (_, m_, s_, etc.). If you want to distinguish between local and

member variables you should use “this.” in C# and “Me.” in VB.NET.” (BradA, 2005). It is

further explained that the reasons for not using Hungarian notation or prefixes are on the one

hand consistency of the code appearance and, on the other hand, clean readable source code,

which is also confirmed by other sources (RickHos, 2004). According to Peter Ritchie (2007),

classes should be simple and therefore, it is not necessary to enforce using a prefix, it is just

important is using meaningful names. Moreover, he says that it is harder being consistent with

such a notation than without. However, all in all, it is up to the developers using it or not. In

the case of an older codebase where this notation is used already, it should be followed further

due to consistency. Regarding the question within the questionnaire, it seems that the commu-

nity believes using a prefix for member variables is cleaner than not using it, or they just prefer

it. The world “always” within the question supports this assumption.

In comparison to the usage of view related and file-related Hungarian notation, questioned in

A3 and A4, where the community approved, this seems to be contrary to the statement of not

using prefixes for member variables. However, the intention of prefixing files is the automatic

sorting by Android Studio and hence the possibility of grouping the files. Furthermore, private

106

member variables are only visible in one file. Classes should be as simple as possible, and not

having that much member variables, which was also confirmed by the community answering

question C2. So, the scope of such variables is limited. However, regarding the usage of view

related Hungarian notation, it is an advantage for faster finding identifiers which are not within

the same file. In case we know we want to set the title of a news article, we firstly type “tv_”

for meaning TextView and using then a descriptive name like “title”. Due to consistency, “tvTi-

tle” seems the right choice. The same idea for scoping can also be said for drawable resources.

All in all, it is important to have a naming convention, confirmed by A1, and A2, the used

Hungarian notation for view related code and files seems to be the right choice, but the naming

of member variables should be discussed further with the developers of the project due to the

contrary opinion of the community.

The next question whose result is different as expected is question B2 with an average of about

3. Even if most of the participants have answered “Disagree” to the statement “Clean code

includes comments explaining the code. If a method was extracted before, the code of it should

be better inlined back into the calling method! After that, a comment should explain the inlined

code.”, eight of them strongly agree to that, 13 agree, and further 13 neither agree nor disagree.

The result of this statement, which was asked in inverted logic, seems to be contrary to the

results given in D1, where 31 participants strongly confirmed the version where methods were

extracted from the body of a long method. Moreover, the low correlation of 0.13 to C1, given

in Figure 45, with the statement “It is often hard to understand a long method. Extracting parts

of it to new methods is a good idea as the new meaningful method names can explain the

extracted parts if chosen well.”, also contradicts the result in B2. However, some of the partic-

ipants may be detracted from the extraction of the method by the first sentence saying that

clean code includes comments explaining the code. Despite this, not only this opinion but also

the opinion to extract method is contrary to the clean code referring to Martin (2008) explained

above. As he says, blocks should have at maximum two lines of code, which implies extracting

methods, and comments should not be used for documenting code. Descriptive function names

should be used instead as tried to show in the listing of question D1. Moreover, according to

the complexity measure explained in 4.1.1, the cyclomatic complexity should be lower for the

extracted method variant. This hypothesis is confirmed by an experiment made shown in Figure

50 in the Appendix. The cyclomatic method complexity was calculated for both variants. As

can be seen, the values for ev(G), iv(G), and v(G) are reduced for the average of the whole class

by only extracting methods in this single long method from 1.13, 1.3, 1.4 to 1.09, 1.19, and

107

1.26, respectively. This means a reduction by 3.54%, 8.46%, and 10% for the corresponding

metrics for the whole class. To end with, the implementation seems to be the right choice,

leading to the assumption that the community build their opinion upon the statement “Clean

code includes comments explaining the code.”. This should have been questioned separately

to check their opinion about the usage of comments within code.

“The effort of code refactoring does not always pay off.” was stated D2 in this negated question

compared to our assumption. As displayed in Figure 48, the opinion of the participants is not

that extreme, as only four participants strongly disagree, and only one strongly agrees here.

However, as can be seen in the heatmap in Figure 46, this participant with ID 35, taken from

Table 16, seems to be quite contrary to the great portion of other participants, so, this should

not be taken into account in a great manner. However, as the extreme wording “always” is

included in the statement, this inconclusive result is perspicuous. All in all, 28 people disagree

with the statement, while 21 agree, so the majority has voted for the more thoughtful answer.

This question can be compared to other questions about code refactoring, maintainability, qual-

ity, and code complexity. Examples are B5 with the statement “Complex code that is hard to

understand needs always more time for maintenance and bug fixing.”, D4, “There is a clear

link between maintenance costs and understandability of code.”, and D5, “I think refactoring

is an important task in software engineering and should be done regularly to increase the quality

of the code.”. Looking again at Figure 45, these three questions correlate with each other (D5-

D4 by 0.53, D4-B5 by 0.5, and D5-B5 by 0.45). Hence, we can say that the community thinks

that complex code with low understandability leads to more maintenance effort, according to

B5, that they think that maintainability and understandability are related clearly, approved in

D4, and that code refactoring is an important task to increase code quality. Hence, they agree

that code refactoring helps reducing code complexity and as a result, the maintenance effort

and the maintenance costs shrink in the end. On the other hand, we can conclude that the com-

munity says that code, which is hard to understand is complex, and in case of complex code,

the maintenance effort increases. As they voted that the refactored versions of C2, C5, D1 are

better regarding the asked quality attributes for code complexity, and these questions correlate

with D5, the corresponding values are 0.3, 0.21, and 0.18, we can say that the refactoring de-

cisions seem to be taken appropriately.

The average of D3 “Code complexity is related to the testing effort.” with 2.34, displayed in

Table 16, seems to be quite high, so it is not that clear. However, those who confirmed this

108

statement, also confirmed with a correlation of 0.31 the statement B4 “The more possible paths

there are within a method, the more tests are required to achieve 100% code coverage in test-

ing.”. So, the community confirms that a higher testing effort is related to code complexity

which is further related to more paths within a method, which means that long methods are

more complex and hence, they are harder to test. This fits the cyclic complexity definition

presented in Table 12 meaning the higher it is, the more paths are within the control flow graph,

and the more tests are needed to reach a code coverage of 100% in testing. Interestingly, C4

asking for the greater testing effort of long methods in comparison to short methods, agreed by

the community with an average of 2. However, question B1 asking for the cleanness of long

methods seems to be not answered that clearly as “cleanness” is a subjective word. But, as the

average of 1.92, and the median and mode of 2 each show, as displayed in Table 16, they tend

to agree to the statement. B1 however, correlates with C1 by 0.27 where it is meant that it is a

good idea extracting methods and choosing well-defined names for the extracted methods for

documentation reasons. So, this seems to be appropriate.

The last interesting correlation is that between B3 asking for the attitude about using polymor-

phism instead of using repeated switch statements with the same cases, and the implementation

of an abstract class factory to replace these code duplications asked by the question C5 of type

slider. The correlation given in Figure 45 of 0.17 seems to be quite low, but it is not contrary,

though. The answers of each are in line with our intuition, so the average values of both are

quite low, being 1.82 for B3, and 20.56 for C5. This means, that the community confirms not

only the theory described above but also our decision to introduce that pattern during the im-

plementation while refactoring as shown for example in Listing 14.

To conclude, the averaged results of the survey are in line with the theoretical discussed issues,

and the implemented refactorings and decisions made for this project.

109

5 Conclusion

The main goal of this master's thesis was to explore an Android application for complex parts,

measuring it by complexity metrics, and to find ways to reduce its complexity by well-known

refactoring approaches. Not only the quality but also the understandability should be increased.

Furthermore, another goal was finding out a way to evaluate the improvement by a question-

naire that is filled out by software engineers. We found a way to compare both results and saw,

that we have taken accepted proposals for cleaning up and refactoring the code. These decisions

were accepted not only by the community but also led to great complexity reduction. So, the

theoretical explained approaches, techniques, and recommendations, including refactoring,

clean code, and working with legacy code, can be used by other software developers to improve

the quality of their software in future. In the implementation part of this thesis, we described

and applied approaches of refactoring and removing code smells in Android Studio. A naming

convention and coding standard, the removal of unused code and resources, and the exchange

of raster graphics with vector graphics were implemented and described including showing the

results. Regarding the refactoring and clean code, preparatory and comprehension refactoring

were used to implement some new features like a collapsible header and a dynamic tabbed

layout view, new profile pages for leagues and clubs, a new event view page, new news, and

some more.

However, some things need to be considered in the future. Prefixing member variables should

be discussed within the developer team. But, as Hungarian notation seems to be also preferred,

that should be discussed in future. Consistency should be important. Moreover, according to

the MOOD metrics, it seems that sometimes the using of inheritance was too excessively. So,

when designing for patterns, these metrics should always be considered during development

and checked. Moreover, during the evaluation, we learned that we should all member variables

encapsulate even for parent classes to achieve an AHF of 100%, which means using “private”

instead of “protected”. Regarding the questionnaire, we recognized that the questions should

be asked as clear as possible and that they should really ask only for one single thing. A nega-

tive example was question B2, where people seemed to be distracted by the first sentence.

However, this led us to the idea that we should ask for the opinion of the community regarding

the usage of comments for documentation reasons.

110

5.1 Limitations

Due to limited time resources, we could not cover testing in great detail in this master's thesis.

However, as for refactoring testing is really important, even if used safe automatic code refac-

torings, this should always be done for reasons of clean code. Furthermore, because the ap-

proach is only applied to a single application, the results should be considered advisedly but

should encourage to repeat such experiments with the same approach. Since the implementa-

tion was applied in a real software system, the results are only trends and it cannot be said

conclusively, that this refactoring or that clean code was responsible for the reduction of the

metrics. However, as the other developers followed adding features to nearly the same degree

as the two years before, according to the trend the result can be regarded as correct.

5.2 Future Work

As this subjective evaluation technique of comparing quantitative measures with subjective

opinions can be repeated to any time of development, it is interesting, how this evolves when

the refactoring is kept up. For future questionnaires, however, further questions regarding clean

code should be included like the usage of comments for documenting functionality, the usage

of member prefixes in different languages asked separately, or demography would also be in-

teresting. Not only the community is interesting for evaluating the improvements of the code,

but also code experts. Hence, another survey can be done by interviewing domain experts of

the code and asking them for the evaluation of the refactorings. Additionally, a type of A/B

testing for refactored code could bring insights to which parts effectively helped people to pro-

gress faster. This should be accompanied by thinking aloud testing to capture the thoughts of

the developer. Another variant to see if the productivity increases or decreases, timing issues

would also be interesting not only on an experimental level but also in real work life.

Another interesting aspect would be refactoring or rewriting the code from Java to the emerging

Kotlin55 while covering the code with tests and without changing any behaviour.

55 https://kotlinlang.org/ [accessed on 9 December 2020]

111

6 Bibliography

Aguiar, A., Restivo, A., Correia, F., Ferreira, H., & Dias, J. (2019). Live Software

Development: Tightening the Feedback Loops. Proceedings of the Conference

Companion of the 3rd International Conference on Art, Science, and Engineering of

Programming. 22, pp. 1-6. Genova: Association for Computing Machinery.

doi:10.1145/3328433.3328456

Almutairi, A. (2018). A Comparative Study on Steganography Digital Images: A Case Study

of Scalable Vector Graphics (SVG) and Portable Network Graphics (PNG) Images

Formats. International Journal of Advanced Computer Science and Applications,

9(1), 170-175.

Apdevries. (2020, May 19). Question types - LimeSurvey Manual. Retrieved December 4,

2020 from Home page - LimeSurvey - Easy online survey tool:

https://manual.limesurvey.org/Question_types

Basu, A. (2015). Software Quality Assurance, Testing and Metrics. Delhi: PHI Learning Pvt.

Ltd.

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., & Palomba, F. (2015). An experimental

investigation on the innate relationship between. The Journal of Systems and

Software, 107, 1-14.

Bavota, G., De Lucia, A., Marcus, A., & Oliveto, R. (2014). Automating Extract Class

Refactoring: An Improved Method and Its Evaluation. Empirical Software

Engineering, 19(6), 1617-1664.

Beck, K. (1997). Smalltalk Best Practice Patterns. Upper Saddle River: Prentice Hall.

Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrace Change (2nd

ed.). Boston: Addison-Wesley Professional.

Beck, K. [KentBeck]. (2012, September 26). for each desired change, make the change easy

(warning: this may be hard), then make the easy change [Tweet]. Retrieved December

2, 2020 from Twitter: https://twitter.com/KentBeck/status/250733358307500032

112

BradA. (2005, January 26). Internal Coding Guidelines | Microsoft Docs. Retrieved

December 6, 2020 from Developer tools, technical documentation and coding

examples | Microsoft Docs: https://docs.microsoft.com/en-

us/archive/blogs/brada/internal-coding-guidelines

Brar , H., & Kaur, P. (2015). Differentiating Integration Testing and Unit Testing. 2015 2nd

International Conference on Computing for Sustainable Global Development

(INDIACom) (pp. 796-798). New Delhi: IEEE.

Cdorin. (2018, September 2017). Overview - LimeSurvey Manual. Retrieved December 4,

2020 from Home page - LimeSurvey - Easy online survey tool:

https://manual.limesurvey.org/Overview

Chacon, S., & Straub, B. (2014). Pro Git (2nd ed.). Berkely: Apress.

Cheon, Y. (2014). Writing Self-testing Java Classes with SelfTest. Departmental Technical

Reports (CS), Paper 831. doi:http://digitalcommons.utep.edu/cs_techrep/831

Clark, M. (2006, February 20). JUnit FAQ. From JUnit:

http://junit.sourceforge.net/doc/faq/faq.htm

CodeMR. (2020). CodeMR | Static Code Analysis and Software Quality Features. Retrieved

29 November, 2020 from CodeMR | Measure, analyze, improve software code

quality: https://www.codemr.co.uk/features/

Debray, S. K., Evans, W., Muth, R., & De Sutter, B. (2000). Compiler Techniques for Code

Compaction. ACM Transactions on Programming Languages and Systems, 22(2),

378-415.

Djoudi, L., & Jalby, W. (2018). Automatic Analysis for Managing and Optimizing

Performance-Code Quality. Proceedings of the 2008 Workshop on Static Analysis (pp.

30-38). Tucson: Association for Computing Machinery.

doi:10.1145/1394504.1394508

Du Bois, B., Demeyer, S., & Verelst, J. (2004). Refactoring - Improving Coupling and

Cohesion of Existing Code. 11th Working Conference on Reverse Engineering (pp.

144-151). Delft: IEEE. doi:10.1109/WCRE.2004.33

Farcic, V., & Garcia, A. (2015). Test-Driven Java Development. Birmingham: Packt

Publishing.

113

Feathers, M. (2004). Working Efficiently with Legacy Code. Upper Saddle River: Prentice

Hall.

Figma. (2020). Design, prototype, and gather feedback all in one place with Figma.

Retrieved November 25, 2020 from Figma: the collaborative interface design tool.:

https://www.figma.com/design/

Fowler, M. (2007, June 20). DesignStaminaHypothesis. Retrieved November 26, 2020 from

martinfowler.com: https://martinfowler.com/bliki/DesignStaminaHypothesis.html

Fowler, M. (2018). Refactoring: Improving the Design of Existing Code (2nd ed.). Boston:

Addison-Wesley Professional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software (Vol. 1). Boston: Addison-Wesley.

Google LLC. (2019). Application Fundamentals. Android documentation for app developers.

Mountain View: Author. Retrieved November 21, 2020 from

https://developer.android.com/guide/components/fundamentals

Google LLC. (2019). Layout resource. Android documentation for app developers. Mountain

View: Author. Retrieved November 17, 2020 from

https://developer.android.com/guide/topics/resources/layout-resource#idvalue

Google LLC. (2020). AAPT2. Android documentation for app developers. Mountain View:

Author. Retrieved November 17, 2020 from

https://developer.android.com/studio/command-line/aapt2

Google LLC. (2020). Add multi-density vector graphics. Android documentation for app

developers. Mountain View: Author. Retrieved November 22, 2020 from

https://developer.android.com/studio/write/vector-asset-studio

Google LLC. (2020). Prepare for release. Android documentation for app developers.

Mountain View: Author. Retrieved November 21, 2020 from

https://developer.android.com/studio/publish/preparing

Google LLC. (2020). Resources. Android documentation for app developers. Montain View:

Author. Retrieved November 17, 2020 from

https://developer.android.com/reference/android/content/res/Resources

114

Griswold, W., & Opdyke, W. (2015). The Birth of Refactoring: A Retrospective on the

Nature of High-Impact Software Engineering Research. IEEE Software, 32(6), 30-38.

doi:10.1109/MS.2015.107

Harrison, R., Counsell, S., & Nithi, R. (1998). An Evaluation of the MOOD Set of Object-

Oriented Software Metrics. IEEE Transactions on Software Engineering, 24(6), 491-

496. doi:10.1109/32.689404

Hennessy, J., & Patterson, D. ([1990] 2007). Computer Architecture: A Quantitative

Approach. San Francisco: Morgan Kaufmann Publishers.

Hunt, A., & Thomas, D. (2000). The Pragmatic Programmer. Reading: Addison Wesley.

IEEE Standards Coordinating Committee. (1990). IEEE Standard Glossary of Software

Engineering Terminology. IEEE Std 610.12-1990, 1-84.

doi:10.1109/IEEESTD.1990.101064

JetBrains. (2020, September 21). Implementing a Parser and PSI / IntelliJ Platform SDK

DevGuide. Retrieved December 3, 2020 from JetBrains: Essential tools for software

developers and teams:

https://jetbrains.org/intellij/sdk/docs/reference_guide/custom_language_support/imple

menting_parser_and_psi.html

Kafura, D., & Reddy, G. (1987). The Use of Software Complexity Metrics in Software

Maintenance. IEEE Transactions on Software Engineering, SE-13(3), 335-343.

doi:10.1109/TSE.1987.233164

Kataoka, Y., Imai, T., Andou, H., & Fukaya, T. (2002). A Quantitative Evaluation of

Maintainability Enhancement by Refactoring. International Conference on Software

Maintenance (pp. 576-585). Montreal, Quebec: IEEE.

doi:10.1109/ICSM.2002.1167822

Kaur, K., Minhas, K., Mehan, N., & Kakkar, N. (2009). Static and Dynamic Complexity

Analysis of Software Metrics. World Academy of Science, Engineering and

Technology, 3(8), 1936-1938.

Kerievsky, J. (2005). Refactoring to Patterns. Boston: Addison-Wesley.

Kim, M., Zimmermann, T., & Nagappan, N. (2012). A Field Study of Refactoring Challenges

and Benefits. Proceedings of the ACM SIGSOFT 20th International Symposium on

115

the Foundations of Software Engineering. 50, pp. 1-11. New York: Association for

Computing Machinery.

Kuchana, P. (2004). Software Architecture Design Patterns in Java. Boca Raton: CRC Press

LLC.

Legowski, G. (1996, September 18). Hungarian Notation. Retrieved December 6, 2020 from

DTU Compute: http://www.imm.dtu.dk/~alan/hungarian.html

Leijdekkers, B., & Sixth and Red River Software. (2020, April 18). MetricsReloaded -

Plugins | JetBrains. Retrieved November 27, 2020 from Plugins | JetBrains:

https://plugins.jetbrains.com/plugin/93-metricsreloaded

Leitch, R., & Stroulia, E. (2003). Assessing the Maintainability Benefits of Design

Restructuring Using Dependency Analysis. Proceedings. 5th International Workshop

on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat.

No.03EX717) (pp. 309-322). Sydney: IEEE. doi:10.1109/METRIC.2003.1232477

Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology,

22(140), 1-55.

Linares-Vásquez, M., Cortés-Coy, L., Aponte, J., & Poshyvanyk, D. (2015). ChangeScribe:

A Tool for Automatically Generating Commit Messages. 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, 2 (pp. 709-712). Florence: IEEE.

doi:10.1109/ICSE.2015.229

Lopian, E. (2018, May 15). Defining Legacy Code - DZone DevOps. Retrieved December 4,

2020 from DZone: Programming & DevOps news, tutorials & tools:

https://dzone.com/articles/defining-legacy-code

Mackinnon, T., Freeman, S., & Craig, P. (2001). Endo-Testing: Unit Testing with Mock

Objects. In G. Succi, & M. Marchesi (Ed.), XP eXamined (pp. 287-301). Boston:

Addison-Wesley.

Martin, R. C. (2017). Clean Architecture: A Craftman's Guide to Software Structure and

Design (Vol. 1). Upper Saddle River: Prentice Hall.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftmanship. Upper

Saddle River: Prentice Hall.

116

Martinez, W., Martinez, A., & Solk, J. (2010). Exploratory Data Analysis with MATLAB

(Vol. 2). Boca Raton: CRC Press.

McCabe, T. (1976). A Complexity Measure. IEEE Transactions on Software Engineering,

SE-2(4), 308-320. doi:10.1109/TSE.1976.233837

Meyer, M. (2014). Continuous Integration and Its Tools. IEEE Software, 31(3), 14-16.

doi:10.1109/MS.2014.58

Molnar, A., & Motogna, S. (2017). Discovering Maintainability Changes in Large Software

Systems. Proceedings of the 27th International Workshop on Software Measurement

and 12th International Conference on Software Process and Product Measurement

(pp. 88-93). New York: Association for Computing Machinery.

Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G. (2006). Does Refactoring Improve

Reusability? In M. Morisio (Ed.), Reuse of Off-the-Shelf Components. ICSR 2006.

Lecture Notes in Computer Science. 4039, pp. 287-297. Berlin: Springer.

doi:10.1007/11763864_21

Nazir, M., Khan, R., & Mustafa, K. (2010). A Metrics Based Model for Understandability

Quantification. Journal of Computing, 2(4), 90-94.

Nuutila, E., & Soisalon-Soininen, E. (1994). On finding the strongly connected components

in a directed graph. Information Processing Letters, 49(1), 9-14.

Oracle. (1999, April 20). Code Conventions for the Java Programming Language: 9. Naming

Conventions. Retrieved November 2020, 25 from Oracle | Integrated Cloud

Applications and Platform Services:

https://www.oracle.com/java/technologies/javase/codeconventions-

namingconventions.html

Oracle. (2020). What Is an Exception? (The Java™ Tutorials >Essential Classes >

Exceptions). Retrieved December 3, 2020 from Oracle Help Center:

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Ratzinger, J., Fischer, M., & Gall, H. (2005). Improving Evolvability through Refactoring.

Proceedings of the 2005 International Workshop on Mining Software Repositories,

30(4), 1-5. doi:10.1145/1083142.1083155

117

Refactoring.Guru. (2020). Catalog of Refactoring. Retrieved December 3, 2020 from

Refactoring and Design Patterns: https://refactoring.guru/refactoring/catalog

RickHos. (2004, September 7). Variable names in C# Part 2 | Microsoft Docs. Retrieved

December 6, 2020 from Developer tools, technical documentation and coding

examples | Microsoft Docs: https://docs.microsoft.com/en-

us/archive/blogs/rickhos/variable-names-in-c-part-2

Ritchie, P. (2007, June 17). The Religion of Class Member Prefixing – Peter Ritchie's MVP

Blog. Retrieved December 6, 2020 from Msmvps – The WordPress blogging site for

current and ex- Microsoft MVPs.:

https://blogs.msmvps.com/peterritchie/2007/06/17/the-religion-of-class-member-

prefixing/

Romano, S., Vendome, C., Scanniello, G., & Poshyvanyk, D. (2020). A Multi-Study

Investigation into Dead Code. IEEE Transactions on Software Engineering, 46(1),

71-99.

Saifan, A., & Al-Rabadi, A. (2017). Evaluating Maintainability of Android Applications.

2017 8th International Conference on Information Technology (pp. 518-523).

Amman: IEEE.

Saifan, A., Alsghaier, H., & Alkhateeb, K. (2018). Evaluating the Understandability of

Android Applications. International Journal of Software Innovation, 6(1), 44-57.

doi:10.4018/IJSI.2018010104

Sakshica, & Gupta, K. (2015). Various Raster and Vector Image File Formats. International

Journal of Advanced Research in Computer and Communication Engineering, 4(3),

268-271.

Spohrer, K., Kude, T., Schmidt, C., & Heinzl, A. (2013). Knowledge Creation In Information

Systems Development Teams: The Role Of Pair Programming And Peer Code

Review. European Conference on Information Systems 2013. Paper 213. Atlanta: AIS

Electronic Library.

Sun Microsystems Inc. (1997). JavaBeans. 1.01-A. (G. Hamilton, Ed.) Mountain View.

Retrieved December 6, 2020 from https://download.oracle.com/otn-pub/jcp/7224-

javabeans-1.01-fr-spec-oth-JSpec/beans.101.pdf

118

Turkey, J. (1977). Exploratory Data Analysis. Reading: Addison Wesley.

W3C. (2020, November 16). Link Purpose (Link Only). Retrieved November 2020, 25 from

w3.org: https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-

mechanisms-link.html

Wang, Y. (2009). What Motivate Software Engineers to Refactor Source Code? Evidences

from Professional Developers. 2009 IEEE International Conference on Software

Maintenance (pp. 413-416). Edmonton: IEEE. doi:10.1109/ICSM.2009.5306290

Wang, Y. (2009). What motivate software engineers to refactor source code? evidences from

professional developers - IEEE Conference Publication. Retrieved December 2, 2020

from IEEE Xplore:

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5290639/5306271/53

06290/5306290-fig-1-source-large.gif

Xie, Y., Wolf, W., & Lekatsas, H. (2003). Profile-driven Selective Code Compression. 2003

Design, Automation and Test in Europe Conference and Exhibition (pp. 462-467).

Munich: IEEE. doi:10.1109/DATE.2003.1253652

Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., & Do Prado Leite, J. (2005).

Reverse Engineering Goal Models from Legacy Code. 13th IEEE International

Conference on Requirements Engineering (RE'05) (pp. 363-372). Paris: IEEE.

119

Appendix

A. Content of the Exported Coding Style Settings in CodeStyle.xml
<code_scheme name="fanat" version="173">
 <option name="RIGHT_MARGIN" value="180" />
 <JavaCodeStyleSettings>
 <option name="IMPORT_LAYOUT_TABLE">
 <value>
 <package name="android" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="com" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="junit" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="net" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="org" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="java" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="javax" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="" withSubpackages="true" static="false" />
 <emptyLine />
 <package name="" withSubpackages="true" static="true" />
 <emptyLine />
 </value>
 </option>
 </JavaCodeStyleSettings>
 <codeStyleSettings language="JAVA">
 <option name="IF_BRACE_FORCE" value="3" />
 <option name="DOWHILE_BRACE_FORCE" value="3" />
 <option name="WHILE_BRACE_FORCE" value="3" />
 <option name="FOR_BRACE_FORCE" value="3" />
 </codeStyleSettings>
 <codeStyleSettings language="XML">
 <indentOptions>
 <option name="CONTINUATION_INDENT_SIZE" value="4" />
 </indentOptions>
 <arrangement>
 <rules>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>xmlns:android</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>^$</XML_NAMESPACE>
 </AND>
 </match>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>xmlns:.*</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>^$</XML_NAMESPACE>
 </AND>
 </match>
 <order>BY_NAME</order>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>.*:id</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>http://schemas.android.com/apk/res/android</XML_NAMESPACE>
 </AND>
 </match>
 </rule>
 </section>
 <section>

120

 <rule>
 <match>
 <AND>
 <NAME>.*:name</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>http://schemas.android.com/apk/res/android</XML_NAMESPACE>
 </AND>
 </match>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>name</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>^$</XML_NAMESPACE>
 </AND>
 </match>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>style</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>^$</XML_NAMESPACE>
 </AND>
 </match>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>.*</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>^$</XML_NAMESPACE>
 </AND>
 </match>
 <order>BY_NAME</order>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>.*</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>http://schemas.android.com/apk/res/android</XML_NAMESPACE>
 </AND>
 </match>
 <order>ANDROID_ATTRIBUTE_ORDER</order>
 </rule>
 </section>
 <section>
 <rule>
 <match>
 <AND>
 <NAME>.*</NAME>
 <XML_ATTRIBUTE />
 <XML_NAMESPACE>.*</XML_NAMESPACE>
 </AND>
 </match>
 <order>BY_NAME</order>
 </rule>
 </section>
 </rules>
 </arrangement>
 </codeStyleSettings>
</code_scheme>

Listing 18: The defined coding standard exported by Android Studio as XML. © by SFA Sport GmbH

121

B. Results of Code Complexity Metrics Calculations

Table 17: The corresponding hashes within the repository56 for each version.

Table 18: The calculated metrics for versions 1 to 7 each.

56 https://gitlab.com/fan-at/app/android

Version Hash Date

1 e9620d752a6ee75ffcee0446b3ffb68dbcc8202f 22-Nov-18
2 733b185262b78e83e4e6b844eeb7ba30b9784e9f 22-Mar-19
3 eae0e9514cc8f4cdd5829bf4b5b87bb8bdbe03fb 19-Jul-19
4 0baddeefd78e27ff5ba72194012c80a0f32d6013 15-Nov-19
5 93245af07066d20f9c9561b783c051e28eb02135 24-Mar-20
6 f5645ab0c32a00b54205d54fffea969a6d289309 28-Jul-20
7 ed9ede3e660618c1c09bd18ea338c984033456ec 24-Nov-20

OCavg Ø WMC ∑ WMC Ø ev(G) ∑ ev(G) Ø iv(G) ∑ iv(G) Ø v(G) ∑ v(G) Ø Cyclic Ø Dcy Ø Dcy* Ø Dpt Ø Dpt* Ø PDcy Ø PDpt Ø Files ∑ LOC ∑ AHF AIF CF MHF MIF PF
2.02 7735 22.68 3827 1.31 6289 2.15 7606 2.6 84.27 8.35 197.9 5.93 170.93 8.51 8.51 309 47221 85.61 54.86 5.45 39.77 28.39 63.65
1.97 9638 21.32 4860 1.29 7938 2.11 9505 2.53 118.59 8.4 262.75 6.03 230.28 8.92 8.92 391 59796 84.21 51.98 4.51 40.15 29.57 60.81
1.95 10322 21.59 5208 1.29 8456 2.09 10189 2.52 128.17 8.67 281.48 6.24 246.67 9.1 9.1 407 64149 84.75 50.96 4.49 40.1 29.72 59.95
1.95 10415 21.97 5312 1.29 8585 2.08 10362 2.52 124.08 8.6 276.33 6.19 241.36 9.05 9.05 403 63936 85.08 50.02 4.49 39.55 28.65 61.19
1.94 10652 22.01 5455 1.29 8894 2.11 10740 2.55 113.68 8.51 265.5 6.03 231.96 8.98 8.98 414 65058 84.41 50.12 4.32 39.18 29.36 59.24
1.9 9383 21.82 4783 1.28 7850 2.09 9374 2.5 117.21 8.55 242.61 6.1 217.82 9.04 9.04 371 56134 82.68 77.49 4.76 37.99 28.29 77.92
1.82 9423 20.18 5146 1.26 7930 1.94 9432 2.31 136 8.28 271.22 5.93 245.45 9.3 9.28 393 54844 82.31 80.06 4.23 42.58 30.65 61.62

OCavg Ø WMC ∑ WMC Ø ev(G) ∑ ev(G) Ø iv(G) ∑ iv(G) Ø v(G) ∑ v(G) Ø Cyclic Ø Dcy Ø Dcy* Ø Dpt Ø Dpt* Ø PDcy Ø PDpt Ø Files ∑ LOC ∑ AHF AIF CF MHF MIF PF
3.14 2166 39.38 734 1.6 1691 3.68 2172 4.72 111.27 12.36 242.58 2.31 177.82 11.29 2.29 53 13317 98.21 65.95 48.3 53.52 33.52 165.4
3.15 2314 40.6 771 1.59 1821 3.76 2344 4.84 151.25 12.88 311.98 2.39 238.28 11.57 2.71 54 14305 97.96 65.35 50.2 53.37 32.77 170.8
3.17 2561 40.65 849 1.58 2025 3.78 2604 4.86 158.1 12.84 336.92 2.49 244.75 12.14 3 57 15650 96.5 64.49 49.6 52.09 31.68 179.8
3.08 2612 42.13 901 1.61 2071 3.7 2674 4.78 149.55 13.15 331.66 2.44 239.84 12.14 2.71 57 15804 96.72 62.97 49.6 51.65 30.66 191.7
2.95 2647 40.72 913 1.56 2121 3.63 2740 4.69 145.23 12.94 326.55 2.38 237.23 12.83 2.83 60 16161 95.92 63.32 46.2 50.8 31.31 206.4
2.94 2439 43.55 860 1.57 1938 3.53 2519 4.59 138.43 13.11 289.91 2.45 223.64 12.17 3 53 14629 95.31 80.41 51.6 51.57 31.88 230.4
2.11 2104 31.4 966 1.29 1645 2.19 2037 2.71 178.88 10.31 339.46 2.19 258.04 12.33 3.17 49 12101 95.47 80.9 32.8 64.17 33.53 106.4

OCavg Ø WMC ∑ WMC Ø ev(G) ∑ ev(G) Ø iv(G) ∑ iv(G) Ø v(G) ∑ v(G) Ø Cyclic Ø Dcy Ø Dcy* Ø Dpt Ø Dpt* Ø PDcy Ø PDpt Ø Files ∑ LOC ∑ AHF AIF CF MHF MIF PF
1.66 259 19.92 96 1.23 175 2.24 198 2.54 117.69 13.62 256.46 1.92 184.54 17.5 6 13 1749 87.32 34.15 227 36.83 50.94 100
1.65 262 16.38 99 1.22 179 2.21 202 2.49 131.06 11.56 271.19 1.81 220.31 17.5 6 13 1778 85.71 34.71 222 36.06 52.4 5750
1.72 285 17.81 102 1.23 186 2.24 220 2.65 140.06 11.69 285.25 1.94 236.94 18.5 6.5 13 1877 84.77 36.2 224 36.69 51.18 6000
1.73 287 17.94 102 1.23 188 2.27 222 2.67 137.25 11.75 283 2 232.56 18.5 6.5 13 1863 84.77 36.2 226 36.69 51.18 6000
1.72 279 17.44 100 1.2 180 2.17 219 2.64 132.75 11.69 272.25 2.06 236.94 18 6.5 13 1827 84.72 37.2 224 36.19 52.77 5850
1.69 277 17.31 100 1.18 182 2.14 220 2.59 128.25 11.38 247.5 2.38 215.06 17 8 13 1830 85.43 85.19 218 35.75 52.46 6450
1.38 252 15.75 147 1.06 198 1.42 226 1.63 111.81 11 268.12 2.56 206.44 18.67 7 13 1502 79.45 90.34 210 59.69 55.38 304.4

OCavg Ø WMC ∑ WMC Ø ev(G) ∑ ev(G) Ø iv(G) ∑ iv(G) Ø v(G) ∑ v(G) Ø Cyclic Ø Dcy Ø Dcy* Ø Dpt Ø Dpt* Ø PDcy Ø PDpt Ø Files ∑ LOC ∑ AHF AIF CF MHF MIF PF
2.75 815 17.72 422 1.74 652 2.69 839 3.47 99.78 10.04 234.5 2.2 168.65 34 18 20 4538 86.23 2.37 129 16.33 10.71 236.1
2.6 1186 17.19 615 1.64 956 2.55 1228 3.27 148.58 10.14 321.25 2.22 237.01 27 13 31 6549 83.37 17.03 85.6 27.87 14.9 125.2
2.53 1355 16.94 702 1.64 1079 2.52 1393 3.25 155.62 10.19 329.69 2.2 257.09 26 13 33 7687 86.3 15.29 81.4 27.95 13.82 134.1
2.57 1377 17.43 694 1.63 1108 2.59 1423 3.33 154.43 10.24 331.01 2.18 248.77 26 13 32 7774 86.99 15.03 85.9 28.44 13.78 135.4
2.74 1403 18.22 711 1.65 1192 2.77 1545 3.59 128.96 9.74 315.04 2.13 214.96 21.5 11.5 32 7623 86.28 13.25 78.6 21.5 13.84 117.8
2.42 1074 16.52 614 1.6 919 2.39 1175 3.06 147.35 9.48 303.92 2.2 230.45 20.5 12 31 5855 82.63 75.4 74 20.7 12.07 239.5
2.4 1059 15.57 610 1.55 906 2.3 1122 2.85 165.06 9 335.74 2.5 254.37 15 12 36 5836 83.49 76.04 58.1 22.46 21.16 115.2

OCavg Ø WMC ∑ ev(G) ∑ ev(G) Ø iv(G) ∑ iv(G) Ø v(G) ∑ v(G) Ø
3.24 285 87 1.98 230 5.23 290 6.59
3.2 352 105 1.88 283 5.05 371 6.62
3.25 357 105 1.88 287 5.12 378 6.75
3.15 346 105 1.88 281 5.02 370 6.61
3.01 304 88 1.63 288 5.33 387 7.17
3.17 241 79 1.84 265 6.16 347 8.07
1.32 215 149 1.09 190 1.39 201 1.47

Game

Entity

Adapter

GameFragment

Complexity Class Complexity Method Dependency Class Dep. Package Files & LOC MOOD
Java

122

Figure 49: Diagrams of all metrics taken for the project including complexity, dependencies, number of Java files, lines of
code, and the MOOD metrices.

123

Figure 50: Experiment to calculate the cyclic complexity for survey question D1. The refactored method to the right results
in a lower complexity only by refactoring one long method.

124

C. Questionnaire of Survey

Introduction to the Questionnaire

The aim of this survey is to find out what opinion the software engineering community has

about code complexity.

Dear participant,

Thank you for taking part in my survey.

My name is Lorenz Kofler and I am student at the Technical University of Graz and University

of Graz. Currently, I am doing my Master's thesis on complexity of code.

This survey is about programming, so you should have programming experience. If this is not

the case, I thank you anyway that you wanted to participate.

The survey will take up to ten minutes. Some of the questions are built upon code of a Java

Android application, but you do not need any prior knowledge. Performance issues are not

relevant in any question, in doubt. The data obtained with this survey will only be used for

scientific purposes. All data is collected anonymously, so no conclusions can be drawn about

certain people. You are welcome to pass this questionnaire on to other software developers.

If you have any questions, please do not hesitate to contact me (lorenz.kofler@stu-

dent.tugraz.at). Thank you for your support!

Best regards,

Lorenz Kofler

PS: As code is presented within this survey, you should use a desktop browser. In case the font

size is too small, please zoom into the survey. Thank you.

There are 20 questions in this survey

125

Content of Questionnaire

126

127

128

129

130

131

132

133

134

135

Closing Words

Thank you for taking part in my survey.

If you have any questions, please do not hesitate to contact me (lorenz.kofler@stu-
dent.tugraz.at).

		2020-12-10T15:19:05+0100
	Signature Box
	Lorenz Kofler
	Signature

