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Abstract

Computational modeling has emerged as a valuable tool for understanding the structural

and electronic properties of organic and hybrid nanomaterials. Especially charge transport

is of great interest, as the ability to efficiently transport charges is a beneficial property

for many applications. Thus, in the field of organic semiconductors, numerous models

for describing and predicting charge transport in these materials have been developed.

Despite the large efforts that have been made, no single model which can describe

charge transport for the entire range of organic semiconductors, comprising different

geometric and electronic structures, has been identified. However, closely inspecting

the various transport models one can identify certain quantities that can be modeled

employing dispersion corrected density functional theory and used for getting a qualitative

understanding of charge transport in a material. Such quantities are the electronic

couplings between neighboring molecules within the crystalline structure of the material

or the effective masses of the respective charge carriers.

This thesis is concerned with obtaining a reliable description of these quantities for crys-

talline organic semiconductors, porous metal-organic frameworks, and layered covalent

organic frameworks. Especially the influence of the structural arrangement of neighboring

molecular moieties within these materials on the respective electronic couplings and effec-

tive masses is investigated. Furthermore, the correlation between the electronic couplings

of a certain molecular arrangement and the energetic stability of this arrangement is

investigated.

First, based on the example of a prototypical organic semiconductor, different approaches

for obtaining the electronic couplings and effective masses are evaluated. It is shown,

how fitting a suitably complex tight-binding model function to the electronic bands

obtained from density functional theory calculations yields a reliable description of the

intermolecular electronic couplings. Furthermore, based on this model, one not only

gets all the electronic couplings of interest but can also decompose the electronic band

structure into the individual contributions stemming from these couplings.
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Based on quinacridone one can construct a model system and investigate the electronic

couplings between neighboring molecules and this arrangement’s energetic stability simul-

taneously. The physical origin of the correlation between energetic stability and electronic

coupling is investigated for the periodic structure by decomposing the interaction energy

between the molecules into physically well-defined contributions. For layered covalent

organic frameworks, the interaction energy between consecutive layers is decomposed

into individual contributions, similar to the quinacridone model system. This allows

investigating how individual interactions determine the energetic stability of specific layer

arrangements.

Another part of the present work is concerned with transferring knowledge on charge

transport in organic semiconductors to the newly emerging field of electrically conductive

metal-organic frameworks. Several metal-organic frameworks exist where charge transport

pathways similar to organic semiconductor crystals are found. For Zn2(TTFTB), a

representative example of these materials, the electronic couplings between neighboring

molecular moieties comprising the transport pathway are investigated as a function of

the arrangement of these moieties. Additionally, the influence of defects on the charge

transport relevant quantities (electronic couplings and effective masses) is discussed.
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Kurzfassung

Computerunterstützte Modellierung hat sich als wertvolles Werkzeug erwiesen um die

strukturellen und elektronischen Eigenschaften organischer und hybrider Nanomaterialien

zu verstehen. Insbesondere der Transport von elektrischen Ladungen ist von großem Inter-

esse, da die Fähigkeit, Ladungen effizient zu transportieren, für viele potentielle Anwen-

dungen eine vorteilhafte Eigenschaft darstellt. Auf dem Gebiet der organischen Halbleiter

wurden daher zahlreiche Modelle zur Beschreibung und Vorhersage des Ladungstransports

entwickelt. Trotz der großen Anstrengungen wurde kein einheitliches Modell identifiziert,

das den Ladungstransport für die gesamte Palette organischer Halbleiter mit unter-

schiedlichen geometrischen und elektronischen Strukturen beschreiben kann. Bei genauer

Betrachtung der verschiedenen Transportmodelle können jedoch bestimmte Größen iden-

tifiziert werden, die mithilfe der Dichtefunktionaltheorie modelliert und zum qualitativen

Verständnis des Ladungstransports in einem Material herangezogen werden können.

Solche Größen sind die elektronischen Kopplungen zwischen benachbarten Molekülen

innerhalb der Kristallstruktur des Materials sowie die effektiven Massen der jeweiligen

Ladungsträger.

Die vorliegende Dissertation befasst sich mit der Beschreibung dieser Größen für kristalline

organische Halbleiter, poröse metallorganische Gerüstverbindungen und kovalente organis-

che Netzwerke. Insbesondere wird der Einfluss der strukturellen Anordnung benachbarter

Moleküleinheiten innerhalb dieser Materialien auf die jeweiligen elektronischen Kop-

plungen und effektiven Massen untersucht. Weiterhin wird die Korrelation zwischen den

elektronischen Kopplungen einer bestimmten molekularen Anordnung und der energetis-

chen Stabilität dieser Anordnung untersucht.

Zunächst werden am Beispiel eines prototypischen organischen Halbleiters verschiedene

Ansätze zur Ermittlung der elektronischen Kopplungen und effektiven Massen verglichen.

Es wird gezeigt, wie die Anpassung einer geeignet komplexen tight-binding Modellfunk-

tion an die elektronischen Bänder, welche mithilfe der Dichtefunktionaltheorie berechnet

wurden, eine zuverlässige Beschreibung der intermolekularen elektronischen Kopplungen
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liefert. Darüber hinaus erhält man basierend auf diesem Modell alle inkludierten elektro-

nischen Kopplungen, und außerdem kann die elektronische Bandstruktur in die Beiträge

der einzelnen Kopplungen zerlegt werden.

Weiters, kann man basierend auf Chinacridon ein Modellsystem konstruieren um die elek-

tronischen Kopplungen zwischen benachbarten Molekülen und die energetische Stabilität

dieser Anordnung simultan zu untersuchen. Der physikalische Ursprung der Korrelation

zwischen energetischer Stabilität und elektronischer Kopplung wird für die periodis-

chen Systeme untersucht, indem die Wechselwirkungsenergie zwischen den Molekülen in

physikalisch genau definierte Beiträge zerlegt wird. Bei geschichteten kovalenten organis-

chen Netzwerken wird die Wechselwirkungsenergie zwischen aufeinanderfolgenden Lagen

ähnlich wie beim Chinacridon-Modellsystem in einzelne Beiträge zerlegt. Dies ermöglicht

es zu untersuchen, wie einzelne Wechselwirkungen die energetische Stabilität bestimmter

Anordnungen der Lagen des Materials bestimmen.

Ein weiterer Teil der vorliegenden Arbeit befasst sich damit Wissen über den Ladungstrans-

port in organischen Halbleitern auf das neu aufkommende Gebiet der elektrisch leitenden

metallorganischen Gerüstverbindungen zu übertragen. Es gibt mehrere metallorganische

Gerüsteverbindungen, in denen elektrische Ladungen entlang ähnlicher Pfade wie in organ-

ischen Halbleiterkristallen transportiert werden. Für Zn2(TTFTB), ein repräsentatives

Beispiel dieser Materialien, werden die elektronischen Kopplungen zwischen benach-

barten molekularen Einheiten, als Funktion der Anordnung dieser Einheiten untersucht.

Zusätzlich wird der Einfluss von Defekten auf die ladungstransportrelevanten Größen

diskutiert.
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Structure of the Thesis

The following work will be a cumulative PhD Thesis, consisting of peer-reviewed scientific

articles which I authored during my PhD studies. According to the structure suggested by

the Doctoral School of Physics it consists of a general introduction putting the work into

context, followed by the set of original publications including the respective supporting

information.

During my time as a PhD student I prepared 5 scientific publications as the leading

author. The first paper (see 2D Materials 2018, 5, 035019 - i.e. Ref. [1]) is based on ideas

that where developed during the course of my Master Thesis. Therefore, it is not included

here. At the present stage three manuscripts are enclosed as original publications. The

fourth one is included as a draft which is about to be submitted. The introductory part

of this thesis is meant to introduce the scientific questions which have been tackled in

the individual Publications together with the relevant methods that were used.

Prior to each publication the contributions of each (co-)author are listed.
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1. Introduction

Solid materials consist of closely packed entities (atoms or molecules), which strongly in-

teract. The nature of these entities, their arrangement, and the corresponding interactions

define the mechanical, electrical, optical, magnetic, and thermal properties of a solid. In

this work I focus on the electrical properties of crystalline solids with special interest in

charge transport. Efficient charge transport is one of the essential properties for numerous

applications. Therefore, from an application oriented as well as from a fundamental

perspective it is important to understand charge transport in a solid (material) and

how it might be engineered. The general term materials is, of course, very broad and

one needs to specify which kind of materials are studied. So within this thesis I focus

on organic and hybrid materials which exhibit a great versatility in engineering their

actual structures and thus, their properties (electrical, optical, magnetic, thermal). Three

specific material types are studied in this context: crystalline organic semiconductors

(OSCs), metal-organic frameworks (MOFs), and covalent organic frameworks (COFs).

These materials seem quite different at first glance. Nevertheless, I will present how one

can get a qualitative understanding of charge transport within these materials based

on a small set of parameters. This will allow me to consider some of the findings which

have been obtained for the already quite mature field of OSCs and transfer them to the

emerging class of electrically conductive COFs and MOFs.

All major content of this PhD thesis has been published (or is under review) in scientific

journals. Therefore, this content is presented in the form of the corresponding publications.

Nevertheless, in the very first chapter of the thesis I introduce the scientific questions that

have been addressed within these works. Importantly, I outline how the various questions

are connected to one another and how they help to improve our understanding of the

interplay between the atomistic structure of the materials and their charge transport

properties while also identifying useful methodologies for doing so. At the end of this

thesis all major findings are wrapped up in a final chapter, Section 6, where the individual

findings are connected across the different materials.

1



1. Introduction

Before we dive right into the contents I briefly present the structure of this introductory

chapter of the thesis. Let me start by introducing crystalline organic semiconductors

in Section 1.1. There I also review the huge number of transport models that have

been developed for this kind of materials. I will show that despite this large number of

models and their differences certain common parameters can be identified, which allow a

qualitative description of charge transport. Further considering the available literature

on OSCs one can find that the majority of these materials usually exhibits packing

arrangements with rather poor transport properties. To identify potential mechanisms

behind this correlation an instructive example of an OSC has been considered. This

OSC is based on the small H-bonded organic pigment quinacridone and is introduced

in Section 1.1.4. Two aspects have been addressed considering this example: (i) Which

parameters can be used to get a qualitative description of charge transport within such

a material? (Publication I ) (ii) Does the size of intermolecular electronic couplings

influence the energetic stability of relative molecular arrangements? (Publication II )

As a next step, metal-organic frameworks are introduced in Section 1.2, with a special

focus on electrically conductive systems. There, the structures of these systems are

considered, as well as the charge transport mechanisms relevant in such systems. One of

these mechanisms, the so called through-space charge transport, shows great similarity to

mechanisms present in crystalline OSCs. Therefore, the knowledge gained by studying

charge transport in OSCs is used for understanding charge transport in these MOFs.

Again, special attention is paid to structure to property relationships (Publication

III ).

The last class of systems which is considered in this work are covalent organic frameworks.

These systems are introduced in Section 1.3 with special focus put on two-dimensional

(2D) COFs. Comparing these layered materials to the OSCs presented in Section 1.1 one

can identify several similarities in their interlayer (intermolecular) interactions. As the

electronic bands along the stacking direction of layered COFs largely rely on the overlap

of the π-systems of neighboring layers it is of great importance to identify the preferred

layer arrangement. Equally important is to identify the individual interactions that are

active and how they determine the stacking arrangement. These issues are tackled and

presented in Publication IV .

All the publications included in this thesis rely on dispersion corrected density functional

theory (DFT). Therefore, in Section 1.4 a short overview of the basic concepts of DFT

is provided. Additionally, tight binding models used for obtaining transfer integrals by

fitting these models to the DFT data are discussed. Already within Publication II the

interaction energy of two molecules in the unit cell has been decomposed into physically
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1.1. Organic Semiconductors and Charge Transport

meaningful contributions. At this stage the decomposition was done by a collaborator.

For studying the COFs in Publication IV I developed a custom decomposition scheme,

which is largely based on one of the very few available schemes for periodic systems. This

newly derived scheme together with its parent is presented in Section 1.4.3.

1.1. Organic Semiconductors and Charge Transport

Organic semiconductors are materials based on π-conjugated molecules or polymers.

These materials can exist as ordered crystalline solids or as amorphous (thin) films. Our

considerations focus on the former, ordered, highly crystalline systems. In general, one can

note that the usage of OSCs as active elements in (opto-)electronic and photonic devices is

increasing.5–15 This increase has certainly to do with the numerous advantegous properties

of these materials comprising the tunability of their electrical and optical properties,16

mechanical flexibility,17 and the possibility to build biocompatible electronics.18–20 For all

these applications charge transport is an essential property. However, it turns out that the

description of charge transport within these materials is far from straightforward. In the

following, we are going to elaborate on the microscopic transport mechanisms that can

be active in OSCs. The following sections will be largely based on three reviews: The first

one by Coropceanu et al.21 is already a bit older but still covers all the essential basics.

The second, more recent, one by Oberhofer et al.22 presents a deeper level of theory

while also including recent advancements. The third review, by Fratini and colleagues is

a major foundation for the following considerations on transient localization theory.23

Let us start with the general definition of the electrical conductivity σ of any material.

This conductivity is determined by the density of mobile charge carriers ρc and their

mobility µ - as shown in equation 1.1. Here the conductivity σ and the mobility µ are

tensors of rank 2. The charge of the carriers is denoted by q.

σ = qρcµ (1.1)

The charge carrier density ρc of a material can be seperated into intrinisic and extrinsic

contributions. The intrinsic contributions arise from the thermally excited states of the

electronic bands while the extrinsic contributions emerge from defects to the structure of

the material.22 Such defects can be missing molecules, interstitial molecules, or interfaces

with other (different) materials.22 A detailed and complete assessment of the charge

transport properties of an OSC or related materials would have to consider both, the

3



1. Introduction

density of mobile charge carriers and the charge carrier mobility. However, focussing

on the latter, one can already get a decent understanding of charge transport within

a material. Therefore, we are going to focus our considerations on the description of

µ. This is insofar a viable strategy, as including extrinsic contributions to the carrier

density can be rather challenging within computational models. One reason making the

description of ρc challenging is that it typically depends on operation conditions.

In the following, we consider the charge carrier mobility and the parameters determining

this mobility. Independent of the underlying transport mechanism, the mobility can be

defined as the velocity response of a charge carrier to an external electric field.22 The

corresponding expression is given in equation 1.2. Please note that in general the electric

field as well as the resulting velocity are three-dimensional (3D) vectors. Therefore, the

mobility, µ, and consequently the conductivity, σ, are rank 2 (3 x 3) tensors.

µij =
〈v〉i
Ej

(1.2)

Furthermore, one has to be aware that also other definitions of the charge carrier mobility

exist - linearizing 〈v〉 with respect to the field or linking charge carrier mobilities to the

classical kinetic theory via the Einstein-Smulochowski24,25 equation. The corresponding

expression is shown in equation 1.3, where the diffusion coefficient Dij is typically field

dependent. This expression relates the carrier mobility to the diffusion coefficient of a

material and the thermal energy kBT . Important to note is that the equality of the

introduced definitions of the charge carrier mobility is not guaranteed for all regimes of

charge transport.22 Therefore, which mobility definition is employed has to be treated

with caution and this choice might have to be adapted depending on the experimental

technique that serves as the reference.22

µij =
Dij q

kBT
(1.3)

The determination of this charge carrier mobility then indeed depends on the transport

mechanism dominating in the material of interest. In general, one can distinguish two

limiting cases, fully coherent band transport and incoherent hopping transport.

In the limit of hopping transport and considering crystalline materials, charge carriers are

localized on lattice sites and can perform activated hops between these sites. For band

transport, charge carriers are fully delocalized in electronic bands. The carriers can move
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1.1. Organic Semiconductors and Charge Transport

through the crystal with an effective mass. This effective mass depends on the inverse of

the curvature of the energy dispersion relation at the band extremum. In the following, we

are going to briefly review these two limiting regimes and we are also going to comment

on intermediate cases. Such intermediate cases mean that electron-phonon coupling plays

an essential role with respect to the transport properties (charge carrier mobility) of

a material. The purpose of this review is not to give the reader a complete overview

of all the details of each transport regime and the various theories or methodological

approaches that have been developed for each of them. Rather, this review shall highlight

the basic concepts of the transport regimes and which parameters are the essential ones

determining the charge carrier mobility. Importantly, we are going to show that electronic

couplings between neighboring molecules are essential quantities for understanding charge

transport within OSCs. As the magnitude of such electronic couplings is intimately

related to the relative arrangement of the involved molecules21 this quantity will allow us

to investigate the interplay between structure and charge transport properties. For more

detailed and thorough reviews the reader is refered to References [21–23, 26].

1.1.1. Hopping Transport

Hopping transport is a process describing charge transport in crystalline (or also disor-

dered) materials where charge carriers are localized at specific sites. Charge transport

then occurs through activated discrete jumps (hops) of the charges between the sites. In

a molecular crystal, such sites can be either single molecules, smaller parts of a molecule,

or a collection of molecules. This depends on the degree of localization present in the

material. In general, three mechanisms can lead to the localization of charge carriers in a

crystalline material.22 Within small polaron theory the interaction of the charge carrier

with the medium can cause a localization. This interaction means that the charge causes a

local (nuclear) distortion, which leads to a stabilization of the localized charge.22 Another

recent theory by Troisi and co-workers23,27–29 describes that the localization is caused by

thermal fluctuations of the coupling between sites (molecules). These fluctuations arise

from the thermal motions of the molecules, which induce changes of the couplings between

the involved molecules. Transient localization theory builds upon this coupling and has

proven highly succesfull for describing the charge transport properties of high-mobility

organic semiconductors.27 This theory will be described in Section 1.1.3. Finally, static

disorder can also induce a localization of charge carriers within the system.

Regardless of the underlying mechanism causing the localization of charge carriers, within

hopping models charge transfer is described through discrete jumps between lattice sites

and expressed in terms of transfer rates. A famous and still widely used approach is
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1. Introduction

the Marcus charge transfer rate.30,31 In the semi-classical limit (treating the molecular

vibrations as classical oscillators) the corresponding expression for the transfer rate kab
can be expressed as shown in equation 1.4.

kab =
2π

~
t2ab√

4πλkBT
e
− λ

4kBT (1.4)

Here tab is the electronic coupling (transfer integral) between polaronic sites a and b

tab = 〈Ψa| Ĥ |Ψb〉, and λ is the reorganization energy.

Deriving an expression for the charge transfer rate based on polaronic rate theory yields

an analagous expression see Ref [22]. In particular, when considering the non-adiabatic

limit one finds that the derived transfer rate (equation 1.5) is analogous to the Marcus

rate:

kab =
2π

~
1√

4πλkBT
t2ab e

−∆G‡
kBT Γn. (1.5)

In this non-adiabatic limit the electronic coupling is much smaller than the reorganization

energy. As a consequence, λ+ ∆G0 >> tab, which then results in the above expression

for the charge transfer rate. Here ∆G0 is the difference in free energy between the initial

polaronic state a and the final polaronic state b and ∆G‡ is the activation energy of

the transfer process. Furthermore, Γn is the nuclear tunneling factor, which corrects for

quantum effects of the nuclear degress of freedom that can lead to an enhanced transfer

rate. This correction factor is often set to 1 as the enhancements of the transition rates

are mostly relevant at rather low temperatures.22

Based on the rates in equations 1.4 and 1.5 we find that they are proportional to the

square of the electronic coupling between sites a and b. Furthermore, the charge carrier

mobility is proportional to the rate kab and thus to t2ab as indicated in equation 1.6.

µab ∝ kab ∝ t2ab (1.6)

This proportionality between the square of the electronic coupling and the charge carrier

mobility is especially helpful for obtaining a qualitative description of the interplay

between structural arrangements in OSCs and charge transport. It has been shown

that depending on the relative displacement of consecutive molecules, the electronic

coupling between these entities can vary by orders of magnitude.21,32–36 Assuming hopping

transport, as described above, this orders of magnitude change of the intermolecular
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electronic coupling would then translate into comparable changes of the carrier mobility.

Thus, already from determining molecular arrangements in the crystal and calculating

the intermolecular electronic couplings one gets a first understanding of charge transport

within the material.

In addition to the intermolecular electronic coupling tab being an essential quantity for

describing charge transport in OSCs also the intermolecular spacing r can be important.

To show this, let us consider a charge carrier moving along a simple 1D array of molecules

with an intermolecular spacing r. For such a system one can write the diffusion coefficient

as D = r2 kab and link this with equation 1.3 to the charge carrier mobility. This means

that the charge carrier mobility is not onyl proportional to the square of the electronic

coupling but also to the square of the intermolecular spacing µ ∝ (r · tab)2, i.e. the mean-

free displacement of the charge carrier. Therefore, for making qualitative statements about

hopping transport within a material, one has to consider the respective intermolecular

electronic couplings, as well as the corresponding lattice spacings. Considering only the

electronic coupling can be quite misleading as one can see from the data discussed in

Publication I (Chapter 2).

1.1.2. Band Transport

The other limiting case for charge transport is fully coherent band transport. Within

this regime charges are assumed to be delocalized in periodic bands. The basis of this

transport theory is the solution of the electronic problem for an unperturbed periodic

lattice. There the charge carriers form Bloch waves which have a certain momentum k

and energy εα(k) and can travel through the material as wavepackages.37

Furthermore, upon negelecting scattering processes, all transport properties of a material

are determined by its electronic band structure, i.e. the energy dispersion relation

εα(k). As an example for such an electronic band structure we consider a polymorph of

quinacridone, for which the electronic bands have been calculated in Publication II

(Ref [2]). They are shown in Figure 1.1.

When applying an electric field (see equation 1.2 for the corresponding mobility defini-

tion) charge carriers experience an acceleration and their velocity changes simply by a

Newtonian equation of motion.22,37 Now, one very important aspect to consider is that in

realistic systems there are various effects present which act contrary to the acceleration of

the particles. These effects are scattering events on defects or lattice vibrations (phonons).

The resulting interplay between the acceleration caused by the electric field and the

deceleration caused by scattering events leads to a steady-state condition. Consequently,

7
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Figure 1.1.: Calculated electronic band structure of the α-polymorph of quinacridone (solid lines). The
energies are aligned relative to the top of the valence band and the first Brillouin zone is
shown as an inset. The lower panel includes a zoom into the regions of the valence and the
conduction band. A tight-binding model has been fitted to the bands as discussed in Section
1.4.2 and is shown by the black dash dotted line. Reprinted with permission from Ref [2].

charge transport in this regime can be modelled by the Boltzmann transport equation.22,37

By introducing the so called relaxation-time approximation one obtains a time constant τ

describing the average time between scattering events.37 As a result one gets the mobility

expression shown in equation 1.7.

µij =
q

m∗ij
τij (1.7)

Here q denotes the charge, τij is the mean relaxation time between collisions (scattering

events) and m∗ij is the effective mass. Both, τij and m∗ij are rank-2 (3 x 3) tensors, with

i and j being indices that denote the reciprocal space vectors. Based on expression 1.8

for semiconductors one can calculate the effective mass directly from the electronic

band structure as the inverse of the curvature of the electronic band at the respective

extremum. For holes, this means that one has to consider the valence band maximum,
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1.1. Organic Semiconductors and Charge Transport

while for electrons the conduction band minimum is the relevant one. As long as one

does not have an analytical expression for the electronic band structure, this means that

the components of the effective mass tensor have to be calculated numerically along the

reciprocal space directions.

(
1

m∗

)
ij

=
1

~2
∂εα(k)

∂ki∂kj
(1.8)

However, when one is interested in only a single spatial direction, or the material is

completely isotropic, the effective mass can be estimated in simpler ways. The first one

relies on the energy dispersion relation derived from a nearly free-electron model.37 In

this approximation the dispersion relation εα(k) exhibits a parabolic dependence on

the reciprocal space vector k. The corresponding expression is shown in equation 1.9.

Consequently, this means that we can obtain the effective mass simply by fitting a

parabola to the energy eigenvalues close to the band extremum.† It is apparent that for

the considered 1D system |k| = k.

εα(k) = ε0 +
~2 |k|2

2m∗
(1.9)

Another approach would rely on fitting elaborate tight-binding model functions to the

energy eigenvalues of each band α. Such tight-binding models are discussed in detail in

section 1.4.2. At this point we will only briefly introduce a simple model for 1D systems

with only nearest-neighbor couplings tab between equivalent sites a and b being relevant.

The following expression is then obtained for the energy of the electronic states as a

function of wavevector k:‡

εα(k) = ε0,α − 2tab,α cos(kr) (1.10)

This expression can be fitted to the calculated band structure of band α. During this fit

ε0,α and tab,α serve as fit parameters. As a result we obtain an analytical expression for

the energy dispersion relation and can calculate the effective mass by taking the second

derivative of this system with respect to k:

†In principle, this ansatz using a parabolic form of the energy dispersion relation works for any
k-point. Here, however, we are mainly interested in the effective mass at the band extrema.

‡Writing the cosine in equation 1.10 as a Taylor series and truncating it after the second term one
obtains equation 1.9 describing the free electron model.
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m∗ =
(
2tab,α r

2 cos(kr)
)−1

(1.11)

Evaluating the expression for the effective mass given in equation 1.11 at a specific

k-point, kextremum, and entering the corresponding term into the expression for the charge

carrier mobility in equation 1.7 one finds that the mobility µ is proportional to the

electronic coupling tab,α and the square of the lattice spacing r:

µ ∝ tab r
2 (1.12)

This means that again the electronic coupling between neighboring sites is an essential

quantity for the description of µ.

As a result of fitting the expression in equation 1.10 to the electronic band, we also

obtained the intermolecular electronic coupling between neighboring sites a and b within

the 1D crystalline system. This approach of determining elaborate tight-binding model

functions and fitting them to the calculated electronic band structures is not restricted

to 1D systems. In Section 1.4.2 we are going to discuss such tight-binding approaches for

3D crystals with up to two different sites per unit cell.

1.1.3. Transient Localization Theory

Quite a large number of OSCs neither exhibit situations where the charge carrier is

fully localized at one site nor are these carriers fully delocalized in an electronic band.

As a result, charge transport within these materials is covered by neither hopping nor

band transport. This is a consequence of several microscopic interactions exhibiting

characteristic energies that are of comparable magnitude. These interactions are the

intermolecular electronic couplings tab (roughly 10 to 100 meV), the zero point energies of

intramolecular (100 to 200 meV) and intermolecular vibrational modes (around 10 meV),

and the polaron energy (50 to 200 meV).23 The latter denotes the energy that is gained

when the geometric structure of individual molecules is relaxed when these molecules

accomodate charge. Additionally, at room temperature (300 K), also the thermal energy

kBT=25 meV has a comparable magnitude. This similarity of the energy scales of all

these interactions comprises a major difficulty for the theoretical description of this

intermediate regime. There is no clear starting point from where to apply perturbation

theory. Therefore, an alternative approach is needed and has been developed over the last
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years. In the following, we provide an overview of the basics of this so called transient

localization theory based on Ref [23].

At the core of this approach is the observation that the intermolecular electronic couplings

(later also referred to as transfer integrals) are strongly affected by temperature induced

movements of the molecules. A reason for the emergence of these termal movements

(fluctuations) are the relatively weak van der Waals interactions present in typical OSCs.

Therefore, such movements at room temperature typically have amplitudes of around 0.1

Å.38 It is well known that the intermolecular transfer integrals are sensitive to molecular

displacements.21,32–36 Especially important is that the amplitudes of temperature induced

variations of the transfer integrals are comparable to the average value of the transfer

integrals - see the example of temperature induced variations in rubrene39 and see Ref

[40] for data on additional high-mobility molecular semiconductors. A major consequence

of this dynamic disorder is that the density of states (DOS) gets broadened and a

localization of the instantaneous eigenstates is induced.27 Importantly, this quantum

mechanical effect is especially strong at the band edges which is insofar relevant as the

free charge carriers typically reside there.28 However, it has been described that as the

localization fluctuates in time, localization in the traditional sense cannot be considered.27

Rather, it has been proposed that dynamic disorder causes a transient localization over

a length Lτ and for a certain fluctuation time τ .23,41,42 The resulting expression for the

charge carrier mobility, for such a situation becomes:23,27

µ =
e

kBT

L2
τ

2τ
(1.13)

Here, τ is given by the inverse of the typical intermolecular oscillation frequency as

τ ∼ ω−10 . Inspecting equation 1.13 we find that this expression for the mobility shows

no explicit dependence on the intermolecular transfer integrals. Any potential influence

stemming from the magnitude of the transfer integrals can only enter via the transient

localization lenght Lτ .

In a recent publication by Troisi and co-workers, Ref [27], it has been observed that this

transient localization theory works very well for high-mobility organic semiconductors.

The basis of the theoretical considerations in that research work is a two-dimensional tight-

binding model. Here, the authors argue that for high-mobility organic semiconductors

one can always identify a two-dimensional (high-mobility) plane within which charge

transport is likely to occur. This plane is identified as the one parallel to the π-stacking

interaction.

Based on this model, they suggest that the absolute value of the transfer integral has only
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a minor influence on the charge carrier mobility. Importantly, they find that achieving

situations where the transfer integrals between all neighboring molecules (sites) are of

(almost) equal magnitude and where the product of these transfer integrals shows a

positive sign maximize the transient localization length. Consequently also the charge

carrier mobility is maximized for such situations. This finding is in sharp contrast to the

findings for band transport (µ ∝ t) and hopping transport (µ ∝ t2). There, the absolute

value of the transfer integral directly influences the charge carrier mobility, i.e. a larger

transfer integral leads to an increased mobility. What indeed has a significant influence

on µ within transient localization theory is the ratio of the variations of the transfer

integral and its absolute value ∆t/t. The smaller this ratio the larger the charge carrier

mobility (see Ref [27]).

In contrast, for a one-dimensional system it has been shown in Ref [23] that optimizing the

absolute value of the transfer integral could lead to increased charge carrier mobilities. In

the range of typical parameters for rubrene, the authors identified a power-law dependence

of the transient localization length L2
τ , on the transfer integral t. Consequently, also the

charge carrier mobility µ shows the same dependence. An exhaustive discussion of how

varying the intermolecular π−π stacking distance, long axis shifts, reducing the coupling

to intermolecular motions, and increasing the intermolecular influences the dependence

of L2
τ on t can be found in the original work - Ref [23]. Here, we briefly summarize

the major findings of these investigations. It has been observed that decreasing the

π − π stacking distance of neighboring molecules will actually result in a decrease of the

mobility. Regarding shifts of neighboring molecules along their long molecular axis it

was derived that increasing the transfer integral will increase the charge carrier mobility.

These quite different dependencies are determined by system specific parameters and

thus prevent the derivation of a general rule for how the charge carrier mobility depends

on the transfer integral. As a result, for each system of interest which could be described

by a one-dimensional system analogous to Ref [23] seperate calculations are needed.

Remarks on the Engineering of Charge Carrier Transport

For the two limiting regimes, hopping and band transport, it is known and has been

demonstrated that the charge carrier mobility is proportional to the square of the transfer

integral (µ ∝ t for band transport and µ ∝ t2 for hopping transport). This means that in

cases where these transport models can be applied, increasing the value of the transfer

integral comprises a viable strategy for improving transport properties. For intermediate

cases, however, the absolute magnitude of the transfer integral alone might not be a

sufficient tuning handle. Within systems falling into that category one should rather
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consider achieving an isotropic situation, meaning that the transfer integrals to all nearest

neighbors have similar magnitudes.27 However, depending on the dimensionality of the

transport mechanism as well as the structure of the considered system, a correlation

between larger transfer integrals and enhanced charge carrier mobilities should still be

likely. Therefore, we are going to base the following considerations regarding charge

transport on the intermolecular transfer integrals within crystalline systems. In the spirit

of transient localization theory also the anisotropy of the transfer integrals is studied in

addition to the absolute values of these quantities. In Publication I several approaches

for evaluating the intermolecular transfer integrals and their respective anisotropy in

OSCs are tested. Further, in Publication II , we employ the findings of Publication

I and investigate whether intrinsic driving forces exist that push molecular arrangements

towards situations with small intermolecular transfer integrals. All these investigations are

done on an instructive test system, which we introduce in the following short subsection.

1.1.4. Quinacridone - An Instructive Model System

While reviewing the available approaches for describing charge transport in OSCs, in

the previous section transfer integrals between neighboring molecules were identified as

essential parameters. Improving the absolute value of these transfer integrals (for band

and hopping transport mainly) as well as lowering their anisotropy have been identified

as viable optimization strategies. Still, we need to find ways to determine these transfer

integrals in a reliable manner based on the electronic structure of the crystalline systems.

To address this issue we chose an instructive model system for organic semiconductor

crstals. This model system comprises the 3 known polymorphs of quinacridone (α, β,

and γ).43 Quinacridone is a small H-bonded organic pigment which has already been

succesfully used in organic field effect transistors.20,44 This system was chosen as a test

system for several reasons: (i) most typical interaction motifs for organic semiconductors

(π-stacking, H-bonding, and van der Waals interactions) are present in this system, (ii)

considering the three spatial directions, the dominant interaction along each of these

directions is fundamentally different, (iii) α-quinacridone contains only 1 molecule per

unit cell, which makes it quite easy to handle from a computational and methodological

point of view (see Section 1.4.2), and (iv) the structure of α-quinacridone reveals various

directions with similar intermolecular distances and arrangements, which is interesting

with respect to anisotropy. As an example, the structure of the α-polymorph can be

found in Figure 1.2.

Additional aspects rendering α-quinacridone a particularly relevant test system lie in

its rather complex electronic band structure. Several effects cause this complexity of
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Figure 1.2.: Crystal structure of the α-polymorph of quinacridone. a) Shows the unit cell of the system
with periodic replica of the original quinacrione molecule (blue rectangle) in directions a1,
a2, and a1 + a1. b) Side view of the crystal structure where the π-stacking direction is
marked with a grey arrow and the van der Waals stacking direction with a green arrow.
c) Perspective view to indicate the π-stacking and H-bonding direction (purple arrow).
Reprinted with permission from Ref [2].

the electronic bands. These are discussed in detail in Publication I (Section 2). At

this point, we only mention one example: along certain directions we observe that the

electronic bands comprise contributions from couplings between nearest as well as next-

nearest neighbor molecules. Furthermore, based on α-quinacridone we constructed an

orthorhombic model crystal, which was used in Publication II for investigating the

interplay between the magnitude of the transfer integrals and the energetic stability of

the corresponding molecular arrangements.

From the results presented in Publication II it will become apparent that driving

forces exist, which stabilize molecular arrangements with low transfer integrals. As a

consequence, in order to improve the charge transport properties of such systems one

has to come up with strategies to enforce molecular arrangements with large transfer

integrals. At this point metal-organic frameworks and covalent-organic frameworks become
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interesting. These materials typically offer a level of control over the stacking arrangement

that is hard to achieve in OSCs. Therefore, in the following sections we provide a short

introduction into these two materials classes.

1.2. Metal-Organic Frameworks

Reticular chemistry focuses on linking discrete chemical entities by strong bonds in order

to make extended, open framework structures like metal-organic frameworks (MOFs) and

covalent organic frameworks (COFs).45 As indicated in Figure 1.3 in the case of MOFs

organic molecules (ligands) and polynuclear metal clusters (nodes or secondary building

units) are linked together by coordination bonds to form porous frameworks with versatile

structures.45–52 The versatility of these structures emerges from the combination of the

synthetic control available when making organic molecules and the large geometric and

compositional variations achievable when designing the metal clusters. Importantly, the

resulting structures can have quite different properties with respect to porosity, surface

area, host-guest chemistry and their response to external stimuli (electric, magentic,

mechanical, or thermal).51 This, together with the good control over the achievable

structures renders MOFs interesting for various applications and has triggered an ever

growing interest in these materials. To give the reader a glimps on the different structures

of MOFs, we provide the structures of MOF-5,53 HKUST-1,54 and MOF-7455 as typical

examples in Figure 1.4.

Figure 1.3.: Schematic representation of MOFs indicating the structural variability of these systems.
The left panel shows how metal nodes and organic ligands are combined to form the (nano-)
porous crystal lattice. The right panel schematically shows that a variety of structures can
be achieved by combining different nodes and linkers. Adapted from Ref [51] with permission
of the Royal Society of Chemistry.

Traditionally, mainly owing to their exceptionally high-surface areas, MOFs have been

investigated for applications like gas storage,56–58 catalysis,59–61 and gas seperation.62,63
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Only recently, MOFs which are electrically conductive started to gain considerable at-

tention.51,64–66 Such systems can open up an avenue towards additional applications

like electrocatalysis,67–71 chemiresistive sensing,72–77 and energy storage.78–80 Therefore,

interest in designing electrically conductive MOFs as well as in understanding the under-

lying transport mechanisms has increased recently. In fact, several transport mechanisms

that are active in MOFs have been identified.51,64–66 Therefore, we briefly review these

transport mechanisms with a focus on so-called through-space charge transport which

is the mechanism relevant in Publication III . Importantly, for this transport mecha-

nism certain similarities to charge transport in OSCs can be identified, as will become

apparent below and in Publication III . Thus, inspired by these similarities, one aim

of Publication III was to trigger the transfer of knowledge from the established and

well advanced field of charge transport in OSCs to MOFs.

Figure 1.4.: Typical structures of MOFs with different topologies. Panel a) shows the structure
of MOF-5, which is formed from Zn4O nodes connected by 1,4-benzodicarboxylate
linkers. Taken from www.chemtube3d.com/mof-mof5/ b) HKUST-1, which is formed
from copper nodes and 1,3,5-benzenetricarboxylic acid based linkers. Taken from www.

chemtube3d.com/mof-hkust-1-2/ c) MOF-74, formed from divalent cations Zn2+ and
2,5-dihydroxybenzenedicarboxylic acid based linkers. Structure taken from Ref [55] and
rendered with Ovito.[81] The spheres in panels a) and b) denote the pore size for gas storage.

1.2.1. Charge Transport Mechanisms in Metal-Organic Frameworks

Before talking about charge transport in MOFs let us note that the electronic and optical

properties of a solid are determined, in a first approximation, by its electronic band

structure. Considering MOFs we find that these systems typically show rather flat bands.51

This can be nailed down to the weak hybridization between states localized on the organic
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linkers and states localized on the inorganic nodes.64∗ Furthermore, the π-systems of

neighboring organic linkers show only little overlap due to the relatively large spatial

seperation of the linkers. This property is common for many structural types of MOFs,

as it is a consequence of the inherent porosity of these materials. Especially isotropic

structures are affected by this large spatial seperation between linkers (see the example

of MOF-5 in Figure 1.4). Still, due to the chemical and structural tunability of MOFs

strategies and approaches for overcoming these limitations have been developed.51,64–66

Versatile electrically conducting MOFs, exhibiting different transport mechanisms, have

been synthesized and characterized.64 Below we provide an overview of the transport

mechanisms and current strategies that are put forward with the goal of achieving higher

electrical conductivities in MOFs.

Figure 1.5.: Schematic of potential transport pathways in MOFs represented by the involved orbitals.
a) Through-bond pathway where orbitals from the metal and the functional group of the
ligand (L) are involved. b) Extended conjugation pathway, which also involves the ligand
core. c) Through-space pathway, which involves π-stacking of organic moieties (E=S for
tetrathiafulvalene a common component in MOFs with through-space pathways). In panels
a) and b) M denotes a transition metal. Adapted with permission from Ref [64]. Copyright
2020 American Chemical Society

∗As a large number of MOFs relies on carboxylate linkers, ionic bonds tend to be formed between
these linkers and the metals. This leads to large energy gaps and confined electronic states.64
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Through-Bond Pathways

Within the through-bond mechanism, charge transport is promoted by continous pathways

created by coordination and covalent bonds between the metal nodes and the functional

groups of the ligands (see Figure 1.5a). Such pathways emerge when the energy levels of

the metal and the ligands are well matched and the orbital overlap of these entities is

large.64

One difficulty when trying to achieve through bond pathways arises from the typically

used carboxylate linkers. The largely ionic bond that is formed between the metal and the

ligand comprises little orbital overlap. Consequently the resulting electronic bands are

narrow.64 This means that the states of the metal and the ligands are localized and, as a

result, these systems exhibit poor conductivity. One successful strategy for improving

the transport properties of such MOFs is to use ligands where the atoms forming the

bond with the metals are either sulfur or nitrogen instead of oxygen. This approach has

proven quite successful when applied to MOF-74 analogs.64,82–84

For the above described through-bond approach only the metal nodes and the functional

group of the ligand constitute the charge carrier pathway. However, when considering

ligands with functional groups that are conjugated with its organic core, one can construct

frameworks exhibiting extended conjugation between the nodes and the ligands (Figure

1.5b). Also for this so-called extended conjugation approach a large orbital overlap between

the functional groups and the metals is essential. Various two-dimensional, 2D, MOFs

have been constructed relying on this principle.64,65,73,85–90 For these systems conjugation

within the plane is achieved via interactions of the ligands π-orbitals and the metal

d-orbitals. This π-d conjugation results in the charge carriers being delocalized within

the plane, ultimately leading to improved conductivities.64 The individual layers of these

2D MOFs then stack on top of each other, forming the bulk structure of the material. As

a result, the π-systems of consecutive layers overlap significantly and, thus, can create

additional charge carrier pathways. This means that when talking about charge carrier

transport in layered systems with extended π-systems through-space charge transport

(see below) is important as well.

Guest-Promoted Transport

The inherent porosity of MOFs offers the possibility to occupy the pores with electroactive

molecules, so-called guests. As a result, guest-guest or guest-host (framework) interactions

can create charge transport pathways. Although this strategy might lead to increased
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charge transport properties of the framework,91,92 one has to keep in mind that occupying

the pores with guest molecules leads to a lowering or even a loss of porosity. Thus, one

of the key properties of these framework materials is removed, which prevents the use of

this approach for applications that would rely on the porosity of MOFs.51,64 Although

this reduction of porosity upon introducing guest molecules to the framework is generally

true, one can still obtain host-guest systems with large surface areas when choosing a

framework with high porosity and different pore sizes.92–96 Upon a clever design of such

frameworks the probability of the guests occupying only pores of a certain size and shape

can be increased. Thus, a certain surface area remains.

Through-Space Pathways

Considering organic semiconductors and the relevant charge transport mechanisms

outlined in Section 1.1 it has been found that the intermolecular electronic coupling (or

transfer integral) is an essential quantitiy determining the charge carrier mobility. This

transfer integral depends strongly on the π-orbital overlap of the involved molecules.

Within MOFs the involved molecules are the organic linkers, or, respectively, parts of

these molecules. Like for OSCs improving the overlap of the π-systems of neighboring

molecules should yield improved charge transport properties. Therefore, the so-called

through-space approach focuses on intermolecular interactions, i.e improving the overlap

of π-orbitals of neighboring linkers (see Figure 1.5c).

A key aspect of this through-space approach is to exploit the tendency of planar con-

jugated organic molecules to form structures that exhibit π-π-stacking.64 As a result,

the (frontier) orbitals of these molecules exhibit sizeable overlaps, which in turn leads

to large band widths and transfer integrals. In the introductory part on OSCs (Section

1.1) we briefly discussed that these materials typically exhibit rather small charge carrier

mobilities which are far from their inorganic counterparts23,97 and also far from their

own optimum. In Publication II this behavior is traced back to the Pauli exchange

repulsion enforcing molecular arrangements with low intermolecular electronic couplings

(transfer integrals). An interesting aspect of MOFs is that they offer a fine control over

the stacking arrangement of the linkers which is difficult to achieve in OSCs. This higher

level of control over the structure (stacking arrangement) can be traced to the inorganic

nodes and the organic linkers within MOFs being linked via strong bonds.45,50 Therefore,

combining linkers and nodes with known geometry and coordination environments can

be exploited as a strategy for designing MOFs with specific structures.45,50,51 The better

control over the stacking arrangement renders MOFs interesting for designing electrically

conductive systems. Enforcing a certain arrangement of the organic linkers π-systems
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can be used to engineer the charge transport properties of the MOF. It is still essential

to understand how charge transport properties and structural arrangement play together.

We can rephrase this issue into two questions: How do the π-systems have to be arranged

to yield favorable charge transport properties? Furthermore, how sensible are the charge

transport properties to structural changes? Below we elaborate a bit more in detail on

these questions based on MOFs which have been shown to exhibit considerabe through-

space charge transport. A detailed computational investigation addressing the questions

raised above is presented in Publication III .

Figure 1.6.: Structure of the electrically conducting Zn2(TTFTB) MOF. The left panel shows a view
of the structure along the crystallographic c-axis. Pores and individual TTF stacks can be
seen from this view. The right panel shows a side view of the helical TTF stack. Orange,
yellow, red, and gray spheres represent Zn, S, O, and C atoms, respectively. H atoms and
water molecules were omitted for clarity. Adapted with permission from Ref [98]. Copyright
2012 American Chemical Society

Quite a number of frameworks based on the organosulfur compound tetrathiafulvalene

(TTF) have been realized bearing the through-space approach in mind.98–102 Indeed,

these systems were shown to exhibit π-stacking pathways together with sizeable electrical

conductivities. Importantly, in most of these systems one-dimensional charge carrier

transport pathways are formed. Actually, the presence of one-dimensional transport

pathways is not so surprising when bearing standard topologies of MOFs in mind (see

Figure 1.3). Typically, spatially well seperated stacks of organic linkers are found in

these systems. Consequently, only linker molecules that are within the same stack can

potentially exhibit significant π-orbital overlap, when the stacking distances are close

enough. Distances of 4 Å or less are typically needed for molecules to exhibit such

significant π-orbital overlap. When this condition is fulfilled, a one-dimensional charge

transport pathway is obtained. In Figure 1.6 one can see Zn2(TTFTB) as a typical
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example for a TTF-based MOF exhibiting one-dimensional through-space transport

pathways. In this system the stacking distance of consecutive linkers is around 3.5 Å.

This system is at the core of Publication III , where various structural changes are

introduced and their influence on charge transport is investigated. Additional systems

with one-dimensional stacks of π-conjugated molecules have been constructed based on

MOF-74 and containing anthracene-based building blocks.103 However, due to the large

stacking distance of consecutive anthracene moieties (around 5.7 Å) transport will likely

not occur through the π-stacking pathway created by these moieties but will rather occur

through hopping between the metal-oxo chains between the nodes, as postulated in the

original work.103 That the stacking distance is of utter importance for charge transport

is well known from OSCs and can be traced back to the exponential dependence of the

orbital overlap on this distance. However, not only the stacking distance, but rather any

changes in the molecular arrangement can have a significant impact on the electronic

structure and, consequently, on the charge transport properties.

Essential for the actual charge transport properties within MOFs containing through-

space pathways is how the transfer integral depends on the actual stacking arrangement of

the linker molecules, especially their respective molecular orbitals. It is well known from

OSCs that already small relative displacements or rotations of neighboring molecules can

lead to significant changes of the respective transfer integrals.32–35 In the context of layered

MOFs it has also been predicted that the proximity of the layers104 as well as their relative

lateral arrangement90,105,106 influences the electronic band structure. Consequently, also

the transfer integrals are affected by such structural changes. Therefore, this interplay

between structural arrangement and transfer integral is investigated in a systematic

manner in Publication III (Chapter 4) for the example of Zn2(TTFTB).

Remembering the extended conjugation approach we should note that 2D MOFs which

exhibit an extended conjugation within the 2D plane are π-stacked to form the bulk.

This means that for such systems in addition to charge transport in the plane also

transport perpendicular to this plane might be of relevance. Therefore, it is of even

greater importance to gain an in-depth understanding of through-space charge transport

and its interplay with the MOF structure. Furthermore, talking about layered systems

with extended π-systems covalent organic frameworks are quite similar to such 2D MOFs.

Also for these systems the arrangement of consecutive layers is of great importance for

the resulting properties. This will be outlined in the following Section on COFs (section

1.3).

A further aspect that I would like to bring up in the context of charge transport within

MOFs is the role of defects. Several properties of MOFs have already been shown to
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depend on defects, respectively the density of defects present in the material. These

properties comprise the electronic structure (energy gaps), redox conductivity, and the

(photo-)catalytic activity amongst others.107–111 Charge transport, i.e. relevant quantities

like transfer integrals, mobilities, and conductivities, however, have rarely been studied

as a function of defect densities. Only for layered MOFs the influence of defects has

been considered in a few computational studies.90,105 The authors identified a drastic

dependence of the electronic structure of the investigated systems on the presence of

defects. Importantly, they found that the observation that a certain layered MOF was

predicted to be metallic and observed to be semiconducting might lie in the presence of

defects in the real system.105 Apart from these studies we are not aware of detailed and

systematic investigations of the interplay between defects/defect density and (through-

space) charge transport within MOFs. Therefore, in Publication III we also study the

role of defects (missing linkers, offset molecules, and other structural distortions) for

the electronic band structure, transfer integrals, and effective masses. This contribution

is meant to highlight the importance of defects for charge transport in MOFs and is

expected to trigger further investigations.

1.3. Covalent Organic Frameworks

Covalent Organic Frameworks (COFs) are materials that consist of organic building

blocks which are linked by covalent bonds.112–119 Similar to MOFs, also COFs form highly

crystalline porous framework structures. The resulting structures can be categorized into

2D and 3D COFs. In 2D COFs the organic building blocks are linked by covalent bonds

within a plane, forming highly regular 2D layers and these layers then stack along the

direction perpendicular to the plane, forming the bulk. These stacks are held together

mostly by van der Waals interactions and the π-systems of consecutive COF layers show

significant orbital overlap.

COFs, and especially 2D COFs, have been succesfully used for a variety of applications

including gas storage,119–121 gas seperation,122–125 catalysis,126–128 energy storage129–131

and optoelectronics.132–138 Essential for, in principle, all of these applications are the

electronic structure and the pore shape of these systems. Both are determined by the

topology together with the exact packing motif of the individual COF layers.139 Common

topologies together with the actual structures of two exemplary COFs are shown in

Figure 1.7. Importantly, the electronic structure of 2D COFs can be significantly altered

by only small displacements between consecutive layers. As mentioned already several

times, this can be rationalized by studies performed on OSCs, where the electronic
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1.3. Covalent Organic Frameworks

Figure 1.7.: Topologies and typical structures of COFs. a) Topologies depending on the symmetries of
the organic building blocks. b) Schematic representation of the structure of typical π-stacked
COFs. The examples shown here are ZnPc-COF and COF-1. Panel a) and ZnPc-COF in
panel b) are adapted with permission from Ref [117]. Copyright 2019 Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim

structure of molecular dimers, cluster, and solids has been investigated as a function of

relative intermolecular displacements.21,32–36 Please note that regarding this interplay of

the electronic structure and relative displacements of consecutive moieties (molecules

in OSCs, organic linkers in MOFs, and layers of 2D COFs) there is no fundamental

difference between the systems considered in this thesis which belong exactly to these

classes of materials. What is different though is the control over the stacking arrangement,

which can be achieved and the number of degrees of freedom which are accesible to the

indivudal moieties. In MOFs as well as in COFs some of these degrees of freedom are

blocked or at least hindered by the framework structure. For 2D COFs and MOFs the

intralayer arrangement is determined by the covalent bonds that are formed within the

individual layers. Concerning the interlayer arrangement, however, several interactions of

comparable strength are important. Therefore, it is essential to understand how these

interactions relate to the interlayer arrangement and potentially even enforce a certain

arrangement. As varying layer arrangements directly influence the electronic structure of

COFs104 a detailed understanding of the interplay between interlayer interactions and

arrangements is highly important.
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Knowing how the interlayer arrangement influences the electronic structure and how

the individual interlayer interactions determine this layer arrangement, one can start to

think about ways to tune these interactions and enforce certain layer arrangements, i.e.

create COF structures with improved/desired properties. Nevertheless, the starting point

is to actually gather that understanding of the individual interactions (van der Waals,

electrostatic, exchange repulsion) as a function of the layer arrangement. In Publication

IV we aim at gaining this understanding based on exemplary test systems, namely

COF-1 and COF-5. The interaction energy between consecutive layers together with

the vdW, electrostatic and repulsion interactions are studied as a function of interlayer

displacements parallel to the plane of the layers and perpendicular to it. In order to

get the individual contributions to the interaction energy acting between the layers

we had to decompose this interaction energy into physically relevant terms. Thus, in

Section 1.4.3 we introduce an energy decomposition scheme for periodic systems. To

date such decomposition schemes are common for clusters but are rarely available for

periodic systems. Therefore, inspired by the decomposition scheme from Ref [140] already

employed in Publication II , a similar method has been implemented to work with

FHI-aims.141 Details on this scheme and the actual implementation and validation data

can be found in Section 1.4.3 and in the Appendix.†

1.4. Methodological Considerations

Understanding the electronic structure of a material can be considered as an essential

foundation for understanding the material itself and occuring phenomena. As a conse-

quence, for realistic systems one has to deal with a the many-electron problem. One very

succesful and widely used method for describing the electronic structure of materials is

density functional theory, DFT. Therefore, in the present section, we will to introduce

the fundamental aspects of DFT (Section 1.4.1). The bulk of the following considerations

are based on an excellent book by Richard M. Martin.142 Building upon the results from

DFT we introduce methods to derive quantities like transfer integrals (Section 1.4.2) and

individual contributions to interaction energies (Section 1.4.3).

†Several reasons lead to the idea of implementing our ”own” energy decomposition scheme: (i) having
access to the very details of the scheme; (ii) making an energy decomposition scheme for periodic systems
available in one of our standard simulation codes.
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1.4. Methodological Considerations

1.4.1. Density Functional Theory

The starting point for the determination of the electronic structure of a material is the

time-independent Schrödinger equation.

ĤΨ(ri,RI) = EΨ(ri,RI) (1.14)

Here Ψ(ri,RI) is the many-electron wavefunction depending on the spatial coordinates

of the electrons ri and the nuclei RI . Lowercase subscripts denote the indizes of the

electrons while uppercase subscripts denote those of the nuclei. The Hamiltonian Ĥ for

such a system of electrons and nuclei with charge ZI and mass MI reads as follows.

Ĥ =
~2

2me

∑
i

52
i −

∑
i

∑
I

ZIe
2

|ri −RI |
+

1

2

∑
i

∑
j 6=i

e2

|ri − rj|

−
∑
I

~2

2MI

52
I +

1

2

∑
I

∑
J 6=I

ZIZJe
2

|RI −RJ |

(1.15)

The first three terms denote the kinetic energy of the electrons, the attractive electron-

nuclei interactions, and the repulsive electron-electron interactions. The last two terms

deal with the nuclei and denote the kinetic energy of the nuclei and the repulsive nuclei-

nuclei interactions. Considering that the nuclei are much heavier than the electrons one

can employ the Born-Oppenheimer approximation.143 This means that the electrons are

considered in a field generated by the nuclei, which are assumed as being fixed in space.

As a result, the kinetic energy of the nuclei is not contained in the electronic Schrödinger

equation and the interaction between the nuclei becomes a constant EII . The resulting

electronic Hamiltonian can then be written as

Ĥ = T̂ + V̂ext + V̂int + EII . (1.16)

Here, the following operators are included: T̂ denotes the kinetic energy of the electrons,

V̂ext denotes the potential created by the nuclei, and V̂int denotes the electron-electron

interaction.

Despite this simplification of the problem, we are still left with an expression that depends

on the coordinates of all electrons present in the system. This is the point where the

theorems of Hohenberg and Kohn become essential,144 as they significantly reduce the

complexity of the problem. The basic statement of these theorems is that any property of
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a system of many interacting particles is determined by the ground state electron density

n0(r) of that system. This ground state electron density is a scalar function of position,

i.e. it only depends on position r. Furthermore, a functional EHK [n] for the energy in

terms of the density n(r) can be defined, see equation 1.17.

EHK [n] = T [n] + Eint[n] +

∫
d3r Vext(r)n(r) + EII (1.17)

The first two terms of this expression for the interacting electron system are summarized

in the Hohenberg-Kohn functional FHK [n] as:142

FHK [n] = T [n] + Eint[n]. (1.18)

For any external potential Vext(r) the exact ground-state energy of the system is the

global minimum of the universal functional EHK [n]. Further, the density n(r) which

minimizes the functional is the exact ground state density n0(r). Importantly, this

functional EHK [n] alone is sufficient for determining the exact ground state density and

energy. What remains unknown, however, is the form of the exact energy functional. The

main difficulty is the description of the kinetic energy as a function of the electron density.

This problem was addressed by Kohn and Sham (KS).145 They suggested to replace

the original many-body (many-electron) problem of interacting particles by an auxiliary

problem of independent non-interacting particles, where the ground state densities of

these two systems are identical. Now, the problem is treated by N (with N being the

number of electrons in the system) independent-particle equations and all difficulties

associated with the problem of interacting, correlated electrons are incorporated into the

so-called exchange-correlation functional Exc[n].

In the following we introduce such an auxiliary system through single electron KS-orbitals

φi. The density of this system can then be obtained as

n(r) =
∑
i

|φi(r)|2 . (1.19)

Within the Kohn-Sham approach the energy functional (equation 1.17) is then rewritten

as

EKS[n] = TS[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n]. (1.20)
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The kinetic energy TS of the independent particle system can be expressed as

TS =
1

2

∑
i

〈
φi
∣∣52

∣∣φi〉 =
1

2

∑
i

∫
dr |5φi(r)|2 , (1.21)

and the classical Coulomb interaction energy of the electron density with itself can be

expressed as

EHartree[n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′|
(1.22)

Here atomic units (~ = me = e = 4π/ε0 = 1) have been employed. The exchange-

correlation energy Exc[n] is then defined by the equality of EHK [n] and EKS[n] as:

Exc[n] = FHK [n]− (TS[n] + EHartree[n]) = T [n]− TS[n] + Eint[n]− EHartree[n]. (1.23)

As a next step, the Kohn-Sham auxiliary system is solved for the ground state. This is

achieved by minimizing the energy functional of equation 1.20 with respect to the density.

This procedure finally yields the Kohn-Sham (KS) equations:

(−1

2
52 +VKS(r))φi(r) = εiφi(r) (1.24)

with the Kohn-Sham potential VKS(r) as

VKS(r) = Vext(r) + VHartree(r) + Vxc(r). (1.25)

These Kohn-Sham equations 1.24 are Schrödinger like independent particle equations

with solutions represented by Kohn-Sham orbitals φi with energies εi. These equations

must be solved under the condition that the potential and the density are consistent. In

practice, one starts with an initial guess for the density and the corresponding potential

is determined following equation 1.25.‡ Then, as a first step of an iterative process, the

KS-equations (1.24) are solved for the initial potential. Based on this solution, the KS-

orbitals in particular, a new density is evaluated according to equation 1.19. The obtained

‡The Hartree potential VHartree and the exchange correlation potential Vxc denote the partial
derivative of the respective energies with respect to the density n(r)
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new (updated) density then again enters in the first step of the iterative process, i.e. the

calculation of the KS-potential following equation 1.25. Again, solving the KS-equations

and evaluating the corresponding density are the subsequent steps. This procedure is

repeated (iterated) until a certain convergence criterion or a set of convergence criteria is

met. Thus, the KS-equations are solved in a self-consistent manner, where the iterative

procedure is referred to as the self-consistency cycle.

Functionals for Exchange and Correlation

One part of the KS-equations is still unknown at this point, namely the exchange and

correlation functional Exc[n]. So far, no approximations have been applied (apart from

Born-Oppenheimer) and knowing the correct exchange-correlation functional would result

in the exact solution of the problem. However, to date, the exact form of this functional

remains unknown and approximations have to be made in order to find solutions to

the KS-equations. Nevertheless, many approximations proved quite succesful, resulting

in DFT being the most widely used method for electronic structure calculations. In

the following we introduce the basic approximations that can be made to the exchange

correlation functional.

The simplest approximation is the Local-Density-Approximation (LDA), which is based

on the assumption that several solids, metals in particular, are close to the limit of the

homogeneous electron gas. The corresponding expression for the energy functional reads

as

Exc[n] =

∫
drεhomxc (n(r))n(r). (1.26)

Here εhomxc is the exchange-correlation energy density equivalent to the one in a homoge-

neous electron gas. This functional only depends on the electron density and yields the

correct solution for a uniform (homogeneous) electron gas. However, numerous materials

differ quite a bit from the homogeneous electron gas. Especially the materials considered

in this work, OSCs, MOFs, and COFs cannot be modelled well by the simple LDA

approach. A more accurate approximation can be achieved by including a generalized

gradient of the electron density into the considerations. This results in the so called

Generalized-Gradient-Approximation (GGA).146 The energy functional now takes the

following form
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Exc[n] =

∫
drεxc(n(r), |5n(r)|)n(r). (1.27)

The most widely used form of these GGA functionals is the famous Perdew-Burke-

Ernzerhof (PBE) functional.146 This functional is used in this thesis, unless otherwise

stated. Although this PBE functional is known to achieve quite accurate results for

various physical observables, it also has well-known deficiencies.147 An example is the

self-interaction error, which denotes a spurious interaction of an electron with itself.147,148

This self-interaction error raises the energy of localized states, and favors delocaliza-

tion.147,149–152 Hybrid approaches, which incorporate a fraction α of exact Hartree-Fock

(HF) exchange, and a fraction 1 − α of the GGA exchange partially correct for the

self-interaction error.147,153 A widely used functional following these considerations is

the hybrid functional PBE0.154 There, 25% of exact Hartree-Fock exchange is mixed to

PBE:

EPBE0
xc = 0.25 EHF

x + 0.75 EPBE
x + EPBE

c . (1.28)

A different family of hybrid functionals are the so-called range-seperated hybrid func-

tionals. These functionals are based on the idea that screening depends on the distance.

This means that the functional is divided into short-range (little screening) and long-

range (larger screening) parts by introducing a certain seperation length η. The HSE

functional155 is a member of this family of range-seperated hybrid functionals and is a

widely used choice for solids. For this functional the long-range HF part is ignored and

only short range HF is included, as shown in equation 1.29.142

Exc = EPBE
xc + 0.25(EHF,SR

x (η)− EPBE,SR
x (η)). (1.29)

This expression reduces to the standard PBE expression when η →∞ or to the PBE0

hybrid when η → 0. In this Thesis HSE06155,156 has been used, where the range-separation

length η is chosen as 0.11/a0, here a0 denotes the Bohr radius. We mostly employed this

functional to check whether the inclusion of HF-exchange changes the dispersion of the

electronic bands, which are quantities at the core of Publications I ,II , and III . In

the Supporing Information of these works one can find that the band gap shows the

expected change when comparing semi-local PBE to HSE06. However, the dispersion of

the electronic bands only shows minor changes in all instances.
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van der Waals Forces

One aspect that cannot be described by standard functionals are long range van der

Waals interactions. These interactions are, however, essential in weakly bonded materials.

They arise from fluctuations of the multipoles of an entitiy (atom or molecule) that induce

multipoles on one another. These interactions are of non-local and attractive nature. For

large distances R between entities, vdW interactions are typically determined by a 1/R6

term. These long-range interactions are essential for understanding systems like OSCs,

COFs, and MOFs correctly. Various ways how to incorporate vdW interactions exist,

while most implementations rely on treating vdW interactions outside the self-consistency

cycle. In the following, we will briefly discuss an approach introduced by Tkatchenko

and Scheffler, vdW TS.157 While solely this correction scheme is discussed below, several

reviews shall be referenced that thoroughly discuss vdW interactions within DFT.158–162

vdW TS is a pairwise additive correction to the energy. Within this correction scheme,

the vdW interaction energy of two entities A and B is considered seperately from the

rest of the system. Many body effects are ignored by this scheme. The corresponding

vdW energy EvdW is calculated by the following expression:

EvdW = −1

2

∑
AB

C6AB

R6
AB

f(RAB). (1.30)

Here RAB is the interatomic distance, C6AB are the so-called van der Waals coefficients

and f(RAB) is a damping function, which is designed to avoid singularities of the energy

at short distances. RAB and C6AB are obtained from the ground state electron density

via Hirshfeld partitioning. The vdW TS approach has been applied in all Publications

presented in this thesis.

DFT in Practice

There are certain parameters which have to be specified prior to any DFT calculation.

Essential parameters comprise a first guess of the atomic coordinates and the lattice

vectors (for periodic systems). Furthermore, the functional, the basis set as well as the

vdW correction scheme ought to be initialized.

For the DFT calculations included in this Thesis mainly two different programs have

been used: the Vienna Ab Initio Simulation Package, VASP,163 and the Fritz-Haber

Institute ab-initio molecular simulation package, FHI-Aims.141 The main differences
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between these codes are the representation of the basis and the treatment of core and

valence electrons. In VASP, the basis functions are plane waves and the interactions

between valence electrons and core is described by the projected-augemented plane wave

method (PAW). In FHI-Aims the basis consists of numerical atom-centered orbitals and a

full-potential ansatz is applied. The localized nature of the FHI-Aims basis functions will

become important for the energy decomposition scheme, see Section 1.4.3. In principle,

these codes give equal results, provided that convergence settings are chosen tight enough.

This has been demonstrated in a recent publication.164 The specific settings employed in

our work can be found in the Methods Section of the respective Publication and in the

corresponding Supporting Information.

1.4.2. Tight-Binding Models

No matter which of the charge transport models described in Section 1.1 is considered,

the transfer integral is an essential parameter. One approach for obtaining transfer

integrals for periodic systems is to fit elaborate tight-binding (TB) model functions

to an electronic band structure, which has been calculated with DFT. Therefore, the

present section introduces the tight-binding approach and highlights certain aspects

that ought to be considered when setting up model functions and fitting them to the

DFT data. Of course, one could also employ an inverted approach and calculate transfer

integrals using one of the numerous cluster-based approaches and then enter these transfer

integrals into a suitable tight-binding model for getting the electronic band structure. In

most instances such an approach might be a viable method, while it fails for systems

where, for example, superexchange like effects are important (Publication I ). In our

works, tight binding models have been fitted to electronic band structures obtained by

DFT in Publications I and II , while in Publication III simple TB models used for

rationalizing the results.

General Introduction

This section supplements and extends the theory discussed briefly in Ref [165] for the

initial development and implementation of the TB-models. The tight-binding model is

an approach to describe/calculate the electronic band structure of a solid by a linear

combination of wave functions that are localized at individual lattice sites (atoms or

molecules). This approach is well suited for systems where neighboring entities are

electronically only weakly coupled, which is the case for all systems considered here. The

following considerations focus on the description of the electronic bands by considering
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the frontier orbitals of the molecular entities at the individual lattice sites. In principle,

the number of orbitals that are considered for each lattice site is not limited.

The starting point for the considerations in this chapter is the time-independent Schrödinger

equation:

ĤΨn,k(r) = εn(k)Ψn,k(r) (1.31)

Here Ψn,k(r) denote the single particle states in the crystal, n labels the band index and

k denotes the wavevector. A viable ansatz for Ψn,k(r), which are eigenfunctions of the

crystal Hamiltonian, is a linear superposition of wavefunctions ψcell,n(r) centered at each

unit cell:

Ψn,k(r) =
1√
N

∑
m

eikTmψcell,n(r − Tm). (1.32)

Here Tm denotes a translation vector which is given by a linear combination of the real

space lattice vectors ai with integer values h, k, l as: Tm = ha1 +ka2 + la3. Furthermore,

N denotes the number of states in the crystal.

The wavefunctions ψcell,n(r) themselves can then be expressed as a linear superposition

of basis functions (molecular orbitals) φMO
α,I corresponding to state n and centered at the

individual sites (molecules) rI in the primitive unit cell. Here the index α denotes the

molecular orbital and index I denotes the molecule in the primitive unit cell. In this

thesis we focus on systems with only one molecular orbital per site, represented by a

single wavefunction. So, for the valence band it is assumed that only the highest occupied

state at each site is relevant, while for the conduction band the lowest unoccupied state

at each site is the relevant one. Note that also for situations with more orbitals per site

one could derive tight-binding expressions. Furthermore, it is assumed that all molecular

orbitals are of the same type, as a consequence one can index the molecular orbital of

site A with a single index as φα,A(r − rA) ≡ φMO
A (r − rA). Based on these orbitals and

using a linar ansatz one obtains the wavefunction ψcell,n describing the primitive unit

cell of a crystal as

ψcell,n(r) =
∑
I

cnI φ
MO
I (r − rI). (1.33)

32



1.4. Methodological Considerations

Here I sums over the molecules in the basis, where rI is the position of the molecule in the

primitive unit cell. Entering the wavefunction for the primitive unit cell to equation 1.32

we end up with an expression that obeys Bloch’s theorem and comprises an eigenfunction

Ψn,k(r) of the Hamiltionian:

Ψn,k(r) =
1√
N

∑
m

eikTm ψcell,n(r − Tm)

=
1√
N

∑
m

eikTm

(∑
I

cnI φ
MO
I (r − rI − Tm)

)
.

(1.34)

Now we use the wavefunction Ψn,k(r) to evaluate the Schrödinger equation. In order to

solve the Schrödinger equation one has to obtain the coefficients cnI defining the linear

combination of the basis functions φMO
I . In order to obtain these coefficients we multiply

the Schrödinger equation 1.31 with a certain molecular orbital which is localized at site

A, φMO
A (r− rA), from the left. Evaluating the resulting expression under the assumption

that only nearest-neighbors have non-negligible contributions, i.e. summation indizes m

and I only include nearest neighbors, and that neighboring orbitals show zero overlap

we end up with the expression shown in equation 1.36. We add a small value δ to the

expression which shall indicate and account for deviations from the above mentioned

assumptions. In the following, this δ is assumed to be 0, i.e. the assumptions are well

satisfied by the considered systems.

〈
φMO
A

∣∣ Ĥ |Ψn,k〉 = εn(k)
〈
φMO
A |Ψn,k

〉
(1.35)

cnA
〈
φMO
A

∣∣ Ĥ ∣∣φMO
A

〉
+

∑
m ε n.n.

∑
I

cnI
〈
φMO
A

∣∣ Ĥ ∣∣φMO
I

〉
eikTm = εn(k)cnA

〈
φMO
A |φMO

A

〉
+ δ

(1.36)

In order to be able to determine all coefficients, each orbital φMO
I (r − rI) has to be

considered. Meaning that this orbital has to be multiplied from the left to the Schrödinger

equation 1.31, which yields expressions analogous to equation 1.36. The resulting set of

equations then has to be solved in order to obtain the energy dispersion relation εn(k).

Now, in the employed fitting approach the on-site terms
〈
φMO
A

∣∣ Ĥ ∣∣φMO
A

〉
and the transfer

integrals
〈
φMO
A

∣∣ Ĥ ∣∣φMO
I

〉
are not evaluated explicitly, but rather are fitted to reproduce

the electronic band calculated with dispersion corrected density functional theory.
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In the next part, we evaluate expressions for situations with one or two inequivalent sites

(molecules) per unit cell. For each wavefunction included in our ansatz we obtain an

expression analagous to equation 1.36 with a specific coefficient cnA.

One Site per Unit Cell

Starting from expression 1.36 we ignore the small deviations denoted as δ and assume

that wavefunctions located in different unit cells have vanishing overlap. Additionally,

we include the onsite term
〈
φMO
n

∣∣ Ĥ ∣∣φMO
n

〉
in the sum over the nearest neighbors. This

means that the term with Tm = 0 is included in the range of index m for m = 0. As

we have only one site at position rA within the unit cell and we only consider a single

molecular orbital φMO
A (r − rA) for each site we end up with an expression, that reads

as

∑
m

〈
φMO
A (r − rA)

∣∣ Ĥ ∣∣φMO
A (r − rA − Tm)

〉
eikTm = εn(k). (1.37)

The transfer integral can now be written as

tm =
〈
φMO
A (r − rA)

∣∣ Ĥ ∣∣φMO
A (r − rA − Tm)

〉
(1.38)

Using the above expression one can simplify equation 1.37 to the following form:

εn(k) =
∑
m

tme
ikTm (1.39)

This model for the energy dispersion relation εn(k) is then fitted to the electronic band

structure. Important to note is that for one site per unit cell and one orbital per site, the

transfer integrals are uniquely determined. This is a consequence of the model function

representing a Fourier series of the energy dispersion relation where the transfer integrals

are the Fourier coefficients.2
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Two Sites per Unit Cell

The second case that is included in the present considerations is a system of two

inequivalent sites A and B per unit cell with one molecular orbital φMO
N (r−rN ), Nε{A,B}

per site. Similar to the previous case and as outlined in the general introduction on

tight-binding, one has to multiply the Schrödinger equation with orbitals φMO
A (r− rA)

and φMO
B (r− rB) from the left, to obtain the system of equations which determines the

coefficients of the linear combination of the basis functions. This set of two equations

reads in matrix notation as follows( ∑
m t

AA
m eikTm

∑
m t

AB
m eikTm∑

m t
BA
m eikTm

∑
m t

BB
m eikTm

)(
cA
cB

)
= ε(k)

(
cA
cB

)
, (1.40)

or in a simplified notation as

(
HAA(k) HAB(k)

HBA(k) HBB(k)

)(
cA
cB

)
= ε(k)

(
cA
cB

)
. (1.41)

The transfer integrals tXYm are represented by the following expression, where the sub-

and superscripts X and Y denote the orbitals at sites A and B:

tXYm =
〈
φMO
X (r − rX)

∣∣ Ĥ ∣∣φMO
Y (r − rY − Tm)

〉
(1.42)

Solving the eigenvalue problem results in two eigenvalues which represent the k-dependent

model functions for systems with two sites per unit cell. Consequently two electronic

bands are described by equation 1.43

ε1,2(k) =
HAA(k) +HBB(k)

2
±
√

(HAA(k)−HBB(k))2

4
+HAB(k)HBA(k) (1.43)

This expression comprises the function that is fitted to the electronic band structure

obtained from the DFT calculations. How to perform such a fit by using the code

developed in our group (mainly by Florian Mayer and myself), is presented in the

Appendix B in the form of a short tutorial which I designed for the remote onboarding

of new Bachelor and Master students. Within the fit function the transfer integrals are
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the fit parameters which are adapted to reproduce the DFT calculated electronic bands

with minimal deviation.

Figure 1.8.: Sketch for a two-dimensional tight-binding model.

In order to illustrate the construction of a tight-binding model function for a two-

dimensional system with two inequivalent sites A and B per unit cell we consider the

example shown in Figure 1.8. All transfer integrals that are considered to be non-negligible

are indicated. The rest of the transfer integrals is assumed to be 0. For setting up the

model function we start by looking at the terms comprising sites of the same type HAA(k)

and HBB(k). In the model, these sites only have non-zero couplings along direction a1.

The first term of the resulting equation 1.44 denotes the on-site energy of site A, this

means that the phase factor equals 1. The transfer integral between site A in the original

unit cell to A sites in neighboring unit cells along directions ±a1 are denoted as tAAa1 and
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tAA−a1. A completely analogous expression can be obtained for transfer integrals between

sites of type B.

HAA(k) = εAA0 + tAAa1 e
ika1 + tAA−a1e

−ika1 (1.44)

The couplings between different sites A and B can also be derived in a similar fashion

and read as follows

HAB(k) = tAB0 + tABa1 e
ika1 + tAB−a1e

−ika1 + tAB−a2e
−ika2 . (1.45)

and

HBA(k) = tBA0 + tBAa1 e
ika1 + tBA−a1e

−ika1 + tBAa2 e
ika2 (1.46)

Now, one could simply go ahead and evaluate the eigenvalues based on equation 1.43.

However, inspecting the model system in Figure 1.8 one observes that several transfer

integrals have to be equal due to symmetry reasons. Again we start by inspecting terms

belonging to equivalent sites. There we find that tAAa1 = tAA−a1 and similarly tBBa1 = tBB−a1.

Using these expressions for simplifying equation 1.44 yields the more simple expression

HAA(k) = εAA0 + 2tAAa1 cos(ka1) (1.47)

with a reduced number of parameters. Again the expression for BB is analogous. Now we

go ahead and consider the symmetry equivalent couplings for terms dealing with different

sites: tAB0 = tBA0 , tAB−a1 = tBAa1 , tABa1 = tBA−a1, t
AB
−a2 = tBAa2 . For the individual terms HAB(k)

and HBA(k) these symmetries have no immediate consequences as the equivalent transfer

integrals appear either in equation 1.45 or in equation 1.46. However, inspecting equation

1.43 we find that the product of these terms enters the expression for the eigenvalues.

For this product the symmetries lead to a significant reduction of parameters (transfer

integrals), as shown in equation 1.48.

HAB(k) ·HBA(k) =(tAB0 )2 + (tABa1 )2 + (tAB−a1)
2 + (tAB−a2)

2+

2tAB0 (tABa1 + tAB−a1)cos(ka1) + 2tABa1 t
AB
−a1cos(2ka1)+

2tAB−a2[t
AB
−a1cos(k(a1 − a2)) + tAB0 cos(ka2)+

tABa1 cos(k(a1 + a2))]

(1.48)
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A reduced number of parameters is desirable from a numerical point of view, as it can

significantly increase the numerical stability of the fit. However, depending on the actual

form of the expressions for the eigenvalues multiple solutions can exist for the individual

transfer integrals. Let us illustrate this problem by considering a one-dimensional system,

i.e. setting tAB−a2 = tBAa2 = 0. Furthermore, we assume that the transfer integral tAB−a1 is

equal to zero. These simplifications of the model yield the following expression for the

term dealing with different sites A,B:

HAB(k) ·HBA(k) = (tAB0 )2 + (tABa1 )2 + 2tAB0 tABa1 cos(ka1). (1.49)

Inspecting this expression we find that terms with two distinct phase factors, 0 and

ka1, exist. Now, when fitting the eigenvalue expression to the DFT data, what can be

determined are terms with different phases (phase factors). So for the inequivalent sites

considered in our example this means that one obtains two (fit-) coefficients c1 and c2
as:

c1 = (tAB0 )2 + (tABa1 )2

c2 = 2tAB0 tABa1
(1.50)

When one wants to calculate the individual transfer integrals, one has to deal with this

nonlinear system of equations. For this very basic example, one would end up with 4

solutions for the transfer integrals.

tAB0 = ±

√
1

2

(
c1 ±

√
c21 − c22

)
tABa1 =

c2
2tAB0

(1.51)

Although one might be able to retrieve the correct solution by employing some prior

knowledge on the size of the two distinct couplings for this simple model system, for more

complex systems (more transfer integrals and, thus, nonlinear equations of higher order)

finding the values for the distinct transfer integrals might be hardly possible. Therefore,

the main conclusion is that for systems with two inequivalent sites per molecule, in

general, the indidvidual transfer integrals between these sites, i.e. the values of tAB,

cannot be determined seperately. Only the inclusion of prior knowledge (cluster based

results or trends of the transfer integrals as in Publication II ) offers the possibility to

obtain physically meaningful values for the individual transfer integrals. However, each
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case has to be considered seperately, as depending on the actual structure, the systems

inherent symmetries need to be determined and the corresponding model function has to

be constructed. Unfortunatley, even when considering all symmetries and incorporating

them in a model function, several transfer integrals might not be uniquely defined. An

additional example where only a combination of transfer integrals can be determined

is obtained when considering the quinacridone model system studied in Publication

II . The corresponding analysis can be found in the Supporting Information of that

publication (see Chapter 2).

Performing an analogous analysis for the terms containing transfer integrals between

equivalent sites tAA and tBB in the eigenvalue expression (equation 1.43) one finds that

they can suffer similar limitations. Thus, for each model system with two inequivalent

sites a thorough analysis of the tight-binding model function is essential. Only based

on such an analysis one can decide whether the correct values of the individual transfer

integrals can be retained and a physical interpretation makes sense. Otherwise, the

transfer integrals shall only be considered as mere fit parameters. Still, the obtained

analytical epxression for the energy dispersion relation could be used to derive quantities

like the effective mass tensor.

Let us briefly comment on a different approach to obtain tight-binding model functions

for a material with specific molecular arrangements. One can set up the model like

outlined above, but instead of getting the transfer integrals by fitting the model to

the DFT data one can extract the corresponding molecular dimers and calculate the

transfer integrals for these systems. Often such an approach will result in an already

quite accurate description of the materials’ electronic band structure. This renders such

approaches interesting for screening databases of known structures for materials with

beneficial charge transport properties.166,167 However, contributions to the electronic

bands stemming from interactions that go beyond simple molecular dimers are not

included in this approach, as discussed in Publication I .

1.4.3. Energy Decomposition

Considering OSCs it has been shown in the past that the intermolecular transfer integrals,

which are essential parameters for charge transport, depend on the arrangement of

the molecules. Small displacements of neighboring molecules can lead to changes by

orders of magnitude.32–35 For layered MOFs and COFs similar dependencies can be

assumed. Therefore, it is of great importance to understand the interplay of the individual

interactions that determine the relative arrangement of the molecules in the solid.
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In Publication II we investigated this interplay based on a model system inspired

by the α-polymorph of quinacridone. To obtain physically meaningful contributions

to the interaction energy between consecutive molecules one has to apply an energy

decomposition scheme. Unfortunately, it turns out that while for clusters numerous

energy decomposition schemes exist, they are rarely available for periodic systems.

Nevertheless, Ralf Tonner and co-workers recently developed an energy decomposition

scheme for periodic systems named pEDA, which stands for periodic energy decomposition

analysis.140,168 This pEDA scheme is based on the energy decomposition analysis (EDA)

method for clusters/molecules.169–171 To address the topics in Publication II we teamed

up with Ralf Tonner, who applied the pEDA scheme to the quinacridone model crystals.

Therefore, we briefly introduce the basics of this decomposition scheme. Importantly,

the pEDA scheme triggered the idea to implement a similar approach to the all-electron

based DFT code FHI-AIMS. During the course of my PhD work I adapted the pEDA

scheme for FHI-AIMS, implemented, and benchmarked a first stage of this ”new” scheme.

That first stage allows us to get the electrostatic contributions to the interaction energy.

We applied this scheme in Publication IV in order to understand the driving forces

determining the packing arrangement of 2D layered COFs. In principle, the applicability

of this decomposition scheme is not restricted to OSCs and COFs. One can go ahead and

apply it to decompose the interlayer interactions in 2D MOFs or vdW heterostructures

for example.

In the following, we introduce the pEDA scheme following References [140, 168, 172] and

based on these explanations we introduce the decomposition scheme for FHI-Aims.

periodic Energy Decomposition Analysis (pEDA) Scheme

The periodic EDA scheme developed by Raupach and Tonner is based on the molecular

EDA scheme.169–171 In essence, in their work, the EDA scheme has been extended to

periodic boundary conditions. The working principle of the molecular EDA is shown

by the schematic description in Figure 1.9. The first step of this scheme is to consider

that the overall bond dissociation energy ∆Ebond for a system consisting of fragments

(molecules) A and B is composed as the sum of the preparation energy ∆Eprep and the

total interaction energy ∆Eint (sometimes also referred to as intrinsic bond energy).

The preparation energy consists of contributions from structural deformations of the

fragments to obtain the geometry in the bonded system and electronic excitations.140

Therefore, this energy term can be calculated by the energies of the isolated fragments

in their relaxed ground state (EGS
A , EGS

B ) and the distorted states EA, EB, including
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geometric distortions and possibly electronic excitation, which the fragments exhibit in

the combined system as140

∆Eprep = (EGS
A + EGS

B )− (EA + EB). (1.52)

Figure 1.9.: Schematic description of the steps in a energy decomposition analysis of a chemical bond
between fragments A and B forming the combined entity AB. The indidvidual energy
contributions to the overal bond formation energy ∆Ebond are denoted by the black arrows.
The wavefunctions of the individual fragments are shown as blue (A) and red ellipses (B).
Black lines between the two fragments denote that the isolated fragments are considered.
This scheme is based on Ref. [140].

The interaction energy ∆Eint results from the difference of the energy of the combined

system EAB and the individual fragments EA and EB in the distorted states they exhibit

in the combined system. This is indicated in Figure 1.9. The basic idea of the EDA

scheme is to partition this total interaction energy ∆Eint into physically well defined

contributions,
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∆Eint = EAB − EA − EB = ∆Eelstat + ∆EPauli + ∆Eorb + ∆EvdW . (1.53)

The energy contribution corresponding to the vdW interactions ∆EvdW can be easily

obtained by the difference of the vdW energies of system AB and the fragments as

∆EvdW = EAB
vdW − EA

vdW − EB
vdW . (1.54)

These vdW energy terms are usually available from standard DFT calculations, especially

when employing a posteriori vdW corrections. Subtracting this vdW term ∆EvdW from the

total interaction energy results in the electronic part of the interaction energy ∆Eint,elec
which can then be further decomposed. The next step is to consider the fragments to be

infinitely far apart, still exhibiting the same geometric distortions as in the combined

system. To get the quasiclassical electrostatic energy between the charge densities nA and

nB of these isolated fragments one simply has to bring the fragments, i.e. their charge

densities, to the positions of the combined system. The resulting system is denoted as

{A,B}. The energy difference associated to this step equals the electrostatic contribution

to the electronic interaction energy as shown in equation 1.55.

∆Eelstat = E
{A,B}
elstat − E

A
elstat − EB

elstat (1.55)

This electrostatic energy ∆Eelstat corresponds to the energy change upon bringing the

distorted fragments into the positions they exhibit in the combined system without

optimizing the wavefunctions. The wavefunction of this combined system {A,B} does

not obey the Pauli exclusion principle, which is accounted for in the next step. Therefore,

the wavefunction corresponding to system {A,B} is antisymmetrized and normalized,

which leads to an intermediate wavefunction Ψ0 with the corresponding energy E0.

The associated energy difference (equation 1.57) is denoted as Pauli exchange repulsion

∆EPauli. In the last step, the molecular orbitals of the intermediate wavefunction are

allowed to relax and the final (fully relaxed) wavefunction ΨAB for the combined system

AB is obtained. The difference between the energy corresponding to the intermediate

state Ψ0 and the final state ΨAB denotes the orbital rehybridization ∆Eorb, see equation

1.56.

∆Eorb = EAB − E0 (1.56)
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∆EPauli = E0 − (EA + EB + ∆Eelstat) (1.57)

More details on this decomposition scheme as well as on the implementation for periodic

systems, the actual pEDA, can be found in References [140, 168, 172]. In principle, one has

to take care of each k-point seperately when constructing the intermediate wave functions

and performing the orthogonalization steps. Other than that, the scheme is analogous to

the molecular case. This pEDA scheme has been succesfully applied in Publication II

and triggered the idea to implement a very similar scheme for the all-electron DFT code

FHI-aims. In the following section we describe how the adapted decomposition scheme

works and also show how it performs for the systems considered in Publication II . This

scheme will then be used in Publication IV to get the individual energy contributions

for the interaction between consecutive layers of 2D COFs.

Energy Decomposition Scheme for FHI-AIMS

The following considerations deal with fundamental and technical aspects concerning

the implementation of an energy decomposition scheme in FHI-aims. This scheme is

largely based on the (p)EDA scheme presented in the previous section. An essential first

step for the decomposition of the interaction energy is the calculation of the combined

system AB and the fragments A and B. From these calculations we already get the

energies EAB, EA, EB as well as the individual van der Waals terms EAB
vdW , EA

vdW , EB
vdW .

Based on these energies and using equations 1.53, 1.54 one can already evaluate the total

interaction energy ∆Eint together with the corresponding vdW contribution ∆EvdW .

Furthermore, also the electrostatic energies of the individual fragments EA
elstat and EB

elstat

can be extracted from the output of the corresponding calculations. What is missing for

calculating the electrostatic contribution to the interaction energy is the electrostatic

energy of the combined system {A,B}. In the following, the construction of this combined

system based on the calculations of the individual fragments A and B is outlined.

Importantly, from the DFT calculations one also gets the eigenvectors of the individual

systems together with the corresponding occupation numbers as well as the Hamiltonian

and overlap matrices. The eigenvectors of the isolated fragments A and B are needed

for calculating the electrostatic contribution to the interaction energy. In the following

we describe how these eigenvectors can be used to construct the electron density of the

combined system {A,B} which is used to calculate the corresponding electrostatic energy

E
{A,B}
elstat . In the following, we are solely considering the case of crystalline systems, i.e.

periodic boundary conditions have to be employed. Therefore, the KS-equations depend
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on the wavevector k with different solutions Ψl,k(r) at each k-point in the first Brillouin

zone. Let us start by considering the representation of the wavefunction for a state with

index l in terms of the real space basis functions φatj (r):

Ψl,k(r) =
∑
m

∑
j

clj(k) · eikTm · φatj (r − Tm). (1.58)

Here j sums over all basis functions for all atoms in the primitive unit cell. Note that

basis functions belonging to a certain atom are centered at the respective position Rat of

that atom. Furthermore, m is the summation index for the translation vector which is

given by a linear combination of the real space lattice vectors ai with integer values a, b,

c as: Tm = aa1 + ba2 + ca3. This definition also leads to k-point dependent eigenvectors

given by the coefficients clj(k) and to k-dependent elements in the hamiltonian and the

overlap matrices. With this basis at hand one can go ahead and construct the charge

density based on the eigenvectors and the basis functions:

n(r) =
∑
l

∑
k

fl,k |Ψl,k(r)|2 (1.59)

Here fl,k denotes the weighted occupation number of a state with index l. The construction

of the electron density corresponding to a defined set of eigenvectors can be handled

by the restart functionality of FHI-aims. Employing this functionality the eigenvectors

are read in for each k-point, the corresponding wavefunction and charge density are

constructed, and a new calculation of the total energy according to the Harris functional

is invoked (see Ref [141] and Appendix A for details).

Now, the eigenvectors/wavefunctions for the combined system {A,B} can be constructed

based on the eigenvectors of the isolated fragments. In the following, the eigenvectors for

each k-point are represented by the corresponding coefficient matrices CA(k), CB(k),

and C{A,B}(k). As an example we write the coefficient matrix corresponding to fragment

A in more explicit terms below, where Nb denotes the number of basis functions included

for fragment A and Nst dentoes the number of states for this fragment.

CA(k) =


cA1,1(k) cA1,2(k) . . . cA1,Nb(k)

cA2,1(k) cA2,2(k) . . . cA2,Nb(k)
...

...
. . .

...

cANst,1(k) cANst,2(k) . . . cANst,Nb(k)

 (1.60)
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Based on coefficient matrices CA(k) and CB(k) the coefficient matrix corresponding to

system {A,B} is constructed as

C{A,B}(k) =


CA,occ(k) 0

0 CB,occ(k)

CA,virt(k) 0

0 CB,virt(k)

 . (1.61)

The occupation vector corresponding to system {A,B} is constructed as

f{A,B}(k) =
[
fA,occ(k), fB,occ(k), fA,virt(k), fB,virt(k)

]
(1.62)

Here, fA,occ(k), for example, contains all occupied states belonging to fragment A,

while fA,virt(k) contains all unoccupied states for A. Based on the coefficient matrix

and the occupation vector shown in expressions 1.61 and 1.62 one can evaluate the

quasiclassical electrostatic contribution, E
{A,B}
elstat , arising from the interaction of the charge

densities of the isolated fragments assembled in the combined system. This energy can

be obtained by starting an FHI-Aims calculation from the coefficient matrices C{A,B}(k)

and the corresponding occupation vectors f{A,B}(k). The electrostatic energy E
{A,B}
elstat

corresponding to this system can then be readily taken from the output of the calculation.

Employing this energy together with the electrostatic energies of the individual fragments

EA
elstat and EB

elstat one can calculate the electrostatic part of the interaction energy as

∆Eelstat = E
{A,B}
elstat − EA

elstat − EB
elstat. The explicit form of this energy in terms of the

electron densities of the individual fragments is shown in expression 1.63. For more details

on the evaluation of these energies see the Appendix A.

∆Eelstat =
∑
νεA

∑
µεB

ZµZν

|~Rµ − ~Rν |
−
∑
νεA

∫
ZνnB(~ri)

|~Rν − ~ri|
d~ri −

∑
νεB

∫
ZνnA(~ri)

|~Rν − ~ri|
d~ri

+2

∫ ∫
nA(~ri)nB(~rj)

|~ri − ~rj|
d~rid~rj

(1.63)

At the present stage we are mainly interested in contributions to the interaction energy

that stem from vdW and electrostatic interactions. Therefore, we can write the interaction

energy ∆Eint as
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∆Eint = ∆Eelstat + (∆EPauli + ∆Eorb) + ∆EvdW

= ∆Eelstat + ∆EPauli,orb + ∆EvdW .
(1.64)

As ∆EPauli and ∆Eorb are not considered seperately in our approach, we combine them in

a single term ∆EPauli,orb. This term is then obtained by subtracting vdW and electrostatic

contributions from the overall interaction energy. Several interesting scientific questions

like the layer arrangement of COFs discussed in Publication IV can already be

addressed by decomposing the interaction energy into these contributions. For getting the

terms comprising the Pauli exchange repulsion and the orbital rehybridization explicitly,

several problems associated with the all-electron nature of the basis functions and the

determination of the total energy arise. These problems are discussed in the Appendix

A. A validation of the electrostatic term evaluated with the implemented scheme is also

presented in Appendix A.1.
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2. Different methods for obtaining the

electronic coupling in molecular

crystals

2.1. Author contributions

E. Zojer and C. Winkler conceived the idea that some of the currently applied methods

for getting intermolecular electronic couplings could be misleading in some instances.

Therefore we decided to compare these methods based on a prototypical crystalline

organic semiconductor. C. Winkler carried out all the DFT calculations and primary

analysis of the data. The data were interpreted by C. Winkler and E. Zojer. F. Mayer

and C. Winkler developed the code which is employed for fitting tight-binding models to

the DFT data. C. Winkler wrote the first version of the manuscript and prepared all

figures. The project was supervised by E. Zojer. C. Winkler and E. Zojer revised the

manuscript in several iterations.

The following paper is published in Advanced Theory and Simulations and inserted

here as original publication together with the Supporting Information. Reprinted with

permission from ”Winkler C., Mayer F., and Zojer E., Analyzing the Electronic Coupling

in Molecular Crystals - The Instructive Case of α-Quinacridone, Advanced Theory and

Simulations, 2019, 2, 1800204”. Copyright 2019 The Authors. Published by WILEY-VCH

Verlag GmbH & Co. KGaA.

2.2. Main paper
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Analyzing the Electronic Coupling in Molecular
Crystals—The Instructive Case of α-Quinacridone

Christian Winkler, Florian Mayer, and Egbert Zojer*

In the present article, an evaluation of different approaches for estimating the
electronic coupling and charge-transport parameters in organic
semiconductors is provided. As a testbed for that comparison, the
α-polymorph of quinacridone is chosen. This system is particularly well suited
for the purpose, as α-quinacridone intermolecular interactions in distinct
crystallographic directions are dominated by the three mechanisms most
relevant in organic semiconductors: π -stacking, H-bonding, and van der
Waals stacking. Density-functional theory-based simulations yield a
comparably complex band structure, which provides the means for
demonstrating shortcomings of commonly applied approaches. These include
the estimation of transport properties based on bandwidths and the
calculation of electronic transfer integrals considering molecular dimers. As a
particularly promising alternative, the fitting of suitably complex tight-binding
models to the DFT-calculated bands in the entire Brillouin zone is proposed.
These fits bear the advantage of directly producing intermolecular coupling
constants for all relevant neighboring molecules as input parameters for
hopping and dynamic disorder models. They also yield an analytic expression
for the electronic bands. These allow the extraction of parameters relevant for
band-transport models (like group velocities and effective masses) in the
entire Brillouin zone.

1. Introduction

Organic semiconductors have attracted increasing attention over
the past years because of numerous advantageous properties, in-
cluding the tunability of electrical and optical properties,[1] me-
chanical flexibility,[2] and the possibility to build biocompatible
electronics out of small hydrogen-bonded pigments.[3–5] For all
these applications, the charge transport properties of the em-
ployed materials are highly relevant. Their description is, how-
ever, far from straightforward, as one is dealing with systems in
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which the electronic coupling between
neighboring molecules is typically on
the same order as the electron–phonon
coupling.[6]

Therefore, various models have been
developed (or adapted from related fields)
to describe the carrier mobilities of organic
semiconductors, μ.[6–9] The approaches
comprise band-transport models explicitly
considering electron–phonon coupling
(and the associated band narrowing) via
the Holstein–Peierls Hamiltonian,[10–12]

dynamic disorder–based models,[13–18] and
purely hopping-based approaches building
on Marcus theory.[6–8,19] The popularity
of these models has varied over time and
their suitability for a given system typi-
cally depends on the types of considered
molecules, their arrangements, the tem-
perature range of interest, and the degree
of disorder present.[6–9] Still, an essential
ingredient for all these transport models
is the electronic coupling between neigh-
boring molecules. Especially for hopping
and dynamic disorder models, it can be

expressed through transfer integrals, t, while for band-transport
parameters like the effective masses,m*, are most relevant.[6–9,18]

A seemingly straightforward and often applied approach for
determining that coupling, at least for crystalline materials, is
to calculate the electronic band structure of the system. This is
usually done applying state-of-the-art density functional theory
(DFT) methods. In principle, this band structure then contains
all information on transfer integrals and effective masses,
including the full crystal environment for each molecule. Nev-
ertheless, it turns out that extracting the parameters quantifying
the intermolecular electronic coupling from band structures
can be difficult, misleading, and dependent on the methods and
approximations used.
Thus, as a first step, we recapitulate commonly used methods

for extracting transport relevant quantities from electronic band
structures of crystalline materials. One of the simplest ways is
to consider the widths of the electronic bands in high-symmetry
directions.When employing a one dimensional nearest-neighbor
tight-binding model, one obtains the following relation between
the energy of the electronic states, E, and the wavevector, k:[20]

E (k) = ε − 2t · cos(k · a) (1)

Here ε is the on-site energy, t the transfer integral between neigh-
boring units, and a is the real space distance between the lattice

Adv. Theory Simul. 2019, 2, 1800204 1800204 (1 of 10) C© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



www.advancedsciencenews.com www.advtheorysimul.com

sites. Notably, Equation (1) also holds for orthogonal 3D unit cells
in the unit cell directions, as long as only nearest neighbors are
considered. For such a band shape, the transfer integral, t, is ob-
tained as a quarter of the bandwidth, BW. Comparing transfer
integrals or, equivalently, BWs obtained for different directions,
one can then try to rationalize the anisotropy of charge transport
within the material.[21–23]

A more elaborate approach to obtain transfer integrals is to
fit DFT-evaluated bands along high-symmetry directions by a 3D
nearest-neighbor tight-binding expression considering the actual
symmetry of the crystal. In this way, one gets direct access to the
transfer integrals as fit parameters.[24] A limitation of this strategy
is that only information on the calculated directions is considered
in the fit, which becomes problematic for low-symmetry systems,
where a more homogeneous sampling of the Brillouin zone is
necessary. Even when the latter is done, the question remains,
how many and which of the neighboring molecules need to be
taken into account for setting up the “ideal” tight-binding Hamil-
tonian. In particular, it needs to be determined under which cir-
cumstances one needs to go beyond nearest neighbors and what
consequences this will have.
Finally, when band-transport mechanisms dominate, another

option for determining preferential transport directions is to
identify the band extrema and then to calculate the effective mass
tensors at these k-points by numerical differentiation of the ab
initio data. This then allows an analysis of the effective mass m*
as a function of direction.[21–23,25,26]

All above-described approaches build on band structure calcu-
lations. As an alternative approach that is particularly widespread
in the field of organic semiconductors, transfer integrals are
routinely extracted from calculations of molecular dimers[26–31]

employing the ”energy splitting in dimer” (ESD) method or re-
lated, more advanced approaches.[6,7,32] These approaches are
often computationally less demanding than band structure cal-
culations and are particularly useful when dealing with non-
crystalline materials. Moreover, simulations on dimers are also
insightful when trying to understand the impact of shifting or
rotating neighboring molecules relative to each other.[30,33–35] The
obtained transfer integrals can then be employed for calculat-
ing hopping rates and also charge-carrier mobilities.[36–40] For
obtaining these mobilities, the transfer integrals are often com-
bined with Monte Carlo–based approaches.[37–41] Dimer-derived
transfer integrals have also been used to construct tight-binding
model functions, which can then be employed for calculating
band structures and effective masses.[42,43] The molecules sur-
rounding the dimers in the actual crystalline environment are
typically not considered in such approaches. Therefore, they
bear the risk of missing relevant physical effects resulting from
more complex intermolecular coupling effects beyond mere pair
interactions.[44]

In the following, we will critically assess the above-mentioned
methods for extracting the electronic coupling in organic semi-
conductors, including implications for charge-carrier transport
properties. This will be done for the instructive case of the α-
polymorph of quinacridone. To overcome the encountered limita-
tions of the above approaches, we will present a strategy based on
comparably complex tight-binding fits, which we find well suited
for obtaining the electronic coupling parameters needed in hop-
ping as well as band-transport models.

Figure 1. Crystal structure of the quinacridone α-polymorph. a) View of
the unit cell with the molecule in the original cell marked by a blue rect-
angle and the closest H-bonding partner in a1+a2 direction marked by a
purple rectangle. b) Side view of the crystal structure along a1+a2. c) View
to indicate the H-bonding and stacking directions. The most important
directions for assessing the anisotropic charge-transport parameters are
indicated by colored arrows: gray for π -stacking, purple for H-bonding,
and green for vdW stacking.

2. Studied Model System

The choice of α-quinacridone as test system is motivated by the
observation that in this material the intermolecular interactions
are fundamentally different in all three spatial directions. No-
tably, they comprise themost relevant interactionmotifs typically
found in organic semiconductors: (seemingly ideal) π -stacking,
H-bonding, and van der Waals stacking. Moreover, applying the
approaches mentioned in the introduction section is compara-
bly straightforward for α-quinacridone, as it contains only one
molecule per unit cell. This results in comparably simple expres-
sions for the tight-binding models and avoids band-crossings in-
volving the frontier bands.
Different views of the crystal structure of the quinacridone α-

polymorph[45] are shown in Figure 1, where a1, a2, and a3 denote
the unit cell vectors in real space. The directions of the different
interactions are indicated by colored arrows: the green arrow in-
dicates the direction of van der Waals stacking (a1+a2+a3), the
purple arrow the direction of hydrogen bonding (a1+a2), and the
gray arrow the direction of π -stacking (a1).
There are several additional aspects that make α-quinacridone

ideally suited for the present study (as will become apparent from
the discussion below): i) Along certain spatial directions, one
observes noncosine-shaped bands implying that in those direc-
tions a nearest-neighbor tight-binding description cannot be suf-
ficient. (ii) In other directions, diagonal couplings become rele-
vant. These massively modify the calculated band structures. (iii)
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Moreover, for certain directions, the interactions with the sur-
roundingmolecules in the crystalline environment turn out to be
particularly relevant resulting in improper results obtained from
dimer models.

3. Analyzing the Electronic Band Structure

The valence- (VB) and conduction bands (CB) of α-quinacridone
calculated using dispersion-corrected density-functional theory
at the Perdew–Burke–Enzerhof (PBE)[46,47] level are shown in
Figure 2.
The widths of these bands (defined as the energetic difference

between the highest and lowest energy states for a specific k-path
within the first Brillouin zone, BZ) are compiled in Figure 3b.
The high-symmetry directions in reciprocal space are neither par-
allel to the real-space lattice vectors a1, a2, a3 (representing the
periodic arrangement of the molecules) nor to the directions of
H-bonding, π -stacking, and vdW stacking. They are also not par-
allel to the short (S) or long (L) molecular axes, or perpendicu-
lar to the molecular plane (P). Therefore, we also calculated the
bandwidths along paths between the �-point and the Brillouin-
zone boundary parallel to a1, a2, a3, S, L, and P, as indicated in
Figure 3a. Note that the aforementioned vectors in the follow-

Figure 2. DFT-calculated electronic band structure of α-quinacridone
along a set of high-symmetry paths (solid thick lines). The first BZ includ-
ing the chosen k-path is shown as an inset in the topmost panel. The en-
ergies are given relative to the maximum of the valence band, EVBM. The
results of the TB fit discussed in Section 4 are shown as dash–dotted black
lines (essentially coinciding with the DFT calculated bands). A zoom into
the regions of conduction and valence band is shown in the two lower
panels.

Figure 3. a) Unit vectors starting at the � point and pointing in the direc-
tions of the unit cell axes in real space (a1, a2, and a3), the unit cell axes in
reciprocal space (�X, �Y, and�Z), the π -stacking direction (P) and the di-
rections of short (S) and long (L) molecular axes. b) Bandwidth and �EBZ
along the chosen paths in reciprocal space for valence and conduction
band. Data sets which describe similar paths are grouped, for example,
a2, S, and �Y.

ing discussions will also be used as labels for the corresponding
k-paths.
Observing a large bandwidth, BW, along a certain path sug-

gests that the electronic coupling in that direction is large. Thus,
the comparison of the bandwidths in Figure 3 allows first con-
clusions concerning the anisotropy of the electronic coupling.
Within the simple 1D tight-binding model mentioned in the in-
troduction, this also yields a first estimate of the anisotropy of
the associated transfer integrals, t= BW/4: For the valence band,
the BW is largest along a path parallel to the �Y direction, sim-
ilarly large parallel to a2, and only somewhat smaller along the
short molecular axis (S). It is intermediate along paths in the
π -stacking direction (a1) and along the long molecular axis (L),
and smallest for paths perpendicular to the molecular plane (P).
For the conduction band, the main differences are that the band-
widths in all directions close to the long molecular axis (a3, L,
and �Z) become particularly small, while they increase some-
what for paths pointing in the π -stacking and in the P direc-
tions. For the latter two, they, however, still remain well below
100 meV.
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At first glance, this appears somewhat surprising consider-
ing the seemingly ideal π -stacking in α-quinacridone, which one
might assume to maximize the corresponding electronic cou-
plings. The reason for the strongly reduced coupling in the π -
stacking direction lies in the details of the arrangement of the
molecules: The P and a1 directions are not parallel, resulting in a
slip of neighboring molecules along their long and short molec-
ular axes. As a consequence of the symmetry of the involved or-
bitals, this results in a sharply reduced electronic coupling, as
discussed in detail, for the examples of tetracene, anthradithio-
phene, and sexithienyl in refs. 6,30,33.
A closer inspection of the band structure displayed in Figure 2

reveals that along several paths, the bands clearly deviate from
the (according to Equation (1)) expected half-wave cosine shape
with extrema at � and the BZ boundary. To more systematically
identify such cases, we define a second parameter related to the
widths of the band, namely the (absolute value of the) energetic
difference between the state at the � point and the state at the BZ
boundary along a specific direction, �EBZ.
The values of �EBZ are also contained in Figure 3. Major

deviations between �EBZ and BW indicate paths along which
the simple relation of t equaling a quarter of the bandwidth
no longer holds. Small deviations can also originate from the
fact that apart from �X, �Y, and �Z, the k-paths for which the
bandwidths are displayed in Figure 3 are not parallel to recipro-
cal lattice vectors. The largest difference between �EBZ and the
BW is found for the conduction band along the a1 path. Other
paths which are potentially not described correctly by the sim-
ple tight-binding expression from Equation (1) are P and L for
the valence- and a2, P, and �X for the conduction band. Notably,
analyzing bandwidths allows us to identify these problematic di-
rections, but does not provide us with tools for improving the
analysis.

4. Tight-Binding Fits versus Dimer Models

Therefore, we have gone beyond the simple model from Equa-
tion (1), applying a more general tight-binding ansatz of the fol-
lowing form:[20]

E (k) = ε +
∑
j

t j · e±ik·R j (2)

Here ε denotes the on-site energy, tj is the transfer integral for
neighboring molecules along direction j and Rj is the vector con-
necting the central molecule with the respective neighbor. Due
to the inversion symmetry of α-quinacridone, the two neighbors
at Rj and −Rj are equivalent. Therefore, the associated transfer
integrals are also the same and one obtains two terms t j · eik·R j

and t j · e−ik·R j for each index j, resulting in 2t j cos(k · R j ). When
fitting the tight-binding model to the DFT band structure, the
fit parameters are ε and tj, while Rj is determined by the crystal
structure. As there is only one molecule per unit cell, the possi-
ble values of Rj in α-quinacridone are sums of integer multiples
of the unit cell vectors a1, a2, and a3. In the following, these will
also be used for naming the different transfer integrals and when
referring to bands for the corresponding k-paths.

For developing the tight-binding model, we start by consider-
ing a subset of nearest neighbor molecules and gradually include
more neighbors until the root mean square error between the
tight-binding model and the DFT bands falls below 5 meV. In
this context, it needs to be stressed that the fitting must not be
done along the high-symmetry directions alone, as then one only
obtains good agreement in these directions, while there are large
errors in other parts of the Brillouin zone. Therefore, we homo-
geneously sampled the entire BZ employing a tight k-grid (for
details see Section 8). This yields a highly accurate description of
the bands not only on that grid, but also along the high-symmetry
directions. This is shown in Figure 2 (black line). In passing, we
mention that increasing the number of neighbor molecules in-
cluded in the fit does not change the transfer integrals for the
previously considered neighbors. This can be seen in Table 1,
when comparing the tj for the “simplified” and the “full” model.
It is a consequence of the model function representing a Fourier
decomposition of the energy dispersion relation, with the trans-
fer integrals serving as Fourier coefficients. Notably, these coeffi-
cients are independent of each other (for details see Supporting
Information).
An appealing aspect of the tight-binding fit is that it yields an

analytical expression for the band structure. From that expres-
sion, group velocities and effective masses can also be calculated
analytically at any point in reciprocal space from derivatives of
the band structure with respect to k (see below). Additionally, the
fit immediately yields the electronic couplings (transfer integrals)
between all relevant neighbors considering the full 3D crystal en-
vironment.
For organic semiconductors, the transfer integrals are more

commonly determined employing the ESD[6] method, where they
are calculated as half of the energetic splitting between dimer or-
bitals viewed as bonding and antibonding linear combinations
of the frontier orbitals of isolated molecules. In passing we note
thatmore sophisticated approaches like the fragment orbital (FO)
methods need to be employed whenever the molecules are sym-
metry inequivalent, as the ESD approach would not properly ac-
count for differences in site energies arising from the molecules
polarizing each other differently.[32] This is, however, no major
concern here, as the dimers derived from the α-polymorph of
quinacridone show inversion symmetry.[32]

A disadvantage of the ESD approach is that it treats the molec-
ular dimer as an isolated entity neglecting the role of most of the
neighboring molecules in the crystalline environment. To assess
the impact of this approximation, we first compare the transfer
integrals from the tight-binding fit with the ones obtained via the
ESD method (see Table 1). Overall, there is a rather good agree-
ment between the two approaches for both bands (VB and CB)
and most of the considered directions (also considering certain
methodological differences in the DFT calculations on dimers
and periodic structures – see Section 8). Excellent agreement is
found, especially for the a2+a3 direction, for both bands and for
a1 and a1+a2 for the valence band. Conversely, for the CB, we
find a large deviation of 12 meV for the latter direction. To ratio-
nalize this discrepancy, one has to remember that the a1+a2 di-
rection is the one of the intermolecular H-bonds (see Figure 1).
Notably, one of the properties of quinacridone is that the four
H-bonds each molecule undergoes in a crystalline environment
(two involving the amine and two involving the ketone groups)
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Table 1. Parameters for the tight-binding fit of the frontier bands of the quinacridone α-polymorph considering only the molecules with the smallest
distance from the central molecule (“simplified”) and for an increased number of transfer integrals included in the fit (“full”). The reason why ta1+a2
is considered in the “simplified” model is that this direction corresponds to the H-bonding direction with particularly short intermolecular distances.
Likewise, the distance between (symmetry inequivalent) atoms is shorter in the a2+a3 direction than in the a3 direction, which is the reason why we

have included ta2+a3 and not ta3 (see Figure 6). The root mean square error (RMSE) in the last line is calculated as RMSE =
√ ∑N

i=1 |Ê i,DFT−Ei,TB |2
N , with

Ei ,TB and Ei ,DFT referring to the energies of the individual states calculated by the tight-binding, respectively, by the DFT approach. Note that differences
smaller than 1 meV are within the convergence errors of our calculations.

VBfull [meV] VBsimplified [meV] Dimer [meV] CBfull [meV] CBsimplified [meV] Dimer [meV]

ε 852.7 852.7 2462.1 2462.1

ta1 4.8 4.8 4.4 −18.4 −18.4 −17.0

ta2 −9.7 −9.7 −6.0 38.3 38.3 44.0

ta3 0.4 — 0.3 −0.5 — −0.3

ta1+a2 −9.9 −9.9 −10.5 −5.1 −5.1 −17.0

ta3-a1 0.0 — 0.0

ta2+a3 −12.2 −12.2 −14.2 −1.3 −1.3 −1.6

ta2+a3-a1 −5.2 — 2.9 −1.0 −1.5

t2·a1+a2 −0.1 — −0.4 —

t2·a1-a3 0.0 — 0.1 —

t2·a1 2.0 — −13.2 —

ta1+a2+a3 3.3 — −0.9 —

ta2-a1 −0.6 — 1.3 —

t2·a2 0.5 — 0.0 —

t3·a1 1.5 — −0.4 —

RMSE 3.2 13.7 1.9 26.7

change the nature of the molecule, driving it toward a more con-
jugated structure with the H atoms “shared” between neighbor-
ing N and O atoms.[5] The reason why the impact of this effect
is much stronger for the CB than for the VB is not fully un-
derstood. It is most likely related to the different shapes of the
involved dimer orbitals (for further details see Supporting In-
formation). Deviations in the a2 direction are attributed to the
same effect, as the a2 direction is only somewhat inclined relative
to a1+a2.
Another possible reason for deviations between dimer simu-

lations and full band structure calculations in the a1+a2 direc-
tion becomes apparent when decomposing the conduction band
into its individual TB components. The outcome is shown in
Figure 4, where, quite unexpectedly, the main contribution to the
band dispersion in the a1+a2 direction does not stem from ta1+a2

but rather from ta2. To understand that, one has to realize that the
a2 vector has a sizable component in the a1+a2 direction. Conse-
quently, the scalar product k·Rj from Equation (2) is significant
also, when Rj = a2 and k is parallel to a1+a2. Therefore, for the
conduction band, where ta2 is much larger than ta1+a2 (which is
also true when considering the LUMO/LUMO+1 splitting of the
respective dimers) the band structure in the H-bonding direction
is dominated by the diagonal electronic coupling via ta2. Another
interesting aspect is that for the conduction band, ta2 and ta1+a2
have different signs. Consequently, their superposition reduces
the band dispersion in the a1+a2 direction (see Figure 4). There-
fore, while the combination of the two couplings provides addi-
tional transport pathways for incoherent hopping, for band trans-
port it increases the effective mass and, therefore, is detrimental
for charge transport.

The previous analysis of the conduction band in a1+a2 direc-
tion was triggered by differences between TB and dimer results.
Alternatively, it can also happen that the two methods give the
same transfer integrals between neighboring molecules and still
the description of the material is incomplete when only interac-
tions between dimers are considered. This is, for example, the
case for the conduction band along the a1 path (i.e., in π -stacking
direction). There, TB and dimer values for ta1 agree nicely, but al-
ready the large deviation between BW and �EBZ (Figure 3) sug-
gests that the shape of the band strongly deviates from a sin-
gle cosine. This implies that more than one intermolecular elec-
tronic coupling is important, an assessment which is confirmed
by a decomposition into tight-binding components (see Figure 5).
Considering only the ta1 component yields the expected cosine-
shaped band with a far too large energetic difference between
the states at the �-point and the BZ boundary. Moreover, it com-
pletely misses the aspect that in the DFT calculations the band
maximum in the π -stacking direction is approximately half-way
between � and the BZ boundary. The latter suggests that a sec-
ond component with a twice as high frequency must be added to
the ta1 component to reasonably reproduce the band shape. This
can be realized considering also the coupling to the next nearest
neighbor at 2·a1, where indeed a sizable value for t2·a1 is found
for the conduction band (see Table 1). This raises the question
concerning the physical origin of that next-nearest neighbor cou-
pling. Direct coupling can be ruled out, as we calculate a vanish-
ingly small transfer integral for a dimer consisting of the origi-
nal molecule and the next nearest neighbor molecule alone (also
when including the basis functions associated with the molecule
in between). Therefore, we attribute the comparably large value
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Figure 4. Conduction band and main tight-binding components along
a path parallel to the H-bonding direction (a1+a2). A12 denotes the
Brillouin-zone boundary in that direction. The DFT data are shown as a
thick blue solid line. All other lines show contributions evaluated from the
TB model. The individual contributions are shown in purple for ta1+a2,
slate blue for ta2, and gray for ta1. The sum of these contributions is shown
by the orange solid line, which is already almost perfectly on top of the DFT
data. The top panel shows the crystal structure with the relevantmolecules
highlighted using the same color code as for the band components. The
area around the central molecule is highlighted in dark gray.

of t2·a1 to a coupling between next-nearest neighbors mediated by
themolecule in between.[44,48–50] Notably, such effects will only be
captured when analyzing the full band structure of the system in
question.
The last direction we examine in detail is a3. Here TB and

dimer transfer integrals agree and also �EBZ and BW are the
same. Thus, one might expect that for this direction the simple
model considering only ta3 should provide reliable results. An in-
spection of Table 1, however, shows that ta3 is negligibly small,
implying a vanishing bandwidth along a path parallel to a3 (see
dotted line in Figure 6). This is, however, not the case when cal-
culating the full band structure (solid red line in Figure 6).
The explanation for this seeming contradiction is again the ap-

pearance of diagonal couplings. The situation is particularly com-
plex here, as several neighboring molecules are at distances only
slightly larger than a3 (namely the molecules at a2+a3, a2+a3-a1,
and a2+a3+a1; see top panel in Figure 6). In fact, when consid-
ering the distances between nearby atoms rather than the dis-
tances between molecular centers, for some of these neighbors
onemight even expect electronic couplings larger than ta3. This is
indeed the case (see Table 1), and consequently, the diagonal cou-
pling contributions ta2+a3, ta2+a3 -a1, and ta2+a3+a1 dominate the
band dispersion in the a3 direction (see Figure 6). At this stage,
one might argue that transport in a3 direction is only of minor
relevance, considering the small associated bandwidth (6 meV).

Figure 5. Conduction band and main tight-binding components along a
path parallel to the π -stacking direction a1. A1 denotes the Brillouin-zone
boundary in that direction. The DFT data are shown as blue solid line. All
other lines show contributions evaluated from the TB model: dashed gray
line for ta1 and dotted gray line for t2a1. The top panel shows the crystal
structure with the relevantmolecules highlighted using an equivalent color
code.

This assessment, however, misses the fact that large intermolec-
ular distances increase hopping mobilities, as will be discussed
in the next section.

5. Implications for Hopping Transport

Even for “benign” bands, one must keep in mind that for trans-
port the distance between neighboring molecular sites in a spe-
cific direction plays an equally important role as the transfer
integrals. For the case of hopping transport, this follows from
the diffusion coefficient (for a 1D system) being proportional to
(tR j · |R j |)2.[6,9,38] The latter quantity in the following will be re-
ferred to as diffusion parameter, dR j. Like in the tight-binding
ansatz in Equation (2), for a material with only one molecule in
the unit cell, the intermolecular center to center distances, Rj,
can be expressed as linear combinations of the lattice vectors. In
this way, they directly reflect the periodicity of the crystal as they
are the distances between all lattice sites. The expression for the
diffusion parameter implies that to maximize hopping rates, one
needs to maximize transfer integrals especially in directions of
large inter-site distances.
Our test system, α-quinacridone, is triclinic[45] with unit cell

vectors of significantly different lengths (a combination of-
ten observed for semiconductor crystals). Therefore, consid-
ering intermolecular distances is crucial for assessing trans-
port anisotropies. Consequently, in Table 2, we summarize the
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Figure 6. Valence band in a3 direction. The DFT data are displayed in red.
The green dotted line shows the contribution from ta3, the sienna colored
line that from ta2+a3, and the violet and cyan lines those from ta2+a3-a1
and ta2+a3+a1. The sum of the latter three contributions is shown by an
orange line. The top panel shows the crystal structure with the relevant
molecules highlighted using an equivalent color code.

Table 2. Comparison of diffusion parameters dR j = (tR j · |R j |)2 and trans-
fer integrals for electrons and holes, obtained by fitting a TB model to the
electronic band structure.

Directions Holes Electrons

Rj |Rj| [Å] dRj 10−3·[eV·Å]2 tRj [meV] dRj 10−3·[eV·Å]2 tRj [meV]

a1 3.80 0.3 4.8 4.9 −18.4

a2 6.61 4.1 −9.7 64.1 38.3

a3 14.49 0.0 0.4 0.1 −0.5

a1+a2 6.90 4.7 −9.9 1.2 −5.1

a2+a3 14.77 32.5 −12.2 0.4 −1.3

corresponding diffusion parameters for the directions of dom-
inant transfer integrals. This finally allows us to judge the
anisotropy of charge transport in α-quinacridone when a hop-
ping mechanism dominates.
Analyzing the diffusion parameters for holes, one observes an

anisotropy that is much more pronounced than for the trans-
fer integrals. This is in part related to the fact that the diffu-
sion parameters are proportional to tR j2. The main reason is,
however, that the square of the intermolecular distance also en-
ters into the expression of dR j. This, for a given transfer inte-
gral, improves charge transport in directions in which nearest
neighbor distances are particularly large. As a consequence, the
diffusion rates to neighboring molecules in the a2+a3 direction
are nearly an order of magnitude larger than in any other direc-

tion. Conversely, for the π -stacking direction (a1), characterized
by the smallest intermolecular distance, the diffusion parameter
becomes particularly small.
For the same reason, electron transport in theπ -stacking direc-

tion becomes inefficient, in this case despite the comparably large
transfer integral ta1. In contrast to the situation for hole trans-
port, the dominant diffusion parameter for electrons is found
close to the H-bonding direction along a2. Here, the reason for
the large value of da2 is the rather high associated transfer in-
tegral. This means that in α-quinacridone transport is not only
highly anisotropic but even the preferred transport directions for
electrons and holes are different.

6. Effective Mass and Band Transport

When considering band instead of hopping transport (e.g., at low
temperatures), a further complication arises from the observa-
tion that the band extrema do not occur at the �-point but rather
at Y (for the valence band) and at E2 (for the conduction band; see
Figure 2). Thus, an analysis of the bands in the high-symmetry
directions as in Section 3 provides only limited insight into the
actual transport properties of α-quinacridone. Considering that
the tight-binding fit provides an analytical expression for the en-
tire band structure, it is however straightforward to directly calcu-
late effective mass tensors, m*, at any point in reciprocal space.
In the following, we will focus on the “diagonal terms” of m*.
These are obtained from the inverse of the second derivative of
the energy with respect to k in a specific direction

⇀

d according to
Equation (3).

(
m∗

⇀
d

)−1
=

⇀

dT ·
[

∂2E (k)
∂ki∂k j

]
i, j ε[x,y,z]

·
⇀

d (3)

The diagonal terms ofm* link carrier flow in a specific direction
with the electric field acting in the same direction. They are the
most relevant components of m*, considering common device
architectures. The values obtained at the extrema of the frontier
bands projected onto a sphere are shown in Figure 7a,b.
At the valence band maximum (Y), we find the smallest effec-

tive mass in a2+a3 direction, which is perfectly in line with the
observations made for the transfer integrals and the diffusion pa-
rameters (see Table 2). Interestingly, around the a2+a3 direction,
there is quite a large region showing comparable values of m*.
This suggests that hole transport in α-quinacridone is reasonably
efficient, provided that it occurs in directions close to parallel to
the long molecular axes. The highest effective masses are found
close to the a1 direction implying particularly poor hole transport
in the π -stacking direction consistent with the relatively small
value of ta1 (Table 1) and the comparably even smaller one for
(ta1 · |a1|)2 (Table 2). For the sake of comparison, we also calcu-
lated m* at the � point. Interestingly, the a2+a3 direction is still
the one associated with the lowest absolute value of the effective
mass (see Figure 7c,d). As the � point is not a band extremum,
the sign of m* in that direction is, however, positive rather than
negative (see Figure 7e,f). Moreover, m* diverges where the sign
ofm* changes (i.e., for directions inwhich the deep blue and deep
red regions in Figure 7e,f meet). Both aspects suggest that the ef-
fectivemass at the� point and, therefore, also all other quantities
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Figure 7. Effective mass m* of VB and CB evaluated at the respective band extrema (top panels). Additionally, for the VB, m* is also evaluated at the �

point (central and bottom left panels) and for the CB at a k-point that is within kT from the minimum (i.e., at Y, central and bottom right panels). The
two central panels contain absolute values of m*, while in the other panels the sign of the effective electron mass is considered (note that a negative
effective electron mass means a positive effective hole mass).

derived from paths originating at the � point contain quite mis-
leading information regarding band transport in α-quinacridone.
For the conduction band with its minimum at E2, we find

particularly large effective masses for directions close to a3 and
a2+a3, in sharp contrast to the situation for the valence band.
The smallest effective mass for the CB is found in direction a2,
consistent with the particularly large transfer integral in that di-
rection. This suggests that electron transport is most efficient in
directions close to the short molecular axis and the H-bonding
direction (a1+a2). Thus, also for band transport, the preferred
transport directions for α-quinacridone are fundamentally differ-
ent for electrons and holes.
As the bands in organic semiconductors are comparably flat,

the question arises whether the effective mass tensor changes
significantly for other thermally accessible states. For the con-
duction band, we tested that for the Y point, which is only 5 meV
above the E2 point. There, the absolute value of m* becomes in-
termediate around directions a3 and a2+a3. At the same time,
the sign of m* changes in that region (not surprisingly, as the Y
point is not a minimum of the conduction band). This suggests

that merely considering a single effective mass for electrons and
holes for each direction is not necessarily sufficient for model-
ing band transport in organic semiconductors. In such cases, for
obtaining a semi-classical description of charge transport prop-
erties within the band picture, it becomes inevitable to consider
the full band structure. From the tight-binding fits, this quantity
is readily available as an analytical function through Equation (2).

7. Conclusions

The current paper provides a comparison of commonly applied
approaches for analyzing the electronic coupling in organic semi-
conductor crystals. This is done for the instructive example of
α-quinacridone. Our study reveals shortcomings of merely con-
sidering bandwidths or transfer integrals, when the latter are
based on dimer simulations. While both approaches provide cer-
tain basic insights regarding the anisotropy of the electronic
coupling in molecular crystals, an analysis of bandwidths fails
when dealing with comparably complex band structures. A
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complication of dimer simulations (beyond the well-known is-
sues for non-centrosymmetric structures)[32] is that they neglect
the actual 3D crystalline environment. This becomes particu-
larly problematic for the class of H-bonded chromophores. They
also neglect next-nearest neighbor coupling effects mediated by
a bridge molecule. Moreover, transport in specific directions can
be dominated by diagonal coupling elements, and in certain di-
rections, coupling to a sizable number of close-lying neighbors
can become relevant. Finally, in situations dominated by band-
transport, further complications can arise from band extrema be-
ing located neither at the� point nor at the Brillouin zone bound-
ary. To overcome these problems, we recommend a fitting of the
full band structure by tight-binding models considering a num-
ber of neighboring molecules, which is sufficient for mimicking
the actual band structure of the crystal. This allows a straightfor-
ward extraction of transfer integrals that can be employed in hop-
ping and dynamic disorder models. It also provides an accurate
analytical expression for the band structure. The latter, for exam-
ple, allows the straightforward calculation of parameters relevant
for band transport (like effective masses and group velocities) at
any point in reciprocal space without any numerical effort.

8. Experimental Section
For all calculations relying on periodic boundary conditions, dispersion-

corrected density-functional theory (DFT) was used as implemented in
VASP 5.3.3.[51–54] The exchange-correlation part was treated employing
the PBE[46,47] functional in combination with the Tkatchenko–Scheffler
(TS) dispersion correction method[55] to account for long-range van der
Waals interactions. Furthermore, the electronic band structure of the α-
polymorph was also calculated using the HSE06[56,57] functional and com-
pared to the PBE results. This comparison was triggered by the study of
Lüftner et al.,[58] who showed that for obtaining a correct ordering of the
molecular orbitals of quinacridone, a proper treatment of exchange in-
teractions is important. As far as the frontier bands are concerned, no
fundamental differences between PBE and HSE06 (see Supporting In-
formation) were observed. The recommended PAW[59] potentials (details
in Supporting Information) together with a plane-wave cut-off energy of
700 eV were used for all calculations. In the self-consistent-field (SCF) pro-
cedure, the Brillouin zone was sampled in two independent steps: i) using
a 32 × 20 × 8 �-centered k-point grid (the charge density resulting from
this calculation was also used to non-self consistently calculate the band
structures in the high-symmetry directions) and ii) using a 32 × 20 × 8
k-grid, which was shifted by a vector of (0.5, 0.5, 0.5) times the reciprocal
lattice vectors. The eigenvalues obtained by these two calculations were
then combined in order to densely sample the Brillouin zone. An option
for larger systems would be to perform the SCF calculation for a smaller
grid and then to calculate the eigenvalues to sample the Brillouin zone
with a more dense grid in a non-self-consistent manner using the previ-
ously obtained charge density. This strategy was tested using a smaller
16 × 10 × 4 k-grid in the SCF procedure, obtaining essentially the same
eigenstates (for all considered k-points) and electronic couplings as for
the full calculations. To describe the occupation of the electronic states, the
Methfessel–Paxton[60] occupation scheme with a width of 0.1 eV was used.
The relaxed geometry of the test system was obtained by taking the crystal
structure of α-quinacridone from literature[45] and relaxing the atomic po-
sitions until the largest force component on the atoms was smaller than
0.01 eV Å−1, while keeping the unit cell vectors fixed.

For the quinacridone dimers, which have been extracted from the
relaxed crystal structure, orbital energies were obtained by performing
single-point calculations using the Gaussian 09 program package[61] in
combination with the PBE functional and a 6-311++G(d,p) basis set. The
transfer integrals t were obtained from the orbital energies applying the

ESD method.[6] The sign of the transfer integrals was determined depend-
ing on whether the bonding (positive) or antibonding (negative) linear
combination of the molecular orbitals was higher in energy.

To ensure the stability of the tight-binding fits, various algorithms were
tested, like conjugate-gradient, least-squares (Levenberg–Marquardt),
Powell, and Nelder–Mead, all as implemented in the LMFIT[62] package
for Python. Furthermore, the fitting procedure was started with randomly
initialized starting guesses for the transfer integrals ranging between 0
and 5 meV. In all cases the same minimum was found regardless of the
algorithm and the initial guesses.

Additionally, the stability of the fit was tested as a function of the num-
ber of k-points for a fixed number of transfer integrals (fit parameters).
To do that, a subset of k-points from the high-density grid was randomly
chosen and the fit was performed on these points. The fit turned out to
be stable (changes of the RMSE well below 1 meV) for a k-grid contain-
ing only 100 points, provided that the k-points were homogeneously dis-
tributed in k-space. Here, it is, however, important to keep in mind that
such results depend on the investigated material, as the minimum grid
density depends on the highest-frequency component contained in the
Fourier decomposition of the bands; that is, one needs to make sure that
the sampling rate is such that none of the actually occurring frequency
components of the band structure is above the Nyquist frequency.[63]

The crystal structures were visualized using Ovito[64] and the electronic
band structures were plotted using the Python libraries NumPy[65] and
Matplotlib.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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1. Headers of the PAW potentials 

Carbon: PAW_PBE C 08Apr2002 

Hydrogen: PAW_PBE H 15Jun2001 

Nitrogen: PAW_PBE N 08Apr2002 

Oxygen: PAW_PBE O 08Apr2002  

 

2. Comparison of the electronic band structures when using the PBE and the 

HSE06 functionals 

When comparing the electronic band structure of the -polymorph of quinacridone at the density 

functional theory level comparing the PBE
[1,2]

 functional (semi-local GGA) and the HSE06
[3,4]

 

functional, we find the expected band-gap increase for HSE06. The shape of the bands, however, 

stays the same and the band width increases only slightly in HSE06 (see Figures S1, S2, and S3) 

one can find that the shape of the frontier bands, their band width and curvature shows no 

significant changes. Lüftner et al.
[5]

 suggested a significant change in the orbital ordering for 

quinacridone for sufficient amounts of exact exchange. Therefore, we also compared orbital 

energies for single molecules and molecular dimers. The results can be found in Figure S4. We 

find that indeed the orbital ordering changes between the two functionals. The relative positions 

of the molecular frontier orbitals and their linear combinations are, however, not affected. Only 

the HOMO to HOMO-1 and LUMO to LUMO+1 splittings in the dimer case are slightly 

increased for HSE06.  

To ensure that the character of the frontier orbitals and the electronic states in the frontier bands 

is the same, we also calculated the projected charge density of the respective bands (VB and CB) 

at the -point at the PBE level (Figure S5). Comparing them to the molecular orbitals (Figure 

S5) we find that the VB (CB) corresponds to the HOMO (LUMO) and the VB-1 (CB+1) to the 

HOMO-1 (LUMO+1). 



 

 3 

Based on all these tests we conclude that for the aspects studied in the paper, PBE and HSE06 

yield the same results. Thus, we base them on the computationally far less costly PBE functional.  

 

 

Figure S1. Electronic band structure of the -polymorph obtained by performing DFT 

calculations using the PBE functional. The dashed lines indicate the tight-binding fit which has 

been performed on the 3D data set and is here shown along the high-symmetry directions. 

 

Figure S2. Electronic band structure of the -polymorph determined by applying the HSE06 

functional. 
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Figure S3. Valence band (left) and conduction band (right) of -quinacridone evaluated using 

PBE (top panels) and HSE06 functionals (bottom panels). The obtained results agree nicely with 

a minor increase of the band widths for HSE06. 
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Figure S4. Orbital energies of a single quinacridone molecule and a dimer calculated using 

PBE and HSE06 functionals. The orbitals shapes determined with the HSE06 functional are also 

shown using the same color code as for the orbital energies. In the dimer case, lines of the same 

color refer to related orbitals originating from bonding/antibonding linear combinations of the 

same molecular orbitals. Lower lying molecular orbitals of the monomer (HOMO-5 and below) 

are not color coded, they are shown in black whenever they are in the respective energy window, 

for completeness.   
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Figure S5. Top: Partial charge density of the valence band (VB) and VB-1 at the -point at a 

PBE level. Bottom: equivalent plot for the conduction band. For the sake of a better visibility the 

charge density is only shown for the one molecule in the unit cell.   
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3. Stability of the tight-binding fit parameters 
 

When comparing the obtained fit parameters (transfer integrals) for the full and the simplified 

model (shown in the main manuscript) one can observe that they are basically equal to each other 

within a sub meV spread. Here we rationalize this observation and show that this is an intrinsic 

property of a tight-binding model.  

We start by reconsidering our tight-binding model function, which in principle is a 

multidimensional discrete Fourier decomposition of the energy E(k).  

         ∑        
   

 ∑       
 

 

The right side of the equation has the form of a Fourier series with the transfer integrals tn being 

the Fourier coefficients. For the sake of simplicity, we replace the above equation by its 1D 

equivalent. The Fourier coefficients can then be written as 

   ∑    
   

 
 

We see that each of these coefficients only depends on one specific distance Rj. All the other 

position vectors            do not influence tR. This is shown also explicitly for the simple case 

of a rectangular band structure in Figure S6. The above equation also shows that in order to get 

reliable results the series has to converge, which means that enough data points Ek need to be 

obtained from the DFT calculation. 

In the main manuscript we show, how the tight-binding transfer integrals change for two 

different sets of considered neighboring molecules. A more detailed summary of the parameters 

upon increasing the number of neighboring molecules included in the fit is shown in Table S2.  
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Figure S6. Top: Fit of a rectangular band structure using our tight-binding model function. In 

the panels on the left one can see the original function (blue) together with the individual 

components of the fit. On the right the sum of the individual components is shown in red together 

with the original function in blue. Bottom: Evolution of the fit-parameters as a function of the 

number of parameters used during the fit routine. 
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Table S1. Values of the parameters (given in eV) when the model function is fitted to the DFT 

data of the -phase of quinacridone. One can see that the parameters are basically unaffected by 

the introduction of new/additional parameters.  
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4. Orbitals of the molecular dimer formed by the nearest neighboring 

molecules in a1+a2 (H-bonding) direction 

In the main manuscript we attributed the particularly strong impact of the H-bonds on the ta1+a2 

transfer integral for the CB to the shape of the involved dimer orbital. These are shown in Figure 

S6, which reveal differences in the accumulation of charges close to the H-bonds and in the 

nodal patterns between the orbitals for occupied vs. unoccupied states.  

 

Figure S7. Molecular orbitals of the quinacridone dimer constructed by the neighboring 

molecules along direction a1+a2.  

 

5. Additional plots and data of the electronic band structures 

Figure S8 shows the DFT calculated conduction (blue) and valence bands (red) for the 

considered “real space directions” discussed in section 3 of the main manuscript.  Also the TB fit 

as described in section 4 in of the main manuscript are shown. One can see that the fitted data 



 

 11 

agree quite well with the calculated bands. Only in direction P one observes a larger quantitative 

difference. However, the shape of this band is still nicely reproduced and the largest deviation in 

that direction amounts to ~4 meV, which is still comparably low. The extracted BW’s (as the 

difference between the maximum and minimum value of the respective electronic band) are 

compiled in Table S2. 

 
Figure S12. Conduction (blue) and valence (red) bands along directions a1, a2, a3, P, S and L. 

The tight-binding fit is shown as a black line. 
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Table S2. Band width for the highest occupied and the lowest unoccupied band of the -phase of 

quinacridone along selected directions. For a description of the directions see the main text and 

Figure 1.  

direction BWVB 

(meV) 

ΔEBZ,VB 

(meV) 

BWCB 

(meV) 

ΔEBZ,CB 

(meV) 

a1 59 59 88 44 

a2 126 126 119 111 

a3 65 65 12 12 

P 26 15 50 36 

S 95 94 122 122 

L 61 56 17 17 

ΓX 34 30 113 97 

ΓY 141 141 124 124 

ΓZ 63 63 14 14 

  

 

6. Impact of the choice of fitted k-points on the performance of the tight-

binding model 

Here we describe the results of the “full” TB fit including only the high-symmetry directions 

from Fig. 2 of the main manuscript. The agreement between the TB and DFT bands along the 

high-symmetry directions is excellent. Figures S13 and S14 show the fitted results for directions 

strongly differing from the ones used in the parametrization. We find that the fit is completely 

wrong in this direction, which is not surprising as no data points containing information for this 

path have been considered during fitting. This leads to the conclusion that the whole k-space (at 

least for low symmetry systems) has to be included in the fitting procedure in order to be able to 

extract information on arbitrary k-paths and k-points. 
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Figure S13. Conduction band in direction a1+a2. The DFT data are shown in blue and the TB fit 

on the high-symmetry directions is shown as dash-dotted black line. 

 

Figure S14. Valence band in direction a1+a2. The DFT data are shown in red and the TB fit on 

the high-symmetry directions is shown as dash-dotted black line. 
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ABSTRACT: A crucial factor determining charge transport in
organic semiconductors is the electronic coupling between the
molecular constituents, which is heavily influenced by the
relative arrangement of the molecules. This renders quinacri-
done, with its multiple, structurally fundamentally different
polymorphs and their diverse intermolecular interactions, an
ideal test case for analyzing the correlation between the
electronic coupling in a specific configuration and the
configuration’s energetic stability. To provide an in-depth
analysis of this correlation, starting from the α-polymorph of
quinacridone, we also construct a coplanar model crystal. This
allows us to systematically compare the displacement depend-
ence of the electronic coupling with that of the total energy. In
this way, we identify the combination of Pauli repulsion and orbital rehybridization as the driving force steering the system
toward a structure in which the electronic coupling is minimal (especially for the valence band and at small displacements). The
general nature of this observation is supported by equivalent trends for an analogous pentacene model system. This underlines
that the design of high-performance materials cannot rely on the “natural” assembly of the π-conjugated backbones of organic
semiconductors into their most stable configurations. Rather, it must include the incorporation of functional groups that steer
crystal packing toward more favorable structures, where aiming for short-axis displacements or realizing comparably large long-
axis displacements appear as strategies worthy of exploring.

1. INTRODUCTION

Organic semiconductors (OSC) are increasingly used as active
elements in (opto)electronic and photonic devices.1−11 For
most of these applications, the charge-carrier mobility, μ, of the
employed materials is of paramount importance. Unfortu-
nately, carrier mobilities in the majority of OSCs are orders of
magnitude smaller than in their inorganic counterparts.12

Improving that situation and achieving efficient charge
transport is, thus, one of the key challenges for the further
success of OSC-based devices. Computational modeling has
the potential to significantly contribute to overcoming that
challenge by explaining the experimentally observed trends and
by helping to understand whether specific intermolecular
interactions exist that drive molecular crystals toward low-
mobility configurations. Based on such insights, it should
eventually be possible to design new systems with markedly
improved properties.
In order to simulate charge-carrier mobilities, many models

have been developed over the years, with the limiting cases
represented by fully coherent band transport (for weak
electron−phonon coupling and low temperatures) and

incoherent hopping (for strong electron−phonon coupling at
elevated temperatures).13−16 The popularity of the various
models has varied over time, and their suitability for a given
system typically depends on the type of molecules, their
arrangement, the temperature range of interest, and the degree
of disorder present.13−16 Essential parameters in all models are
the electronic couplings between neighboring molecules, which
are typically correlated with the overlap of the associated wave
functions and are often expressed via so-called transfer
integrals, t. For hopping-based theories the carrier mobility,
μ, is then proportional to t2, while it is proportional to t for
band-transport based models at least within a simple tight-
binding picture.13,16 For complex cases, elaborate tight-binding
fits are advisable for determining the electronic coupling in the
actual crystalline environment. They also allow a straightfor-
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ward calculation of the effective mass of the charge carriers in
the entire Brillouin zone.17

Besides small intermolecular electronic couplings, charge
transport in organic crystals is also limited by factors like a
particularly strong electron−phonon coupling13−16 and the
associated dynamic18−23 and static disorder. The focus of the
present study, however, is on the materials’ electronic
properties (considering their full 3D crystalline structures),
in order to determine fundamental factors that limit the
electronic coupling.
A key aspect in this context is the relative geometric

arrangement of neighboring molecules, where displacements
by fractions of an angstrom can easily change transfer integrals
by orders of magnitude.13,24−31 In other words, the structure of
an organic semiconductor crystal crucially determines quanti-
ties describing its electronic properties, like bandwidths,
transfer integrals, and effective masses. This raises the question
whether a similar correlation also exists in the opposite
direction, i.e., whether the magnitude of the electronic
coupling between neighboring molecules in a crystal in a
systematic way defines its (equilibrium) structure. To address
this question, in the following we will search for correlations
between intermolecular electronic couplings (i.e., transfer
integrals) and the energetic stability of specific structural
motifs. The primary goal of this is to understand whether there
are driving forces that steer OSC crystals into equilibrium
packing configurations with reduced electronic couplings. The
latter is suggested by the observation that the highest
mobilities are often found for metastable, high-energy
phases.32,33 In fact, based on molecular dimer simulations,
Sutton et al. have already suggested a “clear correlation
between the degrees of intermolecular electronic coupling and
exchange repulsion”.34 Additionally, we will explore whether
alternative driving forces not immediately related to
intermolecular wave function overlaps, such as electrostatic
or van der Waals interactions, might help mitigate this
dilemma.
As the primary model system for our study, we chose the

hydrogen-bonded organic pigment quinacridone, which has
been successfully used in several devices, suggesting an avenue
toward biocompatible electronics.19−21 Considering the
presence of polar heteroatomic groups and the prevalence of
hydrogen bonds, it also promises particularly rich physics to be
explored. Quinacridone exhibits three established, stable
polymorphs (called α, β, and γ)35 with fundamentally different
packing motifs. Still, in all polymorphs one observes π-stacking
of neighboring molecules,35 rather than the more common
herringbone arrangement.36,37 This is insofar interesting, as a
cofacial π-stacking of molecules in brickwork or slip-stacked
architectures has been observed for many high-mobility
materials.28,38−40 Consequently, in the following we will
focus on analyzing the electronic coupling in the π-stacking
direction. In this direction the largest coupling for a given
material can be achieved, provided that the molecules are
suitably arranged.
On more technical grounds, in the past the magnitudes and

signs of transfer integrals in OSCs have typically been
rationalized based on calculations on displaced π-stacked
molecular dimers together with the symmetries and nodal
structures of the relevant dimer orbitals.24−29 For quinacri-
done, such a π-stacked arrangement of molecules is consistent
with the actual crystal structure. Consequently, starting from
the α-polymorph and without breaking the intermolecular H-

bonds, one can construct a representative crystalline model
system with molecules arranged in parallel planes. For the sake
of comparison, we also analyze an analogous model crystal
built from pentacene molecules, even though pentacene
crystallizes in a herringbone pattern. Displacing the molecular
planes in the model systems relative to each other allows
deriving the dependence of the transfer integrals on the
intermolecular displacement in a realistic, crystalline environ-
ment. Importantly, in contrast to simulating dimers, these
calculations also provide direct information on how the total
energy of the 3D extended system depends on the displace-
ment. This then allows identifying possible correlations
between the magnitude of the transfer integral(s) and the
stability of a specific crystalline structure.

2. COMPUTATIONAL METHODOLOGY
2.1. General Approach. Computationally, transfer integrals are

usually either derived from molecular dimer simulations13,24−28 or
from band-structure calculations. Based on the results of the latter
(relying on a simple tight-binding ansatz), transfer integrals can be
directly obtained from bandwidths.26,41 Consequently (within certain
limitations),17 also bandwidths serve as a measure for the
intermolecular electronic coupling. A more advanced approach is
fitting more elaborate analytic expressions derived from tight-binding
models (see below) to the bands in the entire first Brillouin zone. The
transfer integrals to all relevant neighbors can then be extracted from
that fit.14,17 Compared to calculations on molecular dimers, this has
the advantage that the crystalline environment of the molecules is
accounted for and situations can be identified in which “super
exchange”-like next-nearest neighbor couplings become rele-
vant.17,42−45 Thus, before correlating electronic couplings and total
energies, we will first explore whether simulations based on molecular
dimers and calculations employing periodic boundary conditions yield
consistent trends. As far as the periodic simulations are concerned, we
will also test whether trends derived from bandwidths and from tight-
binding parameters are consistent.

For the dimer simulations, we extracted dimer geometries from the
relaxed crystal structures (see below). To calculate their electronic
structure, we employed the FHI-aims code,46 version 180424, in
combination with the Perdew−Burke−Enzerhof (PBE)47,48 functional
and the default “tight” settings for the numerical parameters and basis
sets (a more detailed description of the nature of the associated basis
sets can be found in the Supporting Information). Transfer integrals
were determined from orbital energies applying the “energy splitting
in dimer” (ESD) technique.13 As an alternative strategy, we also
employed the fragment orbital (FO) approach25 using a recently
developed postprocessing tool interfaced with FHI-aims.49 The sign
of the transfer integrals was determined depending on whether the
bonding (positive) or antibonding (negative) linear combination of
the molecular orbitals was higher in energy. Due to the inversion
symmetry of the dimers, the transfer integrals obtained with the ESD
and FO approaches are essentially identical when employing the PBE
functional (as is shown in the Supporting Information).

For the calculations relying on periodic boundary conditions, we
used dispersion-corrected density-functional theory (DFT). Unless
otherwise stated, we used VASP 5.4.450−53 treating exchange and
correlation via the PBE functional in combination with the
Tkatchenko−Scheffler (TS) dispersion correction method54 to
account for long-range van der Waals interactions. The recommended
PAW55 potentials (details in the Supporting Information) together
with a plane-wave cutoff energy of 700 eV were used for all
calculations. In the self-consistent-field (SCF) procedure, the
Brillouin zone was sampled using a 32 × 20 × 8 Γ-centered k-point
grid for α-, a 25 × 36 × 9 grid for β-, and an 8 × 32 × 8 grid for γ-
quinacridone and a 25 × 25 × 25 grid for the coplanar model system.
This k-point grid is significantly overconverged for determining a
reliable charge density. It has been chosen here, as a particularly tight
sampling of the Brillouin zone is necessary for improving the quality
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of the tight-binding fits and for determining meaningful total
bandwidths (see below). Bearing this in mind, for the test of the
employed methodology (functional and van der Waals correction)
and for energy decompositions, less dense k-point grids have been
used. To describe the occupation of the electronic states, we used the
Methfessel−Paxton56 occupation scheme with a width of 0.1 eV. The
geometries of the α-, β-, and γ-polymorphs of quinacridone were
obtained using the experimental unit cells35 and relaxing the atomic
positions of the molecule(s) until the largest force component on the
atoms was smaller than 0.01 eV/Å.
2.2. Testing the Impact of the Type of van der Waals

Correction and the Employed Functional. As far as the choice of
the a posteriori van der Waals correction is concerned, in addition to
the above-mentioned TS approach, we also tested the many-body
dispersion (MBD) approach by Ambrosetti et al.57 As will be shown
below, the choice of the vdW correction has virtually no impact on
the relative stability of the different polymorphs (Section 3.1), but it
changes the order of the minima of the total energy, when calculating
the coplanar model crystal as a function of intermolecular displace-
ments (Section 3.2). Both methods applied in this test, TS as well as
MBD, build on the converged charge density. For obtaining the
results of the computationally much more expensive MBD approach,
the same energy cutoff as in Section 2.1 has been used in VASP and
we employed the following k-point grids: α-quinacridone, 16 × 10 ×
4; β-quinacridone, 13 × 8 × 4; γ-quinacridone, 4 × 16 × 4; and
coplanar model crystal, 12 × 12 × 12. These grids are somewhat
smaller than the ones described in Section 2.1, as the MBD
calculations have been used neither for determining total bandwidths
nor for fitting tight-binding functions (see above). For the α-, β-, and
γ-polymorphs of quinacridone, we also performed geometry
optimizations using the MBD approach.
To test the impact of the employed functional (especially

evaluating the role of exact exchange), we also performed calculations
using the hybrid functional HSE06.58−60 This yields equivalent results
for the nature of the frontier bands, only the bandwidths obtained
with HSE are somewhat larger, as will be discussed in the Results and
Discussion section. The main qualitative change upon employing HSE
vs PBE concerns the order of deeper-lying orbitals (see Supporting
Information of ref 17), consistent with the results of Lüftner et al.61

As we are primarily concerned with the frontier bands and since
swapping the orbital ordering does not affect the electron density, this
has also no effect on the quantities discussed here. Thus, we can safely
rely on the (computationally much less expensive) PBE calculations.
On more technical grounds, the HSE calculations have been

performed using FHI-aims for both open and periodic boundary
conditions. This choice is made to be consistent with the dimer
calculations. Notably, for the chosen (well converged) settings, test
calculations employing the PBE functional in FHI-aims and in VASP
yield identical band structures. For the HSE calculations in FHI-aims,
the same well-converged k-point grids as for the MBD tests have been
used for α-quinacridone, β-quinacridone, and γ-quinacridone. For the
tests on the coplanar model crystal, we reduced the grid to 6 × 6 × 6
due to memory limitations.
2.3. Building the Coplanar Model Crystal. As a first step to

create the model crystal with quinacridone molecules arranged in
parallel planes, we constructed an orthorhombic unit cell and then
placed a gas-phase optimized quinacridone molecule in this cell such
that the long molecular axis was parallel to the unit cell vector a3, the
short axis parallel to a2, and the stacking direction of the molecules
parallel to a1 (see Figure 1). The length of a1 was set to 3.5 Å (the
equilibrium distance of the quinacridone stripes in the α-
polymorph).35 The lengths of a2 and a3 were chosen such that the
van der Waals surfaces of neighboring molecules touched. Next, the
lengths of the unit cell vectors a2 and a3 and the molecular geometry
were relaxed, where for technical reasons associated with the partially
constrained relaxations we employed the FHI-aims46 code (see
Supporting Information). All geometry optimizations for the model
crystal were performed combining the PBE functional with the TS van
der Waals correction. Compared to simply arranging quinacridone
molecules in their gas-phase geometry, this has the advantage that

geometric changes due to the formation of intermolecular H-bonds
(i.e., a more aromatic structure of the molecules) are accounted for. In
a second step, the size of the unit cell in the a1 direction was doubled
to 7.0 Å, such that it contained two molecules in the stacking
direction (c.f., Figure 1). This setup allows consecutive quinacridone
layers to be easily shifted in an AB fashion; see Figure 1. In passing we
note that employing this procedure has hardly any impact on the H-
bonding network of quinacridone. As discussed in more detail in the
Supporting Information, the H-bonding energies are reduced by less
than 3% in the orthorhombic model system compared to the α-
polymorph, and the bonding distances are even somewhat smaller.
Notably, the procedure sketched here yields a model system that is
reasonably close to the α-polymorph of quinacridone, as exemplified
by the observation that the lowest-energy structure of the model
system is only ca. 0.3 eV per molecule higher in energy than the α-
quinacridone.

For constructing the pentacene model crystals, we adopted the
same strategy with the only difference being that for the geometry
optimizations we had to set the length of the a1 vector to a value large
enough to suppress interlayer interactions (40 Å), as otherwise
unrealistic geometric distortions occurred (for details see Supporting
Information).

2.4. Two-Dimensional Displacement Maps, Bandwidths,
and Tight-Binding Fits. When calculating the energetics and
bandwidths upon displacing neighboring quinacridone or pentacene
planes in the model crystals, DFT calculations employing the
comparably expensive settings from Section 2.1 were performed for
displacements along either the long or the short molecular axes.
Doing such calculations on a sufficiently dense grid for simultaneous
displacements along both axes would pose a sizable computational
challenge. Thus, for such 2D displacement maps, we resorted to

Figure 1. Unit cell of the coplanar model crystal derived from the α-
phase of quinacridone. The two most important transfer integrals for
transport in the π-stacking direction are sketched for three different
displacements of the molecular layers.
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Gaussian process regression. There, the model vector consisted only
of the x and y positions of the shifted layer, and as kernel functions we
chose linear combinations of Gaussian kernels equally distributed in
the unit cell, which fulfill the periodicity constraints. To optimize the
hyper-parameters, the marginal log likelihood was maximized.
Gaussian process regression allows a model error to be estimated,
which is visualized and discussed in the Supporting Information. The
model was first trained with the data calculated for displacements
along the long and short molecular axes. Then 10 additional points
were chosen at the coordinates of maximum model uncertainty.
During this process all system symmetries (C2 rotation around a1 for
quinacridone and pentacene, mirroring along a2 and a3 for pentacene)
were considered and exploited.
As far as bandwidths are concerned, the total bandwidth, W, of α-

quinacridone with only a single molecule in the unit cell is defined as
the difference between the maximum and the minimum values of the
energies of the highest occupied eigenstate for all considered k-points.
Bandwidths along specific k-paths are determined in an analogous
manner. In β-quinacridone, γ-quinacridone, and the coplanar model
crystals, the situation is less straightforward, as these systems all
contain two molecules per unit cell, which results in a backfolding of
the bands. There, to obtain values consistent with the procedure for
α-quinacridone, W was determined by subtracting the maximum
energy among the highest occupied eigenstates in the entire first
Brillouin zone from the minimum of the second highest occupied
eigenstates. For k-paths parallel to directions in which the unit cell
contains two molecules (here, along the a1 direction in the model
crystal), the bandwidth is evaluated as the difference between the
corresponding eigenstates at the Γ-point, considering the detailed
evolution of the bands. This is again done for the sake of consistency,
to account for the backfolding of the bands caused by the doubling of

the unit cell. More details on the evaluation of the bandwidths are
contained in the SI.

Regarding the tight-binding fits, the functional form of the model
function differs, depending on whether there are one or two
molecules in the unit cell. For α-quinacridone with only a single
molecule per unit cell it reads

∑ε= + · ·E tk( ) e
j

j
ik R j

(1)

Here ε denotes the on-site energy, tj is the transfer integral for
neighboring molecules along direction j, and Rj is the vector
connecting the central molecule with the respective neighbor. Due
to the inversion symmetry of α-quinacridone, the two neighbors at Rj
and −Rj are equivalent, which results in identical transfer integrals tj.

The equation becomes more complex when the unit cell contains
two inequivalent molecules,14 like in β- and γ-quinacridone and in the
coplanar model system. It reads

= + ± − + | |E
H H H H

Hk( )
2

( )
4

AA BB AA BB
2

AB
2

(2)

Here, the indices A and B denote the inequivalent molecules present
in the unit cell; HAA and HBB are terms describing the coupling
between equivalent molecules in neighboring unit cells. The couplings
between inequivalent molecules, either in the same or in different unit
cells, are included in the term HAB. All these terms have the same
functional form; only the neighbors considered in the sum are
different:

∑= · ·H t e
j

j
i

R
k R

AA/BB/AB ,AA/BB/AB
j ,AA/BB/AB

(3)

Figure 2. Crystal structures of the three quinacridone polymorphs. (a) Left: view of the unit cell of α-quinacridone with the molecule in the original
cell marked by a blue rectangle and the closest H-bonding partner marked by a purple rectangle. Right: side view of the crystal structure with the
viewing direction chosen such that the alignment of the H-bonded stripes is resolved most clearly. The π-stacking direction is indicated by a gray
arrow. (b) Left: unit cell of β-quinacridone; again, the blue rectangles mark the (in this case two) molecules in the unit cell, and the closest H-
bonding partners are highlighted in purple. The central panel again provides a side view, illustrating the alignment of the H-bonded stripes. Right:
the viewing direction is perpendicular to the (a1, a2) plane to illustrate that the π-stacking direction is the same for all layers (with molecules in
different layers highlighted by the cyan and brown shading). (c) Top: unit cell of γ-quinacridone containing two molecules, which are H-bonded to
each other. Bottom: side view illustrating the “hunter fence” arrangement of the molecules.
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In β- and γ-quinacridone and in the coplanar model system, for
symmetry reasons HAA, tj,AA, and Rj,AA are the same as HBB, tj,BB, and
Rj,BB. The vectors Rj,AB differ from Rj,AA and Rj,BB by the displacement
vector between the two inequivalent molecules in the unit cell. To
obtain the transfer integrals, one has to fit the above expressions to
the energy eigenstates of the system within the entire first Brillouin
zone. In passing, we note that increasing the number of intermolecular
interactions included in the tight-binding fits does not impact the
values of transfer integrals determined already with fewer parameters,
which is discussed in more detail in ref 17. A list containing all
intermolecular interactions that have been included for the three
quinacridone polymorphs and the coplanar model system can be
found in the Supporting Information.
2.5. Determining the Contributions to the Bonding Energy

in the Coplanar Model Crystal. A central element of the present
manuscript is the analysis of the total energy of the systems (especially
the total energy of the coplanar model crystal as a function of
intermolecular displacements). In this context it is relevant to analyze
the origin of the observed differences via energy decomposition
approaches. This is frequently done for finite-size systems and
molecular dimers.34,62−71 In the present context we, however,
primarily care about the 3D crystalline environment of the molecules.
Therefore, we resorted to the recently developed “periodic energy
decomposition analysis” (pEDA),68,72 which decomposes the
interaction energy ΔEint between two fragments into several well-
defined contributions.

Δ = Δ + Δ + ΔE E E Eint Pauli elstat orb (4)

The first is the quasi-classical electrostatic energy, ΔEelstat, which
considers the Coulomb interaction between the nuclei and electronic
charge densities of the two fragments. This energy contribution also
includes effects like charge penetration (i.e., the attractive interaction
between the electron cloud of one subsystem and the nuclei of the
other, which becomes relevant at small distances).66,73,74 The ΔEelstat
term is (nearly) always attractive due to the larger magnitude of
electron−nuclei attraction in comparison to the repulsive terms. This
is also found here. ΔEelstat does not yet consider modifications of the
charge densities of the fragments due to the interaction. The energetic
cost/gain of these modifications is split into two terms: When
constructing a wave function of the joint system as a product of the
eigenfunctions of the fragments, this new wave function needs to be
normalized as well as antisymmetrized to obey the Pauli principle.
The energetic cost for achieving that is termed Pauli repulsion energy,
ΔEPauli. The second term arises from the final relaxation of the charge
density to the self-consistent density of the combined system and
determines the attractive orbital interaction energy, ΔEorb. A final
contribution to the interaction (not included in the definition of ΔEint
in eq 4) is the van der Waals attraction, which is calculated a
posteriori, as described in Sections 2.1 and 2.2. It has been shown
recently that the energy terms in the EDA analysis compare well with
the results from symmetry-adapted perturbation theory analysis
(SAPT) and lead to similar insights regarding the bonding situation.75

The core advantage of the pEDA analysis is that it considers the full
periodicity of the crystalline environment.
The pEDA analysis is implemented in the ADF-BAND pack-

age;76−78 we thus employed that code (version 2018, r69431) for the
energy decomposition in combination with the PBE functional, a
TZ2P79 basis set, a small frozen core, scalar relativistic effects in the
ZORA approach, an SCF convergence criterion of 10−6 eV, and 3D
periodic boundary conditions. A Γ-centered 5 × 3 × 5 k-point grid
was used after checking for convergence (see SI).
The crystal structures were visualized using Ovito80 and the

molecular orbitals by Avogadro.81

3. RESULTS AND DISCUSSION
3.1. Crystalline α-, β-, and γ-Quinacridone. The

structures of the three established polymorphs of quinacridone
are shown in Figure 2. Of the α-polymorph, two variants have
been discussed (αI and αII),35 where only the existence of αI is

undisputed. Thus, in the following, this phase will be denoted
as α-quinacridone. The α- and β-phases consist of H-bonded
molecular stripes, which are not exactly planar but exhibit small
steps between the molecules. In β-quinacridone they, for
example, amount to 0.35 Å.35 The fundamental difference
between the two polymorphs is that in the α-phase all stripes
run in the a1 + a2 direction (perpendicular to the plane of
projection in the right panel of Figure 2a), while in the β-phase
they run in different directions in consecutive layers (a1 + a2
and a1 − a2). Consequently, α-quinacridone contains one and
β-quinacridone two molecules in the unit cell. Nevertheless, in
both cases the stripes are π-stacked in the a1 direction, which
corresponds to the shortest vector between two neighboring
molecules, whose π-systems overlap (c.f., gray arrow). For the
γ-phase, the packing motif is fundamentally different (Figure
2c): While for the α- and β-phases each quinacridone molecule
forms two H-bonds to each of its two neighbors (causing the
formation of the stripes), in γ-quinacridone every molecule has
a single hydrogen bond to four different neighbors. This gives
rise to a “hunter fence” structure, as shown in the bottom panel
of Figure 2c. Nevertheless, one can still identify a π-stacking
direction (gray arrow).
Of particular interest for the electronic couplings along the

π-stacking direction (as the main topic of the present paper) is
the displacement of the molecules along the short and long
molecular axes in consecutive stripes. These displacements are
summarized in Table 1. Consistent with the rather large

inclination of the molecular stripes (Θ, see Figure 2) in the α-
phase, this polymorph is characterized by a rather pronounced
long-axis displacement (1.4 Å) and a smaller short-axis
displacement (0.9 Å). Conversely, for β-quinacridone the
long-axis displacement is negligible (0.1 Å), while the short-
axis displacement amounts to 2.0 Å, which is more than twice
as large as for the α-phase. For the γ-phase, due to the hunter
fence arrangement of the molecules, the relative displacement
of neighboring molecules is determined by the distance
between the H-bonding sites on each molecule and by the
equilibrium distance between the molecular backbones.
Among the three different polymorphs, this results in the
largest value of θ and, correspondingly, in the largest long-axis
displacement of neighboring molecules (1.7 Å see Table 1).
Concomitantly, the short axis displacement is the shortest of all
polymorphs (0.7 Å).
Energetically, using the TS van der Waals corrections we

find that the α-phase is less stable than the γ-phase by 90 meV
per molecule (see Table 1), while the total energies of β-

Table 1. Details of the Structures of the Polymorphs of
Quinacridonea

long axis
displacement

(Å)

short axis
displacement

(Å)
inclination angle Θ

(deg)

relative
energy
(meV)

α 1.4 0.9 21.5 +90 (88)
β 0.1 2.0 6.1 +5 (3)
γ 1.7 0.7 25.1 0 (0)

aDisplacements of neighboring molecules in the π-stacking direction
along their long and short molecular axes and inclination of the
molecular planes relative to the normal to the quinacridone sheets, Θ,
for α-, β-, and γ-quinacridone. The energies per molecule relative to
the most stable conformation (γ-quinacridone) are reported. Values
which have been obtained employing the many-body dispersion
correction scheme are given in brackets.
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quinacridone and γ-quinacridone are within 5 meV. This
means that (within the numerical accuracy of our simulations)
the latter two phases are isoenergetic despite their
fundamentally different structures. These trends also prevail
when employing the MBD scheme with energetic differences
of 88 and 3 meV (for more details see Supporting
Information). The above values do not contain vibrational
energies and entropies. Nevertheless, it is interesting to
compare the calculated trends to experimental observations:
For example, Lüftner et al.61 observed the β-polymorph when
growing quinacridone on Cu(111), while Paulus et al.35

concluded that γ-quinacridone is most stable. They also
successfully determined the structures of β- and γ-quinacridone
but found it impossible to grow large enough single crystals of
the α phase for single-crystal diffraction experiments, which
massively complicated the determination of its structure.35

They also describe that the β- and γ-phases are stable and
typically do not interconvert into each other. This is not the
case for α-quinacridone, which may convert into the β- and γ-
phases, preventing its commercial use.35 All these findings are
in line with the above-discussed trends in total energy.
Regarding the electronic structure of the quinacridone

polymorphs, a comparison of the bands in the high-symmetry
directions in reciprocal space for α-, β-, and γ-quinacridone is
shown in the Supporting Information. The shapes of the bands
are essentially the same independent of whether one employs
the PBE or the HSE06 functional. Overall, the band
dispersions are comparably small for the ΓX direction, ranging
between 34 and 324 meV for the valence band and between
111 and 262 meV for the conduction band in the PBE
calculations. These widths only somewhat increase for the
HSE-calculated bands (see Table 2). Also the total
bandwidths, W, characteristic of the entire volume of the
first Brillouin zone, remain rather small varying between 148
and 324 meV for the valence and between 252 and 345 meV
for the conduction band (see Table 2). Interestingly, in all
these cases (with the exception of the conduction band in the
ΓX direction) the bandwidths are largest for the β-polymorph
and rather similar for α- and γ-quinacridone. Thus, for the
three established quinacridone polymorphs, there is no
apparent correlation between the total widths of the frontier
bands and the energetic stability of the materials.
As far as the anisotropy of the resulting electronic coupling is

concerned, a detailed analysis of the situation in α-
quinacridone with a focus on differences between the H-
bonding, van der Waals stacking, and π-stacking directions can
be found in ref 17. Here, we are primarily concerned with
transport along the π-stacking direction, a1. Correspondingly,
Figure 3 shows the valence and conduction bands of the three
quinacridone polymorphs along a k-path starting at the Γ point
and running parallel to the a1 direction until the boundary of
the Brillouin zone (Γ → A1). Again, the bandwidths are rather
small, but more importantly, compared to the total
bandwidths, there are even more significant differences
between the three polymorphs, especially for the valence
band: It is rather flat for α-quinacridone parallel to a1.
Consequently, Wa1 (=59 meV) is by a factor of ∼3 smaller
than the total bandwidth. This is because in α-quinacridone
the valence band along a1 is narrower than, e.g., the band in the
H-bonding direction (a1 + a2, i.e., along Γ → A12, also shown
in Figure 3). Wa1 is intermediate for γ-quinacridone (82 meV)
and largest for β-quinacridone (324 meV, see also Table 2). In
β-quinacridone, Wa1 and W are actually identical, which

indicates that in this system both the maximum and the
minimum of the band are found along Γ→ A1. The same trend
as for Wa1 is also found for transfer integrals between
molecules displaced by a1. This happens independent of
whether one considers the values obtained from the tight
binding fits, ta1, or from dimer calculations82 within the energy
splitting in dimer approach, tESD, or performing fragment
orbital simulations, tFO (see Table 2). Minor deviations
between transfer integrals extracted from the tight-binding
fits and obtained from dimer calculations are primarily
attributed to the conceptual differences between the two
approaches, especially the fact that the crystalline environment
is only accounted for when determining ta1. The latter is
particularly relevant for quinacridone, where a dimer
calculation misses the change in conjugation due to the H-
bond formation.83

The situation is somewhat more involved for the conduction
bands, as for the α- and β-polymorphs they display a distinctly
noncosine shape (an effect that is less clearly observed also for
the valence band of α-quinacridone in a1 direction). This is a
clear evidence for “higher-frequency” components (i.e., transfer
integrals beyond the nearest neighbors) playing a significant
role.17 Indeed, an analysis of the tight-binding fits shows that
the corresponding transfer integrals can be associated with
next-nearest neighbor couplings (t2a1). This we attribute to

Table 2. Quantifying the Electronic Coupling in the
Polymorphs of Quinacridonea

α β γ

valence band PBE W (meV) (PBC) 152 324 148
WΓX (meV) (PBC) 34 324 82
Wa1 (meV) (PBC) 59 324 82
|ta1| (meV) (TB) 5 54 22
|tESD| (meV) (dimer) 4 43 20
|tFO| (meV) (dimer) 6 41 19

HSE WΓX (meV) (PBC) 39 330 99
|tESD| (meV) (dimer) 6 44 24

conduction
band

PBE W (meV) (DFT) 252 345 263
WΓX (meV) (PBC) 113 111 262
Wa1 (meV) (PBC) 88 111 262
|ta1| (meV) (TB) 18 31 53
|tESD| (meV) (dimer) 17 21 30
|tFO| (meV) (dimer) 10 19 32

HSE WΓX (meV) (PBC) 135 112 297
|tESD| (meV) (dimer) 20 19 36

aTotal bandwidths, W, bandwidths along ΓX, WΓX, and bandwidths
for bands running parallel to the π-stacking direction (i.e., parallel to
a1), Wa1, for all three quinacridone polymorphs. The ΓX direction in
reciprocal space is close to parallel to a1. Additionally, transfer
integrals in the a1 direction calculated from tight-binding fits, ta1, and
employing molecular dimers are shown. For the latter, we compare
the results of ESD, tESD, and FO, tFO, calculations. Note that although
the H-bonded quinacridone stripes run in different directions in
consecutive quinacridone layers in the β-polymorph, the π-stacking
direction in all layers is given by a1. (PBC) denotes results obtained in
DFT calculations employing periodic boundary conditions, (TB) are
values extracted from the corresponding tight-binding fits, and
(dimer) refers to the results of dimer calculations. In addition to
the results obtained with the PBE functional, for the sake of
comparison we also show the values obtained employing the hybrid
functional HSE for tESD and WΓX. A brief discussion of the somewhat
varying HSE06 values for tFO can be found in the Supporting
Information.
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“superexchange-like” interactions (for a more in depth
discussion of this aspect in α-quinacridone see ref 17).
Correspondingly, the direct correlation between bandwidths
and transfer integrals is less pronounced. While this
complicates the situation when analyzing electron transport,
here we are mostly concerned with occupied bands, as only
their properties can have an impact on the total energy of the
system.
When comparing the results of the PBE and HSE

simulations we find that, consistent with the similar band
structures calculated in both cases, the bandwidths are also
very similar. Furthermore, also the dimer-calculated transfer
integrals when employing the ESD approach turn out to be
quite robust against changing the exchange correlation
functional.
3.2. Properties of the Coplanar Model System of

Quinacridone. The above-described results for the three
quinacridone polymorphs do not show a clear correlation
between total energy and transfer integrals or bandwidth.
Therefore, it is useful to analyze a model system whose
properties can be assessed in a more systematic way. Such a
system is found in the coplanar model crystal derived from α-
quinacridone, which is shown in Figure 1 and whose structure
is discussed in detail in the Computational Methodology
section. Based on this model crystal, we will not only analyze
the dependence of the electronic couplings on the
intermolecular displacements but will primarily search for
correlations between, on the one hand, transfer integrals and
bandwidths and, on the other hand, the total energy of the
system. Moreover, we will analyze the various ingredients to
the total energy in order to clarify whether specific interactions
exist that try to force molecular crystals toward configurations
with low electronic couplings. As a first step in this quest,
Figure 4 shows how the total energy, the van der Waals energy,
and the total width of the valence band of the coplanar model
crystal depend on the displacement of neighboring sheets.
The data in Figure 4 show that the total energy is maximized

for the cofacial, zero displacement situation. Notably, all local
maxima of the total energy are found for displacements along
the long molecular axis, with the exception of the situation in
which the quinacridone sheets are displaced by half the unit
cell lengths simultaneously in the a2 and a3 directions. This
maximum can be associated with a reduced van der Waals
attraction between the sheets due to the minimized van der
Waals contact area in this configuration (see Figure 4c). The
energetically lowest configurations are also found in the
vicinity of structures displaced either along the long or along
the short molecular axis (the global minimum occurs for a
long-axis displacement of 1.5 Å and a simultaneous minor
short-axis displacement of 0.3 Å). A similar behavior is

observed for the most pronounced maxima of the total
bandwidths in Figure 4b (with by far the largest bandwidth for
the cofacial, zero-displacement structure). This suggests that,
for a more in depth and more quantitative discussion, it is

Figure 3. Electronic band structures of the three quinacridone polymorphs shown along k-paths originating at Γ and running parallel to the real
space a1 and a1 + a2 directions until the Brillouin zone boundaries. Energies are plotted relative to the valence-band maximum.

Figure 4. PBE calculated total energy (a), van der Waals energy
derived from the TS approach (b), and total width of the valence
band (c) as a function of the displacement of neighboring sheets. The
position in the graph denotes the position of the center of a molecule
in the second layer within the unit cell relative to the first layer, whose
structure is indicated in the plot. All energies are given relative to an
average value of the respective energy, which is specified below each
of the panels. The total energy plot is additionally offset by E0, which
is the value for the lowest-energy structure. As far as the total
bandwidth is concerned, the covered range is somewhat larger than
indicated by the color bar, as its value varies between 140 and 1100
meV.
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useful to primarily analyze displacements either along the long
or along the short molecular axis.
Displacing Consecutive Molecular Sheets along the Long

Molecular Axis in Coplanar QuinacridoneQuantifying the
Electronic Coupling. The results for the long-axis displace-
ment are shown in Figure 5. Here, as a first step, we compare
the trends for the most relevant parameters used in Table 1 to
quantify the strength of the electronic coupling in order to
determine whether a single one of them will be sufficient for
the further discussion. Such a test is advisable, as when
analyzing the anisotropy of coupling parameters in α-
quinacridone, relevant deviations between, for example,
bandwidths and transfer integrals have been observed.17 The
results for the (valence-band related) transfer integral between
displaced molecular dimers obtained with the fragment orbital
approach, tFO, are shown in Figure 5a. They display an
evolution reminiscent of the observations for rubrene,28

anthradithiophene,24 or sexithienyl:26 There is a pronounced
maximum for zero displacement, and subsequently tFO crosses
the zero line, reaches a negative maximum, and then crosses
the zero line again.
Before comparing these trends to those for the correspond-

ing transfer integral(s) obtained via the tight-binding fit, two
technical aspects need to be mentioned: First, from the tight-
binding fits it is not possible to extract the sign of the transfer
integral describing the coupling between the two inequivalent
molecules in the unit cell, tAB (see Figure 1), unambiguously.
This is due to symmetry reasons and the functional form of the
tight-binding band structure for two molecules in the unit cell.
All that can be determined is whether the signs of tAB and
tAB−a3 (see Figure 1) are the same or not. Second, the band
dispersion in the a1 direction in the coplanar model crystal
does not depend on these two transfer integrals individually
but is only determined by their sum. Thus, in Figure 5b this
sum, tAB + tAB−a3, is shown with the sign chosen such that it is
consistent with that of tFO. These aspects are discussed in detail
in the Supporting Information, where also the values of the
individual transfer integrals tAB and tAB−a3 are plotted. In this
context it should also be noted that especially for small
displacements the contribution from tAB−a3 is negligible (|tAB−a3
| < 5 meV for displacements < 2.6 Å and |tAB−a3 | < 20 meV for
displacements < 4.7 Å). Thus, the plot in Figure 5b for small
and intermediate displacements mostly reflects the evolution of
tAB. As far as the overall trends are concerned, there are only
minor deviations between tFO and tAB + tAB−a3 concerning the
magnitude of the maxima at higher displacements and their
exact positions. We attribute these differences mostly to
changes in the orbital structure arising from the interaction
between the molecules in the actual crystalline environment.
To more easily compare the trends for the transfer integrals

to those for the bandwidths, we also show the evolution for |tAB
+ tAB−a3| in Figure 5b as a dashed red line. This reveals a close
to perfect agreement between the evolutions of |tAB + tAB−a3|,
the total width of the valence band, W, and the width of the
valence band along a path starting at the Γ point and running
along a1, Wa1

VB. The latter data are shown in Figure 5c. In
passing, we note that Wa1

VB is close to zero at the displacements
corresponding to zero-crossings of the transfer integrals, while
this is not the case forW. This is simply due to the fact that for
W also the bandwidths along other paths (e.g., parallel to the
H-bonding direction) count. These are largely unaffected by
the displacement of the quinacridone sheets.

Figure 5. Dependence of the PBE-calculated electronic coupling (a−
c) and the energy per molecule (d) on the long-axis displacement for
quinacridone. The values in (b)−(d) have been calculated for the
coplanar model crystal and those in (a) for the corresponding
molecular dimer. The transfer integrals in (a) have been calculated via
the fragment orbital method. Employing the energy splitting in dimer
method yields the same results, as shown in the Supporting
Information. In (b) the sum of the tight-binding derived transfer
integrals to the two neighboring molecules in the stacking direction is
shown (for details see main text) and (c) contains the total bandwidth
of the valence band sampled over a tight k-point grid (area shaded in
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As far as the employed functional is concerned, using HSE
leads to an increase of the maximum values of Wa1

VB by ca. 100
meV which corresponds to a relative change of ∼12%. Despite
the quantitative differences, switching the functional does not
affect the shapes of the bands nor the evolution of tFO with the
displacement (see Supporting Information).
Considering the above comparison and the overall

qualitative agreement between all quantities used to determine
the displacement-dependent trends in the electronic coupling,
in the following we will restrict the analysis primarily to PBE-
calculated bandwidths as the most straightforwardly accessible
parameters for the actual crystals.
Displacing Consecutive Molecular Sheets along the Long

Molecular Axis in Coplanar QuinacridoneEvolution of the
Total Energy. A central observation for the present study is
made when comparing the evolution of the bandwidths with
that of the total energy of the system, shown in Figure 5d.
Especially, for small displacements, their evolutions run parallel
(c.f., refs 34 and 65), as can be seen comparing Figure 5d with
Figure 5a−c. In detail, as already mentioned in the discussion
of Figure 4, the largest bandwidth and the highest total energy
are found when not displacing consecutive quinacridone
sheets. Moreover, the total energy reaches its minimum for a
total displacement of ca. 1.5 Å, where also the electronic
coupling is minimized. This suggests that there is a
fundamental driving force steering the crystal toward a
structure with a minimized electronic coupling. In this context
it is important to stress that the unfavorable situation for zero
displacement is not primarily the consequence of arranging the
polar carbonyl and amine groups on top of each other, as a
similarly pronounced energetic maximum is observed when
flipping the molecules in the second layer by 180°, placing the
amines on top of the ketones.
The origin of the above-mentioned driving force minimizing

the bandwidth can rather be traced back to exchange repulsion,
as stressed in ref 34 and discussed for molecular dimers of
acenes employing symmetry-adapted perturbation theory.65

Qualitatively, the variation of the total energy with displace-
ment can be understood from the following consideration:
When the orbitals of two molecules overlap, bonding and
antibonding linear combinations are formed, where the
bonding one is stabilized less than the antibonding one is
destabilized. As the energies of the occupied bands (orbitals)
enter into the expression of the total energy, wave function
overlap involving fully occupied orbitals, thus, results in a
repulsive contribution, with the effect being particularly
pronounced for large energetic splittings and, correspondingly,
strong electronic couplings.
To ensure that such a destabilization of the structures by

large transfer integrals is indeed a consequence of the

modification of the wave functions due to the interaction
between neighboring quinacridone sheets, we performed a
periodic energy decomposition analysis, as described in Section
2.5 taking the two quinacridone sheets associated with the two
molecules in the unit cell as the fragments for the analysis. The
resulting contributions to the electronic interaction energy,
ΔEint (not comprising long-range van der Waals interac-
tions),68,72 are shown in Figure 6a relative to the values

obtained for zero displacement (where the latter are listed in
the figure caption). One clearly sees that the evolutions of the
Pauli repulsion energy, ΔEPauli, and the orbital interaction
energies, ΔEorb, both directly follow the trend for the total
energy. That is, the modification of the wave functions in the
interacting system is indeed responsible for the destabilization
of the model system at large transfer integrals. This shows that
for the present system attractive interactions, e.g., due to
charge penetration,66,73 are insufficient to overcome exchange
repulsion. At this stage it should also be mentioned that
although ΔEPauli displays an oscillatory behavior, its absolute

Figure 5. continued

blue) as well as the widths of the valence band (VB, derived from the
molecular HOMO) and the next lower band (VB-1, derived from the
HOMO-3) for the k-path running from the Γ-point to the Brillouin
zone boundary in a direction parallel to a1. In (d) the total energies
per molecule including and disregarding TS and MBD-type van der
Waals interactions are shown relative to the minimum energy
obtained for the long-axis displacement. The dotted vertical lines are
guides to the eye, while the dashed-dotted line denotes a shift by half
of the unit-cell length. On the horizontal axis, the displacements are
given in Å as well as in multiples of the corresponding unit-cell length.

Figure 6. (a) PBE-calculated relative evolution of the electronic
interaction energy, ΔEint (excluding a posteriori van der Waals
corrections), and its components (Pauli repulsion energy, ΔEPauli,
orbital interaction energy, ΔEorbital, and electrostatic energy, ΔEelstat, as
a function of the long-axis displacement in a coplanar quinacridone
model crystal). The energies are given relative to the zero-
displacement situation. For the latter the following absolute values
(per molecule) are obtained: ΔEint = 407 meV, ΔEPauli = 870 meV,
ΔEelstat = −343 meV, and ΔEorbital = −120 meV. As the minima for
different quantities are found at different displacements, aligning them
relative to the energetic minima as in Figure 5 is not advisible, as this
would obscure their additive character. (b) Evolution of the TS and
MBD van der Waals correction energies with displacement. At zero
displacement, the following absolute values (per molecule) are
obtained: ΔEvdW,TS = −2375 meV and ΔEvdW,MBD = −2651 meV.
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value always remains large (>1.2 eV), consistent with what
Sutton et al. observed for the exchange repulsion, when
analyzing molecular dimers.34

The impact of the electrostatic interaction energy between
the sheets, ΔEelstat, on the relative stability of different
geometries is less pronounced. It somewhat destabilizes the
zero-displacement situation and stabilizes the displacement at
which the total energy reaches its second maximum and a shift
by half of the unit cell. Overall, the electrostatic energy,
however, does not severely impact the observed trends.
As far as the long-range van der Waals contributions are

concerned, several conclusions can be drawn. When consid-
ering the absolute values of the energy contributions (see the
caption of Figure 5), it becomes evident that the van der Waals
attraction is the force that results in the formation of the
crystal, as it is the only attractive interaction that is large
enough to overcome Pauli repulsion. Concerning the relative
stability of different displacements, the van der Waals
contribution does not change the general shape of the total
energy curve (see Figure 5d). It, however, determines the
relative stability of the two minima at displacements of 1.5 and
2.5 Å. Van der Waals interactions stabilize smaller displace-
ments. Thus, for the TS van der Waals correction the first
minimum is the lower one, although ΔEint and the total energy
excluding van der Waals corrections (Figure 5d) are smallest at
the second one. The trend is also observed when using the
MBD correction, although there the stabilization of the first
minimum is smaller such that it becomes essentially
isoenergetic to the second one.
Returning to the comparison between the bandwidth of the

valence band and the total energy, two questions arise: why
does the parallel evolution of the two quantities in Figure 5 not
prevail for larger displacements, and why is the one-to-one
correlation between bandwidth and total energy lost for most
regions of Figure 4? We attribute this to the contribution of
lower-lying occupied electronic bands (occupied orbitals for
molecular systems). These do not impact charge transport per
se, as electrons will always accumulate in the conduction band
and holes in the valence band, but their contribution to the
total energy is as important as that of the valence band.
As shown in Figure 7, there are various occupied bands that,

for zero displacement, display widths comparable to that of the

valence band. Of the bands we analyzed, this applies to all π-
bands (red bars in Figure 7). Only for the second and third
band below the valence band the widths are about 1 order of
magnitude smaller, which is a consequence of their σ-character
(black bars in Figure 7). The latter suggests that the interaction
between σ-electrons has only a minor impact on the relative
stability of certain displaced structures.
The widths of all bands drop dramatically, when displacing

consecutive quinacridone sheets by a tenth of the unit-cell
length (see green and orange bars in Figure 7). This
rationalizes the parallel evolutions of the valence-bandwidth
and the total energy for small displacements. Notably, although
the bandwidths of all considered bands become very small at a
displacement of one tenth of the unit cell, the absolute value
ΔEPauli remains sizable (663 meV per molecule; i.e., larger than
its variation with displacement in Figure 6).
As far as the evolution of the total energy at larger

displacements is concerned, the varying nodal structures of the
molecular orbitals forming the lower-lying bands (see
Supporting Information) result in different trends for the
bandwidths at larger displacements such that they no longer
follow the valence band. This is exemplarily shown for the
second-highest band (VB-1) in Figure 5c. It clearly contributes
to the differences in the positions of the extrema in the valence
bandwidth and the total energy observed in Figure 5 for large
displacements.

Short Axis Displacements in the Coplanar Quinacridone
Model Crystal. As mentioned above (cf., Figure 4), additional
minima in the total energy and maxima of the bandwidths are
found for displacing the quinacridone sheets along the short
molecular axis. The resulting evolutions of the bandwidths and
energies are shown in Figure 8. Again, the bandwidth is
maximized for zero displacement, drops sharply, reaching a
pronounced minimum for a short-axis displacement around 1.8
Å (corresponding to a quarter of the unit cell-length in that
direction), and then rises again (Figure 8a). The sharp drop at
small displacements is again accompanied by a pronounced
drop in the total energy (Figure 8b). For displacements of
more than a quarter of the unit-cell length, the evolution of the
total energy becomes very shallow. This implies that minor
modifications in the interaction could easily change the
position of the minimum, which would at the same time
massively change the electronic coupling and the bandwidth.
In fact, even in our simulations the exact position of the
minimum depends on the employed van der Waals correction
(see Figure 8b).
Performing an energy decomposition in analogy to the

previous section reveals that electrostatic as well as van der
Waals interactions favor small displacements (Figure 9). Their
impact is, however, insufficient for dominating the overall
evolution. Thus, again especially Pauli repulsion is responsible
for the sharp drop in energy for displacements between zero
and a quarter of the unit-cell length. At larger displacements it
essentially compensates the evolutions of the electrostatic, the
van der Waals, and the orbital interaction energies, which
results in the very shallow area of the potential energy surface.
The observation that in this displacement region ΔEPauli does
not follow the evolution of the valence bandwidth is again
attributed to different nodal structures of other occupied
orbitals.

Implications for the Situation in α-, β-, and γ-
Quinacridone. The structure of the α-polymorph is dominated
by a displacement of neighboring quinacridone molecules

Figure 7. PBE-calculated bandwidths of the highest occupied bands
of the coplanar quinacridone model crystal, evaluated as the splitting
of the backfolded bands at the Γ point. π-Bands are denoted by red
and green and σ-bands by black and orange bars. The widths are
evaluated for zero displacement (red and black bars) and for a
displacement of 0.1 times the length of the unit cell along the long
molecular axis (green and orange bars).
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along the long molecular axis (see Table 1). Intriguingly, this
displacement amounts to 1.4 Å, which is very close to the zero-
crossing of the transfer integrals for the model crystal upon
long-axis displacement (at 1.5 Å). It also coincides with the
minimum in total energy for this displacement. That is, in α-
quinacridone one observes a situation where minimizing the
energy also results in a vanishing transfer integral for the
valence band. Interestingly, the calculated global energy
minimum according to Figure 4 comprises a short-axis
displacement of 0.3 Å (vide supra), which is well consistent
with the experimental fact that the actual structure of α-
quinacridone comprises not only a long- but also a smaller
short-axis shift of the molecules (see above).
For β-quinacridone, the displacement along the short

molecular axis dominates. For this direction, the coplanar
crystal displays a very shallow minimum of the total energy,
which does not necessarily coincide with the minimum in the
electronic coupling for the valence band (see above). This
suggests that even minor modifications in the crystal structure
could easily result in situations with increased electronic
couplings. This indeed is the case for β-quinacridone, where
the equilibrium structure is characterized by a short-axis
displacement of 2.0 Å, which is distinctly larger than the

displacement of 1.6 Å representing the minimum bandwidth
situation. This rationalizes the sharp increase of the electronic
coupling in β-quinacridone compared to the α-phase (see
Table 2).
The situation changes fundamentally in γ-quinacridone.

Here, the total energy curve in Figure 5 is only of limited
relevance due to the fundamentally different bonding motif in
this polymorph, where the equilibrium displacement is strongly
impacted by the position of the H-bonding sites and the
equilibrium distance between two consecutive quinacridone
planes (see Section 3.1). This explains the increase of the long-
axis displacement by 0.3 Å compared to the α-phase, which in
turn results also in a larger bandwidth consistent with the data
in Table 2.

3.3. Molecular Displacements, Bandwidths, and Total
Energies for a Coplanar Pentacene Model Crystal. In
order to highlight the general validity of the above
considerations, we performed analogous simulations for a
coplanar pentacene model crystal. As shown in Figures 10 and
11, this yields similar trends as in the quinacridone case.
For the long-axis displacement, the total valence bandwidth

again displays a pronounced succession of maxima and
minima, where for short displacements there is a near perfect

Figure 8. Dependence of the bandwidths (a) and the energies per
molecule (b) on the short-axis displacement for the coplanar
quinacridone model crystal. (a) contains the total bandwidth of the
valence band sampled over a tight k-point grid (area shaded in blue)
as well as the widths of the valence band (VB, derived from the
molecular HOMO) and the next lower band (VB-1, derived from the
HOMO-3) for the k-path running from the Γ-point to the Brillouin
zone boundary in a direction parallel to a1. In (b) the total energies
per molecule including and disregarding van der Waals interactions
are shown relative to the minimum energy obtained for the short-axis
displacement. The dotted vertical line is a guide to the eye, while the
dashed-dotted line denotes a shift by half of the unit-cell length. On
the horizontal axis, the displacements are given in Å as well as in
multiples of the corresponding unit-cell length.

Figure 9. (a) PBE-calculated evolution of the electronic energy, ΔEint
(excluding a posteriori van der Waals corrections) and its components
(Pauli repulsion energy, ΔEPauli, orbital interaction energy, ΔEorbital,
and electrostatic energy, ΔEelstat) as a function of the short-axis
displacement in a coplanar quinacridone model crystal. The energies
are given relative to the zero-displacement situation. (b) Evolution of
the TS and MBD van der Waals correction energies with
displacement.
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agreement of the trend with that observed for the total energy.
This correlation is once more lost for larger displacements,
which also here can be rationalized by the impact of lower-
lying, strongly dispersing occupied bands. In fact, as far as the
latter aspect is concerned, pentacene serves as a particularly
instructive example: As shown in Figure 10c, the molecular
HOMO-1, which in the crystal forms the band directly below
the valence band, has a smaller number of nodal planes
perpendicular to the long molecular axis than the molecular
HOMO (forming the valence band). Consequently, the
relative displacements between consecutive minima in the
bandwidth are larger. Conversely, for the molecular HOMO-2

Figure 10. (a) Dependence of the bandwidths on the long-axis
displacement for the coplanar pentacene model crystal. The total
bandwidth of the valence band sampled over a tight k-point grid (area
shaded in blue) as well as the widths of the valence band (VB, derived
from the molecular HOMO) and the next two lower bands (VB-1,
derived from the HOMO-1, and VB-2, derived from the HOMO-2)
for the k-path running from the Γ-point to the Brillouin zone
boundary in a direction parallel to a1 are shown. The values of W
following the definition of the quantity in the Computational
Methodology section underestimate the actual situation for small
displacements. The reason for that is that there the bandwidths
become so large that several valence bands overlap and the PBE
calculated band gap vanishes (the corresponding band structure is
shown in the Supporting Information). In (b), the total energies per
molecule including and disregarding van der Waals interactions are
plotted relative to the minimum energy obtained for long-axis
displacement. The dotted vertical line is a guide to the eye, while the
dashed-dotted line denotes a shift by half of the unit-cell length. On
the horizontal axis, the displacements are given in Å as well as in
multiples of the corresponding unit-cell length. Panel (c) contains
isodensity plots of the three highest occupied molecular orbitals of
pentacene.

Figure 11. (a) Dependence of the bandwidths on the short-axis
displacement for the coplanar pentacene model crystal. The total
bandwidth of the valence band sampled over a tight k-point grid (area
shaded in blue) as well as the widths of the valence band (VB, derived
from the molecular HOMO) and the VB-2 (derived from the
HOMO-2) for the k-path running from the Γ-point to the Brillouin
zone boundary in a direction parallel to a1 are shown. The evolution
for the VB-1 is not contained in the plot, as it follows that of the VB.
The values of W following the definition of the quantity in the
Computational Methodology section underestimate the actual
situation for small displacements. The reason for that is that there
the bandwidths become so large that several valence bands overlap
and the PBE calculated band gap vanishes (the corresponding band
structure is shown in the Supporting Information). In (b) the total
energies per molecule including and disregarding van der Waals
interactions are plotted relative to the minimum energy obtained for
short-axis displacement. The dotted vertical line is a guide to the eye,
while the dashed-dotted line denotes a shift by half of the unit-cell
length. On the horizontal axis, the displacements are given in Å as well
as in multiples of the corresponding unit-cell length.
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(and the associated band in the crystal) with an increased
number of nodal planes, the number of minima increases.
As far as the short axis displacement is concerned, the overall

trends are again similar to the situation in the coplanar
quinacridone model crystal (see Figure 9). Particularly
instructive in the pentacene case is again the evolution of the
bandwidths for deeper-lying bands, in particular the VB-2
(derived from the molecular HOMO-2). There, due to the
absence of a nodal plane perpendicular to the short molecular
axis, the associated bandwidth reaches its minimum only, when
the sheets are displaced by half the interpentacene distance.
That is, they occur at twice the displacement for the minima of
the VB and VB-1 (where the evolution of the latter essentially
coincides with that of the valence band and, therefore, is not
shown).

4. CONCLUSIONS
In the present work, we have examined the interplay between
crystal packing, i.e., the relative stability of certain crystal
structures, and transport relevant parameters for organic
semiconductor crystals relying mostly on the instructive
example of quinacridone. Comparing the electronic coupling
in the three established, stable polymorphs of quinacridone, we
find pronounced differences for the transfer integrals and
bandwidths, which, however, do not correlate with the relative
energies of the three structures. This prompted us to analyze a
coplanar quinacridone model crystal, which allows relating
various parameters characterizing the intermolecular electronic
coupling (like bandwidths and transfer integrals) to the relative
displacements of the quinacridone sheets. Even more
importantly, as we simulate these displacements in a 3D
periodic, crystalline environment, it is possible to correlate the
evolution of the electronic coupling in the valence band with
the energetic stability of specific configurations. For the sake of
comparison, similar studies are performed for an analogous
pentacene-based model system. These studies allow a number
of conclusions: The largest bandwidths in both systems are
observed for a cofacial, zero-displacement arrangement of the
molecules. This configuration is, however, destabilized by Pauli
repulsion and orbital rehybridization involving all electrons in
the occupied π-bands. Consequently, there is a general driving
force pushing the crystals toward a situation with reduced
electronic couplings. This, for example, explains the partic-
ularly small transfer integrals in the π-stacking direction of α-
quinacridone. For small displacements, one even observes a
direct correlation between the total energy of a configuration
and the width of the valence band;34 i.e., the smaller the width
of the valence band becomes the more a structure is stabilized.
Thus, for realizing high-mobility materials, one cannot rely on
the intrinsic interactions driving the self-assembly of the π-
conjugated backbones. Instead one has to exploit, e.g., steric
effects induced through chemical substitutions.34,84−86 This is
done, e.g., in the cases of rubrene28,65,87 or TIPS-pentacene,40

where recently efforts have been undertaken to vary packing
and displacements by carefully tuning the substituents.62,88

Alternative strategies for overcoming exchange repulsion
comprise, e.g., heteroatom substitution and the inclusion of
halogens in the periphery of the conjugated core, as discussed
comprehensively in ref 34.
Interestingly, the direct correlation between electronic

coupling in the valence band and total energy is lifted for
larger displacements both in the long- and short-axis directions
due to the different nodal structures of lower-lying π-bands.

This means that, for structures more strongly displaced along
the long molecular axis, a much smaller external stimulus (e.g.,
through substituents) should be enough for realizing large
couplings in the valence band. Even more promising is to
extrinsically control the short-axis displacement. In that case, a
rather shallow local minimum in total energy as a function of
the displacement is observed, as the detrimental exchange
repulsion due to the valence band is more readily overcome by
lower-lying bands derived from orbitals with fundamentally
different nodal structures. This implies that, with only minor
modifications in the intermolecular interactions, one should be
able to significantly modify the relative arrangement of the
molecules, which would then massively change the width of
the frontier bands. In fact, this is to a certain extent already
realized in β-quinacridone, where it results in an increase of the
bandwidth in the π-stacking direction by nearly an order of
magnitude compared to the α-phase.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.chemma-
ter.9b01807.

Additional methodological details including a specifica-
tion of the used PAW potentials, a detailed specification
of the basis set used in the FHI-aims simulations, a
description of the geometry optimization of the coplanar
model crystal, a summary of how bandwidths have been
calculated, a list of neighbors considered in the tight-
binding fits, a description of complications arising for
transfer integrals between successive quinacridone sheets
in the coplanar model system, considerations regarding
the stability of the tight-binding fit, data on the
convergence of the k-point grid, data on the uncertainty
of the machine-learning model, data on the impact of the
used van der Waals correction and functional on band
and orbital energies and total energies of the system,
information on H-bonding energies and distances, the
calculated band structures of the quinacridone poly-
morphs along the high symmetry directions, and
additional information on deeper-lying bands and
orbitals are shown in the Supporting Information
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*(E.Z.) E-mail: egbert.zojer@tugraz.at.
ORCID
Oliver T. Hofmann: 0000-0002-2120-3259
Ralf Tonner: 0000-0002-6759-8559
Egbert Zojer: 0000-0002-6502-1721
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The work has been financially supported by the TU Graz Lead
Project “Porous Materials at Work” (LP-03). Additional

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.9b01807
Chem. Mater. 2019, 31, 7054−7069

7066



financial support by the Austrian Science Fund (FWF),
P28631-N36, is gratefully acknowledged. The computational
results have been in part achieved using the Vienna Scientific
Cluster (VSC3). C.W. thanks Gernot J. Kraberger for
stimulating discussions. R.T. thanks the German Science
Foundation (DFG) for funding via SFB 1083. E.Z. and C.W.
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1. Additional methodological details 

1.1 Overview of PAW potentials used in the VASP calculations 

The following list contains the headers of all used PAW potentials, which allows their 

unambiguous dentification: 

Carbon: PAW_PBE C 08Apr2002 

Hydrogen: PAW_PBE H 15Jun2001 

Nitrogen: PAW_PBE N 08Apr2002 

Oxygen: PAW_PBE O 08Apr2002 

 

1.2 Overview of basis functions used in FHI-AIMS 

Table S1. Basis functions that have been used for all calculations performed with FHI-AIMS. The 

abbreviations read as follows: H(nl,z), where H describes the type of the basis function where H 

stands for hydrogen-like type function, n is the main quantum number, l denotes the angular 

momentum quantum number, and z denotes an effective nuclear charge which scales the radial 

function in the defining Coulomb potential.1 

 H C N O 

Minimal 1s [He]+2s2p [He]+2s2p [He]+2s2p 

Tier 1 H(2s,2.1) 

H(2p,3.5) 

H(2p,1.7) 

H(3d,6) 

H(2s,4.9) 

H(2p,1.8) 

H(3d,6.8) 

H(3s,5.8) 

H(2p,1.8) 

H(3d,7.6) 

H(3s,6.4) 

Tier 2 H(1s,0.85) 

H(2p,3.7) 

H(2s,1.2) 

H(3d,7) 

H(4f,9.8) 

H(3p,5.2) 

H(3s,4.3) 

H(5g,14.4) 

H(3d,6.2) 

H(4f,10.8) 

H(3p,5.8) 

H(1s,0.8) 

H(5g,16) 

H(3d,4.9) 

H(4f,11.6) 

H(3p,6.2) 

H(3d,5.6) 

H(5g,17.6) 

H(1s,0.75) 
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1.3. Details of the geometry optimizations of the coplanar model systems for quinacridone 

and pentacene. 

As constraining only individual lattice constants in geometry optimizations is not straightforward 

in the VASP code, we employed FHI-aims1 for optimizing the structures of the coplanar model 

crystals. Also here, we used the PBE2,3 exchange correlation functional with a tight basis set and 

the TS4 dispersion correction.  

For quinacridone we performed the constrained geometry optimization on the unit cell constructed 

as described in the main manuscript employing a 2×2×2 k-point grid and a force threshold of 

0.05eV/Å threshold. Doing the same for pentacene in the tight crystal packing configuration 

resulted in an artificial stabilization of the zero-displacement geometry, when subsequently 

analysing the impact of inter-molecular displacements by means of single-point calculations. This 

is shown below in the evolution of the total energy as a function of the long-axis displacement. 

Notably no such stabilization was observed for quinacridone. The situation also could not be 

resolved by tilting the a1 vector in the optimization, i.e., optimizing a densely-packed system with 

molecules displaced by 0.5 Å. Therefore, we increased the force-convergence criterion to 

0.01eV/Å decoupled consecutive pentacene sheets by increasing the inter-layer distance to 40 Å 

and switched to a 25×25×1 k-point grid. When the resulting molecular geometry and then 

performing single-point calculations for a densely-packed system at varying displacements, this 

led to the expected behaviour (“free-standing monolayer” in Figure S1). At this stage, we do not 

fully understand the problems encountered when optimizing the densely packed layer and 

subsequently using the such-optimized geometry of the pentacene molecule for further studies, but 

hypothesize that it might be related to the observation that coplanar pentacene at small 

displacements becomes metallic when employing the PBE functional. This notion is further 

supported by the finding that when building the coplanar model crystal from pentacene molecules 

in their gas-phase configuration, the results equivalent to those for the “free-standing monolayer” 

have been obtained. 

Finally, we compared the dependence of the total energy on the long axis displacement in 

quinacridone for molecular geometries obtained via the bulk crystal and the free-standing 

monolayer approach and observed differences of only at the most 5 meV. 
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Figure S1. Total energies of coplanar quinacridone and pentacene model crystals for a distance 

of 3.5 Å between the sheets. The curves differ in the way the geometries of the molecules building 

up the crystal have been obtained. In the “crystal” case, they have been optimized for a densely-

packed system with an inter-sheet distance of 3.5 Å, while in the “free-standing monolayer” case, 

they have been optimized for quasi-isolated molecular sheets. For the single-point calculations in 

this test a 2×2×5 k-point grid in conjunction with FHI-aims has been used. 

 

1.4. k-point convergence for the orthorhombic model system 

 

Table S2. VASP calculated total energies of the orthorhombic model system as a function of the 

employed k-grid. Two displacements (given in multiples of the unit-cell lengths) have been 

evaluated and the absolute values as well as their difference are given in eV.  

displacement  2x2x2 5x3x5 6x6x6 12x12x12 25x25x25  

0.0 -514.898 -515.789 -515.795 -515.795 -515.795 -515.795 

v
d
W

 

T
S

 

0.1 -516.121 -516.365 -516.366 -516.366 -516.366 -516.366 

Δ -1.223 -0.576 -0.571 -0.571 -0.571 -0.571 

        

0.0 -510.185 -511.04 -511.045 -511.045 -511.045 -511.045 

n
o
 

v
d

W
 

0.1 -511.402 -511.628 -511.629 -511.629 -511.629 -511.629 
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Δ -1.217 -0.588 -0.584 -0.584 -0.584 -0.584 

 

Table S3. ADF-BAND calculated total energies of the orthorhombic model system as a function 

of the employed k-grid. Two displacements have been evaluated and the absolute values as well 

as their difference are given in eV.  

displacement  5x3x5 6x6x6 

0.0 -515.778 -516.635 -516.635 

0.1 -516.941 -517.180 -517.181 

Δ -1.163 0.545 0.546 

 

1.5. Evaluation of the Band Width (W) 

Two different procedures had to be used for evaluating the band width. Here we start with the 

simpler and more common one: One can calculate the electronic band structure along a certain 

path connecting high-symmetry k-points, then follow the bands of interest (VB and CB here) along 

that path and extract the band width as the difference between the maximum and minimum values 

of the energies along that k-path. Here, because of the two molecules in the unit cell, in some cases 

there is a backfolding of the electronic bands in one direction and therefore we have to take this 

into account. This is particularly relevant for the coplanar model system, where the doubling of 

the size of the unit cell occurs in the direction that is further analyzed (the a1 direction). In such a 

case, we plot the band and then follow it along a path from  to X and back to . This helps us to 

determine which eigenvalue at  belongs to which band (including the backfolding). We then 

define the band width in a specific direction as the energetic splitting between these two energies 

at the -point. For simple (cosine shaped) bands the such defined band width directly corresponds 

to the range of energies covered by the band in the chosen direction. Only close to the maxima of 

the band widths there can be some minor deviations as then the shape of the band can potentially 

deviate from a simple cosine. However, these deviations do not have any qualitative influence on 

the evolution of the band-widths as a function of the molecular displacement. This procedure is 

illustrated for several exemplary displacements in Figure S2. 

In this way, we can account for band crossings when analyzing individual k-paths. This is, 

however, not possible when determining the total band width in the entire first Brillouin zone, as 
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there it is not possible to visually follow an individual band and determine, whether or not band 

crossings play a role. Therefore, we define the total band width (of the valence band) as the 

difference between the maximum amongst all k-points of the highest occupied eigenstate and the 

minimum amongst all k-points of the second highest eigenstate. The highest- and the second-

highest eigenstates are both considered to again account for the backfolding of the band resulting 

from the doubling of the unit-cell size. As long as the band widths are not too large, this procedure 

works perfectly, but as soon as the bands start crossing for particularly large couplings, the total 

range of energies covered by the valence band is larger than the total band widths determined by 

the procedure described above. 

Due to the different definitions, in such cases the total band width can even become smaller than 

the band widths along specific high-symmetry directions, where band crossings can be identified. 

The situation becomes particularly involved for pentacene at zero displacement. There, the band 

widths become so large that several valence bands overlap and the PBE gap vanishes. This leads 

to an even larger “underestimation” of the total band width when employing the above procedure, 

but can again be accounted for when evaluating the band widths along a certain k-path “by hand”.  
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Figure S2. Electronic band structure of the coplanar model crystal for various long axis 

displacements. The lower panels show a zoom in to the region around the valence and conduction 

band. The band-widths for k-paths along the -X direction following the above definition are 

indicated by the black arrows.  
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1.6. List of neighbors included in the set-up of the tight-binding model function 

 

Table S4. Transfer integrals (neighboring molecules) included in the tight-binding fits for the 

valence band. The neighbors which are included are marked by an X. 

 Polymorph  

coordinate    model crystal 

a1 X X X X 

a2 X X X X 

a3 X X X X 

a1+a2 X X X X 

a1-a2 X X X X 

a2+a3 X X X - 

a2-a3 X X X - 

2×a1 X - - - 

a1+a2+a3 X - - - 

  All above expressions + RAB 

 

1.7. Complications arising for transfer integrals between successive quinacridone sheets in 

the coplanar model system 

 

For the coplanar model system, we are mostly concerned with the bands running in the -stacking 

direction and in the direction perpendicular to the 2D quinacridone sheets (Figure 1d, i.e., parallel 

to a1). The valence band will be dominated by the couplings to molecules displaced in AB and in 
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AB-a3 direction (see Figure 1 in the main manuscript). If only these couplings are considered, 

Equations (2) and (3) simplify to 

𝜀 = 𝜀0 ± 2 |𝑐𝑜𝑠 (
𝒌𝒂1

2
)|√(𝑡𝑨𝑩

2 + 𝑡𝑨𝑩−𝒂3
2 + 2𝑡𝑨𝑩𝑡𝑨𝑩−𝒂3𝑐𝑜𝑠(𝒌𝒂3))   (S1). 

From this equation it becomes apparent that the signs of tAB and and tAB-a3 no longer count 

independently, but that all that matters is, whether they are the same or different. Equation (S1) 

can be further simplified for the band running parallel to the a1 direction, as then k·a3 vanishes. 

The expression for the energy then reads: 

 𝜀𝒂1 = 𝜀0 ± 2 |𝑐𝑜𝑠 (
𝒌𝒂1

2
)| |𝑡𝑨𝑩 + 𝑡𝑨𝑩−𝒂3|      (S2) 

I.e., for the dispersion of that band only the absolute value of the sum of tAB and tAB-a3 counts. 

Therefore, only that sum is displayed in the main manuscript in Figure 5. The absolute values of 

the individual components tAB and tAB-a3 are displayed in Figure S3. 

 

Figure S3. Evolution of transfer integrals tAB and tAB-a3 of the coplanar quinacridone model system 

as a function of the long axis displacement.  
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1.8. Stability of the tight-binding fit parameters 

Whenever employing the more complex tight-binding model which considers two inequivalent 

molecules in the unit cell, the choice of the starting values for the fit-parameters (transfer integrals) 

becomes crucial. Employing standard fit algorithms like least squares, or Levenberg Marquard and 

not paying attention to the starting values one can easily end up in a local minimum. Choosing the 

starting values for the transfer integrals close to the absolute values of a molecular dimer solved 

this problem for the quinacridone polymorphs and the quinacridone model system. However, it is 

highly advisable to pay close attention to the starting values and to test, whether one actually has 

converged to the correct minimum.   

 

1.9. Uncertainty of the machine learning model 

Gaussian process regression allows to evaluate the uncertainty of the model prediction (as a 

standard deviation) at each point, resulting in an uncertainty map. Those uncertainties have a 

maximum value of around 50 meV and correspond roughly to the real error when adding a new 

point at a position with high uncertainty. Figure S4 shows such an uncertainty map for the total 

energy of quinacridone. One can see that, at all trained points, the uncertainty is very low, while 

for some other areas the uncertainty rises up to 50 meV. The uncertainty along the main axes is so 

low, because we used all 1D-sweep data points from Figures 5 and 8 of the main manuscript for 

the training. 
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Figure S4. Uncertainty map for the total energy of quinacridone. The blue areas are positions 

where a data point has been calculated. 

 

2 Evaluating the impact of the employed functional and van der 

Waals correction 

 

2.1 Band structures of quinacridone polymorphs calculated using PBE and HSE. 

 

When calculating the electronic band structure of the three quinacridone polymorphs with the PBE 

functional2,3 (semi-local GGA) and also with HSE065,6 (range-separated hybrid functional) we find 

the expected increase of the band gap when using HSE06 instead of PBE. The PBE results have 

been obtained using VASP (5.4.4) and the HSE06 results by using FHI-aims.1 As far as the shapes, 

widths and curvatures of the frontier bands are concerned, a comparison of the top and bottom 

panels of Figures S5, S6, and S7 shows that no fundamental changes occur. The overall evolution 

of the bands is independent of the used functional. Furthermore, when comparing the band widths 
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obtained by PBE (red) to the ones for HSE06 (black) one can see that for most directions these 

values agree quite well, with the HSE06 widths being typically by ~15 % larger. The only 

exception is direction X for the -polymorph. There, the band width increases by almost 80% 

when using HSE06 instead of PBE, but here the values are very small such that a large relative 

change translates in an increase of the band width of only 17 meV. Most importantly, in none of 

the cases the qualitative trends are impacted by the choice of the functional. Furthermore, when 

considering the orthorhombic model crystal at 0.00 and 0.10 long axis displacement we find that 

by using PBE instead of the hybrid functional HSE06 we underestimate the band-width by about 

15 %, similar to the results for the polymorphs. However, despite this underestimation, the overall 

evolution of the electronic frontier bands agrees quite well for PBE and HSE06. Based on these 

data one can conclude that the use of the much cheaper PBE functional is justified.  

 

 

Figure S5. Electronic band structure of the - and -polymorph of quinacridone obtained by 

performing DFT calculations using the PBE functional (solid lines) and the HSE functional (dash 

dotted). The electronic bands have been calculated for the high-symmetry k-path XY. The values 

of the corresponding band-widths are also given in these plots. The red values correspond to the 
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PBE functional and the black ones to the HSE06 functional. All valence bands (conduction bands) 

are aligned to the respective valence band maximum (conduction band minimum) of the PBE 

calculation. Concerning the band gaps of the three polymorphs, we find that they increase when 

HSE06 is used instead of PBE. This is what can be expected when going from a semi-local GGA 

functional to a hybrid functional. The values of the band gaps are PBE(HSE): -polymorph 1.39 

eV (2.05 eV), -polymorph 1.34 eV (2.05 eV) and -polymorph 1.35 eV (1.99 eV).  

 

Figure S6. Electronic band structure of the -polymorph of quinacridone and the orthorhombic 

model crystal at 0.00 long axis displacement. The results were obtained by performing DFT 

calculations using the PBE functional (solid lines) and the HSE functional (dash dotted). The 

electronic bands have been calculated for the high-symmetry k-path XZ for  and XY for the 

orthorhombic system. The values of the corresponding band-widths are also given in these plots. 

The red values correspond to the PBE functional and the black ones to the HSE06 functional. All 

valence bands (conduction bands) are aligned to the respective valence band maximum 

(conduction band minimum) of the PBE calculation. 

 



 15 

 

Figure S7. Electronic band structure of the orthorhombic model crystal at 0.10 long axis 

displacement. The results were obtained by performing DFT calculations using the PBE functional 

(solid lines) and the HSE functional (dash dotted). The electronic bands have been calculated for 

the high-symmetry k-path XY for the orthorhombic system. The values of the corresponding band-

widths are also given in these plots. The red values correspond to the PBE functional and the black 

ones to the HSE06 functional. All valence bands (conduction bands) are aligned to the respective 

valence band maximum (conduction band minimum) of the PBE calculation. 

 

2.2 Calculation of transfer integrals as a function of the long-axis displacement comparing 

PBE and HSE06 

 

When calculating the transfer integrals for the molecular dimer as a function of long axis 

displacement (Figure S8) we find that they are qualitatively the same for PBE and HSE06. 

Generally, the HSE06 transfer integrals are larger than the PBE ones. Notably, for the PBE 

functional, ESD and FO yield identical results. When using the hybrid HSE functional, the FO 
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values are somewhat larger than the ESD ones. The origin of this difference is not fully understood 

at this point and will require further analysis. In passing we note that a similar observation is also 

made when calculating the three polymorphs of quinacridone: Also there the ESD calculated 

transfer integrals are very similar for PBE and HSE (Table 2 of the main manuscript), while the 

FO values show a larger deviation especially for the - and -polymorphs (with tFO,HSE,=19 meV, 

tFO,HSE,=39 meV, tFO,HSE,=39 meV). 

 

 

Figure S8. Transfer integrals for the molecular crystal and the corresponding dimer as a function 

of displacement along the long molecular axis. The transfer integrals for the dimer have been 

evaluated using the fragment orbital method for the PBE and HSE06 calculations and additionally 

also by ESD for the PBE calculations. The tight binding transfer integrals evaluated for the PBE 

band structure are also given. 

 

2.3 Impact of the choice of the functional on the ordering of the quinacridone orbitals 

 

As a last step we also checked the dependence of the orbital ordering of the frontier states on the 

choice of the exchange correlation functional. We find that for the single molecule, PBE 

reproduces the supposedly correct ordering of the HSE orbitals only for the two frontier states 

(HOMO and LUMO). Notably, also for the dimer the ordering of the associated orbitals (HOMO, 
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HOMO-1, LUMO, and LUMO+1) is correctly described by PBE. Therefore, as long as we are 

only concerned about the behavior of the frontier states, i.e. the corresponding transfer integrals, 

the use of PBE is justified. A more in depth discussion of these aspects can be found in the 

Supporting Information section of Ref. [7]. 

 

2.4 Impact of the type of van der Waals correction on the relative energetics of the three 

quinacridone polymorphs 

 

To check the influence of the dispersion interaction on the relative energetic stability of the three 

polymorphs we compare the results obtained by using the pairwise TS correction scheme4 to many 

body dispersion interactions8 (MBD, as implemented in FHI-aims and VASP). The data are shown 

in Table S5. From these one can see that the relative energetic stability of the three polymorphs is 

only very weakly affected by the use of different dispersion correction concepts. The variation of 

the relative energies is on the order of a few meV upon the usage of different dispersion correction 

schemes for the calculations. Also using the MBD scheme to reoptimize the atomic positions of 

the atoms and then calculating the energetic stability does not show a significant change.1 

Therefore, we conclude that the use of the pairwise TS correction scheme gives qualitatively 

correct results concerning the energetic stability of the polymorphs. Notably, the variations 

between different codes are of similar magnitude as the variations between different methods. This 

is insofar not surprising, as errors in the total energy on the order of a few meV correspond to the 

accuracy of the numerical settings.9 

 

Table S5. Absolute and relative total energies of the three quinacridone polymorphs obtained by 

using the pairwise TS correction scheme as well as many body dispersion to account for van der 

Waals interactions. The abbreviation reads as follows: XX@YY,ZZ. Here XX describes the 

dispersion correction used for calculating the total energy. YY describes the exchange correlation 

 

1 The average change in the atomic positions upon optimization including MBD corrections ranges between 0.006 

and 0.058 Å. 



 18 

functional used during the geometry optimizations and the single point calculations and finally ZZ 

stands for the dispersion correction used during the geometry optimization. 

 MBD@PBE,TS Δ(min) TS@PBE,TS Δ(min) MBD@PBE,MBD Δ(min) Δ(min) 

 FHI-Aims VASP FHI-Aims VASP 

 -28013.8725 eV 84 meV -258.5086 eV 90 meV -28013.8753 eV 86 meV 88 meV 

 -28013.9523 eV 4 meV -258.5943 eV 5 meV -28013.9544 eV 7 meV 3 meV 

 -28013.9561 eV 0 meV -258.5988 eV 0 meV -28013.9611 eV 0 meV 0 meV 

 

3. Additional data on the electronic structure of quinacridone 

 

3.1 Hydrogen bonding energies for molecular dimers extracted from the crystals of the 

quinacridone polymorphs and the orthorhombic model crystal. 

 

As hydrogen bonds are a major driving force for the packing of quinacridone and the molecular 

packing of all the considered systems is quite different, it is interesting to analyze the impact of 

different molecular arrangements on the hydrogen-bonding energies. To estimate these energies, 

we extracted clusters from the corresponding crystal structures and then calculated the total 

energies of these clusters as well as those of the individual fragments (see Table S6). All 

calculations were done using the same settings as for the molecular dimer calculations presented 

in the main manuscript. For the - and -phases, as well as for the orthorhombic model crystal, 

the clusters consist of two neighboring molecules in H-bonding direction. This is a result of the 

formation of H-bonded stripes in these systems. Thus, in these crystals, each molecule has two 

identical neighbors in H-bond direction. For the -phase the situation is a bit more difficult, as in 

this crystal structure the molecule has 4 H-bonding partners (2 on each side). As only pairs of 

bonding partners are equivalent, one has to calculate a molecular trimer in order to estimate the H-

bonding energy EH. Comparing the obtained H-bonding energies we find essentially the same 

values for - and -quinacridone, i.e. the difference is about 1 meV. For  quinacridone, EH is 
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about 200 meV larger compared to EH for  and  quinacridone. This finding agrees quite well 

with -quinacridone being the energetically most stable one of the three polymorphs, although we 

cannot exclude that the three- vs. two-molecule model clusters also have an impact. Interestingly, 

the H-bonding energy in the coplanar model crystal agrees well with the - and -polymorphs. 

This shows that the construction of the model system does not disrupt the H-bonding network. 

This is insofar relevant as the H-bonded molecular stripes in - and -quinacridone are not exactly 

planar, but exhibit small steps between the molecules,10 which do not occur in the model system. 

In this context it is, however, worthwhile mentioning, that already Paulus et al.10 hypothesized that 

the steps are not caused by the H-bonds per se, but rather by the crystal packing. 

Beyond the H-bonding energies, we also analyzed bond lengths (in the optimized crystal 

structures). Correspondingly, the distances between N, H, and O, which are the closest atoms 

forming the H-bonds, are reported in Table S7. Similar to the trends for the energies, the H-O and 

N-O distances for  and  quinacridone are very similar. For  and the orthorhombic system these 

distances are even smaller by about 0.1 Å.  

 

Table S6. Total energies of molecular clusters of the three quinacridone polymorphs and the 

orthorhombic model crystal (dimer for −, and − quinacridone and for the orthorhombic, 

coplanar model crystal structures and trimer for and -quinacridone), energies of the monomers 

and H-bonding energy evaluated as the difference of the total energy of the combined system and 

the energy of the fragments. The H-bonding energies have been evaluated using the TS and MBD 

methods.  

 System AB / eV Fragment A / eV Fragment B / eV EH = AB – A – B  / eV 

TS vdW correction 

 -56022.784 -28010.893 equivalent -0.100 

 -56022.805 -28010.902 equivalent -1.001 

ortho -56022.816 -28010.922 equivalent -0.973 

 -84034.735 -28010.871 -56022.656 -1.207 

MBD vdW correction 
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 -56024.078 -28011.535 equivalent -1.009 

 -56024.105 -28011.544 equivalent -1.017 

ortho -56024.122 -28011.565 equivalent -0.992 

 -84036.340 -56023.640 -28011.513 -1.188 

 

Table S7. Distances between the H, N and O atoms forming the intermolecular H-bonds. These 

distances have been measured as the length of the connection vector. 

crystal H-O distance / Å N-O distance / Å 

 1.848 2.850 

 1.853 2.861 

ortho 1.762 2.793 

 1.719 2.739 

 

3.2. Electronic band structures of the three quinacridone polymorphs 
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Figure S9. Electronic band structures of the three quinacridone polymorphs (, , and ) along a 

high-symmetry path from X to  to Y. Valence and conduction bands are shown. The bands are 

aligned to the respective valence band maximum.    

 

3.3 Additional information on deeper-lying bands and orbitals 

 

Figure 7 in the main manuscript reports the band widths for the eight highest occupied bands of 

the coplanar model crystal at zero displacement and for a displacement along the long molecular 

axis by one tenth of the unit cell length. Figure S10 below shows the corresponding band structures. 

 

Figure S10. Band structures of the orthorhombic model crystal for displacements 0.00 and 0.10 

times the long molecular axis. The bands are additionally resolved according to their character. 

Bands which are black have mainly - and bands which are red have a dominant -character. All 

bands are aligned to the corresponding valence band maximum. 
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Further insight can be gained by analyzing the orbitals forming these bands in isolated molecules 

and molecular dimers. Considering that the results in Figure 7 of the main manuscript show that 

only -orbitals are relevant here, in the following we will also discuss only those. Notably, the 

energetic splitting between the two dimer orbitals originating from linear combinations of identical 

orbitals on the two molecules are very similar in all systems (see Figure S11) in line with the 

similar widths of the corresponding bands from Figure 7 of the main manuscript. Here it should 

be noted that in the dimer case the HOMO-1 is a -orbital, while the VB-1 in the crystal is a -

band. This change in order is primarily a consequence of the band dispersion in the periodic case. 

 

Figure S11. Transfer integrals calculated for cofacial molecular dimers employing the ESD 

method for the highest-lying occupied -orbital pairs derived from the molecular HOMO, the 
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HOMO-3, and the HOMO-4 to HOMO-8. The pairs derived from HOMO-1 and HOMO-2 are not 

considered here, as the associated transfer integrals are negligibly small due to the -character 

of the orbitals in the PBE calculations. Top-views of the dimer orbitals highlighting the nodal 

pattern of the parent orbitals are also shown. 
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Abstract: In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the
focus of scientific research. In this context, systems with efficient through-space charge transport
pathways resulting from π-stacked conjugated linkers are of particular interest. In the current
manuscript, we use density functional theory-based simulations to provide a detailed understanding
of such MOFs, which, in the present case, are derived from the prototypical Zn2(TTFTB) system
(with TTFTB4− corresponding to tetrathiafulvalene tetrabenzoate). In particular, we show that factors
such as the relative arrangement of neighboring linkers and the details of the structural conformations
of the individual building blocks have a profound impact on bandwidths and charge transfer.
Considering the helical stacking of individual tetrathiafulvalene (TTF) molecules around a screw axis
as the dominant symmetry element in Zn2(TTFTB)-derived materials, the focus, here, is primarily on
the impact of the relative rotation of neighboring molecules. Not unexpectedly, changing the stacking
distance in the helix also plays a distinct role, especially for structures which display large electronic
couplings to start with. The presented results provide guidelines for achieving structures with
improved electronic couplings. It is, however, also shown that structural defects (especially missing
linkers) provide major obstacles to charge transport in the studied, essentially one-dimensional
systems. This suggests that especially the sample quality is a decisive factor for ensuring efficient
through-space charge transport in MOFs comprising stacked π-systems.

Keywords: metal-organic frameworks; charge transport; through-space pathways

1. Introduction

Metal-organic frameworks (MOFs) are porous, highly crystalline solids consisting of inorganic
nodes connected by organic linkers [1–3]. They have been investigated extensively for various
applications in fields such as gas storage, [4–6] catalysis, [7–9], and gas separation [10,11]. Until recently,
comparably little attention has been paid to the electronic properties of MOFs, [12] although electrically
conductive MOFs can be relevant as active materials for several applications, such as electrocatalysis, [13–17]
chemiresistive sensing, [18–23] and energy storage [24–26]. Therefore, in recent years, interest in controlling
and modifying the electronic properties of MOFs has gained considerable attention [12,27,28].

On more fundamental grounds, the electronic (and also the optical) properties of a solid are
determined (in a first approximation) by its electronic band structure, where MOFs usually show
rather flat bands [27]. This is a consequence of the commonly observed weak hybridization between
states localized on the organic linkers and states localized on the inorganic secondary building units.
A second reason is the small overlap of the π-systems of neighboring organic linkers. This assessment
already comprises two strategies for changing the electronic properties of MOFs: one can either focus

Nanomaterials 2020, 10, 2372; doi:10.3390/nano10122372 www.mdpi.com/journal/nanomaterials
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on improving the bonding between the metal and the ligands (through-bond coupling), or one can try
to improve the overlap of the π-systems in neighboring linkers (through-space coupling) [12,27,29].
In the present contribution, we will focus on the latter approach, where a large overlap of neighboring
π-electron systems can result in the formation of bands displaying a large dispersion and generating
through-space charge transport pathways.

The impact of the packing motif of organic π-systems on intermolecular electronic couplings
(expressed via transfer integrals and band dispersions) has been thoroughly studied for organic
semiconductors, OSCs. Crucial factors identified for these materials are the stacking distance of
neighboring molecules (i.e., neighboring π-systems) and the arrangement of neighboring molecules in
terms of relative displacements and rotations [30–37]. All these structural changes lead to changes in
the orbital overlap between consecutive molecules, which, in turn, change the intermolecular electronic
couplings. For example, considering dimers of acenes (or quinacridone) and shifting the molecules
relative to each other along their long molecular axis, one finds that the transfer integrals oscillate as
a function of the displacement [30–34,36,38]. The influence of relative rotations of molecular dimers
has been investigated primarily in the context of discotic liquid crystals. There, it has been found that
the transfer integral varies as a function of the rotation angle [35,37,39–42]. Importantly, independent
of whether neighboring molecules are shifted or rotated relative to each other, what counts for the
intermolecular electronic coupling (transfer integral) is the overlap of the frontier orbitals. This overlap
is determined by the orbitals’ shape and symmetry. In this context, it has been suggested that when
organic semiconductors can assemble without pronounced sterical constraints, exchange repulsion
acts as an intrinsic driving force, favoring molecular arrangements with particularly small electronic
couplings [32,33]. Therefore, developing design strategies “extrinsically” enforcing favorable molecular
arrangements have shifted into the focus of current research [32,33,43–46]. Here, MOFs are of particular
appeal, as the framework structure offers an additional level of control over the stacking sequence of
neighboring molecules, which goes far beyond what is typically achievable in organic semiconductors.
Similar to OSCs, it has been predicted also for layered MOFs that their electronic band structure
depends on the proximity [47] of the layers as well as on interlayer displacements [48–50]. For MOFs
comprising 3D networks, such structure-to-property relations for charge transport are, however,
hardly developed.

Material-wise, particularly promising MOFs showing through-space charge-transport pathways
are frameworks consisting of ligands based on tetrathiafulvalene (TTF) [12]. Especially for a subgroup
of these MOFs in which the TTF units form helical stacks with comparably close π-stacking one
observes relatively large electrical conductivities [12,51]. For such systems, it has also been shown
that reducing the S . . . S stacking distance within the TTF stacks results in significantly increased
conductivities [52–54].

In this work, we will apply dispersion-corrected density functional theory (DFT) calculations to
show, how the electronic coupling in such TTF-based MOFs can be controlled by additional structural
parameters, such as the relative rotation or slip of neighboring TTF units. The goal of these calculations is
to identify stacking motives that maximize through-space charge-carrier mobilities. Moreover, we will
address the impact of defects such as missing linkers, pair formation, and shifted molecules.

1.1. Systems of Interest

The starting point for this study is the stacking of the TTF cores of Zn2(TTFTB) [51], shown in
Figure 1. The linkers (TTFTB4− = tetrathiafulvalene tetrabenzoate) and the metal nodes (forming
Zn2(TTFTB)) crystallize in the P65 space group with a hexagonal unit cell (a = b= 19.293 Å and
c = 20.838 Å). This results in helical TTF stacks (six TTF molecules per unit cell), where neighboring
TTF molecules are rotated by 60◦ relative to each other and translated by 3.473 Å in stacking direction
(see Figure 1). The stacks themselves are arranged in a hexagonal pattern and connected by the nodes,
as illustrated in Figure 1a. Notably, the 65 screw axis is offset from the central ethylene unit of the TTF
cores (see Figure 1b,c). This induces an additional shift of neighboring molecules relative to each other,
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which is perpendicular to the screw axis [51]. As a consequence, the centers of the TTF molecules
are arranged on a helix, whose projection onto the x,y-plane (the plane perpendicular to the stacking
direction, z) becomes a circle with a radius r of ~1.6 Å. This stacking motif of the TTF cores is determined
by the arrangement of the Zn nodes and the carboxylic acid groups. The MOF structure discussed in the
main manuscript contains neither solvent molecules nor water molecules (i.e., the MOF is desolvated
and dehydrated). For comparison, a MOF with water molecules coordinating to the Zn atoms was also
calculated. The water molecules cause only very minor changes in the atomic coordinates and the
electronic structure (see Supplementary Materials).

For analyzing the impact of structural changes on the electronic properties of the TTF stacks,
we first constructed helical model TTF and TTFTB stacks consisting of molecules exhibiting the same
geometry and stacking motif as in the MOF. These stacks were then arranged in the same pattern as in
the MOF, as shown in Figure 1a.

For generating TTF stacks with different numbers of molecules in the unit cell, N, we replicated
individual molecules (in the geometries adopted in the stacks), rotated them around the central screw
axis by angles of 360◦/N, and arranged them at distances of 3.473 Å. Laterally, these stacks were
then, again, arranged consistent with the experimental structure of Zn2(TTFTB), while the unit cell
in the stacking direction was set to N*3.473 Å. To verify the construction procedure, we compared
the electronic structure of the N = 6 TTF model stack to the system extracted directly from the MOF
structure, observing only negligible differences (see Table 1 in Section 3.2). A detailed description of
the construction of the parent TTF stacks and the model systems with modified rotation angles can be
found in the Supplementary Materials.
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nodes are connected on an atomistic level. The unit cell of the MOF is represented by thick black lines. 

Figure 1. Structure of Zn2(TTFTB) and the constructed tetrathiafulvalene (TTF) model system.
Panel (a) shows the connectivity between linkers (blue hexagons) and nodes (green triangles) within
the Zn2(TTFTB) metal-organic framework (MOF). Panels (b,c) contain a more detailed illustration
structure of the Zn2(TTFTB) MOF (top and side view). The linker is highlighted in (b), and in panel (c),
the carboxyl groups of neighboring linkers are colored in green to indicate how linkers and metal nodes
are connected on an atomistic level. The unit cell of the MOF is represented by thick black lines. Panel
(d) contain the top and side views of the model system used for describing the one-dimensional charge
transport in these materials. The top TTF molecule in the model system is marked in blue, and the
rotation axis is indicated by the black dot in the center of the top structure in panel (d). The dashed black
line in the model system indicates the rotation of the molecules around the screw axis. The periodic
boundary conditions are indicated by the frame around the repeat unit of the TTF model system.
C—grey, H—white, S—yellow, Zn—purple, O—red.
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Table 1. Valence bandwidths (VBW) and effective masses at the valence band maxima for transport in
(001) direction for all considered MOFs (i.e., the parent MOF Zn2(TTFTB), the MOF with Zn replaced
by Cd, and the MOF with S replaced by Se) and for model TTF stacks with 1, 6, and 12 TTF molecules
per unit cell (i.e., with rotation angles of 0◦, 60◦, and 30◦). The systems TTF and TTFTB listed under
MOFs are the stacks extracted from the Zn2(TTFTB) structure. For the model stacks, we compare
systems generated with different geometries of the individual molecules. Here, (MOF) refers to TTF
conformations extracted from the MOF structure, (relaxed) to geometries relaxed in the stack, (boat) to
gas-phase relaxed TTF geometries in boat conformation, and (planar) to planar TTF molecules for
which only the x- and y-coordinates have been relaxed in the gas phase.

MOFs

VBW/meV m*/me

Zn2(TTFTB) 371 2.05
Zn2(TSFTB) 641 1.05
Cd2(TTFTB) 333 2.21

TTFTB 373 2.10
TTF 303 2.40

Model Stacks

VBW/meV m*/me

N = 1 N = 6 N = 12 N = 1 N = 6 N = 12
TTF (MOF) 1337 298 650 0.93 2.48 1.84

TTF (relaxed) 1047 207 609 1.89 3.02 1.86
TTF (boat) 1269 72 348 1.23 7.29 4.35

TTF (planar) 1804 117 666 0.51 4.33 1.75

Additionally, molecular dimers were designed in analogy to the construction described in the
previous paragraph. As these dimers were simulated using open boundary conditions, any value
could be chosen for the rotation angle around the off-center screw axis, allowing us to generate smooth
evolutions of the dimer electronic couplings with rotation angle.

To investigate the impact of chemical modifications, we also considered Cd2(TTFTB), which has
been reported to be isostructural to Zn2(TTFTB) but shows a higher electrical conductivity [53].
Moreover, we replaced TTF with tetraselenafulvalene (TSF, C6H4Se4, yielding Zn2(TSFTB)) to test the
extent to which the increased pz-orbital overlap for Se would result in a larger valence bandwidth.

1.2. Describing Through-Space Charge Transport in Pristine MOFs

Before considering the electronic band structure of Zn2(TTFTB) and how it is affected by
changes in the structure of the TTF stack, it is useful to realize that through-space charge
transport in porous materials is strongly reminiscent of the situation in (one-dimensional) organic
semiconductors, [31,55–57] for which various models for describing charge transport have been
proposed over the past few decades. These models comprise fully coherent band transport and
incoherent hopping transport as limiting cases and also include more recent developments, such as the
highly successful dynamic disorder model [58–62]. For all these models, the intermolecular electronic
couplings between neighboring molecules are essential parameters [31,55–57]. These electronic
couplings are typically expressed via transfer integrals t, which enter linearly (quadratically) into the
expressions for band (hopping) mobilities [31,57]. Such transfer integrals can, for example, be extracted
from studying suitably arranged dimers [31,34–37,63] or from fitting tight-binding models to electronic
band structures [64]. In fact, within a tight-binding picture, the magnitudes of the transfer integrals
can be intimately related to the widths of the frontier bands. This suggests that general trends for
the dependence of charge-carrier mobilities on structural parameters can be gained from calculating
electronic band structures, even in cases in which band transport is not the dominant mechanism.
Therefore, in the following, we will primarily analyze such band structures calculated by dispersion
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corrected density functional theory (with the discussion primarily based on band widths and the
derived transfer integrals). We acknowledge that in this way, the role of the material’s phonon properties
(such as the occurrence of “killer phonon” modes) [65] is not revealed. Nevertheless, the analysis
provides crucial insights into the structure-to-property relationships for the electronic MOF properties
which determine through-space charge transport.

2. Methods

For investigating the structural and electronic properties of the MOFs, the periodic model systems,
and the molecular dimers, we employed the dispersion-corrected density functional theory, DFT,
which, in a recent review, was highlighted as a viable method for gaining an in-depth understanding
of the electronic structure of MOFs [66]. The simulations were performed with the FHI-aims
code (version 190906, Berlin, Germany) [67]. Exchange and correlation were treated by the PBE
functional [68,69], and the Tkatchenko–Scheffler [70] scheme was used as an a posteriori van der
Waals correction. We employed the default tight basis sets of FHI-aims for periodic and molecular
simulations. Further details on the employed basis functions are provided in the Supplementary
Materials. For Zn2(TTFTB), the electronic band structure was also calculated with the hybrid functional
HSE06 [71,72] to ensure that the introduction of Hartree–Fock exchange has a negligible influence on
the valence bandwidth as the primary quantity of interest for the present study.

During the geometry optimizations, all atomic positions were relaxed until the largest remaining
force component on any atom was smaller than 0.01 eV/Å. For all MOF systems, a 3 × 3 × 3 k-point grid
was used for sampling reciprocal space during the geometry relaxations. During the electronic structure
calculations, a 4 × 4 × 4 k-point grid was employed. For both grids, the total energy was converged
to within less than 1 meV. The smaller grid in the more time-consuming geometry relaxations was
used to speed up the calculations. For the periodic stacks, we used a 1 × 1 × 12 k-point grid, which is
already converged, even for the smallest system (with the largest reciprocal space vector along the
stacking direction). The effective masses were calculated from the (inverse) curvature of the band
structure at the top of the valence band in the (001) direction to describe transport in the TTF stacking
direction. Technically, the band curvature was determined by fitting a cosine function to the dispersion
relation E(k), including the 10 k-points closest to the valence band maximum, with a spacing between
neighboring k-points of 0.005 Å−1. A cosine function was chosen for the fit to be consistent with the
best-suited tight-binding band model for the systems studied here (see below). The structures of the
MOFs and the molecular systems were visualized using Ovito (version 3.2.1) [73] and the molecular
orbitals were rendered using Avogadro (version 1.2.0) [74].

3. Results and Discussion

3.1. Electronic Structure of Zn2(TTFTB) and the Extracted Model Stack

As a first step, we analyzed the electronic structure of Zn2(TTFTB), for which the frontier bands are
shown in Figure 2a. Figure 2b contains a zoom into the valence band region. In the following, we will
be primarily concerned with bands in the ΓA direction, as this corresponds to the stacking direction of
the TTF molecules. Moreover, the valence and conduction bands are flat in directions perpendicular to
ΓA (with bandwidths around 1 meV in AL and even less in ΓK directions). This indicates that there is
virtually no electronic coupling between individual TTF stacks within the MOF, resulting in essentially
one-dimensional charge transport in Zn2(TTFTB). This is supported by measurements by Sun et al.,
who observed that the electrical conductivity in the direction of the stacks is 2–3 orders of magnitude
larger than perpendicular to them [75].
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Figure 2. Electronic structure of the Zn2(TTFTB) MOF and the corresponding TTF model stack:
(a) electronic band structure of Zn2(TTFTB) along the selected high-symmetry directions. The energy
scale is aligned to the valence band maximum. (b) Zoom into the valence band of Zn2(TTFTB) (solid
red line) and of the TTF model stack (dashed black line). The first Brillouin zone together with the
relevant directions in k-space are shown as an inset.

As far as the ΓA direction is concerned, one can identify a six-times backfolded band, which is
particularly well resolved for the valence band in Figure 2b. This backfolding is related to the
crystallographic unit cell (determining the shape and size of the first Brillouin zone). It contains six
TTF-based linkers as translational repeat units, whose repetition yields the infinitely extended TTF
stack. What counts from an electronic point of view is, however, not only the translational symmetry
but also the screw axis in the middle of the TTF stack (see Figure 1). With respect to that screw axis,
each TTF molecule has an identical electronic environment. Thus, one can view a single TTF molecule
as the “electronic” repeat unit of the TTF stack in Zn2(TTFTB). This is supported by the observation
that for the perfectly symmetric structure, no band gaps open for the backfolded bands at the Γ and
A points. In passing, we note that this situation changes when defects disturb the perfect symmetry,
as will be discussed in Section 3.4.

As a consequence of a single TTF molecule serving as an “electronic” repeat unit, the electronic
bands in the ΓA direction can be conveniently described by a tight-binding model with a single
molecule per unit cell. These considerations imply that for judging the electronic coupling between
neighboring TTF molecules, one needs to consider the width of the entire, six-times backfolded band,
as indicated by the arrows in Figure 2a. Based on the 1D nearest-neighbor tight-binding model
mentioned above, the total band width of the six-times backfolded band then corresponds to 4 × t
(with t representing the intermolecular transfer integral in stacking direction). This extraction of t from
the band structure is confirmed by the data shown in Figure 3, where the dimer-derived bandwidths
are compared to the results for the actual TTF stacks. Additional validation data are contained in the
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Supplementary Materials. Conversely, the width of the valence band between Γ and A is a measure for
the electronic coupling between adjacent groups of six TTF units (i.e., between the entirety of the TTF
molecules in adjacent unit cells).
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Figure 3. Evolution of the width of the valence band in the (001) direction and of the transfer integrals
between neighboring TTF molecules in the stacking direction as a function of the rotation angle
between neighboring molecules. Panel (a) shows the situation for stacks and dimers with molecular
geometries taken from Zn2(TTFTB) (purple diamonds and line) and for stacks with optimized
geometries (orange circles; for details, see main text). In panel (b), the results for fully gas-phase
optimized (dark yellow down-facing triangles and line) and for planar molecules (light magenta
up-facing triangles and line) are shown. Symbols denote data points calculated for infinitely extended
TTF stacks, where the rotation angles are set by varying the number of TTF molecules in each unit
cell (see numbers in panel (a)). The solid lines have been calculated for dimers with rotation angles
varied in steps of 5◦ (individual data points not shown). In panel (b), bandwidths are set to negative
values whenever the signs of the dimer-calculated transfer integrals are also negative. Points marked
with a black frame comprise band structures deviating from a simple 1D tight-binding system and are
discussed in the Supplementary Materials.

On more quantitative grounds, the valence bandwidth, VBW, for the backfolded band amounts
to 371 meV in the PBE calculations (400 meV when using the HSE06 functional), as indicated by the
arrows in Figure 2a. This is significantly larger than the width of the conduction band, which is
120 meV. This finding suggests that Zn2(TTFTB) is preferentially a hole conductor [53], which is in line
with the notion of organosulfur compounds, such as TTF, being good electron donors [76,77].
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An analysis of the contributions of the different parts of the MOF to the valence and conduction
bands suggests that especially hole transport (which is particularly relevant for TTF-based systems;
see above) should be described well by the model TTF stack. This notion is confirmed by the comparison
of the valence band structure of the actual Zn2(TTFTB) MOF (solid line) and the band structure of the
model TTF stack in Figure 2b; qualitatively, the two band structures are the same. The only apparent
difference is a somewhat smaller bandwidth of 303 meV in the model system (which amounts to
~82% of the bandwidth of the actual MOF). This leads to a comparably small change in the effective
mass at the valence band maximum (VBM) from 2.05 to 2.40 me (with me being the mass of a free
electron). We attribute this difference to the overlap of the π-orbitals of neighboring phenylenes in the
H4TTFTB linkers in the actual MOF, which is not captured by the model system (see systems TTF and
TTFTB in Table 1 and further details in the Supplementary Materials). These quantitative differences
are, however, rather small compared to the effects discussed below, rendering the TTF stack a useful
model system.

3.2. Dependence of Bandwidth and Transfer Integral on the Relative Rotation of Consecutive TTF Units

With a reliable model system at hand, we can now turn to studying the impact of changes in the
structure of the TTF stacks on the electronic coupling. It has been shown, for a variety of molecular
dimers, that the relative rotation of neighboring molecules has a tremendous effect on intermolecular
electronic couplings [35,37,39–42]. As this effect is a consequence of changes in the orbital overlap
upon rotation, one can expect similar effects for the TTF stacks considered in this work. Following the
construction procedure for TTF stacks described in Section 1.1 and in the Supplementary Materials,
it is apparent that the number of stacked molecules in the unit cell determines their relative rotation.
Thus, we consider unit cells containing 1, 2, 3, 4, 5, 6, 8, and 12 molecules (corresponding to rotations
of 0◦, 180◦, 120◦, 90◦, 72◦, 60◦, 45◦, and 30◦, respectively).

The resulting band structures are shown in the Supplementary Materials. They reveal that
the cofacial arrangement with one repeat unit exhibits the largest valence band width of 1337 meV,
corresponding to a transfer integral between neighboring molecules of 334 meV (see data points in
Figure 3a and values in Table 1). The bandwidth decreases by a factor of nearly three to 447 meV
when considering the system with two molecules per unit cell (N = 2, or a relative rotation between
consecutive TTF molecules of 180◦). The bandwidth further decreases for three TTF molecules
(120◦ rotation) and reaches a minimum of 180 meV (a transfer integral of 45 meV) for the system
containing four molecules in the unit cell (see Figure 3a). Upon further increasing the number of
repeat units, the bandwidth again increases slightly (to between 235 and 337 meV for N = 5, 6, and 8).
A steep increase is then observed for 12 molecules per unit cell (i.e., for a relative rotation angle of 30◦).
Here, a valence bandwidth of 650 meV means a doubling compared to the reference system with N
= 6, which mimics the situation in the actual Zn2(TTFTB) MOF. Concomitantly, the effective mass of
the holes increases from 0.93 me for N = 1 to 2.48 me for the reference system with N = 6 and then
drops again to 1.84 me for N = 12. These considerations show that changing the relative twist between
consecutive molecules, indeed, has a profound impact on the electronic coupling in the TTF stack and
that the situation in Zn2(TTFTB) is far from ideal for hole transport.

For obtaining values at intermediate rotation angles we considered model dimers, extracting
transfer integrals via the fragment orbital method [78]. The valence bandwidth for one molecule as
“electronic repeat unit” is then obtained as W = 4 × t employing a 1D tight-binding model. At rotation
angles at which data for actual stacks and from dimers are available, one typically observes an excellent
agreement. This suggests that dimer calculations can, indeed, be used as an efficient tool for predicting
and explaining general trends.

As a next step, we discuss the role of the conformation of the molecules within the stack.
First, we fully relaxed the geometries of the molecules in the stacks, fixing only the positions of the
central C=C atoms to maintain the overall structure. This yields an evolution of the valence bandwidths
comparable to that of the TTF stacks with molecules in MOF geometry (see above), although the
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bandwidths are consistently smaller in the relaxed case (with the exception of the N = 8 system;
see Figure 3a). The reduction in the bandwidth is particularly pronounced for N between 2 and 5,
such that the overall variation between the largest and the smallest bandwidths amounts to a factor of
almost 14.

For the relaxed stacks, it is also sensible to compare the total energies of the systems. Interestingly,
for N between 3 and 12 these are within 35 meV per molecule (i.e., only somewhat larger than kBT;
see Supplementary Materials). This occurs despite variations in the bandwidths (transfer integrals)
by a factor of 8. Only for N = 1 and 2, the total energy increases by 232 and 121 meV, respectively.
This suggests that from a TTF-stacking point of view, there is no strong driving force preventing
structures with comparably large bandwidths (such as for N = 12), which is in sharp contrast to
observations for various molecular crystals [32,33].

Notably, in the stacks discussed so far (fully optimized or built from molecules in MOF
conformation), the TTF molecules are slightly tilted around their long and short molecular axes.
To assess the role of those tilts, we also studied two model systems in which such tilts do not occur,
starting from a gas-phase optimized TTF molecule either in boat conformation (actual minimum
structure) or forced to be planar. In the stacks, these molecules are then aligned such that all S atoms
of each molecule are in a plane perpendicular to the screw axis. The infinitely extended stacks are
then constructed following the procedure described in Section 1.1 and in the Supplementary Materials.
The results for these stacks are complemented by calculations for corresponding molecular dimers.
As shown in Figure 3b, the obtained data, at first glance, appear to directly correlate to the data for
the MOF-derived structure (purple diamonds and line in Figure 3a). A closer inspection, however,
reveals that there is a fundamental difference: the signs of the dimer transfer integrals come out
negative for rotation angles Θ between ~65◦ and ~125◦ (where, for the sake of consistency, we also plot
the bandwidths with a negative sign in that range of rotation angles). The zero-crossing of transfer
integrals and bandwidths has a profound impact on charge transport properties. As for systems like
the present one primarily the absolute value of the bandwidth counts, for the cases shown in Figure 3b
the carrier mobility in stacking direction is expected to be close to a local maximum for the N = 4
system (rather than close to the global minimum, as for the systems shown in Figure 3a). Conversely,
the valence bands become completely flat for rotation angles around ~65◦ and ~125◦, implying a
vanishingly small carrier mobility in for these angles.

The evolution of the transfer integrals with rotation angle (including the zero-crossing) can be
explained by the shapes of the involved molecular orbitals. This is most straightforwardly seen for the
bonding and antibonding linear combinations of the highest occupied molecular orbitals (HOMOs) of
the two TTF molecules in the dimer calculations. They can be derived from linear combinations of the
HOMOs of individual TTF molecules, and (for centrosymmetric systems) their splitting determines
the magnitude of the transfer integral [31]. The evolutions of the orbital shapes and orbital energies
with rotation angle are exemplarily shown in Figure 4 for the dimers consisting of planar molecules.

For the cofacial arrangement of the molecules, the antisymmetric linear combination of the TTF
HOMOs is lowest in energy and the symmetric linear combination is highest (Figure 4b, 0◦). This is
exactly what one would expect considering the fully bonding nature of the hybrid orbital in the
antisymmetric case (non-zero value of the wavefunction between molecules or even a local maximum)
and its fully antibonding nature in the symmetric case (vanishing wavefunction between the molecules).
Upon increasing the rotation angle, the HOMO-1 becomes increasingly destabilized and the HOMO
gets stabilized, which reduces their energetic splitting and, concomitantly the associated transfer
integral. This can be understood by the appearance of antibonding contributions for the antisymmetric
and bonding contributions for the symmetric linear combinations. At a rotation angle of 65◦, both linear
combinations display nearly equal amounts of bonding and antibonding regions. Consequently,
the two orbitals are essentially isoenergetic, resulting in a vanishing transfer integral. Upon further
increasing the rotation angle, the nature of the HOMO and HOMO-1 is switched, resulting in a change
of the sign of the transfer integral. The stabilization of the originally antisymmetric linear combination
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of the molecular orbitals is maximized at a rotation angle of 95◦ and the trend is reversed for systems
with larger rotations. In passing, we note that the reason for the much smaller HOMO-to-HOMO-1
splitting at 180◦ compared to the cofacial situation (i.e., 0◦) is the reduced spatial overlap of the
molecules following from the screw axis not coinciding with the center of the TTF molecules (see
Figure 1).Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 21 
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Similar trends are observed for the other three molecular conformations. The lack of a zero-crossing of
the bandwidths and transfer integrals for the MOF-derived and optimized geometries (i.e., the systems
shown in Figure 3a) arises from the fact that due to the twisting of the molecules around the long and
short molecular axes, certain regions of neighboring molecules get particularly close. This strongly
amplifies the contributions of these regions to the orbital energies, such that the cancellation effects
discussed above do not occur any more.
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To conclude this section, it should be noted that, of course, also the location of the screw axis
relative to the center of the TTF molecules impacts the wavefunction overlap, as discussed in detail
in the Supplementary Materials. In short, the resulting overall situation is similar to the cases
discussed above, although in that case, there is no zero-crossing of the transfer integral for the planar
molecular conformation.

3.3. Impact of the Intermolecular Distance and of Chemical Modifications on the Bandwidth

Another structural parameter that is expected to change the intermolecular electronic coupling is
the distance between neighboring TTF molecules. In fact, for layered MOFs, a profound impact of the
layer proximity on the electronic band structure has been predicted [47]. For periodic stacks, such as
the ones studied here, the distance between neighboring TTF molecules can simply be changed by
modifying the unit cell length in the stacking direction. The impact of changing the stacking distance
by ±0.1 Å per molecule is shown in Figure 5a for molecules adopting the same conformation as in the
MOF and in Figure 5b for planar molecules. Not unexpectedly, the bandwidth typically increases upon
decreasing the inter-molecular distance and vice versa. The data in Figure 5 also show that, typically,
the absolute change in bandwidths and transfer integrals with stacking distance is more pronounced for
situations in which these quantities are already large to start with. This can be rationalized based on the
discussion of Figure 4 in the previous section; in cases in which bonding and antibonding contributions
for certain hybrid orbitals largely cancel, the situation is not fundamentally modified upon changing
the stacking distance. Conversely, when hybrid orbitals are either fully antibonding or fully bonding
(as in the case of the cofacial dimer), changing the stacking distance has a maximal impact.

Notably, for the N = 6 stack, which directly mimics the stacking of the TTF molecules in the actual
Zn2(TTFTB) MOF, the increase in the valence bandwidth for a reduction in the stacking distance by
0.1 Å amounts to only 33 meV (~11%). This is, insofar, relevant, as it has been reported that changing
the stacking distance for TTFTB-based MOFs results in massive changes in the measured electrical
conductivities [53]. Especially when replacing the Zn2+ cations in the synthesis with Cd2+, an increase
in the electrical conductivity by two orders of magnitude has been observed. Originally, this was
attributed to the lowered S . . . S distances for neighboring TTF units, which decreased by 0.103 Å [53].
Such a massive change in conductivities, however, cannot be explained by the trends discussed above.
This raises the question of whether there are relevant structural changes between the Zn2(TTFTB)
and Cd2(TTFTB) MOFs beyond a change in the stacking distance. Therefore, we compared the full
electronic band structures of Zn2(TTFTB) and Cd2(TTFTB) (see Supplementary Materials), but also,
in this case, the changes in bandwidths and effective masses for the valence band are comparably
minor, as summarized in Table 1. In fact, the valence bandwidth is even smaller in Cd2(TTFTB) than in
Zn2(TTFTB).

A different approach for increasing the valence bandwidth could be to increase the orbital overlap
by exchanging TTF with tetraselenafulvalene (C6H4Se4). In our calculations, this results in an increase
in the valence bandwidth by a factor of almost two (from 371 to 641 meV). Considering that we
observe only minor structural changes between the S-based Zn2(TTFTB) and the Se-based Zn2(TSFTB),
we attribute that to the larger spatial extent of the pz-orbitals of Se, which result in an increased
wavefunction overlap. Nevertheless, such chemical modifications also do not change hole mobilities
by orders of magnitude.

An additional factor that would influence the mobility of holes would be changes in the vibrational
properties of the MOF, which impact charge transport through dynamic disorder effects [57,58,65].
Such effects are not explicitly considered here, but it is hard to imagine that they could be responsible
for the orders of magnitude changes in transport properties between Zn2(TTFTB) and Cd2(TTFTB).
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There could, however, be several other explanations for the above-mentioned differences. First,
one has to keep in mind that in [53], the authors did not report carrier mobilities but electrical
conductivities (which, to date, is still common for metal-organic frameworks [75]). These are crucially
impacted not only by carrier mobilities but also by the densities of mobile carriers. As far as the latter
are concerned, it has been argued in the past that they can be massively impacted by the nature of the
metal ions in the nodes [12,79]. Another factor massively changing free carrier concentrations in any
type of semiconductor is the presence of extrinsic impurities (i.e., dopants) [12,27,80–83].

Besides chemical imperfections influencing the carrier concentration, structural imperfections can
also have a tremendous impact—in this case, also on the carrier mobilities. The impact of some of
these imperfections on the electronic coupling in Zn2(TTFTB) type systems is, therefore, discussed in
the following section.

3.4. Role of Defects

A consequence of the flat electronic bands along reciprocal space directions perpendicular to the
TTF stacks (see Section 3.1) is that charge transport is essentially one-dimensional. It is well established
for molecular semiconductors that transport in 1D systems is severely affected by either static or
dynamic disorder [58]. This is not surprising, considering that an “obstacle” along a 1D transport path
cannot be simply bypassed via neighboring sites. In the context of MOFs, it has, actually, been found
that defects can lead to bands with almost no dispersion [49]. For the present systems, we considered
several types of static defects. As mentioned above, dynamic disorder caused by vibrations of the
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MOF lattice is not considered here, although the defects discussed in the following, in some sense,
also mimic what could happen as a function of the thermal motion of the MOF constituents.

The static defect with the most dramatic consequences is a missing linker defect. We realized such
a defect by removing one TTF linker from either the Zn2(TTFTB) unit cell or from the corresponding
model stack (see Figure 6a). To describe pair formation as another type of defect, we displaced one
molecule in the unit cell, such that it moved towards one of its neighbors by −∆d and away from the
other neighbor by +∆d (see Figure 6b). A “displaced molecule” defect is characterized by one of the
molecules in the unit cell being shifted from its equilibrium position along a vector parallel to the
xy-plane (Figure 6c). In fact, it has been predicted for layered MOFs that interlayer displacements
significantly affect the materials’ band structures [48–50]. For OSCs, it is also well known that
changes in the intermolecular interactions induced upon variations of the involved molecule’s relative
displacements depend on the actual shift direction [33–36,38]. In the present contribution, we focused
on displacements along the x-direction (Figure 6b) as a representative example, highlighting the
potential impact of such defects. For the final defect that is explicitly considered, the “misrotated”
molecule case, the rotation angle of one of the molecules in the unit cell is changed by a value of ∆Θ
(Figure 6d). Considering the structure of the MOF and identifying the degrees of freedom of each TTF
moiety, one could actually identify several more structural defects. Examples are tilts of the molecules
around the long and short molecular axes, changes in the bending of the molecules, or torsions around
the central C=C bonds, to name a few. Therefore, a missing linker, pair formation, a “displaced
molecule”, and misrotation of a molecule primarily serve as instructive examples for the possible impact
of such structural defects on the electronic structure of the systems. Notably, the qualitative impact of
all of the considered defects on the electronic structure of the model stacks is similar. They cause a
loss of symmetry around the 65 screw axis in the center of the stack. Consequently, the notion of a
single TTF molecule as the “electronic” repeat unit of the stack no longer applies. In the band structure,
this results in an opening of gaps at the Brillouin zone boundary and at the Γ point (see Figure 7 for the
missing linker, pair formation, and misrotated molecule defects). Thus, for the defective structures,
it is not sensible to report the width of the six-times backfolded valence band and we will instead focus
on the effective masses at the valence band maximum. Additionally, in the spirit of hopping transport,
we will report the smallest transfer integrals between neighboring molecules found in all inequivalent
dimers extracted from each of the defective TTF stacks.
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stack plus system with a missing TTF molecule; (b) structure of the system upon pair formation
between neighboring TTFs; (c) displaced molecule defect realized by displacing one molecule along x;
(d) structure of a misrotated molecule defect. It should be noted that for infinitely extended stacks,
due to the employed periodic boundary conditions, a defect occurs in every unit cell.
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direction for Zn2(TTFTB) with a missing linker defect (red solid line). The results for the corresponding
TTF stack are shown as dashed black lines. (b) Electronic band structure for the model TTF stack with a
pair formation defect with a displacement of ∆d = 0.4 Å. (c) Electronic band structure for the model
TTF stack with a misrotated molecule defect of ∆Θ = 15◦.

The missing linker defect has the most dramatic impact. It results in essentially flat bands
(see Figure 7a), the minimum transfer integral drops to 1 meV, and the effective mass skyrockets
to 22 me. This shows that such a defect nearly stops charge transport along the affected TTF stack.
As shown in Figure 8, also pair formation and displaced molecule defects result in an increased
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effective mass and a decreased transfer integral (with the exception of a minor decrease in m* for a very
small dimerization of ∆d = 0.05 Å, which is in the range of the uncertainty of the fitting procedure).
The magnitude of the change increases with increasing displacement. Additional data on the impact of
the other defects can be found in the Supplementary Materials. As a consequence, charge transport is
hindered within defective TTF stacks. Interestingly, for pair formation as well as for the displaced
molecule defect, the minimum transfer integral decreases almost linearly with the displacement,
while the effective mass experiences a roughly quadratic increase. The latter is more pronounced
in the displaced molecule case. The overall impact of these defects is, however, rather moderate
(especially compared to the missing-linker case). For example, a lateral displacement of a TTF molecule
by a rather sizable distance of ∆x = 0.3 Å leads to an increase in m* by a moderate 0.42 me (or 17%).
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In this context it, however, has to be considered that our test of defective structures is not
exhaustive. Additionally, several defects might occur simultaneously, further worsening the situation.
Nevertheless, the above considerations suggest that for changing the carrier mobilities by orders of
magnitude, mere displacements of molecules might not be sufficient and more serious defects, such as
missing linkers, are required. To the best of our knowledge, no systematic experimental study on
the interplay between defect densities and (through-space) charge transport properties of MOFs has
been carried out to date. However, especially for Zr-based MOFs (in particular for UiO-66) it is well
known how to control the defect density, and extensive experimental and computational studies on
the influence of the defect density on energy gaps, the redox conductivity, and the (photo-)catalytic
activity have been carried out [84–88]. Therefore, such systems appear as prime candidates for also
studying the impact of defects on charge-transport properties.

4. Conclusions

The present paper describes a variety of aspects concerning through-space charge transport in
metal-organic frameworks in general and tetrathiafulvalene-based MOFs in particular. First, it is shown
that the electronic band structure of the helical TTF stack contained in Zn2(TTFTB) largely determines
the valence band structure of the entire MOF. In fact, we find that the electronic bands perpendicular
to the TTF stacking direction are essentially flat. This highlights the negligible electronic coupling
between neighboring stacks and establishes that Zn2(TTFTB) is a truly one-dimensional conductor.
In the perfectly periodic MOF with six molecules in the crystallographic unit cell, the valence band is
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backfolded six times (without any gaps at the Γ-point or at the Brillouin zone boundary). This suggests
that the symmetry element relevant for the electronic structure of the MOF is the six-fold screw axis
parallel to the stacking direction. Therefore, a single TTF molecule acts as an “electronic” repeat
unit of the MOF, with the consequence that the electronic parameter determining charge transport in
Zn2(TTFTB) is the transfer integral between two neighboring TTF molecules.

This permits the use of stacks with varying numbers of molecules in the crystallographic unit
cell to study the impact of the relative rotation of the TTF molecules. It turns out that decreasing the
rotation angle of neighboring TTF molecules compared to the parent Zn2(TTFTB) system significantly
increases the valence bandwidth, while increasing the rotation in a four-TTFs-per-unit-cell stack
yields a significantly reduced electronic coupling. These results are corroborated by simulations on
TTF dimers, which also allow us to trace the observations back to the shapes of the hybrid orbitals
determining the valence band. Additionally, we found that the actual value of the transfer integral
is extremely sensitive to the specific conformation of the TTF molecules. For example, for stacks of
flat TTF molecules, the electronic coupling essentially disappears for the 60◦ rotation angles found in
Zn2(TTFTB) and the associated transfer integral even changes sign at larger angles.

Interestingly, changes in the relative rotation and molecular conformation of the TTF molecules
have a more pronounced impact on the observed bandwidth than “moderate” modifications in the
stacking distance, which have been realized experimentally by replacing Zn with Cd atoms in the
metal nodes of the MOFs. Thus, we hypothesize that the two-orders of magnitude increase in the
electrical conductivity of Cd2(TTFTB) compared to Zn2(TTFTB) [53] must either be the consequence of
significantly modified concentrations of mobile carriers or must be due to different defect densities in
the two systems.

As far as static defects are concerned, we have, thus, investigated several scenarios,
including displaced molecules, molecular pairing along the stack, or misrotations of specific molecules.
The impact of these defects turned out to be rather moderate. This, however, changes when also
considering missing linker defects, where we find that due to the 1D nature of the TTF stacks, such a
missing linker is a massive obstacle for charge transport. This is manifested, e.g., in an increase in the
effective mass by a factor of ~10 compared to the perfectly ordered parent MOF.

Overall, these results show that on the one hand, there is still considerable room for improvement
for through-space charge transport in MOFs through clever structural design. On the other hand, the 1D
nature of systems, such as the ones discussed here, makes their expected charge-transport properties
particularly sensitive to structural imperfections and, thus, extremely dependent on sample quality.

Supplementary Materials: Additional data on the electronic structures of the considered systems as well as a
description of the basis employed during the DFT calculations, details on the construction of the model systems,
and validation of the simple tight-binding model are available online at http://www.mdpi.com/2079-4991/10/12/
2372/s1. All calculations are available from the NOMAD database under https://dx.doi.org/10.17172/NOMAD/
2020.11.25-1.
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12. Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020,
120, 8536–8580. [CrossRef] [PubMed]

13. Clough, A.J.; Yoo, J.W.; Mecklenburg, M.H.; Marinescu, S.C. Two-dimensional metal-organic surfaces for
efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121. [CrossRef] [PubMed]

14. Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinc

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 21 

 

Acknowledgments: The work was financially supported by the TU Graz Lead Project “Porous Materials at 
Work” (LP-03). The computational results have been achieved in part using the Vienna Scientific Cluster (VSC3). 
Open Access Funding by the Graz University of Technology is acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288, doi:10.1039/b200393g. 
2. Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous 

Mesoporous Mater. 2004, 73, 3–14. 
3. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic 

frameworks. Science 2013, 341, 1230444. 
4. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore 

size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–
472, doi:10.1126/science.1067208. 

5. Murray, L.J.; Dinc, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 
1294–1314, doi:10.1039/b802256a. 

6. Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and 
organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. 
Am. Chem. Soc. 2006, 128, 1304–1315, doi:10.1021/ja056639q. 

7. Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for 
Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. 

8. Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. 
Chem. Rev. 2017, 117, 8129–8176. 

9. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in 
heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. 

10. Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in 
a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610, 
doi:10.1126/science.1217544. 

11. Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A 
microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem.-Int. 
Ed. 2006, 45, 1390–1393, doi:10.1002/anie.200502844. 

12. Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 
120, 8536–8580, doi: 10.1021/acs.chemrev.9b00766. 

13. Clough, A.J.; Yoo, J.W.; Mecklenburg, M.H.; Marinescu, S.C. Two-dimensional metal-organic surfaces for 
efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121, doi:10.1021/ja5116937. 

14. Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincə, M. Electrochemical oxygen 
reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942, 
doi:10.1038/ncomms10942. 

15. Dong, R.; Zheng, Z.; Tranca, D.C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X. 
Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal-Organic Frameworks for 
Electrocatalytic H2Production. Chem.-A Eur. J. 2017, 23, 2255–2260, doi:10.1002/chem.201605337. 

16. Downes, C.A.; Clough, A.J.; Chen, K.; Yoo, J.W.; Marinescu, S.C. Evaluation of the H2 Evolving Activity of 
Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production. ACS 
Appl. Mater. Interfaces 2018, 10, 1719–1727, doi:10.1021/acsami.7b15969. 

17. Miner, E.M.; Wang, L.; Dincǎ, M. Modular O2 electroreduction activity in triphenylene-based metal-
organic frameworks. Chem. Sci. 2018, 9, 6286–6291, doi:10.1039/c8sc02049c. 

18. Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dincə, M. Chemiresistive Sensor Arrays from Conductive 2D 
Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783, doi:10.1021/jacs.5b09600. 

19. Campbell, M.G.; Sheberla, D.; Liu, S.F.; Swager, T.M.; Dincə, M. Cu3(hexaiminotriphenylene)2: An 
electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem.-Int. Ed. 2015, 
54, 4349–4352, doi:10.1002/anie.201411854. 

20. Meng, Z.; Aykanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for 
Ultrasensitive, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053, 
doi:10.1021/jacs.8b11257. 

, M. Electrochemical oxygen
reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942. [CrossRef]

15. Dong, R.; Zheng, Z.; Tranca, D.C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X.
Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal-Organic Frameworks for
Electrocatalytic H2Production. Chem.-A Eur. J. 2017, 23, 2255–2260. [CrossRef]

16. Downes, C.A.; Clough, A.J.; Chen, K.; Yoo, J.W.; Marinescu, S.C. Evaluation of the H2 Evolving Activity
of Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production.
ACS Appl. Mater. Interfaces 2018, 10, 1719–1727. [CrossRef]
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51. Narayan, T.C.; Miyakai, T.; Seki, S.; Dincǎ, M. High charge mobility in a tetrathiafulvalene-based microporous
metal-organic framework. J. Am. Chem. Soc. 2012, 134, 12932–12935. [CrossRef] [PubMed]

52. Xie, L.S.; Dincă, M. Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic
Frameworks. Isr. J. Chem. 2018, 58, 1119–1122. [CrossRef]

53. Park, S.S.; Hontz, E.R.; Sun, L.; Hendon, C.H.; Walsh, A.; Van Voorhis, T.; Dinc

Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 21 

 

Acknowledgments: The work was financially supported by the TU Graz Lead Project “Porous Materials at 
Work” (LP-03). The computational results have been achieved in part using the Vienna Scientific Cluster (VSC3). 
Open Access Funding by the Graz University of Technology is acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288, doi:10.1039/b200393g. 
2. Rowsell, J.L.C.; Yaghi, O.M. Metal-organic frameworks: A new class of porous materials. Microporous 

Mesoporous Mater. 2004, 73, 3–14. 
3. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic 

frameworks. Science 2013, 341, 1230444. 
4. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore 

size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–
472, doi:10.1126/science.1067208. 

5. Murray, L.J.; Dinc, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 
1294–1314, doi:10.1039/b802256a. 

6. Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and 
organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. 
Am. Chem. Soc. 2006, 128, 1304–1315, doi:10.1021/ja056639q. 

7. Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal-Organic Frameworks as Catalysts for 
Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. 

8. Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. 
Chem. Rev. 2017, 117, 8129–8176. 

9. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in 
heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. 

10. Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in 
a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610, 
doi:10.1126/science.1217544. 

11. Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A 
microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem.-Int. 
Ed. 2006, 45, 1390–1393, doi:10.1002/anie.200502844. 

12. Xie, L.S.; Skorupskii, G.; Dincǎ, M. Electrically Conductive Metal-Organic Frameworks. Chem. Rev. 2020, 
120, 8536–8580, doi: 10.1021/acs.chemrev.9b00766. 

13. Clough, A.J.; Yoo, J.W.; Mecklenburg, M.H.; Marinescu, S.C. Two-dimensional metal-organic surfaces for 
efficient hydrogen evolution from water. J. Am. Chem. Soc. 2015, 137, 118–121, doi:10.1021/ja5116937. 

14. Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincə, M. Electrochemical oxygen 
reduction catalysed by Ni3 (hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942, 
doi:10.1038/ncomms10942. 

15. Dong, R.; Zheng, Z.; Tranca, D.C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X. 
Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal-Organic Frameworks for 
Electrocatalytic H2Production. Chem.-A Eur. J. 2017, 23, 2255–2260, doi:10.1002/chem.201605337. 

16. Downes, C.A.; Clough, A.J.; Chen, K.; Yoo, J.W.; Marinescu, S.C. Evaluation of the H2 Evolving Activity of 
Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production. ACS 
Appl. Mater. Interfaces 2018, 10, 1719–1727, doi:10.1021/acsami.7b15969. 

17. Miner, E.M.; Wang, L.; Dincǎ, M. Modular O2 electroreduction activity in triphenylene-based metal-
organic frameworks. Chem. Sci. 2018, 9, 6286–6291, doi:10.1039/c8sc02049c. 

18. Campbell, M.G.; Liu, S.F.; Swager, T.M.; Dincə, M. Chemiresistive Sensor Arrays from Conductive 2D 
Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783, doi:10.1021/jacs.5b09600. 

19. Campbell, M.G.; Sheberla, D.; Liu, S.F.; Swager, T.M.; Dincə, M. Cu3(hexaiminotriphenylene)2: An 
electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem.-Int. Ed. 2015, 
54, 4349–4352, doi:10.1002/anie.201411854. 

20. Meng, Z.; Aykanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for 
Ultrasensitive, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053, 
doi:10.1021/jacs.8b11257. 

, M. Cation-dependent intrinsic
electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks.
J. Am. Chem. Soc. 2015, 137, 1774–1777. [CrossRef] [PubMed]

54. Xie, L.S.; Alexandrov, E.V.; Skorupskii, G.; Proserpio, D.M.; Dincǎ, M. Diverse π-π Stacking motifs modulate
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1. Additional methodological details 

1.1. Overview of basis functions used in FHI-AIMS 

Table 1. Basis functions that have been used for all calculations performed with FHI-AIMS. The 

abbreviations read as follows: H(nl,z), where H describes the type of the basis function where H 

stands for hydrogen-like type function, n is the main quantum number, l denotes the angular 

momentum quantum number, and z denotes an effective nuclear charge which scales the radial 

function in the defining Coulomb potential.[1]. 

 H C S O Zn Se Cd 

Minimal 1s [He]+2s2p [Ne]+3s3p [He]+2s2p [Ar]+4s3p3d [Ar]+4s3d4p [Kr]+4d5s 

Tier 1 
H(2s,2.1) 

H(2p,3.5) 

H(2p,1.7) 

H(3d,6) 

H(2s,4.9) 

ionic(3d,auto) 

H(2p,1.8) 

H(4f,7) 

ionic(3s,auto) 

H(2p,1.8) 

H(3d,7.6) 

H(3s,6.4) 

H(2p,1.7) 

H(3s,2.9) 

H(4p,5.4) 

H(4f,7.8) 

H(3d,4.5) 

H(3d,4.3) 

H(2p,1.6) 

H(4f,7.2) 

ionic(4s, 

auto) 

H(2p,1.6) 

H(4f,7) 

H(3s,2.8) 

H(3p,5.2) 

H(5g,10) 

H(3d,3.8) 

Tier 2 

H(1s,0.85) 

H(2p,3.7) 

H(2s,1.2) 

H(3d,7) 

H(3p,5.2) 

H(3s,4.3) 

H(3d,6.2) 

H(4d,6.2) 

H(4p,4.9) 

H(1s,0.8) 

H(3p,6.2) 

H(3d,5.6) 

H(1s,0.75) 

 

H(4p,4.5) 

H(4d6.2) 

H(1s,0.5) 

 

1.2. Construction of TTF and TTFTB model systems 

Additional details on the construction of several model systems discussed in the main 

manuscript are give below. 

First, based on the relaxed structure of desolvated and dehydrated Zn2(TTFTB), we constructed 

helical model TTF and TTFTB stacks by removing all atoms within the MOF structure apart from the 

TTF cores. The latter were then saturated by attaching H atoms. Subsequently, the positions of these 

H atoms were relaxed while keeping all other atomic positions fixed. This results in TTF molecules 

exhibiting the same geometry and stacking motif as in the MOF. These stacks were then arranged in 

the same pattern as in the MOF as shown in Fig. 1a of the main manuscript.  In a similar way also the 

TTFTB model stack has been constructed: All atoms apart from the TTF core and the connected 

phenylene rings were removed. In essence, this means that the carboxyl groups have been removed 

from the linker in the MOF structure and replaced by H atoms. The positions of these H atoms then 

were relaxed in a subsequent step.  

Second, for generating TTF stacks with different numbers of repeat units N, we simply picked 

one of the symmetry equivalent molecules of the parent stack discussed in the previous paragraph. 

This molecule was then duplicated, and rotated by the respective rotation angle ((n/N)*360°) around 

the off-center rotation  axis (with n being an integer between 1 and N-1). Then the molecule was 

shifted in z-direction by n*3.473 Å . This procedure was repeated N-1 times to generate the unit cell 

for the simulations. For example, for 3 repeat units (N=3) we have in total three TTF molecules per 

unit cell including the molecule at the bottom of the cell (n=0) and its replicas at n=1 and n=2. The 

lateral extent of the unit cell of the model system is the same as that observed experimentally for 

Zn2(TTFTB), while the extent of the unit cell in stacking direction amounts to N*3.473 Å . To verify the 

construction procedure we compared the electronic structure of the N=6 TTF model stack to the 

system extracted directly from the MOF structure. The identified differences are almost negligible 

(see Table 1) and can be assigned to subtle changes in the geometry of individual TTF molecules 

within the MOF-extracted system. 
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1.3. Comparison of a simple tight-binding model to the electronic band structure of Zn2(TTFTB) 

Here, we investigate whether a simple, one-dimensional tight-binding model with one 

“electronic” repeat unit can reproduce the 6-times backfolded band structure of the model stacks 

(shape and band width). This is relevant, as the transfer integrals reported in the main manuscript 

have been extracted from calculated actual band widths employing that approach. The model reads 

𝐸(𝑘) = 2𝑡 ∗ 𝑐𝑜𝑠(𝑘 ∗ 𝑅), with R being the shift between adjacent TTF molecules in the direction of the 

screw axis, i.e., the distance between electronic repeat units in stacking direction (R = 3.473 Å ). From 

the electronic band structure of the 6 repeat unit TTF stack we extracted the transfer integral as 

(1/4)×W, with W being the calculated band width. Using W=298 meV we then calculated the electronic 

band structure of the model. In order to compare it to the 6 times backfolded band structure of the 

TTF stack we folded the resulting band back into the crystallographic unit cell of the TTF stack 

containing 6 molecules. Comparing the two band structures (green for model and red for TTF stack 

in Figure S1a), we find an excellent qualitative agreement. I.e., the simple tight-binding model with 

a single TTF molecule as “electronic repeat units” provides a physically meaningful model for the 

valence band of the TTF stack. Also the quantitative agreement is reasonably good, which supports 

the use of t = W/4 for depicting the trends for the transfer integrals in the main manuscript.  

In the actual stack, there might, of course, also be couplings to next nearest neighbors which 

might play a role. Such couplings could be hyperexchange-like, as we observed it in quinacridone, a 

prototypical H-bonded organic semiconductor.[2] Therefore, we also considered a slightly modified 

model, where we considered next-nearest neighbor couplings as well. It reads: 𝐸(𝑘) = 2𝑡 ∗ 𝑐𝑜𝑠(𝑘 ∗

𝑅) + 𝑏 ∗ 2𝑡 ∗ 𝑐𝑜𝑠(2 ∗ 𝑘 ∗ 𝑅). The coupling between these sites was estimated to be around 10% of the 

nearest neighbor couplings (~8 meV) where b actually is a fit parameter (smallest RMSE for b=0.1). A 

comparison between the bands resulting from this model and the actual TTF stack is shown in Figure 

S1b. There, we observe a further improved agreement between the simple tight-binding model and 

the data of the actual TTF stack, especially at the band extrema.  
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Figure S1. Comparison of band structures resulting from simple tight-binding models (green dashed 

line) and the 6 repeat unit TTF stack (solid red line). (a) One-dimensional tight-binding model with 

only nearest neighbor couplings considered. (b) One-dimensional tight-binding model with next-

nearest neighbor couplings also included. 
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2. Additional data for Zn2(TTFTB) and the TTF model systems 

2.1. Species projected and angular momentum resolved density of states of Zn2(TTFTB) 

For a further in-depth analysis, we projected the density of states onto individual parts of the 

MOF: the central TTF stack (TTF), the phenylene rings (rings) and the metal nodes (frame). Similar to 

the findings in Ref [3], this projected density of states (pDOS, displayed in bottom-right panel of 

Figure S2) shows that  the valence band is primarily formed from states localized on the TTF stacks. 

Analyzing the angular momentum resolved species projected DOS also shown in Figure S2 we find 

that these states are of p-character. The phenylene rings contribute only weakly to the valence band. 

This is consistent with the notion that the valence band describes a through-space pathway for holes 

along the helical stack of TTF molecules. In contrast, for the conduction band, one can see non-

negligible contributions from the phenylene rings as well as from the metal nodes. This means that 

electron transport also involves other parts of the MOF besides the central TTF stack. For the 

conduction band also O p-states and a small contribution from Zn p-states are important. 

 

Figure S2. Species-projected and angular momentum resolved density of states for Zn2(TTFTB). Grey 

is the total contribution of the individual species, black indicates s-states, red p-states and green d-

states. Bottom right panel:  Density of states of Zn2(TTFTB) projected onto individual parts of the 
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MOF. “TTF” refers to the TTF units, “rings” to the attached phenylene rings and “frame” to the nodes. 

The total density of states (as the sum of the individual contributions) is given by the black line. 

 

 

 

2.2. Electronic structure of Zn2(TTFTB) calculated with HSE06 

To see how the electronic structure of the MOF would be affected by the choice of the actual 

functional (in particular the treatment of exchange and correlation), we also employed the range 

separated hybrid functional HSE06 to calculate the electronic structure of Zn2(TTFTB)  (Figure S3). 

As expected for hybrid functionals, this results in an increased band gap (0.773 eV for PBE and 1.483 

eV for HSE), which is, however, of no relevance for the discussion in the present manuscript. More 

relevant is the slightly larger width of the valence band obtained with HSE, but the overall effect is 

rather minor. These two differences aside, there is virtually no difference between the PBE and the 

HSE calculations. 
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Figure S3. Electronic structure of Zn2(TTFTB) calculated employing the HSE06 functional and using 

a PBE-optimized geometry. (a) Species projected density of states (C—grey, H—cyan, O—red, Se—

yellow, Zn—purple) and (b) Electronic band structure of the valence band as obtained with HSE06 

(red) compared to the PBE result (black, dashed). 

 

 

2.3. Valence band of Zn2(TTFTB) along additional high-symmetry k-space directions 

To investigate whether the valence band is flat for all directions apart from those associated with 

the stacking direction of the TTF cores (GA and LM), we calculated the electronic band structure 

along a path considering all relevant high-symmetry k-space directions (see Figure S4). Indeed we 

find that only for directions parallel to the stacking direction of TTF the valence band shows a 

significant dispersion. 
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Figure S4. Electronic band structure for Zn2(TTFTB) for a path covering all relevant high-symmetry 

directions in the first Brillouin zone. The first Brillouin zone is shown as an inset. 

2.4. Geometrical and electronic structure of Zn2(TTFTB) containing water  

To investigate the influence of water molecules coordinated to the Zn atoms in the Zn2(TTFTB) 

MOF, we considered the initial structure extracted from the cif-file from reference [3], removed the 

solvent molecules and calculated the electronic structure of this system. The used geometry and the 

obtained electronic structure are shown in the left panel of Figure S5. In the top panel, the structure 

with the water molecules extracted from the cif file is compared to the structure that has been 

obtained by relaxing the atomic positions of Zn2(TTFTB) without water (green). One can see that there 

are only slight differences in the geometric structure of the systems. Considering the electronic band 

structure of the valence band for this geometry we find a valence band width of 353 meV and a 

corresponding effective mass of 1.97 me. Both compare well to the 371 meV and 2.05 me obtained for 

the optimized Zn2(TTFTB) structure without water.  

The results for the fully relaxed atomic positions calculated including the water molecules are  

compared to the relaxed geometry of the system without water (right panel in Figure S5 and Figure 

S6 a). We find that the central TTF core is hardly affected by the presence of water molecules at the 

Zn coordination sites, while the phenyl rings indeed show structural changes. As outlined in the main 

manuscript also these phenyl rings contribute to the valence band. Thus, considering the electronic 

structure of the relaxed MOF with water we find that this system exhibits a larger band width of 411 

meV (1.76 me) compared to the system without water (see Figure S6 a for band structures). 

Nevertheless, these changes are quite minor. Therefore, the system without water can serve as a 

prototypical example for the influence of structural effects on the charge transport properties. 

Additionally we tested, whether one can use a TTF model system (constructed according to section 

3.2 in the main paper) for describing the valence band of the relaxed system with water (dashed black 

line in Figure S5). Indeed we find that such a TTF stack can serve as a viable model system, only 

slightly underestimating the resulting valence band width of the actual MOF. For the sake of 

completeness we also report the species projected DOS of the relaxed Zn2(TTFTB) MOF with water 

molecules coordinating to Zn in Figure S6. 
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Figure S5. Geometric structure and electronic band structure of Zn2(TTFTB) with and without water 

molecules coordinated to the Zn metal atoms. Two systems are considered and compared to the 

structure obtained by relaxing the atomic positions without water molecules present (green): The left 

panels show data for a structure with water, as reported in literature cif file (i.e., without a further 

geometry relaxation). The electronic band structure is shown below the crystallographic structure. 

The right panel shows the structure with water after performing a geometry relaxation of the atomic 

positions. In the bottom panel the electronic band structure of that system is shown in red. The dashed 

black line corresponds to the data for the saturated TTF stack including water molecules. The unit cell 

is shown by the solid black lines in the geometric structures. 
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Figure S6. Electronic structure of Zn2(TTFTB) of relaxed Zn2(TTFTB) with water molecules 

coordinated to Zn. (a) Electronic band structure of Zn2(TTFTB) with water (red) compared to 

Zn2(TTFTB) without water (green). (b) Species projected density of states of Zn2(TTFTB)  (C—grey, 

H—cyan, O—red, Se—yellow, Zn—purple, total—dashed). 

2.5. Conduction band of Zn2(TTFTB) and model TTF stacks  

Considering the conduction band of Zn2(TTFTB) (without water; mFigure S7) we find that it has 

a significantly smaller band width than the valence band. This has already been discussed in the main 

manuscript. Additionally, we can observe that bands along directions perpendicular to the stacking 

direction (KΓ and AL) exhibit small dispersions of around 20 meV. This means that unlike for the 

valence band, for the conduction there is a small coupling between neighboring TTF stacks. This 

coupling is potentially mediated by Zn and O p-states, as can be rationalized by these atoms’/orbitals’ 

contributions to the conduction band.  

Considering that not solely states arising from the central TTF core contribute to the conduction 

band it is not surprising that a model stack consisting only of TTF molecules cannot reproduce the 

conduction bands of the actual MOF (see dashed line in Figure S7).  

Interestingly, for the system with water (after relaxing the atomic positions), we find that the 

dispersion along KΓ and AL is significantly reduced (see Figure S8). This indicates a weaker coupling 

between neighboring TTF stacks for the conduction band in the presence of water.   
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Figure S7. Electronic band structure of the conduction band for Zn2(TTFTB) in blue and the 

corresponding TTF model stack as the black dashed line. One can see that bands along reciprocal 

space directions perpendicular to the TTF stacks show a small dispersion (~20 meV), which means 

that for the conduction band there is a small coupling between neighboring stacks. 

 

Figure S8. Electronic band structure of the conduction band for Zn2(TTFTB) with water coordinated 

to the Zn atoms. One can observe that in comparison to the system without water, the dispersion 

along directions perependicular to the TTF stacks is reduced significantly. 
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2.6. Electronic structure of a stack consisting of the central TTF core of the TTFTB linkers plus the phenylene 

rings 

From the projected density of states in the main manuscript one can already conclude that the 

phenyl rings show a non-negligible contribution to the valence band of Zn2(TTFTB). To show this in 

a more explicit way we, extracted a stack of TTFTB molecules from the MOF and replaced the 

carboxyl groups with H (see structure in Figure S9). After relaxing the atomic positions of these H 

atoms we calculated the electronic band structure of this model system. Comparing the valence bands 

of the model system and of the full Zn2(TTFTB) MOF in Figure S9 reveals an excellent agreement 

between the band structures of the two systems.  
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Figure S9. (a) Electronic band structure of Zn2(TTFTB) in red and of the isolated and saturated TTFTB 

stack (black). (b) In the lower panel the unit cell of the TTFTB stack is shown. 
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2.7. Electronic band structures of the considered TTF stacks 

 

Figure S10. Electronic band structures of the TTF model stacks with 1, 2, 3, 4, 5, 6, 8, 12 repeat units. 

In the right panel unit cells for systems with 3, 5, and 8 repeat units are shown as examples. 

2.8. Electronic band structures deviating from the simple tight-binding picture 

For certain systems we found that the electronic band structure of the valence band deviates 

from the shape one would expect for a simple 1D tight-binding model (see section 1.2 of SM). For 

relaxed with 4, boat and planar molecular geometries with 5 repeat units we find that the band 

maximum is slightly off Γ, but with an energy difference significantly smaller than 25 meV (kBT at 

room temperature). In these systems the n-fold backfolded valence band splits into two electronic 

bands. For determining the band width we, thus, consider the entire energy range covered by these 
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bands. For planar TTF with 3 repeat units we see that the band has picked up a contribution with a 

higher frequency, meaning that electronic couplings beyond the nearest neighbor become relevant.[2]  

 

Figure S11. Electronic band structure of the stacks marked by black frames in Figure 3 of the main 

manuscript. For these systems we find that the electronic band structures deviate from the shape one 

would expect from a simple 1D tight-binding model with a single TTF molecule as “electronic” repeat 

unit. 

2.9. Total energies of the optimized TTF stacks 

Considering the total energies per TTF repeat unit of the relaxed TTF model stacks (see Figure 

S12a) we find that except for the cofacial system (1 repeat unit) and the the 2 repeat unit system all 

stacks exhibit energies within less than 35 meV.  Considering the planar TTF model system shown in 

Figure S12b one can find a correlation between the total energy and the transfer integral (band width), 

especially for large rotation angles. Such a behavior is, in fact, not unexpected considering the role of 

exchange interactions as described in [4]. One can, however, also observe that the vdW interactions 

between the TTF molecules play an important role in determining the energetic stability of certain 

arrangements (TTF stacks). For the fully optimized structures, such a correlation is less pronounced, 

which is a consequence of different distortions of the molecules at different rotation angles 

significantly changing the distances between atoms in neighboring molecules. 
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Figure S12. Evolution of the band width (transfer integral) and the total energy per TTF molecule for 

theTTF model stacks. (a) Band width and relative total energy for the relaxed TTF model stack. (b) 

Transfer integral as (1/4)* valence band width, relative total energy, and vdW energy for the planar 

TTF model stack. For the planar model stack additional data points for 9, 14, and 16 repeat units were 

added. This was done to clarify the evolution of the relative total energy for angles between 20° and 

50°. The energies are aligned to the global minimum, this means that positive energies result in less 

stable arrangements. 

2.10. Transfer integral for a planar TTF dimer with a centered rotation axis 

To investigate the influence of the position of the rotation axis on the evolution of the transfer 

integrals we considered a planar TTF dimer with the screw axis connecting the centers of the planar 

molecules. Varying the relative rotation angles of the two monomers with respect to this rotation axis 

results in the evolution shown in Figure S13a. The data points for a rotation angle of 0° are the same 

as for the planar geometry in Figure 3b of the main manuscript and one again observes a decrease of 

the coupling with increasing rotation angle. The absolute magnitude of the coupling is minimized 

for an intermediate rotation (~50°). In contrast to the situation for the off-center screw axis in Figure 

3b, for a centered screw axis one never observes a change in the signs of the band widths and transfer 

integrals. This can be traced back to the fact that the orbitals never change their order, consequently 

also the transfer integral always exhibits the same sign. The respective orbitals for the extrema of the 

transfer integral are shown in Figure S13b.   
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Figure S13. Electronic structure of Planar planar TTF dimers with the rotation axis placed in the center 

of the TTF molecules. Panel (a) shows the evolution of the band-width and the transfer integral as a 

function of rotation angle. Panel (b) shows the molecular orbitals (HOMO and HOMO-1) for rotation 

angles corresponding to local the extrema of the band-width (marked with black arrows). 
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3. Data for additional systems considered in the current manuscript: Cd2(TTFTB), Zn2(TSFTB) 

3.1. Electronic structure of Cd2(TTFTB)  

As an additional MOF system considered here is Cd2(TTFTB) (structure from ref [3]), which is 

isostructural to Zn2(TTFTB). For this system we relaxed the atomic positions within the reported unit 

cell[3] and then calculated the electronic band structure for this relaxed geometry. The resulting 

species projected density of states and the valence band structure are shown in Figure S13. 

 

Figure S14. Electronic structure of the Cd2(TTFTB) MOF. (a) species projected density of states (C—

grey, H—cyan, O—red, Se—yellow, Cd—purple) and (b) valence band aligned to its maximum. 

3.2. Electronic structure of Zn2(TSFTB) 

Also the electronic structure (PDOS and electronic band structure) of a MOF with 

Tetraselenafulvalene (C6H4Se4) replacing TTF has been calculated. The structure of this system was 

obtained by taking the structure of Zn2(TTFTB) and replacing S with Se, i.e. replacing TTF with TSF. 

As no experimental cell for this system exists and as we expect the larger p-orbitals of Se to cause an 

increase of the stacking distance, we relaxed the atomic positions of the starting geometry as well as 

the cell vectors. For comparison we also calculated the electronic for the system when relaxing the 

atomic positions while keeping the unit cell fixed. The obtained species projected density of states 

and the structure of the valence band for the system with the relaxed unit cell are shown in Figure 

S15. The data for the system with relaxed atomic positions but within the unit cell of Zn2(TTFTB) are 
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shown in Figure S16. For the fully relaxed system we obtain 678 meV for the valence band width and 

an effective mass of 0.98 me. For the system in the Zn2(TTFTB) unit cell we get 641 meV and 1.06 me, 

so there is hardly any difference between the relevant quantities of these systems. 

 

Figure S15. Electronic structure of the Zn2(TSFTB) MOF for the relaxed unit cell. (a) Projected density 

of states (C—grey, H—cyan, O—red, Se—yellow, Zn—purple, total—black dashed) and (b) electronic 

band structure of the valence band aligned to its maximum. 
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Figure S16. Electronic structure of Zn2(TSFTB) MOF in the unit cell of Zn2(TTFTB). (a) Projected 

density of states (C—grey, H—cyan, O—red, Se—yellow, Zn—purple, total—black dashed) and (b) 

electronic band structure of the valence band aligned to its maximum. 
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4. Additional data for defects within the MOF and the model systems 

4.1. Electronic structure of a TTF model systems with a displaced rotation axis 

To show the influence of other potential defects we considered also shifts of the center of rotation 

for one of the TTF molecules. The resulting band structures are shown in Figure S17. Again one can 

see that upon introducing of such defects a gaps open at the BZ boundary and at the G point. These 

gaps and the resulting changes of the band dispersion y lead to an increase of the effective mass 

(Table S2), i.e a decrease of the transfer integral – similar to the data presented in the main manuscript. 

Table 2. Effective mass depending on the offset of the rotation center of one of the TTF molecules in 

the model stack. 

Shifts (Δx, Δy)/Å Effective mass m*/me 

(0.0, 0.0) 2.48 

(0.0, 0.1) 2.55 

(-0.1, 0.1) 2.57 

(-0.25, 0.25) 3.28 

(-0.5, 0.5) 4.70 

(-1.25, 1.40) 12.62 
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Figure S17. Electronic band structures for TTF model stacks where the rotation axis for one of the 

molecules is displaced from the equilibrium position. 
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4.2. Electronic band structures for the dimerization defect data 

 

Figure S18. Electronic band structure of the valence band for the 6 repeat units TTF model stack with 

dimerization defects Δd. 
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4.3. Electronic band structures for the “displaced molecule” defect data 

 

Figure S19. Electronic band structure of the valence band for the 6 repeat units TTF model stack with 

“displaced molecule” defects Δx. 
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Covalent organic frameworks (COFs) are porous crystalline materials that have attracted 

significant attention for various applications owing to their tunable structures. Particular 

attention has been paid to two-dimensional COFs where the organic building units are linked 

by covalent bonds within a plane. The bulk systems of these COFs then consist of stacks of the 

two-dimensional layers which are held together by attractive van der Waals interactions. Many 

properties of such layered systems are then dominated by the actual interlayer arrangement. In 

the present contribution, for the representative test system of COF-1, we investigate the 

different types of interactions between the layers, comprising van der Waals interactions, 

Coulomb interactions, and Pauli repulsion plus orbital rehybridization, as a function of 

interlayer arrangement. It is found that for constant interlayer stacking distance Pauli repulsion 

plus orbital rehybridization enforce shifted layer arrangements to be energetically favorable.  

On the contrary, for systems with optimized stacking distances, the individual interactions 

show quite different behavior. Interestingly, Pauli repulsion favors a cofacial arrangement, 

while Coulomb and van der Waals interactions favor shifted structures. The latter two 

dominate, thus, enforce shifted layer arrangements to be energetically favorable. Similarly, for 

several additional COFs with differently sized -systems and topologies it is observed that 

Coulomb and van der Waals interactions push the structures towards shifted layer 

arrangements.   
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1. INTRODUCTION 

Covalent organic frameworks (COFs) are porous crystalline materials consisting of organic 

building blocks linked together through covalent bonds.1–7 Because of their tunable structures, 

COFs have demonstrated great potential in various applications like gas storage,8–10 gas 

separation,11–14 catalysis,15–17 energy storage,18–20 and optoelectronics.21–27 Among the different 

topologies of COFs, two-dimensional (2D) systems have received particular attention. Special 

about such 2D systems is that the individual organic building units are linked via covalent 

bonds within a plane, forming highly regular 2D layers. These layers then stack on top of each 

other and the resulting stacks are held together by comparably weak van der Waals interactions. 

Important for the properties (electronic, optical, and catalytic) of the resulting three-

dimensional (3D) stacks is the packing motif of consecutive 2D layers.7,26,28–32 This packing 

motif defines the shape of the pores and the overlap of the -systems between neighboring 

sheets. The latter is essential for the electronic structure of the system, as depending on that 

overlap (in particular the symmetry and nodal structure of the involved orbitals/wavefunctions) 

systems can be insulating, semiconducting, or even metallic.33,34 Depending on the desired 

functionality of the COF, both, pore shape and electronic structure can be equally important.  

Apart from a few exceptions almost all reported 2D COFs exhibit either eclipsed (cofacial) or 

serrated (shifted) AA stacking.28,30,35,36 More specifically, Zhou et al.35 found, based on the 

examples of COF-1 and COF-5 (structures first reported in ref 2 ), that the total energy is lower 

for shifted layer arrangements with displacements of around 1 Å. They hypothesized that the 

alignment of neighboring -orbitals plays an essential role for these shifts being energetically 

favorable. Furthermore, the similarity in the stacking motif of the aromatic rings present in the 

observed COFs compared to graphite has been mentioned, but the individual interactions 

enforcing this stacking motif have not been investigated.35 Lukose et al.36 also performed a 

computational study on the alignment of layered COFs, again considering COF-1 and COF-5. 

Similarly, shifts of consecutive layers (~1.4 Å) were identified as the energetically favorable 

layer arrangements. In this work, as well as in Ref. 37, the authors argued that repulsive 

Coulomb interactions between B and O linking units of neighboring layers cause the cofacial 

arrangement (eclipsed AA stacking) to be energetically unfavorable and to enforce the shifted 

(serrated) layer arrangement. Certainly, all interactions between the -orbitals of consecutive 

layers, electrostatic interactions, and van der Waals interactions will play a role for the 

energetic stability of the shifted interlayer arrangement. A quantitative assessment of the 

different types of interactions as a function of the alignment of consecutive layers is, however, 
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still lacking, which prevents a fundamental understanding of the factors determining the 

packing motif in 2D COFs.  The situation is further complicated by the fact that slightly shifted 

AA stacking arrangements are hard to determine in experiments due to the large peak 

broadening in the typically investigated powder samples.26,35 This calls for an in-depth 

investigation of the driving forces determining interlayer stacking arrangements of 2D COFs.  

 A detailed understanding of such driving forces would allow to develop strategies for tuning 

the COF structures and, consequently, also their electrical, optical, and catalytic 

properties.28,29,31  To achieve that, in the present study we employ dispersion corrected density 

functional theory (DFT) calculations decomposing the interlayer interactions in the 

prototypical model system COF-1 (see Figure 1 and ref 2 or the structure of this COF) into  

physically well-defined contributions arising from dispersion forces, electrostatic interactions, 

and exchange repulsion with orbital rehybridization. To demonstrate the general applicability 

of the findings we also study COF-5 as well as COFs consisting of porphyrin (Por-COF)38 and 

hexabenzocoronene molecules (HBC-COF).39 The structures of these COFs can be found in 

Section 3.4 and the corresponding references 38 and 39.  

 
Figure 1. Structure of COF-1 plus the considered shift directions. Panel (a) shows the top and 

front view of the structure of COF-1 for cofacial AA-stacking. The unit cell is shown by the 
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black solid lines. In panel (b) a shifted (serrated) arrangement with a displacement of 1.75 Å 

along a direction parallel to one of the edges of the pore (direction 1) is shown. How the layers 

arrange for displacements along a direction perpendicular to the pore edges (direction 2) is 

shown in panel (c). The shift directions are shown as orange arrows and the shifted layers are 

marked in blue. In panel (d) symbolic representations of the shift directions are shown. These 

symbols will be used in the following to label the data. Color code of the atoms: C … grey, H 

… white, B … green, O … red 

 

2. METHODS 

For the investigation of the layered COFs considered in this study we employed dispersion 

corrected density functional theory, DFT, as implemented in the FHI-aims code.40,41 During 

these calculations the PBE functional42,43 was used and van der Waals interactions were 

considered by using the Tkatchenko-Scheffler44 scheme. The electronic band structure of COF-

1 has also been calculated using the HSE0645,46 hybrid functional. The corresponding data are 

shown in the Supporting Information (SI). We used the conventional “tight” basis functions 

with details for each atomic species described in the Supporting Information. For all bulk 

systems of the COFs a grid consisting of 3x3x6 k-points was employed for sampling reciprocal 

space, unless stated otherwise. The total energy for this grid appeared to be well converged to 

within less than 1 meV. 

The calculations for COF-1 shifted along directions 1 and 2 were performed by using the in-

plane lattice constants reported in literature (a=b=15.420 Å).2 Employing the literature unit 

cell, the bulk of COF-1 was constructed by relaxing the atomic positions of a monolayer in the 

respective unit cell until the largest remaining force component on any of the atoms was smaller 

than 0.01 eV/Å and then stacking these layers along the direction perpendicular to the plane to 

form the bulk. The interlayer distance between these layers is set to the literature value of 3.328 

Å.2 The unit cell of COF-1 is constructed such that it contains two layers in stacking direction 

(layers A and B), which enables displacing these layers along directions 1 and 2, as shown in 

Figure 1. 

As for some of the additional COFs considered in this work, no experimentally determined 

lattice parameters exist, we chose to perform an optimization of the unit cell parameters for 

these systems, as described in the following. The optimal in plane lattice parameters for the 

individual COFs were evaluated by considering a COF monolayer (4x4x1 k-point grid, total 

energy converged within less than 1 meV) and gradually shrinking the unit cell size while 

keeping the symmetry. For each unit cell size the atomic positions were relaxed and the total 

energy was calculated. These data were fitted with  a Birch-Murnaghan equation of state47 to 
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obtain the equilibrium in-plane lattice parameters. These unit cell parameters and the atomic 

positions of the relaxed monolayer are then used for constructing the bulk structure of each 

COF. For the resulting bulk systems we performed additional geometry relaxations. During 

these relaxations all atomic positions and the unit cell vector in stacking direction were relaxed 

until the largest remaining force component on any of the atoms was smaller than 0.01 eV/Å. 

In the Supporting Information we show that for COF-1 optimizing the in-plane lattice 

parameters results in smaller lattice constants of a=b=15.126 Å but does not change the trends 

and the relative ratios of the effects studied.   

When the layers of COF-1 and COF-5 are shifted along directions 1 and 2 the energies have 

been calculated for constant interlayer stacking distances as well as for optimized stacking 

distances. The employed strategy for finding the optimal stacking distances for each shifted 

layer arrangement of COF-1 and COF-5 is described below. The initial arrangements were 

achieved by displacing consecutive layers along the desired shift direction (either 1 or 2) and 

keeping this shifted arrangement constant. Subsequently, the stacking distance was varied 

within a range of ±0.75 Å in steps of 0.25 Å and single point calculations were performed to 

get the total energy of the system for each interlayer spacing. Based on these data we identified 

the minimum and calculated additional data points around this minimum with ±0.125 Å 

variation. All data points are then fitted with a Birch-Murnaghan equation of state and the 

minimum of that fit determines the optimal stacking distance for each layer arrangement.  

To get the interaction energy and its individual contributions we started by decomposing the 

system into fragments. These fragments comprise the two layers in the unit cell (layers A and 

B), which are shifted relative to each other (see Figure 1). To get these sub-systems, the other 

layer is removed from the combined system while the unit cell is not altered. Then the total 

energies of the COF containing layers of types A and B and of the sub-system comprising 

either layers of type A or of type B were calculated for the respective unit cell of the combined 

system. The interaction energy is then given by  

∆𝐸𝑖𝑛𝑡 = 𝐸𝑡𝑜𝑡𝑎𝑙
𝐴𝐵 − (𝐸𝑡𝑜𝑡𝑎𝑙

𝐴 + 𝐸𝑡𝑜𝑡𝑎𝑙
𝐵 )   (1). 

This interaction energy is then decomposed into the “electronic” interaction energy resulting 

from the PBE-based DFT calculations and the contribution due to the a posteriori correction 

for (long range) van der Waals interactions 

∆𝐸𝑖𝑛𝑡 = ∆𝐸𝑖𝑛𝑡,𝑒𝑙𝑒𝑐 +  ∆𝐸𝑣𝑑𝑊    (2) 

Where the individual contributions can be readily obtained from the FHI-Aims output for the 

full system and the two sub-systems as 



 7 

∆𝐸𝑖𝑛𝑡,𝑒𝑙𝑒𝑐 = 𝐸𝑃𝐵𝐸
𝐴𝐵 − (𝐸𝑃𝐵𝐸

𝐴 + 𝐸𝑃𝐵𝐸
𝐵 )    (3a) 

And 

∆𝐸𝑣𝑑𝑊 = 𝐸𝑣𝑑𝑊
𝐴𝐵 − (𝐸𝑣𝑑𝑊

𝐴 + 𝐸𝑣𝑑𝑊
𝐵 )    (3b) 

 

A more difficult step is then to decompose the electronic interaction energy, ∆𝐸𝑖𝑛𝑡,𝑒𝑙𝑒𝑐, into the 

electrostatic contribution due to the Coulombic interactions between the nuclei and electron 

clouds of the subsystems and contributions due to exchange interactions and orbital 

rehybridizations. Various decomposition schemes that serve this purpose are available for 

finite-size systems, but for extended solids described by periodic boundary conditions they are, 

unfortunately, rare. Therefore, a custom decomposition scheme was developed and 

implemented. This scheme is largely based on the periodic energy decomposition analysis 

(pEDA) scheme developed by Raupach and Tonner.48,49 Within this scheme the authors 

basically extended the energy decomposition analysis (EDA) method developed by 

Ziegler/Rauk50,51 and Morokuma52 to periodic boundary conditions. The key idea in this 

method is to partition the interaction energy ∆𝐸𝑖𝑛𝑡,𝑒𝑙𝑒𝑐 into well defined terms as shown in 

equation 4. 

 ∆𝐸𝑖𝑛𝑡,𝑒𝑙𝑒𝑐 = ∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡 + (∆𝐸𝑃𝑎𝑢𝑙𝑖 + ∆𝐸𝑜𝑟𝑏)   (4) 

As a first step one can evaluate ∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡 by considering the charge densities of the individual 

fragments A and B and use them to construct a combined system {A,B}. This combined system 

contains the charge densities of the non-interacting fragments A and B at the positions these 

fragments exhibit in the combined system. Consequently, the  sum of the non-distorted charge 

densities nA and nB is used to describe the combined system. The energy of system {A,B} can 

then be calculated by performing a single shot DFT calculation without a self-consistency 

cycle. This calculation yields the electrostatic energy 𝐸𝑒𝑙𝑠𝑡𝑎𝑡
{𝐴,𝐵}

 of the system as constructed from 

the fragments. The difference of this energy and the electrostatic energy of the individual 

fragments then yields the quasiclassical electrostatic interaction between the layers, ∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡, 

as: 

∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡 = 𝐸𝑒𝑙𝑠𝑡𝑎𝑡
{𝐴,𝐵}

− 𝐸𝑒𝑙𝑠𝑡𝑎𝑡
𝐴 − 𝐸𝑒𝑙𝑠𝑡𝑎𝑡

𝐵 .   (5) 

Knowing  ∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡 it is then possible to assess to what extent electrostatic repulsion between 

consecutive layers is actually responsible for the common appearance of shifted (serrated) 

structures of 2D COFs. Finally, the wavefunction overlap between the interacting systems 

triggers orbital rehybridization (which is always attractive) and Pauli repulsion (which is 
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strongly repulsive). The corresponding contribution to the interaction energy,  ∆𝐸𝑜𝑟𝑏,𝑃𝑎𝑢𝑙𝑖 can 

be calculated from the overall energy decomposition as:  

∆𝐸𝑖𝑛𝑡 = ∆𝐸𝑒𝑙𝑠𝑡𝑎𝑡 + ∆𝐸𝑜𝑟𝑏,𝑃𝑎𝑢𝑙𝑖 +  ∆𝐸𝑣𝑑𝑊 

 

3. RESULTS AND DISCUSSION 

For such layered materials consisting of 2D extended structures, the relative arrangement of 

the layers can be described by two main factors: (i) the interlayer stacking distance and (ii) the 

direction and magnitude of shifts of consecutive layers parallel to the plane of these layers. 

Both factors play a significant role in determining the actual properties of a COF. An advantage 

of computer simulations is that they allow varying both factors independently. In particular, 

one can first address the question, how shifts between consecutive layers impact the energetic 

stability and the properties of 2D COFs for a fixed interlayer distance. In a second step one can 

then address the question to what extent the situation is altered when the interlayer distance is 

optimized for each shift. This will be done in the following, where the focus will be on 

analyzing the impact of the stacking geometry on the interaction energy split into contributions 

from van der Waals attraction, Coulomb interactions and the impact of orbital rehybridization 

and Pauli repulsion. As far as the COF properties are concerned, we will restrict the analysis 

to the electronic structure of the COF manifested in its electronic band structure. 

3.1 Constant Interlayer Stacking Distance 

In a first step, consecutive layers of COF-1 are shifted relative to each other along the direction 

parallel to the pore edge (direction 1 in Figure 1), while keeping the interlayer stacking distance 

constant at the literature value. Figure 2a shows the resulting evolution of the interaction 

energy, Eint, plotted relative to the energy of the cofacial aligned layers. In passing we note 

that the evolution of Eint follows that of the total energy, which is, in fact, apparent from Equ. 

(1), considering that the energies of the individual segments A and B are independent of the 

shift. Notably, the value of Eint is highest (least negative) for the cofacial arrangement, which 

indicates that amongst the structures considered here, this is the least stable one. At a 

displacement of around 1.75 Å the interaction energy displays a pronounced minimum and 

rises again for larger displacements. This behavior is consistent with the observations reported 

in literature,35,36 although the minimum occurs at slightly larger displacements in our 

investigation. To understand the origin of that trend, the interaction energy is next decomposed 

into contributions from van der Waals interactions, ΔEvdW, electrostatic interactions, Eelstat, 
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and interactions due to Pauli repulsion and orbital rehybridization,  ∆𝐸𝑜𝑟𝑏,𝑃𝑎𝑢𝑙𝑖 . ΔEvdW is most 

attractive for the cofacial arrangement, and then increases (i.e., becomes less negative) upon 

displacing the layers. This behavior is not unexpected, as by displacing the layers along 

direction 1, parts of these layers are moved over pore space, increasing the average interatomic 

distances causing a drop in vdW attraction. This effect becomes particularly pronounced for 

displacements above ~1.5 Å.  

Interestingly, a similar trend is observed for the electrostatic energy shown by the blue open 

triangles in Figure 1a. Also for Eelstat one observes negative terms (i.e., attraction) for all 

considered geometries with the cofacial arrangement and small displacements being most 

stable, in contrast to the speculations in refs 36,37 that electrostatic interactions would be 

responsible for the shifted geometries of 2D layered COFs.  

In fact, for displacements up to around 2 Å, Eelstat remains essentially constant, while these 

electrostatic interactions become less attractive for larger displacements. The overall attractive 

nature of electrostatic interactions is a consequence of so-called charge penetration effects, 

which are commonly observed for interacting organic molecules 53–55 and will be discussed in 

more detail in a separate section below. In contrast to the van der Waals and electrostatic 

energies, the energy contribution due to Pauli repulsion and orbital rehybridization is always 

repulsive with a maximum for the cofacial arrangement, significantly destabilizing that 

structure. In fact, Eorb,Pauli is the factor that is responsible for the energy minimum 

corresponding to a shifted rather than the cofacial arrangement of successive layers. Another 

fundamental difference between Eorb,Pauli and the other energy contributions is that Eorb,Pauli 

changes significantly already for small displacements and then levels off for larger 

displacements. This is the primary reason, why the sum of EvdW, Eelstat, and Eorb,Pauli, first 

drops with the displacement, then forms a minimum at 1.75 Å, and finally rises for larger 

displacements.  
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Figure 2. Relative energies of COF-1 displaced along directions 1 and 2 at a constant 

interlayer distance. (a) Comparison of interaction energy, vdW energy, electrostatic energy, 

and Pauli plus orbital rehybridization energy for displacements along shift direction 1. (b) 

Comparison of interaction energy and vdW energy for displacements along shift direction 2. 

Energy values at 0.0 Å displacement. ΔEint=-1290 meV, ΔEint,elec=2257 meV, ΔEvdW=-3547 

meV, ΔEelectrostatic=-1344 meV, ΔEPauli,orb=3601 meV, Etotal=-70442.671 eV;  

 

The overall trend of the interaction energy from Figure 2a is also recovered for other shift 

directions (like a shift perpendicular to the pore edge (direction 2 from Figure 1), as is shown 

in Figure 2b. Again the interaction energy Eint has its highest value for the cofacial 

arrangement and exhibits a pronounced minimum at displacements around 1.75 Å. Comparing 

the total energies for the minima found along shift directions 1 and 2, it is found that the 

minimum for shifts perpendicular to the pore edges, i.e. direction 2, is ~40 meV higher in 

energy.   
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The crucial role of Eorb,Pauli raises the question, why Pauli repulsion is so large for a cofacial 

structure. To understand that, one has to keep in mind that when occupied orbitals of two 

molecules overlap, bonding and antibonding linear combinations are formed, where the 

bonding one is stabilized less than the antibonding one is destabilized. Now, the energies of 

the occupied bands (orbitals) contribute to the total energy. Therefore, wavefunction overlap 

involving fully occupied orbitals results in a repulsive contribution to the total energy. This 

effect is particularly pronounced for large energetic splittings and, correspondingly, strong 

electronic couplings.56 Typically the orbital overlap is largest for a cofacial arrangement, which 

then should result also in maximized band widths. This is, indeed, observed also here, as shown 

for the valence band (-width) in Table 1 and Figure S7-1 in the Supporting Information. A 

consequence of the shift of the layers is a decrease of the bandwidth such that for a certain 

displacement it even vanishes, then increases again, and so on, an effect that has been 

intensively investigated for organic semiconductors.57–63  The shift at which the bandwidth 

vanishes depends on the symmetry and nodal structure of the lattice periodic functions which 

are part the Bloch states constituting the different bands. Thus, the shift at which Pauli repulsion 

due to the specific overlapping occupied bands vanishes depends on the nature of those bands 

such that one cannot expect a direct correlation between Eorb,Pauli in Figure 2a and the width 

of the valence band in Figure S7-1. One thing that all bands should, however, have in common 

is that their widths (and, thus, the associated electronic couplings and effective masses) 

decrease for small shifts, which is then responsible for the initial sharp drop of Eorb,Pauli. In 

Table 1 one can see the valence bandwidth and associated effective mass along a direction 

corresponding to the stacking direction of the COF-1 layers for the cofacial and the minimum 

arrangement observed for the constant interlayer stacking distance. It can be seen that the 

bandwidth is significantly smaller, i.e. it is reduced by a factor of ~1.8, for the optimum layer 

arrangement. This change of the bandwidth translates into an even more pronounced change in 

the associated effective mass, which increases by a factor of more than 2.  
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Table 1. Valence bandwidth (VBW) for the electronic band along A, a k-space direction 

corresponding to the stacking direction of the COF-1 layers, and associated effective mass of 

COF-1 for the cofacial and the minimum arrangements (1.75 Å shift along direction 1). The 

data are given for the shifted COF-1 layers with constant interlayer stacking distance as well 

as for optimized stacking distances. Transfer integrals can be estimated based on the 

bandwidth (BW) as BW/4.   

shift / Å valence bandwidth / meV effective mass / me stacking distance / Å 

literature stacking distance 

0.0 1847 0.61 
3.328 

1.75 1027 1.29 

optimized stacking distance 

0.0 1154 0.85 3.636 

1.75 997 1.31 3.350 

 

     

3.2 Optimized Interlayer Stacking Distance 

The situation is fundamentally modified, when the stacking distance between consecutive COF 

layers is optimized for each shift. As this optimization procedure requires several calculations 

for each displacement, we here focus on shifts close to the energetic minimum found for 

constant interlayer distance, which is most relevant for the present discussion. Again, the 

interaction energy exhibits a minimum at a layer displacement of around 1.75 Å in full 

correspondence with the situation for constant interlayer stacking distance. In passing we note 

that now the evolution of the total energy no longer overlaps with that of the interaction energy, 

as now the distance between the layers in the sub-systems A and B changes with the shift. Still, 

the two evolutions evolve essentially in parallel.  

A more significant difference compared to the situation discussed in section 3.1 are the 

evolutions of the different energy contributions: Now the vdW energy becomes more negative 

up to a displacement of 1.75 Å and rises only afterwards. One can rationalize this behavior by 

a pronounced decrease of the interlayer stacking distance for small displacements (see SI, 

Figure S10). For small displacements, this overcompensates the consequences of the decreased 

spatial overlap of the layers (see above; weighted distance histograms are contained in the SI). 

This overcompensation vanishes for layer displacements beyond 1.75 Å, where the changes in 

stacking distance become smaller and where also larger sections of the  COF layers come to lie 

above the (empty) pores of neighboring layers. The decrease in interlayer distance with layer 

shift also essentially inverts the situation for Pauli repulsion: Now, the above-discussed 

decrease in the wavefunction overlap for shifted systems due to orbital symmetry and nodal 
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structure is overcompensated by an increase of the coupling caused by a shrinking interlayer 

distance. Only for larger displacements the overlap diminishes because of an increasing 

fraction of the COF-linkers coming to lie above the pores of neighboring layers. This is also 

manifested in the evolution of the valence bandwidth (see Figure S5b), where a distinct 

decrease of ~640 meV occurs only for shifts beyond that of the actual minimum structure. As 

a consequence, the cofacial arrangement also looses is “advantage” over the actual energetic 

minimum structure as far as transfer integrals estimated as VBW/4 are concerned (see Table 

1). 

 
Figure 3. Relative energies of COF-1 displaced along directions 1 and 2. The stacking distance 

has been optimized for each displacement. (a) Comparison of interaction energy, vdW energy, 

electrostatic energy, and Pauli repulsion plus orbital rehybridization energy for displacements 

along shift direction 1. (b) Comparison of interaction energy and vdW energy for 

displacements along shift direction 2. Energy values at 0.0 Å displacement. ΔEint=-1957 meV, 

ΔEint,elec=812 meV, ΔEvdW=-2769 meV, ΔEelstat=-385 meV, ΔEPauli,orb=1197 meV, Etotal=-

70443.275 eV; 
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Interestingly, also the evolution of the (attractive) electrostatic interaction is largely inverted 

compared to the situation for fixed interlayer distances and the magnitude of the changes is 

significantly increased. This is again attributed to the decreasing interlayer distance, which 

amplifies the attractive charge-penetration effects. 

An overall interesting observation for optimized interlayer distances is that the shapes of the 

evolutions of Eint, EvdW, Eelstat, and Eorb,Pauli in Figure 3a are essentially the same and also 

the absolute magnitudes of the maximum changes are similar (~600 meV for ΔEPauli,orb and 

ΔEvdW and around 800 meV for ΔEelstat) and occur close to the optimum displacement. The only 

difference is that now Pauli repulsion favors a cofacial arrangement, while the electrostatic and 

van der Waals interactions favor shifted structures. Even more surprising is, however, that the 

displacement that minimizes the energy of the system is the same for both discussed situations 

despite the observation that the changes in the individual energy contributions with 

displacement are massively different and this not only in their values, but even in their signs.  

A consequence of the evolutions of the individual energy terms is that in systems where both 

degrees of freedom (layer displacement and stacking distance) are allowed to adapt 

electrostatic and vdW  interactions will be almost equally important and the interplay of those 

interactions with the Pauli repulsion and orbital rehybridization will determine the preferred 

layer arrangement.    

 

3.3 Attractive Electrostatic Energy and Charge Penetration Effect 

Like demonstrated above, the electrostatic interactions between consecutive layers of COF-1 

are always attractive. Nevertheless, under certain circumstances these interactions can indeed 

promote shifted layer arrangements, as can be seen in Figure 3a. The origin of this promotion, 

however, cannot be traced back to repulsive interactions between the boroxine linkage groups 

of the COF, rather it is caused by the decrease in the interlayer stacking distance. In the 

following, we will have a closer look at the electrostatic interactions ΔEelstat starting by 

investigating why this interaction is actually attractive. 

As mentioned already above, the reason for this attractive interaction is so called charge 

penetration, an effect that has been discussed extensively for interacting organic materials and 

organic semiconductor crystals.53–55 Conceptually, this effect describes that due to the 

interpenetration of charge/electron clouds the shielding of the positively charged nuclei is 
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reduced and the attractive electron-nuclei terms become dominant such that the electrostatic 

interaction becomes attractive. For systems comprising overlapping -electron clouds, like 

molecular crystals or layered COFs this effect can become sizable.  

For systems like COF-1 one would, however, expect that the significantly different 

electronegativities of the B and O atoms in the central boroxine (B3O3) rings would result in 

sizable octupole moments resulting in a repulsion of cofacial B3O3 rings. To assess the 

magnitude of the two effects (charge penetration vs. polarization) we split the individual COF-

1 layers into two model systems consisting either of benzene or B3O3H3 rings (i.e., the only 

weakly polar molecular building unit and the significantly more polar linkage groups of COF-

1) saturated by H atoms. The rings were then arranged in exactly the same positions they adopt 

in COF-1 with optimized interlayer distances. Then, ΔEelstat was calculated separately for each 

model system as a function of the shift of consecutive layers. The resulting energy evolution is 

shown in Figure 4. When considering only the benzene molecules, Eelstat is indeed primarily 

determined by charge penetration effects and is clearly attractive for all considered situations 

in analogy to the situation observed above for the full COF. Interestingly, when considering 

only the B3O3H3 units, for small displacements, and, thus, large intermolecular distances the 

electrostatic interactions for the first time are repulsive, in line with the sizable octupole 

moments of the molecules. It remains like that for displacements of up to ~1 Å; then Eelstat 

becomes negative (i.e., attractive), which we attribute to a superposition of two effects: (i) a 

smaller distance between the molecular planes resulting in an increased charge penetration 

(which crucially depends on wavefunction overlap, which is particularly distance-sensitive) 

and (ii) a decreased repulsion between the octupoles in the shifted configuration. Importantly, 

as the attractive electrostatic interaction of the benzene rings is always larger than the 

sometimes repulsive interaction between the B3O3H3 units, the sum of the contributions of the 

two sub-systems is always attractive with the overall evolution with layer displacement very 

similar to that observed for the full COF-1 system. This explains, why in the actual COF 

attractive electrostatic interactions prevail despite polarization effects that might suggest 

otherwise. 
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Figure 4. Electrostatic energy contributions of the COF-1 sub-systems extracted from COF-1 

with optimized interlayer stacking distances. The COF was decomposed into two sub-systems 

(linker unit and π-system) which were used to study the individual contributions to the total 

electrostatic part of the electronic interaction energy, ΔEelstat. Energy values at 0.0 Å 

displacement: Eelstat,linker unit=196 meV, Eelstat,-system=-348 meV, ΔEelstat=-385 meV 

 

3.4 Additional Layered COFs 

All the above observations suggest that the driving forces (vdW interactions, electrostatic 

interactions, and Pauli repulsion) causing a stacking arrangement with slightly displaced COF-

1 layers to be energetically favorable are of general nature. This finding is further supported by 

COF-5 showing analogous behavior to COF-1 (as demonstrated in the Supporting 

Information). Also in literature it has already been speculated that apart from a few exceptions 

such shifted AA-stacking might be the preferred stacking motif.35 Considering additional 2D 

COFs with different sizes of their -systems and also different pore topologies it is investigated 

whether these systems also tend to exhibit shifted (serrated) AA-stacking. The additional COFs 

used for these investigation are COF-5, porphyrin based COFs (Por-COF),38 and also a 

hexabenzocoronene based COF (HBC-COF).39 The structures of these COFs are shown in 

Figure 5. For the Por-COF we consider two versions of that system, one consisting of Zn-

metallated porphyrin (Zn) and one without a metal incorporated in the center of the molecule 

(NH). Comparing the structures of the above COFs one can see that they exhibit different pore 

topologies, differently sized -systems, and different linking units. This renders them ideal 
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candidates to see whether the individual interactions, Coulomb, van der Waals and Pauli 

repulsion with orbital rehybridization, show consistent behavior in all COFs.  

 
Figure 5. Structures of the additional COFs considered. C … grey, H … white, B … green, O 

… red, N … blue 

 

In order to study whether a shifted AA-arrangement is actually the preferred stacking motif, 

the change of the total energies and the interaction energies for the cofacial arrangement of the 

COFs are compared to the energies of the optimal layer arrangement obtained by performing a 

full geometry relaxation including all atomic positions together with the stacking distance. 

Furthermore also changes in the individual contributions stemming from Coulomb and van der 

Waals interactions as well as from Pauli repulsion plus orbital rehybridization are evaluated. 
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The obtained results are summarized in Figure 6 and Table 2. For all the considered systems 

we find that the energetically favorable arrangement is one with slightly shifted consecutive 

layers, where for all these arrangements vdW and electrostatic energy are significantly more 

attractive than for the cofacial arrangement. This suggests that indeed the preferred stacking 

motif for 2D COFs is a shifted (serrated) AA layer arrangement and that van der Waals and 

Coulomb interactions enforce these layer arrangements.  

 
Figure 6. Energy differences of the interaction energy and the contributions, van der Waals, 

electrostatic, and Pauli repulsion plus orbital rehybridization, between the cofacial and the 

optimized structures of the considered COFs (COF-1, COF-5, HBC-COF, NH-Por, Zn-Por, 

from left to right). The resulting structures of the optimization procedure are shown as insets, 

where the shifted optimal layer is shown in dark green.  

 

 Such changes in the interlayer arrangement can lead to quite significant changes in the 

electronic structure. For the example of COF-5 it has been found in literature that band 
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dispersion as well as the size of the band gap change depending on the interlayer arrangement.32 

Interestingly, from the insets in Figure 6 which show the layer arrangement after optimization 

and the displacement vectors Δvxy in Table 2 we find that COF-1, COF-5, and HBC-COF 

exhibit layer displacements along directions parallel to connections between linker unit and -

system. Moreover, the resulting packing motif of the aromatic systems of these COFs indeed 

show a packing motif similar to graphite.35 For the Por-COFs we find that their energetic 

minimum arrangement lies on a mirror axis of the porphyrin molecule (45° diagonal).  

 

Table 2. Energy differences and structural parameters (displacement vectors, stacking 

distances) of the considered COFs. The differences are always calculated between the coplanar 

arrangement and the optimized structure. Δvxy … displacement vector between coplanar and 

optimized structure, Δz … change of stacking distance upon optimization, z … stacking distance 

for the optimized layer arrangement, ΔEtotal … energy difference of total energies of coplanar 

and optimal stacking, Δ(ΔEint) … change of interaction energy between coplanar and optimized 

stacking, Δ(ΔEvdW) … change of vdW energy between coplanar and optimized stacking, 

Δ(ΔEelstat) … change of electrostatic energy contribution between coplanar and optimized 

stacking, Δ(ΔEPauli,orb) … change of Pauli repulsion with orbital rehybridization between 

coplanar and optimized stacking  

 COF-1 COF-5 HBC-COF NH-Por Zn-Por 

Δvxy/ Å (1.50,-0.86) (1.49, -0.46) (0.00,1.60) (1.18, 1.18) (1.24, 1.24) 

Δz / Å -0.26 -0.20 -0.19 -0.22 -0.24 

z / Å 3.36 3.39 3.43 3.33 3.32 

ΔEtotal / meV -861 -1541 -1026 -775 -1033 

Δ(ΔEint) / meV -809 -1447 -1600 -744 -1006 

Δ(ΔEvdW) / meV -583 -913 -1203 -567 -659 

Δ(ΔEelstat) / meV -738 -1285 -1031 -613 -894 

Δ(ΔEPauli,orb) / meV 456 751 574 381 479 

 

 

 

4. CONCLUSIONS 

 
Based on the example of COF-1 we identified the driving forces that enforce shifted (serrated) 

AA-stacking arrangements to be energetically favorable. A quantitative assessment of the 

individual interactions (dispersion, electrostatic, Pauli repulsion plus orbital rehybridization) 

determining the evolution of the total energy has been provided. For constant interlayer 

stacking distance it was found that Eorb,Pauli is the factor that is responsible for the energy 

minimum corresponding to a shifted rather than the cofacial arrangement of successive layers. 
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For systems with optimized stacking distances it turned out that the individual interactions 

change quite differently compared to systems with constant stacking distances. Interestingly, 

Pauli repulsion favors a cofacial arrangement, while the electrostatic and van der Waals 

interactions favor shifted structures for the systems with optimized stacking distances. 

Although the individual energy contributions show quite different behavior, the minimum layer 

arrangement is essentially the same for both situations, comprising a shift of 1.75 Å along 

direction 1. Considering additional COFs with differently sized -systems and differently 

shaped pores, it was found that also these systems prefer shifted layer arrangements. 

Furthermore, for all the considered systems with optimized stacking distances, it has been 

found that Coulomb and van der Waals interactions are responsible for these shifted 

arrangements to be energetically favorable. This suggests that for obtaining layered COFs with 

cofacial stacking arrangements one cannot rely on the self-assembly of the individual layers, 

but has to introduce additional terms that enforce the desired arrangements.  

Additionally, we showed that the electrostatic part of the interaction between consecutive COF 

layers is attractive. This nature was explained by the charge penetration effects playing an 

important role for such close arrangements of -systems as in these layered COFs.  
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1. Overview of basis functions used in FHI-Aims 

Table S1. Basis functions that have been used for all calculations performed with FHI-AIMS. 

The abbreviations read as follows: H(nl,z), where H describes the type of the basis function 

where H stands for hydrogen-like type function, n is the main quantum number, l denotes the 

angular momentum quantum number, and z denotes an effective nuclear charge which scales 

the radial function in the defining Coulomb potential.1 

 H C B O N Zn  

Minimal 1s [He]+2s2p [He]+2s2p [He]+2s2p [He]+2s2p [Ar]+4s3p3d  

Tier 1 H(2s,2.1) 

H(2p,3.5) 

H(2p,1.7) 

H(3d,6) 

H(2s,4.9) 

H(2p,1.4) 

H(3d,4.8) 

H(2s,4) 

H(2p,1.8) 

H(3d,7.6) 

H(3s,6.4) 

H(2p,1.8) 

H(3d,6.8) 

H(3s,5.8) 

H(2p,1.7) 

H(3s,2.9) 

H(4p,5.4) 

H(4f,7.8) 

H(3d,4.5) 

 

Tier 2 H(1s,0.85) 

H(2p,3.7) 

H(2s,1.2) 

H(3d,7) 

H(3p,5.2) 

H(3s,4.3) 

H(3d,6.2) 

H(4f,9.8) 

H(5g,14.4) 

H(4f,7.8) 

H(3p,4.2) 

H(3s,3.3) 

H(5g,11.2) 

H(3d,5.4) 

H(3p,6.2) 

H(3d,5.6) 

H(1s,0.75) 

H(4f,11.6) 

H(5g,17.6) 

H(3p,5.8) 

H(1s,0.8) 

H(3d,4.9) 

  

 

2. Additional data 

2.1. Relative energies of COF-1 in a fully optimized unit cell 

Figure S1 shows the evolution of the relative energies as a function of the displacement along 

shift direction 1 for COF-1 with a fully optimized unit cell. Here, fully optimized means that 

the length of all lattice vectors has been relaxed, while the angles between them were held 

constant. For each displacement the optimal stacking distance was determined using the 

procedure described in the main manuscript. Now, considering the evolution of the energies in 

Figure S1 and comparing them to Figure 3 of the main manuscript one observes that the data 

agree. Only minor numerical differences can be observed. Thus, one can conclude that 

optimizing in the in-plane lattice parameters does not impact the qualitative behavior of the 

relative energies of the system. 
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Figure S1. Relative energies of COF-1 with optimized in-plane lattice parameters. Consecutive 

layers are shifted along direction 1 and the stacking distance is relaxed at each displacement. 

(a) Comparison of total energy to the (electronic) interaction energy and the vdW energy (b) 

Decomposed terms of the electronic interaction energy. Energy values at 0.0 Å displacement. 

ΔEint=-2029 meV, ΔEint,elec=834 meV, ΔEvdW=-2863 meV, ΔEelstat=-413 meV, ΔEPauli,orb=1247 

meV, Etotal=-70443.8427 eV; 
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2.2. Relative energies of COF-5 

In Figure S2 one can see the relative evolution of the energies of COF-5 as a function of 

displacements along a shift direction parallel to the edges of the pore, analogous to direction 1 

of COF-1. For each displacement the stacking distance of consecutive COF-5 layers was 

optimized. Considering the evolution of the interaction energy we find that it exhibits a 

minimum at a displacement of around 1.5 Å, which is similar to COF-1. For both COFs, 

cofacial arrangements are energetically unfavorable and driving forces exist pushing these 

systems towards shifted layer arrangements. Decomposing the interaction energy into 

individual contributions comprising vdW interactions, electrostatic interactions and Pauli 

repulsion plus orbital rehybridization we find that their evolution shown in Figure S2b shows 

again very similar behavior compared to COF-1. Electrostatic and vdW interactions become 

more attractive upon layer displacements up to 1.5 Å and then, for larger displacements they 

become weaker. The repulsion term (Pauli repulsion plus orbital rehybridization), on the 

contrary, gets more repulsive in the range of displacements where vdW and electrostatic 

contributions got more attractive. Changes in the vdW and the electrostatic interactions are 

larger than those of the repulsion, thus, they determine the formation of the minimum at the 

shifted layer arrangement of 1.5 Å.  

 

Figure S2. (a) Relative energies of COF-5 as a function of the shift direction. The interlayer 

stacking distance was optimized at each displacement. (b) Decomposed electronic interaction 

energy. Absolute energy values at 0.0 Å displacement:  ΔEint,elec=1779 meV, ΔEvdW=-8483 meV, 

ΔEelstat=-1446 meV,  ΔEPauli,orb=3225 meV, ΔEint=-5238 meV 
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2.3. Relative energies of COF-1 for an inclined unit cell 

To see whether the shifted stacking motif where one of the layers in the unit cell is shifted with 

respect to the other is different from a displaced layer arrangement achieved by tilting the unit 

cell vector as shown by the inset in Figure S3, such an inclined unit cell has been constructed 

and investigated for COF-1.  Two molecules are placed in the unit cell, to allow the 

decomposition of the interaction energy if needed. The interlayer distance was kept constant 

during these calculations. Now, inspecting the evolution of the total interaction energy, red 

curve in Figure S3, one can see that also for such realizations of layer displacements, the 

coplanar arrangement is energetically unfavorable. Note that the powder x-ray diffraction 

patterns of such an inclined system would exhibit peaks at different scattering angles compared 

to the system with the original unit cell – see Figure S3-1. 

 

Figure S3. Interaction energy of COF-1 for an inclined unit cell (see inset). The stacking 

distance is kept constant during the evaluation and the shift direction is the one considered 

throughout the main manuscript. Absolute energy values at 0.0 Å displacement: ΔEint=-1290 

meV, ΔEint,elec=2257 meV  

 

 

 



 7 

 

Figure S3-1. Calculated powder x-ray diffraction patterns for COF-1 in the unit cell with all 

lattice vectors taken from literature (grey), or with the in-plane vectors from literature and 

optimized stacking distance (dashed green) and the inclined unit cell (red). All patterns have 

been calculated for the minimum arrangement found for shifts along direction 1 with a shift of 

1.75 Å. A wavelength of 1.54 Å, which corresponds to Cu K-α radiation, has been employed 

during the calculations. These patterns have been calculated employing the Mercury software 

package.2–6  

 

2.4. Relative energies of COF-1 for shift direction perpendicular to pore edge 

The relative total energy of COF-1 has been determined as a function of displacements along 

a direction perpendicular to the pore (schematically shown by inset in Figure S4a). These data 

were determined for constant interlayer stacking distance, see Figure S4a, and optimized 

stacking distance in Figure S4b. Again, cofacial, AA-stacking arrangements are energetically 

unfavorable. This is true, no matter whether the stacking distance is optimized or not. 

Interestingly, for both systems, we find that there appears a local minimum at arrangements 

with displacements of around 3.5 Å. However, this minimum is almost 200 meV higher in 

energy than the one found at 1.75 Å for the system with the optimized stacking distance.  

For a constant stacking distance between the layers the energetic difference between cofacial 

arrangement and the shifted arrangement is significantly higher (~700 meV) than for the 

systems with optimized stacking distances.  
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Figure S4. Relative energies of COF-1 shifted along a direction perpendicular to a pore edge 

(a) for a constant interlayer stacking distance and (b) for the optimized stacking stacking 

distance at each displacement. Energy values at 0.0 Å displacement: ΔEint=-1290 meV, 

ΔEint,elec=2257 meV, ΔEvdW=-3547 meV (constant z); ΔEint=-2220 meV, ΔEint,elec=803 meV,  

ΔEvdW=-2769 meV (z optimized); 

 

2.5. Evolution of the valence bandwidth for COF-1 

The width of the valence band along a k-space direction parallel to the stacking direction of the 

COF-1 layers has been extracted from electronic structure calculations. The resulting values 

for displacements between 0 and 3.5 Å are shown in Figure S5. First, in Figure S5a one can 

see the evolution of the valence bandwidth when the interlayer stacking distance is held 

constant. One can see that it decreases for displacements up to 2.4 Å from 1847 meV at cofacial 

arrangement to around 300 meV for 2.4 Å displacement. For the data point at 3.5 Å 

displacement we observe an increased bandwidth of slightly less than 600 meV. When 

optimizing the stacking distance, see corresponding data in Figure S5b, first of all, one can see 

that the overall value of the VBW has decreased to less than 1200 meV at cofacial arrangement. 

For displacements up to 1.4 Å the VBW varies only slightly around this value. Then, for larger 

displacements the VBW decreases to slightly below 400 meV for 2.4 and 3.5 Å displacement. 

Comparing these evolutions to that of the repulsion energy in Figures 2 and 3 of the main 

manuscript no one to one correlation can be observed between the VBW and this energy. 

Considering the observations for OSCs in Ref 7, it was found that Pauli repulsion and orbital 
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rehybridization cause molecular arrangements with large intermolecular electronic couplings 

(approximated by bandwidths) to be energetically unfavorable. Therefore, one could expect to 

observe a similar correlation for the layered COFs considered in this work. Several reasons 

might help to rationalize why a one to one correlation could not be identified here: All occupied 

bands enter the expression for the energy and, thus, considering solely the valence band might 

be an incomplete representation of the system. Furthermore, considering the structure of COF-

1 – see Figure S6 - one can see that benzene rings 2 and 3 (named dimer 2 and 3 in Figure S6) 

are shifted towards pore space while dimer 1 is shifted along the edge of the pore. This means 

that the orbital overlap with neighboring molecules/atoms of consecutive COF layers decreases 

for dimer 2 and 3. Dimer 1 on the other hand experiences orbital overlap with different parts 

of the COF, depending on the displacement. At cofacial arrangement, all benzene rings are 

stacked perfectly on top of each other. Upon displacement parts of dimer 1 start to show 

significant spatial overlap with parts of the boroxine (B3O3) linkage groups. As a result, also 

corresponding orbitals will show significant overlap. Consequently, the bandwidths of the 

bands corresponding to the individual dimers will evolve differently. Additionally, we report 

the sum of Pauli repulsion and orbital rehybridization, further complicating the identification 

of a correlation between Pauli repulsion and bandwidth.  

 

Figure S5. Width of the valence band in A direction for COF-1 shifted along direction 1 with 

a constant interlayer spacing (a) and the optimized interlayer spacing (b).  
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Figure S6. Cutout of the structure of COF-1. The shift between consecutive layers is shown by 

the original layer and the shifted one in blue. The benzene stacks that are formed are marked 

by colored ellipses and denoted as dimers 1, 2, and 3. Note that while we call them dimers, in 

the periodic systems these parts of the COF comprise infinitely extended stacks. The lattice 

vectors are omitted for clarity.   

 

Additional details regarding the electronic band structure of COF-1 

Due to the different benzene units comprising the individual COF-1 layers, the electronic band 

structure becomes quite complex. Therefore, we briefly discuss this band structure in the 

following while focusing on the valence band region. In Figure S7-1 one can see data for the 

electronic structure of COF-1 for the cofacial arrangement as well as for the shifted 

arrangement (1.75 Å) and for constant interlayer stacking distance. For the electronic band 

structure for the cofacial arrangement in Figure S7-1a we find a valence band with a width of 

~1.8 eV along A, while for the in-plane directions the bands remain relatively flat. Actually, 

one observes 3 valence bands which are almost degenerate. These bands stem from the 3 

benzene dimers, as can be seen from the projected density of states in Figure S7-1b. In A 

direction the bands are backfolded, as there are two layers in the unit cell. For the shifted 

arrangement shown in Figures S7-1c,d we find that the degeneracy is lost and a single valence 

band with a width of ~1 eV can be found. This band now comprises contributions solely from 

dimer 1, as can be seen from the projected density of states and the eigenstate densities in 

Figures S7-1e,f.  

In Figure S7-2 similar observations can be made for the system where the interlayer stacking 

distance has been optimized. Again, for the shifted layer arrangement the valence band consists 

of contributions from what we termed dimer 1 in Figure S6. The changes in the bandwidth, 

however, are not as large as they are when keeping the interlayer stacking distance constant.  
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For the constant interlayer stacking distance we also calculated the electronic bands employing 

the hybrid functional HSE06.8,9 There, we find that the evolutions of the valence band show 

good agreement comparing PBE and HSE06 results (see Figure S7-3). Nevertheless, the 

bandwidths obtained with HSE06 are larger (VBW=2045 meV for cofacial and VBW=1165 

meV for the shifted arrangement) and the effective mass is smaller (m*=0.55 me for cofacial 

and m*=1.13 me for the shifted arrangement). 

 

Figure S7-1. Electronic band structure, projected density of states, and eigenstate density of 

COF-1 for cofacial and minimum arrangement (shift of 1.75 Å) found for shifts along direction 

1 while keeping the interlayer stacking distance constant. (a) Electronic band structure for 

COF-1 at cofacial arrangement zoomed into the region of the valence band. The first Brillouin 

zone is shown as an inset. (b) Density of states projected onto sub-parts of the COF-layers for 



 12 

cofacial stacking. These sub-parts are dimers 1, 2, and 3 (grey, purple, dark yellow) denoted 

in Figure S6 and the boroxine linkage groups (red). The energy range close to the valence 

band is shown. (c) Electronic band structure for the shifted arrangement of COF-1 zoomed 

into the region of the valence band. The valence band has been fitted by a simple 1D tight-

binding model and the result is shown as the dashed green line. (d) Density of states projected 

onto sub-parts of the COF-layers for the shifted arrangement. (e) and (f) isodensity plots of the 

electron density of occupied eigenstates at the  point for the shifted layer arrangement. The 

electron density for the highest occupied state (band) is shown in (e) and the electron density 

of the lower eigenstate corresponding to this band is shown in (f). C … grey, H … white, B … 

green, O … red; The black arrows denote the backfolded contribution of the valence band. For 

the shifted arrangement the eigenstate density was calculated for the corresponding state at 

the -point. 

 

Figure S7-2. Electronic band structure and eigenstate density of COF-1 for cofacial and 

minimum arrangement (shift of 1.75 Å) found for shifts along direction 1 when optimizing the 

interlayer stacking distance. (a) Electronic band structure for COF-1 at cofacial arrangement 

zoomed into the region of the valence band. (c) and (d) isodensity plots of the electron density 

of occupied eigenstates at the  point and for the shifted layer arrangement. The electron 

density for the highest occupied state (band) is shown in (c) and the electron density of the 

lower eigenstate corresponding to this band is shown in (d). C … grey, H … white, B … green, 

O … red; 
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Figure S7-3. Electronic band structure of COF-1 for cofacial (a) and minimum arrangement 

(a), equal to a shift of 1.75 Å, found for shifts along direction 1 for constant interlayer stacking 

distance. The band structures have been calculated using the PBE (solid red lines) functional 

and the hybrid HSE06 (dashed black lines) functional. 

 

 

 

2.6. Distance weighted histograms for COF-1 

For rationalizing the evolution of the vdW interactions reported in the main manuscript we 

calculated histograms that show the number of atoms within a certain distance interval, i.e. that 

are within a sphere of a particular radius. This number of atoms was then weighted with the 

individual distance to the power of -6. This 1/R6 weight is inspired by terms that are included 

in typical pairwise vdW corrections. In Figure S8 the data for COF-1 shifted along the edge of 

the pores and relaxed interlayer stacking distances is shown. Figure S9 shows the data for the 

system without relaxed stacking distance. Lastly, the evolution of the optimized stacking 

distance is shown in Figure S10. 

Now, considering Figure S8, one finds that the low distance contributions to the weighted 

number of atoms actually increase for displacements up to 1.75 Å. This trend is perfectly in 

line with the vdW interactions becoming more attractive in this range of displacements. For 

constant stacking distance, one observes that for layer displacements up to 1.75 Å only little 

changes in the histogram appear, which correlates with the almost constant vdW interaction for 

that range. For larger displacements significant changes are observed, which is again consistent 

with the vdW interactions showing larges changes for such layer arrangements.  
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Figure S8. Histogram showing the number of atoms found within a certain interlayer distance 

interval and weighted by this distance to the power of -6 (#atoms/(r^6)) for COF-1 with 

optimized stacking distance. At each layer displacement such a histogram is created. One can 

see that the low distance contributions to this weighted number of atoms actually increase for 

displacements up to 1.75 Å. Which is perfectly in line with the vdW interactions becoming more 

attractive in this region.   



 15 

 

Figure S9. Histogram showing the number of atoms found within a certain interlayer distance 

interval and weighted by this distance to the power of -6 (#atoms/(r^6)) for COF-1 with 

constant stacking distance. At each layer displacement such a histogram is created. For layer 

displacements up to 1.75 Å one can see only little changes in the histogram, which correlated 

with the almost constant vdW interaction for that range. For larger displacements significant 

changes are observed, again perfectly consistent with the vdW showing larges changes for such 

layer arrangements. 
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Figure S10. Evolution of the stacking distance for COF-1 as a function of the layer 

displacement. The literature value shown as a grey dashed line is taken from Ref 10. 

 

 

2.7 Additional considerations regarding the decomposition scheme 

Writing out equation 5 of the main manuscript in explicit terms the following expression 

describing the interlayer electrostatic interaction energy as a function of nuclear charges Z, 

electron densities n, nuclear, and electronic coordinates R and r is obtained: 
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2.8. Comparison of total energy and interaction energy for COF-1  

In Figure S11 one can see the evolution of the total energy and that of the interaction energy 

for COF-1 shifted along direction 1 and with optimized stacking distances for each 

displacement. Both energies are aligned to their respective values at cofacial arrangement. One 

can see that these energies essentially evolve in parallel and that only minor numerical 

differences occur. The reason why these energies do not coincide is that for each displacement 

the stacking distance, thus the unit cell vector along that direction, changes and so also the 

energy between fragments A and B, entering the determination of ΔEint is different for each 

displacement. Nevertheless, two energy curves show a excellent qualitative agreement.   

 
Figure S11. Comparison of the evolution of the total energy (grey triangles and line) and the 

interaction energy (red squares and line) for COF-1 shifted along direction 1 and with 

optimized stacking distances. Energies at cofacial arrangement: ΔEint=-1957 meV, Etotal=-

70443.275 eV; 
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6. Summary

In this thesis the electronic structure of various molecule-based materials has been

modelled using state-of-the-art computational methods. Of particular interest were

crystalline organic semiconductors (OSCs), metal-organic frameworks (MOFs), and

covalent organic frameworks (COFs). From the electronic structure of these systems,

parameters relevant for charge transport were derived and their dependence on the actual

intermolecular arrangement was investigated. In the following, we briefly recapitulate the

findings of the individual sections of this thesis and connect them to each other.

Let us start by comparing the structures of the investigated systems, shown in Figure

6.1. An important similarity with respect to charge transport within these systems is

that in the bulk structures of OSCs, in the studied MOFs, and COFs continous stacks

of (relatively) large π-systems are formed. These π-systems either belong to an organic

molecule in the case of OSCs, are parts of organic linkers in MOFs, or belong to the

conjugated organic building blocks of COFs. Based on the structural similarities, i.e.

continuous stacks of π-systems, and assuming that charge transport occurs along these

π-stacking pathways one can already suggest that similar transport mechanisms will be

important for all the considered materials. Therefore, one can start by revisiting the

transport theories of the already quite advanced field of OSCs.

Essential for charge transport is the orbital overlap of neighboring π-systems, as an

increased orbital overlap typically results in enlarged intermolecular electronic couplings,

i.e. in larger transfer integrals t. These transfer integrals are insofar relevant, as a review

of the currently applied transport models for OSCs shows that their amplitude is directly

coupled to the charge carrier mobility µ. More precisely, µ ∝ t2 is found for hopping

transport while µ ∝ t applies for band transport. These two models represent the edge

cases for fully localized states, described by hopping transport, and entirely delocalized

states, resulting in band transport. For intermediate cases, where charges are neither fully

localized nor entirely delocalized, there is no such clear proportionality between t and

the mobility µ. What counts in these situations is the anisotropy of a systems’ transfer

integrals together with the ratio of thermally induced variations of these transfer integrals

and the absolute value of the corresponding t. More details on the individual charge
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6. Summary

Figure 6.1.: Structure of the considered systems: α-quinacridone (adapted from Ref [2], i.e. Publication
I), Zn2(TTFTB) MOF (adapted from Ref [4], i.e. Publication III), and COF-5 (taken from
Publication IV). The arrows indicate the π-stacking direction within the individual materials.

transport mechanisms can be found in the introductory part of this thesis, especially in

Section 1.1 and in the cited references. However, these transport models are not restricted

to OSCs. Especially band and hopping transport are general concepts which can be

directly employed to MOFs and COFs.

As a starting point, the findings that have been obtained for OSCs are reviewed. In these

materials, the relative arrangement of neighboring molecules determines the transfer

integral and consequently the mobility µ. More precisely speaking, the orbital overlap,

which is determined by the symmetry and nodal structure of the involved molecular

orbitals, determines the transfer integral. Knowing that transfer integrals are essential

quantities for analyzing charge transport one has to consider how one can get a reliable

description of these parameters for periodic systems. Therefore, in Publication I , the

electronic band structure of a representative organic semiconductor, α-quinacridone, was

analyzed. In essence, three approaches were compared to each other: The first one relies

solely on bandwidths along certain directions extracted from the electronic band structure.

The second one is based on the extraction of molecular dimers from the periodic systems
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and calculating the electronic coupling for these dimers using the energy splitting in dimer

(ESD) method.21 The use of this method is justified by the molecules constituting the

considered molecular dimers being symmetry equivalent. For dimers where the molecules

are actually symmetry inequivalent more advanced methods have to be employed as

the ESD method would not account for differences in site-energies that arise from the

molecules polarizing each other differently.173 Finally, the third approach is based on

fitting a tight-binding model to the electronic band structure. This tight-binding model

is based on the expression for the energy which has been derived for one molecule per

cell (Section 1.4.2) and contributions from all nearest neighbors have been included.

Employing these three approaches to the chosen test system, one observes that each

approach has its problems and thus, can be quite misleading. Merely relying on extracted

bandwidths would be a reliable approach for very simple electronic band structures

only. Simple, means that only transfer integrals between neighboring molecules along a

direction parallel to the k-path of the respective electronic band determine the evolution,

i.e. the width, of this band. One example where the electronic band is too complex for

the bandwidth approach is shown in Figure 6.2a. There, one can see the conduction band

along a k-path parallel to the H-bonding direction. After succesfully fitting a tight-binding

function, which includes contributions from all nearest neighbors, to the conduction band,

one can decompose the band into individual contributions. Based on these contributions

one finds that actually the transfer integral along direction a2 dominates the conduction

band along the direction parallel to a1 + a2. As a result, if one estimated the transfer

integral between neighboring molecules along a1 + a2 by employing a one-dimensional

tight-binding model to the band along a1 + a2, one would severly overestimate this

transfer integral. This simple bandwidth approach would yield 25 meV for the transfer

integral, while from the elaborate tight binding approach we find a transfer integral of

-5 meV. Furthermore, also situations where couplings between next-nearest neighbors

become important are neither covered by the dimer nor the bandwidth approach - see

Figure 6.2b. Importantly, it turned out that, at least for systems with one molecule per

unit cell, fitting elaborate tight-binding model functions to the electronic band structure

is a viable strategy. Another nice aspect of this approach is that the fitted tight-binding

band structure provides an analytic expression for the electronic bands. Based on this

expression quantities like the effective mass tensor can be calculated in a straightforward

and computationally (almost) effortless manner. Based on this tensor the effective mass

along any spatial direction can be evaluated and the anisotropy of the material can be

studied.

The findings of Publication I provide a set of tools which can then be employed to

study transfer integrals within molecule-based materials in a reliable manner. Moreover,
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Figure 6.2.: Conduction band and main components of the tight-binding model for two k-paths parallel
to a) the H-bonding direction and b) the π-stacking direction. The DFT bands are shown
as solid blue lines, the contributions from individual tight-binding components as dashed
lines and the sum of these components is shown as an orange line in a). Adapted from
Publication I, i.e. Ref [2].

Publication I provides the limitations of the considered approaches. Based on these

limitations and upon a first inspection of the electronic band structure of the materials

of interest one can decide which approach might be employed. Furthermore, one has

to consider that for systems with two or more inequivalent molecules per unit cell

also the tight-binding approach shall be used with caution, as mentioned briefly in the

introduction section. Although it is appealing to get the transfer integrals directly from

the electronic band structure by using elaborate tight-binding models, sometimes the

simpler approaches might already be sufficient. Potentially, a combination of the various

approaches, based on the electronic band structure or based on molecular dimers, might

be the best solution to gain a decent understanding of the electronic couplings / transfer

integrals in organic semiconductor crystals.

With this set of methods at hand one can go ahead and study the interplay between the

energetic stability of certain structural (molecular) arrangements and charge transport

properties for organic semiconductor crystals. This is done in Publication II . For this

investigation we relied on the three established polymorphs of quinacridone together with
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an orthorhombic model crystal inspired by the packing motif of α-quinacridone. Upon

displacing the two quinacridone molecules present in the unit cell relative each other,

calculating transport relevant parameters as well as total and interaction energies, and

decomposing the interaction energies into physically well-defined contributions, several

important aspects were found: First of all, the evolution of the bandwidth and that

of the transfer integral relevant for charge transport in π-stacking direction coincide.

Therefore, we could rely on the bandwidth as a qualitative descriptor for the transport

properties. Secondly, evaluating two-dimensional maps of the total energy and the valence-

bandwidth, as shown in Figure 6.3, revealed that molecular arrangements with large

bandwidths are energetically unfavorable. This suggested the existence of a general

driving force which pushes the molecular crystals towards arrangements with smaller

bandwidths, i.e. lower transfer integrals. The physical origin of this driving force was

studied by decomposing the interaction energy between consecutive quinacridone layers.

This decomposition revealed that Pauli repulsion and orbital rehybridization destabilize

molecular arrangements with large transfer integrals. As a consequence, for realizing

high-mobility materials one cannot simply rely on the intrinsic interactions that govern

the self-assembly of π-conjugated backbones. Rather, one should attempt to introduce

additional energy terms, e.g. steric effects, which can help to overcome the driving force

towards low transfer integral arrangements. At this point, MOFs become interesting, as

they offer a fine control over their structural arrangement which is hard to achieve in

OSCs. This higher level of control allows to exploit combining linkers and nodes with

known geometry and coordination environments as a strategy for designing MOFs with

specific structures, i.e. structural arrangements.45,50,51 Enforcing a certain arrangement

of the organic linkers π-systems could, therefore, be employed to engineer the charge

transport properties of MOFs.

Thus, in Publication III , the interplay between structural arrangement and charge

transport properties was investigated for a prototypical MOF, Zn2(TTFTB= tetrathia-

fulvalene tetrabenzoate). This system exhibits a comparably large bandwidth of around

370 meV which is dominated by contributions from the π-system of the organic linker

(see Figure 6.1). As a starting point, it was demonstrated that the valence band structure

can be safely described by a stack of the central tetrathiafulvalene (TTF) part of the

linker, see Figure 6.4a. This is a quite important observation, as it allows the transfer of

all the insights from Publications I and II directly to this MOF system. Based on the

TTF model stack, several degress of freedom were explored in order to study the effect

of structural arrangements on the valence bandwidth and, consequently, the transfer

integral. It turned out that reducing the rotation angle between neighboring TTF units

increases the valence bandwidth significantly, as shown in Figure 6.4c. Additionally, it
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6. Summary

Figure 6.3.: Structure of the orthorhombic quinacridone model crystal as well as two-dimensional maps
showing the total energy and the valence bandwidth as a function of interlayer displacements.
Adapted with permission from Ref [3]. Copyright 2019 American Chemical Society.

was found that the impact of changes in the relative rotation and molecular conformation

of the TTF molecules on the observed bandwidth is more pronounced than the impact of

moderate modifications in the stacking distance4 - see Figure 6.4d. Experimentally, such

modifications to the stacking distance have been investigated by replacing the Zn atoms

in the metal nodes of the MOFs with Cd atoms.100 As the associated structural changes

only show moderate effects, we hypothesize in Publication III that the increase of

the electrical conductivity by two-orders of magnitude for Cd2(TTFTB) compared to

Zn2(TTFTB)100 must either be caused by significantly modified concentrations of mobile

carriers or must be a consequence of different defect densities in the two systems. For

unraveling such discrepancies it would be essential to know the charge carrier mobilities

of Cd2(TTFTB) and Zn2(TTFTB). Therefore, we highly encourage experimentalists to

measure and report the charge carrier mobilities of their samples, as is commonly done

in the field of OSCs. In combination with theory this will allow us to gain a deeper and

more fundamental understanding of charge transport in MOFs.

Furthermore, also the influence of defects on charge-transport relevant quantities was

investigated in Publication III . The impact of most static defects that were considered

(displaced molecules, molecular pairing along the stack, or misrotations of specific

molecules) turned out to be rather moderate. This changes, for the case of a missing

linker defect (electronic band structure in Figure 6.4b). Because of the 1D nature of
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Figure 6.4.: Electronic structure of Zn2(TTFTB) MOF and corresponding model stacks. (a) Valence
band structure of the MOF (in red) and the TTF model stack (black dashed). (b) Valence
band of MOF and model stack, each with a missing linker defect. (c) Valence bandwidth
and transfer integral as a function of the rotation angle between consecutive TTF molecules.
(d) Valence bandwidth and transfer integral depending on the rotation angle and on the
intermolecular displacement. Adapted from Ref [4].

the transport pathways of the investigated systems, such a missing linker constitutes

a massive obstacle for charge transport, which is manifested, for example, by a factor

of 10 increase of the effective mass. Summarizing these findings, it was observed that

engineering the arrangement of organic linkers in MOFs can yield improved charge-

transport properties. Furthermore, it was found that these properties are highly sensitive

to structural imperfections in MOFs, i.e. defects. As a result, experimentally observed

trends might be severly impacted by variations of the defect densities present in the

investigated MOFs.

For the above MOFs with fairly complex structural arrangements (see Figure 6.1) several

handles for tuning their charge-transport properties have been identified. However,

it might not be straightforward to exploit these handles experimentally. Especially

decreasing the rotation angle between the TTF molecules (i.e. increasing the number of
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TTF molecules in the unit cell), which appeared to be the most effective tuning handle

seems challenging. Thus, it would be helpful to have systems which possess only a few

degrees of freedom, that need to be controlled. Furthermore, these degrees of freedom

should be more easily accessible. Layered MOFs and especially COFs represent such

systems with few degrees of freedom. Lateral and vertical displacements of individual

layers are the (most important) degrees of freedom that can be exploited to tune the

bandwidths. Relative rotations of certain segments around their respective short and

long molecular axes as well as changes in their conformation are essentially blocked.

This, together with the large π-conjugated parts usually present in COFs, renders these

systems interesting for producing porous, electrically conductive materials. Again one

can build on knowledge that has been obtained for OSCs and apply it to COFs: lateral

and vertical displacements of stacked molecules have been shown to severly impact the

corresponding transfer integrals. In fact, changes by orders of magnitude for displacements

of around 1 Å are not rare in typical OSCs.3,32–35 Therefore, it is of utter importance to

understand the interactions that determine the interlayer arrangement of COFs. This

understanding is an essential prerequisite for the design of structures exhibiting the

desired interlayer arrangement. In Publication IV the interaction energy of layered

COFs was investigated as a function of the interlayer arrangement. Furthermore, this

energy was decomposed into van der Waals, electrostatic, and Pauli repulsion plus orbital

rehybridization contributions, by a newly implemented energy decomposition scheme.
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Figure 6.5.: Structure and relative energies of COF-1. a) Structure of a single COF-1 layer is shown in
the top panel. The bottom panel shows a cutout of the periodic (bulk) structure of COF-1.
Two layers are present in the unit cell in stacking direction and the layer marked in blue
is displaced along the direction indicated by the arrow. As a result one obtains an (AB)n
sequence of layers as indicated. Atoms are shown in: C ... grey, H ... white, B ... green, O ...
red. b) The relative energies, interaction energy ∆Eint, vdW ∆EvdW , electrostatic ∆Eelstat,
and Pauli repulsion with orbital rehybridization energy ∆EPauli,orb are shown as a function
of the interlayer displacement and aligned to their respective values at cofacial arrangement.
The stacking distance was held constant for all displacemets. c) The relative energies as a
function of the interlayer displacement where for each displacement the stacking distance
has been optimized are shown.

Several important findings were obtained by performing such an investigation on exem-

plary test systems. First of all, the preferred layer arrangement is a shifted AA-stacking.

In all the investigated COFs, it turned out that a displacement of consecutive COF layers

by around 1.5 Å, along a vector parallel to the plane of the COF layers, resulted in a layer

arrangement which is significantly more stable than cofacial AA-stacking. Furthermore,

considering the example of COF-1 (shown in Figure 6.5), a rather deep local minimum

in the total energy was found for moderate displacements of around 1.5 Å, i.e. the total

energy of the displaced arrangement is around 0.8 eV lower. Important to note is that
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such moderate displacements are typically not resolved in experiment due to the large

peak broadening observed in the x-ray pattern.137,174

Nevertheless, already these moderate displacements change the electronic properties quite

dramatically, as demostrated by a reduction of the valence bandwidth and an increase of

the corresponding effective mass for COF-1 studied in Publication IV . This further

highlights the necessity of being able to control the interlayer arrangement effectively in

order to tune the properties of layered COFs. Studying the individual contributions to

the interaction energy (shown in Figure 6.5b) it was found that for constant interlayer

stacking distances the repulsive contributions from the term comprising Pauli repulsion

with orbital rehybridization lead to the formation of the energetic minimum for the shifted

layer arrangement. On the contrary, when optimizing the interlayer stacking distance

it was found that attractive van der Waals and electrostatic interactions favor shifted

arrangements, while Pauli repulsion with orbital rehybridization would be favorable for

cofacial arrangements. As van der Waals and electrostatic interactions dominate, shifted

layer arrangements are again energetically favorable. Actually, this is in contrast to

the findings for OSCs in Publication II . This might be partially due to the stacking

distance kept constant in the investigations in Publication II , while it was optimized

for the COFs in Publication IV . How optimizing the stacking distance influences the

interplay of the individual energy components in OSCs is certainly an aspect that has

to be investigated in future studies, as it can be seen that, at least for the examples

of COF-1 and COF-5, optimizing the stacking distance significantly alters the relative

energy contributions. As a little side note, the importance of charge penetration effects,

well-known for OSCs, is also highlighted in Publication IV . This implies that simple

electrostatic arguments, which have been used for rationalizing the interlayer arrangement

in the past, are not applicable for layered COFs and that a more detailed analysis of the

different contributions is crucial for achieving a thorough understanding of the driving

forces that determine the structures of layered COFs.

In summary, in the course of this PhD thesis, quantum mechanical computer simulations

were used to study organic and hybrid nanomaterials. Several approaches for obtaining

a reliable description of transfer integrals in crystalline systems were tested, while also

the srengths and weaknesses of each approach have been assessed. Further, combining

electronic structure calculations with energy decomposition schemes for periodic systems,

the existence of a driving force pushing organic semiconductor crystals towards molecular

arrangements with low intermolecular electronic couplings was demonstrated. For metal

organic frameworks the influence of the structural changes of the π-systems on the

electronic band structure were investigated. In this context several tuning strategies for

enhancing bandwidths and transfer integrals were identified. Additionally, the importance
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of understanding the influence of defects on the electronic band structure of MOFs has

been highlighted. Finally, an energy decomposition scheme was developed and used to

understand the details of the formation of shifted layer arrangements in covalent organic

frameworks.
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Appendix A.

Energy Decomposition Scheme for

Periodic Systems

A.1. Validation of the Energy Decomposition Scheme

An energy decomposition scheme based on the pEDA scheme140,168,172 has been imple-

mented to work with FHI-Aims and in order to test its validity, we re-calculated the

model system of Publication II and compared the results obtained with the original

pEDA scheme and my own scheme.

The results for FHI-aims have been obtained employing a 4x2x4 k-point grid together

with a tight full tier2 basis set for all atomic species. Furthermore, a radial multiplier of

2 was used.

Comparing the interaction energies for the reference data to the FHI-aims calculations

one can see in Figure A.1 that both data sets show good agreement. When calculating

the average deviation of the FHI-aims calculatios from the reference data one finds that

the interaction energy ∆Eint is overestimated by 19 meV in our calculations. When we

exclude the outlier at a displacement of 6.72 Å we find that the interaction energy is

still overestimated by an average value of 13 meV. To check whether the data for a

displacement of 6.72 Å can really be classified as an outlier, an additional data point for

a slightly smaller displacemet of 6.68 Å has been calculated. We find that ∆Eint for this

point agrees very well with the reference data at the slightly larger displacement. Thus,

the FHI-aims data for 6.72 Å can be classified as an outlier. The reason for the apparent

deviation is not entirely clear at the moment, but is likely of numerical origin.

As a next step, the values of the electrostatic part of the interaction energy (∆Eelstat)

are compared to the reference data (Figure A.2). In terms of absolute values we find that
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Figure A.1.: Comparison of the total interaction energy evaluated by performing DFT calculations on
4x2x4 k-grid with a full tier2 basis set (red) and the data from Publication II (black).

∆Eelstat is overestimated with respect to the reference by 21 meV (23 meV) including

(excluding) the outlier of the interaction energy at 6.72 Å. Note that the deviation is larger

when excluding the outlier, as the sign of that deviation is different - meaning for this

point, unlike fo all other points, ∆Eelstat is actually underestimated in my decomposition

scheme. Again when considering the calculated data for a slightly smaller displacement

we find that it follows a trend consistent with all other data points, further supporting

the notion that the data at 6.72 Å is an outlier. Now, plotting the calculated data

as a function of the reference data one can again have a look at the correlation of the

two data sets - shown in Figure A.3. There, one can nicely see that only one point, as

already mentioned, does not follow the trend and underestimates the electrostatic part

of the interaction energy. When fitting a straight line to the presented data (inlcuding

the outlier) one finds that this line (shown as a red dash dotted line in Figure A.3) has a

slope of 0.92 and an intercept of -79.2 meV. Upon classifying the data point at 6.72 Å

as an outlier, exlcuding it from the data set, and fitting a straight line to these data one

gets a slope of 1.01 and an intercept of -13.2 meV.

Regarding a correlation one can say that whenever reference data and test data show

perfect agreement, all data points must lie on the 45-degree diagonal. Now, when the

relative evolutions of the data points agree, but with a (almost) constant offset, as is the

case for the electrostatic energy, the data lies on a straight line parallel to the 45-degree

diagonal. Or in other words, a straight line fitted to data must exhibit a slope of 1.
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Excluding the outlier for the electrostatic data now leads to a slope that is very close to 1,

which means that our implemented approach is able to reproduce the relative evolution of

the reference data with only very minor deviations. These deviations could be due to the

different treatment of the core electrons, in the reference the frozen core approximation

was employed while in FHI-aims the core electrons were treated explicitly.

Figure A.2.: Comparison of the electrostatic energy evaluated by performing DFT calculations on 4x2x4
k-grid with a full tier2 basis set and the data from Ref [3].

As a next step, we consider the electrostatic part of the interaction energy ∆Eelstat
aligned to its value at 0.0 Å displacement and the reference data also aligned to its

value at 0.0 Å displacement and compare these data. In Figure A.4 one can see that

the evolution of ∆Eelstat for the implementation and the reference agree well. For most

points the deviations of these data are well below 10 meV.

Considering the aligned data in a correlation plot, as shown in figure A.5 one can see

that most data points scatter around a straight line with a slope equal to 1 and that

their deviation from this line is usually less than 10 meV. When fitting a straight line

to the data, excluding the outlier, we get a slope of 1.01 and an intercept of 1.2 meV.

Including the outlier, the slope drops to 0.92 and the intercept also changes to -0.6 meV.

Similar to the data which has not been aligned to the zero displacement values we find

that the calculated electrostatic part (∆Eelstat) of the total interaction energy agrees well

with the reference data, which can be concluded from the various comparisons provided

before and also the slope of the linear fit curve being almost equal to 1. Therefore,
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Figure A.3.: Correlation plot between the interaction energy obtained from the FHI-aims calculations
with a full tier2 basis set and the reference data from Ref [3]. The data has been fitted by
a straight line as y = A+B ∗ x with A=-13.2 (-79.2) meV and B=1.01 (0.92) excluding
(inlcuding) the outlier at 6.72 Å.

Figure A.4.: Comparison of the electrostatic energy evaluated by performing DFT calculations on 4x2x4
k-grid with a full tier2 basis set and the data from Ref [3]. Both data sets are aligned to
their respective values at 0.0 Å displacement
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we conclude that the relative evolution of ∆Eelstat is evaluated correctly and that our

approach works. Minor quantitative deviations of around 3% of the reference energy

might be due to the variations in the basis sets that have been used. In our approach all

electrons, inlcuding the core electrons, are considered explicitly. For the reference data

the frozen core approximation has been employed.

Figure A.5.: Correlation plot between the interaction energy obtained from the FHI-aims calculations
with a full tier2 basis set and the reference data from Ref [3]. Both data sets are aligned to
their respective values at 0.0 Ådisplacement. The data have been fitted by a straight line as
y = A+B ∗ x with A=1.2 (-0.6) meV and B=1.01 (0.92) excluding (inlcuding) the outlier
at 6.72 Å.
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A.2. Further Methodological and Technical Details

In this section we would like to elaborate a bit more on some details of the decomposition

and the determination of the individual terms.

Let us start from the coefficient matrix C{AB}(k) that has been constructed based on the

eigenvectors of the isolated fragments. Technically, this matrix is constructed by grouping

the eigenvectors of the fragments as shown in equation A.1.

C{AB}(k) =


CA,occ(k) 0

0 CB,occ(k)

CA,virt(k) 0

0 CB,virt(k)

 (A.1)

Each row of this matrix corresponds to a specific state l and the columns correspond

to the individual basis functions. The constructed coefficient matrix C{AB}(k) is then

written to restart files for FHI-aims together with the occupation vector (see 1.62). From

these restart files a single shot DFT calculation without performing an scf cycle is started.

To trigger the calculation of the electrostatic energy for the electron density corresponding

to the eigenvectors that are supplied in the restart, one has to specify a few keywords:

1 mixer linear

2 charge_mix_param 0

3 preconditioner kerker off

The preconditioner is turned off and the charge densiting mixing procedure is set to

a linear mixer with a mixing parameter of 0. The detailed meaning and consequences

associated with these keywords are discussed in a subsequent section and can also be

found in Ref [141]. Here we will continue to show that the constructed coefficient matrix

C{AB}(k) indeed yields the electrostatic energy between the fragments A and B.

From the restarted DFT calculation one obtains the total energy as well as the electrostatic

energy E
{AB}
elstat of system C{AB}(k). Following the decomposition scheme, the electrostatic

contribution to the interaction energy of the system AB can then be obtained according

to equation A.2. All energy terms needed for this evaluation can be taken from the output

of the respective DFT calculations.

∆Eelstat = E
{AB}
elstat − (EA

elstat + EB
elstat) (A.2)
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In the following we demonstrate that the relation shown in equation A.2 is valid, i.e. that

restarting from coefficient matrix C{AB} and then subtracting the electrostatic energies

of the fragments from the one corresponding to C{AB} actually yields the electrostatic

energy term shown in equation 1.63. To do so, we consider the electrostatic energy terms

for the individual fragments and the combined system C{AB}.

Let us start by considering fragment A:

EA
elstat =

1

2

∑
νεA

∑
µεA

ZµZν
|Rµ −Rν |

−
∑
νεA

∫
ZνnA(ri)

|Rν − ri|
dri+

1

2

∫ ∫
nA(ri)nA(rj)

|ri − rj|
dridrj (A.3)

An analogous expression for fragment B reads as follows:

EB
elstat =

1

2

∑
νεB

∑
µεB

ZµZν
|Rµ −Rν |

−
∑
νεB

∫
ZνnB(ri)

|Rν − ri|
dri+

1

2

∫ ∫
nB(ri)nB(rj)

|ri − rj|
dridrj (A.4)

From equation A.5 it becomes apparent that the electron density nAB corresponding to

the combined system C{AB} can simply be written as the sum nA + nB of the charge

densities of the fragments.

n(r) =
∑
l

∑
k

fl,k |Ψl,k(r)|2 =
∑
l

∑
k

fl,k

(∑
i

∑
j

c∗li(k)clj(k) χ∗i,k(r)χj,k(r)

)
(A.5)

Here χi,k(r) are defined in terms of the atom-centered basis functions φi(r) as:

χi,k(r) =
∑
m

eikTmφati (r− Tm). (A.6)

Based on the finding that the electron density of C{AB} can be written as the sum nA+nB,

the electrostatic energy for the combined system C{AB} can be written in explicit form

as:
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E
{AB}
elstat =

1

2

∑
νεA∪B

∑
µεA∪B

ZµZν
|Rµ −Rν |

−
∑
νεA∪B

∫
Zν(nA(ri) + nB(ri))

|Rν − ri|
dri

+
1

2

∫ ∫
(nA(ri) + nB(ri))(nA(rj) + nB(rj))

|ri − rj|
dridrj.

(A.7)

Using the expressions for the electrostatic energies of the fragments and the combined

system, one can evaluate equation A.2:

∆Eelstat = E
{AB}
elstat − (EA

elstat + EB
elstat)

=
���

���
���

��1

2

∑
νεA

∑
µεA

ZµZν
|Rµ −Rν |

+
���

���
���

��1

2

∑
νεB

∑
µεB

ZµZν
|Rµ −Rν |

+
∑
νεA

∑
µεB

ZµZν
|Rµ −Rν |

−
∑
νεA

∫
Zν(���

�nA(ri) + nB(ri))

|Rν − ri|
dri −

∑
νεB

∫
Zν(nA(ri) +���

�nB(ri))

|Rν − ri|
dri

+

∫ ∫
((((

(((nA(ri)nA(rj) + nA(ri)nB(rj) + nB(ri)nA(rj) +((((
(((nB(ri)nB(rj)

|ri − rj|
dridrj

This finally yields the expression for the electrostatic contribution to the total interaction

energy presented in equation 1.63 in Section 1.4.3 as:

∆Eelstat =
∑
νεA

∑
µεB

ZµZν
|Rµ −Rν |

−
∑
νεA

∫
ZνnB(ri)

|Rν − ri|
dri −

∑
νεB

∫
ZνnA(ri)

|Rν − ri|
dri

+2

∫ ∫
nA(ri)nB(rj)

|ri − rj|
dridrj

(A.8)

Problems Associated with the Kinetic Energy

In this section the complications that we are facing for implementing the second stage of

the decomposition scheme are outlined. That second stage would be the determination

of the Pauli repulsion and the orbital rehybridization terms. As a starting, it is reviewed

how the total energy is determined within FHI-Aims.141

Let us start by considering the Kohn-Sham functional, which defines the total energy in

DFT as
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EKS[n] = TS[n] +

∫
drVext(r)n(r) + EHartree[n] + Exc[n] + EII . (A.9)

with Ts[n] the Kohn-Sham kinetic energy, the external potential energy Vext(r), the

classical electrostatic energy of the electron density EHartree[n], the exchange-correlation

functional Exc[n], and the internuclear repulsion energy EII .

The energy expression that is evaluated in FHI-Aims is not the KS-functional from

equation A.9 but rather the so-called Harris functional - see equation A.10.141 Within

the Harris functional terms which are available from a previous µ− 1 and the current scf

iteration step µ are combined as shown below in equation A.10. Important is that when

self-consistency is reached, the KS total energy functional and the Harris functional are

equal.

Eµ
Harris =

Nstates∑
l=1

f
(µ)
l ε

(µ)
l −

∫
d3r[n(µ−1)(r)Vxc[n

(µ−1)](r)] + Eµ−1
xc −

1

2

∫
d3r[n(µ−1)(r)V

(µ−1)
Hartree(r)] + EII

(A.10)

As we need the energy or specific energy terms corresponding to exactly the eigenvectors,

i.e. the resulting electron density, which we re-enter to the DFT code we cannot perform a

self-consistency cycle (scf) for the restarted calculation. Consequently, not all terms that

are determined when evaluating the Harris functional correspond to this input density.

Especially the eigenvalues ε
(µ)
l are evaluated for an updated version of the density, i.e. they

correspond to the eigenvectors (density) that are obtained when solving KS-equations.

As this has immediate consequences for the current version of the decomposition scheme

we elaborate a bit more on the indidvidual steps and corresponding terms during the scf

cycle. At the beginning, the calculation is started with a certain initial electron density

n(0) that can either be created (guessed) from a superposition of spherical free atom

densities or that is read in from restart files. The latter is the case for dealing with

the combined system C{AB} relevant for the decomposition scheme. As a next step, the

density change between consecutive scf iterations (µ− 1) and µ is damped by mixing

the new KS electron density nµKS with a certain amount of the density of the previous

iteration µ. The most simple way is to use a linear mixing scheme with a mixing operator

that is equal to a constant G which can take values between 0 and 1. The corresponding

equation reads as follows:
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nµmix = nµ−1 +G(nµKS − n
µ−1). (A.11)

By setting G to 0 or 1 one can choose between the electron densities nµKS and nµ−1 for

the further evaluation. Here, one has to note a very important ambiguity when evaluating

equation A.10 before self-convergency is reached: The evaluation of the single-particle

kinetic energy Ts[n] requires a set of Kohn-Sham eigenstates that are consistent with

the electron density n.141 This means that (at the current state) in FHI-aims one can

only evaluate Ts[n] for the ouptut density of a given iteration nµKS, but not for the input

density n(µ−1). However, the electrostatic potential VHartree is computed for the input

density nµ−1, but not for the output density. For efficiency reasons the electrostatic

energy is thus evaluated for the input density nµ−1.141

For the implemented decomposition scheme this means that we can get the electrostatic

energy corresponding to system {AB} by restarting a DFT calculation from the cor-

responding eigenvectors and occupations specifying a linear mixer of 0. In a first step,

the electrostatic energy is then calculated for the electron density corresponding to the

input. The single particle eigenvalues, are only obtained after solving the KS-equations.

Therefore, they no longer correspond to the input density but rather to the obtained

solution of the KS-equations. This is especially important, as the density corresponding

to C{AB} is certainly not converged. As a consequence, we cannot obtain the kinetic

energy corresponding to the input and thus we cannot obtain Pauli repulsion and orbital

rehybridization contributions, at least at the current state of the codes.

Below I will briefly mention the term that would have to be determined for getting the

correct kinetic energy. The expression that one needs to determine for the input electron

density n(µ−1) looks like the following:

Ekin
[
n(µ−1)] = 〈Ψ

[
n(µ−1)] |T̂s|Ψ [n(µ−1)]〉 = 〈Ψ

[
n(µ−1)] | − 1

2

Nel/2∑
j=1

∇2
j |Ψ

[
n(µ−1)]〉

= −1

2

Nel/2∑
l=1

〈Ψl

[
n(µ−1)] |∇2|Ψl

[
n(µ−1)]〉.

(A.12)

Inspecting the expression above and considering the atom centered basis functions which

are used, one finds that the integrals that have to be evaluated can be written as:
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c∗ilcjl

∫
φati (r−Rat) ∇2 φatj (r−Rat)dr (A.13)

Summing all these terms up, one can then obtain the kinetic energy. It turns out that

while these quantities are well defined their actual determination poses a challenge. Close

to the position of the nuclei Rat these integrals diverge for periodic systems. Now, getting

a converging expression for the kinetic energy is the remaining challenge for bringing

the decomposition towards its second stage. Then the repulsion term ∆EPauli,orb can be

further decomposed into orbital rehybridization and Pauli exchange repulsion, as outlined

in Section 1.4.3 and Refs [140, 168, 172].
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Appendix B.

Tutorial for Performing Tight-Binding

Fits

The following tutorial has been designed to familiarize new students in our group with the

tight-binding fit (TB-fit) package written by Florian Mayer and myself. The underlying

theory has already been introduced in Section 1.4.2. Therefore, only the parts of the

tutorial which focus on the usage of the TB-fit package are included here. The actual

implementation of the basic parts of the code is documented in the Master Thesis of

Florian Mayer [165]. These basic parts include the construction of the model function, the

actual fitting routine, and the evaluation of the fit. Parts of this tutorial, especially for the

one-dimensional model systems, are based on test calculations that have been carried out

during the Bachelor thesis of Maximilian Kendler. Furthermore, my experiences gathered

when teaching him how to use the TB-fit package are incorporated in this tutorial.

B.1. One Dimensional Systems

In this section of the tutorial we are going to look at one dimensional systems with

either one or two molecules per unit cell. For each of the resulting 1D chains the distance

between neighboring molecules is set to 4.5 Å. The electronic band structure for each of

the systems is calculated by using density functional theory (DFT) as implemented in

FHI-Aims141 and then the intermolecular electronic couplings are determined by, first

defining a proper tight-binding model function, and then fitting this model function to

the DFT data.
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B.1.1. 1D Ethen, single atom per cell

As a first step, we start by considering a one-dimensional chain of ethen atoms with a

stacking distance of 4.5 Å and one molecule per cell. Thus, a very simple model function

with one molecule per unit cell can be used to describe the system. The geometry.in file

for the FHI-aims calculations is given below and the structure of ethen as well as the

resulting 1D crystal structure are shown in Figures B.1 and B.2. Now the first task is to

calculate the electronic band structure of this system.

1 lattice_vector 0.0 0.0 4.5

2 lattice_vector 15.0 0.0 0.0

3 lattice_vector 0.0 15.0 0.0

4 atom 0.00000000 0.66608038 0.00000000 C

5 atom 0.00000000 -0.66608038 0.00000000 C

6 atom 0.92758972 1.23990807 0.00000000 H

7 atom -0.92758972 1.23990807 0.00000000 H

8 atom 0.92758972 -1.23990807 0.00000000 H

9 atom -0.92758972 -1.23990807 0.00000000 H

For this very simple and highly symmetric example we only want to include electronic

couplings (transfer integrals) between nearest neighbors. These couplings are denoted

as tR1 and t−R1 in Figure B.2. Now, considering only these two couplings and taking

into account that they are symmetry equivalent one ends up with equation B.1 for the

energy.

E(k) = tAAR0
+ 2tAAR1

cos(kR1) (B.1)

Figure B.1.: Structure of a single ethen molecule. C atoms are shown in grey and H atoms in white.
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Figure B.2.: Structure of a 1D chain of ethen atoms.

This model is the one to be fitted to the calculated electronic bands. The remaining task

now is to set up this model within the TB-fit package. To achieve this, several lines of

the input section of the main function of the code have to be changed. As a first step,

one has to enter the path to the DFT calculation:

1 path=’/path/to/my/DFT/calculation/’

Then, one has to define the model, meaning that first one has to enter the lattice vectors

which enter and second one has to specify their symmetries:

1 R_ab=np.array([R0 , -R1])

2 R_ba=np.array([R0 , R1])

3 R_aa=np.array([R0 , R1 , -R1])

As a next step, one also has to specify the symmetries of the system, meaning that one

has to enter which transfer integrals are symmetry equivalent, therefore equal. Please

note that the number N in the labels tN AA stands for the position of the corresponding

distance vector in the array R aa. So in this case the transfer integrals belonging to R1

and -R1 are equal.

1 t_symmetries = [’t2_AA=t1_AA ’]

Now, as the tight-binding function for one molecule per cell always describes a single

energy band one has to specify which energetic band should be fitted. This number
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can be taken from the FHI-aims output file. In our case it is the number of the highest

occupied band, see below:

1 n_val =7

The following variables also have to be specified for each calculation:

1 k_tick_labels = [’$\mathbf {\Gamma}$’, ’Z’] # labels for plot

2 n_bands = len(k_tick_labels)-1 # number of bands

3 # save Figure and Transfer integrals

4 save = ’yes ’ # yes/no

5 N_molecule = 1 # 1,2 or N molecules per cell

6 TODO = ’Fit ’

After entering these variables one can run the code and perform the first tight-binding

fit! Whether everything worked one can find out by checking the output of the code.

First of all, one can check what is written out to the terminal:

1 Symmetry -eqivalent couplings have been stated!

2 Indizes of equivalent couplings

3 [[2], [1]]

4 [[Fit Statistics ]]

5 # fitting method = leastsq

6 # function evals = 25

7 # data points = 80

8 [[ Variables ]]

9 t0_AA: -6.64929333 (init = 0)

10 t1_AA: 0.09895860 (init = 0)

11 t2_AA: 0.00000000 (init = 0)

12 t0_AB: 0.00000000 (init = 0)

13 t1_AB: 0.00000000 (init = 0)

14 Symmetry -eqivalent couplings have been stated!

15 Indizes of equivalent couplings

16 [[2], [1]]

17 5.2 meV

The code outputs some information on which evaluation mode has been chosen and,

more importantly, the obtained transfer integrals are written out in eV. Please be aware

that you set t1 AA=t2 AA, so t2 AA is equal to 0.09896 eV and not to 0.0 eV as

specified in the output. Furthermore, AB was not used during the fit, therefore these

lines can be ignored. The obtained transfer integrals are also written to a file named

’Transer Integrals Fit.dat’. In this file also the symmetries that were used during the

calculation are reported. The last output of the code is a plot where the DFT data

(along user specified k-paths) is compared to the data generated by the model using the
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obtained transfer integrals - see Figure B.3. This way one can actually nicely see whether

the fit worked well. To quantify the differences between the actual DFT data for the

electronic band and the band obtained from the tight model, the RMSE between model

and DFT data is calculated as:

RMSE =

√∑N
i=1 |Ei,DFT − Ei,TB|

2

N
. (B.2)

Here, Ei,DFT denotes the energy calculated using DFT and Ei,TB denotes the energy

obtained from the tight-binding model.

Figure B.3.: Electronic band structure obtained by performing a DFT calculation compared to the
results generated by using the applied tight-binding model with the fitted transfer integrals.

From the comparison between the DFT data and the tight-binding model one can see

that the fit worked well, although only one parameter was used for describing the energy

dispersion relation. Now, as the next challenge we are going to have a look at a system

with two ethen molecules per cell.

B.1.2. 1D Ethen, two atoms per cell

The unit cell size is now doubled in the stacking direction and a second ethen molecule

is placed in the unit cell at a distance of 4.5 Å from the original molecule. The second

molecule is then rotated around its long molecular axis by a certain angle. The task is

now to come up with a suitable tight-binding model and then fit to the DFT calculated
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band structure. The first step is again to identify the symmetries of the present system.

The relevant transfer integrals for setting up a model are shown in Figure B.4

Figure B.4.: Structure of a 1D chain of ethen molecules where two molecules are in the unit cell and
rotated relative to each other.

The following symmetries can be identified:

tAA−R1
= tAAR1

tBB−R1
= tBBR1

tAB−R1
= tABR0

tBAR0
= tABR0

tBAR1
= tABR0

With these symmetries one can reduce the fit function to the following form shown in

equation B.3.
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E1,2 =
tAAR0

+ tBBR0
+ 2(tAAR1

+ tBBR1
) cos(kR1)

2

±

√
[tAAR0
− tBBR0

+ 2(tAAR1
− tBBR1

) cos(kR1)]
2

4
+ 2(tABR0

)2(1 + cos(kR1))

(B.3)

Now, similar to the one molecule per unit cell example simply enter the model function

and fit it to the DFT data. Be careful that you enter the correct distance vectors R and

the corresponding symmetries:

1 R_ab=np.array([R0 , -R1])

2 R_ba=np.array([R0 , R1])

3 R_aa=np.array([R0 , R1 , -R1])

4 R_bb=R_aa

5

6 t_symmetries = [’t2_AA=t1_AA ’, ’t2_BB=t1_BB ’,\

7 ’t1_AB=t0_AB ’,’t0_BA=t0_AB ’,’t1_BA=t0_AB ’]

8

9 n_val =15

And also change N molecule to 2. As a first step perform a fit for the system with no

rotation between the two molecules in the unit cell. The physics of this system did not

change, which means you should get the same transfer integral describing the interaction

between nearest neighbor molecules as for the one molecule per unit cell example. Indeed,

comparing the results for the two systems, one finds that they agree. Both yield a transfer

integral equal to 99 meV. Note that for the system with one molecule per cell tAAR1
denoted

the transfer integral between nearest neighbors, whereas for the two molecules per cell

system tABR0
denotes the transfer integrals between nearest neighbors. One difference is,

however that for the two molecule per unit cell case only the square of the transfer

integral is obtained, which means that the information regarding the sign cannot be

determined.

At this point we are going to stop the considerations on one-dimensional systems and go

on with two-dimensional models.

B.2. Two Dimensional Systems

In this part of the Tutorial we are going to have a look at two dimensional systems of

ethen molecules, as shown in Figure B.5. Only the molecular arrangement where the A

243



Appendix B. Tutorial for Performing Tight-Binding Fits

and B molecules within the unit cell are displaced relative to each other by 1.0 Å (see

figure B.5) is considered as an example.

The first task now is to construct the geometry for this study and to calculate the

electronic band structure using DFT. The molecule itself can be taken from the 1D

systems and used for this construction. All relevant distances for constructing the model

crystal can be found in figure B.5 . Before starting the DFT calculation Please check

whether you adopted the k-grid to the now 2D nature of the system (e.g. 1x20x20

k-points). It is important to fit the model function to a dense grid covering all k-space

and not just along a k-path connecting the high-symmetry points.

As a next step one can set up a proper tight-binding model, considering all symmetries

which can be identified. Please include the transfer integrals to the following lattice vector

(combinations):

±RAB,BA
1

±RAB,BA
2

±(RAB,BA
1 +RAB,BA

2 )

±RAA,BB
1

±RAA,BB
2

Considering these distances and the system shown in Figure B.5 define all relevant

symmetries and set up the tight-binding model. Then fit this model to the DFT data

and rationalize the results.

Assuming that the DFT calculation worked properly and that the you used a correct

model for fitting the data you should end up with plots similar to Figure B.6. Here, the

results are shown for an ethen model crystal with a shift of 1 Å along direction R2

between A and B layers. For comparison, the electronic couplings have been calculated

using the fragment orbital method and entered into the tight-binding model. The resulting

electronic band structure is shown in Figure B.7.

One very interesting aspect that can be observed when inspecting the obtained transfer

integrals is that tABR0 and tAB−R2, equalling t0 AB and t2 AB in the listing below, appear

to be switched. Based on the values obtained for the situation with 0 Å displacement

and considering the small displacement of 1 Å one would assume that tABR0 should be the

larger transfer integral. This guess is supported by the transfer integrals calculated for

the extracted dimers and employing the fragment orbital method as: tABR0 = 81 meV and

tAB−R2 = 12 meV . Indeed the opposite is found based on the output of the tight-binding

fit. What happened? Did the fit go wrong, or is the chosen model wrong?
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Figure B.5.: Structure of a 2D arrangement of ethen molecules A and B. The two molecules are shifted
by 1.0 Å relative to each other along the short molecular axis.

The answer is no, the model is correct and also the fit did not go wrong! Rather it is a

property of the specific model function that the individual values of these two transfer

integrals cannot be uniquely determined. Deriving the analytical expression for the

tight-binding function considering all symmetry equivalent transfer integrals, one ends

up with expression B.4.

E1,2 = tAAR0
+ 2tAAR2

cos(kR2)± 2

∣∣∣∣cos(kR1

2

)∣∣∣∣√(tABR0
)2 + (tABR2

)2 + 2tABR0
tABR2

cos(kR2)

(B.4)

Considering the transfer integrals between molecules A and B within this system one

finds that after a succesfull fit, these transfer integrals are determined by a nonlinear set

of equations as follows:

c1 = (tABR0
)2 + (tABR1

)2

c2 = 2tABR0
tABR1

(B.5)

For calculating the individual transfer integrals, one has to solve this nonlinear system of
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Figure B.6.: Electronic band structure of the two-dimensional model system. The fitted band structure
is shown as a dashed line. The RMSE for each band is shown below the legend and denoted
as RMS1 respectively RMS2.

equations. For this system shown here, one would end up with 4 solutions for the transfer

integrals.

tABR0
= ±

√
1

2

(
c1 ±

√
c21 − c22

)
tABR1

=
c2

2tABR0

(B.6)

So what you have found is one of the possible solutions, which might not be the physically

”correct” one. Including prior knowledge on the size of the individual transfer integrals

as start values for the fit might help to mitigate this dilemma. However, for systems

with fewer symmetries, thus more complex analytical expressions, one obtains a set of

nonlinear equations of higher order and therefore retrieving the physically correct solution

can become challenging.

1 #Transfer Integrals and RMS

2 Name , Transfer Integral / meV , Remark

3 t0_AA , -6931.19,

4 t1_AA , -1.01,

5 t2_AA , 0.0, at initial value

6 t3_AA , 0.0, at initial value

7 t4_AA , 0.0, at initial value

8 t0_BB , -6921.97,

9 t1_BB , 3.61,
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Figure B.7.: Electronic band structure of the two-dimensional model system. The band structure derived
from the FO couplings is shown as a dashed line.

10 t2_BB , 0.0, at initial value

11 t3_BB , -19.34,

12 t4_BB , 0.0, at initial value

13 t0_AB , 11.91,

14 t1_AB , 0.0, at initial value

15 t2_AB , 80.59,

16 t3_AB , 0.0, at initial value

17 t0_BA , 0.0, at initial value

18 t1_BA , 0.0, at initial value

19 t2_BA , 0.0, at initial value

20 t3_BA , 0.0, at initial value

21

22 RMS$_ {1}$ (DFT , Fit): [1.413 1.353] meV

23 [’t2_AA=t1_AA ’, ’t4_AA=t3_BB ’, ’t3_AA=t3_BB ’, ’t2_BB=t1_BB ’, ’t4_BB=

t3_BB ’, ’t1_AB=t0_AB ’, ’t3_AB=t2_AB ’, ’t0_BA=t0_AB ’, ’t1_BA=t0_AB ’,

’t2_BA=t2_AB ’, ’t3_BA=t2_AB ’]

Note that the model system considered above is similar to the system discussed in Ref [3].

Similar observations were made for that system and the problem was addressed briefly

in the Supporting Information of that paper.

One aspect that I would like to mention briefly is that so far all the systems that we

considered had well seperated frontier electronic bands without any band crossings. When

this is not the case, i.e. the electronic bands cross, it is not straightforward to assign the

DFT calculated eigenvalues to the correct band. Therefore, for such situations one has

to think of a different ansatz. If you would like to learn more about the ideas that exist

247



Appendix B. Tutorial for Performing Tight-Binding Fits

for dealing with such situations then contact me.

After performing the above tasks, one should be able to use the TB-fit package.
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(76) Rubio-Giménez, V.; Almora-Barrios, N.; Escorcia-Ariza, G.; Galbiati, M.; Sessolo,

M.; Tatay, S.; Mart́ı-Gastaldo, C. Origin of the Chemiresistive Response of

Ultrathin Films of Conductive Metal–Organic Frameworks. Angewandte Chemie

- International Edition 2018, 57, 15086–15090 (cit. on p. 16).

(77) Aubrey, M. L.; Kapelewski, M. T.; Melville, J. F.; Oktawiec, J.; Presti, D.;

Gagliardi, L.; Long, J. R. Chemiresistive Detection of Gaseous Hydrocarbons and

Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate) 2 ] by Gas

Adsorption. Journal of the American Chemical Society 2019, 141, 5005–5013

(cit. on p. 16).

(78) Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dinca, M.

Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

Nature Materials 2017, 16, 220–224 (cit. on p. 16).

(79) Park, J.; Lee, M.; Feng, D.; Huang, Z.; Hinckley, A. C.; Yakovenko, A.; Zou, X.;

Cui, Y.; Bao, Z. Stabilization of Hexaaminobenzene in a 2D Conductive Metal-

Organic Framework for High Power Sodium Storage. Journal of the American

Chemical Society 2018, 140, 10315–10323 (cit. on p. 16).

(80) Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.;

Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal-organic

frameworks towards long-lasting advanced reversible Zn-air batteries. Energy and

Environmental Science 2019, 12, 727–738 (cit. on p. 16).

(81) Stukowski, A. Visualization and analysis of atomistic simulation data with

OVITO–the Open Visualization Tool. Modelling and Simulation in Materials

Science and Engineering 2010, 18, 015012 (cit. on p. 16).

(82) Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dinca, M. Million-fold electrical

conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O).

Journal of the American Chemical Society 2015, 137, 6164–6167 (cit. on p. 18).

(83) Sun, L.; Miyakai, T.; Seki, S.; Dinca, M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate):

A microporous metal-organic framework with infinite (-Mn-S-) chains and high

intrinsic charge mobility. Journal of the American Chemical Society 2013, 135,

8185–8188 (cit. on p. 18).

(84) Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R.; Wang, F.; Walsh, A.;

Dinca, M. Is iron unique in promoting electrical conductivity in MOFs? Chemical

Science 2017, 8, 4450–4457 (cit. on p. 18).

256



(85) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.;

Aspuru-Guzik, A.; Dinca, M. High electrical conductivity in Ni3(2,3,6,7,10,11-

hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue.

Journal of the American Chemical Society 2014, 136, 8859–8862 (cit. on p. 18).

(86) Meng, Z.; Mirica, K. A. Two-dimensional d-π conjugated metal-organic framework

based on hexahydroxytrinaphthylene. Nano Research 2020, 14, 369–375 (cit. on

p. 18).

(87) Hmadeh, M. et al. New Porous Crystals of Extended Metal-Catecholates. Chem-

istry of Materials 2012, 24, 3511–3513 (cit. on p. 18).

(88) Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimo-

jima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara,

H. Redox control and high conductivity of nickel bis(dithiolene) complex π-

nanosheet: A potential organic two-dimensional topological insulator. Journal of

the American Chemical Society 2014, 136, 14357–14360 (cit. on p. 18).

(89) Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C. A.;

Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. A two-dimensional π-d conjugated coordination

polymer with extremely high electrical conductivity and ambipolar transport

behaviour. Nature Communications 2015, 6, 1–8 (cit. on p. 18).

(90) Foster, M. E.; Sohlberg, K.; Spataru, C. D.; Allendorf, M. D. Proposed Modifica-

tion of the Graphene Analogue Ni3(HITP)2 To Yield a Semiconducting Material.

The Journal of Physical Chemistry C 2016, 120, 15001–15008 (cit. on pp. 18, 21,

22).

(91) Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.;

Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.; Léonard, F.; Allendorf, M. D.
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(160) Klimeš, J.; Michaelides, A. Perspective: Advances and challenges in treating van

der Waals dispersion forces in density functional theory. The Journal of Chemical

Physics 2012, 137, 120901 (cit. on p. 30).

(161) Distasio, R. A.; Gobre, V. V.; Tkatchenko, A. Many-body van der Waals interac-

tions in molecules and condensed matter. Journal of Physics Condensed Matter

2014, 26, 213202 (cit. on p. 30).

(162) Hermann, J.; DiStasio, R. A.; Tkatchenko, A. First-Principles Models for van der

Waals Interactions in Molecules and Materials: Concepts, Theory, and Applica-

tions. Chemical Reviews 2017, 117, 4714–4758 (cit. on p. 30).

(163) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy

calculations using a plane-wave basis set. Physical Review B - Condensed Matter

and Materials Physics 1996, 54, 11169–11186 (cit. on p. 30).

(164) Lejaeghere, K. et al. Reproducibility in density functional theory calculations of

solids. Science 2016, 351, aad3000 (cit. on p. 31).

(165) Mayer, F. Electronic Couplings in Molecular Crystals: Development and Bench-

marking of Advanced Strategies., Master Thesis, Graz University of Technology,

2019 (cit. on pp. 31, 237).

(166) Schober, C.; Reuter, K.; Oberhofer, H. Virtual Screening for High Carrier Mobility

in Organic Semiconductors. Journal of Physical Chemistry Letters 2016, 7, 3973–

3977 (cit. on p. 39).

(167) Kunkel, C.; Schober, C.; Margraf, J. T.; Reuter, K.; Oberhofer, H. Finding

the Right Bricks for Molecular Legos: A Data Mining Approach to Organic

Semiconductor Design. Chemistry of Materials 2019, 31, 969–978 (cit. on p. 39).

(168) Pecher, L.; Tonner, R. Deriving bonding concepts for molecules, surfaces, and

solids with energy decomposition analysis for extended systems. Wiley Interdisci-

plinary Reviews: Computational Molecular Science 2019, 9, e1401 (cit. on pp. 40,

43, 225, 235).

(169) Ziegler, T.; Rauk, A. On the calculation of bonding energies by the Hartree Fock

Slater method - I. The transition state method. Theoretica Chimica Acta 1977,

46, 1–10 (cit. on p. 40).

264



(170) Ziegler, T.; Rauk, A. A Theoretical Study of the Ethylene-Metal Bond in Com-

plexes between Cuˆ{+}, Agˆ{+}, Auˆ{+}, Ptˆ{0}, or Ptˆ{2+}, and Ethylene,

Based on the Hartree-Fock-Slater Transition-State Method. Inorganic Chemistry

1979, 18, 664 (cit. on p. 40).

(171) Kitaura, K.; Morokuma, K. A new energy decomposition scheme for molecular

interactions within the Hartree-Fock approximation. International Journal of

Quantum Chemistry 1976, 10, 325–340 (cit. on p. 40).

(172) Raupach, M. Quantenchemische Untersuchungen zur chemischen Bindung an
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