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Abstract
In the present thesis, we study the entanglement spreading in nonequilibrium dy-
namics of spin-1/2 chains following different quantum quenches and local operator
excitations. In the second chapter, we introduce the models considered and the
methods applied throughout the thesis. On the numerical side, we work within the
matrix product state (MPS) framework, applying density-matrix renormalization
group (DMRG) methods. Our results are presented in three chapters.
In chapter 3, we apply generalized hydrodynamics (GHD) to study the magneti-
zation profiles after the geometric quench in the XXZ chain. The entanglement
entropy dynamics are investigated for both interacting and noninteracting (XX)
cases. For the latter, we can put forward a heuristic conformal field theory (CFT)
ansatz. Eventually, we find a proportionality between subsystem magnetization
fluctuations and the entanglement entropy after the geometric quench.
In chapter 4, the entanglement negativity is studied which, unlike the entropy,
allows to measure the entanglement of mixed states and thus between noncom-
plementary intervals. The quench setup is chosen such that two free-fermion half
chains are connected via a defect, thus breaking the translational invariance of the
Hamiltonian. After a quench from equal fillings, a logarithmic increase of the neg-
ativity is found and a proportionality between negativity and 1/2-Rényi mutual
information holds true. For different initial fillings, like the domain wall quench,
a linear increase of the entanglement is observed, followed by a saturation to an
extensive value. We are able to describe this behaviour within a quasiparticle
ansatz in which pairs of entangled quasiparticles are created at the defect.
In chapter 5, we study the entanglement entropy after local fermionic excitations
in the XXZ spin chain. These are superpositions of low-energy excitations which
can be described via Bethe ansatz techniques. At first, we study the fermionic
creation operator in the gapless phase and observe entropy profiles which are well
described by a probabilistic spinon ansatz. The profile maxima after a Majorana
excitation depend on the anisotropy. This behaviour is understood qualitatively
within a Luttinger liquid theory. In the gapless phase, a modified Majorana exci-
tation is studied, that creates an antiferromagnetic domain wall. Here, the excess
entropy profiles are found to have a multiplicative factor related to the ground
state entropy.





Kurzfassung

Diese Dissertation behandelt die Ausbreitung von Quantenverschränkungen in der
Nichtgleichgewichtsdynamik von Spin-1/2-Ketten nach verschiedenen Quenches
sowie Anregungen durch lokale Operatoren. In Kapitel 2 stellen wir die behan-
delten Modelle sowie die verwendeten Methoden in dieser Arbeit vor. In unseren
numerischen Simulationen verwenden wir Matrixproduktzustände (MPS) und die
Dichtematrix-Renormierungsgruppe (DMRG). Unsere Resultate sind in 3 Kapitel
unterteilt.
In Kapitel 3 wenden wir generalized hydrodynamics (GHD) an, um die Mag-
netisierungsprofile nach dem geometrischen Quench in einer XXZ-Kette zu be-
schreiben. Die Dynamik der Quantenverschränkungen wird sowohl in wechsel-
wirkenden als auch in nicht-wechselwirkenden (XX) Systemen untersucht. Für
Letztere präsentieren wir einen heuristischen konforme Feldtheorie (CFT) Ansatz.
Schlussendlich zeigen wir eine Proportionalität zwischen den Magnetisierungs-
fluktuationen eines Subsystems und der Quantenverschränkung nach dem geo-
metrischen Quench.
In Kapitel 4 wird die entanglement negativity behandelt, die, anders als die en-
tanglement entropy, die Quantenverschränkung von gemischten Zuständen, und
damit auch zwischen nichtkomplementären Intervallen, messen kann. Unser Setup
ist so gewählt, dass wir zwei freie-Fermionen-Halbketten mittels eines Defekts
verbinden, wodurch die Translationsinvarianz des Hamiltonoperators gebrochen
wird. Für eine identische Füllung der Halbketten beobachtet man ein logarith-
misches Ansteigen der negativity, weiters zeigt sich eine Proportionalität zwischen
der negativity und der 1/2-Rényi mutual information. Für unterschiedliche Fül-
lungen, zum Beispiel beim domain wall quench, zeigt sich ein linearer Anstieg
der negativity, gefolgt von einem extensiven Wert. Dieses Verhalten können wir
mittels eines Quasiteilchenansatzes beschreiben, in dem die verschränkten Qua-
siteilchenpaare am Defekt erzeugt werden.
In Kapitel 5 untersuchen wir die Quantenverschränkung nach Anregungen durch
lokale, fermionische Operatoren in der XXZ-Spinkette. Wir konzentrieren uns auf
niederenergetische Anregungen, die mittels Bethe-Ansatz-Methoden beschrieben
werden können. Zuerst untersuchen wir den fermionischen Erzeugungsopera-
tor im kritischen Regime, der gut durch einen probabilistischen Spinonenansatz
beschrieben wird. Nach einer Majorana-Anregung sieht man, dass die Maxima der
Profile von der Anisotropie abhängig sind, was wir auch innerhalb der Luttinger-



Flüssigkeits-Theorie erklären können. In der nicht-kritischen Phase untersuchen
wir eine modifizierte Majorana-Anregung, die eine antiferromagnetische domain
wall erzeugt. Die darauffolgende Quantenverschränkung weist einen multiplika-
tiven Faktor auf, der mit der Grundzustandsverschränkung zusammenhängt.







I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought. By the interaction the two representatives (or ψ-functions) have

become entangled.

- Erwin Schrödinger
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Chapter 1

Introduction

In 1935, Einstein, Podolsky and Rosen introduced their famous thought experi-
ment which is now known as the EPR paradox [1]. The thought experiment deals
with a pair of particles that has a “spooky” interaction as the measurement of a
certain observable of the first particle allows the prediction of the measurement
performed on the second, although those two particles are spatially separated.
The apparent violation of locality led to the false conclusion that quantum me-
chanics were not complete. It was Erwin Schrödinger who later understood that
these correlations were in fact the characteristic trait of quantum mechanics [2].
He brought up the term “Verschränkung” for it, which translates to entanglement.
The two particles from the EPR paradox are nothing else but in an entangled state
and can thus not be described without one another. What was back then con-
sidered spooky, is now a powerful resource with exciting applications. Quantum
entanglement is key to technologies like quantum computation, quantum com-
munication as well as quantum cryptography [3] and of crucial importance in the
characterization of quantum many-body physics [4]. While entanglement is a pow-
erful resource in quantum information theory, in quantum many-body physics it
is typically connected to an increased computational effort needed to accurately
represent the wavefunction.

Suppose that we have a system with an arbitrary bipartition A and B. The
physics of subsystem A is fully encoded in the reduced density matrix ρA which is
obtained by integrating out the remaining degrees of freedom in region B. For a
pure, bipartite state, the entanglement can be measured with the von Neumann
entropy [5]. The entropy is symmetric with respect to the bipartition and zero for
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CHAPTER 1. INTRODUCTION

product states. If the system is in its ground state, the entanglement between A
and B then typically follows the so-called area law [6]. The area law states that
the entropy scales with the boundary area of the region A. Although also valid in
higher dimensions, the area law is especially interesting in one dimension as here
the boundary size between two intervals is independent of the interval length. In
1D, the area law was rigorously proven for local and gapped Hamiltonians [7].
Furthermore, it was also proven that the area law follows from an exponential
decay of the correlations [8].

The area law is the basis of the success of matrix product states (MPS) [9] and the
density-matrix renormalization group (DMRG) [10–12] in the classical simulation
of quantum many-body ground states in one dimension. DMRG (see section 2.9 for
details) is a variational method that allows very accurate ground state calculations
in one-dimensional systems. It is intimately connected to MPS as a ground state
obtained via DMRG assumes an MPS form [13, 14]. MPS, by construction, fulfill
an area law and are discussed in detail in section 2.8.

The area law might be violated for long-range interactions [15] although it holds
true for certain gapped long-range 1D models [16]. However, the area law is
most prominently found to be violated for critical (gapless) lattice models [17,
18]. If the system is one-dimensional and at its critical point [19], the correlation
length diverges and the system’s low-energy physics can be described by a 1 + 1D
conformal field theory (CFT). In an infinite, one-dimensional system, one can show
that at the critical point, the entanglement entropy of an interval of length ` is
proportional to ln(`) [20]. In the non-critical regime, but close to the critical point,
the entropy scales like ln(ξ), where ξ is the correlation length [18]. Remarkably,
this behaviour of the entanglement entropy at and close to a quantum phase
transition is universal. This means that to leading order, the results for various
models only differ by the prefactor of the logarithmic growth, related to the central
charge.

Until now, we have discussed the entanglement of ground states of one-dimensional
systems which is limited by the area law in many cases. Exceptions include critical
models in which a logarithmic divergence with the subsystem length ` is found.
However, the entanglement drastically increases if we bring the system out of
equilibrium. One typically observes a rapid growth of entanglement during time
evolution which in turn massively restricts the simulability of the system.

The easiest way of studying such nonequilibrium dynamics is a quantum quench

4



CHAPTER 1. INTRODUCTION

[21]. In a global quench, a global parameter of the Hamiltonian, like a magnetic
field, is changed instantaneously. After such a global quench, one finds that the en-
tanglement entropy of an interval increases linearly in time and eventually reaches
an extensive value for long times. This was proven within a CFT in [22], where
Calabrese and Cardy also gave an intuitive, phenomenological explanation: Due to
the high energy of the initial state with respect to the time evolution Hamiltonian,
at t = 0 entangled quasiparticle pairs are created throughout the system with a
certain production rate and then spread out ballistically. If two quasiparticles of
a pair are located inside and outside the interval, respectively, they contribute to
the entanglement of that interval. This, by construction, leads to a linear entropy
increase in time which eventually saturates to an extensive value as both quasi-
particles leave the interval. This picture was further developed in [23], where,
after identifying the entropy production rate, a quasiparticle interpretation was
proven for free-fermion systems, taking into consideration the energy dispersion
that yields different quasiparticle velocities.

A more general scenario where the quasiparticle picture is expected to describe the
nonequilibrium entanglement dynamics is in integrable systems. The integrability
ensures that these quasiparticles have an infinite lifetime. Moreover, an extensive
number of conserved quantities exists, which has a strong impact on the relaxation
and transport properties after a quench. The dynamics of integrable quantum
systems out of equilibrium has recently been a very active field of research [24,
25]. After bringing the state out of equilibrium, the relaxation towards a stationary
state during time evolution is observed [26]. In a generic, isolated quantum system
this stationary state is expected to be locally described by a Gibbs ensemble.
However, integrable systems have an extensive number of conserved quantities.
Thus, a local relaxation towards a generalized Gibbs ensemble (GGE) is expected
[27, 28]. This GGE maximizes the entropy under the constraint of the non-trivial
conserved quantities with the help of Lagrange multipliers which are fixed via the
expectation values in the initial state [28].

Eventually, the quasiparticle description of entropy spreading after a global quench
for noninteracting chains [23] was generalized to interacting integrable models. In
[29], the extensive subsystem entropy at long times was connected to the thermo-
dynamic entropy of a GGE. For shorter times, the entropy growth rate also con-
tains the dressed quasiparticle velocities. For particular quench scenarios, these
ingredients may be obtained within the Bethe ansatz framework, allowing accurate
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CHAPTER 1. INTRODUCTION

predictions of the steady state entropy [30].

In a simple global quench, both initial state and time evolution Hamiltonian are
homogeneous. Another class of quenches is characterized by an inhomogeneous
initial state, where two homogeneous half chains with different initial states are
joined. These states could correspond to different thermodynamic parameters
such as temperature or chemical potential. The recently developed generalized
Hydrodynamics (GHD) [31, 32] is a powerful tool to study nonequilibrium dy-
namics after such inhomogeneous initial states in integrable systems. The theory
is based on both hydrodynamic principles as well as the thermodynamic Bethe
ansatz (see [33] for a recent review). For long times and large distances from
the inhomogeneity, one assumes that a local quasi-stationary state (LQSS) is ob-
tained which is described by a GGE due to the integrability of the system. In
this limit, one assumes a description based on fluid cells in which the entropy
is locally maximized with respect to all conserved quantities. This means that
the hydrodynamic continuity equations must be extended to non-trivial conserved
charges. By considering continuity equations for charge and current densities in
this LQSS, GHD is able to describe the occupation numbers of the quasiparticles
for long times and large distances from the inhomogeneity. Those quasiparticles
travel with an effective velocity due to elastic scattering effects.

GHD has been successfully applied to the XXZ model [34–40] as well as to the
Hubbard [41] and the Lieb-Liniger model [42]. It was later extended to also cap-
ture diffusive corrections to the transport in integrable systems [43–45]. Very
lately, some crucial conjectures in the GHD derivation, regarding the expecta-
tion values of the current operators in local equilibrium, were proven rigorously
[46, 47]. Moreover, by combining GHD with the quasiparticle picture introduced
above, the entanglement dynamics after various inhomogeneous quenches were
calculated, finding again a linear entropy growth with time [48, 49].

Until now, we have only considered quenches followed by a linear growth of entropy.
However, there are other quench scenarios which lead to a weaker, logarithmic
increase of entropy. In a local quench, only a local parameter is changed by
connecting two, initially separated, half chains in their ground states [50, 51]. The
entropy after the connection of two half chains at criticality was found to grow
logarithmically in time [50, 51]. Note that although a light-cone spreading with
a maximal group velocity is observed, it remains unclear whether a quasiparticle
description, analogous to the global quench, exists.
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The connection of a completely filled half chain with an empty half chain is called
a domain wall quench. This is the simplest case of an initial state that is not
translationally invariant and produces a logarithmic entanglement growth in time
for free-fermion systems [52, 53]. Another special example of an inhomogeneous
initial state is the so-called geometric quench [54, 55] in which a half-filled chain
in its ground state is connected to an empty half chain. A geometric quench
corresponds to a sudden change of geometry of the system, i.e., the system size is
changed. After that, a particle flow from the half-filled half chain into the vacuum
of the second half chain, accompanied by a logarithmic increase of entropy, was
observed [55]. However, the results obtained in [55] mainly focus on the XX chain,
presenting only numerical data for the XXZ chain as GHD techniques were not
yet available.

In order to better understand the interacting case, we revisited the geometric
quench, applying GHD techniques in the gapless regime of the XXZ chain. The
GHD formalism enables us to perfectly capture the magnetization profiles after
the quench, finding that they depend qualitatively on the sign of the interac-
tion strength. The numerical simulations were performed via the time-dependent
DMRG (tDMRG) algorithm [56, 57]. Furthermore, we proposed a heuristic CFT
ansatz for the entropy dynamics which captures the entanglement entropy in the
noninteracting case, confirmed by calculations via correlation matrix techniques
[58]. Although we do not find any obvious generalization to the interacting case,
the numerical entropy profiles are qualitatively similar to the noninteracting case
and the profile edges are determined by the front velocities as in the GHD formal-
ism. We conclude our discussion by studying the fluctuations of the subsystem
magnetization and their relation to the entanglement. A proportionality between
these two quantities was found for ground states of XX [59–62] and XXZ [60]
chains, involving the Luttinger parameter. We show that this proportionality
between entropy and magnetization fluctuations also holds true in the nonequilib-
rium dynamics following a geometric quench: We find the same proportionality
between the profiles, especially for repulsive interactions, whereas for attractive
interactions, strong oscillations of the fluctuations complicate the comparison.

Up to now, we have considered cases where a homogeneous time evolution Hamilto-
nian is applied. A natural alteration of the setup is to consider an inhomogeneous
Hamiltonian where the translational invariance is broken by inserting a hopping
defect on the bond connecting two half chains. Such a defect in general destroys

7



CHAPTER 1. INTRODUCTION

the integrability of the system except for free-fermion chains in which hopping
defects were studied in [59, 63–65]. For an unbiased quench across a defect, where
the two half chains are initialized in their ground states at half filling, a logarith-
mic growth of entanglement was observed [64, 66]. The dynamics of the system
completely change if a bias is applied by choosing different initial fillings for the
two half chains. Due to this bias, a particle current will emerge, causing quasi-
particles to be partially transmitted and reflected from the defect and leading to
a linear increase of the entropy in time [64]. Although this behaviour reminds of
the quasiparticle description after a global quench, the situation here is different
as quasiparticles are created continuously in time and only at the defect.

We may now introduce a tripartite setting in which we measure the entanglement
between two adjacent intervals A1,2 which are located symmetrically around the
defect, embedded in the environment B. This setup allows to study the difference
in the entanglement behaviour after a global quench and the biased quench across
a defect. In the former case, quasiparticle pairs are created throughout the chain
and only at t = 0. Thus, the quasiparticles will eventually leave the finite intervals
A1,2, resulting in a decrease of entanglement [67, 68]. In contrast, for a biased
quench across the defect, quasiparticles are created continuously at the defect.
Hence, after a linear increase for shorter times, the entanglement will saturate
and does not decrease again for long times.

Tracing out the environment B in a tripartite setup leads to a reduced density
matrix ρA in a mixed state. Though, the von-Neumann entropy is only a proper
measure of entanglement for bipartite, pure states. The negativity, however, can
measure the entanglement of mixed states [69]. The negativity measures how
much the spectrum of the partially transposed reduced density matrix ρT1A fails to
be positive via the trace norm. In the special case of fermionic Gaussian states, ρT1A
can be written as a linear combination of two Gaussian operators [70]. However,
one can apply the partial time-reversal instead of the partial transposition which
leads to a Gaussian operator [71]. This allows an alternative definition of fermionic
negativity [72] which can be evaluated using covariance matrix techniques [73].
The negativity has been considered for global quenches [67, 68], for local quench
scenarios [74, 75] as well as for initial states with a density or temperature bias
[76–78].

We studied the entanglement negativity across a defect after joining two free-
fermion half chains. The negativity is calculated between two adjacent intervals
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of length `, symmetrically surrounding the defect. In the ground state, the nega-
tivity grows like ln(`) with a prefactor which depends on the defect strength and is
termed effective central charge ceff . For an unbiased quench with equal fillings, we
find a logarithmic increase in time of the entanglement negativity. The prefactor
of the negativity growth is found to be almost the same as for the ground state
calculations. In the case of a biased quench across a defect, the ansatz introduced
above is applied where quasiparticle pairs are created at the defect. This ansatz
accurately describes the negativity which at first increases linearly and then satu-
rates to an extensive value. For different initial fillings other than the domain wall
initial state, the generalization of the quasiparticle ansatz is straightforward and
the behaviour is qualitatively the same. Finally, we study the unbiased quench for
an XXZ chain, as the interacting case is computationally much more demanding
[79]. We find an entropy behaviour that is, up to a rescaling of the Fermi velocities,
similar to the case of a free-fermion chain.

Interestingly, the negativity was found to be proportional to the α = 1/2 Rényi
mutual information after a global quench [67]. For the ground state of a free-
fermion chain with a defect at the center, we find that the same relation holds
true for large interval lengths `. For an unbiased quench with equal fillings, this
proportionality still holds true. However, if we consider the biased quench across
a defect, the difference between the subleading corrections for the entanglement
negativity and the mutual information stays finite in the steady state, even for
large interval lengths.

Until now, we have discussed entanglement dynamics following quantum quenches.
However, nonequilibrium dynamics can also be induced due to the insertion of lo-
cal operators. The research on local operator insertions was initiated within a
CFT context [80–82]: The initial state is excited from the vacuum of the CFT
by the insertion of a local primary operator and it was found that the excess en-
tropy obtains a constant value, depending on the quantum dimension of the local
primary. The entropy of a segment is only increased by the linearly propagat-
ing excitations when they are passing through said segment. The entanglement
spreading after local operator excitations has been studied for fermionic fields [83],
descendant fields [84, 85], multiple excitations [86] and for finite temperatures [87]
within a CFT whereas only few results on local-operator excitations in integrable
spin chains exist. These results only cover free-fermion models like the Ising chain
[88], the XX chain [89] as well as XY chains [90, 91]. In contrast to CFT, one here
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has to decompose the local excitations into quasiparticles, spreading with different
velocities. In XY chains, the excess entropy after a domain wall quench, induced
by a local fermionic excitation, was described by a simple probabilistic quasiparti-
cle ansatz [90, 91]. For a bipartition, the density ratio N counts the quasiparticle
excitations that have reached the entangling point. N can be interpreted as the
probability of the initial local excitation reaching this point. The excess entropy
due to the quench can be calculated via the binary entropy function involving N
[91].

Up to now, only local-operator excitations in noninteracting spin chains have been
considered. We studied the entanglement spreading after the insertion of differ-
ent local fermionic operators in both the gapless and the antiferromagnetic gapped
phase of the XXZ chain. At first, a fermionic creation operator is considered, after
which the entanglement is well described for moderate interactions by the quasi-
particle ansatz discussed just above, considering only the lowest-lying spinons.
Spinons are low-energy excitations above the ground state that follow from the
Bethe ansatz [92]. The agreement is good for a moderate interaction strength,
for larger interactions, the profiles become more complicated as also higher-energy
excitations, in particular particle-hole excitations for attractive interactions, con-
tribute. These excitations have a larger group velocity than spinons and thus
determine the edge position of the entanglement profile.

The profiles after a local Majorana excitation show a qualitatively very similar be-
haviour but the ansatz has to be rescaled to match the profile maxima. In order to
understand the difference, we studied the dependence of the Rényi entropies on the
anisotropy ∆ in a Luttinger liquid theory, which describes the low-energy physics
of the XXZ chain. Our CFT results show a good qualitative agreement with the
∆-dependent excess entropy from the tDMRG calculations for short times. For
the asymptotic excess entropy however, the ∆-independent result ln(2) is found
after a fermionic creation operator excitation, which is doubled in the case of a
Majorana excitation for ∆ 6= 0 due to the left-right mixing of the chiral bosonic
modes. Finally, we studied a modified Majorana excitation in the gapped phase
which excites an antiferromagnetic domain wall. We propose an ansatz for the
asymptotic entropy which has a nontrivial, multiplicative factor that depends on
the ground state entropy.

This doctoral thesis is structured as follows: Chapter 2 introduces the models
and methods applied in this thesis. At first, some basic concepts and the models
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considered are introduced. We then discuss the Bethe ansatz framework as well as
the GHD formalism. Furthermore, we introduce the entanglement measures Rényi
entropy as well as logarithmic negativity and present a CFT approach to calcu-
late them. We then discuss the nonequilibrium entanglement dynamics following
different quantum quenches. Finally, we introduce the numerical tools applied
throughout the thesis, namely MPS as well as DMRG. In chapter 3, we discuss
the magnetization and entanglement dynamics following a geometric quench in
the XXZ chain. The entanglement negativity dynamics after quantum quenches
across a defect are studied in chapter 4. Finally, in chapter 5, the entanglement
spreading after different local fermionic operator insertions is presented. We con-
clude the thesis with a summary of the presented results in chapter 6.
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Chapter 2

Models and Methods

2.1 Basics

This section introduces the basic concepts that are needed throughout the whole
thesis. We are going to consider one-dimensional spin-1/2 chains. On each site j
of the chain, the operators Sx, Sy and Sz are defined as1

Sx =
1

2

(
0 1
1 0

)
Sy =

1

2

(
0 −i
i 0

)
Sz =

1

2

(
1 0
0 −1

)
. (2.1.1)

The local Hilbert space on each site is then spanned by the two eigenvectors of
the Sz operator:

Sz |↑〉 =
1

2
|↑〉

Sz |↓〉 = −1

2
|↓〉 .

(2.1.2)

Thus, the local Hilbert space dimension on each spin-1/2 site is 2.
It is convenient to define the ladder operators S± = Sx± iSy. Applying the ladder
operators on the basis states gives

S+ |↑〉 = 0, S+ |↓〉 = |↑〉 ,
S− |↑〉 = |↓〉 , S− |↓〉 = 0 .

(2.1.3)

1In this thesis, we are using the convention ~ = 1.
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The matrices we have just introduced are related to the Pauli matrices as

Sαj =
σαj
2
. (2.1.4)

As the local Hilbert space dimension on each site is 2, a spin-1/2 chain of length
L has Hilbert space dimension

dim(H) = 2L . (2.1.5)

The spin on each site |σj〉 can either have the value |↑〉 or |↓〉. A state defined on
the full chain, written in the Sz basis, thus has the form

|σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉 ≡ |σ1σ2 . . . σL〉 := |σ〉 . (2.1.6)

Eventually, we can write an arbitrary state on the spin chain as a linear combina-
tion of the basis vectors

|ψ〉 =
∑
σ

cσ |σ〉 , (2.1.7)

where the 2L coefficients cσ determine the state. Having defined a state |ψ〉, the
corresponding density matrix is given by

ρ = |ψ〉 〈ψ| . (2.1.8)

The density matrix ρ has only real, non-negative eigenvalues and fulfills

Tr (ρ) = 1 . (2.1.9)

Usually, one is only interested in an observable supported on a finite subsystem.
Let us denote the region of interest by A whereas the rest of the system is B = Ā.
The reduced density matrix of the subsystem A is then given by

ρA = TrB (ρ) . (2.1.10)

The physics of the subsystem A is fully encoded in the reduced density matrix ρA.
Using ρA, one can determine all the correlation functions which are local within
A. For an operator which is the product of local operators, Ô =

∏
j Ô(xj) with

xj ∈ A, the expectation value is given by

〈ψ| Ô |ψ〉 = Tr
(
ρAÔ

)
. (2.1.11)
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2.2 Models
This section introduces the spin chain models considered in this thesis, follow-
ing the books by Takahashi [92] and Franchini [93]. The XXZ spin chain is
an integrable model that describes one-dimensional, magnetic materials with an
anisotropy along the z-axis. It is exactly solvable applying Bethe ansatz tech-
niques as discussed in Sec. 2.3. During time evolution, the total magnetization in
z-direction is conserved. Furthermore, the flipping of all the spins is a symmetry
of the Hamiltonian. In our studies, we are mainly interested in the ground state of
the zero-magnetization sector Sz = 0. The XXZ Hamiltonian for open boundary
conditions is given by

ĤXXZ = J
L−1∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
, (2.2.1)

where Sαj are spin-1/2 operators acting on site j and ∆ the anisotropy parameter.
The coupling parameter J determines the energy scale and is set to J = 1. This
Hamiltonian can be rewritten in terms of the ladder operators by using

Sxj S
x
j+1 + Syj S

y
j+1 =

1

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
. (2.2.2)

The XXZ model is actually equivalent to a chain of spinless fermions with nearest-
neighbor interactions of strength ∆, where ∆ = 0 corresponds to the free-fermion
point. Applying a Jordan-Wigner transformation

σ+
j =

j−1∏
l=1

(1− 2c†l cl)c
†
j σ−j =

j−1∏
l=1

(1− 2c†l cl)cj , (2.2.3)

one can bring the Hamiltonian (2.2.1) into the form

ĤXXZ =
L−1∑
j=1

[
−1

2
(c†jcj+1 + c†j+1cj) + ∆

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)]
, (2.2.4)

where c†j (cj) are fermionic creation (annihilation) operators, satisfying anticom-
mutation relations {ci, c†j} = δij.
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∆ sets the anisotropy along the z-axis: For |∆| < 1, a gapless paramagnet is
obtained in the ground state. This gapless phase can be described by a Luttinger
liquid theory [166]. The ground state has zero magnetization and can be consid-
ered a spinon vacuum. From this vacuum, low-energy excitations called spinons
can be excited. For ∆ = 1, an isotropic ferromagnet with a gapless spectrum is
obtained.
The Hamiltonian describes an antiferromagnet along the z-direction for ∆ > 1
and a ferromagnet for ∆ < −1. Both the ferromagnetic and the antiferromagnetic
regime are gapped. In the limit ∆→ −∞, the ground state of the XXZ chain in
the ferromagnetic regime is given by the fully polarized states

|⇑〉 = |↑↑ . . . ↑〉 and |⇓〉 = |↓↓ . . . ↓〉 (2.2.5)

as a parallel ordering of neighboring spins is energetically favoured. In contrast, in
the antiferromagnetic limit ∆→∞, an anti-parallel ordering is favoured, leading
to a linear combination of the so-called Nèel states as ground states

|ψ±〉 =
|↑↓↑↓ . . .〉 ± |↓↑↓↑ . . .〉√

2
. (2.2.6)

In the antiferromagnetic regime of a finite chain, the ground state shows an Ising-
like structure and is almost degenerate with an energy difference decaying expo-
nentially in the system size L. Note that for odd L, the two ground states with
Sz = ±1/2 become exactly degenerate also for finite L. Taking the thermody-
namic limit, the two ground states are given by

|ψ±〉 =
|ψ↑〉 ± |ψ↓〉√

2
, (2.2.7)

with |ψ↑〉 and |ψ↓〉 being the ground states with spontaneously broken symmetry.
The bulk expectation value of the staggered magnetization can be obtained as [94,
95]

〈ψ↑|σzj |ψ↑〉 = −〈ψ↓|σzj |ψ↓〉 = (−1)j
∞∏
n=1

tanh2(nφ) , (2.2.8)

using the standard parametrization ∆ = cosh(φ). As one can see, in the thermo-
dynamic limit, the XXZ chain in the antiferromagnetic ground state comprises a
structure where the expectation value

〈
σzj
〉
alternates with a ∆-dependent mag-

netization.
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For ∆ = 0, one obtains the XX chain. The XX chain and the XXZ chain are both
described by a Luttinger liquid theory. The Hamiltonian of the XX chain is given
by

ĤXX = J

L−1∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1

)
. (2.2.9)

We now map the spin-1/2 operators onto spinless fermions cj by performing a
Jordan-Wigner transformation. The resulting Hamiltonian is the ∆ = 0 case of
Eq. (2.2.4) and represents a hopping chain. For the sake of simplicity, we impose
periodic boundary conditions on that hopping chain which allows to diagonalize
it via a simple Fourier transform as

c†j =
1√
L

∑
k

e−iqkjc†k cj =
1√
L

∑
k

eiqkjck , (2.2.10)

where qk = 2π
L
k. This eventually leads to the diagonalized form of the XX chain

H =
∑
k

ω(k)c†kck (2.2.11)

with the dispersion relation ω(k) = − cos(qk). The ground state is the state with
the lowest energy and all the particles are independent of each other. Thus, the
ground state is simply given by the state in which all the qk for which ω(qk) is
negative are occupied. Thus, all modes in the interval [−π/2, π/2] are occupied.
This interval is called the Fermi sea and qF = π/2 is the so-called Fermi wave
number.
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2.3 Bethe ansatz
This section gives a brief overview of the Bethe ansatz [96] solution of the XXZ
chain following [92, 93]. The Bethe ansatz allows us to study both the ground
state as well as the excitations of the XXZ chain. We start our discussion with
the fully polarized state

|⇑〉 = |↑↑ . . . ↑〉 . (2.3.1)
This state is an eigenstate of the XXZ Hamiltonian in a chain of length L with
periodic boundary conditions:

H |⇑〉 = E0 |⇑〉 , E0 =
J∆

4
L . (2.3.2)

Starting from the fully polarized state, we are now constructing states by turning
certain spins over. If we flip the spin on site nj, this is denoted as

|nj〉 = S−nj |⇑〉 . (2.3.3)

An arbitrary state with R overturned spins can then be written as

|ψR〉 =
∑
{nl}

f(n1, n2, . . . , nR) |n1, n2, . . . , nR〉 , (2.3.4)

where
|n1, n2, . . . , nR〉 = S−n1

S−n2
. . . S−nR |⇑〉 . (2.3.5)

For f(n1, n2, . . . , nR), a superposition of plane waves is taken as

f(n1, n2, . . . nR) = ΩR

R!∑
P

ei
∑R
j=1 kPjnj+

i
2

∑R
j<l Θ̃(kPj ,kPl) , (2.3.6)

where ΩR ist the normalization, P denotes the permutation of the quasimomenta
kj and Θ̃(kj, kl) = Θ(kj, kl) + π. The ansatz |ψR〉 is then inserted into the
Schrödinger equation, leading to the eigenvalue equation

(H − E)ψ =− J

2

R∑
j=1

(1− δnj+1,nj+1
) [f(n1, . . . , nj + 1, nj+1, . . . , nR) +

f(n1, . . . , nj, nj+1 − 1, . . . , nR)] +[
E0 − E + J∆R− J∆

R∑
j=1

δnj+1,nj+1

]
f(n1, n2, . . . , nR) = 0 .

(2.3.7)
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Inserting the ansatz Eq. (2.3.6) into Eq. (2.3.7), eventually fixes the scattering
phase Θ(kj, kl) as

eiΘ(kj ,kl) =
ei(kj+kl) + 1− 2∆eikj

ei(kj+kl) + 1− 2∆eikl
. (2.3.8)

Imposing periodic boundary conditions gives the quantization relations

eikjL =
∏
j 6=l

eiΘ̃(kj ,kl) = (−1)R−1
∏
j 6=l

ei(kj+kl) + 1− 2∆eikj

ei(kj+kl) + 1− 2∆eikl
. (2.3.9)

Taking the logarithm of Eq. (2.3.9), one finally obtains the Bethe equations as

kjL = 2πIj −
R∑
l=1

Θ(kj, kl) , j = 1, . . . , R . (2.3.10)

Here, the Ij with j = 1, . . . , R are the quantum numbers that determine the state.
One now parametrizes the quantization relations with the rapidities and takes the
logarithm to end up with modified Bethe equations. The parametrization of the
rapidities is chosen in a clever way such that the Bethe equations obtain a form in
which they only depend on the difference of rapidities. In the gapped phase this
parametrization is given by

eikj = ±sin(φ/2(λj + i))

sin(φ/2(λj − i))
(2.3.11)

where + corresponds to the case ∆ = cosh(φ) > 1 and − to the case ∆ =
− cosh(φ) < 1. In the gapless regime, we have the parametrization ∆ = cos(γ)
and the rapidities are defined by

eikj = −sinh(γ/2(λj + i))

sinh(γ/2(λj − i))
. (2.3.12)

Both Eq. (2.3.11) and (2.3.12) may lead to complex solutions of the Bethe equa-
tions which correspond to bound states. The string hypothesis states that in the
thermodynamic limit L → ∞, those complex solutions can be grouped in strings
in which all solutions have the same real part and equidistant imaginary parts,
called complexes. A single real solution is a 0-complex, a pair of complex solutions
with equidistant imaginary parts is called a 1/2-complex, 2 imaginary and one real
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solutions are called 1-complex and so on.
In the ferromagnetic regime ∆ < −1, the ground state is given by the fully polar-
ized state

|⇑〉 = |↑↑ . . . ↑〉 . (2.3.13)

It is assumed that each of the solutions of the Bethe equations (2.3.10) belongs to
an M -type complex of rapidities

λM,j = λM + i2(M − j)φ, j = 0, . . . , 2M , (2.3.14)

where λM ∈ [−π, π] and arbitrary string lengths are allowed. Each complex consti-
tutes an elementary excitation of a bound state of 2M+1 magnons. The dispersion
relation of such an excitation is then given by

εM(pM) =
sinh(φ)

sinh((2M + 1)φ)
[cosh((2M + 1)φ)− cos(pM)] . (2.3.15)

Note that these excitations are gapped.
In the antiferromagnetic regime ∆ > 1, the true ground state has zero magnetiza-
tion as R = L/2 spins have been turned over. In this ground state, all rapidities
are real and fill the Fermi sea. The ground-state density ρ0(λ) is given by

ρ0(λ) =
K(u)

2πQ
dn

(
K(u)λ

Q
, u

)
, (2.3.16)

where dn(λ, u) is a Jacobian elliptic function. We have used the complete elliptic
integral of the first kind

K(u) =

∫ π/2

0

dp√
1− u2 sin2(p)

(2.3.17)

which allows us to define the elliptic modulus u as

φ

π
=

1

Q
=
K(
√

1− u2)

K(u)
. (2.3.18)

For a spinon excitation, two holes are created and R = L/2 − 1. Using the
transformation as introduced in (2.3.11), one can write the condition (2.3.9) using
the rapidities as

Lθ1(λj, φ) = 2πIj +
R∑
l=1

θ2(λj − λl, φ) (2.3.19)
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which is a different form of the Bethe equations (2.3.10) which now only depends
on the difference of rapidities λj − λl. θn(λ, φ) is defined as

θn(λ, φ) = 2 tan−1

(
tan(φλ/2)

tanh(nφ/2)

)
+ 2π

[
φλ+ π

2π

]
. (2.3.20)

Taking the thermodynamic limit and performing a Fourier transform, one even-
tually obtains the energy difference due to the excitation as

∆E = εs(qr) + εs(qs) , (2.3.21)

where the spinons have momenta

qr =
2πr

L
= 2π

∫ π/φ

λr

ρ0(λ)dλ , (2.3.22)

where φ = acosh(∆) and ρ0(λ) is the ground-state density as defined in Eq. (2.3.16).
The total momentum of the excitation is given by qr+qs+π. The energy dispersion
of such a spinon in the gapped, antiferromagnetic phase is given by

εs(q) =
sinh(φ)

π
K(u)

√
1− u2 cos2(q) . (2.3.23)

Finally, we want to consider the paramagnetic, gapless phase |∆| < 1. In the
ground state of the gapless regime, all rapidities λj are real, defined on the interval
−∞ < λ <∞, and fill the Fermi sea. In the thermodynamic limit of Eq. (2.3.10),
the rapidity density is defined implicitly by the integral equation

ρ(λ) +

∫ ∞
−∞

dµ

2π
K(λ− µ)ρ(µ) =

θ′1(λ)

2π
(2.3.24)

with the differential scattering phase K(λ) = θ′2(λ) being defined through

θ′n(λ) =
sin(nγ)

cosh(λ)− cos(nγ)
. (2.3.25)

Starting from the ground state, we can now create excitations by removing ra-
pidities. Those low-energy excitations are called spinons and they are created
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by removing one rapidity from the ground state which creates two holes. The
dispersion relation of a single spinon in the gapless phase is given by

εs(q) =
π

2

sin(γ)

γ
sin(q) , (2.3.26)

using the standard parametrization ∆ = cos(γ). The total energy difference for
a spinon excitation is again given by Eq. (2.3.21) as spinons are always excited
in pairs. The total momentum of the excitation is then given by qr + qs where
0 ≤ qr,s ≤ π. The group velocity of each spinon is derived from Eq. (2.3.26) as

dεs(q)

dq
=
π

2

sin(γ)

γ
cos(q) . (2.3.27)

Furthermore, a particle-hole excitation can be created by removing a rapidity from
the real axis and placing it on the imaginary axis. Just like the spinon excitation,
this is also a low-energy excitation with Sz = 1. The dispersion relation of a
particle hole excitation is given by

εph(q) = π
sin(γ)

γ

∣∣∣sin(q
2

)∣∣∣√1 + cot2

(
π

2

(
π

γ
− 1

))
sin2

(q
2

)
. (2.3.28)

Note that these excitations are only physical for −1 < ∆ < 0 and that 0 ≤ q ≤ 2π
as this is not a composite excitation.

2.3.1 Thermodynamic Bethe ansatz

In this section, we are going to give a brief overview of the Thermodynamic Bethe
Ansatz (TBA) in the gapless regime, following [32, 92]. This formalism enables us
to study the thermodynamics of the XXZ model.
In the thermodynamic limit, according to the string hypothesis, one obtains

λj → λkα + i(nk + 1− 2a) + i
π(1− vk)

2γ
. (2.3.29)

Here, k sums over the Ns different kinds of excitation species and α indexes the
strings of a species. nk denotes the length of the corresponding string, a sums over
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the rapidities of the string and vk = ±1 denotes the parity of the string. Those
string solutions fulfill the Bethe-Gaudin-Takahashi equations

Lθj(λ
j
α)−

Ns∑
k=1

Mk∑
β=1

Θjk(λ
j
α − λkβ) = 2πIjα , (2.3.30)

where

θj = 2vjatan
[
(tan(njγ/2))−vj tanh(γλ/2)

]
≡ θ

vj
j (λ) (2.3.31)

and
Θjk(λ) =(1− δnj ,nk)θ

vjvk
|nj−nk|(λ) + 2θ

vjvk
|nj−nk|+2(λ) + · · ·+

2θ
vjvk
nj+nk−2(λ) + θ

vjvk
nj+nk

(λ) .
(2.3.32)

A given solution of the Bethe equations is determined by the corresponding set
of integers Ijα. In the thermodynamic limit, the rapidities become dense and
via the counting functions, one can establish a relation between the Ijα and the
corresponding rapidities λjα. Those rapidities are called occupied, whereas the re-
maining rapidities λ̄j are called empty. Occupied and empty rapidities correspond
to particles and holes. One can then define the so-called root densities

ρj(λ
j
α) = lim

L→∞

1

L
∣∣λjα+1 − λjα

∣∣ ρhj (λ̄
j
α) = lim

L→∞

1

L
∣∣λ̄jα+1 − λ̄jα

∣∣ (2.3.33)

which describe the particle density ρj(λ
j
α) and the hole density ρhj (λ̄

j
α). In the

thermodynamic limit, the Bethe-Gaudin-Takahashi equations can be reformulated
as the TBA equations

aj(λ) = σj
[
ρj(λ) + ρhj (λ)

]
+
∑
k

∫ ∞
−∞

dµTjk(λ− µ)ρk(µ) (2.3.34)

where
aj(λ) ≡ 1

2π

d

dλ
θj(λ), Tjk ≡

1

2π

d

dλ
Θjk(λ) . (2.3.35)

σj = sgn(qj) is nothing but a sign factor, depending on the vi. One can show
that the number of quasiparticle species is finite when γ is a rational multiple of
π. More exactly, at the so-called roots of unity points, one can find the continued
fraction representation

γ =
π

ν1 + 1
ν2+ 1

ν3+...

(2.3.36)
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in which case the number of excitation species is given by Ns =
∑

k νk. These
relations were first introduced by Takahashi and later derived from the normaliz-
ability condition for L→∞.
The distributions ρj are normalized by the total number of particles, leading to

R

L
= L−1

∑
β,j

1 (2.3.37)

which in the thermodynamic limit L→∞ gives∑
j

∫
ρj(λ)njdλ =

1

2
− 〈ρ|Sz |ρ〉 , (2.3.38)

where |ρ〉 is a Bethe ansatz state. Analogously, we obtain [32]

〈ρ| q |ρ〉 =
∑
j

∫
dλqj(λ)ρj(λ) (2.3.39)

where qj(λ) is the single particle eigenvalue of the charge q, corresponding to a
conserved quantity in the XXZ model. Using the TBA formalism just introduced,
we can now apply them in the GHD framework discussed in the following subsec-
tion. For the sake of simplicity, we will only consider one kind of quasiparticle in
the following.
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2.4 Generalized Hydrodynamics

This section is an introduction to the concept of generalized hydrodynamics (GHD)
which was introduced in [31] and [32]. The introduction of GHD massively im-
proved the understanding of the time evolution of integrable models with inhomo-
geneities. GHD can be understood as an extension of hydrodynamics to integrable
systems with help of the Bethe ansatz in which the dynamics of quasiparticle exci-
tations are described on a hydrodynamic scale. These excitations are moving freely
in interacting integrable systems but experience phase shifts when scattering on
other quasiparticles. One then makes the assumption that for very large times t
and large distances x from the inhomogeneity, a dynamical equilibrium emerges so
that the system can be described by a local quasi-stationary state (LQSS). In the
case of two homogeneous states being joined at the inhomogeneity, this LQSS is
a function of the ray variable ζ = x

t
only. In [31], GHD is introduced by choosing

a classical approach starting from the continuity equation of the conserved quan-
tities of the integrable system. In [32], Bethe ansatz solutions are the starting
point which are applied to describe the charge carried by the quasiparticles in the
LQSS. However, the final result is the same for both approaches.
For an extensive overview of GHD and hydrodynamics, see the review by Doyon
[33]. In recent years, a lot of research was done within the field of GHD. This
research includes the description of several models including the Lieb-Lininger
model [97], soliton gases [42], the Hubbard model [41] and the XXZ chain [34–40].
Further developments include the extension to describe diffusion in integrable sys-
tems [43–45] as well as the extension to quantum GHD [98]. Notably, only very
recently, Eq. (2.4.21) was proven rigorously in [46, 47]. In [47], Pozsgay derived
a generating function for both the charge density and the current operator. The
derivation is model-independent and explains the simple relation of the current
mean values using transfer matrix methods [99, 100]. For the special case of the
XXZ chain, Pozsgay demonstrates the quasi-classical interpretation of the current
mean values which are rooted in the dissipationless and factorized scattering in
integrable models.

In the approach taken in [32], which is presented in the following, Bertini et al.
start by considering a conserved charge (Q) and the corresponding density q. In
the case of integrable models, the information spreads linearly from an inhomo-
geneity because of stable quasiparticle excitations. Eventually, observables can be
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described by a stationary state and the expectation value of a density in this state
|ρ〉 reads

〈ρ| q |ρ〉 =

∫
dλq(λ)ρ(λ) , (2.4.1)

where q(λ) is the single-particle eigenvalue of the charge and ρ(λ) is the particle
density. Together with the hole density ρh(λ), they are called “root densities”.
Here, we only consider one kind of quasiparticle, in the case of several quasiparticle
species, one would have to add a sum over the species k in front of Eq. (2.4.1) and
consider eigenvalues qk and densities ρk. Due to the integrability of the system,
we will assume that for a given ζ = x/t, the expectation values of observables will
be finally described by a local quasi-stationary state (LQSS) of the form ρLQSSζ :

〈O〉x,t ≡ 〈Ψt|Ox |Ψt〉 = Tr
(
ρLQSSζ Ox

)
+ o(t−ε) . (2.4.2)

We are now focusing on one quasiparticle of that LQSS. This quasiparticle contains
charge and we denote the charge density carried from x̃ to x during the time
interval [t, t+ δt] as ∆q

x̃→x,t
. Using this notation we can write

〈q〉x,t+δt − 〈q〉x,t =

∫
dx̃

(
∆q

x̃→x,t
− ∆q

x→x̃,t

)
. (2.4.3)

However, for given x̃− x and t, quasiparticles can only contribute to ∆q

x̃→x,t
if they

have the group velocity vgr = (x− x̃)/δt:

∆q

x̃→x,t
≡
∫

dλδ(x− x̃− vgr(λ)δt)cq(λ|ζ) , (2.4.4)

where cq(λ|ζ) is the charge density which is transported by excitations with ra-
pidity ∈ [λ, λ+ dλ]. Plugging Eq. (2.4.4) into Eq. (2.4.3) we arrive at

∂t 〈q〉x,t = −
∫

dλ∂x [vgr(λ)cq(λ|ζ)] . (2.4.5)

Combining Eqs. (2.4.1) and (2.4.5) then gives∫
dλ [q(λ)∂tρ(λ) + ∂x (vgr(λ)cq(λ|ζ))] = 0 . (2.4.6)
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However, the charge density is nothing else than

cq(λ|ζ) = q(λ)ρ(λ) (2.4.7)

and after inserting Eq. (2.4.7) into Eq. (2.4.6) we arrive at∫
dλq(λ)

[
∂tρζ(λ) + ∂x

(
vgrζ (λ)ρζ(λ)

)]
= 0 . (2.4.8)

where we have now explicitly marked the ζ-dependent quantities. As q(λ) is
independent of ζ, we have obtained a continuity equation for the charge densities
and can finally write

∂tρζ(λ) + ∂x
(
vgrζ (λ)ρζ(λ)

)
= 0 , (2.4.9)

which can be, using TBA identities, recast in the form[
ζ − vgrζ (λ)

]
∂ζnζ(λ)ρtζ(λ) = 0 . (2.4.10)

Here, nζ(λ) is the occupation number defined as

nζ(λ) =
ρζ(λ)

ρζ(λ) + ρhζ (λ)
(2.4.11)

and ρtζ(λ) = ρζ(λ) + ρhζ (λ). If there exists a unique solution of ζ − vgrζ (λ) = 0 for
any λ, then one can obtain the piecewise constant solution

nζ(λ) = Θ(vgrζ (λ)− ζ)nL(λ) + Θ(ζ − vgrζ (λ))nR(λ) . (2.4.12)

We are now going to obtain the very same solution as presented in [31], which we
outline in the following. The starting point of our discussion in this classical ap-
proach, which was introduced by Castro-Alvaredo et al., is the continuity equation

∂tqi(x, t) + ∂xji(x, t) = 0 , (2.4.13)

where qi(x, t) is a local density and ji(x, t) is the local current corresponding to a
conserved quantity Qi of the integrable system with i ∈ {1, 2, . . . , N}. The density
matrix ρ will be described by a generalized Gibbs ensemble which maximizes the
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entropy under the constraint of an extensive number of conserved quantities and
has the form

ρ =
e−
∑
i βiQi

Tr
(
e−
∑
i βiQi

) , (2.4.14)

where the βi are the potentials corresponding to the Qi. Depending on the consid-
ered system, Q1 could e.g. be the Hamiltonian H and β1 the inverse temperature.
The vector of βi is denoted as β = (β1, β2, . . . , βN). Taking the Gibbs averages
〈. . .〉β establishes a connection between the averages and the potentials. We denote
the averages as

qi = 〈qi〉β(x,t) , q(x, t) = 〈q〉β(x,t)

ji = 〈ji〉β(x,t) , j(x, t) = 〈j〉β(x,t)

(2.4.15)

and because of the connection between averages and potentials, the ji are also a
function of the qi:

j = F (q) . (2.4.16)

We expect that a hydrodynamic description emerges at large space-time scales.
This emergence is based on local entropy maximization only and means that the
expectation value of an operator 〈O(x, t)〉 goes towards 〈O〉β(x,t). We can now,
using Eq. (2.4.13), obtain

∂tq(x, t) + ∂xj(x, t) = 0 . (2.4.17)

We denote the one-particle eigenvalue of the conserved charge Qi as hi, giving for
example the energy h1 = e for Q1 = H or the momentum h2 = p for Q2 = P .
Using these hi, we can denote the average densities as

qi =

∫
dλρ(λ)hi(λ) . (2.4.18)

Applying the Bethe ansatz, one arrives at

2πρs(λ) = p′(λ) +

∫
dµK(λ− µ)ρ(µ) , (2.4.19)

where we used the state density defined as ρs(λ) = ρ(λ)+ρh(λ). p′(λ) = dp(λ)/dλ
and K(λ) denotes the differential scattering phase. This transformation can also
be inverted, leading to

2πρ(λ) = n(λ)p′dr(λ) , (2.4.20)
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where the dressing operation takes into account the scattering between the quasi-
particles and is defined as the solution of the integral equation (3.2.5). If we intro-
duce the current spectral density ρc(λ), we can write, analogously to Eq. (2.4.18),

ji =

∫
dλρc(λ)hi(λ) , (2.4.21)

where we define ρc(λ) via
ρc(λ) = v(λ)ρ(λ) . (2.4.22)

Here, v(λ) is given by the dressed quasiparticle group velocity

v(λ) =
e′dr(λ)

p′dr(λ)
(2.4.23)

which is sometimes also referred to as the effective velocity. The group velocity
itself is defined as

vgr =
e′(λ)

p′(λ)
(2.4.24)

and is also connected to the dressed group velocity via

v(λ) = vgr(λ) +

∫
dµ
K(λ− µ)ρ(µ)

p′(λ)
[v(µ)− v(λ)] . (2.4.25)

If we now combine Eqs. (2.4.17), (2.4.18) and (2.4.21) we arrive at

∂tρ(λ) + ∂xρc(λ) = 0 . (2.4.26)

However, using the relation between ρc(λ) and v(λ) from Eq. (2.4.22) as well as
Eq. (2.4.25), we can finally rewrite Eq. (2.4.26) as

∂tρζ(λ) + ∂x(v(λ)ρζ(λ)) = 0 . (2.4.27)
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2.5 Entanglement measures
The phenomenon of entanglement is the essential characteristic of quantum me-
chanics, the fact that makes it so different from classical physics.
This section introduces the entanglement measures Rényi entropy and logarithmic
negativity as well as some related quantities. At first, we are going to discuss the
entanglement entropy, a special case of the Rényi entropy. Then we will introduce
the entanglement negativity, especially with respect to Gaussian states. Finally,
we will briefly mention fluctuations as well as the mutual information, which are
both quantities that are related to entanglement.

2.5.1 Entanglement entropy

The role of entanglement in quantum many-body systems is widely studied as in
the case of critical chains [17, 101], the XY chain [102] and in free lattice mod-
els [58, 103]. Entanglement entropy within quantum field theory and conformal
field theory was studied extensively, especially by Calabrese and Cardy [18, 22,
104, 105]. A review of entanglement in many-body physics can be found in [4], a
thorough discussion of entanglement measures is given in [106]. The discussion of
entanglement entropy in this section follows [5].

Let us begin our discussion with a general, mixed state ρ. This mixed state is
defined on the bipartite space H = HA⊗HB=Ā. This state is now called separable
[107] if it can be written as

ρ =
∑
j

pjρ
j
A ⊗ ρjB , (2.5.1)

where ρji is a mixed state defined on the respective subspace Hi and
∑

j pj = 1. If
a state is not separable, it is entangled. The entanglement entropy is a measure
for the bipartite entanglement in pure states and can be understood with the help
of the Schmidt decomposition. If we consider the pure state ρ = |ψ〉 〈ψ| with
the bipartition A and B, the Schmidt decomposition (which is discussed in more
detail in section 2.8) reads

|ψ〉 =

min(DA,DB)∑
α=1

dα |A〉α |B〉α . (2.5.2)
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That relation was obtained from |ψ〉 =
∑

i,j ci,j |i〉A |j〉B via an SVD where |i〉A
and |j〉B are basis sets in the respective subsystems A,B with dimensions DA,B. A
and B are unentangled if there is only one non-vanishing coefficient dα = 1. The
singular values dα can thus be employed to measure the non-separability of the
pure state and to quantify the entanglement. Each state which cannot be written
as a product state is entangled. To get a quantitative measure of entanglement,
the von Neumann entropy was introduced as

S(ρA) = −Tr (ρA ln (ρA)) . (2.5.3)

With pi being the eigenvalues of ρA this leads to

S(ρA) = −
∑
i

pi ln (pi) , (2.5.4)

which is the Shannon entropy of the eigenvalues of the reduced density matrix ρA.
We can now relate the entanglement entropy between the two subsystems A and B
to the Schmidt decomposition of the system. Applying the Schmidt decomposition
leads to

ρ =
∑
α

∑
β

dαdβ |A〉α β 〈A| |B〉α β 〈B| (2.5.5)

which makes it easy to read out the reduced density matrices (cf. Eq. (2.1.10)):

ρA =
∑
α

d2
α |A〉α α 〈A|

ρB =
∑
α

d2
α |B〉α α 〈B| .

(2.5.6)

From this notation we can extract the entropies as

S(ρA) = S(ρB) = −
∑
α

d2
α ln

(
d2
α

)
. (2.5.7)

Apparently, S(ρA) = S(ρB) meaning that the entropy is symmetrical: A is as
much entangled with B as B is entangled with A. Thus, we can speak of the
entanglement entropy between A and B. A and B are maximally entangled when
all dα are the same i.e., d2

α = 1
D
with D = min(DA, DB). This leads to a maximum

entanglement of

Smax = −D
(

1

D
ln

(
1

D

))
= ln (D) . (2.5.8)
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For a product state, there is only one singular value d = 1, leading to S = 0, so a
product state is not entangled. A singlet state is given by

|ψS〉 =
1√
2

(|↑〉A |↓〉B − |↓〉A |↑〉B) (2.5.9)

which corresponds to singular values d2
1 = d2

2 = 1
2
. Thus, a singlet is a maximally

entangled state with S = ln (2).
The von Neumann entanglement entropy is only a special case of the more general
Rényi entropy which for the reduced density matrix ρA is defined as

Sα(ρA) =
1

1− α ln (Tr (ραA)) . (2.5.10)

For integer α ≥ 2, the Rényi entropies can be measured in cold-atom and ion-
trap experiments [108]. For integer α, the entire spectrum of ρA can be obtained
from the entanglement spectrum of the Rényi entropies [109]. The von Neumann
entanglement entropy is obtained from the Rényi entropy in the limit

S(ρA) = lim
α→1

Sα(ρA) . (2.5.11)

The Rényi entropy can be calculated for different setups within a CFT as it can
be found in section 2.6 on the CFT approach to entanglement.

2.5.2 Entanglement negativity

This subsection introduces the entanglement negativity following [69, 71]. The
entanglement entropy is a useful measure of entanglement for pure states: For a
bipartite, pure state, the entanglement between these two partitions can be cal-
culated as discussed above. For mixed states, however, this is not possible as
classical and quantum correlations would not be well separated. The mutual in-
formation (cf. Eq. (2.5.22)) between those two intervals would also measure both
the classical correlations as well as the entanglement and is thus an upper bound
on the entanglement between them. Besides other proposed measures (see [5, 106]
and references therein), the entanglement negativity, which was first mentioned in
[110], was proposed as a computable entanglement measure by Vidal and Werner
[69]. The negativity allows to calculate the entanglement between noncomple-
mentary intervals A1 and A2 which are embedded in B and A = A1 ∪ A2. The
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entanglement negativity is based on the Peres-Horodecki criterion which states
that a state ρA1,A2 is separable if and only if ρT1A ≥ 0, i.e., if the partial transpose
of the reduced density matrix is positive [5, 107, 111, 112].
ρT1A denotes the partial transpose of ρA with respect to A1, being defined as

〈iA1 , jA2| ρT1A |kA1 , lA2〉 = 〈kA1 , jA2 | ρA |iA1 , lA2〉 . (2.5.12)

The entanglement negativity is then given by

N (ρA) =

∥∥ρT1A ∥∥1
− 1

2
, (2.5.13)

where
∥∥ρT1A ∥∥1

denotes the trace norm of ρT1A . For an operator O, the trace norm is

defined as ‖O‖1 = Tr
(√

O†O
)
. If O is Hermitian, the trace norm equals the sum

of the absolute values of the eigenvalues of O. The entanglement negativity can
thus be interpreted as measuring the extent to which the spectrum of ρT1A contains
negative eigenvalues, how much it fails to be positive definite [107]. The entangle-
ment negativity is a non-convex entanglement monotone [113] and vanishes only
for unentangled states. The logarithmic negativity

E = ln
∥∥ρT1A ∥∥1

(2.5.14)

is an entanglement monotone as well but also fulfills additivity as [69]

E(ρA1 ⊗ ρA2) = E(ρA1) + E(ρA2) . (2.5.15)

We are now going to consider Gaussian states and will start with the simpler
bosonic case. For bosonic Gaussian states, the partial transpose is the same as the
partial time-reversal (TR) [71, 112]. The partial transpose of a bosonic Gaussian
state is again Gaussian which allows the calculation of the negativity with the help
of covariance matrices [114]. The geometric interpretation of this partial transpose
is that it is a mirror reflection in phase space [112]. However, in fermionic systems,
the partial transpose and the partial TR in general differ as due to the fermionic
anticommutation relations, a minus sign might be acquired. Furthermore, the
partial transpose of a fermionic Gaussian state is in general not Gaussian [70]. Yet,
one can instead use the partial TR to define a fermionic analog of the negativity
as [71]

Ef = ln
∥∥ρR2

A

∥∥
1
, (2.5.16)
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where R2 denotes the partial TR with respect to A2. This partial TR of a fermionic
density matrix is Gaussian [71] and the fermionic negativity Ef is indeed a proper
measure of entanglement [72].
We are now going to use the fermionic negativity defined in Eq. (2.5.16) as an
entanglement measure for fermionic Gaussian states. It is convenient to write the
reduced density matrix using Majorana fermions cm, satisfying the anticommuta-
tion relations {cm, cn} = 2δmn. With the help of these Majorana fermions, we can
expand ρA as

ρA =
∑
κ,τ

|κ|+|τ |=even

wκ,τc
κ2m1−1

2m1−1 . . . c
κ2m`1
2m`1

c
τ2m′1−1

2m′1−1 . . . c
τ2m′

`2

2m′`2
. (2.5.17)

Here, the sites of subsystem A1 are labelled by {m1, . . . ,m`1} and those of sub-
system A2 are labelled by {m′1, . . . ,m′`2}. κj with j = 2m1 − 1, . . . , 2m`1 and τj′
with j′ = 2m′1−1, . . . , 2m′`2 are bit strings associated with the subsystems A1 and
A2, with their norms defined as |κ| =

∑
j κj and |τ | =

∑
j′ τj′ , respectively. The

bit strings determine which Majorana operators are included as c0
j = 1 or c1

j = cj
and wκ,τ weighs their respective contributions. Note that the overall number of
Majorana operators has to be even which reflects the global fermion-number par-
ity symmetry of the state. Using this notation, the partial time reversal R2 with
respect to A2 acts as [71]

ρR2
A = O+ =

∑
κ,τ

|κ|+|τ |=even

wκ,τ i
|τ |c

κ2m1−1

2m1−1 . . . c
κ2m`1
2m`1

c
τ2m′1−1

2m′1−1 . . . c
τ2m′

`2

2m′`2
, (2.5.18)

where we have introduced the Gaussian operator O+ that appears also in the result
of the standard logarithmic negativity E . Please note that, in general, O+ is not
a Hermitian operator and its conjugate will be denoted by O− = O†+. Using this
notation, we can now obtain the fermionic logarithmic negativity as

Ef = ln
∥∥ρR2

A

∥∥
1

= ln Tr
√
O+O− (2.5.19)

in which the negativity depends on the product of two Gaussian operators.
It was shown that for free fermions, one can write ρT2A as a linear combination of
the two Gaussian operators O+ and O− as [70]

ρT2A =
1− i

2
O+ +

1 + i

2
O− . (2.5.20)
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The result in (2.5.16), based on the partial TR, coincides with an upper bound
for the entanglement negativity that was presented for Gaussian states as [73]

E ≤ Ef + ln
√

2 . (2.5.21)

The negativity in free-fermion systems was further considered in [115], where this
bound of the fermionic negativity was presented and it also was conjectured that
the bound might be tighter.

The entanglement between separated blocks in spin chains in the ground state of
critical systems was studied in [116], using the spectrum of the partially trans-
posed density matrix obtained via DMRG methods. Similar results were obtained
independently in [117]. The approach in [116] was later generalized in [79] to cal-
culate the entanglement negativity in spin chains for arbitrary tripartitions within
MPS/DMRG. Further studies investigated the negativity spectrum [118]. Differ-
ent approaches include the calculation of the partially transposed RDM applying
Monte Carlo methods [119, 120].
Finally, we want to mention some results in which the negativity after non-
equilibrium dynamics was studied. Two harmonic half chains, initialized at differ-
ent temperatures and then joined are considered in [76]. In [77], the local quench
after joining two half chains at finite temperature was considered, focussing exclu-
sively on adjacent intervals. The analytical formulas presented in [77] agree with
the numerical results in the harmonic chain in [76]. Entanglement negativity at
finite temperatures has also been studied within CFT [121]. The entanglement
negativity for two adjacent and disjoint intervals after a global quench is then
studied within the quasiparticle picture and CFT in [68]. The time evolution after
joining two critical half chains was calculated in a CFT in [74]. The entanglement
negativity within the CFT framework is discussed in section 2.6.
A quasiparticle description for the dynamics of the logarithmic negativity after
a quantum quench in integrable systems is given in [67]. Notably, a procedure
to measure the entanglement negativity experimentally is proposed in [122]. The
recent studies of symmetry resolved entanglement also included studies of the
entanglement negativity [75, 123].

2.5.3 Related quantities

This section introduces some further quantities of interest that have been studied
and are related to the entanglement measures introduced above. Having intro-
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duced the Rényi entropy Sα(ρA) of a subsystem A, we can also define the Rényi
mutual information Iα between subsystems A1 and A2 as [3]

Iα = Sα(ρA1) + Sα(ρA2)− Sα(ρA) , (2.5.22)

where A = A1∪A2 and the whole system is given by A∪B. The mutual information
is symmetric in A1 and A2. For α = 1, we get the standard (von Neumann)
mutual information which is a measure of both classical and quantum correlations
and is thus an upper bound to the entanglement [124]. Although I1 is not a
measure of entanglement, it still fulfills an area law [125] which may be violated
for Hamiltonians with long-range interactions [126]. In general, the Rényi mutual
information is not even a proper measure as it was found that Iα might become
negative for certain quenches and α > 2 [127]. On the other hand, it has been
proved that Iα is always positive in the range 0 < α < 2 for both fermionic and
bosonic Gaussian states [128]. The case α = 1/2 is especially interesting as it is
related to the logarithmic negativity after a global quench [67].
One more quantity that we are going to consider are the subsystem magnetization
fluctuations in a spin chain with a conserved total magnetization. For a subsystem
A, the subsystem magnetization fluctuations are defined as

F =

〈(∑
i∈A

Szi −
〈∑
i∈A

Szi

〉)2〉
. (2.5.23)

The fluctuations actually share some essential features with the entanglement
entropy [59–63]. Namely, at zero temperature, the fluctuations (and all cumulants)
are zero for a product state and the fluctuations are symmetric between A and the
remainder of the system B. Still, fluctuations are not an entanglement measure.
In the ground state of the XXZ chain, a proportionality between the fluctuations
and the entropy was reported as [60]

F ' K
3

π2
S + const. , (2.5.24)

where K denotes the Luttinger parameter [166]. The validity of relation (2.5.24)
out of equilibrium after a geometric quench in the XXZ chain is discussed in
Sec. 3.6.
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2.6 CFT approach to entanglement

In order to be able to discuss the entanglement in critical systems as well as after
quantum quenches and local operator insertions within the CFT framework, we
first introduce the concepts from CFT needed, following the seminal works by
Calabrese and Cardy [18, 104] as well as [130, 131]. As introduced in Eq. (2.5.10),
the Rényi entropy of a reduced density matrix ρA reads

Sn(ρA) =
1

1− n ln (Tr (ρnA)) . (2.6.1)

We at first consider integer values n and evaluate ln (Tr (ρnA)) as follows. We
will exclusively focus on the 1+1D case. In a quantum field theory, the partition
function of the density matrix

ρ =
1

Z
e−βH (2.6.2)

at finite temperature β is equivalent to a path integral on a cylinder with circum-
ference β. The elements of that density matrix are given by

ρ ({φx}, {φ′x′}) =

〈∏
x

{φx}
∣∣∣∣∣ ρ
∣∣∣∣∣∏
x′

{φ′x′}
〉

(2.6.3)

where the states {φx} denote a complete basis in discretized space. This expression
can be rewritten as a path integral as

ρ ({φx}, {φ′x′}) = Z−1

∫
[dφ(y, τ)]

∏
x′

δ(φ(y, 0)− φ′x′)
∏
x

δ(φ(y, β)− φx)e−SE ,

(2.6.4)
where SE denotes the Euclidian action SE =

∫ β
0
Ldτ and Z = Tr

(
e−βH

)
. The

rows and columns of the reduced density matrix are labelled by the values of the
fields at τ = 0, β. If we define A as the interval of length `, ranging from u to v,
ρA then corresponds to a cylinder with a cut along A as depicted in Fig. 2.1.
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u v
β

φ(x)

φ′(x′)

Figure 2.1: Graphical depiction of ρA in a CFT. As we have only sewed together
in region B, there remains a cut between u and v. The ends of the cuts are called
branch points.

Having now ρA at hand, the next step is to obtain Tr (ρnA) for integer n. This
problem can be tackled by applying the replica trick which reduces the problem
to the task of calculating the partition function of a Riemann surface. Taking n
cylinders, we connect them as follows: We label the n copies by 1 ≤ j ≤ n and
sew them together at the cuts x ∈ A such that φj(x, τ = 0−) = φj+1(x, τ = 0+)
and the nth copy is then again connected to the first one. If one considers the
zero temperature case, this means β →∞ and thus, ρA corresponds to an infinite
plane with a cut. Zn(A) is then given by n planes sewed together at their cuts
as it is depicted for n = 3 in Fig. 2.2. By doing so, we represent the n-sheeted

ρA ρA ρA

Figure 2.2: Three copies of ρA sewed together at zero temperature to obtain Z3(A)
as described in the text.

Riemann surface Σn in Cn as n copies of φ on the complex plane C. Finally, we
obtain Tr (ρnA) as

Tr (ρnA) =
Zn(A)

Zn
, (2.6.5)

where the partition function Z is simply obtained by sewing together the complete
edges of the cylinder instead of leaving a cut for x ∈ A as it was done before.
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Having evaluated Tr (ρnA), we can now insert it into Eq. (2.6.1) to obtain the n-
Rényi entropy.
Until now, we have considered the entropy of a single interval, ranging from u to
v. We now want to generalize this setup to multiple intervals on the n-sheeted
Riemann surface, ranging from uj to vj. In general, to evaluate such quantities, one
can work with branch-point twist fields Tn and T̄n [104, 105, 129]. The partition
function on the n-sheeted surface, consisting of n copies which are sewed together
along N cuts, can be rewritten as a path integral on the complex plane. This
path integral is taken over the Lagrangian density which is found to be a sum
of n local densities. The exchange of the n copies is a symmetry of the system
and twist fields exist whenever there is a global internal symmetry σ. In our case,
the twist field Tn is associated with the cyclic permutation σ : i 7→ i + 1 mod n
and T̄n corresponds to the inverse permutation. Using these twist fields, an n-
sheeted Riemann surface Σn,N , on which A consists of N disjoint intervals defined
on [uj, vj], has the partition function [104, 105]

ZΣn,N ∝
〈
Tn(u1)T̄n(v1) . . . Tn(uN)T̄n(vN)

〉
, (2.6.6)

where Tn(uj) opens slit j and T̄n(vj) closes it. The twist fields are primaries and
have scaling dimension

∆n =
c

12

(
n− 1

n

)
, (2.6.7)

with c being the central charge defining the model. We can now use this formalism
to obtain results for the entanglement entropy. The Sn Rényi entropy for a system
with N cuts can be calculated from

Tr (ρnA) =
〈
Tn(u1)T̄n(v1) . . . Tn(uN)T̄n(vN)

〉
. (2.6.8)

If we consider a single cut ranging from u to v with ` = |v − u|, one obtains a
two-point function of primaries, which is universal. Due to conformal symmetry,
one obtains the simple result

Tr (ρnA) =
〈
Tn(u)T̄n(v)

〉
=

cn
|v − u|2∆n

. (2.6.9)

Plugging in our results from above, the final result for the Rényi entropy is given
by

Sn =
c

6

(
1 +

1

n

)
log(`) + c′n . (2.6.10)
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which denotes the entropy of a single interval of length ` in a critical, infinite
chain in its ground state. The result for the von Neumann entropy is simply
given for n = 1. If the total system is finite with chain length L and periodic
boundary conditions are assumed, the partition function is defined on a cylinder
with circumference L. After a conformal transformation, one eventually gets

Sn =
c

6

(
1 +

1

n

)
log

(
L

π
sin(π`/L)

)
+ cn . (2.6.11)

Note that for L → ∞, (2.6.11) becomes (2.6.10) and that (2.6.11) has the sym-
metry Sn(`) = Sn(L− `). A discussion of the entanglement entropy after different
quantum quenches can be found in Sec. 2.7.

Later, the CFT treatment was also extended to calculating the entanglement neg-
ativity. Applying a replica trick, we consider integer powers of n and then dis-
tinguish between even and odd n as ne and no. Considering integer n, we get

Tr
(
ρT2A
)ne

=
∑
i

λnei

Tr
(
ρT2A
)no

=
∑
i

λnoi ,
(2.6.12)

where the λi are the eigenvalues of ρT2A . The negativity is then given by [130]

E = lim
ne→1

ln
(
Tr
(
ρT2A
)ne) (2.6.13)

whereas the limit no → 1 gives the normalization. We already know that Tr (ρnA)
is proportional to the partition function of the n-sheeted Riemann surface which
is obtained from a correlation function of twist fields as in Eq. (2.6.8). We now
want to calculate the entanglement between two intervals A1 and A2 with lengths
`1 = |u1−v1| and `2 = |u2−v2|, respectively. The effect of the partial transpose of
A2 is that the row and column indices in A2 are exchanged which corresponds to
an exchange of twist fields in the correlation function, eventually leading to [130]

Tr
(
(ρT2A )n

)
=
〈
Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)

〉
. (2.6.14)

Having the twist field correlation functions at hand, we can evaluate them to obtain
the entanglement negativity for various setups. The calculations were performed
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for both adjacent and disjoint intervals in 1+1D: The negativity of two intervals
of lengths `1 and `2 in critical systems was studied systematically within CFT in
[130, 131]. For two adjacent intervals, the negativity was found to be [130]

E =
c

4
ln

`1`2

`1 + `2

+ const. (2.6.15)

The result for finite systems is obtained straightforwardly by inserting the chord
variables. The case of disjoint intervals is much more complicated as the results
depend on the full operator content of the CFT. In [131], the entanglement nega-
tivity is also calculated for a single interval of length `, leading to

E =
c

2
ln(`) + 2 ln c1/2 . (2.6.16)

This is nothing else than the S1/2 Rényi entropy which is equal to the logarithmic
negativity for pure states. These CFT techniques have then also been successfully
applied onto the critical Ising chain [132].
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2.7 Quantum quenches

A crucial question in quantum mechanics is whether the asymptotic state after
unitary time evolution of a pure state can be described via statistical ensembles.
The simplest setup in which this issue can be studied, both theoretically and
experimentally [133–138], is the quantum quench which we are now going to in-
troduce, closely following [139]. In such a quench, an initial state |ψ0〉, usually the
ground state of a Hamiltonian H0, is time-evolved unitarily as

|ψ(t)〉 = e−iĤt |ψ0〉 (2.7.1)

with a different Hamiltonian H, inducing non-equilibrium dynamics in the sys-
tem. However, for a time evolution as in Eq. (2.7.1), the density matrix ρ(t) =
|ψ(t)〉 〈ψ(t)| never thermalizes. Instead, for a subsystem A, the system can relax
locally if the limit

lim
t→∞

lim
L→∞

ρA(t) = ρA(∞) (2.7.2)

exists. It is important to first take the thermodynamic limit and then the infinite
time limit. Here, the finite subsystem A can be arbitrarily chosen and the whole
infinite system has the property of relaxation to a stationary state, if the limit
in Eq. (2.7.2) exists for all possible A [139]. As the Hamiltonian in Eq. (2.7.1) is
time-independent, the energy is a conserved quantity and for an arbitrary quantum
system, thermalization now means that the stationary state is described by a Gibbs
ensemble as

ρA(∞) = TrĀ (ρGibbs) . (2.7.3)

Here, the Gibbs ensemble is defined as

ρGibbs =
e−βĤ

Z
(2.7.4)

with the partition function Z = Tr
(

e−βĤ
)
. This is expected to happen in generic,

isolated quantum systems.
The dynamics after a quench differ for an integrable system. An integrable sys-
tem has an extensive number of conserved quantities In and as these quantities
commute with the Hamiltonian, their expectation values are fixed during time
evolution. Thus, a relaxation to a generalized Gibbs ensemble (GGE) is expected
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for integrable systems [27–29, 140, 141], i.e., the stationary state is described by

ρGGE =
e−
∑
n λnIn

Tr
(
e−
∑
n λnIn

) . (2.7.5)

The relaxation towards a GGE was proposed in [27] which was inspired by exper-
iments with 1D Bose gases [133]. The emergence of a GGE has been shown for
observables in integrable systems [28].
In the following subsections, we will discuss the two main categories of quantum
quenches, global and local quenches, and then consider different inhomogeneous
setups such as the geometric quench [54, 55].

2.7.1 Global quench

In this subsection, the global quench is introduced, following Refs. [22, 29]. In
a global quench, the system is modified everywhere in the same way as a global
parameter is changed. Global quenches can also be realized experimentally with
cold atoms in optical lattices [138]. A physical interpretation of the entanglement
entropy after a global quench as given in Eq. (2.7.1) was introduced by Calabrese
and Cardy in [22] in the following way: With respect to the time evolution Hamil-
tonian H, |ψ0〉 has a high energy compared to the ground state of H. Thus, the
initial state is a source of quasiparticle excitations: When the system is quenched
at time t = 0, quasiparticle pairs are created throughout the chain and spread out
into opposite directions. Each two particles created at the same point are highly
entangled. It is assumed that those quasiparticles move classically with a group
velocity v(q) and that the maximum velocity is 1. In fact, the maximum velocity
with which information can travel in spin chains is limited by the Lieb-Robinson
bound [142]. During time evolution, those quasiparticles then travel ballistically,
scattering effects are ignored. If, at a certain time, one quasiparticle of the pair
has reached a point x1 ∈ A and the other one has reached x2 ∈ B, then A and B
are entangled. Note that if both quasiparticles of the pair are located within A or
both of them are located within B, then there is no contribution to the entangle-
ment between A and B.
We now assume that the entropy production rate of a quasiparticle pair with mo-
menta p′ and p′′ is determined by f(p′, p′′). The entanglement of the interval A
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with length ` is then given by [22]

SA(t) ≈ 2t

∫ 0

−∞
dp′
∫ ∞

0

dp′′f(p′, p′′)(v(−p′) + v(p′′))Θ(`− (v(−p′) + v(p′′))t)+

2`

∫ 0

−∞
dp′
∫ ∞

0

dp′′f(p′, p′′)Θ((v(−p′) + v(p′′))t− `) ,
(2.7.6)

where Θ(x) denotes the Heaviside function. As we have assumed that |v(p)| ≤ 1,
the second term cannot contribute unless t > `/2. This means that for short times
t < `/2, the entanglement growth is linear in time. For large times however, the
entanglement will only be determined by the second term, obtaining a constant
value which is proportional to the interval length `. This is in perfect agreement
with the CFT result obtained for an interval of length ` in an infinite, critical
chain after a global quench which reads [22]

SA(t) ∼
{
πct
6

if t < `/2
πc`
12

if t > `/2
, (2.7.7)

where c is the central charge of the CFT. Note that also the negativity was calcu-
lated via a CFT for global quench scenarios [68].
In [23], the entropy production rate of quasiparticles f(p′, p′′) was identified for
free fermion systems in the thermodynamic limit. Later, this quasiparticle picture
was generalized to generic integrable systems by Alba and Calabrese in [29]. It was
assumed that the quasiparticle entropy can be obtained from the thermodynamic
entropy in the stationary state. Like in [29], we want to start with a simplified
and more clear version of Eq. (2.7.6). We assume that there is only one type of
quasiparticles with quasimomentum λ, corresponding quasiparticle velocity v(λ)
and an entropy production rate s(λ). For the entropy of an interval of length `
after a global quench we then obtain [29]

S(t) ∼ 2t

∫
2|v|t<`

dλv(λ)s(λ) + `

∫
2|v|t>`

dλs(λ) . (2.7.8)

Again, we at first observe a linear increase of the entropy with time, followed by
a constant entropy proportional to ` for long times. For very large times, only
the second integral contributes. As discussed at the beginning of section 2.7, the

44



Quantum quenches

steady state at long times is expected to be described by a GGE. Thus, the entan-
glement entropy described by s(λ) must be equal to the thermodynamic entropy
of the GGE.
In a generic integrable model, there are different species of stable quasiparticle ex-
citations. Due to the integrability, those species have to be treated independently,
eventually leading to the conjecture [29]

S(t) =
∑
n

[
2t

∫
2|vn|t<`

dλvn(λ)sn(λ) + `

∫
2|vn|t>`

dλsn(λ)

]
, (2.7.9)

where vn(λ) is the velocity of the quasiparticles of type n and sn(λ) their entropy.
Remarkably, Eq. (2.7.9) constitutes a simple relation between the thermodynamic
entropy and the entanglement entropy for integrable systems in a stationary state
after a global quench [29]. sn(λ) is a function of the stationary state densities
ρ∗n,p(λ) and ρ∗n,h(λ) for particles and holes, respectively. Those densities have been
obtained for special initial states via Bethe ansatz methods and the integration
over all sn(λ) gives an extensive entropy. The ansatz from Eq. (2.7.9) was tested
numerically for various initial states of the XXZ chain, finding a very good agree-
ment with the numerical data [30].

2.7.2 Local quench

In contrast, in a local quench, the change of the time evolution HamiltonianH with
respect to H0 as introduced in Eq. (2.7.1) happens only locally. Initially, one has
two half chains in their respective ground states. Then, at time t = 0, the two half
chains are connected such that the time evolution Hamiltonian is homogeneous.
This local quench was considered for a free-fermion chain via correlation matrix
techniques and a logarithmic entropy increase in time was found [50, 143]. This
setup can also be considered in a CFT, where two half-infinite critical chains are
connected and then time-evolved. The entanglement growth after such a local
quench is then found to be logarithmic in time as [51]

Sn(t) =
c

6

(
1 +

1

n

)
log(t) + const. (2.7.10)
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This has been generalized in [144] to the case of two half chains of the same length
L/2 which are connected, followed by a logarithmic entropy increase as

S(t) =
c

3
log

∣∣∣∣Lπ sin

(
πvF t

L

)∣∣∣∣+ const. (2.7.11)

where vF is the Fermi velocity. CFT methods were also applied to obtain the
negativity after a local quench, which also leads to a logarithmic entanglement
increase in time [74].

2.7.3 Inhomogeneous quenches

Another class of quenches has an inhomogeneous initial setup but a homogeneous
time evolution Hamiltonian. In a domain wall (DW) quench, two halves of a spin
chain which are fully polarized in opposite directions, are joined and then time-
evolved with a homogeneous Hamiltonian [43, 145–148]. After such a DW quench,
a logarithmic entanglement growth was found in free-fermion chains [52, 53]. In
the geometric quench [54, 55], a fully polarized half chain and a half chain in its
ground state at zero magnetization are joined, leading to a logarithmic growth of
entanglement as well (see [55] and chapter 3 for details).

We can also alter the local quench setup by breaking the translational invariance of
the time evolution Hamiltonian. This is done by connecting the two free-fermion
half chains via a defect with a hopping λ, where λ = 1 would correspond to the
homogeneous case considered in the previous subsection. Such a local quench
across a defect leads to a logarithmic entropy increase [64, 66]. In general, a
hopping defect typically breaks the integrability of the system, thus, most results
exist for free-fermion chains [63–65]. For the Ising chain [150], a generalization of
Eq. (2.7.10) with an effective central charge, depending on the defect strength, was
found. Further studies considered a defect connecting two XXZ chains [151] as
well as the connection of more complicated defects connecting two noninteracting
chains [152, 153].

The entanglement behaviour is completely different, if we consider an inhomoge-
neous initial setup i.e., if the left and the right chain have a different initial filling
and are then connected via a defect. In that case, a linear increase of entangle-
ment is observed [64]. This setup is then described by an ansatz similar to the
quasiparticle ansatz introduced above, where now quasiparticles are transmitted
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or reflected from the defect. However, in contrast to the global quench, there is
a steady production of quasiparticles due to the particle current induced by the
unequal fillings and the quasiparticles are only created at the defect.

Let us now sum up the results on quantum quenches from this section. A global
quench is usually followed by a linear increase of entropy with time, which can be
described instructively in the quasiparticle picture. In the case of a local quench
or the geometric quench, a weaker, usually logarithmic, growth of entanglement
entropy in time is observed. This is due to the fact that the excess energy of
the quench is much higher for the global quench compared to the local quench
scenario. A linear increase of entropy can also be observed for a biased quench
where two half chains with different fillings are connected via a defect. For further
reading we refer to the review articles [21, 24, 26, 154] and references therein.

A different way of exciting the ground state is by inserting a local fermionic oper-
ator. Local operator insertions were first studied within a CFT [80–82], based on
the CFT approach introduced in section 2.6. Moreover, they have been considered
for various setups [87, 89, 90, 155–157]. However, previous works only considered
local operator insertions in non-interacting spin chains like the Ising chain [88], the
XX chain [89] or the XY chain [90, 91]. The details of our explicit calculation of
the excess entropy after certain operator insertions in the interacting XXZ chain
can be found in chapter 5.
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M
=

U D

V †

Figure 2.3: Graphical depiction of an SVD. The diagonal line in D depicts the
singular values of M .

2.8 Matrix Product States

This section introduces the concept of matrix product states (MPS) and largely
follows [12]. At first, we will introduce the idea of a singular value decomposition
(SVD) to then construct MPS by subsequently applying SVDs. After that we will
shortly discuss matrix product operators (MPOs) and finally see why MPS are
especially powerful in 1D.

We start by introducing the SVD. Via an SVD, an arbitrary matrix M of size
DA ×DB can be decomposed into

M = UDV † , (2.8.1)

where the matrices have the following properties:

• U is a matrix of size DA ×DA fulfilling U †U = 1.

• D is a diagonal matrix of size DA × DB. The non-negative entries of D
are the so-called singular values. The number of non-zero singular values is
called the (Schmidt) rank r of M . The singular values di can be brought
into an descending order i.e. d1 ≥ d2 · · · ≥ dr > 0.

• V † is a matrix of size DB ×DB and fulfills V †V = 1.

The computational cost of an SVD is given by O(max(DA, DB)3). A graphical
depiction of the SVD can be found in Fig. 2.3. We will first use the SVD to derive
the Schmidt decomposition of an arbitrary state. Let us consider a spin chain with
a bipartition consisting of regions A and B and the corresponding orthonormal
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basis sets |i〉A and |j〉B. If the whole system is in a pure state, this state can be
written as

|ψ〉 =
∑
i,j

ci,j |i〉A |j〉B . (2.8.2)

We can now consider ci,j as a matrix and perform an SVD on it:

ci,j = (UDV †)i,j . (2.8.3)

Writing this equation componentwise with di being the singular values and r being
the rank of ci,j gives

ci,j =
r∑

α=1

dαUiα
(
V †
)
αj
. (2.8.4)

As U and V are unitary, we can perform the basis transformations |A〉α =
∑

i Uiα |i〉A
and |B〉α =

∑
j

(
V †
)
αj
|j〉B in order to express |ψ〉 in a new basis:

|ψ〉 =
r∑

α=1

dα |A〉α |B〉α . (2.8.5)

This is the so-called Schmidt decomposition of a state |ψ〉 into two subsystems.
This decomposition always exists and from the normalization 〈ψ|ψ〉 = 1 it follows
that ∑

α

d2
α = 1 . (2.8.6)

We can now use the SVD to decompose an arbitrary quantum state into an MPS.
We start from an arbitrary state on a chain with L sites: (cf. Eq. (2.1.7))

|ψ〉 =
∑
σ

cσ |σ〉 , (2.8.7)

where we have again used the notation σ = σ1σ2 . . . σL. The coefficient vector cσ
with 2L elements gets now reshaped into a matrix Ψ of dimension (2× 2L−1):

Ψσ1,(σ2,...,σL) = cσ1...σL . (2.8.8)

Note that this factor 2 is due to the fact that we focus exclusively on spin-1/2
chains with a local Hilbert space dimension of 2 on each site. Applying an SVD
on Ψ gives

Ψσ1,(σ2,...,σL) =
∑
α1

Uσ1,α1Dα1,α1

(
V †
)
α1,(σ2,...,σL)

=
∑
α1

Uσ1,α1cα1σ2,...,σL . (2.8.9)
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σi

αi−1 αi

Figure 2.4: Graphical depiction of Aσiαi−1,αi
with the physical spin index σi and the

link indices αi−1 and αi.

We now decompose Uσ1,α1 into a collection of 2 row vectors Aσ1 with entries Aσ1α1
=

Uσ1,α1 and reshape cα1σ2,...,σL into a matrix Ψ(α1σ2),(σ3,...,σL) and obtain

cσ1...σL =
∑
α1

Aσ1α1
Ψ(α1σ2),(σ3,...,σL) . (2.8.10)

Applying another SVD on Ψ gives

cσ1...σL =
∑
α1

∑
α2

Aσ1α1
U(α1,σ2),α2Dα2,α2

(
V †
)
α2,(σ3,...,σL)

=
∑
α1

∑
α2

Aσ1α1
Aσ2α1,α2

Ψ(α2σ3),σ4,...,σL) .
(2.8.11)

Subsequently applying SVDs eventually leads to

cσ =
∑

α1,...,αL−1

Aσ1α1
Aσ2α1,α2

. . . AσL−1
αL−2,αL−1

AσLαL−1
. (2.8.12)

Using a more compact notation where we omit the αi indices indicating the matrix
multiplications, we end up with |ψ〉 being represented as an MPS:

|ψ〉 =
∑
σ

Aσ1Aσ2 . . . AσL−1AσL |σ〉 . (2.8.13)

Due to the subsequent application of SVDs and U †U = 1, it follows that∑
σi

(Aσi)†Aσi = 1 (2.8.14)

which is the definition of left-normalized matrices. An MPS which consists only
of left-normalized matrices is called left-canonical. Of course, the decomposition
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=

αi

α′
i

αi

α′
i

Figure 2.5: Graphical depiction of Eq. (2.8.14). The right-hand side means nothing
but δαi,α′i .

of an arbitrary state as it was done above could also be done from the right-hand
side starting on site L. If a completely analogous decomposition is done from the
right-hand side, one finally obtains an MPS of the form

|ψ〉 =
∑
σ

Bσ1Bσ2 . . . BσL−1BσL |σ〉 , (2.8.15)

where now the B-matrices are right-normalized matrices fulfilling∑
σi

Bσi (Bσi)† = 1 . (2.8.16)

Analogously, an MPS consisting only of right-normalized matrices is called right-
canonical. Using both left- and right-normalized matrices, one can construct a
mixed-canonical MPS which is of the form

|ψ〉 =
∑
σ

Aσ1 . . . Aσi−1MσiBσi+1 . . . BσL |σ〉 , (2.8.17)

where there are left-normalized matrices up to site i and right-normalized matrices
to the right of i. On the so-called orthogonality center, there is a general matrix
Mσi . Having such a mixed-canonical MPS makes it very easy to calculate the
expectation value of a local operator. A local operator, acting on a single site i
only, reads

Ôi =
∑
σi,σ′i

Oσi,σ
′
i |σi〉 〈σ′i| . (2.8.18)

Due to the mixed-canonical nature of |ψ〉, all sites left and right to site i can be
contracted and the expectation value is simply given by

〈ψ| Ôi |ψ〉 =
∑
σi,σ′i

Oσiσ
′
iTr
(
Mσi†Mσ′i

)
(2.8.19)
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=Ô Ô

Mσi Mσi

Mσ′
i Mσ′

i

Figure 2.6: Contraction of the tensor network through subsequent contraction
from left and right according to Eqs. (2.8.14) and (2.8.16) delivers the expectation
value of the local operator Ô from Eq. (2.8.19).

which is depicted graphically in Fig. 2.6. Due to the local Hilbert space dimension
2, one has two matrices M↑ and M↓ on each site where M can e.g. be A or B for
a normalized MPS. However, the representation is not unique as we can always re-
placeMσiMσi+1 with (MσiX)(X−1Mσi+1). Using the algorithm introduced above,
we can in principle describe an arbitrary state with an MPS by subsequently ap-
plying SVDs. However, for an arbitrary state, the matrices in the middle of the
chain would reach an exponentially large maximum rank of up to 2L/2. As this
would computationally not be feasible, we have to truncate the M -matrices. This
is done by discarding small singular values di for i > i0. The truncation can ei-
ther be defined by a threshold ε (e.g. 10−10) below which the singular values are
discarded or one can set a maximum matrix dimension χmax beyond which the
singular values are discarded. The quality of the approximation is determined by
the truncated (or discarded) weight

w = 1−
χmax∑
i

d2
i (2.8.20)

which should stay below a defined value. As the singular values are normalized,
they have to be re-normalized after truncation as di 7→ di/

√
1− w.

The decisive question now is how large the matrices have to be to accurately
describe a state. This question is also related to the entanglement entropy of the
state. The discarded weight will be small if the singular values decay very quickly.
This is true if the entanglement entropy SA = −∑i d

2
i ln (d2

i ) (cf. Eq. (2.5.7)) is

52



Matrix Product States

small. The maximum entanglement entropy of a reduced density matrix of Hilbert
space dimension χ is Smax = ln (χ) which means that the matrix size needed can
be roughly estimated as

χmax ≈ eSA . (2.8.21)

The simulability of states with an MPS was investigated in [158]. It was found
that an at most logarithmic scaling with interval length of the Sα<1 Rényi entropy
means that the state can be well approximated by an MPS.
Let us now consider ground states in one dimension. Here, the border of a bipar-
tition between A and B is independent of the interval length. Due to the area law
[6], which is valid for local and gapped Hamiltonians in 1D [7], the entanglement
is then limited by a constant. Thus, ground states of 1D systems with a gapped
Hamiltonian can be well approximated by an MPS. Even at criticality, χmax only
grows polynomially with chain length L. The state can be approximated with a
small bond dimension, if the eigenvalues of the reduced density matrix decay fast
[159]. Indeed, those eigenvalues were found to decay roughly exponentially fast
for gapped integrable systems [160, 161]. In two dimensions, the border between
subsystems A and B is a line. Thus, the length of the border now depends on
the linear subsystem size L which means that the von Neumann entropy is also
proportional to L and χmax grows exponentially as χmax ≈ eL. As the entangle-
ment scales with the boundary surface area, this relation is called the area law
[6]. However, there are states where S1 fulfills an area law, which still cannot be
efficiently approximated by an MPS [158].
Note that the area law is only valid for ground states. Time evolutions, like the
global quench discussed in section 2.7.1, can easily lead to exponentially growing
bond dimensions in an MPS. In such numerical simulations, the Rényi entropy
contains information about the necessary computational effort [158] and therefore
limits the feasible simulation time.
The area law in the context of MPS ground states in one dimension will be further
discussed in the next section which introduces the ground state search applying
the density-matrix renormalization group.
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2.9 Density-Matrix Renormalization Group

The density-matrix renormalization group (DMRG) was introduced by SteveWhite
in 1991 [10, 11]. DMRG is based on renormalization group methods and is able
to perform extremely accurate ground state calculations for 1D systems [162].
The power of DMRG lies in the fact that, although a general state would need
an exponential number of parameters to be exactly described, ground states in
one-dimensional systems can be described using relatively few parameters. Those
relevant states can be imagined as occupying only a very small corner of the ex-
ponentially large Hilbert space of the system. This comes from the fact that
the eigenvalues of the reduced density matrix decay exponentially fast. In other
words, we assume that there is a reduced state space which can describe the rel-
evant physics. Such a reduced space exists for all short-ranged Hamiltonians in
1D and can be parametrized efficiently using MPS [12]. The connection between
DMRG and MPS was found in 1995, when Östlund and Rommer realized that the
ground state obtained via DMRG can be written as an MPS [13]. The DMRG
algorithm works best for systems with open boundary conditions and, as DMRG
is a variational method, can be applied to both fermionic and bosonic systems.
Its performance can be improved by exploiting the symmetries of the quantum
system.
This section largely follows the exhaustive review by Schollwöck [12]. After a
short discussion of ground state search in general, in the following subsections,
we are going to first discuss iDMRG and then the related DMRG algorithm for
finite systems. After that, we explicitly discuss the implementation of the DMRG
algorithm for matrix product states. Finally, we are going to discuss the time-
dependent DMRG (tDMRG) algorithm which can be applied to perform unitary
time evolutions.
Calculating the ground state energy of a state |ψ〉 means nothing else but mini-
mizing the functional

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 . (2.9.1)

Although it would be rather inefficient, in principal it is possible to obtain the
ground state by simply performing an imaginary time evolution. A much more
efficient way is via a variational search. To perform this variational search, we
want to express an operator (like the Hamiltonian) as a Matrix Product Operator
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(MPO). Analogously to an MPS, we will describe an MPO as

Ô =
∑
σ,σ′

W σ1σ′1W σ2σ′2 . . .W σLσ
′
L |σ〉 〈σ′| , (2.9.2)

with σ = σ1σ2 . . . σL. Now having the MPO formulation of an operator at hand,
we can discuss the DMRG procedure in detail.

2.9.1 iDMRG

In iDMRG, a chain is subsequently built up by adding sites to eventually obtain
the ground state of an infinite system. We start with a very small system consisting
of blocks A and B which can e.g. each consist of only one site. We then add a
single site to each block, increasing the length of the chain by 2. By adding sites,
we also increase the Hilbert space of the whole chain and if we did not truncate,
the Hilbert space would blow up exponentially up to 2L for a spin-1/2 chain. As
this is computationally not feasible for large systems, we first choose a maximum
bond dimension χmax for the blocks. For each chain length we now want to find the
ground state at the current length and also truncate the newly obtained blocks.
After adding two sites to the initial blocks, we obtain the superblock A • •B. An
arbitrary state of this superblock can be written as

|ψ〉 =
∑

aAσAσBaB

ψaAσAσBaB |a〉A |σ〉A |σ〉B |a〉B =
∑
iAjB

ψiA,jB |i〉A |j〉B , (2.9.3)

where the right-hand side could be decomposed to a Schmidt decomposition as in
Eq. (2.8.5) via an SVD. Using a suitable numerical diagonalization algorithm, we
can find the state that minimizes

〈ψ| ĤA••B |ψ〉
〈ψ|ψ〉 . (2.9.4)

The basis of the new block A• now has dimension 2χmax where the 2 is coming
from the added spin-1/2 site. To truncate the dimension of the newly built block
to χmax again, we calculate the reduced density matrix as

ρA• = Tr•B (|ψ〉 〈ψ|) . (2.9.5)

The RDM can now be truncated by keeping only the χmax largest singular values
assuring the best possible approximation for the given bond dimension.
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2.9.2 DMRG

Now let us turn to the finite size DMRG. Here, the growth of block B works in
the same way as described above for iDMRG: A site is added, the ground state
of the new block •B is calculated, the reduced density matrix is obtained and the
Hilbert space of the new block gets truncated. However, in DMRG, the size of
the whole chain does not change as the site added to B is taken from A. This can
be done until A only consists of a single site. After that, the direction is reversed
and now A grows at the expense of B until B only consists of a single site. This
process is called sweeping. One performs sweeps until the energy of the whole
system is converged. Fig. 2.7 visualizes the sweeping during DMRG.
Suppose that we knew the exact ground state density matrix ρ0 = |ψ0〉 〈ψ0|. In
that case, the optimal approximation would be to keep the χmax largest singular
values. Thus, the quality of our approximation depends on how quickly the sin-
gular values decrease. These reduced density matrix spectra have been studied
in certain exactly solved systems [160, 161] and it was found that in general, the
eigenvalues decay approximately exponentially fast for ground states of integrable,
gapped one-dimensional systems. A fast decay of the eigenvalue spectrum leads
to a low entropy. Furthermore, the area law [6] limits the ground state entropy for
local, gapped Hamiltonians and thus explains the success of DMRG in 1D. Usu-
ally, a χmax of O(100) (or even smaller) is sufficient to obtain a discarded weight
w smaller than 10−10 in the variational ground state search [12].

2.9.3 DMRG in the context of MPS

In this section, we are going to disucss how the DMRG algorithm is actually im-
plemented for a system represented by an MPS. This section will largely follow
the PhD thesis by Martin Ganahl [163] as well as the review by Schollwöck [12].
To find the minimum of the energy, we are using the method of Lagrangian mul-
tipliers:

〈ψ| Ĥ |ψ〉 − λ 〈ψ|ψ〉 . (2.9.6)

At first sight, this problem seems very hard as the variables (given by the matrices
Mσ) are given as products. However, just like in the DMRG algorithm described
above, we can consider only the matrix on site i, Mσi , while keeping all the
other matrices fixed. Now, the minimum in energy can be found with respect
to this matrix Mσi which will lower the energy but certainly not lead to the
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Figure 2.7: Graphical depiction of the sweeps during the DMRG algorithm as
described in the text.

57



Density-Matrix Renormalization Group

global minimum. However, one then moves on to the next site, say i + 1, and
minimizes the energy with respect to Mσi+1 . In that way, we can iteratively find
the ground state by moving through all sites multiple times until the energy has
finally converged.
We start with an MPS in the mixed canonical representation, given by

|ψ〉 =
∑
σ

Aσ1 . . . Aσi−1ΨσiBσi+1 . . . BσL |σ〉 . (2.9.7)

The expectation value of the Hamiltonian Ĥ in MPS/MPO language leads to a
partition of the tensor network where we have parts L and R corresponding to
blocks A and B as well as W corresponding to the center site. All the sites left to
the central site have been contracted within L and all the sites to the right of the
central site have been contracted into R.

L
αi−1,α

′
i−1

βi−1
=

∑
σ1σ′1

Aσ1∗1,α1
W

σ1σ′1
1,β1

A
σ′1
1,α′1

 . . .

 ∑
σi−1σ′i−1

Aσi−1∗
αi−2,αi−1

W
σi−1σ

′
i−1

βi−2,βi−1
A
σ′i−1

α′i−2,α
′
i−1


R
αi,α

′
i

βi
=

 ∑
σi+1σ′i+1

Bσi+1∗
αi,αi+1

W
σi+1,σ

′
i+1

βi,βi+1
B
σ′i+1

α′1,α
′
i+1

 . . .

∑
σLσ

′
L

BσL∗
αL−1,1

W
σL,σ

′
L

βL−1,1
BσL
α′L−1,1


(2.9.8)

This makes it possible to write the matrix elements of Ĥ as

〈αi−1σiαi| Ĥ
∣∣α′i−1σ

′
iα
′
i

〉
=
∑
βi−1βi

L
αi−1,α

′
i−1

βi−1
W

σi,σ
′
i

βi−1,βi
R
αi,α

′
i

βi
(2.9.9)

which is depicted in Fig. 2.8. To now tackle Eq. (2.9.6), we first need the overlap
which is given by

〈ψ|ψ〉 =
∑
σi

ΨA
αi−1,α′i−1

Mσi∗
αi−1,αi

Mσi
α′i−1,α

′
i
ΨB
αi,α′i

, (2.9.10)

where

ΨA
αi−1,α′i−1

=
∑

σ1...σi−1

(
Mσi−1† . . .Mσ1†Mσ1 . . .Mσi−1

)
αi−1,α′i−1

ΨB
αi,α′i

=
∑

σi+1...σL

(
Mσi+1 . . .MσLMσL† . . .Mσi+1†

)
α′i,αi

.
(2.9.11)
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σi
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αi−1 αi

α′i−1 α′i
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Figure 2.8: Graphical depiction of 〈αi−1σiαi| Ĥ
∣∣α′i−1σ

′
iα
′
i

〉
in the context of

MPS/MPO. The whole tensor network now consists of the left block L, the right
block R and the central block W .

Having Ĥ in MPO language at hand, we can also write 〈ψ| Ĥ |ψ〉 as

〈ψ| Ĥ |ψ〉 =
∑
σiσ′i

L
αi−1,α

′
i−1

βi−1
W

σi,σ
′
i

βi−1,βi
R
αi,α

′
i

βi
Mσi∗

αi−1,αi
M

σ′i
α′i−1,α

′
i
. (2.9.12)

Plugging those results into Eq. (2.9.6), we obtain∑
σiσ′i

L
αi−1,α

′
i−1

βi−1
W

σi,σ
′
i

βi−1,βi
R
αi,α

′
i

βi
Mσi∗

αi−1,αi
M

σ′i
α′i−1,α

′
i
−

λ
∑
σi

ΨA
αi−1,α′i−1

Mσi∗
αi−1,αi

Mσi
α′i−1,α

′
i
ΨB
αi,α′i

= 0
(2.9.13)

which is an eigenvalue problem that can be solved quite easily as it can be reshaped
to a generalized eigenvalue problem of the form

Hv − λNv = 0 . (2.9.14)

We can now solve this equation and obtain the lowest eigenvalue λ0, which is the
current ground state energy estimate and Mσi

αi−1,αi
is the corresponding matrix on

site i. As we are only interested in the lowest eigenvalue, we can apply suitable
methods like Lanczos or Jacobi-Davidson algorithms for large sparse matrices.
The algorithm basically now works as follows:
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• Start from an initial guess for |ψ〉 that is right-normalized.

• Perform a right sweep: Starting from i = 1, move through all sites and solve
the eigenproblem for Mσi . After the optimization, apply an SVD to left-
normalize Mσi into Aσi . The remainder of the SVD is multiplied onto the
right which then serves as the starting point for the optimization of Mσi+1 .

• After having moved until i = L−1, start the left sweep on site i = L: Again
solve the eigenvalue problem on each site. But now, after the optimization,
one right-normalizes Mσi into Bσi and multiplies the remainder of the SVD
onto the left. This will then be the starting guess for the next site.

• Repeat right and left sweeps until the energy of the system has converged.

2.9.4 tDMRG

Starting from an arbitrary state |ψ(t = 0)〉, tDMRG is a powerful tool to time-
evolve the state unitarily as

|ψ(t)〉 = e−iĤt |ψ(t = 0)〉 . (2.9.15)

By simply exchanging the expression in the exponential function, one can perform
an imaginary time evolution as

|ψβ〉 = e−βĤ |ψ0〉 (2.9.16)

which can be used to obtain the ground state of a system. The method which we
are now going to introduce works for both real and imaginary time evolution.
The time-evolution via time-evolving block decimation (TEBD) was first intro-
duced by Vidal [164]. Soon afterwards, the time-dependent density-matrix renor-
malization group (tDMRG) was introduced [56, 57]. The differences between those
methods are very subtle and both of them are based on MPS. A review on time-
evolution methods for MPS can be found in [165]. In the present thesis, we applied
tDMRG for all time evolutions.
To perform a time evolution, we first have to perform a Trotter decomposition.
We are assuming that our Hamiltonian has nearest-neighbor interactions only, i.e.,
Ĥ =

∑
i ĥi where each ĥi acts on sites i and i + 1 only. This is e.g. true for the
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XXZ Hamiltonian (2.2.1). We have to discretize the time evolution in timesteps
δt such that t = Nδt which leads to a first-order Trotter decomposition:

e−iĤδt = e−iĥ1δte−iĥ2δt . . . e−iĥL−1δt +O((δt)2) . (2.9.17)

The error comes from the fact that ĥi and ĥi+1 in general do not commute. How-
ever, the time evolutions on all even (odd) bonds commute with each other and can
therefore be carried out simultaneously. This leads to the following time evolution:

|ψ(t+ δt)〉 = e−iĤevenδte−iĤoddδt |ψ(t)〉 . (2.9.18)

However, this can be simply improved by performing a second-order Trotter de-
composition as

e−iĤδt = e−iĤoddδt/2e−iĤevenδte−iĤoddδt/2 +O((δt)3) . (2.9.19)

As we have now defined a way of performing the time evolution on all sites, for
the rest of the discussion it is sufficient to only consider the time evolution on
sites i+ 1 and i+ 2 for one timestep performed by applying e−iĥi+1δt. The matrix
elements of the time evolution operator are denoted as

Uσi+1σi+2,σ
′
i+1σ

′
i+2 = 〈σi+1σi+2| e−iĥi+1δt

∣∣σ′i+1σ
′
i+2

〉
. (2.9.20)

This operator can now be applied on the mixed canonical state

|ψ〉 =
∑
σ

Aσ1 . . . AσiΨσi+1σi+2Bσi+3 . . . BσL |σ〉 (2.9.21)

which turns Ψσi+1σi+2 into

Φσi+1σi+2 =
∑

σ′i+1σ
′
i+2

Uσi+1σi+2,σ
′
i+1σ

′
i+2Ψσi+1σi+2 . (2.9.22)

As we have now successfully applied e−iĥi+1δt, we now want to move on with
e−iĥi+3δt. However, before we can do so, we have to bring the state |φ〉 = e−iĥi+1δt |ψ〉
into the form

|φ〉 =
∑
σ

Aσ1 . . . Aσi+2Φσi+3σi+4Bσi+5 . . . BσL |σ〉 (2.9.23)
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on which we can then apply e−iĥi+3δt. This is again done by performing SVDs:
At first, Aσi+1 is extracted from the left of Φσi+1σi+2 and then, Bσi+3 is multiplied
from the right to obtain Φσi+2σi+3 . Similarly, we again perform an SVD, split of
Aσi+2 from the left and multiply Bσi+4 from the right to end up with Eq. (2.9.23).
In that way, we can perform the local time-evolution steps throughout the whole
chain.
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Chapter 3

Magnetization and entanglement
after a geometric quench in the
XXZ chain (Phys. Rev. B 99,
174403 (2019))

In this chapter we present our findings from Ref. [149], which is one of the main
publications of the author. In the following, the abstract and the sections II. -
VII. of the paper, which contain the used methods, the obtained results as well as
the conclusions, are completely included in sections 3.1 - 3.7 of the present thesis.
The appendix was also taken from the paper and can be found in A.1.
The paper was written to equal parts by the author of this thesis and Viktor Eisler.
All the calculations in the paper, except for the analytical XX chain results in 3.4.1
and 3.5.1 and the perturbation results in A.1, were performed by the author of
this thesis. Both authors contributed equally to the interpretation of the results.

3.1 Abstract

We investigate the dynamics of the XXZ spin chain after a geometric quench, which
is realized by connecting two half chains prepared in their ground states with
zero and maximum magnetizations, respectively. The profiles of magnetization
after the subsequent time evolution are studied numerically by density-matrix
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renormalization group methods, and a comparison to the predictions of generalized
hydrodynamics yields a very good agreement. We also calculate the profiles of
entanglement entropy and propose an ansatz for the noninteracting XX case, based
on arguments from conformal field theory. In the general interacting case, the
propagation of the entropy front is studied numerically both before and after the
reflection from the chain boundaries. Finally, our results for the magnetization
fluctuations indicate a leading order proportionality relation to the entanglement
entropy.

3.2 Model and setup
We consider the XXZ spin chain that is given by the Hamiltonian

H = J
L−1∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
(3.2.1)

where Sαj are spin-1/2 operators acting on site j, J is the coupling, and ∆ the
anisotropy parameter. We set J = 1 and consider open boundary conditions on
a chain of length L. The XXZ model is equivalent to a chain of spinless fermions
with nearest-neighbor interactions of strength ∆, with ∆ = 0 corresponding to
the free-fermion point.
The protocol of the geometric quench is illustrated in Fig. 3.1. Initially, the chain
is split into two halves and the left-hand side is initialized in the ground state
|GS〉 of an XXZ chain of length L/2. On the other hand, the right half chain is
prepared in the fully polarized state |↓↓↓ . . .〉, or the vacuum state in the fermionic
language. Subsequently, the two half-chains are joined together at t = 0 and the
system is allowed to evolve unitarily,

|ψ(t)〉 = e−iHt |GS〉 ⊗ |↓↓↓ . . .〉 (3.2.2)

governed by the Hamiltonian in Eq. (3.2.1). In other words, we would like to study
how the ground state prepared on a half chain expands into vacuum after an instan-
taneous change of geometry (i.e., the size of the chain), hence the term geometric
quench. We are primarily interested in the magnetization 〈Szj 〉 ≡ 〈ψ(t)|Szj |ψ(t)〉
and the entanglement profile, as measured by the entanglement entropy between
two segments A and B, as depicted in Fig. 3.1.
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|GS〉 |↓↓↓↓↓〉

t = 0

A B

t > 0

Figure 3.1: Setup of the geometric quench.

The ground state of the XXZ chain can be constructed with the help of the Bethe
ansatz [92, 93]. Here we will focus on the regime |∆| < 1 in which the ground
state is a gapless Luttinger liquid [166], and we use the standard parametrization
∆ = cos(γ). The quasiparticle excitations of the XXZ chain are created upon
the vacuum state |↓↓↓ . . .〉 and are labeled by their rapidity λ. They satisfy ap-
propriate quantization conditions, as given by the roots of the Bethe equations.
In particular, the ground state involves only magnons with real λ, but in gen-
eral the solutions admit a family of string excitations [92], corresponding to roots
parallel to the imaginary axis. In the thermodynamic limit L → ∞, and in the
zero-magnetization sector, the roots on the real axis become continuous and their
density ρ(λ) satisfies the linear integral equation

ρ(λ) +

∫ ∞
−∞

dµ

2π
K(λ− µ)ρ(µ) =

p′(λ)

2π
. (3.2.3)

Note that the right-hand side of Eq. (3.2.3) contains the derivative of the bare
momentum p′(λ) = θ′1(λ), while the integral on the left is due to elastic scatter-
ing between quasiparticles, with the kernel K(λ) = θ′2(λ) being the differential
scattering phase. Both of them are given via

θ′n(λ) =
sin(nγ)

cosh(λ)− cos(nγ)
, n = 1, 2 . (3.2.4)

In fact, Eq. (3.2.3) is just a simple example of the so-called dressing operation,
where a certain function of the rapidity gets modified by the presence of the other
quasiparticles. The dressed version fdr of a bare function f is defined as the
solution of

fdr(λ) +

∫ ∞
−∞

dµ

2π
K(λ− µ)n(µ)fdr(µ) = f(λ) , (3.2.5)
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which is a Fredholm-type integral equation and can be solved numerically [167].
Here, n(µ) is the occupation function, i.e., the ratio of the particle density (occu-
pied rapidities) and the total root density, including the density of holes (unoc-
cupied rapidities). However, since the XXZ ground state does not contain holes,
one has n(µ) ≡ 1. Hence, the root density is just proportional to the derivative of
the dressed momentum, 2πρ(λ) = p′dr(λ). Another important quantity we shall
need is the dressed quasiparticle energy edr(λ), which follows from (3.2.5), with
the bare energy given by

e(λ) =
− sin2(γ)

cosh(λ)− cos(γ)
. (3.2.6)

On the numerical side, we carry out density-matrix renormalization group (DMRG)
calculations [12], using the ITensor C++ library [168]. The ground-state search is
performed by applying DMRG on the left half chain, whereas the vacuum state
on the right half chain has a trivial matrix product state representation. After
the quench, the time evolution is done by applying tDMRG with a time step
of δt = 0.05, a truncated weight of 10−10, and a maximum bond dimension of
χmax = 1200.

3.3 Magnetization Profiles

We start our study of the geometric quench with a discussion of the magnetization
profiles. Before presenting our numerical results, we shall introduce an efficient
method that has been developed recently for the study of transport in integrable
systems.

3.3.1 Generalized hydrodynamics

The understanding of time evolution in integrable models due to initial inhomo-
geneities has recently come to a breakthrough by the development of generalized
hydrodynamics [31, 32]. The idea of GHD is to give an effective description of the
dynamics and the underlying state at a hydrodynamic scale. Indeed, in interact-
ing integrable models the quasiparticle excitations are moving freely, experiencing
only phase shifts due to the scattering on other quasiparticles. One then assumes
that, for large times t and large distances x from the inhomogeneity, a dynamical
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equilibrium emerges, and the system is described by a local quasi-stationary state
(LQSS).
For the class of initial states, where the inhomogeneity is solely due to the junction
of two, otherwise homogeneous states without any inherent length scale, the LQSS
depends only on the ray variable ζ = x

t
. Assuming that there is only one type of

quasiparticles involved (such as for the geometric quench), specifying the LQSS
amounts to finding the particle density ρζ(λ) that varies along the rays. The
kinetic theory of quasiparticles eventually leads to the continuity equation [31, 32]

∂tρζ(λ) + ∂x(v(λ)ρζ(λ)) = 0 , (3.3.1)

where the velocity v(λ) is given by the dressed quasiparticle group velocity

v(λ) =
e′dr(λ)

p′dr(λ)
. (3.3.2)

The GHD equation (3.3.1) could be interpreted as an infinite set of continuity
equations for each λ, corresponding to the infinite set of conserved charges that are
present for integrable models. Despite its apparent simplicity, one should stress
that the solution of (3.3.1) is, in general, nontrivial since the dressed velocity
(3.3.2) itself depends on the quasiparticle density. Indeed, the dressing operation
(3.2.5) contains information about the full occupation function nζ(λ), and thus
Eq. (3.3.1) has to be solved self-consistently. However, if the densities depend
only on the ray variable ζ, the GHD equation could be shown to simplify to [31,
32]

(ζ − v(λ)) ∂ζnζ(λ) = 0 , (3.3.3)

which has the piecewise continuous solution

nζ(λ) = Θ(v(λ)− ζ)nL(λ) + Θ(ζ − v(λ))nR(λ) , (3.3.4)

where Θ is the Heaviside step function and nL/R(λ) is the initial occupation on
the left/right half chain.
The solution (3.3.4) has a clear physical interpretation, namely that the infor-
mation on the initial occupations gets transported by the quasiparticles. Along a
given ray ζ > 0 on the right-hand side of the chain, only the quasiparticles emitted
from the left half chain become visible that have sufficient velocity v(λ) > ζ to
arrive there. Similarly, for ζ < 0 the quasiparticles are emitted from the right half
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chain and propagate to the left. Thus, for the simple initial states considered here,
solving the GHD equation boils down to determining the solution to v(λ) = ζ,
where the dressing of the velocity is calculated with respect to the occupation
function in (3.3.4).
The situation further simplifies for the geometric quench, since the ground-state
occupation is given by nL(λ) = 1, whereas for the vacuum, one trivially has
nR(λ) = 0. We shall first assume that the dressed velocity is a monotonically
increasing function with a unique solution v(λ∗) = ζ for each ζ and hence

nζ(λ) = Θ(λ− λ∗) . (3.3.5)

One has thus the condition that the function

v(λ∗) =
e′dr(λ∗)

p′dr(λ∗)
(3.3.6)

has to be monotonically increasing, when the dressing is evaluated with the oc-
cupation in (3.3.5); i.e., the integrals in (3.2.5) are carried out over [λ∗,∞). The
velocity (3.3.6) can be evaluated numerically and the result is shown in Fig. 3.2
for various ∆. One can see clearly, that our assumption is satisfied only for attrac-
tive interactions ∆ < 0, whereas for the repulsive case ∆ > 0 the velocity v(λ∗)
develops a maximum.
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v(λ*) ∆ = 0.8

∆ = 0.5
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∆ = -0.5

∆ = -0.8

Figure 3.2: Dressed velocity v(λ∗) corresponding to the occupation function in
Eq. (3.3.5), for several values of ∆.
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The above discrepancy can be understood as follows. For ∆ < 0, the maximum
velocity occurs for λ∗ → ∞, which gives the expansion velocity of the front into
vacuum. Note that in this limit the occupation (3.3.5) vanishes completely, and
thus the group velocity is given by its bare (undressed) value

v0(λ) =
e′(λ)

p′(λ)
=

sin(γ) sinh(λ)

cosh(λ)− cos(γ)
. (3.3.7)

In particular, one has
v0(λ→∞) = sin(γ) , (3.3.8)

which turns out to be the real maximum for ∆ < 0. However, for ∆ > 0, the
equation v′0(λ̃) = 0 has a nontrivial solution with

cosh(λ̃) =
1

∆
. (3.3.9)

The maximum velocity thus occurs at a finite value of the rapidity, and one obtains
v0(λ̃) = 1, independently of ∆. Consequently, the ansatz for the occupation
function has to be modified as

nζ(λ) = Θ(λ− λ1)Θ(λ2 − λ) , (3.3.10)

where the velocities must satisfy

v(λ1) = v(λ2) = ζ . (3.3.11)

Note that the rapidities λ1 < λ̃ < λ2 are located on different sides of the maximum
and can be found iteratively.
Interestingly, the GHD solution for the geometric quench yields different vacuum
expansion velocities, with the rightmost ray given by ζmax = 1 and ζmax = sin(γ)
for positive and negative values of ∆, respectively. Note, however, that by de-
creasing ζ, the solution λ2 of (3.3.11) eventually goes to infinity, and thus the
ansatz (3.3.10) actually goes over to (3.3.5) with λ1 → λ∗. In particular, one finds
that the minimum of the dressed velocity occurs for λ∗ → −∞ (see Fig. 3.2),
where (3.3.5) simply corresponds to the ground-state occupation. Therefore, the
leftmost ray is given via the spinon velocity [93]

ζmin = −vs = −π
2

sin(γ)

γ
. (3.3.12)
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Finally, in order to obtain the magnetization profile, one needs the particle density
ρζ(λ). This is given explicitly by

ρζ(λ) = nζ(λ)
p′dr(λ)

2π
, (3.3.13)

where the dressing is calculated with an occupation nζ(λ) that corresponds to
either (3.3.5) or (3.3.10). In turn, the magnetization is given by

〈Sz〉 = −1

2
+

∫
ρζ(λ)dλ . (3.3.14)

Although in general the GHD ansatz requires a numerical solution of the integral
equations for the dressing, there is one particular regime for which an approximate
analytical result can be given. Namely, for ∆ > 0 the magnetization profile around
the ζmax = 1 edge can be obtained to leading order via a perturbative solution,
with the details of the calculation presented in the Appendix. Indeed, the edge
regime ζ → 1 corresponds to occupied rapidities in the interval [λ1, λ2], where
λ1,2 = λ̃∓ ε and we assume ε� 1. The perturbative solution of Eq. (3.3.11) then
gives to lowest order

ε(ζ) =
√

2(1− ζ) tan(γ) . (3.3.15)

Moreover, the profile can also be approximated by noting that the integral in
(3.3.14) is taken over a very short interval around λ̃ and the effect of dressing in
(3.3.13) can be neglected. This yields

〈Sz〉 ≈ −1

2
+

1

π
p′(λ̃)ε(ζ) = − 1

2
+

1

π

√
2(1− ζ) (3.3.16)

and thus one has a leading square-root singularity of the edge profile, which is
independent of ∆. Interestingly, the very same behavior was found for the edge
profile in the XXZ chain with a magnetic field gradient [169].
To conclude this section, one should remark that the analytical form of the entire
profile can be found explicitly for the noninteracting XX chain [55]. There, instead
of rapidities, one can simply work with momentum modes, and the velocities
v(q) = sin q are given by the derivative of the dispersion, independently of the
occupation function. The magnetization along the ray ζ then follows from the
number of modes that satisfy v(q) > ζ. In general, v(q) = ζ has two solutions
for |ζ| < 1, given by q± = π/2 ± arccos ζ. Note, however, that the initial state
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on the left-hand side is the half-filled ground state and thus |q| ≤ π/2 must be
satisfied. Hence, the modes that contribute lie in the interval [q−, π/2] and the
magnetization reads

〈Sz〉 = −1

2
+N (ζ), N (ζ) =

1

2π
arccos ζ . (3.3.17)

3.3.2 Numerical results

We now present our numerical results from DMRG calculations and compare them
to the 〈Sz〉 profiles as obtained from (3.3.14) by solving the GHD equations. In
Fig. 3.3 the magnetization profiles are reported for a system with L = 200 sites
and for a fixed time t = 64 after the quench. Instead of the lattice site j = 1, . . . , L,
we introduce the (half-integer) distance x = j − (L + 1)/2 from the junction of
the half chains to index the sites, and plot the data 〈Szx〉 against the ray variable
ζ = x/t. For all the anisotropies presented, one generally observes a very good
agreement between the DMRG data and the GHD solution. There are, however,
some extra features that should be discussed.
First, for ∆ > 0, the right edge of the front indeed lies at ζmax = 1, as predicted
by GHD, and the ansatz (3.3.10) for the occupation provides, up to oscillations,
a very good description of the edge regime. However, although the approximate
solution in Eq. (3.3.16), shown by the green dashed lines in Fig. 3.3, seems to
capture the leading behavior of the edge, its applicability is restricted to a rather
small neighborhood of ζ = 1. As further discussed in the Appendix, this is due to
the fact that the solution (3.3.15), which gives the interval of occupied rapidities,
actually fails to satisfy ε � 1, unless 1 − ζ is chosen to be extremely small. In
particular, ε diverges for ∆ = 0 and the approximation improves as ∆→ 1.
On the other hand, for ∆ < 0, the GHD edge is given by ζmax = sin(γ), whereas
the density can be clearly seen to extend beyond this value up to ζ ≈ 1. Moreover,
the GHD profile shows a qualitatively different behavior around ζmax, where the
square-root singularity seems to be replaced with a linear profile. In fact, this is
very reminiscent of the case of the domain-wall initial state |↑↑↑ . . .〉 ⊗ |↓↓↓ . . .〉,
where the analytical GHD profile can be obtained [37] and the edge behavior has
recently been investigated in detail [170, 171]. In particular, the tail has been
interpreted as a dilute regime of quasiparticles, where the interactions renormalize
to zero and the edge ζ = 1 corresponds to the free magnon velocity [171].
To have a better overview of the situation for the geometric quench, we show in
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Figure 3.3: Magnetization profiles 〈Szx〉 after the geometric quench as a function
of ζ = x/t, for various values of ∆. The symbols (blue) are the results of DMRG
calculations, whereas the solid lines (red) are obtained from the numerical solution
of the GHD ansatz. For ∆ > 0 the approximation near the edge, Eq. (3.3.16), is
shown by dashed lines (green).

Fig. 3.4 the magnified edge region for ∆ = −0.8 and various times t. One can see
a slow decrease of the scaled profiles in the regime ζmax < ζ < 1, suggesting that
the tail should indeed contain only a finite number of particles that could escape
from the bulk of the front region. We expect that, when plotted against ζ, the
tail should vanish in the t → ∞ limit, as the escaped density becomes smeared
out in an infinitely large region. Note, however, that the results of Ref. [171] for
the domain-wall quench are also compatible with a logarithmic increase in time of
the overall number of particles in the tail regime. A detailed analysis of the tail
would require much more numerical effort and is beyond the scope of the present
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paper.
One should also comment on the left edge of the profile, i.e., the front region that
connects to the ground state outside the light cone. As pointed out before, the
GHD ansatz suggests that the left edge should extend with the spinon velocity,
i.e., the speed of the excitations above the zero-magnetization background. This
seems to be in perfect accordance with the numerical data for ∆ > 0. In the
attractive (∆ < 0) case, however, one observes very strong oscillations beyond the
GHD edge ζ < ζmin. We believe that, similarly to the right edge, this feature
is due to a small number of particles that escape from the attractive bulk of the
front. Note also, that the GHD edge seems to have a square-root behavior for all
values of ∆. However, a perturbative treatment is more complicated in this case,
since one has to consider the perturbation around the completely filled ground
state, instead of the vacuum.
Finally, it is interesting to note that in the limit ∆→ −1 one has ζmin = ζmax =
0, and thus the bulk of the front region vanishes completely. This is a clear
signal of subballistic transport in the regime ∆ ≤ −1. On the other hand, the
limit ∆ → 1 shows no singular features, suggesting that the ∆ > 1 regime is
smoothly connected and the ballistic nature of the dynamics is preserved. These
expectations seem to be confirmed by our DMRG numerics.
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Figure 3.4: Edge profiles for ∆ = −0.8 and various times t, plotted against ζ = x/t.
The GHD solution is shown by the red solid line.
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3.4 Entropy Profiles

The front dynamics can be further characterized by calculating the entanglement
entropy S = −Tr ρA ln ρA for a given bipartition of the chain (see Fig. 3.1),
where ρA is the corresponding reduced density matrix. The entanglement profile
is obtained at a fixed time t by varying the boundary between the subsystems
A = [1, L/2 + r] and B = [L/2 + r + 1, L]. In particular, r = 0 corresponds to a
bipartition across the initial cut, the case that was already considered in Ref. [55].
As opposed to the magnetization, the entanglement profile is more complicated to
be captured within the hydrodynamic approach. Indeed, although there has been
much progress in understanding the entropy evolution in terms of the quasiparti-
cle picture [29, 30], these results are restricted to quench scenarios in which the
growth is linear in time. In contrast, it has already been observed in [55] that the
geometric quench induces a logarithmic entropy growth for r = 0, which is also a
characteristic of local quench protocols [50, 51, 143, 144].
We first consider the noninteracting (∆ = 0) case where, invoking results from
CFT and with some heuristic arguments, we are able to provide an ansatz for the
full entanglement profile.

3.4.1 XX chain

To find a quantitative description of the entropy profile, there are some features
to be noted about the structure of the hydrodynamic state described above Eq.
(3.3.17). First, the fermionic density N (ζ) is exactly one-half of the corresponding
one for a domain-wall initial state [172, 173], where the occupied modes [q−, q+]
are not restricted below the Fermi level qF = π/2. Hence, the LQSS after the
geometric quench is reminiscent of that of the domain-wall problem, but differs
by the presence of a sharp Fermi edge. We thus argue that the entropy can be
obtained as a sum of two contributions, due to the spatially varying occupation
and to the Fermi-edge singularity, respectively.
The contribution from the Fermi edge can be identified by recalling the results for
the local quench, where two half-filled semi-infinite chains are joined together [51].
Indeed, since the initial filling is unbiased, the time evolution is entirely due to
the presence of two Fermi edges at momenta qF = ±π/2. The resulting entropy
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profile can be obtained via CFT [51] and reads

Sloc =
1

6
ln
(
t2 − r2

)
, (3.4.1)

where we have ignored the nonuniversal constant that is independent of both t
and r. This result can also be generalized to finite-size chains by substituting the
corresponding chord variables [144]

t→ L

π
sin

(
πt

L

)
, r → L

π
sin
(πr
L

)
. (3.4.2)

It is important to stress that the result (3.4.1) and (3.4.2) gives the entropy profile
resulting from two Fermi edges, whereas we need only the contribution from qF =
π/2, i.e. from the right-moving wave front. Thus, using trigonometric identities
we rewrite

Sloc =
1

6
ln

[
L

π
sin

(
π(t− r)

L

)
L

π
sin

(
π(t+ r)

L

)]
, (3.4.3)

which has exactly the desired additive form, with the arguments t∓r corresponding
to the Fermi edges qF = ±π/2, respectively.
The second piece of contribution we have to identify is due to the space-dependent
occupation. As we have already remarked, this should be closely related to the
domain-wall problem, where the entropy profile is also known explicitly [52]. In
fact, the solution can be found via a curved-space CFT approach [53], by identi-
fying the underlying curved metric [174] and mapping it conformally onto a flat
one on the upper half plane. The result can be cast in the form

Sdw =
1

6
ln(L sin qF (r/t)), (3.4.4)

where the conformal length is given by

L = t

[
1−

(r
t

)2
]
. (3.4.5)

Note that (3.4.4) contains a nonuniversal part with sin qF (r/t) being the spatially
varying Fermi velocity, where qF (x) = arccos(x). This term plays the role of a
cutoff renormalization in the CFT picture.
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We now give a heuristic argument on how to modify the expression in (3.4.4)
in order to get the result for the geometric quench. As already pointed out,
the fermionic density for the geometric quench is exactly the half of that in the
domain-wall case, by restricting to the modes with q ∈ [q−, π/2]. Due to the
particle-hole symmetry of the problem, one could also have worked with the modes
q ∈ [π/2, q+] and arrive at the same result. Thus, assuming that the universal
entropy contribution of the domain-wall problem could, in some way, be written as
a sum over modes, this symmetry argument implies that the universal contribution
to the geometric quench should be 1

12
lnL. Moreover, one should also take into

account the halved density when considering the nonuniversal piece, where for the
geometric quench one has qF (x) = πN (x) = arccos(x)/2, such that

1

6
ln(sin qF (r/t)) =

1

12

[
ln
(

1− r

t

)
− ln 2

]
. (3.4.6)

Finally, collecting the different contributions, one arrives at the result

Sg =
1

6
ln

[
L

π
sin

(
π(t− r)

L

)]
+

1

12
ln
[
(t− r)

(
1− (r/t)2)]+ k, (3.4.7)

where |r| < t and k is a nonuniversal constant. In particular, setting r = 0 one
recovers the ansatz put forward in [55]. To test the result (3.4.7), we calculated
the entropy profiles for free-fermion chains using standard correlation matrix tech-
niques [58]. Figure 3.5 shows the result for a fixed time t = 50 and for various
chain sizes, compared to the ansatz (3.4.7) shown by solid lines. One sees a very
good agreement with the numerical data. The only free parameter is the constant,
which was fixed at k ≈ 0.44 by fitting the ansatz to one of the data sets. We also
carried out calculations for a larger time t = 100 (not shown) with similarly good
agreement, confirming the validity of the result in Eq. (3.4.7).

3.4.2 XXZ chain

We continue with the numerical study of the entanglement profile for the XXZ
chain. In Fig. 3.6 the results of DMRG calculations for a chain with L = 200 are
shown. The snapshots of the profiles are plotted for various times, and the ∆ values
considered are the same as for the magnetization in Fig. 3.3. At t = 0 (blue curve)
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Figure 3.5: Entropy profiles after the geometric quench for t = 50 and various
system sizes. The solid lines correspond to the ansatz Sg in Eq. (3.4.7). Only the
front region |r| < t is shown.

the entanglement entropy is trivially vanishing for a cut across the right half chain,
whereas the profile on the left is given by the well-known CFT formula for the
ground state [18]. After the quench, the entanglement spreads in both directions
and a profile qualitatively similar to the XX case emerges. However, one expects
that the left and right edges of the front are given by r = ζmint and r = ζmaxt,
respectively, as indicated by the dashed lines in Fig. 3.6. While for ∆ > 0 this
seems to hold perfectly, for ∆ < 0 one observes, similarly to the magnetization
profiles, a tail reaching beyond the GHD edges on both sides, increasing for large
negative values of ∆.
It is instructive to have a closer look at the right tail of the front expanding
into the vacuum. As already discussed in the previous section, the tail behavior is
reminiscent of the domain-wall quench in which, however, the dynamics is invariant
under the change of sign in ∆. To emphasize the difference for the geometric
quench, in Fig. 3.7 we compare the edge entropy profiles between ∆ = 0.8 and
∆ = −0.8. While in the repulsive case the profile has a sharp edge with an abrupt
increase, for the attractive one the free edge remains soft until reaching the GHD
edge, where the slope becomes steep. The profile between the soft and hard edges
develops a steplike structure, as can be seen for larger times in Fig. 3.7. In fact,
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Figure 3.6: Entanglement profiles for different values of ∆ at times t = 0 (blue),
t = 15 (red), t = 30 (green) and t = 50 (magenta) after the quench. The GHD
edges r = ζmint and r = ζmaxt are marked by vertical dashed lines.

beyond the left edge the profile develops a qualitatively similar tail, which can
already be seen in Fig. 3.6 without magnifying the region.
Regarding the bulk profile, it is tempting to find a generalization to the ansatz in
(3.4.7). In fact, the CFT result (3.4.3) for the local quench can be applied to the
XXZ case by explicitly including the spinon velocity, i.e., substituting t → vst,
which we have verified by DMRG calculations. On the other hand, however, the
other constituent of the ansatz originates from the domain-wall quench, where the
result (3.4.4) is specific to free fermions. Hence, despite the qualitatively similar
behavior of the profiles, the XXZ case can not simply be related to the XX result
(3.4.7) by rescaling with the front velocities.
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Figure 3.7: Comparison of the right edge of the entanglement profile for ∆ = −0.8
(solid lines) vs. ∆ = 0.8 (dashed lines) and various times. The GHD edges
r = ζmaxt for ∆ = −0.8 are indicated by vertical lines.

3.5 Boundary Effects

So far we have only considered situations in which the propagating front does not
reach the boundaries of the chain. Since the formulation of GHD genuinely involves
the thermodynamic limit, it is interesting to ask what happens when finite-size
effects play a dominant role, i.e., when reflections of the wave front occur.

3.5.1 XX chain

We start again by considering the XX chain for which, due to the complete inde-
pendence of the quasiparticle velocities from the mode occupations, the hydrody-
namic picture remains applicable even after reflections from the boundaries take
place. Indeed, determining the magnetization requires only a proper bookkeeping
of the contributions from the reflected particles. Considering a fixed site with
x > 0 on the right-hand side of the chain, the result (3.3.17) remains true for
times t < L− x, i.e., until the reflected particles with maximal velocity vmax = 1
arrive there. For larger times one simply adds the contribution of the reflected
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Figure 3.8: Magnetization (left) and entanglement (right) profiles after reflection
of the wavefront from the boundaries. The solid lines show the results (3.3.17),
(3.5.1) and (3.5.2) for the magnetization and (3.4.7) for the entropy, respectively.

density

〈Szx〉 = −1

2
+N

(x
t

)
+N

(
L− x
t

)
, (3.5.1)

where L−x < t < L+x. This last requirement ensures, that only reflections from
the right end of the chain could take place.
For even larger times, one has to take into account the reflections from the left
boundary. To this end one should first note, that the left-moving particles could
be considered as holes penetrating the originally zero-magnetization background.
This also follows directly from the exact symmetry relation 〈Sz−x〉=−1/2 − 〈Szx〉,
which can be used to obtain the magnetization on the left-hand side of the chain.
Hence, for times t > L + x, the contribution of the reflected holes should appear
as

〈Szx〉 = −1

2
+N

(x
t

)
+N

(
L− x
t

)
−N

(
L+ x

t

)
. (3.5.2)

The above result is then valid for times L+ x < t < 2L− x, i.e., until the fastest
holes arrive at site x after a double reflection from both left and right boundaries.
Clearly, this pattern could be continued to arbitrary times after multiple reflec-
tions, always adding the fermionic density with the proper sign and argument.
The results (3.3.17), (3.5.1), and (3.5.2) are compared to exact numerical free-
fermion calculations on the left of Fig. 3.8. One observes that, apart from oscil-
lations, the average magnetization is well described by the semiclassical formulas.
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The oscillations are rather strong around the boundaries and one expects that,
after many reflections, the profile becomes increasingly noisy. On the right of Fig.
3.8 we also plotted the corresponding entanglement profiles. As one can see, the
result in (3.4.7) remains valid for that part of the profile which is not yet reached
by the reflected wavefront. Interestingly, after each reflection one has a steady
increase of entanglement, which was already pointed out in [55] for r = 0. Unfor-
tunately, however, a quantitative understanding of the profile is still beyond our
reach.

3.5.2 XXZ chain

In contrast to the XX case, it is far from trivial how the hydrodynamic approach
could be extended to include reflected quasiparticles in the interacting case. Here
we try to understand only some simple qualitative features of the dynamics after
reflection, focusing on the front that propagates on the left-hand side of the system.
In order to avoid interference with the reflection of the right-propagating front,
for this simulation we considered a chain of size L = L1 + L2, composed initially
of two unequal pieces L1 = 40 (ground state) and L2 = 80 (vacuum).
Our results for both the magnetization and entropy profiles are shown in Fig. 3.9
for two different anisotropies, with the colors corresponding to different evolution
times. The dashed lines indicate the calculated front positions, assuming that the
speed of propagation after reflection is still given by the spinon velocity vs. The
blue curves correspond to times t = L1/vs, i.e., when the front is just supposed
to reach the boundary, which is indeed what we observe in Fig. 3.9. In contrast,
after reflection there is a clear mismatch between the calculated and the actual
edge locations: the front slows down for ∆ > 0 and speeds up for ∆ < 0, the
effect becoming more apparent for larger times. The change of speed is due to the
fact that the reflected front no longer propagates in a zero-magnetization back-
ground, but rather in a nontrivial one left behind by the primary front. Since this
background is inhomogeneous, we expect that the speed of the reflected front will
actually change in time, which is supported by our numerical data. A more de-
tailed analysis is, however, difficult due to the ambiguity in defining the edge of the
reflected front, with its location getting washed out by superimposed oscillations.
Regarding the entropy evolution, one should comment on the previous observations
made in Ref. [55], where the following ansatz for the entropy across the junction
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Figure 3.9: Magnetization (top) and entanglement (bottom) profiles for ∆ = 0.8
(left) and ∆ = −0.5 (right), just before (blue) and after the reflection (red, green)
of the front from the left boundary of the chain. The data are plotted against
the distance from the junction. The dashed lines indicate the edge positions
corresponding to a reflected front with constant speed vs.

r = 0 for times t� 2L2 was put forward

S(r = 0) =
1

6
ln

[√
vet

2L1

π
sin

(
πvet

2L1

)]
+ const. (3.5.3)

Note that this is nothing else but the XX result (3.4.7) for r = 0 and L = 2L1,
after a rescaling t → vet, where the parameter ve was interpreted as an entan-
glement spreading rate. Indeed, t = 2L1/ve should correspond to the roundtrip
time of the entanglement front and the speed ve was obtained by fitting the ansatz
(3.5.3) to the data, with the result ve < vs for ∆ = 0.5 and ve ' vs for ∆ = −0.5
(see Fig. 12 of Ref. [55]). This is in perfect accordance with our observations in
Fig. 3.9. However, instead of being an entanglement spreading rate, the correct
interpretation of ve is due to the modified quasiparticle velocity in the inhomoge-
neous background. Indeed, the very same effect appears also in the magnetization
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profile. Remarkably, even though the front velocity appears to be time depen-
dent after reflection, the simple ansatz (3.5.3) was found to give a rather good
description of the entropy for t < 2L1/ve, with ve being the average round-trip
velocity.

3.6 Fluctuations vs. entropy
To conclude our studies of the geometric quench, we shall consider yet another
physical quantity, namely the profile of the magnetization fluctuations. Since the
XXZ dynamics conserves the overall magnetization, the fluctuations are clearly
vanishing for the full chain. However, considering only a segment A (see Fig. 3.1),
the subsystem fluctuations can be defined as

F =

〈(∑
i∈A

Szi −
〈∑
i∈A

Szi

〉)2〉
, (3.6.1)

where the expectation values are taken with respect to the time-evolved state
(3.2.2). Note that in the fermion language, F is equivalent to the variance of the
particle number in A.
For free-fermion systems, the study of fluctuations is motivated by an exact re-
lation between the ground-state entanglement entropy and the particle number
statistics [59], reproducing the entropy as a cumulant series [61, 62]. The scaling
of the variance has thus been extensively studied in the ground state of the XX
chain [63, 175] as well as out of equilibrium for the simple domain-wall initial
state [173, 176]. In all of the above-mentioned cases one finds that, to leading or-
der, the entropy is simply proportional to the variance, whereas the higher-order
cumulants give only subleading contributions.
Although the cumulant series relation between entropy and fluctuations is deeply
rooted in the free-fermion nature of the state, there are some known extensions
to interacting systems. In particular, for critical ground states described by a
Luttinger liquid, the fluctuations were also found to be proportional to the entropy
[60]

F ' K
3

π2
S + const. (3.6.2)

Here K denotes the Luttinger parameter, while the constant is non universal. The
relation (3.6.2) has been checked explicitly for the XXZ ground state [60], where
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Figure 3.10: Comparison between the magnetization fluctuations F(r) (blue) and
the scaled entanglement entropy S(r) (red), according to Eq. (3.6.2), for a system
of L = 100 and at t = 30.

the Luttinger parameter is known from the Bethe ansatz solution

K =
1

2

(
1− acos(∆)

π

)−1

. (3.6.3)

However, to the best of our knowledge, no such relation has been established in
an out-of-equilibrium context so far.
Our goal here is to study the fluctuations after the geometric quench, which can
also be rewritten as a sum over correlation functions

F =
∑
i,j∈A

[〈
Szi S

z
j

〉
− 〈Szi 〉

〈
Szj
〉]
. (3.6.4)
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Although these objects are straightforward to evaluate via DMRG, one needs the
full matrix of correlators within the subsystem. This makes the computation
somewhat more demanding; thus the simulations are now performed on a smaller
chain with L = 100 sites. The fluctuation profile F(r) is measured at time t = 30,
and is shown by the blue lines in Fig. 3.10 for a set of interaction parameters ∆.
The front region is clearly visible and qualitatively similar to the entropy profiles.
In order to test the relation (3.6.2) between entropy and fluctuations, we have fitted
the constant for the region of the profile that corresponds to the ground state (i.e.,
outside the light cone). This was done by first smoothening out the oscillations
in the data and then minimizing the difference between the corresponding profiles
F(r) and S(r). With the fitted constant, one can now compare the profiles in the
entire front region by plotting the ansatz (3.6.2), shown by the red dashed lines
in Fig. 3.10, together with F(r). Quite remarkably, the two profiles show a good
agreement also within the front region, up to the superimposed oscillations. The
collapse is particularly good for moderate values of ∆, while for larger negative
values the curves start to differ increasingly (for large ∆ > 0 the oscillations
dominate the profile and the comparison is difficult).
The fact that Eq. (3.6.2) seems to give a decent approximation also in the far-
from-equilibrium front region is rather intriguing, since the Luttinger parameter
K in Eq. (3.6.3) is calculated for the ground state. To have a better understanding
of this result, one should try to analyze the behavior of correlation functions in
(3.6.4), which we leave for further studies.

3.7 Conclusions

We have investigated the time evolution after a geometric quench in the XXZ
chain and showed that the magnetization profiles are nicely captured by general-
ized hydrodynamics. While the entanglement profile is harder to describe within
the hydrodynamic picture, we were able to put forward an ansatz for the nonin-
teracting case that shows a very good agreement with the DMRG data.
In order to arrive at our ansatz (3.4.7), we had to apply some heuristic arguments,
expressing the entropy production in the geometric quench as a kind of mixture of
local and domain-wall quenches. It would be desirable to put this result on firm
ground, e.g., by a direct CFT treatment along the lines of Ref. [174], identifying
the curved-space metric corresponding to the inhomogeneous time-evolved state.
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This might also allow for a generalization to initial states with arbitrary fillings
on both sides. Ideally, however, one would like to cast the entropy as a sum over
contributions from the different quasimomenta, analogously to what has been
found for global quenches [29], which would enable us to solve the interacting
problem as well. Whether such a representation is possible in situations with a
logarithmic entropy growth is still unclear.
Another interesting aspect is the physics of the edge, which was shown [177–181]
to display a universal Tracy-Widom scaling [182] for free fermions. Clearly, the
situation is more complicated in the interacting case, since one has a splitting
between the GHD edge and the free edge. Recent studies for the domain-wall
quench hint towards the possibility that the free tail is characterized by a Tracy-
Widom-like t1/3 length scale [170], while the GHD edge seems to spread diffusively
as t1/2 [171]. We believe that the vacuum edge of the geometric quench may belong
to the same type of edge universality as observed for the domain wall. Additionally,
however, one has another edge appearing in our problem that connects to the
ground-state region and might display a different type of behavior. A detailed
study of these edge phenomena requires much more numerical effort and is left for
future studies.
Finally, it would be illuminating to understand how the presence of boundaries
could be reconciled with the theory of generalized hydrodynamics. One feature we
observed is that the edge velocity becomes time dependent after reflection, due to
propagation in a nontrivial inhomogeneous background. Whether a quantitative
description of the reflected front is possible along the lines of GHD is an interesting
question to be addressed.

Acknowledgments
We thank J. Viti and J.-M. Stéphan for a fruitful discussion. The authors ac-
knowledge funding from the Austrian Science Fund (FWF) through Project No.
P30616-N36.

86



Chapter 4

Time evolution of entanglement
negativity across a defect (J. Phys.
A: Math. Theor. 53, 205301 (2020))

In this chapter we present our findings from Ref. [183], which is one of the main
publications of the author. In the following, the abstract and the sections 2. -
7. of the paper, which contain the used methods, the obtained results as well as
the conclusions, are completely included in sections 4.1 - 4.7 of the present thesis.
The appendices A and B were also taken from the paper and can be found in B.1
and B.2, respectively.
The paper was first drafted by the author of this thesis and later substantially
edited equally by him and Viktor Eisler. All the calculations in the paper, except
for the CFT calculations in B.2, were performed by the author of this thesis. Both
authors contributed equally to the interpretation of the results.

4.1 Abstract

We consider a quench in a free-fermion chain by joining two homogeneous half
chains via a defect. The time evolution of the entanglement negativity is studied
between adjacent segments surrounding the defect. In case of equal initial fillings,
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the negativity grows logarithmically in time and essentially equals one-half of the
Rényi mutual information with index α = 1/2 in the limit of large segments. In
sharp contrast, in the biased case one finds a linear increase followed by the satu-
ration at an extensive value for both quantities, which is due to the backscattering
from the defect and can be reproduced in a quasiparticle picture. Furthermore,
a closer inspection of the subleading corrections reveals that the negativity and
the mutual information have a small but finite difference in the steady state. Fi-
nally, we also study a similar quench in the XXZ spin chain via density-matrix
renormalization group methods and compare the results for the negativity to the
fermionic case.

4.2 Model and methods
We consider a chain of noninteracting fermions with a single hopping defect, de-
scribed by the Hamiltonian

Ĥ = Ĥl + Ĥr −
λ

2

(
f †0f1 + f †1f0

)
, (4.2.1)

where the hopping amplitude λ characterizes the defect in the middle of the chain,
while the homogeneous half-chains on the left/right hand side of the defect are
given by

Ĥl = −1

2

−1∑
j=−L+1

(
f †j fj+1 + f †j+1fj

)
, Ĥr = −1

2

L−1∑
j=1

(
f †j fj+1 + f †j+1fj

)
.

(4.2.2)
The full chain has 2L sites and the fermionic annihilation (creation) operators
fj (f †j ) with j = −L + 1, . . . , L satisfy the canonical anticommutation relation
{fi, f †j } = δij. The defect λ ≤ 1 is assumed to be weaker than the tunneling in
the leads Ĥl and Ĥr.
In the following sections we shall either consider the ground state or the time
evolution generated by (4.2.1). In the latter case, the chain is initially split in
two halves and our quench protocol is depicted in Fig. 4.1. Here the initial state
|ψσ〉 of the left/right part (σ = l, r) is given by the respective ground state of
Ĥσ − µσ

∑
j∈σ f

†
j fj, where the chemical potential µσ sets the filling nσ of the

corresponding half-chain. In particular, one sets µl = µr = 0 to initialize both
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chains in their half-filled ground states nl = nr = 1/2, whereas the choice µl = 1
and µr = −1 corresponds to the step-like density nl = 1 and nr = 0 (also known
as the domain wall initial state). In either case, the two halves are then coupled
via a defect, depicted by the dashed bond in Fig. 4.1, and the resulting unitary
time evolution is given by

|ψ(t)〉 = e−iĤt |ψl〉 ⊗ |ψr〉 . (4.2.3)

We are primarily interested in the buildup of entanglement in the time-evolved
state |ψ(t)〉, between two segments A1 and A2 as shown by the colored sites in
Fig. 4.1. We restrict ourselves to the case of adjacent segments of equal lengths `,
located symmetrically around the defect. The bipartite case of ` = L (B = ∅) was
studied in Ref. [64], where the entanglement in the pure state ρ = |ψ(t)〉 〈ψ(t)|
is simply measured by the Rényi entropies between the two halves. In general,
however, one has to first extract the reduced density matrix ρA = TrB(ρ) of the
subsystem A = A1 ∪ A2 by tracing out over the environment B. This leaves us
with a mixed state where the entanglement is much harder to be quantified and
requires a proper measure.

|ψl〉 |ψr〉
t = 0

B A1 A2

t > 0

B

Figure 4.1: Quench setup.

Before introducing this measure, one should remark that the time-evolved state
(4.2.3) is Gaussian and thus fully characterized by its correlation matrix Cmn(t) =
〈ψ(t)| f †mfn |ψ(t)〉. Indeed, since we are dealing with free fermions, the Hamiltonian
(4.2.1) can be written in the quadratic form

Ĥ =
∑
m,n

Hm,nf
†
mfn , (4.2.4)

which defines the elementsHm,n of the hopping matrixH. Then the time evolution
of the correlation matrix can simply be obtained as

C(t) = eiHtC(0) e−iHt . (4.2.5)
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The initial correlation matrix of the decoupled system at t = 0 has a block-diagonal
form

C(0) =

(
Cl 0
0 Cr

)
, (4.2.6)

where Cσ is the ground-state correlation matrix at filling nσ, with matrix elements
given by [184]

(Cσ)m,n =
1

2(L+ 1)

 sin(qF,σ(m− n))

sin
(

π
2(L+1)

(m− n)
) − sin(qF,σ(m+ n))

sin
(

π
2(L+1)

(m+ n)
)
 , (4.2.7)

and the Fermi wavenumber is defined as

qF,σ =
π(nσ L+ 1/2)

L+ 1
. (4.2.8)

In particular, half-filling nσ = 1/2 corresponds to a Fermi momentum qF,σ = π/2,
whereas for the step initial condition (nl = 1, nr = 0) the correlations simplify to
(Cl)m,n = δm,n and (Cr)m,n = 0.

4.2.1 Rényi entropy and mutual information

For the pure state ρ = |ψ(t)〉 〈ψ(t)|, the reduced density matrix of the segment A1

is given by ρA1 = TrB∪A2(ρ). The Rényi entropy between the segment A1 and the
rest of the system is defined as

Sα(ρA1) =
1

1− α ln Tr (ραA1
) , (4.2.9)

with the von Neumann entropy corresponding to the limit α = 1. Note, however,
that these measures do not give information about the entanglement between A1

and A2. To gain some insight about the latter, one could consider the Rényi
mutual information defined by the combination of subsystem entropies

Iα = Sα(ρA1) + Sα(ρA2)− Sα(ρA) . (4.2.10)

The standard (von Neumann) mutual information with α = 1 is known to be a
measure of total (classical and quantum) correlations and is thus an upper bound
to the entanglement [124]. Unfortunately, however, for generic α it is not even a
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proper measure. Indeed, it was demonstrated that Iα may become negative for
α > 2 after a certain quench [127]. On the other hand, it has been proved that Iα
is always positive in the range 0 < α < 2 for both fermionic and bosonic Gaussian
states [128]. Furthermore, recently it was pointed out that the particular case
α = 1/2 is intimately related to a proper entanglement measure, the logarithmic
negativity (see below), after a global quench [67]. Thus our focus will be exclusively
on the case α = 1/2.
The Rényi mutual information (4.2.10) is a simple combination of bipartite en-
tropies in the pure Gaussian state ρ and is thus uniquely determined by the cor-
relation matrix (4.2.5). In particular, for the segment A1 one has

Sα(ρA1) =
1

1− α
∑
j

ln
[
ζαj + (1− ζj)α

]
, (4.2.11)

where ζj are the eigenvalues of the reduced correlation matrix CA1(t), with indices
restricted to the segment m,n ∈ A1. Similar expressions hold for the other terms
in the mutual information (4.2.10), where the eigenvalues of the respective reduced
correlation matrices CA2(t) and CA(t) must be used.

4.2.2 Entanglement negativity

The logarithmic negativity is a versatile measure of entanglement [69]. Its defini-
tion relies on the partial transpose of the density matrix, which may have negative
eigenvalues only if the system is entangled [107]. For bosonic systems, the effect of
the partial transpose is well known to be identical to a partial time reversal [112].
However, for fermionic systems this is not any more the case. Indeed, in contrast
to partial time reversal [71], the partial transpose in general does not lead to a
Gaussian operator [70]. However, it has been proved that the definition based on
partial time reversal also yields a proper measure of entanglement [72]. Therefore,
we shall adopt here the fermionic version of the logarithmic negativity, since it is
directly amenable to correlation-matrix techniques.
In order to define the fermionic negativity, it is more convenient to work in the
Majorana operator basis

c2j−1 = fj + f †j , c2j = i(fj − f †j ) , (4.2.12)

satisfying the anticommutation relations {cm, cn} = 2δmn. We can now expand the
reduced density matrix ρA supported on the segment A = A1 ∪ A2 encompassing
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the defect (see Fig. 4.1) as

ρA =
∑
κ,τ

|κ|+|τ |=even

wκ,τc
κ1
−2`+1 . . . c

κ2`
0 cτ11 . . . cτ2`2` . (4.2.13)

Here κj and τj with j = 1, . . . , 2` are bit strings associated to the subspaces A1

and A2, with their norms defined as |κ| =
∑

j κj and |τ | =
∑

j τj, respectively.
The bit strings indicate whether a Majorana operator is included or not, c0

j = 1
or c1

j = cj, with the weight of the corresponding term in the expansion given
by wκ,τ . Importantly, the sum is restricted to terms, where the overall number of
Majorana operators is even, reflecting the global fermion-number parity symmetry
of the state.
The partial time reversal R2 with respect to A2 acts as [71]

ρR2
A = O+ =

∑
κ,τ

|κ|+|τ |=even

wκ,τ i
|τ |cκ1−2`+1 . . . c

κ2`
0 cτ11 . . . cτ2`2` , (4.2.14)

where we have introduced the shorthand notation O+ which will be useful also
for the definition of the partial transpose. Note that, in general, O+ is not a
Hermitian operator and its conjugate will be denoted by O− = O†+. The fermionic
logarithmic negativity is then defined as

Ef = ln
∥∥ρR2

A

∥∥
1

= ln Tr
√
O+O− . (4.2.15)

Our goal is now to calculate Ef via the Majorana covariance matrix

Γmn =
1

2
Tr (ρ [cm, cn]) , (4.2.16)

where ρ is the density matrix obtained from the pure state (4.2.3) as before. Since
the dynamics conserves the fermion number, the covariance matrix Γ is completely
determined by C(t) obtained from (4.2.5). Using the definition (4.2.12), it is easy
to show that the following relations hold

Γ2j−1,2l = −Γ2j,2l−1 = i (2 Re(Cjl(t))− δjl) , Γ2j−1,2l−1 = Γ2j,2l = 2i Im(Cjl(t)) .
(4.2.17)

Note that we have suppressed the explicit t-dependence of the Γ matrix for nota-
tional simplicity. Due to the Gaussianity of the state, the reduced density matrix
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ρA is characterized by the reduced covariance matrix ΓA. Moreover, one can show
that O± are both Gaussian operators, with corresponding covariance matrix ele-
ments

(Γ±)mn =
1

2
Tr (O±[cm, cn]) , (4.2.18)

that can be written in the block form [70, 185]

Γ± =

(
ΓA1A1 ±iΓA1A2

±iΓA2A1 −ΓA2A2

)
, (4.2.19)

where the block indices A1 and A2 denote the corresponding submatrices of ΓA.
Clearly, evaluating the entanglement negativity in (4.2.15) boils down to an ex-
ercise of multiplying Gaussian operators and taking their trace. This has been
carried out in Ref. [73] by introducing the auxiliary density matrix

ρ× =
O+O−

Tr (O+O−)
, (4.2.20)

which is a normalized Gaussian state with a real spectrum. Using the multipli-
cation rules of Gaussian states, one can show that the corresponding covariance
matrix can be written as [73]

Γ× '
(

1 + Γ 2
A

2

)−1(
ΓA1A1 0

0 −ΓA2A2

)
, (4.2.21)

where ' denotes equality up to a similarity transformation. Indeed, it turns out
that the result for Ef depends only on the spectra {±ν×j } of Γ× as well as that
{±νj} of ΓA, where j = 1, . . . , 2` and the eigenvalues come in pairs due to the
antisymmetry of the covariance matrix. The traces appearing in Ef can then be
evaluated as

Tr (O+O−) = Tr (ρ2
A) =

2∏̀
j=1

1 + ν2
j

2
,

Tr (ρ
1/2
× ) =

2∏̀
j=1

(1 + ν×j
2

)1/2

+

(
1− ν×j

2

)1/2
 . (4.2.22)
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Finally, using the formula (4.2.9) for the Rényi entropies, the logarithmic negativ-
ity can be put in the suggestive form

Ef =
1

2

[
S1/2(ρ×)− S2(ρA)

]
. (4.2.23)

We have thus obtained Ef as a combination of Rényi entropies of the reduced
density matrix ρA and the auxiliary density matrix ρ×, which in turn can be
evaluated using the trace formulas (4.2.22). Note that, since the covariance matrix
Γ× is equivalent to the one in (4.2.21) which depends only on the matrix elements
of ΓA, the negativity is uniquely determined by the fermionic correlation matrix via
(4.2.17). It is instructive to check the limit when ρA corresponds to a pure state,
such that Γ2

A = 1 and one has trivially S2(ρA) = 0. Furthermore, from (4.2.21)
one observes that Γ× becomes block diagonal and thus S1/2(ρ×) = S1/2(ρA1) +
S1/2(ρA2). Substituting into (4.2.23) and using the symmetry property S1/2(ρA1) =
S1/2(ρA2) of the Rényi entropy, one obtains the well known relation Ef = S1/2(ρA1).

4.3 Ground state entanglement
Although the main focus of our work is the time evolution of the entanglement
across a defect, it turns out to be very useful to have a look at the ground-state
entanglement first. Namely, we shall consider here the ground state of the chain
(4.2.1) and calculate the entanglement negativity for the same geometry as for the
quench shown in Fig. 4.1, i.e. for two equal segments surrounding the defect. In
fact, in the bipartite case when the segment is taken to be the half-chain (B = ∅),
it has been shown that the entanglement entropies in the ground state and after
the quench are very closely related [64, 186].
The defect problem for the entanglement was first studied in Ref. [187] where a sin-
gle interval neighbouring the defect was considered in an infinite chain. The loga-
rithmic scaling of the entropy was found to persist, albeit with a prefactor (dubbed
as effective central charge) that varies continuously with the defect strength. Im-
portantly, the contributions to the entanglement from the two boundaries of the
interval were found to be additive. An analytical expression for the defect contri-
bution was later derived in [188] by considering the half-chain entropy for α = 1,
and further exact results for various other α were obtained in [189].
We shall now argue that the effective central charge for α = 1/2 will govern
also the scaling of the entanglement negativity. Obviously, for the bipartite case
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this follows immediately from the relation Ef = S1/2(ρA1) = 1
2
I1/2. However,

even in the generic tripartite case, one expects that the negativity should only
be sensitive to the defect contribution. Indeed, Ef measures the entanglement
between the segments A1 and A2 and should not care about the contribution of the
homogeneous boundaries between A and B. Now, this is exactly the contribution
contained in S1/2(ρA), which is subtracted in the mutual information. Indeed, as
shown in [190], in the limit of `� 1, the Rényi entropy of an interval containing
the defect in the middle is just given by the homogeneous result. Therefore, in
complete analogy to [67], we assume by a continuity argument that the relation
Ef ' 1

2
I1/2 should hold in the tripartite case as well. Note that the factor 1/2

just compensates the double counting of the defect contribution.
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Figure 4.2: Left: comparison of the fits for ceff (circles) according to Eq. (4.3.3),
to the analytical formula (4.3.2) (line). Right: difference of Ef and 1

2
I1/2 as a

function of ` for different coupling strengths λ.

One can now use the results for the α = 1/2 Rényi entropy to put forward the
ansatz for the negativity

Ef '
1

2
I1/2 =

ceff

4
ln(`) + const, (4.3.1)

where the effective central charge reads [189]

ceff =
4

π2
asin(s)(π − asin(s)) , s =

2

λ+ λ−1
. (4.3.2)

Here s is the transmission amplitude of the defect at the Fermi level qF = π/2, i.e.
the square root of the transmission coefficient s =

√
TqF , see (4.5.3). Note that
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ceff is given by a smooth function that varies between zero and one, which are the
limiting cases of decoupled (λ = 0) and homogeneous (λ = 1) chains.
To test our ansatz in (4.3.1), we carried out numerical calculations using the
methods of Sec. 4.2, where C(t) has to be replaced by the ground-state correlation
matrix. This can be evaluated directly in the thermodynamical limit L→∞ [187],
with the formulas summarized in Appendix B.1. For a fixed value of λ, we find
indeed a logarithmic growth of Ef with the segment size, which can be fitted to

Ef =
ceff

4
ln(`) + a+

b

`
, (4.3.3)

in the range up to ` = 300 and including also subleading corrections. A comparison
of the fits for ceff obtained from Eq. (4.3.3) and the analytic prediction (4.3.2) is
shown on the left of Fig. 4.2, with a perfect agreement. Furthermore, we also
compared the logarithmic negativity and the mutual information directly, with
their difference shown on the right of Fig. 4.2. One can clearly see that the
difference decreases with increasing `, which confirms the assumption Ef ' 1

2
I1/2

up to subleading corrections that seem to vanish in the `→∞ limit.

4.4 Quench from equal fillings
After having investigated the ground-state problem, we now move to the quench
scenario depicted in Fig. 4.1. First we consider equal fillings, restricting ourselves
to the case of half-filled chains nl = nr = 1/2. For a homogeneous chain (λ = 1),
the time evolution of the entanglement entropy after such a local quench has been
calculated for hopping chains [50] as well as within CFT [51, 144]. Moreover, CFT
calculations could even be extended to the treatment of the negativity after the
quench, using the techniques introduced in [130, 131]. For symmetric intervals in
an infinite chain L→∞ and t < `, one obtains the result [74]

Ef =
c

4
ln

(
t2 + ε2

ε2
`− t
`+ t

)
+ const, (4.4.1)

where ε is a short-distance cutoff, ubiquitous in CFT calculations. Remarkably,
the exact same result can be found for the Rényi mutual information 1

2
I1/2 in

the limit of adjacent intervals, based on the results of Ref. [191], where only the
case α = 1 was considered but the generalization to α = 1/2 is trivial. It should
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be stressed that both CFT results contain, in general, a contribution from a non-
universal function which, however, is expected to vanish for the Dirac fermion
theory we are interested in, and is thus not included in (4.4.1). The characteristic
feature of (4.4.1) is an early logarithmic growth for t � ` which then levels off
into a plateau, followed by a sharp decrease around t→ `. For t > `, i.e. after the
front created by the quench travels through the segment, the negativity assumes
its ground-state value Ef = c/4 ln `+ const.
On the other hand, for local quenches across a defect, another interesting result
was found for the time evolution of the Rényi entropy of a half-chain, ` = L.
Namely, for a hopping chain with a defect, it turns out that the growth of the
entropy is logarithmic and governed by the exact same effective central charge as
found for the ground-state entanglement [64, 66]. The result was later generalized
to arbitrary CFTs with a conformal defect [186]. In particular, for α = 1/2 and
in the limit t� L, one finds for the hopping chain

S1/2(ρA1) =
ceff

2
ln(t) + const, (4.4.2)

where ceff is given by (4.3.2). Note that in the homogeneous case ceff = 1, and
thus taking the limit `→∞, t� ε and setting c = 1 in (4.4.1) exactly reproduces
(4.4.2), as it should.
We now consider the negativity in the tripartite setup of Fig. 4.1. Similarly to the
ground-state case in Sec. 4.3, we argue that the relation Ef ' 1

2
I1/2 should hold

also for the local quench across a defect. However, apart from the homogeneous
case λ = 1, we are not aware of any calculations (neither lattice, nor CFT), which
would generalize the formula (4.4.2) on the Rényi entropy for an interval ` < L
that is not the half-chain. Nevertheless, it is reasonable to expect that, until the
front reaches the boundary t < `, the entropy of the composite interval S1/2(ρA)
actually remains constant. Then, by combining the results (4.4.1) and (4.4.2), we
propose the following simple ansatz

Ef =
c′eff

4
ln

(
t2
`− t
`+ t

)
+ const. (4.4.3)

Note that one has only two fitting parameters, namely the prefactor c′eff as well
as the constant. Clearly, for the limiting cases λ = 0 and λ = 1, one has to have
c′eff = 0 and c′eff = c = 1, respectively.
For intermediate values of λ, we have determined c′eff by fitting the ansatz (4.4.3)
to the numerically calculated Ef curves for a fixed interval length ` = 50. The
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results are shown in Fig. 4.3. On the left of the figure the numerical data is shown
together with the ansatz (4.4.3). On the right hand side we plot the obtained
values of c′eff as a function of λ, compared to the equilibrium effective central
charge ceff . One can clearly see that the two functions behave very similarly and
one has c′eff ≈ ceff . Indeed, for larger values of λ the agreement is almost perfect,
however the deviation increases for smaller defect strengths. This is also obvious
from the left of Fig. 4.3, where the data for λ = 0.2 shows already some larger
discrepancy compared to the fit function.
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Figure 4.3: Left: time evolution of the logarithmic negativity Ef after a quench
from equal fillings, for ` = 50 and 2L = 600. The red solid lines show the ansatz
(4.4.3) the data is fitted to. Right: comparison of the fitted values of c′eff to the
ground-state effective central charge ceff from (4.3.2)

Although the mismatch of the data might be due to finite-size effects, we observe
essentially the same behaviour for larger ` = 75. This rather suggests that the
simplistic ansatz (4.4.3) is probably not the exact leading functional form of Ef . In
fact, we have also tried a more complicated three-parameter ansatz, assigning two
different prefactors to the logarithmic terms with arguments t and (`− t)/(`+ t).
Unfortunately, however, the fits turn out to be very unstable against changing the
fitting interval, making the results unreliable. Thus we conclude that, without
some additional insights (e.g. from CFT calculations) on the structure of Ef ,
extracting the proper time-dependence from numerical calculations is a very hard
task.
We have also compared the behaviour of Ef and 1

2
I1/2 directly. One finds that
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the curves almost exactly overlap until roughly t ≈ `, with no visible deviations.
Around t = ` there is only a slight deviation between the two functions, which,
however diminishes again for t � `. Indeed, both quantities are expected to
converge towards their ground-state values asymptotically, where the deviation
was already found to be tiny, see Fig. 4.2. Therefore, for better visibility of the
data, we have not included 1

2
I1/2 in the left of Fig. 4.3.

4.5 Quench from unequal fillings

We now study initial states with unequal fillings, where the behaviour of the
entanglement negativity turns out to be qualitatively different from the unbiased
case discussed above. In most of our calculations we shall actually consider the
maximally biased case, nl = 1 and nr = 0, while at the end of the section we show
that the generalization to arbitrary fillings is straightforward. Similarly to the
unbiased case, we first discuss the negativity evolution for a homogeneous chain
(λ = 1), where results can also be obtained via CFT techniques.

4.5.1 Homogeneous chain

This case is also known as the domain-wall quench, due to the form of the initial
state in the spin-chain equivalent of the hopping model. Here one can work directly
in the thermodynamic limit, L → ∞, where the correlation matrix is known
exactly and has the simple form [177]

Cmn(t) =
in−m t

2(m− n)
[Jm−1(t)Jn(t)− Jm(t)Jn−1(t)] , (4.5.1)

where Jm(t) is the Bessel function of order m. Remarkably, the correlation matrix
for the domain-wall quench is unitarily equivalent to the one in a static ground-
state problem, namely a hopping chain with a linear chemical potential [146], with
the time t playing the role of the characteristic length scale of the potential. This
can actually be shown to be a particular example of a more general mapping,
known as emergent eigenstate solution [192]. Consequently, the entanglement
properties in the dynamical and static problems are identical.
The entanglement entropy for a biased hopping chain was studied in [52, 55, 146,
149] between two parts of the chain, with the cut located somewhere along the
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emerging front. The growth was found to be logarithmic, however with a different
prefactor as for the local (unbiased) quench. The analytical understanding of
the results for nl = 1 and nr = 0 came afterwards, when the method of curved-
space CFT was developed [53]. The basic idea is that certain inhomogeneous
free-fermion problems can be treated by first mapping the problem to a CFT in
a curved background metric. The entanglement entropies can be calculated by
applying standard replica-trick methods [104] for the curved-space Dirac fermion
theory (see also [193] for recent results on inhomogeneous Luttinger liquids). This
makes it possible to extract the entropy analytically for a half-chain, or even
generalize the calculations to a finite segment within the front region [53]. The
mutual information 1

2
I1/2 in our setup can be obtained immediately from the

latter result.
Furthermore, it is possible to combine the curved-space technique with the CFT
approach to the negativity [130, 131]. The calculation is straightforward but
somewhat lengthy, thus we present it in Appendix B.2. As a result, we obtain for
both the negativity and the mutual information

Ef =
1

2
I1/2 =

1

4
ln [ t f (`/t)] + c1, f(ξ) =

1 t < `(
1−
√

1−ξ2
)2

ξ3
t > `

(4.5.2)

Note that, apart from an explicit factor of t which gives the logarithmic growth of
the negativity, (4.5.2) depends only on a scaling function of the variable ξ = `/t.
It should be stressed that the calculation in Appendix B.2 refers only to ξ < 1,
as the curved-space CFT is able to describe only the front region with nontrivial
fermionic density. However, the ξ > 1 result can be obtained by using continuity
and some simple arguments. Indeed, for ` > t, the segments include parts of the
chain outside the front, where the density is either zero or one. Clearly, these
pieces do not contribute to the entanglement at all, which is thus given by the
result for ` = t, i.e. by the limit ξ → 1. The CFT results in (4.5.2) are compared
to our numerical calculations in Fig. 4.4 with a very good agreement. The constant
c1 ≈ 0.646 has been obtained by fitting the data for Ef in the regime t < `. The
only visible deviations are around t = `, i.e. when the boundaries of the segments
are close to the edges of the front. Indeed, the front is known to have a nontrivial
scaling behaviour around the edge [177, 178, 181], characterized by the scale t1/3,
which is not resolved by the CFT treatment. Nevertheless, when plotted against
t/` = ξ−1 and after subtracting 1/4 ln(t), the lattice data for increasing ` converge
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Figure 4.4: Logarithmic negativity Ef and mutual information 1
2
I1/2 after the

domain wall quench in a homogeneous chain (λ = 1), compared to the CFT
prediction (4.5.2) (red solid lines) for two different segment sizes. The inset shows
the scaled data around t = `, after subtracting 1

4
ln(t).

smoothly towards the CFT result as shown in the inset of Fig. 4.4. Note also that
the t → ∞ behaviour can be obtained by expanding f(ξ) ≈ ξ/4 for ξ → 0, such
that the steady state is characterized by Ef = 1/4 ln `+ const.

4.5.2 Chain with a defect

The time evolution of entanglement across a defect turns out to be qualitatively
different [64]. Indeed, an imperfect transmission between the half-chains gives rise
to scattering, i.e. the single-particle modes are partially transmitted and reflected
with probabilities Tq and Rq = 1 − Tq, respectively. For a weak hopping defect
parametrized by λ = e−ν , the transmission coefficient is given by

Tq =
sin2(q)

cosh2(ν)− cos2(q)
. (4.5.3)

101



Quench from unequal fillings

The transmitted and reflected particles become entangled in the wavefunction, and
the contribution of such a pair in the α = 1/2 Rényi entropy is s1/2(Tq), where

s1/2(x) = 2 ln
(
x1/2 + (1− x)1/2

)
(4.5.4)

is the density of the Rényi entropy, c.f. Eq. (4.2.11). Now, due to the density
bias in the initial state, there is a constant influx of particles and consequently
a steady generation of entanglement at the defect. For a half-chain, ` = L, at
maximum bias and in the limit L→∞, this was found to give, to leading order,
a linear growth of entanglement [64]

S1/2(ρA1) = t

∫ π

0

dq

2π
vq s1/2(Tq) , (4.5.5)

where vq = sin(q) is the single-particle group velocity and the integral is taken
over all modes with vq > 0.
This simple semiclassical picture of entanglement production, based on the prop-
agation of entangled pairs of quasiparticles, bears a strong similarity to global
quenches [22, 29]. One should stress, however, that here the pairs are created
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Figure 4.5: Entanglement negativity Ef (circles) and mutual information 1
2
I1/2

(squares) after a quench from unequal fillings nl = 1 and nr = 0, compared to the
semiclassical ansatz (4.5.6) (lines) for ` = 40 and different values of λ.
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solely at the defect site but steadily in time, in contrast to a global quench where
pairs are created only at t = 0 but homogeneously along the chain. Nevertheless,
the continuity argument Ef ' 1

2
I1/2 can be applied the very same way as for the

global quench [67]. Indeed, due to the strictly local production of entanglement
at the common boundary of the segments, the only effect of their finite size is to
cut off the growth of the negativity once the distance travelled by a given mode
vqt exceeds the segment size `. This leads to the semiclassical expression

Esc =

∫ π

0

dq

2π
min (vqt, `) s1/2(Tq) . (4.5.6)

To test the validity of our ansatz Esc, in Fig. 4.5 we plot the integrals (4.5.6) for
various λ and compare them to the numerical data for Ef and 1

2
I1/2 obtained for

a chain of length 2L = 500 from the correlation-matrix method. One can see that
the semiclassical picture provides a rather good description of the data to leading
order, there are, however, still some sizeable corrections which tend to diminish for
smaller values of λ. The quantities Ef and 1

2
I1/2 perfectly overlap in the regime

t < ` of linear growth, where the result is identical to the one for the half-chain
(4.5.5), as there is no contribution to the entanglement from the outer boundaries
of the segments. Interestingly, however, there is a clearly visible splitting for t > `,
after the front has traversed the segments.
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Figure 4.6: Deviations of Ef (solid lines) and 1
2
I1/2 (dashed lines) from the semi-

classical ansatz (4.5.6) for λ = 0.8 (left) and λ = 0.5 (right) and various segment
sizes `.
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In order to better understand the corrections beyond the semiclassical picture, in
Fig. 4.6 we have subtracted Esc from the data, shown for the two larger values of
λ and several segment sizes. Similarly to Esc, the deviation also shows different
behaviour in the regimes t < ` and t > `. Until roughly t ≈ `, one observes a steady
growth which becomes slower for larger defect strengths. A closer inspection shows
that this subleading growth is actually slower than logarithmic for all the values
λ 6= 1 we have checked. When the front crosses the segment boundary, one has
a sharp drop in all of the curves, which is then followed again by a very slow
increase. Note that the splitting of the Ef and 1

2
I1/2 curves is even more apparent

in Fig. 4.6. However, due to the very slow variation of the data, it is hard to draw a
firm conclusion about the asymptotic behaviour, despite the relatively large times
considered in the calculations.
The steady state after the quench across the defect can actually be captured
directly. Indeed, the elements of the correlation matrix in (4.2.5) have a well
defined limit [194]

C̃m,n = lim
t→∞

lim
N→∞

Cm,n(t) , (4.5.7)

with the explicit formulas collected in Appendix B.1. These can be used to evalu-
ate the subleading scaling of the steady-state negativity and mutual information,
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Figure 4.7: Steady-state negativity (left) and mutual information (right), as cal-
culated from the correlation matrix (4.5.7) after subtracting the extensive semi-
classical contribution (4.5.6). The data is plotted against ln(`) for various defect
strengths λ. Note the different vertical scales.
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i.e. after subtracting the extensive contribution limt→∞ Esc that follows from the
semiclassical description (4.5.6). The results are shown in Fig. 4.7, with both the
data for Ef (left) as well as 1

2
I1/2 (right) plotted against ln(`). Rather clearly, the

subleading terms in the steady state are different for the two quantities and the
scaling in ` is slower than logarithmic. This is also supported by the form of the
steady-state correlation matrix (B.1.10) on a given side of the defect, which is a
Toeplitz matrix with a symbol given by Tq for q > 0 and zero otherwise. While
this yields immediately the extensive part of the negativity (4.5.6), one has also
Tq → 0 for q → 0 and thus no jump singularity is present. Nevertheless, the sym-
bol is still nonanalytic and shows a very sharp increase around q = 0 as λ → 1.
Thus a weaker than logarithmic growth of the subleading term, although unlikely
from the numerics, cannot be excluded.
Finally, we briefly consider the case of arbitrary fillings with nl > nr. The straight-
forward generalization of the semiclassical ansatz reads

Esc =

qF,l∫
qF,r

dq

2π
min (vqt, `) s1/2(Tq) , (4.5.8)

where the integral is carried out only between the Fermi wavenumbers qF,σ = πnσ.
In other words, one has to consider only the contributions from the uncompensated
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2
I1/2

(squares) after a quench from various unequal fillings, compared to the semiclas-
sical ansatz (4.5.8) (lines) for ` = 40 and λ = 0.5 (left) resp. λ = 0.1 (right).
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fermionic modes, that can propagate from the left to the right half-chain. The
resulting curves are shown in Fig. 4.8, for two different λ and various fillings,
together with the numerically calculated Ef and 1

2
I1/2 in a chain of size 2L = 500.

As expected, the plots are very similar to the one in Fig. 4.5, with the deviations
from the semiclassical prediction decreasing for smaller λ. Due to the similar
qualitative behaviour, a detailed analysis of the subleading terms is not presented
for this case.

4.6 Quench in the XXZ chain with a defect

Finally we are considering a quench in the XXZ spin chain, given by the Hamil-
tonian

ĤXXZ =
L−1∑

j=−L+1

[
Jj
(
Sxj S

x
j+1 + Syj S

y
j+1

)
+ ∆SzjS

z
j+1

]
, (4.6.1)

where Sαj are spin-1/2 operators, ∆ is the anisotropy parameter, and the XX-
coupling is given by

Jj =

{
1 if j 6= 0 ,

λΘ(t) if j = 0 .
(4.6.2)

Here Θ(t) is the Heaviside step function, in other words, the quench consists of
simply joining two decoupled XXZ half-chains at time t = 0. Applying a Jordan-
Wigner transformation, the Hamiltonian (4.6.1) can be mapped into a chain of
interacting fermions and the setup becomes exactly the same as the one depicted
in Fig. 4.1 for free fermions without a density bias.
However, it turns out that the negativity depends on the choice of basis and is
not equivalent in the fermion or spin representation. Indeed, using spin variables,
one has to apply the conventional definition of the logarithmic negativity via the
partial transpose of the density matrix [69]

Es = ln
∥∥ρT2A ∥∥1

. (4.6.3)

Here the partial transpose is taken with respect to subsystem A2, defined by its
matrix elements as〈

e
(1)
i , e

(2)
j

∣∣∣ ρT2A ∣∣∣e(1)
k , e

(2)
l

〉
=
〈
e

(1)
i , e

(2)
l

∣∣∣ ρA ∣∣∣e(1)
k , e

(2)
j

〉
, (4.6.4)
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where
∣∣∣e(1)
i

〉
and

∣∣∣e(2)
j

〉
denote orthonormal bases on the Hilbert spaces pertaining

to segments A1 and A2.
Clearly, since we are now faced with a non-Gaussian problem, we have to com-
pute the negativity Es via density-matrix renormalization group (DMRG) [10–
12] methods. In particular, the time evolution |ψ(t)〉 = e−iĤXXZt |ψ(0)〉 after the
quench is first performed with time-dependent DMRG (tDMRG) simulations [56,
57], which give access to the reduced density matrix ρA in a matrix product state
(MPS) representation [168]. The partial transpose and the corresponding loga-
rithmic negativity can then be calculated using the method of Ref. [79], which is
briefly reviewed in the following subsection.

4.6.1 Negativity for matrix product states

Let us consider the time-evolved state after the quench |ψ(t)〉 = e−iĤXXZt |ψ(0)〉
and its MPS representation

|ψ(t)〉 =
∑

σ1...σ2L

T σ1ν1 T
σ2
ν1ν2

. . . T σ2Lν2L−1
|σ1 . . . σ2L〉 , (4.6.5)

where T σiνi−1νi
denotes the tensor on site i with bond indices νi−1 and νi and the

physical index σi = 0, 1. In Eq. (4.6.5) and all the following equations, we as-
sume summation over all repeated bond indices νi implicitly, and indicate only
summations over the physical indices for better readability.
Our goal is to calculate the negativity for the geometry depicted in Fig. 4.1, i.e.
between two adjacent segments A1 and A2 with A = A1∪A2. The main step is to
construct the reduced density matrix ρA, which is shown graphically on the left of
Fig. 4.9, after tracing out over the environment B. The squares in different colors
depict the tensors belonging to either subsystems A1 or A2, c.f. Fig. 4.1. One can
now introduce new basis states in the Hilbert spaces of the two intervals A1 and
A2 as∣∣w(1)

ν1l,ν1r

〉
=
∑
{σi}

∏
i∈A1

T σiνi−1νi
|σi〉 ,

∣∣w(2)
ν2l,ν2r

〉
=
∑
{σi}

∏
i∈A2

T σiνi−1νi
|σi〉 , (4.6.6)

where the index pairs ν1l, ν1r and ν2l, ν2r indicate the uncontracted left- and right-
most bond indices for each block. Using these basis states, we can eventually write
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the reduced density matrix as

ρA = δν1l,ν′1lδν2r,ν′2rδν1r,ν2lδν′1r,ν′2l

∣∣w(1)
ν1l,ν1r

〉 〈
w

(1)

ν′1l,ν
′
1r

∣∣∣⊗ ∣∣w(2)
ν2l,ν2r

〉 〈
w

(2)

ν′2l,ν
′
2r

∣∣∣ , (4.6.7)

where the delta functions carry out the contractions of the remaining bond indices,
as visualized in the left of Fig. 4.9.

E1

ν1l

ν′1l

ν1r

ν′1r

ν1l

ν′1l

ν1r

ν′1r

=
N1

Tσj

T̄σj

Figure 4.9: Graphical representation of the reduced density matrix ρA (left), the
transfer matrix E1 corresponding to the segment A1 (middle), and its singular
value decomposition (right). The boxes represent tensors with the contractions
indicated by the links between them.

The representation (4.6.7) yields a decomposition of ρA on the two subspaces
corresponding to A1 and A2. However, the main problem is that the choice of
basis in (4.6.6) is not orthogonal. Indeed, the overlaps between these states are
given by the so-called transfer matrices

〈w(1)
ν1l,ν1r

|w(1)

ν′1l,ν
′
1r
〉 = [E1]ν1l,ν1rν′1l,ν

′
1r
, 〈w(2)

ν2l,ν2r
|w(2)

ν′2l,ν
′
2r
〉 = [E2]ν2l,ν2rν′2l,ν

′
2r
, (4.6.8)

that are obtained by contracting all the tensors with their complex conjugates via
their physical indices within the respective segment

[E1]ν1l,ν1rν′1l,ν
′
1r

=
∏
i∈A1

∑
σi

T σiνi−1νi
T̄ σiν′i−1ν

′
i
, [E2]ν2l,ν2rν′2l,ν

′
2r

=
∏
i∈A2

∑
σi

T σiνi−1νi
T̄ σiν′i−1ν

′
i
. (4.6.9)

These objects are thus four-index tensors, corresponding to the uncontracted left-
and rightmost bond indices, see the middle panel of Fig. 4.9 for a graphical rep-
resentation of E1.
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In order to obtain an orthogonal basis, one has to perform a singular value decom-
position (SVD) of the transfer matrices E1 = U1D1V

†
1 and E2 = U2D2V

†
2 . This

amounts to introducing a basis change via∣∣w(1)
ν1l,ν1r

〉
=
∑
m

[N1]mν1l,ν1r
∣∣v(1)
m

〉
,

∣∣w(2)
ν2l,ν2r

〉
=
∑
n

[N2]nν2l,ν2r
∣∣v(2)
n

〉
, (4.6.10)

where N1 = U1D
1/2
1 and N2 = U2D

1/2
2 , and the new indices m and n correspond to

the singular values contained in the diagonal matrices D1 and D2. The pictorial
representation of the SVD for E1 is shown on the right of Fig. 4.9, where D1/2

1

is depicted by the green rhombi. Inserting (4.6.10) into (4.6.7), one immediately
obtains the matrix elements of the reduced density matrix

[ρA]m,m
′

n,n′ = [N1]mν1l,ν2l
[
N̄1

]m′
ν1l,ν

′
2l

[N2]nν2l,ν2r
[
N̄2

]n′
ν′2l,ν2r

(4.6.11)

expressed in the orthogonal bases
∣∣∣v(1)
m

〉
and

∣∣∣v(2)
n

〉
. Note that (4.6.11) is now

exactly in the form required to carry out the partial transposition according to
(4.6.4). Indeed, the index pairs m,m′ and n, n′ correspond to the intervals A1 and
A2, respectively. Therefore, the matrix elements of ρT2A can simply be obtained by
exchanging n and n′. Finally, the logarithmic negativity Es in Eq. 4.6.3 can be
calculated via an explicit diagonalization of ρT2A .
Regarding the computational effort, one has to stress that the cost of construct-
ing the transfer matrices in (4.6.9) scales as O(χ6

max) with the maximum bond
dimension χmax of the MPS. This, however, grows with the time evolution where
we set the requirement ε ∼ 10−8 − 10−9 for the truncated weight. For a feasible
computation of the transfer matrices, we truncated back the bond dimension to
χmax = 300. The range of each index m,m′ as well as n, n′ in the representation
(4.6.11) is then bounded by χ2

max, which is still too large for a tractable calcula-
tion. However, since the singular values of E1 and E2 decay rapidly, one can apply
a truncation after the SVD which we set to χ′max = 80. All in all, the evaluation
of entanglement negativity is computationally much more demanding than that
of the entropy, severely limiting the attainable segment sizes and simulation times
in our numerics.

4.6.2 Numerical results

The methods outlined in the previous subsection are now used to evaluate the time
evolution of the logarithmic negativity across a defect in the XXZ chain. We focus
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exclusively on the unbiased case, as the bias induces a much more rapid growth
of entanglement, which makes the DMRG calculations very demanding. We first
present the results for the XX chain, which is just the special case of ∆ = 0 in
(4.6.1). Note that, even though the XX chain with a defect is exactly mapped
into the fermionic Hamiltonian in Eq. (4.2.1) via a Jordan-Wigner transformation,
the negativity Es calculated for the spin chain in (4.6.3) is not equivalent to the
fermionic one Ef defined in (4.2.15). Indeed, it has been shown in [70] that the
partial transposition in the spin basis yields a linear combination of two fermionic
Gaussian operators

ρT2A =
1− i

2
O+ +

1 + i

2
O− , (4.6.12)

where O+ = ρR2
A is the operator obtained in (4.2.14) by partial time reversal of

the fermionic degrees of freedom and O− = O†+. Since in general the operators O+

and O− do not commute, one has no access to the spectrum of ρT2A and hence to Es
via simple covariance-matrix techniques. Nevertheless, the spin-chain negativity
can be shown to be upper-bounded by the fermionic one as [73, 115]

Es ≤ Ef + ln
√

2 . (4.6.13)

The time evolution of Es obtained from tDMRG simulations are shown by the full
symbols in Fig. 4.10 for various defect strengths λ. The results are compared to the
fermionic negativity Ef , shown by the empty symbols, and indicate that the upper
bound in (4.6.13) actually holds even without the additional constant, i.e. one has
Es ≤ Ef . The two quantities have a very similar qualitative behaviour, with their
difference diminishing with decreasing λ. Unfortunately, however, the simulation
times as well as the size of the segments are severely limited in the tDMRG
simulations due to the increasing entanglement and bond dimension during time
evolution, especially for higher values of λ. This makes a quantitative analysis
of the discrepancy between Es and Ef rather complicated. We also performed
analogous tDMRG simulations for the XXZ chain with the anisotropy parameter
0 < ∆ < 1. The fermionic analogue of this setting corresponds to an interacting
problem and thus not amenable to Gaussian techniques. We first considered the
homogeneous case λ = 1, where the post-quench Hamiltonian is integrable and
its low-energy behaviour is described by a Luttinger liquid. In particular, the
spreading of excitations created above the ground state is given by the spinon

110



Quench in the XXZ chain with a defect

0 5 10 15 20 25 30
0

0.5

1

1.5

t

E f
,E

s
λ = 1.0

λ = 0.8

λ = 0.5

λ = 0.2

Figure 4.10: Time evolution of the entanglement negativity Es (full symbols) for
two adjacent segments of size ` = 20 across a defect of various strengths λ in
an XX chain with 2L = 100. The data for the fermionic negativity Ef (empty
symbols) in the analogous quench of the hopping chain with a defect is shown for
comparison.

velocity [93]

vs =
π

2

√
1−∆2

acos(∆)
. (4.6.14)

This strongly suggests that the main difference with respect to the homogeneous
XX quench is due to the change in the Fermi velocity. On the left of Fig. 4.11 we
have thus plotted the logarithmic negativity Es calculated for various ∆ against
the variable vst, which indeed leads to a nice data collapse.
The situation for λ 6= 1 is more complicated, as the presence of the defect breaks
the integrability of the model. The time evolution of the negativity is shown on
the right of Fig. 4.11 for various defect strengths λ and fixed ∆ = 0.5, for a
segment size ` = 20. Qualitatively, one observes a very similar behaviour as for
the XX chain in Fig. 4.10. However, in previous studies of the half-chain entropy
in Ref. [151] it was observed that the entropy growth is actually suppressed for
repulsive interactions ∆ > 0, corresponding to an effective central charge that
goes to zero in the limit of large chain sizes. This is actually the same mechanism
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that was found for the ground-state entropy of the XXZ chain with a defect [195],
and is the manifestation of a Kane-Fisher type renormalization behaviour [196].
Therefore it is reasonable to expect that the entanglement negativity would show a
similar behaviour in the limit of large `. Unfortunately, however, the segment sizes
required to test such a crossover are well beyond the limitations of our simulations.
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Figure 4.11: Time evolution of the entanglement negativity Es for two adjacent
segments of size ` = 20 in an XXZ chain with 2L = 100. Left: homogeneous
quench (λ = 1) for different anisotropies ∆. Right: quench across a defect of
different strengths λ and ∆ = 0.5.

4.7 Discussion
We have studied entanglement in a hopping chain with a defect, focusing on the
fermionic version of the logarithmic negativity Ef between two segments neigh-
bouring the defect, and its relation to the Rényi mutual information 1

2
I1/2. In the

ground state of the chain, the negativity scales logarithmically with an effective
central charge ceff , and the difference Ef− 1

2
I1/2 goes to zero for increasing segment

sizes. For a quench across the defect, starting from disconnected half-chains both
at half filling, the growth of the negativity is logarithmic in time and the prefac-
tor seems to be well approximated by ceff . When the quench is performed from
biased fillings, the entanglement growth becomes linear, followed by a saturation
at an extensive value, which is due to backscattering from the defect and can be
understood in a semiclassical picture. Although the ansatz (4.5.6) gives a very
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good leading order description of both Ef and 1
2
I1/2, the subleading corrections

behave differently and their difference in the steady state remains finite even for
large segment sizes. We have also calculated the standard logarithmic negativity
Es via DMRG methods in the XXZ spin chain after a (unbiased) quench across
a defect. In the noninteracting XX case, closely related to the fermionic chain,
we found that the spin-chain negativity is upper bounded by the fermionic one,
Es ≤ Ef . In the general XXZ case, the results for Es look qualitatively similar to
the XX case for the small segment sizes attainable.

While the entanglement growth in the biased case has a very clear physical inter-
pretation, the result for equal fillings is harder to grasp and would require some
insight from CFT calculations. In fact, for the bipartite case of a half-chain, the
CFT representation of the density matrix after the quench can be transformed
into the one for the ground state by an appropriate conformal mapping [186]. Un-
fortunately, however, this transformation works only for the half-chain and it is
unclear whether a generalization to our geometry exists.

It is important to stress that, although the semiclassical picture for unequal fill-
ings is analogous to the one for a global quench [67], the qualitative behaviour of
the negativity is completely different. Indeed, in the latter case the quasiparticles
are created only at t = 0, and thus the pairs that contribute to the entanglement
growth eventually leave the segments. This implies that the negativity will de-
crease again for large times, decaying towards zero. In contrast, in our case there
is a constant production of entangled pairs at the defect, and thus the negativity
keeps growing until it eventually saturates at an extensive value. Furthermore,
while for the global quench the deviation between Ef and 1

2
I1/2 seems to vanish

for increasing `, for the defect we observe a finite difference between the two quan-
tities. Understanding the origin of this discrepancy requires further investigations.

Finally, it would be interesting to extend these investigations to disjoint segments.
In particular, it would be illuminating to see how the disagreement between the
fermionic and XX chain negativities changes with separation. One expects the
discrepancy to become larger, as the partial transpose is a sum of four fermionic
Gaussian operators already in the ground state [197]. While the extension of both
the fermionic as well as the spin-chain calculations are, in principle, straightfor-
ward, the computational effort of the DMRG calculations are much more demand-
ing and are thus left for future studies.
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Chapter 5

Entanglement spreading after local
fermionic excitations in the XXZ
chain (arXiv:2010.02708 (2020))

In this chapter we present our findings from Ref. [198], which is one of the main
publications of the author. In the following, the abstract and the sections II. -
VI. of the paper, which contain the used methods, the obtained results as well as
the conclusions, are completely included in sections 5.1 - 5.6 of the present thesis.
The appendix was also taken from the paper and can be found in C.1.
The paper was first drafted by the author of this thesis and later substantially
edited equally by him and Viktor Eisler. All numerical calculations were performed
by the author of this thesis. Both authors equally performed the CFT calculations
and contributed equally to the interpretation of the results.

5.1 Abstract

We study the spreading of entanglement produced by the time evolution of a local
fermionic excitation created above the ground state of the XXZ chain. The re-
sulting entropy profiles are investigated via density-matrix renormalization group
calculations, and compared to a quasiparticle ansatz. In particular, we assume
that the entanglement is dominantly carried by spinon excitations traveling at
different velocities, and the entropy profile is reproduced by a probabilistic ex-
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pression involving the density fraction of the spinons reaching the subsystem. The
ansatz works well in the gapless phase for moderate values of the XXZ anisotropy,
eventually deteriorating as other types of quasiparticle excitations gain spectral
weight. Furthermore, if the initial state is excited by a local Majorana fermion,
we observe a nontrivial rescaling of the entropy profiles. This effect is further
investigated in a conformal field theory framework, carrying out calculations for
the Luttinger liquid theory. Finally, we also consider excitations creating an an-
tiferromagnetic domain wall in the gapped phase of the chain, and find again a
modified quasiparticle ansatz with a multiplicative factor.

5.2 XXZ chain and low-energy excitations
We consider an XXZ chain of length L with open boundary conditions that is
given by the Hamiltonian

H = J

L/2−1∑
j=−L/2+1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
, (5.2.1)

where Sαj = σαj /2 are spin-1/2 operators acting on site j, and ∆ is the anisotropy.
The energy scale is set by the coupling J which we fix at J = 1. The XXZ
Hamiltonian (5.2.1) conserves the total magnetization Sz in z-direction and we
will be interested in its ground state in the zero-magnetization sector Sz = 0.
Equivalently, the XXZ spin chain can be rewritten in terms of spinless fermions
by performing a Jordan-Wigner transformation, which brings (5.2.1) into the form

H =

L/2−1∑
j=−L/2+1

[
1

2
(c†jcj+1 + c†j+1cj) + ∆

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)]
, (5.2.2)

where c†j (cj) are fermionic creation (annihilation) operators, satisfying anticom-
mutation relations {ci, c†j} = δij. One then has a half-filled fermionic hopping
chain with nearest-neighbour interactions of strength ∆. For |∆| ≤ 1 the system
is in a critical phase with gapless excitations above the ground state, whereas a
gap opens for |∆| > 1. The case ∆ = 1 corresponds to the isotropic Heisenberg
antiferromagnet.
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In the following we give a short and non-technical introduction to the construc-
tion of the ground state and low-lying excited states of the XXZ chain. To keep
the discussion simple, we shall rather consider a periodic chain, and focus on the
behaviour in the thermodynamic limit L→∞. The exact eigenstates of the XXZ
chain can be found from Bethe ansatz [92, 93]. These are constructed as a super-
position of plane waves, the so-called magnons, labeled by their rapidities λi which
provide a convenient parametrization of the quasimomenta. The allowed values of
the rapidities follow from the Bethe equations, with real solutions corresponding
to spin-wave like states. Complex solutions organize themselves into strings and
correspond to bound states.
For |∆| < 1 the half-filled ground state is obtained by occupying all the allowed
vacancies of the L/2 real rapidities, thus forming a tightly packed Fermi sea.
Low-energy excitations in the Sz = 1 sector are called spinons and are created
by removing a rapidity. This creates two holes in the Fermi sea, with all the
remaining rapidities moving slightly with respect to their ground-state values,
and the energy difference can be calculated from this back-flow effect. In the
thermodynamic limit, the result can be found analytically and written directly in
terms of the quasimomenta q1 and q2 of the two spinons as [92]

∆E = εs(q1) + εs(q2) , (5.2.3)

where the spinon dispersion relation in the gapless regime with ∆ = cos(γ) is
given by

εs(q) =
π

2

sin(γ)

γ
sin(q) . (5.2.4)

Note that spinons are always excited in pairs, with the individual momenta con-
fined to 0 ≤ q1,2 ≤ π. The total momentum is then given by q1 +q2, and due to the
additivity of (5.2.3) one actually has a band of excitation energies. In particular,
the lower edge of the two-spinon band is obtained by setting q2 = 0 or q2 = π,
and thus simply corresponds to shifting the dispersion in (5.2.4) for q > π. The
group velocity of the spinons can be directly obtained from the derivative of the
dispersion

vs(q) =
dεs(q)

dq
=
π

2

sin(γ)

γ
cos(q) . (5.2.5)

Further low-energy excitations with Sz = 1 can be created by removing a single
rapidity from the real axis and placing it onto the Imλ = π axis. The energy of

117



XXZ chain and low-energy excitations

this particle-hole excitation can be obtained, similarly to the spinon case, from
the back-flow equations of the rapidities and yields the dispersion [92]

εph(q) = π
sin(γ)

γ

∣∣∣sin(q
2

)∣∣∣√1 + cot2

(
π

2

(
π

γ
− 1

))
sin2

(q
2

)
. (5.2.6)

However, in contrast to spinons, particle-hole excitations are not composite objects
and their momentum range is thus 0 ≤ q < 2π. Note that these spin-wave like
excitations are only physical for −1 < ∆ < 0, i.e. in case of attractive interactions.
For low momenta q → 0, the dispersion relation Eq. (5.2.6) approaches the one
for spinons in Eq. (5.2.4). The group velocities of particle-hole excitations are
obtained by taking the derivative of εph(q). Interestingly, it was found that the
maximum particle-hole velocity can exceed the maximum spinon velocity only if
the anisotropy satisfies ∆ < ∆∗ ≈ −0.3, which was demonstrated in a particular
quench protocol [199].
Finally, we consider the gapped phase where we focus exclusively on the antifer-
romagnetic regime ∆ > 1, with the standard parametrization ∆ = coshφ. For
even L the ground state has Sz = 0 and is again given by L/2 magnons with real
rapidities. However, the allowed number of vacancies is now L/2+1, which allows
to construct a slightly shifted Fermi sea. In the Ising limit ∆ → ∞, this yields
an exact twofold degenerate ground state, given by the linear combinations of the
two Néel states

|ψ±〉 =
|↑↓↑↓ . . .〉 ± |↓↑↓↑ . . .〉√

2
. (5.2.7)

For finite ∆, the two states |ψ±〉 constructed this way are only quasi-degenerate,
with an energy difference decaying exponentially in the system size L. Considering
the thermodynamic limit one can write

|ψ±〉 =
|ψ↑〉 ± |ψ↓〉√

2
, (5.2.8)

where |ψ↑〉 and |ψ↓〉 correspond to ground states with spontaneously broken sym-
metry, displaying antiferromagnetic ordering. In fact, the bulk expectation value
of the staggered magnetization can be calculated analytically as [94, 95]

〈ψ↑|σzj |ψ↑〉 = −〈ψ↓|σzj |ψ↓〉 = (−1)j
∞∏
n=1

tanh2(nφ) . (5.2.9)

118



Entanglement dynamics in the gapless phase

The low-lying excitations in the gapped phase are given again by spinons, by cre-
ating two holes in the Fermi sea. The excitation energy is still given by Eq. (5.2.3),
with the dispersion in the gapped phase obtained as [92]

εs(q) =
sinh(φ)

π
K(u)

√
1− u2 cos2(q) , (5.2.10)

where the complete elliptic integral of the first kind reads

K(u) =

∫ π/2

0

dp√
1− u2 sin2(p)

(5.2.11)

and the elliptic modulus u satisfies

φ = π
K(
√

1− u2)

K(u)
. (5.2.12)

The spinon velocity is obtained from the derivative of (5.2.10) and reads

vs(q) =
sinh(φ)

π
K(u)

u2 sin(q) cos(q)√
1− u2 cos2(q)

. (5.2.13)

5.3 Entanglement dynamics in the gapless phase
The goal of this section is to study the entanglement dynamics after a particular
class of excitations. Namely, we first initialize the chain in its gapless ground
state |ψ0〉, which is then excited by an operator that is strictly local in terms of the
creation/annihilation operators c†j and cj appearing in the fermionic representation
(5.2.2) of the XXZ chain. The system is then let evolve freely and we are interested
in the emerging entanglement pattern in the time-evolved state |ψ(t)〉. For a
bipartition into a subsystem A and the rest of the chain B, this is characterized
by the von Neumann entropy

S(t) = −Tr [ρA(t) ln ρA(t)] , (5.3.1)

with the reduced density matrix ρA(t) = TrB ρ(t) and ρ(t) = |ψ(t)〉 〈ψ(t)|. In
particular, we consider the bipartition A = [−L/2 + 1, r] and B = [r+ 1, L/2] and
study the entropy profiles

∆S = S(t)− S(0) (5.3.2)
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along the chain by varying r, where r = 0 corresponds to the half-chain. Note
that by subtracting the ground-state entropy S(0), we aim to extract information
about the excess entanglement created by a local excitation.
In the following subsections we first introduce an intuitive picture for the de-
scription of the entanglement spreading in terms of the low-lying quasiparticle
excitations introduced in Sec. 5.2. We then proceed to the numerical study of
the entanglement profiles after exciting the ground state with a fermionic creation
operator, and compare the results to our quasiparticle ansatz. In the last part we
consider an excitation created by a local Majorana fermion operator.

5.3.1 Entanglement spreading in the quasiparticle picture

Let us consider an excitation above the ground state of the XXZ chain by acting
with a fermion creation operator c†j. To capture the dynamics, one would have
to first decompose the initial local excited state in the eigenbasis of the Hamil-
tonian. As discussed in the previous section, these eigenstates are described by
quasiparticles parametrized by their rapidities or quasimomenta. The entangle-
ment properties of various eigenstates in the XXZ chain were studied before in
[155, 156], whereas a systematic CFT treatment of low-energy excitations was
introduced in [200, 201]. In the framework of free quantum field theory, a surpris-
ingly simple result on quasiparticle excitations was recently found in [202, 203].
Namely, the excess entanglement measured from the ground state was found to
be completely independent of the quasiparticle momenta, depending only on the
ratio p of the subsystem and full chain lengths. Moreover, for quasiparticles de-
scribed by a single momentum, the excess entropy is given by a binary formula
∆S = −p ln p−(1−p) ln(1− p), which allows for a simple probabilistic interpreta-
tion. Indeed, the ratio p is just the probability of finding the quasiparticle within
the subsystem.
Motivated by these results, we now put forward a simple ansatz for the spreading
of entanglement after the local excitation. Under time evolution, the quasiparticles
involved in the decomposition of the initial state spread out with their correspond-
ing group velocities. However, our main assumption is that their contribution to
entanglement is still independent of the momentum. Furthermore, we shall also
assume that the dominant part of the entanglement is carried by the lowest-lying
spinon modes, and that a spatially localized excitation translates to a homoge-
neous distribution of the momenta in the initial state. Under these assumptions
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we expect that the entanglement profile at time t� 1 and distance r � 1 from the
excitation, in the space-time scaling limit ζ = r/t fixed, is determined exclusively
via

N =

∫ π

0

dq

π
Θ(vs(q)− ζ) , (5.3.3)

where Θ(x) is the Heaviside step function and vs(q) is the spinon velocity. In
fact, this is nothing else but the fraction of the spinon modes with sufficient
velocity to arrive at the subsystem. The simple probabilistic interpretation of the
entanglement then leads to the binary entropy formula for the profile

∆S = −N ln(N )− (1−N ) ln(1−N ) . (5.3.4)

In particular, for the gapless case considered here, inserting the expression (5.2.5)
of the spinon velocity into (5.3.3), the spinon fraction can immediately be found
as

N =
1

π
arccos

(
ζ

v

)
, (5.3.5)

where v = vs(0) denotes the maximal spinon velocity.
In summary, our simplistic ansatz (5.3.4) provides an interpretation of the excess
entropy based on the dispersive dynamics of the quasiparticle modes, where N
is the fraction of the initially localized excitation that arrives at the subsystem.
In fact, the very same ansatz has recently been suggested for the description of
entanglement spreading after local fermionic excitations in the XY chain, finding
an excellent agreement with numerics [91]. Note, however, that the XY chain
is equivalent to a free-fermion model and thus all the single-particle modes can
exactly be included in N . In contrast, for the interacting XXZ chain, restricting
ourselves to the spinon modes should necessarily introduce some limitations to the
quasiparticle ansatz, as demonstrated in the following subsection.

5.3.2 Local fermionic excitation

We continue with the numerical study of the excitation produced by the fermionic
creation operator c†j. The fermion operators are related to the spin variables via
the Jordan-Wigner transformation

c†j =

 j−1∏
l=−L/2+1

σzl

σ+
j , cj =

 j−1∏
l=−L/2+1

σzl

σ−j , (5.3.6)
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where σαj are the Pauli matrices and σ±j =
(
σxj ± iσyj

)
/2. For simplicity, we shall

only consider the case where the excitation is created by c†1 in the middle of the
chain. The time-evolved state after the excitation is then given by

|ψ(t)〉 = N−1/2e−iHtc†1 |ψ0〉 , (5.3.7)

where |ψ0〉 is the ground state and the normalization is given by

N = 〈ψ0| c1c
†
1 |ψ0〉 = 1/2 (5.3.8)

as the ground state is half filled. The time evolution is actually implemented via
time-dependent DMRG (tDMRG) [56, 57] in the spin-representation of the XXZ
chain, by first carrying out the ground-state search and applying the string opera-
tor (5.3.6) onto the MPS representation of |ψ0〉. The calculations were performed
using the ITensor C++ library [168] and a truncated weight of 10−9.

The results of our simulations are shown in Fig. 5.1 for various interaction
strengths ∆. The different symbols correspond to snapshots of the entropy profile
∆S at different times, plotted against the scaled distance ζ = r/t. The quasipar-
ticle ansatz (5.3.4) computed using the spinon fraction (5.3.5) is shown by the red
solid lines. For moderate values of |∆|, one observes a very good agreement with
the numerical profiles.

Systematic deviations from (5.3.4) also occur for larger ∆, especially in the at-
tractive regime. Indeed, for ∆ = −0.5 one already observes that the edges of the
profile obtained from numerics fall slightly outside of the spinon edge, whereas the
bulk profile still shows a good agreement. For ∆ = −0.8 the mismatch becomes
more drastic both in the bulk and around the edges, signaling the breakdown of
the naive spinon ansatz. Clearly, for strong attractive interactions the local excited
state should have significant overlaps with other quasiparticle excitations of the
XXZ chain. In fact, as discussed in Sec. 5.2, in this regime the maximum velocity
of particle-hole excitations exceeds the spinon velocity and matches perfectly the
edges of the profile, as indicated by the black dashed lines in Fig. 5.1.
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Figure 5.1: Excess entropy profiles ∆S obtained from tDMRG simulations at
different times (symbols), after the excitation c†1 in a chain of length L = 300.
The scaled profiles are plotted against ζ = r/t and compared to the quasiparticle
ansatz (red lines) in Eq. (5.3.4). The dashed black lines denote the maximum
velocity of the particle-hole excitations, derived from Eq. (5.2.6).
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Hence, the entropy spreading should be determined by the coexistence of the
spinon and particle-hole excitations, allowing to reach values beyond ln(2). Pre-
sumably, improving the ansatz (5.3.4) would require the knowledge of the overlaps
with the different families of quasiparticles. Finally, it should be noted that, even
though the edge locations of the profile seem to be captured, significant deviations
in the bulk also occur for large repulsive interactions (see ∆ = 0.8 in Fig. 5.1),
which might be due to bound-state contributions.

5.3.3 Local Majorana excitation

As a second example, we are going to consider local Majorana excitations, given
in terms of the spin variables via

m2j−1 =

 j−1∏
l=−L/2+1

σzl

σxj , m2j =

 j−1∏
l=−L/2+1

σzl

σyj , (5.3.9)

and satisfying the anticommutation relations {mk,ml} = 2δkl. Majorana opera-
tors are Hermitian and related to the fermion creation/annihilation operators as
m2j−1 = cj + c†j and m2j = i

(
cj − c†j

)
. Focusing again on an excitation m1 in the

middle of the chain, the time-evolved stated is now given by

|ψ(t)〉 = e−iHtm1 |ψ0〉 . (5.3.10)

The entanglement profiles ∆S obtained from tDMRG simulations of (5.3.10) are
depicted in Fig. 5.2 for four different values of ∆. To visualize the spreading of
the profile, we now plot the unscaled data against the location of the subsystem
boundary. For ∆ = 0, the profile looks similar to that of the corresponding c†1
excitation and is indeed perfectly reproduced by the quasiparticle ansatz (5.3.4).
However, in the interacting case ∆ 6= 0, one observes a marked difference when
compared to the corresponding panels in Fig. 5.1. Namely, the profiles in Fig. 5.2
clearly exceed the value ln(2), indicated by the dashed horizontal lines, which is
the maximum of the ansatz (5.3.4). Nevertheless, we observe that the profiles after
the m1 excitations can be well described by a simple rescaling of the spinon ansatz
(5.3.4), as shown by the solid lines in Fig. 5.2. The constant factor multiplying
the ansatz is chosen such that the maxima of the profiles at r = 0 are correctly
reproduced.
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Figure 5.2: Excess entropy profiles ∆S as a function of r at times t = 10, 30, 60, 80
(red, green, blue, magenta) after the Majorana excitation m1 for four different
values of ∆ and L = 200. The red dashed lines indicate the value ln(2). The black
solid lines show the spinon ansatz Eq. (5.3.4) for t = 80, multiplied by a constant
to match the maxima of the profiles.

To better understand the behaviour of the maxima, on the left of Fig. 5.3 we plot
the time evolution of the excess entropy ∆S in the middle of the chain (r = 0)
with L = 200 and for various ∆. One observes that the asymptotic value of the
excess entropy grows with increasing |∆|, approaching its maximum very slowly
in time. In fact, for even larger times the entropy starts to decrease again as one
approaches vt ≈ L, when the fastest spinons leave the subsystem after a reflection
from the chain end. This is demonstrated on the right of Fig. 5.3 by repeating
the calculations for a smaller chain with L = 50. The emergence of a plateau
is clearly visible, which then immediately repeats itself for vt > L due to the
symmetry of the geometry, with the spinons reflected from the other end of the
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chain entering the subsystem again. However, the question why the height of the
plateau depends on the interaction strength ∆ can only be answered via a more
involved CFT analysis of the problem, which is presented in the next section.
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Figure 5.3: Left: Entropy growth in the middle of the chain r = 0, after the
Majorana excitation m1 for different values of ∆ and L = 200. The red dashed
line indicates the value ln(2). Right: ∆S for a smaller chain with L = 50 against
the scaled time vt for the same ∆ values.

5.4 Entanglement after local excitations in CFT

The low-energy physics of the gapless XXZ chain can be captured within quantum
field theory via the bosonization procedure [204]. Using the fermionic represen-
tation (5.2.2) of the chain, one introduces the Heisenberg operators c(x, τ) =
eτHcx e−τH , where x is the spatial coordinate along the chain and we introduced
the imaginary time τ = it. Linearizing the dispersion around the Fermi points,
one can approximate

c(x, τ) ' eikF xψ(x, τ) + e−ikF xψ̄(x, τ) , (5.4.1)

where ψ(x, τ) and ψ̄(x, τ) are the right and left-moving components of a fermion
field. The phase factors with the Fermi momentum, where kF = π/2 for a half-
filled chain, are included to ensure that the chiral fermions are described by slowly
varying fields. Introducing the complex coordinates w = vτ − ix and w̄ = vτ + ix,
where v denotes the Fermi velocity, they can be written in a bosonized form [204]
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ψ(w) =
1√
2π

e−i
√

4πϕ(w) , ψ̄(w̄) =
1√
2π

ei
√

4πϕ̄(w̄) , (5.4.2)

where ϕ(w) and ϕ̄(w̄) are the chiral boson fields. In terms of the new bosonic
variables

φ = ϕ+ ϕ̄ , θ = ϕ− ϕ̄ , (5.4.3)

one can show that the bosonized form of the XXZ chain (5.2.2) is described by
the Luttinger liquid Hamiltonian [166]

HLL =
v

2

∫
dx
[
K(∂xθ)

2 +K−1(∂xφ)2
]
. (5.4.4)

Apart from the velocity v, the Hamiltonian (5.4.4) is characterized by the Luttinger
parameter K. Both of them can be fixed from the exact Bethe ansatz solution as

v =
π

2

sin(γ)

γ
, K =

1

2

(
1− γ

π

)−1

, (5.4.5)

with the usual parametrization ∆ = cos(γ). Note that v = vs(0) is just the
maximum of the spinon velocity (5.2.5).
In CFT language, the Luttinger liquid corresponds to a free compact boson field
theory. In order to study entanglement evolution after local operator excitations,
we shall thus use the framework developed for a generic CFT [80, 82]. In the
following we summarize the main steps of the procedure. Let us consider the state

|ψ〉 = N−1/2O(−d) |0〉 (5.4.6)

excited from the CFT vacuum |0〉 by insertion of the local operator O(−d), where
N accounts for the normalization of the state. For the sake of generality, we
consider the situation where the excitation is inserted at a distance d measured
from the center of the chain. After time evolution, the density matrix reads

ρ(t) = N−1e−iHte−εHO(−d) |0〉 〈0| O†(−d)e−εHeiHt, (5.4.7)

where ε is a UV regularization that is required for the state to be normalizable.
Working in a Heisenberg picture, the time evolution can be absorbed into the
operators, and the state can be represented as

ρ(t) =
O(w2, w̄2) |0〉 〈0| O†(w1, w̄1)

〈O†(w1, w̄1)O(w2, w̄2)〉 , (5.4.8)
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where the complex coordinates of the operator insertions are given by

w1 = −i(vt− d) + ε , w̄1 = −i(vt+ d) + ε ,

w2 = −i(vt− d)− ε , w̄2 = −i(vt+ d)− ε . (5.4.9)

It should be stressed that the w̄j coordinates are actually not the complex con-
jugates of wj, as we are assuming τ = it to be real, such that we can work with
Euclidean spacetime.
With the expression (5.4.8) at hand, one can proceed to construct the path-integral
representation of the reduced density matrix, by opening a cut at τ = 0 along the
spatial coordinates of the subsystem A. The Rényi entropy

Sn(t) =
1

1− n ln Tr [ρnA(t)] (5.4.10)

for integer n can then be obtained by applying the replica trick [104], i.e. sewing
together n copies of the path integrals cyclically along the cuts. In turn, one can
express the excess Rényi entropy ∆Sn = Sn(t)−Sn(0) via correlation functions of
the local operator as [80, 82]

∆Sn =
1

1− n log

[〈
O†(w1, w̄1)O(w2, w̄2) . . .O(w2nw̄2n)

〉
Σn

〈O†(w1, w̄1)O(w2, w̄2)〉nΣ1

]
, (5.4.11)

where Σn denotes the n-sheeted Riemann surface, with w1, . . . , w2n and w̄1, . . . , w̄2n

being the replica coordinates of the insertion points (5.4.9).
Although the expression (5.4.11) for the excess Rényi entropy is very general, the
calculation of 2n-point functions on the complicated Riemann surface Σn may
become rather involved. However, if the subsystem A is given by a single interval
0 ≤ x ≤ ` in an infinite chain, the geometry can be simplified by the conformal
transformation

z =

(
w

w + i`

)1/n

, z̄ =

(
w̄

w̄ − i`

)1/n

, (5.4.12)

which maps the n-sheeted surface onto a single Riemann sheet. This transforma-
tion leads to the holomorphic coordinates of the operator insertions

z2j−1 = e2πij/n

(
d− vt− iε

`+ d− vt− iε

)1/n

, z2j = e2πij/n

(
d− vt+ iε

`+ d− vt+ iε

)1/n

,

(5.4.13)

128



Entanglement after local excitations in CFT

while the anti-holomorphic ones are given by

z̄2j−1 = e−2πij/n

(
d+ vt+ iε

`+ d+ vt+ iε

)1/n

, z̄2j = e−2πij/n

(
d+ vt− iε

`+ d+ vt− iε

)1/n

.

(5.4.14)
Furthermore, if the local operators are primary fields of the CFT with respective
conformal dimensions hO and h̄O, the 2n-point function transforms as〈

n∏
j=1

O†(w2j−1, w̄2j−1)O(w2j, w̄2j)

〉
Σn

=
2n∏
i=1

(
dw

dz

)−hO
zi

(
dw̄

dz̄

)−h̄O
z̄i

×
〈

n∏
j=1

O†(z2j−1, z̄2j−1)O(z2j, z̄2j)

〉
Σ1

.

(5.4.15)

In the end, one is left with a problem of calculating 2n-point functions on the
complex plane. For the sake of simplicity, in the following we shall only consider
the case n = 2, and apply the procedure outlined above to the Luttinger liquid
theory, with the local excitations considered in section 5.3.

5.4.1 Fermionic excitation

We start with the fermion creation operator, which after bosonization (5.4.2) cor-
responds to the field insertion

Of (w, w̄) = eikF dei
√

4πϕ(w) + e−ikF de−i
√

4πϕ̄(w̄) , (5.4.16)

where we omitted normalization factors that cancel in the expression (5.4.11).
Clearly, Of (w, w̄) is not itself a primary operator but rather a linear combination
of two. Hence, the calculation of the four-point function that appears in ∆S2

involves a number of terms with primaries, each of which can be mapped from
Σ2 to the complex plane using the transformation rule (5.4.15). The calculation
of these correlation functions can be facilitated by first performing a canonical
transformation

θ′ =
√
Kθ , φ′ =

1√
K
φ . (5.4.17)

which absorbs the Luttinger parameter K in the Hamiltonian (5.4.4). However,
since the variables θ and φ are actually linear combinations (5.4.3) of the chiral
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bosons, the change of variables corresponds to the Bogoliubov transformation

ϕ = cosh(ξ)ϕ′ + sinh(ξ)ϕ̄′ ϕ̄ = sinh(ξ)ϕ′ + cosh(ξ)ϕ̄′ , (5.4.18)

where K = e2ξ. Thus, the transformation of the Luttinger liquid Hamiltonian
induces a left-right mixing of the chiral bosonic modes. In the following we shall
use the shorthand notations c = cosh(ξ) and s = sinh(ξ).
Clearly, our task now boils down to evaluate correlation functions of vertex oper-
ators

Vα,β(z, z̄) = ei
√

4παϕ′(z)+i
√

4πβϕ̄′(z̄) (5.4.19)

on the complex plane with respect to the Luttinger liquid theory scaled to the
free-fermion point. The n-point function of vertex operators is then well known
and given by [205]〈

n∏
j=1

Vαi,βi(zi, z̄i)

〉
=
∏
i<j

(zi − zj)αiαj(z̄i − z̄j)βiβj , (5.4.20)

where the neutrality conditions

n∑
i=1

αi = 0 ,
n∑
i=1

βi = 0 (5.4.21)

must be satisfied, otherwise the correlator vanishes. In particular, considering
the two-point function one immediately sees that the vertex operator (5.4.19) is a
primary with scaling dimensions h = α2/2 and h̄ = β2/2.
With all the ingredients at hand, performing the calculation for ∆S2 is a straight-
forward but cumbersome exercise, and we refer to Appendix C.1 for the main
details. It turns out that the result depends only on the cross-ratios

η =
z12z34

z13z24

, η̄ =
z̄12z̄34

z̄13z̄24

(5.4.22)

of the holomorphic and anti-holomorphic coordinates (5.4.13) and (5.4.14), where
zij = zi − zj and z̄ij = z̄i − z̄j, respectively. In terms of the cross-ratios, the final
result reads

∆S2 = − ln

(
1 + |η|(c+s)2 + |1− η|(c+s)2

2

)
. (5.4.23)
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It is important to stress that the notation |η| should be understood as (ηη̄)1/2,
since the two cross ratios are not conjugate variables. In particular, in the limit
ε→ 0 of the regularization, one has the behaviour [80, 82]

lim
ε→0

η =

{
0 if 0 < vt < d or vt > d+ `

1 if d < vt < d+ `
, lim

ε→0
η̄ = 0 . (5.4.24)

This yields the following limit for the Rényi entropy

lim
ε→0

∆S2 =

{
0 if 0 < vt < d and vt > d+ `

ln(2) if d < vt < d+ `
. (5.4.25)

The result has a very simple interpretation. Namely, our excitation is an equal
superposition of a left- and right-moving fermion, and the entanglement is changed
by ln(2) only when the right-moving excitation is located within the interval. In
fact, this is exactly the same picture that lies behind the quasiparticle ansatz
(5.3.4), without the dispersion of the wavefront. Interestingly, apart from the
presence of the spinon velocity v, the limiting result (5.4.25) is independent of
the anisotropy ∆. The only effect of the left-right boson mixing appears in the
exponents of the cross-ratios in (5.4.23), which simply determines how the sharp
step-function for ∆S2 is rounded off for finite UV regularizations. In fact, this
result is very similar to the one obtained for a non-chiral EPR-primary excitation
in Ref. [82, 84]. Moreover, this is also a simple generalization of the result in
Ref. [89], where the superposition of purely holomorphic and anti-holomorphic
primaries was considered.

5.4.2 Majorana excitation

We move on to consider the Majorana excitation

Om(w, w̄) = Of (w, w̄) +O†f (w, w̄) . (5.4.26)

The calculation of ∆S2 follows the exact same procedure as for Of (w, w̄), however,
one has now an even larger number of terms to consider. The main steps are again
outlined in Appendix C.1, which lead to the result

∆S2 = − ln

(
2A+B + C

8

)
, (5.4.27)
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where the terms in the logarithm are given by

A = |1− η|(c+s)2 + |1− η|(c−s)2 + |η|(c+s)2 + |η|(c−s)2 (5.4.28)

B = 2 + η2c2 η̄2s2 + η2s2 η̄2c2 + (1− η)2c2 (1− η̄)2s2 + (1− η)2s2 (1− η̄)2c2 (5.4.29)

C =
[
|η|(c+s)2 |1− η|(c−s)2 + |η|(c−s)2 |1− η|(c+s)2

]
(Z + Z̄) (5.4.30)

and a new variable is introduced as

Z =
z1z̄2(1− z̄2

1)(1− z2
2)

z̄1z2(1− z2
1)(1− z̄2

2)
. (5.4.31)

The result is thus rather involved and cannot be written as a function of the cross-
ratios alone. However, in the limit ε→ 0, the factors in A, B, and C can trivially
be evaluated using (5.4.24), as well as using Z → 1 and Z̄ → 1. For the case
∆ 6= 0, this leads to the following simple result

lim
ε→0

∆S2 =

{
0 if 0 < vt < d and vt > d+ `

2 ln(2) if d < vt < d+ `
. (5.4.32)

In sharp contrast, for ∆ = 0, where c = 1 and s = 0, one recovers the result
(5.4.25). Hence, one arrives at the rather surprising result that the excess entropy
is doubled in case of interactions, which must be a consequence of the left-right
boson mixing.
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Figure 5.4: Time evolution of the excess Rényi entropy in Eq. (5.4.27) after the
Majorana excitation with ` = 20, d = 10 and ε = 0.1.
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Obviously, for finite values of the regularization ε, this transition should take
place continuously, rather than giving an abrupt jump. The behaviour of ∆S2 for
ε = 0.1 is shown in Fig. 5.4 for an interval of length ` = 20 at a distance d = 10
from the excitation. One can clearly see the development of a plateau for times
d < vt < d+ `, the height of which increases monotonously with ∆. Nevertheless,
even for the largest value ∆ = 0.8, the expected maximum of 2 ln(2) is by far not
reached. The very slow convergence towards the ε→ 0 (or, equivalently, t→∞)
limit can be understood by looking at the structure of the terms appearing in
(5.4.27). In fact, for smaller values of |∆|, the slowest converging pieces are given
by η2c2 η̄2s2 as well as (1− η)2s2 (1− η̄)2c2 in the expression (5.4.29) of B, due to
the large-time behaviour η̄ ≈ 1 − η ≈ (ε/2vt)2 for d � vt � ` + d. Hence, the
apparent nontrivial values of the plateau in Fig. 5.4 is a consequence of the very
slow decay (ε/vt)4s2 , where the exponent for e.g. ∆ = 0.5 is given by 4s2 ≈ 0.08.
Clearly, observing convergence towards ∆S2 → 2 ln(2) would require enormous
time scales as well as interval lengths.
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Figure 5.5: Growth of the Rényi entropy ∆S2 for pairs of conjugate interaction
parameters ∆ and ∆′ (red and green symbols) for a chain of length L = 200. The
blue solid lines show the CFT result Eq. (5.4.27) with ` = 200 and d = 1. The
regularization ε = 0.55, 0.40, 0.35 (from left to right) was tuned to obtain the best
match with the tDMRG data.

Despite the different geometry considered for the CFT calculations, we expect that
the result (5.4.27) should also give quantitative predictions for the finite XXZ chain
in a certain regime. First of all, for the half-chain bipartition where the excitation
is applied directly at the boundary, the role of the dispersion should not play
an important role, as all the excitations can immediately enter the subsystem.
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Furthermore, one could argue that the finite chain effectively corresponds to an
interval of size ` = L, which is the distance the quasiparticles have to cover before
leaving the subsystem after reflection from the chain end. Clearly, the exact form
of the plateau will not be the same in the two cases, but one expects the CFT
results to be applicable in a regime vt � L. Finally, there is a highly nontrivial
symmetry s → −s displayed by all the terms (5.4.28)-(5.4.30) in the expression
of ∆S2, corresponding to a change of the Luttinger parameter K → 1/K, which
is expected to be observed also in the lattice calculations. Note that since K = 1
corresponds to the free-fermion point ∆ = 0, the symmetry relates interaction
strengths of different sign.
In Fig. 5.5 we show a comparison of ∆S2 obtained from tDMRG calculations for a
XXZ chain with L = 200 divided in the middle, to the CFT result (5.4.27) shown
by the blue solid lines. For the latter we have set ` = L and d = 1 as discussed
above, whereas the regularization ε was set by hand in order to achieve the best
agreement with the numerical data. One indeed observes that the CFT result
gives, up to oscillations, a good quantitative description of the XXZ numerics.
Furthermore, for each ∆ 6= 0, we also performed the calculation for the conjugate
∆′ corresponding to K ′ = 1/K, leading to a remarkably good collapse of the
curves.

5.5 Entanglement dynamics in the gapped phase

The CFT studies of the previous section give a rather good qualitative description
of the entanglement spreading in the critical phase of the XXZ chain. To obtain
a complete picture, in this section we shall study the dynamics in the gapped
antiferromagnetic phase. For a physically motivated setting, we choose one of the
symmetry-broken ground states |ψ↑〉 from Eq. (5.2.8), with a nonvanishing stag-
gered magnetization (5.2.9). We now consider local Majorana operators, defined
in terms of the spin variables as

m̃2j−1 =

 j−1∏
l=−L/2+1

σxl

σzj , m̃2j =

 j−1∏
l=−L/2+1

σxl

σyj . (5.5.1)

Note that these operators differ from the ones in (5.3.9) discussed in the gapless
phase by an interchange of the x and z spin components, but they also obey
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Majorana fermion statistics with anticommutation relations {m̃k, m̃l} = 2δkl. We
focus on the case of a domain wall created by m̃1 in the center of the chain, which
is then time evolved by the XXZ Hamiltonian (5.2.1)

|ψ(t)〉 = e−iHtm̃1 |ψ↑〉 . (5.5.2)

Note that, in order to find the proper symmetry-broken ground state, in the
DMRG simulation we add to the Hamiltonian a small staggered field in the z-
direction, which is then decreased towards zero during the sweeps.
First we have a look at the entropy growth ∆S for the half-chain r = 0 as a
function of time, shown on the left of Fig. 5.6 for several values of the anisotropy
∆ > 1. One observes a clear saturation of the excess entropy for large times,
which is reached very quickly for large values of ∆. The asymptotic value of
∆S decreases with ∆ and always exceeds ln(2). Remarkably, as shown on the
right of Fig. 5.6, we find that the asymptotic excess entropy is well described by
the formula ∆S = S(0) + ln(2), where S(0) is the ground-state entropy of the
half-chain in the symmetry-broken state. Repeating the calculation for the excess
Rényi entropy ∆S2, we find the exact same relation with S2(0).
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Figure 5.6: Left: Entanglement growth in the middle of the chain after a domain-
wall excitation m̃1 for different values of ∆ > 1 and L = 400. Right: ∆S at
t = 100 compared to S(0) + ln(2) from Eq. (5.5.4). The red dashed line denotes
ln(2). Note the different vertical scales.

To gain a deeper understanding of the above relation, one should invoke the exact
results for the reduced density matrix of the half-chain, which can can be found
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with the corner transfer matrix (CTM) method as [160]

ρA =
e−HCTM

Tr (e−HCTM )
, HCTM =

∞∑
j=0

εjnj , (5.5.3)

where the single-particle eigenvalues are given by εj = 2jφ with φ = acosh(∆), and
nj = 0, 1 denotes fermionic occupation numbers. In other words, the entanglement
Hamiltonian HCTM of the ground state is characterized by an equispaced single-
particle entanglement spectrum. Strictly speaking, this result applies to a half-
infinite chain, but in practice it holds also for finite chains of length much larger
than the correlation length. Note also, that the result (5.5.3) applies for the
symmetric ground state, whereas for the symmetry-broken state the term j = 0
is missing from the sum. In that case, the von Neumann and Rényi entropies can
be simply expressed as [206]

S(0) =
∞∑
j=1

[
log
(
1 + e−2jφ

)
+

2jφ

1 + e2jφ

]
, (5.5.4)

as well as

Sn(0) =
1

1− n

[
∞∑
j=1

log
(
1 + e−2njφ

)
− n

∞∑
j=1

log
(
1 + e−2jφ

)]
. (5.5.5)

It is easy to see that the inclusion of the term j = 0 with ε0 = 0 simply yields an
extra ln(2) contribution to the entropies. This change alone, however, would not
explain our findings for the asymptotic excess entropy in Fig. 5.6, which seems to
indicate that S(t) ≈ 2S(0) + ln(2) for t � 1. Indeed, in order to obtain such a
formula, one would have to add a double degeneracy for each εj with j 6= 0. Let us
now discuss how such a degeneracy is reflected in the eigenvalues λl of the reduced
density matrix. In fact, it is more convenient to introduce the scaled quantity

νl = −1

φ
ln

(
λl
λ0

)
, (5.5.6)

where λ0 denotes the maximal eigenvalue. For the initial symmetry-broken ground
state, νl are independent of ∆ and can only assume even integer values, with
occasional multiplicities due to different integer partitions. The lowest lying λl
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yield νl = 0, 2, 4, 6, 6, . . . , i.e. the first degeneracy appears as 6 = 2 + 4. The
inclusion of the ε0 = 0 term simply gives an overall double degeneracy of the levels
λl. The doubling of the εj for j 6= 0 further increases the degeneracies. Altogether,
the combined effect would lead to the multiplicities (2, 4, 6) for νl = 0, 2, 4.
To check these predictions, in Fig. 5.7 we have plotted the 12 lowest lying νl cal-
culated from the reduced density matrix eigenvalues, as obtained from tDMRG
simulations after time evolving the state (5.5.2) to t = 100. One can see that the
νl lie indeed rather close to the expected even integer values, approximately re-
producing the expected multiplicity structure. Interestingly, the largest deviation
around νl = 4 is found for ∆ = 5, where one actually finds the best agreement
with the entropy formula, see Fig. 5.6. In fact, however, the contribution of these
eigenvalues to the entropy is already negligible. Note that the situation for larger
values of νl is much less clear, as they correspond to very small eigenvalues λl
which are already seriously affected by tDMRG truncation errors.
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Figure 5.7: Scaled levels νl obtained from the reduced density matrix eigenvalues
λl at time t = 100 via Eq. (5.5.6) for different ∆.

Although we find a nontrivial asymptotic behaviour of the half-chain entangle-
ment, we expect that the full profile should still be described, up to a multiplica-
tive factor, by the quasiparticle ansatz introduced in section 5.3.1, similarly to the
Majorana excitation in the gapless phase in Fig. 5.2. Therefore, we put forward
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the ansatz

∆S =

(
1 +

S(0)

ln 2

)
[−N ln (N )− (1−N ) ln (1−N )] , (5.5.7)

and for the excess Rényi entropy we propose

∆Sn =

(
1 +

Sn(0)

ln 2

)
1

1− n ln [N n + (1−N )n] . (5.5.8)
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Figure 5.8: Entropy profiles ∆S (top) and ∆S2 (bottom) after a domain-wall
excitation m̃1 for two different value of ∆ and L = 400. The solid lines show the
ansatz Eq. (5.5.7) for the von Neumann, as well as Eq. (5.5.8) for the n = 2 Rényi
excess entropy.
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The quasiparticle fractionN must now be evaluated via (5.3.3) by using the spinon
velocities (5.2.13) in the gapped phase. Note that the binary entropy functions
are multiplied by a factor to reproduce our findings for the half-chain, where
N = 1/2. The results of our numerical calculations for the profiles ∆S and ∆S2,
plotted against the scaling variable ζ = r/t, are shown in Fig. 5.8. The solid lines
show the respective ansatz (5.5.7) and (5.5.8), which give a very good description
of the data for both ∆ values shown. In fact, we checked that the profiles are
nicely reproduced even for ∆ = 1.5, which already corresponds to a relatively
large correlation length.

5.5.1 Magnetization profiles

To conclude this section, we also investigate the spreading of the magnetization
profiles for the antiferromagnetic domain wall excited by m̃1. This setting was
studied previously with a focus on the edge behaviour of the profile [207]. In
order to remove the dependence on the ground-state value (5.2.9) of the staggered
magnetization, we consider the normalized profile

Mj(t) =
〈ψ(t)|σzj |ψ(t)〉
〈ψ↑|σzj |ψ↑〉

, (5.5.9)

which then varies between −1 ≤ Mj(t) ≤ 1 along the chain. We are mainly
interested in the quasiparticle description of the time-evolved profile. In fact,
a very similar problem was studied for a ferromagnetic domain wall in the XY
chain [91], by first expanding the excited state in the single-particle basis of the
Hamiltonian, which can then be time evolved trivially.
Here we assume that the dominant weight for our simple domain wall is carried by
single-spinon excitations |q〉. Strictly speaking, this is only possible if one considers
antiperiodic or open boundary conditions on the spins, since for a periodic chain
spinons are created in pairs (i.e. one actually has a pair of domain walls). The
time evolved state can then be written as

|ψ(t)〉 '
∑
q

e−itεs(q)c(q) |q〉 , (5.5.10)

where εs(q) is the spinon dispersion (5.2.10), while c(q) are the overlaps of the
domain-wall excitation with the single-spinon states. Note that the momentum of
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a single spinon satisfies 0 ≤ q ≤ π, however, the total momentum of spinons above
the quasidegenerate ground state is shifted by π. Since the domain wall is created
by a strictly local fermionic operator, we assume that in the thermodynamic limit
|c(q)| becomes a constant in momentum space, i.e. c(q) = eiα(q)/

√
N is just a

phase factor normalized by the number N of spinon states. Using this in (5.5.10),
one obtains for the profile

Mj(t) =
1

N

∑
p

∑
q

e−it(εs(q)−εs(p))ei(α(q)−α(p))
〈p|σzj |q〉
〈ψ↑|σzj |ψ↑〉

. (5.5.11)

Clearly, the main difficulty of calculating (5.5.11) is due to the form factors
〈p|σzj |q〉. For the transverse Ising and XY chains, such form factors are known
explicitly [208, 209] and were used to obtain a double integral representation of the
magnetization profile [88, 91]. The hydrodynamic limit can then be obtained from
the stationary-phase analysis of the integrals. Moreover, there exists a number of
form factor results for the XXZ chain as well (see e.g. [210, 211]), which were used
in numerical studies of the magnetization profile after a spin-flip excitation [212].
Unfortunately, however, the expressions are typically rather involved or not in a
representation that could be useful for our purposes. In fact, we are not aware of
any results where the required single-spinon matrix elements are evaluated as a
function of the spinon rapidity or momentum.
Nevertheless, based on the known results, we give a handwaving argument about
how the main structure of the form factor should look like. Most importantly, we
assume that it becomes singular for p→ q and can be written as

lim
p→q

〈p|σzj |q〉
〈ψ↑|σzj |ψ↑〉

' i

N
ei(q−p)j

F(q)

p− q . (5.5.12)

Here the only j-dependence is in the exponential factor that follows from the ac-
tion of the translation operator, and the function F(q) denotes the slowly varying
part of the form factor around its pole. The factor 1/N is required for a proper
thermodynamic limit of (5.5.11). Converting the sums into integrals, one can pro-
ceed with the stationary phase analysis similarly to the XY case [91], by expanding
the phases around Q = q−p = 0. Using a resolution of the pole and the definition
of the step function

1

Q
= iπδ(Q) + lim

ε→0

1

Q+ iε
, Θ(x) = − lim

ε→0

∫ ∞
−∞

dQ

2πi

e−iQx

Q+ iε
, (5.5.13)
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one arrives at the following simple expression for the profile

Mj(t) = 1− 2 Ñ , Ñ =

∫ π

0

dq

π
Θ(vs(q)t− j)F(q) . (5.5.14)

Note that the proper normalization of the profile for t = 0 requires to have∫ π

0

dq

π
F(q) = 1 . (5.5.15)
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Figure 5.9: Normalized magnetization profilesMj(t) obtained from tDMRG cal-
culations for ∆ = 2.0 (left) and ∆ = 5.0 (right) after a domain-wall excitation m̃1

in a chain of length L = 400. The solid lines show the ansatz 1 − 2N , with the
spinon fraction Eq. (5.3.3) calculated from the velocities in Eq. (5.2.13).

The result (5.5.14) is nothing else but the quasiparticle interpretation of the mag-
netization profile in the hydrodynamic limit. Indeed, the initial sharp domain wall
is carried away by spinons of different momenta q and velocities vs(q), where F(q)
gives the corresponding weight. Unfortunately, without an explicit analytical re-
sult on the form factor, one has to make a guess on the weight function. The
simplest assumption is F(q) ≡ 1, which indeed holds true for the XY chain form
factors [91]. With this simple choice one actually has Ñ = N , that is we recover
the spinon fraction introduced in (5.3.3) for the description of the entropy profile.
In Fig. 5.9 we show the comparison of this simple ansatz to the tDMRG data, with
a rather good agreement for a large ∆ = 5. For ∆ = 2, however, one can already

141



Summary and discussion

see the deviations from our simple ansatz, which fails completely for even smaller
anisotropies. Thus, in sharp contrast to the case of the entanglement entropies,
the spinon contributions to the magnetization cannot be taken to be equal, except
for close to the Ising limit.

5.6 Summary and discussion
We studied the entanglement spreading in the XXZ chain after excitations that
are strictly local in terms of the fermion operators. In the gapless phase we found
that the time evolution after a fermion creation operator yields an entropy profile
that can be well described by a probabilistic quasiparticle ansatz for not too large
∆, assuming equal contributions from low-lying spinon excitations. On the other
hand, for a local Majorana excitation we observe that the quasiparticle ansatz
holds only up to a multiplicative factor, determined by the excess entropy at the
operator insertion point. This is in agreement with our CFT calculations, which
suggest that the excess entropy exceeds ln(2) for any ∆ 6= 0, with a very slow
convergence towards the asymptotic value 2 ln(2). In the symmetry-broken gapped
phase we considered a different Majorana excitation, creating an antiferromagnetic
domain wall. For the entropy profile we find again a nontrivial prefactor, whereas
our simple ansatz for the magnetization, assuming equal contributions from the
spinons, holds only in the Ising limit ∆→∞.
The main limitation of our quasiparticle ansatz (5.3.4) is that it includes only the
low-lying spinons. It is natural to ask how well such an assumption actually holds
for our local excitations in the different regimes. A simple way to quantify the
spectral weight of the spinons in the gapless regime is via the energy difference
〈∆E〉 = 〈ψ0| (m1Hm1 − H) |ψ0〉 of the Majorana excitation (equal to that of
c†1 by particle-hole symmetry) measured from the ground state, whereas in the
gapped case we replace m1 → m̃1. Our assumption in both regimes was that one
can practically work with single-spinon states, whose energies above the ground
state are given by the corresponding dispersions εs(q) in (5.2.4) and (5.2.10),
respectively. This yields the simple formula for the energy difference

〈∆E〉 =

∫ π

0

εs(q)
dq

π
. (5.6.1)

To test the validity of our assumption, in Fig. 5.10 we compare the energy dif-
ference obtained from DMRG to the formula (5.6.1) in both gapless and gapped
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phases. As expected, the result at the free-fermion point ∆ = 0 is exactly repro-
duced, while the error remains relatively small in the regime |∆| . 0.5. However,
not surprisingly, the overall behaviour of 〈∆E〉 is not properly captured by the
naive ansatz (5.6.1), especially for ∆→ −1, which is exactly what we observed for
the entropy profiles in Fig. 5.1. On the other hand, in the gapped phase shown
on the right of Fig. 5.10, one has a qualitatively good description in the entire
regime, with the error decreasing for ∆ � 1. This explains why we had a much
better overall description of the entropy profiles for ∆ > 1 via the quasiparticle
ansatz (5.5.7).
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Figure 5.10: Energy difference due to the insertion of local operator m1 in the
gapless (left) and m̃1 in the gapped (right) regime. DMRG results (symbols) for
L = 400 are compared to the spinon ansatz (lines) in Eq. (5.6.1). Note the different
vertical scales.

Another feature that is not completely understood is the multiplicative factor of
the spinon ansatz appearing for Majorana excitations. In the gapless phase this
could be accounted for the mixing of the chiral boson modes and yields a factor 2
in the limit t→∞ for any ∆ 6= 0. The exceptional behaviour of the XX chain can
actually be also understood directly, using a duality transformation [213–216] that
relates it to two independent and critical transverse Ising chains. Furthermore,
as shown in [88], the Majorana excitation on the XX chain transforms under the
dual map into a Majorana excitation acting only on a single Ising chain. Hence,
the asymptotic excess entropy is given by ln(2) and there is no doubling in this
case. On the other hand, in the gapped phase the prefactor in (5.5.7) seems to
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be nontrivially related to the ground-state entanglement entropy. Note that a
similar observation was reported after a local quench in the non-critical transverse
Ising chain [143], where the entanglement plateau was also found to be related to
the ground-state value. A deeper understanding of these effects requires further
studies.
Finally, let us comment about the case where the locality of the excitation is not
imposed in the fermionic but rather in the spin picture. In other words, instead of
the c†j excitation one could consider the spin operator σ+

j by dropping the Jordan-
Wigner string in (5.3.6). According to our tDMRG calculations carried out for
this case, the entropy profiles change completely, becoming more flat in the center
with a maximum that stays way below ln(2). In short, the fermionic nature of the
local excitations turns out to be essential for the applicability of the quasiparticle
description.
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Summary and conclusions

In this thesis, we have studied the nonequilibrium dynamics following inhomoge-
neous quantum quenches and local operator insertions. We mainly focused on the
Rényi entropy profiles as well as the logarithmic negativity spreading in inhomo-
geneous setups.

In chapter 3, we have studied the nonequilibrium dynamics following a geomet-
ric quench in an XXZ chain. In the noninteracting (XX) case, we are able to
describe the entanglement with a heuristic CFT ansatz. Applying GHD, we are
able to describe the magnetization profiles after the quench in the gapless regime
of the XXZ chain. For the interacting case, we can understand the entanglement
profiles only qualitatively by identifying front edge positions. However, we show
that a proportionality between the subsystem magnetization fluctuations and the
entropy, originally established in equilibrium, also holds true after the geometric
quench.

In chapter 4, we have studied the negativity across defects after connecting two
free-fermion half chains. As the logarithmic negativity allows to measure the en-
tanglement of mixed states, we are able to quantify the entanglement between
adjacent, noncomplementary intervals which encompass the defect. For an un-
biased quench with equal initial fillings, we find a logarithmic increase of entan-
glement across the defect. For the biased quench with a defect, we present a
quasiparticle ansatz, leading to a linear increase of entanglement, followed by a
saturation. Here, the quasiparticles are produced continuously in time at the de-
fect. Moreover, we also present numerical tDMRG results for the XXZ chain,
finding a qualitatively similar behaviour after the unbiased quench. Finally, we
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studied the relation between the negativity and the α = 1/2 Rényi mutual infor-
mation. A proportionality that is valid for the ground state of an XX chain with
a defect, is found to also hold true in the case of an unbiased quench with equal
initial fillings for large interval lengths `. However, in the case of a biased quench
across a defect, the proportionality turns out to be no longer valid.

In chapter 5, we have studied the excess entropy due to the insertion of local
fermionic operators in the XXZ chain. In the gapless phase, the entropy profiles
after a fermionic creation operator insertion are well described by a probabilis-
tic quasiparticle ansatz which only considers low-energy spinon excitations. The
same ansatz holds true for a local Majorana excitation if the entropy profile max-
imum is rescaled. We understand this ∆-dependent scaling of the profiles within
a Luttinger liquid theory. After a modified Majorana excitation in the gapped
phase, a quasiparticle ansatz for asymptotic entropy profiles, that depends on the
ground state entropy, is presented. The respective low-energy approximations just
described work well near the free-fermion point in the gapless phase and in the
limit of large ∆ in the antiferromagnetic gapped phase.
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Appendix A

Appendix to Phys. Rev. B 99,
174403 (2019)

A.1 Perturbative calculation of the edge around
ζmax

As discussed in the main text, for ∆ > 0 the GHD solution around the rightmost
ray ζmax = 1 is given by the occupation function (3.3.10) by solving (3.3.11). We
assume that, sufficiently close to the GHD edge, the interval [λ1, λ2] of occupied
rapidities remains small, i.e., |λ1,2 − λ̃| � 1, with λ̃ given by (3.3.9). For such
an occupation, the dressing of a function f can be considered as a perturbation
around its bare value

fdr(λ) ≈ f(λ) + δf(λ) . (A.1.1)

Inserting into the dressing equation (3.2.5) one obtains

f(λ) + δf(λ) +

∫ λ2

λ1

dµ

2π
K(λ− µ) [f(µ) + δf(µ)] = f(λ) . (A.1.2)

To extract the leading order in the perturbation series, we neglect the term δf
within the integral and expand all the functions to first order in ν = λ− µ, which
leaves us with

δf(λ) +

∫ λ−λ1

λ−λ2

d ν

2π
(K(0) + νK′(0)) (f(λ)− νf ′(λ)) = 0 . (A.1.3)
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Perturbative calculation of the edge around ζmax

Setting λ1 = λ̃− ε1, λ2 = λ̃+ ε2 and carrying out the integrals, we finally arrive at

2π δf(λ) =−K(0)f(λ)(ε1 + ε2)− [K′(0)f(λ)−K(0)f ′(λ)]× (A.1.4)

ε21 − ε22 + 2(λ− λ̃)(ε1 + ε2)

2
+O(ε3) . (A.1.5)

With this result at hand, we can now calculate from Eq. (3.3.2) the dressed
velocity

v ≈ e′ + δe′

p′ + δp′
≈ e′

p′

[
1 +

δe′

e′
− δp′

p′
+

(
δp′

p′

)2

−
(
δe′

e

)(
δp′

p′

)]
, (A.1.6)

where we have droppped the arguments λ. Applying (A.1.5) for both δe′ and δp′
and keeping only up to quadratic terms in ε1,2, one has

v ≈ v0

[
1 +
K(0)

2π

(
e′′

e′
− p′′

p′

)
ε21 − ε22 + 2(λ− λ̃)(ε1 + ε2)

2

]
, (A.1.7)

where v0 is the bare velocity; see Eq. (3.3.7). The correction to the bare velocity
depends on the ratios of second and first derivatives of the energy and momentum.
Since the factor multiplying them is already quadratic in ε1,2, it is enough to
evaluate the ratios at λ = λ̃. Interestingly, however, a simple calculation leads to
the result

e′′

e′

∣∣∣∣
λ=λ̃

=
p′′

p′

∣∣∣∣
λ=λ̃

. (A.1.8)

Hence, to leading order, the velocity around the edge is just given by its bare
value, with corrections O(ε3). The rapidities λ1,2 then follow from the condition
v0(λ1) = v0(λ2) = ζ. Expanding the bare velocity around λ̃ gives

v0(λ̃± ε) ≈ v0(λ̃)± εv′0(λ̃) +
ε2

2
v′′0(λ̃) . (A.1.9)

However, as discussed in the main text, λ̃ is exactly the maximum of the bare
velocity, v′0(λ̃) = 0, with its value given by v0(λ̃) = 1. Furthermore, the second
derivative can be calculated as v′′0(λ̃) = − cot2(γ) and thus we get

v0(λ̃± ε) = 1− ε2

2
cot2(γ) = ζ . (A.1.10)
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Perturbative calculation of the edge around ζmax

Solving for ε then leads to the result

ε =
√

2(1− ζ) tan(γ) , (A.1.11)

reported in Eq. (3.3.15) of the main text.
It should be stressed that for the perturbation theory to work, the condition ε� 1
must be satisfied. From (A.1.11) one can see that this becomes problematic, as the
interaction strength is decreased. Indeed, for ∆ → 0 (γ → π/2) one has ε → ∞;
i.e., the solution diverges. The reason is that for very small interactions, the bare
velocity develops only a very tiny maximum around extremely high rapidities
λ̃ � 1, thus deteriorating the quality of the approximation. In particular, at
the free-fermion point ∆ = 0 the approximation fails completely, which can also
be seen by expanding the analytical result (3.3.17) for the magnetization profile
around ζ = 1. This gives to leading order

〈Sz〉 ≈ −1

2
+

1

2π

√
2(1− ζ), (A.1.12)

where the coefficient of the square root is off by a factor of 2 with respect to the
approximation (3.3.16). Moreover, even considering a larger value ∆ = 0.8 and
requiring ε < 0.1, one has from (A.1.11) the condition ζ > 0.99. This explains why
the approximate profile deviates essentially immediately from the GHD solution
in Fig. 3.3.

0.9 0.92 0.94 0.96 0.98 1
−0.5

−0.4

−0.3

−0.2

ζ

λ
1
,
λ
2

λ̃ + ε

λ̃ - ε

0.6 0.7 0.8 0.9 1 1.1 1.2
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

ζ

〈Sz
x〉

tDMRG
GHD

Eq. (3.3.16)

Figure A.1: Left: rapidities λ1 (blue circles) and λ2 (red circles) as obtained from
the iterative numerical solution of Eq. (3.3.11) for ∆ = 0.95. The approximate
solutions are shown by solid lines, see Eq. (A.1.11), with a good agreement near
ζ = 1. Right: corresponding edge magnetization profile and its approximation.
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Perturbative calculation of the edge around ζmax

On the other hand, one expects that the edge approximation should perform much
better for ∆→ 1, i.e., around the isotropic Heisenberg point. This is indeed what
we observe by comparing it to the numerical solutions λ1 and λ2 of the GHD
ansatz (3.3.11). This is shown in the left panel of Fig. A.1 for ∆ = 0.95, where
the approximation appears to be rather good around the edge but deviates as one
moves farther away. In the right panel of Fig. A.1 we also show the edge profile
for the magnetization, comparing the GHD solution to the approximation (3.3.16)
and to the tDMRG data for L = 200 and t = 60.
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Appendix B

Appendix to J. Phys. A: Math.
Theor. 53, 205301 (2020)

B.1 Correlation matrices for the defect
We collect here the integral formulas for the correlation matrix elements 〈c†mcn〉
in the thermodynamic limit L → ∞ of the hopping chain (4.2.1), with a single
weak hopping defect parametrized by λ = e−ν . We consider both the ground state
of the chain as well as the NESS after time evolution from a domain wall. The
former has been considered in Ref. [187] while in the latter case the results were
obtained in Ref. [194]. In each case the result depends on whether the lattice
sites are chosen on the same (left or right) or opposite sides of the defect, i.e. the
correlation matrix has a block form. We shall only consider matrix elements with
m ≤ n, since the others follow from hermiticity.
In the ground state of an infinite chain, the matrix elements read

Cm,n =


C0(n−m)− C1(n+m) if m,n ≥ 1

C0(n−m)− C1(2− n−m) if m,n ≤ 0

C2(n−m) if m ≤ 0, n ≥ 1

(B.1.1)

where the different contributions depend only on the difference r = n − m and
sum s = n+m of the indices. The first translationally invariant piece is given by

C0(r) =
sin
(
π
2
r
)

πr
, (B.1.2)
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Correlation matrices for the defect

which is just the homogeneous result. The extra contributions on the same side
of the defect were obtained in [187] and read

C1(s) =
sh ν

2
(eνIs − e−νIs−2), (B.1.3)

where

Is =

∫ π/2

0

dq

π

cos qs

sh2 ν + sin2 q
. (B.1.4)

Interestingly, one observes that the contributions C1(2k) = 0 vanish completely
for even s = 2k, which follows from the property eνI2k = e−νI2k−2 of the integrals
defined above. Finally, the matrix elements on opposite sides of the defect are
given by

C2(r) =
ch ν

2
Ir −

eν

4
Ir+2 −

e−ν

4
Ir−2 . (B.1.5)

Using the property found above, it is easy to see that also these contributions
vanish for r = 2k. Thus the correlation matrix has a checkerboard structure as in
the homogeneous case.
In the limit ν = 0 one has trivially C1(s) = 0, whereas for the offdiagonal block
one finds

C2(r) =

∫ π/2

0

dq

2π

cos qr − [cos q(r − 2) + cos q(r + 2)] /2

sin2 q

=

∫ π/2

0

dq

π
cos qr = C0(r) ,

(B.1.6)

i.e. one recovers the results for the homogeneous chain. In the opposite limit
ν → ∞ of a vanishing defect coupling, one finds C1(s) = C0(s) which is the
result for a half-infinite chain. On the other hand, C2(r) = 0 as it should for two
decoupled half-chains.
Now we consider the correlation matrix elements C̃m,n for the NESS, which emerges
in the t→∞ limit of time evolution from a domain wall initial state. The results
were obtained in [194] by solving the problem for a finite system size and time
and then considering the limits L→∞ and t→∞ via contour integration tricks.
In order to bring the formulas for the matrix elements in a transparent form, it is
useful to introduce the transmission and reflection coefficients

Tq =
sin2 q

sh2 ν + sin2 q
, Rq =

sh2 ν

sh2 ν + sin2 q
, (B.1.7)
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as well as the auxiliary integral expressions

Ĩr =

∫ π

0

dq

2π

i sin qr

sh2 ν + sin2 q
. (B.1.8)

Analogously to (B.1.1), the matrix elements can be written down by a separation
of cases

C̃m,n =


C̃0(n−m) if m,n ≥ 1

δm,n − C̃0(m− n) if m,n ≤ 0

C̃2(n−m) + C̃3(n+m) if m ≤ 0, n ≥ 1

(B.1.9)

The correlations are thus translationally invariant if both sites are located on the
same side. They can be written in a very instructive form

C̃0(r) =

∫ π

0

dq

2π
Tq eiqr. (B.1.10)

Indeed, this can be interpreted as a correlation matrix where the occupation func-
tion is given by the transmission probability for all the modes with positive veloc-
ities. Note that the correlations on the left/right hand side are now related by the
symmetry property C̃m,n = δm,n − C̃1−m,1−n. If the sites are located on opposite
sides, the correlations are given via the expressions

C̃2(r) =
ch ν

2
Ĩr −

eν

4
Ĩr+2 −

e−ν

4
Ĩr−2 (B.1.11)

and
C̃3(s) = i

∫ π

0

dq

2π

√
TqRq eiq(s−1) . (B.1.12)

The limiting cases are also straightforward to obtain. For ν = 0 we have Tq ≡ 1
and Rq ≡ 0 such that

C̃0(r) =
1

2
δr,0 + i

∫ π

0

dq

2π
sin qr , (B.1.13)

which is exactly the NESS result for the homogeneous chain. For the offdiagonal
block one obtains C3(s) = 0 as well as

C̃2(r) = i

∫ π

0

dq

4π

sin qr − [sin q(r − 2) + sin q(r + 2)] /2

sin2 q
= i

∫ π

0

dq

2π
sin qr ,

(B.1.14)
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i.e. the full matrix becomes translationally invariant, as it should. In the opposite
limit ν → ∞ one has Tq ≡ 0 and Rq ≡ 1, and thus C̃0(r) = C̃2(r) = C̃3(s) = 0.
One then simply recovers the initial t = 0 form of the correlation matrix since the
transmission vanishes between the two half-chains.

B.2 CFT treatment of the domain wall quench

In this appendix we present the CFT calculation of the mutual information and
entanglement negativity for a domain wall initial state time evolved with a homo-
geneous hopping chain. The key insight to the problem was provided in Ref. [53],
where it was shown that the inhomogeneous time-evolved state can be mapped
onto a CFT with a curved background metric. This metric was first obtained
in [174] where the imaginary-time evolution of the domain wall initial state was
considered. Alternatively, one could use the exact mapping from the domain-wall
melting to a ground-state problem with a linear potential [146, 192]. Here we will
follow the latter route.
Let us consider a free-fermion chain with a slowly varying linear potential, with the
corresponding length scale given by t. The ground state of this chain is unitarily
equivalent to the time-evolved state starting from a domain wall [146]. For t� 1
one can apply a local density approximation (LDA), i.e. one assumes that the
ground state around position x is locally equivalent to a homogeneous ground
state, corresponding to the dispersion ωq = − cos q + x/t. The spatially varying
Fermi momentum and velocity are then given by, respectively,

qF (x) = arccos(x/t) , vF (x) = sin qF (x) =
√

1− (x/t)2 . (B.2.1)

The LDA yields a description where the state can be locally described via a 2D
massless Dirac fermion field theory. The crucial finding of Ref. [53] is that one can
define a globally valid Dirac theory, living in a curved background metric, where
the changing of the Fermi velocity can be absorbed by introducing the coordinate
transformation

z =

∫ x

0

dx′

vF (x′)
+ iy = t arcsin

x

t
+ iy . (B.2.2)

The curved metric is then given by ds2 = e2σ(x)dzdz̄, where the Weyl factor has
to be chosen as eσ(x) = vF (x) in order to reproduce the local fermion propagators.
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CFT treatment of the domain wall quench

Once the proper metric and field theory have been identified, the calculation of
the entropy can be performed by applying the replica trick and the corresponding
twist-field formalism [104]. Namely, the Rényi entropy Sn can be obtained by
calculating expectation values of twist fields Tn and T̄n inserted at the spatial
boundaries (and imaginary time y = 0) of the subsystem at hand. Here we focus
on an interval A1 = [x1, x2] such that

Tr
(
ρnA1

)
= ε(x1)∆n ε(x2)∆n〈Tn(x1)T̄n(x2)〉, (B.2.3)

where the scaling dimension of the twist fields is given by

∆n =
c

12

(
n− 1

n

)
, (B.2.4)

with the central charge being c = 1 for the Dirac theory. Note that we have
explicitly included a UV cutoff ε(x) in (B.2.3) which, in contrast to homogeneous
systems, carries a spatial dependence and thus cannot be ignored. Indeed, since
the only relevant microscopic energy scale on the lattice is given by the Fermi
velocity, the cutoff must be chosen as ε(x) = ε0 v

−1
F (x), where ε0 is a dimensionless

constant.
In order to evaluate the expectation value in (B.2.3), one should point out that,
due the change of coordinates in (B.2.2), the curved-space field theory lives on
the infinite strip

[
−π

2
t, π

2
t
]
× R. Therefore, one has to first map the theory onto

the upper half plane by the conformal transformation g(z) = ei(z/t+π/2). The
twist-field two-point function can then be written as

〈Tn(x1)T̄n(x2)〉 =

(
e−σ(x1)

∣∣∣∣dg(z1)

dz1

∣∣∣∣)∆n
(

e−σ(x2)

∣∣∣∣dg(z2)

dz2

∣∣∣∣)∆n

×

〈Tn(g(z1))T̄n(g(z2))〉UHP .

(B.2.5)

In the above expression we simply used the transformation properties of the twist
fields under the Weyl transformation (i.e. changing to the curved-space coordi-
nates) as well as the mapping g(z). The remaining step is to evaluate the two-point
function on the upper half plane which, using the method of images, can be writ-
ten as a four-point function on the full plane. Up to multiplicative constants, one
obtains for the Dirac theory [53]

〈Tn(g(z1))T̄n(g(z2))〉UHP = [Im g(z1) Im g(z2) η1,2]−∆n , (B.2.6)

η1,2 =
|g(z1)− g(z2)|2
|g(z1)− g∗(z2)|2 . (B.2.7)
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It should be noted that, for a generic CFT, the result is more complicated and is
multiplied by a non-universal function F(η1,2) of the four-point ratio η1,2, see e.g.
[105]. For the Dirac theory, however, one has F ≡ 1 [217].
We are now ready to calculate the Rényi mutual information (4.2.9) between two
adjacent intervals A1 = [x1, x2] and A2 = [x2, x3]. Putting everything together,
one arrives at the result

In =
1 + n

6n
ln

[
ε−1(x2) eσ(x2)

∣∣∣∣dg(z2)

dz2

∣∣∣∣−1

Im g(z2)

(
η1,2 η2,3

η1,3

)1/2
]
. (B.2.8)

The calculation for the logarithmic negativity follows a similar procedure, but is
slightly more involved. In the replica approach it can be written as [130, 131]

E = lim
ne→1

ln Tr
(
ρT2A
)ne

, (B.2.9)

where the calculation has to be carried out for an even ne number of replicas and
then taking the limit ne → 1. Indeed, the limit no → 1 from an odd number
of copies would give the log of the trace (which is trivially zero) instead of the
trace norm. Furthermore, the effect of the partial transpose is to interchange the
twist operators Tn and T̄n located at the ends of the segment A2 over which the
transpose is taken. We will restrict ourselves to adjacent intervals A1 = [x1, x2]
and A2 = [x2, x3], such that the trace can be written as the three-point function

Tr
(
ρT2A
)n

=
3∏
i=1

ε(xi)
∆(i)〈Tn(x1)T̄ 2

n (x2)Tn(x3)〉. (B.2.10)

where the scaling dimensions are given by

∆(1) = ∆(3) = ∆n , ∆(2) =

{
∆no n = no ,

2∆ne/2 n = ne .
(B.2.11)

Clearly, the scaling dimension ∆(2) corresponding to the composite field T̄ 2
n shows

a strong parity dependence.
To calculate the twist-field expectation value, one uses again the transformation
properties

〈Tn(x1)T̄ 2
n (x2)Tn(x3)〉 =

3∏
i=1

(
e−σ(xi)

∣∣∣∣dg(zi)

dzi

∣∣∣∣)∆(i)

×

〈Tn(g(z1))T̄ 2
n (g(z2))Tn(g(z3))〉UHP .

(B.2.12)

158



CFT treatment of the domain wall quench

The last step is to evaluate the three-point function on the upper half plane, which
has already been considered in [74]. For the Dirac theory one has

〈Tn(g(z1))T̄ 2
n (g(z2))Tn(g(z3))〉UHP =

3∏
i=1

[Im g(zi)]
−∆(i)

[
η

∆(2)

1,2 η
∆(2)

2,3 η
∆(1)+∆(3)−∆(2)

1,3

]−1/2

,

(B.2.13)
where the four-point ratios are defined as

ηi,j =
|g(zi)− g(zj)|2
|g(zi)− g∗(zj)|2

. (B.2.14)

Note that here we assumed that the non-universal function F({ηi,j}), which could
depend on the full operator content for a generic CFT, becomes again trivial for the
Dirac theory [217]. Finally, since ∆1 = 0 from (B.2.4), the only nontrivial scaling
dimension from (B.2.11) that survives the replica limit (B.2.9) is limne→1 ∆(2) =
2∆1/2 = −1/4. In turn, the entanglement negativity can be written as

E =
1

4
ln

[
ε−1(x2) eσ(x2)

∣∣∣∣dg(z2)

dz2

∣∣∣∣−1

Im g(z2)

(
η1,2 η2,3

η1,3

)1/2
]
. (B.2.15)

Comparing (B.2.15) to (B.2.8), one finds immediately E = 1
2
I1/2. Note, however,

that the result of the CFT calculation is valid only up to a nonuniversal additive
constant. Nevertheless, one can use a continuity argument to make sure that
this constant is the same for both quantities. Namely, if one considers a bipartite
situation where A is the full system, then one has exactly E = 1

2
I1/2. Therefore the

equality should be valid, up to subleading terms, for arbitrary adjacent segments.
Finally, it should be stressed that the calculation was carried out in complete
generality for free-fermion systems that have an underlying curved-space CFT. In
the last step we apply the result to our specific example of the linear potential.
Introducing the scaling variables ξi = xi/t, the various factors appearing in the
argument of (B.2.15) read

ε−1(x2) = eσ(x2) = Im g(z2) =
√

1− ξ2
2 ,

∣∣∣∣dg(z2)

dz2

∣∣∣∣−1

= t , (B.2.16)

whereas the square-root of the four-point ratios can be evaluated as

(ηi,j)
1/2 =

1− ξiξj −
√

(1− ξ2
i )(1− ξ2

j )

|ξi − ξj|
. (B.2.17)
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In particular, for the symmetric arrangement of the segments considered in the
main text, ξ3 = −ξ1 = ξ = `/t and ξ2 = 0, the ratios further simplify to

(η1,2)1/2 = (η2,3)1/2 =
1−

√
1− ξ2

ξ
, (η1,3)1/2 = ξ , (B.2.18)

and plugging into (B.2.15) yields the result in (4.5.2).
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Appendix C

Appendix to arXiv:2010.02708
(2020)

C.1 Correlation functions of vertex operators
In the following we give the main steps of the calculation of the excess Rényi
entropy ∆S2, obtained via the ratio (5.4.11) of four-point and two-point func-
tions. As in the main text, we consider two different local operators, the one
corresponding to the fermion creation

Of = eikF dψ† + e−ikF dψ̄† , (C.1.1)

as well as the Hermitian Majorana excitation

Om = eikF dψ† + e−ikF dψ̄† + e−ikF dψ + eikF dψ̄ . (C.1.2)

They are composed of chiral fermion fields which, after the Bogoliubov transfor-
mation (5.4.18), can be written as vertex operators (5.4.19) involving chiral boson
fields. The holomorphic and anti-holomorphic components of the vertex operators
are summarized in the table below, where c = cosh(ξ) and s = sinh(ξ).
We start by evaluating the two point function in the denominator of (5.4.11).
Using the fact that vertex operators are primaries with conformal dimensions
h = α2/2 and h̄ = β2/2, one immediately obtains the nonvanishing two-point
functions on the plane as

〈ψ(w1, w̄1)ψ†(w2, w̄2)〉 ∝ (w1 − w2)−c
2

(w̄1 − w̄2)−s
2

,

〈ψ̄(w1, w̄1)ψ̄†(w2, w̄2)〉 ∝ (w1 − w2)−s
2

(w̄1 − w̄2)−c
2

.
(C.1.3)
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ψ ψ† ψ̄ ψ̄†

α −c c s −s
β −s s c −c

Table C.1: Parameters of the vertex operators (5.4.19) for the fermionic fields

From (5.4.9) we have w1 − w2 = w̄1 − w̄2 = 2ε, thus we obtain for the two-point
functions

〈O†f (w1, w̄1)Of (w2, w̄2)〉 = 2 (2ε)−(c2+s2), 〈O†m(w1, w̄1)Om(w2, w̄2)〉 = 4 (2ε)−(c2+s2).
(C.1.4)

Let us now move to the four-point function on the Riemann surface Σ2. This is
a sum of many terms, from which the nonvanishing contributions allowed by the
neutrality conditions (5.4.21) are given by

〈ψψ†ψ̄ψ̄†〉, 〈ψ̄ψ̄†ψψ†〉, 〈ψ̄ψ†ψψ̄†〉, 〈ψψ̄†ψ̄ψ†〉, 〈ψψ†ψψ†〉, 〈ψ̄ψ̄†ψ̄ψ̄†〉.
(C.1.5)

We first analyze the Jacobian of the transformation (5.4.15) from Σ2 → Σ1. The
derivatives of the mapping are given by

dw

dz
= i`

nzn−1

(1− zn)2
,

dw̄

dz̄
= −i` nz̄n−1

(1− z̄n)2
. (C.1.6)

Introducing the variable

χ =
(1− z2

1)2(1− z2
2)2

4z1z2

, (C.1.7)

one obtains for the first four contributions in (C.1.5)

`−2(c2+s2)χc
2/2χ̄s

2/2χs
2/2χ̄c

2/2 = `−2(c2+s2)|χ|c2+s2 , (C.1.8)

whereas for the last two contributions we have, respectively

`−2(c2+s2)χc
2

χ̄s
2

, `−2(c2+s2)χs
2

χ̄c
2

. (C.1.9)

Note that there is an extra sign factor (−i)c2(i)s2(i)s2(−i)c2 = (−i)2(c2−s2) = −1
which multiplies the first two Jacobian.
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The next step is to evaluate the vertex four-point functions. Using (5.4.20) this
reads for the first term in (C.1.5)

z−c
2

12 z−s
2

34 z−cs13 z−cs24 zcs14z
cs
23z̄
−s2
12 z̄−c

2

34 z̄−cs13 z̄−cs24 z̄cs14z̄
cs
23 = (−1)|1−η|2cs|η|−(c2+s2)|z13z24|−(c2+s2)

(C.1.10)
Note that we have used the property z34 = −z12. It is easy to check that one
obtains the very same factor from the second term. Similarly, using z23 = z14, one
can check that the third and fourth terms deliver

zcs12z
cs
34z
−cs
13 z−cs24 z−c

2

14 z−s
2

23 z̄cs12z̄
cs
34z̄
−cs
13 z̄−cs24 z̄−s

2

14 z̄−c
2

23 = |η|2cs|1− η|−(c2+s2)|z13z24|−(c2+s2).
(C.1.11)

For the fifth term one has

[η(1− η)]−c
2

(z13z24)−c
2

[η̄(1− η̄)]−s
2

(z̄13z̄24)−s
2

, (C.1.12)

and the last term follows by interchanging c and s above.
In order to obtain an expression in terms of the cross-ratios, one can rewrite (C.1.7)
as

χ =

(
`

2ε

)2

η(1− η) z13z24 . (C.1.13)

Putting everything together, one arrives at the four-point function

2 (2ε)−2(c2+s2)
[
|η|(c+s)2 + |1− η|(c+s)2 + 1

]
. (C.1.14)

Evaluating the four-point function for the Majorana excitation (C.1.2) is more
cumbersome, since one has a large number of terms to consider. There are, how-
ever, some simple rules and symmetry arguments which make the task easier. First
of all, one should clearly always have the same number of creation and annihilation
operators, for the neutrality conditions (5.4.21) of the vertex correlation functions
to be satisfied. This already drastically reduces the number of terms to consider.
The remaining ones can be collected into families, some of them given by (C.1.5).
Let us consider the family generated by the first term in (C.1.5), by allowing
permutations of the left- and right-moving operators separately (i.e. interchanging
the first or last two operators). If only the first or last two are interchanged, the
vertex correlator (C.1.10) is modified by replacing

|1− η|2cs → |1− η|−2cs , (C.1.15)
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whereas the correlator remains the same if both of them are interchanged. The
next family is generated by the second term in (C.1.5), which is actually related
to the first one by Hermitian conjugation. Hence this just gives a factor of two.
The same argument holds for the next two families, where interchanging only one
pair modifies the correlator in (C.1.11) as

|η|2cs → |η|−2cs . (C.1.16)

Finally, the single interchange in the fifth family leads to

(1− η)−c
2 → (1− η)c

2

, (1− η̄)−s
2 → (1− η̄)s

2

, (C.1.17)

whereas the last family follows by interchanging c and s above.
There are, however, two additional families appearing where the left- and right-
moving particles are intertwined. They are given by the representative correlators

〈ψψ̄†ψ†ψ̄〉, 〈ψ̄ψ†ψ̄†ψ〉. (C.1.18)

Defining the variable

σ =
(1− z2

1)2(1− z̄2
2)2

4z1z̄2

, (C.1.19)

the corresponding Jacobians contain the factors σc2σ̄s2 and σs
2
σ̄c

2 , respectively.
Furthermore, the vertex correlation functions yield

|η|±2cs|1− η|∓2cs(z13z̄24)−c
2

(z̄13z24)−s
2

, |η|±2cs|1− η|∓2cs(z13z̄24)−s
2

(z̄13z24)−c
2

,
(C.1.20)

and each term comes with a double multiplicity. Collecting all the terms, the
four-point function takes the form

2 (2ε)−2(c2+s2)(2A+B + C) , (C.1.21)

where the factors A, B and C are reported in (5.4.28)-(5.4.30).
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