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Abstract

This thesis is concerned with the fatigue behaviour of steel and composite bridges in high-speed
railway lines. In general, fatigue is caused by repeated stress cycles, which e.g. occur due to
the dynamic problem of a high-speed train crossing a bridge structure. However, the current
fatigue design verification is based on a static approach, which considers dynamic effects by the
’dynamic’ factor Φ.
However, this factor does not consider resonance scenarios. Therefore, this thesis clarifies,
based on a parameter study, whether or not the common static approach for the fatigue design
verification of single-span steel and composite railway structures is sufficient to account for
the effects of high-speed trains due to a dynamic simulation. Additionally, it defines design
requirements in case the above-mentioned static approach is not appropriate. Therefore, a new
computational approach, based on the non-dimensional response representation, is developed,
which allows to perform more efficiently the above-mentioned parameter study – covering
more than 94000 different trains, different train speeds, different wheel load distributions and
different damping ratios of the structure. Furthermore, this thesis also clarifies whether or not
simplified train models (moving load model) are sufficient and accurate, with respect to the
fatigue problem, in comparison to a more detailed approach (2D multi-body model).
Further on, the main structural members (main girders and arches) of a representative arch
bridge, with respect to the crossing of more than 94000 different train types, is investigated
concerning their fatigue behaviour.
In order to avoid the dynamic calculation and determination of the precise stress range spectra
at the critical point of the high-speed bridge structure, the design codes in Austria allow to
simply enhance the static fatigue load by an additional factor. This thesis investigates the
accuracy of the additional factor as well.
The conclusion of this thesis shows that single-span steel and composite bridges in high-speed
railway lines are not prone to fatigue due to the crossing of high-speed railway trains, if they
fulfil the vertical bridge deck acceleration criterion due to the crossing of the HSLM-A trains.
Besides that, it is also concluded that the additional factor included in the design codes in
Austria proves not to be sufficiently accurate.
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Kurzfassung

Diese Arbeit befasst sich mit dem Ermüdungsverhalten von Stahl- und Verbundbrücken in
Hochgeschwindigkeitseisenbahnstrecken. Im Allgemeinen wird Ermüdung durch wieder-
holte Spannungszyklen verursacht, welche unter anderem beim dynamischen Problem einer
Hochgeschwindigkeitszugsüberfahrt über ein Brückentragwerk resultieren.
Der aktuelle Ermüdungsnachweis basiert jedoch auf einem statischen Ansatz, bei dem dynamis-
che Effekte durch den ’dynamischen’ Faktor Φ berücksichtigt werden, wodurch Resonanzszenar-
ien unberücksichtigt bleiben. In dieser Arbeit wird daher anhand einer umfassenden Parame-
terstudie geklärt, ob der übliche statische Ansatz für den Ermüdungsnachweis von einfeldrigen
Stahl- und Verbundtragwerken ausreicht, um die Auswirkungen von Hochgeschwindigkeit-
szugsüberfahrten zu berücksichtigen. Weiters werden Entwurfsanforderungen definiert, falls der
oben genannte statische Ansatz nicht geeignet ist. Zusätzlich wird ein neuer Berechnungsansatz
entwickelt, der auf der nichtdimensionalen Darstellung basiert und es somit ermöglicht, die
oben genannte Parameterstudie effizienter durchzuführen - mit mehr als 94000 verschiedenen
Zügen, verschiedenen Zuggeschwindigkeiten, verschiedenen Radlastverteilungen und ver-
schiedenen Dämpfungsannahmen der Brückenstruktur. Darüber hinaus wird in dieser Arbeit
auch geklärt, ob vereinfachte Zugmodelle (Einzellastmodell) im Vergleich zu einem detailliert-
eren Ansatz (2D-Mehrkörpermodell) in Bezug auf das Ermüdungsproblem ausreichend und
genau genug sind.
Weiters werden die Haupttragelemente (Hauptträger und Bögen) einer repräsentativen Bo-
genbrücke hinsichtlich der Überquerung von mehr als 94000 verschiedenen Zugstypen auf ihr
Ermüdungsverhalten untersucht.
Um die dynamische Berechnung und Bestimmung der genauen Spannungskollektive am
kritischen Punkt der Hochgeschwindigkeitsbrückenstruktur zu vermeiden, ermöglichen es
die Bemessungsnormen in Österreich, die statische Ermüdungsbelastung vereinfacht um
einen zusätzlichen Faktor zu erhöhen. Diese Arbeit untersucht weiters die Genauigkeit dieses
zusätzlichen Faktors.
Die Schlussfolgerungen dieser Arbeit zeigen unter anderem, dass einfeldrige Stahl- und Ver-
bundeisenbahnbrücken in Hochgeschwindigkeitsstrecken zufolge der Überfahrt von Hoch-
geschwindigkeitszügen nicht ermüdungsanfällig sind, insofern diese das Kriterium der ver-
tikalen Brückendeckbeschleunigung aufgrund der Überquerung der HSLM-A Züge erfüllen.
Weiters kann gezeigt werden, dass sich der zusätzliche Faktor, welcher in den Bemessungsnor-
men in Österreich enthalten ist, als nicht treffsicher erweist.
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1. Introduction

1.1. Motivation and objectives

The increase in personal mobility in everyday life leads, among other things, to the expansion
of high-speed railway lines. These high-speed railway lines and the development of new high-
speed trains confront engineers with new challenges. In the last decades great effort has been
made in order to understand the behaviour of railway bridges in such high-speed railway
lines better. The main focus was thereby on the vertical bridge deck acceleration and, as a
consequence, the possibly resulting ballast bed destabilisation.
Long term effects due to the high-speed traffic, such as fatigue damage, were not primary the
main emphases of this research. Nevertheless in the literature on the fatigue behaviour a large
number of individually and in detail investigated high-speed railway bridge structures exist.
These individual results are only valid for the particularly studied structure. Therefore, this
thesis aims to generate a more general conclusion by performing a comprehensive parameter
study for single-span steel and composite structures.
Furthermore, the amount of considered train types in literature is, due to the various reasons
(e.g. computational effort, lack of train data), limited to a rather low number of trains. In this
thesis, due to the information provided by the Österreichische Bundesbahnen (ÖBB), it is possible
to consider about 95000 different train types.
In order to avoid the dynamic calculation and determination of the precise stress range spectra
at the critical point of the high-speed bridge structure, the design codes in Austria allow to
simply enhance the static fatigue load by an additional factor — subsequently called ’adjusted’
dynamic factor.
Moreover, the Deutsche Bahn (DB) provided data of a representative arch bridge, which is in this
thesis subject to an exemplary fatigue behaviour investigation.

Therefore, the following points are defined as objectives in this thesis:

• clarify whether the common static approach for the fatigue design verification of single-
span steel and composite railway bridges (load model LM71 with damage equivalent
factor λ) is sufficient to account for resonance effects due to dynamic simulation or not;

• define additional design requirements, in case the above mentioned approach is not
sufficient;

• develop a new computational approach, which allows to perform the parameter study
more efficiently;

• clarify whether the simplified and generally used train model (moving load model) is
sufficient and accurate in comparison to a more detailed approach (2D multi-body model)
or not;

• investigate the influence of different train speeds, different wheel load distributions due
to the rail and different damping ratios of the structures on the fatigue behaviour;

1



1. Introduction

• determine the accuracy and necessity of the ’adjusted’ dynamic factor;
• investigate the main structural members (main girders and arches) of a representative arch

bridge, with respect to the fatigue behaviour due to the crossing of about 95000 different
train types.

1.2. Organization

Chapter 2 provides an overview of the current valid design codes in Austria of common and
high-speed railway bridges, with respect to the fatigue design. Additionally, a short overview
of the state of the art is provided.

Chapter 3 describes the dynamic simulation of a train crossing a bridge structure. The com-
putational approaches are derived for simple beams and complex structures, considering two
train models (moving load model and 2D multi-body model). Additionally, a non-dimensional re-
sponse representation for simple beams and the moving load model, which allows to reduce the
necessary number of dynamic calculations in the context of a parameter study substantially, is
presented.

Chapter 4 introduces the five different traffic mixes considered in this doctoral thesis. Addition-
ally, the corresponding train speeds for each traffic mix are defined.

Chapter 5 covers the single-span steel and composite bridges in high-speed railway lines, which
carry one track and which are studied with respect to their fatigue and traffic safety behaviour.
First, an overview regarding the considered structures, traffic mixes and the computational
method itself is presented. Subsequently, preliminary studies and the traffic safety design check
(limited vertical acceleration of the bridge deck) for the single-span bridges are performed.
Finally, a parameter study is conducted, which combines the traffic safety and fatigue criteria.
Additionally, the accuracy of the ’adjusted’ dynamic factor, which was introduced in Chapter 2,
is studied.

Chapter 6 investigates the main girders and arches of a representative arch bridge with respect
to their fatigue behaviour.

2



2. Background — design of railway bridges

2.1. Code based design according to Eurocode

The semi-probabilistic concept, according to the ÖNORM EN 1990 [41], generally distinguishes
characteristic values of the effects of actions Ek and characteristic values of the resistance Rk.
These values multiplied and divided respectively by the partial safety factors γF and γM result
into design values, which form the principal design verification format

Ed ≤ Rd

γF Ek ≤ Rk

γM
(2.1)

The expression above classifies the state of a given structure for specific limit states. In case
the inequality is fulfilled, the state may be termed satisfactory (safe, serviceable), in all other
cases the state may be called unsatisfactory (failed, unserviceable). Consequently, the limit states
separate the satisfactory from the unsatisfactory conditions.
In general, the ÖNORM EN 1990 [41] defines two categorically different types of limit states.
The ultimate limit state (ULS) refers to states regarding collapse or to similar forms of structural
failure and is related to the safety of people/ structure. The serviceability limit state (SLS) covers
the conditions of normal use (deflections, vibrations, etc.), the comfort of people and the
appearance of the construction works.
However, some undesirable situations may be assigned with difficulty to the one and right
limit state. For example, the deformation of a railway bridge deck, which basically is a service
ability limit state, may cause a derailment situation of the train. This endangers human life and,
therefore, needs to be considered as an ultimate limit state as well. ([7] p.33 et sqq.)

Fatigue failures, which result due to fluctuating or repetitive loading cycles and the emerging
crack growth phenomena, may occur at load levels much lower than usually expected for
ultimate limit loads. The ÖNORM EN 1990 [41] separates the fatigue limit state (FLS) from the
ultimate limit state and the serviceability limit state for a number of reasons [7] (p.37 et sqq.):

• The fatigue problem is time dependent, as the magnitude and the number of cycles under
service loads needs to be considered.

• The crack growth, which is a local deterioration of material, may stop when restraints are
reduced, or continue and accelerate when cracks lead to more critical loading conditions.

• Regular inspections may enable one, under particular circumstances (e.g. tough material),
to detect crack growth before it leads to failure.

• Additionally, regarding the fatigue limit state, a safety system has been developed, which
considers the possibility of pre-warning and the consequences of failure.
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2. Background — design of railway bridges

In general, the train crossing on a bridge structure is a dynamic problem, which might lead,
especially in case of resonance, to excessive vibrations. However, the three limit states mentioned
above are checked with a quasistatic concept according to the ÖNORM EN 1991-2 [43] for
common railway bridges. Therefore, the statically calculated deformations and stresses are
increased by using dynamic amplification factors (Φ for the LM71 and ϕ for real trains),
which do not consider the resonance scenario. For high-speed railway bridges, the findings
after the opening of the first high-speed lines in France and the occurred damages due to
exorbitant vibrations, resulting in the deterioration of the ballasted track, led to the necessity of
checking and limiting the vertical bridge deck acceleration. ([66], [55] p.10) Hence, the static
amplification factors do not sufficiently cover the stresses and deformations in case of resonance,
and, consequently, additional dynamic verification is required. ([55] p.10)

Therefore, the actual design code ÖNORM EN 1991-2 [43] clarifies in which cases a static analysis
with dynamic amplification factors is sufficient and when an additional dynamic analysis is
necessary. The following chapters summarize the basic concepts of the static and dynamic
analysis according to the ÖNORM EN 1991-2 [43] and the situation in Austria, including an
emphasis on the fatigue limit state (FLS).

2.1.1. Static analysis

The static analysis of bridges due to train crossing is carried out using load models, which
represent the vertical real train loads. Therefore, the ÖNORM EN 1991-2 [43] provides the
following load models:

• Load model 71 (UIC 71 or LM71) for normal rail traffic — see Figure 2.1
• SW/0 for normal rail traffic on continuous beams — see Figure 2.2
• SW/2 for heavy rail traffic — see Figure 2.4
• ”unloaded train” — consists of a vertical uniformly distributed load with a characteristic

value of 10.0 kN/m.

In engineering practise, the first three load models are the main ones. These models need to be
multiplied by the so called ’dynamic’1 factor Φ. Additionally, the two load models LM71 and
SW/0, representing normal rail traffic, need to be multiplied by the classification factor α in
order to consider heavier or lighter rail traffic. Each European country chooses this factor from
the pool of the following numbers:

0.75 - 0.83 - 0.91 - 1.00 - 1.10 - 1.21 - 1.33 - 1.46

In Austria α is set to 1.21 for normal-gauge lines.

1The factor Φ is also required to adapt the simple load model LM71 to real train configurations and is
consequently not a pure dynamic factor as demonstrated by Equation (2.15).
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2.1. Code based design according to Eurocode

Historical background of the current valid load models in the ÖNORM EN 1991-2 [43]

The load model LM71 was developed about 50 years ago with the goal to cover the real trains
at that time including a prediction of the axle load development for the near future. However, it
did not include heavy haul and was only calibrated for single-span beam bridges. Therefore,
it neglected more sophisticated structural systems as the computing power was limited. The
obvious lack of accuracy, especially regarding continuous beams and heavy haul, of the load
model LM71 led to the development and introduction of the load models SW/0 and SW/2. The
increasing axle loads and traffic volume has been a challenge ever since. Therefore, in 1991 the
ERRI1 expert group D192 started a research project to estimate future loads on railway bridges.
The different railway administrations throughout Europe predicted axle loads up to 30 t and
mass per length up to 15 t/m. ([6] p.152) In order to comply with the increasing loads, the ERRI
expert group D192 suggested to either introduce a new load model (LM 2000) or to multiply
the loads of the existing load model LM71 with the classification factor α = 1.4. Additionally,
the ERRI expert group D192 carried out a profitability study, which predicted that the overall
cost of bridges due to higher axle loads would increase insignificantly (1.4 LM71 versus LM71
leads to 4% cost increase). ([6] p.153) However, the results of the ERRI expert group D192
did not find their way into the Eurocodes developed later, although the UIC Code 702 [28]
recommends since 2003 the use of the load model LM 2000 for future rail freight networks.
Therefore, in order to implement an interoperable European railway network, a classification
factor of α = 1.33 is recommended in [6]. The future goal is clearly to define one classification
factor for all member countries, which is unfortunately not a fact until now. ([6] p.153)

Consequently, the load models LM71, SW/0 and SW/2, which are explained more in detail in
the following chapters, need to be considered according to the ÖNORM EN 1991-2 [43].

Load models for normal rail traffic - Load model 71 and SW/0

The load model LM71, which represents the static effect of vertical loads regarding the normal
railway traffic, consists of four single loads and a uniformly distributed load. The characteristic
values are 250 kN and of 80 kN/m, as illustrated in Figure 2.1.

Figure 2.1.: Load model LM71 and characteristic values for vertical loads — according to the ÖNORM EN 1991-2
[43]

Additionally, the load model SW/0 covers the static effect of vertical loads due to normal
railway traffic on continuous bridges. It is represented by two 15 m long, 5.3 m separated from
each other and 133 kN/m big uniformly distributed loads — see Figure 2.2

1European Rail Research Institute of the international union of railways UIC (Union Internationale des Chemins
de fer)
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2. Background — design of railway bridges

Figure 2.2.: Load model SW/0 and characteristic values for vertical loads — according to the ÖNORM EN 1991-2
[43]

In order to determine the most adverse load effects from the application of load model LM71, the
length of the uniformly distributed load (80kN/m) shall be considered as infinite. Furthermore,
the areas which lead do a decreasing load effect, due to the load model LM71, shall be neglected
— see Figure 2.3.

Figure 2.3.: Rules for application of load model LM71 in section supp — according to the ÖNORM B 1991-2 [38]

Load models for heavy rail traffic - SW/2

Equally to the load model SW/0 mentioned above, the load model SW/2 consists of two
uniformly distributed loads, whereas the load and the dimensions are defined as shown in
Figure 2.4. The load model SW/2 represents the static effect of the vertical loading with respect
to heavy rail traffic.

Figure 2.4.: Load model SW/2 and characteristic values for vertical loads — according to the ÖNORM EN 1991-2
[43]
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2.1. Code based design according to Eurocode

Considering dynamic effects in the static analysis

Trains crossing a bridge structure lead to dynamic load effects, which need to be considered in
the quasistatic analysis. Therefore, the ÖNORM EN 1991-2 [43] defines dynamic factors, which
shall be multiplied by the specified static loads of either the actual real trains or load models:

• 1+ϕ — is the physically determined dynamic factor for real trains and
serves as a basis for the following factor Φ

• Φ — the ’dynamic factor’ for the load models LM71, SW/0 and SW/2, which is more an
adjustment factor than a pure dynamic factor, as shown in Equation (2.15)

Dynamic factor 1+ϕ for real trains

The modern dynamic factors we know today have their origin in 1955. In order to standardise
design rules of the European railways, the expert group D23 of the UIC’s research and de-
velopment institute ORE1 performed measurements on 37 straight railway structures, of all
construction types, during the crossing of representative trains of that time. The findings led
to the dynamic factors (1+ϕ) for the speed range 0 < v ≤ 240 km/h, being independent of
the construction type. However, the formulas were developed with respect to the first bending
frequency due to permanent loads and traffic (!) loads. Unfortunately, at that time, it was not
possible to find dimensionless values for all bridge members. Due to the mentioned limitations,
in the 1970s the task force 7/J/8 of the UIC developed the dynamic factors we know today, using
the measurements done by the expert group D23. The improved dynamic factors, depending on
the first bending frequency due to permanent loads only (no traffic loads anymore), are valid for
speeds 0 < v ≤ 300 km/h and are split into two parts with ϕ′, considering dynamic effects due
to ideal rail conditions and ϕ′′ considering vertical track defects and vehicle imperfections. [65]
The above mentioned laws were derived from simply supported beams, which cover most of
the effects in continuous girders and other structures. Where this is not the case, the effects are
considered by the so called determinant length LΦ. ([6] p.157)

The following equations are implemented in the current ÖNORM EN 1991-2, Annex C [43].
Therefore, the effects of the static loads due to a real train shall be multiplied by:

For track with standard maintenance: 1 + ϕ = 1 + ϕ′ + ϕ′′ (2.2)

For carefully maintained track: 1 + ϕ = 1 + ϕ′ + 0.5 ϕ′′ (2.3)

For the perfect level track (ϕ′′ = 0), the following Equations need to be considered:

ϕ′ =
K

(1 − K + K4)
for K < 0.76 (2.4)

ϕ′ = 1.325 for K ≥ 0.76 (2.5)

K =
v

2 LΦ n0
(2.6)

1Office de Recherches et d’Essais, predecessor of ERRI
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2. Background — design of railway bridges

Input parameters are the first natural bending frequency of the bridge loaded by permanent
actions n0 in [Hz], the maximum permitted vehicle speed v in [m/s] and the determinant
length LΦ in [m]. The latter is defined in the ÖNORM EN 1991-2 [43]. In case no value for LΦ
is specified in ÖNORM EN 1991-2 [43], the length of the influence line for deflection of the
structural element may be used. ([43] 6.4.5.3 (2)) According to [49], Equation (2.4) represents
the 95% quantile values of the measured dynamic factors examined by the expert group D23.
Unlike in Equation (2.5), there was no plateau value of 1.325 defined for K > 0.76 in the original
version of the dynamic factor ϕ′ — see Figure 2.5. [65]

Figure 2.5.: Dynamic factor ϕ′ plotted versus determinant length LΦ for v = 200 km/h and n0
according to Equation (2.9), leading to KEC,limit

The vertical track imperfections and vehicle imperfections are considered by ϕ′′. Equation (2.7)
is the product of parameter studies via computer simulations performed by the British Rail
(BR). Therefore, a ”model-dip” with 1000mm in length and 2mm in depth was placed in the
center of the rail. Additionally, the results were verified by selective in-situ measurements. [65]
Equation (2.7) may be exceeded by up to 30% in special cases (high-speed trains with long
wheelbase vehicles), while in other cases (e.g. special vehicles with closely spaced axles) only
half of these values are reached. ([29] p.42)

ϕ′′ =
α

100

[
56e−(

LΦ
10 )2

+ 50
(

LΦ n0

80
− 1

)
e−(

LΦ
20 )2

]
(2.7)

ϕ′′ ≥ 0

with: α =
v
22

for v ≤ 22m/s (2.8)

α = 1 for v > 22m/s

In Figure 2.6 the dynamic factor ϕ′′ according to Equation (2.7) is plotted.
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2.1. Code based design according to Eurocode

Figure 2.6.: Dynamic factor ϕ′′ plotted versus determinant length LΦ for v > 80 km/h and n0
according to Equations (2.9), (2.10) and (2.11)

Furthermore, the task force 7/J/8 provided estimations for the upper and lower boundaries of
n0. [65] These boundaries are implemented in the ÖNORM EN 1991-2 [43] — see Figure 2.7
— and the relationships to the dynamic factors are clarified:

• The lower limit of n0 at 200 km/h — see Equations (2.10), (2.11) and line (2) in Figure 2.7
— is the limit of validity for ϕ′ as well. For all other cases ϕ′ should be determined by a
dynamic analysis, according to [43].

• On the other hand, the dynamic factor ϕ′′ is limited by the upper limit of n0 — see
Equation (2.9) and line (1) in Figure 2.7. Again, in all other cases — n0 above line (1) in
Figure 2.7 — ϕ′′ should be calculated by a dynamic analysis, taking into account mass
interaction between the unsprung axle masses and the bridge. Notice that for ϕ′′ a speed
limit according to [43] does not exist .

upper limit: n0 = 94.76 L−0.748
Φ (2.9)

lower limit: n0 =
80
LΦ

for 4m ≤ LΦ ≤ 20m (2.10)

n0 = 23.58 L−0.592
Φ for 20m < LΦ ≤ 100m (2.11)

In Figure 2.8 the two dynamic factors ϕ′ and ϕ′′, with their maximum possible values, according
to Equations (2.4), (2.5) and (2.7), are plotted versus the determinant length LΦ. The maximum
value ϕ′

max is reached if the maximum speed v = 200 km/h, the lowest first natural bending
frequencies n0 and the lowest determinant length LΦ are inserted for K in Equation (2.6). Keep
in mind that the bending frequency n0 and determinant length LΦ are linked here through
Equations (2.10) and (2.11). Considering this, the blue area in Figure 2.5 results. It describes
the possible values for ϕ′ regarding the boundaries defined in [43] and the maximum value
ϕ′ = 0.52 is illustrated as plateau in Figure 2.8. Additionally, the dynamic factor ϕ′ for v =
200 km/h and the upper boundary of the first natural bending frequencies n0 — according to
Equation (2.9) — is plotted in Figure 2.7.
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2. Background — design of railway bridges

The maximum value ϕ′′
max is reached if the travel speed v is above 80 km/h and the highest first

bending frequency n0 for a given determinant length LΦ is assumed according to Equation (2.9)
— see the green solid line in Figure 2.8. The maximum possible value for ϕ′′

max is about 0.8 and
furthermore negligible for determinant lengths LΦ ≥ 45 m. Additionally, the dynamic factor ϕ′′
for v > 80 km/h and the lower limit of the first natural bending frequencies n0 — according to
Equations (2.10) and (2.11) — is illustrated in Figure 2.7 by the green dashed line.

Figure 2.7.: Limits of bridge natural frequency n0 as a function of L — Figure 6.10 from ÖNORM EN 1991-2 [43]

Figure 2.8.: Dynamic factors ϕ′ and ϕ′′ plotted versus determinant length LΦ — according to the
ÖNORM EN 1991-2, Annex C [43]
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2.1. Code based design according to Eurocode

Furthermore, the ÖNORM EN 1991-2 [43] provides in Annex D, especially for the fatigue
assessment, simplified forms of the before discussed dynamic factors ϕ′ and ϕ′′. In order to
take account of the average effect over the assumed 100 years of design life, the dynamic
enhancement for real trains is reduced to ([43] D.1):

(1 + ϕ)D = 1 + 0.5 (ϕ′
D + 0.5 ϕ′′

D) (2.12)

The following Equation (2.13) and (2.14) are simplifications of Equations (2.4) and (2.7) and
valid for maximum permitted vehicle speeds up to 200 km/h:

ϕ′
D =

K
(1 − K + K4)

(2.13)

with: K =
v

160
for LΦ ≤ 20m

K =
v

47, 16 L0.408
Φ

for LΦ > 20m

ϕ′′
D =

1
100

[
56e−(

LΦ
10 )2

]
(2.14)

Equation (2.13) for ϕ′
D results, if the lower boundaries for n0 — see Equations (2.10) and (2.11)

— are inserted into Equation (2.6). Furthermore, Equation (2.14) for ϕ′′
D results, if the lower

boundaries for n0 according to Equation (2.10) are inserted into Equation (2.7).

In Figure 2.9 the dynamic factors ϕ′
D and ϕ′′

D according to Annex D of ÖNORM EN 1991-2 [43]
are compared to ϕ′ and ϕ′′ of Annex C. Hence, ϕ′

D represents the maximum possible value of
ϕ′

max, whereas ϕ′′
D describes more a lower bound value of ϕ′′.

Figure 2.9.: Dynamic factors ϕ′ & ϕ′′ and ϕ′
D & ϕ′′

D plotted versus determinant length LΦ
— according to the ÖNORM EN 1991-2, Annex C and D [43]
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2. Background — design of railway bridges

’Dynamic’ factor Φ for load models LM71, SW/0 and SW/2

After establishing the dynamic factors (1 + ϕ), the task force 7/J/8 tried to merge all the
different load models of the European railway administrations into one standardized concept,
which finally led to the previously mentioned load model LM71. Therefore, the load model
LM71 had to cover the effects caused by the real trains, at that time common, and additionally
include a margin for future developments. The real trains were idealized considering the six
types presented in Figure 2.10. ([59] p.18)

Figure 2.10.: Idealized real standard trains (types 1 to 6) — according to UIC Code 776-1 [29]

However, the load model LM71 was not directly derived from these six idealized trains, but
was rather based on the line class C4, which was the highest at that time. ([59] p.18)
The ’dynamic’ factor Φ was determined according the following inequality:

6

∑
i=1

(1 + ϕi) Sideal train,i ≤ Φ SLM71 (2.15)

whereas S represents an elastomechanical action effect for M (moment), Q (shear force), z
(deflection), σ (normal stress), τ (shear stress), ε (strain) and γ (shear deformation) at a point of
the structural component.
Hence, the term ’dynamic factor’ for Φ is clearly misleading, as it covers, besides dynamic
effects, also static loads of the six idealized trains. ([6] p.156 et sqq.) The procedure to determine
the ’dynamic’ factor Φ regarding the bending moment of the single-span beam is illustrated in
Figure 2.11.
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2.1. Code based design according to Eurocode

Figure 2.11.: Procedure to determine the ’dynamic’ factor Φ regarding the dynamic bending
moment — according to ([59] p.20) and [49]

The resulting ’dynamic’ factor Φ enhances the static load effects and needs to be applied on the
load models LM71, SW/0 and SW/2. It considers the dynamic magnification of stresses and
vibration effects, but does not take into account resonance effects. Depending on the quality of
the track maintenance, either Φ2 or Φ3 shall be applied — both are plotted int Figure 2.12. [43]

For carefully maintained track: Φ2 =
1.44√

LΦ − 0.2
+ 0.82 (2.16)

with 1.00 ≤ Φ2 ≤ 1.67

For track with standard maintenance: Φ3 =
2.16√

LΦ − 0.2
+ 0.73 (2.17)

with 1.00 ≤ Φ3 ≤ 2.00

Figure 2.12.: ’Dynamic’ factors Φ2 and Φ3 — according to the ÖNORM EN 1991-2 [43]
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2. Background — design of railway bridges

In Austria, generally Φ2 shall be used. However, Φ3 shall be used for cross girders at the
beginning/ end of a structure and when designing the open deck of steel structures. ([39] 10.3.2)
Hereinafter, the previously mentioned dynamic factors (1 + ϕ) (for real trains) according to
Annex C in ÖNORM EN 1991-2 [43] and Φ (for load models) are compared to each other,
whereas the quality of track maintenance is distinguished, and plotted versus the determinant
length LΦ — see Figures 2.13 and 2.14.

Figure 2.13.: Comparison of dynamic factors for carefully maintained track — according to the
ÖNORM EN 1991-2 [43]

Figure 2.14.: Comparison of dynamic factors for track with standard maintenance — according to
the ÖNORM EN 1991-2 [43]
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2.1. Code based design according to Eurocode

Fatigue design

Fatigue is caused by repeated stress cycles Δσ. Especially prone to fatigue are points with
high stress concentration, which arise due to discontinuities in the cross section (bolt holes,
undercuts, ends of welds, etc.). If sufficient stress cycles act on these discontinuities, damage
occurs, leading first to microscopic cracks, which may continue growing until the failure of
the structure results. In general, notches at non-welded details are less pronounced than the
ones at welded details. Additionally, stress cycles in tension are more critical regarding fatigue
than stress cycles in compression. However, due to the residual stresses in welded details, it is
often difficult to determine the real fatigue stresses. ([21] p.863) Therefore, the beneficial effect
of stress cycles in compression must be neglected.
For these metal physical complicated damage processes, only phenomenological concepts are
relevant for the engineering practice. Hence, the nominal stress concept, the structural stress
concept, the notch stress concept or fracture mechanics might be applied. The first three ones
also consider the phase of crack initiation, whereas fracture mechanics already requires an
existing crack and therefore only covers the crack propagation phase. ([21] p.864) In the case
of steel bridge structures, usually the nominal stress concept is applied. In this concept, the
nominal elastic stresses are calculated at the expected location of a possible crack, without
consideration of the local stress concentration effects. ([21] p.864 et seqq.) The latter are therefore
considered in the so called S-N curves, which represent the fatigue strength.
These S-N curves are the results of intense experimental testing programs, performed for
various details — e.g. see Figure 2.15 — in the 1970s and 1980s and can be described by the
following equation, representing the region above the constant amplitude fatigue limit ΔσD
— see Figure 2.16: ([21] p.871)

Figure 2.15.: Overview of detail categories — from [58], based on ÖNORM EN 1993-1-9 [45]
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2. Background — design of railway bridges

Ni =NC

(
ΔσC

Δσi

)m

(2.18)

with: NC = 2 106

As the tests for the S-N curves were conducted using constant amplitude stress ranges, they
are theoretically only valid for such as well. ([21] p.865) However, most stress range spectra
in reality do not have a constant amplitude. The crossing of different trains produce various
different stress cycles with different stress ranges. The stress histories are evaluated using
cycling counting methods, such as the Rainflow or the Reservoir method and provide the stress
ranges Δσi, which occur ni times, finally leading to the stress range spectrum, as illustrated in
Figure 2.16.
Subsequently, the Palmgren-Miner linear damage hypothesis (Miner’s rule) is applied — see Fig-
ure 2.16 — to calculate the fatigue damage D:

D = ∑
i

Di = ∑
i

ni

Ni
(2.19)

Note that stress ranges Δσi below the constant amplitude fatigue limit ΔσD (at ND = 2 106)
do not produce any damage (N3 = ∞ in Figure 2.16). This leads to unsafe results. Therefore,
a modification for stress cycles Δσi < ΔσD is necessary — see Figure 2.17. However, if the
calculated fatigue damage D exceeds 1.0, the fatigue design check is not fulfilled, consequently
if D ≤ 1.0 the fatigue design check is fulfilled. Another option to perform the design check
from above is to transform the stress range spectrum into an equivalent constant amplitude
stress range related to two million cycles ΔσE,2. ([21] p.866 et seqq.) Therefore, the Equation
(2.18) of the S-N curve is substituted into Miner’s rule of Equation (2.19)

D = ∑
i

ni

Ni
= ∑

i

ni Δσm
i

NC Δσm
C

(2.20)

The damage D of Equation (2.20) is set equal to the damage due to the equivalent constant
amplitude stress range related to two million cycles ΔσE,2

D =
Δσm

E,2

Δσm
C

(2.21)

Figure 2.16.: S-N curve and stress range spectrum, based on ÖNORM EN 1993-1-9 [45]
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2.1. Code based design according to Eurocode

which leads to

D =
Δσm

E,2

Δσm
C

= ∑
i

ni Δσm
i

NC Δσm
C

(2.22)

and, as the detail category ΔσC is defined for two million cycles (NC = 2 106), ΔσE,2 becomes

ΔσE,2 =
m

√
∑i ni Δσm

i
2 106 (2.23)

Consequently, as the equivalent constant amplitude stress rang ΔσE,2 and the detail category
ΔσC are defined for two million cycles, the fatigue design check may be written, considering
partial safety factors, as follows:

γF f ΔσE,2 ≤ ΔσC

γM f
(2.24)

In engineering practice, ΔσE,2 is obtained in a simplified way by ([21] p.867)

• defining a load model to calculate a reference stress range Δσp and
• adjusting the reference stress range Δσp using damage equivalent factors λi

which are calibrated on the before mentioned damage calculations.

For example, for the single span steel and composite railway bridges, the load model LM71 was
selected. The damage equivalent factor λ1, according to the EC mix in the ÖNORM EN 1993-2,
Table 9.3 [43], was consequently calibrated on the damage produced by the train types 1 to 8,
under consideration of the traffic mix in Table D.1, according to the ÖNORM EN 1991-2, Annex
D [43].

The S-N curve presented in Figure 2.16 is valid for undamaged details which are loaded
by constant amplitude stress ranges. The fact that a damaged sample has a lower constant
amplitude fatigue limit ΔσD is considered in the ÖNORM EN 1991-2 [43] by introducing a
bilinear S-N curve with a cut-off limit ΔσL, according to [22]. ([21] p.875) Figure 2.17 illustrates
the S-N curves for various fatigue details, which have all the same shape, but different levels
regarding the detail category ΔσC. Consequently, stress cycles Δσi < ΔσD lead now to a reduced
fatigue damage, whereas the fatigue damage due to stress cycles Δσi < ΔσL can be neglected.

In the following sections the general fatigue design of steel railway bridges, according to
the Eurocode and the situation in Austria, is described. In general, there are the two above
mentioned verification formats available, in order to perform the fatigue design check. ([45] A.6)
The first one — usually applied — is based on stress range, and uses the equivalent constant
amplitude stress range related to two million cycles ΔσE,2, which is compared to the detail
category ΔσC, considering partial safety factors:

γF f ΔσE,2 ≤ ΔσC

γM f
(2.25)

whereas the second one is based on damage accumulation, using Miner’s rule for a certain S-N
curve (defined by the detail category ΔσC and divided by the partial safety factor γM f ) in order
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2. Background — design of railway bridges

Figure 2.17.: S-N curves for direct stress ranges according to the ÖNORM EN 1993-1-9 [45]

to determine the damage Dd of a certain stress range spectrum (stress ranges Δσi multiplied by
γF f ):

Dd = ∑
i

ni

Ni
≤ 1.0 (2.26)

However, the fatigue load must be multiplied by γF f , which is recommended to be set to 1.0
([43] 9.3 (1)), and the fatigue strength divided by γM f . Regarding the latter partial factor, the
ÖNORM EN 1993-1-9 [45] distinguishes two design concepts. The damage tolerance concept is
recommended for the fatigue check of steel components, which have a regular maintenance/
inspection program. On the other hand, the safe life concept is used for steel components, which
can not be inspected (e.g. shear studs) or in case no inspection is planned within the design
life. Depending on the consequence of failure (low for redundancy components/ high if severe
damage or collapse results), the partial safety factors according to Table 2.1 may be applied.
([24] p.287)

Assessment concept
Consequence of failure

Low consequence High consequence
Damage tolerance 1.00 1.15

Safe life 1.15 1.35

Table 2.1.: Values for partial factors γM f for fatigue strength — according to the ÖNORM EN 1993-1-9, Table 3.1 [45]

Fatigue verification based on load model LM71 and stress range

The fatigue design check, based on stress range, using the load model LM71, is represented by
the following Equation (2.27):

γF f λ Φ ΔσLM71︸ ︷︷ ︸
ΔσE,2

≤ ΔσC

γM f
(2.27)

First, due to the crossing of the load model LM71, a reference stress range ΔσLM71 times the
’dynamic’ factor Φ is calculated. Subsequently, this expression is adjusted, using the damage
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2.1. Code based design according to Eurocode

equivalent factor λ, which yields to the equivalent constant amplitude stress range related to
two million cycles ΔσE,2. Finally, the latter is compared to the detail category ΔσC, considering
the partial factors γF f and γM f .
The classification factor α is set to 1.0 for the FLS design check. ([39] 10.2.2) Furthermore, for
structures with multiple tracks, the load model LM71 shall be applied to a maximum of two
tracks in the most unfavourable position. ([43] 6.9 (5)) The load model LM71 is presented in
Figure 2.1 and the ’dynamic’ factor Φ2 is calculated according to Equation (2.16). The damage
equivalent factor λ consists of four parts,

λ = λ1 λ2 λ3 λ4 ≤ λmax (2.28)

which are described in more detail as follows:

• λ1 — Accounts for the structural member type and for the chosen service traffic (e.g EC
mix, rail traffic with 25 t axles). Members with a short influence line get more stress cycles
than members with long influence lines. Consequently, λ1 is a function of the influence
line, which depends on the type of internal force and, as already mentioned, on the type
of member (e.g. single span beam, continuous spans in midspan section, etc.). ([21] p.892)

L [m] λ1 L [m] λ1 L [m] λ1 L [m] λ1 L [m] λ1
0.5 1.60 3.5 1.17 8.0 0.92 20.0 0.67 50.0 0.63
1.0 1.60 4.0 1.07 9.0 0.88 25.0 0.66 60.0 0.63
1.5 1.60 4.5 1.02 10.0 0.85 30.0 0.65 70.0 0.62
2.0 1.46 5.0 1.03 12.5 0.82 35.0 0.64 80.0 0.61
2.5 1.38 6.0 1.03 15.0 0.76 40.0 0.64 90.0 0.61
3.0 1.35 7.0 0.97 17.5 0.70 45.0 0.64 100.0 0.60

Table 2.2.: Factor λ1 for standard rail traffic (EC mix) — according to the ÖNORM EN 1993-2 Table 9.3 [46]

• λ2 — Accounts for the annual traffic volume and, in case of steel bridges, is defined
by t/track/year with a reference value of 25 106 t/track/year. Due to the change of the
annual traffic volume from 25 106 t to the value of x, only the number of cycles change,
hence with an average slope of the fatigue strength curve m = 51, yields: ([21] p.896)

λ2 = 5

√
x 106t/track/year

25 106t/track/year
(2.29)

• λ3 — Accounts for the planned design life of the member. Here, Equation (2.29) results as
well, but with a reference value of 100 years in the denominator and the planned years in
service in the numerator.

• λ4 — Accounts for the loading of more than one track. The bridge is statically calculated
considering the load model LM71 on two tracks in the most unfavourable positions.
Therefore, the factor λ4 considers the ”positive” effect of a second track, as the probability
of two trains crossing at the same time on the bridge is very low. The given values of λ4 in
the ÖNORM EN 1991-2 [43] assume that 12% (very high value) of the total traffic crosses
the bridges while there is traffic on the other track. However, if the percentage of traffic

1The slope m = 5 was chosen because the majority of the stress cycles Δσi is usually smaller than ΔσD.
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2. Background — design of railway bridges

crossing at the same time on different tracks is known better, the following Equation
might be used: ([21] p.897)

λ4 = 5
√

n + [1 − n][a5 + (1 − a)5] (2.30)

with: a =
Δσ1

Δσ1+2

n . . . percentage of traffic on both tracks simultaneously (e.g. for 15 % → n = 0.15)
Δσ1 . . . stress range due to load model LM71 on one track

Δσ1+2 . . . stress range due to load model LM71 on any two tracks

• λmax — With the equivalent constant fatigue limit ΔσD, one can determine the maximum
possible damage equivalent factor λmax = 1.4 for steel railway bridges. ([21] p.868)

Fatigue verification based on service trains type 1 to 8 and damage accumulation

The second procedure is to calculate the static train crossings of real trains and determine the
internal force/ stress history diagrams. Subsequently, one obtains the stress ranges per train
crossing, using cycle counting methods, such as the Rainflow or the Reservoir method. According
to a certain traffic mix, which indicates the number of crossings per train type and year, one can
sum up these stress ranges to a stress range spectrum for the whole service life (in general 100
years). Furthermore, the S-N curve defines the fatigue resistance for each detail, which may be
divided by the partial safety factor γM f . Multiplying the previously determined stress range
spectrum by the partial safety factor γF f and evaluating it on the S-N curve, using Miner’s rule
including the reduced damage effect for stress cycles Δσi < ΔσD based on Figure 2.17, leads
to a certain damage Dd. As mentioned before, if the value of Dd is below or equal to 1.0 the
fatigue design check is fulfilled, otherwise not. Table 2.3 and Figure 2.18 illustrate the train
types and the traffic mix for the standard rail traffic (EC mix) as in the ÖNORM EN 1991-2
[43], which lead for single span steel and composite bridges to the same results1 as the fatigue
design check, based on stress range due to load model LM71 and using λ1 factor according to
the standard rail traffic (EC mix) in Table 2.3.

Train type
Number of
trains/ day

Mass of
train [t]

Traffic volume
[106 t/ year]

1 12 663 2.90
2 12 530 2.32
3 5 940 1.72
4 5 510 0.93
5 7 2160 5.52
6 12 1431 6.27
7 8 1035 3.02
8 6 1035 2.27

67 24.95

Table 2.3.: Standard rail traffic (EC mix) with axles ≤ 22.5 t — according to the ÖNORM EN 1991-2 Table D.1 [43]
— with 1 year = 365 days

1Only if the utilisation factor of the fatigue verification is equal to 1.0.
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Figure 2.18.: Standard traffic mix Type 1 to 8 — according to the ÖNORM EN 1991-2 [43]
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2. Background — design of railway bridges

2.1.2. Dynamic analysis

The introduction of high-speed trains from Paris-Lyon led to resonance problems on some
(mostly short span) structures. Bridge deck accelerations up to 9.81 m/s2 caused rapid deteri-
oration of the track quality and even some damages to the structure. [66] Therefore, in 1996
the ERRI expert committee D214 was installed in order to investigate the effects on railway
bridges for train speeds exceeding 200 km/h. ([59] p.21) The expert group D214 mentioned and
criticised the very limited background information leading to the development of the dynamic
load factors Φ, ϕ′ and ϕ′′. However, the available information showed that the effects due to
the crossing of repeated groups of axles, hence resonance, was underestimated. The probable
reasons might be: ([13] p.12)

• High values for structural damping were used in comparison to lower damping values
found in more modern structures.

• The considered high-speed trains were much shorter than modern high-speed trains
• Possibly, only the dynamic increment of deflection and bending, but not the effect of the

maximum bridge deck acceleration, were considered.

The results of the final report D214-RP9 confirmed that the quasistatic concept with the load
model LM71 and the ’dynamic’ factors Φ are not sufficient in order to guarantee the safety of
structures in case of resonance. [13] Among other things, the expert committee D214 identified
safety related design criteria for bridges subjected to high-speed traffic, suggested methods
that allow to predict the dynamic load effects, provided values for key parameters (bridge
stiffness and structural damping) and proposed a flow chart to determine whether a dynamic
calculation is necessary. These findings were embedded in the ÖNORM EN 1991-2 [43] and will
be described, considering the national annex for Austria, as follows.

Requirement of additional dynamic analysis

As mentioned above, the ÖNORM EN 1991-2 [43] provides a flow chart, which determines,
together with the upper and lower limits for n0 according to Figure 2.7 and Equations (2.9),
(2.10) and (2.11) whether a dynamic analysis is necessary or not — see Figure 2.19. Consequently,
if the first bending frequency n0 is within the limits of Figure 2.7 and an additional of the
following requirements is met, no dynamic calculation is necessary: ([59] p.21)

• maximum line speed at site v ≤ 200 km/h
• the structure is a single-span bridge with only longitudinal line beams and a span length

L ≥ 40m

However, in Austria the use of the flow chart in Figure 2.19 is not allowed. The national annex
ÖNORM B 1991-2 ([39] 10.3.1) obligates to use the ÖBB guideline [37]. The latter states in
section 3.1 under which circumstances a dynamic calculation is not necessary:

• If the maximum nominal speed or the maximum line speed at site is less than 120 km/h.
• If the maximum nominal speed or the maximum line speed at site exceeds 120 km/h:
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Figure 2.19.: Flow chart for determining whether a dynamic analysis is required — according to the ÖNORM EN
1991-2 [43]
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– According to the ÖBB guideline [37], for the following single-track structures, pa-
rameter studies1 were performed and summarized in [36]. If the new structure fulfils
a specific span length cirteria or a certain slenderness requirement (λ = span length
L / construction height d) for a given maximum train speed limit (160 to 250 km/h),
consequently no dynamic calculation is necessary:
∗ platelike structures for span lengths L = 5.0 to 15m
∗ framelike structures for span lengths L = 2.5 to 10m
∗ filler beam structures for span lengths L = 5.0 to 29.5m

– For covered structures with a minimum distance track to structure of 1.5 m.
– For small objects with a span length L ≤ 2.0 m, which additionally fulfil a length

dependent construction height d criteria.
– For new structures, which may be compared to existing reference structures. The

latter needs to fulfil all criteria according to the ÖBB guideline [37], whereas dynamic
measurements need to exist as well. All parameters of the new structure, which
might influence the dynamic behaviour, need to be identical to or more favourable
than the reference structure.

In all other cases, which do not fulfil the requirements mentioned above, a dynamic calculation
is necessary. Therefore, in the next chapter a short overview of the requirements for a dynamic
calculation, according to the situation in Austria [37], is presented.

Requirements for additional dynamic analysis

• Loading and load combinations: The dynamic analysis shall be performed using, on the
one hand, the characteristic values of real trains travelling faster than 200 km/h, but,
on the other, the load model HSLM. The latter consists of two load models, the load
model HSLM-A and the HSLM-B. As the load model HSLM-B is only applied on very
short (L<7m) simply supported spans, the load model HSLM-A is more important
in engineering practice. The load model HSLM-A consists of 10 different trains and
is illustrated in Figure 2.20. Additionally, limits of validity of the load model HSLM,
regarding axle distances, axle loads, maximum train lengths and train masses, are stated
in Annex E of the ÖNORM EN 1991-2 [43]. Hence, if a real train complies with these limits
of validity, the effects due to the load model HSLM supposingly exceed the ones of the
real train. Studies in [57], [62] and [63] have shown that this is, especially for conventional
and regular trains regarding simple span structures, not the case. However, in the ÖBB
guideline [37] is stated to consider, additionally to the load model HSLM, the following
real trains:

– Types 1 to 12 according to the ÖNORM EN 1991-2, Annex D [43]
– Five Railjet trains and four other real trains according to the ÖNORM B 1991-2 [39]
– Two ICE-high-speed trains (ICE BR 401 and ICE-T1 411)
– After consultation with the railway administration (ÖBB), other additional real trains

may have to be considered.

The load combination of vertical traffic loads, in case of multiple tracks, is regulated in
the ÖBB guideline [37] as follows. If the dynamic calculation is simply compared to the

1The parameter studies are valid for certain traffic mixes.
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quasistatic calculation, only one track (the most critical one) needs to be loaded. If the
total effects of the traffic loads need to be calculated, the dynamic simulation shall be
performed on the most critical track and the other tracks shall be loaded with the load
model LM71, according to the ÖNORM EN 1991-2 6.8.1 (4), whereas the load model
HSLM and the real trains shall not be reduced to 75%. ([37] 5.7.2) If the vertical bridge
deck acceleration is determined, only one track shall be loaded with the load model
HSLM and the real trains. ([37] 6.3.2) However, horizontal forces (centrifugal forces and
nosing forces) only need to be applied in case the total effects due to traffic loads, hence
the dynamic effects exceed the static effects, need to be calculated. ([37] 5.7.3)

Figure 2.20.: HSLM-A — according to the ÖNORM EN 1991-2 [43]

• Speeds to be considered: in general, the operator of the high-speed line (ÖBB) specifies the
maximum nominal speed. Furthermore, a speed range and its upper and lower limits
need to be defined: ([37] 4.2.1)

– upper limit
∗ 1.2 times the maximum nominal speed
∗ 1.2 times the maximum line speed at site, only in special cases and after consult-

ing the operator
– lower limit

∗ 0.5 times the upper limit, but less than 144 km/h
∗ 0.6 times the maximum permitted vehicle speed of the slowest real train
∗ speeds below 80 km/h can be neglected
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2. Background — design of railway bridges

For the load model HSLM the whole (above described) speed range needs to be
considered, whereas for real trains the dynamic analysis needs to be performed
starting from the lower limit to 1.2 times the maximum permitted vehicle speed of
the real train. Regarding the speed steps, in general, a Δv of 5 km/h is sufficient,
except close to the resonant speed. In this case, speed steps Δv of 2 km/h are
necessary. ([37] 4.2.2)

• Bridge parameters:

– Stiffness of the bridge: the ÖNORM EN 1991-2 ([43] 6.5.6.3.3) suggests to use a
lower bound estimation of the stiffness, in order to avoid an overestimation of the
resonance speed. Consequently, only members contributing through force-fitting
connections (e.g. composite structures) shall be considered with respect to the system
stiffness. ([37] 5.3)

– Mass of the bridge: equally to the stiffness, the mass of the bridge has a big influence
on the dynamic behaviour of the structure. Therefore, in the ÖBB guideline [37], a
differentiation between the mass of the structure itself and the mass of the train is
made. First, the mass of the structure shall be applied as close to reality as possible
(e.g. acting on secondary members and not in a simplified way directly applied on
main girders), whereas only one variation of mass regarding the ballast track needs
to be considered (in contradiction to the ÖNORM EN 1991-2 [43], where upper and
lower bound variations of density and thickness need to be considered). Second, the
mass of the train shall be considered for big (smallest single span L is at least 20 m),
but not for small structures (biggest single span L is ≤ 7 m and the lowest bending
frequency is above 1.5 Hz). For medium sized structures (between big and small
structures) two calculations are necessary, one with and one without the mass of the
train. As all trains have different masses, which would lead to a vast computational
effort, 20 kN/m per track shall be considered for all load models and real trains and
added to the bridge mass. ([37] 5.6)

– Structural damping: in general, the rules according to the ÖNORM EN 1991-2
[43] need to be followed. Hence, the damping ratios ζ, according to Table 2.4, are
obligatory unless no other damping ratios due to measurements, performed at the
particular structure of interest, are available. In case the traffic load is modelled using
the moving load model, the beneficial vehicle/bridge interaction may be considered
for span lengths up to 30m, with an increase of the damping ratio Δζ according to
Figure 2.21. Furthermore, the ÖBB guideline [37] covers modal and Rayleigh-like
damping — see section 3.4 — and requires the factors α and β to be based on the
frequencies of the first vertical bending mode and a bending mode of second order,
as these usually contribute substantially to the total response.

Bridge type
ζ lower limit of percentage of critical damping [%]

Span L < 20 m Span L ≥ 20 m
Steel and composite ζ = 0.5 + 0.125(20 − L) ζ = 0.5
Prestressed concrete ζ = 1.0 + 0.07(20 − L) ζ = 1.0

Filler beam and reinforced concrete ζ = 1.5 + 0.07(20 − L) ζ = 1.5

Table 2.4.: Damping ratios ζ [%] to be assumed for design purposes — according to the
ÖNORM EN 1991-2, Table 6.6 [43]
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[%
]

Figure 2.21.: Additional damping Δζ [%] as a function of the span length L [m] — according to the
ÖNORM EN 1991-2 [43] Figure 6.15

• Modelling the excitation and the dynamic behaviour of the structure: in order to guarantee a
certain level of quality, rules for the modelling of bridge systems using frame or FEM
analysis programs are provided. Additionally, the choices of calculation methods — modal
analysis, direct stiffness approach — are presented and discussed. Regarding the modal
analysis, mode shapes and related frequencies up to the greater of

– 30 Hz
– 1.5 times the frequency of the fundamental mode of vibration
– the highest frequency of all third modes of vibration

shall be considered. ([37] 5.2.4) Furthermore, track imperfections and vehicle imperfections
may be considered according to Equation (2.7), whereas, in case the upper limit of n0
is exceeded, this Equation is still valid. In Austria, carefully maintained tracks can be
assumed, hence Equation (2.3) is applied and consequently all results of the dynamic
calculation are multiplied by (1 + 0.5 ϕ′′). ([37] 6.2) The load application is realized using
the moving force (axle loads represented as moving forces), whereas the distribution of
the forces may be performed according to the ÖNORM EN 1991-2 [43]. ([37] 5.7)

• Verification of limit states: regarding the following statements, one can suppose that the
deformation criteria regarding the traffic safety, according to [42], are fulfilled by the new
structure for the quasistatic analysis. ([37] 6.3.1)

– Ultimate limit state (ULS): for the ULS design, more unfavourable stresses need to
be considered, due to the quasistatic concept, including Φ, and due to the dynamic
calculation, regarding the relevant load models and real trains including (1 + 0.5 ϕ′′).
([37] 6.3.8)

– Servicability limit state (SLS): the passenger comfort criteria requires a dynamic
vehicle-bridge-interaction analysis in order to directly calculate the resulting vertical
acceleration inside the train car. These analysis need information about the masses of
the train car’s parts, respectively the springs and dashpots connecting them, which
the load model HSLM does not provide. Therefore, a quasistatic deflection criteria
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for checking the passenger comfort was introduced, which additionally may be seen
as fulfilled in case the dynamic internal forces are lower than the static ones in the
ULS design for the most relevant bridge members. ([37] 6.3.7)

– Traffic safety1 (TS): the structure needs to fulfil design criteria regarding the deck
twist, vertical deformation of the deck, the transverse deformation/ vibration of the
deck and the longitudinal displacement of the deck. The latter two can be considered
as fulfilled insofar the dynamic internal forces are lower than the static ones in the
ULS design. ([37] 6.3)
However, in practise usually the acceleration criterion will be the decisive one. ([6]
p.177) In order to prevent ballast instability and guarantee a safe rail wheel contact,
the vertical acceleration of the bridge deck, checked at the SLS level, shall not exceed
the following design values for new bridge structures: ([37] 6.3.2)
∗ 3.5 m/s2 for ballasted track
∗ 5.0 m/s2 for direct fastened tracks

and increased design values for existing bridge structures:
∗ 6.0 m/s2 for ballasted track
∗ 8.0 m/s2 for direct fastened tracks

The values for new bridge structures are the result of research done by the ERRI
expert group D214, according to which an adverse behaviour of the ballast track
begins with deck accelerations of the order 0.7 to 0.8 g. Therefore, considering a factor
of safety of two, the permitted maximum bridge deck acceleration of 3.5 m/s2 for
ballasted track results. The permitted maximum bridge deck acceleration for direct
fastening decks becomes 5.0 m/s2, again with a safety factor of two for avoiding a
lift of the deck plate. ([59] p.32) These thresholds shall meet at the ballast bed area,
but might be exceeded in other areas (cantilever beam, etc.). Additionally, single
events leading to an exceeding of these thresholds do not consequently lead to a
destabilisation of the ballasted track. Therefore, the ÖBB guideline [37] allows to
consider the fifth highest acceleration value, instead of the maximum acceleration
value, due to the train crossing. ([37] 6.3.2)

– Fatigue (FLS): Under certain circumstances, additional fatigue design checks are
necessary, which will be discussed in detail in the following chapter.

Fatigue design

In this chapter, the general valid design rules according to the ÖNORM EN 1991-2 [43] and,
afterwards, in particular for the situation in Austria, will be described.

The ÖNORM EN 1991-2 [43] names in section 6.9 the general traffic loads for fatigue. Under
point (8) the following, regarding the dynamic analysis and fatigue assessment, is stated:

”6.9 Traffic loads for fatigue

[...]

1Some servicability limit states (SLS) for the deck need to be considered as ultimate limit states (ULS) for the
track. ([7] p.34)
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(8) Additional requirements for the fatigue assessment of bridges where a dynamic analysis
is required in accordance with 6.4.4 when dynmaic effects are likely to be excessive are given
in 6.4.6.6.” ([43] p.122)

Hence, if a dynamic analysis according to section 6.4.4 in [43] (described in Chapter 2.1.2) is
required, the section 6.4.6.6 in [43] needs to be considered.

”6.4.6.6 Additional verification for fatigue where dynamic analysis is required

(1)P The fatigue check of the structure shall allow for the stress range resulting from elements
of the structure oscillating above and below the corresponding permanent load deflection due
to:

– additional free vibrations set up by impact effects from axle loads travelling at high
speed,

– the magnitude of dynamic live loading effects at resonance,
– the additional cycles of stress caused by the dynamic loading at resonance.

(2)P Where the frequent operating speed of a real train at a structure is near to a resonant
speed the design shall allow for the additional fatigue loading due to resonance effects.

NOTE The individual project may specify the fatigue loading, e.g. details, annual tonnage and mix of real trains
and associated frequent operating speeds at the site to be taken into account in the design.

(3) Where the bridge is designed for load model HSLM accordance with 6.4.6.1.1(2) the
fatigue loading should be specified taking into account the best estimate of current and future
traffic.

NOTE The individual project may specify the fatigue loading, e.g. details, annual tonnage and mix of real trains
and associated frequent operating speeds at the site to be taken into account in the design.

(4) For structures that satisfy annex F the resonant speed may be estimated using equations
6.9 and 6.10.

(5) For the verification for fatigue a series of speeds up to the maximum nominal speed should
be considered.

NOTE It is recommended that the individual project specify an increased maximum nominal speed at the site to
take into account potential modifications to the infrastructure and future rolling stock.” ([43] p.92)

The regulations in the ÖNORM EN 1991-2 [43] provide general information, therefore the
Austrian national specifications in the ÖNORM B 1991-2 [39] state additionally:

”9.3.16 Ergänzung zu ÖNORM EN 1991-2:2012, Abschnitt 6.4.6.6(3)

Überschreiten die Jahresbruttotonnen der Züge, die mit mehr als 200 km/h verkehren, 5
Mio. Jahresbruttotonnen je Gleis, so ist ein zusätzlicher Ermüdungsnachweis erforderlich.
In diesem Fall ist die ermüdungswirksame Last um den Prozentsatz zu erhöhen, um den
die maximalen Schnittkräfte aus der dynamischen Berechnung mit HSLM die Werte der
statischen Berechnung mit dynamischem Beiwert überschreiten, falls keine genaue
Untersuchung erfolgt.” ([39] p.21)

Furthermore, the ÖBB guideline [37] clarifies precisely:
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”6.3.9 Nachweis der Ermüdung

Im Falle der Nachweisführung der Tragsicherheit über Schnittgrößenvergleiche (siehe Pkt.
6.3.8) kann der Ermüdungsnachweis auch für die dynamischen Lastmodelle als erbracht
angesehen werden, sofern die Beanspruchungen gemäß Pkt. 6.3.8 durch die statischen
Vergleichslasten abgedeckt sind.

Sofern der Nachweis der Tragsicherheit über direkte Bemessungen mit den aus der
dynamischen Berechnung gewonnenen Maximalschnittgrößen erfolgt und diese größer
sind als jene aus den statischen Vergleichslasten, so ist hinsichtlich der Ermüdung ein
gesonderter Nachweis dann erforderlich, wenn gemäß ÖNORM B 1991-2, Pkt. 9.3.16 die
Jahresbruttotonnen aller Betriebszüge mit einer Geschwindigkeit über 200 km/h den Wert
von 5 Mio. Jahresbruttotonnen je Gleis überschreiten. Die ermüdungswirksame Last ist dabei
um jenen Prozentsatz zu erhöhen, um den die maximalen Schnittgrößen aus der dynamischen
Berechnung jener der statischen Vergleichslasten überschreiten.” ([37] p.46)

In conclusion, the following assumptions can be made for the situation in Austria:

• The fatigue design check can be seen as fulfilled, if the ultimate limit state design (ULS)
is performed using the internal forces due to the quasistatic analysis (static load models
including Φ), which exceed the internal forces due to the dynamic analysis (high speed
load models and real trains, both including (1 + 0.5 ϕ′′)).

• In case the ultimate limit state design (ULS) of the structure is performed directly, using
the dynamic internal forces, as these exceed the static internal force, an additional fatigue
design is necessary, if real trains with speeds > 200 km/h make up more than 5 million
tons per year and track. If the above conditions are met, the fatigue load must be increased
by the percentage the internal forces of the dynamic calculation exceed the ones of the
static calculation (’adjusted’ dynamic factor).

Consequently, even if the ultimate limit state design (ULS) is performed using the internal
forces due to a dynamic calculation, the fatigue limit state design (FLS) is performed in a static
way, considering an ’adjusted’ dynamic factor, for the situation in Austria.

Note that in the ÖNORM B 1991-2 [43] for the dynamic analysis regarding the FLS and the
increasing factor ϕFAT according to Equation (2.31), only the load models HSLM are mentioned,
whereas in the ÖBB guideline [37] no such reference is made. As the ÖBB guideline [37] defines
precisely, which high-speed load models and real trains regarding the dynamic analysis need to
be considered, the ’adjusted’ dynamic factor ϕFAT shall be determined according to the ÖBB
guideline [37].

ϕFAT = max
Edyn

Estat,LM
(2.31)

with: Edyn . . . maximum dynamic internal forces due to

load model HSLM and real trains, all including (1 + 0.5 ϕ′′)
Estat,LM . . . maximum static internal forces due to

load models LM71, SW/0 and SW/2,
all including Φ2 and the first two α = 1.21
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Subsequently, the ’adjusted’ dynamic factor ϕFAT is applied on the fatigue load and the fatigue
limit state design check performed:

γF f λ Φ2 ΔσLM71 ϕFAT ≤ Δσc

γM f
(2.32)

Independently of the stated above, one could design the structure in such a way that the
maximum stress range Δσmax due to the dynamic calculation of all considered real trains, is
smaller than the constant amplitude fatigue limit ΔσD/γM f of a given detail and consequently no
damage occurs. ([21] p.1067) In this case, the bridge should be designed for the additional fatigue
effects at resonance, considering real trains on any one track. ([43] 6.4.6.1.2 (7)) Furthermore,
speeds up to the maximum nominal speed should be considered, hence the factor 1.2 can be
neglected. ([43] 6.4.6.6 (5))

2.2. State of the art

In the field of research regarding train and bridge dynamics a lot of literature is available.
Therefore, the following paragraphs are meant to give a short overview — making no claim to
be exhaustive.

A good overview and state of the art review regarding the train-track-bridge dynamic interaction
may be found in [67]. However, the bridge structure may be modelled using simple beam models
(for preliminary studies) or more sophisticated finite element models (FEM). Regarding the train
model, either moving load models or complex 2D and 3D multi-body models are available. The
moving load model represents each axle load as constant forces and thus neglects inertia effects
of the train masses. On the other hand, the multi-body model considers the vehicle-bridge
interaction and allows additionally to model track irregularities. For both, the train and bridge
structure models, various levels of refinement are available and hence almost no limits exist in
modelling the physical details. ([55] p.14 et seqq.)

As the focus of this doctoral thesis is on the fatigue behaviour, regarding the dynamic excitation
of bridge structures due to train crossing, the following literature gives a short insight on this
specific research area.
In [18] the general procedure, leading from the dynamic calculated stresses acting on railway
bridges to their effects on the fatigue design, are discussed. Hence, the modelling options, as
described previously, are introduced and subsequently the fatigue design, including the Rainflow
counting method, Miner’s rule and fracture mechanics are covered. Finally, in an exemplary
manner, an estimation of inspection intervals of a stringer for a specific crack length and certain
traffic loads is proposed. However, [18] illustrates in the year 1998 the general procedure of
combining dynamic calculations/ fatigue analysis and makes aware of the future possibilities
due to increasing computational power.
In [52] a simple arch bridge model was subjected to train crossings, considering the moving load
model. Besides real high-speed trains also fatigue trains were calculated. Regarding the fatigue
assessment on the bridge deck, the S-N approach (ΔσC = 80 N/mm2, γM f = 1.35) was selected.
It was possible to show that the damage due to real high speed trains in case of resonance
exceeds the one caused by most adverse freight trains.
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2. Background — design of railway bridges

In [2] the dynamic analysis is combined with fracture mechanics. Using the sub-modelling
technique and modal analysis, a new and fast method is established and demonstrated at the
simple beam.
Consequently, the before mentioned method is applied in [3] on a composite bowstring bridge,
whereas the detail of interest is located on the diaphragm. Furthermore, a monitoring system of
the real bridge is available, which allows to compare the measured and calculated strains due to
565 real trains (freight and passenger trains). Considering an initial crack length of 15 mm leads
for the current traffic volume at site (3.1 106 t/year) to a hypothetical failure in approximately
95 years. However, the method was further developed and published in [25] and [26] .
In [31] an approach is proposed, which uses a probabilistic dynamic stress analysis of a 3D
coupled train-bridge system. Therefore, train speed and track irregularities were considered as
random variables. With sets of these two random variables, train crossings were simulated and
stress time histories of local members were calculated. Subsequently, for each train crossing,
equivalent stress ranges and number of stress cycles were calculated, which followed certain
probability distributions. Finally, the limit-state function (LSF), using the S-N approach, was
established, which yields to a certain failure probability PF.
In [68] a composite railway bridge (Sesia viaduct) designed for high speed trains is analysed.
The FEM model of the structure is thereby validated by field measurements and six details for
the fatigue assessment are identified. The stress ranges produced by the one considered high
speed train ETR500Y are evaluated using the S-N curve approach in combination with Miner’s
damage rule. In [69], which is the continuation of the before mentioned literature, three different
load model variants are discussed — static analysis with dynamic amplification factor, dynamic
analysis with moving load model and dynamic analysis with multi-body model. In conclusion,
the fatigue damage is governed more by the stress range rather than by the maximum stress.
Hence, a dynamic amplification factor may not predict a conservative fatigue damage of the
bridge. In general, the moving load model covers in a conservative way the fatigue damage
produced by the multi-body model. In [70] the before mentioned Sesia viaduct is analysed
again, here using a fracture mechanics concept instead of the S-N approach.

As the examples above show, there is no lack in modelling the bridge-train interaction or the
fatigue process itself in sufficient detail. Usually the focus is on a particular structure with the
goal to model reality as good as possible. Furthermore, due to the insufficient data regarding
real traffic mixes, only few train types are considered. Consequently, in this doctoral thesis the
main focus is on simplified, but therefore many bridge structures, which allows to consider the
crossing of a vast number of trains. Hence, the interest is not directed to the small details but to
the bigger picture of the fatigue problem itself.
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3. Dynamic analysis

This chapter describes the dynamic simulation of a train crossing over a bridge structure.
First, the general equation of motion for a Bernoulli-Euler beam under transversal loading, varying
with time, is formulated. Afterwards the natural frequencies and eigenfunctions for the simple
beam are derived.
Subsequently, two different load models representing the train crossing are discussed. The
moving load model is the most simple one, as it considers static axle loads only. The more
complex 2D multi-body model takes the individual rigid parts of a train car (car body, bogies and
wheel-sets) and their masses, interconnected through springs and dampers, into account. Thus,
the latter train model considers the interaction of the train and the bridge structure.
However, a discretization is necessary in order to solve the resulting partial differential equation.
Therefore, the Ritz-Galerkin approximation method for simple structures and the finite element
method (FEM) for more complex structures are introduced.
The resulting coupled systems of equations may be either solved directly using numerical
approximation methods (e.g. direct numerical integration) or initially be decoupled with the
modal analysis and afterwards solved either numerically or, if possible, analytically. Solving the
systems of equations, after applying the modal analysis, is covered for both load models more
in detail.
Finally, a non-dimensional response representation for the simple Euler-Bernoulli beam, subjected
to the moving load model, is presented. This approach allows to reduce the necessary number
of dynamic calculations in the context of a parameter study substantially.

3.1. Equation of motion

3.1.1. Formulation

In the following section the partial differential equation of motion for the Bernoulli-Euler beam
under transversal loading will be derived according to [8] p.366, [32], [71] p.358. The physical
characteristics of the beam are represented by the bending stiffness EI(x), the mass per unit
length μ(x) and an external damping force per unit length c(x), which are all varying along
the x-axis. The transverse loading pz(x, t) and the transverse displacement response w(x, t) are
assumed to be functions of place and time — see Figure 3.1(a). The equation of motion can
be derived by formulating the equilibrium of forces on a differential element as illustrated in
Figure 3.1(b).
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3. Dynamic analysis

(a) Overview

(b) Differential element

Figure 3.1.: Bernoulli-Euler beam with dynamic loading — according to [8]
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3.1. Equation of motion

The equilibrium in vertical direction leads to

V(x, t) + fD(x, t) dx + f I(x, t) dx − pz(x, t) dx −
(

V(x, t) +
∂V(x, t)

∂x
dx
)
= 0 (3.1)

whereas f I(x, t) describes the inertia force which is equal to the mass of the element multiplied
by the transverse acceleration acting on the element

f I(x, t) dx = μ(x) dx
∂2w(x, t)

∂t2 (3.2)

and fD(x, t) representing the external damping force which opposes velocity

fD(x, t) dx = c(x) dx
∂w(x, t)

∂t
(3.3)

Substituting Equations (3.2) and (3.3) into (3.1) and dividing by dx yields

c(x)
∂w(x, t)

∂t
+ μ(x)

∂2w(x, t)
∂t2 − pz(x, t)− ∂V(x, t)

∂x
= 0 (3.4)

The following equilibrium is found by summing up the moments about point a as presented in
Figure 3.1(b).

M(x, t) + V(x, t) dx+ fD(x, t)
dx2

2
+ f I(x, t)

dx2

2
−

pz(x, t)
dx2

2
−
(

M(x, t) +
∂M(x, t)

∂x
dx
)
= 0

(3.5)

After dropping all terms including dx2, the well known relationship between bending and shear
results

V(x, t) =
∂M(x, t)

∂x
(3.6)

Introducing additionally the bending-curvature relationship for the Bernoulli-Euler beam

M(x, t) = −EI
∂2w(x, t)

∂x2 (3.7)

and inserting (3.6) and (3.7) into (3.5) finally the partial differential equation of motion in terms
of w(x, t) results

∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
+ μ(x)

∂2w(x, t)
∂t2 + c(x)

∂w(x, t)
∂t

= pz(x, t) (3.8)

Assuming constant bending stiffness EI, mass per unit length μ and damping force c along the
x-axis of the beam and introducing the superscripts i to iv representing derivatives with respect
to location and dots above the variable represent derivatives with respect to time, Equation (3.8)
becomes

EI wiv(x, t) + μ ẅ(x, t) + c ẇ(x, t) = pz(x, t) (3.9)
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3. Dynamic analysis

3.1.2. Natural frequencies and eigenfunctions

The natural frequencies and eigenfunctions are derived for the unloaded and undamped
Bernoulli-Euler beam [64], [8]. Therefore, the Equation (3.9) reduces to

EI wiv(x, t) + μ ẅ(x, t) = 0 (3.10)

which can be reordered to

wiv(x, t) = − 1
a2 ẅ(x, t) (3.11)

with: a =

√
EI
μ

In order to solve the free-vibration equation, the separation of variables is used

w(x, t) = φ(x) q(t) (3.12)

which indicates that the solution is of shape φ(x) oscillating with the time depending amplitude
q(t). Inserting Equation (3.12) into (3.11) leads to

q(t) φiv(x) = − 1
a2 φ(x) q̈(t) (3.13)

Dividing by −φ(x) q(t), the variables can be ordered as follows

−φiv(x)
φ(x)

=
1
a2

q̈(t)
q(t)

= −k4
j (3.14)

The equality of functions, which depend only on x and those which only depend on t is only
satisfied if the functions are constant ([27] p.508). As a result it is possible to introduce the
constant −k4

j for later mathematical convenience.

The time-dependent part of (3.14) yields

q̈(t) + ω2
j q(t) = 0 (3.15)

with: ω2
j = a2 k4

j =
EI
μ

k4
j

which represents the free-vibration of an undamped single degree of freedom system with the
solution ([8] p.378)

q(t) = A1 cos
(
ωjt

)
+ A2 sin

(
ωjt

)
(3.16)

The constants A1 and A2 depend on the initial conditions of displacement and velocity.
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3.1. Equation of motion

The location-dependent part of (3.14) yields

φiv(x) = k4
j φ(x) (3.17)

and can be solved by assuming the solution of the form

φ(x) = C eλx (3.18)

which leads after substituting (3.18) into (3.17) to

λ4 = k4
j (3.19)

and further

λ1,2 = ±ikj λ3,4= ±kj (3.20)

The complete solution is obtained by inserting the solutions of (3.20) into Equation (3.18) and
adding up the four terms

φ(x) = C1 eikjx + C2 e−ikjx + C3 ekjx + C4 e−kjx (3.21)

The solution above can be expressed in trigonometric and hyperbolic equivalents as shown as
follows

φ(x) = B1 cos
(
kjx
)
+ B2 sin

(
kjx
)
+ B3 cosh

(
kjx
)
+ B4 sinh

(
kjx
)

(3.22)

The real constants B1, B2, B3 and B4 must be evaluated in a way in order to fulfil the boundary
conditions at the end of the beam (slope, displacement, moment and shear). Considering
this, three of the four constants can be expressed in terms of the fourth. Furthermore, the so
called frequency equation can be formulated and the frequency parameter kj determined. In a
free-vibration problem it is not possible to directly obtain the fourth constant as it represents an
arbitrary amplitude of the shape function φ(x) ([8] p.379).

φ′(x) = kj [−B1 sin(kjx) + B2 cos(kjx) + B3 sinh(kjx) + B4 cosh(kjx)] (3.23)

φ′′(x) = k2
j [−B1 cos(kjx) − B2 sin(kjx) + B3 cosh(kjx) + B4 sinh(kjx)] (3.24)

φ′′′(x) = k3
j [ B1 sin(kjx) − B2 cos(kjx) + B3 sinh(kjx) + B4 cosh(kjx)] (3.25)

φIV(x) = k4
j [ B1 cos(kjx) + B2 sin(kjx) + B3 cosh(kjx) + B4 sinh(kjx)] (3.26)

Regarding the uniform simple beam the following four boundary conditions can be formulated:

φ(0) = 0 M(0) =− EI φ′′(0) = 0 (3.27)
φ(L) = 0 M(L) =− EI φ′′(L) = 0 (3.28)

Applying (3.27) on (3.22) and (3.24) leads to

φ(0) = B1 cos(kj0) + B2 sin(kj0) + B3 cosh(kj0) + B4 sinh(kj0) = 0 (3.29)

φ′′(0) = k2
j [−B1 cos(kj0) − B2 sin(kj0) + B3 cosh(kj0) + B4 sinh(kj0)] = 0 (3.30)
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3. Dynamic analysis

which results in

B1 + B3 = 0
−B1 + B3 = 0 (3.31)

B1 = B3 = 0

Equally, (3.28) can be used and after setting B1 and B3 to zero

φ(L) = B2 sin(kjL) + B4 sinh(kjL) = 0 (3.32)

φ′′(L) = k2
j [ − B2 sin(kjL) + B4 sinh(kjL)] = 0 (3.33)

results, which added up (after cancelling k2
j ) leads to

2 B4 sinh(kjL) = 0 (3.34)

Since sinh kjL �= 0 results B4 = 0. Therefore, with the only nonzero constant B2 remaining, the
eigenfunction is described by

φ(x) = B2 sin(kjx) (3.35)

Considering the boundary condition φ(L) = 0, Equation (3.35) can only be satisfied (excluding
the trivial solution B2 = 0) if

sin(kjL) = 0 (3.36)

which represents the system frequency equation and demands that

kj = jπ/L j = 0, 1, 2, . . . (3.37)

Inserting Equation (3.37) into (3.15) one obtains the frequency expression of the uniform simple
beam

ωj =
j2π2

L2

√
EI
μ

(3.38)

Substituting Equation (3.37) into (3.35) the corresponding eigenfunctions (again neglecting the
trivial case j = 0) of the uniform simple beam can be written as

φj(x) = B2 sin
(

jπ
L

x
)

j = 1, 2, 3, . . . (3.39)

with B2 being the arbitrary amplitude of the eigenfunctions.

For multi-member structures the Equations (3.22) to (3.26) can be used equally. However, the
boundary conditions need to be adapted according to the stated problem. E.g. in case of a
two-span uniform beam, 8 equations for the 8 unknown constants are available. After organizing
these equations in matrix from, the determinant of this 8x8 matrix can be set to zero. Hence,
one gets the frequency equation which only contains the single variable kj. After finding the
roots of the frequency equation, those can be substituted individually into the matrix equation
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3.1. Equation of motion

which allows to represent 7 of the constants (degrees of freedom) in terms of the 8th and
therefore identify the corresponding eigenfunction. The last coefficient allows to scale the
eigenfunction by an arbitrary amplitude. The natural frequencies can be found by inserting the
roots into Equation (3.15) ([8] p.386, [27] p.314). The mentioned simple example of the two-span
beam shows that the free-vibration analysis of the distributed parameter procedure rather
fast produces big computational problems. Therefore, discrete-parameter (e.g. finite element
methode (FEM)) forms are used nowadays to solve more complex systems.

Orthogonal characteristics of the eigenfunction

The orthogonality relationships of the eigenfunctions are key characteristics in the dynamic
analysis ([27] p.236) — as later shown in section 3.3.2. In the following section the procedure
for the uniform simple beam is shown, although the discussion is true for arbitrary bending
stiffness and mass distribution along the beam’s length, as well as arbitrary boundary conditions
([8] p.389).

∫ L

0
φj(x) φk(x) dx =

∫ L

0
sin

(
jπ
L

x
)

sin
(

kπ

L
x
)

dx =

{
0 if j �= k
L
2 if j = k

(3.40)
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3. Dynamic analysis

3.1.3. Load functions

In the following section two models to describe the loading due to the train crossing on a
structure are presented. Single forces represent the axle loads in the first model, whereas
multibody-systems describe the behaviour of the train cars in the second model. For both
options, the load functions pz(x, t) in Equation (3.8) are formulated according to [19], [32].

Moving load model

The simplest way to model a train crossing is done by assuming the axle loads Pi (i = 1...m) as
forces which move at constant speed v, from left to right, across the structure — see Figure 3.2.
An implicit assumption in this model is that the mass of the beam is relatively big compared to
the the mass of the load. Therefore, only gravitational effects of the load shall be considered
([19] p.13).

Figure 3.2.: Single force model — according to [32]

The distances of the single forces Pi to the force P1, which passes the beam first, is described by
l1i. The variable xi(t) then represents the current position of the single force Pi regarding the
first bridge’s support. The transverse load function pz(x, t) for the moving load model can be
formulated as

pz(x, t) =
n

∑
i=1

Pi Γ(xi) δ(x − xi) (3.41)

Here, Γ(xi) is a window function which comprises two Heaviside functions H(xi) ([47] p.561)

Γ(xi) = H(xi)− H(xi − L) =

{
1 if 0 < xi < L
0 if 0 > xi > L

(3.42)

and considers whether or not the single force is currently on the structure. The dirac delta
function δ(x − xi) expresses the axle loads as unit concentrated forces. Additionally, considering
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3.1. Equation of motion

a and b as constants and f (x) as a continuous function the dirac delta function δ(x − xi) holds
the following characteristics ([47] p.567)

δ(x − xi) =

{
∞ if x − xi = 0
0 if x − xi �= 0

(3.43)

∫ ∞

−∞
δ(x) = 1 (3.44)

∫ ∞

−∞
δ(x − xi) f (x) = f (xi) (3.45)

∫ b

a
δ(x − xi) f (x) =

{
f (xi) if a ≤ xi ≤ b
0 all other xi

(3.46)

2D multi-body model

A detailed description of the 2D multi-body model may be found in [32], [30], [19] or [55].
In general, the following additional assumptions, in comparison to the single-force model, are
made — see [30], [55]:

a.) All vehicle elements are rigid and interconnected by linear springs and dashpot dampers.
b.) All vehicles can move independently from each other within the train. However, the

horizontal distance (x-direction) in between the single vehicles is held constant.
c.) The kinematic relationships may be linearised regarding a reference point.
d.) In vertical direction the contact between rail and wheel-sets is intact at all times.
e.) The wheels roll without friction or slip on the rail.

The subsequent procedure is based on [32], who followed the detailed approach of [30] to
establish the equations of motion for a 2D multi-body vehicle. In this doctoral thesis, the 2D
multi-body modelling is only performed for so-called conventional high-speed trains with a
front and rear bogie, each holding two wheel-sets — see Figure 3.3 and Table 3.1.

The 2D multi-body model of the vehicle, with its 10 degrees of freedom (DOF), is described by
a set of equations of motion. Furthermore, the bridge structure and the 2D multi-body model
interact with each other via contact forces. In the following paragraphs the equations of motion
for one vehicle are derived. Therefore, they are formulated, using the D’Alembert’s principle
and the principle of virtual work, for the free system (all DOF of the vehicle system are free
— subscript f ) and afterwards for the constrained system (the DOF regarding the wheel-sets
are equal to the deflection of the bridge structure — due to assumption d.) above).

The D’Alembert’s principle is based on the principle of virtual work and its extension to dynamics.
For some point in time t, virtual displacements are applied to the instant configuration of the
moving body. In total, the sum of the virtual work, due to internal and external forces, δW and
the virtual work due to inertia forces δWm vanish — see [71] p.438.

δW + δWm = 0 (3.47)
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3. Dynamic analysis

Figure 3.3.: 2D multi-body model — overview — according to [32]

Geometry

xPB . . .
distance of the car body’s center of gravity
to the connection of the secondary suspension system [m]

xBW . . .
distance of the bogie’s center of gravity
to the connection of the primary suspension system [m]

Masses and moments of inertia
mP . . . mass of the car body [kg]
IP . . . mass moment of inertia of the car body [kgm2]

mB1, mB2 . . . masses of the bogies 1 and 2 [kg]
IB1, IB2 . . . mass moments of inertia of the bogies 1 and 2 [kgm2]

mW1, mW2, mW3, mW4 . . . masses of the wheel-sets 1 to 4 [kg]

Spring and damping constants
k11, k12, k13, k14 . . . primary suspension stiffness [kN/m]
c11, c12, c13, c14 . . . primary suspension damping [kNs/m]

k21, k22 . . . secondary suspension stiffness [kN/m]
c21, c22 . . . secondary suspension damping [kNs/m]

10 degrees of freedom
wP . . . displacement in z-direction of the car body
ϕP . . . rotation of the car body

wB1, wB2, . . . displacement in z-direction of the bogies 1 and 2
ϕB1, ϕB2 . . . rotation of the bogies 1 and 2

wW1, wW2, wW3, wW4 . . . displacement in z-direction of wheel-sets 1 to 4

Table 3.1.: 2D multi-body model — overview — according to [32]
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3.1. Equation of motion

Figure 3.4.: 2D multi-body model — initial condition and static equivalent position

In Figure 3.4 on the left side, the initial condition, before applying any loads on the 2D multi-
body system, is shown. After considering the gravity loads — of the vehicle car, the two bogies
and the four wheels-sets — the static equivalent position is found (Figure 3.4 on the right side).
From this position on, the degrees of freedom (DOF) are measured. Hence, the spring forces due
to the gravity loads and the gravity loads themselves are not considered in order to describe
the dynamic behaviour of the 2D multi-body system.

Consequently, the internal and external forces, acting on each body of the vehicle, are illus-
trated in their positive effective direction in Figure 3.5. One can distinguish spring forces Fk,
dashpot forces Fc and contact force PR. Spring and dashpot forces are positive for increasing
displacements and velocities.

Figure 3.5.: 2D multi-body model — free body diagram — according to [32]

Vector with degrees of freedom (DOF)

The vector u f contains the 10 DOF of the vehicle — see Figure 3.3 — which are measured from
the static equilibrium position of the individual parts — see Figure 3.4 on the right side:

uT
f = {wP, ϕP, wB1, ϕB1, wB2, ϕB2, wW1, wW2, wW3, wW4} (3.48)
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3. Dynamic analysis

Relationship between spring and system displacement

The vector v holds the displacement entries of the 6 springs,

vT = {vz11, vz12, vz13, vz14, vz21, vz22, } (3.49)

whereas v̇ encloses the velocity entries regarding the 6 dashpots.

v̇T = {v̇z11, v̇z12, v̇z13, v̇z14, v̇z21, v̇z22, } (3.50)

As the displacements in the springs v result due to the displacements of the 10 DOF in u f , the
relationship may be formulated, according to the principle of superposition, using the matrix Tv.
The procedure therefore is as follows: Each of the 10 DOF in u f is applied with the value of ’1’
individually on the vehicle system. The resulting displacements in the springs are subsequently
calculated and finally superposed for all 10 DOF. Figure 3.6 illustrates the process for the
rotation ϕB1 = 1 in bogie 1, which leads to the following spring displacements:

vz11 = xBW

vz12 = −xBW

vz13 = 0
vz14 = 0
vz21 = 0
vz22 = 0 (3.51)

Figure 3.6.: 2D multi-body model — relationship between spring and system displacement — rotation in bogie 1 ϕB1

The matrix Tv represents the results, as mentioned above, for all 10 DOF and contains Equation
(3.51) in column four.

Tv =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 −1 xBW 0 0 1 0 0 0
0 0 −1 −xBW 0 0 0 1 0 0
0 0 0 0 −1 xBW 0 0 1 0
0 0 0 0 −1 −xBW 0 0 0 1
−1 xPB 1 0 0 0 0 0 0 0
−1 −xPB 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (3.52)
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3.1. Equation of motion

The relationships for the displacements in the springs and the velocities in the dashpots yield
to:

v = Tv u f

v̇ = Tv u̇ f (3.53)

Virtual work of spring and dashpot forces

The spring forces can be calculated assuming a linear relationship with the spring displace-
ments: ⎛⎜⎜⎜⎜⎜⎜⎝

Fk11
Fk12
Fk13
Fk14
Fk21
Fk22

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 · · · 0

0 k12
...

... k13
k14

k21 0
0 · · · 0 k22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝

vz11
vz12
vz13
vz14
vz21
vz22

⎞⎟⎟⎟⎟⎟⎟⎠ (3.54)

Using index notation, Equation (3.54) becomes:

fk = Sk v (3.55)

Furthermore, for the parallel arranged dashpods

fc = Sc v̇ (3.56)

is valid. The diagonal matrix Sc contains the damping coefficients c11, c12, . . . , c22.

In the following step, the virtual work done by the spring and dashpot forces is calculated.
Therefore, the virtual displacements δu f are applied on the free body diagram. The virtual
displacements δv, in accordance with Equation (3.53), become:

δv = Tv δu f (3.57)

Considering Equations (3.53) and (3.55) to (3.57) the virtual work due to spring and dashpot
forces leads to:

δWkc, f = −δuT
f TT

v Sk Tv︸ ︷︷ ︸
K f

u f − δuT
f TT

v Sc Tv︸ ︷︷ ︸
C f

u̇ f (3.58)

Furthermore, as shown in Equation (3.58) the stiffness matrix K f and the damping matrix C f
for the free system can be defined.
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3. Dynamic analysis

Mass matrix — virtual work of inertia forces

Combining the masses and mass moments of inertia to the mass matrix M f of the free system

M f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mP 0 · · · 0
0 Ip

mB1
IB1 0

mB2
...

... IB1
0 mW1

mW2
mW3 0

0 · · · 0 mW4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.59)

enables one to formulate the virtual work due to inertia forces in index notation:

δWm, f = −δuT
f M f ü f (3.60)

Virtual work of external forces

As the DOF are measured from the static equivalent position, only the contact forces are
considered as external forces.

pT
C, f = {0, 0, 0, 0, 0, 0, −PR1, −PR2, −PR3, −PR4} (3.61)

The virtual work done by the external forces result to:

δWext, f = δuT
f pC, f (3.62)

Equations of motion for the free system

The sum of the virtual work done due to virtual displacements needs to vanish, which leads
to

δWkc, f + δWext, f + δWm, f = 0 (3.63)

−δuT
f K f u f − δuT

f C f u̇ f + δuT
f pC, f − δuT

f M f ü f = 0 (3.64)

The virtual displacements are arbitrary, therefore the equations of motion for the free system
result to:

M f ü f + C f u̇ f + K f u f = pC, f (3.65)
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3.1. Equation of motion

Equations of motion for the constrained system

However, the 2D multi-body model of a vehicle crossing a bridge structure represents a
constrained system as the DOF of the wheel-sets can not move independently. These 4 DOF
are, by definition due to assumption d.) for the 2D multi-body model (see p.41), equal to the
deflection of the bridge structure :

wW1 = w(x1)

wW2 = w(x2)

wW3 = w(x3)

wW4 = w(x4) (3.66)

The Equations (3.66) modify the displacements of the free system u f as follows⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wP
ϕP

wB1
ϕB1
wB2
ϕB2
wW1
wW2
wW3
wW4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

u f

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 · · · 0
...

. . .
...

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Tkin

⎛⎜⎜⎜⎜⎜⎜⎝

wP
ϕP

wB1
ϕB1
wB2
ϕB2

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

u

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

TC

⎛⎜⎜⎝
w(x1)
w(x2)
w(x3)
w(x4)

⎞⎟⎟⎠
︸ ︷︷ ︸

wxi

(3.67)

and can be written in index notation

u f = Tkin u + TC wxi (3.68)

For the virtual displacements holds

δu f = Tkin δu (3.69)

Inserting of Equations (3.68) and (3.69) into (3.64) yields

− δuT TT
kin K f Tkin u − δuT TT

kin K f TC wxi . . .

− δuT TT
kin C f Tkin u̇ − δuT TT

kin C f TC ẇxi . . .

+ δuT TT
kin pC, f . . . (3.70)

− δuT TT
kin M f Tkin ü − δuT TT

kin M f TC ẅxi = 0 (3.71)

Introducing the abbreviations

M = TT
kin M f Tkin Fw = TT

kin K f TC wxi pC = TT
kin pC, f = 0

C = TT
kin C f Tkin Fẇ = TT

kin C f TC ẇxi

K = TT
kin K f Tkin Fẅ = TT

kin M f TC ẅxi = 0 (3.72)
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3. Dynamic analysis

and considering the arbitrary characteristics of the virtual displacements δu, leads to the
equations of motions for the constraint system valid for one vehicle car

M ü + C u̇ + K u = −Fw − Fẇ (3.73)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

mP 0 · · · 0
0 Ip

mB1
...

... IB1
mB2 0

0 · · · 0 IB1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.74)

C =

⎡⎢⎢⎢⎣
c21 + c22 (c22 − c21) xPB −c21 0 −c22 0

(c22 + c21) x2
PB c21 xPB 0 −c22 xPB 0

c11 + c12 + c21 (c12 − c11) xBW 0 0
(c12 + c11) x2

BW 0 0
c13 + c14 + c22 (c14 − c13) xBW

sym. (c14 + c13) x2
BW

⎤⎥⎥⎥⎦ (3.75)

K =

⎡⎢⎢⎢⎣
k21 + k22 (k22 − k21) xPB −k21 0 −k22 0

(k22 + k21) x2
PB k21 xPB 0 −k22 xPB 0

k11 + k12 + k21 (k12 − k11) xBW 0 0
(k12 + k11) x2

BW 0 0
k13 + k14 + k22 (k14 − k13) xBW

sym. (k14 + k13) x2
BW

⎤⎥⎥⎥⎦ (3.76)

Fw =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0

− k11 w(x1)− k12 w(x2)
{k11 w(x1)− k12 w(x2)} xBW

− k13 w(x3)− k14 w(x4)
{k13 w(x3)− k14 w(x4)} xBW

⎞⎟⎟⎟⎟⎟⎟⎠ Fẇ=

⎛⎜⎜⎜⎜⎜⎜⎝

0
0

− c11 ẇ(x1)− c12 ẇ(x2)
{c11 ẇ(x1)− c12 ẇ(x2)} xBW

− c13 ẇ(x3)− c14 ẇ(x4)
{c13 ẇ(x3)− c14 ẇ(x4)} xBW

⎞⎟⎟⎟⎟⎟⎟⎠ (3.77)

u =

⎛⎜⎜⎜⎜⎜⎜⎝

wP
ϕP

wB1
ϕB1
wB2
ϕB2

⎞⎟⎟⎟⎟⎟⎟⎠ (3.78)
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3.1. Equation of motion

After solving the equations of motion in Equation (3.73) one is able to calculate the spring
displacements by inserting Equation (3.68) into Equation (3.53):

v = Tv (Tkin u + TC wxi) (3.79)

Considering Equations (3.55) and (3.56), the spring forces

fk = Sk Tv (Tkin u + TC wxi) (3.80)

and dashpot forces

fc = Sk Tv (Tkin u̇ + TC ẇxi) (3.81)

result.

Contact forces and load function

In accordance with [32] p.79 the wheel-sets of the vehicle are modelled as concentrated masses
crossing with constant speed the bridge structure. As mentioned above, no uplift of the wheel-set
is possible, the displacement of the wheel-set is equal to the deflection of the beam (constrained
system). The resulting location-dependent contact forces PRi are calculated using the free
body diagram. In Figure 3.7 the situation is illustrated for the first wheel-set of bogie 1. The
gravitational load Fstat,1 therefore consequently considers the associated masses of the vehicle
body, the bogie and the wheel-set.

Figure 3.7.: 2D multi-body model — according to [32]

Regarding all four contact forces of the vehicle, one obtains

PRi(xi) = Fstat,i − Fk1i − Fc1i − mWi ẅ(xi) (3.82)

Inserting Equation (3.82) into (3.41) leads to the transverse load function pz(x, t) of the 2D
multi-body model, considering one train car

pz(x, t) =
4

∑
i=1

{Fstat,i − Fk1i − Fc1i − mWi ẅ(xi)} Γ(xi) δ(x − xi) (3.83)
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3. Dynamic analysis

3.2. Discretization

The equation of motion for the Bernoulli-Euler beam with constant bending stiffness EI and
mass per unit length μ results according Equation (3.9) to a partial differential equation of 4th
order:

EI wiv(x, t) + μ ẅ(x, t) + c(x) ẇ(x, t) = pz(x, t) (3.84)

In general, it is rather difficult to solve the above mentioned equation of motion for the
uniform beam, with its infinite number of degrees of freedom (DOF) ([8] p.365). Therefore, a
discretization is necessary in order to obtain an ordinary differential equation ([32] p.8). In the
following section two options of discretization will be presented.

3.2.1. The Ritz-Galerkin approximation method

In [32] and [5] good overviews are presented which base on [71]. The general idea is to approxi-
mate the displacement w(x, t) of the whole structure, which is a function of the axial coordinate
x and time t, by a finite series of functions separated in x and t, the Ritz approximation ([71]
p.455 et sqq.)

w(x, t) ≈ w̃(x, t) =
m

∑
j=1

φj(x) qj(t) (3.85)

where qj(t) may be interpreted as the weighting function (called generalized coordinate) of the
shape function φj(x) — see Figure3.8

Figure 3.8.: Ritz approximation of a simple beam

In the Galerkin procedure the partial differential equations of the distributed parameter system
are summarized using the partial differential operator D {w}

D {w} = 0 (3.86)
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3.2. Discretization

Applying virtual displacements δw on the instant configuration and integrating over the domain
of definition B, the virtual work needs to vanish∫

B
D {w} δw dB = 0 (3.87)

Substituting the Ritz approximation produces the error p̃

D {w̃} = p̃ (3.88)

which can be interpreted as fictitious loading. In case the Ritz approximation fulfils the kinematic
(related to deformations w and w′) as well as the dynamic boundary conditions (related to
internal forces and hence w′′ and w′′′), those fictitious loadings form a self-equilibrium, which
requires the virtual work to vanish again∫

B
p̃ δw̃ dB = 0 (3.89)

Substituting the variation of the Ritz approximation

δw̃ =
m

∑
j=1

φj δqj j = 1, 2, . . . k, m (3.90)

and demanding the integral ∫
B

p̃ φk δqk dB = 0 (3.91)

to vanish independently of the variation of δqk yields to Galerkin’s rule (m equations to calculate
the qj) ∫

B
p̃ φk dB = 0 (3.92)

which is equivalent to ∫
B

D {w̃} φk dB = 0 (3.93)

Inserting the Ritz approximation of Equation (3.85) into (3.84), multiplying all terms according
to Galerkin’s rule with φk and after integrating with respect to L, one obtains ([5] p.8):∫

L

m

∑
j=1

{
EI qj φiv

j + μ q̈j φj + c q̇j φj

}
φk dx =

∫
L

pz φk dx (3.94)

Introducing the following abbreviations according to [32] p.49∫
L

φj φk dx = Φ1,jk∫
L

φiv
j φk dx = Φ4,jk =

ω2
i μ

EI
Φ1,jk with Eq. (3.17) and (3.15) (3.95)∫

L
pz φk dx = pk
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3. Dynamic analysis

Φ1 =

⎡⎢⎢⎢⎣
Φ1,11 · · · Φ1,1k Φ1,1m

...
. . .

...
Φ1,j1 Φ1,jk Φ1,jm
Φ1,m1 · · · Φ1,mk Φ1,mm

⎤⎥⎥⎥⎦ Φ4 =

⎡⎢⎢⎢⎣
Φ4,11 · · · Φ4,1k Φ4,1m

...
. . .

...
Φ4,j1 Φ4,jk Φ4,jm
Φ4,m1 · · · Φ4,mk Φ4,mm

⎤⎥⎥⎥⎦ p =

⎛⎜⎜⎜⎝
p1
...

pk
pm

⎞⎟⎟⎟⎠
the generalized matrices become [32] p.49

M = μ Φ1

K = EI Φ4 (3.96)
C = c Φ1

which leads to Equation (3.94) in index notation — see Equation (3.97) [32] p.49

M q̈ + C q̇ + K q = p (3.97)

Due to the discretization process, Equation (3.84) was reduced from a partial differential
equation of 4th order to a second order, ordinary differential equation, which is much easier to
solve ([32] p.9). In general, the chosen shape functions in the Ritz approximation according to
Equation (3.85) need to meet certain requirements. As mentioned before, they have to fulfil the
kinematic and dynamic boundary conditions in order to use Galerkin’s rule as described above.
Additionally, the shape functions need to be linearly independent and have derivations of the
order the method of solution requires. Furthermore, if the eigenfunctions are used as shape
function, the Modal Analysis results. If additionally, an infinite number of eigenfunctions (m =
∞) is considered the solution w̃(x, t) of Equation (3.85) becomes the exact solution w(x, t) ([5]
p.8).

3.2.2. Finite element method

The finite element method (FEM) may be seen as the further development of the Ritz-Galerkin
approximation method as the latter has some serious drawbacks [9] p.418

• The chosen shape functions φj (see Equation (3.85)) have to describe the deflected shape
of the entire structure, which is very difficult for complex structures.

• The resulting equations are usually highly coupled, which requires very much computer
time and memory.

• For each new geometry, a different set of shape functions φj must be selected — there is
little carryover from one problem to another.

The FEM overcomes these difficulties as the structure is divided into a finite number of
smaller, simple parts (finite elements). These finite elements are joined together at nodes, where
displacement compatibility is enforced ([9] p.419) — see Figure 3.9 (a). Therefore, the shape
functions ψj do not need to be formulated for the entire structure (Ritz approximation) but only
for the finite element itself — see Figure 3.9 (b).
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3.2. Discretization

(a) Discretization of a simple beam (b) Finite Bernoulli-Euler element ei

Figure 3.9.: FEM principle procedure

The displacement vei(x, t) within the finite element ei is calculated using linear interpolation
between the displacement at the two ends (nodes) of the element ([9] p.421)

vei(ξ, t) =
2∗nDOF

∑
j=1

ψj(ξ) qj(t) with: ξ =
x
Le

(3.98)

where the shape functions ψj(ξ) are weighted by the node displacement qj(t).

In case of a finite Bernoulli-Euler element ei each node got nDOF = 2 degrees of freedom (DOF),
one vertical displacement v and one rotation Θ — see Figure 3.9 (b). The four shape functions
for transverse deflection are ([9] p.422)

ψ1(x) = 1 − 3ξ2 + 2ξ3

ψ2(x) = −ξ(1 − ξ)2 Le

ψ3(x) = 3ξ2 − 2ξ3

ψ4(x) = ξ2(1 − ξ) Le (3.99)

Using the principle of virtual work and the shape functions of Equation (3.99) the element stiffness,
element mass matrix and element force vector are obtained, which are then assembled to the
global system ([20] p.490 et sqq.).
Therefore, if the structure got discretized by k nodes, consequently N = nDOF ∗ k = 2 ∗ k degrees
of freedom (DOF) qj for the global system result. After assembling the single finite elements to
a global model the following linear system of ordinary differential equations of second order
arises ([5] p.10)

M q̈ + C q̇ + K q = p (3.100)

with M representing the mass matrix, C the damping matrix and K the stiffness matrix of
the global system. The nodal forces are summarized within the vector p, whereas the N node
displacements qj and their derivatives are represented by q, q̇ and, q̈ ([5] p.10).
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3. Dynamic analysis

3.3. Solution of the equation of motion

In the following section common approaches to solve the equations of motion are presented.
The first one uses step-by-step procedure methods which solve the entire coupled system of
equations directly. One big group of these methods uses numerical integration techniques in
order to approximately satisfy the equations of motion and is therefore called direct numerical
integration. The second approach, called modal analysis, decouples in a first step the system of
equations, hence each line of the system of equations can be solved independently. Therefore,
the effort to solve the equations of motion, either using analytical or numerical (step-by-step
procedure) methods, is considerably reduced.

3.3.1. Direct numerical integration

On this subject a lot of literature has been written in the recent years and therefore the following
remarks, which may be found in [48], [8], shall be seen as a short introduction. All the different
step-by-step methods have in common to divide the loading and response history in time
intervals or so called steps. The initial conditions (displacement and velocity) at the beginning
of one step and the history of loading during the step are then used to compute the response at
the end of the step. These approaches allow to consider non-linear behaviour as the structural
properties are assumed to stay constant within one step and change from one step to another.
Furthermore, any desired degree of refinement is possible by shorting the time steps adequately.
([8] p.112)
The numerical approximation step-by-step methods — using either numerical integration or
numerical differentiation — can be distinguished in explicit or implicit types. The first method
makes it possible to calculate the response values at the end of a step only depending on the
quantities at the beginning of the step. On the other hand, for implicit methods the expression
calculating the response at the end of the step includes one or more quantities of the pertaining
end of the step. Therefore, trial values for these quantities must be assumed which then are
refined by iterations. The best step-by-step method choice for a given problem must be efficient,
which means a certain level of accuracy needs to be met within a certain range of computational
effort. ([8] p.116)

In the following, the concept of the numerical integration is presented

q̇1 = q̇0 +
∫ Δt

0
q̈(τ) dx (3.101)

q1 = q0 +
∫ Δt

0
q̇(τ) dx (3.102)

which describes the velocity and displacement at the end of the step (subscript 1) in terms of the
initial values at the beginning of the step (subscript 0) plus an integral expression. Hence, the
change of velocity is proportional to the integral of the acceleration history within the interval
Δt of the current step — see Equation (3.101). Equally, the change of displacement depends on
the integral of the velocity history — see Equation (3.102). For this type of step-to-step method
it is necessary to make an assumption regarding the acceleration curve within the time step,
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3.3. Solution of the equation of motion

which consequently controls the variation of velocity as well and therefore makes it possible to
succeed to the next time step. ([8] p.120)

Figure 3.10 shows the assumptions of the Euler-Gauss method (for one degree of freedom), which
considers the acceleration to be constant within the time step of the duration Δt. Consequently,
the velocity and displacement behaviour must be linear and quadratic. The value of the constant
acceleration is assumed to be the average of the initial and final acceleration.
In order to start this calculation, the initial accelerations q̈0 are obtained by solving the equations
of motion (see Equation (3.100)) at the time t = t0.

q̈0 = M−1[p0 − C q̇0 − K q0] (3.103)

Additionally, for this implicit procedure the accelerations q̈1 at the end of the step are necessary,
which are arbitrary assumed. Subsequently, with Formulas (a) and (b) of Figure 3.10 it is
possible to calculate the values of q̇1 and q1 at the end of this step. Inserting q̇1 and q1 in an
expression like Equation (3.100)) for the point in time t1 yields to an improved value of q̈1,
which afterwards leads to improved values of q̇1 and q1. If the iteration converges to a specified
value of q̈1 for this time step, the following time step may be calculated. ([8] p.121)

Figure 3.10.: Acceleration, velocity and displacement for the constant average acceleration method for one degree of
freedom — according to [8]

The Newmark formulation is more general and includes the Euler-Gauss method as a special
case with γ = 1

2 and β = 1
4 .

q̇1 =q̇0 + (1 − γ) Δt q̈0 + γ Δt q̈1 (3.104)

q1 =q0 + Δt q̇0 + (
1
2
− β) Δt2 q̈0 + β Δt2 q̈1 (3.105)

The Newmark method assumes the acceleration curve to be linear within a time step and
is therefore also known as linear acceleration method. However, the Euler-Gauss method is
unconditionally stable, whereas the Newmark method will be unstable unless Δt

T ≤
√

3
π = 0.55.

([8] p.122) The methods above were presented as implicit procedures, whereas the conversion
to explicit formulation is possible (see e.g. ([8] p.123, [48] p.16), as the iteration within a step
may be prohibitive.
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3. Dynamic analysis

3.3.2. Modal Analysis

The goal of the modal analysis is to decouple the equations of vibrations (Equations (3.97)
and (3.100)) from Chapter 3.2. This means, the system matrices (M, C, K) become diagonal
matrices and each equation is represented by a single-degree-of-freedom system (SDOF). For
the decoupling process, the orthogonal characteristics of the eigenfunctions/ mode shapes1

are necessary. However, there are some limitations to the modal analysis. For example, it is
not possible to consider non-linear material behaviour and additionally certain requirements
regarding the damping need to be met ([5] p.6). Furthermore, even if the decoupling of the
system matrices (M, C and K become diagonal matrices) is successful, the equations of motion
of the SDOF system still might be coupled due to the load vector p, respectively due to the
selected load model — see section 3.5.3.

In general, the modal analysis is applicable on both, distributed-parameter (infinite number of
DOF) and lumped-parameter systems (finite number of DOF) ([27] p.556). The latter refers to
systems which are discretized using FEM and therefore have a finite number of DOF — in most
cases more than one DOF, what makes them multiple-degree-of-freedom system (MDOF) as
well.

Lumped-parameter system (MDOF system) ⇒ SDOF system

In case the system was discretized using the FEM, the transformation from physical (coupled)
into modal (uncoupled) coordinates is performed considering ([27] p.336 et. sqq.)

q = S r (3.106)

qT =
(

q1, · · · , qj, qN
)

S =
(

φ1, · · · , φj, φN

)
rT =

(
r1, · · · , rj, rN

)
where q holds the DOF in physical, r the DOF in modal coordinates and S contains the mode
shapes φj of the system.

However, the main task in dynamic analysis is to obtain the natural frequencies ωj and mode
shapes φj of the undamped and unloaded structure. Therefore, the following paragraphs
present a quick overview of the procedure, regarding the lumped-parameter systems, which
connects the undamped vibration problem to the mathematics of the eigenvalue problem ([27]
p.318).

1Precisely, the eigenvectors, which are related to the mode shapes by a factor of the mass matrix, decouple the
system of equations ([27] p.332).
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3.3. Solution of the equation of motion

The first step is to neglect the damping matrix C and force vector p of Equation (3.100) which
leads to the undamped vibration problem

M q̈ + K q = 0 (3.107)

Subsequently, the generalized eigenvalue problem results1 by substituting q = ejωt φ

K φ = λ M φ (3.108)

λ = ω2

with j =
√−1, λ as eigenvalues, ω as natural frequencies and φ representing the mode shapes.

Rewriting Equation (3.108) yields

[K − λ M] φ = 0 (3.109)

Neglecting the trivial solution φ = 0 forces the inverse of the coefficient matrix [K − λ M] to
not exist. Hence, the coefficient matrix needs to be singular and therefore its determinant has to
be zero ([27] p.310)

det [K − λ M] = 0 (3.110)

which leads to the characteristic equation. From this equation the eigenvalues λj, natural fre-
quencies ωj and mode shapes φj for all number of DOF (j = 1 . . . N) are obtained ([27] p.324).
Afterwards, the individual mode shapes φj are organized in matrix S — see Equation (3.106).

Substituting Equation (3.106) into (3.100) and multiplying the result by ST yields

ST M S︸ ︷︷ ︸
M∗

r̈ + ST C S︸ ︷︷ ︸
C∗

ṙ + ST K S︸ ︷︷ ︸
K∗

r = ST p︸︷︷︸
p∗

(3.111)

with M∗ as modal mass matrix, C∗ as modal damping matrix, K∗ as modal stiffness matrix and
p∗ as modal force vector one obtains

M∗ r̈ + C∗ ṙ + K∗ r = p∗ (3.112)

Due to the orthogonal characteristics for j �= k

φT
j M φk = 0 φT

j M φj = m∗
j

φT
j C φk = 0 φT

j C φj = c∗j (3.113)

φT
j K φk = 0 φT

j K φj = k∗j

the system matrices (M, C, K) decouple. Hence, the modal matrices are diagonal matrices

M∗ = diag(m∗
j )

C∗ = diag(c∗j ) (3.114)

K∗ = diag(k∗j )

1The generalized eigenvalue problem is the worst type of eigenvalue problem in terms of computational effort,
but therefore leads directly to the mode shapes φ. In general, the symmetric eigenvalue problem should be used ([27]
p.400).
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3. Dynamic analysis

and for the jth SDOF system (represents the jth row in Equation (3.112)) results

m∗
j r̈j + c∗j ṙj + k∗j rj = p∗j (3.115)

which then can be solved.1. Subsequently, the solutions are transformed back into the physical
coordinate system using Equation (3.106).

Distributed-parameter systems ⇒ SDOF system

For distributed-parameter systems the Ritz-Galerkin approximation method, according to Equa-
tion (3.85), is used.

w(x, t) ≈ w̃(x, t) =
m

∑
j=1

φj(x) qj(t)

The difference here is that for the shape functions φj(x) the exact eigenfunctions are substituted.
Due to the orthogonal characteristics of the eigenfunctions ([5] p.13) — see section 3.1.2∫

L
φj(x) φk(x) dx = 0

∫
L

φj(x) φj(x) dx = Φ1,jj for j �= k (3.116)

the abbreviations

Φ1 =

⎡⎢⎢⎢⎣
Φ1,11 · · · 0 0

...
. . .

...
0 Φ1,jj 0
0 · · · 0 Φ1,mm

⎤⎥⎥⎥⎦ Φ4 =

⎡⎢⎢⎢⎣
Φ4,11 · · · 0 0

...
. . .

...
0 Φ4,jj 0
0 · · · 0 Φ4,mm

⎤⎥⎥⎥⎦
and hence the system matrices of Equation (3.96) become diagonal modal matrices

M∗ = μ Φ1 = diag(m∗
j )

K∗ = EI Φ4 = diag(k∗j ) (3.117)

C∗ = c Φ1 = diag(c∗j )

Considering the load function pz according to Equation (3.95)∫
L

pz φj(x) dx = p∗j (3.118)

the modal force vector p∗ becomes

p∗ =

⎛⎜⎜⎜⎝
p∗1
...

p∗j
p∗m

⎞⎟⎟⎟⎠ (3.119)

1Independently of the other SDOF systems if p∗j is decoupled as well.
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3.4. Damping

which leads to

M∗ q̈ + C∗ q̇ + K∗ q = p∗ (3.120)

For the jth SDOF system (represents the jth row in Equation (3.120)) results

m∗
j q̈j + c∗j q̇j + k∗j qj = p∗j (3.121)

which then can be solved.1. Subsequently, the solutions are transformed back into the physical
coordinate system using Equation (3.85).

3.4. Damping

In the following chapters the considered options of viscous damping are discussed. In general,
the viscous damping of the form

fD = c ẋ(t) (3.122)

with fD being the damping force, proportionally related by the damping coefficient c to the
velocity ẋ(t), is used due to physical observations and mathematical convenience ([27] p.21).

3.4.1. Modal damping

The most common approach is to decouple the undamped system of equations and add the
damping term afterwards to the decoupled SDOF system equations ([64] p.90) — see Equation
Equation (3.121)

c∗j = 2 m∗
j ζ j ωj (3.123)

Therefore, the damping ratio ζ j is used which is introduced in Chapter 3.5.1 with Equation
(3.135).

3.4.2. Rayleigh damping — proportional damping

Another common approach is to write the damping matrix C as linear combination of the mass
and stiffness matrix ([64] p.91)

C = α M + β K (3.124)

Since the mass and stiffness matrices become diagonal matrices applying the modal analysis,
the above defined damping matrix becomes diagonal as well. Hence, one can write for the jth

SDOF system

2 m∗
j ζ j ωj = α m∗

j + β k∗j (3.125)

1Independently of the other SDOF systems if p∗j is decoupled as well.
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3. Dynamic analysis

which yields the damping ratio for the jth mode

ζ j =
α

2ωj
+

βωj

2
(3.126)

The two parameters α and β can be specified for two selected natural frequencies ω1 and ω2
with the corresponding damping ratios ζ1 and ζ2. Assuming ζ1 = ζ2 leads to

α = ζ1
2 ω1 ω2

ω1 + ω2
β = ζ1

2
ω1 + ω2

(3.127)

The other damping ratios ζ j result with Equation (3.126) automatically. The proportional
damping is often used as well in case the system is solved with the direct numerical integration
approach ([64] p.91).

Figure 3.11.: Rayleigh (proportional) damping due to ω1, ω2 and ζ1

3.5. Solution of the SDOF system

The previous chapters demonstrated how to reduce a distributed-parameter system or a MDOF
system to a set of equivalent SDOF systems using the modal analysis. Therefore, in this chapter
we place the focus on SDOF systems.
First, the basic equations for the

• undamped and unforced SDOF system,
• the damped but unforced SDOF system,
• the damped SDOF system with harmonic excitation and
• the dameped SDOF system with linear excitation

are discussed.
Second, the SDOF systems, which result due to different load models (moving load model, 2D
multi-body load model) representing the train crossing and the consequences regarding the
coupling of theses SDOF systems are investigated. Finally, the numerical and, if existing, the
analytical solutions for the above mentioned SDOF systems are presented.

3.5.1. SDOF system — basic equations

In the following chapters the well known basic equations for the SDOF system are presented,
as they are essential for the further discussion.
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3.5. Solution of the SDOF system

Spring-mass model

In Figure 3.12 the spring-mass model, which connects the mass m with a linear spring k to a
fixed object, is illustrated ([27] p.5 et sqq.).

Figure 3.12.: SDOF — spring-mass model

Summing the forces due to a motion in x-direction leads to the equation of motion

m ẍ(t) + k x(t) = 0 (3.128)

With the solution approach x(t) = A1 cos(ωt) + A2 sin(ωt) results

ω =

√
k
m

(3.129)

Considering the initial conditions x(t = 0) = x0 and v(t = 0) = ẋ(t = 0) = v0 the solution of
the equation of motion for the mass-spring model becomes

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt) (3.130)

Spring-mass-damper model

If viscous damping is added, in the form of the dashpot c, the spring-mass-damper model — see
Figure 3.13 — results ([27] p.21 et sqq.).

Figure 3.13.: SDOF — spring-mass-damper model

The term c ẋ(t) in Equation (3.131), which describes the decay of the oscillating SDOF system,
is chosen partly due to physical and mathematical convenience.

m ẍ(t) + c ẋ(t) + k x(t) = 0 (3.131)

However, substituting the solution approach xh(t) = a eλt into Equation (3.131 leads to the
characteristic equation

m λ2 + c λ + k = 0 (3.132)
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3. Dynamic analysis

Using the quadratic formula yields the solution

λ1,2 = − c
2 m

± c
2 m

√
c2 − 4 k m (3.133)

Depending on the value of the discriminant c2 − 4 k m, three different solutions for λ and hence
x(t) are obtained:

• c2 − 4 k m > 0: Two real solutions exist and a non-oscillatory response results — the
movement is called overdamped motion.

• c2 − 4 k m = 0: Two equal real solutions exist and a non-oscillatory response results as
well — the movement is called critically damped motion.

• c2 − 4 k m < 0: Two complex solutions exist and a oscillatory response results — the
movement is called underdamped motion.

It is useful to introduce the critical damping coefficient ccr

ccr = 2
√

k m = 2 m ω (3.134)

and the non-dimensional damping ratio ζ

ζ =
c

ccr
=

c
2
√

k m
=

c
2 m ω

(3.135)

Substituting Equations (3.129) and (3.135) into (3.131) and dividing by m yields

ẍ(t) + 2 ζ ω ẋ(t) + ω2 x(t) = 0 (3.136)

Furthermore, Equation (3.133) is rewritten to

λ1,2 = −ζ ω ± ω
√

ζ2 − 1 (3.137)

Here only the common case of the underdamped motion ζ < 1 is discussed, which leads to√
ζ2 − 1 =

√
(1 − ζ2)(−1) =

√
1 − ζ2 j (3.138)

where j =
√−1 and subsequently the two roots become

λ1 = −ζ ω + ω
√

1 − ζ2 j (3.139)

λ2 = −ζ ω − ω
√

1 − ζ2 j

Introducing the damped natural frequency ωd yields

ωd = ω
√

1 − ζ2 (3.140)

Due to the two roots there are two solutions

xh(t) = a1 eλ1t and xh(t) = a2 eλ2t (3.141)
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3.5. Solution of the SDOF system

additionally, since Equation (3.131) is linear, the sum of two solutions is also a solution, hence
the response xh(t) is ([27] p.18)

xh(t) = a1 eλ1t + a2 eλ2t (3.142)

xh(t) = e−ζωt
(

a1 ejωdt + a2 e−jωdt
)

Using the Euler relations, this can be written as

xh(t) = e−ζωt [A cos(ωdt) + B sin(ωdt)] (3.143)

The constants A and B, as the constants a1 and a2, are obtained considering the initial condition
like in the case of the mass-spring system.

Spring-mass-damper model and harmonic excitation

If a harmonic excitation is applied on the spring-mass-damper model, the situation presented
in Figure 3.14 results ([48] p.43 et sqq.).

Figure 3.14.: SDOF — spring-mass-damper model and harmonic excitation

The harmonic excitation is considered in form of the term F0 sin(ωt) in the equation of motion

m ẍ(t) + c ẋ(t) + k x(t) = p(t) = F0 sin(ωt) (3.144)

Dividing by the mass m and considering Equations (3.129) and (3.135) leads to

ẍ(t) + 2 ζ ω ẋ(t) + ω2 x(t) =
F0

m
sin(ωt) (3.145)

Equation (3.145) is a linear non-homogeneous differential equation with a solution consisting of
a homogeneous and a particular solution

x(t) = xh(t) + xp(t) (3.146)

The latter can be found assuming it has the same shape as the forcing function ([27] p.119) but
with a different amplitude and phase. The phase shift is argued due to the influence of the
damping force. Therefore, the particular solution is expected to be of the form

xp(t) = C cos(ωt) + D sin(ωt) (3.147)

Substituting Equation (3.147) and its derivatives ẋp(t) and ẍp(t) into the equation of motion
(3.145) and grouping the terms as coefficients of cos(ωt) and sin(ωt) leads to(

−ω2 D + 2 ζ ω ω C + ω2 D − F0

m

)
sin(ωt)

+
(−ω2 C − 2 ζ ω ω D + ω2 C

)
cos(ωt) = 0 (3.148)
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3. Dynamic analysis

Equation (3.148) must hold for all time, therefore the coefficients of cos(ωt) and sin(ωt) must
vanish. This yields to two equations for the two coefficients C and D which result for

β =
ω

ω
(3.149)

to

C =
F0

k

[ −2 ζ β

(1 − β2)2 + (2 ζ β)2

]
(3.150)

D =
F0

k

[
1 − β2

(1 − β2)2 + (2 ζ β)2

]
Hence, the particular solution is described completely. However, neither the displacement xp(t)
nor the velocity ẋp(t) provide for the point in time t = 0 the value zero. In combination with the
homogeneous solution — see Equation (3.143) — these initial conditions need to be fulfilled

x(t = 0) = xh(t = 0) + xp(t = 0) = 0 (3.151)
ẋ(t = 0) = ẋh(t = 0) + ẋp(t = 0) = 0

which leads to

A = −C B =
−ζ ω C − ω D

ωd
(3.152)

The complete solution for the harmonic excitation of the spring-mass-damper system is conse-
quently

x(t) = xh(t) + xp(t)

= e−ζωt [A cos(ωdt) + B sin(ωdt)] + [C cos(ωt) + D sin(ωt)] (3.153)

and regarding the acceleraton ẍ(t)

ẍ(t) = e−ζωt
{[

(−ζω)2 − ω2
d
][

A cos(ωdt) + B sin(ωdt)
]

. . .

· · ·+ 2 (−ζω)2 ωd
[− A sin(ωdt) + B cos(ωdt)

]}
. . .

· · · − ω2[C cos(ωt) + D sin(ωt)
]

(3.154)

Spring-mass-damper model and linear excitation

In case of a linear excitation, as shown in Figure 3.15, the following equation of motion results
([48] p.41 et sqq.)

m ẍ(t) + c ẋ(t) + k x(t) = p(t) = F0 + ΔF t (3.155)
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3.5. Solution of the SDOF system

Figure 3.15.: SDOF — spring-mass-damper model and linear excitation

Like for the harmonic excitation, the solution again consists of a homogeneous and particular
solution. The latter is assumed to be of the form

xp(t) =
ΔF
k

t − c ΔF
k2 +

F0

k
(3.156)

Within the particular solution a linear time behaviour means a linear increase of the displacement
and hence of the spring force. Furthermore, the constant velocity causes a constant restraining
force of the damper ([48] p.41).

The contradiction regarding the required initial conditions for the point in time t = 0

x(t = 0) = 0 ẋ(t = 0) = 0 (3.157)

and the actual initial values of the particular solution

xp(t = 0) = − c ΔF
k2 +

F0

k
ẋp(t = 0) =

ΔF
k

(3.158)

is again correct by considering the homogeneous xh(t) solution (Equation (3.143)) like for the
harmonic excitation — see Equation (3.151) — which leads to the constant coefficients of the
harmonic solution

A =
c ΔF

k2 − F0

k
B =

[
c ΔF

k2 − F0

k

]
ζ ω

ωd
− ΔF

k ωd
(3.159)

The complete solution for the linear excitation of the spring-mass-damper system results to

x(t) = xh(t) + xp(t)

= e−ζωt [A cos(ωdt) + B sin(ωdt)] +
[

ΔF
k

t − c ΔF
k2 +

F0

k

]
(3.160)

and regarding the acceleraton ẍ(t)

ẍ(t) = e−ζωt
{[

(−ζω)2 − ω2
d
][

A cos(ωdt) + B sin(ωdt)
]

. . .

· · ·+ 2 (−ζω)2 ωd
[− A sin(ωdt) + B cos(ωdt)

]}
(3.161)

65



3. Dynamic analysis

3.5.2. SDOF system — moving load model

The differential equation for the Bernoulli-Euler beam — see Equation (3.9) — including the
load function of the moving load model — see Equation (3.41) — yields

EI wiv(x, t) + μ ẅ(x, t) + c(x) ẇ(x, t) = pz(x, t) =
n

∑
i=1

Pi Γ(xi) δ(x − xi) (3.162)

Applying the Ritz-Galerkin approximation with the eigenfunctions as shape functions, hence
the modal analysis, on Equation (3.162) reduces it to the modal equations like demonstrated in
Equation (3.120)

M∗ q̈ + C∗ q̇ + K∗ q = p∗ (3.163)

The modal force vector p∗is calculated according to Equation (3.118) with

p∗ =

⎛⎜⎜⎜⎝
∫

L pz φ1(x) dx
...∫

L pz φj(x) dx∫
L pz φm(x) dx

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
p∗1
...

p∗j
p∗m

⎞⎟⎟⎟⎠ (3.164)

Hence, for the jth modal force yields

p∗j =
∫

L
pz φj(x) dx =

∫
L

n

∑
i=1

Pi Γ(xi) δ(x − xi) φj(x) dx (3.165)

and due to the characteristics of the dirac delta function — see Equation (3.46) — becomes, after
solving the integral, to

p∗j =
n

∑
i=1

Pi Γ(xi) φj(xi) (3.166)

Therefore, one can write the modal equations like ([32] p.87)

M∗ q̈ + C∗ q̇ + K∗ q =
n

∑
i=1

Pi Γ(xi) φ(xi) (3.167)

with φ(xi) holding the eigenfunctions φj(xi) of each SDOF system

φT(xi) =
(

φ1(xi), · · · , φj(xi), φm(xi)
)

(3.168)

Each SDOF system (represented by each line) of Equation (3.167) is decoupled and linear.
Therefore, it is possible to solve the system of equations for one single load of e.g. ’1 kN’.
The answer for a whole train crossing (various consecutive single loads) is then obtained
via superposition of the the ’1 kN’ results under weighting regarding the real axle set loads
([32] p.87). In [56] analytical solutions with various boundary conditions (simply supported,
clamped-clamped, clamped-hinged, cantilever beam) for the Bernoulli-Euler beam subjected
to single loads moving at constant speed are presented. However, in the following chapter the
analytical solution for the simply supported case is presented which may be found in e.g. [32]
as well.
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3.5. Solution of the SDOF system

Analytical solution — simply supported Bernoulli-Euler beam

As mentioned above, the system of equations in Equation (3.167) are decoupled and linear.
Hence, in the following chapter the jth SDOF system is examined in detail. Furthermore, the
crossing of one single load is considered, as the results for an entire train are obtained by simple
superposition, considering the shift between the individual axle loads — see Figure 3.2.

With the eigenfunctions for the simple beam based on Equation (3.39) (B2 is set to 1)

φj(x) = sin
(

jπ
L

x
)

j = 1, 2, 3, . . . (3.169)

the equation of motion for the jth SDOF system subjected to one single load (see Equation
(3.166) with n = 1) becomes

m∗
j q̈j(t) + c∗j q̇j(t) + k∗j qj(t) = p∗j (t) = P1 Γ(x1) sin

(
jπ
L

x1

)
(3.170)

Furthermore, as x1 = v t (see Figure 3.2) Equation (3.170) yields to

m∗
j q̈j(t) + c∗j q̇j(t) + k∗j qj(t) = P1 Γ(x1) sin(ω jt) with: ω j =

jπv
L

(3.171)

One can see that Equation (3.171) represents the equation of motion for a spring-mass-damper
model under harmonic excitation according to Equation (3.144).

The modal mass m∗
j , the modal damping c∗j and the modal stiffness k∗j are determined with

Equations (3.95), (3.116) and (3.117) and become for the simple beam to

m∗
j =

∫
L

μ φ2
j (x) dx = μ

L
2

c∗j =
∫

L
c φ2

j (x) dx = c
L
2

(3.172)

k∗j =
∫

L
EI φiv

j (x) φj(x) dx = EI
j4π4

2L3

However, after considering Equations (3.129) and (3.135)

ωj =

√√√√ k∗j
m∗

j
c∗j = ζ j 2 m∗

j ωj (3.173)

and dividing Equation (3.171) by m∗
j yields Equation (3.145) in modal coordinates

q̈j(t) + 2 ζ j ωj q̇j(t) + ω2
j qj(t) =

P1 Γ(x1)

m∗
j

sin(ω jt) (3.174)

with the solution according to Equation (3.153), here specified for the jth SDOF system

qj(t) = e−ζ jωj t
[
Aj cos(ωd,jt) + Bj sin(ωd,jt)

]
+
[
Cj cos(ω jt) + Dj sin(ω jt)

]
(3.175)
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q̈j(t) = e−ζ jωj t
{[ (−ζ jωj

)2 − ω2
d,j
][

A cos(ωd,jt) + B sin(ωd,jt)
]

. . .

· · ·+ 2
(−ζ jωj

)2
ωd,j

[− A sin(ωd,jt) + B cos(ωd,jt)
]}

. . .

· · · − ω2
j
[
C cos(ω jt) + D sin(ω jt)

]
(3.176)

β j =
ω j

ωj
ωd,j = ωj

√
1 − ζ2

j

Aj = −Cj Bj =
−ζ j ωj Cj − ω j Dj

ωd,j

Cj =
P1 Γ(x1)

k∗j

[
−2 ζ j β j

(1 − β2
j )

2 + (2 ζ j β j)2

]
Dj =

P1 Γ(x1)

k∗j

[
1 − β2

j

(1 − β2
j )

2 + (2 ζ j β j)2

]
However, Equation (3.175) describes the so called ’phase 1’ which represents the single axle
crossing the beam. In order to consider the so called ’phase 2’, after the single force left the
beam, one uses the conditions (displacement and velocity) at the end of phase 1 as initial
conditions for the free motion of the damped SDOF system according to Equation (3.143). With
the analytical solution, considering phase 1 and phase 2, one can calculate the deflection of the
beam regarding the jth SDOF system in physical coordinates w̃j(x, t) using Equation (3.85)

w̃j(x, t) = φj(x) qj(t) (3.177)

After solving each SDOF system (j = 1 . . . m) analytically and independently from each other,
these can be summed up to the approximate solution of the beam’s deflection w̃(x, t), again
according to Equation (3.85)

w(x, t) ≈ w̃(x, t) =
m

∑
j=1

φj(x) qj(t) (3.178)

Theoretically, if an infinite number of eigenfunctions (m = ∞) is considered, then one obtains
the exact solution, hence w(x, t) = w̃(x, t). After calculating the crossing of a ’1 kN’ single load,
the result for a train is obtained by considering the actual axle-set loads and the time difference
with which the axle-sets approach the structure.

Analytical solution — general structure

The following approach was developed by [48] leading to a powerful and for engineers easy to
implement software tool which allows to simulate high-speed train crossings on complex bridge
structures in an analytical way. The general idea is to use the analytical solutions for SDOF
system under harmonic and linear excitation, which were presented in the previous chapters.
Therefore, the bridge structure is first modelled in a commercial FEM program. In order to be
able to reduce the problem from a MDOF system to a set of SDOF systems, the second step is
to solve the eigenvalue problem of the bridge structure using the FEM software as well. One
obtains for all modes of interest (j = 1 . . . N) the natural frequencies ωj, modal masses m∗

j and
the mode shapes φrail,j,FEM along the centerline of the rail where the single force crossing is
simulated as presented in Figure 3.16.
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3.5. Solution of the SDOF system

Figure 3.16.: 3-span-plate structure modelled with FEM — total length L=24m — mode shape j — mode
shape along centerline of rail axis φrail,j,FEM

In the next step the mode shape φrail,j,FEM is approximated by l = 1 . . . h sin-functions and one
linear function using the least squares method [48]. The approximated mode shape φrail,j,app(x) is
then calculated according to Equation (3.179) with aj,l being the amplitudes of the sin-functions
and bj,h+1 and bj,h+2 defining the linear function.

φrail,j,FEM ≈ φrail,j,app(x) =
h

∑
l=1

aj,l sin
( x

L
lπ
)
+

(
bj,h+1 +

(
bj,h+2 − bj,h+1

)
L

x

)
(3.179)

Figure 3.17 illustrates the general approach with eight (h = 8) sin-functions (first four are
plotted) and the linear function yielding to φrail,j,app(x) for the 3-span-plate structure of Figure
3.16.
Reviewing the definition of the modal force p∗j according to Equation (3.166) provides for the
crossing of one single load P1

p∗j = P1 Γ(x1) φj(x1) with: x1 = v t (3.180)

and inserting the approximated mode shape along the centerline of the rail φrail,j,app(x) for
φj(x1) leads with x = x1 to

p∗j = P1 Γ(x1) φrail,j,app(x1) with: x1 = v t (3.181)

p∗j = P1 Γ(x1)

[
h

∑
l=1

aj,l sin (ωl t) +

(
bj,h+1 +

(
bj,h+2 − bj,h+1

)
v

L
t

)]
with: ωl =

v π l
L

As the MDOF system in the FEM program was already decoupled by solving the eigenvalue
problem, one can solve each line of the system of equations (each SDOF) independently of the
other.

Therefore, the equation of motion for the jth SDOF system becomes, regarding the crossing of
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3. Dynamic analysis

Figure 3.17.: Mode shape along centerline of rail axis φrail,j,FEM — approximation with sin-functions and
linear-functions by φrail,j,app(x)

one single load along the centerline of the rail, to

m∗
j q̈j(t) + c∗j q̇j(t) + k∗j qj(t) = . . . (3.182)

. . . P1 Γ(x1)

[
h

∑
l=1

aj,l sin
(
ωl t

)
+

(
bj,h+1 +

(
bj,h+2 − bj,h+1

)
v

L
t

)]
with: ωl =

v π l
L

Figure 3.18 illustrates the meaning of Equation (3.182). The given modal force p∗j (t) is split up
into h harmonic excitation terms p∗j,l(t) and one linear excitation term p∗j,h+1(t), which can be
solved independently and analytically.

The modal mass m∗
j , modal damping c∗j and modal stiffness k∗j stay for each excitation within

a SDOF system the same. However, for each harmonic excitation the solution according to
Equation (3.153) is used, considering

F0 = aj,l and ω = ωl =
v π l

L
(3.183)

For the linear excitation the solution according to Equation (3.160) is used equally, considering

F0 = bj,h+1 and ΔF =

(
bj,h+2 − bj,h+1

)
v

L
(3.184)

After evaluating the analytical solutions for each excitation, the SDOF system’s total response
qj(t) is obtained with

qj(t) =
h

∑
l=1

qj,l(t) + qj,h+1(t) (3.185)
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Figure 3.18.: SDOF system for the jth mode — modal force p∗j (t) approximated by harmonic and linear excitation

71



3. Dynamic analysis

This procedure is repeated for all considered mode shapes (j = 1 . . . m) and afterwards trans-
formed back to the physical coordinate system according to Equation (3.85) yielding to the
deflection along the centerline of the rail

wrail(x, t) ≈ w̃rail(x, t) =
m

∑
j=1

φrail,j,app(x) qj(t) (3.186)

In case one would like to obtain the deflections on another point of the structure, e.g. at point
P1 in Figure 3.16, the to point P1 associated values of the mode shapes φP1,j,FEM need to be
considered

wP1(t) ≈ w̃P1(t) =
m

∑
j=1

φP1,j,FEM qj(t) (3.187)

The same approach is applied in case one would like to calculate internal forces, e.g. the bending
moment M̃P1(t) at point P1, due to the crossing of a single load along the centerline of the rail.
Here, the bending moments at point P1 MP1,j,FEM associated to the individual mode shapes j
need to be considered

MP1(t) ≈ M̃P1(t) =
m

∑
j=1

MP1,j,FEM qj(t) (3.188)

Numerical solution — general structure

Another approach is to solve the equations of motion of the SDOF system numerically. As
presented in the previous chapters this is for the linear problem, due to the moving load model,
not necessary. In case of coupled modal equations (e.g. for the 2D multi-body load model) the
numerical solution can not be avoided anymore. However, here the numerical approach will be
presented and implemented according to [32]. The programming is done by using the software
Matlab, in particular Simulink. This software package allows to use block diagrams, which makes
an intuitive programming possible. The first step is to rearrange the modal equation of motion
in a way so that q̈ is on one side of the equation. Hence, Equation (3.167) becomes

q̈ = [M∗]−1

[
n

∑
i=1

Pi Γ(xi) φ(xi)− C∗ q̇ − K∗ q

]
(3.189)

Figure 3.19 illustrates the block diagram for the modal system of equations due to the moving
load model. The modal mass matrix M∗, modal damping matrix C∗, modal stiffness matrix K∗
and the modal force vector p∗ are represented as blocks and interact via the modal coordinates
q̈, q̇ and q with each other. The block ’product’ combines the inverse of the modal mass matrix
M∗ and the sum of −C∗ q̇ − K∗ q and the modal force vector p∗ which needs to be equal to the
start signal q̈ ([32] p.91).
After solving the modal system of equations, Simulink returns the following results:

• time vector t for l = 1 . . . h time steps
• matrix ML q with results for the modal coordinate q
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3.5. Solution of the SDOF system

M = M∗ C = C∗ K = K∗ p = p∗

Figure 3.19.: Simulink block diagram for the modal system of equations and the moving load model

• matrix ML q dot with results for the modal coordinate q̇
• matrix ML q 2dot with results for the modal coordinate q̈

The structures of the time vector t and the matrix ML q (with j = 1 . . . m considered mode
shapes; equivalent for ML q dot and ML q 2dot) are

t =

⎛⎜⎜⎜⎝
t1
...
tl
th

⎞⎟⎟⎟⎠ ML q =

⎛⎜⎜⎜⎝
q11 · · · qj1 qm1
...

. . .
q1l qjl qml
q1h qjh qmh

⎞⎟⎟⎟⎠ (3.190)

The numerical integration was performed using the from Matlab provided solver 113, according
to [32].

3.5.3. SDOF system — 2D multi-body model

The load function for the 2D multi-body model of one car is according to Equation (3.83)

pz(x, t) =
4

∑
i=1

{Fstat,i − Fk1i − Fc1i − mWi ẅ(xi)} Γ(xi) δ(x − xi) (3.191)

In order to apply the modal analysis on the above stated load function, the acceleration ẅ(xi)
needs to be substituted by the Ritz approximation ([32] p.69 et sqq.)

w(x, t) ≈ w∗(x, t) =
m

∑
j=1

φj(x) qj(t) x = xi(t) (3.192)

and subsequently, considering the variable xi being a function of time as well, its second
derivative with respect to time yields

ẅ∗(xi, t) =
m

∑
j=1

(
q̈j φj(xi) + 2 q̇j φ̇j(xi) + qj φ̈j(xi)

)
(3.193)

73



3. Dynamic analysis

The jth eigenfunction for the Bernoulli-Euler beam, according to Equation (3.22) and considering
x = xi(t) = v t − l1,i according to Figure 3.2, is

φj(xi) = B1,j cos(kjxi) + B2,j sin(kjxi) + B3,j cosh(kjxi) + B4,j sinh(kjxi) (3.194)

and its first derivative with respect to time, considering Equation (3.23) leads to

φ̇j(xi) = v kj
[−B1,j sin(kjxi) + B2,j cos(kjxi) + B3,j sinh(kjxi) + B4,j cosh(kjxi)

]
φ̇j(xi) = v φ′

j(xi) (3.195)

respectively its second derivative with respect to time, considering Equation (3.24) yields to

φ̈j(xi) = v2 k2
j
[−B1,j cos(kjxi)− B2,j sin(kjxi) + B3,j cosh(kjxi) + B4,j sinh(kjxi)

]
φ̈j(xi) = v2 φ′′

j (xi) (3.196)

Substituting Equations (3.195) and (3.196) into (3.193) yields

ẅ(x, t) ≈ ẅ∗(xi, t) =
m

∑
j=1

(q̈j φj(xi)︸ ︷︷ ︸
(a)

+ 2 v q̇j φ′
j(xi)︸ ︷︷ ︸

(b)

+ v2 qj φ′′
j (xi)︸ ︷︷ ︸

(c)

) (3.197)

The three terms in Equation (3.197) one can interpret as follows ([17] p.65)

(a) Vertical acceleration of the beam
(b) Coriolis acceleration due to the rotation velocity of the cross section
(c) Influence of the beam curvature

Substituting Equation (3.197) into (3.191) and applying the modal analysis, like in Chapter 3.5.2,
on the resulting load function yields the following modal load vector for the 2D multi-body
model of one car

p∗ =
4

∑
i=1

{
Fstat,i − Fk1i − Fc1i − mWi

m

∑
j=1

[
q̈j φj(xi) + 2 v q̇j φ′

j(xi) + v2 qj φ′′
j (xi)

]}
Γ(xi) φ(xi)

(3.198)

and subsequently the system of equations for the bridge structure — superscripts b stands for
’bridge’ on the system matrices — results to

M∗,b q̈ + C∗,b q̇ + K∗,b q =
4

∑
i=1

{
Fstat,i − Fk1i − Fc1i − mWi

m

∑
j=1

[
q̈j φj(xi) + 2 v q̇j φ′

j(xi) + . . .

· · ·+ v2 qj φ′′
j (xi)

]}
Γ(xi) φ(xi) (3.199)

Simultaneously, the equations of motion of the car — see Equation (3.73), superscript c stand
for ’car’ on the system matrices — need to be solved

Mc ü + Cc u̇ + Kc u = −Fw − Fẇ (3.200)
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3.5. Solution of the SDOF system

Equations (3.199) are coupled with Equations (3.200) via the spring and damper forces. These
are represented regarding the beam (Equations (3.199)) by Fk1i and Fc1i and regarding the
train car by Fw and Fẇ. Furthermore, the 2D multi-body model of the train car is split up and
distributed on both equations. The wheels with their mass mWi are part of the Equations for
the beam (3.199) and constrained to the movement of the beam. The modelling of the wheels
on the beam is performed as presented in Chapter 3.1.3 by using the moving mass model. On
the other hand, the dynamic behaviour of the car body and the two bogies is described by the
Equations (3.200) ([32] p.111).

Numerical solution — general structure

The differential equations mentioned in the chapter above (Equation (3.199) and (3.200)) can
only be solved using numerical solutions, which is realized again with the software Simulink.
Therefore, Equation (3.199) needs to be transformed in a way so that q̈ is on the left side of the
equation. Subsequently, the algebraic loop of Equation (3.199) — term q̈ is part of the right and
left side of the equation — will be resolved as follows considering only one wheel mass mWi
(i=1) and two eigenfunctions φj(xi) (j=2) ([32] p.112). Hence, Equation (3.199) becomes[

m1 0
0 m2

] (
q̈1
q̈2

)
+

[
c1 0
0 c2

] (
q̇1
q̇2

)
+

[
k1 0
0 k2

] (
q1
q2

)
= . . . (3.201){

Fstat,1 − Fk11 − Fc11 − mW1

[
q̈1 φ1(x1) + 2 v q̇1 φ′

1(x1) + v2 q1 φ′′
1 (x1) . . .

· · ·+ q̈2 φ2(x1) + 2 v q̇2 φ′
2(x1) + v2 q2 φ′′

2 (x1)
]}

Γ(x1)

(
φ1(x1)
φ2(x1)

)
which yields[

m1 0
0 m2

] (
q̈1
q̈2

)
+

[
c1 0
0 c2

] (
q̇1
q̇2

)
+

[
k1 0
0 k2

] (
q1
q2

)
= . . . (3.202){

Fstat,1

(
φ1(x1)
φ2(x1)

)
− Fk11

(
φ1(x1)
φ2(x1)

)
− Fc11

(
φ1(x1)
φ2(x1)

)
. . .

· · · − mW1

[ [
φ1φ1 φ2φ1
φ1φ2 φ2φ2

]
x=x1

(
q̈1
q̈2

)
+ 2 v

[
φ′

1φ1 φ′
2φ1

φ′
1φ2 φ′

2φ2

]
x=x1

(
q̇1
q̇2

)
. . .

· · ·+ v2
[

φ′′
1 φ1 φ′′

2 φ1
φ′′

1 φ2 φ′′
2 φ2

]
x=x1

(
q1
q2

)]}
Γ(x1)

For m considered mode shapes, Equation (3.202) is in index notation

M∗,b q̈ + C∗,b q̇ + K∗,b q =
4

∑
i=1

{
Fstat,i φ(xi)− Fk1i φ(xi)− Fc1i φ(xi) . . . (3.203)

· · · − mWi

[
φ(xi) φT(xi) q̈ + 2 v φ(xi) φ′T

(xi) q̇ + v2 φ(xi) φ′′T
(xi) q

]}
Γ(xi)
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3. Dynamic analysis

In order to eliminate the algebraic loop, all terms including q̈ are put on the left side of the
equation

M∗,b q̈ +
4

∑
i=1

{
mWi φ(xi) φT(xi) Γ(xi)

}
q̈ =

4

∑
i=1

{
Fstat,i φ(xi)− Fk1i φ(xi)− Fc1i φ(xi) . . .

· · · − mWi

[
2 v φ(xi) φ′T

(xi) q̇ + v2 φ(xi) φ′′T
(xi) q

]}
Γ(xi)− C∗,b q̇ − K∗,b q (3.204)

Introducing the abbreviations for the modal mass matrix M∗,b
nal and the force vector p∗,b

nal avoiding
the algebraic loop (subscript nal = no algebraic loop)

M∗,b
nal = M∗,b +

4

∑
i=1

{
mWi φ(xi) φT(xi) Γ(xi)

}
(3.205)

p∗,b
nal =

4

∑
i=1

{
Fstat,i φ(xi)− Fk1i φ(xi)− Fc1i φ(xi) . . .

· · · − mWi

[
2 v φ(xi) φ′T

(xi) q̇ + v2 φ(xi) φ′′T
(xi) q

]}
Γ(xi) (3.206)

finally yields

q̈ =
[
M∗,b

nal

]−1 {
p∗,b

nal − C∗,b q̇ − K∗,b q
}

(3.207)

Figure 3.20 illustrates the block diagram for the modal system of equations presented in
Equation (3.207). Like for the moving load model in Equation (3.189) the solver ode113 was used
here as well.

M = M∗,b
nal C = C∗,b K = K∗,b p = p∗,b

nal

Figure 3.20.: Simulink block diagram for the modal system of equations and the 2D multi-body load model
— according to Equation (3.207)
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3.5. Solution of the SDOF system

The block diagram for the modal force vector p∗,b
nal from Figure 3.20 is shown in detail in Figure

3.21 for three train cars.

Figure 3.21.: Simulink block diagram for the modal force vector p∗,b
nal of the 2D multi-body load model due

to three train cars — according to Equation (3.206)
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3. Dynamic analysis

In Figure 3.22 one can see the block diagram of the system of equations, according to Equation
(3.200), for the train car number one (Car 1) illustrated in Figure 3.21.

M car = Mc C car = Cc K car = Kc Fw car = Fw Fw dot car = Fẇ

Figure 3.22.: Simulink block diagram for the system of equations of train car number one — according to
Equation (3.200)
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3.6. Non-dimensional response representation

3.6. Non-dimensional response representation

The dynamic simulation of a train crossing, represented by the moving load model, on a
bridge structure, represented by a Bernoulli-Euler beam, is a computationally demanding task.
Therefore, simple methods were developed, which enable the practising engineer, without
performing complex time history analysis, to quickly check whether a design criteria (e.g.
maximum bridge deck acceleration ẅ(x, t)), according to the relevant design code, is fulfilled
or not. One methodology is the non-dimensional response representation, which according to [1]
was developed simultaneously by [23] and [15]. The idea was to create diagrams, which are
valid for a chosen bridge type (e.g. steel bridges) and a set of trains (e.g. the ten HSLM-A
trains), only depending on the bridge span L and a frequency ratio β1. With these two values,
the practising engineer is able to determine first the non-dimensional result (e.g. the non-
dimensional maximum bridge deck acceleration ẅnon−dim(x, t)) by evaluating the diagram. In
the second step, the dimensional result (e.g. dimensional maximum bridge deck acceleration
ẅ(x, t)) for the given bridge structure, characterised by EI and μ, is calculated.

In the following paragraphs a quick overview of the mathematical and mechanical background
will be given, which may be found in more detail in [16], [32], [33], [23], [1], [55], [54] and [53].
Additionally, an illustrative example explains the application of these non-dimensional response
diagrams.

Equation (3.175), which is the solution of the jth SDOF system representing the crossing of one
single load P1, may be written as

qj(t) =
P1 Γ(x1)

k∗j

{
e−ζ jωj t

[
Âj cos(ωd,jt) + B̂j sin(ωd,jt)

]
. . .

· · ·+ [
Ĉj cos(ω jt)+D̂j sin(ω jt)

]}
(3.208)

β j =
ω j

ωj
ωd,j = ωj

√
1 − ζ2

j

Âj = −Ĉj B̂j =
−ζ j ωj Ĉj − ω j D̂j

ωd,j

Ĉj =
−2 ζ j β j

(1 − β2
j )

2 + (2 ζ j β j)2
D̂j =

1 − β2
j

(1 − β2
j )

2 + (2 ζ j β j)2

Furthermore, considering an entire train, hence i = 1 . . . n single loads, and the time difference
Δt1i of the first to the ith single load (axle-set), results

qj(t) =
∑n

i=1 Pi Γ(xi)

k∗j

{
e−ζ jωj(t−Δt1i)

[
Âj cos(ωd,j(t − Δt1i)) + B̂j sin(ωd,j(t − Δt1i))

]
. . .

· · ·+
[
Ĉj cos(ω j(t − Δt1i)) + D̂j sin(ω j(t − Δt1i))

]}
(3.209)
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3. Dynamic analysis

Substituting the modal stiffness k∗j for the simple beam according to Equation (3.172) yields

qj(t) =
2L3

EI j4π4

n

∑
i=1

Pi Γ(xi)

{
e−ζ jωj(t−Δt1i)

[
Âj cos(ωd,j(t − Δt1i)) + B̂j sin(ωd,j(t − Δt1i))

]
. . .

· · ·+
[
Ĉj cos(ω j(t − Δt1i)) + D̂j sin(ω j(t − Δt1i))

]}
(3.210)

and expressing the main part of the resulting equation by λnon−dim,j leads to

qj(t) =
2L3

EI j4π4 λnon−dim,j (3.211)

with: λnon−dim,j =
n

∑
i=1

Pi Γ(xi)

{
e−ζ jωj(t−Δt1i)

[
Âj cos(ωd,j(t − Δt1i)) + B̂j sin(ωd,j(t − Δt1i))

]
. . .

· · ·+
[
Ĉj cos(ω j(t − Δt1i)) + D̂j sin(ω j(t − Δt1i))

]}
(3.212)

Equation (3.212) is formulated independently of the bending stiffness EI and the mass per
unit length μ. This fact, is the basic idea of the non-dimensional representation. The bending
stiffness EI and the mass per unit length μ are only represented in indirect form by ωj ([32]
p.125). In general, Equation (3.212) depends on the following variables1:

• Damping ratio ζ j
• Ratio β j of the forcing frequency ω j and natural frequency ωj
• Loading term ∑n

i=1 Pi Γ(xi)

Therefore, λnon−dim,j is a function of ζ j, β j and Pi. Hence, Equation (3.211) becomes

qj(t) =
2L3

EI j4π4 λnon−dim,j(ζ j, β j, Pi) (3.213)

Substituting qj(t) from above together with the eigenfunction for the simple beam — see
Equation (3.169 ) — into the Ritz approximation of Equation (3.85) yields

w(x, t) ≈ w̃(x, t) =
m

∑
j=1

qj(t) φj(x)

w̃(x, t) =
m

∑
j=1

2L3

EI j4π4 λnon−dim,j(ζ j, β j, Pi) sin
(

jπ
L

x
)

(3.214)

1Neglecting the variable of time t.
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3.6. Non-dimensional response representation

Multiplying Equation (3.214) by EI
L3 and dividing it by the trains maximum axle-set load Pmax

1

yields

w̃(x, t)
EI

Pmax L3 =
1

Pmax

m

∑
j=1

2
j4π4 λnon−dim,j(ζ j, β j, Pi) sin

(
jπ
L

x
)

︸ ︷︷ ︸
f (ζ j, β j, Pi, L)

(3.215)

The resulting Equation (3.215) is now dimensionless and a function of ζ j, β j, Pi and L. Further-
more, for the simple beam, the ratios β j can be expressed in the form ([32] p.126)

β j =
ω j

ωj
=

β1

j
(3.216)

meaning that all β j can be expressed by β1. Additionally, the damping ratios ζ j usually depend
on one defined ζ ([32] p.128). These assumptions lead to the non-dimensional deflection of the
Bernoulli-Euler beam due to the crossing of a set of single loads ([32] p.126)

w̃non−dim(x, t) = w̃(x, t)
EI

Pmax L3 = f (ζ, β1, Pi, L) (3.217)

Consequently, the non-dimensional deflection w̃non−dim(x, t) is the same for systems only
differing in the bending stiffnesses EI and masses per unit lengths μ, as long as the resulting
natural frequencies ωn,1 and hence the ratios β1 are the same. Furthermore, it is possible to
illustrate the non-dimensional deflections for a given train Pi and damping ratio ζ in dependence
of the frequency ratio β1 and beam length L ([32] p.128).

Equally, it is possible to find the non-dimensional bending Moment M̃y,non−dim(x, t)

My(x, t) ≈ M̃y(x, t) =
m

∑
j=1

qj(t) φ′′
j (x)(−EI)

M̃y(x, t) =
m

∑
j=1

2L3

EI j4π4 λnon−dim,j(ζ j, β j, Pi)
j2π2

L2 sin
(

jπ
L

x
)

EI

M̃y(x, t) =
m

∑
j=1

2L
j2π2 λnon−dim,j(ζ j, β j, Pi) sin

(
jπ
L

x
)

M̃y,non−dim(x, t) = M̃y(x, t)
1

Pmax L
=

1
Pmax

m

∑
j=1

2
j2π2 λnon−dim,j(ζ j, β j, Pi) sin

(
jπ
L

x
)

︸ ︷︷ ︸
f (ζ, β1, Pi, L)

(3.218)

1Since the equations are linear, the results are scaled down to a ’1 kN’ load regarding the maximum axle-set
load Pmax.
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3. Dynamic analysis

The similar approach regarding the acceleration leads with Equation (3.176) to

ẅ(x, t) ≈ ˜̈w(x, t) =
m

∑
j=1

q̈j(t) φj(x)

˜̈w(x, t) =
m

∑
j=1

1
m∗

j
λ̈non−dim,j(ζ j, β j, Pi) sin

(
jπ
L

x
)

˜̈w(x, t) =
m

∑
j=1

2
μ L

λ̈non−dim,j(ζ j, β j, Pi) sin
(

jπ
L

x
)

˜̈wnon−dim(x, t) = ˜̈w(x, t)
μ L
Pmax

=
1

Pmax

m

∑
j=1

2 λ̈non−dim,j(ζ j, β j, Pi) sin
(

jπ
L

x
)

︸ ︷︷ ︸
f (ζ, β1, Pi, L)

(3.219)

In conclusion, the following relationships regarding the dimensional and non-dimensional ex-
pressions — see Equations (3.217), (3.218) and (3.219), here for an infinite number of considered
eigenfunctions (m = ∞) — are summarized1

wnon−dim(x, t) = w(x, t)
EI

Pmax L3 (3.220)

My,non−dim(x, t) =
My(x, t)
Pmax L

(3.221)

ẅnon−dim(x, t) = ẅ(x, t)
μ L
Pmax

(3.222)

The variable β1 according to Equation (3.216) in [32] is equal to the variable S which is used in
[1] and in this doctoral thesis.

β1 =
ω1

ω1
=

πv
L

n1 2 π
= S =

v
2 L n1

(3.223)

In the following paragraphs, a short example, regarding the bridge deck acceleration due
to the crossing of the HSLM-A3 train on three different bridge structures, will illustrate the
general procedure. In practice, the time history for the acceleration is not of interest, but the
absolute maximum acceleration |amax| along the x-axis of the bridge structure is essential as it is
compared to a limit value of the relevant design code. In Figure 3.23 these absolute maximum
accelerations |amax| due to the HSLM-A3 train for three different structures are plotted against
the train speed.

On the other hand, Figure 3.24 shows the non-dimensional response spectra in black

|āmax| = max ẅnon−dim(x, t) = max ẅ(x, t)
μ L
Pmax

= |amax| μ L
Pmax

(3.224)

which also includes the responses of the three different bridges. Hence, one needs to calculate
once the non-dimensional response spectra |āmax|, which is valid for a certain damping ratio ζ,
bridge length L and train model, and is afterwards able to determine the dimensional results
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3.6. Non-dimensional response representation

Figure 3.23.: Dimensional results |amax| due to HSLM-A3 train — for structures 1 to 3 — all L =
50m and ζEC = 0.5% Rayleigh like damping

Figure 3.24.: Non-dimensional results |āmax| due to HSLM-A3 train — for structures 1 to 3 — all L
= 50m and ζEC = 0.5% Rayleigh like damping
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3. Dynamic analysis

|amax| for a certain velocity range (here 50 to 300 km/h) and for all bridges differing in μ — see
Equation (3.223) and Equation (3.224).

The procedure described above was demonstrated for a simple-span beam bridge with a total
length of L = 50m. Calculating the non-dimensional response spectra for the range of lengths
starting from 7m to 80m with a ΔL = 0.5m leads to Figure 3.25. The black line represents the
non-dimensional response spectra of Figure 3.24.

Figure 3.25.: Non-dimensional results |āmax| due to HSLM-A3 train — for structures 1 to 3 — all L = 50m and
ζEC = 0.5% Rayleigh like damping

1The relationships of Equations (3.220) to (3.222) comply with the ones presented in [1].
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4. Traffic mixes

In this chapter, the five different traffic mixes, which are used in this doctoral thesis, are
introduced. All five traffic mixes are based on a traffic volume of 24.95 106 t/year/track and a
design life of 100 years. The first traffic mix — traffic mix 1 — contains the first eight service
trains of ÖNORM EN 1991-2 [43] Annex D. This traffic mix 1 is also the basis for the fatigue
design of new railway bridges, based on the load model LM71 and the damage equivalent
factor λ — see Equation (2.28). The traffic mixes 2 and 3 consider measured trains along the
high-speed line Westbahn, which connects the cities of Vienna and Salzburg via Linz. Within two
years about 94602 real trains were measured. The procedure to identify and group these real
trains is described as follows. The traffic mixes 4 and 5 are theoretical, and supposed to cover
a pure high-speed traffic mix and a mixed traffic mix (high-speed trains and freight trains).
Additionally, the considered train speeds for each traffic mix are defined.

4.1. Traffic mix 1

The traffic mix 1 considers the eight trains according to ÖNORM EN 1991-2 [43] Annex D, which
are illustrated in Figure 2.18 and Annex A.1. In the following, these trains are labelled according
to [37], hence e.g. Type 1 becomes TypeC1. Consequently, these eight trains are combined
according to ÖNORM EN 1991-2 Table D.1 [43], leading to traffic mix 1 — see Table 4.1.

Train type
Mass of
train [t]

Nr. of
trains/day

Traffic
volume

[103 t/year]

Nr. of trains
/100years

Traffic
volume [103 t

/100years]
1 TypeC1 663 12 2903.9 438000 290390
2 TypeC2 530 12 2321.4 438000 232140
3 TypeC3 940 5 1715.5 182500 171550
4 TypeC4 510 5 930.8 182500 93080
5 TypeC5 2160 7 5518.8 255500 551880
6 TypeC6 1431 12 6267.8 438000 626780
7 TypeC7 1035 8 3022.2 292000 302220
8 TypeC8 1035 6 2266.7 219000 226670

67 ≈ 24950.0 2445500 ≈ 2495000

Table 4.1.: Traffic mix 1 — according to standard rail traffic (EC mix) with axles ≤ 22.5t in
ÖNORM EN 1991-2 Table D.1 [43]

The produced damage Ddyn of a train crossing strongly depends, besides many other factors,
on the train speed. Therefore, three different variations in train speeds were considered for the
dynamic calculation, as illustrated in Table 4.2.
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Variant TM1* TM1** TM1***

Train type
Speed

vEC
[km/h]

Speed range
50 - 1.2 vEC

[km/h]

Speed range
50 - 1.2 vEC

[km/h]
TypeC1 200 50-240 50-240
TypeC2 160 50-192 50-192
TypeC3 250 50-300 50-300
TypeC4 250 50-300 50-300
TypeC5 80 50-96 50-96
TypeC6 100 50-120 50-120
TypeC7 120 50-144 50-144
TypeC8 100 50-120 50-120

Train speed — used
for Ddyn calculation

vEC vDmax vamax

Table 4.2.: Traffic mix 1 — considered variants of train speeds

The first variant — TM1* — considers the trains speeds vEC according to ÖNORM EN 1991-2
[43] in Annex D. Hence, only one train speed per train type is stated in Table 4.2.
The second variant — TM1** — considers for each train type, a speed range starting from 50
km/h up to 1.2 times vEC. Within this defined speed range, for each train type on each structure,
the speed vDmax is looked for. This speed is defined as the one, at which the particular train
produces the maximum damage Ddyn on a particular structure. Consequently, all eight train
types cross all structures, for the design life of 100 years, with the speed causing the maximum
damage Ddyn. Hence, variant TM1** can be seen as the most conservative approach possible.
The last variant — TM1*** — considers the before mentioned speed ranges as well, but it
is looked for the speed vamax , which produces the maximum absolute vertical bridge deck
acceleration |amax|. This speed is then used for the damage calculation and should give an
answer to the question whether or not one can simply use the bending moment ranges at
resonant speed, regarding the bridge deck acceleration |amax|, in order to obtain the maximum
damage Ddyn.

4.2. Traffic mix 2 and traffic mix 3

This chapter covers the analysis of the measured train axle loads, which was provided by the
ÖBB. First, the location of the monitoring station and the raw-data itself are briefly discussed.
Subsequently, the method to identify train-types and train-classes using the measured train axle
loads raw-data and the consequential results are presented. Finally, the traffic mixes 2 and 3 are
specified and introduced.

4.2.1. Monitoring Station

The raw-data represents measured train axle loads from the monitoring point Enns, which
is located on the high-speed line Westbahn between the two cities of Linz and Vienna — see
Figure 4.1.
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Figure 4.1.: High-speed line Westbahn between cities of Salzburg and Vienna
— monitoring station Enns between the cities of Linz and Vienna

4.2.2. Raw-data of the measured axle loads

At the monitoring point Enns the system was installed on two tracks. Track 3 leads towards the
city of Vienna, whereas track 4 leads to the city of Linz. In Table 4.3 the number of measured
train axles per track is illustrated for the two considered years 2014 and 2015.

������
Year Track 3 (Vienna) 4 (Linz)

2014 1251724 940569
2015 1147879 921346

Table 4.3.: Number of measured train axles per track and year

The monitoring system collected the following information for each passed train axle:

• Date
• Time
• Train number
• Direction
• Number of cars within train
• Number of axles within car
• Average speed [km/h]

• Monitoring point number
• Total number of axles within train
• Axle mass [t]
• Train mass [t]
• Train length [m]
• Distance to the subsequent axle [m]

In Figure 4.2 the distribution of the axle masses combined for both tracks and the years 2014
& 2015 are illustrated. One can see that the vast majority is beneath 22.5 t1, as from the ÖBB
demanded. Furthermore, about 46% of all axle masses are between 11.5 t and 13.5 t, as the
cumulative distribution function (CDF) shows in Figure 4.2.

1See in Figure 4.2 class 22t, which covers axle masses > 21.5t to ≤ 22.5t.
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Figure 4.2.: Axle mass distribution — years 2014 & 2015 and tracks 3 & 4

4.2.3. Method to identify different train classes and train types

In general, the goal was to identify train-types — such as ICE, Railjet, etc. — and train-classes
— such as passenger train (PT), freight train (FT) and special train (ST) — using the train axle
loads raw-data from Chapter 4.2.2. As the list above states, the different train axle loads were
already grouped into trains. Nevertheless, neither the train-type nor the train-class is known.
However, this information is necessary in order to develop simplified real traffic mixes, which
cover the damage induced by all real trains — see Chapter 5. The applied method to identify
train-type and train-class of each single train is described as follows in this section.

First, an identification via the train number — see list on page 87 — was performed. This
approach did not turn out to be successful as the train number led to contradictory results. The
same train numbers identified different train-types. Therefore, an identification scheme using
the axle distance geometries was developed. The procedure shown in Figure 4.3 was realized
with the software MATLAB [34].

Initially, the trains were identified using the information Number of axle within car, Date and Time
from the list on page 87. These trains were sorted into groups with the same number of axles,
hence train axle groups result. Within these groups, the trains were compared, regarding the axle
distances, to each other. If trains matched with no less than 3% divergence, they were put into a
common train group. This procedure was repeated until each train within a train axle group was
assigned to a train group.

88



4.2. Traffic mix 2 and traffic mix 3

Figure 4.3.: Flowchart diagram for train identification

Next, these train groups were allocated to train types, hence real trains, if possible. Consequently,
the average axle distances of the train groups were compared to the ones of known passenger
trains (PT), which are listed here:

• Railjet (TypeC19)
• ICE-T1 411 (TypeC14)
• DOSTO
• Talent 4023
• Talent 4024

The names in brackets refer to the terms according to the ÖBB guideline [37].

In the last step, the remaining train groups were assigned to train classes — passenger trains
(PT), freight trains (FT) and special trains (ST). Therefore, the following characteristics were
used consecutively:

• Freight trains (FT)

– Bogie axle distance = 1800mm: The bogie types Y25 and WU83 are the most used ones
for freight trains in Europe. For both, various versions exist, but all of them are
characterized by a wheelbase of 1800mm ([4] p.164).

– Wheelbases for two-axle cars: The wheelbases for the in Austria used two-axle cars is
either 6000mm, 8000mm or 9000mm. [50]
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– Speed 120 km/h: According to the Rail Cargo Austrian AG the maximum speed for
freight cars can not exceed 120 km/h [50].

• Passenger trains (PT)
The well known train Railjet was used as basis to identify passenger cars. The Railjet’s
axle distances 2500mm (bogie) and 16500mm (innermost axle distance) were identified in
many other trains with speeds > 160 km/h as well. These trains featured another common
type of PT with axle distances of 2500mm and 15800mm, respectively. Consequently, the
following axle distances were used to identify PT:

– Bogie axle distance = 2500mm
– Axle distance between the innermost axles of a four-axle passenger car = 15800mm, 16500mm

Additionally, the axle loads of PT vary little in comparison to FT, which makes it easier to
identify the first ones.

• Special trains (ST)

– Power cars: Sometimes exclusively locomotives were put together in line. In general,
the power car Taurus was detected easily due to the unique axle distances and the
very little varying axle loads.

– Other trains: In this category all track construction trains, test trains, trains with less
than 8 axles and unknown trains were considered.

4.2.4. Results

In the following chapter, the results of the analysed monitoring station raw-data is presented. It
was possible to group the identified trains into train classes — passenger trains (PT), freight
trains (FT) and special trains (ST).
First, the train class PT is discussed, which is split into two parts — the labelled passenger
trains PTL and the not labelled passenger trains PTnL. The first ones passed the monitoring
station at least 75 times within the two considered years, the latter ones less. Regarding the PTL
the overall result is presented in Table 4.4. In total 73 train types were identified and labelled
— their detailed measured axle loads and axle geometry may be found in Annex A.3. Regarding
the first sixteen PTL in Table 4.4 it was possible to allocate the actual train name (e.g. DOSTO,
Railjet, etc.). The remaining 57 PTL have all in common to be hauled by a Taurus locomotive
(four axles) followed by a variable number of four-axle passenger cars. Consequently, e.g. train
number 17 — PT-24-1 — consists of one Taurus locomotive and 5 passenger cars. In general,
only a few train types contribute to the PTL’s total traffic volume. The labelled passenger trains
DOSTO, ICE-T1 411 and the different configurations of the Railjet make about 79% of the PTL’s
total traffic volume (32383.1 103 t/2years).
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Train type
Av.
mass
[t]

Nr. trains 2014 Nr. trains 2015 Total
Nr.
trains

Traffic
volume [103

t/2years]
Track 3
(Vienna)

Track 4
(Linz)

Track 3
(Vienna)

Track 4
(Linz)

1 DOSTO 326.6 5538 4182 4867 3967 18554 6059.9
2 2xDOSTO 630.6 26 224 242 173 665 419.3

3
TypeC14
(ICE-T1 411)

390.2 2130 1735 2643 2075 8583 3348.7

4
TypeC19
Taurus-front
(Railjet)

887.3 44 3122 24 3499 6689 5934.9

5
TypeC19
Taurus-back
(Railjet)

887.3 3400 28 3961 13 7402 6567.4

6
TypeC19*
Taurus-front
(Railjet)

443.4 149 1502 267 742 2660 1179.5

7
TypeC19*
Taurus-back
(Railjet)

443.4 2343 36 1418 14 3811 1689.8

8
TypeC19**
(Railjet)

476.8 232 129 204 125 690 329.0

9 Talent 4023 94.4 3 1 2 1 7 0.7
10 Talent 4024 115.5 23 15 22 25 85 9.8
11 2xTalent4024 241 5 7 34 27 73 17.6
12 3xTalent4024 346.8 0 0 1 0 1 0.3
13 Train 4020 143.8 0 0 28 19 47 6.8
14 2xTrain 4020 285.1 0 0 33 28 61 17.4
15 3xTrain 4020 422.7 0 0 9 0 9 3.8
16 4xTrain 4020 571.4 0 0 23 22 45 25.7
17 PT-24-1 332.6 7 584 2 115 708 235.5
18 PT-24-2 331.2 158 139 34 31 362 119.9
19 PT-24-3 333.6 4 181 3 1 189 63.0
20 PT-24-4 345.8 9 154 0 0 163 56.4
21 PT-24-5 351.5 0 77 1 0 78 27.4
22 PT-24-6 330.6 551 0 129 0 680 224.8
23 PT-24-7 331.6 163 0 1 3 167 55.4
24 PT-24-8 347 187 0 0 0 187 64.9
25 PT-24-9 351.8 79 0 0 0 79 27.8
26 PT-24-10 337.1 0 0 1 357 358 120.7
27 PT-24-11 330.6 0 0 615 0 615 203.3
28 PT-24-12 329.6 0 0 141 0 141 46.5
29 PT-24-13 344 0 0 80 0 80 27.5
30 PT-28-1 383 3 296 4 664 967 370.4
31 PT-28-2 385.1 3 199 2 163 367 141.3
32 PT-28-3 381.5 215 0 243 186 644 245.7
33 PT-28-4 380.3 76 0 1 0 77 29.3

Continued on next page
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Table 4.4 – continued from previous page

Train
Av.
mass
[t]

Nr. trains 2014 Nr. trains 2015 Total
Nr.
trains

Traffic
volume [103

t/2years]
Track 3
(Vienna)

Track 4
(Linz)

Track 3
(Vienna)

Track 4
(Linz)

34 PT-28-5 381 105 0 78 8 191 72.8
35 PT-28-6 381.1 354 0 225 1 580 221.0
36 PT-28-7 380.8 450 0 853 4 1307 497.7
37 PT-28-8 390.3 0 0 9 354 363 141.7
38 PT-28-9 383.4 0 0 181 118 299 114.6
39 PT-28-10 381.3 0 0 1 95 96 36.6
40 PT-28-11 379.3 0 0 0 107 107 40.6
41 PT-28-12 383.1 0 0 622 0 622 238.3
42 PT-28-13 378.8 0 0 111 0 111 42.0
43 PT-28-14 379.7 0 0 103 0 103 39.1
44 PT-32-1 425.5 213 135 216 309 873 371.5
45 PT-32-2 436.4 7 91 2 139 239 104.3
46 PT-32-3 430.1 227 0 180 0 407 175.0
47 PT-32-4 441.4 135 0 129 0 264 116.5
48 PT-32-5 429.7 129 0 88 1 218 93.7
49 PT-32-6 429.3 105 0 19 44 168 72.1
50 PT-32-7 428 103 0 26 1 130 55.6
51 PT-32-8 432.7 0 0 0 223 223 96.5
52 PT-32-9 430.5 0 0 186 137 323 139.0
53 PT-36-1 485.1 5 144 0 54 203 98.5
54 PT-36-2 477.9 26 86 49 16 177 84.6
55 PT-36-3 471.4 153 0 14 14 181 85.3
56 PT-36-4 478.2 138 0 81 0 219 104.7
57 PT-36-5 487.7 101 0 0 0 101 49.3
58 PT-36-6 517.3 0 0 140 94 234 121.0
59 PT-36-7 469 0 0 274 0 274 128.5
60 PT-40-1 521.6 68 181 134 102 485 253.0
61 PT-40-2 527.5 1 77 0 17 95 50.1
62 PT-40-3 526.5 0 0 0 112 112 59.0
63 PT-48-1 682.6 10 199 0 0 209 142.7
64 PT-48-2 630.7 166 99 28 19 312 196.8
65 PT-48-3 622.3 0 78 0 0 78 48.5
66 PT-48-4 668.3 231 0 0 0 231 154.4
67 PT-48-5 628 0 0 0 129 129 81.0
68 PT-52-1 632.1 3 79 0 0 82 51.8
69 PT-52-2 615.9 85 0 0 0 85 52.4
70 PT-52-3 676.9 76 0 6 9 91 61.6
71 PT-56-1 732 80 0 0 2 82 60.0
72 PT-56-2 794.8 0 0 9 82 91 72.3
73 PT-56-3 790.9 0 0 112 0 112 88.6

Σ 18319 13780 18911 14441 65451 32383.1

Table 4.4.: Labelled passenger trains PTL
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In Table 4.5 the overall results regarding the train classes are summarized. The large majority
with 81.6% of all trains are passenger trains (PT). This number includes the labeled (PTL) and
not labeled passenger trains PTnL. In the latter category, the train types were monitored, as
described above, less than 75 times during the considered time range. However, all passenger
trains together are only responsible for 68.8% of the total traffic volume. The second most
frequent train class (16.1%) represents the freight trains (FT) and covers almost a third (30.9%) of
the total traffic volume. The last and with 0.3% of the traffic volume neglectable train class is
the one regarding the special trains (ST).

Train class

Track 3 and Track 4
2014 & 2015

Nr. of
trains/
2years

Traffic
volume

[103 t/2years]
Passenger trains - labeled (PTL) - Table 4.4 65451 32383.1
Passenger trains - not labeled (PTnL) 11766 6152.8
Total passenger trains (PT) 77217 (81.6%) 38535.9 (68.8%)

Freight trains (FT) 15178 (16.1%) 17294.9 (30.9%)

Special trains (ST) 2207 (2.3%) 198.3 (0.3%)

Total trains (RT) 94602 (100%) 56029.1 (100%)

Table 4.5.: Train classes - overall result of years 2014 & 2015 for track 3 and 4 combined

The above presented results combined the train data of track 3 and track 4. In Table 4.6 the
results are stated separately for both tracks.

Train class

Track 3
(Vienna)

2014 & 2015

Track 4
(Linz)

2014 & 2015
Nr. of

trains/
2years

Traffic
volume

[103 t/2years]

Nr. of
trains/
2years

Traffic
volume

[103 t/2years]
Passenger trains -

labeled (PTL)
37230 17992.3 28221 14390.8

Passenger trains -
not labeled (PTnL)

6072 3173.1 5694 2979.7

Total passenger trains (PT) 43302 (80.7%) 21165.4 (69.5%) 33915 (82.8%) 17370.5 (68.0%)

Freight trains (FT) 8768 (16.3%) 9167.3 (30.1%) 6410 (15.7%) 8127.6 (31.8%)

Special trains (ST) 1598 (3.0%) 139.0 (0.4%) 609 (1.5%) 59.3 (0.2%)

Total trains (RT) 53668 (100.0%) 30471.7 (100.0%) 40934 (100.0%) 25557.4 (100.0%)

Table 4.6.: Train classes - overall result of years 2014 & 2015 for track 3 and 4 separately

In Figure 4.4 the characteristics of the identified PT and FT are compared to each other. The
cumulative distribution function (CDF) of the train lengths in Figure 4.4(a) already indicates
the difficulties one faces if trying to categorize FT — almost all variations of lengths appear
equally, hence the CDF is almost linear. On the other hand, the PT’s lengths vary much less
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and certain train types may be identified with less difficulties. The same is true regarding the
axle mass of PT and FT — see Figure 4.4(b). Again, the axle masses of FT vary much more than
the ones of PT. In the latter category e.g. the passenger cars with axle masses ranging from 12t
to 14t can clearly be distinguished from the 21t axle masses of the Taurus locomotive. On the
other hand, regarding the train speeds in Figure 4.4(c), the FT vary much less than the PT. The
majority of the FT speeds is about 100 km/h. Comparing the train lengths to the corresponding
train masses leads to Figure 4.4(d). Due to the different loading conditions, the FTs cover a big
area of the train length/ mass diagram. Then again, the PT are concentrated in a much smaller
range, as the passenger car and locomotive masses do not vary that much. In Figure 4.4(e) the
train length is plotted against the train speed showing that PT of almost all lengths reach about
200 km/h and on the other hand, FT of almost all lengths reach 100 km/h.

(a) CDF for train length (b) CDF for axle mass

(c) CDF for train speed (d) Train lengths vs. train mass

(e) Train lengths vs. train speeds

Figure 4.4.: Cumulative distribution functions (CDF) and comparison of train lengths/masses and train
lengths/speeds — passenger trains (PT) and freight trains (FT) — years 2014 & 2015 and track 3 & 4 combined
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Traffic mix 2

The traffic mix 2 considers all measured trains, hence all 94602 real trains (RT) — see e.g.
Table 4.5 — are used. However, in order to be able to compare the results to the ones of other
traffic mixes, the traffic volume is scaled to mECmix = 24.95 106 t/year/track. This leads for
single track structures, with the factor fTM2−st,Track3&4,100years according to Equation (4.1), to the
traffic mix as shown in Table 4.7.

fTM2−st,Track3&4,100years =
mECmix

mRT,Track3&4
100 years =

24950 ∗ 103

56029.1 ∗ 103 100 = 44.5304 (4.1)

Track
Train
class

2014 & 2015 (2 years) TM2-st (100 years)
Nr. of

trains/
2years

Traffic
volume

[103t/2years]

Nr. of
trains/

100years

Traffic
volume

[103t/100years]

3 & 4

PT 77217 (81.6%) 38535.9 (68.8%) 3438504 (81.6%) 1716020 (68.8%)

FT 15178 (16.1%) 17294.9 (30.9%) 675882 (16.1%) 770150 (30.9%)

ST 2207 (2.3%) 198.3 (0.3%) 98279 (2.3%) 8830 (0.3%)

RT 94602 (100%) 56029.1 (100%) 4212665 (100%) 2495000 (100%)

Table 4.7.: Traffic mix 2 - single track structures

For structures with two tracks, the traffic mix according to Table 4.8 results using Equations
(4.2) and (4.3).

fTM2−dt,Track3,100years =
mECmix

mRT,Track3
100 years =

24950 ∗ 103

30471.7 ∗ 103 100 = 81.8793 (4.2)

fTM2−dt,Track4,100years =
mECmix

mRT,Track4
100 years =

24950 ∗ 103

25557.4 ∗ 103 100 = 97.6234 (4.3)

Track
Train
class

2014 & 2015 (2 years) TM2-dt (100 years)
Nr. of

trains/
2years

Traffic
volume

[103t/2years]

Nr. of
trains/

100years

Traffic
volume

[103t/100years]

3

PT 43302 (80.7%) 21165.4 (69.5%) 3545537 (80.7%) 1733008 (69.5%)

FT 8768 (16.3%) 9167.3 (30.1%) 717918 (16.3%) 750612 (30.1%)

ST 1598 (3.0%) 139.0 (0.4%) 130843 (3.0%) 11380 (0.4%)

RT 53668 (100%) 30471.7 (100%) 4394298 (100%) 2495000 (100%)

4

PT 33915 (82.8%) 17370.5 (68.0%) 3310898 (82.8%) 1695767 (68.0%)

FT 6410 (15.7%) 8127.6 (31.8%) 625766 (15.7%) 793444 (31.8%)

ST 609 (1.5%) 59.3 (0.2%) 59453 (1.5%) 5789 (0.2%)

RT 40934 (100%) 25557.4 (100%) 3996116 (100.0%) 2495000 (100%)

Table 4.8.: Traffic mix 2 - for double track structures
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Regarding the train speeds in traffic mix 2, always the real measured train speeds of all 94602
real trains (RT) are used. Hence, there are no different speed variants like e.g. in traffic mix 1
and consequently only two names — TM2-st for single track structures and TM2-dt for double
track structures — are necessary.

Traffic mix 3

Traffic mix 3 considers, like traffic mix 2, the measured trains of the monitoring station Enns,
but neglects FT and ST. Consequently, only PT are considered, which are like in traffic mix 2
scaled to 24.95 106 t/year/track. Subsequently, the results for single and double track structures
are stated.

fTM3−st,Track3&4,100years =
mECmix

mPT,Track3&4
100 years =

24950 ∗ 103

38535.9 ∗ 103 100 = 64.7448 (4.4)

Track
Train
class

2014 & 2015 (2 years) TM3-st (100 years)
Nr. of

trains/
2years

Traffic
volume

[103t/2years]

Nr. of
trains/

100years

Traffic
volume

[103t/100years]
3 & 4 PT 77217 38535.9 4999399 2495000

Table 4.9.: Traffic mix 3 - single track structure

fTM3−dt,Track3,100years =
mECmix

mPT,Track3
100 years =

24950 ∗ 103

21165.4 ∗ 103 100 = 117.8811 (4.5)

fTM3−dt,Track4,100years =
mECmix

mPT,Track4
100 years =

24950 ∗ 103

17370.5 ∗ 103 100 = 143.6343 (4.6)

Track
Train
class

2014 & 2015 (2 years) TM3-dt (100 years)
Nr. of

trains/
2years

Traffic
volume

[103t/2years]

Nr. of
trains/

100years

Traffic
volume

[103t/100years]
3 PT 43302 21165.4 5104487 2495000
4 PT 33915 17370.5 4871357 2495000

Table 4.10.: Traffic mix 3 - double track structure

Regarding the train speeds in traffic mix 3, the same as for traffic mix 2 is valid. Hence, always
the real measured train speeds of the 77217 PT are used. Again, there are no different speed
variants considered and consequently only two names — TM3-st for single track structures and
TM3-dt for double track structures — are necessary.
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4.3. Traffic mix 4

Traffic mix 4 represents a pure high-speed traffic mix, which theoretically could be possible
in Austria. The first four train types are very common on the high-speed line Westbahn — see
Table 4.4. Therefore, in traffic mix 4, the traffic volume of these four trains is assumed to increase
by 50% in comparison to the measured traffic volume.1 On the other hand, the new high-speed
passenger trains (PT) ICE4-K3-12cars and EC250-Brutto18 are assumed to have about the same
traffic volume (≈ 3182 103 t/year) in order to cause a total traffic volume, for the traffic mix 4,
of 24.95 106 t/year/track — see Table 4.11. All here considered trains are conventional trains,
except EC250-Brutto18, which is an articulated train.

Train type
Mass of
train [t]

Nr. of
trains/year

Traffic
volume

[103t/year]

Nr. of trains
/100years

Traffic
volume [103t
/100years]

1
DOSTO
(Westbahn)

326.6 13917 4545.4 1391700 454540

2
TypeC14
(ICE-T1 411)

390.2 6437 2511.5 643700 251150

3
TypeC19
Taurus-front
(Railjet)

887.3 10568 9376.5 1056800 937650

4
TypeC19*
Taurus-front
(Railjet)

443.4 4853 2151.9 485300 215190

5 ICE4-K3-12cars 905.3 3515 3182.3 351500 318230
6 EC250-Brutto18 437.6 7273 3182.5 727300 318250

46563.0 24950.0 4656300 2495000

Table 4.11.: Traffic mix 4

Regarding the train speeds, three different variants — like for traffic mix 1 — are considered
according to Table 4.12.

1In traffic mix 4, the traffic volume of train type TypeC19 Taurus-front is the by 1.5 multiplied annual sum of
the train types TypeC19 Taurus-front and TypeC19 Taurus-back of Table 4.4. The same is valid for train type TypeC19*
Taurus-front.
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Variant TM4* TM4** TM4***

Train type
Speed
vtrain

[km/h]

Speed range
50 - 1.2 vtrain

[km/h]

Speed range
50 - 1.2 vtrain

[km/h]
DOSTO (Westbahn) 200 50-240 50-240

TypeC14 (ICE-T1 411) 230 50-276 50-276
TypeC19 Taurus-front (Railjet) 230 50-276 50-276
TypeC19* Taurus-front (Railjet) 230 50-276 50-276

ICE4-K3-12cars 250 50-300 50-300
EC250-Brutto18 250 50-300 50-300

Train speed — used
for Ddyn calculation

vtrain vDmax vamax

Table 4.12.: Traffic mix 4 — considered variants of train speeds

4.4. Traffic mix 5

Traffic mix 5 was established to represent both, high-speed and freight traffic. Therefore, the
traffic volume distributions according to the monitoring station Enns was used — see Table 4.5.
Hence, the train types number one to four of traffic mix 5, which serve as high-speed trains,
represent together 68.8% of the overall traffic volume (24.95 106 t/year/track) — see Table 4.13.
Consequently, the remaining 31.2% are covered by freight trains for which the train types
TypeC5 to TypeC8 were selected.

Train type
Mass of
train [t]

Nr. of
trains/year

Traffic
volume

[103t/year]

Nr. of trains
/100years

Traffic
volume [103t
/100years]

1
DOSTO
(Westbahn)

326.6 12850 4196.8

68.8%

1285000 419680

68.8%

2
TypeC14
(ICE-T1 411)

390.2 5944 2319.3 594400 231930

3
TypeC19
Taurus-front
(Railjet)

887.3 9758 8658.2 975800 865820

4
TypeC19*
Taurus-front
(Railjet)

443.4 4481 1986.8 448100 198680

5 TypeC5 2160.0 1166 2518.5

31.2%

116600 251850

31.2%
6 TypeC6 1431.0 1998 2859.0 199800 285900
7 TypeC7 1035.0 1332 1378.6 133200 137860
8 TypeC8 1035.0 998 1032.8 99800 103280

38527 24950.0 100% 3852700 2495000 100%

Table 4.13.: Traffic mix 5

Regarding the train speeds, three different variants — like for traffic mixes 1 and 4 — are
considered according to Table 4.14.
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4.4. Traffic mix 5

Variant TM5* TM5** TM5***

Train type
Speed
vtrain

[km/h]

Speed range
50 - 1.2 vtrain

[km/h]

Speed range
50 - 1.2 vtrain

[km/h]
DOSTO (Westbahn) 200 50-240 50-240

TypeC14 (ICE-T1 411) 230 50-276 50-276
TypeC19 Taurus-front (Railjet) 230 50-276 50-276
TypeC19* Taurus-front (Railjet) 230 50-276 50-276

TypeC5 80 50-96 50-96
TypeC6 100 50-120 50-120
TypeC7 120 50-144 50-144
TypeC8 100 50-120 50-120

Train speed — used
for Ddyn calculation

vtrain vDmax vamax

Table 4.14.: Traffic mix 5 — considered variants of train speeds
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5. Single-span bridges

In this chapter, single-span steel and composite bridges in high-speed railway lines, carrying
one track, are studied with respect to their fatigue and traffic safety behaviour. Therefore, first
an overview regarding the considered structures, traffic mixes and the computational method
itself is presented. Subsequently, preliminary studies and the traffic safety design check for the
single-span bridges are performed. Finally, a parameter study is conducted, which combines
the traffic safety and fatigue criteria. Additionally, the accuracy of the ’adjusted’ dynamic factor,
which was introduced in Chapter 2.1.2, is studied.

5.1. Overview of studied single-span bridges

In this chapter, an overview of the subsequently performed parameter study regarding single-
span beam bridges, carrying one track, is presented. Therefore, first the selected single-span
steel and composite bridges with the related damping assumptions are introduced. Second,
the here considered traffic mixes are briefly discussed and finally an overview of the method,
regarding the fatigue design parameter study, is covered.

This doctoral thesis assumes that the vast majority of real single-span steel and compsite bridges
is within the limits of ÖNORM EN 1991-2, Figure 6.10 [43] in terms of their length L and first
bending frequency n0 — see Figure 5.1. This hypothesis is e.g. supported in [5], which is based
on [17], [14], [12], [51] and additional measurements of 235 ÖBB structures along a high-speed
line in Austria. Hence, the parameter study is based on a total of 126 single-span structures
(63 as steel, 63 as composite construction, L = 7 to 80 m), which cover the area of the before
mentioned n0 limits and a range of 25% above and below these limits — according to Figure 5.1.
Therefore, in Chapters 5.1.1 to 5.1.3 these single-span steel and composite structures are defined
and pre-designed.

Furthermore, this doctoral thesis differentiates between new and existing structures based on
the different acceleration traffic safety (TS) criteria according to Chapter 2.1.2. In principal, only
new structures with ballasted track are allowed in Austria and consequently only such are
subsequently covered.
Therefore, the following TS criteria are applied:

• |aHSLM−A,max| ≤ 3.5 m/s2 for new bridge structures
• |aHSLM−A,max| ≤ 6.0 m/s2 for existing bridge structures

These acceleration criteria are checked at 99 equidistant points along the longitudinal axes
of the single-span structures. On the other hand, as a constant fatigue resistance along the
longitudinal axes is assumed (e.g. vertical stiffener welded to the main girder, which is repeated
at each cross girder/ main girder connection and defines the fatigue resistance of the main
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5. Single-span bridges

Figure 5.1.: Overview of pre-designed single-span structures as basis for the parameter study

girder), only the midspan cross section is checked regarding the FLS criterion. Subsequently,
these assumptions are justified in Chapter 5.2.
Furthermore, the longitudinal load distribution of each axle load, according to ÖNORM EN
1991-2 [43], is considered as a variant in the parameter study — see Figure 5.2.

Figure 5.2.: Longitudinal distribution of a point force or wheel load by the rail — from
ÖNORM EN 1991-2, Figure 6.4 [43]

5.1.1. Single-span steel bridges

A total of 63 single-span steel beam bridges, which form the basis of the parameter study, were
pre-designed. All considered single-span steel beam bridges carry one track and are based on
the cross section type featured in Figure 5.3. The structure’s width of 4.5 m, the thickness of
the web with 18 mm, the geometry and number of longitudinal ribs and the ballast bed are
kept, in a simplified way, constant for all 63 cross sections. In order to consider only plausible
single-span steel bridges, a base section for each bridge length L was established. Therefore, the
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5.1. Overview of studied single-span bridges

height of the main girder hMG was set to ≈ L/12. Consequently, the deck plate thickness tDP
and the geometry of the lower chord (wLC and tLC) were designed so that the global normal
design stresses σglobal,ULS due to the loads in the ULS reach about 60 % of the yield strength fyd
(S355). Subsequently, the design values for actions on the structure, for the ULS, are described
by Equation (5.1), according to [41], [42] and [35]. In general, the load models LM71 and SW/2
— see Figures 2.1 and 2.4 — and the design rules for the effective width for elastic shear lag
([44] 3.2.1) were considered.

Figure 5.3.: Single-span steel bridges — geometry overview — material S355

Ed = γG,j,sup ∗ Gk,j,sup + γQ,i ∗ Qk,i (5.1)

with: γG,j,sup = 1.35 Qk,i due to:

γQ,LM71 = 1.45 QLM71 = My,LM71,k ∗ α ∗ Φ2

γQ,SW/2 = 1.20 QSW/2 = My,SW/2,k ∗ Φ2

Φ2 =
1.44√

LΦ−0.2
+ 0.82 α = 1.21 LΦ = L

Gk,j,sup due to: μ = γa ∗ Aa + γbb ∗ Abb

γa = 7850 kg/m3 γbb = 2000 kg/m3

Abb = 4.5 ∗ 0.6 = 2.7 m2

After defining the geometry of the base section for each bridge length L, the geometries of these
base sections were varied in order to define steel bridges with different first bending frequencies
n0 — see Equation (5.2).

n0 =
π

2 ∗ L
∗
√

EIy

μ
(5.2)
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5. Single-span bridges

The resulting 63 single-span steel bridges are illustrated in Figure 5.4(a) and Table B.1 provides
additional information. Furthermore, the ULS design checks were performed for the 63 single-
span steel bridges, leading to the results displayed in Figure 5.4(b). Hence, only structures with
a first bending frequency n0 beneath the lower EC limit do not fulfil the ULS criterion — the
utilisation factors may be found in Table B.2. Additionally, dynamic analysis for all structures,
applying the load model HSLM-A from 50-300 km/h, were performed, whereas the damping
ratio according to ÖNORM EN 1991-2 [43] for steel structures, including the additional damping
Δζ, was considered — see ζEC in Figure 5.9. Figure 5.4(c) shows the results regarding the TS
criterion |aHSLM−A,max| ≤ 3.5 m/s2, which applies for new structures with ballasted track, in
combination with the ULS design results. Only very long and stiff structures are able to fulfil
the acceleration criterion. In Figure 5.4(d) the results for existing structures and ballasted track
(|aHSLM−A,max| ≤ 6.0 m/s2) are presented in combination with the ULS criterion. In this case,
also medium sized but still very stiff structures fulfil the acceleration criterion. The detailed
acceleration results may be found in Table B.3.

(a) L and n0 distribution — 63 single-span steel bridges (b) ULS design check

(c) ULS design & TS |aHSLM−A,max > 3.5 m/s2| check (d) ULS design & TS |aHSLM−A,max > 6.0 m/s2| check

Figure 5.4.: Defined and pre-designed single-span steel bridges

Figure 5.5 illustrates the mass distribution μSSB for the 63 pre-designed reference structures (red
dots) and the interpolated surface. This information is later needed for the non-dimensional
representation in Chapter 5.3.
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5.1. Overview of studied single-span bridges

Figure 5.5.: Mass distribution μSSB for 63 single-span steel bridges (reference structures) and
enveloping surface

5.1.2. Single-span composite bridges

The procedure to pre-design the 63 single-span composite bridges was performed similar to the
one for the steel bridges in the previous Chapter 5.1.1. Consequently, all composite structures are
based on the cross section illustrated in Figure 5.6. The edge beams, the ballast bed, the concrete
upper chord and the steel web are kept, in a simplified way, constant for all 63 considered cross
sections. Hence, in order to determine the geometry of the base section for each bridge length L,
the height of the steel girder hMG,a was set to ≈ L/12. Furthermore the loads were distinguished
into loads acting on the steel cross section only and on the composite cross section. In the first
step, the required areas of the steel chords were estimated using Equations (5.3) and (5.4) [60]
for the ULS, which is represented by Equation (5.5). Afterwards, the base section geometry
was varied in order to create single-span composite structures with different first bending
frequencies n0 — see Figure 5.7(a). In the final step, the global normal design stresses σglobal,ULS
due to the loads in the ULS at the points UC-c, UC-a and LC-a — see Figure 5.6 — were
calculated and the utilization ratios summarized in Table C.2 and illustrated in Figure 5.7(b).
Like in case of the single-span steel bridges, dynamic calculations were performed for the
single-span composite bridges according to the damping ratios of the ÖNORM EN 1991-2 [43]
— see damping variant ζEC in Figure 5.9. Subsequently, the TS results, in combination with the
ULS results, are illustrated in Figure 5.7(c) for new and in Figure 5.7(d) for existing single-span
composite bridges. In comparison to the single-span steel bridges, also shorter single-span
composite bridges, due to the bigger mass, are able to fulfil the TS criterion.
In Figure 5.8 the mass distribution μSCB for the 63 pre-designed reference structures (red dots)
and the interpolated surface are illustrated.
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5. Single-span bridges

Figure 5.6.: Composite bridges — geometry overview — material S355, C35/45

ALC,a,requ =

M1

hMG,a
+

M2

hMG

fyd
− Aweb

6
(5.3)

AUC,a,requ =

M1

hMG,a
+

M2

hMG
∗ 0.25

fyd
− Aweb

6
(5.4)

with: M1 = f(qa, qc) . . . due to loads on steel cross section only
(permanent weight of steel qa and concrete qc)

M2 = f(qbb, qeb, LM71, SW/2) . . . due to loads on composite cross section

Ed = γG,j,sup ∗ Gk,j,sup + γQ,i ∗ Qk,i (5.5)

with: γG,j,sup = 1.35 Qk,i due to:

γQ,LM71 = 1.45 QLM71 = MLM71,k ∗ α ∗ Φ2

γQ,SW/2 = 1.20 QSW/2 = MSW/2,k ∗ Φ2

Φ2 =
1.44√

LΦ−0.2
+ 0.82 α = 1.21 LΦ = L
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5.1. Overview of studied single-span bridges

qa = γa ∗ Aa γa = 7850 kg/m3

qc = γc ∗ Ac γc = 2500 kg/m3

qbb = γbb ∗ Abb γbb = 2000 kg/m3 Abb = 4.4 ∗ 0.6 = 2.64 m2

qeb = 1950 kg/m . . .weight of one end beam

(a) 63 pre-designed single-span composite bridges (b) ULS design check

(c) ULS design & TS |aHSLM−A,max > 3.5 m/s2| check (d) ULS design & TS |aHSLM−A,max > 6.0 m/s2| check

Figure 5.7.: Single-span composite bridges

Figure 5.8.: Mass distribution μSCB for 63 single-span composite bridges (reference structures)
and enveloping surface
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5. Single-span bridges

5.1.3. Damping variants

Subsequently, Figure 5.9 illustrates the four considered damping variants. The first option, ζEC,
represents the damping ratios according to ÖNORM EN 1991-2 [43] for steel and composite
structures — see Equation (5.6) — inculding the additional damping Δζ according to Equa-
tion (5.7). The latter considers for lengths up to 30 m the vehicle/ bridge mass interaction. The
damping variants ζV1 and ζV2 are based on ζEC, but have damping ratios ≥ 1.0 % and ≥ 1.5 %,
respectively, throughout the entire length range. The last damping variant ζV3 considers a
constant damping ratio of 3 % for all bridge lengths L.

ζsteel/composite = 0.5 + 0.125(20 − L) [%] for L < 20m (5.6)

ζsteel/composite = 0.5 % for L ≥ 20m

Δζ =
0.0187 L − 0.00064 L2

1 − 0.0441 L − 0.0044 L2 + 0.000255 L3 [%] for 0 ≤ L ≤ 30 m (5.7)

Figure 5.9.: Overview of damping variants for steel and composite structures

5.1.4. Analysed traffic mixes

All five traffic mixes according to Chapter 4 are used here for the single track, single-span steel
and composite bridges. Consequently, on each structure a traffic volume of 24.95 106 t/year is
applied for the considered design life of 100 years. The traffic mixes TM1 (EC trains TypeC1 to
TypeC8), TM4 (high-speed trains only) and TM5 (high-speed and freight trains) can be applied
as already described in Chapter 4. On the other hand, the traffic mixes TM2-st and TM3-st,
which resulted due to measurements of real trains at the monitoring point Enns, are additionally
simplified, as described subsequently.
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5.1. Overview of studied single-span bridges

Traffic mix 2 for single track structures — TM2-st

Table 5.1 summarizes the measured trains at the monitoring point Enns for the two years 2014 &
2015. In total, 94602 real trains (RT) with a traffic volume of 56029.1 103 t passed the monitoring
station.

Train
class

2014 & 2015 (2 years) TM2-st (100 years)
Nr. of

trains/
2years

Traffic
volume

[103t/2years]

Nr. of
trains/

100years

Traffic
volume

[103t/100years]
PTL 65451 (69.2%) 32383.1 (57.8%) 2914559 (69.2%) 1442033 (57.8%)
PTnL 11766 (12.4%) 6152.8 (11.0%) 523945 (12.4%) 273987 (11.0%)
PT 77217 (81.6%) 38535.9 (68.8%) 3438504 (81.6%) 1716020 (68.8%)
FT 15178 (16.1%) 17294.9 (30.9%) 675882 (16.1%) 770150 (30.9%)
ST 2207 (2.3%) 198.3 (0.3%) 98279 (2.3%) 8830 (0.3%)
RT 94602 (100%) 56029.1 (100%) 4212665 (100%) 2495000 (100%)

Table 5.1.: Traffic mix 2 - single track structures

Consequently, the factor fTM2−st,100years, according to Equation (5.8), is applied to consider a
traffic volume of 24.95 106 t/year for the 100 years of design life

fTM2−st,100years =
mECmix

mRT
100 years =

24950 ∗ 103

56029.1 ∗ 103 100 = 44.5304 (5.8)

Furthermore, it was possible to group these RT into passenger trains (PT), freight trains (FT)
and special trains (ST) — see Table 5.1 and Chapter 4.2.4. The PT were additionally separated
into labeled passenger trains (PTL) and not labeled passenger trains PTnL. Each train of the
65451 PTL passed the monitoring station at least 75 times in the years 2014 & 2015 and all
together represent about 69.2 % of all RT. Furthermore, the PTL are grouped into 73 average
trains as illustrated in Table 4.4 and Chapter A.3. Consequently, 73 average labeled passenger
trains are able to cover the effects of 65451 PTL. However, the remaining 11766 PTnL are not
directly considered in the calculations here, but their traffic volume by the factor

fPT = 1 +
mPTnL

mPTL

= 1 +
6152.8 ∗ 103

32383.1 ∗ 103 = 1.1900 (5.9)

which is applied on the results of the 73 average PTL.
Furthermore, the ST are not directly calculated either, but their effects considered by applying
the factor

fST = 1 +
mST

mFT
= 1 +

198.3 ∗ 103

17294.9 ∗ 103 = 1.0115 (5.10)

on the results of the FT. Finally, the damage DTM2−st due to traffic mix TM2-st is obtained
according to Equation (5.11)

DTM2−st = (DPTL ∗ fPT + DFT ∗ fST) ∗ fTM2−st,100years (5.11)

whereas only 73 average PTL and 15178 FT need to be calculated directly.
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5. Single-span bridges

Traffic mix 3 for single track structures — TM3-st

The traffic mix 3 for single track structures TM3-st is based on the above discussed traffic mix
TM2-st, but does not consider FT and ST.
Consequently, the factor

fTM3−st,100years =
mECmix

mPTL

100 years =
24950 ∗ 103

32381.1 ∗ 103 100 = 77.0511 (5.12)

is applied on the results of the 73 directly calculated average PTL. Hence the damage DTM3−st
becomes to

DTM3−st = DPTL ∗ fTM3−st,100years (5.13)

5.1.5. Method overview

In this chapter, an overview regarding the method for the fatigue design parameter study
of single-span steel and composite bridges is presented. The basis of this overview are two
single-span steel (SSB) and two single-span composite bridges (SCB) according to Table 5.2.

Name L [m]
n0

[Hz]
ζSSB/SCB

[%]
Wy

[cm3]
SSB50-1 50 2.33 0.50 317456 **
SSB50-5 50 5.08 0.50 1259715 *
SCB50-1 50 2.33 0.50 398741 **
SCB50-5 50 5.08 0.50 1487032 **
The upper chord (*)/ the lower chord (**) is decisive.

Table 5.2.: Definition of single-span steel bridges (SSB) and single-span composite bridges (SCB)

First, on the level of static internal forces, hence for the bending moment M at midspan, the static
equivalent constant amplitude bending moment range related to 2 million cycles ΔME,2,static is
calculated. This is, as subsequently shown, possible in two ways, which lead to the same result.
One option is to use the load model LM71 and the damage equivalent factor λ, whereas the
second option uses the service trains TypeC1 to TypeC8 — see traffic mix 1 in Table 4.1 — and
damage accumulation. However, after performing this first step, ΔME,2,stat is determined and
defines the level of the S-N curve for the next step.
Subsequently, dynamic calculations are performed for the service trains TypeC1 to TypC8 and
consequently the dynamic bending moment range spectra result. These are evaluated, using
Miner’s rule, on the before, by ΔME,2,static defined, S-N curve, which leads to the damage Ddyn.
Finally, with the calculated damage Ddyn and the static equivalent constant amplitude stress
range related to 2 million cycles ΔσE,2,static, which is simply ΔME,2,static divided by the elastic
section modulus of the structure Wy, the dynamic equivalent constant amplitude stress range
related to 2 million cycles ΔσE,2,dyn is calculated, which may be compared to the decisive detail
category.
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5.1. Overview of studied single-span bridges

ΔME,2,stat based on static calculation of load model LM71 and stress range

Subsequently, the determination of the static equivalent constant amplitude bending moment
range ΔME,2,stat using the load model LM71 and the damage equivalent factor λ, as described
in Chapter 2, is presented for a 50 m long single-span structure. Therefore, the maximum
static bending moment MLM71,max at midspan due to the crossing of the load model LM71 is
determined — see Figure 5.10. Considering carefully maintained track with Φ2 and the EC
mix — see traffic mix 1 in Table 4.1 — in ÖNORM-EN 1993-2 [46] for λ leads, according to
Equation (5.14), to a static equivalent constant amplitude bending moment range ΔME,2,LM71 of
about 19936 kNm.

Figure 5.10.: Single-span bridge L = 50 m - SB50 — static — LM71

ΔME,2,LM71 = λ1 ∗ λ2 ∗ λ3 ∗ λ4 ∗ ΔMLM71,max ∗ Φ2 (5.14)
= 0.63 ∗ 1.00 ∗ 1.00 ∗ 1.00 ∗ 30735 ∗ 1.0296 = 19936 kNm

with: λ1 = 0.63 . . . acc. to [46] Tab. 9.3 EC Mix, L = 50 m (5.15)
λ2 = 1.00 λ3 = 1.00 λ4 = 1.00

Φ2 =
1.44√

LΦ − 0.2
+ 0.82

=
1.44√

50 − 0.2
+ 0.82 = 1.0296 . . . acc. to [43], Equ. 6.4, LΦ = L = 50m

ΔME,2,stat based on static calculation of service trains TypeC1
to TypeC8 and damage accumulation

Furthermore, the static equivalent constant amplitude bending moment range ΔME,2,stat may be
determined by using the trains TypeC1 to TypeC8 of ÖNORM-EN 1991-2, Annex D [43], which
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5. Single-span bridges

are represented by traffic mix 1 in this doctoral thesis — see Figure 2.18. Therefore, the crossing
of each train type is simulated statically and the resulting bending moment ranges are counted
using a cycle counting method (e.g. reservoir method). After obtaining the bending moment
range spectrum for one crossing of each of these eight train types, those are combined according
to the standard traffic mix with axles ≤ 22.5 t — see Table 2.3, or Table 4.1 and ÖNORM-EN
1991-2, Table D.1 [43] — to the bending moment range spectrum for a design life of 100 years.
For the train TypeC7 and a 50 m long single-span bridge the procedure is described in detail as
follows. First, the crossing of the train is simulated in a static way, which leads to the bending
moment signal M at midspan, as illustrated in Figure 5.11(a), already including the dynamic
factor (1 + ϕ)D according to Equation (2.12) and ÖNORM EN 1991-2, Annex D [43]. In the
next step, the signal is prepared for the reservoir counting method. Therefore, it is split at its
maximum (point B) and reordered according to Figure 5.11(b). As only the local maxima and
minima are of interest, the turning point signal is determined — see Figure 5.11(c). Further, the
ordinate is split into equidistant segments, hence classes of the classwidth ΔMstep ≤ Mmax/100
are introduced as illustrated in the small window of Figure 5.11(c). Consequently, each local
maxima and minima is assigned to a specific class Mup and the signal is ready for the reservoir
counting method. Therefore, the ’reservoir’ is theoretically filled with water and the maximum
possible distance between the ’water surface’ and the ’reservoir bottom’ measured — ΔM1
in Figure 5.11(d). Subsequently, the reservoir is opened at the lowest point of the reservoir
bottom, which leads to the new reservoirs illustrated in Figure 5.11(e). The process is repeated
until all reservoirs are emptied, hence all remaining bending moment ranges ΔM2 to ΔM4 are
identified.
The bending moment range spectrum due to one crossing of the train TypeC7, which was
calculated according to the procedure in Figure 5.11, is now illustrated in Figure 5.12 by the
dashed pink line. On the ordinate, the bending moment ranges ΔM are plotted, whereas on
the abscissa the number of cycles N are drawn on a logarithmic scale. In order to obtain the
bending moment range spectrum for the design life of 100 years, the information of Table 2.3 is
applied. Consequently, the number of cycles of the bending moment range spectrum due to
one train crossing is multiplied by the number of trains/ day, 365 days/ year and 100 years,
which leads to the bending moment range spectrum for the entire design life — see solid pink
line in Figure 5.12.
The above described procedure is then repeated for the remaining seven train types. Hence,
their bending moment range spectra due to one train crossing are determined first, including
the dynamic factor (1 + ϕ)D according to Equation (2.12). Consequently, the bending moment
range spectrum for the entire design life of 100 years is calculated according to Table 2.3, which
leads to the black solid line in Figure 5.13. In the next step this bending moment range spectrum
for the design life is evaluated at the modified S-N curve — see black dashed line in Figure 5.13
— using Miner’s rule according to Equation (2.19), which results into a certain value for the
damage Dstat. The level of the modified S-N curve is changed and the damage calculation
repeated until a damage of Dstat = 1.0 results, hence an iteration is performed. Subsequently,
the static equivalent constant amplitude bending moment range ΔME,2,TypeC1−C8,stat, defined for
2 106 cycles, is obtained, which is in this case about 19778 kNm. The error made by the method
of the previous chapter, which uses the load model LM71 and the damage equivalent factor λ,
leading to a ΔME,2,LM71 of 19936 kNm, according to Equation (5.14), is only about 0.8 %.
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5.1. Overview of studied single-span bridges

(a) Signal M from static calculation (b) Prepaired input signal M for reservoir method

(c) Turning point signal M — classwidth
ΔMstep ≤ Mmax/100

(d) Reservoir for ΔM1

(e) Reservoirs for ΔM2 to ΔM4

Figure 5.11.: Procedure for rainflow-analysis — SB50 — TypeC7 static
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5. Single-span bridges

Figure 5.12.: Bending moment ranges for one train crossing and over design life — SB50 — TypeC7 static incl.
(1 + ϕ)D according to ÖNORM EN 1991-2, Annex D [43]

Figure 5.13.: Single-span bridge L = 50 m — SB50 — static — TypeC1-C8 of traffic mix 1
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In Figure 5.14 the individual results for the trains TypeC1 to TypeC4, which represent the
passenger trains of the traffic mix EC mix, are illustrated. Figure 5.14(a) shows the static bending
moment signals M at midspan, whereas Figure 5.14(b) presents the related bending moment
range spectra for the design life and the damage values Dstat calculated using the above in
Figure 5.13 determined S-N curve. Furthermore, the same procedure is performed for the trains
TypeC5 to TypeC8, which represent the freight trains of the traffic mix EC mix — see Figure 5.15.
Comparing the damage values Dstat of the passenger and freight trains, one can see that the
latter are mainly responsible for the damage according to the static calculation.

(a) Bending moment M incl. (1 + ϕ)D according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.14.: Single-span bridge L = 50 m - SB50 — static — TypeC1-C4
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(a) Bending moment M incl. (1 + ϕ)D according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.15.: Single-span bridge L = 50 m - SB50 — static — TypeC5-C8

The before described procedure is valid for the static calculation of a 50 m long single-span
bridge. Figure 5.16 shows the results for span lengths starting from 7-80 m. Variant A in
Figure 5.16 represents the method using the load model LM71 and the damage equivalent factor
λ. On the other hand, the variants B and C illustrate the results using the trains TypeC1-C8 and
damage accumulation. The dynamic factor (1 + ϕ)D according to ÖNORM EN 1991-2, Annex
D [43], which needs to be applied for the latter two variants, only allows to consider trains
with speeds up to 200 km/h. However, trains TypeC3 and C4 have a maximum train speed
vmax of 250 km/h — see Figure 2.18. Therefore, the variant B considers the trains TypeC3 and
C4 with a vmax = 250 km/h and variant C consequently with vmax = 200 km/h. However, as

116



5.1. Overview of studied single-span bridges

the impact of these two trains is very limited — see damage values Dstat in Figure 5.14(b) — it
is also neglectable in the overall result of Figure 5.16. Subsequently, the variant B, which was
already used for all presented results, is used continuously, as its average error in comparison to
variant A is with 1.1 % about 0.3 % lower than variant C. Hence, ΔME,2,TypeC1−C8,stat of variant
B becomes ΔME,2,stat and is also used to determine ΔσE,2,static.

Figure 5.16.: Comparison of ΔME,2 due to LM71 and TypeC1-C8 — static

Fatigue design based on dynamic calculation of service trains TypeC1
to TypeC8 and damage accumulation

Subsequently, the fatigue design is again based on the trains TypeC1 to TypeC8 of taffic mix
1, using damage accumulation, but the train crossing is here simulated by a dynamic instead
of a static calculation. Hence, except the dynamic calculation (moving load model), the same
procedure as in the previous chapter is applied. Furthermore, the S-N curve, which is needed
to obtain, using Miner’s rule, the damage Ddyn due to the dynamic calculation, is set to the
level of the static calculation — see Figure 5.13. The procedure is explained using the four
example single-span steel and composite bridges of Table 5.2. Each of the eight trains, crosses
the structure with the speed vDmax , which produces the maximum possible damage within the
considered speed range of 50 to 1.2 vEC km/h. Hence, the discussed examples are results of
the in Chapter 4.1 defined traffic mix TM1**. Further, all in this chapter performed dynamic
calculations base on the moving load model and Rayleigh like damping using the damping
variant ζEC — see Figure 5.9. However, regarding the dynamic calculation, first the dimensional
approach — see Chapter 3.5.2 — and afterwards the non-dimensional response representation
— see Chapter 3.6 — and its benefits are presented.

Damage accumulation based on dimensional calculation

Figure 5.17 illustrates the results for the passenger trains TypeC1 to TypeC4 acting on the
single-span steel bridge SSB50-1 and single-span composite bridge SCB50-1. As the first bending
frequencies n0 and the damping ratios ζEC of SSB50-1 and SCB50-1 are identical, the resulting
bending moments are equivalent as well — see non-dimensional approach and Equations (3.221)

117



5. Single-span bridges

and (3.223). In Figure 5.17(a) the bending moments M at midspan varying with time due to
the crossing of trains TypeC1 to TypeC4 are illustrated. Consequently, Figure 5.17(b) shows the
corresponding bending moment range spectra for the entire design life of 100 years. The latter
are evaluated at the S-N curve, which was defined due to the static calculation as described
above — see Figure 5.13, leading to the damage Ddyn. Finally, the equivalent constant amplitude
bending moment ranges ΔME,2,TypeCi,dyn were calculated and plotted.

(a) Bending moment M incl. (1 + 0.25 ϕ′′
D) according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.17.: Single-span bridge L = 50 m — SSB50-1 & SCB50-1 — dynamic — vDmax — ζEC
— Rayleigh like damping — TypeC1-C4 of traffic mix TM1**
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In Figure 5.18 the results for the freight trains TypeC5 to TypeC8 are illustrated.

(a) Bending moment M incl. (1 + 0.25 ϕ′′
D) according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.18.: Single-span bridge L = 50 m — SSB50-1 & SCB50-1 — dynamic — vDmax — ζEC
— Rayleigh like damping — TypeC5-C8 of traffic mix TM1**

The overall outcome, which compares the static and the dynamic results of the trains TypeC1 to
TypeC8 crossing the single-span steel and composite bridges SSB50-1 and SCB50-1 is presented
in Figure 5.19. The blue solid line shows the bending moment range spectrum of the dynamic
calculation for the entire design life of 100 years, whereas the black solid line illustrates the one
for the static calculation. Considering the S-N curve, defined by the static calculation, for the
damage accumulation calculation, according Miner’s rule, leads for the static case, by definition,
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5. Single-span bridges

to Dstat = 1.0. On the other hand, the dynamic bending moment range spectrum evokes a
damage of Ddyn = 23.5641 and exceeds severely the static calculation.

Figure 5.19.: Single-span bridge L = 50 m — SSB50-1 & SCB50-1 — static vs. dynamic — vDmax

— ζEC — Rayleigh like damping — TypeC1-C8 of traffic mix TM1**

120



5.1. Overview of studied single-span bridges

The following two Figures 5.20 and 5.21 show again the results of the dynamic calculation of the
trains TypeC1 to TypeC8, but now acting on the single-span steel and composite bridges SSB50-5
and SCB50-5, with significantly higher first bending frequencies — see Table 5.2. However, the
impact of all trains on this structure is substantially lower than on the previously discussed
single-span bridge SSB50-1 and SCB50-1 — compare with Figures 5.17 and 5.18.

(a) Bending moment M incl. (1 + 0.25 ϕ′′
D) according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.20.: Single-span bridge L = 50 m — SSB50-5 & SCB50-5 — dynamic — vDmax — ζEC
— Rayleigh like damping — TypeC1-C4 of traffic mix TM1**
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(a) Bending moment M incl. (1 + 0.25 ϕ′′
D) according to ÖNORM EN 1991-2, Annex D [43]

(b) Bending moment range spectra for design life of 100 years

Figure 5.21.: Single-span bridge L = 50 m — SSB50-5 & SCB50-5 — dynamic — vDmax — ζEC — Rayleigh like
damping — TypeC5-C8 of traffic mix TM1**

In Figure 5.22 the overall dynamic and static results for the single-span steel and composite
structure SSB50-5 and SCB50-5, which are crossed by the trains TypeC1 to TypeC8, are presented.
The damage Ddyn, due to the dynamic calculation, exceeds with 1.2737 again the static result
(Dstat = 1.0) but is reduced significantly in comparison to the structures SSB50-1 and SCB50-1
— see Figure 5.19.
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5.1. Overview of studied single-span bridges

Here, the dynamic bending moment range spectrum (blue solid line) has again much more
cycles than the static bending moment range spectrum (black solid line), but these, however, do
not cause any damage Ddyn as their amplitude is below the cut-off limit ΔσL.

Figure 5.22.: Single-span bridge L = 50 m — SSB50-5 & SCB50-5 — static vs. dynamic — vDmax — ζEC — Rayleigh
like damping — TypeC1-C8 of traffic mix TM1**

The trains TypeC3, TypeC5 and TypeC7 have the biggest impact on the damage Ddyn, regarding
the single-span steel and composite bridges SSB50-1 and SCB50-1 — see Figures 5.17 and 5.18.
In Table 5.3 an explanation is presented why these trains produce on structures SSB50-1 and
SCB50-1 much more damage than on SSB50-5 and SCB50-5. All trains cross the structures with
the individual speed vDmax , which produces the maximum possible damage Ddyn within the
speed range of each train. Considering the car length LD of each train, allows to calculate the
excitation frequency nLD. If the excitation frequency nLD or an integral multiple i = N of it, is
equal to the structure’s first bending frequency n0, then resonance occurs. Within one excitation
period, the first bending mode performs i oscillations. Consequently, the lower i is, the more
often the first bending mode is excited, which is throughout the case for the single-span steel
and composite bridge SSB50-1 and SCB50-1 in comparison to SSB50-5 and SCB50-5.

Bridge n0 [Hz] Train type vDmax [km/h] LD nLD =
vDmax
3.6 LD

[Hz] i = n0
nLD

SSB50-1
SCB50-1

2.33
TypeC3 221 26.4 2.33 1
TypeC5 71 16.9 1.17 2
TypeC7 144 17.8 2.25 ≈1

SSB50-5
SCB50-5

5.08
TypeC3 161 26.4 1.69 3
TypeC5 77 16.9 1.27 4
TypeC7 110 17.8 1.72 3

Table 5.3.: Excitation frequency nLD of specific EC trains acting on single-span steel (SSB50-1/
SSB50-5) and composite bridges (SCB50-1/ SCB50-5)
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Damage accumulation based on non-dimensional response representation

In the following paragraphs, the use of the non-dimensional response representation, which
was defined in Chapter 3.6, is presented. Therefore, the additional 50 m long single-span steel
structure SSB50-3, whose first bending frequency n0 = 3.70 Hz is between the ones of SSB50-1
and SSB50-5, is introduced.1 The crossing of all three structures by the train TypeC3 and the
resulting damage Ddyn for the speed range 50 to 300 km/h is plotted in Figure 5.23. Again, the
level of the S-N curve for the damage accumulation calculation (Miner’s rule) was defined by
the static calculation for single-span bridges with lengths of 50 m — see Figure 5.13.

Figure 5.23.: Dimensional results for Ddyn — three single-span bridges with L = 50 m (structures 1
to 3) — one crossing of train TypeC3 — v = 50-300km/h — ζEC — Rayleigh like damping

Rewriting Equations (3.221) and (3.223) illustrates the basic idea of the non-dimensional re-
sponse representation regarding the bending moment M

Mnon−dim =
M

Pmax L
(5.16)

S =
v

2 L n0
(5.17)

Consequently, the ordinate of the dimensional bending moment representation M needs to
be divided by the structure’s length L and the train’s maximum axle load Pmax — according
to Equation (5.16). Furthermore, the abscissa of the non-dimensional representation becomes
with Equation (5.17), the train velocity v and the first bending frequency n0 to S. However, as
the level of the S-N curve is determined by the static calculation, which is valid for all single-
span structures of a particular length L, ΔME,2,TypeC1−C8,stat stays constant for all single-span
structures of this particular length L as well, hence

ΔME,2,TypeC1−C8,stat = f (L) (5.18)

1The here described procedure is also valid for the single-span composite bridges SCB50-1, SCB50-3 and SCB50-5
as they have the same first bending frequency n0 and damping ratio ζEC like the single-span steel bridges SSB50-1,
SSB50-3 and SSB50-5. However, due to reasons for simplicity they are not mentioned here.
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5.1. Overview of studied single-span bridges

as illustrated in Figure 5.16. This consequently allows to write

Dnon−dim =
D

Pmax L
(5.19)

whereas the maximum axle load Pmax and the length of the structure L stay constant for all
structures with a particular length (e.g. all structures in Figure 5.23 have a span length of L
= 50 m), which theoretically makes the division in Equation (5.19) unnecessary and therefore
is subsequently not performed either. In Figure 5.24 the transformation from the dimensional
to the non-dimensional representation, applying Equation (5.17), is shown. The black line
illustrates the non-dimensional response solution for a particular S range and simultaneously
represents the solutions of all three structures. Hence, one only needs to calculate the non-
dimensional solution once and consequently receives the solution for the other three structures
as well.

Figure 5.24.: Non-dimensional results for Ddyn — three single-span bridges with L=50m (structures 1 to
3) — one crossing of train TypeC3 — ζEC — Rayleigh like damping

Figure 5.25 shows the damage Ddyn results for the crossing of one train TypeC3 on single-span
structures with lengths L starting from 7 to 80 m. The non-dimensional solution of Figure 5.24
is plotted in Figure 5.25 at L = 50 m.

The dimensional solutions can be found by simply applying Equation (5.17) and choosing a
particular damage Ddyn value within a given speed range. This was performed in Figure 5.26 by
looking for the maximum damage Ddyn value within the speed range v = 50-300 km/h for the
single-span structures defined by the upper and lower limits according to ÖNORM EN1991-2,
Fig. 6.10 [43] — see Figure 2.7. Consequently, for each bridge in Figure 5.26, defined by the
length L and first bending frequency n0, the maximum possible damage value Ddyn, reached by
the train speed vDmax , within the speed range v = 50-300 km/h, was selected.
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5. Single-span bridges

Figure 5.25.: Non-dimensional results for Ddyn (3D view) — single-span bridges — one crossing of
train TypeC3 — ζEC — Rayleigh like damping

Figure 5.26.: Dimensional results for Ddyn (top view) — single-span bridges — one crossing
of train TypeC3 — vDmax — ζEC — Rayleigh like damping
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The damage Ddyn values in Figure 5.26 result due to one crossing of train TypeC3. These need
to be multiplied by the number of train crossings within the design life of the structure, which
leads for train TypeC3 — considering Table 4.1 — to Figure 5.27.

Figure 5.27.: Dimensional results for Ddyn (top view) — single-span bridges — all crossings
of train TypeC3 for design life (100 years) of bridge (traffic volume 1.72 106 t/ year) — vDmax

— ζEC — Rayleigh like damping

The above described procedure for train TypeC3 may be repeated for the other seven remaining
trains of traffic mix TM1** according to Table 4.1 and Table 4.2. The summarized results for
traffic mix TM1** (design life of 100 years and traffic volume of 24.95 106 t/ year) is shown in
Figure 5.28. The results of the dimensional calculation for structure 1 (SSB50-1) and structure 3
(SSB50-5) — see Figures 5.19 and 5.22 — are plotted in Figure 5.28 as well.

Figure 5.28.: Dimensional results for Ddyn (top view) — single-span bridges — traffic mix 1
(TM1**) — vDmax — ζEC — Rayleigh like damping
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Calculation of ΔσE,2,dyn for steel/ composite bridges

In the final step, the equivalent constant amplitude stress range ΔσE,2,dyn due to the dynamic
calculation is determined, which then may be compared to the decisive detail category. Therefore,
on the one hand, the before determined damage Ddyn is necessary. On the other hand, the
equivalent constant amplitude stress range ΔσE,2,stat due to the static calculation is required as
well. The latter is again calculated for the defined single-span steel and composite reference
bridges and the area in between is interpolated. Figure 5.29 shows the equivalent constant
amplitude stress ranges ΔσE,2,stat for the single-span steel bridges.

Figure 5.29.: Single-span steel bridges — ΔσE,2,stat due to trains TypeC1 to TypeC8 — reference structures and
interpolated surface — no load distribution

According to Equation (5.20) and using the damage Ddyn values of Figure 5.28 the equivalent
constant amplitude stress ranges ΔσE,2,dyn, which are illustrated in Figure 5.30, result.1

ΔσE,2,dyn = Ddyn
1/m ΔσE,2,stat = Ddyn

1/3 ΔσE,2,stat (5.20)

Figure 5.30.: Single-span steel bridges — traffic mix TM1* — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & ΔσE,2,stat

1Due to the chosen procedure becomes Dstat = 1.0 for ΔσE,2,stat.
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5.1. Overview of studied single-span bridges

Figure 5.31 illustrates the equivalent constant amplitude stress ranges ΔσE,2,stat for the single-
span composite bridges.

Figure 5.31.: Single-span composite bridges — ΔσE,2,stat due to trains TypeC1 to TypeC8 — reference structures and
interpolated surface — no load distribution

Again, using the damage Ddyn values of Figure 5.28 and the relations according to Equa-
tion (5.20), the equivalent constant amplitude stress ranges ΔσE,2,dyn for the single-span com-
posite bridges, as illustrated in Figure 5.32, result.

Figure 5.32.: Single-span composite bridges — traffic mix TM1* — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & & ΔσE,2,stat
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5.2. Preliminary studies

In this chapter, two preliminary studies are performed to answer the question whether the
simple moving load model is sufficient enough to model the train crossing and whether all
four damping variants introduced in Chapter 5.1.3 need to be considered in the subsequent
parameter study.
First, the two different train models explained in Chapter 3 are compared, regarding the
absolute maximum vertical bridge deck acceleration |amax|, absolute maximum bending moment
|Mmax,dyn| and damage Ddyn, to each other. The train TypeC19, which represents one of the
common Railjet configurations, operating on the high-speed line Westbahn in Austria, is modelled
using the moving load model — see Chapter 3.5.2 — and using the2D multi-body model according
to Chapter 3.5.3.
In the second part of this chapter, for selected single-span bridges and different damping
variants — see Figure 5.9 — the damage Ddyn is calculated due to traffic mix TM2-st according
to Chapter 4.2.

5.2.1. Comparison of train models

For the comparison of the effects on the structure due to the moving load model and the 2D multi-
body model, the following nine single-span steel bridges — see Table 5.4 and also Chapter 5.1.1
and Appendix B — were considered. Therefore, the damping variant ζEC was selected for all
load models and bridge structures, whereas for the moving load model the additional damping
Δζ was considered and consequently for the 2D multi-body model was neglected.
Furthermore, the high-speed train TypeC19, according to Table A.11 and A.12, was used in the
following study. The 64 axle conventional train consists of two 32 axle Railjet configurations, both
hauled by a Taurus power car. The measurements at the monitoring point Enns of Chapter 4.2.4
indicate that this train configuration is not used for speeds exceeding 240 km/h. However, the
following study was performed for a speed range v = 50-300 km/h. The vertical bridge deck
accelerations |amax| were all multiplied by the factor (1 + 0.5 ϕ′′) according to ÖNORM EN
1991-2, Annex C [43] and the bending moments |Mmax,dyn| by the factor (1 + 0.25 ϕ′′

D) according
to ÖNORM EN 1991-2, Annex D [43]. For the damage accumulation calculation the S-N- curve
was again set to the level of the static calculation according to Figure 5.16. Furthermore, the
results were calculated at the midspan cross section — subsequently defined as CSL/2 — and
additionally the maximum values — subsequently defined as CSmax — of 99 points, which were
equidistantly positioned along the longitudinal axis, were determined.
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Nr. Name
L
[m]

hMG
[mm]

tDP
[mm]

wLC
[mm]

tLC
[mm]

EIy
[Nm2]

μ
[kg/m]

n0
[Hz]

ζEC
[%]

1 SSB10-1 10 675 20 340 25 1.746E+09 6660.8 8.04
2.079
1.750

2 SSB10-3 10 890 20 480 30 4.276E+09 6813.5 12.44
2.079
1.750

3 SSB10-5 10 1050 20 600 40 8.142E+09 7008.0 16.93
2.079
1.750

4 SSB30-1 30 1685 20 600 40 2.344E+10 7187.5 3.15 0.500
5 SSB30-3 30 2435 25 800 50 7.195E+10 7825.1 5.29 0.500
6 SSB30-5 30 3100 25 950 70 1.533E+11 8426.3 7.45 0.500
7 SSB50-1 50 2800 30 800 60 1.129E+11 8228.4 2.33 0.500
8 SSB50-3 50 4115 30 900 80 3.1192E+11 8974.0 3.70 0.500
9 SSB50-5 50 5310 30 1000 110 6.469E+11 9904.1 5.08 0.500

Table 5.4.: Single-span steel bridges — geometry

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.33.: Comparison of moving load model and 2D multi-body model — SSB10-1 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping
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(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.34.: Comparison of moving load model and 2D multi-body model — SSB10-3 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.35.: Comparison of moving load model and 2D multi-body model — SSB10-5 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping
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(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.36.: Comparison of moving load model and 2D multi-body model — SSB30-1 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.37.: Comparison of moving load model and 2D multi-body model — SSB30-3 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping

133



5. Single-span bridges

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.38.: Comparison of moving load model and 2D multi-body model — SSB30-5 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.39.: Comparison of moving load model and 2D multi-body model — SSB50-1 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping
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(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.40.: Comparison of moving load model and 2D multi-body model — SSB50-3 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping

(a) |amax| incl. (1 + 0.5 ϕ′′) (b) |Mmax,dyn| incl. (1 + 0.25 ϕ′′
D)

(c) Ddyn incl. (1 + 0.25 ϕ′′
D)

Figure 5.41.: Comparison of moving load model and 2D multi-body model — SSB50-5 — one crossing
of train TypeC19 — v = 50-300km/h — ζEC — Rayleigh like damping
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The following conclusions due to the performed train model comparison may be stated:

• The peak values of all studied variables (|amax|, |Mmax,dyn| and Ddyn) using the moving
load model, usually exceed the ones using the 2D multi-body model — except for two cases,
see Figure 5.34(a) and Figure 5.35(c).

• The studied variables using the 2D multi-body model are for large areas, within the consid-
ered speed range, below the ones due to the moving load model.

• The maximum bridge deck acceleration |amax| is not sufficiently captured by considering
the midspan cross section only — see Figures 5.37(a), 5.38(a), 5.39(a), 5.40(a) and 5.41(a)

• On the other hand, the maximum bending moment |Mmax,dyn| is sufficiently determined
by the midspan cross section. For the single-span steel bridge SSB50-1 in Figure 5.39(b)
this is, within the speed range 260-300 km/h, not the case. However, the consequences
for the damage Ddyn are of neglectable magnitude as demonstrated in the small box of
Figure 5.39(c).

Consequently, only the moving load model is used for the parameter study. Furthermore, the
maximum bridge deck acceleration |amax| is determined considering 99 points, which are
equidistantly positioned along the structure’s longitudinal axis. The maximum bending moment
|Mmax,dyn| and the damage Ddyn are calculated considering the midspan cross section only.
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5.2.2. Preliminary fatigue design check of single-span steel bridges

In this chapter, a preliminary fatigue design check study on 40 single-span steel bridges,
regarding traffic mix TM2-st, is presented in order to study the effect of different damping
variants.
Therefore, the structures illustrated in Figure 5.42, ranging from spans of 10-80 m, were used.
Furthermore, for each span length L, five structures with different first bending frequencies n0
were taken into account. The naming of these, in total, 40 single-span steel bridges is indicated
in Figure 5.42 for spans with L = 10 m. Detailed information regarding the single-span steel
structures may be found in Appendix B. The subsequently performed calculations are also
valid for single-span composite bridges with the same first bending frequency n0. However, the
preliminary study was conducted for the four different damping variants ζEC, ζV1, ζV2 and ζV3
considering Rayleigh like damping — see Figure 5.9.

Figure 5.42.: Single-span steel bridges for preliminary study with respect to different damping variants

The 94602 real trains (RT) of traffic mix TM2-st — see Table 5.1 — are considered directly in
the dimensional dynamical calculation. Hence, the factors fPT and fST are not needed and
consequently only fTM2−st,100years is used here — see Equations (5.8) to (5.10).
Therefore, the damage DTM2−st for the entire design life of 100 years becomes to

DTM2−st = DRT ∗ fTM2−st,100years (5.21)

whereas DRT represents the damage due to the 94602 RT. Regarding the damage calculation,
using Miner’s rule, the level of the S-N curve was again set to the result of the static calculation
ΔME,2,TypeC1−C8,stat — see Figure 5.16. The dynamic calculation is performed, as mentioned
above, in dimensional form and all results are multiplied by the factor (1 + 0.25 ϕ′′

D) according
to ÖNORM EN 1991-2, Annex D [43].
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(a) Damping variant ζEC (b) Damping variant ζV1

(c) Damping variant ζV2 (d) Damping variant ζV3

Figure 5.43.: Single-span steel bridges — traffic mix 2 (TM2-st) — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

Figure 5.43 presents the results of the preliminary fatigue design check for the four different
damping variants. The damage values Ddyn are divided into the three parts due to PT, FT, and
ST. The influence of the PT is dominant in all structures, the one of the FT is rather constant
and the ST are in general neglectable. However, the structures with obvious damage peaks, the
single-span steel bridges SSB20-3 and SSB50-1, are driven by the influence of the PT. Increasing
the damping ratio from the design code level, represented by ζEC, up to a damping ratio of 3%
(ζV3) allows to decrease the damage Ddyn below 1.0 for all structures.
Consequently, the damping variants ζEC and ζV1 are considered further on, as the first represent
the state of the art rules for new structures and the latter may be interpreted as measured
damping values at site for existing structures.
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5.3. Traffic safety design check — acceleration criterion

Subsequently, the results of the acceleration criteria, representing the traffic safety (TS) design
check, which is performed using the high-speed load model HSLM-A — see Figure 2.20 — are
shown. First, the non-dimensional response representation for single-span bridges is applied
according to Chapter 3.6. This allows to calculate the non-dimensional bridge deck acceleration,
independently of the bridge type (steel, composite). The procedure is repeated for all ten
HSLM-A trains and the absolute maximum of the bridge deck acceleration is determined.
Finally, the results for real single-span steel and composite bridges are obtained through
transforming the non-dimensional solutions into the dimensional form.

5.3.1. Non-dimensional response representation

The non-dimensional response representation was applied subsequently according to Chap-
ter 3.6 for single-span bridges, considering ten HSLM-A trains. Therefore, Equation (3.224) is
here rewritten for the peak acceleration of one HSLM-A train number i

|āHSLM−Ai,max| = |aHSLM−Ai,max| μ L
PHSLM−Ai,max

(5.22)

As the maximum axle load PHSLM−Ai,max for each HSLM-A train i (i=1. . . 10) is different, a pure
non-dimensional representation for the envelope of the entire HSLM-A train set is not possible
anymore. Consequently, the peak acceleration parameter |āHSLM−A,max| Pmax for ten HSLM-A
trains becomes to

|āHSLM−A,max| Pmax = max (|āHSLM−Ai,max| PHSLM−Ai,max) = max (|aHSLM−Ai,max|) μ L
= |aHSLM−A,max| μ L (5.23)

Additionally, two different damping variants (ζEC and ζV1), two different damping types (modal
and Rayleigh like damping) and two different types of load application (with and without load
distribution) were studied. The influence of track defects and vehicle imperfections was not
considered yet, as the factor (1 + 0.5 ϕ′′) — according to ÖNORM EN 1991-2, Annex C [43]
— depends on the maximum permitted vehicle speed vmax and the first bending frequency n0
of the bridge structure. Consequently, this factor is considered later in the dimensional response
representation — see Chapters 5.3.2 and 5.3.3. The overall results for the non-dimensional
solution |āHSLM−A,max| are illustrated in Figure 5.44 and the corresponding assumptions listed
below:

• Span length L: starting from 7 to 80 m with a step size ΔL of 1 m
• Frequency ratio S: range depending on span length L, defined in a way so that in the

dimensional representation the n0 ranges between the EC limits and 10% above/ below
are reached; step size ΔS of 0.001

• Number of eigenfunctions φ: first five
• Damping ratio ζ: two damping variants ζEC and ζV1, according to Figure 5.9
• Damping type: modal and Rayleigh like damping
• Track defects and vehicle imperfections ϕ′′: as ϕ′′ = f (vmax, n0) according to ÖNORM EN

1991-2, Annex C [43], here not considered yet, later in dimensional representation
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5. Single-span bridges

• Number of considered output points along the longitudinal axis of the bridge: 99 points
with a step size Δx of L/100 m

• Load distribution (3 forces per axle load): with and without load-distribution considered
according to ÖNORM EN 1991-2, Figure 6.4 [43] — see Figure 5.2.

(a) ζEC — modal damping — no load distribution (b) ζV1 — modal damping — no load distribution

(c) ζEC — Rayleigh like damping — no load distribution (d) ζV1 — Rayleigh like damping — no load distribution

(e) ζEC — Rayleigh like damping — with load distribution (f) ζV1 — Rayleigh like damping — with load distribution

Figure 5.44.: Single-span bridges — vertical bridge deck acceleration parameter
|āHSLM−A,max| Pmax due to HSLM-A trains
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5.3. Traffic safety design check — acceleration criterion

5.3.2. Dimensional results — single-span steel bridges

Finally, it is possible to determine the peak acceleration for single-span steel bridges (SSB).
Therefore, Equation (5.23) is reordered and the mass distribution for single-span steel bridges
μSSB according to Figure 5.5 inserted. As the track defects and the vehicle imperfections were not
considered in the non-dimensional approach, the factor (1 + 0.5 ϕ′′) is added to Equation (5.24),
which leads to the peak acceleration for single-span steel bridges in dimensional form

|aHSLM−A,max| = |āHSLM−A,max| Pmax

μSSB L
(1 + 0.5 ϕ′′) (5.24)

In order to consider a certain speed range v = vmin-vmax for a given single-span beam bridge
with the first bending frequency n0, Equation (3.223) is applied

S =
v

2 L n0
Smin =

vmin

2 L n0
Smax =

vmax

2 L n0
(5.25)

Consequently, the maximum dimensional peak acceleration |aHSLM−A,max| within the range Smin
and Smax is determined for a particular single-span steel bridge. This procedure was performed
in Figure 5.45 considering Rayleigh like damping, the damping variant ζEC and a speed range
of v = 50-300 km/h. Hence, for each single-span steel bridge, defined by a span length L and
first bending frequency n0, the maximum dimensional peak acceleration |aHSLM−A,max| due to
the ten HSLM-A trains, crossing the structure from 50 to 300 km/h with a speed step Δv = 1
km/h, is plotted. Figures 5.46(a) and 5.46(b) illustrate the top view of Figure 5.45, considering

Figure 5.45.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due to HSLM-A trains incl.
(1 + 0.5 ϕ′′) — vmax = 300 km/h — ζEC — Rayleigh like damping — no load distribution

the TS criteria |aHSLM−A,max| ≤ 3.5 m/s2 for new structures and |aHSLM−A,max| ≤ 6.0 m/s2 for
existing structures. Consequently, the coloured areas represent the structures, which comply
with the particular TS criterion. Figures 5.46(c) to 5.46(h) show the results regarding the load
distribution (LD) — see Figure 5.2 — and the damping ratio — see Figure 5.9 — variation.
However, the modal damping variant was not considered as the difference in respect to the
Rayleigh like damping for single-span structures can be neglected — see Appendix B.2.
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5. Single-span bridges

(a) ζEC — |aHSLM−A,max| ≤ 3.5 m/s2 — no LD (b) ζEC — |aHSLM−A,max| ≤ 6.0 m/s2 — no LD

(c) ζEC — |aHSLM−A,max| ≤ 3.5 m/s2 — with LD (d) ζEC — |aHSLM−A,max| ≤ 6.0 m/s2 — with LD

(e) ζV1 — |aHSLM−A,max| ≤ 3.5 m/s2 — no LD (f) ζV1 — |aHSLM−A,max| ≤ 6.0 m/s2 — no LD

(g) ζV1 — |aHSLM−A,max| ≤ 3.5 m/s2 — with LD (h) ζV1 — |aHSLM−A,max| ≤ 6.0 m/s2 — with LD

Figure 5.46.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains incl. (1 + 0.5 ϕ′′) — vmax = 300 km/h — Rayleigh like damping
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5.3. Traffic safety design check — acceleration criterion

5.3.3. Dimensional results — single-span composite bridges

The dimensional peak acceleration for single-span composite bridges (SCB) due to the crossing
of the HSLM-A train set is determined according to the procedure for single-span steel bridges
in Chapter 5.3.2. Hence, for the mass distribution μ the values for SCB, according to Figure 5.8,
are inserted, which leads to

|aHSLM−A,max,SCB| = |āHSLM−A,max| Pmax

μSCB L
(1 + 0.5 ϕ′′) (5.26)

Figure 5.47 shows again the results for the case of Rayleigh like damping, a damping variant
ζEC and a speed range of v = 50-300 km/h, but here for single-span composite bridges.

Figure 5.47.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| ≤ 3.5 m/s2 due to
HSLM-A trains — vmax = 300 km/h — ζEC — Rayleigh like damping — no load distribution

In Figure 5.48 again the top view results are presented, considering different damping types,
damping variants and load distribution. However, due to the bigger mass of composite structures
in comparison to steel bridges — compare the increase of coloured areas in Figure 5.8 to
Figure 5.5 — the vertical bridge deck acceleration |aHSLM−A,max| is severely reduced for single-
span composite bridges — see linear influence of μSCB in Equation (5.26).
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5. Single-span bridges

(a) ζEC — |aHSLM−A,max| ≤ 3.5 m/s2 — no LD (b) ζEC — |aHSLM−A,max| ≤ 6.0 m/s2 — no LD

(c) ζEC — |aHSLM−A,max| ≤ 3.5 m/s2 — with LD (d) ζEC — |aHSLM−A,max| ≤ 6.0 m/s2 — with LD

(e) ζV1 — |aHSLM−A,max| ≤ 3.5 m/s2 — no LD (f) ζV1 — |aHSLM−A,max| ≤ 6.0 m/s2 — no LD

(g) ζV1 — |aHSLM−A,max| ≤ 3.5 m/s2 — with LD (h) ζV1 — |aHSLM−A,max| ≤ 6.0 m/s2 — with LD

Figure 5.48.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — Rayleigh like damping
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5.4. Fatigue design check — FLS — static versus dynamic damage

5.4. Fatigue design check — FLS — static versus dynamic damage
Subsequently, the fatigue limit state design check (FLS) for single-span steel and composite
bridges, as described in Chapter 5.1.5, is performed. In total, the five traffic mixes, according
to Chapter 4 and 5.1.4, are considered. For all subsequently presented results, regarding the
damage Ddyn, the following assumptions for the non-dimensional approach — see Chapter 5.1.5
— were made:

• Span length L: starting from 7 to 80 m with a step size ΔL of 1 m
• Frequency ratio S: range depending on span length L, defined in a way so that in the

dimensional representation the n0 ranges between the EC limits and 10% above/ below
are reached; step size ΔS of 0.001

• Number of eigenfunctions φ: first five
• Damping ratio ζ: two damping variants ζEC and ζV1, according to Figure 5.9
• Damping type: Rayleigh like damping only
• Track defects and vehicle imperfections ϕ′′: factor (1 + 0.25ϕ′′

D) according to ÖNORM EN
1991-2, Annex D [43]

• Number of considered output points along the longitudinal axis: cross section at midspan
• Load distribution (3 forces per axle load): with and without load-distribution considered

according to ÖNORM EN 1991-2, Figure 6.4 [43] — see Figure 5.2.
All subsequently shown Figures, regarding the FLS criterion, are based on a traffic volume of
24.95 106 t/year and on a design life of 100 years, unless stated otherwise.
Additionally, it is possible to compare the dynamic damage Ddyn, due to a certain traffic mix,
directly the static damage Dstat, due to traffic mix 1 (EC-mix), as for both damage calculations
the same level of the S-N curve is selected. Due to the previously described procedure — see
Chapter 5.1.5 — the static damage always becomes to Dstat = 1.0. Furthermore, the here
presented FLS is combined with the traffic safety design check (TS) of Chapter 5.3.

5.4.1. Traffic mix 1

Traffic mix 1 contains the first eight train types according to ÖNORM EN 1991-2, Annex D [43]
— see Chapter 4.1. The trains TypeC1 to TypeC4 represent passenger trains and are responsible
for about 31.5 % of the traffic volume, whereas the remaining 68.5 % are covered by the freight
trains TypeC5 to TypeC8. However, three different variations of train speeds were considered
for the dynamic calculation — see Table 4.2:

• vEC: maximum train speed according to ÖNORM EN 1991-2, Annex D [43] — abbreviation
for subcategory of traffic mix 1 → TM1*

• vDmax : train speed, which leads to maximum damage Ddyn within the speed range v =
50-1.2vEC km/h for each train TypeCi (i=1. . . 8) — abbreviation for subcategory of traffic
mix 1 → TM1**

• vamax : train speed, which leads to maximum vertical bridge deck acceleration |aTypeCi,max|
within the speed range v = 50-1.2vEC km/h for each train TypeCi (i=1. . . 8) — abbreviation
for subcategory of traffic mix 1 → TM1***

Traffic mix TM1* — train speed vEC

Figure 5.49 illustrates the damage Ddyn results of the eight trains TypeC1 to TypeC8 individually.
All trains crossed the single-span structures with the speed vEC and according to Table 4.1
for the entire design life. Furthermore, the damping variant ζEC and no load distribution was
considered.
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5. Single-span bridges

(a) TypeC1 — vEC=200 km/h — traffic vol. 2.90 106 t/year (b) TypeC2 — vEC=160 km/h — traffic vol. 2.32 106 t/year

(c) TypeC3 — vEC=250 km/h — traffic vol. 1.72 106 t/year (d) TypeC4 — vEC=250 km/h — traffic vol. 0.93 106 t/year

(e) TypeC5 — vEC=80 km/h — traffic vol. 5.52 106 t/year (f) TypeC6 — vEC=100 km/h — traffic vol. 6.27 106 t/year

(g) TypeC7 — vEC=120 km/h — traffic vol. 3.02 106 t/year (h) TypeC8 — vEC=100 km/h — traffic vol. 2.27 106 t/year

Figure 5.49.: Single-span bridges — trains of traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figure 5.50 shows the total damage Ddyn of the individual trains of Figure 5.49. However,
the high-speed passenger trains TypeC3 and TypC4 cause the biggest damage values Ddyn
— compare Figure 5.50 to 5.49(c) and 5.49(d).

Figure 5.50.: Single-span bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like damping
— no load distribution — top view Ddyn

Subsequently, a detailed investigation of the single-span structures Str-1 to Str-6, which are
defined in Table 5.5 and shown in Figures 5.49 and 5.50, is presented.

Name L [m]
n0

Hz]
ζSSB/SCB

[%]
ΔσE,2,stat,SSB
[N/mm2]

ΔσE,2,stat,SCB
[N/mm2]

Str-1 19 5.714 1.01 65.7 46.9
Str-2 19 3.658 1.01 134.6 90.2
Str-3 34 3.658 0.50 55.0 43.3
Str-4 40 3.658 0.50 39.2 35.8
Str-5 50 2.633 0.50 52.1 43.2
Str-6 50 2.325 0.50 62.3 49.6

Table 5.5.: Definition of single-span bridges Str-1 to Str-6
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5. Single-span bridges

Damage Ddyn versus Dstat for structures Str-1 and Str-2

Structures Str-1 and Str-2 have a span length of 19 m. Hence, the static calculation in Figure 5.51
is valid for both equally. Again, the trains TypeC1 to TypeC8 were first simulated statically,
including the factor (1 + ϕ)D, with respect to the bending moment M in the midspan cross
section. Subsequently, using the reservoir method, their bending moment range spectra was
determined. Considering the traffic volume for these eight trains — according to Table 4.1
— the static bending moment range spectra for the entire design life of 100 years was calculated
for each train and the entire traffic mix, as illustrated in Figure 5.51. Again, the damage
accumulation calculation, using Miner’s rule, was performed and the level of the S-N curve
iterated, until the damage Dstat was set to 1.0, which led to a minimum fatigue resistance of
ΔσC = ΔσE,2,stat — see Table 5.5 — and an static equivalent constant amplitude bending moment
range ΔME,2,TypeC1−C8,stat of 4393.84 kNm.

Figure 5.51.: Str-1 — static bending moment ranges — TypeC1-C8 — traffic mix TM1*

In the next step, the dynamic calculation of structure Str-1, additionally defined by the first
bending frequency n0 with 5.714 Hz and a damping ratio ζSSB/SCB of 1.01 %, was performed for
the crossing of trains TypeC1 to TypeC8. Subsequently, the corresponding bending moment
ranges spectra were evaluated, again using Miner’s rule, at the before iterated S-N curve, defined
by ΔME,2,TypeC1−C8,stat = 4393.84 kNm — as illustrated in Figure 5.52. The total damage Ddyn due
to the entire traffic mix TM1* results to about Ddyn = 8.42 and the related dynamic equivalent
constant amplitude bending moment range ΔME,2,TypeC1−C8,dyn becomes 8939 kNm. The freight
train TypeC8 has the greatest impact with a damage Ddyn of approximately 6. Due to the regular
car length of LD = 9.7 m — see Figure 2.18 — the excitation frequency for a travel speed of
100 km/h becomes to nLD = 2.863 Hz, which is about the half of the structures first bending
frequency n0 = 5.714 Hz. Hence, train TypeC8 excites the first bending mode at each second
oscillation cycle.
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figure 5.52.: Str-1 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

Figure 5.53 compares the bending moment range spectra of the dynamic calculation to the ones
of the static calculation. Figures 5.53(a) and 5.53(b) illustrate the results for the passenger trains
TypeC1 to TypeC4 and the freight trains TypeC5 to TypeC8 respectively, on the logarithmic
scale. Additionally, Figures 5.53(c) and 5.53(d) present the before mentioned bending moment
range spectra, using the linear representation.
For Structure Str-2, in comparison to Str-1, only the first bending frequency n0 was changed
from 5.714 Hz to 3.658 Hz. The consequences are illustrated in the final results of Figure 5.54.

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.53.: Str-1 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*

149



5. Single-span bridges

Figure 5.54.: Str-2 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

The high-speed passenger train TypeC4 causes with its car length LD = 18.7 m — see Figure 2.18
— at a travelling speed of 250 km/h an excitation frequency of nLD = 3.714 Hz, which is
almost equal to the structures first bending frequency n0 = 3.658 Hz and therefore causes
resonance. Again, Figure 5.55 illustrates the bending moment range spectra of the static and
dynamic calculation with respect to the trains TypeC1-C8, crossing structure Str-2. Especially
the differences between static and dynamic calculation for train TypeC4 are very server — see
Figures 5.55(a) and 5.55(c).

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.55.: Str-2 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*
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5.4. Fatigue design check — FLS — static versus dynamic damage

Damage Ddyn versus Dstat for structure Str-3

The static results for structure Str-3, with a span length L of 34 m, are shown in Figure 5.56.

Figure 5.56.: Str-3 — static bending moment ranges — TypeC1-C8 — traffic mix TM1*

As structures Str-2 and Str-3 have both the same first bending frequency n0 = 3.658 Hz, again,
high-speed passenger train TypeC4 causes sever damage Ddyn due to resonance phenomena
— see Figure 5.57. Besides train TypeC4, the freight trains TypeC5 and TypeC7 cause in the
dynamic simulation many bending moment range cycles more, than in the static calculation
— see Figures 5.58(b) and 5.58(d). However, most of them do not reach the level of the cut-off
limit ΔσL and consequently do not cause any damage Ddyn.

Figure 5.57.: Str-3 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

151



5. Single-span bridges

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.58.: Str-3 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*

Damage Ddyn versus Dstat for structure Str-4

In Figure 5.59 again the result for the iterated static equivalent constant amplitude bending
moment ΔME,2,TypeC1−C8,stat due to the static calculation of trains TypeC1 to TypeC8 is shown.

Figure 5.59.: Str-4 — static bending moment ranges — TypeC1-C8 — traffic mix TM1*
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figure 5.60.: Str-4 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

Like structures Str-2 and Str-3, the subsequently discussed structure Str-4 features a first bending
frequency of n0 = 3.658 Hz as well. Hence, train TypeC4 has again the biggest influence on the
damage Ddyn as illustrated in Figure 5.60. The vast differences between the static and dynamic
calculation with respect to the resulting bending moment range spectra is once again illustrated
in Figure 5.61. The dynamic results of almost all trains lead to a significant increase of bending
moment cycles. However, the broad majority of these cycles, except for train TypeC4, has no
influence on the damage as they are below the cut-off limit ΔσL.

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.61.: Str-4 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*
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5. Single-span bridges

Damage Ddyn versus Dstat for structures Str-5 and Str-6

In Figure 5.62 the static results for a 50 m long single-span beam bridge, which apply for
structures Str-5 and Str-6, is presented.

Figure 5.62.: Str-5 — static bending moment ranges — TypeC1-C8 — traffic mix TM1*

The high-speed passenger train TypeC3 and the freight train TypeC5 cause for structure Str-5,
which has a first bending frequency of n0 = 2.633 Hz, the most damage Ddyn. This is, because
train TypeC3 causes due to its car length LD = 26.4 m — see Figure 2.18 — at 250 km/h an
excitation frequency of nLD = 2.671 Hz, which is equal to the structures first bending frequency
n0. Equally, the freight train TypeC5 is able to excite, because of its car length of LD = 16.9 m,
at 80 km/h each second oscillation cycle of the first bending mode.
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figure 5.63.: Str-5 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

In Figure 5.64 the resulting dynamic and static bending moment range spectra are compared to
each other on a linear and logarithmic scale, whereas the impact of trains TypeC3 and TypeC5
due to the dynamic calculation are noteworthy.

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.64.: Str-5 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*
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5. Single-span bridges

Figure 5.65.: Str-6 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1*

However, structure Str-6 got the same span length of 50 m as Str-5, but an about 12 % lower
first bending frequency of n0 = 2.325 Hz. Consequently, trains TypeC3 and TypeC5 are not able
to cause resonance effects as on structure Str-5 and the total damage Ddyn, due to traffic mix
TM1* for the entire design life of 100 years, reduces to about 1.23.

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.66.: Str-6 — static vs. dynamic bending moment ranges on log-log and
linear-linear scale — TypeC1-C8 — traffic mix TM1*
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5.4. Fatigue design check — FLS — static versus dynamic damage

In the next and final step, the dynamic equivalent constant amplitude stress range ΔσE,2,dyn is
calculated according to Equation (5.20), which is here rewritten:

ΔσE,2,dyn = Ddyn
1/3 ΔσE,2,stat (5.27)

In order to apply the above stated Equation, the equivalent constant amplitude stress ranges
ΔσE,2,stat are necessary. Therefore, the 63 single-span steel bridges of Chapter 5.1.1 are used as
reference structures according to Figure 5.67. The surface in between these reference structures
is interpolated and one can estimate the equivalent constant amplitude stress ranges ΔσE,2,stat
for any other structure. Applying Equation (5.27), under consideration of Figures 5.50 and 5.67,

Figure 5.67.: Single-span steel bridges — ΔσE,2,stat due to TM1 — no load distribution

leads to the results in Figure 5.68 for single-span steel bridges (SSB). The level of the S-N curve,
for the damage accumulation calculation (Miner’s rule) was set to the static result of the trains
TypeC1 to TypC8 crossing the structures. Hence, on stress basis this complies with ΔσE,2,stat of
Figure 5.67.
The minimum scale of the color bar in Figure 5.68 is now set to 61.74 N/mm2, which represents
the detail category 71 divided by the safety factor γMf = 1.15 — hereinafter also being referred
to as FAT-711. Additionally, the static constant equivalent stress range ΔσE,2,stat regarding the
detail category FAT-71 is also plotted in Figure 5.68 — see black dashed line. Along this line,
the level of the S-N curve was exactly at 61.74 N/mm2, on a stress basis, for the damage
accumulation calculation. Considering a detail category FAT-71 as given, structures below this
line, towards lower first bending frequencies n0, can not exist due to the insufficient safety level
of the static fatigue design check (FLS). Consequently, only structures above this line, towards
higher first bending frequencies n0, can exist. Furthermore, all coloured areas (ΔσE,2,dyn) above
this line, represent conservative results, regarding the detail category FAT-71, as the S-N level,
for the damage accumulation calculation, was below 61.74 N/mm2 — more precisely, exactly at
the level according to Figure 5.67. In summary, all ΔσE,2,dyn values above the black dashed line
represent a conservative approach, regarding the detail category FAT-71.

1In engineering practice the minimum fatigue strength used for railway bridges.
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5. Single-span bridges

Additionally, the acceleration criteria of Chapter 5.3.2 are plotted in Figure 5.68 as well. The red
solid line represents the criterion for new structures, whereas the red dashed line the one for
existing structures. Within the areas defined by these lines, depending on whether the concerned
structure is new or already existing, single-span steel bridges are suitable for high-speed railway
lines regarding the traffic safety design check (TS), represented by the acceleration criteria.
Consequently, if the coloured areas (ΔσE,2,dyn > 61.74 N/mm2) do not match with the accel-
eration criteria areas, no potential fatigue problem exists for new/ existing single-span steel
structures in high-speed lines. This is the case for traffic mix TM1* on single-span steel bridges
(SSB), as illustrated in Figure 5.68. Furthermore, the ΔσE,2,dyn results for structures Str-1 to Str-6,
calculated according to Equation (5.27), are plotted as well.

Figure 5.68.: Single-span steel bridges —traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Subsequently, the same procedure is performed for single-span composite bridges (SCB) as
well. Therefore, the ΔσE,2,stat surface, using the 63 reference SCB of Chapter 5.1.2, is interpolated,
according to Figure 5.69. Furthermore, Figure 5.70 shows the results for ΔσE,2,dyn, which were
obtained using Equation (5.27) in combination with Figures 5.50 and 5.69. Additionally, the
TS results of Chapter 5.3.3 are plotted, which allows to perform a combined TS and FLS
interpretation.

Again, the vast majority of FLS areas above ΔσE,2,dyn = 61.74 N/mm2 do not interfere with the
TS areas, in which single-span composite structures for high-speed lines would, theoretically, be
suitable. An exception represent a few existing SCB with the TS criterion |aHSLM−A,max| < 6.0
m/s2 — see Figure 5.70. Very short structures with a span length of L = 9 m and a first
bending frequency of about n0 = 12 Hz and structures with the first bending frequency of Str-5
(n0 = 2.633) and span lengths bigger than 51 m interfere with the TS area for existing structures.
One needs to keep in mind that, for existing structures a traffic volume of 24.95 106 t/year was
considered for the entire design life of 100 years as well.
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figure 5.69.: Single-span composite bridges — ΔσE,2,stat due to TM1 — no load distribution

Furthermore, as explained above, the dynamic FLS results, which are above the static FAT-71
line, are in general conservative regarding the detail category FAT-71. Therefore, for structure
Str-5 a damage accumulation calculation with the S-N curve on the level of the discussed detail
category FAT-71 was performed in an exemplary manner. Consequently, the S-N curve level was
increased, by the factor 61.74/ΔσE,2,stat = 61.74/43.2 = 1.43 — see Figure 5.69 — from 19777.53
kNm — see Figure 5.63 — to ΔME,2,TypeC1−C8,stat = 28265.38 kNm — see Figure 5.71 — leading
to a damage of Ddyn = 5.0949.

Figure 5.70.: Single-span composite bridges —traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5. Single-span bridges

Figure 5.71.: Str-5 — dynamic bending moment ranges — vEC — ζEC — TypeC1-C8 — traffic mix TM1* — S-N
curve set to ΔME,2,TypeC1−C8,stat,FAT−71 = 61.74/43.2 ΔME,2,TypeC1−C8,statkNm

Applying Equation (5.27) and inserting ΔσE,2,stat = 61.74 N/mm2, a dynamic equivalent constant
amplitude stress range of ΔσE,2,dyn = 106.2 N/mm2 results. Hence, although the S-N curve
was set to the level of the discussed detail category FAT-71, only a minimal reduction of the
resulting ΔσE,2,dyn, from 109.5 N/mm2 to 106.2 N/mm2 was achieved. The dynamic bending
moment range spectra ΔσE,2,dyn in comparison to the S-N curve, set according to the detail
category FAT-71, are illustrated in Figure 5.72.

(a) TypeC1-C4 on log-log scale (b) TypeC5-C8 on log-log scale

(c) TypeC1-C4 on linear-linear scale (d) TypeC5-C8 on linear-linear scale

Figure 5.72.: Str-5 — static vs. dynamic bending moment ranges on log-log and linear-linear scale — TypeC1-C8
— traffic mix TM1* — S-N curve set to ΔME,2,TypeC1−C8,stat,FAT−71 = 61.74/43.2 ΔME,2,TypeC1−C8,statkNm
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The following Figures 5.73 to 5.75 illustrate the results considering load distribution according
to Figure 5.2. Hence, each axle load was divided into three loads, the one in the center being
50 % and the other two lateral ones being 25 % of the original axle load. All other variables, in
comparison to the results presented before, were kept unchanged.
The load distribution has especially influence on structures of smaller spans up to L = 15 m
— compare Figures 5.50 and 5.73.

Figure 5.73.: Single-span bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like damping
— load distribution — top view Ddyn & |aHSLM−A,max|

In Figure 5.74 the FLS and TS results for single-span steel bridges, under consideration of
the load distribution, are presented. The load distribution has on both design criteria a pos-
itive influence. The areas of the TS criteria increase, hence more structures are suitable for
high-speed traffic, whereas the coloured areas (ΔσE,2,dyn > 61.74 N/mm2) of the FLS design
decrease — compare Figure 5.74 to 5.68. Consequently, the conclusion is unchanged, if new/
existing single-span steel bridges fulfil the TS criteria, no FLS problem will arise, considering
traffic mix TM1*.

Figure 5.74.: Single-span steel bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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The above described phenomena, regarding the load distribution, is also true for single-span
composite bridges (SCB). Hence, the statements for the case of no load distribution apply as
well. Consequently, if new SCB comply with the TS criterion, no FLS problem will arise with
respect to traffic mix TM1*. The same is true for existing SCB, except structures with span
lengths L = 51-58 m and a first bending frequency of n0 = 2.633 Hz and spans of about L = 9 m
with a first bending frequency n0 = 12 Hz — see Figure 5.75.
Considering the load distribution in this parameter study always led to the same effects
like described above. Therefore, subsequently only the results without load distribution are
presented, whereas the ones with load distribution may be found in Appendices B and C.

Figure 5.75.: Single-span composite bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

The Figures 5.76 to 5.78 show the results considering the damping variant ζV1 without load
distribution, consequently the damage Ddyn due to traffic mix TM1* is reduced — compare
Figures 5.76 and 5.50.

Figure 5.76.: Single-span bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like damping
— no load distribution — top view Ddyn & |aHSLM−A,max|
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The increased damping ratios ζV1 allow for more single-span steel bridges (SSB) to fulfil the TS
criterion — see Figure 5.77. Likewise, the FLS areas are diminished, which consequently leads,
in this case, for SSB to the same conclusion as for the damping variant ζEC — as long as the
new/ existing SSB fulfil the TS criterion, no FLS problem arises regarding the traffic mix TM1*.

Figure 5.77.: Single-span steel bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

In case of single-span composite bridges (SCB), the same conclusion can be drawn for the
damping variants ζV1 and ζEC as well. Only few existing structures do not fulfil the FLS criteria,
while complying with the TS criteria — see Figure 5.78.

Figure 5.78.: Single-span composite bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Traffic mix TM1** — train speed vDmax

Subsequently, the results of traffic mix TM1** are presented, which considers the trains TypeC1
to TypeC8 passing the structures with the speed vDmax . As described before, vDmax represents
the speed, within a certain speed range, at which the particular train produces the maximum
damage Ddyn — see Table 4.2. As illustrated in Figure 5.79, the traffic mix TM1** causes at each
single-span structure a damage Ddyn above the static level Dstat for the case of the damping
according to ÖNORM EN 1991-2 [43], hence ζEC.

Figure 5.79.: Single-span bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

However, transforming the damage Ddyn into the dynamic equivalent constant amplitude
stress range ΔσE,2,dyn and neglecting all results below 61.74 N/mm2, leads for single-span steel
structures (SSB) to Figure 5.80. Considering the TS criteria for the SSB, shows that all new
structures, which fulfil the TS criteria do not have a FLS problem. This is, again, true for most of
the existing SSB as well, except for structures above a span length L = 62 m and a first bending
frequency n0 near the lower EC limit.

Figure 5.80.: Single-span steel bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4. Fatigue design check — FLS — static versus dynamic damage

New composite structures, which fulfil the TS criteria, also comply with the FLS criteria, except
for structures with spans above L = 60 m and a first bending frequency n0 close to the lower EC
limit — see Figure 5.81. On the other hand, existing structures with spans up to 16 m and spans
starting from 51 m do not fulfil the FLS criteria, while complying with the TS criteria. However,
one needs to consider that TM1** assumes the trains TypeC1 - TypeC8 to pass each structure
for 100 years with the most unfavourable speed.

Figure 5.81.: Single-span composite bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Figures 5.82 to 5.84 show the results for the increased damping variant ζV1. However, the
majority of the structures suffers a dynamic damage Ddyn above the static threshold — see
Figure 5.82.

Figure 5.82.: Single-span bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn

Considering the FLS and TS results for single-span steel bridges, as in Figure 5.83 illustrated,
allows to conclude again, that in general new SSB, fulfilling the TS criteria, do not have a FLS
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5. Single-span bridges

problem. For existing structures this is the case as well, except for SSB with span lengths L
beyond 59 m and a first bending frequency n0 close to the lower EC limit.

Figure 5.83.: Single-span steel bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

New single-span composite structures, loaded by the traffic mix TM1** for 100 years, do not
have a FLS problem, if their span lengths are not above 58 m and their first bending frequency
n0 are above the lower EC limit — see Figure 5.84. Furthermore, existing SCB do have a FLS
problem even when complying with the TS criteria, as already mentioned for the damping
variant ζEC before.

Figure 5.84.: Single-span composite bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Traffic mix TM1*** — train speed vamax

Subsequently, the results regarding traffic mix TM1*** are presented. First, the maximum
vertical bridge deck acceleration |amax| and the corresponding train speed vamax for each of the
trains TypeC1 to TypeC8, considering the train’s speed ranges, was determined for each single
structure. In the next step, the dynamic simulation was performed with the train speed vamax

and the dynamic damage Ddyn was calculated as illustrated in Figure 5.85 for the damping
variant ζEC. Comparing Figure 5.85 to the results due to the train speed vDmax of Figure 5.79
shows the similarities of these two outcomes. Consequently, one can estimate the maximum
damage Ddyn due to a particular train with its speed leading to the maximum bridge deck
acceleration vamax .

Figure 5.85.: Single-span bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

Hence, the results for SSB and SCB due to the trains crossing the structures with the speed vamax

— see Figures 5.86 and 5.87 — are very similar to the ones of the speed vDmax — see Figures 5.80
and 5.81.

Figure 5.86.: Single-span steel bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5. Single-span bridges

Figure 5.87.: Single-span composite bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Increasing the damping ratio to ζV1 does not change the validity of the stated above for single-
span steel and composite structures — compare Figures 5.88, 5.89 and 5.90 to Figures 5.82, 5.83
and 5.84.

Figure 5.88.: Single-span bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn
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Figure 5.89.: Single-span steel bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Figure 5.90.: Single-span composite bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4.2. Traffic mix 2

In the following paragraphs the traffic mix 2 is discussed, in particular traffic mix TM2-st, as
only single track single-span railway bridge are covered here. The trains in traffic mix TM2-st
and the corresponding train speeds originate from measurements as described in Chapter 4 and
precised in Chapter 5.1.4. In total, over two consecutive years, 77217 passenger trains (PT) were
counted, of which 65451 were grouped into 73 average trains. These 73 average passenger trains
represent the total of 77217 PT, as described subsequently. Additionally, 15178 freight trains
(FT) were identified, which due to their big variety of train car combinations were not grouped
into average FT. Furthermore, the 2207 registered special trains (SP) are not directly considered,
but their traffic volume added to the one of the FT. In summary, the non-dimensional approach
is applied on 73 average PT, representing 77217 real PT. Furthermore, the 15178 real FT are
calculated, using the dimensional approach, for selected reference structures, whereas the
results for other structures are consequently interpolated.
First, the PT are discussed and Figure 5.91 shows the non-dimensional Ddyn results of the
average passenger train TypeC19 (Taurus power car in front), crossing once the single-span
structures with a span length L = 7 to 80 m. For the dynamic calculation the damping variant
ζEC, Rayleigh like damping and no load distribution were considered.

Figure 5.91.: Single-span bridges — non-dimensional representation of Ddyn — TypeC19 Taurus-front
(average train) — one train crossing — ζEC — Rayleigh like damping — no load distribution

Figure 5.91 is based on the average train TypeC19, which was determined based on the
measurement results due to 6689 real trains TypeC19 — see Table 4.4, line four. Subsequently,
Figure 5.92 gives, in an exemplary way, information of the error made due to this simplification
in case of the single-span bridge SSB50-1 with a span length L = 50 m and a first bending
frequency n0 = 2.33 Hz. Therefore, on the one hand the non-dimensional results of Figure 5.91
— see black line at L = 50 m — are illustrated in Figure 5.92. Additionally, the results of the
preliminary FLS calculation of Chapter 5.2.2 for the 6689 real TypeC19 trains are plotted for
structure SSB50-1 as well. The transformation was, as explained in Chapter 5.1.5, performed
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5.4. Fatigue design check — FLS — static versus dynamic damage

using Equation (5.17) , which is here rewritten

S =
v

2 L n0
(5.28)

The maximum absolute error |ΔDdyn,max| made by the average train TypeC19 in comparison to
the real 6689 trains is 50 %, whereas the average absolute error |ΔDdyn,average| is only about 5.3 %.

Figure 5.92.: Single-span bridge — L = 50 m — n0 = 2.33 Hz — non-dimensional vs. dimensional
calculation Ddyn — TypeC19 Taurus-front (average train) — 6689 train speeds — one train crossing

— ζEC — Rayleigh like damping — no load distribution

Creating for all 73 average PT — see Table 4.4 — the non-dimensional solutions, as described
for train TypeC19 in Figure 5.91, and evaluating these, using Equation (5.28), for the single-span
structures, defined by the span length L and the first bending frequency n0, and adding these
up, leads for the entire design life of 100 years to the results of Figure 5.93.

Figure 5.93.: Single-span bridges — non-dimensional vs. dimensional calculation Ddyn — 73 average PT
vs. 65451 real (labeled) PT — ζEC — Rayleigh like damping — design life train mass = 32383.1 *

fTM2−st,100years [103 t] — 3D view
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5. Single-span bridges

This means, Figure 5.94, which is the top view representation of Figure 5.93, illustrates the
Ddyn results due to 73 average PT, which cover 65451 real PT. Additionally, the results of the
dimensional calculation for 40 reference structures, considering the real 65451 PT for each of
those structures — see Chapter 5.2.2 — are compared to the results due to the average 73 PT
using the non-dimensional approach. The maximum absolute error |ΔDdyn,max| of 5.9 % and
the average absolute error |ΔDdyn,average| of 1.2 % in Figure 5.94 consequently compare the 40
red points to the surface.

Figure 5.94.: Single-span bridges — non-dimensional vs. dimensional calculation Ddyn — 73 average PT
vs. 65451 real (labeled) PT — ζEC — Rayleigh like damping — design life train mass = 32383.1 *

fTM2−st,100years [103 t] — top view

Up to now, the 73 average PT cover the 65451 real PT on which they were originally based.
In order to account for the total 77217 PT — according to Table 5.1 and Equation (5.9) — the
results of Figure 5.94 are multiplied by the factor fPT = 1.1900, which leads to Figure 5.95.
Consequently, the maximum absolute error |ΔDdyn,max| rises to 14.3 % and the average absolute
error |ΔDdyn,average| becomes 5.3 %.

Figure 5.95.: Single-span bridges — non-dimensional vs. dimensional calculation Ddyn — 73 average PT
∗ fPT vs. 77217 real (all) PT — ζEC — Rayleigh like damping — design life train mass = 38535.9 *

fTM2−st,100years [103 t] — top view
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As already mentioned above, the 15178 FT were not simplified to average trains as their train car
combinations are too random — see Figure 4.4. Therefore, the dimensional results of reference
structures from the preliminary FLS survey — see Chapter 5.2.2 — were used and the areas in
between interpolated, as illustrated in Figure 5.96.

Figure 5.96.: Single-span bridges — dimensional calculation Ddyn — 15178 real FT ∗ fST calculated for 40
reference bridges and interpolated for all other structures — ζEC — Rayleigh like damping — design life

train mass = 17294.9 * fTM2−st,100years [103 t] — 3D view

Subsequently, the results of Figure 5.96 were multiplied by the factor fST = 1.0115, in order
to account for the traffic volume of special trains (SP) and added up with the results of the
passenger trains (PT) according to Figure 5.95. This finally leads to the Ddyn result for the entire
traffic mix TM2-st of 100 years with an annual traffic volume of 24.95 106 t — see Figure 5.97.

Figure 5.97.: Single-span bridges — non-dimensional vs. dimensional calculation Ddyn — traffic mix TM2-st
— ζEC — Rayleigh like damping — design life train mass = 56029.1 * fTM2−st,100years [103 t] — 3D view
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Figure 5.98 is the top view representation of Figure 5.97. In comparison to the traffic mix TM1*
of the previous Chapter 5.4.1 the damage Ddyn is reduced severely. Hence, the real traffic mix
TM2-st, due to measured data, causes less damage than the eight trains of the EC mix.

Figure 5.98.: Single-span bridges — traffic mix TM2-st — design life train mass = 56029.1 * fTM2−st,100years

[103 t] — ζEC — Rayleigh like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Again, applying Equation (5.27) in combination with Figures 5.67 and 5.98 results into the
dynamic equivalent constant amplitude stress range ΔσE,2,dyn for single-span steel bridges (SSB)
— see Figure 5.99. Additionally, the TS criteria for new/ existing SSB is plotted as well, which
allows again to perform a combined interpretation. Both, new and existing SSB structures,
do not have a FLS problem, regarding the traffic mix TM2-st and the damping variant ζEC, if
fulfilling the TS criteria.

Figure 5.99.: Single-span steel bridges — traffic mix TM2-st — design life train mass = 56029.1
* fTM2−st,100years [103 t] — ζEC — Rayleigh like damping — no load distribution — top view

ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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The same is true for single-span composite bridges (SCB), except for existing structures with a
span length L = 16 m and a first bending frequency n0 = 7.25 Hz and for existing structures
with spans lengths L = 51-58 m and a first bending frequency n0 close to the lower EC limit
— see Figure 5.100.

Figure 5.100.: Single-span composite bridges — traffic mix TM2-st — design life train mass =
56029.1 * fTM2−st,100years [103 t] — ζEC — Rayleigh like damping — no load distribution — top

view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Repeating the before described procedure of TM2-st with the damping variant ζV1, leads to the
Figures 5.101 to 5.103. In general, the conclusions made for the damping variant ζEC apply here
as well, as the resulting damage Ddyn is reduced while the areas of the TS criteria are extended
due to the increased damping ratios ζV1. Consequently, only existing SCB with a span length L
= 16 m and a first bending frequency n0 = 7.25 Hz and with spans lengths L = 42-56 m and
a first bending frequency n0 close to the lower EC limit do not fulfill the FLS criteria, while
complying with the TS criteria — see Figure 5.103.

Figure 5.101.: Single-span bridges — traffic mix TM2-st — design life train mass = 56029.1 * fTM2−st,100years

[103 t] — ζV1 — Rayleigh like damping — no load distribution — top view Ddyn & |aHSLM−A,max|
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Figure 5.102.: Single-span steel bridges — traffic mix TM2-st — design life train mass = 56029.1
* fTM2−st,100years [103 t] — ζV1 — Rayleigh like damping — no load distribution — top view

ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Figure 5.103.: Single-span composite bridges — traffic mix TM2-st — design life train mass =
56029.1 * fTM2−st,100years [103 t] — ζV1 — Rayleigh like damping — no load distribution — top

view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4.3. Traffic mix 3

Subsequently, the results for traffic mix TM3-st according to Chapters 4.4 and 5.1.4 are presented.
Traffic mix TM3-st considers, in contrast to traffic mix TM2-st of the previous chapter, only
passenger trains (PT) and neglects freight trains (FT) and special trains (ST). Consequently,
the results of TM2-st for all PT — see Figure 5.94 — are multiplied by the factor fRT = 1.7302
— according to Equation (5.12) — in order to account for an annual traffic volume of 24.95 106

over the design life of 100 years.
In Figures 5.104 to 5.106 one finds the results for the damping variant ζEC according to ÖNORM
EN 1991-2 [43]. In comparison to the traffic mix TM2-st, the damage Ddyn increases at its peak

Figure 5.104.: Single-span bridges — traffic mix TM3-st — design life train mass = 32383.1 * fTM3−st,100years

[103 t] — ζEC — Rayleigh like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

values — see Figures 5.104 and 5.98. This is due to the fact that PT, which cause resonance, are
considered in TM3-st more than in TM2-st.

Figure 5.105.: Single-span steel bridges — traffic mix TM3-st — design life train mass = 32383.1
* fTM3−st,100years [103 t] — ζEC — Rayleigh like damping — no load distribution — top view

ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Consequently, the dynamic equivalent constant amplitude stress range ΔσE,2,dyn for singel-span
steel bridges (SSB) is increased as well but in context with the TS criteria, no structure in a
high-speed line is affected by the FLS criteria — see Figure 5.105. The same is applicable for
single-span composite bridges (SCB), except for existing structures with a span length L = 16 m
and a first bending frequency n0 = 7.25 Hz and for existing structures with spans lengths L =
51-58 m and a first bending frequency n0 close to the lower EC limit — see Figures 5.100 and
5.106.

Figure 5.106.: Single-span composite bridges — traffic mix TM3-st — design life train mass =
32383.1 * fTM3−st,100years [103 t] — ζEC — Rayleigh like damping — no load distribution — top

view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Again, increasing the damping ratio to ζV1 basically does not change the essence of the
conclusion. In Figure 5.107 the damage Ddyn results are presented, which are diminished in
comparison to Figure 5.104.

Figure 5.107.: Single-span bridges — traffic mix TM3-st — design life train mass = 32383.1 * fTM3−st,100years

[103 t] — ζV1 — Rayleigh like damping — no load distribution — top view Ddyn & |aHSLM−A,max|
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Figure 5.108 shows the dynamic equivalent constant amplitude stress ranges ΔσE,2,dyn in
combination with the TS criteria for SSB. In general, all SSB fulfilling the TS criteria, do not have
a FLS problem either, except existing SSB with span lengths L = 59-60 m and a first bending
frequency n0 close to the lower EC limit.

Figure 5.108.: Single-span steel bridges — traffic mix TM3-st — design life train mass = 32383.1
* fTM3−st,100years [103 t] — ζV1 — Rayleigh like damping — no load distribution — top view

ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Regarding SCB and the damping variant ζV1 the same is true as for the damping variant ζEC,
except that the length span of existing structures with a first bending frequency n0 close to the
lower EC limit, which fulfil the TS criteria but not the FLS criteria, changes from L = 51-58 m to
L = 42-56 m — compare Figures 5.109 and 5.107.

Figure 5.109.: Single-span composite bridges — traffic mix TM3-st — design life train mass =
32383.1 * fTM3−st,100years [103 t] — ζV1 — Rayleigh like damping — no load distribution — top

view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4.4. Traffic mix 4

Subsequently, the results regarding traffic mix TM4, which represents a pure high-speed traffic
mix for Austria, is presented. It consists of six partly common, partly new in Austria introduced,
high speed trains, which are described in Chapter 4.3. As for traffic mix 1, three different speed
variants — vtrain, vDmax and vamax — are considered and discussed as follows.

Traffic mix TM4* — train speed vtrain

In this chapter, the maximum vehicle speed vtrain of each high-speed train is used for the
dynamic calculation — see Table 4.12. Figure 5.110 shows the overall damage Ddyn results
due to the traffic mix TM4* for the entire design life of 100 years, considering the damping
variant ζEC. In contrast to the results of the traffic mixes TM1*, TM2-st and TM3-st — see
Figures 5.50, 5.97 and 5.104 — the peak damage values Ddyn of TM4* are very pronounced and
well defined.

Figure 5.110.: Single-span bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

As these six high-speed trains have very regular train car lengths LD, each of these trains causes
with the maximum train speed vtrain resonance effects for particular structures, as illustrated
in Figure 5.111. For example, the train ICE4-K3-12cars got a car length LD = 28.9 m, which
causes with the train speed of 250 km/h an excitation frequency nLD = 2.40 Hz. As illustrated
in Figure 5.111(e), peaks occur at about 2.5 Hz, 5.0 Hz and 7.5 Hz representing structures, which
are excited at each, at each second and each third oscillation cycle. Similar reflections lead to
the peaks due to the other trains.

180



5.4. Fatigue design check — FLS — static versus dynamic damage

(a) DOSTO (Westbahn) — vtrain=200 km/h — traffic vol.
4.55 106 t/year

(b) TypeC14 (ICE-T1 411) — vtrain=230 km/h — traffic vol.
2.51 106 t/year

(c) TypeC19 Taurus-front (Railjet) — vtrain=230 km/h — traf-
fic vol. 9.38 106 t/year

(d) TypeC19* Taurus-front (Railjet) — vtrain=230 km/h
— traffic vol. 2.15 106 t/year

(e) ICE4-K3-12cars — vtrain=250 km/h — traffic vol. 3.18 106

t/year
(f) EC250-Brutto18 — vtrain=250 km/h — traffic vol. 3.18 106

t/year

Figure 5.111.: Single-span bridges — trains of traffic mix TM4* — vtrain — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn
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Calculating again the dynamic equivalent constant amplitude stress range ΔσE,2,dyn for single-
span steel bridges (SSB) leads to Figure 5.112 for the traffic mix TM4*. Consequently, new SSB,
which comply with the TS citeria — |aHSLM−A,max| ≤ 3.5 m/s2 — do not have a FLS problem.
Regarding existing SSB, the majority, which fulfills the TS criteria — |aHSLM−A,max| ≤ 6.0 m/s2

— does not have a FLS problem either, except very long structures of L = 62-65 m with a first
bending frequency n0 close to the lower EC limit.

Figure 5.112.: Single-span steel bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

New single-span composite bridges (SCB), fulfilling the TS criteria do not have a FLS problem
either, except SCB with spans of L = 60-63 m and a first bending frequency n0 close to the lower
EC limit. On the other hand, existing SCB complying with the TS criteria, do fail in the FLS
check for span lengths L = 16 m and n0 = 7.5 Hz, L = 30 m and n0 = 5.0 Hz and additionally L
= 51-62 m and n0 close to the lower EC limit.

Figure 5.113.: Single-span composite bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4. Fatigue design check — FLS — static versus dynamic damage

Figures 5.114 to 5.116 show the outcome for the increased damping variant ζV1 regarding the
traffic mix TM4*. Although, the damage peaks are still present in Figure 5.114, it was clearly
possible to reduced the damage Ddyn in comparison to the damping variant ζEC in Figure 5.110.

Figure 5.114.: Single-span bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn

Consequently, the dynamic equivalent constant amplitude stress range ΔσE,2,dyn for SSB is
reduced as well, while the TS areas increase significantly — see Figure 5.115. However, new
SSB, which fulfill the TS criteria, are not affected by the FLS criteria. Only very long existing
SSB (L = 59-62 m), with first bending frequencies n0 close to the lower EC limit, meet the TS,
but not the FLS criteria.

Figure 5.115.: Single-span steel bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

On the other hand, increasing the damping ratios to ζV1 has a negative effect on existing SCB.
While more SCB, with first bending frequencies n0 close to the lower EC limit, do not fulfil
the FLS, but the TS criteria (L = 42-60 m), also structures of spans L = 27-30 m and with first
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bending frequencies n0 = 5 − 4 Hz are applicable for high-speed lines, but have a FLS problem.
For new structures and furthermore existing structures with span lengths L = 16 m and n0 =
7.5 Hz the situation is unchanged to the damping variant ζEC — compare Figures 5.113 and
5.116.

Figure 5.116.: Single-span composite bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Train speed vDmax

Subsequently, the traffic mix variant TM4**, which uses the speeds vDmax leading to the maximum
possible damage Ddyn, within the speed ranges of each high-speed train, is covered. Figure 5.117
illustrates the results for traffic mix TM4**, considering the damping variant ζEC. In comparison
to the vDmax variant of traffic mix 1, hence TM1** — see Figure 5.79 — the results Ddyn > 1 in
Figure 5.117 do not cover the whole area of investigated structures. However, the resonance
effects, as only high-speed trains are considered in TM4**, are more severe.

Figure 5.117.: Single-span bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn
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5.4. Fatigue design check — FLS — static versus dynamic damage

However, considering the dynamic equivalent constant amplitude stess ranges ΔσE,2,dyn and
the TS criteria for SSB, as illustrated in Figure 5.118, shows that new SSB, which fulfill the TS
criteria, do not have a FLS problem. Furthermore, existing SSB only do have a FLS problem,
while complying with the TS criteria, if their first bending frequency n0 is close to the lower EC
limit and if the span length L exceeds 61 m.

Figure 5.118.: Single-span steel bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

New SCB with a span length L = 32-39 m and a first bending frequency n0 = 5.0 Hz do fulfill
the TS criterion and slightly harm the FLS criterion — see Figure 5.119. Furthermore, new SCB
with span lengths L > 60 m and a first bending frequency close to the lower EC limit violate
the FLS criterion, but fulfill the TS criterion. Existing SCB throughout the whole span range
fulfill the TS criterion but do not comply with the FLS criterion.

Figure 5.119.: Single-span composite bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Figures 5.120 to 5.122 show the results with the increased damping variant ζV1. Again, the
damage Ddyn was reduced, while the peaks are still present — compare Figures 5.117 and 5.120.
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Figure 5.120.: Single-span bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn

The particular results for SSB in Figure 5.121 do not fundamentally change the conclusion made
for the damping variant ζEC — see Figure 5.118 — as only spans with L = 79-80 m fulfill the TS
criterion while violating the FLS criterion. However, regarding existing SSB the increase of the
damping ratios to ζV1 led to a worsening of the situation. Existing SSB with spans L = 31-39 m
and a first bending frequency n0 = 5.0 Hz do fulfill the TS criterion, but harm the FLS criterion.
The same is true for structures with first bending frequencies n0 close to the lower EC limit and
spans L exceeding 59 m.

Figure 5.121.: Single-span steel bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

For new SCB the situation got slightly worse, in comparison to the damping variant ζV1, as well
— see Figures 5.119 and 5.122. Structures with spans L = 30-37 m and a first bending frequency
n0 = 5.0 Hz and spans with L > 58 m and a bending frquency n0 close to the lower EC limit do
fulfill the TS criterion, but harm the FLS criterion. For existing SCB the same conclusion as for
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5.4. Fatigue design check — FLS — static versus dynamic damage

the damping variant ζEC is applicable, hence, SCE throughout the whole span range fulfill the
TS criterion but do not comply with the FLS criterion.

Figure 5.122.: Single-span composite bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Train speed vamax

The traffic mix TM4*** represents the variant, which uses the train speeds vamax , leading to
the maximum vertical bridge deck acceleration |amax|, for the damage Ddyn prediction. As
already shown for traffic mix TM1***, the same applies here for traffic mix TM4***. Using the
train speeds vamax , provides for the majority of the single-span structures, a good estimation to
predict the maximum damage due to vDmax and hence traffic mix TM4** — compare Figures
5.117 and 5.123. This conclusion applies for all considered variations of damping ratios and
load distribution within TM4*** and therefore, it is referred to the Appendices B and C.

Figure 5.123.: Single-span bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn
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5.4.5. Traffic mix 5

Subsequently, the results of traffic mix 5, which is a combination of the first four high-speed
trains of traffic mix 4 and the four freight trains of traffic mix 1 — see Chapter 4.4 — and
consequently represents a mixed traffic mix.

Traffic mix TM5* — train speed vtrain/ vEC

First, the variant considering the maximum train speed vtrain/ vEC is presented. Figure 5.124
shows the results for the damping variant ζEC. In comparison to traffic mix TM4*, which
represents a pure high-speed traffic mix, the damage Ddyn > 1.0 areas are less and the peaks
are significantly lower — see Figure 5.110.

Figure 5.124.: Single-span bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

Consequently, new and existing SSB, which fulfill the TS criterion do not have a FLS problem,
except for existing structures with a span length L = 63 m and a first bending frequency n0 = 2.5
Hz — see Figure 5.125.

Figure 5.125.: Single-span steel bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4. Fatigue design check — FLS — static versus dynamic damage

Regarding new SCB structures, the stated above is true as well, except for structures with a
span length L = 61 m and a first bending frequency n0 = 2.5 Hz — see Figure 5.126. Existing
structures, which do fulfill the TS, but not the FLS criterion, have a span length of L = 16 m and
a first bending frequency n0 = 7.5 Hz or span length L = 51-61 m and a first bending frequency
n0 close to the lower EC limit.

Figure 5.126.: Single-span composite bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Increasing the damping ratios to ζV1 decreases, as already mentioned before, the produced
damage Ddyn — see Figures ?? and 5.127.

Figure 5.127.: Single-span bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn

189



5. Single-span bridges

Consequently, the areas of SSB, which are suitable for high speed traffic, increase as well, as
shown in Figure 5.128. However, for new structures these do not interfere with the areas of
ΔσE,2,dyn > 61.74 N/mm2. Furthermore, only existing structures of span lengths L = 59 m and a
first bending frequency n0 close to the lower EC limit comply with the TS, but not with the FLS
criterion.

Figure 5.128.: Single-span steel bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

New SCB, which do fulfil the TS criterion, do not have a FLS problem, if the damping variant
ζV1 is considered for TM5*. Existing SCB, however, do have a FLS problem, while complying
with the TS criterion for span lengths L = 16 m and a fist bending frequency n0 = 7.5 Hz and
for span lenghts L = 42-58 m and bending frequencies n0 close to the lower EC limit.

Figure 5.129.: Single-span composite bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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5.4. Fatigue design check — FLS — static versus dynamic damage

Train speed vDmax

Considering the train speed vDmax , which leads to the maximum possible damage Ddyn, the
results are illustrated for the damping variant ζEC in Figure 5.130. As the traffic mix versions
using vDmax are mainly driven by the high-speed trains and their resonance scenarios, the here
presented results are very similar to the ones of TM4** — see Figure 5.117.

Figure 5.130.: Single-span bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn

Again, SSB which do fulfill the TS criteria, but still have a FLS problem are limited to existing
structures with span lengths L beyond 61 m and a first bending frequency n0 close to the lower
EC limit — see Figure 5.131.

Figure 5.131.: Single-span steel bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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However, unless new SCB do have span lengths L > 60 m and a first bending frequency n0
close to the lower EC limit, they do not have a FLS problem, if fulfilling the TS criteria — see
Figure 5.132. On the other hand, existing SCB with span lengths L = 9-16 m and first bending
frequencies n0 = 7.4 − 15 Hz and span lengths L = 51-63 m and first bending frequency n0 close
to the lower EC limit, do have a FLS problem, while complying with the TS criterion.

Figure 5.132.: Single-span composite bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Increasing the damping variant to ζV1 leads, again to a reduction of the damage Ddyn — compare
5.130 to 5.133.

Figure 5.133.: Single-span bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn
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The change of the damping ratios has very little impact on the results for SSB, as illustrated in
Figure 5.134. Only structures with very low first bending frequencies n0 = 2.5 Hz and spans L
> 59 m (existing SSB) and L > 79 m (new SSB) have a FLS problem, while complying with the
TS criteria.

Figure 5.134.: Single-span steel bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

Considering the damping variant ζV1, allows for the big majority of new SCB to neglect the FLS
criterion, while fulfilling the TS criterion — see Figure 5.135. On the other hand, existing SCB
which do fulfill the TS criterion, but fail in the FLS design check, have either short span lengths
L = 9-16 m, middle span lengths L = 27-29 m or long span lengths L = 42-60 m.

Figure 5.135.: Single-span composite bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Train speed vamax

For the traffic mix variant TM5***, the same is true as for the traffic mix variant TM4***. Using
the train speeds vamax , provides for the majority of the single-span structures, a good estimation
to predict the maximum damage due to vDmax and hence traffic mix TM5** — compare Figures
5.130 and 5.136. This conclusion applies for all considered variations of damping ratios and
load distribution within TM5*** and therefore, it is referred to the Appendices B and C.

Figure 5.136.: Single-span bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|
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5.4.6. Conclusion

Table 5.6 represents a summary of the before illustrated results, with respect to single-span
steel bridges (SSB), and all considered traffic mixes. Hence, Table 5.6 lists the areas, in which
the TS criteria, separated for new and exiting structures, are fulfilled, but the FLS criterion, for
the detail category FAT-71, is not met.
Consequently, new single-span steel bridges, which comply with the TS criterion |aHSLM−A,max| ≤
3.5 m/s2, basically, do not have a FLS problem. On the other hand, existing SSB with very long
spans (L > 59 m) and a first bending frequency n0 close to the lower EC-limit, which fulfill
the TS criterion |aHSLM−A,max| ≤ 6.0 m/s2, do not comply with the FLS criterion. Furthermore,
existing SSB with a span range L = 31-39 m and a first bending frequency of n0 = 5.0 Hz do not
meet the just before stated criteria either. However, one needs to consider that TM4** assumes
the trains to cross the structures for 100 years and a traffic volume of 24.95 106 t/year with the
most unfavourable speed possible.
In conclusion, single-span steel bridges, if fulfilling the TS criteria, are not prone to have a FLS
problem.

Traffic
mix

Damping
variant

single-span steel bridges (SSB)
|aHSLM−A,max|
≤ 3.5 m/s2

|aHSLM−A,max|
≤ 6.0 m/s2 Figure

TM1*
ζEC - - 5.68
ζV1 - - 5.77

TM1**
ζEC - L = 62-80 m; n0 = EC low 5.80
ζV1 L = 79-80 m; n0 = EC low L = 59-80 m; n0 = EC low 5.83

TM2-st
ζEC - - 5.99
ζV1 - - 5.102

TM3-st
ζEC - - 5.105
ζV1 - L = 59-60 m; n0 = EC low 5.108

TM4*
ζEC - L = 62-65 m; n0 = EC low 5.112
ζV1 - L = 59-62 m; n0 = EC low 5.115

TM4**
ζEC - L = 61-80 m; n0 = EC low 5.118

ζV1 L = 79-80 m; n0 = EC low
L = 31-39 m; n0 = 5 Hz

L = 59-80 m; n0 = EC low
5.121

TM5*
ζEC - L = 63 m; n0 = EC low 5.125
ζV1 - L = 59 m; n0 = EC low 5.128

TM5**
ζEC - L = 61-80 m; n0 = EC low 5.131
ζV1 L = 79-80 m; n0 = EC low L = 59-80 m; n0 = EC low 5.134

Table 5.6.: Results FLS parameter study — single-span steel bridges — structures fulfilling TS
criteria but do not meet FLS criteria

In Table 5.7 the results, with respect to the single-span composite bridges (SCB), are sum-
marized. In general, new SCB with a smaller span length than L = 58 m, do not have a FLS
problem, regarding the detail category FAT-71, as long as the comply with the TS criterion of
|aHSLM−A,max| ≤ 3.5 m/s2. For the two exceptions of traffic mix TM4** the same comments,
as for the SSB, apply. In case of existing SCB more structures comply with the TS criterion of
|aHSLM−A,max| ≤ 6.0 m/s2, while not fulfilling the FLS criterion. Neglecting the traffic mixes
TM1**, TM4** and TM5**, as these are very conservative approaches, consequently only the
following structures, not distinguishing between the damping variants, do meet the TS criterion
but not the FLS limit:
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• spans L = 9 m and a first bending frequency of n0 = 12 Hz
• L = 16 m and n0 = 7.25 Hz
• L = 27-30 m and n0 = 4 − 5 Hz
• L = 42-63 m and n0 equal to the lower EC limit

Traffic
mix

Damping
variant

single-span composite bridges (SCB)
|aHSLM−A,max|
≤ 3.5 m/s2

|aHSLM−A,max|
≤ 6.0 m/s2 Figure

TM1*
ζEC -

L = 9 m; n0 = 12 Hz
L = 51-58 m; n0 = EC low

5.70

ζV1 -
L = 9 m; n0 = 12 Hz

L = 42-54 m; n0 = 2.63 Hz
5.78

TM1**
ζEC L = 60-75 m; n0 = EC low

L = 7-16 m; n0 = 7-14 Hz
L = 51-75 m; n0 = EC low

5.81

ζV1 L = 58-60 m; n0 = EC low
L = 7-16 m; n0 = 7-14 Hz
L = 28-30 m; n0 = 4 Hz

L = 42-60 m; n0 = 2.5-3.5 Hz
5.84

TM2-st
ζEC -

L = 16 m; n0 = 7.25 Hz
L = 51-58 m; n0 = EC low

5.100

ζV1 -
L = 16 m; n0 = 7.25 Hz

L = 42-56 m; n0 = EC low
5.103

TM3-st
ζEC -

L = 16 m; n0 = 7.25 Hz
L = 51-58 m; n0 = EC low

5.106

ζV1 - L = 42-56 m; n0 = 7-14 Hz 5.109

TM4*
ζEC L = 60-63 m; n0 = EC low

L = 16 m; n0 = 7.25 Hz
L = 30 m; n0 = 5 Hz

L = 51-62 m; n0 = EC low
5.113

ζV1 L = 58-60 m; n0 = EC low
L = 16 m; n0 = 7.25 Hz

L = 27-30 m; n0 = 5-4 Hz
L = 42-60 m; n0 = EC low

5.116

TM4**
ζEC

L = 32-39 m; n0 = 5 Hz
L = 60-66 m; n0 = EC low

majority of span range 5.119

ζV1
L = 30-37 m; n0 = 5 Hz

L = 58-62 m; n0 = EC low
majority of span range 5.122

TM5*
ζEC L = 61 m; n0 = EC low

L = 16 m; n0 = 7.25 Hz
L = 51-61 m; n0 = EC low

5.126

ζV1 -
L = 16 m; n0 = 7.25 Hz

L = 42-58 m; n0 = EC low
5.129

TM5**
ζEC L = 60-78 m; n0 = EC low

L = 9-16 m; n0 = 7.4-15 Hz
L = 51-63 m; n0 = EC low

5.132

ζV1 L = 58-60 m; n0 = EC low
L = 9-16 m; n0 = 14-7.4 Hz
L = 27-16 m; n0 = 4-5 Hz
L = 42-60 m; n0 = EC low

5.135

Table 5.7.: Results FLS parameter study — single-span composite bridges — structures
fulfilling TS criteria but do not meet FLS criteria
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5.5. ’Adjusted’ dynamic factor ϕFAT

Subsequently, the in Chapter 2.1.2 introduced, ’adjusted’ dynamic factor ϕFAT is discussed. This
factor needs to be applied in Austria as summarized on page 30:

In case the ultimate limit state design (ULS) of the structure is performed directly,
using the dynamic internal forces, as these exceed the static internal force, an
additional fatigue design is necessary, if real trains with speeds > 200 km/h make
up more than 5 million tons per year and track. If the above conditions are met, the
fatigue load must be increased by the percentage the internal forces of the dynamic
calculation exceed the ones of the static calculation (’adjusted’ dynamic factor).

Consequently, the following ’adjusted’ dynamic factor ϕFAT is calculated for the ULS1, with
respect to the before discussed traffic mixes:

ϕFAT = max
Edyn

Estat,LM
(5.29)

with: Edyn . . . maximum dynamic internal forces due to

load model HSLM and real trains, all including (1 + 0.5 ϕ′′)
Estat,LM . . . maximum static internal forces due to

load models LM71, including Φ2 and α = 1.21

In Equation (5.29) no partial safety factors γQ are considered, as for both, load models HSLM-A/
real trains and load model LM71, the factor 1.45 according to ÖNORM EN 1990/A1, Table
A2.4(B) [42], needs to be applied.
Subsequently, the ’adjusted’ dynamic factor ϕFAT is applied on the static fatigue load ΔσE,2,stat
and the fatigue limit state design check is finally performed according to Equation (5.30):

γF f λ Φ2 ΔσLM71︸ ︷︷ ︸
ΔσE,2,stat

ϕFAT ≤ Δσc

γM f
(5.30)

5.5.1. Traffic mix 1

In this chapter, the ’adjusted’ dynamic factor ϕFAT for traffic mix 1 is determined. Although,
traffic mix 1 does not have a traffic volume exceeding 5.0 106 t/year of trains with speeds > 200
km/h, the applicability of the ’adjusted’ dynamic factor ϕFAT is investigated anyhow. According
to Tables 4.1 and 4.2 only TypeC3 and TypeC4 go faster than 200 km/h, hence, the traffic volume
for these two high-speed passenger trains together is about 2.85 106 t/year. However, passenger
train TypeC1 got a maximum train speed of 200 km/h with a traffic volume of 2.9 106 t/year,
which if considered, would cause traffic mix 1 to exceed the 5.0 106 t/year limit.
However, Figure 5.137 shows the general procedure to determine the ’adjusted’ dynamic factor
ϕFAT for traffic mix 1. Figures 5.137(a) and 5.137(b) show the static maximum bending moments
at midspan Mmax,stat in 3D view and top view due to the load model LM71, considering the

1The load model SW/0 is here not considered, as only single-span structures are investigated.
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classificaiton factor α = 1.21 and the ’dynamic’ factor Φ2 for carefully maintained track. In
Figures 5.137(c) and 5.137(d), again in 3D and top view, the dynamic absolute maximum bending
moments |Mmax,dyn| due to the trains TypeC1 to TypeC8, considering the speed ranges of each
train (v = 50-1.2vEC) and the dynamic factor (1 + 0.5 ϕ′′) according to ÖNORM EN 1991-2,
Annex C [43] are presented. The final two Figures 5.137(e) and 5.137(f) show the ’adjusted’
dynamic factor ϕFAT for traffic mix 1, which was calculated according to Equation (5.29).
Consequently, the trains TypeC1 to TypeC8 cause, due to a dynamic calculation, only on
few single-span structures bigger bending moments than the static load model LM71 — see
Figure 5.137(f).

(a) Mmax,stat — LM71, incl. α and Φ2 — 3D view (b) Mmax,stat — LM71, incl. α and Φ2 — top view

(c) |Mmax,dyn| — TM1**, incl. (1 + 0.5 ϕ′′) — 3D view (d) |Mmax,dyn| — TM1**, incl. (1 + 0.5 ϕ′′)— top view

(e) ϕFAT = |Mmax,dyn|/Mmax,stat — 3D view (f) ϕFAT = |Mmax,dyn|/Mmax,stat — top view

Figure 5.137.: ’Adjusted’ dynamic factor ϕFAT — trains of traffic mix 1 (TM1**) — v = 50 to
1.2 vEC km/h — ζEC — Rayleigh like damping — no load distribution
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In Figure 5.138 the above described procedure is present for the load model HSLM-A. Hence,
Figures 5.138(a) and 5.138(b) show the envelope of the maximum absolute bending moment
|Mmax,dyn| for the load model HSLM-A due to dynamic calculations. For each of the ten train
models a speed range of v = 50-300 km/h and, again, the dynamic factor (1 + 0.5 ϕ′′) according
to ÖNORM EN 1991-2, Annex C [43] was considered. The two Figures 5.138(c) and 5.138(d)
illustrate the resulting ’adjusted’ dynamic factor ϕFAT after applying Equation (5.29) for the
load model HSLM-A. In comparison to the results of trains TypeC1 to TypeC8 in Figure 5.137(f),
the load model HSLM-A causes on more single-span structures bigger bending moments than
the load model LM71.

(a) |Mmax,dyn| — HSLM-A, incl. (1 + 0.5 ϕ′′) — 3D view (b) |Mmax,dyn| — HSLM-A, incl. (1+ 0.5 ϕ′′) — top view

(c) ϕFAT = |Mmax,dyn|/Mmax,stat — 3D view (d) ϕFAT = |Mmax,dyn|/Mmax,stat — top view

Figure 5.138.: ’Adjusted’ dynamic factor ϕFAT — trains of load model HSLM-A — v = 50-300
km/h — ζEC — Rayleigh like damping — no load distribution
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In the next step, the final ’adjusted’ dynamic factor ϕFAT for traffic mix 1 is determined.
Therefore, the maximum values of the ’adjusted’ dynamic factor ϕFAT of trains TypeC1 to
TypeC8 — see Figure 5.137(f) — and the load model HSLM-A — see Figure 5.138(d) — are
combined, which results to Figure 5.139.

Figure 5.139.: ’Adjusted’ dynamic factor ϕFAT — trains of traffic mix 1 with v = 50-1.2 vEC km/h and
load model HSLM-A with v = 50-300 km/h — ζEC — Rayleigh like damping — no load distribution

Figure 5.140, which is equivalent to Figures 5.29 and 5.31, illustrates the static equivalent constant
amplitude stress ranges ΔσE,2,stat due to trains TypeC1 to TypeC8 (TM1), for single-span steel
bridges (SSB) and single-span composite bridges (SCB).

(a) SSB — static fatigue check (b) SCB — static fatigue check

Figure 5.140.: Static fatigue check — ΔσE,2,stat due to static calculation of traffic mix 1 (TM1)
incl. (1 + ϕ)D according to Annex D of [43] performed for reference single-span steel bridges
(SSB) and single-span composite bridges (SCB) → surface interpolated — no load distribution

Finally, the static equivalent constant amplitude stress ranges ΔσE,2,stat are multiplied by the
’adjusted’ dynamic factor ϕFAT as stated in Equation (5.30). Consequently, Figure 5.141(a) shows
the result for single-span steel bridges (SSB) and Figure 5.141(b) for single-span composite
bridges (SCB). In Figures 5.141(c) to 5.141(h) the results of the dynamic fatigue check for traffic
mixes TM1*, TM1** and TM1*** — see Chapter 5.4.1 — are illustrated again. Comparing the
dynamic to the static fatigue check shows that, considering the ’adjusted’ dynamic factor ϕFAT
does not enable the static approach to cover the effects of the dynamic calculation. Furthermore,
it seems to be more applicable to use the TS criteria, in order to avoid a FAT problem, as already
concluded in Chapter 5.4.
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5.5. ’Adjusted’ dynamic factor ϕFAT

(a) SSB — static fatigue check — incl. ϕFAT (b) SCB — static fatigue check — incl. ϕFAT

(c) SSB — dynamic fatigue check — TM1* — vEC (d) SCB — dynamic fatigue check — TM1* — vEC

(e) SSB — dynamic fatigue check — TM1** — vDmax (f) SCB — dynamic fatigue check — TM1** — vDmax

(g) SSB — dynamic fatigue check — TM1*** — vamax (h) SCB — dynamic fatigue check — TM1*** — vamax

Figure 5.141.: Static fatigue check incl. ’adjusted’ dynamic factor ϕFAT vs. dynamic fatigue
check for single-span steel bridges (SSB) and single-span composite bridges (SCB) — traffic

mix 1 (variants of TM1) — ζEC — Rayleigh like damping — no load distribution
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5. Single-span bridges

5.5.2. Traffic mix 3

Subsequently, the results for traffic mix 3 are presented. Therefore, the procedure described for
traffic mix 1 in Chapter 5.5.1 is applied on the 73 average passenger trains (PT) of traffic mix 3.
Hence, the dynamic absolute maximum bending moments |Mmax,dyn| for each of the 73 average
PT on each structure were determined. Regarding the speed range, again v = 50-1.2vtrain for
each of the 73 average trains was considered. Therefore, e.g. train TypeC19 Taurus-front was
measured 6689 times in the years 2014 & 2015 — see Tabel 4.4. Hence, 6689 speed values were
available, of which the maximum was picked and used as vtrain. After determining the envelope
of the dynamic absolute maximum bending moments |Mmax,dyn| regarding all 73 average PT,
again, the ’adjusted’ dynamic factor ϕFAT was calculated — see Equation (5.29) — using the
static maximum bending moments Mmax,stat of the LM71 — see Figure 5.137(b). This leads to
the results in Figure 5.142(a). Considering the load model HSLM-A and its ’adjusted’ dynamic
factor ϕFAT according to Figure 5.138(d), leads finally to the ’adjusted’ dynamic factor ϕFAT for
traffic mix 3, as illustrated in Figure 5.142(b). In summary, the effects due to HSLM-A overrule
the ones of the 73 average PT — compare Figures 5.142(a) and 5.142(b).

(a) Trains of traffic mix 3 (b) Trains of traffic mix 3 & load model HSLM-A

Figure 5.142.: ’Adjusted’ dynamic factor ϕFAT — traffic mix 3 with v = 50-1.2 vtrain km/h and
load model HSLM-A with v = 50-300 km/h — ζEC — Rayleigh like damping — no load

distribution

Applying the ’adjusted’ dynamic factor ϕFAT of traffic mix 3 — see Figure 5.142(b) — according
to Equation (5.30), leads for SSB to the results in Figure 5.143(a) and for SCB to the results
in Figure 5.143(b). Comparing the static equivalent constant amplitude stess ranges ΔσE,2,stat,
including the ’adjusted’ dynamic factor ϕFAT, and the dynamic equivalent constant amplitude
stress ranges ΔσE,2,dyn to each other — see Figure 5.143 — shows again, that the static approach
is not able to account for the dynamic effects.
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5.5. ’Adjusted’ dynamic factor ϕFAT

(a) SSB — static fatigue check — incl. ϕFAT (b) SCB — static fatigue check — incl. ϕFAT

(c) SSB — dynamic fatigue check (d) SCB — dynamic fatigue check

Figure 5.143.: Static fatigue check incl. ’adjusted’ dynamic factor ϕFAT vs. dynamic fatigue
check for single-span steel bridges (SSB) and single-span composite bridges (SCB) — traffic

mix 3 (TM3) — ζEC — Rayleigh like damping — no load distribution

5.5.3. Traffic mix 4

Subsequently, the ’adjusted’ dynamic factors ϕFAT for the trains of traffic mix 4 — see Fig-
ure 5.144(a) — and the overall result for traffic mix 4, considering the HSLM-A trains as well
— see Figure 5.144(b) — are presented. Again, the impact of the load model HSLM-A exceeds
the trains of the traffic mix, in this case six high-speed passenger trains.

(a) Trains of traffic mix 4 (b) Trains of traffic mix 4 & load model HSLM-A
Figure 5.144.: ’Adjusted’ dynamic factor ϕFAT — traffic mix 4 with v = 50-1.2 vtrain km/h and

load model HSLM-A with v = 50-300 km/h — ζEC — Rayleigh like damping — no load
distribution

Applying the ’adjusted’ dynamic factors ϕFAT on the static equivalent constant amplitude stress
ranges ΔσE,2,stat — see Figures 5.145(a) and 5.145(b) — does, again, not cover the dynamic effects
due to the traffic mixes TM4*, TM4** and TM4*** — see Figures 5.145(c) to 5.145(h).
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5. Single-span bridges

(a) SSB — static fatigue check — incl. ϕFAT (b) SCB — static fatigue check — incl. ϕFAT

(c) SSB — dynamic fatigue check — TM4* — vEC (d) SCB — dynamic fatigue check — TM4* — vEC

(e) SSB — dynamic fatigue check — TM4** — vDmax (f) SCB — dynamic fatigue check — TM4** — vDmax

(g) SSB — dynamic fatigue check — TM4*** — vamax (h) SCB — dynamic fatigue check — TM4*** — vamax

Figure 5.145.: Static fatigue check incl. ’adjusted’ dynamic factor ϕFAT vs. dynamic fatigue
check for single-span steel bridges (SSB) and single-span composite bridges (SCB) — traffic

mix 4 (variants of TM4) — ζEC — Rayleigh like damping — no load distribution
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5.5.4. Traffic mix 5

Subsequently, the ’adjusted’ dynamic factors ϕFAT for the trains of traffic mix 5 — see Fig-
ure 5.146(a) — and the overall result for traffic mix 5, considering the HSLM-A trains as well
— see Figure 5.146(b) — are illustrated. Again, the load model HSLM-A causes bigger dynamic
absolute bending moments |Mmax,dyn| than the trains of the traffic mix, in this case the eight
trains of traffic mix 5. Consequently, the ’adjusted’ dynamic factors ϕFAT of the load model
HSLM-A overrule the ones of the eight service trains — compare Figures 5.146(a) and 5.146(b).

(a) Trains of traffic mix 5 (b) Trains of traffic mix 5 & load model HSLM-A

Figure 5.146.: ’Adjusted’ dynamic factor ϕFAT — traffic mix 5 with v = 50-1.2 vtrain km/h and
load model HSLM-A with v = 50-300 km/h — ζEC — Rayleigh like damping — no load

distribution

Furthermore, the static equivalent constant amplitude stress ranges ΔσE,2,stat, enhanced by the
’adjusted’ dynamic factors ϕFAT, are compared to the dynamic equivalent constant amplitude
stress ranges ΔσE,2,dyn for the traffic mixes TM5*, TM5** and TM5*** in Figure 5.147. However,
the static concept is, again, not able to account for the dynamic effects — compare Figures
5.147(a) and 5.147(b) to Figures 5.147(c) to 5.147(h).

5.5.5. Conclusion

The static approach, which enhances the static equivalent constant amplitude stress range
ΔσE,2,stat by multiplying it with the ’adjusted’ dynamic factor ϕFAT, according to Equation (5.30),
is not able to account for the dynamic effects, represented by the dynamic equivalent constant
amplitude stress ranges ΔσE,2,dyn, with respect to the investigated traffic mixes TM1*, TM1**,
TM1***, TM3-st, TM4*, TM4**, TM4***,TM5*, TM5** and TM5***.
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5. Single-span bridges

(a) SSB — static fatigue check — incl. ϕFAT (b) SCB — static fatigue check — incl. ϕFAT

(c) SSB — dynamic fatigue check — TM5* — vEC (d) SCB — dynamic fatigue check — TM5* — vEC

(e) SSB — dynamic fatigue check — TM5** — vDmax (f) SCB — dynamic fatigue check — TM5** — vDmax

(g) SSB — dynamic fatigue check — TM5*** — vamax (h) SCB — dynamic fatigue check — TM5*** — vamax

Figure 5.147.: Static fatigue check incl. ’adjusted’ dynamic factor ϕFAT vs. dynamic fatigue
check for single-span steel bridges (SSB) and single-span composite bridges (SCB) — traffic

mix 5 (variants of TM5) — ζEC — Rayleigh like damping — no load distribution
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6. Arch bridge
In this chapter, the main girders and arches of a representative arch bridge are investigated
with respect to their fatigue behaviour. Therefore, the geometry of the structure, which was
provided by the Deutsche Bahn (DB), is first presented. Subsequently, assumptions regarding the
modelling of the arch bridge and the computational approaches are discussed. Furthermore,
preliminary studies, which compare the different computational approaches, are conducted,
leading subsequently to the traffic safety design check (TS). Furthermore, the fatigue limit state
design checks (FLS), first using static simulations and afterwards dynamic calculations, are
performed for two different train mixes. Finally, the critical cross sections, which are sensitive
for the dynamic stress spectra due to high-speed trains, of the main structural members — main
girder and arch — are presented. The arch bridge was assumed to be located between the cities
of Linz and Vienna, in order to allow for the application of the measured traffic mix 2.

6.1. Overview
6.1.1. Geometry of the studied arch bridge

Subsequently, an overview of the studied double-track arch bridge, is presented. The longitu-
dinal view in Figure 6.1 illustrates the total span length L of 86.02 m and the maximum arch
rise of 14.95 m. Furthermore, the hangers (H), which connect the arch (A) with the main girder
(MG), are placed each 7.82 m, whereas the cross girders (CG) distance of the orthotropic steel
deck becomes eCG = 7.82/3 = 2.607 m. The double-track structure’s width of 10.75 m (distance
of the hangers) and the bearing situation are illustrated in the top view of Figure 6.1. The total
of four cross beams (CB) connect the two arches of axes 1© and 2© with each other, in order to
improve the stability out of plane.
In Figure 6.2 the standard cross section of the arch bridge is illustrated. The main girders and
the arches are designed as welded box members with a height of 2.55 m and 1.0 m, respectively,
whereas both have a width of 1.25 m. The direct fastened tracks (ballastless tracks) are supported
by an orthotropic steel deck with open longitudinal stiffeners (LS), which transfer the loads to
the cross beams. The areas besides the direct fastened track are covered with a ballast bed of an
average height of 0.4 m.
Figure 6.3 gives an overview with respect to the position of the different cross sections, which
are illustrated in detail in Figure 6.4. Consequently, three different main girder cross types
(MG a, MG b and MG c,) were considered. On the other hand, the geometry of the arch (A a),
the hangers (H a) and cross beams (CB a) stay constant. Furthermore, two different longitudinal
stiffener (LS a and LS b) and cross girder (CG a CB b) variants were applied. Regarding the
deck plate (DP) four options were considered. Two of them carry the direct fastened track — see
cross sections DPC a and DPC b — and the other two are situated in the area of the ballast
bed and consequently only consider the deck plate itself — see cross sections DP a and DP b.
Furthermore, Figure 6.5 gives an overview regarding the design of the direct fastened track.
The direct fastened track is interrupted by gaps of 0.1 m, illustrated in the section view B-B,
each 5.2133 m.
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6. Arch bridge

Figure 6.1.: Arch bridge — longitudinal and top view — artificial location of the arch bridge
between the cities of Linz and Vienna

Figure 6.2.: Arch bridge — section view A-A — artificial location of the arch bridge between
the cities of Linz and Vienna
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6.1. Overview

Figure 6.3.: Arch bridge — overview of cross section position and their notation

Figure 6.4.: Arch bridge — cross sections— longitudinal stiffeners (LS), deck plate (DP),
hangers (H), arches (A), cross beams (CB), cross girders (CG) and main girders (MG)
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6. Arch bridge

Figure 6.5.: Arch bridge — ballastless track

6.1.2. Damping variants

All subsequently performed dynamic calculations use the Rayleigh like damping, whereas the
two parameters α and β are specified for the first two bending modes and damping ratios
ζ1 = ζ2 = 0.5 — see Equation (3.127).

6.1.3. Traffic mixes

Subsequently, the variants of traffic mix 1 (EC trains TypeC1 to TypeC8) with the speed variants
vEC and vDmax — the traffic mixes TM1* and TM1** — are considered — see Tables 4.1 and 4.2.
Furthermore, from traffic mix 2 (measurements of real trains) the variant TM2-dt for the double
track structure is applied — see Table 4.8. Therefore, on track 4 towards Linz 40934 real trains
(RT) and on track 3 towards Vienna 53668 RT are assigned.
However, as already mentioned in the previous chapters, the traffic volume is scaled to 24.95
106 t/year/track and 100 years of design life for all studied traffic mixes.
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6.2. Computational approach

6.2. Computational approach

In the following chapter, the computational concept, with respect to the before discussed arch
bridge, is demonstrated.
First, the numerical model, which is created using the software Dlubal RFEM [11], is covered.
Furthermore, the loading assumptions for the static and dynamic simulation of the train crossing
are presented. Additionally, the determination of the natural frequencies and corresponding
mode shapes is, in an exemplary manner, shown.
Second, the analytical approach, using the software package Matlab [34], which is also applied
to simulate the dynamic train crossing, is briefly discussed.
However, all subsequently illustrated dynamic calculations use the moving load model, which is
explained in Chapter 3.

6.2.1. Modelling — numerical solution — RFEM

All cross sections — see Figure 6.4 — were modelled as beam elements, except the ones
concerning the cover plate (cross sections DP a, DP b, DPC a and DPC b). Latter were modelled
as orthotropic surfaces in RFEM, which allows to consider different stiffnesses in both surface
directions. These characteristics were necessary, as the areas with the direct fastened track
(cross sections DPC a and DPC b) were modelled in a simplified manner as rigid composite
members in global longitudinal direction (X axis) and without bond between steel and concrete
(no composite effect) in global transverse direction (Y-axis), whereas the gaps, within the
direct fastened track, were considered according to Figure 6.5. The other cover plates (section
DP a and DP b) were modelled as isotropic steel plates. Furthermore, all eccentricities were
considered according to the geometry in Figure 6.1 and 6.2. For the Young’s modulus of steel
Ea = 210000 N/mm2 and of concrete Ea = 33000 N/mm2 were used, whereas the densities
γa = 7850 kg/m3 for steel, γbb = 2000 kg/m3 for the ballast bed and γc = 2500 kg/m3 for
concrete were considered. The track’s transition zone from open track to structure was in a
conservative approach not modelled.
The static loads of load model LM71 and of the trains TypeC1 to TypeC8 were modelled as line
loads and concentrated loads along the rail axis (e.g. for track 3, consequently along rail axis 3
and 4 — see Figure 6.2), using the RFEM add-on RF-MOVE. This add-on allowed to move the
entire trains with a step size of ΔX = 0.25 m across the arch bridge. Hence, each resulting load
case represents a train position on the structure, which was subsequently statically analysed.
On the other hand, the dynamic crossing of a single axle was modelled using concentrated loads
fixed in position, but with amplitudes variable in time — see Figure 6.6. These loads were placed
each 2.607 m, according to the cross girder distance eCG, along the rail axes. Hence, the dynamic
calculation was first performed for the crossing of one single axle load. Subsequently, the results
for an entire train were obtained by superposing the results of the single axle. Furthermore,
the dynamic calculation in RFEM was performed applying the direct time integration and the
modal analysis, as illustrated in Chapters 6.3.1 and 6.3.2.

6.2.2. Analytical solution — Matlab

The analytical approach, which is explained in detail in Chapter 3.5.2, is subsequently also
applied on the arch bridge. This concept needs as input parameters from the numerical model,
the natural frequencies ωj, the corresponding mode shapes φj — the first four mode shapes are
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6. Arch bridge

shown Figure 6.7 — the modal masses m∗
j and the normal stress σPj,i at the investigated point

Pi due to the mode shape φj, which are all determined using the above described program
REFM [11]. After importing these variables for each considered mode shape j, the crossing of
one train axle is simulated and the result for an entire train, again, obtained by superposition.
The number of considered mode shapes is defined in the following Chapters.

Figure 6.6.: Modelling of dynamic loading — crossing of one train axle in RFEM
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(a) Mode shape 1 — n0 = 1.33 Hz
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(b) Mode shape 2 — n0 = 2.06 Hz
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(c) Mode shape 3 — n0 = 2.91 Hz
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(d) Mode shape 4 — n0 = 2.97 Hz

Figure 6.7.: First four mode shapes — RFEM

212
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6.3. Preliminary studies
Subsequently, the preliminary studies with the goal to compare the simulations of the dynamic
train crossing of the numerical approach (RFEM) and the analytical concept (Matlab), to each
other, are presented.
Within the numerical solutions two options are available. First, the direct time integration, which
solves the entire system of equations — hereinafter called RFEM direct time integration — and
second, the modal analysis, which solves for a selected number of mode shapes the resulting
single-degree of freedom systems numerically — hereinafter called RFEM modal analysis.
Furthermore, the analytical approach with Matlab — hereinafter called Matlab modal analysis
— uses again the concept of the modal analysis, but solves each single-degree of freedom system
analytically instead of numerically.

First, the internal forces and resulting stresses and subsequently the vertical bridge deck
acceleration are studied with respect to the three computational options mentioned above.

6.3.1. Internal forces and stresses

In this chapter, the high-speed passenger train TypeC3 — see Figure 2.18 — crosses the arch
bridge on track 3 towards Vienna with a constant speed of v = 193 km/h. Subsequently,
the resulting internal forces My, N and Mz and the corresponding normal stresses σ — see
Figure 6.8 — are illustrated for main girder 2 (MG2) and arch 2 (A2) at the positions x = 21.505
m (quarter-point) and x = 43.01 m (midspan) along the structure’s longitudinal axis — see
Figure 6.1. For the numerical simulation a time step of Δt = 0.0005 s was selected, representing
a conservative approach, as due to the requirements in [10], in this case, a time step of only Δt
= 0.0016 s would be required. However, for the analytical solution a time step of Δt = 0.01 s is
sufficient. For the approaches using the modal analysis 60 mode shapes were used as these cover
the natural frequency range up to 30 Hz as required in [37] — see also page 27. Furthermore,
the analytical approach was performed with 100 sinus functions — see Figure 3.17.

Figure 6.8.: Definition of points P1 to P4 on mono-symmetric cross sections for main
girder and arch

Results at main girder 2 — x = 21.505 m (quarter-point)

Figure 6.9 shows the bending moment My varying over time for the MG2 at the quarter-point
(x = 21.505m with cross section MG c — see Figure 6.4) due to the crossing of train TypeC3. The
reference solution (RFEM direct time integration) is approximated very well by the numerical
modal analysis (RFEM modal analysis) and the analytical modal analysis (Matlab modal
analysis) with 60 mode shapes only.
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Figure 6.9.: My for MG2 at x = 21.505m— TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

In general, the solution of the direct integration for the normal force N is approximated
sufficiently by the two modal analysis options. However, the peak values are overestimated by
both modal analysis calculations — see Figure 6.10.

Figure 6.10.: N for MG2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

Furthermore, the bending moment Mz is approximated well by two modal analysis simulations,
although some peak values — see in Figure 6.11 e.g. at t = 0.6 s — are not sufficiently
represented.
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Figure 6.11.: Mz for MG2 at x = 21.505m— TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

However, the before mentioned deviations of the modal analysis simulations with respect to the
direct integration have little impact on the resulting normal stresses σ of MG2 at the points P1
to P4 — see Figure 6.12.

(a) σ at P1 (b) σ at P2

(c) σ at P3 (d) σ at P4

Figure 6.12.: σ for MG2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results
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Results at main girder 2 — x = 43.01 m (midspan)

Figure 6.13 presents the results of My for MG 2 at midspan (x = 43.01 m with cross section
MG c — see Figure 6.4). In general, the modal analysis simulations approximate the direct time
integration very well again. However, some peak values (e.g. at 1 s) are overestimated.

Figure 6.13.: My for MG2 at x = 43.010m— TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

The solutions of the three computational approaches, with respect to the normal force N in
Figure 6.14, result into very similar results. Furthermore, the bending moment Mz in Figure 6.15

Figure 6.14.: N for MG2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

is approximated in similar quality like the one at the before discussed position x = 21.505 m
— see Figure 6.11.
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Figure 6.15.: Mz for MG2 at x = 43.010m— TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

Again, the impacts of the before discussed deviations on the normal stresses σ are very limited
for the points P1 to P4 on MG2 — see Figure 6.16. However, as the normal stresses σ are
dominated by the effects due to the bending My, the peak values at t = 1 s are consequently
overestimated.

(a) σ at P1 (b) σ at P2

(c) σ at P3 (d) σ at P4

Figure 6.16.: σ for MG2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results
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Results at arch 2 — x = 21.505 m (quarter-point)

The bending moments My varying with time for arch 2 at position x = 21.505 m with cross
section A a — see Figure 6.4 — are illustrated in Figure 6.17. Again, all three simulation
approaches lead to very similar results.

Figure 6.17.: My for A2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

The modal analysis variants are able to describe the solution for the normal force N of the direct
time integration very well again, although the little osculations in the time range t = 2-6.5 s of
Figure 6.18 differ slightly.

Figure 6.18.: N for A2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

The three computational approaches lead, regarding the bending moment Mz in Figure 6.19, to
solutions, which deviate more, than the before discussed ones, from each other. Especially, the
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two modal analysis approaches cause different results as well.

Figure 6.19.: Mz for A2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

However, the impact on the normal stresses σ are again very limited, as these are dominated by
the normal force N and the bending moment My — see Figure 6.20.

(a) σ at P1 (b) σ at P2

(c) σ at P3 (d) σ at P4

Figure 6.20.: σ for A2 at x = 21.505m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results
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Results at arch 2 — x = 43.01 m (midspan)

In Figure 6.21 the bending moment My for arch 2 at midspan with cross section A a — see
Figure 6.4 — is shown. The 60 mode shapes, which were considered in the modal analysis
approaches, are clearly not sufficient to estimate the reference solution of the direct time
integration in the time range 1.5-7 s.

Figure 6.21.: My for A2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

On the other hand, the normal force N is approximated very well by both modal analysis
approaches, as demonstrated in Figure 6.22.

Figure 6.22.: N for A2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

Like at the position x = 21.505 m for arch 2, all three computational approaches lead with
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respect to the bending moment Mz to different solutions — see Figure 6.23. However, the normal

Figure 6.23.: Mz for A2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results

stresses σ at midspan for arch 2 are clearly dominated by the normal force N and consequently
the above discussed deviations do have a neglectable impact — see Figure 6.24.

(a) σ at P1 (b) σ at P2

(c) σ at P3 (d) σ at P4

Figure 6.24.: σ for A2 at x = 43.010m — TypeC3 — v = 193 km/h on track 3 to
Vienna— ζEC (Rayleigh) — comparison of RFEM and Matlab results
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6.3.2. Accelerations

In this chapter, the three different computational concepts, with respect to the vertical bridge
deck acceleration a, are compared to each other. Therefore, a single axle of 200 kN crosses
the structure on track 3 in direction to Vienna with a constant speed of v = 187.68 km/h. All
subsequently shown Figures are related to the vertical bridge deck acceleration in the center of
track 3 at the position x = 21.329 m.
Figure 6.25 shows the results of the direct time integration method performed with RFEM. The
loads for the dynamic calculation were placed according to the cross girder distance, hence,
ΔlP = eCG = 2.607 m — see Figure 6.6. Furthermore, different time steps Δt were considered,
whereas the solution already converged for Δt = 0.0005 s. However, significant peak values,
with no physical explanation, emerged. The maximum value of these peaks is reached when
the axle load reaches x = 21.329 m, which is at about 0.41 s. Furthermore, the peaks appear each
0.05 s, which is equal to the time the single axle needs to travel between the cross girders ΔtΔlP .
In [48] similar problems regarding the numerical solution were reported and suspected, that
the loading was modelled too rough, hence, ΔlP was chosen too big.

Figure 6.25.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68
km/h on track 3 to Vienna — ζEC (Rayleigh) — RFEM direct time integration — distance

of single forces ΔlP = eCG = 2.607 m — variation of time steps Δt

Consequently, the number of single forces, which simulate the crossing of the single axle, was
doubled, hence, the distance between the forces was set to ΔlP = 1.303 m. The results are
illustrated in Figure 6.26. The amplitudes of the peaks were reduced, but the number of peaks
was doubled.
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6.3. Preliminary studies

Figure 6.26.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68
km/h on track 3 to Vienna — ζEC (Rayleigh) — RFEM direct time integration — distance

of single forces ΔlP = eCG/2 = 1.303 m — variation of time steps Δt

However, performing the modal analysis using RFEM leads for different numbers of considered
mode shapes to the results illustrated in Figure 6.27 and converges, including the peaks, to
the results of the variant using direct time integration in Figure 6.26. On the other hand,

Figure 6.27.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68
km/h on track 3 to Vienna — ζEC (Rayleigh) — RFEM modal analysis — distance of

single forces ΔlP = eCG/2 = 1.303m — variation of numbers of considered mode shapes

performing the simulation with the analytical approach, using Matlab, leads for different
numbers of considered mode shapes to the results in Figure 6.28. First, 60 mode shapes, like
for the calculation of the internal forces in Chapter 6.3.1, were considered — see Figure 6.28(a).
Each of these 60 mode shapes was approximated with 10, 100 and 150 sine functions, whereas
the solution converged with 100 sine functions. This procedure was repeated for 240, 480 and
960 mode shapes — see Figure 6.28.
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6. Arch bridge

(a) 60 considered mode shapes (b) 240 considered mode shapes

(c) 480 considered mode shapes (d) 960 considered mode shapes

Figure 6.28.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68 km/h on
track 3 to Vienna — ζEC (Rayleigh) — Modal analysis with Matlab — variation of numbers of

considered mode shapes — numbers of sine functions needed for converged solution

The variant of 960 mode shapes converged with 1000 sine functions, which was subsequently
— see Figure 6.29 — compared to the solution of the direct time integration using RFEM of
Figure 6.26. The two methods produce the same results for the first 0.1 s only — see Figure 6.29.
Although, the results produced by the method using the analytical approach seemed much
more trustworthy than the numerical ones obtained with RFEM, as the latter strongly depend
on the load approximation governed by the number of considered point forces, hence, the
distance ΔlP, an additional study was performed.
Therefore, a fourth computational approach according to Chapter 3.5.2 on page 72 was consid-
ered. Hence, the single degree of freedom systems, which result due to the modal analysis, were
solved so far analytically with Matlab and numerically with RFEM. This fourth procedure solves
the single degree of freedom systems now numerically in Matlab as well. Figure 6.30 demon-
strates the results due to the numerical and analytical approach in Matlab, which confirms the
latter concept definitely.
Therefore, the analytical approach using Matlab was subsequently applied for the traffic safety
design check.
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6.4. Traffic safety design check — acceleration criterion

Figure 6.29.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68 km/h
on track 3 to Vienna — ζEC (Rayleigh) — RFEM direct integration vs. Matlab modal analysis

Figure 6.30.: Acceleration a at x = 21.329m on track 3 — single axle 200kN — v = 187.68 km/h on
track 3 to Vienna — ζEC (Rayleigh) — Matlab modal analysis — Analytical solution vs. Newmark

6.4. Traffic safety design check — acceleration criterion
The traffic safety design check was performed for the ten HSLM-A trains — see Figure 2.20
— passing on track 3 towards Vienna with speeds v ranging from 50 to 300 km/h. The
absolute maximum vertical bridge deck acceleration for all ten HSLM-A trains |aHSLM−A,max|
was calculated at 403 points along the axis of track 3 and is illustrated in Figure 6.31. Additionally,
the traffic safety criterion for new structures with direct fastened track |amax| = 5.0 m/s2 is
plotted. The structure fulfills the criterion except at the bearings. This may result as the transition
zone from open track to structure was, as a conservative approach, not modelled. However,
Figure 6.32 shows for the position x = 21.329 m on track 3, which is close to the quarter point,
the results for the speed range v = 50-300 km/h. Besides the envelope of all ten HSLM-A trains,
the individual results for the trains HSLM-A2, HSLM-A7, HSLM-A8 and HSLM-A9 are plotted
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6. Arch bridge

as well. Furthermore, in Table 6.1 the critical speeds of these four trains, the train car lengths LD
and the corresponding excitation frequencies nLD are shown. The latter are all very similar to
the structure’s first bending frequency — see Figure 6.7(b) — and consequently cause resonance.

Figure 6.31.: Acceleration |aHSLM−A,max| on track 3 — envelope of 10 HSLM-A trains and
speed range 50-300 km/h on track 3 — ζEC (Rayleigh) — Matlab modal analysis

Figure 6.32.: Acceleration |aHSLM−A,max| at x = 21.329m on track 3 — envelope of 10
HSLM-A trains on track 3 — ζEC (Rayleigh) — Matlab modal analysis

HSLM-i vHSLM−i,crit [km/h] LD [m] nLD =
vHSLM−i,crit

3.6 LD
[Hz]

A9 192 26 2.05
A8 184 25 2.04
A7 177 24 2.05
A2 141 19 2.06

Table 6.1.: Critical speeds and excitation frequency of specific HSLM-A trains
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6.5. Fatigue design check — conventional static approach

6.5. Fatigue design check — conventional static approach

In this chapter, the static equivalent constant amplitude stress range ΔσE,2 is calculated, using
two options like in the case of the single-span bridges in Chapter 5.
First, the method using the load model LM71 and the damage equivalent factor λ is applied at
two cross sections on the main girder and at two cross sections on the arch.
Subsequently, the more accurate crossing of the trains TypeC1 to TypeC8 (traffic mix TM1) is
simulated statically for 100 years in service and the resulting stress range spectra evaluated,
using Miner’s rule, at the S-N curve, which is again iterated until Dstat = 1.0 results. The resulting
level of the S-N curve provides consequently the static equivalent constant amplitude stress
range ΔσE,2, leading to a utilisation factor of 1.0 for the fatigue design verification.

6.5.1. ΔσE,2 based on load model LM71 and stress range

According to Equation (2.27) the static equivalent constant amplitude stress range ΔσE,2 be-
comes

ΔσE,2 = λ Φ2 ΔσLM71 (6.1)

whereas ΔσLM71 is calculated with the maximum and minimum normal stress due to load
model LM71

ΔσLM71 = |ΔσLM71,max − ΔσLM71,min| (6.2)

The damage equivalent factor is

λ = λ1 λ2 λ3 λ4 ≤ λmax (6.3)

Rewriting Equation (2.16) for the ’dynamic’ factor Φ2 and carefully maintained track, leads to

Φ2 =
1.44√

LΦ − 0.2
+ 0.82 (6.4)

As subsequently the main girder and the arch are studied, the determinant length LΦ is set to
half the span length, according to ÖNORM EN 1991-2, Table 6.2 [43].
On the other hand, the critical length of the influence line, which is needed for the factor λ1, is
regulated in ÖNORM EN 1993-2, 9.5.2 (2) [46], but no guideline is provided for arch bridges.
Furthermore, in [21] is stated to use 0.4 times the span length for the critical length for both,
arch and main girder with respect to the bending moment. However, the following assumptions
regarding the critical length were made and subsequently used for arch and main girder. In
general, the damage equivalent factor λ1 was derived from single-span bridges at the midspan
cross section. The bending influence line has the same shape as the stress influence line for these
structures. In case the stress influence line depends on more than one internal force influence
line, the stress influence line shall be used in order to determine the critical length. Therefore,
in this doctoral thesis, the length associated to the absolute maximum stress due to a single
load crossing the bridge on one track, as this one produces the maximum damage Dstat, is used
— see Figure 6.33(c) for point P4. This means, that the critical length Lλ1 is the distance between
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6. Arch bridge

the zero points of the influence line of the total stresses (σN + σMy + σMz ) in each point (P1 to
P4) of the analysed cross section.

Subsequently, the above described concept is applied on main girder 2 at x = 20.85 m and at
x = 43.01 m. Furthermore, the cross sections at x = 0 m, x = 23.46 m and x = 43.01 m for arch 2
are investigated. The procedure is for all five cross sections the same and is described, in an
exemplary manner, for main girder 2 at x = 20.85 m. Figure 6.33 shows the influence lines for
the main girder 2 at the location x = 20.85 m due to the crossing of a single axle load of 1 kN
on track 4 and track 3, respectively. Figure 6.33(a) shows the influence lines for the internal
forces My, Mz and N due to loads on track 4, whereas Figure 6.33(b) shows the ones for loads
on track 3. Next, Figure 6.33(c) considers again the loads on track 4 and illustrates the resulting
influence lines for the total normal stresses at the points P1 to P4 of the cross section MG2. In
Figure 6.33(d) the stress influence lines due to loads on track 3 are plotted.
In Table 6.2 the determination of the static equivalent constant amplitude stress range ΔσE,2
is summarized for each point P1 to P4 on the cross section. Subsequently, a few comments
are made, in an exemplary manner, regarding the main steps for point P1. Hence, for point
P1 the load model LM71 was first positioned twice on track 4 in the most unfavourable way
on the influence line P1 of Figure 6.33(c). Once in order to determine the maximum normal
stress Δσp,max = 19.8 N/mm2 and the second time to determine the minimum normal stress
Δσp,min = −22.7 N/mm2, which together lead to |Δσp| = 42.5 N/mm2 for loads on track 4. The
same procedure was performed for track 3 leading to |Δσp| = 60.6 N/mm2. Furthermore, the
critical lengths Lλ1 were extracted for P1 from Figure 6.33(c) and 6.33(d). Additionally, it was
assumed that there is no traffic simultaneously on track 3 and track 4, hence, n for the calculation
of λ4 is set to zero — see Equation (2.30). Finally, after evaluating Equation (6.1) for point P1,
the static equivalent constant amplitude stress range ΔσE,2,n=0 results to 41.9 N/mm2.
On the following pages, the results for main girder 2 and arch 2 are presented.
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6.5. Fatigue design check — conventional static approach

Results at main girder 2 — x = 20.85 m (quarter-point)

(a) Influence lines for internal forces — loads on track 4 (b) Influence lines for internal forces — loads on track 3

(c) Influence lines for stresses — loads on track 4 (d) Influence lines for stresses — loads on track 3

Figure 6.33.: Influence lines for axle load of 1 kN on one track — cross section MG2 at x = 20.85m

Point P1 P2 P3 P4
Track 4 3 4 3 4 3 4 3

Δσp,max [N/mm2] 19.8 27.8 19.2 28.1 20.7 33.3 20.6 33.0
Δσp,min [N/mm2] -22.7 -32.8 -22.7 -33.1 -15.0 -18.3 -15.6 -18.1
|Δσp| [N/mm2] 42.5 60.6 42.0 61.2 35.7 51.6 36.2 51.1
Δσ1/Δσ1+2 =

|Δσp|track3/|Δσp|track3+track4
[-] 0.588 0.593 0.591 0.585

Lλ1 [m] 37.76 36.29 38.02 36.17 39.08 39.02 38.74 39.17
λ1 [-] 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640
λ2 [-] 1
λ3 [-] 1
λ4 [-] 0.719 0.719 0.719 0.719

λ4,n=0 [-] 0.607 0.610 0.609 0.605
λmax [-] 1.4

λ [-] 0.460 0.460 0.460 0.460 0.460 0.460 0.460 0.460
λn=0 [-] 0.388 0.388 0.390 0.390 0.390 0.390 0.390 0.387
LΦ [-] 43.01
Φ2 [-] 1.046

ΔσE,2 [N/mm2] 49.6 49.7 42.0 42.0
ΔσE,2,n=0 [N/mm2] 41.9 42.1 35.6 35.3

Table 6.2.: Equivalent constant amplitude stress range ΔσE,2 due to LM71 — cross section MG2 at x = 20.85m
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6. Arch bridge

Results at main girder 2 — x = 43.01 m (midspan)

(a) Influence lines for internal forces — loads on track 4 (b) Influence lines for internal forces — loads on track 3

(c) Influence lines for stresses — loads on track 4 (d) Influence lines for stresses — loads on track 3

Figure 6.34.: Influence lines for axle load of 1 kN on one track — cross section MG2 at x = 43.01m

Point P1 P2 P3 P4
Track 4 3 4 3 4 3 4 3

Δσp,max [N/mm2] 6.0 11.1 5.9 11.4 10.7 20.5 10.2 20.9
Δσp,min [N/mm2] -10.2 -17.5 -10.7 -17.2 -4.2 -5.7 -4.3 -5.5
|Δσp| [N/mm2] 16.2 28.6 16.6 28.6 14.9 26.2 14.5 26.4
Δσ1/Δσ1+2 =

|Δσp|track3/|Δσp|track3+track4
[-] 0.638 0.632 0.637 0.646

Lλ1 [m] 30.89 27.68 30.89 26.91 33.88 34.39 33.76 35.15
λ1 [-] 0.648 0.655 0.648 0.656 0.642 0.641 0.642 0.640
λ2 [-] 1
λ3 [-] 1
λ4 [-] 0.739 0.736 0.739 0.743

λ4,n=0 [-] 0.646 0.641 0.645 0.652
λmax [-] 1.4

λ [-] 0.479 0.484 0.477 0.483 0.474 0.474 0.477 0.475
λn=0 [-] 0.419 0.423 0.415 0.420 0.414 0.413 0.419 0.417
LΦ [-] 43.01
Φ2 [-] 1.046

ΔσE,2 [N/mm2] 22.6 22.8 20.4 20.4
ΔσE,2,n=0 [N/mm2] 19.8 19.8 17.8 17.9

Table 6.3.: Equivalent constant amplitude stress range ΔσE,2 due to LM71 — cross section MG2 at x = 43.01m
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6.5. Fatigue design check — conventional static approach

Results at arch 2 — x = 0 m (bearing)

(a) Influence lines for internal forces — loads on track 4 (b) Influence lines for internal forces — loads on track 3

(c) Influence lines for stresses — loads on track 4 (d) Influence lines for stresses — loads on track 3

Figure 6.35.: Influence lines for axle load of 1 kN on one track — cross section A2 at x = 0m

Point P1 P2 P3 P4
Track 4 3 4 3 4 3 4 3

Δσp,max [N/mm2] 0.2 0.1 0.0 0.0 0.5 0.9 0.0 0.0
Δσp,min [N/mm2] -20.6 -40.2 -20.5 -44.7 -9.6 -17.6 -9.2 -21.9
|Δσp| [N/mm2] 20.7 40.4 20.5 44.7 10.1 18.5 9.2 21.9
Δσ1/Δσ1+2 =

|Δσp|track3/|Δσp|track3+track4
[-] 0.660 0.685 0.648 0.703

Lλ1 [m] 81.68 84.91 86.02 86.02 79.42 79.92 86.02 86.02
λ1 [-] 0.610 0.610 0.610 0.610 0.611 0.610 0.610 0.610
λ2 [-] 1
λ3 [-] 1
λ4 [-] 0.750 0.763 0.744 0.772

λ4,n=0 [-] 0.665 0.688 0.654 0.705
λmax [-] 1.4

λ [-] 0.458 0.458 0.465 0.465 0.454 0.454 0.471 0.471
λn=0 [-] 0.406 0.406 0.420 0.420 0.399 0.399 0.430 0.430
LΦ [-] 43.01
Φ2 [-] 1.046

ΔσE,2 [N/mm2] 29.3 31.8 13.6 15.3
ΔσE,2,n=0 [N/mm2] 25.9 28.7 11.9 14.0

Table 6.4.: Equivalent constant amplitude stress range ΔσE,2 due to LM71 — cross section A2 at x = 0m
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Results at arch 2 — x = 23.46 m (quarter-point)

(a) Influence lines for internal forces — loads on track 4 (b) Influence lines for internal forces — loads on track 3

(c) Influence lines for stresses — loads on track 4 (d) Influence lines for stresses — loads on track 3

Figure 6.36.: Influence lines for axle load of 1 kN on one track — cross section A2 at x = 23.46m

Point P1 P2 P3 P4
Track 4 3 4 3 4 3 4 3

Δσp,max [N/mm2] 0.0 0.0 0.0 0.0 3.2 3.9 4.0 3.8
Δσp,min [N/mm2] -19.2 -37.5 -17.4 -38.5 -14.4 -24.0 -13.2 -25.0
|Δσp| [N/mm2] 19.2 37.5 17.4 38.5 17.6 27.9 17.2 28.8
Δσ1/Δσ1+2 =

|Δσp|track3/|Δσp|track3+track4
[-] 0.662 0.689 0.613 0.627

Lλ1 [m] 86.02 86.02 75.20 86.02 55.27 56.58 54.30 56.81
λ1 [-] 0.610 0.610 0.615 0.610 0.630 0.630 0.630 0.630
λ2 [-] 1
λ3 [-] 1
λ4 [-] 0.751 0.765 0.726 0.733

λ4,n=0 [-] 0.666 0.692 0.625 0.636
λmax [-] 1.4

λ [-] 0.458 0.458 0.470 0.466 0.458 0.458 0.462 0.462
λn=0 [-] 0.407 0.407 0.425 0.422 0.393 0.393 0.401 0.401
LΦ [-] 43.01
Φ2 [-] 1.046

ΔσE,2 [N/mm2] 27.2 27.4 21.8 22.2
ΔσE,2,n=0 [N/mm2] 24.1 24.8 18.7 19.3

Table 6.5.: Equivalent constant amplitude stress range ΔσE,2 due to LM71 — cross section A2 at x = 23.46m
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Results at arch 2 — x = 43.01 m (midspan)

(a) Influence lines for internal forces — loads on track 4 (b) Influence lines for internal forces — loads on track 3

(c) Influence lines for stresses — loads on track 4 (d) Influence lines for stresses — loads on track 3

Figure 6.37.: Influence lines for axle load of 1 kN on one track — cross section A2 at x = 43.01m

Point P1 P2 P3 P4
Track 4 3 4 3 4 3 4 3

Δσp,max [N/mm2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Δσp,min [N/mm2] -13.9 -26.9 -12.8 -28.2 -13.9 -27.0 -12.8 -28.3
|Δσp| [N/mm2] 13.9 26.9 12.8 28.2 13.9 27.0 12.8 28.3
Δσ1/Δσ1+2 =

|Δσp|track3/|Δσp|track3+track4
[-] 0.660 0.688 0.661 0.689

LΦ [m] 86.02 86.02 86.02 86.02 86.02 86.02 86.02 86.02
λ1 [-] 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610
λ2 [-] 1
λ3 [-] 1
λ4 [-] 0.750 0.764 0.750 0.765

λ4,n=0 [-] 0.665 0.690 0.665 0.692
λmax [-] 1.4

λ [-] 0.458 0.458 0.466 0.466 0.458 0.458 0.466 0.466
λn=0 [-] 0.406 0.406 0.421 0.421 0.406 0.406 0.422 0.422
LΦ [-] 43.01
Φ2 [-] 1.046

ΔσE,2 [N/mm2] 19.5 20.0 19.6 20.0
ΔσE,2,n=0 [N/mm2] 17.3 18.1 17.4 18.1

Table 6.6.: Equivalent constant amplitude stress range ΔσE,2 due to LM71 — cross section A2 at x = 43.01m
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6.5.2. ΔσE,2 based on service trains TypeC1 to TypeC8 and damage accumulation

The second variant to determine the static equivalent constant amplitude stress range ΔσE,2
uses the trains TypeC1 to TypeC8 (traffic mix TM1) — see Figure 2.18 and Table 2.3. The
individual crossing of these eight trains on track 3 and track 4 respectively was simulated
statically considering the dynamic factor (1 + ϕ)D according to Equation (2.12) and ÖNORM
EN 1991-2, Annex D [43]. The resulting stress moment ranges were counted — by applying
the reservoir method according to Figure 5.11 — at 165 equidistant cross sections for the main
girders (Δx = eCG/4 = 0.652 m), whereas cross sections left and right of the cross girders
were considered, and at 107 cross sections for the arches (Δx = eCG/3 = 0.869 m plus 2 at
quarter-points, 1 at midspan and 4 at cross beam connections). Each cross section is described
by four critical points as illustrated in Figure 6.8. The resulting stress range spectra for each
train were then, according to Table 2.3, combined to the design life stress spectra of each
point Pi (i=1. . . 4) in each cross section along the main girders and arches. Subsequently, the
stress range spectra were evaluated, using Miner’s rule, at the S-N curve. The level of the S-N
curve was again iterated until the damage Dstat = 1.0 resulted (for train crossings on both
tracks individually, with 24.95 106 t/year/track and for 100 years of service life), which led
consequently to the static equivalent constant amplitude stress range ΔσE,2 . This iteration
was performed for each point Pi (i=1. . . 4) in all cross sections separately. The results of the
process described above, are presented in Figure 6.38 as ΔσE,2,TypeC1−C8,stat and compared to the
ones obtained by the variant using the load model LM71 and damage equivalent factors λ of
Chapter 6.5.1, labeled as ΔσE,2,LM71. Hence, Figure 6.38(a) illustrates the results for main girder
2 (MG2) and Figure 6.38(b) the ones for arch 2 (A2). In general, the static equivalent constant
amplitude stress ranges ΔσE,2,LM71 due to the load model LM71 are able to estimate the results
of the trains TypeC1 to TypeC8 ΔσE,2,TypeC1−C8,stat for the MG2 very well, but underestimate
them partly for A2.

234
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(a) Main girder 2 (MG2)

(b) Arch 2 (A2)

Figure 6.38.: Comparison of equivalent constant amplitude stress ranges ΔσE,2 due to LM71 and TypeC1-C8
(traffic mix TM1)
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6.5.3. Minimum fatigue strength for 100 years of design life

In this chapter, the level of the S-N curve, for the subsequently performed evaluation of the
stress range spectra due to the dynamic simlation of the traffic mixes, is defined. Hence, the
minimum fatigue strength, that is necessary for the design life of 100 years, is subsequently set.
Therefore, two variants were chosen.
The first variant (Var. I) is defined as the maximum static equivalent constant amplitude stress
range ΔσE,2,TypeC1−C8,stat along the member, due to the trains TypeC1 to TypeC8 (traffic mix
TM1) of the previous Chapter 6.5.2. The results are illustrated as a red line in Figure 6.39(a)
for the main girder 2 (MG2) and in Figure 6.39(b) for the arch 2 (A2). Hence, the maximum
equivalent stress range ΔσE,2,TypeC1−C8,stat for all points Pi along e.g. MG2 is 39.73 N/mm2.
Consequently, this value is used as ΔσC,I to define the S-N curve at 2 million cycles for all points
Pi of MG2 for the damage accumulation calculations in the following chapters. Therefore, the
fatigue verification for the static stress range spectra, based on traffic mix TM1, is fulfilled along
the whole main girder.
The second variant (Var. II) considers the relevant detail (diaphragm of box girder) for this
type of construction, which is simplified assumed to be the detail category 71 divided by the
partial safety factor γMF = 1.15, which leads to ΔσC,II = 61.74 N/mm2, like in the case of the
single-span bridges of Chapter 5.1 Hence, this value is used as ΔσC,II to define the S-N curve at
2 million cycles for all points Pi of all analysed cross sections in the members for the damage
accumulation calculations in the following chapters. In conclusion, the S-N curves of all points

(a) Main girder 2 (MG2) (b) Arch 2 (A2)
Figure 6.39.: Minimum detail category variants ΔσC,i along members MG2 and A2 — equally valid for MG1 and A1

— to fulfil the fatigue verification
Pi for the damage accumulation calculations in the following chapters are set to subsequent
values ΔσC at 2 million cycles:

• Var.I

– Main girders (MG1 and MG2): ΔσC,I = 39.73 N/mm2

– Arches (A1 and A2): ΔσC,I = 28.45 N/mm2

• Var.II

– All members (MG1, MG2, A1 and A2): ΔσC,II = 61.74 N/mm2

1Here the detail category 80 (l ≤ 50 mm) considering the partial safety factor γMF = 1.35 (detail not inspectable)
is applicable as well, which would lead to a similar value ΔσC,II of 59.26 N/mm2
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6.6. Fatigue design check — static versus dynamic — TM1
In this chapter, the trains TypeC1 to TypeC8, according to Figure 2.18, are considered. These
eight trains cross tracks 3 and 4 individually, according to traffic mix 1 — see Table 4.1 — and
cause on each track a traffic volume of 24.95 106 t/year for the entire design life of 100 years.
First, the crossing of the trains is simulated statically, considering the dynamic factor (1 + ϕ)D
according to Equation (2.12), as already in Chapter 6.5.2 performed. The difference here is, that
the resulting static stress range spectra for the entire design life are evaluated at the fixed S-N
curves defined in the Chapter 6.5.3 (Var.I and Var.II), to get an objective comparison with the
dynamic simulation, using the same fatigue strength ΔσC.
Furthermore, the crossing of the eight trains was simulated dynamically with the analytical
approach using Matlab, according to Chapter 6.3.1. Therefore, the train speeds according to
TM1* and TM1** were applied — see Table 4.2. Consequently, the resulting stress range spectra,
due to the traffic mixes TM1* and TM1**, were evaluated at the S-N curves defined by Var.I and
Var.II according to the previous Chapter 6.5.3.

6.6.1. Static fatigue design — traffic mix TM1
Subsequently, the static stress range spectra, due to the trains TypeC1 to TypeC8 for the entire
design life, are evaluated at the S-N curves defined in Chapter 6.5.3 and the resulting damage
values Dstat are plotted for each member along the structure’s longitudinal axis.

Var.I: maximum value of minimum fatigue strength — ΔσC,I

The S-N curves for all points Pi of the main girders (MG1 and MG2) were set to ΔσC,I =
39.73 N/mm2 and the ones of the arches (A1 and A2) were set to ΔσC,I = 28.45 N/mm2.
Figure 6.40 illustrates the resulting damage Dstat for MG1, MG2, A1 and A2. Notice, per
definition Dstat = 1.0 for point P2 of cross section MG2 at x = 17.7 m and for point P2 of cross
section A2 at x = 0 m — compare Figures 6.40(c) with 6.39(a) and 6.40(d) with 6.39(b).

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)
Figure 6.40.: Damage Dstat along members — train mix TM1 — static — ΔσC,I
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6. Arch bridge

Var.II: fatigue strength according to relevant detail — ΔσC,II = 61.74N/mm2

Subsequently, the S-N curves were set to ΔσC,II = 61.74 N/mm2 at 2 million load cycles for
all points Pi of all members (MG1, MG2, A1 and A2). Figure 6.41 shows the resulting damage
values Dstat for each member separately. In comparison to the results of Var.I in Figure 6.40 the
damage Dstat was severely reduced by increasing the levels of the S-N curves.

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)
Figure 6.41.: Damage Dstat along members — train mix TM1 — static — ΔσC,II

6.6.2. Dynamic fatigue design — traffic mix TM1* — train speed vEC

In this chapter, the dynamic calculations were performed using the speeds vEC according to
Table 4.2. The resulting dynamic stress range spectra, for the entire design life of 100 years,
were again evaluated at the S-N curve variants Var.I and Var.II.

Var.I: maximum value of minimum fatigue strength — ΔσC,I

Figure 6.42 illustrates the damage Ddyn, which results due to the dynamic stress ranges
being evaluated at the S-N curves of Var.I. Additionally, Figure 6.43 shows the damage ratios
Ddyn/Dstat, which are obtained by dividing the damages Ddyn of Figure 6.42 by the damages
Dstat of Figures 6.40, whereas zero values are plotted and undefined values are not illustrated.

Var.II: fatigue strength according to relevant detail — ΔσC,II = 61.74 N/mm2

Evaluating the same dynamic stress ranges as before at the S-N curves of variant Var.II leads to
the damage Ddyn results in Figure 6.44 and the corresponding ratios Ddyn/Dstat in Figure 6.45.
Hence, a severe reduction of the damage Ddyn due to the increased S-N curves resulted. However,
the ratios Ddyn/Dstat for the main girders are about 1.2, whereas for the arches the static results
are mostly not reached by the dynamic calculation.
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6.6. Fatigue design check — static versus dynamic — TM1

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.42.: Damage Ddyn along members — train mix TM1* — dynamic — vEC — ζEC (Rayleigh) — ΔσC,I

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.43.: Ratio Ddyn/Dstat along members — train mix TM1* — dynamic — vEC — ζEC (Rayleigh) — ΔσC,I
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6. Arch bridge

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.44.: Damage Ddyn along members — train mix TM1* — dynamic — vEC — ζEC (Rayleigh) — ΔσC,II

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.45.: Ratio Ddyn/Dstat along members — train mix TM1* — dynamic — vEC — ζEC (Rayleigh)
— ΔσC,II
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6.6. Fatigue design check — static versus dynamic — TM1

6.6.3. Dynamic fatigue design — traffic mix TM1** — train speed vDmax

In this chapter, again, the eight trains TypeC1 to TypeC8 were simulated dynamically, but now
crossing the structure on track 3 an track 4 with the speed vDmax according to traffic mix TM1**.
Hence, for each point Pi on each cross section of each single member, the maximum damage
Ddyn for each train type (considering the trains speed range v = 50-1.2vEC) was determined
and combined to the total traffic volume of 24.95 106 t/year/track and 100 years. Consequently,
the subsequent illustrated results represent the biggest possible damage Ddyn, which the trains
TypeC1 to TypeC8 can produce due to the crossing of this particular arch bridge model.

In Figure 6.46 the dynamic stress range spectra due to TM1** were evaluated at the S-N curves
according to variant Var.I. For both main girders, the maximum damage Ddyn is about 5.0 — see
Figures 6.46(a) and 6.46(c) — whereas the maximum damage Ddyn with respect to the arches is
only slightly above 1.0 — see Figures 6.46(b) and 6.46(d). Figure 6.47 shows again the ratios
Ddyn/Dstat for TM1** and the S-N curve level of variant Var.I.

Figure 6.48 shows again the results for the S-N curve variant Var.II. The increase of the S-N
curve levels to ΔσC,II = 61.74 N/mm2 led to damage values Ddyn < 1.0 for all points Pi along
all members. Consequently, even if all eight trains TypeC1 to TypeC8 cross the structure for
100 years and a traffic volume of 24.95 106 t/year/track, with the speed vDmax , leading to the
maximum possible damage Ddyn in each point Pi of all considered members, the FAT design
criterion is still fulfilled in case of the detail category 71 is the decisive one. Additionally,
Figure 6.49 shows the ratios Ddyn/Dstat for TM1** and the S-N curve level of variant II.
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6. Arch bridge

Var.I: maximum value of minimum fatigue strength — ΔσC,I

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.46.: Damage Ddyn along members — train mix TM1** — dynamic — vDmax — ζEC (Rayleigh) — ΔσC,I

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.47.: Ratio Ddyn/Dstat along members — train mix TM1** — dynamic — vDmax — ζEC (Rayleigh) — ΔσC,I
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6.6. Fatigue design check — static versus dynamic — TM1

Var.II: fatigue strength according to relevant detail — ΔσC,II = 61.74N/mm2

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.48.: Damage Ddyn along members —— train mix TM1** — dynamic — vDmax — ζEC (Rayleigh) — ΔσC,II

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.49.: Ratio Ddyn/Dstat along members —— train mix TM1** — dynamic — vDmax — ζEC (Rayleigh) — ΔσC,II
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6. Arch bridge

6.7. Dynamic fatigue design check — traffic mix TM2

Subsequently, the 94602 measured real trains with the corresponding train speeds were consid-
ered on both tracks according to traffic mix TM2-dt — see Figure 4.8. The resulting dynamic
stress ranges, were again evaluated at the two S-N curve varaints Var.I and Var.II.
The results for the S-N curve variant Var.I are shown in Figure 6.50, whereas the ratios
Ddyn/Dstat, which are obtained by using the damages of Figures 6.50 and 6.40, are illustrated in
Figure 6.51.

Hence, if the S-N curve level, which leads for the static case (TypeC1 to TypeC8 of traffic mix
TM1), at the decisive point Pi, to a damage of Dstat = 1.0, were considered, then due to the
traffic mix TM2-dt a damage Ddyn of about 0.9 at the decisive point P1 at the main girder
MG1 would result — see Figure 6.50(a). The maximum damage Ddyn in the cross section of the
arch, due to TM2-dt and the S-N curve variant Var.I is significantly smaller, about 0.2 — see
Figure 6.50(b).

However, if the S-N curve variant Var.II is considered, which represents the very likely decisive
detail category 71, then the maximum damage Ddyn of all members is below 0.05 — see
Figure 6.52. Furthermore, the ratios Ddyn/Dstat in Figure 6.53 are all far below 1.0 as well.

6.8. Conclusion

The considered individual cross-sections of the main members (main girders, arches) of the
studied arch bridge are not prone to a FLS problem for the considered detail category 71.
Neither traffic mix TM2-st, which represents a real traffic mix due to measurements, nor traffic
mix TM1**, which represents the service trains of EC mix, crossing the arch bridge for 100 years
with the most unfavourable train speeds, is causing a damgage Ddyn > 1.0 in any main girder
or arch.
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6.8. Conclusion

Var.I: maximum value of minimum fatigue strength — ΔσC,I

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.50.: Damage Ddyn along members — train mix TM2 — dynamic — vtrain — ζEC (Rayleigh) — ΔσC,I

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.51.: Ratio Ddyn/Dstat along members — train mix TM2 — dynamic — vtrain — ζEC (Rayleigh) — ΔσC,I
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6. Arch bridge

Var.II: fatigue strength according to relevant detail — ΔσC,II = 61.74N/mm2

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.52.: Damage Ddyn along members — train mix TM2 — dynamic — vtrain — ζEC (Rayleigh) — ΔσC,II

(a) Main girder 1 (MG1) (b) Arch 1 (A1)

(c) Main girder 2 (MG2) (d) Arch 2 (A2)

Figure 6.53.: Ratio Ddyn/Dstat along members — train mix TM2 — dynamic — vtrain — ζEC (Rayleigh) — ΔσC,II
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7. Summary and concluding remarks

In this thesis, the impact of high-speed railway traffic on the fatigue behaviour of steel and
composite railway bridges is investigated. It discusses whether the common static approach
(load model LM71 with damage equivalent factor λ) accounts also for the resonance effects,
which might occur due to the dynamic crossing of high-speed passenger trains.

Therefore, in the first part of the thesis, a parameter study of pre-designed single-span steel
and composite bridges is performed. A new calculation approach, based on the existing non-
dimensional representation of dynamic train crossing simulations, is developed with respect to
the fatigue design check, which allows to consider a wide range of input parameters:

• Five traffic mixes:

– TM1 — 8 trains and train mix according to ÖNORM EN 1991-2 (EC-mix), which is
the basis for the fatigue design of new steel and composite bridges

– TM2 — 94602 measured passenger, freight and special trains according to monitoring
point Enns, which is located on the high-speed line Westbahn between the two cities
of Linz and Vienna.

– TM3 — 77217 measured passenger trains according to monitoring point Enns, which
is located on the high-speed line Westbahn between the two cities of Linz and Vienna.

– TM4 — 6 high-speed trains, which represent a possible high-speed train mix in
Austria

– TM5 — 4 high-speed trains and 4 freight trains representing a possible mixed train
mix in Austria

• Three train speed variants

– vEC or vTrain — train speeds according to ÖNORM EN 1991-2 [43] or measured data
– vDmax — train speed within speed range of each train, which produces the maximum

dynamic damage Ddyn
– vamax — train speed within speed range of each train, which produces the maximum

vertical bridge deck acceleration |amax|
• Two damping variants

– ζEC — according to ÖNORM EN 1991-2 [43]
– ζV1 — according to ÖNORM EN 1991-2 [43] but at least 1.0 %

• Two load distribution variants

– without load distribution, hence each axle load is represented by one single load
– with load distribution, hence each axle load is represented by three single loads

according to ÖNORM EN 1991-2 [43]

• New/ Existing single-span steel and composite bridges are distinguished due to their
traffic safety (TS) vertical bridge deck acceleration criterion

– |aHSLM−A,max| ≤ 3.5 m/s2 for new bridge structures
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7. Summary and concluding remarks

– |aHSLM−A,max| ≤ 6.0 m/s2 for existing bridge structures

For all studied bridges these criteria are checked.

Furthermore, the influence of two different train models (moving load model and 2D multi-body
model) on the damage Ddyn is investigated.
The results of the dynamic parameter study led to the following conclusions — see Chap-
ter 5.4.6:

• The common static approach for the fatigue design verification of steel and composite
railway bridges (load model LM71 with damage equivalent factor λ) is not sufficient to
account for resonance effects due to the dynamic simulation.

• New/ existing single-span steel bridges and new single-span composite bridges in general
do not have a fatigue problem (considering a minimum fatigue strength of FAT-71 with
ΔσC = 71/1.15 = 61.74 N/mm2), if they fulfil the TS criteria.

• Existing single-span composite bridges in general do not have a fatigue problem (consid-
ering FAT-71 with ΔσC = 71/1.15 = 61.74 N/mm2), if they fulfil the TS criteria, besides
few exceptions stated in Chapter 5.4.6.

• The speed variants vDmax and vamax lead to very similar results, hence, one can use the
speed vamax , which leads to the maximum vertical bridge deck acceleration |amax|, in order
to calculate the maximum dynamic damage Ddyn.

• Increasing the damping ratio from ζEC to ζV1 improves the situation for one particular
single-span steel or composite structure, as the damping effects are simply enhanced. On
the other hand, the influence on the entire population of the bridge structures (L and n0
ranges) is not severe, as the number of bridges that fulfil the TS criteria increases in about
the same range as the number of bridges that do not fulfil the fatigue limit state (FLS)
criteria decreases.

• The influence of the load distribution is of neglectable magnitude and only present for
spans up to L = 15 m.

• Furthermore, the load model moving load model proves to be sufficient and usually conser-
vative in comparison to the computationally much more expensive 2D multi-body model
— see Chapter 5.2.1.

Moreover, the accuracy of the static approach in Austria is checked, which additionally enhances
the static fatigue load by the percentage the internal forces of the dynamic calculation exceed
the ones of the static calculation.
As discussed in Chapter 5.5.5, this simplified static approach is not able to account for the
dynamic effects, represented by the above presented dynamic parameter study.

Finally, the main girders and arches of a representative arch bridge were investigated with
respect to their fatigue behaviour due to high-speed railway traffic. Therefore, the traffic
mixes TM1 and TM2 were considered. Due to the complexity of the structure, four different
computational approaches were compared to each other. The calculations of the internal forces
led for all approaches to similar results, whereas for the vertical bridge deck acceleration severe
differences resulted due to the different load approximation methods — see Chapter 6.3.2.
However, as discussed in Chapter 6.8, the dynamic effects exceeded the ones due to the static
calculation, but with respect to the common minimum detail category FAT-71 (ΔσC = 71/1.15 =
61.74 N/mm2) the arch bridge is not prone to fatigue problems.
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Zugparameter und deren Grenzwerte.” In: EI-Eisenbahningenieur (4 2016), pp. 40–44.

[63] Unterweger, Harald; Taras, Andreas; Schörghofer, Andreas. “Tragsicherheit von Be-
standsbrücken für neue Hochgeschwindigkeitszüge — Teil 2. Selektion kritischer Einzel-
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Appendix A.

Train data

A.1. Trains according to design codes

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 19 11 3600 37 11 11500
2 22.5 2200 20 11 2600 38 11 2600
3 22.5 2200 21 11 11500 39 11 3600
4 22.5 6900 22 11 2600 40 11 2600
5 22.5 2200 23 11 3600 41 11 11500
6 22.5 2200 24 11 2600 42 11 2600
7 11 3200 25 11 11500 43 11 3600
8 11 2600 26 11 2600 44 11 2600
9 11 11500 27 11 3600 45 11 11500
10 11 2600 28 11 2600 46 11 2600
11 11 3600 29 11 11500 47 11 3600
12 11 2600 30 11 2600 48 11 2600
13 11 11500 31 11 3600 49 11 11500
14 11 2600 32 11 2600 50 11 2600
15 11 3600 33 11 11500 51 11 3600
16 11 2600 34 11 2600 52 11 2600
17 11 11500 35 11 3600 53 11 11500
18 11 2600 36 11 2600 54 11 2600

Table A.1.: TypeC1 — according to ÖNORM EN 1991-2 [43] Annex D
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 16 11 2500 31 11 16500
2 22.5 3300 17 11 5000 32 11 2500
3 22.5 6700 18 11 2500 33 11 5000
4 22.5 3300 19 11 16500 34 11 2500
5 11 3900 20 11 2500 35 11 16500
6 11 2500 21 11 5000 36 11 2500
7 11 16500 22 11 2500 37 11 5000
8 11 2500 23 11 16500 38 11 2500
9 11 5000 24 11 2500 39 11 16500
10 11 2500 25 11 5000 40 11 2500
11 11 16500 26 11 2500 41 11 5000
12 11 2500 27 11 16500 42 11 2500
13 11 5000 28 11 2500 43 11 16500
14 11 2500 29 11 5000 44 11 2500
15 11 16500 30 11 2500

Table A.2.: TypeC2 — according to ÖNORM EN 1991-2 [43] Annex D

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 20 0 21 15 4900 41 15 4900
2 20 3000 22 15 2500 42 15 2500
3 20 8460 23 15 16500 43 15 16500
4 20 3000 24 15 2500 44 15 2500
5 15 4450 25 15 4900 45 15 4900
6 15 2500 26 15 2500 46 15 2500
7 15 16500 27 15 16500 47 15 16500
8 15 2500 28 15 2500 48 15 2500
9 15 4900 29 15 4900 49 15 4900
10 15 2500 30 15 2500 50 15 2500
11 15 16500 31 15 16500 51 15 16500
12 15 2500 32 15 2500 52 15 2500
13 15 4900 33 15 4900 53 15 4900
14 15 2500 34 15 2500 54 15 2500
15 15 16500 35 15 16500 55 15 16500
16 15 2500 36 15 2500 56 15 2500
17 15 4900 37 15 4900 57 20 4450
18 15 2500 38 15 2500 58 20 3000
19 15 16500 39 15 16500 59 20 8460
20 15 2500 40 15 2500 60 20 3000

Table A.3.: TypeC3 — according to ÖNORM EN 1991-2 [43] Annex D

258



A.1. Trains according to design codes

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 33 22.5 1800 65 22.5 1800
2 22.5 2100 34 22.5 5700 66 22.5 1800
3 22.5 2100 35 22.5 1800 67 22.5 4000
4 22.5 4400 36 22.5 1800 68 22.5 1800
5 22.5 2100 37 22.5 4000 69 22.5 1800
6 22.5 2100 38 22.5 1800 70 22.5 5700
7 22.5 4000 39 22.5 1800 71 22.5 1800
8 22.5 1800 40 22.5 5700 72 22.5 1800
9 22.5 1800 41 22.5 1800 73 22.5 4000
10 22.5 5700 42 22.5 1800 74 22.5 1800
11 22.5 1800 43 22.5 4000 75 22.5 1800
12 22.5 1800 44 22.5 1800 76 22.5 5700
13 22.5 4000 45 22.5 1800 77 22.5 1800
14 22.5 1800 46 22.5 5700 78 22.5 1800
15 22.5 1800 47 22.5 1800 79 22.5 4000
16 22.5 5700 48 22.5 1800 80 22.5 1800
17 22.5 1800 49 22.5 4000 81 22.5 1800
18 22.5 1800 50 22.5 1800 82 22.5 5700
19 22.5 4000 51 22.5 1800 83 22.5 1800
20 22.5 1800 52 22.5 5700 84 22.5 1800
21 22.5 1800 53 22.5 1800 85 22.5 4000
22 22.5 5700 54 22.5 1800 86 22.5 1800
23 22.5 1800 55 22.5 4000 87 22.5 1800
24 22.5 1800 56 22.5 1800 88 22.5 5700
25 22.5 4000 57 22.5 1800 89 22.5 1800
26 22.5 1800 58 22.5 5700 90 22.5 1800
27 22.5 1800 59 22.5 1800 91 22.5 4000
28 22.5 5700 60 22.5 1800 92 22.5 1800
29 22.5 1800 61 22.5 4000 93 22.5 1800
30 22.5 1800 62 22.5 1800 94 22.5 5700
31 22.5 4000 63 22.5 1800 95 22.5 1800
32 22.5 1800 64 22.5 5700 96 22.5 1800

Table A.4.: TypeC5 — according to ÖNORM EN 1991-2 [43] Annex D
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 17 0 11 17 15700 21 17 15700
2 17 3000 12 17 3000 22 17 3000
3 17 11000 13 17 15700 23 17 15700
4 17 3000 14 17 3000 24 17 3000
5 17 3300 15 17 15700 25 17 15700
6 17 3000 16 17 3000 26 17 3000
7 17 15700 17 17 15700 27 17 3300
8 17 3000 18 17 3000 28 17 3000
9 17 15700 19 17 15700 29 17 11000
10 17 3000 20 17 3000 30 17 3000

Table A.5.: TypeC4 — according to ÖNORM EN 1991-2 [43] Annex D

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 27 22.5 3700 52 7 6500
2 22.5 2100 28 22.5 1800 53 22.5 3700
3 22.5 2100 29 22.5 12800 54 22.5 1800
4 22.5 4400 30 22.5 1800 55 22.5 12800
5 22.5 2100 31 22.5 3600 56 22.5 1800
6 22.5 2100 32 22.5 1800 57 22.5 3400
7 7 3900 33 22.5 12800 58 22.5 1800
8 7 6500 34 22.5 1800 59 22.5 8000
9 7 3800 35 22.5 3600 60 22.5 1800
10 7 6500 36 22.5 1800 61 7 3500
11 22.5 3700 37 22.5 12800 62 7 6500
12 22.5 1800 38 22.5 1800 63 7 3800
13 22.5 12800 39 7 3700 64 7 6500
14 22.5 1800 40 7 6500 65 22.5 3500
15 7 3700 41 7 3800 66 22.5 1800
16 7 6500 42 7 6500 67 22.5 8000
17 22.5 3500 43 22.5 3500 68 22.5 1800
18 22.5 1800 44 22.5 1800 69 22.5 3200
19 22.5 8000 45 22.5 8000 70 22.5 1800
20 22.5 1800 46 22.5 1800 71 22.5 8000
21 22.5 3200 47 22.5 3200 72 22.5 1800
22 22.5 1800 48 22.5 1800 73 22.5 3400
23 22.5 8000 49 22.5 8000 74 22.5 1800
24 22.5 1800 50 22.5 1800 75 22.5 12800
25 7 3500 51 7 3500 76 22.5 1800
26 7 6500

Table A.6.: TypeC6 — according to ÖNORM EN 1991-2 [43] Annex D

260



A.1. Trains according to design codes

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 17 22.5 11000 32 22.5 1800
2 22.5 2200 18 22.5 1800 33 22.5 11000
3 22.5 2200 19 22.5 3200 34 22.5 1800
4 22.5 6900 20 22.5 1800 35 22.5 3200
5 22.5 2200 21 22.5 11000 36 22.5 1800
6 22.5 2200 22 22.5 1800 37 22.5 11000
7 22.5 3000 23 22.5 3200 38 22.5 1800
8 22.5 1800 24 22.5 1800 39 22.5 3200
9 22.5 11000 25 22.5 11000 40 22.5 1800
10 22.5 1800 26 22.5 1800 41 22.5 11000
11 22.5 3200 27 22.5 3200 42 22.5 1800
12 22.5 1800 28 22.5 1800 43 22.5 3200
13 22.5 11000 29 22.5 11000 44 22.5 1800
14 22.5 1800 30 22.5 1800 45 22.5 11000
15 22.5 3200 31 22.5 3200 46 22.5 1800
16 22.5 1800

Table A.7.: TypeC7 — according to ÖNORM EN 1991-2 [43] Annex D

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 22.5 0 17 22.5 4200 32 22.5 5500
2 22.5 2200 18 22.5 5500 33 22.5 4200
3 22.5 2200 19 22.5 4200 34 22.5 5500
4 22.5 6900 20 22.5 5500 35 22.5 4200
5 22.5 2200 21 22.5 4200 36 22.5 5500
6 22.5 2200 22 22.5 5500 37 22.5 4200
7 22.5 3500 23 22.5 4200 38 22.5 5500
8 22.5 5500 24 22.5 5500 39 22.5 4200
9 22.5 4200 25 22.5 4200 40 22.5 5500
10 22.5 5500 26 22.5 5500 41 22.5 4200
11 22.5 4200 27 22.5 4200 42 22.5 5500
12 22.5 5500 28 22.5 5500 43 22.5 4200
13 22.5 4200 29 22.5 4200 44 22.5 5500
14 22.5 5500 30 22.5 5500 45 22.5 4200
15 22.5 4200 31 22.5 4200 46 22.5 5500
16 22.5 5500

Table A.8.: TypeC8 — according to ÖNORM EN 1991-2 [43] Annex D
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Appendix A. Train data

A.2. Trains according to literature

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 17.2 0 9 18.2 14750 17 18.7 14750
2 17.2 2700 10 18.2 2750 18 18.7 2750
3 18.7 13975 11 18.3 14750 19 18.5 14750
4 18.7 2750 12 18.3 2750 20 18.6 2750
5 18.6 14750 13 18.7 14750 21 18.2 14750
6 18.7 2750 14 18.7 2750 22 18.2 2750
7 17.5 14750 15 18.6 14750 23 17.5 13975
8 17.5 2750 16 18.6 2750 24 17.6 2700

Table A.9.: EC250-Brutto18 — according to [61]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

1 17.5 0 17 19.9 6800 33 17.0 6800
2 17.2 2300 18 18.2 2750 34 17.0 2300
3 18.7 17200 19 20.1 16900 35 17.1 17200
4 18.7 2300 20 18.3 2750 36 17.1 2300
5 18.6 6800 21 19.9 6650 37 20.1 6800
6 18.7 2600 22 18.7 2750 38 20.1 2600
7 17.5 16900 23 20.1 16900 39 20.0 16900
8 17.5 2600 24 18.6 2750 40 20.0 2600
9 19.9 6650 25 17.7 6800 41 17.7 6800
10 18.2 2600 26 18.7 2750 42 17.7 2300
11 18.3 16900 27 17.9 17200 43 18.0 17200
12 18.3 2600 28 18.6 2750 44 18.0 2300
13 18.7 6800 29 20.6 6800 45 17.6 6950
14 18.7 2300 30 18.2 2750 46 17.6 2300
15 18.6 17200 31 20.6 16900 47 17.6 17200
16 18.6 2300 32 17.6 2700 48 17.6 2300

Table A.10.: ICE4-K3-12cars — according to [61]
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A.2. Trains according to literature

Car
type

Axle
Nr.

Load
[N]

Distance
[mm]

Car
type

Axle
Nr.

Load
[N]

Distance
[mm]

Taurus

1 217782 0

Taurus

33 217782 6040
2 217782 3000 34 217782 3000
3 217782 6900 35 217782 6900
4 217782 3000 36 217782 3000

Bmpz-2

5 142073 5640

Bmpz-2

37 142073 5640
6 142073 2500 38 142073 2500
7 142073 16500 39 142073 16500
8 142073 2500 40 142073 2500

Ampz

9 136678 5000

Ampz

41 136678 5000
10 136678 2500 42 136678 2500
11 136678 16500 43 136678 16500
12 136678 2500 44 136678 2500

Ampz

13 136678 5000

Ampz

45 136678 5000
14 136678 2500 46 136678 2500
15 136678 16500 47 136678 16500
16 136678 2500 48 136678 2500

Ampz

17 136678 5000

Ampz

49 136678 5000
18 136678 2500 50 136678 2500
19 136678 16500 51 136678 16500
20 136678 2500 52 136678 2500

Arbmpz

21 138149 5000

Arbmpz

53 138149 5000
22 138149 2500 54 138149 2500
23 138149 16500 55 138149 16500
24 138149 2500 56 138149 2500

Bmpz-1

25 143545 5000

Bmpz-1

57 143545 5000
26 143545 2500 58 143545 2500
27 143545 16500 59 143545 16500
28 143545 2500 60 143545 2500

Afmpz

29 144526 5000

Afmpz

61 144526 5000
30 144526 2500 62 144526 2500
31 144526 16500 63 144526 16500
32 144526 2500 64 144526 2500

Table A.11.: TypeC19 — adapted according to [32]
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Appendix A. Train data
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Table A.12.: TypeC19 — input values for 2D multi-body model — adapted according to [32]

264



A.3. Trains according to the monitoring station Enns

A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ
1 16.9 0.36 0 0.0
2 16.8 0.43 2501 1.6
3 15.9 0.38 15352 23.9
4 16.3 0.43 2501 1.6
5 12.4 0.45 3698 3.0
6 12.4 0.46 2501 1.5
7 11.9 0.56 16358 26.6
8 11.9 0.55 2500 1.5
9 12.1 0.70 3479 2.9

10 12.1 0.72 2500 1.5
11 12.1 0.45 16358 26.2
12 12.2 0.46 2500 1.5
13 12.0 0.62 3479 2.5
14 12.0 0.64 2500 1.6
15 12.2 0.47 16357 26.1
16 12.2 0.49 2500 1.6
17 12.1 0.43 3477 3.0
18 12.0 0.43 2500 1.6
19 12.5 0.45 16358 25.2
20 12.6 0.43 2501 1.5
21 16.1 0.41 3699 3.2
22 16.3 0.53 2501 1.6
23 16.4 0.46 15353 24.1
24 17.0 0.61 2501 1.7

Table A.13.: DOSTO

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 14.6 0.33 0 0.0
2 14.2 0.36 2699 1.7
3 14.6 0.37 16307 36.8
4 14.5 0.38 2699 1.7
5 13.9 0.34 4205 4.8
6 14.3 0.31 2699 2.0
7 13.7 0.41 16302 31.4
8 13.4 0.40 2698 1.9
9 14.2 0.35 4212 6.4
10 14.6 0.32 2700 2.0
11 14.4 0.57 16305 31.7
12 14.2 0.59 2699 1.9
13 12.3 0.42 4210 4.5
14 12.3 0.43 2699 1.7
15 12.2 0.42 16309 30.7
16 12.3 0.43 2699 1.7
17 14.1 0.74 4204 5.1
18 14.5 0.71 2699 1.9
19 14.4 0.40 16305 30.7
20 14.3 0.37 2699 1.8
21 13.3 0.46 4212 6.2
22 13.8 0.44 2699 2.0
23 14.2 0.34 16304 31.4
24 14.0 0.32 2699 1.9
25 14.6 0.39 4212 4.5
26 14.7 0.40 2699 1.7
27 14.0 0.35 16308 32.7
28 14.5 0.37 2699 1.7

Table A.14.: TypeC14 (ICE-T1 411)
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 16,6 0,27 0 0,0 25 16,6 0,29 6118 3,7
2 16,4 0,34 2500 1,6 26 16,4 0,34 2500 1,6
3 15,7 0,24 15353 22,3 27 15,7 0,27 15354 21,8
4 15,9 0,31 2500 1,6 28 16,0 0,31 2500 1,6
5 11,9 0,31 3698 3,1 29 11,9 0,39 3698 3,2
6 11,9 0,29 2500 1,7 30 11,9 0,39 2500 1,6
7 11,4 0,37 16359 24,9 31 11,5 0,52 16358 26,0
8 11,4 0,36 2500 1,6 32 11,4 0,52 2500 1,7
9 11,6 0,56 3478 3,0 33 11,7 0,64 3479 3,1
10 11,6 0,58 2500 1,6 34 11,7 0,66 2500 1,6
11 11,4 0,48 16359 24,9 35 11,5 0,36 16359 24,1
12 11,4 0,48 2500 1,7 36 11,5 0,36 2500 1,6
13 11,6 0,55 3478 2,5 37 11,7 0,65 3479 2,5
14 11,6 0,56 2500 1,6 38 11,6 0,67 2500 1,6
15 11,5 0,50 16359 25,0 39 11,6 0,37 16360 28,0
16 11,5 0,51 2500 1,7 40 11,6 0,36 2500 1,8
17 11,4 0,56 3478 3,0 41 11,5 0,38 3478 3,0
18 11,3 0,55 2500 1,8 42 11,5 0,38 2500 1,7
19 12,0 0,54 16360 23,9 43 12,2 0,49 16360 25,5
20 12,0 0,53 2500 1,6 44 12,2 0,46 2500 1,7
21 15,7 0,31 3699 3,1 45 15,7 0,21 3699 3,2
22 15,9 0,39 2500 1,6 46 15,8 0,27 2500 1,7
23 16,2 0,33 15353 22,3 47 16,0 0,24 15353 23,5
24 16,7 0,45 2500 1,8 48 16,5 0,37 2500 1,7

Table A.15.: 2xDOSTO
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.4 0.41 0 0.0 33 21.3 0.43 6008 12.6
2 21.1 0.60 3000 2.8 34 21.1 0.64 2999 1.8
3 21.1 0.36 6900 8.1 35 21.0 0.38 6900 4.5
4 21.3 0.87 2999 2.0 36 21.3 0.84 2999 1.7
5 12.7 0.55 5633 21.4 37 13.0 0.47 5635 20.7
6 12.6 0.52 2500 2.7 38 12.9 0.44 2500 2.2
7 12.2 0.49 16494 53.8 39 12.4 0.44 16493 47.0
8 12.2 0.47 2500 2.0 40 12.4 0.42 2500 1.9
9 12.8 0.49 4990 11.6 41 13.0 0.46 4990 12.7
10 12.7 0.46 2500 2.0 42 13.0 0.43 2500 1.9
11 12.5 0.50 16494 47.9 43 12.8 0.46 16495 46.0
12 12.6 0.47 2500 2.0 44 12.8 0.43 2500 1.9
13 12.8 0.45 4990 9.0 45 13.0 0.45 4991 10.1
14 12.7 0.43 2500 1.9 46 12.9 0.41 2500 1.9
15 12.6 0.45 16494 44.1 47 12.7 0.45 16495 43.1
16 12.6 0.43 2500 1.9 48 12.7 0.42 2500 1.9
17 13.0 0.47 4991 7.1 49 13.1 0.46 4991 8.1
18 13.0 0.45 2500 2.1 50 13.0 0.42 2500 2.0
19 12.8 0.43 16493 44.1 51 12.8 0.43 16494 47.0
20 12.9 0.41 2500 1.9 52 12.8 0.40 2500 1.9
21 13.5 0.28 4990 5.9 53 13.5 0.28 4990 6.8
22 13.4 0.23 2500 2.0 54 13.4 0.23 2500 2.0
23 12.0 0.26 16494 42.3 55 12.1 0.26 16495 47.2
24 12.1 0.22 2499 2.0 56 12.1 0.23 2499 1.9
25 12.4 0.33 4990 5.1 57 12.6 0.33 4990 5.4
26 12.3 0.30 2499 2.0 58 12.5 0.31 2500 2.0
27 12.2 0.38 16495 46.6 59 12.3 0.38 16495 54.3
28 12.3 0.35 2500 1.9 60 12.3 0.34 2499 2.1
29 13.1 0.28 4991 4.7 61 13.2 0.30 4990 5.2
30 13.1 0.23 2500 1.9 62 13.2 0.25 2500 2.0
31 14.0 0.22 16492 46.3 63 14.0 0.20 16497 54.1
32 13.9 0.20 2500 2.1 64 14.0 0.22 2500 2.4

Table A.16.: TypeC19-Taurus-front and TypeC19-Taurus-back (Railjet)
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ
1 21.3 0.48 0 0.0
2 21.1 0.59 3000 1.5
3 21.1 0.36 6899 3.6
4 21.2 0.86 2999 1.4
5 12.9 0.97 5630 21.4
6 12.8 0.96 2500 4.0
7 12.4 0.94 16493 45.5
8 12.4 0.95 2500 3.8
9 12.9 0.96 4978 35.5
10 12.8 0.95 2500 2.4
11 12.7 0.94 16492 45.9
12 12.7 0.95 2500 2.5
13 13.0 0.49 4978 35.3
14 12.9 0.48 2500 2.1
15 12.8 0.47 16492 44.1
16 12.8 0.46 2500 2.2
17 13.0 0.54 4979 36.0
18 13.0 0.52 2500 3.2
19 12.8 0.49 16492 42.9
20 12.9 0.48 2500 3.0
21 13.4 0.41 4979 36.1
22 13.4 0.36 2500 2.1
23 12.1 0.35 16492 42.1
24 12.2 0.34 2500 2.0
25 12.4 0.80 4979 36.0
26 12.4 0.79 2500 2.3
27 12.2 0.83 16494 47.2
28 12.3 0.83 2500 2.2
29 13.0 1.08 4980 35.6
30 13.0 1.05 2500 2.4
31 13.7 1.25 16491 48.9
32 13.8 1.26 2500 2.5

Table A.17.: TypeC19*-Taurus-front and
TypeC19*-Taurus-back (Railjet)

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.0 0.44 0 0.0
2 21.4 0.45 3000 1.2
3 20.8 0.38 6899 3.3
4 21.7 0.49 3000 1.2
5 12.5 1.67 5628 14.3
6 12.6 1.68 2501 6.7
7 12.5 1.70 16494 57.9
8 12.5 1.75 2501 6.7
9 12.2 1.67 4878 16.5
10 12.2 1.69 2501 4.3
11 12.1 1.69 16496 43.1
12 12.2 1.73 2500 4.3
13 12.8 0.66 4879 14.7
14 12.8 0.68 2501 4.2
15 12.7 0.63 16492 35.2
16 12.8 0.66 2501 4.3
17 12.7 0.70 4877 14.2
18 12.8 0.70 2500 3.7
19 12.7 0.70 16494 37.9
20 12.7 0.72 2500 3.7
21 12.6 0.86 4874 14.6
22 12.7 0.85 2501 3.7
23 12.6 0.93 16490 33.8
24 12.7 0.94 2501 3.6
25 12.8 0.86 4873 14.5
26 12.8 0.87 2501 5.2
27 12.8 0.97 16487 35.6
28 12.8 0.99 2501 5.2
29 11.5 1.66 4873 13.8
30 11.5 1.65 2501 5.2
31 11.2 1.79 16497 45.7
32 11.2 1.79 2501 5.2
33 11.1 2.30 4875 14.7
34 11.2 2.29 2501 6.6
35 10.9 2.53 16503 52.3
36 10.9 2.55 2501 6.6

Table A.18.: TypeC19** (Railjet)
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ
1 13.3 0.70 0 0.0
2 13.2 0.53 2300 1.4
3 11.0 0.22 12258 14.0
4 11.1 0.16 2800 1.3
5 10.6 0.44 11954 8.0
6 10.7 0.36 2799 2.0
7 12.3 0.82 12270 8.6
8 12.3 0.77 2300 1.0

Table A.19.: Talent 4023

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 12.9 0.75 0 0.0
2 12.6 0.85 2300 1.2
3 10.9 0.41 12263 11.3
4 10.9 0.43 2799 1.3
5 10.1 0.30 11952 9.8
6 10.1 0.32 2798 1.6
7 11.0 0.54 11952 9.5
8 11.0 0.55 2799 1.6
9 13.0 0.91 12273 9.2
10 12.9 0.84 2300 1.1

Table A.20.: Talent 4024

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 13.7 0.28 0 0.0 7 9.6 0.70 16329 23.8
2 13.5 0.27 2300 0.8 8 9.6 0.72 2299 1.1
3 12.7 0.27 13945 15.1 9 12.8 0.57 5186 5.8
4 12.6 0.33 2300 1.0 10 12.7 0.59 2300 0.8
5 9.6 0.68 5184 3.1 11 13.8 0.54 13941 13.5
6 9.6 0.69 2299 1.1 12 13.8 0.56 2300 0.9

Table A.21.: Train 4020

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 13.6 0.28 0 0.0 13 13.7 0.32 6809 3.3
2 13.4 0.23 2300 0.8 14 13.4 0.21 2300 1.0
3 12.7 0.26 13946 12.9 15 12.7 0.18 13946 13.4
4 12.6 0.28 2299 0.9 16 12.6 0.21 2300 1.0
5 9.4 0.10 5187 3.3 17 9.4 0.14 5185 2.8
6 9.5 0.11 2299 1.1 18 9.4 0.14 2299 1.1
7 9.4 0.16 16333 20.9 19 9.4 0.12 16337 18.5
8 9.4 0.15 2299 1.1 20 9.4 0.12 2299 1.1
9 12.7 0.25 5189 2.5 21 12.7 0.25 5188 3.3
10 12.6 0.22 2300 1.0 22 12.6 0.23 2300 1.0
11 13.5 0.28 13944 15.8 23 13.6 0.21 13944 15.7
12 13.5 0.28 2300 0.9 24 13.7 0.22 2300 0.8

Table A.22.: 2xTrain 4020
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 13.4 0.23 0 0.0 19 9.3 0.11 16316 25.9
2 13.3 0.21 2300 1.1 20 9.3 0.08 2299 1.2
3 12.5 0.05 13940 19.4 21 12.6 0.13 5190 2.1
4 12.5 0.11 2300 0.9 22 12.6 0.18 2300 0.7
5 9.3 0.13 5183 2.4 23 13.2 0.19 13933 5.8
6 9.3 0.11 2299 0.9 24 13.3 0.16 2299 1.0
7 9.4 0.06 16309 19.2 25 13.4 0.20 6807 2.4
8 9.4 0.07 2299 1.4 26 13.3 0.18 2300 0.9
9 12.4 0.07 5191 2.5 27 12.4 0.07 13948 22.3
10 12.4 0.10 2300 0.7 28 12.4 0.09 2301 1.3
11 13.4 0.18 13932 16.9 29 9.3 0.13 5189 2.8
12 13.5 0.20 2300 1.1 30 9.3 0.10 2300 1.1
13 13.5 0.21 6808 1.7 31 9.3 0.06 16320 19.8
14 13.4 0.23 2301 0.9 32 9.4 0.07 2300 0.9
15 12.5 0.21 13941 6.9 33 12.5 0.10 5187 2.5
16 12.5 0.20 2300 1.0 34 12.5 0.12 2301 0.9
17 9.4 0.03 5187 1.5 35 13.6 0.28 13943 22.0
18 9.4 0.06 2300 1.2 36 13.7 0.27 2300 1.0

Table A.23.: 3xTrain 4020
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 13.8 0.22 0 0.0 25 13.7 0.23 6806 2.2
2 13.6 0.20 2300 1.0 26 13.5 0.21 2300 1.2
3 12.6 0.19 13946 11.4 27 12.6 0.15 13944 14.8
4 12.6 0.20 2300 0.8 28 12.5 0.16 2300 0.9
5 9.5 0.13 5184 4.0 29 9.5 0.14 5185 4.9
6 9.5 0.12 2299 1.3 30 9.5 0.14 2299 1.2
7 9.4 0.15 16330 25.4 31 9.5 0.16 16329 22.8
8 9.4 0.12 2299 1.2 32 9.5 0.14 2299 1.1
9 12.8 0.25 5186 4.4 33 12.7 0.26 5186 3.0
10 12.7 0.23 2300 0.9 34 12.7 0.24 2300 1.2
11 13.4 0.19 13944 14.3 35 13.5 0.25 13945 13.0
12 13.5 0.21 2300 0.9 36 13.6 0.24 2300 1.0
13 13.6 0.23 6807 2.9 37 13.6 0.26 6806 3.0
14 13.4 0.22 2300 1.0 38 13.4 0.25 2300 1.1
15 12.7 0.22 13948 13.6 39 12.7 0.17 13948 13.4
16 12.6 0.21 2300 1.0 40 12.7 0.17 2300 0.9
17 9.4 0.15 5184 3.8 41 9.5 0.17 5183 5.4
18 9.4 0.14 2299 1.3 42 9.5 0.18 2299 1.2
19 9.5 0.16 16330 19.9 43 9.5 0.13 16331 27.6
20 9.5 0.14 2299 1.2 44 9.5 0.11 2299 1.2
21 12.6 0.20 5189 4.3 45 12.8 0.30 5185 3.6
22 12.6 0.17 2300 1.0 46 12.7 0.27 2300 1.1
23 13.5 0.25 13948 13.1 47 13.7 0.15 13945 16.3
24 13.6 0.22 2300 0.9 48 13.8 0.13 2300 1.2

Table A.24.: 4xTrain 4020

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 13.3 0.94 0 0.0 11 13.7 1.21 5442 43.2
2 12.6 0.95 2300 0.9 12 13.1 1.15 2300 0.8
3 11.4 0.94 12279 141.4 13 11.6 1.02 12280 141.1
4 11.4 0.96 2798 1.4 14 11.6 1.04 2798 1.4
5 10.6 0.93 11971 159.2 15 10.6 0.91 11971 159.4
6 10.6 0.94 2799 0.9 16 10.6 0.90 2798 1.1
7 11.7 1.07 11970 159.0 17 11.5 0.96 11969 159.0
8 11.7 1.07 2799 1.1 18 11.5 0.97 2798 1.3
9 13.5 1.11 12287 140.8 19 13.1 0.96 12287 142.2

10 13.7 1.16 2300 0.9 20 13.3 0.96 2300 0.9

Table A.25.: 2xTalent 4024
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 0.0 0.00 0 0.0 16 10.0 0.00 2799 0.0
2 13.7 0.00 2302 0.0 17 10.1 0.00 11974 0.0
3 13.5 0.00 12242 0.0 18 10.6 0.00 2798 0.0
4 11.1 0.00 2799 0.0 19 10.7 0.00 12265 0.0
5 11.2 0.00 11941 0.0 20 12.0 0.00 2299 0.0
6 10.0 0.00 2799 0.0 21 12.3 0.00 5439 0.0
7 10.0 0.00 11938 0.0 22 14.5 0.00 2299 0.0
8 10.4 0.00 2799 0.0 23 13.7 0.00 12252 0.0
9 10.4 0.00 12238 0.0 24 11.4 0.00 2800 0.0
10 11.9 0.00 2299 0.0 25 11.4 0.00 11946 0.0
11 11.8 0.00 5439 0.0 26 10.0 0.00 2799 0.0
12 14.5 0.00 2299 0.0 27 10.0 0.00 11948 0.0
13 13.6 0.00 12264 0.0 28 10.5 0.00 2799 0.0
14 11.4 0.00 2799 0.0 29 10.5 0.00 12279 0.0
15 11.4 0.00 11922 0.0 30 12.1 0.00 2301 0.0

Table A.26.: 3xTalent 4024

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20,9 0,30 0 0,0 13 12,7 0,37 5215 18,5
2 21,4 0,22 2999 1,1 14 12,6 0,39 2499 1,4
3 20,8 0,23 6900 2,6 15 12,8 0,38 15808 21,2
4 21,6 0,30 2999 1,1 16 12,7 0,39 2499 1,4
5 12,5 0,37 5982 10,3 17 12,4 0,43 5227 13,7
6 12,5 0,37 2499 1,4 18 12,4 0,42 2508 17,8
7 12,5 0,36 15808 21,4 19 12,3 0,39 16493 28,6
8 12,5 0,37 2499 1,4 20 12,3 0,42 2508 17,8
9 12,2 0,42 5218 17,5 21 12,1 0,26 4875 14,5
10 12,2 0,42 2542 24,8 22 12,2 0,27 2500 1,4
11 12,4 0,38 16464 31,8 23 12,1 0,32 16516 25,2
12 12,3 0,40 2542 25,1 24 12,0 0,32 2499 1,5

Table A.27.: PT-24-1
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.37 0 0.0
2 21.1 0.37 2999 1.3
3 20.7 0.32 6900 3.4
4 21.4 0.42 3000 1.3
5 12.2 0.42 5627 18.0
6 12.2 0.45 2501 6.9
7 12.2 0.45 16505 32.5
8 12.1 0.45 2501 6.8
9 12.3 0.42 4872 16.8

10 12.3 0.44 2524 27.2
11 12.4 0.45 16474 34.3
12 12.3 0.47 2524 27.4
13 12.7 0.39 5223 19.0
14 12.7 0.41 2499 1.5
15 12.7 0.41 15799 31.2
16 12.7 0.42 2500 1.5
17 12.3 0.43 5219 18.5
18 12.4 0.43 2524 27.6
19 12.2 0.46 16474 41.2
20 12.2 0.48 2523 27.4
21 12.3 0.42 4867 17.0
22 12.3 0.44 2502 9.7
23 12.2 0.43 16502 35.4
24 12.2 0.44 2502 9.6

Table A.28.: PT-24-2

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.0 0.32 0 0.0
2 21.4 0.24 3000 1.0
3 20.8 0.23 6900 2.8
4 21.6 0.29 2999 1.1
5 12.5 0.38 5983 11.1
6 12.6 0.41 2499 2.0
7 12.6 0.40 15808 32.2
8 12.6 0.42 2500 1.5
9 12.2 0.45 5214 13.9
10 12.3 0.46 2543 23.9
11 12.4 0.38 16463 29.7
12 12.3 0.40 2544 24.2
13 12.8 0.40 4856 17.2
14 12.8 0.41 2499 1.5
15 12.9 0.41 16514 26.6
16 12.8 0.43 2500 1.5
17 12.4 0.46 4870 13.0
18 12.4 0.47 2514 23.8
19 12.4 0.41 16489 29.4
20 12.3 0.42 2515 23.7
21 12.1 0.29 4870 16.9
22 12.1 0.31 2499 1.8
23 12.1 0.28 16519 27.3
24 12.0 0.32 2499 1.7

Table A.29.: PT-24-3

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.3 0.36 0 0.0 13 13.4 0.44 5125 21.6
2 21.6 0.30 3002 9.7 14 13.5 0.42 2599 8.7
3 21.1 0.26 6904 22.3 15 13.5 0.41 16413 43.1
4 21.7 0.36 3002 10.0 16 13.6 0.38 2599 8.8
5 13.3 0.20 5604 21.3 17 13.8 0.39 4772 20.8
6 13.6 0.23 2500 9.0 18 13.9 0.41 2599 8.9
7 13.5 0.19 16524 86.1 19 13.7 0.47 16415 46.8
8 13.5 0.25 2501 9.3 20 13.8 0.49 2599 8.7
9 11.7 0.20 5179 18.6 21 12.6 0.39 4812 21.6
10 11.8 0.20 2501 8.4 22 12.7 0.39 2500 8.2
11 11.6 0.31 17023 45.1 23 12.4 0.36 16524 46.5
12 11.7 0.27 2503 8.2 24 12.6 0.36 2500 8.2

Table A.30.: PT-24-4
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.4 0.36 0 0.0
2 21.7 0.32 3000 4.6
3 21.2 0.34 6901 10.2
4 21.8 0.34 3000 4.7
5 13.4 0.20 5600 13.8
6 13.6 0.23 2498 4.4
7 13.5 0.15 16519 38.9
8 13.5 0.17 2499 4.4
9 13.6 0.23 4853 13.8
10 13.8 0.24 2498 4.4
11 13.5 0.27 16526 39.7
12 13.5 0.27 2499 4.2
13 13.6 0.41 4805 25.0
14 13.6 0.42 2595 7.5
15 13.1 0.37 16418 41.9
16 13.2 0.36 2595 7.5
17 13.6 0.29 4782 18.7
18 13.7 0.33 2597 4.2
19 13.4 0.42 16418 20.8
20 13.5 0.46 2597 4.2
21 12.4 0.23 4810 15.1
22 12.4 0.21 2499 4.1
23 12.2 0.21 16528 24.4
24 12.3 0.19 2498 4.1

Table A.31.: PT-24-5

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.41 0 0.0
2 21.0 0.36 3000 1.3
3 20.7 0.37 6899 3.8
4 21.2 0.42 3000 1.5
5 12.0 0.28 5625 9.4
6 12.0 0.34 2500 1.9
7 12.0 0.29 16498 34.7
8 12.0 0.33 2500 1.9
9 12.4 0.41 4879 14.2
10 12.4 0.44 2508 17.4
11 12.3 0.40 16476 35.8
12 12.4 0.44 2508 17.5
13 12.7 0.39 5232 14.1
14 12.7 0.42 2500 1.8
15 12.6 0.39 15791 35.3
16 12.7 0.42 2500 1.8
17 12.3 0.43 5213 18.1
18 12.3 0.45 2541 26.1
19 12.1 0.42 16447 41.0
20 12.2 0.46 2540 25.8
21 12.4 0.40 5216 17.2
22 12.5 0.42 2500 1.7
23 12.5 0.41 15791 35.4
24 12.5 0.43 2500 1.7

Table A.32.: PT-24-6

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.0 0.36 0 0.0 13 12.8 0.44 4873 14.6
2 21.0 0.36 3000 1.3 14 12.9 0.46 2500 1.9
3 20.7 0.37 6898 3.6 15 12.7 0.41 16495 53.8
4 21.2 0.46 3000 1.5 16 12.7 0.43 2500 1.8
5 12.0 0.26 5625 9.4 17 12.3 0.37 4854 17.2
6 12.1 0.33 2500 1.9 18 12.4 0.40 2545 24.0
7 11.9 0.30 16499 35.1 19 12.1 0.43 16444 38.3
8 11.9 0.33 2500 2.1 20 12.1 0.46 2544 23.5
9 12.4 0.40 4873 16.1 21 12.5 0.44 5210 14.7
10 12.4 0.42 2514 23.2 22 12.6 0.47 2500 1.8
11 12.3 0.40 16471 35.9 23 12.5 0.45 15786 32.7
12 12.3 0.45 2514 23.7 24 12.6 0.49 2500 2.1

Table A.33.: PT-24-7
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.7 0.34 0 0.0
2 21.9 0.25 3009 16.9
3 21.6 0.24 6921 39.2
4 22.2 0.34 3009 16.9
5 12.7 0.47 5628 34.6
6 12.6 0.44 2506 14.1
7 12.8 0.45 16540 98.9
8 12.8 0.44 2507 14.1
9 13.7 0.45 4825 32.5
10 13.7 0.46 2605 14.3
11 13.8 0.37 16429 84.3
12 13.7 0.37 2605 14.8
13 13.4 0.37 4787 29.1
14 13.5 0.38 2606 14.5
15 13.3 0.44 16428 85.0
16 13.3 0.45 2606 14.6
17 11.6 0.27 5139 32.3
18 11.6 0.31 2509 13.9
19 11.7 0.24 17031 99.3
20 11.6 0.24 2508 14.0
21 13.5 0.25 5188 30.0
22 13.6 0.20 2507 14.7
23 13.5 0.30 16533 145.2
24 13.4 0.24 2506 14.8

Table A.34.: PT-24-8

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.8 0.32 0 0.0
2 21.9 0.30 3013 18.6
3 21.6 0.31 6931 43.3
4 22.1 0.30 3013 18.9
5 12.4 0.28 5631 35.6
6 12.4 0.27 2510 15.5
7 12.5 0.28 16559 104.6
8 12.5 0.28 2510 15.5
9 13.4 0.42 4831 30.3

10 13.5 0.38 2609 16.0
11 13.5 0.37 16451 96.2
12 13.5 0.36 2609 16.4
13 13.0 0.37 4803 32.9
14 13.1 0.36 2608 15.9
15 13.5 0.47 16447 89.6
16 13.4 0.43 2608 16.6
17 13.4 0.26 4824 39.3
18 13.5 0.27 2510 15.9
19 13.6 0.22 16564 105.1
20 13.6 0.22 2510 15.7
21 13.4 0.18 4871 32.0
22 13.5 0.17 2510 16.1
23 13.4 0.20 16559 118.0
24 13.4 0.17 2510 15.6

Table A.35.: PT-24-9

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.9 0.33 0 0.0 13 12.9 0.43 5587 10.7
2 21.4 0.27 3000 1.2 14 12.8 0.44 2500 1.7
3 20.8 0.27 6900 3.4 15 13.0 0.40 15800 34.8
4 21.6 0.33 2999 1.1 16 12.9 0.42 2500 1.5
5 12.6 0.43 5984 24.3 17 12.7 0.46 5232 10.9
6 12.6 0.45 2499 1.6 18 12.7 0.46 2502 1.8
7 12.7 0.45 15799 35.5 19 12.7 0.44 16494 36.3
8 12.6 0.46 2500 1.5 20 12.6 0.46 2501 1.9
9 12.7 0.44 5588 11.0 21 12.2 0.29 4878 11.7
10 12.7 0.45 2500 1.6 22 12.2 0.29 2500 1.5
11 12.8 0.42 15800 33.5 23 12.0 0.27 16510 42.9
12 12.7 0.44 2500 1.5 24 12.0 0.31 2500 1.6

Table A.36.: PT-24-10
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.46 0 0.0
2 20.9 0.44 3000 1.3
3 20.7 0.41 6898 3.9
4 21.1 0.48 3000 1.4
5 11.9 0.23 5626 20.5
6 11.9 0.32 2500 2.0
7 12.0 0.32 16494 41.9
8 12.0 0.39 2500 1.9
9 12.5 0.44 4880 11.1
10 12.5 0.49 2502 2.1
11 12.4 0.45 16484 30.7
12 12.5 0.49 2502 2.2
13 12.6 0.37 5235 11.0
14 12.7 0.40 2500 1.9
15 12.5 0.34 15784 29.9
16 12.6 0.39 2500 1.8
17 12.4 0.32 5584 11.1
18 12.4 0.37 2500 1.9
19 12.4 0.31 15787 33.4
20 12.4 0.36 2500 1.7
21 12.3 0.31 5585 11.1
22 12.3 0.35 2500 1.9
23 12.3 0.31 15787 33.2
24 12.4 0.36 2500 1.7

Table A.37.: PT-24-11

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20,9 0,41 0 0,0
2 20,9 0,38 3000 1,3
3 20,6 0,35 6898 3,6
4 21,2 0,42 3000 1,4
5 11,9 0,22 5625 15,7
6 11,9 0,29 2500 2,0
7 12,0 0,29 16501 44,8
8 12,0 0,35 2500 2,0
9 12,3 0,40 4881 11,4
10 12,4 0,44 2502 2,0
11 12,3 0,42 16481 34,0
12 12,4 0,45 2502 2,1
13 12,6 0,34 5232 12,6
14 12,6 0,35 2500 1,8
15 12,5 0,29 15788 29,8
16 12,5 0,34 2500 1,9
17 12,4 0,27 5585 9,7
18 12,4 0,31 2500 2,0
19 12,4 0,29 15789 32,3
20 12,5 0,32 2500 1,7
21 12,3 0,43 5230 13,3
22 12,3 0,47 2501 2,1
23 12,2 0,46 16479 32,9
24 12,2 0,47 2502 2,7

Table A.38.: PT-24-12

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.4 0.29 0 0.0 13 12.9 0.47 4870 12.2
2 21.7 0.29 3000 1.4 14 12.9 0.50 2500 1.5
3 21.2 0.26 6899 3.4 15 13.1 0.37 16491 26.9
4 21.8 0.32 3000 1.2 16 13.3 0.37 2499 1.7
5 13.8 0.57 5619 15.5 17 11.7 0.35 4869 9.8
6 14.0 0.58 2500 1.3 18 11.8 0.34 2501 1.7
7 15.0 0.73 16483 23.7 19 11.7 0.29 16478 24.0
8 15.1 0.80 2500 1.5 20 11.8 0.32 2501 1.6
9 12.9 0.42 4871 14.3 21 12.2 0.56 4864 9.9
10 12.9 0.42 2500 1.9 22 12.3 0.56 2501 1.8
11 12.5 0.40 16493 28.6 23 12.6 0.38 16469 24.7
12 12.6 0.39 2500 1.8 24 12.6 0.38 2501 1.8

Table A.39.: PT-24-13
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.32 0 0.0
2 21.4 0.26 3000 1.1
3 20.8 0.26 6900 3.1
4 21.7 0.37 2999 1.1
5 12.4 0.37 5985 20.9
6 12.4 0.37 2499 1.5
7 12.4 0.37 15803 31.5
8 12.3 0.39 2499 1.6
9 12.5 0.33 5590 11.4

10 12.5 0.34 2499 1.5
11 12.5 0.36 15803 31.6
12 12.5 0.38 2499 1.4
13 12.4 0.46 5232 14.9
14 12.4 0.45 2507 16.7
15 12.5 0.41 16490 37.1
16 12.5 0.41 2507 16.9
17 12.7 0.38 5230 16.0
18 12.7 0.38 2499 1.6
19 12.7 0.41 15804 32.2
20 12.6 0.42 2499 1.6
21 12.5 0.44 5233 12.1
22 12.5 0.44 2503 8.9
23 12.4 0.46 16495 35.4
24 12.4 0.47 2503 8.9
25 12.2 0.29 4877 10.7
26 12.2 0.30 2500 1.6
27 12.0 0.28 16512 37.2
28 12.0 0.30 2499 1.5

Table A.40.: PT-28-1

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.32 0 0.0
2 21.4 0.26 3000 1.1
3 20.8 0.26 6900 2.7
4 21.7 0.35 2999 1.1
5 12.4 0.48 5629 17.1
6 12.5 0.50 2504 12.1
7 12.4 0.52 16502 32.0
8 12.4 0.53 2503 12.1
9 12.6 0.46 5234 13.5
10 12.6 0.47 2499 1.5
11 12.7 0.47 15806 24.0
12 12.7 0.48 2500 1.5
13 12.5 0.51 5229 15.3
14 12.5 0.51 2515 24.1
15 12.6 0.46 16489 31.5
16 12.5 0.47 2515 24.1
17 12.8 0.48 5228 18.5
18 12.8 0.49 2499 1.5
19 12.8 0.50 15807 22.9
20 12.8 0.52 2499 1.4
21 12.6 0.52 5230 13.5
22 12.5 0.52 2506 13.9
23 12.5 0.50 16494 31.7
24 12.5 0.53 2505 14.2
25 12.2 0.30 4877 12.5
26 12.2 0.31 2500 1.5
27 12.0 0.32 16517 31.9
28 12.0 0.33 2499 1.5

Table A.41.: PT-28-2
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.44 0 0.0
2 21.1 0.44 3000 1.3
3 20.7 0.36 6899 3.6
4 21.4 0.52 3000 1.3
5 12.1 0.49 5627 13.9
6 12.1 0.52 2501 2.2
7 12.1 0.48 16493 33.7
8 12.1 0.51 2501 2.3
9 12.4 0.57 4879 13.3
10 12.5 0.61 2501 3.8
11 12.5 0.50 16485 37.0
12 12.5 0.54 2502 3.8
13 12.6 0.45 4879 14.0
14 12.7 0.50 2500 1.8
15 12.7 0.44 16494 41.8
16 12.6 0.49 2500 1.9
17 12.6 0.43 4876 15.5
18 12.6 0.48 2501 6.4
19 12.6 0.44 16496 46.8
20 12.6 0.47 2501 6.0
21 12.4 0.54 4874 14.4
22 12.4 0.58 2501 2.3
23 12.3 0.58 16484 41.0
24 12.3 0.61 2501 2.2
25 12.2 0.59 4873 12.8
26 12.3 0.63 2502 6.8
27 12.1 0.66 16489 41.1
28 12.2 0.68 2502 6.6

Table A.42.: PT-28-3

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.37 0 0.0
2 20.9 0.33 3000 1.3
3 20.6 0.32 6899 3.6
4 21.1 0.39 3000 1.3
5 12.1 0.29 5626 8.2
6 12.1 0.33 2500 1.6
7 12.0 0.33 16492 40.0
8 12.0 0.36 2500 1.8
9 12.3 0.38 4880 12.2
10 12.3 0.40 2503 7.0
11 12.3 0.40 16481 34.5
12 12.3 0.46 2503 6.7
13 12.8 0.38 4880 14.4
14 12.8 0.44 2500 1.6
15 12.6 0.35 16493 34.0
16 12.6 0.39 2500 1.4
17 12.3 0.42 4865 18.2
18 12.3 0.45 2522 26.9
19 12.2 0.43 16465 35.3
20 12.2 0.46 2521 26.1
21 12.5 0.38 5220 14.7
22 12.5 0.41 2500 2.1
23 12.5 0.42 15791 33.8
24 12.6 0.43 2500 1.7
25 12.3 0.45 5583 13.3
26 12.3 0.45 2499 1.5
27 12.4 0.44 15791 31.1
28 12.5 0.44 2500 1.6

Table A.43.: PT-28-4
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.48 0 0.0
2 21.0 0.44 3000 1.3
3 20.7 0.41 6899 3.6
4 21.3 0.49 3000 1.4
5 12.0 0.29 5627 14.6
6 12.1 0.37 2500 1.7
7 12.0 0.34 16497 40.2
8 12.0 0.38 2500 1.7
9 12.5 0.50 4880 14.0

10 12.6 0.55 2506 15.2
11 12.4 0.49 16480 33.7
12 12.5 0.51 2506 15.1
13 12.8 0.41 5231 17.4
14 12.8 0.45 2500 2.1
15 12.6 0.41 15787 42.5
16 12.7 0.43 2500 1.7
17 12.4 0.47 5227 19.0
18 12.4 0.47 2512 22.8
19 12.3 0.47 16473 40.6
20 12.3 0.52 2513 22.6
21 12.4 0.47 4872 15.2
22 12.4 0.49 2502 8.4
23 12.4 0.45 16487 33.7
24 12.4 0.47 2503 8.6
25 12.2 0.50 4873 14.3
26 12.3 0.52 2507 16.4
27 12.2 0.49 16475 45.3
28 12.2 0.53 2507 16.3

Table A.44.: PT-28-5

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.45 0 0.0
2 21.0 0.39 3000 1.2
3 20.7 0.39 6899 3.9
4 21.2 0.47 3000 1.5
5 12.0 0.30 5627 17.2
6 12.1 0.37 2500 1.8
7 12.1 0.35 16496 36.1
8 12.1 0.40 2500 2.1
9 12.4 0.49 4880 13.4
10 12.5 0.53 2506 14.8
11 12.4 0.50 16480 34.5
12 12.4 0.53 2506 14.7
13 12.7 0.45 5234 13.7
14 12.7 0.47 2500 1.8
15 12.6 0.43 15787 32.8
16 12.7 0.46 2500 1.8
17 12.3 0.52 5223 19.5
18 12.4 0.54 2521 26.6
19 12.3 0.50 16466 41.0
20 12.3 0.53 2521 26.4
21 12.5 0.46 5225 16.1
22 12.6 0.47 2500 1.8
23 12.5 0.45 15789 32.7
24 12.6 0.48 2500 1.8
25 12.2 0.52 5227 13.4
26 12.3 0.53 2505 13.7
27 12.2 0.54 16483 37.8
28 12.3 0.57 2505 13.7

Table A.45.: PT-28-6
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.43 0 0.0
2 21.0 0.40 3000 1.3
3 20.6 0.37 6898 3.9
4 21.2 0.45 3000 1.5
5 12.0 0.27 5627 17.4
6 12.0 0.33 2500 1.9
7 12.0 0.33 16497 39.8
8 12.1 0.39 2500 1.9
9 12.5 0.49 4882 12.2
10 12.5 0.53 2503 8.7
11 12.4 0.45 16484 34.8
12 12.5 0.48 2503 8.7
13 12.7 0.40 5237 12.6
14 12.7 0.43 2500 1.8
15 12.6 0.41 15787 33.7
16 12.7 0.45 2500 1.8
17 12.3 0.48 5229 15.8
18 12.4 0.50 2507 16.1
19 12.2 0.46 16480 37.8
20 12.3 0.50 2507 15.8
21 12.4 0.41 5231 14.4
22 12.5 0.42 2500 1.9
23 12.4 0.40 15789 34.9
24 12.5 0.43 2500 1.7
25 12.3 0.42 5584 10.7
26 12.3 0.44 2500 1.9
27 12.3 0.40 15787 34.2
28 12.4 0.43 2500 1.7

Table A.46.: PT-28-7

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.36 0 0.0
2 21.3 0.30 3000 1.2
3 20.8 0.26 6899 3.3
4 21.7 0.44 2999 1.2
5 12.7 0.58 5633 25.0
6 12.7 0.58 2502 2.2
7 12.7 0.58 16495 36.5
8 12.6 0.58 2501 2.0
9 12.8 0.54 5231 13.8
10 12.8 0.55 2500 1.4
11 12.9 0.55 15800 36.7
12 12.8 0.56 2500 1.6
13 12.9 0.53 5588 11.7
14 12.9 0.54 2499 1.7
15 12.9 0.55 15802 38.8
16 12.9 0.55 2500 1.7
17 13.0 0.56 5586 11.7
18 13.0 0.57 2500 1.7
19 13.1 0.57 15801 35.4
20 13.1 0.55 2500 1.5
21 12.9 0.62 5231 11.7
22 12.9 0.64 2502 1.9
23 12.8 0.64 16496 36.6
24 12.8 0.64 2501 1.9
25 12.3 0.32 4877 11.1
26 12.3 0.34 2500 1.7
27 12.1 0.32 16510 45.5
28 12.1 0.34 2499 1.8

Table A.47.: PT-28-8
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.41 0 0.0
2 21.1 0.44 3000 1.3
3 20.7 0.36 6899 3.6
4 21.4 0.55 3000 1.3
5 12.2 0.45 5627 16.0
6 12.2 0.48 2500 2.2
7 12.2 0.48 16497 47.7
8 12.2 0.50 2500 1.9
9 12.5 0.55 4878 15.0

10 12.5 0.57 2502 2.3
11 12.5 0.55 16484 37.1
12 12.5 0.57 2502 2.2
13 12.8 0.49 5235 13.3
14 12.8 0.50 2500 1.8
15 12.7 0.50 15794 36.3
16 12.7 0.50 2500 1.8
17 12.7 0.50 5587 11.6
18 12.7 0.50 2500 1.8
19 12.8 0.51 15794 31.4
20 12.8 0.50 2499 1.7
21 12.5 0.59 5231 13.1
22 12.5 0.59 2502 2.1
23 12.4 0.56 16485 34.2
24 12.4 0.56 2502 2.2
25 12.2 0.39 4870 13.9
26 12.2 0.41 2501 2.1
27 12.1 0.43 16495 38.8
28 12.1 0.45 2501 2.3

Table A.48.: PT-28-9

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.31 0 0.0
2 21.3 0.25 2999 1.2
3 20.7 0.28 6900 3.3
4 21.6 0.36 2999 1.2
5 12.3 0.25 5981 10.7
6 12.3 0.24 2499 1.5
7 12.3 0.29 15813 18.1
8 12.3 0.30 2499 1.4
9 12.4 0.36 5239 9.9
10 12.4 0.40 2502 2.1
11 12.2 0.42 16501 23.4
12 12.2 0.44 2501 1.7
13 12.5 0.34 4882 9.4
14 12.4 0.36 2502 2.1
15 12.5 0.37 16506 27.7
16 12.4 0.40 2501 1.9
17 12.6 0.32 5232 11.7
18 12.6 0.31 2499 1.6
19 12.6 0.35 15803 30.0
20 12.6 0.35 2499 1.6
21 12.3 0.36 5230 10.7
22 12.3 0.37 2501 1.8
23 12.5 0.31 16497 31.1
24 12.5 0.31 2501 2.1
25 12.3 0.30 4879 9.4
26 12.3 0.29 2499 1.7
27 12.0 0.28 16521 28.7
28 12.0 0.32 2499 1.4

Table A.49.: PT-28-10

281



Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.32 0 0.0
2 21.2 0.19 2999 0.9
3 20.6 0.28 6900 2.7
4 21.6 0.29 2999 1.2
5 12.2 0.27 5991 10.9
6 12.2 0.28 2499 1.3
7 12.3 0.27 15817 17.4
8 12.2 0.30 2499 1.5
9 12.3 0.33 5234 12.4
10 12.2 0.34 2501 1.6
11 12.1 0.38 16504 20.1
12 12.0 0.39 2502 1.6
13 12.4 0.30 5221 16.3
14 12.4 0.32 2499 1.6
15 12.6 0.34 15815 17.8
16 12.5 0.37 2499 1.6
17 12.5 0.40 5582 11.7
18 12.5 0.39 2499 1.5
19 12.6 0.41 15817 16.9
20 12.5 0.40 2499 1.3
21 12.4 0.45 5236 11.0
22 12.5 0.45 2500 2.0
23 12.3 0.46 16511 17.0
24 12.3 0.46 2500 1.6
25 12.0 0.27 4876 15.6
26 12.0 0.25 2499 1.6
27 12.0 0.35 16530 24.0
28 12.0 0.36 2499 1.5

Table A.50.: PT-28-11

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.45 0 0.0
2 21.0 0.41 3000 1.3
3 20.6 0.39 6898 3.7
4 21.2 0.44 3000 1.4
5 12.0 0.27 5628 19.3
6 12.0 0.35 2500 2.0
7 12.1 0.36 16497 45.2
8 12.1 0.42 2500 1.7
9 12.6 0.55 4881 12.0
10 12.6 0.58 2502 2.1
11 12.6 0.57 16484 32.9
12 12.6 0.60 2502 2.0
13 12.8 0.47 5236 11.2
14 12.8 0.48 2500 1.8
15 12.7 0.47 15786 32.0
16 12.7 0.51 2500 1.9
17 12.6 0.45 5585 11.4
18 12.6 0.47 2500 2.0
19 12.6 0.43 15788 34.8
20 12.6 0.46 2500 1.8
21 12.6 0.47 5585 11.8
22 12.6 0.50 2500 1.9
23 12.5 0.45 15786 32.5
24 12.6 0.47 2500 1.7
25 12.2 0.55 5223 12.9
26 12.3 0.57 2502 2.4
27 12.2 0.54 16485 35.0
28 12.3 0.58 2502 2.3

Table A.51.: PT-28-12
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.50 0 0.0
2 20.9 0.48 3000 1.5
3 20.6 0.43 6899 3.8
4 21.1 0.47 3000 1.5
5 12.1 0.29 5625 10.0
6 12.1 0.36 2500 1.7
7 12.0 0.29 16499 34.4
8 12.0 0.34 2500 1.8
9 12.5 0.61 4880 17.7

10 12.5 0.62 2501 2.2
11 12.5 0.52 16479 34.3
12 12.5 0.54 2502 2.2
13 12.5 0.37 5240 12.1
14 12.6 0.40 2500 1.9
15 12.4 0.36 15787 31.8
16 12.5 0.38 2500 1.8
17 12.4 0.38 5583 11.7
18 12.5 0.40 2500 1.8
19 12.4 0.37 15789 35.6
20 12.5 0.39 2500 1.4
21 11.9 0.40 5216 16.5
22 12.0 0.43 2503 1.8
23 12.2 0.41 16491 36.1
24 12.2 0.45 2502 2.0
25 12.2 0.38 5232 11.1
26 12.2 0.40 2500 1.6
27 12.2 0.39 15797 31.9
28 12.3 0.40 2500 1.7

Table A.52.: PT-28-13

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.46 0 0.0
2 21.0 0.43 3000 1.3
3 20.6 0.38 6899 3.9
4 21.2 0.44 2999 1.5
5 12.0 0.22 5629 28.1
6 12.0 0.28 2500 1.6
7 12.1 0.37 16499 32.8
8 12.1 0.41 2500 1.9
9 12.6 0.45 4882 10.5
10 12.6 0.49 2502 2.7
11 12.2 0.47 16482 31.7
12 12.3 0.48 2502 2.2
13 12.6 0.40 5235 11.0
14 12.7 0.40 2500 2.2
15 12.6 0.37 15788 38.2
16 12.7 0.41 2500 2.1
17 12.3 0.50 5230 12.6
18 12.4 0.53 2501 2.1
19 12.4 0.41 16482 35.3
20 12.4 0.42 2502 2.5
21 12.1 0.40 4879 11.2
22 12.1 0.42 2502 1.9
23 12.3 0.47 16484 32.2
24 12.4 0.48 2502 2.4
25 12.3 0.41 5237 9.7
26 12.4 0.42 2500 1.7
27 12.4 0.38 15789 30.0
28 12.4 0.39 2500 1.6

Table A.53.: PT-28-14
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.39 0 0.0
2 21.2 0.41 3000 1.2
3 20.6 0.34 6899 3.6
4 21.5 0.52 2999 1.3
5 12.1 0.37 5630 15.3
6 12.1 0.38 2502 8.7
7 12.1 0.39 16495 37.0
8 12.0 0.39 2502 8.7
9 12.2 0.43 4884 16.5
10 12.2 0.45 2504 12.4
11 12.2 0.42 16491 37.7
12 12.2 0.44 2504 12.4
13 12.4 0.38 5234 14.0
14 12.4 0.38 2500 1.6
15 12.4 0.42 15798 35.6
16 12.4 0.41 2500 1.6
17 12.2 0.45 5228 17.0
18 12.2 0.45 2517 24.7
19 12.2 0.48 16479 41.5
20 12.2 0.48 2516 24.6
21 12.4 0.44 5229 17.5
22 12.4 0.44 2500 1.6
23 12.4 0.44 15798 33.8
24 12.4 0.44 2500 1.5
25 12.2 0.50 5228 14.3
26 12.2 0.50 2504 12.5
27 12.1 0.48 16488 35.3
28 12.1 0.48 2504 12.5
29 12.0 0.43 4875 16.2
30 12.0 0.43 2504 12.2
31 11.9 0.41 16498 38.2
32 11.9 0.42 2503 12.4

Table A.54.: PT-32-1

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.38 0 0.0
2 21.4 0.28 2999 1.1
3 20.8 0.27 6900 2.9
4 21.8 0.38 2999 1.1
5 12.4 0.29 5985 14.8
6 12.4 0.30 2499 1.5
7 12.4 0.30 15807 29.4
8 12.4 0.31 2499 1.5
9 12.6 0.31 5591 12.6
10 12.6 0.32 2499 1.5
11 12.7 0.29 15802 26.4
12 12.6 0.31 2499 1.5
13 12.5 0.45 5229 17.7
14 12.5 0.46 2519 26.0
15 12.6 0.40 16476 41.1
16 12.5 0.42 2519 26.2
17 12.9 0.37 5226 17.1
18 13.0 0.38 2499 1.4
19 13.0 0.35 15805 27.5
20 13.0 0.36 2499 1.6
21 12.7 0.42 5231 14.5
22 12.7 0.45 2507 17.4
23 12.7 0.44 16491 35.4
24 12.6 0.45 2507 17.4
25 12.2 0.35 4876 13.2
26 12.2 0.38 2500 1.5
27 12.2 0.27 16513 30.3
28 12.1 0.31 2499 1.4
29 12.6 0.39 4876 10.2
30 12.6 0.40 2500 1.7
31 12.5 0.35 16507 31.7
32 12.5 0.37 2499 1.8

Table A.55.: PT-32-2
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.39 0 0.0
2 21.0 0.38 3000 1.3
3 20.6 0.35 6899 3.7
4 21.2 0.41 3000 1.4
5 12.3 0.42 5627 15.7
6 12.3 0.44 2502 9.5
7 12.4 0.48 16491 44.3
8 12.4 0.52 2502 9.7
9 12.0 0.34 4881 12.0

10 12.0 0.40 2500 1.9
11 12.0 0.34 16491 39.7
12 12.0 0.38 2500 1.8
13 12.5 0.56 4880 13.3
14 12.5 0.60 2506 15.1
15 12.5 0.51 16477 35.1
16 12.5 0.53 2506 15.0
17 12.8 0.49 5234 13.5
18 12.9 0.50 2500 1.9
19 12.7 0.48 15785 33.2
20 12.8 0.51 2500 1.8
21 12.3 0.48 5220 17.9
22 12.3 0.50 2524 27.3
23 12.2 0.50 16461 44.0
24 12.3 0.53 2524 27.1
25 12.4 0.41 5223 17.0
26 12.5 0.42 2500 1.8
27 12.3 0.38 15789 31.0
28 12.4 0.41 2500 1.7
29 12.2 0.34 5583 11.6
30 12.2 0.37 2500 1.8
31 12.2 0.31 15790 35.7
32 12.3 0.35 2500 1.7

Table A.56.: PT-32-3

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.40 0 0.0
2 21.0 0.30 3000 1.4
3 20.6 0.36 6899 3.7
4 21.2 0.35 3000 1.4
5 12.7 0.50 5629 16.0
6 12.7 0.51 2506 14.0
7 12.8 0.57 16483 35.3
8 12.8 0.58 2506 14.0
9 12.9 0.55 4879 18.3
10 12.8 0.56 2507 15.4
11 12.8 0.50 16476 33.8
12 12.8 0.54 2507 15.2
13 12.2 0.30 4868 13.5
14 12.2 0.35 2500 1.8
15 12.3 0.37 16499 38.0
16 12.2 0.40 2500 1.8
17 12.9 0.44 4881 16.0
18 12.9 0.47 2506 14.7
19 12.9 0.45 16475 31.9
20 12.9 0.48 2506 14.6
21 13.3 0.36 5233 14.4
22 13.3 0.38 2500 2.0
23 13.2 0.37 15787 34.9
24 13.2 0.40 2500 1.9
25 12.7 0.46 5223 18.0
26 12.7 0.47 2523 27.3
27 12.5 0.47 16465 46.5
28 12.5 0.50 2523 27.0
29 12.9 0.40 5222 17.6
30 12.9 0.41 2500 1.7
31 12.9 0.42 15791 30.4
32 13.0 0.44 2500 1.8

Table A.57.: PT-32-4
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.42 0 0.0
2 21.0 0.34 3000 1.5
3 20.6 0.39 6899 3.9
4 21.2 0.40 2999 1.5
5 12.0 0.28 5629 16.6
6 12.1 0.36 2500 1.7
7 12.0 0.34 16498 38.4
8 12.0 0.40 2500 2.1
9 12.5 0.59 4882 12.5
10 12.5 0.65 2505 13.7
11 12.4 0.53 16480 33.4
12 12.5 0.57 2505 13.9
13 12.7 0.48 5237 14.0
14 12.8 0.53 2500 1.7
15 12.7 0.47 15786 30.5
16 12.8 0.50 2500 1.8
17 12.4 0.47 5230 17.0
18 12.4 0.50 2509 18.6
19 12.2 0.46 16481 33.4
20 12.2 0.51 2509 18.5
21 12.5 0.39 5232 16.1
22 12.6 0.41 2500 1.8
23 12.5 0.38 15790 36.1
24 12.5 0.41 2500 1.6
25 12.4 0.36 5585 10.4
26 12.5 0.39 2500 2.0
27 12.3 0.36 15788 33.9
28 12.4 0.38 2500 1.6
29 12.1 0.43 5224 15.2
30 12.1 0.45 2506 14.4
31 11.9 0.42 16482 35.8
32 12.0 0.47 2506 14.4

Table A.58.: PT-32-5

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.43 0 0.0
2 21.1 0.38 3000 1.3
3 20.6 0.35 6899 4.5
4 21.4 0.46 3000 1.4
5 12.3 0.53 5631 17.0
6 12.3 0.54 2503 10.0
7 12.2 0.60 16493 40.0
8 12.2 0.62 2503 10.0
9 12.4 0.64 4881 16.1
10 12.4 0.64 2508 17.4
11 12.3 0.54 16482 36.3
12 12.3 0.56 2508 17.7
13 12.4 0.41 4877 15.1
14 12.4 0.45 2500 1.9
15 12.3 0.40 16498 41.6
16 12.3 0.43 2501 2.0
17 12.4 0.57 4873 18.2
18 12.5 0.59 2520 26.5
19 12.4 0.63 16472 42.9
20 12.4 0.64 2520 26.5
21 12.6 0.60 5229 16.7
22 12.6 0.61 2500 1.9
23 12.6 0.57 15796 35.6
24 12.6 0.59 2500 2.1
25 12.3 0.62 5222 17.8
26 12.3 0.63 2513 22.7
27 12.2 0.54 16483 41.8
28 12.2 0.55 2513 22.6
29 12.2 0.64 4870 17.0
30 12.2 0.64 2505 13.7
31 12.1 0.61 16492 38.8
32 12.1 0.62 2505 13.7

Table A.59.: PT-32-6
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.41 0 0.0
2 21.0 0.37 3000 1.3
3 20.6 0.36 6899 3.3
4 21.2 0.44 3000 1.3
5 12.3 0.45 5626 19.2
6 12.3 0.47 2504 14.1
7 12.3 0.52 16487 42.6
8 12.3 0.55 2504 13.9
9 12.0 0.27 4880 13.7

10 12.0 0.34 2500 1.6
11 12.0 0.31 16495 30.2
12 12.0 0.32 2500 1.8
13 12.5 0.49 4879 12.1
14 12.5 0.52 2505 12.0
15 12.3 0.44 16481 41.0
16 12.4 0.46 2505 12.1
17 12.7 0.49 5234 12.5
18 12.8 0.50 2500 1.7
19 12.6 0.48 15789 32.4
20 12.7 0.50 2500 1.8
21 12.2 0.45 5214 18.9
22 12.2 0.45 2538 26.8
23 12.1 0.43 16449 43.4
24 12.2 0.46 2538 26.9
25 12.4 0.42 5218 16.0
26 12.4 0.43 2500 1.8
27 12.3 0.39 15791 29.9
28 12.4 0.39 2500 1.8
29 12.1 0.42 5225 11.8
30 12.2 0.45 2505 14.1
31 12.1 0.41 16485 32.7
32 12.1 0.43 2505 14.0

Table A.60.: PT-32-7

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.38 0 0.0
2 21.4 0.29 2999 1.1
3 20.8 0.26 6900 3.1
4 21.8 0.40 2999 1.1
5 12.3 0.40 5638 33.0
6 12.3 0.41 2501 2.2
7 12.4 0.38 16497 37.0
8 12.3 0.39 2501 1.9
9 12.4 0.31 5235 13.3
10 12.4 0.32 2499 1.6
11 12.4 0.29 15801 36.1
12 12.4 0.30 2499 1.6
13 12.5 0.27 5590 12.0
14 12.5 0.28 2499 1.6
15 12.6 0.27 15802 34.5
16 12.5 0.30 2499 1.6
17 12.4 0.43 5233 12.1
18 12.4 0.44 2501 2.0
19 12.5 0.42 16496 35.3
20 12.5 0.43 2501 1.9
21 12.6 0.31 5232 13.8
22 12.6 0.32 2499 1.4
23 12.6 0.29 15801 34.2
24 12.6 0.31 2500 1.5
25 12.5 0.42 5235 11.7
26 12.5 0.43 2501 1.9
27 12.5 0.45 16494 42.1
28 12.5 0.46 2501 1.9
29 12.2 0.32 4878 10.3
30 12.2 0.33 2500 1.7
31 12.0 0.26 16512 37.9
32 12.0 0.28 2500 1.7

Table A.61.: PT-32-8
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.40 0 0.0
2 21.2 0.45 3000 1.2
3 20.7 0.33 6899 3.6
4 21.5 0.54 3000 1.3
5 12.1 0.40 5630 17.1
6 12.1 0.42 2501 2.1
7 12.1 0.43 16496 43.9
8 12.1 0.44 2501 1.8
9 12.5 0.50 4884 10.8
10 12.5 0.52 2502 2.1
11 12.5 0.48 16490 33.5
12 12.5 0.51 2501 2.0
13 12.6 0.43 5238 11.8
14 12.6 0.44 2500 1.7
15 12.6 0.43 15796 31.6
16 12.6 0.44 2500 1.9
17 12.5 0.45 5589 11.9
18 12.5 0.45 2500 1.9
19 12.5 0.41 15793 35.9
20 12.5 0.42 2500 1.8
21 12.5 0.44 5588 11.7
22 12.5 0.45 2500 1.9
23 12.6 0.42 15791 35.7
24 12.6 0.42 2500 1.7
25 12.3 0.54 5230 12.4
26 12.3 0.55 2501 2.0
27 12.2 0.51 16489 36.2
28 12.2 0.51 2502 2.0
29 12.1 0.42 4876 10.9
30 12.1 0.45 2501 2.4
31 12.0 0.42 16496 39.8
32 12.0 0.45 2501 2.5

Table A.62.: PT-32-9

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.33 0 0.0
2 21.5 0.28 3000 1.1
3 20.8 0.25 6900 2.7
4 22.0 0.37 2999 1.0
5 12.3 0.40 5635 15.7
6 12.3 0.40 2508 17.8
7 12.3 0.39 16493 26.1
8 12.2 0.41 2508 17.9
9 12.5 0.32 5236 16.5
10 12.5 0.33 2499 1.3
11 12.5 0.32 15807 23.0
12 12.5 0.34 2499 1.4
13 12.7 0.32 5593 13.7
14 12.6 0.31 2499 1.4
15 12.8 0.29 15806 18.6
16 12.8 0.29 2499 1.5
17 12.4 0.42 5222 17.5
18 12.4 0.42 2534 27.5
19 12.6 0.44 16469 36.4
20 12.5 0.45 2534 27.9
21 12.9 0.34 5221 18.9
22 12.8 0.35 2499 1.5
23 12.9 0.35 15807 17.9
24 12.9 0.36 2500 1.5
25 12.6 0.39 5229 15.2
26 12.6 0.40 2510 20.4
27 12.4 0.41 16492 31.3
28 12.4 0.45 2510 20.3
29 12.2 0.31 4874 14.4
30 12.2 0.34 2499 1.4
31 12.2 0.29 16517 29.4
32 12.1 0.31 2499 1.5
33 12.5 0.40 4874 13.2
34 12.6 0.40 2503 13.1
35 12.5 0.39 16508 31.5
36 12.4 0.40 2503 13.1

Table A.63.: PT-36-1
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.39 0 0.0
2 21.2 0.47 2999 1.2
3 20.7 0.33 6900 3.5
4 21.5 0.58 2999 1.3
5 12.2 0.35 5631 17.5
6 12.2 0.35 2506 15.5
7 12.2 0.34 16497 31.6
8 12.1 0.36 2506 15.4
9 12.4 0.46 4881 15.0

10 12.4 0.48 2503 10.7
11 12.4 0.43 16503 48.1
12 12.4 0.42 2503 10.5
13 12.5 0.42 5236 13.1
14 12.5 0.42 2499 1.6
15 12.6 0.44 15797 28.6
16 12.6 0.44 2499 1.6
17 12.3 0.48 5226 20.4
18 12.3 0.49 2527 27.7
19 12.3 0.44 16469 34.4
20 12.3 0.44 2527 27.7
21 12.6 0.46 5222 19.4
22 12.6 0.46 2499 1.6
23 12.6 0.47 15802 26.9
24 12.6 0.46 2500 1.5
25 12.2 0.48 5230 14.9
26 12.3 0.49 2506 14.8
27 12.2 0.45 16491 29.2
28 12.2 0.45 2506 14.6
29 12.1 0.33 4873 15.8
30 12.1 0.34 2501 5.0
31 12.0 0.36 16505 29.1
32 11.9 0.37 2501 4.7
33 12.2 0.44 4876 13.3
34 12.2 0.45 2503 11.2
35 12.1 0.46 16501 42.8
36 12.1 0.46 2503 11.1

Table A.64.: PT-36-2

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.42 0 0.0
2 21.0 0.44 3000 1.3
3 20.6 0.35 6899 4.0
4 21.2 0.53 3000 1.5
5 12.2 0.40 5629 22.0
6 12.2 0.44 2502 2.3
7 12.2 0.44 16492 35.8
8 12.2 0.47 2501 2.1
9 11.9 0.29 4883 12.3
10 11.9 0.32 2501 2.3
11 12.0 0.32 16499 29.7
12 12.0 0.36 2501 2.1
13 12.3 0.47 4880 15.7
14 12.3 0.48 2506 14.7
15 12.0 0.59 16485 34.0
16 12.0 0.61 2506 14.5
17 12.5 0.53 5233 15.1
18 12.5 0.54 2500 1.6
19 12.4 0.50 15792 33.3
20 12.5 0.52 2500 1.8
21 12.1 0.43 5223 16.4
22 12.2 0.44 2520 26.0
23 11.9 0.52 16470 44.4
24 12.0 0.53 2519 26.3
25 12.3 0.46 5225 15.8
26 12.3 0.47 2500 2.0
27 12.2 0.42 15794 29.5
28 12.3 0.44 2500 1.8
29 12.0 0.52 5226 14.8
30 12.0 0.52 2506 15.1
31 12.0 0.45 16483 36.0
32 12.0 0.47 2506 15.6
33 11.8 0.38 4868 16.0
34 11.8 0.38 2508 16.7
35 11.9 0.35 16487 35.2
36 11.9 0.40 2508 16.6

Table A.65.: PT-36-3
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.41 0 0.0
2 20.9 0.35 3000 1.3
3 20.6 0.35 6899 3.4
4 21.3 0.42 3000 1.4
5 12.5 0.30 5626 12.6
6 12.4 0.35 2500 1.8
7 12.5 0.37 16501 39.5
8 12.5 0.42 2500 2.2
9 12.0 0.28 4882 12.3
10 12.0 0.34 2500 1.7
11 12.0 0.30 16498 37.2
12 11.9 0.34 2500 1.6
13 12.5 0.53 4880 15.3
14 12.5 0.56 2508 17.8
15 12.5 0.52 16480 36.2
16 12.5 0.53 2508 17.7
17 12.9 0.50 5233 15.9
18 12.9 0.50 2500 1.7
19 12.7 0.50 15791 32.6
20 12.8 0.52 2500 1.7
21 12.3 0.51 5217 20.6
22 12.3 0.52 2527 27.8
23 12.2 0.50 16462 46.9
24 12.2 0.52 2526 27.7
25 12.5 0.41 5223 16.6
26 12.5 0.42 2500 1.7
27 12.4 0.39 15788 32.0
28 12.4 0.41 2500 1.7
29 12.3 0.36 5584 12.2
30 12.3 0.37 2500 1.8
31 12.2 0.33 15793 29.5
32 12.3 0.34 2500 1.8
33 11.9 0.46 5225 16.7
34 11.9 0.45 2509 18.5
35 11.9 0.47 16487 62.8
36 11.9 0.50 2509 18.5

Table A.66.: PT-36-4

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.5 0.23 0 0.0
2 21.8 0.23 2999 0.9
3 21.3 0.24 6900 3.2
4 22.0 0.36 2999 1.1
5 12.5 0.37 5620 14.0
6 12.6 0.35 2510 20.5
7 12.6 0.37 16455 26.1
8 12.6 0.37 2510 20.4
9 11.8 0.21 4874 16.7
10 11.9 0.20 2501 1.3
11 11.9 0.20 16472 20.9
12 11.9 0.19 2501 1.3
13 12.8 0.48 4869 10.7
14 12.8 0.46 2499 1.3
15 13.0 0.44 16491 24.2
16 13.0 0.42 2499 1.3
17 13.2 0.48 4875 10.6
18 13.2 0.45 2499 1.5
19 13.2 0.43 16485 30.4
20 13.3 0.41 2499 2.0
21 15.9 0.47 4672 11.6
22 15.8 0.47 2499 1.2
23 16.2 0.52 17385 23.8
24 16.4 0.50 2499 2.3
25 15.8 0.39 4465 9.0
26 15.6 0.39 2499 1.2
27 16.2 0.43 17383 25.0
28 16.3 0.43 2499 1.2
29 9.7 0.94 4665 12.3
30 9.8 0.94 2501 2.0
31 9.0 0.88 16491 38.3
32 9.0 0.87 2501 1.7
33 8.5 1.59 4875 13.1
34 8.6 1.61 2500 2.1
35 7.8 1.16 16495 41.9
36 7.8 1.17 2500 1.7

Table A.67.: PT-36-5
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.8 0.65 0 0.0
2 21.3 0.44 3010 18.3
3 20.8 0.34 6922 41.5
4 21.8 0.67 3009 18.3
5 13.3 0.22 5638 36.7
6 13.4 0.24 2508 15.6
7 13.4 0.28 16554 93.4
8 13.3 0.27 2508 15.8
9 13.4 0.39 4876 30.5
10 13.4 0.39 2508 15.4
11 13.3 0.44 16562 94.7
12 13.3 0.43 2508 15.6
13 13.5 0.43 4849 39.7
14 13.6 0.46 2548 50.4
15 13.6 0.36 16510 104.6
16 13.6 0.37 2548 50.6
17 13.8 0.52 4804 40.7
18 13.9 0.54 2606 18.1
19 13.8 0.58 16451 82.6
20 13.8 0.57 2606 18.3
21 13.7 0.67 4786 34.8
22 13.8 0.71 2590 40.3
23 13.8 0.84 16467 100.7
24 13.7 0.83 2591 40.7
25 13.5 0.43 4809 40.3
26 13.5 0.44 2555 51.2
27 13.5 0.51 16506 104.6
28 13.4 0.45 2555 51.4
29 13.3 0.31 4844 41.0
30 13.3 0.33 2508 15.6
31 13.4 0.31 16554 89.8
32 13.4 0.30 2508 15.7
33 13.3 0.26 4869 32.6
34 13.4 0.25 2508 15.4
35 13.4 0.30 16553 90.7
36 13.2 0.29 2508 15.5

Table A.68.: PT-36-6

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.7 0.44 0 0.0
2 20.9 0.37 3000 1.2
3 20.5 0.36 6898 3.9
4 21.1 0.39 3000 1.5
5 12.1 0.29 5631 20.2
6 12.1 0.32 2500 1.8
7 12.3 0.35 16498 44.2
8 12.2 0.40 2500 2.3
9 12.2 0.45 4885 10.0
10 12.2 0.49 2502 2.2
11 12.1 0.39 16489 33.0
12 12.2 0.42 2502 2.1
13 12.2 0.29 5241 11.3
14 12.2 0.31 2500 1.9
15 12.2 0.28 15790 35.3
16 12.2 0.31 2500 1.8
17 12.1 0.40 5234 11.3
18 12.1 0.42 2502 2.4
19 12.0 0.43 16486 35.8
20 12.1 0.47 2502 2.2
21 12.0 0.22 5238 10.9
22 12.1 0.25 2500 1.7
23 12.0 0.23 15792 31.8
24 12.1 0.26 2500 1.7
25 12.0 0.23 5588 11.4
26 12.0 0.24 2500 1.8
27 11.9 0.22 15790 32.7
28 12.0 0.25 2500 1.6
29 11.8 0.41 5226 12.0
30 11.9 0.42 2502 2.2
31 11.9 0.37 16490 35.8
32 11.9 0.41 2502 2.3
33 11.8 0.37 4878 12.0
34 11.9 0.40 2502 2.1
35 11.9 0.39 16489 33.2
36 11.9 0.41 2502 2.4

Table A.69.: PT-36-7
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Appendix A. Train data

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.9 0.61 0 0.0
2 21.5 0.60 2997 32.1
3 20.9 0.62 6939 616.1
4 21.8 0.73 2997 32.1
5 12.7 1.31 5627 44.5
6 12.7 1.32 2505 14.8
7 12.6 1.30 16489 42.4
8 12.6 1.36 2505 14.9
9 12.5 1.32 4877 18.9

10 12.6 1.34 2501 6.6
11 12.5 1.23 16498 39.2
12 12.5 1.28 2501 6.6
13 12.7 0.72 4880 17.4
14 12.7 0.74 2501 5.6
15 12.6 0.73 16498 36.4
16 12.6 0.76 2500 5.4
17 12.7 0.68 4879 15.9
18 12.7 0.69 2500 3.1
19 12.7 0.68 16498 32.4
20 12.7 0.69 2500 3.3
21 12.7 1.09 4876 15.8
22 12.7 1.08 2501 4.0
23 12.7 1.14 16493 32.8
24 12.7 1.15 2501 4.1
25 12.9 0.98 4874 16.2
26 13.0 0.99 2500 3.3
27 13.0 1.16 16495 40.3
28 13.0 1.19 2500 3.3
29 11.6 1.30 4871 14.7
30 11.6 1.29 2501 5.0
31 11.3 1.51 16500 41.4
32 11.3 1.50 2501 5.0
33 11.1 1.45 4875 13.8
34 11.2 1.45 2501 5.6
35 10.8 1.78 16508 41.6
36 10.7 1.76 2500 5.6
37 10.7 2.34 4877 49.4
38 10.7 2.34 2502 32.5
39 10.3 2.53 16470 619.3
40 10.3 2.54 2502 32.5

Table A.70.: PT-40-1

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 21.0 0.29 0 0.0
2 21.6 0.24 3000 0.9
3 20.8 0.24 6900 2.6
4 21.8 0.29 2999 1.0
5 16.0 0.45 5427 12.6
6 16.1 0.47 2499 1.0
7 15.5 0.44 17407 23.1
8 15.7 0.42 2499 1.1
9 16.2 0.35 4474 13.7
10 16.3 0.36 2499 1.3
11 15.4 0.37 17401 26.8
12 15.7 0.37 2499 1.3
13 13.3 0.48 4676 13.0
14 13.3 0.49 2499 1.6
15 13.1 0.47 16511 26.5
16 13.3 0.47 2499 1.4
17 13.0 0.43 4882 12.0
18 13.1 0.43 2499 1.3
19 12.8 0.50 16516 19.1
20 12.9 0.47 2499 1.4
21 11.8 0.21 4872 10.6
22 11.9 0.20 2500 1.3
23 11.8 0.26 16495 21.9
24 11.9 0.27 2500 1.5
25 12.5 0.37 4871 13.7
26 12.6 0.36 2505 14.7
27 12.5 0.40 16488 21.4
28 12.7 0.42 2505 14.9
29 10.4 1.13 4867 15.2
30 10.5 1.14 2501 9.8
31 10.3 1.22 16517 38.3
32 10.3 1.24 2501 10.1
33 9.8 1.00 4871 18.2
34 9.8 1.03 2499 1.6
35 9.2 1.03 16530 32.7
36 9.2 1.05 2500 1.6
37 8.8 1.37 4872 11.1
38 8.8 1.40 2499 1.4
39 8.1 1.09 16525 33.9
40 8.0 1.12 2499 1.5

Table A.71.: PT-40-2
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A.3. Trains according to the monitoring station Enns

Axle
Mass

[t]
Distance

[mm]
μ σ μ σ

1 20.5 0.33 0 0.0
2 21.6 0.29 2999 1.4
3 20.6 0.25 6900 3.1
4 22.1 0.43 2999 1.3
5 12.2 0.23 5997 18.3
6 12.2 0.22 2500 1.6
7 12.3 0.20 15799 33.4
8 12.3 0.22 2500 1.6
9 12.3 0.22 5602 11.7
10 12.3 0.21 2500 1.8
11 12.4 0.23 15803 34.8
12 12.3 0.24 2500 1.5
13 12.4 0.26 5600 12.8
14 12.4 0.25 2500 1.6
15 12.6 0.27 15800 33.7
16 12.6 0.27 2500 1.5
17 12.4 0.38 5242 12.7
18 12.4 0.38 2502 1.7
19 12.4 0.32 16496 40.1
20 12.3 0.32 2501 1.7
21 12.1 0.30 4888 12.4
22 12.1 0.30 2500 1.7
23 12.1 0.24 16506 36.1
24 12.0 0.23 2500 1.7
25 12.4 0.38 4875 10.7
26 12.4 0.35 2501 2.3
27 12.3 0.37 16494 36.8
28 12.2 0.37 2501 2.3
29 12.3 0.40 4884 11.8
30 12.2 0.38 2501 2.0
31 12.4 0.38 16489 38.8
32 12.3 0.36 2501 2.0
33 12.3 0.35 4882 12.1
34 12.3 0.34 2502 2.4
35 12.2 0.41 16499 41.4
36 12.1 0.40 2501 2.1
37 12.2 0.36 4878 10.6
38 12.1 0.35 2501 2.2
39 12.1 0.35 16492 46.4
40 12.0 0.35 2501 2.1

Table A.72.: PT-40-3
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.7 0.40 0 0.0 25 12.8 0.39 4868 24.2
2 21.4 0.27 3000 3.9 26 12.7 0.40 2512 22.2
3 20.8 0.24 6901 8.3 27 12.7 0.34 16488 33.3
4 22.0 0.44 3000 3.8 28 12.7 0.36 2512 22.4
5 13.4 0.20 5630 17.6 29 12.0 0.22 4866 18.6
6 13.5 0.18 2500 3.4 30 12.0 0.22 2501 3.4
7 13.6 0.28 16517 36.9 31 11.9 0.23 16501 27.4
8 13.5 0.25 2500 3.5 32 11.9 0.23 2501 3.5
9 13.9 0.26 4857 17.3 33 13.1 0.42 4880 12.5
10 13.9 0.28 2499 3.6 34 13.0 0.44 2500 3.3
11 13.8 0.34 16520 27.3 35 12.9 0.60 16518 27.3
12 13.7 0.32 2499 3.6 36 12.8 0.58 2500 3.5
13 13.7 0.46 4819 16.7 37 13.5 0.49 4878 12.2
14 13.7 0.44 2598 3.7 38 13.3 0.48 2500 3.3
15 13.4 0.54 16407 27.1 39 13.3 0.48 16515 28.1
16 13.4 0.52 2598 3.8 40 13.3 0.46 2500 3.3
17 13.1 0.42 4807 17.9 41 16.2 0.40 4677 13.6
18 13.1 0.43 2499 3.4 42 16.1 0.41 2500 3.3
19 13.0 0.42 16520 29.9 43 15.7 0.39 17418 30.5
20 13.0 0.43 2499 3.4 44 15.8 0.37 2500 3.2
21 12.6 0.40 4857 16.3 45 16.3 0.38 4469 13.3
22 12.5 0.39 2514 23.1 46 16.2 0.38 2500 3.3
23 12.6 0.37 16488 33.7 47 15.7 0.42 17417 30.2
24 12.5 0.39 2514 23.1 48 15.7 0.38 2500 3.3

Table A.73.: PT-48-1
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.1 0.33 0 0.0 25 12.8 0.86 4866 18.5
2 21.6 0.31 3000 1.1 26 12.9 0.81 2506 17.2
3 21.0 0.29 6899 3.0 27 12.7 0.83 16485 38.1
4 21.9 0.36 3000 1.1 28 12.8 0.80 2506 17.3
5 13.5 1.05 5626 13.4 29 12.4 1.07 4874 13.8
6 13.6 1.06 2504 13.2 30 12.4 1.00 2501 1.8
7 13.7 1.28 16487 47.2 31 12.3 1.06 16493 31.3
8 13.8 1.39 2504 13.0 32 12.4 1.03 2501 1.6
9 12.9 0.75 4876 15.6 33 12.2 1.14 4874 12.3
10 12.9 0.78 2501 4.9 34 12.3 1.13 2501 6.8
11 12.8 0.68 16502 48.9 35 12.1 1.26 16498 31.2
12 13.0 0.71 2500 5.0 36 12.2 1.31 2501 6.9
13 12.8 0.61 4883 12.3 37 12.4 1.24 4874 16.3
14 12.9 0.63 2501 6.8 38 12.5 1.26 2504 13.5
15 12.8 0.66 16498 34.8 39 12.3 1.50 16493 33.2
16 13.0 0.67 2501 6.8 40 12.4 1.56 2504 13.4
17 13.1 1.17 4875 16.5 41 12.7 2.20 4868 19.1
18 13.2 1.14 2509 20.1 42 12.8 2.27 2500 3.7
19 13.1 0.97 16482 47.3 43 12.7 2.40 16494 38.1
20 13.2 1.03 2509 20.0 44 12.8 2.47 2500 3.7
21 12.4 1.72 4861 20.7 45 9.0 1.68 4866 14.8
22 12.6 1.70 2500 1.8 46 9.1 1.68 2501 3.7
23 12.4 1.71 16497 34.1 47 8.4 1.55 16517 49.2
24 12.5 1.75 2500 1.7 48 8.4 1.55 2500 3.9

Table A.74.: PT-48-2
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.2 0.40 0 0.0 25 12.6 0.27 5240 13.6
2 21.8 0.31 2999 1.1 26 12.6 0.27 2499 1.4
3 20.6 0.23 6901 3.1 27 12.5 0.27 15810 16.1
4 22.3 0.45 2999 1.2 28 12.5 0.26 2499 1.3
5 12.2 0.19 6002 14.3 29 12.1 0.32 5231 13.2
6 12.3 0.19 2499 1.2 30 12.1 0.30 2510 19.9
7 12.3 0.17 15806 17.0 31 12.1 0.28 16491 25.5
8 12.3 0.18 2499 1.5 32 12.0 0.32 2510 20.4
9 12.0 0.27 5239 21.9 33 12.3 0.18 5230 12.9
10 12.0 0.25 2550 19.9 34 12.3 0.18 2499 1.1
11 12.2 0.30 16453 26.2 35 12.4 0.18 15811 16.9
12 12.1 0.33 2550 19.6 36 12.3 0.20 2500 1.5
13 12.4 0.23 5234 19.1 37 12.0 0.28 5228 15.4
14 12.4 0.22 2499 1.1 38 12.0 0.26 2510 19.7
15 12.6 0.20 15809 19.1 39 12.2 0.30 16489 25.4
16 12.6 0.21 2499 1.3 40 12.2 0.33 2510 19.8
17 12.3 0.33 5243 16.4 41 12.2 0.18 4877 13.0
18 12.3 0.33 2510 20.1 42 12.2 0.19 2502 1.4
19 12.3 0.32 16492 24.4 43 12.1 0.20 16501 16.5
20 12.2 0.34 2510 20.1 44 12.0 0.18 2503 1.5
21 12.0 0.32 4894 19.5 45 12.0 0.29 4871 9.2
22 12.0 0.31 2499 1.4 46 12.0 0.27 2505 12.4
23 12.2 0.28 16517 18.6 47 12.0 0.27 16497 23.9
24 12.1 0.26 2500 1.2 48 12.0 0.30 2505 12.3

Table A.75.: PT-48-3
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.6 0.46 0 0.0 25 12.3 0.34 4873 21.3
2 21.1 0.37 3002 9.2 26 12.4 0.38 2514 23.5
3 20.5 0.34 6904 20.8 27 12.3 0.38 16490 58.8
4 21.4 0.35 3002 9.5 28 12.4 0.43 2514 23.5
5 15.4 0.35 5437 22.1 29 12.2 0.35 4871 25.8
6 15.3 0.38 2502 7.9 30 12.3 0.38 2515 23.1
7 15.9 0.40 17415 62.8 31 12.1 0.36 16488 65.3
8 16.1 0.48 2502 7.8 32 12.2 0.41 2515 23.1
9 15.3 0.31 4484 20.3 33 12.6 0.38 4858 22.1
10 15.3 0.37 2502 7.7 34 12.7 0.39 2501 7.8
11 15.9 0.41 17414 61.6 35 12.6 0.37 16515 66.6
12 16.1 0.47 2502 7.7 36 12.7 0.38 2502 7.9
13 13.1 0.51 4688 20.9 37 13.0 0.46 4812 25.9
14 13.1 0.55 2502 7.8 38 13.1 0.46 2600 8.0
15 13.2 0.51 16517 60.2 39 13.3 0.38 16407 44.6
16 13.3 0.53 2502 7.9 40 13.3 0.40 2600 8.4
17 12.6 0.62 4889 20.6 41 13.6 0.32 4821 21.8
18 12.7 0.64 2502 7.8 42 13.7 0.37 2502 7.9
19 12.9 0.48 16515 58.5 43 13.6 0.29 16518 68.1
20 12.9 0.50 2502 7.7 44 13.7 0.30 2501 8.2
21 11.6 0.15 4887 19.1 45 13.3 0.26 4853 20.5
22 11.6 0.21 2503 8.1 46 13.4 0.31 2502 7.9
23 11.6 0.16 16505 55.2 47 13.3 0.22 16521 97.8
24 11.7 0.21 2504 7.7 48 13.3 0.24 2502 8.1

Table A.76.: PT-48-4
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.3 0.41 0 0.0 25 12.5 0.25 5239 10.9
2 21.7 0.31 2999 1.2 26 12.5 0.26 2499 1.8
3 20.5 0.32 6900 2.9 27 12.6 0.25 15800 39.3
4 22.3 0.42 2999 1.2 28 12.5 0.27 2499 1.6
5 12.1 0.22 6002 20.7 29 12.4 0.24 5595 12.0
6 12.2 0.23 2499 1.5 30 12.4 0.24 2499 1.6
7 12.2 0.23 15802 33.7 31 12.4 0.24 15801 31.1
8 12.1 0.25 2499 1.6 32 12.4 0.24 2499 1.4
9 12.4 0.30 5608 14.7 33 12.3 0.44 5239 9.7
10 12.3 0.31 2499 1.5 34 12.2 0.44 2501 2.2
11 12.4 0.30 15805 26.8 35 12.3 0.34 16491 34.8
12 12.3 0.34 2500 1.6 36 12.3 0.36 2501 2.1
13 12.4 0.30 5606 15.0 37 12.5 0.19 5233 10.2
14 12.4 0.30 2499 1.4 38 12.4 0.20 2499 1.4
15 12.6 0.28 15801 29.7 39 12.4 0.21 15799 33.7
16 12.6 0.29 2499 1.5 40 12.3 0.22 2500 1.4
17 12.5 0.38 5251 13.5 41 12.3 0.40 5235 9.9
18 12.5 0.37 2501 1.9 42 12.3 0.39 2501 1.8
19 12.4 0.38 16495 34.5 43 12.2 0.34 16498 30.0
20 12.4 0.38 2501 2.0 44 12.1 0.34 2502 1.8
21 12.0 0.26 4896 14.6 45 12.6 0.31 4878 8.2
22 12.0 0.28 2499 1.5 46 12.6 0.30 2499 2.4
23 12.0 0.21 16509 35.6 47 12.5 0.30 16512 34.8
24 12.0 0.20 2499 1.5 48 12.4 0.34 2499 1.4

Table A.77.: PT-48-5
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.8 0.25 0 0.0 27 13.6 0.69 16915 26.0
2 21.5 0.16 3000 1.1 28 13.7 0.74 2499 1.5
3 20.8 0.19 6900 2.5 29 12.3 0.30 4932 9.7
4 21.9 0.23 2999 1.0 30 12.4 0.33 2499 1.2
5 12.5 0.21 5995 9.5 31 12.3 0.26 16516 21.8
6 12.6 0.22 2499 1.1 32 12.4 0.24 2499 1.2
7 12.6 0.22 15808 17.2 33 12.9 0.31 4881 11.6
8 12.7 0.24 2499 1.2 34 13.0 0.31 2499 1.4
9 12.4 0.31 5225 18.1 35 12.8 0.33 16515 24.1
10 12.5 0.31 2547 20.4 36 12.9 0.33 2499 1.8
11 12.5 0.32 16460 25.9 37 9.3 1.28 4867 10.5
12 12.6 0.33 2548 20.4 38 9.4 1.29 2499 2.4
13 12.9 0.32 5220 13.3 39 8.6 1.17 16541 41.3
14 13.0 0.32 2499 1.4 40 8.6 1.22 2500 2.2
15 13.0 0.31 15809 17.9 41 7.9 1.36 4876 12.8
16 13.1 0.37 2499 1.9 42 7.9 1.39 2500 2.3
17 13.2 0.26 5594 9.4 43 7.4 0.88 16536 37.7
18 13.3 0.27 2499 1.1 44 7.3 0.92 2500 2.4
19 13.2 0.27 15807 16.0 45 9.0 1.06 4870 11.0
20 13.4 0.30 2499 1.2 46 9.1 1.09 2500 2.1
21 12.9 0.43 5230 13.6 47 8.5 1.04 16533 34.1
22 13.0 0.47 2512 22.7 48 8.5 1.07 2500 2.4
23 12.8 0.29 16489 25.2 49 7.9 1.51 4875 13.2
24 12.9 0.28 2512 22.3 50 8.0 1.55 2499 1.6
25 14.6 0.83 4930 15.1 51 7.5 0.98 16535 37.6
26 14.8 0.86 2499 1.6 52 7.5 1.03 2500 1.4

Table A.78.: PT-52-1
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.9 0.26 0 0.0 27 12.5 0.22 15779 30.2
2 21.4 0.27 3000 1.2 28 12.6 0.26 2499 1.4
3 20.7 0.23 6898 3.1 29 12.2 0.37 5216 13.7
4 21.6 0.29 3000 1.2 30 12.4 0.36 2546 22.5
5 12.6 0.29 5633 11.1 31 12.1 0.30 16435 37.2
6 12.8 0.33 2500 1.8 32 12.2 0.32 2545 22.1
7 12.6 0.30 16484 33.3 33 12.4 0.20 5221 17.4
8 12.8 0.32 2499 2.0 34 12.5 0.21 2499 1.5
9 12.2 0.23 4891 12.3 35 12.2 0.20 15780 26.9
10 12.3 0.28 2499 1.5 36 12.4 0.21 2499 1.2
11 12.1 0.31 16487 29.0 37 8.8 1.42 5233 11.0
12 12.2 0.31 2500 1.6 38 8.8 1.43 2501 1.9
13 13.6 0.78 4938 8.8 39 8.3 1.19 16519 43.1
14 13.8 0.79 2499 1.5 40 8.4 1.19 2501 2.0
15 14.4 0.89 16879 33.6 41 7.9 1.41 4883 14.2
16 14.6 0.91 2499 1.9 42 8.0 1.42 2501 2.1
17 12.5 0.26 4934 15.4 43 7.2 1.01 16519 41.2
18 12.7 0.26 2509 19.8 44 7.3 1.03 2501 2.0
19 12.5 0.39 16471 30.7 45 8.2 1.17 4874 12.4
20 12.7 0.38 2509 19.9 46 8.3 1.18 2501 2.3
21 13.0 0.23 5234 13.3 47 7.6 0.84 16513 77.9
22 13.1 0.24 2499 1.5 48 7.7 0.84 2501 2.4
23 12.8 0.28 15775 27.7 49 7.1 1.05 4875 14.7
24 12.9 0.30 2499 1.3 50 7.2 1.06 2500 1.8
25 12.5 0.27 5591 9.8 51 6.8 0.64 16518 56.0
26 12.7 0.27 2499 2.1 52 6.9 0.64 2501 1.8

Table A.79.: PT-52-2
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.0 0.47 0 0.0 27 12.2 0.62 16477 35.9
2 21.5 0.38 3000 1.2 28 12.3 0.59 2507 17.8
3 20.8 0.37 6899 3.6 29 12.2 0.78 4870 14.6
4 21.7 0.39 3000 1.2 30 12.3 0.75 2502 8.8
5 13.8 1.00 5625 12.8 31 12.2 0.89 16482 27.7
6 14.0 1.04 2501 6.5 32 12.3 0.87 2502 8.7
7 14.1 1.02 16487 29.8 33 12.7 0.76 4874 12.0
8 14.4 1.16 2501 6.3 34 12.8 0.79 2500 1.9
9 12.9 0.88 4872 15.0 35 12.7 0.99 16492 30.1
10 13.0 0.90 2500 1.8 36 12.8 1.04 2500 1.9
11 12.9 0.89 16494 32.4 37 12.8 1.26 4877 15.6
12 13.1 0.95 2500 1.7 38 12.9 1.28 2504 13.2
13 12.9 0.66 4883 13.5 39 12.8 1.35 16491 38.5
14 13.0 0.68 2502 10.6 40 12.9 1.41 2503 13.4
15 12.9 0.67 16490 27.8 41 13.5 1.69 4873 18.3
16 13.1 0.69 2502 10.8 42 13.6 1.73 2502 10.9
17 12.6 0.65 4875 21.2 43 13.6 1.97 16493 35.9
18 12.7 0.65 2510 20.5 44 13.7 2.04 2502 10.8
19 12.6 0.64 16472 47.5 45 11.1 2.05 4865 16.9
20 12.8 0.66 2510 20.4 46 11.2 2.08 2503 10.4
21 11.6 0.95 4859 19.7 47 10.3 2.39 16500 52.6
22 11.7 0.90 2501 6.5 48 10.3 2.42 2502 10.6
23 11.5 1.10 16490 27.9 49 9.4 2.12 4870 13.6
24 11.6 1.10 2501 6.4 50 9.5 2.12 2501 6.6
25 12.3 0.66 4862 19.3 51 8.8 2.07 16509 38.8
26 12.5 0.61 2507 17.7 52 8.9 2.10 2501 6.7

Table A.80.: PT-52-3
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 20.9 0.29 0 0.0 29 11.9 0.61 4873 15.8
2 21.4 0.36 3000 1.2 30 12.0 0.59 2501 1.7
3 20.8 0.25 6898 3.9 31 11.9 0.64 16487 27.2
4 21.7 0.35 3000 1.5 32 12.1 0.65 2501 1.6
5 14.2 0.81 5622 14.7 33 12.7 0.69 4876 12.2
6 14.4 0.82 2500 1.4 34 12.9 0.71 2501 6.3
7 14.4 0.85 16484 26.1 35 12.7 0.64 16495 41.8
8 14.7 0.98 2500 2.4 36 12.9 0.66 2501 6.4
9 13.0 0.84 4872 14.5 37 12.9 0.77 4880 12.4
10 13.2 0.91 2500 1.6 38 13.0 0.78 2500 1.8
11 13.2 0.99 16501 30.9 39 13.0 0.71 16488 28.7
12 13.4 1.05 2500 1.7 40 13.2 0.77 2500 1.5
13 12.8 0.60 4881 14.2 41 14.1 1.20 4877 13.5
14 12.9 0.58 2503 12.4 42 14.2 1.21 2500 1.8
15 12.9 0.62 16487 32.7 43 14.3 1.19 16493 30.9
16 13.2 0.63 2503 12.1 44 14.5 1.30 2500 1.7
17 12.4 0.83 4877 19.0 45 13.5 1.20 4866 16.0
18 12.5 0.79 2510 20.9 46 13.7 1.24 2500 1.9
19 12.4 0.81 16479 33.2 47 13.9 1.31 16493 54.7
20 12.6 0.82 2510 21.0 48 14.1 1.44 2500 1.7
21 11.4 0.85 4861 21.2 49 10.9 1.51 4861 14.9
22 11.6 0.83 2504 13.5 50 11.0 1.50 2501 2.5
23 11.3 0.98 16486 36.8 51 9.8 1.57 16510 54.5
24 11.4 1.03 2503 13.4 52 9.8 1.59 2501 1.8
25 12.0 0.60 4863 19.6 53 9.5 1.58 4872 11.4
26 12.2 0.59 2508 18.7 54 9.6 1.60 2501 1.8
27 12.1 0.72 16476 36.7 55 8.4 1.21 16502 37.5
28 12.3 0.79 2508 18.8 56 8.4 1.23 2501 1.8

Table A.81.: PT-56-1
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A.3. Trains according to the monitoring station Enns

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.0 0.42 0 0.0 29 12.9 0.51 4865 12.6
2 21.5 0.22 3000 1.1 30 13.0 0.53 2501 1.7
3 20.9 0.24 6898 2.0 31 12.8 0.51 16491 20.7
4 21.7 0.40 3000 1.2 32 12.9 0.52 2501 2.1
5 15.6 0.50 5422 12.8 33 13.0 0.52 4873 13.7
6 15.5 0.52 2500 1.4 34 13.1 0.56 2501 1.9
7 16.1 0.49 17406 23.3 35 12.9 0.66 16497 18.6
8 16.2 0.49 2500 1.3 36 13.0 0.68 2501 1.8
9 15.8 0.57 4470 13.2 37 14.3 0.73 4871 14.5
10 15.8 0.59 2500 1.6 38 14.5 0.65 2500 1.3
11 15.8 0.47 17412 31.0 39 14.7 0.74 16510 23.1
12 16.0 0.52 2500 1.7 40 15.0 0.85 2500 1.5
13 12.8 0.51 4669 11.4 41 13.6 0.80 4877 18.2
14 12.8 0.60 2499 1.3 42 13.7 0.76 2500 1.5
15 13.2 0.38 16509 25.4 43 14.2 0.74 16507 27.4
16 13.2 0.40 2500 1.5 44 14.3 0.81 2500 1.7
17 13.2 0.48 4872 11.3 45 13.4 0.80 4868 12.9
18 13.2 0.53 2500 1.2 46 13.5 0.88 2500 1.6
19 13.4 0.37 16512 21.6 47 13.4 0.52 16511 25.2
20 13.5 0.36 2500 1.0 48 13.5 0.55 2499 1.5
21 11.9 0.17 4872 12.5 49 13.7 0.53 4870 10.0
22 11.9 0.19 2501 1.2 50 13.8 0.58 2499 1.4
23 11.8 0.19 16496 20.0 51 13.6 0.50 16512 28.9
24 11.8 0.18 2501 1.3 52 13.6 0.51 2499 1.6
25 12.6 0.46 4870 9.5 53 13.2 0.67 4869 8.8
26 12.7 0.43 2502 1.8 54 13.2 0.73 2500 1.5
27 12.7 0.35 16490 20.6 55 13.3 0.58 16511 24.1
28 12.8 0.36 2501 1.7 56 13.5 0.60 2500 1.6

Table A.82.: PT-56-2
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Appendix A. Train data

Axle
Nr.

Mass
[t]

Distance
[mm]

Axle
Nr.

Mass
[t]

Distance
[mm]

μ σ μ σ μ σ μ σ
1 21.0 0.55 0 0.0 29 13.2 0.60 4662 12.0
2 21.5 0.40 3000 1.1 30 13.3 0.63 2500 2.0
3 20.9 0.43 6897 3.4 31 13.0 0.71 16486 39.3
4 21.8 0.46 3000 1.2 32 13.2 0.68 2500 1.9
5 12.5 0.38 5632 28.0 33 13.6 0.58 4875 9.7
6 12.7 0.35 2502 1.7 34 13.8 0.61 2500 2.4
7 12.4 0.38 16472 31.2 35 13.6 0.54 16487 45.8
8 12.6 0.42 2502 1.7 36 13.7 0.49 2500 2.2
9 11.7 0.17 4875 10.4 37 13.2 0.59 4873 10.6
10 11.9 0.17 2502 1.4 38 13.3 0.63 2500 1.9
11 11.8 0.15 16485 24.0 39 13.1 0.74 16491 46.1
12 11.9 0.15 2501 1.5 40 13.3 0.71 2500 1.9
13 13.3 0.42 4877 13.3 41 14.2 0.82 4874 12.2
14 13.4 0.44 2500 1.6 42 14.4 0.79 2500 2.8
15 12.9 0.49 16495 41.5 43 13.5 0.77 16487 67.9
16 13.1 0.48 2500 1.5 44 13.6 0.80 2500 1.7
17 13.1 0.42 4874 13.9 45 14.7 0.81 4876 16.8
18 13.2 0.46 2500 1.8 46 14.9 0.75 2500 1.8
19 12.8 0.71 16494 53.2 47 14.2 0.70 16493 29.2
20 12.9 0.66 2500 1.7 48 14.3 0.82 2500 1.9
21 15.9 0.54 4671 11.5 49 12.7 0.66 4867 16.5
22 16.0 0.52 2500 2.4 50 12.9 0.66 2501 2.1
23 15.7 0.66 17395 41.4 51 12.7 0.56 16475 31.5
24 16.1 0.66 2500 2.1 52 12.8 0.54 2501 2.2
25 16.2 0.54 4469 14.9 53 12.6 0.56 4869 12.4
26 16.3 0.54 2499 1.6 54 12.7 0.55 2501 2.3
27 15.5 0.54 17390 32.2 55 12.6 0.57 16478 31.6
28 15.9 0.51 2500 1.3 56 12.8 0.55 2501 2.2

Table A.83.: PT-56-3
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Appendix B.

Single-span steel bridges

B.1. Design of the individual single-span steel bridges

B.1.1. Studied section type

Open cross sections — see Figure B.1

Figure B.1.: Single-span steel bridges — geometry overview — material S355

B.1.2. General approach

a.) ULS design for each bridge (S355) of length L due to LM71, SW/2 and permanent loads
in order to determine the ”base” section geometry (hMG ≈ L/12 ⇒ wLC, tLC and tDP).
Simplified approach σglobal ≤ 0.6 ∗ fyd.

b.) Varying the geometry of the ”base” section geometry in order to reach different n0 — see
Figures B.2 and B.3
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Appendix B. Single-span steel bridges

According to [41], [42] and [35]:

Ed = γG,j,sup ∗ Gk,j,sup + γQ,1 ∗ Qk,1 (B.1)

with: γG,j,sup = 1.35

γQ,LM71 = 1.45
γQ,SW/2 = 1.20

QLM71 = My,LM71,k ∗ α ∗ Φ2

QSW/2 = My,SW/2,k ∗ Φ2

α = 1.21

Φ2 =
1.44√

LΦ−0.2
+ 0.82

LΦ = L

γa = 7850 kg/m3

γbb = 2000 kg/m3

B.1.3. Studied individual bridges

μ = γa ∗ Aa + γbb ∗ Abb (B.2)

with: γa = 7850 kg/m3

γbb = 2000 kg/m3

Abb = 4.5 ∗ 0.6 = 2.7 m2

n0 =
π

2 ∗ L
∗
√

EIy

μ
(B.3)
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B.1. Design of the individual single-span steel bridges

Nr. Name
L
[m]

hMG

[mm]

tDP

[mm]

wLC

[mm]

tLC

[mm]

EIy

[Nm2]

μ

[kg/m]

n0

[Hz]
ζEC

[%]

FB
[%]

1 SSB7-0 7 435 20 200 20 4.834E+08 6523.1 8.73 2.302 -25
2 SSB7-1 7 555 20 240 20 8.427E+08 6569.5 11.48 2.302 0
3 SSB7-2 7 640 20 300 20 1.270E+09 6612.4 14.05 2.302 25
4 SSB7-3 7 695 20 340 25 1.813E+09 6666.5 16.72 2.302 50
5 SSB7-4 7 775 20 385 25 2.462E+09 6706.7 19.42 2.302 75
6 SSB7-5 7 820 20 420 30 3.226E+09 6765.5 22.14 2.302 100
7 SSB7-6 7 900 20 440 30 4.062E+09 6797.5 24.78 2.302 125
8 SSB10-0 10 540 20 290 20 8.943E+08 6581.0 5.79 2.079 -25
9 SSB10-1 10 675 20 340 25 1.746E+09 6660.8 8.04 2.079 0
10 SSB10-2 10 770 20 410 30 2.851E+09 6746.6 10.21 2.079 25
11 SSB10-3 10 890 20 480 30 4.276E+09 6813.5 12.44 2.079 50
12 SSB10-4 10 935 20 560 40 6.103E+09 6950.4 14.72 2.079 75
13 SSB10-5 10 1050 20 600 40 8.142E+09 7008.0 16.93 2.079 100
14 SSB10-6 10 1155 20 660 40 1.053E+10 7075.4 19.17 2.079 125
15 SSB20-0 20 735 20 425 30 2.690E+09 6743.8 2.48 0.796 -25
16 SSB20-1 20 1000 20 550 40 7.157E+09 6962.5 3.98 0.796 0
17 SSB20-2 20 1340 20 600 40 1.415E+10 7090.0 5.55 0.796 25
18 SSB20-3 20 1675 20 600 40 2.303E+10 7184.7 7.03 0.796 50
19 SSB20-4 20 1870 20 700 50 3.534E+10 7411.0 8.58 0.796 75
20 SSB20-5 20 2055 20 800 60 5.044E+10 7666.0 10.07 0.796 100
21 SSB20-6 20 2175 20 1000 80 7.158E+10 8199.5 11.60 0.796 125
22 SSB30-0 30 1300 20 460 30 9.951E+09 6920.0 2.09 0.500 -25
23 SSB30-1 30 1685 20 600 40 2.344E+10 7187.5 3.15 0.500 0
24 SSB30-2 30 2055 20 700 50 4.357E+10 7463.3 4.22 0.500 25
25 SSB30-3 30 2435 25 800 50 7.195E+10 7825.1 5.29 0.500 50
26 SSB30-4 30 2755 25 900 60 1.083E+11 8134.0 6.37 0.500 75
27 SSB30-5 30 3100 25 950 70 1.533E+11 8426.3 7.45 0.500 100
28 SSB30-6 30 3435 25 1000 80 2.072E+11 8731.5 8.50 0.500 125
29 SSB40-0 40 1720 20 600 40 2.457E+10 7197.4 1.81 0.500 -25
30 SSB40-1 40 2150 20 800 60 5.599E+10 7692.9 2.65 0.500 0
31 SSB40-2 40 2675 25 900 60 1.019E+11 8111.3 3.48 0.500 25
32 SSB40-3 40 3175 25 1000 70 1.655E+11 8502.4 4.33 0.500 50
33 SSB40-4 40 3650 25 1000 90 2.485E+11 8947.8 5.17 0.500 75
34 SSB40-5 40 4120 25 1000 110 3.496E+11 9391.8 5.99 0.500 100

Continued on next page
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Appendix B. Single-span steel bridges

Table B.1 – continued from previous page

Nr. Name
L
[m]

hMG

[mm]

tDP

[mm]

wLC

[mm]

tLC

[mm]

EIy

[Nm2]

μ

[kg/m]

n0

[Hz]
ζEC

[%]

FB
[%]

35 SSB40-6 40 4650 25 1000 120 4.694E+11 9697.2 6.83 0.500 125
36 SSB50-0 50 2350 25 600 40 5.220E+10 7551.3 1.65 0.500 -25
37 SSB50-1 50 2800 30 800 60 1.129E+11 8228.4 2.33 0.500 0
38 SSB50-2 50 3435 30 900 70 1.992E+11 8641.9 3.02 0.500 25
39 SSB50-3 50 4115 30 900 80 3.1192E+11 8974.0 3.70 0.500 50
40 SSB50-4 50 4715 30 1000 90 4.607E+11 9424.7 4.39 0.500 75
41 SSB50-5 50 5310 30 1000 110 6.469E+11 9904.1 5.08 0.500 100
42 SSB50-6 50 5850 35 1000 120 8.749E+11 10388.2 5.77 0.500 125
43 SSB60-0 60 3000 30 600 40 9.502E+10 7910.9 1.51 0.500 -25
44 SSB60-1 60 3575 30 800 60 1.916E+11 8447.4 2.08 0.500 0
45 SSB60-2 60 4325 30 950 70 3.356E+11 8948.4 2.67 0.500 25
46 SSB60-3 60 5050 30 1000 90 5.344E+11 9519.4 3.27 0.500 50
47 SSB60-4 60 5750 30 1000 120 7.961E+11 10184.0 3.86 0.500 76
48 SSB60-5 60 6450 30 1000 150 1.114E+12 10848.6 4.42 0.500 100
49 SSB60-6 60 7125 35 1000 160 1.503E+12 11370.8 5.02 0.500 125
50 SSB70-0 70 3700 30 600 40 1.532E+11 8108.8 1.39 0.500 -25
51 SSB70-1 70 4360 35 800 60 3.108E+11 8845.2 1.90 0.500 0
52 SSB70-2 70 4990 35 1000 90 5.507E+11 9678.4 2.42 0.500 25
53 SSB70-3 70 5820 35 1000 120 8.658E+11 10379.7 2.93 0.500 50
54 SSB70-4 70 6685 35 1000 150 1.277E+12 11090.9 3.44 0.500 75
55 SSB70-5 70 7565 35 1000 180 1.790E+12 11806.3 3.95 0.500 100
56 SSB70-6 70 8350 40 1000 200 2.432E+12 12515.3 4.47 0.500 125
57 SSB80-0 80 4450 30 600 40 2.345E+11 8320.7 1.30 0.500 -25
58 SSB80-1 80 5250 35 800 60 4.690E+11 9096.7 1.76 0.500 0
59 SSB80-2 80 6175 35 1000 70 7.864E+11 9702.1 2.21 0.500 25
60 SSB80-3 80 7000 35 1000 110 1.247E+12 10557.6 2.67 0.500 50
61 SSB80-4 80 7850 35 1000 170 1.901E+12 11731.3 3.12 0.500 75
62 SSB80-5 80 8875 35 1000 200 2.642E+12 12487.7 3.57 0.500 100
63 SSB80-6 80 9800 40 1000 220 3.576E+12 13236.2 4.03 0.500 125

Note: abbr. of structure name, e.g. SSB20-3: Single-spanSteelBridge Length=20m - Nr.3

Table B.1.: Single-span steel bridges — geometry
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B.1. Design of the individual single-span steel bridges

B.1.4. Utilization factors for ULS of the individual bridges

Nr. Name
ηULS [%]

Nr. Name
ηULS [%]

with LM71 with SW/2 with LM71 with SW/2
UC LC UC LC UC LC UC LC

1 SSB7-0 37 132 26 94 36 SSB50-0 81 161 73 144
2 SSB7-1 27 96 19 68 37 SSB50-1 56 84 51 76
3 SSB7-2 22 72 15 51 38 SSB50-2 44 57 40 51
4 SSB7-3 18 53 13 38 39 SSB50-3 36 42 33 38
5 SSB7-4 15 43 11 31 40 SSB50-4 31 32 28 29
6 SSB7-5 14 33 10 24 41 SSB50-5 27 26 24 24
7 SSB7-6 12 29 9 21 42 SSB50-6 22 22 20 20
8 SSB10-0 45 160 34 120 43 SSB60-0 78 163 70 148
9 SSB10-1 32 99 24 75 44 SSB60-1 61 89 55 80
10 SSB10-2 25 66 19 50 45 SSB60-2 48 59 44 53
11 SSB10-3 21 50 16 38 46 SSB60-3 40 42 36 38
12 SSB10-4 18 34 14 26 47 SSB60-4 34 32 31 29
13 SSB10-5 16 28 12 21 48 SSB60-5 30 24 27 22
14 SSB10-6 14 23 11 18 49 SSB60-6 25 22 23 20
15 SSB20-0 78 212 69 188 50 SSB70-0 83 165 76 151
16 SSB20-1 50 99 44 88 51 SSB70-1 60 93 54 85
17 SSB20-2 35 65 32 58 52 SSB70-2 50 56 45 51
18 SSB20-3 28 50 25 44 53 SSB70-3 41 42 38 38
19 SSB20-4 23 34 21 31 54 SSB70-4 35 31 33 29
20 SSB20-5 21 24 18 22 55 SSB70-5 31 25 29 23
21 SSB20-6 19 16 17 14 56 SSB70-6 26 21 24 20
22 SSB30-0 78 198 73 186 57 SSB80-0 88 167 80 151
23 SSB30-1 54 99 51 93 58 SSB80-1 63 96 57 87
24 SSB30-2 42 62 40 58 59 SSB80-2 51 65 47 59
25 SSB30-3 30 45 28 43 60 SSB80-3 44 47 40 43
26 SSB30-4 26 32 24 30 61 SSB80-4 38 32 35 30
27 SSB30-5 22 25 21 23 62 SSB80-5 33 26 31 24
28 SSB30-6 20 19 19 18 63 SSB80-6 28 23 26 21
29 SSB40-0 88 161 80 146
30 SSB40-1 65 78 59 70 UC...upper chord
31 SSB40-2 44 55 40 50 LC...lower chord
32 SSB40-3 36 39 33 35
33 SSB40-4 30 29 28 26 fyd = f(tLC)

34 SSB40-5 26 23 24 21 according to [40]
35 SSB40-6 23 19 21 18

Table B.2.: Single-span steel bridges — utilization for ULS
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Appendix B. Single-span steel bridges

B.1.5. Suitability of individual bridges for high-speed railway lines

Nr. Name
|aHSLM−A,max| [m/s2]

Nr. Name
|aHSLM−A,max| [m/s2]

vmax =

240 km/h
vmax =

300 km/h
vmax =

240 km/h
vmax =

300 km/h
1 SSB7-0 47.36 78.04 36 SSB50-0 13.56 13.56
2 SSB7-1 17.71 38.02 37 SSB50-1 12.45 12.45
3 SSB7-2 18.36 20.21 38 SSB50-2 6.84 11.90
4 SSB7-3 19.06 19.06 39 SSB50-3 6.58 6.58
5 SSB7-4 19.44 19.75 40 SSB50-4 3.17 6.27
6 SSB7-5 9.21 20.38 41 SSB50-5 3.03 3.03
7 SSB7-6 7.81 18.49 42 SSB50-6 2.29 2.88
8 SSB10-0 59.84 77.74 43 SSB60-0 7.28 7.87
9 SSB10-1 18.64 50.40 44 SSB60-1 6.79 6.79

10 SSB10-2 9.98 18.56 45 SSB60-2 6.47 6.47
11 SSB10-3 10.27 10.27 46 SSB60-3 6.09 6.09
12 SSB10-4 8.35 10.58 47 SSB60-4 1.86 5.67
13 SSB10-5 8.61 11.09 48 SSB60-5 1.76 4.07
14 SSB10-6 8.97 8.97 49 SSB60-6 1.67 1.67
15 SSB20-0 107.63 107.63 50 SSB70-0 5.77 5.77
16 SSB20-1 18.83 86.55 51 SSB70-1 5.24 5.24
17 SSB20-2 19.24 19.24 52 SSB70-2 4.85 4.85
18 SSB20-3 12.50 19.54 53 SSB70-3 3.94 4.52
19 SSB20-4 7.22 12.64 54 SSB70-4 3.12 4.23
20 SSB20-5 6.16 7.14 55 SSB70-5 1.34 2.94
21 SSB20-6 3.83 6.91 56 SSB70-6 1.27 2.77
22 SSB30-0 47.77 47.77 57 SSB80-0 4.78 4.78
23 SSB30-1 16.15 41.12 58 SSB80-1 4.43 4.43
24 SSB30-2 11.31 15.61 59 SSB80-2 4.13 4.13
25 SSB30-3 8.97 11.05 60 SSB80-3 3.00 3.82
26 SSB30-4 8.55 8.55 61 SSB80-4 2.70 3.26
27 SSB30-5 4.14 8.50 62 SSB80-5 1.42 2.54
28 SSB30-6 4.08 4.99 63 SSB80-6 0.98 2.39
29 SSB40-0 18.83 18.83
30 SSB40-1 17.72 17.72
31 SSB40-2 15.24 16.96
32 SSB40-3 6.68 14.52
33 SSB40-4 5.00 6.36
34 SSB40-5 4.12 6.05
35 SSB40-6 2.14 4.01

Table B.3.: Single-span steel bridges — |aHSLM−A,max| due to HSLM-A
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B.1. Design of the individual single-span steel bridges

Figure B.2.: Single-span steel bridges — suitability for high-speed railway lines — vmax = 240 km/h

Figure B.3.: Single-span steel bridges — suitability for high-speed railway lines — vmax = 300 km/h
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Appendix B. Single-span steel bridges

Figure B.4.: Single-span steel bridges — ΔσE,2,stat due to TM1 — no load distribution

Figure B.5.: Single-span steel bridges — ΔσE,2,stat due to TM1 — load distribution
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B.2. Results for |aHSLM−A,max| of single-span steel bridges due to HSLM-A

B.2. Results for |aHSLM−A,max| of single-span steel bridges due to
HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.6.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due to
HSLM-A trains — vmax = 300 km/h — ζEC — modal damping — no load distribution
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Appendix B. Single-span steel bridges

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.7.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due to
HSLM-A trains — vmax = 300 km/h — ζEC — Rayleigh like damping — no load distribution
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B.2. Results for |aHSLM−A,max| of single-span steel bridges due to HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.8.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due to
HSLM-A trains — vmax = 300 km/h — ζEC — Rayleigh like damping — with load distribution
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Appendix B. Single-span steel bridges

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.9.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due to
HSLM-A trains — vmax = 300 km/h — ζV1 — modal damping — no load distribution
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B.2. Results for |aHSLM−A,max| of single-span steel bridges due to HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.10.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζV1 — Rayleigh like damping — no load

distribution
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Appendix B. Single-span steel bridges

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure B.11.: Single-span steel bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζV1 — Rayleigh like damping — with load

distribution
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B.3. Results for fatigue of single-span steel bridges due to TM1

B.3. Results for fatigue of single-span steel bridges due to TM1

B.3.1. Train speed vEC

Figure B.12.: Single-span steel bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.13.: Single-span steel bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

319



Appendix B. Single-span steel bridges

Figure B.14.: Single-span steel bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.15.: Single-span steel bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.3. Results for fatigue of single-span steel bridges due to TM1

Figure B.16.: Single-span steel bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.17.: Single-span steel bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.18.: Single-span steel bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.19.: Single-span steel bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.3. Results for fatigue of single-span steel bridges due to TM1

B.3.2. Train speed vDmax

Figure B.20.: Single-span steel bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.21.: Single-span steel bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.22.: Single-span steel bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.23.: Single-span steel bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

324



B.3. Results for fatigue of single-span steel bridges due to TM1

Figure B.24.: Single-span steel bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.25.: Single-span steel bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.26.: Single-span steel bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.27.: Single-span steel bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.3. Results for fatigue of single-span steel bridges due to TM1

B.3.3. Train speed vamax

Figure B.28.: Single-span steel bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.29.: Single-span steel bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.30.: Single-span steel bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.31.: Single-span steel bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.3. Results for fatigue of single-span steel bridges due to TM1

Figure B.32.: Single-span steel bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.33.: Single-span steel bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.34.: Single-span steel bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.35.: Single-span steel bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.4. Results of single-span steel bridges due to TM2

B.4. Results of single-span steel bridges due to TM2

Figure B.36.: Single-span steel bridges — traffic mix TM2-st — ζEC — Rayleigh like damping
— no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.37.: Single-span steel bridges — traffic mix TM2-st — ζEC — Rayleigh like damping
— no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.38.: Single-span steel bridges — traffic mix TM2-st — ζV1 — Rayleigh like damping
— no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.39.: Single-span steel bridges — traffic mix TM2-st — ζV1 — Rayleigh like damping
— no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.4. Results of single-span steel bridges due to TM2

Figure B.40.: Single-span steel bridges — traffic mix TM2-st — ζEC — Rayleigh like damping
— load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.41.: Single-span steel bridges — traffic mix TM2-st — ζEC — Rayleigh like damping
— load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat

333



Appendix B. Single-span steel bridges

Figure B.42.: Single-span steel bridges — traffic mix TM2-st — ζV1 — Rayleigh like damping
— load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.43.: Single-span steel bridges — traffic mix TM2-st — ζV1 — Rayleigh like damping
— load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.5. Results of single-span steel bridges due to TM3

B.5. Results of single-span steel bridges due to TM3

Figure B.44.: Single-span steel bridges — traffic mix TM3-st — ζEC — Rayleigh like damping
— no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.45.: Single-span steel bridges — traffic mix TM3-st — ζEC — Rayleigh like damping
— no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.46.: Single-span steel bridges — traffic mix TM3-st — ζV1 — Rayleigh like damping
— no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.47.: Single-span steel bridges — traffic mix TM3-st — ζV1 — Rayleigh like damping
— no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.5. Results of single-span steel bridges due to TM3

Figure B.48.: Single-span steel bridges — traffic mix TM3-st — ζEC — Rayleigh like damping
— load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.49.: Single-span steel bridges — traffic mix TM3-st — ζEC — Rayleigh like damping
— load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.50.: Single-span steel bridges — traffic mix TM3-st — ζV1 — Rayleigh like damping
— load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.51.: Single-span steel bridges — traffic mix TM3-st — ζV1 — Rayleigh like damping
— load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

B.6. Results of single-span steel bridges due to TM4

B.6.1. Train speed vTrain

Figure B.52.: Single-span steel bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.53.: Single-span steel bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.54.: Single-span steel bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.55.: Single-span steel bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

Figure B.56.: Single-span steel bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.57.: Single-span steel bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.58.: Single-span steel bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.59.: Single-span steel bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

B.6.2. Train speed vDmax

Figure B.60.: Single-span steel bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.61.: Single-span steel bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.62.: Single-span steel bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.63.: Single-span steel bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

Figure B.64.: Single-span steel bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.65.: Single-span steel bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.66.: Single-span steel bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.67.: Single-span steel bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

B.6.3. Train speed vamax

Figure B.68.: Single-span steel bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.69.: Single-span steel bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.70.: Single-span steel bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.71.: Single-span steel bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.6. Results of single-span steel bridges due to TM4

Figure B.72.: Single-span steel bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.73.: Single-span steel bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.74.: Single-span steel bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.75.: Single-span steel bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

B.7. Results of single-span steel bridges due to TM5

B.7.1. Train speed vTrain

Figure B.76.: Single-span steel bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.77.: Single-span steel bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.78.: Single-span steel bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.79.: Single-span steel bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

Figure B.80.: Single-span steel bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.81.: Single-span steel bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.82.: Single-span steel bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.83.: Single-span steel bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

B.7.2. Train speed vDmax

Figure B.84.: Single-span steel bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.85.: Single-span steel bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.86.: Single-span steel bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.87.: Single-span steel bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

Figure B.88.: Single-span steel bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.89.: Single-span steel bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.90.: Single-span steel bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.91.: Single-span steel bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

B.7.3. Train speed vamax

Figure B.92.: Single-span steel bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.93.: Single-span steel bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.94.: Single-span steel bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.95.: Single-span steel bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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B.7. Results of single-span steel bridges due to TM5

Figure B.96.: Single-span steel bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.97.: Single-span steel bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix B. Single-span steel bridges

Figure B.98.: Single-span steel bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure B.99.: Single-span steel bridges — traffic mix TM5*** — vamax — ζECV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C.

Single-span composite bridges

C.1. Design of the individual composite bridges

C.1.1. Studied section type

Open cross sections — see Figure C.1

Figure C.1.: Composite bridges — geometry overview — material S355, C35/45

C.1.2. General approach

a.) ULS design for each bridge (S355, C35/45) of length L due to permanent loads and LM71,
SW/2 in order to determine the ”base” section geometry (hMG,a ≈ L/12 ⇒ wUC, tUC, wLC
and tLC). The loads were distinguished into loads acting on the steel cross section only
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Appendix C. Single-span composite bridges

and on the composite cross section. In the first step the required areas of the steel-chords
were estimated using Equations C.1 and C.2. In the next step the normal stresses at the
points UC-c, UC-a and LC-a — see Figure C.1 — were calculated and the utilization
ratios summarized in Table C.2.

b.) Varying the geometry of the ”base” section geometry in order to reach different n0 — see
Figures C.2 and C.3

According to [60]:

ALC,a,requ =

M1

hMG,a
+

M2

hMG

fyd
− Aweb

6
(C.1)

AUC,a,requ =

M1

hMG,a
+

M2

hMG
∗ 0.25

fyd
− Aweb

6

with: M1 = f(qa, qc) . . . due to loads on steel cross section
M2 = f(qbb, qeb, LM71, SW/2) . . . due to loads on composite cross section

According to [41], [42] and [35]:

Ed = γG,j,sup ∗ Gk,j,sup + γQ,1 ∗ Qk,1 (C.2)

with: γG,j,sup = 1.35

γQ,LM71 = 1.45
γQ,SW/2 = 1.20

QLM71 = My,LM71,k ∗ α ∗ Φ2

QSW/2 = My,SW/2,k ∗ Φ2

α = 1.21

Φ2 =
1.44√

LΦ−0.2
+ 0.82

LΦ = L

γa = 7850 kg/m3

γbb = 2000 kg/m3

qeb = 19.5 kN/m

364



C.1. Design of the individual composite bridges

C.1.3. Studied individual composite bridges

μ = γa ∗ Aa + γbb ∗ Abb + γc ∗ Ac + μeb (C.3)

with: γa = 7850 kg/m3

γbb = 2000 kg/m3

γc = 2500 kg/m3

μeb = 1950 kg/m

Abb = 4.5 ∗ 0.6 = 2.7 m2

n0 =
π

2 ∗ L
∗
√

EIy

μ
(C.4)

Nr. Name
L
[m]

hMG

[mm]

wUC

[mm]

tUC

[mm]

wLC

[mm]

tLC

[mm]

EIy

[Nm2]

μ

[kg/m]

n0

[Hz]
ζEC

[%]

FB
[%]

1 SCB7-0 7 375 220 20 220 20 1.094E+09 14664 8.76 2.302 -25
2 SCB7-1 7 530 220 20 250 20 1.857E+09 14717 11.39 2.302 0
3 SCB7-2 7 590 220 20 350 25 2.873E+09 14792 14.13 2.302 25
4 SCB7-3 7 655 220 20 400 30 4.049E+09 14861 16.73 2.302 50
5 SCB7-4 7 755 220 20 450 30 5.507E+09 14913 19.48 2.302 75
6 SCB7-5 7 830 220 20 450 35 7.092E+09 14969 22.06 2.302 100
7 SCB7-6 7 875 220 20 500 40 8.954E+09 15047 24.73 2.302 125
8 SCB10-0 10 505 275 20 275 20 1.978E+09 14744 5.75 2.079 -25
9 SCB10-1 10 685 275 20 335 25 3.882E+09 14839 8.03 2.079 0
10 SCB10-2 10 830 275 20 375 30 6.329E+09 14924 10.23 2.079 25
11 SCB10-3 10 950 275 20 425 35 9.454E+09 15014 12.46 2.079 50
12 SCB10-4 10 1025 275 20 515 40 1.318E+10 15125 14.66 2.079 75
13 SCB10-5 10 1150 275 20 585 40 1.762E+10 15204 16.91 2.079 100
14 SCB10-6 10 1250 275 20 615 45 2.278E+10 15299 19.17 2.079 125
15 SCB20-0 20 765 375 30 375 30 6.027E+09 15010 2.49 0.796 -25
16 SCB20-1 20 1015 375 30 600 40 1.564E+10 15279 3.97 0.796 0

Continued on next page
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Appendix C. Single-span composite bridges

Table C.1 – continued from previous page

Nr. Name
L
[m]

hMG

[mm]

wUC

[mm]

tUC

[mm]

wLC

[mm]

tLC

[mm]

EIy

[Nm2]

μ

[kg/m]

n0

[Hz]
ζEC

[%]

FB
[%]

17 SCB20-2 20 1425 375 30 625 40 3.016E+10 15411 5.49 0.796 25
18 SCB20-3 20 1675 375 30 685 50 4.998E+10 15625 7.02 0.796 50
19 SCB20-4 20 1855 375 30 810 60 7.555E+10 15900 8.56 0.796 75
20 SCB20-5 20 2055 375 30 950 65 1.066E+11 16162 10.08 0.796 100
21 SCB20-6 20 2300 375 30 995 70 1.424E+11 16355 11.59 0.796 125
22 SCB30-0 30 1300 450 35 550 35 2.171E+10 15367 2.07 0.500 -25
23 SCB30-1 30 1750 450 35 665 45 5.043E+10 15660 3.13 0.500 0
24 SCB30-2 30 2425 450 35 600 45 9.233E+10 15805 4.22 0.500 25
25 SCB30-3 30 2570 450 35 865 60 1.502E+11 16235 5.31 0.500 50
26 SCB30-4 30 2865 450 35 1000 70 2.217E+11 16601 6.38 0.500 75
27 SCB30-5 30 3300 450 35 1000 75 3.056E+11 16802 7.44 0.500 100
28 SCB30-6 30 3735 450 35 1000 80 4.064E+11 17003 8.53 0.500 125
29 SCB40-0 40 1985 550 40 550 40 5.479E+10 15715 1.83 0.500 -25
30 SCB40-1 40 2495 550 40 750 50 1.181E+11 16102 2.66 0.500 0
31 SCB40-2 40 3325 550 40 700 50 2.072E+11 16297 3.50 0.500 25
32 SCB40-3 40 3925 550 40 750 55 3.207E+11 16564 4.32 0.500 50
33 SCB40-4 40 4150 550 40 925 75 4.718E+11 17066 5.16 0.500 75
34 SCB40-5 40 4450 550 40 1000 100 6.598E+11 17628 6.01 0.500 100
35 SCB40-6 40 4925 550 40 1000 115 8.714E+11 17996 6.83 0.500 125
36 SCB50-0 50 2450 625 45 795 45 1.115E+11 16169 1.65 0.500 -25
37 SCB50-1 50 3325 625 45 730 55 2.240E+11 16484 2.38 0.500 0
38 SCB50-2 50 4215 625 45 775 55 3.828E+11 16774 3.00 0.500 25
39 SCB50-3 50 4975 625 45 830 60 5.897E+11 17101 3.70 0.500 50
40 SCB50-4 50 5515 625 45 975 70 8.567E+11 17542 4.39 0.500 75
41 SCB50-5 50 5875 625 45 1000 100 1.181E+12 18138 5.08 0.500 100
42 SCB50-6 50 6250 625 45 1000 140 1.583E+12 18866 5.76 0.500 125
43 SCB60-0 60 3100 715 50 790 50 1.933E+11 16543 1.49 0.500 -25
44 SCB60-1 60 4075 715 50 815 60 3.852E+11 16965 2.08 0.500 0
45 SCB60-2 60 5000 715 50 900 65 6.517E+11 17376 2.67 0.500 25
46 SCB60-3 60 5800 715 50 975 75 9.977E+11 17831 3.26 0.500 50

Continued on next page
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C.1. Design of the individual composite bridges

Table C.1 – continued from previous page

Nr. Name
L
[m]

hMG

[mm]

wUC

[mm]

tUC

[mm]

wLC

[mm]

tLC

[mm]

EIy

[Nm2]

μ

[kg/m]

n0

[Hz]
ζEC

[%]

FB
[%]

47 SCB60-4 60 6605 715 50 1000 85 1.414E+12 18243 3.84 0.500 75
48 SCB60-5 60 6950 715 50 1000 135 1.966E+12 19118 4.42 0.500 100
49 SCB60-6 60 7460 715 50 1000 185 2.639E+12 20041 5.01 0.500 125
50 SCB70-0 70 3715 735 60 850 60 3.274E+11 17029 1.41 0.500 -25
51 SCB70-1 70 4850 735 60 900 65 6.177E+11 17467 1.91 0.500 0
52 SCB70-2 70 5895 735 60 975 70 1.011E+12 17914 2.41 0.500 25
53 SCB70-3 70 6850 735 60 1000 85 1.548E+12 18445 2.94 0.500 50
54 SCB70-4 70 7675 735 60 1000 105 2.179E+12 18989 3.43 0.500 75
55 SCB70-5 70 8050 735 60 1000 175 3.062E+12 20184 3.95 0.500 100
56 SCB70-6 70 8750 735 60 1000 225 4.077E+12 21160 4.45 0.500 125
57 SCB80-0 80 4350 825 65 900 65 4.961E+11 17488 1.31 0.500 -25
58 SCB80-1 80 5500 825 65 1000 75 9.263E+11 18070 1.76 0.500 0
59 SCB80-2 80 6750 825 65 1000 85 1.522E+12 18579 2.22 0.500 25
60 SCB80-3 80 7500 825 65 1000 125 2.291E+12 19413 2.67 0.500 50
61 SCB80-4 80 8350 825 65 1000 165 3.272E+12 20276 3.12 0.500 75
62 SCB80-5 80 9125 825 65 1000 225 4.535E+12 21428 3.57 0.500 100
63 SCB80-6 80 9985 825 65 1000 285 6.057E+12 22605 4.02 0.500 125

Note: abbr. of structure name, e.g. SCB20-3: SingleCompositeBridge Length=20m - Nr.3

Table C.1.: Composite bridges — geometry
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C.1.4. Utilization factors for ULS of the individual bridges

Nr. Name
ηULS [%]

with LM71 with SW/2
UC-c UC-a LC-a UC-c UC-a LC-a

1 SCB7-0 83 16 122 61 21 98
2 SCB7-1 55 14 86 40 16 68
3 SCB7-2 41 15 57 30 16 45
4 SCB7-3 33 14 42 24 15 33
5 SCB7-4 26 13 34 19 13 27
6 SCB7-5 23 12 28 17 12 22
7 SCB7-6 20 12 22 15 11 17
8 SCB10-0 86 23 152 67 27 127
9 SCB10-1 52 21 92 40 22 76

10 SCB10-2 37 19 63 29 19 52
11 SCB10-3 29 17 46 22 17 38
12 SCB10-4 24 16 34 18 16 28
13 SCB10-5 20 15 27 15 14 22
14 SCB10-6 17 13 23 13 13 19
15 SCB20-0 104 46 220 93 47 203
16 SCB20-1 56 41 99 51 41 91
17 SCB20-2 37 30 67 33 30 62
18 SCB20-3 28 26 46 25 25 43
19 SCB20-4 23 23 32 21 23 30
20 SCB20-5 20 21 25 18 21 23
21 SCB20-6 17 19 20 16 18 18
22 SCB30-0 89 60 183 85 60 175
23 SCB30-1 55 47 100 52 46 96
24 SCB30-2 39 34 74 37 33 71
25 SCB30-3 32 32 44 30 31 43
26 SCB30-4 27 28 33 26 28 31
27 SCB30-5 23 24 27 22 24 26
28 SCB30-6 20 21 22 19 20 21

Continued on next page
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C.1. Design of the individual composite bridges

Table C.2 – continued from previous page

Nr. Name
ηULS [%]

with LM71 with SW/2
UC-c UC-a LC-a UC-c UC-a LC-a

29 SCB40-0 85 62 174 77 61 164
30 SCB40-1 58 50 97 53 49 91
31 SCB40-2 42 37 72 39 36 68
32 SCB40-3 34 31 54 31 30 50
33 SCB40-4 30 29 37 27 28 35
34 SCB40-5 26 27 27 24 26 26
35 SCB40-6 23 24 24 21 23 22
36 SCB50-0 88 72 154 79 70 144
37 SCB50-1 61 54 100 55 52 93
38 SCB50-2 46 42 73 42 41 68
39 SCB50-3 37 35 54 34 34 51
40 SCB50-4 32 31 41 29 30 38
41 SCB50-5 28 29 31 26 28 29
42 SCB50-6 26 27 24 23 26 23
43 SCB60-0 90 74 155 82 72 145
44 SCB60-1 64 56 98 58 55 92
45 SCB60-2 50 46 71 45 44 66
46 SCB60-3 41 39 52 37 37 49
47 SCB60-4 35 33 42 32 32 39
48 SCB60-5 31 32 31 28 31 29
49 SCB60-6 28 30 24 25 29 23
50 SCB70-0 91 77 142 84 74 134
51 SCB70-1 67 59 98 61 57 92
52 SCB70-2 53 48 71 48 46 67
53 SCB70-3 43 41 54 40 39 51
54 SCB70-4 37 36 44 34 35 42
55 SCB70-5 33 34 31 31 33 29
56 SCB70-6 30 32 25 27 31 24
57 SCB80-0 94 81 144 85 78 135
58 SCB80-1 70 64 93 64 61 88

Continued on next page
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Table C.2 – continued from previous page

Nr. Name
ηULS [%]

with LM71 with SW/2
UC-c UC-a LC-a UC-c UC-a LC-a

59 SCB80-2 55 52 70 50 50 66
60 SCB80-3 47 46 52 42 44 49
61 SCB80-4 40 41 40 37 40 38
62 SCB80-5 35 38 31 32 37 29
63 SCB80-6 31 35 25 28 34 24

UC-c...upper chord concrete
UC-a...upper chord steel
LC-a...lower chord steel
fyd = f(tLC) according to [40]

Table C.2.: Composite bridges — utilization for ULS
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C.1. Design of the individual composite bridges

C.1.5. Suitability of individual composite bridges for high-speed railway lines

Nr. Name
|aHSLM−A,max| [m/s2]

Nr. Name
|aHSLM−A,max| [m/s2]

vmax =

240 km/h
vmax =

300 km/h
vmax =

240 km/h
vmax =

300 km/h
1 SCB7-0 20.19 34.80 36 SCB50-0 6.31 6.31
2 SCB7-1 7.92 18.52 37 SCB50-1 6.22 6.22
3 SCB7-2 8.22 8.45 38 SCB50-2 3.53 6.14
4 SCB7-3 8.57 8.57 39 SCB50-3 3.46 3.67
5 SCB7-4 8.76 8.95 40 SCB50-4 1.70 3.37
6 SCB7-5 4.16 9.19 41 SCB50-5 1.64 1.64
7 SCB7-6 3.47 8.52 42 SCB50-6 1.24 1.58
8 SCB10-0 26.81 34.60 43 SCB60-0 3.48 3.75
9 SCB10-1 8.51 22.68 44 SCB60-1 3.37 3.37
10 SCB10-2 4.50 8.44 45 SCB60-2 3.33 3.33
11 SCB10-3 4.68 4.68 46 SCB60-3 3.25 3.25
12 SCB10-4 3.82 4.81 47 SCB60-4 1.05 3.17
13 SCB10-5 4.00 5.09 48 SCB60-5 1.00 2.29
14 SCB10-6 4.15 4.15 49 SCB60-6 0.95 0.95
15 SCB20-0 48.38 48.38 50 SCB70-0 2.76 2.76
16 SCB20-1 8.31 39.39 51 SCB70-1 2.69 2.69
17 SCB20-2 8.85 8.85 52 SCB70-2 2.62 2.62
18 SCB20-3 5.80 9.00 53 SCB70-3 2.15 2.54
19 SCB20-4 3.35 5.90 54 SCB70-4 1.82 2.47
20 SCB20-5 2.81 3.43 55 SCB70-5 0.78 1.72
21 SCB20-6 1.90 3.50 56 SCB70-6 0.75 1.64
22 SCB30-0 21.52 21.52 57 SCB80-0 2.31 2.31
23 SCB30-1 7.36 20.35 58 SCB80-1 2.21 2.21
24 SCB30-2 5.37 7.40 59 SCB80-2 2.16 2.16
25 SCB30-3 4.18 5.28 60 SCB80-3 1.63 2.08
26 SCB30-4 4.26 4.26 61 SCB80-4 1.56 1.89
27 SCB30-5 2.07 4.27 62 SCB80-5 0.82 1.48
28 SCB30-6 2.08 2.30 63 SCB80-6 0.58 1.40
29 SCB40-0 8.73 8.73
30 SCB40-1 8.53 8.53
31 SCB40-2 7.52 8.45
32 SCB40-3 3.42 7.44
33 SCB40-4 2.75 3.35
34 SCB40-5 2.16 3.23
35 SCB40-6 1.15 2.16

Table C.3.: Composite bridges — |amax| due to HSLM-A
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Appendix C. Single-span composite bridges

Figure C.2.: Composite bridges — suitability for high-speed railway lines — vmax = 240 km/h

Figure C.3.: Composite bridges — suitability for high-speed railway lines — vmax = 300 km/h
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C.1. Design of the individual composite bridges

Figure C.4.: Composite bridges — ΔσE,2,stat due to TM1 — no load distribution

Figure C.5.: Composite bridges — ΔσE,2,stat due to TM1 — load distribution
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Appendix C. Single-span composite bridges

C.2. Results for |aHSLM−A,max| of single-span composite bridges
bridges due to HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure C.6.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζEC — Rayleigh like damping — no load distribution
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C.2. Results for |aHSLM−A,max| of single-span composite bridges bridges due to HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure C.7.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζEC — rayleigh like damping — load distribution
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Appendix C. Single-span composite bridges

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure C.8.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζV1 — Rayleigh like damping — no load distribution
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C.2. Results for |aHSLM−A,max| of single-span composite bridges bridges due to HSLM-A

(a) 3D-view

(b) top view |aHSLM−A,max| ≤ 3.5 [m/s2]

(c) top view |aHSLM−A,max| ≤ 6.0 [m/s2]

Figure C.9.: Single-span composite bridges — vertical bridge deck acceleration |aHSLM−A,max| due
to HSLM-A trains — vmax = 300 km/h — ζV1 — Rayleigh like damping — with load distribution
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Appendix C. Single-span composite bridges

C.3. Results for fatigue of single-span composite bridges due to TM1

C.3.1. Train speed vEC

Figure C.10.: Single-span composite bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.11.: Single-span composite bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.12.: Single-span composite bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.13.: Single-span composite bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.14.: Single-span composite bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.15.: Single-span composite bridges — traffic mix TM1* — vEC — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.16.: Single-span composite bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.17.: Single-span composite bridges — traffic mix TM1* — vEC — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.3.2. Train speed vDmax

Figure C.18.: Single-span composite bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.19.: Single-span composite bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.20.: Single-span composite bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.21.: Single-span composite bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.22.: Single-span composite bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.23.: Single-span composite bridges — traffic mix TM1** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.24.: Single-span composite bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.25.: Single-span composite bridges — traffic mix TM1** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.3.3. Train speed vamax

Figure C.26.: Single-span composite bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.27.: Single-span composite bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.28.: Single-span composite bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.29.: Single-span composite bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.30.: Single-span composite bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.31.: Single-span composite bridges — traffic mix TM1*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.3. Results for fatigue of single-span composite bridges due to TM1

Figure C.32.: Single-span composite bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.33.: Single-span composite bridges — traffic mix TM1*** — vamax — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.4. Results of single-span composite bridges due to TM2

Figure C.34.: Single-span composite bridges — traffic mix TM2-st — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.35.: Single-span composite bridges — traffic mix TM2-st — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.4. Results of single-span composite bridges due to TM2

Figure C.36.: Single-span composite bridges — traffic mix TM2-st — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.37.: Single-span composite bridges — traffic mix TM2-st — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.38.: Single-span composite bridges — traffic mix TM2-st — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.39.: Single-span composite bridges — traffic mix TM2-st — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.4. Results of single-span composite bridges due to TM2

Figure C.40.: Single-span composite bridges — traffic mix TM2-st — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.41.: Single-span composite bridges — traffic mix TM2-st — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.5. Results of single-span steel bridges due to TM3

Figure C.42.: Single-span composite bridges — traffic mix TM3-st — ζEC — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.43.: Single-span composite bridges — traffic mix TM3-st — ζEC — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.5. Results of single-span steel bridges due to TM3

Figure C.44.: Single-span composite bridges — traffic mix TM3-st — ζV1 — Rayleigh like
damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.45.: Single-span composite bridges — traffic mix TM3-st — ζV1 — Rayleigh like
damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.46.: Single-span composite bridges — traffic mix TM3-st — ζEC — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.47.: Single-span composite bridges — traffic mix TM3-st — ζEC — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.5. Results of single-span steel bridges due to TM3

Figure C.48.: Single-span composite bridges — traffic mix TM3-st — ζV1 — Rayleigh like
damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.49.: Single-span composite bridges — traffic mix TM3-st — ζV1 — Rayleigh like
damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.6. Results of single-span composite bridges due to TM4

C.6.1. Train speed vTrain

Figure C.50.: Single-span composite bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.51.: Single-span composite bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.52.: Single-span composite bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.53.: Single-span composite bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.54.: Single-span composite bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.55.: Single-span composite bridges — traffic mix TM4* — vTrain — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.56.: Single-span composite bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.57.: Single-span composite bridges — traffic mix TM4* — vTrain — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.6.2. Train speed vDmax

Figure C.58.: Single-span composite bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.59.: Single-span composite bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.60.: Single-span composite bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.61.: Single-span composite bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.62.: Single-span composite bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.63.: Single-span composite bridges — traffic mix TM4** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.64.: Single-span composite bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.65.: Single-span composite bridges — traffic mix TM4** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.6.3. Train speed vamax

Figure C.66.: Single-span composite bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.67.: Single-span composite bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.68.: Single-span composite bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.69.: Single-span composite bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.70.: Single-span composite bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.71.: Single-span composite bridges — traffic mix TM4*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.6. Results of single-span composite bridges due to TM4

Figure C.72.: Single-span composite bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.73.: Single-span composite bridges — traffic mix TM4*** — vamax — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.7. Results of single-span composite bridges due to TM5

C.7.1. Train speed vTrain

Figure C.74.: Single-span composite bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.75.: Single-span composite bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.76.: Single-span composite bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.77.: Single-span composite bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.78.: Single-span composite bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.79.: Single-span composite bridges — traffic mix TM5* — vTrain — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.80.: Single-span composite bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.81.: Single-span composite bridges — traffic mix TM5* — vTrain — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.7.2. Train speed vDmax

Figure C.82.: Single-span composite bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.83.: Single-span composite bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.84.: Single-span composite bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.85.: Single-span composite bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.86.: Single-span composite bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.87.: Single-span composite bridges — traffic mix TM5** — vDmax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.88.: Single-span composite bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.89.: Single-span composite bridges — traffic mix TM5** — vDmax — ζV1 — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

C.7.3. Train speed vamax

Figure C.90.: Single-span composite bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.91.: Single-span composite bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.92.: Single-span composite bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.93.: Single-span composite bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh
like damping — no load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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Appendix C. Single-span composite bridges

Figure C.94.: Single-span composite bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.95.: Single-span composite bridges — traffic mix TM5*** — vamax — ζEC — Rayleigh
like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| & ΔσE,2,stat
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C.7. Results of single-span composite bridges due to TM5

Figure C.96.: Single-span composite bridges — traffic mix TM5*** — vamax — ζV1 — Rayleigh
like damping — load distribution — top view Ddyn & |aHSLM−A,max|

Figure C.97.: Single-span composite bridges — traffic mix TM5*** — vamax — ζECV1
— Rayleigh like damping — load distribution — top view ΔσE,2,dyn & |aHSLM−A,max| &

ΔσE,2,stat
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