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Abstract

Magnetic resonance imaging is an important medical diagnostic tool. Unfortunately, due
to physical limitations, this imaging technique is rather slow. In order to mitigate the
disadvantage associated with slow scan times, accelerated data acquisition methods are
utilized, resulting in a significant reduction in image quality. Therefore, over the years,
much research has been aimed at improving the quality of MRI reconstruction, including a
number of approaches that require the calculation of coil sensitivities. This thesis explores
the potential of Fields-of-Experts-regularized variational networks for reconstruction of
accelerated MRI data without explicit usage of coil sensitivities. First, multi-coil image-
domain regularization approaches are discussed. Then, VN with fixed acquired data is
derived, and methods of additional k-space regularization are proposed. We have trained
a number of networks, and the results indicate that our models without coil sensitivities
and with fewer parameters than the original VarNet by Hammernik et al. demonstrate
comparable or even superior performance. In addition, the experiments show that the use
of k-space regularization leads to an improvement in the quality of reconstruction.

Keywords. parallel MRI, image reconstruction, comressed sensing, variational network,
deep learning
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Kurzfassung

Die Magnetresonanztomographie ist ein wichtiges medizinisches Diagnoseinstrument.
Leider ist dieses bildgebende Verfahren aufgrund physikalischer Einschrankungen ziemlich
langsam. Um den mit langsamen Scanzeiten verbundenen Nachteil zu mildern, werden
beschleunigte Datenerfassungsmethoden eingesetzt, was zu einer erheblichen Verringerung
der Bildqualitat fithrt. Daher wurde im Laufe der Jahre viel geforscht, um die Qualitat
der MRT-Rekonstruktion zu verbessern, einschliefilich einer Reihe von Ansétzen, die
die Berechnung von Spulenempfindlichkeiten erfordern. In dieser Arbeit wird das
Potenzial von Fields-of-Experts-regulierten Variationsnetzwerken fiir die Rekonstruktion
beschleunigter MRT-Daten ohne explizite Verwendung von Spulenempfindlichkeiten
untersucht. Zunéachst werden Multi-Coil-Bildbereichs-Regularisierungsansétze diskutiert.
Dann wird Variationsnetzwerk mit fest erfassten Daten abgeleitet und es werden
Methoden zur zusatzlichen k-Raum-Regularisierung vorgeschlagen. Eine Reihe von
Netzwerken wurde trainiert und die Ergebnisse zeigen, dass unsere Modelle ohne
Spulenempfindlichkeiten und mit weniger Parametern als das urspriingliche VarNet von
Hammernik u.a. eine vergleichbare oder sogar iiberlegene Leistung zeigen. Dariiber
hinaus zeigen die Experimente, dass die Verwendung der k-Raum-Regulierung zu einer
Verbesserung der Qualitat der Rekonstruktion fiihrt.
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1.1 Parallel imaging

Magnetic Resonance Tomography (MRT/MRI) is increasingly popular, noninvasive tech-
nique of medical imaging. It works by detecting radio waves emitted by hydrogen atoms
under excitation in a magnetic field. The frequency of emitted signal as well as resonance
frequency depend on external field strength. This underlies the main technique of signal
localization in MRI: computing the frequency components of the magnetic flux originat-
ing from tissue placed in a varying magnetic field. For this reason MRI scanners have a
number of builtin coils: superconducting coil magnet for creating strong magnetic field,
gradient coils for frequency and phase encodings, receiver coils for signal registration, etc.

Surface coils were introduced for the benefit of increasing Signal-to-Noise Ratio (SNR).
Obviously, placing additional coils in the immediate vicinity of the inspected object im-
proves detection of electromagnetic waves, which allows recording a signal of better quality.
Early coil array designs were impaired by the issue of coil interactions. The solution to
this problem was proposed in the fundamental work by Roemer et al., thereby allowing
simultaneous multi-coil acquisition [1].
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However, in contrast to full-body coil, due to the physical phenomenon of propagation
of electromagnetic waves, surface coil sensitivities are highly non-uniform: detected signal
strength depends on spatial location of the point emitting the signal. Therefore, individual
coil images have different gradually changing intensity. Nevertheless, this property of
surface coils has turned to be a valuable source of additional information in recovering the
spatial location of the signal origin, besides standard frequency and phase encodings.

The main disadvantage of MRI compared to other modern medical imaging methods
(in addition to high maintenance costs, e.g., expensive liquid helium needs to be topped
up periodically) is long scan time. The possibility of multiple coil acquisition for acceler-
ating MRI was theoretically proved by Kelton et al. [2] In general terms, acceleration is
performed by reducing the number of phase encoding steps. The first practically appli-
cable reconstruction methods for accelerated MRI were SMASH [3] and later SENSE [4].
Besides these two, other methods has since emerged.

In the following sections several reconstruction methods are presented, of which SENSE
and GRAPPA [5] are the most common and commercially available.

1.2 SENSE

One of the main techniques in accelerated MRI reconstruction is SENSE (the name comes
from SENSitivity Encoding), proposed by Pruessman et al. [4] In SENSE, data collected
from a single coil is modeled by the equation

bj = MFS;u + n;, (1.1)

where M is sampling operator, S; is coil sensitivity, u is true image, and n; is noise. Every
voxel from the slice is encoded with coil sensitivity weight. Thus, SENSE poses MRI
reconstruction as an inverse problem to the system

Au=1b (1.2)

Here A = MFS includes sensitivity weighting, Discrete Fourier Transform (DFT), and
sampling operator with the reduction factor R. For the existence of unique solution, we
additionally require that R cannot be greater than the number of coils. SENSE recon-

struction then means finding the solution to the least squares problem
min + || A — b|) (1.3)
u 2 2

In the most simple form, i.e., with only quadratic terms, when the matrix A is relatively
small (Cartesian sampling with 1D acceleration), and without taking noise into consider-
ation, the solution can be found in a closed form:

ut = (ATA) " AT, (1.4)
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where A denotes conjugate transpose of the matrix A. Fig. 1.1 depicts sample recon-
struction using this scheme along with sensitivity-weighted reference combination.
In general, iterative schemes are preferred, e.g., variants of gradient descent, namely,
Landweber iteration,

™t =yl — oAl (Au’ —b), (1.5)

or conjugate gradient algorithm (CG SENSE [6]).

SENSE is very flexible, works with arbitrary coil configurations, different sampling
trajectories, but requires knowledge of the magnetic field of each coil. Thus, one must
first solve the sensitivity estimation problem with adequate accuracy, because even small
errors in coil sensitivity estimates affect reconstruction quality leaving artifacts. The
original paper describes the method for coil sensitivity estimation. Other algorithms have

since been developed, for example ESPIRIT [7].

Figure 1.1: An example of SENSE reconstruction with acceleration factor R = 4: a) exact
solution, Eq. (1.4), b) CG-SENSE, c) fully sampled reference.

1.3 GRAPPA

Another widely accepted method of parallel imaging techniques is GRAPPA. It is similar
to AUTO-SMASH [8], VD-AUTO-SMASH [9], but in contrast to these methods, GRAPPA
recovers nonacquired data for all coils.

Unlike SENSE, GRAPPA is a direct coil-by-coil k-space domain reconstruction
method. In essence, GRAPPA is based on the assumption that the following relation
holds:

fi = > fexge (1.6)

c€ Coils
where f is a k-space, and g is a shift-invariant convolutional kernel. In other words, each
point in k-space can be approximated by a weighted sum of neighboring points from all
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coils. This means that the reconstruction of missing data x of coil j at position r is merely
a linear combination:

Lrj = Z Mr(fc*Qr,jc)v (17)

c € Coils

where M, is a sampling operator, which selects data at position r, and g, is a set of weights
for approximating data at position r.

As stated above, it is assumed that ¢ is shift-invariant. Therefore, kernel g, can be
approximated from the set of k-space patches where z, and its neighboring points are
known, Auto-Calibration Signal area (ACS):

2

. 1
grj = argmin 7 Z frj — Z Mp(fc*gmc) (1.8)

Grig pe ACS ce Coils

In matrix form, where A, is a matrix containing neighboring points in rows, b, is a vector
of fpj, and g, ; rearranged into a vector, we have

1
Grj = argmin = ||Agry — byl (1.9)
9r,j 2

Additionally, in order to reduce noise in the reconstruction, the Tykhonov regularization
term can be added. The problem has analytical solution:

Grj = (AFA, + A1d) ™" AHp, ; (1.10)

The parameter A acts as a trade-off between noise and aliasing artifacts.

Of course, reconstruction in frequency domain by the linear interpolation of neigh-
boring frequency values might look counter-intuitive. Despite this, GRAPPA is stable
and produces reconstructions of acceptable quality. However, images are noisy at high
acceleration factors, which becomes an obstacle to practical use (see Fig. 1.2).

1.4 SPIRIT

In the SPIRIT algorithm developed by Lustig and Pauly the solution to the MRI recon-
struction problem is constraint with calibration consistency [10]. The algorithm utilizes
the basic GRAPPA assumption, Eq. (1.6) in matrix form,

Gf =1

but posing the reconstruction as an inverse problem. This makes SPIRIT algorithm more
general comparing to GRAPPA as it effectively allows reconstruction from arbitrary sam-
pling patterns. Reconstruction of the entire k-space is obtained as a solution to the
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optimization problem:
2

1 2 A
min §HGx—xH2 + §HM:c—bH2 (1.11)
Alternatively, the acquired data can be made immutable:
min 1H(G:c—gc)(MCa:Jrl\db)H;, (1.12)
z 2

then u = F![M¢gx + Mb]

Both problems, Eq. (1.11) and Eq. (1.12), can be solved directly with a linear solver
(the resulting matrices are sparse) or using an iterative approach, e.g., conjugate gradient
method. As with GRAPPA, SPIRIT requires a fully sampled ACS area to compute a
calibration kernel, which is done in a similar manner.

Zero filling GRAPPA Reference

Figure 1.2: Noise amplification in GRAPPA reconstructions at different acceleration factors R.
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1.5 Noise

According to Prussman et al., the upper bound of Signal-to-Noise Ratio (SNR) in recon-
structed images from accelerated data is given by

SNR fui
9p VR’

where g, > 0 is the coil configuration geometry factor [4].

SNReduced = (113)

Roemer et al. compare few methods for combining coil images. Optimal SNR requires
knowledge of absolute coil sensitivities [1].

It should also be noted, that spacial distribution of noise is non-uniform, which is
clearly seen on the reconstructed images (see Fig. 1.3).

Figure 1.3: Comparison of reconstruction methods (R = 4): a) CG-SENSE, b) GRAPPA,
¢) SPIRIT, d) fully sampled reference.
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1.6 More advanced methods

Following the success of GRAPPA, a number of methods have been proposed in order to
improve the reconstruction quality of the algorithm. One of these is Nonlinear GRAPPA
by Chang et al. [11] This approach utilizes the kernel method, i.e., the identity Eq. (1.6)
is modified as follows:

b= ®(A)g,

where ® : CM*K y CMXNk N > K, is a nonlinear function that maps k-space data
(here in the form of matrix A) into higher dimensional feature space.
The coefficients g can be computed similarly to Eq. (1.10):

g = (2(0)"2(4)) " 2(A)"

For the kernel ®(-) the authors used polynomial function. Additionally, the size of feature
space Nk should be chosen with care.

Complex nonlinear relations between neighboring points in k-space suggests using Neu-
ral Networks (NN) for this task. Akgakaya et al. proposed Robust Artificial-neural-
networks for K-space Interpolation reconstruction (RAKI) [12]. It can be considered an
advanced nonlinear NN-based variant of GRAPPA, where missing data is synthesized from
acquired data using deep neural network:

fi = @(f; ;) (1.14)

The parameters ¢; of the network @ are learned from the ACS area independly for every
coil:
5 . 2
0; = argmin | facs — @(facs; 05) |5
J

Then, reconstruction in k-space is computed using Eq. (1.14).

RAKI does not require large training datasets for learning, or, in other words, it is scan-
specific. Moreover, noise amplification in reconstructions is greatly reduced compared to
original GRAPPA especially at high acceleration rates. These nice properties make RAKI
very attractive.

Another interesting method is AUTOMAP by Zhu et al. [13], a unified framework for
image reconstruction, which models direct mapping from sensor representation (k-space)
into image domain. Theoretically this method is interpreted as learning a robust low-
dimensional joint manifold M = X x ), where X is a manifold of k-space data, ) is
a manifold of output images, and mapping functions ¢, and ¢,, as well as a between-
manifold projection g : X — ). The reconstruction process can be written as a function
f(z) = ¢, 0go0 ¢, (x). This mapping is implemented with deep neural network.
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AUTOMAP is robust against noise and other input perturbations, such as calibration
errors [13]. However, this "brute force” approach to learned MRI reconstruction is inef-
ficient due to a very large number of network parameters and, as a result, high memory
usage and computing resources, which significantly limits image resolution [14].

Few recently emerged reconstruction methods based on iterative/cascading schemes
are described at the end of Chapter 2.
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Image reconstruction tasks are often represented as problems of minimization of the energy
functional in the following form:

E(x,y) = D(x,y) + R(x)

Here D(x,y) is called data fidelity, and R(z) is regularization. This functional is closely
related to the famous Bayes formula

likelyhood prior
—~

p(ylz) p(x)

p(zly) = o)

i

where p(z|y) denotes the probability of getting true image = given measurement y.

In situations of uncertainty, which in the context of accelerated MRI is mostly produced
by undersampling and noise, we want to maximize the probability of obtaining the true
image x, hence, we need to solve

mxin E(x,y)

A common choice for the data fidelity term is the sum of squared errors,
2
D(I’,y) - HA]J - yH2

9
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with A being a task-specific operator transforming x into data measurement domain.
The things are more complicated with the regularizer, or prior, and much of research work
has been done mainly in this direction. The theory of compressed sensing is of particular
interest.

2.1 Compressed sensing

Compressed Sensing (CS) is a technique for sampling and reconstructing compressible
signal. The main goal of the theory is to reduce the number of measurements (sampling
rate) while maintaining the reconstruction accuracy. For instance, this directly means
accelerated acquisition in MRI, or reduced exposure to ionizing radiation in CT.

CS can only be applied in the context of compressible data, for example, when signal is
sparse. By exploiting the a-proiri knowledge of sparsity, it becomes possible to reconstruct
highly undersampled signal with sufficient accuracy, in some cases exactly. If signal is not
sparse, very often the amount of useful information, the Kolmogorov complexity, is much
less than the amount of data collected at a measurement rate that satisfies the Nyquist-
Shannon sampling theorem. This implies that at least in theory there must be a way
to compress the signal, or, alternatively, sparsify it. Such principle of transform sparsity
underlies regularization models used in CS framework.

A prominent work by Candes, Romberg, and Tao [15] demonstrates exact reconstruc-
tion of a signal from small set of frequencies. In the example application, they use total
variation as complexity measure. Another paper with important theoretical results for the
theory of CS was published by Donoho [16].

2.2 Regularization

One of the most important regularization models is total variation. In image processing
Total Variation (TV) was first introduced in 1992 by Rudin, Osher, and Fatemi originally
for image denoising (ROF model) [17]. Since then it has been adopted into many image
processing applications including MRI reconstruction.

TV arises from the assumption that natural images are piecewise constant, that is,
image gradients are sparse. TV can also be viewed as a special case of the regularizer

R(u) = /Q |Vul||Pdz  for p=1. (2.1)

In discrete setting, TV is defined as

N 1
TV() 2 S/ 1(D2)is? + (D)l (22)
=1

where the linear operator D maps to discrete gradients.
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By augmenting the SENSE model, Eq. (1.3), with the TV regularization, we obtain
the following optimization problem:

u* = argmin TV(u) + %HAu—ng (2.3)

Due to the historical significance, I would like to pay special attention to the TV-
regularized SENSE reconstruction, though without going into details.

The functional in Eq. (2.3) poses issues for optimization because of non-smoothness
of the regularization term. Nevertheless, a number of algorithms have been proposed.
The most efficient first-order methods to date work by solving the problem in primal-dual
form. In the algorithm developed by Zhu and Chan [18], the ¢3-norm is replaced with the
dual norm, thereby introducing the dual variable x:

. A
min max (Du, z) + §HAu - bH; (2.4)

where X = {z : ||zl <1, 1<i< N}

The algorithm builds a sequence of both variables simultaneously, i.e., performing pro-
jected gradient ascent for the dual variable z and calculates the minimum for the primal
variable u at every stage. The solution lies at the saddle point. But since original primal
update is inefficient in our case, one of the simpler alternatives is to replace it with gra-
dient descent. Below is a summary of an accelerated variant of the primal-dual algorithm
by Chambolle and Pock [19] with an explicit gradient step on the primal variable w.

Choose 7 >0, 0 >0

0 0

Initialize u’(e.g., zero filling), z° < 0, @° « u°, k < 0

Repeat:
2* — Py (2F + oDik)

uFtt Wb — (DT 4 NAR(AWF — b))

~k+1 k+1 ok

U — 2u U

k+— k +1

The operator Py denotes the projection of subvectors z; € C? onto unit Euclidean disks,
which can be easily calculated:
Ti

. 1<i<N
max{1, [|z;[[2}

PX (.T) =

Fig. 2.1 shows three reconstructions of the same slice with different data fidelity parame-
ters. The solutions were obtained by calculating 1000 primal-dual iterations according to
the scheme indicated above.
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Reference

Figure 2.1: TV-regularized SENSE reconstruction with three different data fidelity parameters
A ={2,5,10}.

The main disadvantage of the TV regularization is the so-called staircasing effect.
More advanced second order Total Generalized Variation (TGV) overcomes the issue of
staircasing by including higher-order derivatives [20]. Knoll et al. have used TGV for MRI
denoising and radial sampling SENSE reconstruction [21]. In their work, the reconstruc-

tion model is defined as follows:

: 1 2
min = mex (Vu—v,z) + (Vu,y) + (Au—1b, z) — ﬁHzH2 (2.5)
Note that max ,(Au — b, z) — %HzHg = %HAU — b‘ ;, i.e., the data fidelity term is also
dualized, a trick that can be applied to Eq. (2.4) too. An example of TGV-regularized
SENSE reconstruction is shown in Fig. 2.2.

However, the structural complexity of natural images has triggered the development
of learned priors with probability distribution taken directly from the statistics.
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Fields of Experts (FoE) is a framework for modeling image priors, which has drawn
attention in computer vision research community due to its elegant representation and
effectiveness. It is based on powerful sparse coding methods combined with Markov Ran-
dom Field (MRF) models [22].

FoE models the image probability density as

N

p(x) = Zj@) TTT1 ¢ 2w 0y)
k

Jj=1

Hence, the FoE regularizer in the energy functional has the following form:

N
R(z) = =Y > log¢j(Ifwyiy),

k j=1

1 2\ Y
where experts ¢j(JJTx(k); aj) = <1 + 3 (J]-Tm(k.)) )
The linear filters J; as well as the parameters a;; > 0 are learned from data. Once trained,
the regularizer is included into the energy functional, and solution is computed as regular.

More advanced learned priors have been developed. For example, one of the recent
proposals is Total Deep Variation (TDV) [23], which is inspired by deep multiscale Con-
volutional Neural Networks (CNN) with residual connections. TDV has relatively low
number of parameters, however, the models regularized with TDV achieve state-of-the-art
performance. Furthermore, there is an ongoing research work on applying TDV to MRI

reconstruction with promising results.

Figure 2.2: TV and TGV regularization in SENSE reconstruction with data fidelity parameter
A =5: a) TV-SENSE, b) TGV-SENSE, c¢) fully sampled reference.
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2.3 Variational networks

As shown by Barbu in [24], instead of learning the prior independently of the energy
functional, training the FoE regularizer together with the inference algorithm yields con-
siderable gains in performance. The inference algorithm there was obtained by unrolling
first N = {1,2,3,4} iterations of the gradient descent scheme and trained through op-
timization of the loss function. Due to some reasons, the author used slow coordinate
ascent method for optimization. To overcome this issue, ”backpropagating” versions of
such truncated iterative schemes were proposed by Domke in [25], where the gradients
are computed according to the chain rule. Later, Chen et al. have shown that using
different parameters at each stage further increases performance [26]. A similar concept,
Variational Networks (VN) inspired by the proximal gradient method, were introduced in
[27]. Effland et al. follow optimal control approach and learn optimal stopping time [28].

Of course, such learned iterative reconstruction schemes can be successfully used in dif-
ferent tasks involving functional minimization, e.g., denoising, deblurring, superresolution,
inpainting, CT/MRI reconstruction, etc.

2.4 Variational networks for MRI reconstruction
The model by Hammernik et al. for MRI reconstruction originates from FoE-regularized

SENSE method by unrolling first few steps of gradient descent [29].
Briefly, given the optimization problem

min R(u) + [ Au— 5|2 (2.6)
where N
K
R(x) = Z b5 (Kjum), (2.7)
k=1

and A = MFS (see Section 1.2 for details).
Deriving the iteration step yields

Nk
W=t — ot ZK;Fd);(Kjut) + AAH(Aut - b) (2.8)
j=1

Then, the authors follow the ideas from [26] by using iteration-dependent parameters and
more parametrized activation functions. Finally, they obtain

Nk
e S Z [K;]T ;’(Kzut) . )\tAH(Aut _ b)7 0<t<T -1, (2.9)
j=1
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with activation functions

Zw]kexp< _“k) ) (2.10)

a weighed sum of Gaussian Radial Basis Functions (RBF's).
Let f(u®,s,b,m; 6) denote the variational network with parameters 6 fed with initial

reconstruction uY,

coil sensitivity maps s, undersampled k-space data b, and sampling
mask m. Parameters of the VN include filter kernels of convolutional operators K¢, acti-
vation function weights w?, and data fidelity coefficients A’. Training the VN is done by

minimizing Mean-Squared-Error (MSE) loss function:

1

2
gz 2 7 sbmi o)l = urell (2.11)

(uqs’b)m)uref) €Z

m@in L(0) o

To ensure differentiability of the loss £(#), the absolute value of reconstruction is computed
using the e-smoothed norm, that is

& \/Re ) + Im?(z )—I—e‘ (2.12)

Additionally, the kernels are required to be zero-mean unit vectors, and the data fidelity
coeflicients are non-negative.

In general, trained VN demonstrates good reconstruction performance. Authors ad-
mit presence of aliasing artifacts on some slices, but these are challenging to remove,
particularly, when SNR is low. In their experiments, the network was fed with zero-filling
reconstructions.

2.5 Recent developments

More advanced forms of learnable regularization can be used instead of FoE, i.e., arbi-
trarily deep neural networks. For example, Aggarwal et al. in their work introduce the
MoDL framework (MOdel-based reconstruction using Deep Learned priors) [30]. This ap-
proach is similar to the variational network described above but with some key differences.
Particularly, it employs CNN as an artifact estimator:

2
29

min fHN
where N (u) = u — CNN(u;0)

HAu— b|

H2 (2.13)

Another major difference is the use of blocks of conjugate gradient algorithm within
the network. These CG blocks have no trainable parameters, while the parameters of the
CNN as well as the trade-off A are shared across iteration steps.
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The algorithm is obtained as follows. First, the nonlinear functional Eq. (2.13) is
linearized at point u!, which leads to the following optimization problem:

o1 2 A 2
ultt = arg min iHu—CNN(ut;Q)H2 + §HA“_bH2 (2.14)
Then, the analytical solution yields the iteration scheme of the MoDL framework:
w1l = (T+ AAPA) ! (CNN(ut; 0) + AATD) (2.15)

However, u!*! is approximated in the CG sub-blocks because the exact solution above is
impossible in general case.
The network was trained using MSE loss and demonstrates state-of-the-art perfor-

marnce.

Sriram et al. further develop the idea of variational networks [31]. Similarly, the
iteration step originates from the gradient descent scheme, where intermediate values are
expressed in k-space, and FoE-based regularization is replaced with CNN:

1‘t+1 _ .%'t — FS [CNN(SHF—lxt; et)] —)\tM(iUt _ b)’ (216)

VR

Here the parameters are not shared across iterations. As before, this network requires
sensitivity maps at every stage (cascade), and the most innovative feature is that they
are obtained by evaluating additional Sensitivity Map Estimation (SME) module, which
precedes image reconstruction cascades. The core of SME module is the CNN with the
same structure as in cascades but with fewer parameters. Therefore, the algorithm first
estimates sensitivity maps from k-space center, then the data is fed to the main part,
Eq. (2.16). The whole network including SME module is trained end-to-end by maximizing
Structured Similarity Index Measure (SSIM [32]).

The network with 12 cascades has relatively large number of parameters (about 30M).
Nevertheless, the model implements stand-alone algorithm and produces reconstructions
of very high quality.

At present, iterative schemes remain popular, and MRI researchers try different net-
work architectures sometimes incorporating few networks into one framework, for example,
Y-net [33]. Other model may benefit from including additional k-space regularization for
data consistency [34]. By the way, these models were developed for fastMRI challenge!,
which thus promotes MRI research.

"mttps://fastmri.org
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Additionally, many modern MRI reconstruction models use integrated CNNs stemming
from successful U-Net architecture [35]. The network was originally designed for image
segmentation and won the ISBI cell tracking challenge? 2015. Another feature of U-Net
is speed due to its relative simplicity. All these nice properties determined its popularity
among the researchers. For instance, the recently proposed TDV regularization briefly
mentioned in Section 2.2 is also inspired by U-Net [23]. It even got to the point that
sometimes U-Net is applied directly to the undersampled k-space data [36].

*http://celltrackingchallenge.net


http://celltrackingchallenge.net
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The method described in Section 2.4 requires precomputation of coil sensitivity estimates,
which are fed to the VN as a part of input. My work on this thesis was to investigate the
performance of similar variational networks but without explicit usage of coil sensitivities.

First step is to remove the sensitivity weighting operator from the data fidelity term,
i.e., A £ MF, hence, A = F~!M. Note that now the latter does not combine coil images.
This raises the first question: how to apply the regularization? The following approaches
can be tried:

e applying the regularizer on a combined image;
e applying the multi-channel regularizer.

The first option is very attractive due to its computational effectiveness, whereas the
multi-channel model can be used to learn correlations between coil images.

19
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Before proceeding further, we define the e-smoothed sum-of-squares-combined image
similar to the absolute value, Eq. (2.12):

| €1
||l = Zxk -conj(zk) + €, : e CNeHW 1 ||c : CNeHW , REW

:L’Nc

3.1 Regularization in image domain

3.1.1 Approach 1: sum-of-squares-combined image

Here we consider the following optimization problem:
. A 2
min R(Jlulle) + §HAu— b”2 (3.1)

The iteration step for the VN is

K
utJrl _ ut _ lj'tdlag HutH Z t/ Kt”utHe) . AtA.H(A'U,t —b>, (32)

where U! = [diag(ul), ,diag(uNC)]T €

This network, besides the performance advantage, has only a real set of filter kernels.
Again, the kernels are constraint to be zero-mean unit vectors, and \! > 0.

3.1.2 Approach 2: multi-channel filters

This approach has more options for handling complex numbers. For example, one way
is applying convolutional operator similar to the model from Hammernik et al. [29], i.e
taking the sum of real and imaginary components of the convolutions:

K'v < Re(u)*kf, + Im(u)* ki,
Another choice is using true complex convolutional operators, then applying activation
functions on components:
Nk
H
VR’ 07 =) KL 6l (Khuh),
j=1

where

K'u < (Re(u) *kl, — Im(u) x ki) + i (Re(u)*ki, + Im(u) k) (3.3)
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Additionally, instead of computing real-valued activations, we can use holomorphic func-
tions to make the regularizer complex-differentiable. Other combinations are also possible.
Certainly, these details significantly increase computational costs. Training is expected to
be several times slower, while reconstruction accuracy improvement is not guaranteed. All
these strategies of processing complex numbers in the regularizer are theoretically unclear,
thus, the optimal configuration, if exists, can only be inferred empirically.

In general, phase information is irrelevant for image-domain regularization. Therefore,
it can be applied on magnitude images, which eliminates the issue of complex numbers.
Then in multi-channel regularization context the model is defined as

min R(Jul) + 5 [ Au— b (3.4)
For the VN we get
K
ut-i-l — ut o dlag(ut)dlag ‘u ’ Z ¢tl Kt‘ t’ ) _ AtAH(A’U,t —b) (35)

To sum up, these networks are fed with initial reconstruction u°, which is a set of coil
images, undersampled k-space, and sampling mask. The network outputs uncombined re-
construction. Final reconstruction in obtained by computing sum-of-squares combination
(see Fig. 3.1).

Additionally, taking into account that data has different intensity per coil, we can
distribute data fidelity trade-off parameter over coils:

Nc

’ A
D(u) = - 5 llAu = bl

k=1

However, in all these models the data fidelity term does not encode gradient as in SENSE
and rather acts as a soft constraint.

3.1.3 Recent work

One of the newest methods that does not require coil sensitivities, DeepcomplexMRI [37],
uses CNN with multi-channel complex convolutional operators as in Eq. (3.3) and Rectified
Linear Unit (ReLU) for the activation function. The results indicate that utilization of
complex convolution improves visual quality of the reconstructions. Also, the authors
state that DeepcomplexMRI with even half of the parameters of the real-valued network
demonstrates comparable performance.
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Bian et al. solve the problem of multiple coil images in a different way. They propose
to learn the nonlinear operator J : CNeHW s CHW that combines a set of coil images
into a single complex image with homogeneous contrast across the FoV [38]. The operator
J is implemented as two identical CNNs, one for real and the other for imaginary parts.
Thus, the components are handled independently. The authors have obtained excellent
results and claim that their method is the first combine-then-regularize approach to deep-
learning-based MRI reconstruction.

undersampled k-space, Reduction
sampling mask (e.g. sum of squares)

VN final
output reconstruction

Initial
reconstruction
u*' = u' — VR(u') — MA"(Au' - b)

Figure 3.1: Reconstruction algorithm

3.2 Reconstruction in k-space

The reconstruction problem can also be formulated in Fourier domain:
min R(F~'z) + 3“1\@ — b3 (3.6)
T S~ 2 2
u

Although this representation does not give us any advantage over image-domain recon-
struction, we can pose another problem by enforcing the data fidelity constraint. The
following identity holds:

T A—00

min { lim R(F~'z) + gHMx - bH;} = min R(F ' [Mb+ Mcaz]) (3.7)

Then, the iteration step simplifies to
" = 2" — McFVR(F™! [Mb+ Mea']), 0<t<T-1 (3.8)

Now acquired data is fixed, and this model tries to recover missing data, an approach
similar to inpainting.
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3.3 Regularization in k-space

As discussed in Section 1.4, the SPIRIT algorithm [10] computes a solution to MRI recon-
struction problem so that it agrees with the calibration, that is Gx ~ x. We may think
that the term (Gx — z) in the functional acts as a regularization of the k-space:

min |G — |2 + 3| Ma — o]
~—_—
reqularization

Our models should benefit from such regularization. Actually, we then obtain the VNs
derived from the FoE-regularized SPIRIT algorithm:

. _ A 1
win RE12) + X[z~ 0] + £ G —

.fl?t+1 — xt o MCFVR(F_ISUt) o )\tM(MCUt *b) . Mt(GH 71) (G*I)ﬂft

However, for reconstruction in k-space the variant with fixed acquired data is preferred:

Inxin 7?,(F_1 [Mb + Mcx}) + %H (Gx - az) (Mb + Mc.CE) H;
2t = 2" — McFVR(F~[Mb+ Mcea']) — p'Mc (G —1) (G —I) (Mb + Mez') (3.9)

The PRUNO algorithm [39] further elaborates the idea of k-space consistency by up-
grading the SPIRIT constraint (G — I) with a set of kernels that approximate null space
of calibration matrix. The estimation of null space can be obtained from singular value
decomposition of calibration matrix: A = ULVH. Due to the fundamental assumption of
shift-invariance of correlation coefficients (which also suggests linear dependence), calibra-
tion matrix with sufficient number of rows must have null space. Theoretically, null space
of the matrix A is spanned by the columns of V that correspond to zero singular values.
In practice, a number of columns matching smallest singular values are chosen.

It should also be noted that one of the successful models in the 2019 fastMRI contest!
includes null space operator for data consistency [34]. The operator is applied at every
reconstruction stage.

Thus, with null space operator we obtain the following optimization problem:

min R(F~![Mb+Mca]) + &[N (Mb+Mca)|

2
T 2

and derive the iteration scheme as

2t = 2t — McFVR(F'[Mb+ Mca']) — p'MeN"N(Mb + Mca') (3.10)

"mttps://fastmri.org
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The authors of PRUNO point that null space estimate should be sufficiently large.
This means that straightforward implementation of the algorithm would be rather slow
because computational costs depend on the number of vectors in null space. By taking
into account the associative property of convolution, the sequence of linear operators
NHN may be combined into a single convolutional kernel: Nij = Y g nlljl * nyj. However,
the resulting kernel almost doubles in both dimensions, and under some conditions the
performance gains may become negligible. In such cases convolution theorem may help.
We rewrite the reconstruction problem in image domain:

. A L
min R(0) + 240 b2 + &N

W't = ot — VR(u) — NAT(Au' —b) — p'FINUNF! (3.11)

By applying the convolution theorem, i.e.,

Ne No Ne No
FUININFu & (> F 7 (g« Flul]) | = | Y F iyl -uf| o Flajod,
J=1 i=1 j=1 i=1
we obtain
Wt =t — VR — MAT (A —b) — pF A oW (3.12)

This iteration scheme is advantageous since training and reconstruction speed is virtually
independent from the number of vectors in null space as well as kernel sizes. At the same
time, storing precomputed IFFT(72) would pose a technical problem for training due to
very high memory consumption.

The same approach may be applied to SPIRiT-regularized models, which would allow
usage of larger kernels without performance penalty (g is calculated similarly to 7):

. A 2 o 2
min R(u) + 5|Au—b]2 + £]|(C ~ DFul

W't = uf — VR — NAT (AW —b) — pfFg o (3.13)
Finally, it is also possible to combine SENSE and SPIRiT (or PRUNO) into one model:

. A U
min R(u) + §HAU - bH; + §H(G —I)FSu‘ ;,

where A = MFS, and (G —1I) can be replaced with null space estimation N. The resulting
iteration scheme looks very similar:

Wt =t = VR - NAT (AU - b) - pST(F T glo Su) o (3.14)
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3.4 Feeding the VN

The most straightforward input to variational network is zero-filling reconstruction. In 1D
acceleration these reconstructions exhibit inherent repeating aliasing artifacts. The images
look superimposed multiple times and blurred in the direction of acceleration. Therefore,
the algorithm’s main objective is removing such aliasing artifacts, which sometimes may
be difficult to achieve. Feeding zero images may also be tried, but this makes useless first
layer’s regularizer in our VNs. Therefore, this is not a good option.

One alternative is using GRAPPA reconstructions. For example, this strategy is used
in [39] and it contributes to faster convergence, which is crucial for our algorithms based
on truncated iterative schemes. The GRAPPA algorithm effectively removes strong arti-
facts, but in exchange for high noise levels. Hence, the VN’s main objective is switched
toward denoising, which seems to be an easier task. Moreover, image denoising problem
is very well studied, and variational networks are proven effective in this task. However,
computational costs of GRAPPA depend on sampling patterns. Regular patterns require
computing only a few shift-invariant calibration kernels. Otherwise, GRAPPA becomes
computationally inefficient.

3.5 VN with constant parameters

The models described above use iteration-dependent parameters. That is, each layer in a
network has its own set of filter kernels, activation functions, data fidelity, and consistency
trade-offs. This strategy is favored due to good results in [26], [29]. In contrast, the same
set of parameters can be used in all layers, or, in other words, the VN has only one
recurrent layer:

o | Recurrent i r
u ; —u
i unit ;

o t .
Initial guess u Reconstruction

These networks are in active research, and some interesting results were obtained by
Effland et al. [28] In the paper, the authors use the term ”static” to refer to these types of
networks. Here we also call them ”static” or "recurrent” as opposed to ”layered”, which
indicates iteration-dependent parameters.

The internal behavior of such VNs for MRI reconstruction is expected to be different
from layered networks. Another feature is that they have much fewer parameters.
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3.6 Training the VN

As in [29], we learn the VN parameters by minimizing Mean-Squared-Error (MSE) loss
function:

* . def 1
0 = argumin § £0) 2L —— 3 (IS b ) — gl (315)

2|2
(uq bvmvuref) €Z

MSE loss is a pixel-wise error metric, which is not the best option to train variational
networks (see [40]). Nevertheless, this is still a good start.
Our loss function computes error between sum-of-squares-combined reconstructions

and references. Another option is evaluating the error between coil images, e.g.,

N¢
. 1
£O) = 5z S S I @lbms 0yl — luesinlll (3.16)
(u9b,m,upef) k=1

Thus, we do supervised learning, an approach where every sample in training dataset
comes with corresponding desired outcome, i.e., u..y. This is a common strategy for
training image restoration algorithms. As a disadvantage, it requires a large enough
labeled dataset, which is not a big problem today?.

In a nutshell, the model consumes input and generates output for each sample. Ac-
curacy is measured by the loss function (MSE in our case), and the error is then back-
propagated through the model, thereby fitting it to the training dataset. The trained
model can then be evaluated for its performance on unseen data.

I do not include derivations of the gradients because modern specialized machine learn-
ing tools, such as PyTorch [41] and TensorFlow [42], compute them automatically.

*https://fastmri.med.nyu.edu/
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4.1 Experimental setup

All models were implemented using PyTorch [41] with activation functions direcly in
CUDA® [43] for performance reasons. All trainings and tests, as well as other related
intensive computations were done on a workstation with four-core Intel® Core™ i7-960
@ 3.2GHz CPU, 24GB RAM, and two video cards, NVIDIA® GeForce® GTX TITAN X
12GB and NVIDIA® GeForce® 980 Ti 6GB, but using only one of them at a time.

The data for training and testing the variational networks was the same as in [29],
but only coronal proton density sequence scans were used in my experiments. The data
set consist of 20 patient scans with 20 slices each, making in total 400 slices. Half of
these images, i.e., slices of patients 1-10, were used for training sessions and the other 200
slices for the tests. The slices are cropped into 368 x 368 pixels (along frequency encoding
direction). The data set is normalized in a simple manner as in [29] and is processed
into an optimizer with randomized batches of size 10. In order to simulate accelerated
acquisition, the sampling masks were applied. In addition, the validation set of first 40

Oth

images from the testing data set was evaluated every 10" epoch. The ground truth images

were computed as root-sum-of-squares combination of fully sampled reconstructions.

27
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For the optimizer base, Stochastic Gradient Descent (SGD) and the implementation of
the block version of the Adam algorithm [44] were used. The latter was kindly provided to
me by Patrick Knobelreiter. After each optimization step, the parameter constraints are
applied. These constraints include non-negativity of data fidelity and, where applicable,
data consistency trade-off parameters, as well as normalization of filter kernels, which are
required to be zero-mean unit vectors:

A>0, >0, (kj1)=0, |kjl2=1

The optimizations were usually performed in several sessions by manually adjusting the
learning rate until convergence deterioration.

In order to assess the reconstructed image quality, I have used the following mea-
sures: Mean Squared Error (MSE), Normalized Root Mean Square Error (NRMSE), and
Structural Similarity Index (SSIM [32]). The first two are calculated as follows:

llu — uref”

1
MSE(t, Upes) = o ||t — tresl|3, NRMSE(u, tpes) = sl
re

HW y Uy Upef € RHXW

As a starting point, in order to reproduce the results from [29], I have implemented
and trained the model described in the paper. The coil sensitivity data was precomputed
in advance from ACS area of k-spaces for each slice with ESPIRIT algorithm [7]. Re-
garding the test results, only few slices out of 200 contain visible artifacts (though not
strong). In general, the results are very good. The slightly modified version of the afore-
mentioned model, e.g., with complex convolutions in the regularizer, produced similarly
looking results, although quantitatively some models demonstrated better performance.

For MRI reconstruction without coil sensitivities, the variational networks with
iteration-dependent parameters were tested first. The networks are made up of 10 similar
layers. Different options for the FoE regularizer were tested, i.e., sum-of-squares-combined
image, multi-channel 3D filters, convex convolutions, etc. Initially, the networks were fed
with zero filling reconstructions.

In the attempts of archiving better results, some modifications were introduced: trade-
off parameters were split such that each coil has its own parameter A and p (where ap-
plicable), the networks were trained with loss computed between individual coil images.
The latter option was canceled due to high noise levels in reference reconstructions.

Then the experiments switched toward static iteration scheme with constant parame-
ters. The recursion depth of these networks was set to 15. The behavior of this scheme
comparing to the layered version is different with respect to the intermediate reconstruc-
tions.

To exploit the benefits of k-space reconstruction, the GRAPPA algorithm was imple-
mented as described in [5]. For regular sampling with acceleration factor R = 4 in 2D
MRI, the algorithm requires only three convolutional kernels, which means that in our
case GRAPPA reconstructions can be efficiently computed. The direct reconstructions
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Table 4.1: Tested models

1d

Description

Number of
layers /
steps, T'

Number of
filters,
Nk

Activation
function
nodes, Ny

Filter size

Number of
learnable
parameters

VN1

Iteration-dependent
parameters.

The regularization is applied
on SoS-combined image.

10

64

45

11 x 11

106,390

VN2

Iteration-dependent
parameters. Multi-channel
regularization, real and
imaginary components are
processed independently.

10

2 %X 48

2x31

15 x 11 x 11

1,772,310

VN3

Static parameters.
The regularization is applied
on SoS-combined image.

15

64

45

11 x 11

10,639

VN4

Iteration-dependent
parameters.
Reconstruction in k-space
with fixed acquired data.
The image-domain
regularization is applied on
SoS-combined image.

10

64

45

11 x 11

106,240

VN5

Iteration-dependent
parameters.

The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization.

10

64

45

11 x 11

106,540

VN6

Iteration-dependent
parameters.

Reconstruction in k-space
with fixed acquired data.
The image-domain
regularization is applied on
SoS-combined image.
Includes k-space consistency
regularization.

10

64

45

11 x 11

106,390

VN7

Static parameters.

The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization.

15

64

45

11 x 11

10,654

VN8

Iteration-dependent
parameters.

The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization based on
evaluation of null space of
calibration matrix.

10

64

45

11 x 11

106,540
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for acceleration factor R = 2 are almost as good as for fully sampled k-space, whereas
reconstructions for R = 4 are noisy.

Again, the variational networks without coil sensitivities were tested, but this time by
feeding the networks with noisy GRAPPA reconstructions. The networks tried to denoise
the initial solutions.

Inspired by [10], the models were modified by including additional k-space regulariza-
tion term. The experiments were done with SPIRIT kernels with sizes 5 x 5, 7 x 7, and
9 x 9. These kernels as well as GRAPPA kernels for initial reconstructions were computed
separately for every slice and stored on HDD in order to speed up training start up process.

Next, an improved model based on PRUNO [39] with null space regularization term was
tested. Two sets of precomputed null space approximations were used in the experiments:
100 kernels of size 5 x 5 for acceleration factor R = 4 and 150 kernels of size 9 x 9 for
R = 6. In the network’s implementation, the IFFT(n) is computed for a batch fed to the
network. This solves the memory-related issue while increasing the network throughput.

Finally, VN5 and VN8, as well as the network not included into Table 4.1 and im-
plementing the last iteration formula from theoretical part, Eq. (3.14), i.e., using both
sensitivities and null space regularization, were trained on data accelerated at R = 6.

4.2 Results

In all experiments the VNs with iteration-dependent parameters produce better results.
The quantitative evaluation of the networks is shown in Table 4.2. When fed with zero
filling reconstructions, neither of the networks were capable of removing aliasing artifacts
from all testing images. However, some networks produced much better reconstructions
than the others.

In particular, comparison of the reconstructions between VN1 and VN2 reveals that
sum-of-squares regularization results in better image quality, only few slices contain strik-
ing aliasing artifacts. The network with componentwise multi-channel regularization, VN2,
performs poorly. Although this VN has times more parameters, many reconstructed im-
ages are corrupted with apparent aliasing artifacts. On the other images, where artifacts
were preserved by both methods, the more stronger ones were produced by VN2. For
comparison, few slices are shown in Fig. 4.1.

Another drawback of multi-channel regularization is training and reconstruction time.
For VN2 it takes almost 9 hours to do 100 epochs and 570ms to process a single slice,
whereas VN1 trains at rate 1h 15m / 100 epochs, and requires only 90ms for reconstruc-
tion. Considering the large number of parameters and slow run times, its reconstruction
performance is obviously inadequate. Therefore, VN2 was excluded from further experi-
ments.

As expected, recurrent variational network VN3 fed with zero filling outputs lower
quality results than its layered counterpart VN1. All reconstructions contain visible alias-
ing artifacts (see Fig. 4.1).
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The network VN1 also outperforms VN4, where reconstruction is done by filling missing
k-space data. Mostly, the results of both are comparable in quality.

One interesting observation is that training without filter kernel zero-mean constraint
improves reconstruction quality (see Table 4.2), although there is only a subtle visual
difference for the reader. To sum up, none of these models were able to completely
eliminate the artifacts. However, the layered variational network with sum-of-squares-
computed regularization, VN1, produced good-looking reconstructions by removing the
artifacts from most of the slices. At the same time, some fine details also disappear.

A detailed look into the learned parameters of VN1 reveals that filters are very noisy,
and structures (if present) are scarcely visible on most of them. The learned filter kernels
of all 10 layers of the network are shown in Fig. 4.2.
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Figure 4.2: Learned filters of VN1 fed with zero filling
(The digital version of this document may be enlarged for detailed viewing.)

Additionally, Fig. 4.3 illustrates few filter kernels, corresponding activation functions
and filter potentials (third row). The latter are calculated by integrating the activation
functions, i.e.,

Nw

2m o . .
¢§(:v) = Zw?kerf( oy ) + Ct with C]t- 5.t. min ¢§(x) =0.

k=1

As seen in the plot, the learned potentials come in different shapes, e.g., bell-shaped,
V-shaped, sigmoid, and more complex functions, thereby reflecting variety of filter corre-
lations.
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Figure 4.3: Selected filter kernels of VN1 (not on the same scale)
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Zero filling VN1 VN2 VN3 Reference

MSE: 16.41, SSIM: 0.8317 MSE: 2.13, SSIM: 0.9450 MSE: 3.84, SSIM: 0.9296 MSE: 4.39, SSIM: 0.9143

MSE: 19.99, SSIM: 0.7747 MSE: 2.71, SSIM: 0.9163 MSE: 3.47, SSIM: 0.9052 MSE: 4.79, SSIM: 0.8832

MSE: 19.09, SSIM: 0.8064 MSE: 2.52, SSIM: 0.9375 MSE: 2.94, SSIM: 0.9351 ] MSE: 4.94, SSIM: 0.9054

MSE: 18.18, SSIM: 0.7623 MSE: 2.14, SSIM: 0.9262 MSE: 2.69, SSIM: 0.9198 : 4.55, SSIM: 0.8856

MSE: 5.47, SSIM: 0.9441 : 9.86, SSIM: 0.9093

MSE: 47.0, SSIM: 0.7824 MSE: 4.8, SSIM: 0.9462

Figure 4.1: Comparison of reconstruction quality of variational networks fed with zero filling.
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The data fidelity trade-off parameters have been learned for every coil channel and not
equal but in general follow the same trend. In particular, there are few outliers in the
layers t € {1,2,4,7} that diverge from the main group, and in the layers ¢t € {5,6} the
parameter values do not form a single cluster (see Fig. 4.4).

3.0 -
A 2.0 -

1.0 A

0.0 4

Layers, t

Figure 4.4: Learned data fidelity parameters of VN1

Looking at the intermediate steps, Fig. 4.5, it can be seen that the reconstruction
process in the first 7-8 layers resembles a sequence of filtering operations. The most
striking aliasing artifacts are removed in the layer ¢ = 4 producing blurred image at t = 5.
In the layers ¢t = 8, ¢t = 9 the image is visually refined, but very last layer suppresses some
fine details. This can be attributed to the loss function used to train the network.

Reference

Figure 4.5: Intermediate reconstruction steps of VN1 fed with zero filling

For comparison, the intermediate steps of static variational network VN3 evolve with
uniform changes gradually improving sharpness of the reconstruction. But still aliasing
artifacts are not removed completely. Hence, besides producing reconstructions of lower
quality, the network with 15 recurrent steps runs noticeably slower. At the same time, it
has far less parameters, though the filters are very noisy. Fig. 4.6 depicts few of them.
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Figure 4.6: Selected filter kernels of VN3
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Figure 4.7: Learned filters of VN4 fed with zero filling
(The digital version of this document may be enlarged for detailed viewing.)
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Figure 4.8: Selected filter kernels of VN4 (not on the same scale)

Reference

Figure 4.9: Intermediate reconstruction steps of VN4 fed with zero filling
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Learned parameters of VN4 with fixed acquired k-space data are shown in Fig. 4.7
and Fig. 4.8. Likewise, we see a similar diversity of kernels and potential functions as of
VN1, though the filter set seems to be of slightly better quality. Also, in the layer ¢ = 5
there are a number of kernels with potentials that resemble ReLU (kernel in 11*" column
in Fig. 4.8).

The internal reconstruction process of VN4 differs from that of VN1 (see Fig. 4.9).
It more resembles iterative reconstruction with progressive improvement on every stage.
That is, the aliasing artifacts are being gradually suppressed, producing pretty sharp image
at the end.

4.2.1 GRAPPA initialization

Expectations from integrating GRAPPA algorithm into our reconstruction pipelines were
met. Solely feeding noisy GRAPPA solutions without altering the networks’ architectures
substantially improves reconstruction quality. Specifically, the aliasing artifacts almost
disappear. The reconstructions look much better, strong artifacts are not present at all.
Likewise, training the networks without imposing zero-mean constraint on filter kernels
results in lower MSE, NRMSE, as well as higher SSIM. Few reconstructions are shown in
Fig. 4.10.

In these experiments, layered networks VN1 and VN4 produced similar results, whereas
visual quality of the reconstructions generated by static variational network VN3 is slightly
lower. It tends to smooth image, thereby suppressing fine details.

Computing GRAPPA reconstructions does not add significant run-time overhead to
the whole algorithm. For example, PyTorch GPU implementation takes approximately 70
milliseconds per slice.

Fig. 4.11 shows learned filter kernels of VN1 and VN4. These filters look much better
than the filters learned by feeding zero filling solutions. For example, in the layer ¢ = 6 of
VN1 most of the filters represent texture patterns. It is also interesting that few distinct
checker patterns can be seen within the learned filter set of VN4 (see Fig. 4.14).

FEEEESNE ERNEEEE NNIENIYE FUARGNEN PUNGRIRE RUBERDNE SHRENEEN SERENENG UNERENROE SRk
R S 5R =ERENE SENEREAN FEENUREE SUSHEREG EENRARGE DEENHNNEE NENBERaR LHIE&@&E EROEEEAR
NRERAENE MERARSEE NUENANSS SERAESEE OREEEIAl SanaEanE MNINEDEN RERANEAE RNSOREES BN
DEEGEREE WRSVIRNT AEBERREE BE@NENE B HEED BEmSEEES 5y EE_ iR
PRUBNALY BEERRASN NESARNNE REREUIEN ZSURNENE BPMESERG RERNVARER EY B SR
EENSATERE ETEEDMEE SRBNINEY SRENERSENE SHIENESE RERTEARE UERNEFE S0 BREE T
SHENEDSY SETSVENE SSEDEAYE SEGHEEOD DARENE0Y UNERNSES DERMSANE nE [E ]
FENEREUE MRERENE BrREERERE REREEDel EEREENEE DEEEREE SHEENTAE BE BER SR
EREUEMEDEE DEREREEY BUNSREES BELNASIEE SHENRSRE NEENEoRE GEEpESaEs s
HIDSEEET aEpsEaes NETEREIE ERNETEEE SnmeRNiE SUEEaEE RRRaRnEy NEE

WETRE MEELE CHEEREEE EROSREAE DEUSERRE ERETUERY BENNTRER SR
ENNTEERD SENERIEE FHENENES BE-RANEE BEIERREY ErREANEER UORRETEHE BES
EEEENEED BTHEDEEE BEESHERE DNENEEEE DRDEERRE INESREEE USRGRRNG BEE
FREEEIRS NEESEERGE DSEUNENS SHEZFREEEE REaRRiRE SSpREEnE DEEEEERE REE
BESHRREE ERERSSEE FONESSAE DRSRAGNE SReRiREE SEDRRRaN ERERERBEE B
EEESENET AETOEENE NEANENEN CONSERED EDSONSEE NHERSZES RENORE6E amn

Figure 4.11: Learned filter kernels of VN1 (top) and VN4 (bottom) fed with GRAPPA
(The digital version of this document may be enlarged for detailed viewing.)



36

Chapter 4. Experiments and Results

GRAPPA

MSE: 5.95, SSIM: 0.7635

MSE: 9.659, SSIM: 0.7688

MSE: 11.93, SSIM: 0.7658

MSE: 9.979, SSIM: 0.8075

Figure 4.10: Comparison of reconstruction quality of variational networks fed with GRAPPA.

VN1

MSE: 1.197, SSIM: 0.9254

MSE: 1.888, SSIM: 0.9329

MSE: 2.35, SSIM: 0.9452

MSE: 1.84, SSIM: 0.9379

MSE: 1.4, SSIM: 0.9683

VN4

MSE: 1.296, SSIM: 0.9202

MSE: 2.104, SSIM: 0.9274

MSE: 2.76, SSIM: 0.9398

MSE: 2.01, SSIM: 0.9343

MSE: 1.65, SSIM: 0.963

VN3

MSE: 1.898, SSIM: 0.893

MSE: 2.915, SSIM: 0.9034

MSE: 2.77, SSIM: 0.9127

MSE: 2.289, SSIM: 0.9485

Reference
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Figure 4.12: Selected filter kernels of VN1 (not on the same scale)

Figure 4.13: Learned data fidelity parameters of VN1 fed with GRAPPA
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Figure 4.14: Selected filter kernels of VN4 (not on the same scale)
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In this experiment the data fidelity parameters of VN1 have formed more compact
distribution. Coil channels 3, 8 with low SNR are obvious outliers. Their parameter
values have almost zero at ¢ = 3 and then reach peak at ¢t = 5 (see Fig. 4.13).

Surprisingly, inspecting intermediate reconstruction steps of VN1 fed with GRAPPA
reveals that aliasing artifacts reappear again at ¢ = 4 and are gradually removed toward the
end (see Fig. 4.15). This behavior may be perceived as suboptimal, because the GRAPPA
algorithm is used specially for the purpose of artifact removal. Nevertheless, this feeding
strategy results in better reconstruction quality compared to zero filling and is supported
by the quantitative evaluation (Table 4.2). Similarly, image sharpness is reduced a bit in
the last layer.

i}
&
4]

Reference

Figure 4.15: Intermediate reconstruction steps of VN1 fed with GRAPPA

Reference

Figure 4.16: Intermediate reconstruction steps of VN4 fed with GRAPPA
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Some minor artifacts can be seen on the reconstruction steps of VN4, although the
process differs significantly (see Fig. 4.16). But still, reappearance of artifacts especially in
VN1 suggests the possible benefits of using k-space regularization in the form of SPIRiT
or null space operators.

For completeness, few filter kernels of static VN3 are shown in Fig. 4.17.

The networks trained with GRAPPA as input cannot be used to reconstruct from zero
filling solution and vise-versa. More precisely, only in the first case the networks are able
to slightly improve reconstruction, that is, make image less blurred. Therefore, this is not
of practical interest.

O 250 5 0 T B
wj/LWJ\’_ﬁ“_w‘“”‘“’ﬂﬁ——*“%—w—ijwm_v

Figure 4.17: Selected filter kernels of VN3

4.2.2 Models with k-space regularization

Four networks with k-space consistency operators were trained in this experiment setting.
There was no significant improvement in reconstruction quality. The networks VN5, VNG,
and VN8 had similar performance (see Fig. 4.18).

All these networks have been trained to accept GRAPPA reconstructions as input.
Additionally, the methods also require calculation of either SPIRIT kernels or null space
estimates.

Comparison of all layered variational networks gives the impression that image-domain
reconstruction models, i.e., VN1, VN5, and VN8, are more robust in terms of artifact sup-
pression, while k-space reconstruction methods with fixed acquired data produce images
with better detail. However, there are unusual noise-like artifacts in few slices produced
by VNG6. Such artifacts were not previously observed. They are especially noticeable in

2" row, 3™ column, Fig. 4.18).

the background (for example, the slice in
I will quickly go through the learned parameters. Fig. 4.19 shows filter kernels of
layered networks implementing image-domain reconstruction, i.e., VN5 and VNS&. Besides
noise removal kernels, for example, minimizing at zero cross correlation, there are many
filters in the form of structure patterns for image sharpening.
The learned trade-off parameters of VN5 are shown below in Fig. 4.20. Once more,
coil channels 3, 8 diverge from the main group. For comparison, the trade-off parameters

of VN8 look more coherent, no outliers (see Fig. 4.21).
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GRAPPA

MSE: 9.32, SSIM: 0.7965

MSE: 11.48, SSIM: 0.7548

MSE: 5.6, SSIM: 0.7845

MSE: 8.02, SSIM: 0.79

VN5

MSE: 1.57, SSIM: 0.9526

MSE: 1.01, SSIM: 0.9451

MSE: 1.17, SSIM: 0.9568

VN6

MSE: 1.54, SSIM: 0.9541

MSE: 0.975, SSIM: 0.9472

MSE: 1.18, SSIM: 0.9569

VN7

MSE: 2.5, SSIM: ©.9297

L
MSE: 2.64, SSIM: 0.9321

MSE: 1.79, SSIM: 0.9117

MSE: 1.92, SSIM: 0.9324

: 1.64, SSIM: 0.9511

: 1.63, SSIM: 0.9553

1 1.03, SSIM: 0.9445

MSE: 1.24, SSIM: 0.9553

Reference

Figure 4.18: Comparison of reconstruction quality of variational networks with k-space regular-
ization
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Figure 4.19: Learned filter kernels of VN5 (top) and VN8 (bottom)
(The digital version of this document may be enlarged for detailed viewing.)

R A R D O
HEEE ®




4.2. Results 41
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0.0 1
1.5 1
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Layers, t

Figure 4.20: Learned data fidelity and k-space consistency trade-off parameters of VN5

4.0

2.0 4

0.0 4

0.5 A

0.2

0.0 4

Layers, t

Figure 4.21: Learned data fidelity and k-space consistency trade-off parameters of VN8

Only intermediate reconstruction steps of VN8 are included. The process depicted in
Fig. 4.22 is quite unique. The image seems to be ready at ¢ = 7, but some artifacts show
up at t = 8, possibly due to high data fidelity parameters and low k-space consistency
trade-offs (see Fig. 4.21). Nevertheless, the image looks pretty fine at the end.

The learned filter kernels of variational network VNG are very interesting (see Fig. 4.23).
These are the most beautiful filters of all experiments. As with VN4, many checker

9th

patterns can be seen. The filters from layer are also rather unusual. Few filter kernels

are shown in detail in Fig. 4.24.
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Reference
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Figure 4.23: Learned filter kernels of VN6
(The digital version of this document may be enlarged for detailed viewing.)
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Figure 4.24: Learned filter kernels of VN6
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4.2.3 GRAPPA vs zero filling

The experiment results demonstrate that feeding GRAPPA reconstructions to the net-
works is advantageous at regular acquisition pattern with acceleration factor R = 4. For
comparison, few slices produced by VN1 are shown in Fig. 4.25. Besides, this is confirmed
by the numerical data in Table 4.2. However, for layered networks, GRAPPA feeding does
not lead to dramatic improvement of final reconstruction. In general, zero-filling-fed VNs
produce quite good images, the striking artifacts only appear in a few slices. Additionally,
the most advanced of our non-sensitivity models, VN8, was trained with zero filling input.
Similarly, noticeable aliasing artifacts are only present in a small number of slices.

In contrast, our static variational networks benefit much more from GRAPPA feed-
ing. The main issue with the static VNs is excessive smoothing of fine details, thereby
significantly reducing the quality of the final reconstruction.

Finally, Fig. 4.26 depicts reconstructions obtained using four variational networks.
This comparison also includes the original VarNet by Hammernik et al. [29] The results
are comparable in quality, though GRAPPA-fed VNs produce slightly better images.

Zero filling

GRAPPA

Figure 4.25: Comparison of feeding methods of VN1
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VarNet (zero filling)

MSE: 1.776, SSIM: 0.9415

MSE: 2.2, SSIM: 0.9517 MSE: 1.98, SSIM: 0.9560

MSE: 2.64, SSIM: 6.945 MSE: 2.42, SSIM: 0.9607 MSE: 2.34, SSIM: 0.9629

X N
MSE: 1.27, SSIM: 0.9417 MSE: 1.123, SSIM: 0.9571

MSE: 1.13, SSIM: 0.9568

MSE: 2.33, SSIM: 0.9388 MSE: 2.23, SSIM: 0.9476 MSE: 2.19, SSIM: 0.9505

Figure 4.26:

VN8 (zero filling) Reference

MSE: 2.77, SSIM: 0.9475

MSE: 3.63, SSIM: 0.9526

MSE: 1.58, SSIM: 0.9528

MSE: 3.7, SSIM: 0.9321

Comparison of reconstruction quality of VN1, VN6, VN8, and VarNet



Table 4.2: Quantitative comparison of variational networks for reconstruction of MRI data with acceleration factor R = 4 (Rey; = 3.54)

without using coil sensitivity estimates.

Algorithm Tnput Number of Reconstruction MSE on MSE NRMSE SSIM
parameters time® (ms) training set
Zero filling 16.1554 16.7692 0.1466 0.8006
GRAPPA 70° 7.9671 7.4278 0.0992 0.7924
VarNet¢ Zero filling 131,050 260 1.2534 1.4982 0.0452 0.9375
VN1 . 2.1056 2.6927 0.0592 0.9279
VN1 d Zero filling 1.9058 2.4577 0.0562 0.9343
A , IO Zero-mean 106,300 90 . . . .
VN1 GRAPPA 1.8409 1.7980 0.0497 0.9325
VN1, no zero-mean 1.2954 1.3460 0.0429 0.9471
VN2 Zero filling 1,772,310 570 1.4053 2.4030 0.0562 0.9307
. Zero filling 4.2777 4.8070 0.0813 0.8947
VN3 (static) 10,639 125
GRAPPA 2.2697 2.1615 0.0551 0.9218
Z filli 1.9875 2.4351 0.0569 0.9309
VN4 (k-space) oo T8 106,240 90
GRAPPA 1.4574 1.5149 0.0458 0.9420
VN5 106,540 195 1.2371 1.2996 0.0423 0.9471
VN6 (k-space) GRAPPA 106,390 180 1.2198 1.2881 0.0422 0.9487
VN7 (static) 10,654 295 2.1934 2.1042 0.0545 0.9225
Zero filling 1.5003 1.8681 0.0496 0.9409
VN8 106,540 150
GRAPPA 1.2695 1.3277 0.0427 0.9472

“For variational networks, this timing excludes initial reconstruction costs.
*Including calculation of three 5 x 2 convolutional kernels.
“Model by Hammernik et al. with sensitivities [29]. Included for comparison.

9YN1 has been trained with and without zero-mean constraint, i.e., (kj, 1) = 0. It has not been applied to other networks.

SYMSAY T

1%
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4.2.4 Reconstruction at higher acceleration rates

3D MRI, where undersampling can be done in two phase-encoded dimensions (2D acceler-
ation), has greater potential to acquire data at a higher acceleration rates. Additionally,
more data acquisition patterns are available in 3D MRI, e.g., spiral trajectories. In the
case of 2D MRI with Cartesian acquisition, higher acceleration factors would inevitably
result in substantial deterioration of reconstruction quality.

I have trained three layered networks, VN5, VN8, and VN9 (derived from the model
with null space regularization and sensitivity estimates) for the acceleration factor R = 6.
The quantitative results of the experiments are presented in Table 4.3. As it was expected,
reconstruction quality of the networks at this acceleration factor is much lower. In general,
the images look clear, however, fine detail are lost to a greater extend, and aliasing artifacts
appear more often. Again, feeding GRAPPA solutions seems to be advantageous, although
the GRAPPA reconstructions themselves have limited practical significance due to very
high noise level.

Zero filling GRAPPA VNB8 (zero filling) VN8 (GRAPPA) Reference

MSE: 37.07, SSIM: 0.6993 MSE: 122.3, SSIM: 0.4809

MSE: 38.51, SSIM: 0.7174

MSE: 169.3, SSIM: .4281

MSE: 49.27, SSIM: 0.6957 MSE: 6.73, SSIM: 0.8807 MSE: 4.98, SSIM: 0.8961

Figure 4.27: Reconstructions produced by VN8 (R = 6)
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Fig. 4.27 depicts reconstruction of three slices for comparison. The GRAPPA solutions
were computed without Tykhonov regularization term, hence, they are very noisy. The
same GRAPPA reconstructions were fed to VN8 (4" column). The network VN5 with
SPIRIT regularization has only been trained for GRAPPA input and produced results
similar to those of VNS.

As regards the network with sensitivities, VN9, the reconstructions are visibly better
than those of GRAPPA-fed VNS8. Few slices are shown in Fig. 4.28. Furthermore, the
network runs slightly faster, though the reconstruction process involves multiple sensitivity
weighting operations.

Zero filling GRAPPA VN9 (zero filling) VN9 (GRAPPA) Reference

MSE: 30.72, SSIM: 0.7549 MSE: 124.5, SSIM: 0.4184 MSE: 4.57, SSIM: 0.9150 MSE: 3.33, SSIM: 0.9197

MSE: 38.68, SSIM: 0.6964 MSE: 168.4, SSIM: 0.4196 MSE: 4.73, SSIM: 0.8985 MSE: 4.35, SSIM: 0.8994

)

MSE: 16.03, SSIM: 0.8080 MSE: 99.3, SSIM: 0.4278 MSE: 1.94, SSIM: 0.9371 MSE: 1.79, SSIM: 0.9378

Figure 4.28: Reconstructions produced by VN9 (R = 6)



Table 4.3: Quantitative comparison of variational networks for reconstruction of MRI data with acceleration factor R = 6 (R = 5.04).

Number of

Reconstruction

MSE on

Algorithm Input parameters time® (ms) training set MSE NRMSE SSIM
Zero filling 24.4909 25.8323 0.1831 0.7617
GRAPPA 135° 83.6917 89.5789 0.3260 0.5120
VN5 GRAPPA 106,540 150 2.7109 3.1278 0.0648 0.9057
Z filli 44 4.4 . .8944
VNS ero filling 106,540 150 3.4400 000 0.0767 0.89
GRAPPA 2.7160 3.0994 0.0644 0.9109
Zero filli 2.6672 3.3330 0.0672 0.9131
VNo© oro 1Tine 106,260 140
GRAPPA 2.5872 2.8951 0.0626 0.9161

“For variational networks, this timing excludes initial reconstruction costs.

*Including calculation of three 7 x 2 convolutional kernels.

“The network with coil sensitivities, Eq. (3.14).
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Discussion

In general terms, the experiments have confirmed that most of the tested variational
networks are capable of producing high quality reconstructions from undersampled MRT
Coronal PD data. Since coil sensitivity estimates are not fed as a part of the input to the
networks', this removes some computationally intensive overhead, thereby shortening the
run time of the whole reconstruction algorithm.

The optimal architecture with respect to reconstruction quality and computational
costs still remains unknown. However, one of the main tasks of this work was to test
different FoE-based regularization methods. A number of options have been tried, and

2 combi-

it turned out that the models with the regularization applied on sum-of-squares
nation works best. This approach not only superior in reconstruction quality, but also
more computationally efficient. Moreover, applying image-domain regularization, i.e.,
Fields of Experts, on real-valued data is theoretically justified. At the same time, us-
ing multi-channel filters on magnitude coil images does not lead to better reconstructions
for a number of reasons, for example, highly non-uniform intensities and different SNR.
Therefore, based on experimental outcomes, all other options in the same scenario are not
recommended, which is also demonstrated by the unimpressive results of VN2 and its slow
run time (see Fig. 4.1 and Table 4.2). In contrast, models with SoS-applied regularization
generally produce good results. Nevertheless, I must conclude the following. Studying the
latest advances in learned MRI reconstruction, it becomes evident that today Fields of
Experts prior model for this task (and perhaps for all learning-based image processing in
general) is mostly outdated.

Besides intensities, complex data in MRI delivers phase information. For illustrative
purposes, Fig. 5.1 shows coil magnitude images and phase images of artifact-free slice
reconstructed with VNS&. It is visible that phase changes gradually, or, in other words,
phase images should be smooth. Since aliasing artifacts affect phase information, this

'WN9 with sensitivities has been trained only for comparison.
2 Actually root-sum-of-squares combination.
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suggests of having additional regularization in phase domain. However, designing such
phase regularizer is not a trivial task. Following the trend of machine learning, data-
driven models may be considered a possible solution. For example, Lee et al. train two
multi-scale neural networks with large receptive fields to estimate aliasing artifacts, one
for magnitudes and the other for phase images. The reconstruction is then obtained by
subtracting the estimated artifact map from corrupted input image [45].

More often complex MR image components are treated as channels and concatenated
together to a form a single vector, followed by real-valued multi-channel convolution.
Yet, we see that when used with a powerful prior, this leads to very competitive results.
On the other hand, DeepcomplexMRI employs complex convolution, which the authors
believe is beneficial due to the correlation between real and imaginary parts [37]. This,
of course, almost doubles the computational load. Besides, the following dilemma arises
when modeling MRI reconstruction without coil sensitivities: to combine or not to combine
the coil images before evaluating the prior. Intuitively, I would prefer the combine-then-
regularize paradigm supported by the impressive results of Bian et al. [38] as well as our
own experiments. But it is too early to draw conclusions on this issue. Perhaps, another
possible approach that could be explored is processing MR images as 2D vector fields.
Fig. 5.2 depicts three coil images with interesting vector patterns.

We have also observed that even our best reconstructions lose some fine details anyway.
Although, this seems to be unavoidable when processing accelerated MRI data, still, it is
believed that using better error metric could improve reconstruction quality. Specifically
and in simple words, loss should depend not only on pixel values, but also on the local
structure of an image. It was already shown that training a variational network using
SSIM as loss function is beneficial [40]. It results in sharper images compared to squared
£y loss training.

Sriram et al. train their model, E2E-VarNet briefly described in Section 2.5, using
J(u, tref) = —SSIM(u, urer), though they also admin excessive smoothness of reconstruc-
tions [31]. To make the images look more natural, they add a small amount of Gaussian
noise.

Totay, advanced forms of loss functions are used to train some state-of-the-art models.
The following composition of SSIM and ¢;-norm might be a good choice (for example, it
was used to learn the parameters of ¥-net [33] and GrappaNet [36]):

J(u, trep) = —SSIM([ul, [urer|) + AMa(lul, [upesl)

Zhao et al. compare the performance of image restoration networks trained with different
loss functions [46]. It turned out that not only the perceptually-motivated metrics, such
as Multi-Scale Structural Similarity Index (MS-SSIM [47]), are superior to MSE, but
even training with ¢; leads to better results. However, the authors show that SSIM and
MS-SSIM alone cannot be considered an ideal loss function. They finally propose the
combination of MS-SSIM and multi-scale Gaussian weighted ¢; (see [46] for details).
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Figure 5.1: Magnitude and phase images of a slice reconstructed by VN8
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2n/3
The phase images are rendered in hue colors: 0
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Figure 5.2: MRT complex images from three coils displayed as 2D vector fields (bottom) with
corresponding magnitude and phase images (top and middle rows)

Despite this, it seems that the optimal loss function for training deep neural networks
with applications to MRI reconstruction remains an open question. Moreover, an advanced
k-space normalization is recommended to bring the data to the same magnitude scale.
Solving these problems is one of the objectives of further research.

Additionally, our results indicate that feeding good initial guess to the tested models
leads to an improvement in reconstruction quality, i.e., the advantage of GRAPPA over
zero-filling. However, to the best of my knowledge, GRAPPA reconstructions cannot
be efficiently computed in some cases. For comparison, regular Cartesian sampling with
acceleration factor R = 4 requires computation of only three kernels, whereas non-regular
non-uniform k-space acquisition patters, such as radial or spiral in 3D MRI, would require
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computation of many more [10]. For higher acceleration rates, usage of GRAPPA solutions
as input is even more questionable.

Regarding k-space consistency regularization, there might be room for improvement.
That is, its relatively small contribution to improving the quality of MRI reconstruction
suggests that in this simple schemes, derived from steepest gradient descent, it is not
used efficiently. Hence, outcome of the reconstruction process strongly depends on the
regularization in image domain, while the k-space consistency operator plays only an
auxiliary role.

Finally, variational network with fixed acquired data, that is, VN4 and its derivatives,
have one possible useful property. Namely, the MR image gradually improves as it passes
through the network. This is different to the layered image-domain reconstruction VNs
(see for comparison Fig. 4.5 and Fig. 4.9). It should also be noted that the scheme with
fixed acquired data is limited to Cartesian sampling.






Conclusion

In this work I have tested a number of variational networks for reconstruction of accelerated
MRI data without coil sensitivities. We have obtained good-looking results for a number
of models, which illustrates that variational network with Field of Experts regularization
is still a powerful reconstruction tool. However, I have to admit that these VNs can
no longer compete with the latest deep learning MRI reconstruction techniques. But in
comparison with them, our networks have a very low number of parameters (e.g., ~106K of
our VNs versus 30M of E2E-VarNet [31] or 480M of GrappaNet [36]). The use of advanced
regularization is expected to result in a significant improvement in reconstruction quality.

The experiment outcomes clearly indicate that the layered networks outperform the static
ones. Additional k-space regularization, either SPIRiT or PRUNO, improves reconstruc-
tion quality, and it has been shown that using large kernels does not increase computational
costs.

Also, for me personally, it was a great opportunity to work on CUDA-enabled hardware,
in addition to gaining in-depth knowledge of the subject.
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List of Acronyms

ACS Auto-Calibration Signal

CG Conjugate Gradient

CNN Convolutional Neural Network
CPU Central Processing Unit

CS Compressed Sensing

CT Computed Tomography

FoE Fields of Experts

FoV Field of View

GPU Graphics Processing Unit

HDD Hard Disk Drive

IFFT Inverse Fast Fourier Transform
MR Magnetic Resonance

MRI Magnetic Resonance Imaging
MRT Magnetic Resonance Tomography
MS-SSIM  Multi-Scale Structural Similarity Index
MSE Mean Squared Error

NRMSE  Normalized Root Mean Squared Error
ReLU Rectified Linear Unit

SNR Signal-to-Noise Ratio

SoS Sum-of-Squares

SSIM Structural Similarity Index
TDV Total Deep Variation

TGV Total Generalized Variation
TV Total Variation

VN Variational Network

o7






BIBLIOGRAPHY 59

Bibliography

1]

P. Roemer, W. Edelstein, C. Hayes, S. Souza, and O. Mueller, “The NMR phase
array,” Magnetic Resonance in Medicine, vol. 16, no. 2, pp. 192-225, 1990. (page 1,
6)

J. Kelton, R. Magin, and S. Wright, “An algorithm for rapid image acquisition using
multiple receiver coils,” in SMRM, 8th Annual Meeting, Amsterdam, p. 1172, 1989.

(page 2)

D. Sodickson and W. Manning, “Simultaneous acquisition of spatial harmonics
(SMASH): fast imaging with radiofrequency coil arrays,” Magnetic Resonance in
Medicine, vol. 38, no. 4, pp. 591-603, 1997. (page 2)

K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sen-
sitivity encoding for fast MRI,” Magnetic Resonance in Medicine, vol. 42, no. 5,
pp. 952-962, 1999. (page 2, 6)

M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang,
B. Kiefer, and A. Haase, “Generalized autocalibrating partially parallel acquisitions
(GRAPPA),” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1202-1210, 2002.
(page 2, 28)

K. Pruessmann, M. Weiger, P. Boernert, and P. Boesiger, “Advances in sensitivity en-
coding with arbitrary k-space trajectories,” Magnetic Resonance in Medicine, vol. 46,
no. 4, pp. 638-651, 2001. (page 3)

M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala,
and M. Lustig, “ESPIRIT — an eigenvalue approach to autocalibrating parallel MRI:
Where SENSE meets GRAPPA,” Magnetic Resonance in Medicine, vol. 71, no. 3,
pp. 990-1001, 2014. (page 3, 28)

P. Jakob, M. Griswold, R. Edelman, and D. Sodickson, “AUTO-SMASH: a self-
calibrating technique for SMASH imaging,” MAGMA, vol. 7, no. 1, pp. 42-54, 1998.

(page 3)

R. M. Heidemann, M. A. Griswold, A. Haase, and P. M. Jakob, “VD-AUTO-SMASH
imaging,” Magnetic Resonance in Medicine, vol. 45, no. 6, pp. 1066-1074, 2001.

(page 3)

M. Lustig and J. M. Pauly, “SPIRiT: Iterative self-consistent parallel imaging recon-
struction from arbitrary k-space,” Magnetic Resonance in Medicine, vol. 64, no. 2,
pp. 457-471, 2010. (page 4, 23, 30, 53)



60

[11]

[12]

[14]

[15]

[22]

Y. Chang, D. Liang, and L. Ying, “Nonlinear GRAPPA: A kernel approach to parallel
MRI reconstruction,” Magnetic Resonance in Medicine, vol. 68, no. 3, pp. 730-740,
2012. (page 7)

M. Akcakaya, S. Moeller, S. Weingartner, and K. Ugurbil, “Scan-specific robust
artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-
free deep learning for fast imaging,” Magnetic Resonance in Medicine, vol. 81, no. 1,
pp. 454-465, 2019. (page 7)

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction
by domain-transform manifold learning,” Nature, vol. 555, no. 7697, pp. 487492,
2018. (page 7, 8)

F. Knoll, K. Hammernik, C. Zhang, S. Moeller, T. Pock, D. K. Sodickson, and
M. Akgakaya, “Deep learning methods for parallel magnetic resonance image recon-
struction,” arXiv preprints, 2019, arXiv:1904.01112 [eess.SP]. (page 8)

E. J. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information,” IFEE Transactions
on Information Theory, vol. 52, no. 2, pp. 489-509, 2006. (page 10)

D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289-1306, 2006. (page 10)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: Nonlinear Phenomena, vol. 60, pp. 259-268, 1992. (page 10)

M. Zhu and T. Chan, “An efficient primal-dual hybrid gradient algorithm for total
variation image restoration,” UCLA CAM Report, 05 2008. (page 11)

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems
with applications to imaging,” Journal of Mathematical Imaging and Vision, vol. 40,
no. 1, pp. 120-145, 2011. (page 11)

K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM Journal
on Imaging Sciences (SIIMS), vol. 3, no. 3, pp. 492-526, 2010. (page 12)

F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second order total generalized
variation (TGV) for MRI,” Magnetic Resonance in Medicine, vol. 65, no. 2, pp. 480
491, 2010. (page 12)

S. Roth and M. J. Black, “Fields of experts,” International Journal of Computer
Vision, vol. 82, no. 2, pp. 205-229, 2009. (page 13)



BIBLIOGRAPHY 61

[23]

[24]

[25]

[26]

[27]

[29]

E. Kobler, A. Effland, K. Kunisch, and T. Pock, “Total deep variation for linear
inverse problems,” in 2020 IEEE/CVFE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Seattle, WA, USA, pp. 7546-7555, June 2020. Available:
https://arxiv.org/abs/2001.05005. (page 13, 17)

A. Barbu, “Training an active random field for real-time image denoising,” IFEFE
Transactions on Image Processing, vol. 18, no. 11, pp. 2451-2462, 2009. (page 14)

J. Domke, “Generic methods for optimization-based modeling,” in International Con-
ference on Artificial Intelligence and Statistics, La Palma, Canary Islands, pp. 318—
326, 2012. (page 14)

Y. Chen, W. Yu, and T. Pock, “On learning optimized reaction diffusion processes
for effective image restoration,” in 28th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, June 2015. (page 14, 25)

E. Kobler, T. Klatzer, K. Hammernik, and T. Pock, “Variational networks: Con-
necting variational methods and deep learning,” in 39th German Conference on Pat-
tern Recognition (GCPR 2017), Basel, Switzerland, pp. 281-293, September 2017.

(page 14)

A. Effland, E. Kobler, K. Kunisch, and T. Pock, “Variational networks: An optimal
control approach to early stopping variational methods for image restoration,” Jour-
nal of Mathematical Imaging and Vision, vol. 62, no. 3, pp. 396416, 2020. (page 14,
25)

K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and
F. Knoll, “Learning a variational network for reconstruction of accelerated MRI data,”
Magnetic Resonance in Medicine, vol. 79, no. 6, pp. 3055-3071, 2018. (page 14, 20,
25, 26, 27, 28, 43, 45)

H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model based deep learning
architecture for inverse problems,” IEEFE Transactions on Medical Imaging, vol. 38,
no. 2, pp. 394-405, 2019. (page 15)

A. Sriram, J. Zbontar, T. Murrell, A. Defazio, C. L. Zitnick, N. Yakubova, F. Knoll,
and P. Johnson, “End-to-end variational networks for accelerated MRI reconstruc-
tion,” arXiv preprints, 2020, arXiv:2004.06688 [eess.IV]. (page 16, 50, 55)

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from
error visibility to structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600-612, 2004. (page 16, 28)


https://arxiv.org/abs/2001.05005

62

[33]

J. Schlemper, C. Qin, K. Hammernik, and J. Duan, “¥-net: Ensembled iterative deep
neural networks for accelerated parallel MR image reconstruction,” in 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada,
December 2019. (page 16, 50)

Anonymous author(s), “An auto-calibrating deep learning algorithm for undersam-
pled MRI reconstruction,” in 88rd Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), Vancouver, Canada, December 2019. (page 16, 23)

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2015, vol. 9351, pp. 234-241, 2015. Available:
https://arxiv.org/abs/1505.04597. (page 17)

A. Sriram, J. Zbontar, T. Murrell, C. L. Zitnick, A. Defazio, and D. K. Sodickson,
“GrappaNet: Combining parallel imaging with deep learning for multi-coil MRI re-
construction,” arXiv preprints, 2019, arXiv:1910.12325 [eess.IV]. (page 17, 50, 55)

S. Wang, H. Cheng, L. Ying, T. Xiao, Z. Ke, H. Zheng, and D. Liang, “Deepcom-
plexMRI: Exploiting deep residual network for fast parallel MR imaging with complex
convolution,” Magnetic Resonance Imaging, vol. 68, pp. 136-147, 2020. Available:
https://arxiv.org/abs/1906.04359. (page 21, 50)

W. Bian, Y. Chen, and X. Ye, “Deep parallel MRI reconstruction network without
coil sensitivities,” arXiv preprints, 2020, arXiv:2008.01410 [eess.IV]. (page 22, 50)

J. Zhang, C. Liu, and M. E. Moseley, “Parallel reconstruction using null operations,”
Magnetic Resonance in Medicine, vol. 66, no. 5, pp. 1241-1253, 2011. (page 23, 25,
30)

K. Hammernik, F. Knoll, D. Sodickson, and T. Pock, “L2 or not L2: Impact of
loss function design for deep learning MRI reconstruction,” in Proceedings of the
International Society of Magnetic Resonance in Medicine (ISMRM), 2017. (page 26,
50)

PyTorch. https://pytorch.org/. (page 26, 27)
TensorFlow. https://www.tensorflow.org/. (page 26)
CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/. (page 27)

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprints, 2014, arXiv:1412.6980 [cs.LG]. (page 28)

D. Lee, J. Yoo, and J. C. Ye, “Deep artifact learning for compressed sensing and
parallel MRI,” arXiv preprints, 2017, arXiv:1703.01120 [cs.CV]. (page 50)


https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1906.04359
https://pytorch.org/
https://www.tensorflow.org/
https://docs.nvidia.com/cuda/

BIBLIOGRAPHY 63

[46] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration
with neural networks,” IEEE Transactions on Computational Imaging, vol. 3, no. 1,
pp. 47-57, 2017. Available: https://arxiv.org/abs/1511.08861. (page 50)

[47) Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for image
quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems
and Computers, vol. 2, pp. 1398-1402, 2003. (page 50)


https://arxiv.org/abs/1511.08861

	Introduction
	Parallel imaging
	SENSE
	GRAPPA
	SPIRiT
	Noise
	More advanced methods

	MRI Reconstruction as an Optimization Problem
	Compressed sensing
	Regularization
	Variational networks
	Variational networks for MRI reconstruction
	Recent developments

	Variational Networks for MRI Reconstruction without Coil Sensitivities
	Regularization in image domain
	Approach 1: sum-of-squares-combined image
	Approach 2: multi-channel filters
	Recent work

	Reconstruction in k-space
	Regularization in k-space
	Feeding the VN
	VN with constant parameters
	Training the VN

	Experiments and Results
	Experimental setup
	Results
	GRAPPA initialization
	Models with k-space regularization
	GRAPPA vs zero filling
	Reconstruction at higher acceleration rates


	Discussion
	Conclusion
	List of Acronyms
	Bibliography

