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Abstract

Magnetic resonance imaging is an important medical diagnostic tool. Unfortunately, due

to physical limitations, this imaging technique is rather slow. In order to mitigate the

disadvantage associated with slow scan times, accelerated data acquisition methods are

utilized, resulting in a significant reduction in image quality. Therefore, over the years,

much research has been aimed at improving the quality of MRI reconstruction, including a

number of approaches that require the calculation of coil sensitivities. This thesis explores

the potential of Fields-of-Experts-regularized variational networks for reconstruction of

accelerated MRI data without explicit usage of coil sensitivities. First, multi-coil image-

domain regularization approaches are discussed. Then, VN with fixed acquired data is

derived, and methods of additional k-space regularization are proposed. We have trained

a number of networks, and the results indicate that our models without coil sensitivities

and with fewer parameters than the original VarNet by Hammernik et al. demonstrate

comparable or even superior performance. In addition, the experiments show that the use

of k-space regularization leads to an improvement in the quality of reconstruction.

Keywords. parallel MRI, image reconstruction, comressed sensing, variational network,

deep learning
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Kurzfassung

Die Magnetresonanztomographie ist ein wichtiges medizinisches Diagnoseinstrument.

Leider ist dieses bildgebende Verfahren aufgrund physikalischer Einschränkungen ziemlich

langsam. Um den mit langsamen Scanzeiten verbundenen Nachteil zu mildern, werden

beschleunigte Datenerfassungsmethoden eingesetzt, was zu einer erheblichen Verringerung

der Bildqualität führt. Daher wurde im Laufe der Jahre viel geforscht, um die Qualität

der MRT-Rekonstruktion zu verbessern, einschließlich einer Reihe von Ansätzen, die

die Berechnung von Spulenempfindlichkeiten erfordern. In dieser Arbeit wird das

Potenzial von Fields-of-Experts-regulierten Variationsnetzwerken für die Rekonstruktion

beschleunigter MRT-Daten ohne explizite Verwendung von Spulenempfindlichkeiten

untersucht. Zunächst werden Multi-Coil-Bildbereichs-Regularisierungsansätze diskutiert.

Dann wird Variationsnetzwerk mit fest erfassten Daten abgeleitet und es werden

Methoden zur zusätzlichen k-Raum-Regularisierung vorgeschlagen. Eine Reihe von

Netzwerken wurde trainiert und die Ergebnisse zeigen, dass unsere Modelle ohne

Spulenempfindlichkeiten und mit weniger Parametern als das ursprüngliche VarNet von

Hammernik u.a. eine vergleichbare oder sogar überlegene Leistung zeigen. Darüber

hinaus zeigen die Experimente, dass die Verwendung der k-Raum-Regulierung zu einer

Verbesserung der Qualität der Rekonstruktion führt.
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Introduction

Contents

1.1 Parallel imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 SENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 GRAPPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 SPIRiT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 More advanced methods . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Parallel imaging

Magnetic Resonance Tomography (MRT/MRI) is increasingly popular, noninvasive tech-

nique of medical imaging. It works by detecting radio waves emitted by hydrogen atoms

under excitation in a magnetic field. The frequency of emitted signal as well as resonance

frequency depend on external field strength. This underlies the main technique of signal

localization in MRI: computing the frequency components of the magnetic flux originat-

ing from tissue placed in a varying magnetic field. For this reason MRI scanners have a

number of builtin coils: superconducting coil magnet for creating strong magnetic field,

gradient coils for frequency and phase encodings, receiver coils for signal registration, etc.

Surface coils were introduced for the benefit of increasing Signal-to-Noise Ratio (SNR).

Obviously, placing additional coils in the immediate vicinity of the inspected object im-

proves detection of electromagnetic waves, which allows recording a signal of better quality.

Early coil array designs were impaired by the issue of coil interactions. The solution to

this problem was proposed in the fundamental work by Roemer et al., thereby allowing

simultaneous multi-coil acquisition [1].
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2 Chapter 1. Introduction

However, in contrast to full-body coil, due to the physical phenomenon of propagation

of electromagnetic waves, surface coil sensitivities are highly non-uniform: detected signal

strength depends on spatial location of the point emitting the signal. Therefore, individual

coil images have different gradually changing intensity. Nevertheless, this property of

surface coils has turned to be a valuable source of additional information in recovering the

spatial location of the signal origin, besides standard frequency and phase encodings.

The main disadvantage of MRI compared to other modern medical imaging methods

(in addition to high maintenance costs, e.g., expensive liquid helium needs to be topped

up periodically) is long scan time. The possibility of multiple coil acquisition for acceler-

ating MRI was theoretically proved by Kelton et al. [2] In general terms, acceleration is

performed by reducing the number of phase encoding steps. The first practically appli-

cable reconstruction methods for accelerated MRI were SMASH [3] and later SENSE [4].

Besides these two, other methods has since emerged.

In the following sections several reconstruction methods are presented, of which SENSE

and GRAPPA [5] are the most common and commercially available.

1.2 SENSE

One of the main techniques in accelerated MRI reconstruction is SENSE (the name comes

from SENSitivity Encoding), proposed by Pruessman et al. [4] In SENSE, data collected

from a single coil is modeled by the equation

bj = MFSju+ nj , (1.1)

where M is sampling operator, Sj is coil sensitivity, u is true image, and nj is noise. Every

voxel from the slice is encoded with coil sensitivity weight. Thus, SENSE poses MRI

reconstruction as an inverse problem to the system

Au = b (1.2)

Here A
def
= MFS includes sensitivity weighting, Discrete Fourier Transform (DFT), and

sampling operator with the reduction factor R. For the existence of unique solution, we

additionally require that R cannot be greater than the number of coils. SENSE recon-

struction then means finding the solution to the least squares problem

min
u

1

2

∥∥Au− b∥∥2

2
(1.3)

In the most simple form, i.e., with only quadratic terms, when the matrix A is relatively

small (Cartesian sampling with 1D acceleration), and without taking noise into consider-

ation, the solution can be found in a closed form:

u∗ =
(
AHA

)−1
AHb, (1.4)
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where AH denotes conjugate transpose of the matrix A. Fig. 1.1 depicts sample recon-

struction using this scheme along with sensitivity-weighted reference combination.

In general, iterative schemes are preferred, e.g., variants of gradient descent, namely,

Landweber iteration,

ut+1 = ut − αAH
(
Aut − b

)
, (1.5)

or conjugate gradient algorithm (CG SENSE [6]).

SENSE is very flexible, works with arbitrary coil configurations, different sampling

trajectories, but requires knowledge of the magnetic field of each coil. Thus, one must

first solve the sensitivity estimation problem with adequate accuracy, because even small

errors in coil sensitivity estimates affect reconstruction quality leaving artifacts. The

original paper describes the method for coil sensitivity estimation. Other algorithms have

since been developed, for example ESPIRiT [7].

a b c

Figure 1.1: An example of SENSE reconstruction with acceleration factor R = 4: a) exact
solution, Eq. (1.4), b) CG-SENSE, c) fully sampled reference.

1.3 GRAPPA

Another widely accepted method of parallel imaging techniques is GRAPPA. It is similar

to AUTO-SMASH [8], VD-AUTO-SMASH [9], but in contrast to these methods, GRAPPA

recovers nonacquired data for all coils.

Unlike SENSE, GRAPPA is a direct coil-by-coil k-space domain reconstruction

method. In essence, GRAPPA is based on the assumption that the following relation

holds:

fj =
∑

c ∈ Coils
fc ∗ gjc, (1.6)

where f is a k-space, and g is a shift-invariant convolutional kernel. In other words, each

point in k-space can be approximated by a weighted sum of neighboring points from all
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coils. This means that the reconstruction of missing data x of coil j at position r is merely

a linear combination:

xr,j =
∑

c ∈ Coils
Mr

(
fc ∗ gr,jc

)
, (1.7)

where Mr is a sampling operator, which selects data at position r, and gr is a set of weights

for approximating data at position r.

As stated above, it is assumed that g is shift-invariant. Therefore, kernel gr can be

approximated from the set of k-space patches where xr and its neighboring points are

known, Auto-Calibration Signal area (ACS):

g̃r,j = arg min
gr,j

1

2

∑
p ∈ACS

∣∣∣∣∣fp,j − ∑
c ∈ Coils

Mp

(
fc ∗ gr,jc

)∣∣∣∣∣
2

(1.8)

In matrix form, where Ar is a matrix containing neighboring points in rows, br is a vector

of fp,j , and gr,j rearranged into a vector, we have

g̃r,j = arg min
gr,j

1

2

∥∥Argr,j − br,j
∥∥2

2
(1.9)

Additionally, in order to reduce noise in the reconstruction, the Tykhonov regularization

term can be added. The problem has analytical solution:

g̃r,j =
(
AH
rAr + λId

)−1
AH
r br,j (1.10)

The parameter λ acts as a trade-off between noise and aliasing artifacts.

Of course, reconstruction in frequency domain by the linear interpolation of neigh-

boring frequency values might look counter-intuitive. Despite this, GRAPPA is stable

and produces reconstructions of acceptable quality. However, images are noisy at high

acceleration factors, which becomes an obstacle to practical use (see Fig. 1.2).

1.4 SPIRiT

In the SPIRiT algorithm developed by Lustig and Pauly the solution to the MRI recon-

struction problem is constraint with calibration consistency [10]. The algorithm utilizes

the basic GRAPPA assumption, Eq. (1.6) in matrix form,

Gf = f,

but posing the reconstruction as an inverse problem. This makes SPIRiT algorithm more

general comparing to GRAPPA as it effectively allows reconstruction from arbitrary sam-

pling patterns. Reconstruction of the entire k-space is obtained as a solution to the
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optimization problem:

min
x

1

2

∥∥Gx− x
∥∥2

2
+
λ

2

∥∥Mx− b
∥∥2

2
(1.11)

Alternatively, the acquired data can be made immutable:

min
x

1

2

∥∥(Gx− x)(MCx+ Mb)
∥∥2

2
, (1.12)

then u = F−1[MCx+ Mb]

Both problems, Eq. (1.11) and Eq. (1.12), can be solved directly with a linear solver

(the resulting matrices are sparse) or using an iterative approach, e.g., conjugate gradient

method. As with GRAPPA, SPIRiT requires a fully sampled ACS area to compute a

calibration kernel, which is done in a similar manner.

Figure 1.2: Noise amplification in GRAPPA reconstructions at different acceleration factors R.



6 Chapter 1. Introduction

1.5 Noise

According to Prussman et al., the upper bound of Signal-to-Noise Ratio (SNR) in recon-

structed images from accelerated data is given by

SNRreduced =
SNRfull

gρ
√
R

, (1.13)

where gρ ≥ 0 is the coil configuration geometry factor [4].

Roemer et al. compare few methods for combining coil images. Optimal SNR requires

knowledge of absolute coil sensitivities [1].

It should also be noted, that spacial distribution of noise is non-uniform, which is

clearly seen on the reconstructed images (see Fig. 1.3).

a b

c d

Figure 1.3: Comparison of reconstruction methods (R = 4): a) CG-SENSE, b) GRAPPA,
c) SPIRiT, d) fully sampled reference.
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1.6 More advanced methods

Following the success of GRAPPA, a number of methods have been proposed in order to

improve the reconstruction quality of the algorithm. One of these is Nonlinear GRAPPA

by Chang et al. [11] This approach utilizes the kernel method, i.e., the identity Eq. (1.6)

is modified as follows:

b = Φ(A) g,

where Φ : CM×K 7→ CM×NK , NK � K, is a nonlinear function that maps k-space data

(here in the form of matrix A) into higher dimensional feature space.

The coefficients g can be computed similarly to Eq. (1.10):

g̃ =
(

Φ(A)HΦ(A)
)−1

Φ(A)Hb

For the kernel Φ(·) the authors used polynomial function. Additionally, the size of feature

space NK should be chosen with care.

Complex nonlinear relations between neighboring points in k-space suggests using Neu-

ral Networks (NN) for this task. Akçakaya et al. proposed Robust Artificial-neural-

networks for K-space Interpolation reconstruction (RAKI) [12]. It can be considered an

advanced nonlinear NN-based variant of GRAPPA, where missing data is synthesized from

acquired data using deep neural network:

fj = Φ(f ; θj) (1.14)

The parameters θj of the network Φ are learned from the ACS area independly for every

coil:

θ̃j = arg min
θj

∥∥fACS − Φ(fACS ; θj)
∥∥2

2

Then, reconstruction in k-space is computed using Eq. (1.14).

RAKI does not require large training datasets for learning, or, in other words, it is scan-

specific. Moreover, noise amplification in reconstructions is greatly reduced compared to

original GRAPPA especially at high acceleration rates. These nice properties make RAKI

very attractive.

Another interesting method is AUTOMAP by Zhu et al. [13], a unified framework for

image reconstruction, which models direct mapping from sensor representation (k-space)

into image domain. Theoretically this method is interpreted as learning a robust low-

dimensional joint manifold M = X × Y, where X is a manifold of k-space data, Y is

a manifold of output images, and mapping functions φx and φy, as well as a between-

manifold projection g : X 7→ Y. The reconstruction process can be written as a function

f(x) = φy ◦ g ◦ φ−1
x (x). This mapping is implemented with deep neural network.
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AUTOMAP is robust against noise and other input perturbations, such as calibration

errors [13]. However, this ”brute force” approach to learned MRI reconstruction is inef-

ficient due to a very large number of network parameters and, as a result, high memory

usage and computing resources, which significantly limits image resolution [14].

Few recently emerged reconstruction methods based on iterative/cascading schemes

are described at the end of Chapter 2.



2
MRI Reconstruction as an Optimization Problem

Contents

2.1 Compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Variational networks . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Variational networks for MRI reconstruction . . . . . . . . . . . 14

2.5 Recent developments . . . . . . . . . . . . . . . . . . . . . . . . . 15

Image reconstruction tasks are often represented as problems of minimization of the energy

functional in the following form:

E(x, y) = D(x, y) + R(x)

Here D(x, y) is called data fidelity, and R(x) is regularization. This functional is closely

related to the famous Bayes formula

p(x|y) =

likelyhood︷ ︸︸ ︷
p(y|x)

prior︷︸︸︷
p(x)

p(y)
,

where p(x|y) denotes the probability of getting true image x given measurement y.

In situations of uncertainty, which in the context of accelerated MRI is mostly produced

by undersampling and noise, we want to maximize the probability of obtaining the true

image x, hence, we need to solve

min
x
E(x, y)

A common choice for the data fidelity term is the sum of squared errors,

D(x, y) =
∥∥Ax− y∥∥2

2

9



10 Chapter 2. MRI Reconstruction as an Optimization Problem

with A being a task-specific operator transforming x into data measurement domain.

The things are more complicated with the regularizer, or prior, and much of research work

has been done mainly in this direction. The theory of compressed sensing is of particular

interest.

2.1 Compressed sensing

Compressed Sensing (CS) is a technique for sampling and reconstructing compressible

signal. The main goal of the theory is to reduce the number of measurements (sampling

rate) while maintaining the reconstruction accuracy. For instance, this directly means

accelerated acquisition in MRI, or reduced exposure to ionizing radiation in CT.

CS can only be applied in the context of compressible data, for example, when signal is

sparse. By exploiting the a-proiri knowledge of sparsity, it becomes possible to reconstruct

highly undersampled signal with sufficient accuracy, in some cases exactly. If signal is not

sparse, very often the amount of useful information, the Kolmogorov complexity, is much

less than the amount of data collected at a measurement rate that satisfies the Nyquist-

Shannon sampling theorem. This implies that at least in theory there must be a way

to compress the signal, or, alternatively, sparsify it. Such principle of transform sparsity

underlies regularization models used in CS framework.

A prominent work by Candès, Romberg, and Tao [15] demonstrates exact reconstruc-

tion of a signal from small set of frequencies. In the example application, they use total

variation as complexity measure. Another paper with important theoretical results for the

theory of CS was published by Donoho [16].

2.2 Regularization

One of the most important regularization models is total variation. In image processing

Total Variation (TV) was first introduced in 1992 by Rudin, Osher, and Fatemi originally

for image denoising (ROF model) [17]. Since then it has been adopted into many image

processing applications including MRI reconstruction.

TV arises from the assumption that natural images are piecewise constant, that is,

image gradients are sparse. TV can also be viewed as a special case of the regularizer

R(u) =

∫
Ω
‖∇u‖pdx for p = 1. (2.1)

In discrete setting, TV is defined as

TV(x)
def
=

N∑
i=1

√
|(Dx)i,1|2 + |(Dx)i,2|2 , (2.2)

where the linear operator D maps to discrete gradients.
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By augmenting the SENSE model, Eq. (1.3), with the TV regularization, we obtain

the following optimization problem:

u∗ = arg min
u

TV(u) +
λ

2

∥∥Au− b∥∥2

2
(2.3)

Due to the historical significance, I would like to pay special attention to the TV-

regularized SENSE reconstruction, though without going into details.

The functional in Eq. (2.3) poses issues for optimization because of non-smoothness

of the regularization term. Nevertheless, a number of algorithms have been proposed.

The most efficient first-order methods to date work by solving the problem in primal-dual

form. In the algorithm developed by Zhu and Chan [18], the `2-norm is replaced with the

dual norm, thereby introducing the dual variable x:

min
u

max
x∈X

〈Du, x〉 +
λ

2

∥∥Au− b∥∥2

2
(2.4)

where X = {x : ‖xi‖2 ≤ 1, 1 ≤ i ≤ N }

The algorithm builds a sequence of both variables simultaneously, i.e., performing pro-

jected gradient ascent for the dual variable x and calculates the minimum for the primal

variable u at every stage. The solution lies at the saddle point. But since original primal

update is inefficient in our case, one of the simpler alternatives is to replace it with gra-

dient descent. Below is a summary of an accelerated variant of the primal-dual algorithm

by Chambolle and Pock [19] with an explicit gradient step on the primal variable u.

Choose τ > 0, σ > 0

Initialize u0(e.g., zero filling), x0 ← 0, ũ0 ← u0, k ← 0

Repeat:

xk+1 ← PX(xk + σDũk)

uk+1 ← uk − τ(DTxk+1 + λAH(Auk − b))
ũk+1 ← 2uk+1 − uk

k ← k + 1

The operator PX denotes the projection of subvectors xi ∈ C2 onto unit Euclidean disks,

which can be easily calculated:

PX(x) ⇔ xi
max{1, ‖xi‖2}

, 1 ≤ i ≤ N

Fig. 2.1 shows three reconstructions of the same slice with different data fidelity parame-

ters. The solutions were obtained by calculating 1000 primal-dual iterations according to

the scheme indicated above.
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𝜆 = 10

𝜆 = 2 𝜆 = 5

Reference

Figure 2.1: TV-regularized SENSE reconstruction with three different data fidelity parameters
λ = {2, 5, 10}.

The main disadvantage of the TV regularization is the so-called staircasing effect.

More advanced second order Total Generalized Variation (TGV) overcomes the issue of

staircasing by including higher-order derivatives [20]. Knoll et al. have used TGV for MRI

denoising and radial sampling SENSE reconstruction [21]. In their work, the reconstruc-

tion model is defined as follows:

min
u, v

max
x∈X, y∈Y, z

〈∇u− v, x〉 + 〈∇v, y 〉 + 〈Au− b, z 〉 − 1

2λ

∥∥z∥∥2

2
(2.5)

Note that max z〈Au − b, z〉 − 1
2λ

∥∥z∥∥2

2
= λ

2

∥∥Au − b∥∥2

2
, i.e., the data fidelity term is also

dualized, a trick that can be applied to Eq. (2.4) too. An example of TGV-regularized

SENSE reconstruction is shown in Fig. 2.2.

However, the structural complexity of natural images has triggered the development

of learned priors with probability distribution taken directly from the statistics.
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Fields of Experts (FoE) is a framework for modeling image priors, which has drawn

attention in computer vision research community due to its elegant representation and

effectiveness. It is based on powerful sparse coding methods combined with Markov Ran-

dom Field (MRF) models [22].

FoE models the image probability density as

p(x) =
1

Z(Θ)

∏
k

N∏
j=1

φj(J
T
j x(k);αj)

Hence, the FoE regularizer in the energy functional has the following form:

R(x) = −
∑
k

N∑
j=1

log φj(J
T
j x(k);αj),

where experts φj(J
T
j x(k);αj) =

(
1 +

1

2

(
JT
j x(k)

)2)−αj

The linear filters Jj as well as the parameters αj > 0 are learned from data. Once trained,

the regularizer is included into the energy functional, and solution is computed as regular.

More advanced learned priors have been developed. For example, one of the recent

proposals is Total Deep Variation (TDV) [23], which is inspired by deep multiscale Con-

volutional Neural Networks (CNN) with residual connections. TDV has relatively low

number of parameters, however, the models regularized with TDV achieve state-of-the-art

performance. Furthermore, there is an ongoing research work on applying TDV to MRI

reconstruction with promising results.

a b c

Figure 2.2: TV and TGV regularization in SENSE reconstruction with data fidelity parameter
λ = 5: a) TV-SENSE, b) TGV-SENSE, c) fully sampled reference.
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2.3 Variational networks

As shown by Barbu in [24], instead of learning the prior independently of the energy

functional, training the FoE regularizer together with the inference algorithm yields con-

siderable gains in performance. The inference algorithm there was obtained by unrolling

first N = {1, 2, 3, 4} iterations of the gradient descent scheme and trained through op-

timization of the loss function. Due to some reasons, the author used slow coordinate

ascent method for optimization. To overcome this issue, ”backpropagating” versions of

such truncated iterative schemes were proposed by Domke in [25], where the gradients

are computed according to the chain rule. Later, Chen et al. have shown that using

different parameters at each stage further increases performance [26]. A similar concept,

Variational Networks (VN) inspired by the proximal gradient method, were introduced in

[27]. Effland et al. follow optimal control approach and learn optimal stopping time [28].

Of course, such learned iterative reconstruction schemes can be successfully used in dif-

ferent tasks involving functional minimization, e.g., denoising, deblurring, superresolution,

inpainting, CT/MRI reconstruction, etc.

2.4 Variational networks for MRI reconstruction

The model by Hammernik et al. for MRI reconstruction originates from FoE-regularized

SENSE method by unrolling first few steps of gradient descent [29].

Briefly, given the optimization problem

min
u
R(u) +

λ

2

∥∥Au− b∥∥2

2
, (2.6)

where

R(x) =
∑
k

NK∑
j=1

φj(Kju(k)), (2.7)

and A
def
= MFS (see Section 1.2 for details).

Deriving the iteration step yields

ut+1 = ut − αt

NK∑
j=1

KT
j φ
′
j(Kju

t) + λAH
(
Aut − b

) (2.8)

Then, the authors follow the ideas from [26] by using iteration-dependent parameters and

more parametrized activation functions. Finally, they obtain

ut+1 = ut −
NK∑
j=1

[
Kt
j

]T
φt′j (Kt

ju
t) − λtAH

(
Aut − b

)
, 0 ≤ t ≤ T − 1, (2.9)
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with activation functions

φt′j (x) =

NW∑
k=1

wtjk exp

(
−(x− µk)2

σ2

)
, (2.10)

a weighed sum of Gaussian Radial Basis Functions (RBFs).

Let f(u0, s, b,m; θ) denote the variational network with parameters θ fed with initial

reconstruction u0, coil sensitivity maps s, undersampled k-space data b, and sampling

mask m. Parameters of the VN include filter kernels of convolutional operators Kt, acti-

vation function weights wt, and data fidelity coefficients λt. Training the VN is done by

minimizing Mean-Squared-Error (MSE) loss function:

min
θ

L(θ)
def
=

1

2|Z|
∑

(u0,s,b,m,uref )∈Z

∥∥|f(u0, s, b,m; θ)|ε − |uref |
∥∥2

2

 (2.11)

To ensure differentiability of the loss L(θ), the absolute value of reconstruction is computed

using the ε-smoothed norm, that is

|x|ε
def
=

√
Re2(x) + Im2(x) + ε (2.12)

Additionally, the kernels are required to be zero-mean unit vectors, and the data fidelity

coefficients are non-negative.

In general, trained VN demonstrates good reconstruction performance. Authors ad-

mit presence of aliasing artifacts on some slices, but these are challenging to remove,

particularly, when SNR is low. In their experiments, the network was fed with zero-filling

reconstructions.

2.5 Recent developments

More advanced forms of learnable regularization can be used instead of FoE, i.e., arbi-

trarily deep neural networks. For example, Aggarwal et al. in their work introduce the

MoDL framework (MOdel-based reconstruction using Deep Learned priors) [30]. This ap-

proach is similar to the variational network described above but with some key differences.

Particularly, it employs CNN as an artifact estimator:

min
u

1

2

∥∥N (u)
∥∥2

2
+
λ

2

∥∥Au− b∥∥2

2
, (2.13)

where N (u) = u − CNN(u; θ)

Another major difference is the use of blocks of conjugate gradient algorithm within

the network. These CG blocks have no trainable parameters, while the parameters of the

CNN as well as the trade-off λ are shared across iteration steps.
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The algorithm is obtained as follows. First, the nonlinear functional Eq. (2.13) is

linearized at point ut, which leads to the following optimization problem:

ut+1 = arg min
u

1

2

∥∥u− CNN(ut; θ)
∥∥2

2
+

λ

2

∥∥Au− b∥∥2

2
(2.14)

Then, the analytical solution yields the iteration scheme of the MoDL framework:

ut+1 =
(
I + λAHA

)−1(
CNN(ut; θ) + λAHb

)
(2.15)

However, ut+1 is approximated in the CG sub-blocks because the exact solution above is

impossible in general case.

The network was trained using MSE loss and demonstrates state-of-the-art perfor-

mance.

Sriram et al. further develop the idea of variational networks [31]. Similarly, the

iteration step originates from the gradient descent scheme, where intermediate values are

expressed in k-space, and FoE-based regularization is replaced with CNN:

xt+1 = xt − FS
[
CNN(SHF−1xt; θt)

]
︸ ︷︷ ︸

∇R

−λtM(xt − b), (2.16)

Here the parameters are not shared across iterations. As before, this network requires

sensitivity maps at every stage (cascade), and the most innovative feature is that they

are obtained by evaluating additional Sensitivity Map Estimation (SME) module, which

precedes image reconstruction cascades. The core of SME module is the CNN with the

same structure as in cascades but with fewer parameters. Therefore, the algorithm first

estimates sensitivity maps from k-space center, then the data is fed to the main part,

Eq. (2.16). The whole network including SME module is trained end-to-end by maximizing

Structured Similarity Index Measure (SSIM [32]).

The network with 12 cascades has relatively large number of parameters (about 30M).

Nevertheless, the model implements stand-alone algorithm and produces reconstructions

of very high quality.

At present, iterative schemes remain popular, and MRI researchers try different net-

work architectures sometimes incorporating few networks into one framework, for example,

Σ-net [33]. Other model may benefit from including additional k-space regularization for

data consistency [34]. By the way, these models were developed for fastMRI challenge1,

which thus promotes MRI research.

1https://fastmri.org

https://fastmri.org
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Additionally, many modern MRI reconstruction models use integrated CNNs stemming

from successful U-Net architecture [35]. The network was originally designed for image

segmentation and won the ISBI cell tracking challenge2 2015. Another feature of U-Net

is speed due to its relative simplicity. All these nice properties determined its popularity

among the researchers. For instance, the recently proposed TDV regularization briefly

mentioned in Section 2.2 is also inspired by U-Net [23]. It even got to the point that

sometimes U-Net is applied directly to the undersampled k-space data [36].

2http://celltrackingchallenge.net

http://celltrackingchallenge.net
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The method described in Section 2.4 requires precomputation of coil sensitivity estimates,

which are fed to the VN as a part of input. My work on this thesis was to investigate the

performance of similar variational networks but without explicit usage of coil sensitivities.

First step is to remove the sensitivity weighting operator from the data fidelity term,

i.e., A
def
= MF, hence, AH = F−1M. Note that now the latter does not combine coil images.

This raises the first question: how to apply the regularization? The following approaches

can be tried:

• applying the regularizer on a combined image;

• applying the multi-channel regularizer.

The first option is very attractive due to its computational effectiveness, whereas the

multi-channel model can be used to learn correlations between coil images.

19
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Before proceeding further, we define the ε-smoothed sum-of-squares-combined image

similar to the absolute value, Eq. (2.12):

‖x‖ε
def
=

√√√√NC∑
k=1

xk · conj(xk) + ε ,

 x1

...

xNC

 ∈ CNCHW , ‖ · ‖ε : CNCHW 7→ RHW

3.1 Regularization in image domain

3.1.1 Approach 1: sum-of-squares-combined image

Here we consider the following optimization problem:

min
u
R
(
‖u‖ε

)
+
λ

2

∥∥Au− b∥∥2

2
(3.1)

The iteration step for the VN is

ut+1 = ut − Û tdiag−1
(
‖ut‖ε

) NK∑
j=1

[
Kt
j

]T
φt′j
(
Kt
j‖ut‖ε

)
− λtAH

(
Aut − b

)
, (3.2)

where Û t =
[

diag(ut1), . . . ,diag(utNC
)
]T ∈ CNCHW , 0 ≤ t ≤ T−1

This network, besides the performance advantage, has only a real set of filter kernels.

Again, the kernels are constraint to be zero-mean unit vectors, and λt ≥ 0.

3.1.2 Approach 2: multi-channel filters

This approach has more options for handling complex numbers. For example, one way

is applying convolutional operator similar to the model from Hammernik et al. [29], i.e.,

taking the sum of real and imaginary components of the convolutions:

Ktu ⇔ Re(u) ∗ ktre + Im(u) ∗ ktim

Another choice is using true complex convolutional operators, then applying activation

functions on components:

∇uR(ut; θt) =

NK∑
j=1

[
Kt
j

]H
φt′j (Kt

ju
t),

where

Ktu ⇔
(
Re(u) ∗ ktre − Im(u) ∗ ktim

)
+ i

(
Re(u) ∗ ktim + Im(u) ∗ ktre

)
(3.3)
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Additionally, instead of computing real-valued activations, we can use holomorphic func-

tions to make the regularizer complex-differentiable. Other combinations are also possible.

Certainly, these details significantly increase computational costs. Training is expected to

be several times slower, while reconstruction accuracy improvement is not guaranteed. All

these strategies of processing complex numbers in the regularizer are theoretically unclear,

thus, the optimal configuration, if exists, can only be inferred empirically.

In general, phase information is irrelevant for image-domain regularization. Therefore,

it can be applied on magnitude images, which eliminates the issue of complex numbers.

Then in multi-channel regularization context the model is defined as

min
u
R
(
|u|ε
)

+
λ

2

∥∥Au− b∥∥2

2
(3.4)

For the VN we get

ut+1 = ut − diag
(
ut
)
diag−1

(
|ut|ε

) NK∑
j=1

[
Kt
j

]T
φt′j
(
Kt
j |ut|ε

)
− λtAH

(
Aut − b

)
(3.5)

To sum up, these networks are fed with initial reconstruction u0, which is a set of coil

images, undersampled k-space, and sampling mask. The network outputs uncombined re-

construction. Final reconstruction in obtained by computing sum-of-squares combination

(see Fig. 3.1).

Additionally, taking into account that data has different intensity per coil, we can

distribute data fidelity trade-off parameter over coils:

D(u)
def
=

NC∑
k=1

λk
2

∥∥Auk − bk∥∥2

2

However, in all these models the data fidelity term does not encode gradient as in SENSE

and rather acts as a soft constraint.

3.1.3 Recent work

One of the newest methods that does not require coil sensitivities, DeepcomplexMRI [37],

uses CNN with multi-channel complex convolutional operators as in Eq. (3.3) and Rectified

Linear Unit (ReLU) for the activation function. The results indicate that utilization of

complex convolution improves visual quality of the reconstructions. Also, the authors

state that DeepcomplexMRI with even half of the parameters of the real-valued network

demonstrates comparable performance.
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Bian et al. solve the problem of multiple coil images in a different way. They propose

to learn the nonlinear operator J : CNCHW 7→ CHW that combines a set of coil images

into a single complex image with homogeneous contrast across the FoV [38]. The operator

J is implemented as two identical CNNs, one for real and the other for imaginary parts.

Thus, the components are handled independently. The authors have obtained excellent

results and claim that their method is the first combine-then-regularize approach to deep-

learning-based MRI reconstruction.

u0 uTLayer
0

Layer
t

Layer
T-1

undersampled k-space, 
sampling mask

Initial 
reconstruction

VN
output

Reduction
(e.g. sum of squares)

final 
reconstruction

u t+1 = u t − ∇𝓡(ut) − λ tAH(Aut − b)

Figure 3.1: Reconstruction algorithm

3.2 Reconstruction in k-space

The reconstruction problem can also be formulated in Fourier domain:

min
x
R
(

F−1x︸ ︷︷ ︸
u

)
+
λ

2

∥∥Mx− b
∥∥2

2
(3.6)

Although this representation does not give us any advantage over image-domain recon-

struction, we can pose another problem by enforcing the data fidelity constraint. The

following identity holds:

min
x

{
lim
λ→∞

R
(
F−1x

)
+
λ

2

∥∥Mx− b
∥∥2

2

}
= min

x
R
(

F−1 [Mb+ MCx]︸ ︷︷ ︸
u

)
(3.7)

Then, the iteration step simplifies to

xt+1 = xt − MCF∇R
(
F−1

[
Mb+ MCx

t
] )
, 0 ≤ t ≤ T−1 (3.8)

Now acquired data is fixed, and this model tries to recover missing data, an approach

similar to inpainting.
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3.3 Regularization in k-space

As discussed in Section 1.4, the SPIRiT algorithm [10] computes a solution to MRI recon-

struction problem so that it agrees with the calibration, that is Gx ≈ x. We may think

that the term (Gx− x) in the functional acts as a regularization of the k-space:

min
x

∥∥Gx− x
∥∥2

2︸ ︷︷ ︸
regularization

+
λ

2

∥∥Mx− b
∥∥2

2

Our models should benefit from such regularization. Actually, we then obtain the VNs

derived from the FoE-regularized SPIRiT algorithm:

min
x
R
(
F−1x

)
+
λ

2

∥∥Mx− b
∥∥2

2
+
µ

2

∥∥Gx− x
∥∥2

2

xt+1 = xt − MCF∇R
(
F−1xt

)
− λtM

(
Mxt − b

)
− µt

(
GH − I

)(
G− I

)
xt

However, for reconstruction in k-space the variant with fixed acquired data is preferred:

min
x
R
(
F−1

[
Mb+ MCx

])
+
µ

2

∥∥(Gx− x)(Mb+ MCx
)∥∥2

2

xt+1 = xt − MCF∇R
(
F−1

[
Mb+ MCx

t
])
− µtMC

(
GH − I

)(
G− I

)(
Mb+ MCx

t
)

(3.9)

The PRUNO algorithm [39] further elaborates the idea of k-space consistency by up-

grading the SPIRiT constraint (G − I) with a set of kernels that approximate null space

of calibration matrix. The estimation of null space can be obtained from singular value

decomposition of calibration matrix: A = UΣVH. Due to the fundamental assumption of

shift-invariance of correlation coefficients (which also suggests linear dependence), calibra-

tion matrix with sufficient number of rows must have null space. Theoretically, null space

of the matrix A is spanned by the columns of V that correspond to zero singular values.

In practice, a number of columns matching smallest singular values are chosen.

It should also be noted that one of the successful models in the 2019 fastMRI contest1

includes null space operator for data consistency [34]. The operator is applied at every

reconstruction stage.

Thus, with null space operator we obtain the following optimization problem:

min
x
R
(
F−1

[
Mb+ MCx

])
+
µ

2

∥∥N(Mb+ MCx
)∥∥2

2
,

and derive the iteration scheme as

xt+1 = xt − MCF∇R
(
F−1

[
Mb+ MCx

t
])
− µtMCN

HN
(
Mb+ MCx

t
)

(3.10)

1https://fastmri.org

https://fastmri.org


24 Chapter 3. Variational Networks for MRI Reconstruction without Coil Sensitivities

The authors of PRUNO point that null space estimate should be sufficiently large.

This means that straightforward implementation of the algorithm would be rather slow

because computational costs depend on the number of vectors in null space. By taking

into account the associative property of convolution, the sequence of linear operators

NHN may be combined into a single convolutional kernel: ñij =
∑

k n
H
ki ∗ nkj . However,

the resulting kernel almost doubles in both dimensions, and under some conditions the

performance gains may become negligible. In such cases convolution theorem may help.

We rewrite the reconstruction problem in image domain:

min
u
R
(
u
)

+
λ

2

∥∥Au− b∥∥2

2
+
µ

2

∥∥NFu
∥∥2

2

ut+1 = ut − ∇uR(ut) − λtAH
(
Aut − b

)
− µtF−1NHNFut (3.11)

By applying the convolution theorem, i.e.,

F−1NHNFut ⇔

NC∑
j=1

F−1
(
ñij ∗ F [utj ]

)NC

i=1

=

NC∑
j=1

F−1 [ñij ] · utj

NC

i=1

⇔ F−1[ñ]� ut,

we obtain

ut+1 = ut − ∇uR(ut) − λtAH
(
Aut − b

)
− µtF−1[ñ]� ut (3.12)

This iteration scheme is advantageous since training and reconstruction speed is virtually

independent from the number of vectors in null space as well as kernel sizes. At the same

time, storing precomputed IFFT(ñ) would pose a technical problem for training due to

very high memory consumption.

The same approach may be applied to SPIRiT-regularized models, which would allow

usage of larger kernels without performance penalty (g̃ is calculated similarly to ñ):

min
u
R
(
u
)

+
λ

2

∥∥Au− b∥∥2

2
+
µ

2

∥∥(G− I
)
Fu
∥∥2

2

ut+1 = ut − ∇uR(ut) − λtAH
(
Aut − b

)
− µtF−1[g̃ ]� ut (3.13)

Finally, it is also possible to combine SENSE and SPIRiT (or PRUNO) into one model:

min
u
R
(
u
)

+
λ

2

∥∥Au− b∥∥2

2
+
µ

2

∥∥(G− I
)
FSu

∥∥2

2
,

where A
def
= MFS, and (G− I) can be replaced with null space estimation N. The resulting

iteration scheme looks very similar:

ut+1 = ut − ∇uR(ut) − λtAH
(
Aut − b

)
− µtSH

(
F−1[g̃ ]� Sut

)
(3.14)
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3.4 Feeding the VN

The most straightforward input to variational network is zero-filling reconstruction. In 1D

acceleration these reconstructions exhibit inherent repeating aliasing artifacts. The images

look superimposed multiple times and blurred in the direction of acceleration. Therefore,

the algorithm’s main objective is removing such aliasing artifacts, which sometimes may

be difficult to achieve. Feeding zero images may also be tried, but this makes useless first

layer’s regularizer in our VNs. Therefore, this is not a good option.

One alternative is using GRAPPA reconstructions. For example, this strategy is used

in [39] and it contributes to faster convergence, which is crucial for our algorithms based

on truncated iterative schemes. The GRAPPA algorithm effectively removes strong arti-

facts, but in exchange for high noise levels. Hence, the VN’s main objective is switched

toward denoising, which seems to be an easier task. Moreover, image denoising problem

is very well studied, and variational networks are proven effective in this task. However,

computational costs of GRAPPA depend on sampling patterns. Regular patterns require

computing only a few shift-invariant calibration kernels. Otherwise, GRAPPA becomes

computationally inefficient.

3.5 VN with constant parameters

The models described above use iteration-dependent parameters. That is, each layer in a

network has its own set of filter kernels, activation functions, data fidelity, and consistency

trade-offs. This strategy is favored due to good results in [26], [29]. In contrast, the same

set of parameters can be used in all layers, or, in other words, the VN has only one

recurrent layer:

u0 uTRecurrent
unit

Initial guess Reconstructionut

VN

These networks are in active research, and some interesting results were obtained by

Effland et al. [28] In the paper, the authors use the term ”static” to refer to these types of

networks. Here we also call them ”static” or ”recurrent” as opposed to ”layered”, which

indicates iteration-dependent parameters.

The internal behavior of such VNs for MRI reconstruction is expected to be different

from layered networks. Another feature is that they have much fewer parameters.
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3.6 Training the VN

As in [29], we learn the VN parameters by minimizing Mean-Squared-Error (MSE) loss

function:

θ∗ = arg min
θ

L(θ)
def
=

1

2|Z|
∑

(u0, b,m,uref )∈Z

∥∥‖f(u0, b,m; θ)‖ε − ‖uref‖
∥∥2

2

 (3.15)

MSE loss is a pixel-wise error metric, which is not the best option to train variational

networks (see [40]). Nevertheless, this is still a good start.

Our loss function computes error between sum-of-squares-combined reconstructions

and references. Another option is evaluating the error between coil images, e.g.,

L(θ)
def
=

1

2|Z|
∑

(u0,b,m,uref )

NC∑
k=1

∥∥|f(u0, b,m; θ)(k)|ε − |uref(k)|
∥∥2

2
(3.16)

Thus, we do supervised learning, an approach where every sample in training dataset

comes with corresponding desired outcome, i.e., uref . This is a common strategy for

training image restoration algorithms. As a disadvantage, it requires a large enough

labeled dataset, which is not a big problem today2.

In a nutshell, the model consumes input and generates output for each sample. Ac-

curacy is measured by the loss function (MSE in our case), and the error is then back-

propagated through the model, thereby fitting it to the training dataset. The trained

model can then be evaluated for its performance on unseen data.

I do not include derivations of the gradients because modern specialized machine learn-

ing tools, such as PyTorch [41] and TensorFlow [42], compute them automatically.

2https://fastmri.med.nyu.edu/

https://fastmri.med.nyu.edu/
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4.1 Experimental setup

All models were implemented using PyTorch [41] with activation functions direcly in

CUDA R© [43] for performance reasons. All trainings and tests, as well as other related

intensive computations were done on a workstation with four-core Intel R© CoreTM i7-960

@ 3.2GHz CPU, 24GB RAM, and two video cards, NVIDIA R© GeForce R© GTX TITAN X

12GB and NVIDIA R© GeForce R© 980 Ti 6GB, but using only one of them at a time.

The data for training and testing the variational networks was the same as in [29],

but only coronal proton density sequence scans were used in my experiments. The data

set consist of 20 patient scans with 20 slices each, making in total 400 slices. Half of

these images, i.e., slices of patients 1–10, were used for training sessions and the other 200

slices for the tests. The slices are cropped into 368× 368 pixels (along frequency encoding

direction). The data set is normalized in a simple manner as in [29] and is processed

into an optimizer with randomized batches of size 10. In order to simulate accelerated

acquisition, the sampling masks were applied. In addition, the validation set of first 40

images from the testing data set was evaluated every 10th epoch. The ground truth images

were computed as root-sum-of-squares combination of fully sampled reconstructions.

27
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For the optimizer base, Stochastic Gradient Descent (SGD) and the implementation of

the block version of the Adam algorithm [44] were used. The latter was kindly provided to

me by Patrick Knöbelreiter. After each optimization step, the parameter constraints are

applied. These constraints include non-negativity of data fidelity and, where applicable,

data consistency trade-off parameters, as well as normalization of filter kernels, which are

required to be zero-mean unit vectors:

λ ≥ 0, µ ≥ 0, 〈kj , 1〉 = 0, ‖kj‖2 = 1

The optimizations were usually performed in several sessions by manually adjusting the

learning rate until convergence deterioration.

In order to assess the reconstructed image quality, I have used the following mea-

sures: Mean Squared Error (MSE), Normalized Root Mean Square Error (NRMSE), and

Structural Similarity Index (SSIM [32]). The first two are calculated as follows:

MSE(u, uref ) =
1

HW
‖u− uref‖22, NRMSE(u, uref ) =

‖u− uref‖
‖uref‖

, u, uref ∈ RH×W

As a starting point, in order to reproduce the results from [29], I have implemented

and trained the model described in the paper. The coil sensitivity data was precomputed

in advance from ACS area of k-spaces for each slice with ESPIRiT algorithm [7]. Re-

garding the test results, only few slices out of 200 contain visible artifacts (though not

strong). In general, the results are very good. The slightly modified version of the afore-

mentioned model, e.g., with complex convolutions in the regularizer, produced similarly

looking results, although quantitatively some models demonstrated better performance.

For MRI reconstruction without coil sensitivities, the variational networks with

iteration-dependent parameters were tested first. The networks are made up of 10 similar

layers. Different options for the FoE regularizer were tested, i.e., sum-of-squares-combined

image, multi-channel 3D filters, convex convolutions, etc. Initially, the networks were fed

with zero filling reconstructions.

In the attempts of archiving better results, some modifications were introduced: trade-

off parameters were split such that each coil has its own parameter λ and µ (where ap-

plicable), the networks were trained with loss computed between individual coil images.

The latter option was canceled due to high noise levels in reference reconstructions.

Then the experiments switched toward static iteration scheme with constant parame-

ters. The recursion depth of these networks was set to 15. The behavior of this scheme

comparing to the layered version is different with respect to the intermediate reconstruc-

tions.

To exploit the benefits of k-space reconstruction, the GRAPPA algorithm was imple-

mented as described in [5]. For regular sampling with acceleration factor R = 4 in 2D

MRI, the algorithm requires only three convolutional kernels, which means that in our

case GRAPPA reconstructions can be efficiently computed. The direct reconstructions
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Table 4.1: Tested models

Id Description
Number of

layers /
steps, T

Number of
filters,
NK

Activation
function

nodes, NW

Filter size

Number of
learnable

parameters

VN1

Iteration-dependent
parameters.
The regularization is applied
on SoS-combined image.

10 64 45 11× 11 106,390

VN2

Iteration-dependent
parameters. Multi-channel
regularization, real and
imaginary components are
processed independently.

10 2× 48 2× 31 15× 11× 11 1,772,310

VN3
Static parameters.
The regularization is applied
on SoS-combined image.

15 64 45 11× 11 10,639

VN4

Iteration-dependent
parameters.
Reconstruction in k-space
with fixed acquired data.
The image-domain
regularization is applied on
SoS-combined image.

10 64 45 11× 11 106,240

VN5

Iteration-dependent
parameters.
The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization.

10 64 45 11× 11 106,540

VN6

Iteration-dependent
parameters.
Reconstruction in k-space
with fixed acquired data.
The image-domain
regularization is applied on
SoS-combined image.
Includes k-space consistency
regularization.

10 64 45 11× 11 106,390

VN7

Static parameters.
The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization.

15 64 45 11× 11 10,654

VN8

Iteration-dependent
parameters.
The regularization is applied
on SoS-combined image.
Includes k-space consistency
regularization based on
evaluation of null space of
calibration matrix.

10 64 45 11× 11 106,540
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for acceleration factor R = 2 are almost as good as for fully sampled k-space, whereas

reconstructions for R = 4 are noisy.

Again, the variational networks without coil sensitivities were tested, but this time by

feeding the networks with noisy GRAPPA reconstructions. The networks tried to denoise

the initial solutions.

Inspired by [10], the models were modified by including additional k-space regulariza-

tion term. The experiments were done with SPIRiT kernels with sizes 5 × 5, 7 × 7, and

9×9. These kernels as well as GRAPPA kernels for initial reconstructions were computed

separately for every slice and stored on HDD in order to speed up training start up process.

Next, an improved model based on PRUNO [39] with null space regularization term was

tested. Two sets of precomputed null space approximations were used in the experiments:

100 kernels of size 5 × 5 for acceleration factor R = 4 and 150 kernels of size 9 × 9 for

R = 6. In the network’s implementation, the IFFT(ñ) is computed for a batch fed to the

network. This solves the memory-related issue while increasing the network throughput.

Finally, VN5 and VN8, as well as the network not included into Table 4.1 and im-

plementing the last iteration formula from theoretical part, Eq. (3.14), i.e., using both

sensitivities and null space regularization, were trained on data accelerated at R = 6.

4.2 Results

In all experiments the VNs with iteration-dependent parameters produce better results.

The quantitative evaluation of the networks is shown in Table 4.2. When fed with zero

filling reconstructions, neither of the networks were capable of removing aliasing artifacts

from all testing images. However, some networks produced much better reconstructions

than the others.

In particular, comparison of the reconstructions between VN1 and VN2 reveals that

sum-of-squares regularization results in better image quality, only few slices contain strik-

ing aliasing artifacts. The network with componentwise multi-channel regularization, VN2,

performs poorly. Although this VN has times more parameters, many reconstructed im-

ages are corrupted with apparent aliasing artifacts. On the other images, where artifacts

were preserved by both methods, the more stronger ones were produced by VN2. For

comparison, few slices are shown in Fig. 4.1.

Another drawback of multi-channel regularization is training and reconstruction time.

For VN2 it takes almost 9 hours to do 100 epochs and 570ms to process a single slice,

whereas VN1 trains at rate 1h 15m / 100 epochs, and requires only 90ms for reconstruc-

tion. Considering the large number of parameters and slow run times, its reconstruction

performance is obviously inadequate. Therefore, VN2 was excluded from further experi-

ments.

As expected, recurrent variational network VN3 fed with zero filling outputs lower

quality results than its layered counterpart VN1. All reconstructions contain visible alias-

ing artifacts (see Fig. 4.1).
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The network VN1 also outperforms VN4, where reconstruction is done by filling missing

k-space data. Mostly, the results of both are comparable in quality.

One interesting observation is that training without filter kernel zero-mean constraint

improves reconstruction quality (see Table 4.2), although there is only a subtle visual

difference for the reader. To sum up, none of these models were able to completely

eliminate the artifacts. However, the layered variational network with sum-of-squares-

computed regularization, VN1, produced good-looking reconstructions by removing the

artifacts from most of the slices. At the same time, some fine details also disappear.

A detailed look into the learned parameters of VN1 reveals that filters are very noisy,

and structures (if present) are scarcely visible on most of them. The learned filter kernels

of all 10 layers of the network are shown in Fig. 4.2.

Figure 4.2: Learned filters of VN1 fed with zero filling
(The digital version of this document may be enlarged for detailed viewing.)

Additionally, Fig. 4.3 illustrates few filter kernels, corresponding activation functions

and filter potentials (third row). The latter are calculated by integrating the activation

functions, i.e.,

φtj(x) =

√
2π σ

2

NW∑
k=1

wtjkerf

(
x− µk√

2 σ

)
+ Ctj with Ctj s.t. min

x
φtj(x) = 0.

As seen in the plot, the learned potentials come in different shapes, e.g., bell-shaped,

V-shaped, sigmoid, and more complex functions, thereby reflecting variety of filter corre-

lations.

Figure 4.3: Selected filter kernels of VN1 (not on the same scale)
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Zero filling VN1 VN2 VN3 Reference

MSE: 16.41, SSIM: 0.8317 MSE: 2.13, SSIM: 0.9450 MSE: 3.84, SSIM: 0.9296 MSE: 4.39, SSIM: 0.9143

MSE: 19.99, SSIM: 0.7747 MSE: 2.71, SSIM: 0.9163 MSE: 3.47, SSIM: 0.9052 MSE: 4.79, SSIM: 0.8832

MSE: 19.09, SSIM: 0.8064 MSE: 2.52, SSIM: 0.9375 MSE: 2.94, SSIM: 0.9351 MSE: 4.94, SSIM: 0.9054

MSE: 18.18, SSIM: 0.7623 MSE: 2.14, SSIM: 0.9262 MSE: 2.69, SSIM: 0.9198 MSE: 4.55, SSIM: 0.8856

MSE: 47.0, SSIM: 0.7824 MSE: 4.8, SSIM: 0.9462 MSE: 5.47, SSIM: 0.9441 MSE: 9.86, SSIM: 0.9093

Figure 4.1: Comparison of reconstruction quality of variational networks fed with zero filling.
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The data fidelity trade-off parameters have been learned for every coil channel and not

equal but in general follow the same trend. In particular, there are few outliers in the

layers t ∈ {1, 2, 4, 7} that diverge from the main group, and in the layers t ∈ {5, 6} the

parameter values do not form a single cluster (see Fig. 4.4).

Figure 4.4: Learned data fidelity parameters of VN1

Looking at the intermediate steps, Fig. 4.5, it can be seen that the reconstruction

process in the first 7–8 layers resembles a sequence of filtering operations. The most

striking aliasing artifacts are removed in the layer t = 4 producing blurred image at t = 5.

In the layers t = 8, t = 9 the image is visually refined, but very last layer suppresses some

fine details. This can be attributed to the loss function used to train the network.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 Reference

Figure 4.5: Intermediate reconstruction steps of VN1 fed with zero filling

For comparison, the intermediate steps of static variational network VN3 evolve with

uniform changes gradually improving sharpness of the reconstruction. But still aliasing

artifacts are not removed completely. Hence, besides producing reconstructions of lower

quality, the network with 15 recurrent steps runs noticeably slower. At the same time, it

has far less parameters, though the filters are very noisy. Fig. 4.6 depicts few of them.
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Figure 4.6: Selected filter kernels of VN3

Figure 4.7: Learned filters of VN4 fed with zero filling
(The digital version of this document may be enlarged for detailed viewing.)

Figure 4.8: Selected filter kernels of VN4 (not on the same scale)

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 Reference

Figure 4.9: Intermediate reconstruction steps of VN4 fed with zero filling
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Learned parameters of VN4 with fixed acquired k-space data are shown in Fig. 4.7

and Fig. 4.8. Likewise, we see a similar diversity of kernels and potential functions as of

VN1, though the filter set seems to be of slightly better quality. Also, in the layer t = 5

there are a number of kernels with potentials that resemble ReLU (kernel in 11th column

in Fig. 4.8).

The internal reconstruction process of VN4 differs from that of VN1 (see Fig. 4.9).

It more resembles iterative reconstruction with progressive improvement on every stage.

That is, the aliasing artifacts are being gradually suppressed, producing pretty sharp image

at the end.

4.2.1 GRAPPA initialization

Expectations from integrating GRAPPA algorithm into our reconstruction pipelines were

met. Solely feeding noisy GRAPPA solutions without altering the networks’ architectures

substantially improves reconstruction quality. Specifically, the aliasing artifacts almost

disappear. The reconstructions look much better, strong artifacts are not present at all.

Likewise, training the networks without imposing zero-mean constraint on filter kernels

results in lower MSE, NRMSE, as well as higher SSIM. Few reconstructions are shown in

Fig. 4.10.

In these experiments, layered networks VN1 and VN4 produced similar results, whereas

visual quality of the reconstructions generated by static variational network VN3 is slightly

lower. It tends to smooth image, thereby suppressing fine details.

Computing GRAPPA reconstructions does not add significant run-time overhead to

the whole algorithm. For example, PyTorch GPU implementation takes approximately 70

milliseconds per slice.

Fig. 4.11 shows learned filter kernels of VN1 and VN4. These filters look much better

than the filters learned by feeding zero filling solutions. For example, in the layer t = 6 of

VN1 most of the filters represent texture patterns. It is also interesting that few distinct

checker patterns can be seen within the learned filter set of VN4 (see Fig. 4.14).

Figure 4.11: Learned filter kernels of VN1 (top) and VN4 (bottom) fed with GRAPPA
(The digital version of this document may be enlarged for detailed viewing.)
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GRAPPA VN1 VN4 VN3 Reference

MSE: 5.95, SSIM: 0.7635 MSE: 1.197, SSIM: 0.9254 MSE: 1.296, SSIM: 0.9202 MSE: 1.898, SSIM: 0.893

MSE: 9.659, SSIM: 0.7688 MSE: 1.888, SSIM: 0.9329 MSE: 2.104, SSIM: 0.9274 MSE: 2.915, SSIM: 0.9034

MSE: 11.93, SSIM: 0.7658 MSE: 2.35, SSIM: 0.9452 MSE: 2.76, SSIM: 0.9398 MSE: 3.252, SSIM: 0.9212

MSE: 7.636, SSIM: 0.8032 MSE: 1.84, SSIM: 0.9379 MSE: 2.01, SSIM: 0.9343 MSE: 2.77, SSIM: 0.9127

MSE: 9.979, SSIM: 0.8075 MSE: 1.4, SSIM: 0.9683 MSE: 1.65, SSIM: 0.963 MSE: 2.289, SSIM: 0.9485

Figure 4.10: Comparison of reconstruction quality of variational networks fed with GRAPPA.
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Figure 4.12: Selected filter kernels of VN1 (not on the same scale)

Figure 4.13: Learned data fidelity parameters of VN1 fed with GRAPPA

Figure 4.14: Selected filter kernels of VN4 (not on the same scale)
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In this experiment the data fidelity parameters of VN1 have formed more compact

distribution. Coil channels 3, 8 with low SNR are obvious outliers. Their parameter

values have almost zero at t = 3 and then reach peak at t = 5 (see Fig. 4.13).

Surprisingly, inspecting intermediate reconstruction steps of VN1 fed with GRAPPA

reveals that aliasing artifacts reappear again at t = 4 and are gradually removed toward the

end (see Fig. 4.15). This behavior may be perceived as suboptimal, because the GRAPPA

algorithm is used specially for the purpose of artifact removal. Nevertheless, this feeding

strategy results in better reconstruction quality compared to zero filling and is supported

by the quantitative evaluation (Table 4.2). Similarly, image sharpness is reduced a bit in

the last layer.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 Reference

Figure 4.15: Intermediate reconstruction steps of VN1 fed with GRAPPA

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 Reference

Figure 4.16: Intermediate reconstruction steps of VN4 fed with GRAPPA
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Some minor artifacts can be seen on the reconstruction steps of VN4, although the

process differs significantly (see Fig. 4.16). But still, reappearance of artifacts especially in

VN1 suggests the possible benefits of using k-space regularization in the form of SPIRiT

or null space operators.

For completeness, few filter kernels of static VN3 are shown in Fig. 4.17.

The networks trained with GRAPPA as input cannot be used to reconstruct from zero

filling solution and vise-versa. More precisely, only in the first case the networks are able

to slightly improve reconstruction, that is, make image less blurred. Therefore, this is not

of practical interest.

Figure 4.17: Selected filter kernels of VN3

4.2.2 Models with k-space regularization

Four networks with k-space consistency operators were trained in this experiment setting.

There was no significant improvement in reconstruction quality. The networks VN5, VN6,

and VN8 had similar performance (see Fig. 4.18).

All these networks have been trained to accept GRAPPA reconstructions as input.

Additionally, the methods also require calculation of either SPIRiT kernels or null space

estimates.

Comparison of all layered variational networks gives the impression that image-domain

reconstruction models, i.e., VN1, VN5, and VN8, are more robust in terms of artifact sup-

pression, while k-space reconstruction methods with fixed acquired data produce images

with better detail. However, there are unusual noise-like artifacts in few slices produced

by VN6. Such artifacts were not previously observed. They are especially noticeable in

the background (for example, the slice in 2nd row, 3rd column, Fig. 4.18).

I will quickly go through the learned parameters. Fig. 4.19 shows filter kernels of

layered networks implementing image-domain reconstruction, i.e., VN5 and VN8. Besides

noise removal kernels, for example, minimizing at zero cross correlation, there are many

filters in the form of structure patterns for image sharpening.

The learned trade-off parameters of VN5 are shown below in Fig. 4.20. Once more,

coil channels 3, 8 diverge from the main group. For comparison, the trade-off parameters

of VN8 look more coherent, no outliers (see Fig. 4.21).
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GRAPPA VN5 VN6 VN7 Reference

MSE: 9.32, SSIM: 0.7965 MSE: 1.57, SSIM: 0.9526 MSE: 1.54, SSIM: 0.9541 MSE: 2.5, SSIM: 0.9297

MSE: 11.48, SSIM: 0.7548 MSE: 1.68, SSIM: 0.9512 MSE: 2.02, SSIM: 0.9474 MSE: 2.64, SSIM: 0.9321

MSE: 5.6, SSIM: 0.7845 MSE: 1.01, SSIM: 0.9451 MSE: 0.975, SSIM: 0.9472 MSE: 1.79, SSIM: 0.9117

MSE: 8.02, SSIM: 0.79 MSE: 1.17, SSIM: 0.9568 MSE: 1.18, SSIM: 0.9569 MSE: 1.92, SSIM: 0.9324

VN8

MSE: 1.64, SSIM: 0.9511

MSE: 1.63, SSIM: 0.9553

MSE: 1.03, SSIM: 0.9445

MSE: 1.24, SSIM: 0.9553

Figure 4.18: Comparison of reconstruction quality of variational networks with k-space regular-
ization

Figure 4.19: Learned filter kernels of VN5 (top) and VN8 (bottom)
(The digital version of this document may be enlarged for detailed viewing.)
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Figure 4.20: Learned data fidelity and k-space consistency trade-off parameters of VN5

Figure 4.21: Learned data fidelity and k-space consistency trade-off parameters of VN8

Only intermediate reconstruction steps of VN8 are included. The process depicted in

Fig. 4.22 is quite unique. The image seems to be ready at t = 7, but some artifacts show

up at t = 8, possibly due to high data fidelity parameters and low k-space consistency

trade-offs (see Fig. 4.21). Nevertheless, the image looks pretty fine at the end.

The learned filter kernels of variational network VN6 are very interesting (see Fig. 4.23).

These are the most beautiful filters of all experiments. As with VN4, many checker

patterns can be seen. The filters from 9th layer are also rather unusual. Few filter kernels

are shown in detail in Fig. 4.24.
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 Reference

Figure 4.22: Intermediate reconstruction steps of VN8

Figure 4.23: Learned filter kernels of VN6
(The digital version of this document may be enlarged for detailed viewing.)

Figure 4.24: Learned filter kernels of VN6
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4.2.3 GRAPPA vs zero filling

The experiment results demonstrate that feeding GRAPPA reconstructions to the net-

works is advantageous at regular acquisition pattern with acceleration factor R = 4. For

comparison, few slices produced by VN1 are shown in Fig. 4.25. Besides, this is confirmed

by the numerical data in Table 4.2. However, for layered networks, GRAPPA feeding does

not lead to dramatic improvement of final reconstruction. In general, zero-filling-fed VNs

produce quite good images, the striking artifacts only appear in a few slices. Additionally,

the most advanced of our non-sensitivity models, VN8, was trained with zero filling input.

Similarly, noticeable aliasing artifacts are only present in a small number of slices.

In contrast, our static variational networks benefit much more from GRAPPA feed-

ing. The main issue with the static VNs is excessive smoothing of fine details, thereby

significantly reducing the quality of the final reconstruction.

Finally, Fig. 4.26 depicts reconstructions obtained using four variational networks.

This comparison also includes the original VarNet by Hammernik et al. [29] The results

are comparable in quality, though GRAPPA-fed VNs produce slightly better images.

Zero filling

GRAPPA

Figure 4.25: Comparison of feeding methods of VN1
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VarNet (zero filling) VN1 (GRAPPA) VN6 (GRAPPA) VN8 (zero filling) Reference

MSE: 2.017, SSIM: 0.9150 MSE: 1.763, SSIM: 0.9320 MSE: 1.66, SSIM: 0.9349 MSE: 1.99, SSIM: 0.9276

MSE: 1.776, SSIM: 0.9415 MSE: 2.2, SSIM: 0.9517 MSE: 1.98, SSIM: 0.9560 MSE: 2.77, SSIM: 0.9475

MSE: 2.64, SSIM: 0.9453 MSE: 2.42, SSIM: 0.9607 MSE: 2.34, SSIM: 0.9629 MSE: 3.63, SSIM: 0.9526

MSE: 1.27, SSIM: 0.9417 MSE: 1.13, SSIM: 0.9568 MSE: 1.123, SSIM: 0.9571 MSE: 1.58, SSIM: 0.9528

MSE: 2.33, SSIM: 0.9388 MSE: 2.23, SSIM: 0.9476 MSE: 2.19, SSIM: 0.9505 MSE: 3.7, SSIM: 0.9321

Figure 4.26: Comparison of reconstruction quality of VN1, VN6, VN8, and VarNet
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Table 4.2: Quantitative comparison of variational networks for reconstruction of MRI data with acceleration factor R = 4 (Reff = 3.54)
without using coil sensitivity estimates.

Algorithm Input
Number of
parameters

Reconstruction
timea (ms)

MSE on
training set

MSE NRMSE SSIM

Zero filling 16.1554 16.7692 0.1466 0.8006

GRAPPA 70b 7.9671 7.4278 0.0992 0.7924

VarNetc Zero filling 131,050 260 1.2534 1.4982 0.0452 0.9375

VN1
Zero filling

106,390 90

2.1056 2.6927 0.0592 0.9279

VN1, no zero-meand 1.9058 2.4577 0.0562 0.9343

VN1
GRAPPA

1.8409 1.7980 0.0497 0.9325

VN1, no zero-mean 1.2954 1.3460 0.0429 0.9471

VN2 Zero filling 1,772,310 570 1.4053 2.4030 0.0562 0.9307

VN3 (static)
Zero filling

10,639 125
4.2777 4.8070 0.0813 0.8947

GRAPPA 2.2697 2.1615 0.0551 0.9218

VN4 (k-space)
Zero filling

106,240 90
1.9875 2.4351 0.0569 0.9309

GRAPPA 1.4574 1.5149 0.0458 0.9420

VN5

GRAPPA

106,540 195 1.2371 1.2996 0.0423 0.9471

VN6 (k-space) 106,390 180 1.2198 1.2881 0.0422 0.9487

VN7 (static) 10,654 295 2.1934 2.1042 0.0545 0.9225

VN8
Zero filling

106,540 150
1.5003 1.8681 0.0496 0.9409

GRAPPA 1.2695 1.3277 0.0427 0.9472

aFor variational networks, this timing excludes initial reconstruction costs.
bIncluding calculation of three 5× 2 convolutional kernels.
cModel by Hammernik et al. with sensitivities [29]. Included for comparison.
dVN1 has been trained with and without zero-mean constraint, i.e., 〈kj , 1〉 = 0. It has not been applied to other networks.
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4.2.4 Reconstruction at higher acceleration rates

3D MRI, where undersampling can be done in two phase-encoded dimensions (2D acceler-

ation), has greater potential to acquire data at a higher acceleration rates. Additionally,

more data acquisition patterns are available in 3D MRI, e.g., spiral trajectories. In the

case of 2D MRI with Cartesian acquisition, higher acceleration factors would inevitably

result in substantial deterioration of reconstruction quality.

I have trained three layered networks, VN5, VN8, and VN9 (derived from the model

with null space regularization and sensitivity estimates) for the acceleration factor R = 6.

The quantitative results of the experiments are presented in Table 4.3. As it was expected,

reconstruction quality of the networks at this acceleration factor is much lower. In general,

the images look clear, however, fine detail are lost to a greater extend, and aliasing artifacts

appear more often. Again, feeding GRAPPA solutions seems to be advantageous, although

the GRAPPA reconstructions themselves have limited practical significance due to very

high noise level.

Zero filling GRAPPA VN8 (zero filling) VN8 (GRAPPA) Reference

MSE: 37.07, SSIM: 0.6993 MSE: 122.3, SSIM: 0.4809 MSE: 4.78, SSIM: 0.8804 MSE: 3.95, SSIM: 0.8934

MSE: 38.51, SSIM: 0.7174 MSE: 148.97, SSIM: 0.4371 MSE: 8.51, SSIM: 0.8792 MSE: 6.25, SSIM: 0.8938

MSE: 49.27, SSIM: 0.6957 MSE: 169.3, SSIM: 0.4281 MSE: 6.73, SSIM: 0.8807 MSE: 4.98, SSIM: 0.8961

Figure 4.27: Reconstructions produced by VN8 (R = 6)
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Fig. 4.27 depicts reconstruction of three slices for comparison. The GRAPPA solutions

were computed without Tykhonov regularization term, hence, they are very noisy. The

same GRAPPA reconstructions were fed to VN8 (4th column). The network VN5 with

SPIRiT regularization has only been trained for GRAPPA input and produced results

similar to those of VN8.

As regards the network with sensitivities, VN9, the reconstructions are visibly better

than those of GRAPPA-fed VN8. Few slices are shown in Fig. 4.28. Furthermore, the

network runs slightly faster, though the reconstruction process involves multiple sensitivity

weighting operations.

Zero filling GRAPPA VN9 (zero filling) VN9 (GRAPPA) Reference

MSE: 30.72, SSIM: 0.7549 MSE: 124.5, SSIM: 0.4184 MSE: 4.57, SSIM: 0.9150 MSE: 3.33, SSIM: 0.9197

MSE: 38.68, SSIM: 0.6964 MSE: 168.4, SSIM: 0.4196 MSE: 4.73, SSIM: 0.8985 MSE: 4.35, SSIM: 0.8994

MSE: 16.03, SSIM: 0.8080 MSE: 99.3, SSIM: 0.4278 MSE: 1.94, SSIM: 0.9371 MSE: 1.79, SSIM: 0.9378

Figure 4.28: Reconstructions produced by VN9 (R = 6)
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Table 4.3: Quantitative comparison of variational networks for reconstruction of MRI data with acceleration factor R = 6 (Reff = 5.04).

Algorithm Input
Number of
parameters

Reconstruction
timea (ms)

MSE on
training set

MSE NRMSE SSIM

Zero filling 24.4909 25.8323 0.1831 0.7617

GRAPPA 135b 83.6917 89.5789 0.3260 0.5120

VN5 GRAPPA 106,540 150 2.7109 3.1278 0.0648 0.9057

VN8
Zero filling

106,540 150
3.4400 4.4000 0.0767 0.8944

GRAPPA 2.7160 3.0994 0.0644 0.9109

VN9c Zero filling
106,260 140

2.6672 3.3330 0.0672 0.9131

GRAPPA 2.5872 2.8951 0.0626 0.9161

aFor variational networks, this timing excludes initial reconstruction costs.
bIncluding calculation of three 7× 2 convolutional kernels.
cThe network with coil sensitivities, Eq. (3.14).
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In general terms, the experiments have confirmed that most of the tested variational

networks are capable of producing high quality reconstructions from undersampled MRT

Coronal PD data. Since coil sensitivity estimates are not fed as a part of the input to the

networks1, this removes some computationally intensive overhead, thereby shortening the

run time of the whole reconstruction algorithm.

The optimal architecture with respect to reconstruction quality and computational

costs still remains unknown. However, one of the main tasks of this work was to test

different FoE-based regularization methods. A number of options have been tried, and

it turned out that the models with the regularization applied on sum-of-squares2 combi-

nation works best. This approach not only superior in reconstruction quality, but also

more computationally efficient. Moreover, applying image-domain regularization, i.e.,

Fields of Experts, on real-valued data is theoretically justified. At the same time, us-

ing multi-channel filters on magnitude coil images does not lead to better reconstructions

for a number of reasons, for example, highly non-uniform intensities and different SNR.

Therefore, based on experimental outcomes, all other options in the same scenario are not

recommended, which is also demonstrated by the unimpressive results of VN2 and its slow

run time (see Fig. 4.1 and Table 4.2). In contrast, models with SoS-applied regularization

generally produce good results. Nevertheless, I must conclude the following. Studying the

latest advances in learned MRI reconstruction, it becomes evident that today Fields of

Experts prior model for this task (and perhaps for all learning-based image processing in

general) is mostly outdated.

Besides intensities, complex data in MRI delivers phase information. For illustrative

purposes, Fig. 5.1 shows coil magnitude images and phase images of artifact-free slice

reconstructed with VN8. It is visible that phase changes gradually, or, in other words,

phase images should be smooth. Since aliasing artifacts affect phase information, this

1VN9 with sensitivities has been trained only for comparison.
2Actually root-sum-of-squares combination.
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suggests of having additional regularization in phase domain. However, designing such

phase regularizer is not a trivial task. Following the trend of machine learning, data-

driven models may be considered a possible solution. For example, Lee et al. train two

multi-scale neural networks with large receptive fields to estimate aliasing artifacts, one

for magnitudes and the other for phase images. The reconstruction is then obtained by

subtracting the estimated artifact map from corrupted input image [45].

More often complex MR image components are treated as channels and concatenated

together to a form a single vector, followed by real-valued multi-channel convolution.

Yet, we see that when used with a powerful prior, this leads to very competitive results.

On the other hand, DeepcomplexMRI employs complex convolution, which the authors

believe is beneficial due to the correlation between real and imaginary parts [37]. This,

of course, almost doubles the computational load. Besides, the following dilemma arises

when modeling MRI reconstruction without coil sensitivities: to combine or not to combine

the coil images before evaluating the prior. Intuitively, I would prefer the combine-then-

regularize paradigm supported by the impressive results of Bian et al. [38] as well as our

own experiments. But it is too early to draw conclusions on this issue. Perhaps, another

possible approach that could be explored is processing MR images as 2D vector fields.

Fig. 5.2 depicts three coil images with interesting vector patterns.

We have also observed that even our best reconstructions lose some fine details anyway.

Although, this seems to be unavoidable when processing accelerated MRI data, still, it is

believed that using better error metric could improve reconstruction quality. Specifically

and in simple words, loss should depend not only on pixel values, but also on the local

structure of an image. It was already shown that training a variational network using

SSIM as loss function is beneficial [40]. It results in sharper images compared to squared

`2 loss training.

Sriram et al. train their model, E2E-VarNet briefly described in Section 2.5, using

J(u, uref ) = −SSIM(u, uref ), though they also admin excessive smoothness of reconstruc-

tions [31]. To make the images look more natural, they add a small amount of Gaussian

noise.

Totay, advanced forms of loss functions are used to train some state-of-the-art models.

The following composition of SSIM and `1-norm might be a good choice (for example, it

was used to learn the parameters of Σ-net [33] and GrappaNet [36]):

J(u, uref ) = −SSIM(|u|, |uref |) + λ`1(|u|, |uref |)

Zhao et al. compare the performance of image restoration networks trained with different

loss functions [46]. It turned out that not only the perceptually-motivated metrics, such

as Multi-Scale Structural Similarity Index (MS-SSIM [47]), are superior to MSE, but

even training with `1 leads to better results. However, the authors show that SSIM and

MS-SSIM alone cannot be considered an ideal loss function. They finally propose the

combination of MS-SSIM and multi-scale Gaussian weighted `1 (see [46] for details).
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The phase images are rendered in hue colors:

Figure 5.1: Magnitude and phase images of a slice reconstructed by VN8
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The phase images are rendered in hue colors:

Figure 5.2: MRT complex images from three coils displayed as 2D vector fields (bottom) with
corresponding magnitude and phase images (top and middle rows)

Despite this, it seems that the optimal loss function for training deep neural networks

with applications to MRI reconstruction remains an open question. Moreover, an advanced

k-space normalization is recommended to bring the data to the same magnitude scale.

Solving these problems is one of the objectives of further research.

Additionally, our results indicate that feeding good initial guess to the tested models

leads to an improvement in reconstruction quality, i.e., the advantage of GRAPPA over

zero-filling. However, to the best of my knowledge, GRAPPA reconstructions cannot

be efficiently computed in some cases. For comparison, regular Cartesian sampling with

acceleration factor R = 4 requires computation of only three kernels, whereas non-regular

non-uniform k-space acquisition patters, such as radial or spiral in 3D MRI, would require
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computation of many more [10]. For higher acceleration rates, usage of GRAPPA solutions

as input is even more questionable.

Regarding k-space consistency regularization, there might be room for improvement.

That is, its relatively small contribution to improving the quality of MRI reconstruction

suggests that in this simple schemes, derived from steepest gradient descent, it is not

used efficiently. Hence, outcome of the reconstruction process strongly depends on the

regularization in image domain, while the k-space consistency operator plays only an

auxiliary role.

Finally, variational network with fixed acquired data, that is, VN4 and its derivatives,

have one possible useful property. Namely, the MR image gradually improves as it passes

through the network. This is different to the layered image-domain reconstruction VNs

(see for comparison Fig. 4.5 and Fig. 4.9). It should also be noted that the scheme with

fixed acquired data is limited to Cartesian sampling.
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Conclusion

In this work I have tested a number of variational networks for reconstruction of accelerated

MRI data without coil sensitivities. We have obtained good-looking results for a number

of models, which illustrates that variational network with Field of Experts regularization

is still a powerful reconstruction tool. However, I have to admit that these VNs can

no longer compete with the latest deep learning MRI reconstruction techniques. But in

comparison with them, our networks have a very low number of parameters (e.g., ∼106K of

our VNs versus 30M of E2E-VarNet [31] or 480M of GrappaNet [36]). The use of advanced

regularization is expected to result in a significant improvement in reconstruction quality.

The experiment outcomes clearly indicate that the layered networks outperform the static

ones. Additional k-space regularization, either SPIRiT or PRUNO, improves reconstruc-

tion quality, and it has been shown that using large kernels does not increase computational

costs.

Also, for me personally, it was a great opportunity to work on CUDA-enabled hardware,

in addition to gaining in-depth knowledge of the subject.
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List of Acronyms

ACS Auto-Calibration Signal

CG Conjugate Gradient

CNN Convolutional Neural Network

CPU Central Processing Unit

CS Compressed Sensing

CT Computed Tomography

FoE Fields of Experts

FoV Field of View

GPU Graphics Processing Unit

HDD Hard Disk Drive

IFFT Inverse Fast Fourier Transform

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRT Magnetic Resonance Tomography

MS-SSIM Multi-Scale Structural Similarity Index

MSE Mean Squared Error

NRMSE Normalized Root Mean Squared Error

ReLU Rectified Linear Unit

SNR Signal-to-Noise Ratio

SoS Sum-of-Squares

SSIM Structural Similarity Index

TDV Total Deep Variation

TGV Total Generalized Variation

TV Total Variation

VN Variational Network
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