
Peter Michael Hohl, BSc.

BECAUSE: Building an Efficient
Compromise-Resilient Automotive

Update System with End-to-End Security

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Michael Krisper BSc
Dipl.-Ing. Dr.techn. Georg Macher BSc

Institute for Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Graz, November 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Thanks

First, I want to thank Dipl.-Ing. Michael Krisper BSc and Dipl.-Ing. Dr.techn.
Georg Macher BSc for the opportunity to develop this diploma thesis at the
Institute for Technical Informatics.
Thank you for your advice and your qualified support during the process.

Special thanks to my parents who made my education and studies possible
and always stood by my side.

iii

Abstract

Automotive systems have experienced a dramatic increase in software func-
tionality, paired with the addition of numerous electronic interfaces to the
outside world in the last few years. This trend significantly widens the
attack surface on cyber-physical systems in an automotive system, which
human life directly depends on. Automotive update systems are the logical
consequence and will soon be legally required in several countries.

Prior automotive update systems either ignore over-arching software depen-
dencies of electronic components, do not consider the whole life-cycle of
these electronic components or lack the functionality of attestation of proper
update installation.

The proposed system BECAUSE addresses these issues while providing
an efficient, highly compromise-resilient update solution with minimal im-
pact on functional safety and diagnostic functionality. To demonstrate its
feasibility, the proposed system was implemented on hardware using the
upcoming RISC-V instruction set architecture. Measurements show that
the proposed system is practicable and more efficient than current update
systems in terms of metadata overhead and therefore update distribution.

Keywords: Automotive, Update, OTA, Bootloader, Firmware Update, Re-
silience, Cyber-Security

v

Contents

1 INTRODUCTION 1
1.1 What is an Automotive System 2

1.2 Automotive Context . 2

1.2.1 Advanced Driver Assistant Systems 3

1.2.2 Remote Diagnostics . 5

1.3 Motivation . 5

1.3.1 Personal Motivation . 7

2 BACKGROUND AND RELATED WORK 9
2.1 Automotive System Components 9

2.2 Electronic Control Units . 11

2.2.1 Hardware . 12

2.2.2 Gateway ECUs . 13

2.2.3 Software . 15

2.3 Bus systems . 17

2.3.1 CAN Bus . 18

2.3.2 LIN Bus . 20

2.3.3 Automotive Ethernet . 21

2.4 Diagnostics . 23

2.4.1 On-Board-Diagnostic . 23

2.4.2 Off-Board-Diagnostic . 24

2.5 Norms And Standards . 25

2.5.1 IEC 61508 . 26

2.5.2 ISO 26262 . 27

2.5.3 SAE J3061 . 27

2.5.4 ISO/SAE 21434 . 28

2.5.5 UNECE WP.29 (Activities on Automotive Cybersecu-
rity and OTA) . 28

vii

Contents

2.5.6 ISO/AWI 24089 Road vehicle - Software update Engi-
neering . 29

2.5.7 ISO 17356 Open interface for embedded automotive
applications . 30

2.6 Existing Update Solutions . 30

2.6.1 UPTANE . 31

2.6.2 ASSURED . 34

3 PROBLEM 37
3.1 Problems With Existing Solutions 39

3.1.1 UPTANE . 39

3.1.2 ASSURED . 40

3.2 Research Questions . 40

4 SOLUTION 43
4.1 Reference Network Topology 43

4.2 Identifiers . 44

4.2.1 TID - Target Identifier 45

4.2.2 PID - Package Identifier 45

4.2.3 PID-domains . 46

4.2.4 ECU ID . 46

4.3 Roles . 47

4.3.1 TARGET - Target Role 48

4.3.2 PACKAGE - Package Role 49

4.3.3 VERSION - Version Role 50

4.3.4 INV - Inventory Role . 52

4.3.5 DM - Domain-Master Role 52

4.4 ECU Memory Content . 53

4.5 Supplementary Procedures . 55

4.5.1 Initial ECU Flashing . 55

4.5.2 Vehicle Assembly . 55

4.5.3 Replacing ECUs . 57

4.5.4 Renewing Public Role Keys 57

4.6 Update Process . 58

4.6.1 Part A - Fetching Data 58

4.6.2 Part B - Distributing Data 63

viii

Contents

5 PROOF-OF-CONCEPT 67
5.1 Hardware . 67

5.1.1 The ECU (32-bit RISC-V) 68

5.1.2 LIN bus . 69

5.1.3 Domain Master (32-bit ARM11) 69

5.2 Software . 69

5.2.1 Domain-Master Implementation 70

5.2.2 ECU Implementation . 71

5.2.3 Metadata and Datatypes 76

5.2.4 Cryptographic Algorithms 81

5.2.5 Data-Transmission Volume 84

6 EVALUATION 85
6.1 Design Evaluation and Comparison 85

6.1.1 Compromise Resilience 88

6.2 Proof-of-Concept . 94

6.2.1 Data transmission . 94

6.2.2 Runtime Comparison 96

6.3 Limitations and Future Work 99

7 CONCLUSION 101

BIBLIOGRAPHY 105

ix

List of Figures

1.1 Electronic network in a modern road-vehicle 3

2.1 Example of a modern In-Vehicle network structure 11

2.2 Tire-Pressure-Monitoring-System ECU 12

2.3 Diagnostic Gateway ECU . 14

2.4 Bus Gateway ECU . 15

2.5 Overarching functionality in an automotive system 17

2.6 CAN base frame structure . 18

2.7 LIN frame structure . 20

2.8 Sequence of update distribution events in TUF and UPTANE 32

2.9 Sequence of update distribution events in ASSURED 36

4.1 In-vehicle network topology in modern vehicles 44

4.2 Roles and chain-of-trust outside the vehicle 47

4.3 Simplified ECU Memory Content and Layout 54

4.4 ECU replacement process . 56

4.5 Depiction of the proposed Update Process (Part A) 59

4.6 Depiction of the proposed Update Process (Part B) 64

5.1 In-vehicle network topology for the proof-of-concept imple-
mentation . 68

5.2 Sipeed Longan Nano . 68

5.3 ECU Memory Content . 72

5.4 ECU bootloader state diagram 74

5.5 LIN Frames of Target-Metadata 78

5.6 LIN Frames of Version-Metadata 78

5.7 LIN Frames of Version-Metadata-Verification 80

5.8 LIN Frames of ECU Manifest 81

6.1 Total metadata to be downloaded by the vehicle 95

xi

List of Figures

6.2 Total metadata to be distributed to a set of ECUs on one
bus-system . 97

xii

1 INTRODUCTION

The automotive industry originated in the trade of mechanical engineering.
The first cars were purely mechanical and had little to no electrical or elec-
tronic parts. However, over the decades, electric and electronic components
became more and more prevalent in the domain, and with that, also new
challenges arose.
While the automotive industry traditionally is very experienced in ensuring
safety in mechanical parts and physical materials, the new software based
approaches and challenges are not that well known and researched.
Software may contain bugs which must be fixed even after the end-of-line
at the production site, which is traditionally the last chance for correcting
errors. But software needs to be updated even afterwards, and this is done
via software updates. In the past, such updates were only possible with
proprietary equipment and physical access to the vehicle and its electronic
components, see [Steger et al., 2018] and [Shanmugam, 2014].
With the upcoming trend of cyber-physical systems in the last decade, vehi-
cles became more and more connected. This permanent connectivity finally
allows for updating the software of road vehicles without having to drive to
a workshop, but update it “over-the-air” (OTA). Nevertheless, having the
ability to update vehicles remotely also introduces a huge cyber-security
risk and widens the attack surface of vehicles significantly.
In the automotive domain, human life directly depends upon the correct ex-
ecution of the software. Security incidents occur every day, with sometimes
devastating effects, see [AutoThreat Intelligence Cyber Incident Repository].
Patching software vulnerabilities via secure automotive update systems is
therefore vital for the security of automotive systems and soon may even be
legal requirements in various countries.

1

1 INTRODUCTION

This master thesis introduces a lightweight, compromise-resilient update
system with end-to-end integrity and attestation of proper update instal-
lation. The feasibility of this approach is demonstrated via a reference
implementation of the update system.

1.1 What is an Automotive System

An automotive system is the entirety of a vehicle which is powered by a
self-contained energy source and some kind of converter which utilizes this
energy to propel the vehicle. Commonly known examples for automotive
are cars, trucks, buses and motorcycles.

An automotive system typically consists of chassis, engine, powertrain,
gearbox/transmission, axles, steering, brakes, wheels, but also many electric
and electronic parts like lights, indicators, heating, air-condition, control
panels, displays, infotainment systems, driver assistance systems with all its
sensors, and many more.

1.2 Automotive Context

The first industrially manufactured vehicles had only a few electronic com-
ponents. A prominent example, the first Model T by Ford Motor Company,
only had an electronic ignition system. In 1919, Ford added electric lights as
well as a starter and a generator, see [Ford Motor Company, 1919] for more
information.
Over the years more and more electronic modules were added to road-
vehicles. Famous examples are airbag-systems, anti-lock braking systems,
electronic stability programs, tire-pressure monitoring systems, and parking
assistant systems.

These electric modules are commonly referred to as electronic control units
(ECU), see chapter 2.2. ECUs are interconnected through layers of various
automotive bus-systems, see chapter 2.3, and constantly exchange data. Each
additional electronic component makes the overall system more complex

2

1.2 Automotive Context

Figure 1.1: Electronic network in a modern road-vehicle (courtesy of Jaguar Cars;
source: [Al-Ashaab et al., 2014])

and increases the overall subsystem dependencies and their interconnec-
tions.

In the following section, advanced driver assistant systems and remote
diagnostics are discussed. These systems are just two of many examples of
highly connected, highly complex modern automotive systems. They both
contribute to the growing number of interfaces that have been added in the
past few years.

1.2.1 Advanced Driver Assistant Systems

Advanced Driver Assistant Systems (ADAS) are systems which assist the
driver in driving the vehicle. While early systems could only hold a constant
speed and keep the vehicle on track (e.g. adaptive cruise control), modern
systems can operate and maneuver the vehicle almost without user inter-
vention.

These ADAS concurrently process data streams from multiple image captur-
ing, distance sensing, and other devices. The high amount of data through-

3

1 INTRODUCTION

put requires not only fast ways of data transmission between ECUs and
data storage on ECUs, but also a considerable amount of processing power
and thus energy.

A less considered requirement of these systems is up-to-date map data
and live traffic information. Legally mandatory systems like eCall1 require
a cellular module in all new consumer vehicles sold in the European Union
since 2018.

One task of modern ADAS is the recognition of traffic signs and traffic
conditions. Even if the location of static traffic signs could be delivered as
information added to map data, some signs, and special conditions on a
route can change within seconds.

A few examples are:

• construction work on a road
• non-visible road surface markings due to heavy rain
• dangerous traffic conditions caused by a slippery road or pit-holes
• a car crash
• an electronic traffic sign which displays different speed limits depend-

ing on the current air-pollution parameters

Many of the above given environmental scenarios are hard to evaluate
correctly for computational systems.
A promising solution to this problem is the addition of wireless interfaces
to the automotive system which enables them to interact with smart road-
side elements like smart traffic signs and other traffic participants in close
proximity. This can be used to retrieve valuable information about the envi-
ronment, which was already gathered by other road-vehicles (for example
pot-holes). A promising transmission standard for this task is IEEE 802.11s
which utilizes a wireless mesh network structure, see [Chakraborty and
Nandi, 2013] and [Steger et al., 2016] for more information. Often used key-
words are Vehicle-to-Vehicle (V2V), Vehicle-to-Roadside (V2R), or simply
Vehicle-to-X (V2X) interfaces.

1see https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32015R0758

4

https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32015R0758

1.3 Motivation

1.2.2 Remote Diagnostics

Diagnostic systems in general provide means to identify problems within
the vehicle. If an unknown problem within a vehicle occurs, it is normally
transported to a workshop where a diagnostic tester is connected to the stan-
dardized diagnostic port of the vehicle. With this diagnostic tester, stored
diagnostic trouble codes on the ECUs can be requested and problems can
be identified much faster.

A topic which is increasingly attracting the attention of road-vehicle manu-
facturers is remote diagnostics. In essence, these are services that provide
diagnostic functionality over the internet and therefore (depending on the
implementation) without physical access to the vehicle, see [Al-Taee, Khader,
and Al-Saber, 2007]. These services may even replace current diagnostic
hardware interface in future vehicles, see chapter 2.4 for more information.

As with ADAS, remote diagnostics contribute to the growing number of
interconnections between the vehicle and the outside world.

1.3 Motivation

As an increasing number of interfaces to the outside world are being added
to modern cars, various infotainment and remote-diagnostics services are
dependent on internet access. Systems like ADAS often even require a
constant data stream from multiple sensors for their safe operation. WLAN,
Bluetooth, wireless monitoring systems, e.g. detecting the tire-pressure, and
especially their implementation, add additional attack surface.

The electronic architecture in modern road vehicles is the result of sev-
eral iterations of adding more and more complex components to a closed
system, while, at the same time, also complying to the legal requirements of
interconnecting them to each other (see 2.4.1).

In the past, cyber-security was hardly ever a requirement in the devel-
opment of automotive components. The focus was on the proper component

5

1 INTRODUCTION

interactions and their compliance with (legal) safety requirements. Diagnos-
tic protocols and their complex identifier compatibility requirements for all
ECUs often even led to the weakening of defense mechanisms in favor of
ease-of-integration.

This lack of cyber-security awareness paired with adding huge attack sur-
faces in addition to the very long time-of-life (on average around 15 years,
see [Nakamoto, Nishijima, and Kagawa, 2019]), made automotive systems a
very vulnerable target.

In addition to this, there is currently no standard specification for cyber-
security in automotive systems which addresses the before mentioned chal-
lenges. However, in recent years, ISO 26262 (functional safety specification)
and SAE J3061 (cybersecurity guidebook for cyber-physical vehicle sys-
tems) were used to deal with cyber-security issues: cyber-security was dealt
with as a safety issue or a functional security requirement. The standard
ISO/SAE 21434 (Road Vehicles - Cybersecurity engineering) (see chapter
2.5.4) is currently available as a draft-international-standard and focuses on
cyber-security as a system requirement [Schmittner, 2019].

The problem is getting worse if the potential damage is taken into ac-
count. Controlling a fleet of hundreds-thousands of vehicles utilizing the
same chain of security flaws for every vehicle and racing them into a city
could potentially kill thousands of people. Hijacking an automotive sys-
tem without having physical access to it has already been demonstrated
by [Miller and Valasek, 2015]. Miller and Valasek were able to exploit a flaw
in the infotainment system with which allowed them to access the in-vehicle
bus-system.
In another case, a security expert by the synonym L&M was able to break into
thousands of accounts of two GPS tracking services used by automotive
manufacturers by reverse engineering their android apps and finding a
default password2. Through these accounts, he would have been able to
remotely turn off the engines of the associated cars.

2see https://www.vice.com/en/article/zmpx4x/hacker-monitor-cars-kill-engine-gps-
tracking-apps

6

https://www.vice.com/en/article/zmpx4x/hacker-monitor-cars-kill-engine-gps-tracking-apps
https://www.vice.com/en/article/zmpx4x/hacker-monitor-cars-kill-engine-gps-tracking-apps

1.3 Motivation

Since most attacks exploit errors in software, software updates are vital
for the secure operation of road vehicles. “According to IHS Automotive, an
auto-industry data consulting company, the cost savings from OTA updates for all
the OEMs worldwide are estimated to grow to over $35 billion in 2022.” [Halder,
Ghosal, and Conti, 2019]

1.3.1 Personal Motivation

In 2018 I did a project on automotive keyless entry systems where I im-
plemented a well-known practical attack on a common keyless entry au-
thentication scheme with low-cost components. The attack (RollJam, see
[Kamkar, 2015]) was possible due to a rolling code scheme in combination
with a transmitting-only key-fob design. As Wouters et al. demonstrated,
even modern passive keyless entry systems are vulnerable to attacks, in-
cluding key-fob cloning, see [Wouters et al., 2019].

Getting access to the interior of a road-vehicle offers a wide array of further
attacks and opens it up for thieves. Given the simplicity of the attack and
the common appearance in rather new cars, it is particularly hazardous.
The only practical solution to such a problem would be the exchange of
the key-fob authentication system which also means updating the keyless-
entry-system ECU. This entry system vulnerability is a good example of a
successful attack due to outdated software. Such vulnerabilities get discov-
ered sooner or later in every software product over its lifetime.

Since almost all new road-vehicles today come equipped with a cellu-
lar module, customers can no longer choose to not having a connected
vehicle. If there is no remote update system in place and vulnerabilities in
a road-vehicle which can be remotely exploited are discovered, customers
are basically at the mercy of an attacker. In this situation, without a remote
update system, customers can only choose between putting themselves and
other traffic participants in danger, or not using their road-vehicle at all
until a manual update may eventually be applied in a local workshop.

That is why I decided to make this problem the topic of my master thesis.

7

2 BACKGROUND AND
RELATED WORK

In the following sections an overview of the current (security-relevant)
hardware and software components in an automotive system and their
interplay is given.

2.1 Automotive System Components

“On an average, an automotive vehicle today comprises of approximately 100
ECUs and over 100 million lines of software code.” [Halder, Ghosal, and Conti,
2019] These ECUs are interconnected via different types of automotive bus-
systems and are each responsible for a specific task or a set of related tasks.
As a comparison, Boeing’s 787 Dreamliner requires about 6.5 million lines of
software code to operate its avionics and onboard support systems.[Charette, 2009]
A good visual overview of the lines of code in different technical systems is
given by informationisbeautiful.net1

The airbag control unit, for example, is responsible for reading three or more
acceleration sensors in short intervals, which are strategically distributed
near the most common impact zones during a crash. If two or more of these
sensors register an unusual high change of acceleration, the airbag control
unit has to act. Which airbags have to be activated and at which exact
time depends on various factors like which seats are manned, see [Klanner
et al., 2004]. Additionally, safety measurements like fuel injection cutoff

1https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

9

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

2 BACKGROUND AND RELATED WORK

and seat-belt pre-tensioning have to be executed. The sensor which regis-
ters if a seat is manned may also be used during normal operation by the
compartment-interconnection-ECU to alert the infotainment ECU to display
a seat-belt warning icon on the dashboard if the sensor in the buckle of the
related seat belt registers no inserted clamp.
The above-presented implementation is a classic example of how different
component dependencies in a vehicle lead to various system requirements
e.g.:

• The airbag ECU has to be hard-realtime capable (the airbag MUST acti-
vate within a specified time-frame, otherwise the system is considered
to have failed)

• Distributed sensors and ECUs may have an N-N connection
• Means for constant data exchange between different modules across

different domains have to be implemented

Wiring each component to every dependent component would be a very
complex and very cost-intensive procedure. The solution was bus systems
(see section 2.3) which interconnected the components.
Due to the high number of components and increased safety requirement, it
should not be possible that non-critical systems like the infotainment system
influence the execution flow of the engine control unit in a direct manner,
as it happened several times in the past
Therefore, ECUs in modern vehicles are assigned to different domains.
“Each domain has different requirements. For example, the powertrain domain
requires extremely precise timing, closed-loop control, and real-time behaviour,
whereas infotainment demands the optimal presentation of information.” [Mössinger,
2010] ECUs of the same domain are interconnected to each other by an auto-
motive bus-systems to the domain controller. In bus-systems which require
a bus-master, the domain controller performs this task. These domain con-
trollers, in turn, are interconnected to each other via an automotive ethernet
switch. Fig. 2.1 shows this typical infrastructure of a vehicle containing
a wireless vehicle interface (WVI), a diagnostic port controller (DPC), the
domain controllers and an automotive ethernet switch connecting them all
in a star-topology via automotive ethernet (see 2.3.3). Domain controllers
provide an interface for ECUs of the same domain to the rest of the in-
vehicle network. In Fig. 2.1, a CAN bus-system (see 2.3.1). connects the
domain controller for the body-domain (DC Body) to the ECUs assigned to

10

2.2 Electronic Control Units

Figure 2.1: Example of a modern In-Vehicle network structure

this domain, like electronic window lifter or other ECUs performing comfort
functions. Window Control FL in Fig. 2.1 in turn functions as a bus-master
for a LIN bus-system (see 2.3.2) connecting sensors and actors related to the
front-left window control to it.

2.2 Electronic Control Units

“An Electronic Control Unit (ECU) in its simplest form consists of a processing
unit which is connected to at least one actuator and has a connection to an input
signal source.” [Ribeiro and Baunach, 2017]
The tasks in a car are very complex and depend on an enormous amount of
input states which in turn drive an immense amount of output signals. To
reduce complexity, tasks of different domains are distributed over many
Electronic Control Units (ECU). These control units can be assigned to

11

2 BACKGROUND AND RELATED WORK

Figure 2.2: Tire-Pressure-Monitoring-System ECU

simple tasks like opening and closing a window or very complex ones like
fuel injection and related.

What almost all of them have in common is their connection to one or
more bus-system and their programmable flash memory (for more infor-
mation see [Schäuffele and Zurawka, 2003]). In the following chapters,
commonly used hardware and software for ECUs are discussed.

2.2.1 Hardware

Almost all ECUs in modern vehicles either use generic micro-controllers or
in some cases special automotive micro-controllers. There is a huge variety
of performance, architecture, and power consumption.
The development of micro-controllers is very expensive, therefore hardly
any automotive company builds its own processors. The development of
whole ECUs is outsourced to companies like Bosch, Infineon, and Nvidia.
These companies, for example, offer optimized micro-controllers for special
requirements or ECU platform designs for specific tasks that can be bought
and licensed by automotive manufacturers. An often-used business model
is automotive ECU platforms which offer optimization and customization
options for vehicle manufacturers (see examples below).
In the smallest variants, ECUs may consist of an 8-bit processor with around

12

2.2 Electronic Control Units

10kB of flash memory which is directly mounted to the circuit board on the
driver-seat side window control panel together with four window control
levers directly connected to it. Their purpose may be to react to a hand full
of predefined LIN message with a predefined response and sending out a
hand full of prefixed LIN messages depending on the state of the window
switches. More about LIN-Messages can be read in section 2.3.2.
On the other scale of the spectrum, there are for example the Intel Atom
A3900 processor series2 with a dedicated graphics processing unit which
may drive the main touch display on the dashboard or the Nvidia Jet-
son modules being able to process gigabytes of data from several image
capturing and other high-resolution sensors simultaneously. With these
multicore-processors, new opportunities and challenges for arise, see [Gai
and Violante, 2016] for more information. Other examples of dedicated
purpose processing solutions for the automotive domain are:

• XA Spartan FPGA product line (by Xilinx)
• R-Car SoC product line (by Renesas)
• Jacinto™ TDAx ADAS-SoCs (by Texas Instruments)
• S32 Automotive Processing Platform (by NXP)
• 32-bit AURIX™ Microcontroller (by Infineon)

A very popular example is the AURIX™ TriCore™ product line from In-
fineon. These processors use three cores which are all assigned the same
task and hence perform the same operations. Their outputs are compared to
detect any discrepancies between the results. If however, an error occurred
(e.g. caused by a bit flip) in one core, the correct result can still be deter-
mined by a majority vote on the processing results of all cores. Since the
same simultaneous error in two cores is highly unlikely, this processor type
is often used for safety-critical functions like the airbag-control-unit.

2.2.2 Gateway ECUs

A special type of ECU are so called gateway ECUs, which are typically used
for two main applications: diagnostics and network gateways.

2see https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-
processor-e3900-a3900-series-datasheet-addendum.pdf

13

https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-e3900-a3900-series-datasheet-addendum.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-e3900-a3900-series-datasheet-addendum.pdf

2 BACKGROUND AND RELATED WORK

Figure 2.3: Diagnostic Gateway ECU

2.2.2.1 Diagnostic Gateway ECUs

As described in 2.2.1, many different ECUs from different manufacturers
are built into modern automotive systems. The problem is that these ECUs
may use different or already existing manufacturer specific Diagnostic IDs
(DID) for the same diagnostic message. Their diagnostic functionality in this
case is simply incompatible (see 2.4 for more information). The easiest way
for vehicle manufacturers is often to mask the data traffic of an otherwise
manufacturer-diagnostic-incompatible ECU with a diagnostic gateway. Its
purpose is to adjust incoming data (exchange the DID, alter data formats,
etc) in order to make non-standard diagnostic messages compatible with
the desired diagnostic specifications of the automotive system. Examples
are given in Fig. 2.3 and in the Patent Documents by Susumu Akiyama,
see [Susumu Akiyama, 2015].

2.2.2.2 Network Gateway ECUs

To connect different bus-systems and make data exchange possible, a gate-
way is needed. Its purpose is to store and forward messages from one
bus-system to one or more other bus-systems. These bus-systems can be of
the same or different kind. In the latter case, the gateway is also assigned to
the task of translating data formats and is responsible for message routing.
Its correct implementation is essential for the security of the automotive
system. For example, a direct shut-down command from the BCM (Body
Control Module) to the ECM (Engine Control Module) should be discarded.
Therefore, most gateway ECUs use processors with higher clock speeds

14

2.2 Electronic Control Units

Figure 2.4: Bus Gateway ECU between a LIN and a CAN network

and contain more flash memory than normal ECUs. Depending on the
transmission speeds of the connected bus systems, these processor clock
speeds can be up to a few Gigahertz.
In 2.4 a bus gateway configuration is shown. This configuration is used if
the desired component does not support the required bus interface.

2.2.3 Software

The software in automotive systems is bound to various legal requirements
in terms of safety and certain functionalities in many countries. These
requirements are often derived from norms and standards published by
organizations like the International Standard Organisation. For more infor-
mation on norms and standards and their impact on automotive systems,
see section 2.5.

An automotive system consists of many overarching logical functions stretch-
ing across ECU boundaries which implement these legal regulations and
every other OEM-defined functional requirement. In order to implement
these functions in a cost-effective way, automotive software specifications
like OSEK-OS 2.5.7, AUTOSAR (which is based on OSEK-OS), and JasPar
were defined.

15

https://www.osek-vdx.org
https://www.autosar.org/
https://www.jaspar.jp/en

2 BACKGROUND AND RELATED WORK

2.2.3.1 Flashing And Coding

Flashing and Coding describe the process of how car manufacturers reuse
the same base component for many variants of vehicles, in order to save
money.

As mentioned previously, an automotive system is composed of many
different components with different (overarching) functionality. In order
to cover a wide range of user preferences and purchasing powers, road-
vehicle manufacturers often develop different variants of the same car. These
variants differ in features and functionality. For example, the adaptive-drive-
assistant-system (ADAS) of the base model of a car may only be equipped
with cruise control while the mid-range model would also feature lane
guidance and autonomous driving to some degree.

Sometimes a feature is just not allowed in some countries. In order to
map these functionality differences into software, without rewriting the
whole codebase of a road-vehicle, Flashing and Coding is used.

Every functionality which an ECU may hold is written on to that device via
the Flashing process. This functionality is embedded in the process layer of
an OSEK-OS conform ECU operating system via one or multiple processes
(see section 2.5.7 for more information).

Flashing is done before the ECU enters the assembly line. At the end of the
assembly line, when all electrical parts of the vehicle are combined and con-
nected, the Coding process takes place. This is usually done by connecting a
manufacturer-specific diagnostic device to the diagnostic port of the vehicle.
See 2.4 for more details. This device uses manufacturer-specific diagnostics
commands to message every ECU which processes should be enabled and
which should be disabled. This information is stored in the so-called Coding
Sequence. It holds information about all enabled processes on an ECU and
acts as a table of processes that can be scheduled. There are also overarching
functions which consist of several processes on different ECUs. In order to
keep overarching consistency (either activate or deactivate all interrelated
processes of the same functionality), so-called Coding Strings are used.

16

2.3 Bus systems

Figure 2.5: Overarching functionality in an automotive system [Schäuffele and Zurawka,
2003]

These consist of a few bytes of data and describe the Vehicle Operations
and the type of vehicle variant (base model/pro model/..). Coding Strings
are often stored on two or three different hard to replace ECUs. Prominent
ECUs to store the Coding String are the Body-Control-Module (BCM) and
the Instrument-Panel-Cluster (IPC) (an example is given in [Mercedes-Benz
Canada, 2005]). Coding Sequences (per ECU) and the Coding String (per
vehicle) define the entirety of functions in a vehicle. They are often the
only difference between two variants of a road-vehicle. It is sometimes just
more cost-efficient to build one type of electrical architecture with one code
base and then generate two-vehicle variants out of it at the production line
by connecting a manufacturer-specific diagnostic device and running the
coding process.

2.3 Bus systems

ECUs in an automotive system are connected via various bus systems. In
the following, the most popular bus system types are discussed: LIN, CAN,
CAN-FD, and Automotive Ethernet.

17

2 BACKGROUND AND RELATED WORK

Figure 2.6: CAN base frame structure (licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported by Erniotti)

2.3.1 CAN Bus

The Controller-Area-Network (CAN) is a multi-master serial bus system. It
is used to connect multiple ECUs of the same functional domain. The CAN
bus-system is standardized in ISO-11898 series for road-vehicles, see [In-
ternational Organization for Standardization, 2003] for more information
about the physical layer. The maximum baud rate for High-Speed CAN
with normal frame size is 1Mbit/s. Physically, CAN is based on two bus
wires: CAN Low and CAN High. In the recessive state, both bus wires are at
2.5V. In the Dominant state, CAN High is at 3.5V and CAN Low is at 1.5V.
If multiple nodes apply different states at the same time, the Dominant state
always overwrites the Recessive state.

The SOF (Start of Frame) consists of one dominant bit which indicates the
start of a new frame.

The Arbitration Field consists of 11 ID-bits and one RTR (remote-
transmission-request) bit. There is no bus master in CAN. Every bus node
which wants to transmit a message transmits its identifier-bits while com-
paring them to the actual bus state. If one ECU notices a difference between
the bus-state and its transmitted state, it stops its transmission until the next
frame. This happens when the node transmitted a recessive bit but another
node transmitted a dominant bit. Therefore, the message with the most
dominant bits at the beginning of the identifier wins the bus access and can
transmit the rest of its message without interference. The arbitration field
indicates the message priority. The more dominant bits an identifier starts

18

https://commons.wikimedia.org/w/index.php?title=User:Erniotti&action=edit&redlink=1

2.3 Bus systems

with, the higher the message priority is. The RTR bit indicates whether the
frame contains data (dominant/0) or the sending node requests data from
the receiving node (recessive/1). If Bit 12 (RTR-bit in base frame) and Bit 13

(IDE in base frame) from the arbitration field are recessive, the frame is an
extended CAN frame. This extended CAN frame has a longer arbitration
field which consists of an additional SSR bit, an IDE bit, and 18 extended
ID-bits between the 11-bit base ID and the RTR bit. Since the SSR and IDE
bit in the extended frame are the Bits 12 and 13, both are recessive.

The Control Field consists of the IDE bit, the r0 bit, and four DLC bits.
The IDE bit indicated whenever the containing frame is a base frame (dom-
inant) or an extended frame (recessive). The r0 bit is reserved for future
use and therefore always dominant. The four DLC (data-length-code) bits
contain information about the number of data-bytes in this frame or the
requested frame.

The Data Field contains the payload data (0-8 bytes).

The CRC Field consists of 15 CRC bits and one CRC delimiter. The CRC
bits are the result of the CRC computation with all previous bits of the CAN
frame. The CRC delimiter indicates the end of the CRC field and is always
recessive.

The ACK Field consists of an acknowledge-slot-bit and an acknowledge-
delimiter-bit. The transmitting node sets the acknowledge-slot-bit in a re-
cessive state. Every node which has received an error-free frame so far
has to set the bus in the dominant state during this bit transmission. By
monitoring the bus state, the transmitting node can verify if the message
has been received by at least one other node.

The EOF (End-Of-Frame) consists of seven recessive bits. If a dominant
level occurs, the frame is invalid.

Three or more IFS (Inter-Frame-Spacing) bits, all recessive level, are be-
tween the EOF of one frame and the SOF of the next one.

19

2 BACKGROUND AND RELATED WORK

Figure 2.7: LIN frame structure

2.3.1.1 CAN-FD

The classic CAN frame contains a lot of overhead and can only contain 8

bytes of payload data. Therefore CAN-FD (Flexible Data-rate) was devel-
oped. The key differences are:

• Flexible data rate: the maximum bit rate during the arbitration phase
remains at 1Mbit/s, but can be set up to 5Mbit/s during the data
phase.

• Up to 64bytes of payload data
• The CAN-FD Frame contains a dedicated Stuffing-Bit-Count field

consisting of four bits in order to count the number of inserted stuffing
bits

• The CRC field has been extended to 17 bits for 0-16 data bytes and 21

bits for 17-64 data bytes. The Stuffing-Bit-Count field is also included
in the CRC computation.

For more information on CAN-FD see [Bosch, 2012].

2.3.2 LIN Bus

The Local-Interconnect-Network (LIN) consists of three physical connec-
tions:

• Vcc
• Data
• Ground

20

2.3 Bus systems

The constant voltage levels on Vcc and Ground are derived from the battery
voltage levels. The voltage on Data determines the bus level. A voltage level
on Data between 100-80% of the battery voltage means a Recessive state, a
voltage level between 0-20% of the battery voltage means Dominant state.
On concurrent bus access, the Dominant state overwrites the Recessive state.

LIN is intended as a standardized protocol for the communication of an
ECU and multiple related sensors and actuators. Its maximum baud rate
is 20kbits/s and one Frame can contain 1-8 bytes of payload data. A LIN
network is composed of one Bus-Master and up to fifteen slaves.

The Master sends out a Frame Headers to which the addressed Slave must
provide a response. The LIN frame format is shown in 2.7. The Sync Byte,
the PID, the bytes of the Data field, and the Checksum Byte are all transmit-
ted as UART frames. Break Field, Sync Field, and PID are transmitted by
the Master (marked red in 2.7). Data Field and Checksum are transmitted
by the addressed Slave (marked green in 2.7).

• The Break Field consists of at least 11 dominant bits. It is used to
signal the Slaves that a new frame starts.

• The Sync Field is consists of an alternating sequence of recessive and
dominant states and is used by the Slaves to detect the Master Baud
Rate.

• The PID contains a six-bit frame identifier and two parity bits. Each
network participant holds a LIN Description File (LDF) which defines
all possible PID values. Using this file the response type, the Data
Field length and the addressed Slave are defined.

• The Data Field contains the 1-8 bytes of data sent by the slave.
• The Checksum is calculated by the slave and contains either a Check-

sum based on all data bytes or a checksum based on all data bytes and
the PID.

2.3.3 Automotive Ethernet

When talking about automotive ethernet, one refers to two standards:

21

2 BACKGROUND AND RELATED WORK

• BroadR-Reach
• IEEE 100Base-T1/1000Base-T1

The main difference between automotive ethernet and normal IEEE-802.3
ethernet is the definition of the physical layer. In the following, both auto-
motive standards are discussed

BroadR-Reach is an open standard for a physical layer of a point-to-point
Ethernet connection for the automotive domain. It was developed by Broad-
com® and standardized by the OPEN Alliance SIG as the OPEN Al-
liance BroadR-Reach PHY. This physical layer consists of one single pair
of unshielded twisted pair (UTP) cable. BroadR-Reach Physical Layer (BR-
PHY) Transceiver supports standard media access controller (MAC) interfaces and
can therefore be combined with IEEE Standard 802.3 compliant switch technol-
ogy [Broadcom, 2014]
It provides a data rate of 100Mb/s, is specifically designed for the require-
ments of the automotive industry, and combines features of IEEE Gigabit
1000Base-T and IEEE 100TX. Furthermore, its bandwidth was reduced to
33.3Mhz compared to 1000Base-T and 100TX, which enables it to comply
with automotive regulations regarding electromagnetic emission. Since it
utilizes full-duplex transmission, it also supports echo cancellation. For
more detail on BroadR-Reach see [Broadcom, 2014].

“IEEE Reduced Twisted Pair Gigabit Ethernet” is the IEEE adoption of
BroadR-Reach. Both standards are nearly identical, are interoperable and
both are often used interchangeably with the term automotive ethernet. The
minor differences are for example at the timing specification on the wake-up
commands. The IEEE standard also considers other fields of application like
in aviation.

The advantages of automotive ethernet are:

• low cost due to single twisted cable pair
• low cable weight
• high data rates
• supports MAC interfaces
• supports higher ethernet protocols

22

https://www.opensig.org/

2.4 Diagnostics

For hard real-time network traffic, the time-triggered ethernet extension
(TTEthernet) exists. Hank et al. noted that “. . . the Time-triggered ethernet
extension (TTEthernet) allows standard best-effort communication and hard real-
time network traffic to share the same layer 2 infrastructure” [Hank et al., 2013].

2.4 Diagnostics

Diagnostic capabilities are a rather old functionality in road-vehicles, dating
back to the 1970s. Diagnostic Capabilities in a road-vehicles split into two
major groups:

• On-Board-Diagnostics
• Off-Board-Diagnostics

In the following, a short introduction to On- and Off-Board-Diagnostics is
given.

2.4.1 On-Board-Diagnostic

On-Board-Diagnostics (OBD) is the ability of a vehicle to identify, store, and
report errors and monitor special system procedures. Since a road-vehicle
is a complex system, the source of errors and malfunctions are often hard
to determine. Therefore most ECUs constantly perform diagnostic tasks
during the operation of the road-vehicle and some continue even after the
ignition is turned off.

These tasks could be as simple as periodically requesting a value from
a sensor and testing it against an out-of-range condition or more complex
like looking for specific system behaviors by applying advanced calculus
onto multiple system value array.

If abnormal behavior is detected, the responsible ECU generates and stores
a corresponding Diagnostic-Trouble-Code (DTC). DTCs are predefined for
each ECU in each vehicle in so-called “Summary Tables” and are also im-
portant for the registration of new vehicle types by the manufacturer.

23

2 BACKGROUND AND RELATED WORK

Repeatedly stored DTCs can lead to the Malfunction-Indicator-Light (MIL)
on the Dashboard to turn on. It is a simple tool to inform the driver that
there exists a problem with the vehicle and a visit to the workshop may
be necessary. In some cases, these DTCs can even prevent a vehicle from
starting up for safety reasons. Besides “Generic DTCs”, which are defined
in ISO 15031-6 and SAE J2012, there are also manufacturer specific DTCs
(see 2.4.2.1).

2.4.1.1 Monitoring Emission relevant components

The monitoring of emission-relevant components holds a special place
in On-Board-Diagnostics since these self-diagnostic capabilities and the
resulting DTCs are mandatory in almost all major car-markets like the US,
the EU, China, and Japan. Monitoring requirements according to UNECE
Regulation 83.07 Annex 11 [Economic Commission for Europe of the United
Nations, 2019] range from Engine-Misfire occurrences over Evaporative-
Emission-Purge-Control (EVAP), up to Tank-Leakage detections and NOx
after-treatment devices. Monitoring areas depend on the propellant system
of the road-vehicle, see [Farrugia et al., 2017]. NOx after-treatment device
monitoring, for example, is not mandatory for gasoline-powered road-
vehicles, EVAP system monitoring is not required for Diesel-powered road-
vehicles and BEVs do not contain any emission relevant components at
all.

2.4.2 Off-Board-Diagnostic

Off-Board-Diagnostics describes the diagnostic functionality outside the
physical boundaries of the road-vehicle. DTCs indicate the occurrence of
specific undesired system behaviors. The interpretation of these DTCs is
done by a diagnostic tester. A Diagnostic tester usually consists either of a
small electronic device with a connection cable to the OBD-II port of the
road-vehicle, or of an adapter from the OBD-II of the road-vehicle to a
standard computer interface with client software running on this computer.
A novel approach is given by Yang et al., see [Yang et al., 2013]. The OBD
port is a standardized port which every road-vehicle produced after 1996

24

2.5 Norms And Standards

has equipped and is connected to the internal bus system of the road-vehicle.

If a vehicle encounters some kind of malfunction or error (e.g. an igni-
tion plug is broken), the mechanic at the workshop plugs in the diagnostic
tester to the OBD port and requests the stored DTC codes from the ECU
memories. Most diagnostic testers offer a so-called ”guided diagnostics”
which utilizes the DTCs in combination with fault trees to track down the
exact source of the error, see [Satnam Singh, Bangalore (IN); Vineet R. Khare,
Bangalore (IN); Rahul Chougule, 2013]. This makes the identification of
errors much easier and decreases maintenance costs for the customer and
the workshop. Diagnostic testers are also able to erase DTC codes from the
ECU’s memory e.g after the problem which caused the DTC is fixed. This
can also be performed by the ECU itself for some faults if they have not
been detected for a specific time.

2.4.2.1 Manufacturer specific Diagnostics

In addition to the mandatory emission-relevant DTCs and the normed but
optional generic non-emission relevant DTCs, there are also the manufacturer-
specific DTCs and additional manufacturer specific diagnostic capabilities.
Manufacturer-specific diagnostic functionality is often not publicly accessi-
ble and contains additional system monitoring capabilities. This gives the
manufacturer workshops an advantage over a generic workshop in terms of
troubleshooting.

2.5 Norms And Standards

In the automotive industry, norms and standards have a special signifi-
cance. Countries derive their regulations and legal requirements, e.g. for
automotive safety requirements or on-board diagnostics, for road-vehicles
from these standards. Therefore, automotive manufacturers are often able
to comply with different legal requirements from different countries by
complying with international norms and standards. This is especially true
for automotive safety norms and standards. Safety engineering today affects

25

2 BACKGROUND AND RELATED WORK

every mechanical and electrical part of a modern vehicle and is a huge
cost-factor during development.

This section gives an overview of automotive standards which are the most
relevant for this work:

• IEC 61508 ”Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems”

• ISO 26262 ”Road vehicles - Functional safety”
• SAE J3061 ”Cybersecurity Guidebook for Cyber-Physical Vehicle Sys-

tems”
• ISO/SAE 21434 ”Road vehicles - Cybersecurity engineering”
• UNECE WP.29 (Activities on Automotive Cybersecurity and OTA)
• ISO/AWI 24089 Road vehicle - Software update Engineering
• ISO 17356 Open interface for embedded automotive applications

The reason safety standards are also discussed here is that safety and se-
curity in the automotive domain depend on each other and as Schmittner
et al. described it:“They both focus on system-wide features and could greatly
benefit from one another if adequate interactions between their processes are de-
fined.” [Schmittner and Macher, 2019]
“A concept is gaining momentum that security and safety are closely interconnected.
Nowadays it is not acceptable to assume that a cyber-physical system is immune
to threats and it is not feasible to assure the safety of the cyber-physical system
independent of security.” [Chowdhury et al., 2018]
Security-related standards for the automotive domain from various organi-
zations are currently in development or have been released in the last few
years.

2.5.1 IEC 61508

IEC 61508 “Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems” focuses on E/E/PE systems and their com-
ponents those failures (alone or combined with other failures) could lead
to injury or death of humans or damage to the environment and/or the
product itself. It functions as a general norm for all safety-related systems
across the industry.

26

2.5 Norms And Standards

Hazard and risk analysis consider ”likelihood” and ”consequences” cate-
gories of failures which can be used to deduce the associated safety integrity
level (SIL). Threat analysis itself or dedicated procedures are not specified.
IEC 61508 is the foundation for ISO 26262.

2.5.2 ISO 26262

The ISO 26262 ”Road vehicles - Functional safety” is based on IEC 61508

and therefore also based on risk assessment. It not only focuses on the
whole development process and life-cycle of road-vehicles but also pro-
vide risk-level-classes, specifically tailored for the automotive industry
called ”Automotive Safety Integrity Level” (ASIL). The risk of failure of
safety-related systems, electronic and electrical systems as well as related
mechanical subsystems to some degree, is evaluated and countermeasures
are defined to achieve the desired ASIL level.

Unlike IEC 61508, guidelines for the interaction between security and safety
are defined (especially Annex E). ISO 26262 was defined with the upcoming
ISO/SAE 21434 standard in mind (see 2.5.4).

2.5.3 SAE J3061

SAE J3061 ”Cybersecurity Guidebook for Cyber-Physical Vehicle Systems” is a
predecessor of ISO-SAE 21434 and establishes a set of high-level guiding principles
for cybersecurity. [Schmittner and Macher, 2019]
It describes a complete lifecycle process framework which is similar to the
safety-related framework in ISO 26262 2.5.2. A threat-assessment and a
risk-assessment for all cyber-security systems are proposed. Restrictions
on interfaces between safety and security management and processes and
their interaction are not defined. However, it is acknowledged that cyber-
security-related systems in case of failure may affect safety-related systems
and therefore the required safety levels.

27

2 BACKGROUND AND RELATED WORK

The application of SAE J3061 is described in [Skavhaug et al., 2016] in
detail. SAE J3061 is no longer available and is now under rework to distin-
guish it from ISO-SAE 21434.

2.5.4 ISO/SAE 21434

The ISO/SAE 21434 ”Road vehicles - Cybersecurity engineering” is set to be
a corner-stone for cyber-security related systems in automotive systems. It
is currently under co-developed by working groups of both ISO and SAE.

The standard, although designed for road-vehicles, will not include spe-
cific countermeasures, implementation suggestions, recommended crypto-
graphic algorithms, or cover unique requirements for autonomous vehicles.
The standard will propose a risk factor analysis for prioritization of mea-
surements on cyber-security relevant systems. Additionally this standard will
considers cybersecurity activities/processes for all phases of vehicle lifecycle, ranging
from design and engineering, production, operation by customer, maintenance and
service and decommissioning. [Barber, 2018]

ISO/SAE 21434 is currently available as a draft-international-standard. The
final standard is set to be released in November 2020.

2.5.5 UNECE WP.29 (Activities on Automotive
Cybersecurity and OTA)

Instead of different requirements on vehicles and their components in every
state, United Nations Economic Commission for Europe (UNECE) aims
to provide a general standard for over 60 contract states in all relevant
topics of type approval. This not only facilitates type approval and trading
but also benefits OEMs which do not have to re-develop entire parts of
automotive systems for each member state. Note that these regulations only
affect components and systems relevant for type approval. UNECE set up a
working party (WP.29) in order to harmonize national regulations on vehicle
type approval for cyber-security and OTA capabilities. In this chapter, only
the activities on OTA are discussed.

28

2.5 Norms And Standards

The structure of the final report3 on OTA contains recommendations on
software update procedures. These recommendations are split into the main
body, Annex A and Annex B.

The main body (Software update guidance) consists of six chapters and
gives addresses general processes and procedures for software updates.
Furthermore, OEMs are advised to support national registration processes.
For more information on Annex A and B, see CS/OTA Task Force 4.

2.5.6 ISO/AWI 24089 Road vehicle - Software update
Engineering

This standard currently only exists as a Working Draft and is not publicly
available. A committee draft is set to be finished at the end of March 2020

and a DIS (draft international standard) publication is set to be released in
April 2021. The final publication is set for March 2022.

Schmittner et al. describe it as follows: ’It defines requirements like ensuring
that the vehicle is in a state where an update is feasible, restrict vehicle functionality
during the update process, test the updated system in the vehicle, recover from failed
or interrupted updates and re-activate vehicle functionality and operation’ [Schmit-
tner, 2019]

The focus on the second draft, which is currently under development,
is set on the software update management system and the requirements for
download, install, and activation.

3see Final Report of TF-CS/OTA:
https://www.unece.org/fileadmin/DAM/trans/doc /2018/wp29grva/GRVA-01-19.pdf

4CS/OTA Task Force (Meeting Documents):
https://wiki.unece.org/pages/viewpage.action?pageId=40829521

29

https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grva/GRVA-01-19.pdf
https://wiki.unece.org/pages/viewpage.action?pageId=40829521

2 BACKGROUND AND RELATED WORK

2.5.7 ISO 17356 Open interface for embedded automotive
applications

ISO 17356 is concerned with OSEK/VDX Operating System. This standard
focuses on OSEK-OS and specifies interfaces between the OS itself and its
application software. It was developed as a standard real-time operating
system environment for automotive control units in which tasks (applica-
tion processes in the OSEK-OS) can be executed according to a scheduling
algorithm.

Tasks and other objects like data structures or events are statically de-
fined before compilation in OSEK implementation language (OIL, defined
in Part 6 of the standard) files and can, therefore, be easily ported to other
ECUs. Tasks split up into two different types: Simple Tasks and Extended
Tasks.

While Simple Tasks can be in the following states: [Running, Ready, Sus-
pended], extended tasks additional have a state called [Waiting] which
enables them to wait e.g. for the acquisition of a Mutex to access a resource.
Tasks have predefined priorities and can be interrupted by tasks of higher
priority if pre-emptive scheduling is used.

AUTOSAR OS5, a popular OS specification in the automotive industry,
is based upon ISO 17356-3 and is therefore backward compatible to OSEK-
OS.

For more information about OSEK-OS and its components, see [OSEK/VDX,
2005].

2.6 Existing Update Solutions

In the following sections, two existing update systems are presented: UP-
TANE and ASSURED. UPTANE is considered the de-facto standard for

5see https://www.autosar.org/

30

https://www.autosar.org/

2.6 Existing Update Solutions

updates on automobiles due to its compromise-resilient design. ASSURED
improves upon UPTANE by adding remote attestation. Both systems were
chosen since their The-Update-Framework-based design is similar to the
proposed BECAUSE framework and therefore more comparable.

2.6.1 UPTANE

UPTANE (see [Kuppusamy et al., 2016]) is based on a modified version
of The-Update-Framework (TUF)6. Since TUF has already been described
in many different scientific publications, the following summary consists
mostly of referenced excerpts:

The-Update-Framework was originally designed to secure the distribution
of data by software repositories. The tasks of the software repository are
divided into four roles which should be (physically) separated from each
other. Each role is responsible for signing different parts of the payload
metadata. The goal is not to prevent attacks at all, but to devitalize them
before any changes to the client systems are made. This ability is called
compromise-resilience and is based on the divide-and-conquer principle.
TUF additionally offers means to recover from attacks by revoking the keys
of compromised roles.
The following basic roles in TUF are defined:

The Timestamp role metadata contains a list of sizes and hashes of snapshot-
metadata and therefore indicates if there are any new images and metadata
on the update system.

The Snapshot role metadata holds a list of Director-, Target- and Root-
Metadata and their versions and therefore indicates which files belong to
the current release.

The Target role metadata consists of hashes and sizes of the actual data
like images the clients want to obtain. The Target role may delegate the
responsibility of signing metadata about images to multiple custom-made

6see https://theupdateframework.io/

31

https://theupdateframework.io/

2 BACKGROUND AND RELATED WORK

Figure 2.8: Sequence of update distribution events in TUF and UPTANE (source: [Asokan
et al., 2018])

sub-target roles to split up this task based on various factors. An example
would be that a software image might be provided by different maintainers
where the maintainers sign their images. A delegation binds the public
keys used by a delegatee to a subset of the images these keys are trusted to
sign. [Kuppusamy et al., 2016]

The Root role serves as the certificate authority of TUF. Its job is to distribute
and revoke the public keys used to verify metadata produced by each of the
four roles (including itself). [Kuppusamy et al., 2016]

The Director role was added to customize TUF for automotive systems.
It functions as a remote package manager for automotive systems and is
tasked with image dependency resolution for the ECUs. As mentioned in
2.2.3.1, different vehicles of the same type may have different functions
enabled and therefore require different software images and image configu-
rations. The Director’s job is to assemble a signed list of update instructions
each ECU must perform based on the received Vehicle-Version-Manifest.

32

2.6 Existing Update Solutions

2.6.1.1 Update Distribution Process

The update sequence of TUF is shown in Fig. 2.8 and consists of 1©- 3©. First
metadata of all roles fetched by the TUF-Client 1©. According to them, the
required software artifacts are fetched 2©. Finally, the TUF-Client verifies
and installs the software artifacts 3©.

Fig. 2.8 also depicts the update distribution process as proposed by UP-
TANE. One ECU in the automotive system is appointed as ”Primary ECU”
the rest are referred to as secondary ECUs. The primary ECU requests
signed information about the current software version (referred to as the
version manifest) of each secondary ECU. The primary ECU adds the VIN
of the road-vehicle and sends this data to the UPTANE Director 1©. The
director performs a software dependency resolution and determines the
new software configuration for each ECU. This director metadata is signed
and sent back to the primary 2©. The primary ECU then fetches the required
image metadata and determines the software artifacts (SA) to be fetched
3©. The primary then downloads and all the required software artifacts 4©.

These software artifacts are checked against their corresponding metadata
by the primary ECU 5©. Metadata and software artifacts are then broad-
casted by the primary ECU to all secondary ECUs over the local bus-systems
6©.

Since not every ECU has the computational power and memory capac-
ity to verify these hashes and store all metadata (full verification), there is
a second method called partial verification. In this method, the secondary
ECU only verifies and stores director metadata.

2.6.1.2 Features

In the following paragraphs, some features which are supported by UP-
TANE are listed. These features describe typical attack scenarios and how
they can be prevented.

Prevent endless data attacks
ECUs can utilize additional storage to keep the previous image or at least a

33

2 BACKGROUND AND RELATED WORK

delta file, highlighting the changes between the current and the previous
image. This not only prevents endless data attacks but also allows the boot-
loader of the ECU to fall back to the previous image if the update process
failed.

Prevent mixed-bundles attacks
The primary ECU broadcasts director- and other metadata to all secondary
ECUs. Since all secondaries receive the same metadata, mixed-bundle at-
tacks are prevented. Ideally, this is implemented by the in-vehicle network (e.g.,
Ethernet broadcast or CAN bus) such that any metadata sent to one secondary by
a primary will be seen by all other secondaries at the same time. [Kuppusamy
et al., 2016]

Prevent partial bundle installation attacks
ECUs sign their installed version number with their public key and send
this information to the primary which in turn sends this information to the
director. Partial bundle installation attacks can not be prevented but using
the vehicle-version-manifest, these attacks can be detected by the director if
it is not compromised.

Prevent freeze attacks
To prevent freeze attacks due to inaccurate clocks on ECUs (including pri-
mary ECU), all ECUs have to update their clock with an external time server
at regular intervals. Given this as a precondition, freeze attacks are limited to
the earliest expiration of timestamp of the root, the director, or a targets metadata
file. [Kuppusamy et al., 2016]

2.6.2 ASSURED

Although designed for large IoT device clusters, the ASSURED framework
(see Asokan et al., 2018) can also be applied as an automotive firmware
updates system. ASSURED utilizes TUF as a middleman between the OEM
and the client system.

Instead of adding an additional role to the TUF, ASSURED tasks the OEM to
generate one authorization tokens per software artifact. This allows the OEM,

34

2.6 Existing Update Solutions

much like the director in UPTANE, to apply individual constraints on each
software artifact. As an alternative, the GlobalPlatform TEE Management
Framework [Technology, 2016] can be used to enclose the authorization
token in an updated envelope, which is then delivered to the client device.
These two approaches can both be realized in ARM Trust-Zone-M and
HYDRA architectures [Asokan et al., 2018].

Unlike UPTANE, ASSURED includes the client devices in their security
concept while keeping the computational burden on the update-receiving
devices relatively low (see prototype implementations at [Asokan et al.,
2018]).

What is particularly interesting about this framework is its end-to-end
security despite the resource constraint of IoT devices and the transfer of
computationally intensive tasks to other devices in the update chain.

Its main disadvantage is that it is not specifically designed for automotive
systems and its stakeholders. In the following section, the update process is
described in detail.

2.6.2.1 Update Distribution Process

Here the update distribution process, as illustrated in Fig. 2.9, is described
in detail.

The OEM creates software artifacts (SA) 2.9 1©. For each SA an authoriza-
tion token is computed which includes constraints on the target device,
metadata of the SA, the hash of the SA, and a signature computed with the
OEM authorization key and the content of the authorization token. The SA
and its corresponding authorization data are bundled to form the update
envelope.

The authorization token can either be placed in the update envelop using the
TEE Management Framework (TMF) or directly in the TUF target metadata.
For more information see [Technology, 2016].

The update envelope together with its metadata is uploaded to the ”Software
Distributor” which resembles the TUF repository 2©. The ”Domain Con-
troller” in ASSURED has a similar role as the ”Primary ECU” in UPTANE. It

35

2 BACKGROUND AND RELATED WORK

Figure 2.9: Sequence of update distribution events in ASSURED (source: [Asokan et al.,
2018])

fetches the latest target and snapshot metadata, fetches the required update
envelopes intended for ”Connected Device” according to the metadata 3©.
The envelope(s) are then validated through the target metadata 4©.

In 2.9 5© the update envelope is transmitted to ”Connected Device” via an
authenticated channel. “This channel serves as an implicit authorization from con-
troller that it has approved the SA in the transmitted update envelope. The Device
uses its underlying security architecture to securely validate authenticity and in-
tegrity of the OEM’s authorization token and SA in the update envelope.”[Asokan
et al., 2018]

If the validation is done and the constraints for the intended target device
are meet, ”Connected Device” applies the software changes 6©. After the
software changes have been applied the ”Connected Device” attests to the
”Domain Controller” that it has actually applied the software changes 7©.
The last step allows controller to obtain a verifiable proof when the update process is
complete. Meanwhile, if the update process fails (e.g., by the adversarial preventing
an update from reaching device), the Controller will be able to detect it due to the
incorrect or missing response.[Asokan et al., 2018]

36

3 PROBLEM

Today, various interfaces connect automotive systems to the outside world
and the amount of ECUs and contained software increased enormously.
“An automotive system includes a very diverse range of components with a to-
tal of more than 100 million lines of code” [Halder, Ghosal, and Conti, 2019].
Vulnerabilities in software are therefore not only likely to be discovered
but also much easier to be remotely exploited. For example, remote code
execution-exploits pose a security violation to the vehicle which influences
the vehicle functionality and can therefore compromise the safety of ve-
hicle passengers, pedestrians, and other traffic participants. Hijacking an
automotive system without having physical access to it has already been
demonstrated by [Miller and Valasek, 2015].

The only countermeasure to this problem is to provide means for updating
the in-vehicle software if a vulnerability is reported.
An update procedure in the automotive context posses several challenges:

Long Lifetime

“Vehicles today are expected to have a development time of around
three years, a production period of about seven years and a subsequent
operation and service phase of up to 15 years. This results in a total
product life cycle of around 25 years” [Schäuffele and Zurawka,
2003]

Even with an average lifespan of ten years, road vehicles would still ex-
ceed almost all other electronic consumer product update-support-periods.
Providing security updates over such a long time is a logistical and cost-
intensive requirement. A software team has to collect vulnerability reports

37

3 PROBLEM

and constantly patch the code base of many different components. This
requires not only a team of experts but also servers for the safe distribution
of these updates over a long time. Thus, OEMs have to ensure that each of
their Tier-1 firmware suppliers is capable of updating the firmware during
this time. This legacy support is especially cost intensive if the update
process itself is not optimized for automotive stack-holder configurations.
Additionally, software development methods may vastly change over time
and a supplier may even go out of business during this phase.

Update Compatibility
Each firmware image has to be tailored specifically for one vehicle type in
terms of functionality and diagnostic and other specifications. There need
to be means of verifying that the new firmware is compatible with the
current ECU firmware versions running on the target vehicle. Installing a
non-compatible firmware version, in the worst case, could render the target
vehicle inoperable.

Diverse Hardware
As described in 2.2.1, an automotive system consist of ECUs with a wide
array of processing power and storage capacity. Implementing an update
system, capable of handling the different resource and connectivity con-
straints of all ECUs, while retaining a certain security level is probably the
most difficult challenge in this domain. The chosen ciphers enabling data
integrity as well as authenticity between the stakeholders of the update
process, therefore, become a trade-off between hardware costs and security.

Exchange Components
Due to the long lifetime and possible accidents, some electronic components
may need to be exchanged over time. If ECUs connected by the in-vehicle
bus-system are cryptographically tangled to each other to secure the update
process, new hardware needs to undergo a series of key generation and key
exchange procedures of some sort to restore authenticity before being able
to function properly.

Update Procedure / Compromise Resilience
The update procedure has to accommodate the stack-holder configuration
in the automotive industry. There are more stakeholders than in similar

38

3.1 Problems With Existing Solutions

update delivery configurations, their roles are much tighter interlinked and
the potential damage is much higher. Given this, an automotive update
procedure needs to ensure that the compromise of a single party does not
endanger the whole update system (compromise resilience).

No dedicated standard specification
Automotive manufacturers are used to relying on legal requirements and
standard specifications in many aspects of road-vehicle development. This
provides manufacturers with kind of a frame and also guidelines on how to
implement specific functions. There is currently no standard specification
for cyber-security in automotive systems from one of the standardization
organizations which addresses firmware updates in automotive systems
and its before-mentioned challenges. In the last few years, ISO 26262 and
SAE J3061 (described in section 2.5.2 and 2.5.3) were used to deal with
cyber-security issues. As a consequence, cyber-security was dealt with as a
functional safety requirement. The standard ISO/SAE 21434 (Road Vehicles
— Cybersecurity engineering) 2.5.4 is currently under development, will
be fully available in November 2020 [Schmittner, 2019], and focuses on
cyber-security as a system requirement.

3.1 Problems With Existing Solutions

In this section, problems with the existing update solutions presented in 2

are discussed.

3.1.1 UPTANE

“TUF and Uptane do not support verification of proper update installation on
target devices.” [Asokan et al., 2018]. Verification of proper update installa-
tion prevents drop-request and other attacks from being discovered. Thus,
large-scale attacks on whole vehicle fleets are much more likely to remain
undiscovered until the damage is inflicted.

Secondary ECUs which are using partial verification only verify and store

39

3 PROBLEM

director metadata. If the director is compromised, mix-and-match attacks
can be launched against these ECUs.

“A Mix-and-match attack is worse than a partial bundle installation
or mixed-bundles attack because attackers can arbitrarily combine up-
dates.” [Kuppusamy et al., 2016]

This hardware-requirement to security trade-off for partial verification is
disproportionate and bypasses the basic security concept TUF should pro-
vide.

3.1.2 ASSURED

ASSURED improves on TUF by adding attestation of proper update installa-
tion. The main problem with ASSURED as an automotive update system is
that it is not specifically designed for that, but rather as a firmware update
system for IoT devices. Consequently, no dependency check on the software
configuration of different devices is performed. However, mapping these
software dependencies must be an inherent part of an automotive update
system (see Update Compatibility in chapter 3). Additionally, it requires an
authenticated channel between the Domain Controller and an ECU, which
is not a realistic requirement for automotive bus-systems.

3.2 Research Questions

RQ1: Which requirements must be fulfilled by an automotive system
(and its components) to implement a secure and reliable update system?
This question should clarify if specific hardware or software requirements
are necessary in order to accommodate automotive update challenges or to
meet the requirements of automotive standards.

RQ2: How can the system be integrated into existing automotive soft-
ware? This question is important since diagnostic capabilities must not
be affected by such a system. Hence, integrating an update system into a
vehicle poses a significant challenge to automotive manufacturers.

40

3.2 Research Questions

RQ3: How can an update system function on a low-speed automotive
bus-system? This question should clarify if even the lowest-speed auto-
motive bus-system can be utilized in an automotive update system for
state-of-the-art ECU hardware.

RQ4: How much memory is needed to store additional update specific
content (metadata, keys, parameters,..)? This question is important because
ECUs are often limited in their storage capabilities. Having a memory-
efficient update system can often lead to micro-controllers with less flash-
memory being used which would not have sufficient storage capabilities for
the same functionality in other automotive update systems.

41

4 SOLUTION

In this chapter, the proposed update system and its procedures are de-
scribed. First, the reference network-topology is discussed. Afterward, a few
important identifiers/parameters are introduced, followed by the roles in
the proposed update system and their purpose. At last, the update process
itself and a few support processes are described. The system is defined in a
way that it provides a certain degree of freedom in terms of implementation.
A proof-of-concept with a reference implementation is given in chapter
5. An evaluation of how well the proposed update system addresses the
problems stated in chapter 3 is performed in chapter 6.

4.1 Reference Network Topology

Every vehicle manufacturer has its own general in-vehicle network struc-
tures for its vehicle models. These structures differ depending on the field
of application, general vehicle functions, and vehicle type.

What all modern in-vehicle networks have in common is a hierarchical
network architecture, which is divided into multiple domains, each with its
bus-system, managed by a domain controller (see Fig. 4.1). These domain
controllers are interconnected through a high bandwidth bus-system e.g. via
an automotive-ethernet switch along with the WVI (World-Vehicle-Interface)
and optionally a diagnostic controller.

This common structure will be used as the reference network topology for
this solution. This is the same architecture as shown in Fig. 2.1. Note that the
solution can be adapted to fit an arbitrary network architecture as long as
the chosen domain masters (see section 4.3.5) can request data from remote
servers.

43

4 SOLUTION

Figure 4.1: In-vehicle network topology in modern vehicles

4.2 Identifiers

In this section, three identifiers are defined which form the cornerstone of
the proposed update system. Here is a short overview:

• ECU_ID uniquely identifies every ECU in entire the update system
• TID uniquely identifies the hard- and software configuration of one

ECU
• PID uniquely identifies the hard- and software configuration of a

dedicated inter-dependent hard-/software constellation.

Note that the coding sequence of an ECU, as well as the coding string of a
vehicle, can be used as TID and PID respectively if their implementation
fulfills the requirements for both identifiers stated below.

44

4.2 Identifiers

4.2.1 TID - Target Identifier

The Target Identifier (TID) uniquely identifies the hard- and software config-
uration of an ECU. ECUs which are identical in their hardware may perform
different software functions. ECUs with identical hardware and identical
software functions (same coding sequence) have the same TID. ECUs with
the same TID and same software version (TIDversion) are identical and
interchangeable in any vehicle regardless of type.

4.2.2 PID - Package Identifier

Vehicles of the same type often use the exact same ECU-Hardware but differ
in the enabled overarching software functionality, while vehicles with slight
hardware variations often use modular in-vehicle network domains which
may be arbitrarily combined to form the basic EE-architecture of separate
vehicle models. To map these ”software-functionality-domains”, Package
Identifiers are used.

The Package Identifier (PID) uniquely identifies the hard- and software
configuration of a dedicated inter-dependent hard-/software constellation,
a network segment, or a software-functionality-domain in a road-vehicle.
A vehicle’s bus-system architecture is split up into independent logical
network segments with a dedicated PID per segment. These logical ECU-
groups are called PID-domains, see section 4.2.3.

The overarching software functionality of ECUs in different PID-domains
must NOT be dependent on the version of the software executed by these
ECUs, otherwise, compatibility issues, which may even render the vehicle
inoperable, could be caused. PID-domains are therefore selected in a way
that they interact as little as possible, may possess separate Diagnostic Spec-
ifications (DIDs, DTCs, etc.), and are present in multiple vehicles.

One PID for a whole vehicle is only necessary if the vehicle can not be
split up into multiple PID-domains. Note that in this case, only vehicles

45

4 SOLUTION

with identical hardware and the same executed software functions and
versions (same coding string) may have the same PID.

4.2.3 PID-domains

PID-domains are defined by the contained ECUs, which all store the same
PID. Ideally, PID-domains are chosen in a way that each network segment,
e.g. each CAN-network in Fig. 4.1, represents one PID-domain. PID-domains
can be nested or cascaded. For example, each CAN-network in Fig. 4.1 may
represent one PID-domain, while all ECUs in the AE-network also form
one PID-domain. Since ECUs in one PID-domain are not dependent on the
software versions of ECUs in other PID-domains, BECAUSE can be combined
with other update systems as well.

Splitting the in-vehicle network up into independent logical segments not
only allows for easier update-ability but also reflects the modularity of
in-vehicle networks in the automotive industry, in terms of both hardware
and software. Few cars are developed completely from scratch. Many sub-
networks from previous vehicles may be reused by the system architects as
long as these fulfill all requirements for the new vehicle. This is mainly a
monetary decision by automotive manufacturers.

4.2.4 ECU ID

Every ECU in the update system has a unique ECU ID. ECU IDs are needed
in order to identify a single ECU in a vehicle since the TID may not be
sufficient. There may be two ECUs with the same TID in the same PID-
domain but different TIDversion, e.g. for redundant systems. The ECU ID
does not have to be a dedicated parameter but may be derived from the
unique serial number of an ECU. The problem with such derived values is
that every Tier-x supplier may use different derivation methods or schemes,
which eventually yield two ECUs from different manufacturers with the
same ECU ID.
A solution would be for an OEM to generate ECU IDs for all ECUs in their

46

4.3 Roles

Figure 4.2: Roles and chain-of-trust outside the vehicle

vehicles and flashing them onto each ECU together with the bootloader.
Ideally, the ECU ID is stored in Read-only-Memory since it will and must
never change.

4.3 Roles

In the following sections, the different roles are described. These roles
consists of a set of tasks (e.g. signing metadata, verifying signatures,..)
which should be performed by different devices in dedicated locations. For
example, the domain-master role must be implemented in the vehicle, while
roles which sign metadata should run on publicly accessible servers.

The Target-Role, the Package-Role, and the Version-Role are used to sign
different types of metadata in order to split up the responsibility (divide-
and-conquer principle) and gain compromise-resilience. These roles should
therefore be performed on physically separated servers. The roles outside
the vehicle are depicted in Fig. 4.2.

47

4 SOLUTION

4.3.1 TARGET - Target Role

The Target Role signs metadata of actual software-images. Target-Metadata
is used to verify the integrity and authenticity of a software image. For
each software image, one target-metadata file is created which also contains
additional information like type, version and the byte-size of the software
image.

4.3.1.1 TARGET-Metadata

+ TID
+ TIDversion
+ bytesize(image)
+ compression algorithm of image
+ hashing algorithm of image
+ hash(image)

In this section, the parameters contained in a Target-Metadata file are
described:

• TID uniquely identifies the hard- and software configuration of one
ECU. For further information see section 4.2.1.

• TIDversions is the software version of a software image with corre-
sponding TID. When new software is added to the update system, the
corresponding TID is assigned and the current software version for
this TID is increased and added to the newly created metadata.

• bytesize(image) denotes the size of the (compressed) software image
in bytes.

• compression algorithm of image denotes the compression algorithm
used to shrink the software image in size.

• hashing algorithm of image denotes the hashing algorithm used to
compute the hash of the software image.

• hash(image) denotes the hash of the software image. This hash is used
to verify the integrity of the corresponding software image.

48

4.3 Roles

4.3.2 PACKAGE - Package Role

The Package-Role signs metadata which describes the architectural structure
of a PID-domain. This metadata is used by the domain master to verify for
which ECUs it is assigned as domain-master.
The Package-Role also co-signs the Version-Metadata-Hash for the Version-
Metadata-Verification, see 4.6 for more information.

4.3.2.1 PACKAGE Metadata

+ PID
+ PIDversion
+ updatePriority
+ hash(VERSION-Metadata)
+ hashing algorithm of VM
+ ECU ID (multiple)

- TID
- ECU ID of DM

In this section, the parameters contained in a Package-Metadata file are
described:

• PID uniquely identifies the hard- and software configuration of a
dedicated inter-dependent hard-/software constellation, a network
segment, or a software-functionality-domain. For further information
see section 4.2.2.

• PIDversion is the version of the corresponding PID. PID and PIDver-
sion together uniquely identify each PACKAGE-Metadata. Note that
the new TIDversion is increased by ”one step” in order for the ECU to
install only consecutive versions (see section 4.6).

• updatePriority describes the type of update in terms of urgency. An
example would be: service (low urgency), functional (medium urgency)
or security (high urgency).

• hash(VERSION-Metadata) is the hash of the matching VERSION-
Metadata (VERSION-Metadata for the corresponding PID and PIDver-
sion).

49

4 SOLUTION

• hashing algorithm of VM denotes the hashing algorithm used for
hash(VERSION-Metadata)

• ECU ID entries are a complete list of all ECUs in the vehicle which
belong to the same PID-domain. Each entry states the ECU_ID and TID

as well as the ECU_ID of the corresponding DM (domain master).

4.3.3 VERSION - Version Role

The Version-Role signs metadata which describes the changes in TIDversions
of all ECUs with the stated PID between two consecutive PIDversions. ECUs
which have no TIDversion change between the stated PIDversion in the
VERSION-Metadata and the previous PIDversion, are not listed in the
VERSION-Metadata. Therefore, the VERSION-Metadata is, on average, not
only smaller than the PACKAGE-Metadata for the same PID, but also
contains the same ECU entries per PIDversion for every vehicle with the
same PID. Hence, the hash of VERSION-Metadata for a set of PID and
PIDversion is always the same.
The only exception is the vehicle assembly process and the ECU replacement
process, where special Full-Version-Metadata for a specific PIDversion is
generated. Full-Version-Metadata includes an ECU-entry for every ECU in
the PID-domain.

50

4.3 Roles

4.3.3.1 VERSION Metadata

+ PID
+ PIDversion
+ hashing algorithm of TM
+ number of ECU entries
+ ECU ID (multiple)

- TID
- TIDversion
- hash(TARGET-Metadata)

In this section, the parameters contained in a Version-Metadata file are
described:

• PID uniquely identifies the hard- and software configuration of a
dedicated inter-dependent hard-/software constellation, a network
segment, or a software-functionality-domain. For further information
see section 4.2.2.

• PIDversion is the version of the corresponding PID. PID and PIDver-
sion together uniquely identify each PACKAGE-Metadata. Note that
the new TIDversion equals the old TIDversion +1 in order for the ECU
to install only consecutive versions (see section 4.6).

• hashing algorithm of TM denotes the hashing algorithm used for
every hash of the corresponding TARGET-Metadata for all ECU entries
in the VERSION-Metadata.

• number of ECU entries denotes the number of ECU entries in this
metadata.

• ECU entries are a list of all ECUs in the vehicle which belong to the
same PID-domain and which have changes in TIDversion between
the previous PIDversion and the PIDversion stated in this VERSION-
Metadata. Each entry holds the ECU_ID, TID, TIDversion, and the
hash of the TARGET-Metadata for the stated TID and TIDversion
combination.

51

4 SOLUTION

4.3.4 INV - Inventory Role

The Inventory Role (INV) holds information about:

• every ECU and their current software configuration,
• the mapping of these ECUs to the vehicles in which they reside
• the mapping of ECU configurations to vehicle configurations (PIDversion-

TIDversion mappings).
• the software images which were added to the system (and therefore

already signed by TARGET)
• the ECU SKEYs of every deployed ECU

Hence, it functions as a central data-hub for the update system. There are
already solutions on how to implement such a database system in a compro-
mise resilient way as [Kuppusamy et al., 2016] pointed out. Since INV does
not sign any metadata, it can for example be implemented as an instance of
The-Update-Framework (TUF) on its own. It may be advantageous in some
situations to split up the Inventory Role into sub-roles in order to delegate
vehicle feature configuration and management to different stakeholders. An
exemplary implementation is given in chapter Proof-of-Concept, see 5.

Regardless of the concrete implementation, compromising this role should
at least be as difficult as compromising TARGET, PACKAGE, and VERSION
conjointly.

4.3.5 DM - Domain-Master Role

The Domain Master Role represents a middleman between the ECU to be
updated and the update servers. It is not a dedicated device, but rather
a function, similar to the ”primary ECU”-Role in the ASSURED update
system [Asokan et al., 2018].
DM fetches metadata and images from update servers, validates both and
distributes it through the local bus-system to the Target-ECUs.
Each Domain Master is responsible for all ECUs of one PID in the vehicle.
In modern hierarchical in-vehicle network topologies, domain controllers
are ideal for this task since they contain enough memory and computational
performance, act as a direct gateway for all ECUs with their associated PID,

52

4.4 ECU Memory Content

and are bus-masters in master-slave bus-systems.

Depending on the in-vehicle network architecture, there may be some cases
in which the task of the Domain Master Role may be executed on a device
other than an actual domain controller. This device needs enough memory
in order to buffer software images and metadata and the computational
capability to verify all metadata in a reasonable time. In a master-slave
bus-system, the Domain Master Role should always be executed by the
bus-master.

4.4 ECU Memory Content

Independent of the hardware and the concrete software implementation,
each ECU holds the content depicted in Fig. 4.3. In order to keep the software
execution during vehicle runtime independent from the update process, a
(second-stage-)bootloader is used.
Instead of running the software image responsible for the ECU function
directly, the code-execution starts at this custom ”update-bootloader”1. Its
task is to handle everything related to the ECU update process e.g. fetching
new images, verifying metadata, comparing the hash of an image with
its hash from the TARGET-Metadata, and handling over execution to the
images. Two image spaces are used for this solution. Hence, if an error
occurs during the update process (e.g. the storage operation for the new
image), the currently used image is not affected.

An exemplary implementation is given in chapter 5.

Each ECU memory contains the following static data:

• ECU ID is described in 4.2.4.
• ECU SKEY is the unique symmetric key of the ECU. It is the only

parameter stored by the ECU which is secret.
• TID is described in 4.3.1.

1Note that, depending on the embedded system and its SoC, a primary bootloader,
e.g. located in ROM, may be executed prior to the second-stage-bootloader execution from
flash memory, in order to initialize hardware components.

53

4 SOLUTION

Figure 4.3: Simplified ECU Memory Content and Layout

Each ECU memory contains the following dynamic data:

• pubKey TARGET, pubKey VERSION, and pubKey PACKAGE are
the public keys of the corresponding roles which are used to validate
the TARGET-, VERSION- and PACKAGE-Metadata.

• PID is described in 4.2.2.
• currTIDversion is the current TIDversion. This value is used to deter-

mine which image should be started.

Each ECU memory contains the following dynamic data per image:

• PIDVersion is the PID-Version associated with the image.
• last boot errcode states whether the last boot of the corresponding

image was successful and may hold the resulted error-code if it was
not.

• T-Metadata is the complete TARGET-Metadata of the associated im-
age.

• hash(V-Metadata) is the hash of the VERSION-Metadata of the associ-
ated image. It is used to verify a PID/TIDversion switch. Note that the
hashing algorithm needs to be predefined so that every ECU in the
PID domain can verify the same signed hash-value (see section 4.6).

54

4.5 Supplementary Procedures

4.5 Supplementary Procedures

In this section, exemplary realizations of supplementary procedures for the
update system are defined. Note that these procedures are intended to act
as exemplary solutions for the most relevant processes which need to be
performed apart from the update process itself.

4.5.1 Initial ECU Flashing

Prior to the vehicle assembly, each ECU is flashed with a bootloader, the
current public role keys, its ECU ID, TID and ECU SKEY. At the time of
flashing, it may not be clear in which vehicle and in which PID domain the
ECU may later reside in. The ECU SKEY is generated by INV (in order to
prevent key collisions) and delivered to the flashing process in a secure and
authenticated way.

Every ECU which is not a DM, is primed with PID, PIDversion and TIDver-
sion of zero. Every ECU which is a DM is primed with a TIDversion and
PIDversion value of zero.

4.5.2 Vehicle Assembly

During the assembly process of the vehicle, each mounted ECU is registered
and the ECU-VIN relation is stored in the Inventory database system along
with zero-values in its TIDversion and PIDversion fields. If the ECU is not
a domain master, the PID value in the database is also set to zero. At the
end of the assembly line, each vehicle is booted up. The bootloader on
every ECU detects the zero values in the version fields and the PID-domains
switch into update mode.
Furthermore, the zero values indicate to the Inventory Role, the Version
Role (via the ECU-Manifest) and the individual bootloaders, that the newest
PIDversion instead of the consecutive PIDversion has to be installed.
For these initial updates, VERSION generates Full-VERSION-Metadata,

55

4 SOLUTION

Figure 4.4: ECU replacement process

containing all entries for all ECUs of one PID2. This prevents multiple
consecutive updates for each vehicle compared to vehicles with ECUs which
would already hold images with a specific TID- and PIDversion, since
these versions may already be many versions behind the current TID- and
PIDversion when being mounted during vehicle-assembly.
This ”initial-update-method” is also very convenient and efficient for the
vehicle manufacturer since the update process can start as soon as every
ECU is mounted and connected to the vehicle. No diagnostic equipment
has to be wired to every single vehicle as in usual coding and assembly
processes.

2If the VERSION-Metadata for this initial update would be too large for an ECU to store
in its memory, e.g in its SRAM, it may utilize the second image area in its flash-memory to
buffer the VERSION-Metadata.

56

4.5 Supplementary Procedures

4.5.3 Replacing ECUs

During the lifetime of a vehicle, some ECUs may break due to various
reasons. The following steps, see Fig. 4.4, shall act as an example of how
this process can be performed:

1© The faulty ECU is removed from the vehicle in an authorized workshop
2© An ECU with the same TID is chosen as a replacement
3© The mechanic authenticates itself to INV and creates a hardware

change request (e.g. via a web-interface) for the vehicle including
the VIN, the ECU ID of the broken ECU, and the ECU ID of the
replacement ECU.

4© The mechanic replaces the ECU.

At the next vehicle start, the ”zero”-values of TIDversion and PIDversion in
the memory of the replacement ECU indicate to its bootloader that it needs
to perform an update. The corresponding metadata for the current PID and
PIDversion is sent to the ECU and the ECU installs it. Note that in this case
the Full-VERSION-Metadata for the current PIDversion is used. As soon
as the ECU confirms its successful update to the current PIDversion, the
hardware change request is closed and the new ECU is added to the INV
database system.

4.5.4 Renewing Public Role Keys

Each ECU regularly (e.g. before every update) requests a public key state-
ment from INV, signed with ECU SKEY. In this statement, the roles and
matching current Key-IDs are listed. If they differ from the Key-IDs cur-
rently stored by the ECU, the ECU fetches the related new public keys
directly from the corresponding roles.
In order to prevent replay attacks (show an ECU outdated keys), the public
key statement also contains the value of a counter. This counter-value is
managed by INV, unique for every ECU, and increased by one after every
public key statement request.

57

4 SOLUTION

4.6 Update Process

Here the individual steps of the complete update process are described. It
is the most important part of this solution and is therefore described in
detail. In order to maintain readability, the process description was split into
two parts. Note that this solution was developed with the cryptographic
algorithms in mind, which were also used for the proof-of-concept imple-
mentation (see section 5.2.4). However, this does not mean that the solution
is limited to these algorithms and cryptographic principles by any means.
This is also the reason no dedicated algorithms are proposed to be used in
this section.

4.6.1 Part A - Fetching Data

A1© DM requests the ECU-Manifest from every ECU in its Domain. This
ECU-Manifest includes:

• ECU_ID

• TID

• TIDversion of primary image

• TIDversion of secondary image

• IV (Initialisation Vector)
• HashingAlgorithm for the signature

• EncryptionAlgorithm for the signature

• sign(ECU_SKEY; hash(ECU_ID, .. ,TIDversion of secondary image))

When booting, the bootloader of an ECU boots the image those TIDver-
sion in the TARGET-Metadata equals the currTIDversion. This image
is called the primary image. The other image is called the secondary
image. If the metadata for an image is invalid, the value of TIDversion
for this image is set to zero.
IV (Initialisation Vector) denotes random bytes acting either as the
initialisation vector for a symmetric encryption algorithm like AES or
are just added for more randomness in the input data for the signature
scheme. sign(ECU_SKEY; hash(ECU_ID - TIDversion of secondary image))
denotes the hash of the data from ECU_ID up to

58

4.6 Update Process

Figure 4.5: Depiction of the proposed Update Process (Part A) 59

4 SOLUTION

TIDversion of secondary image (or up to IV, depending on the im-
plementation) in the ECU-Manifest, signed by the ECU_SKEY.

A2© After receiving every ECU-Manifest, DM adds the VIN and its own
ECU-Manifest to this ECU-Manifest-List signs it with its own ECU_SKEY,
and sends this Update-Request to VERSION

A3© VERSION contacts INV and relays the received data to it.

A4© INV checks the following for every ECU-Manifest:

• every ECU-Manifest is signed correctly by the corresponding
ECU

• ECU_ID and TIDversion are the same as in its database for every
ECU

• the DM signed the whole package correctly
• every ECU in the ECU-Manifest-List belongs to the same PID
• every ECU_ID is part of the same VIN
• no ECU is blacklisted (e.g. ECUs from a vehicle which was re-

ported as stolen)
• the ECU_ID of DM is marked as DM in its database. If received

data and data from the INV database differ, INV checks for hard-
ware change requests for this VIN and may update its database.
For further information on ECU replacement, see section 4.5.3.

A5© INV evaluates the consecutive PIDversion of the current PIDversion.
INV creates a list of the newest compatible software versions for each
TID of this PID from its database.
INV drops TID entries where the currently installed software version
equals the software version to be installed and adds the corresponding
target-meta-hash for every remaining entry.
INV sends this list to VERSION.

Note:
If every update request from a vehicle containing the same PID-domain
would lead to the creation of a new PIDversion, INV would soon run
out of PIDversion numbers. To prevent this, INV regularly creates new

60

4.6 Update Process

PIDversions for each PID and adds entries to its table. The software
changes between two consecutive versions should not be to small in
order to prevent constant updates and not to big in order to perform
updates in a reasonable time (e.g. a few megabytes per PIDversion,
depending on involved bus-systems).

A6© VERSION uses this list together with PID and PIDversion to create
new VERSION-Metadata, see 4.3.3. Therefore, VERSION-Metadata
contains only ECU entries where a newer software version exists. If
the PID is very common, VERSION may have already created and
stored the signed VERSION-Metadata.
VERSION signs this VERSION-Metadata.
VERSION sends signed VERSION-Metadata to INV.

A7© INV confirms that the signed VERSION-Metadata is valid and adds
a hash of the signed VERSION-Metadata to its database. INV creates
an entry in its pending update table and adds an entry for every ECU
which should be updated to it.
An update-approach is chosen where the current version and the new
PIDversion are consecutive. Hence, ECUs in a vehicle with the same
PID have to install one PIDversion after the other. The VERSION-
Metadata contains the same ECU entries per PIDversion for every
vehicle with the same PID. Hence, the VERSION-Metadata hash for
one PIDversion is always the same. Otherwise, there would be one
VERSION-Metadata(-hash) for every possible leap between two ver-
sions of the same PID The only exception to this rule is the full-version-
metadata defined in section 4.5.2.
INV regularly creates new PIDversions (defines which TIDversions
belong to which PIDversion) and adds entries to its table. The software
changes between two consecutive versions should not be too small in
order to prevent constant updates and not too big in order to perform
updates in a reasonable time.

A8© Upon receiving a confirmation from INV, VERSION sends the VERSION-
Metadata to DM.

61

4 SOLUTION

A9© Upon receiving the VERSION-Metadata, DM sends:

• VIN
• ECU ID of DM
• PID
• PIDversion

to the Package-Role (PACKAGE).

A10© PACKAGE contacts INV with the received VIN and ECU_ID of the DM.
INV checks if the given ECU_ID really belongs to the DM of the given
VIN and confirms the PID to PACKAGE.
If the given PID and PID in the database differ, INV may check for
pending PID change requests. This could happen if the vehicle owner
purchased premium software functionality which changed the PID of
(at least one domain in) the vehicle.
Note that PID change of a PID-domain is not defined in this solution,
but discussed in section Future Work in the evaluation, see 6.3
If given ECU_ID and VIN do not match, INV may check for pending
ECU change requests. This may happen if the original ECU with DM
functionality broke. In this case, a workshop would have to replace
the broken ECU with a new one (with or without the same TID) and
create a hardware change request for the INV system.

A11© PACKAGE requests from INV:
+ PIDversion
+ a list of

- ECUx ID
- TID
- new TIDversion
- assigned DM

for the given PID

A12© PACKAGE requests Version-Metadata for given PID and PIDversion
from VERSION

A13© PACKAGE cross-checks Version-Metadata with the help of INV (com-

62

4.6 Update Process

pares the hash from INV with the hash of VERSION-Metadata)

A14© PACKAGE renews the current PACKAGE-Metadata for the corre-
sponding PID by renewing

• the hash of the approved VERSION-Metadata
• the PIDversion of the current VERSION-Metadata

and signs it.

A15© PACKAGE sends signed PACKAGE-Metadata back to DM.

A16© DM compares TID entries of VERSION- and PACKAGE-Metadata
and checks if all TIDs from VERSION-Metadata exist in PACKAGE-
Metadata as well. DM checks if the hash of the current VERSION-
Metadata in PACKAGE-Metadata is the same as the hash of the actual
VERSION-Metadata.

A17© DM requests the TARGET-Metadata for all TIDs from the ECU entries
in package metadata where the TID also exists in the VERSION-
Metadata and where it is listed as responsible DM in the PACKAGE-
Metadata.
Additionally, DM may hold a list of TIDs in its domain for comparison.

A18© DM checks if the received TARGET-Metadata is valid and requests the
related software images.

A19© TARGET sends the requested images to DM. Depending on the num-
ber of different Coding Sequences, some images may have been deleted
since the related metadata creation. Therefore some images may have
to be newly created from a base image.

4.6.2 Part B - Distributing Data

All steps in Part A can be performed independent of the vehicle state. De-
pending on updatePriority stated in the PACKAGE-Metadata, different

63

4 SOLUTION

Figure 4.6: Depiction of the proposed Update Process (Part B)

update approaches may be taken in Part B. The vehicle may switch au-
tomatically to a dedicated update-state after ignition if security updates
need to be applied (distributed through vehicle bus-systems). It can also be
possible to give the user the option to actively enter update-mode in order
to manually start the update process. If a pending update is not initialized
manually, the bootloader on every ECU in each PID-domain will fetch new
updates from its DM at the next reboot.

Due to many individual software-images, in-vehicle update distribution
may take more than a few seconds. In this case, a dedicated update mode

64

4.6 Update Process

should be used prior to vehicle start-up. Since this delays the vehicle start-
up, a confirmation for the update distribution should be retrieved from the
vehicle operator. It is essential that every PID-version contains only small
changes in order to keep the total amount of updates per start-up as low as
possible.

B1© DM broadcasts the received VERSION-Metadata to its whole PID-
domain.

B2© Each ECU in the Domain receives the VERSION-Metadata.
Each ECU validates the VERSION-Metadata.
Each ECU checks if its own TID is in the VERSION-Metadata.
If so, the ECU requests/awaits TARGET-Metadata for its TID, other-
wise, the ECU is ready to exit the bootloader.

B3© DM sends out requested TARGET-Metadata to the ECUs with corre-
sponding TID.

B4© Each ECU validates TARGET-Metadata with its public key and checks
the following:

• The stored TID equals the TID in the TARGET-Metadata
• The stored PID equals the PID in the VERSION-Metadata
• The TIDversion in the VERSION-Metadata is the same as in the

TARGET-Metadata and if it is newer than the current version
• The size of the new software image does not exceed its own

storage capabilities.
• The hash(TARGET-Metadata) in the VERSION-Metadata is the

same as the actual hash of the TARGET-Metadata

B5© The ECU stores a hash of the VERSION-Metadata, discards the VERSION-
Metadata, and requests the corresponding software image from DM.

B6© DM sends the software image to the ECU.

B7© The ECU receives the software image until bytesize(image) and
writes it to its flash memory. The ECU validates the software image
by comparing hash(image) in TARGET-Metadata with the actual hash

65

4 SOLUTION

of the image. The ECU stores the TARGET-Metadata along with the
software image.

B8© The next ECU-Manifest requested by DM and sent to INV contains
the TIDversion of the new image. INV waits for all ECU-Manifests of
the ECUs listed in its pending update table entry for this PID-domain
in the vehicle.

B9© If all ECU-Manifests confirm that the ECUs in the PID-domain have
successfully installed the images of the new PIDversion, INV links the
stored VERSION-Metadata-Hash to the ECU entries with a confirmed
update and request TARGET and PACKAGE to co-sign this Hash.
Both roles check if all ECUs confirmed proper update installation,
through a database query on INV, and then both sign the Hash. The
signatures are appended to the first x-bytes of the VERSION-Metadata-
Hash (VERSION-Metadata-Hash-ID) to form the Version-Metadata-
Verification (VMV). x can either be the total number of bytes of the
VERSION-Metadata-Hash or a value lower than that, which is still
long enough to prevent hash-collisions with other VERSION-Metadata-
Hashes. E.g. for the proof-of-concept implementation, x was chosen to
be 8-bytes.

B10© This VMV is then broadcasted to the corresponding domain in the ve-
hicle (e.g. DM may regularly query INV for the VMV). After receiving
the confirmation, each ECU sets its currTIDversion to the new TIDver-
sion and its currPIDversion to the new PIDversion. At the next boot,
the signed ECU manifests with the new TID-/PID-versions listed,
confirm to INV that the version change was successful. If all ECU
manifests confirm the change, the pending update entry is closed and
the version-numbers are set to the new versions in the database of INV.

When booting, the bootloader of an ECU boots the image those TIDversion
in the TARGET-Metadata equals the currTIDversion. This image is called
the primary image. If an image exits correctly (returns 0 to bootloader), the
bootloader sets last_boot_errcode of this image to zero. The Bootloader is
consequently able to detect problems, request updates, and report errors.

66

5 PROOF-OF-CONCEPT

In this chapter, the practical implementation of the presented update solu-
tion is described. The individual hardware and software of the components
as well as their interplay is discussed.
The goal of this proof-of-concept implementation is to demonstrate the
practical viability of the presented update system as well as provide means
to run benchmarks on the update process itself. The focus was therefore on
the in-vehicle network part of the update process.

5.1 Hardware

In the reference network topology (see 4) the domain controllers, which
run the software functions of the domain master role, communicate with
the World-Vehicle-Interface (WVI) over a high-bandwidth bus-system (e.g.
automotive ethernet). The WVI provides access to the internet via its cellular
network module.
Data exchange between the domain master role and the roles outside the
vehicle can therefore utilize high-level network protocols like IP and is
therefore trivial. Furthermore, fetching new software images and metadata
can be done by the domain master role at any time regardless of vehicle
state. Hence, the communication between a domain master and the roles
outside the vehicle does not directly influence the speed by which updates
can be distributed by the domain master to its associated ECUs.

Due to this, only the functions of the two main roles in the in-vehicle
network architecture were implemented: An ECU and a Domain Master
(see Fig. 5.1).

67

5 PROOF-OF-CONCEPT

Figure 5.1: In-vehicle network topology for the proof-of-concept implementation

Figure 5.2: Sipeed Longan Nano

In the following sections, the individual parts of the proof-of-concept setup
and the reasons for them being used are described.

5.1.1 The ECU (32-bit RISC-V)

As described in 2.2, the variety of hardware used for ECUs is as diverse as
their functions. For this proof-of-concept, a Sipeed Longan Nano develop-
ment board was used (see Fig. 5.2). It contains a GD32V microcontroller unit
from GigaDevices with a 32-bit RISC-V kernel of type RV32IMAC and comes
with an additional 160x80 pixel OLED-Display. The exact name of the MCU
is GD32VF103CBT6, which features a maximum clock frequency of 108Mhz,
contains 128kB of Flash Memory and 32KB of SRAM while consuming only
a third of the power of comparable ARM Cortex-M3 microcontrollers.

This open standard instruction set, the integrated CAN-bus interface of

68

5.2 Software

the GD32V the OLED-Display (which was used for testing purposes of
the update system) were the main reasons this development board was
chosen.

5.1.2 LIN bus

Although the GD32V features a CAN-bus interface, LIN was chosen as the
bus-system for ECU-to-DM communication. As discussed in 2.3, LIN is by
far the bus-system with the lowest-bandwidth used in modern vehicles.
If the proposed update system can deliver updates over LIN, any currently
used automotive bus-system can be used since bandwidth as the limiting
factor is no issue in this case.

5.1.3 Domain Master (32-bit ARM11)

As stated in 4.3.5, domain controllers in modern vehicles are equipped
with sufficient computational capabilities to perform the tasks of a domain
master role1. Hence, and since the device acting as domain master in this
implementation should also partially simulate tasks of roles located outside
the vehicle, a RaspberryPi 1B2 single-board computer was chosen.
Featuring a Broadcom BCM2835 with a 32-bit RISC ARM11 core operating
at 700Mhz, this device is quite similar to what can be found in common
low-performance domain controllers.

5.2 Software

As development environment for the Sipeed Longan Nano development
board, PlatformIO IDE in combination with the Atom Text-Editor was used

1e.g. Tesla uses an Intel Atom E8000 for its MS, MX MCU2, and M3 MCU, see
https://tesla-info.com/blog/technical-hardware-differences.php

2for more information see https://www.raspberrypi.org/products/raspberry-pi-1-
model-b-plus/

69

https://tesla-info.com/blog/technical-hardware-differences.php
https://www.raspberrypi.org/products/raspberry-pi-1-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-1-model-b-plus/

5 PROOF-OF-CONCEPT

(see PlatformIO-IDE for Atom).
After installing the Atom-Text-Editor, the package platformio-ide can
be installed directly through Atoms internal package repository. Several
other Atom packages are thereby installed which also alter the graphi-
cal appearance of Atom. Following its installation, PlatformIO itself pro-
vides frameworks/toolchains which can be installed via its ”PlatformIO
Home”-tab in Atom. Support for the Sipeed Longan Nano is included in
the GigaDevice GD32V package.

A new project was created with the following project configuration file
(platformio.ini):
[env : sipeed −longan −nano]
platform = gd32v
board = sipeed −longan −nano
framework = gd32vf103 −sdk

board build . mcu = GD32VF103CBT6

board build . f cpu = 108000000L

upload protocol = s e r i a l
Listing 5.1: Content of platformio.ini

The version numbers for the main software toolchain components are listed
below:

• Atom Text Editor 1.50.0
• PlatformIO IDE 2.7.2

– PlatformIO Core 5.0.1
– PlatformIO Home 3.3.0
– GigaDevice GD32V (PlatformIO Package) 1.1.2

* RISC-V Gnu Compiler Toolchain 9.2.0

5.2.1 Domain-Master Implementation

The DM was running Raspbian GNU/Linux 10 with python3 (version 3.7.3)
installed. The python packages pyserial and crcengine were added via
the following bash commands:

70

https://docs.platformio.org/en/latest/integration/ide/atom.html#platformio-ide-for-atom

5.2 Software

sudo apt i n s t a l l python3−pip
sudo pip3 i n s t a l l p y s e r i a l
sudo pip3 i n s t a l l crcengine

Metadata-files, VMV-files, and software images would normally be fetched
from the roles outside the vehicle and then stored in the file system of
the DM. In this proof-of-concept implementation, the task of creating and
adding these files to the filesystem was performed by individual scripts on
the DM. These scripts were written with the Atom-Text-Editor mentioned
above and did not require any additional development software. Hence,
update-ability of the DM through the presented update framework was not
implemented.

5.2.2 ECU Implementation

As depicted in Fig. 5.3, the ECU flash memory is divided into four parts:

• Bootloader
• Image 0

• Image 1

• Metadata

65kB are assigned to the bootloader. The current implementation is writ-
ten in C (C11 standard) and takes up about 64kB. The reason for its size
lies in the implementation of the ed25519 algorithm, which accounts for
approximately 44kB (see 5.2.4) and the display driver (used for debugging
purposes) which accounts for about 4.5kB.
30kB are assigned to each image.
1kB is assigned to the Metadata area, which contains all metadata for each
image as well as the bootloader.

As depicted in Fig. 5.3, the bootloader metadata contains a parameter
named currTIDv. This parameter holds the current TID version number (or
zero after the flashing process) and therefore identifies the primary image3.

3Primary Image: the primary image is the image which is currently in use, identified
by currTIDv. The secondary image is an image which is currently not the primary image.

71

5 PROOF-OF-CONCEPT

Figure 5.3: ECU Memory Content

72

5.2 Software

Only an image with the same TIDv in its Target-Metadata can be the primary
image and therefore being booted.

5.2.2.1 Metadata Storage

The Metadata memory section holds all metadata for the bootloader and
the (two) images as well as ECU_ID, ECU_AESKEY, and TID (see Fig. 5.3).
C-Structs are used to handle these metadata in the implementation. One
instance of 5.2 and two instances of 5.3 are filled with the content of the
corresponding flash-memory area at the start of the bootloader execution.
The 64 byte sha3-512 hash in both structs is used to verify the integrity of
the memory area. This mechanism mainly aims at preventing errors due to
memory corruption (e.g. bit-flips).
typedef s t r u c t a t t r i b u t e ((packed)) {

char pubKey P [3 2] ; / / 32 b y t e s
char pubKey T [3 2] ; / / 32 b y t e s
char pubKey V [3 2] ; / / 32 b y t e s
u i n t 6 4 t pid ; / / 8 b y t e s
u i n t 6 4 t currTIDv ; / / 8 b y t e s
u i n t 8 t hash [6 4] ; / / 64 b y t e s (512 b i t)

}meta bl ; / / 176 b y t e s (22 x 64 b i t s)
Listing 5.2: Bootloader-Metadata implementation as c-struct type-definition

If the verification of the bootloader metadata fails, its content is reset to its
initial state which was present after the flashing process. The corresponding
values in the next sent ECU Manifest indicate to INV that the bootloader
metadata of the ECU was reset and that it is not able to select the correct
image to boot (due to currTIDv set to zero). In this case, several options for
error handling are feasible (see 5.2.2.4).
typedef s t r u c t a t t r i b u t e ((packed)) {

u i n t 6 4 t pidv ; / / 8 b y t e s
u i n t 6 4 t l a s t b o o t e r r c o d e ; / / 8 b y t e s
tmeta tm ; / / 160 b y t e s
u i n t 8 t vm hash [6 4] ; / / 64 b y t e s (512 b i t)
u i n t 8 t hash [6 4] ; / / 64 b y t e s (512 b i t)

}meta img ; / / 304 b y t e s (38 x 64 b i t s)
Listing 5.3: Image-Metadata implementation as c-struct type-definition

73

5 PROOF-OF-CONCEPT

Figure 5.4: ECU bootloader state diagram

If the verification of one of the image metadata fails, the metadata is reset
by setting its c-struct content to zero values (see Fig. 5.4). This renders the
corresponding image non-executable due to its failing image verification
and therefore unlocks it to be overwritten by the next update.

At the end of the bootloader execution, the (altered) c-structs are written
back to flash-memory.

5.2.2.2 ECU State Machine

After the metadata has been loaded from flash-memory and verified, the
bootloader goes into the INIT-state and busy-waits for one of four possible
LIN-Frames. As described in 2.3.2, ECUs can only respond to LIN-Frame-
Headers sent by the bus-master (the DM). The Frame-IDs are predefined
and specify if the following LIN-Frame-Payload field contains payload or
is meant to be filled with payload by the addressed ECU. All LIN-Frames
during bootloader communication are set to be 8 bytes long.

All frames which were defined are listed below in the form [LIN-Frame-ID,
LIN-Payload]:

74

5.2 Software

• Manifest Request [LH_MANI, ECU_ID]
• Update Request [LH_UP, ECU_ID]
• Boot Broadcast [LH_BOOT, <not def.>]
• VM Broadcast [LH_VM, <not def.>]
• VMV Broadcast [LH_VMV, <not def.>]
• TM Packet [LH_TM, <bytes of target metadata>]
• SA Packet [LH_SA, <bytes of software image>]

The Frame Manifest Request indicates to the ECU with the given ECU ID,
that its Manifest is requested. The ECU then waits for further Frame Head-
ers of type LH_MANI_REQ and fills the payload fields with its ECU-Manifest
data. The frames are depicted in Fig. 5.8.
The Frame Boot Broadcast indicates to all ECUs that they shall boot their
current image (if valid).
The Frame VM Broadcast indicates to all ECUs that the next frames with
header LH_VM contain version-metadata (see Fig. 5.6). After completing the
Version-Metadata broadcast, DM sends out Target-Metadata and software-
images to the ECUs for which an ECU-entry exists in the Version-Metadata.
These ECUs wait for an Update Request containing their ECU ID as pay-
load. Receiving such a frame indicate to the ECUs that the following frames
with LIN-Frame-ID LH_TM and LH_SA are addressed to the ECU with the
specified ECU ID. Frames with Frame-ID LH_TM contain Target-Metadata
as Frame-Payload (see Fig. 5.5). Frames with Frame-ID LH_SA contain the
bytes of a software-image as Frame-Payload.

The Frame VMV Broadcast indicates to all ECUs that the next frames with
header LH_VMV contain the version-metadata verification (see Fig. 5.7). If
VMV is valid for the primary image, currPIDv of that image is increased by
one and the stored version-metadata-hash of that image is set to zero. No
further steps need to be taken since currTIDv in the bootloader-metadata
already identifies the right image as primary.
If VMV is valid for the secondary image and TIDv of this image is equal to
TIDv of the primary image plus one, the version-meta-hash of the secondary
is set to zero, and currTIDv in the bootloader-metadata is set to the value of
the secondary image, thereby making it the new primary.
If VMV is not valid, it is ignored and the bootloader switches back to INIT.

75

5 PROOF-OF-CONCEPT

The implementation of Metadata, the Version-Metadata-Verification as well
as the ECU-Manifest, their division into individual frames, and the individ-
ual data-types are described in 5.2.3.

5.2.2.3 External Software Sources

The only external source code for the ECU implementation, apart from
the required modules from the GD32VF103_Firmware_Library4, were the
implementations of the cryptographic algorithms described in 5.2.4 and the
driver for the display5.

5.2.2.4 Error Handling

During the bootloader execution, several verifications may fail due to various
errors. The Bootloader handles them by altering or not altering associated
metadata parts. INV can detect, and even distinguish, between different
errors by comparing the received ECU manifest with the expected manifest
and the last received manifest.
INV may notify the OEM, who can then take further measures if necessary.

5.2.3 Metadata and Datatypes

In the following sections, the content of the generated (metadata-)files and
other data-objects, the datatypes of the parameters within these objects as
well as their transmission to the ECU are described.
All metadata-files contain their parameters appended to each other in binary
format. Splitting these files up into 8-byte chunks consequently results in
the payload of the LIN-frames of the corresponding metadata.

4see https://github.com/riscv-mcu/GD32VF103 Firmware Library
5see https://github.com/sipeed/Longan GD32VF examples/tree/master/gd32v lcd

76

https://github.com/riscv-mcu/GD32VF103_Firmware_Library
https://github.com/sipeed/Longan_GD32VF_examples/tree/master/gd32v_lcd

5.2 Software

5.2.3.1 Signature scheme

As depicted in Fig. 5.5, 5.6, 5.7, and 5.8, all metadata, the version-metadata-
verification, and the ECU manifest contain at least one signature each. These
signatures are all stored and transmitted in the same 72-byte long format.
The signatures in Fig. 5.5, 5.6, and 5.7 are public-key signatures, created
with the respective private role keys. sig_hash_algo defines the hashing
algorithm and sig_enc_algo the encryption algorithm of the signature
algorithm (see 5.2.4). The sig_keyid parameter in these signatures contains
the first six bytes of the associated public role key.
The signature in Fig. 5.8 is created in an Encrypt-than-Mac scheme with
the hashing algorithm identified by sig_hash_algo and the symmetric key
encryption algorithm identified by sig_enc_algo(see 5.2.4). The sig_keyid

parameter in the signature is left empty since the used key is identified
through the parameter ECU_ID in the ECU manifest.
In this implementation, ed25519 was used for all public-key signatures
and AES-256 (as encryption algorithm) together with SHA3-512 (as hashing
algorithm) for the ECU manifest signature.

5.2.3.2 Target Metadata

The target-metadata(-file) for each ECU is 160-bytes in size. The correspond-
ing LIN-Frames are depicted in Fig. 5.5.

TID and TIDv are described in 4.2.1. Both are chosen to be 8-bytes long
in order to support sufficient ECU hardware/software combinations and
enough software version numbers per combination. sa_bytesize is 6-bytes
long, which sets the maximum bytesize of a software image to around
281 terabytes. sa_compression_algo defines the algorithm of the chosen
compression algorithm for the software-image6. sa_hash_algo defines the
hashing algorithm for sa_hash which is the 64-byte software image hash. In
this implementation, SHA3-512 was used for sa_hash (see 5.2.4).

6Note that software-image compression was not implemented in this proof-of-concept
implementation

77

5 PROOF-OF-CONCEPT

Figure 5.5: LIN Frames of Target-Metadata

Figure 5.6: LIN Frames of Version-Metadata

78

5.2 Software

5.2.3.3 Version Metadata

As described in 4.3.3.1, version-metadata consists of three parts:
The header (24 bytes), a list of ECU entries (88 bytes per entry), and the
signature (72 bytes), see Fig. 5.7.

The header contains PID and PIDv which were both chosen to be 8-byte long
in order to support sufficient bus-system configurations. tm_hash_algo and
ecu_entries are already described in 4.3.3.1 as hashing algorithm of TM

and number of ECU entries respectively. ecu_entries is one byte long and
defines the number of ECU entries in this version-metadata(-file). Its size
limits the maximum number of ECU entries in one version-metadata(-file)
to 255 and therefore the maximum size of one version-metadata(-file) to
24 + 88 · 255 + 72 = 22536 bytes.

Each ECU entry contains the ECU_ID of the affiliated ECU, the TID, and
TIDv as well a hash of the associated Target-Metadata. SHA3-512 was used
to generate this hash (tm_hash in Fig. 5.6). The ECU_ID parameter was chosen
to be 8-bytes long. As per TID, TIDv, PID, and PIDv, this provides around
1.84 · 1019 (= 264) possible combinations. Even if all OEM’s in the world
would use the same instance of this update system for 100 years, only 2 · 1012

distinct ECU IDs would be generated7 . The implementation of TID and
TIDv is described in 5.2.3.2.

5.2.3.4 Version Metadata Verification

The version-metadata verification consists of the first 8-bytes of the Version-
Metadata-Hash (vm_hash_id) and two signatures, one from Target and one
from Package, which sets its size to 152 bytes (see Fig. 5.7).

As described in 4.6, ECUs store a version metadata hash within the metadata
for each new valid software image. When receiving a VMV, the first 8-bytes
of this hash are compared to the received vm_hash_id (see Fig. 5.7). Note
that the comparison is only performed if the stored hash is not zero. If they

7Calculated with 100mio cars per year with 200ECUs each

79

5 PROOF-OF-CONCEPT

Figure 5.7: LIN Frames of Version-Metadata-Verification

match (and the image is valid and its TIDv is adjacent to currTIDv), the
stored hash in the metadata is set to zero, and currTIDv in the bootloader
metadata is increased by one to match the value of TIDv of this image
(making it the new primary image).

Since each ECU calculates and stores the hash of version metadata be-
fore VMV is created, the hashing algorithm for the Version-Metadata-Hash
is predefined in each bootloader. In this implementation, SHA3-512 was
chosen as the hashing algorithm.

5.2.3.5 Software Images

In this implementation, DM creates the software images and stores them in
.bin files. These binaries are padded to be a multiple of 8-bytes in size. This
is done since the payload fields of the LIN-frames during the update are
predefined to be 8-bytes long. After an ECU received its Target-Metadata,
it expects LIN-Frames with Frame-ID LIN_SA containing the bytes of the
associated software image. The payload of these frames contains the content
of the corresponding binary-file, split into 8-byte chunks. The addressed
ECU writes this payload directly to its flash-memory up to sa_bytesize in
the target metadata (see Fig. 5.5).

80

5.2 Software

Figure 5.8: LIN Frames of ECU Manifest

5.2.3.6 ECU Manifest

In this implementation, the ECU manifest consists of the 8-byte ECU_ID and
TID, the 8-byte TIDv of image0, and the 8-byte TIDv of image1 as well as a
16-byte Initialization-Vector (IV) used for the AES-256 encryption step in
the Encrypt-then-Mac signature generation process (see 5.2.3.1).

This IV has to be randomly generated by the ECU for every manifest in
order for the encryption process to be secure. For the signature generation,
only the first 32-bytes of the ECU Manifest are used (see Fig. 5.8).

5.2.4 Cryptographic Algorithms

In the following sections, the cryptographic algorithms used for this im-
plementation are discussed. Since creating custom and especially secure
implementations of these algorithms is out of the scope of this thesis, exter-
nal sources were used.

81

5 PROOF-OF-CONCEPT

5.2.4.1 AES-256

AES-256 is a 128-bit symmetric block cipher algorithm with 14 rounds and
a key length of 256-bit. In 2000, AES, or more specifically the underlying
algorithm called Rijndael, was selected by the National Institute of Standard
and Technology (NIST) to replace 3DES as a symmetric key encryption al-
gorithm. Today, AES is the de-facto standard for symmetric key encryption.
Several processing units contain AES hardware accelerators and some even
dedicated unprivileged AES instruction sets for very fast computational
speed and improved security.
Other than 3DES or AES-128, AES-256 is totally quantum secure [Rao et al.,
2017]. Grovers algorithm, a quantum algorithm for finding the input of a
black-box function for a given output with a high probability, is proven to
have the optimal runtime for breaking Rijndael with a best-case runtime
of O(

√
N) [Bennett et al., 1997]. The best-case runtime for breaking a 256-

bit key with a quantum computer is therefore still 2128 iterations, which is
considered to be out of reach for any computer available in the next decades.

This property was the reason AES-256 was chosen as an algorithm for
the ECUs unique ECU_AESKEY. Signatures with ECU_AESKEY (e.g. Manifest
signature) were computed together with SHA3-512 in an Encrypt-than-Mac
scheme. The tiny-AES-c implementation8 was used with Cipher-Block-
Chaining (CBC) as a block cipher.

5.2.4.2 EdDSA

The Edwards-curve digital signature algorithm is a digital signature algo-
rithm using twisted Edwards curves instead of Weierstrass curve [Bern-
stein et al., 2012]. The chosen algorithm variant ed25519 uses SHA2-512

[Wanzhong et al., 2007] and curve25519 [Bernstein et al., 2012].

EdDSA instantiations such as Ed25519-Original can sign and verify signatures
substantially faster than almost all other signatures schemes at similar security

8see https://github.com/kokke/tiny-AES-c

82

https://github.com/kokke/tiny-AES-c

5.2 Software

levels. For schemes which have comparable speeds, Ed25519-Original further pro-
vides considerably smaller signatures, producing 64-byte signatures and 32-byte
public keys. Additionally, EdDSA is widely considered to provide better resistance
to side-channel attacks than alternative schemes [Brendel et al., 2020].

In this proof-of-concept implementation, ed25519 is the algorithm used for
metadata verification. Regarding the concrete implementation of ed25519,
9 was used. As stated in the readme.txt in the source files, this implemen-
tation was extracted from libsodium 10 and was not meant to run on an
embedded device with limited memory space. Therefore, a drawback of
this implementation is its large compiled code size of about 44kB for the
GD32V.

5.2.4.3 SHA3-512

As stated in the last section, the used ed25519 implementation already con-
tains a SHA2-512 implementation for its signature algorithm. However, there
already exist length extension attacks and preimage attacks on SHA2-512

(see [Dobraunig, Eichlseder, and Mendel, 2015], [Khovratovich, Rechberger,
and Savelieva, 2012]).
For future security, its successor SHA3-512 was chosen. Keccak, the under-
lying cryptographic algorithm of SHA3, uses a method called Sponge-

construction which sets it apart from its predecessors and provides high
resistance against the before mentioned attacks.

In this proof-of-concept implementation, SHA3-512 was used for the com-
putation of the hashes of software images and version-/target-metadata
(see Fig. 5.3 and Fig. 5.2.3). As source code of the SHA3 hashing algo-
rithm, SHA3IUF11 was used. This implementation comes with an Init-Update-
Finalize API, which makes it possible to integrate the software image hash
computation directly into the image-to-flash-memory writing process.

9see https://github.com/joewalnes/verifysignature
10see https://github.com/jedisct1/libsodium
11see https://github.com/brainhub/SHA3IUF

83

https://github.com/joewalnes/verifysignature
https://github.com/jedisct1/libsodium
https://github.com/brainhub/SHA3IUF

5 PROOF-OF-CONCEPT

5.2.5 Data-Transmission Volume

At the start of the update process, shown in Fig. 4.5, each ECU transmits
its ECU Manifest with 120bytes to its Domain Master. Each Domain Master
adds the VIN and its own ECU-Manifest to this ECU-Manifest-List, signs
it with its own ECU_SKEY, and sends the signed list as Update-Request to
VERSION. VINs consists of 17 characters, which makes them slightly larger
than the input array of a single SBOX (see 5.2.4).
Padding the VIN to 32 bytes and adding the IV of the AES encryption,
adds 48bytes per DM. For five DMs in a vehicle containing 100 ECUs, these
Update-Requests would have a sum-total of 12.24kB (= 100 · 120bytes+5 ·
48bytes).

The maximum possible metadata download volume during an update
process in this example for one DM would be approximately 5.7kB.
It consists of a 1856bytes Version-Metadata-File (20 ECU entries), 3200bytes
of Target-Metadata (20 Target-Metadata-Files), and a 640byte of Package-
Metadata-File (20 ECU entries)12.

The maximum possible data transfer over the WVI during one update
process for a vehicle consisting of 100 ECUs would therefore be 12.24kB of
upload traffic and 28.5kB of download traffic (without software images).
See 6.2 for more information.

12The byte-size of the parameters within the Package-Metadata is based on the imple-
mentation of the same parameters in Target- and Version-Metadata

84

6 EVALUATION

In this chapter, the viability of the proposed update system is discussed.
First, its design characteristics are evaluated and compared to existing
solutions. Then the properties and characteristic values of the proof-of-
concept implementation are compared to benchmark results of existing
systems. Finally, possible threats to validity and limitations of the proposed
system are considered as well as possible future improvements on the
system are discussed.

6.1 Design Evaluation and Comparison

Other than UPTANE and ASSURED, the three metadata-signing roles of
BECAUSE do not utilize or expand upon the Update Framework (TUF)
directly. However, the same divide-and-conquer principle as in TUF is used
by assigning metadata signing tasks to these distinct roles. See section 2.6 for
more information on the existing solutions. In the following the BECAUSE
framework is compared to the UPTANE and ASSURED framework.

Time-Independence
BECAUSE is time-independent. There are no time-stamp parameters or a
dedicated time-stamp role. As Kuppusamy2018 et al. pointed out, ’. . . ECUs
typically do not have real-time clocks’ [Kuppusamy, DeLong, and Cappos, 2018]
and therefore have to periodically fetch the current time from an external
time-server. To circumvent this problem without making the system suscep-
tible to replay- or freeze-attacks, BECAUSE uses ascending target version
numbers (TIDs) and ascending adjacent package version numbers (PIDs).

85

6 EVALUATION

No Root-Role
A major difference of BECAUSE compared to existing solutions is the lack of
a dedicated root role. The root role typically acts as certificate authority by
signing, distributing, and revoking the public-keys of all roles in the system.
Although the private root key should be stored offline, its compromise
breaks the compromise resilience of the whole system since new public-key
pairs for each role can be forged. In BECAUSE, INV keeps track of the
current public role keys without distributing them. The system, therefore,
lacks the possibility to instantly revoke compromised public role keys, but
due to the high compromise-resilience, this functionality is not really neces-
sary. Shutting down a compromised role until the problem is fixed should
be performed anyway and does prevent new update distributions to be
completed (see 4.6 for more information).

Compromise-Resilience without cryptographic requirements on ECU hard-
ware
In the BECAUSE framework, the only secret parameter stored by an ECU is
its unique ECU_SKEY. If it is compromised, only the corresponding ECU can
be compromised. Most low-level ECU lack dedicated secure storage capabil-
ities. Hence, reading ECU_SKEY from the flash-memory of an ECU may be
possible but requires a physical attack and therefore physical access to the
vehicle internals. But for ECUs where the ECU_SKEY can be compromised
through a physical attack, a physical attack may very well be able to alter
flash memory content and therefore lead to arbitrary-software-execution
anyway (given that no authenticated boot process exists). Neglecting physi-
cal attacks on these low-level ECU which would likely compromise them
anyway, an argument can be made that even such low-level ECUs can run
BECAUSE fairly secure. This answers RQ1, see 3.2.
In order to prevent compromise of the ECU_SKEYs on the INV system, the
key storage should be distributed and organized in blackbox-systems for
Manifest verification etc.. Another solution would be to use two asymmetric
key pairs between the ECU and INV instead of the symmetric ECU SKEY:
the ECU would hold the private key of pair one plus the public key of pair
two and INV would hold the public key of pair one and the private key for
pair two.

86

6.1 Design Evaluation and Comparison

Easy ECU exchange, blacklisting, and decommissioning
A practical advantage arising from the design of the BECAUSE framework
is the traceability of distinct ECUs through its ECU_ID. INV can verify which
ECUs are installed in which vehicles though the ECU-Manifest and thus
detect hardware changes in vehicles. INV is, therefore, able to e.g. prevent
updates for ECUs those vehicles are reported as stolen or take additional
measures. Malicious adversaries are no longer able to strip a stolen vehicle
for ECUs and sell them without problems. Decommissioning an ECU at the
end-of-life becomes as easy as setting the corresponding database entry on
the INV system to inactive or by just dropping it.
In the ASSURED framework, the Controller and Device are cryptograph-
ically bundled by Controller Key (see Fig. 2.9) and require a dedicated
secure channel. If a Controller has to be exchanged in this framework, the
keys of all its connected Devices in the vehicle have to be updated.
In BECAUSE, only a hardware change request has to be sent to the INV, see
section 4.5.3 for more information. No authenticated channel is needed for
attestation of proper update installation.

Update system independent from actual software
Due to its dual image setup, the update process has no influence on the
already installed image. Hence, an update may fail but can not induce a
fault in the current software configuration of the vehicle. Therefore, the
update system has no functional impact on the functional safety of the ECU,
see 2.5.2. This covers RQ2, see 3.2.
Failed updates can be detected through the ECU Manifest and handled
according to the information contained in them. Replay attacks with an
ECU-Manifest for example can be prevented through storing the hashes of
the last received Manifest per ECU, which indicates to INV that the same
IV for the symmetric encryption in the Manifest signature creation was
used, see 5. Diagnostic functionality and interplay is only defined be by the
software image themselves.

87

6 EVALUATION

6.1.1 Compromise Resilience

In this chapter, the BECAUSE framework is compared to UPTANE and
ASSURED in terms of compromise resilience. Eleven relevant attacks on au-
tomotive update systems were identified, most of them were previously de-
fined by Kuppusamy et al., see Fig.5 in [Kuppusamy et al., 2016] and by the
update framework1. The tables presented below show the possible attacks
for the most relevant combination of compromised (metadata-signing-)roles
with an ’X’ symbol. Since all three of the compared update systems feature a
role located in the vehicle responsible for update distribution (Primary ECU,
Controller, Domain Master), the ’x’ symbol highlights attacks which are only
possible if this in-vehicle role is also compromised. All tables consider the
attacker having Man-in-the-middle capabilities both inside and outside the
vehicle. Physical attacks directly on the MCU of the ECUs are not considered
since they are difficult to compare and very implementation-dependent.
A short overview of the considered attacks is given in the following para-
graphs.

EA - Eavesdrop attack. An adversary can listen in on the communication.

DoS - Denial-of-Service attack. An adversary can block/jam arbitrary parts
of the communication between the entities in the update system.

FEA - Feature-Escalation attack. An adversary manages to install valid
software but with premium features enabled. These may be software func-
tions which can be purchased by the OEM to complement the vehicle
functionality.

PBIA - Partial-Bundle-Installation attack. This attack prevents some ECUs
in an ECU-bundle with overarching functionality (e.g. PID-domain in BE-
CAUSE) from installing the newest software, which in turn may cause
compatibility and other issues.

RBA - Rollback attack. This attack causes an ECU to install outdated soft-
ware with known vulnerabilities [Kuppusamy et al., 2016].

1see https://theupdateframework.io/security

88

https://theupdateframework.io/security/#security-design-principles

6.1 Design Evaluation and Comparison

WIA - Wrong Image attack. This attack causes an ECU to install a valid
software image which is not intended for that specific ECU hardware and
therefore may lead to exploitable errors in its execution.

MBA - Mixed-Bundle attack. This attack causes ECUs in an ECU-bundle
to install software versions which are not compatible with the software
versions on other ECUs in the same bundle.

MaMA - Mix-and-Match attack. This attack causes ECUs in the same ECU-
bundle to install valid software which is not intended to run on these ECUs
at the same time (e.g. incompatible software versions).
Kuppusamy et al. stated that an attacker is therefore able to arbitrarily com-
bine updates, which is worse than a partial bundle installation or mixed-bundles
attack [Kuppusamy et al., 2016].

ASA - Arbitrary-Software attack. This attack is the worst since it causes
ECUs to install and execute arbitrary software.

EDA (Endless-Data-Attack) and FREEZE (Freeze-Attack) were intentionally
excluded because they are highly implementation-dependent. EDA can
be easily prevented by terminating the update process once the received
data would exceed the ECUs storage capabilities. FREEZE can be prevented
by comparing the current image with the new image (e.g. computing and
comparing hashes). BECAUSE is not susceptible to either one of them.
For more information about the attacks see [Kuppusamy et al., 2016].

6.1.1.1 UPTANE

For more detailed information on the compromise resilience of UPTANE, see
table 6.1. Even without compromising a single role, UPTANE is vulnerable
to PBIA (although the attack can be detected). However, if the director role
is compromised, PBIA and even MaMA are not only possible against partial-
and full-verification ECUs but also non-detectable.
If a primary ECU is compromised in addition to the director role, partial

89

6 EVALUATION

verification ECUs are susceptible to almost all listed attacks including ASA.
See also Fig. 17 and 18 in [Kuppusamy et al., 2016].

UPTANE
mild moderate major severe

EA DoS FEA PBIA MBA WIA RBA MaMA ASA

no compromise X X X∗

TR X X X∗

DR X X (x) X (x) (x) X (x)

TS+RS+DR X X (x) X (x) (x) X (x)

TS+RS+DR+TR X X X X X X X X

RT X X X X X X X X

TR. . . Target Role X. . . attack is possible
TS. . . Timestamp Role x. . . attack is possible with compromised
RS. . . Release Role primary ECU
DR. . . Director Role ∗. . . attack can be detected
RT. . . Root Role (). . . attack is possible for partial verification

Table 6.1: Attack Matrix of the UPTANE Framework (Full- and Partial-Verification)

6.1.1.2 ASSURED

For more detailed information on the compromise-resilience of ASSURED,
see table 6.2. ASSURED performs slightly better in terms of compromise
of multiple roles compared to UPTANE. PBIA is possible with the compro-
mise of the Domain Controller role only, which is still better than the zero
required roles to be compromised in the UPTANE framework.
If TS and RS are compromised, PBIA, MBA, and MaMA are possible. This

90

6.1 Design Evaluation and Comparison

is due to the fact that information about the software version dependencies
is only encoded in the metadata signed by two of these roles. As long OEM
is not compromised, these three attacks can be detected.
If however OEM and the Domain Controller are compromised, every listed
attack including ASA is feasible. Since Domain Controller verifies all meta-
data except for the Update Envelope on behalf of the ECU and is also
tasked with attesting the state of the ECU, the resulting attacks can not be
detected.

ASSURED
mild moderate major severe

EA DoS FEA PBIA MBA WIA RBA MaMA ASA

no compromise X X x

TS X X x

RS X X x

TR X X x

OEM X X x x x x x x x

TS+RS X X X∗ X∗ X∗

TS+RS+TR X X X∗ X∗ X∗ X∗

RT X X X∗ X∗ X∗ X∗

RT+OEM X X X X X X X X X

TR. . . Target Role X. . . attack is possible
TS. . . Timestamp Role x. . . attack is possible with compromised
RS. . . Release/Snapshot Role Controller Role
RT. . . Root Role ∗. . . attack can be detected

Table 6.2: Attack Matrix of the ASSURED framework

91

6 EVALUATION

6.1.1.3 BECAUSE

For more detailed information on the compromise resilience of the pro-
posed system, see table 6.3. At least three roles need to be compromised in
order to launch one of the listed attacks, and there are only two practical
combinations:

• If the DM, Target, and Package role are compromised, then it is possible
to create a Version-Metadata-Verification for existing Version-Metadata
and broadcast it to a PID-domain in which not every ECU has success-
fully installed the corresponding update. This attack will be detected
by INV through the ECU Manifest of the affected ECUs.

• If Target, Version, and Package role are compromised then every attack
except MBA can be performed successfully, although detected by INV
through the ECU Manifest of the affected ECUs.

If the Version and Package role are compromised, Target prevents execution
of new images by not signing new Version-Metadata-Verifications after
cross-checking with the INV system.
If the Version and Target role are compromised, Package prevents execution
of new images due to the same reason. If the whole INV system is compro-
mised, the ECU_SKEYs are also compromised and proper update installation
can no longer be verified. FEA and PBIA are possible, other attacks can
be prevented by the knowledge each metadata-signing role possess, and
through communication between them. If there is a mechanism in place
for renewing ECU_SKEYs, the system can fully recover from such an attack.
The compromise of the INV system does not compromise any public keys,
see chapter 4.5.4 for more information. As mentioned in chapter 4.3.4, com-
promising this role should be at least as difficult as compromising Target,
Version and Package all together.

Compared to UPTANE and ASSURED, BECAUSE shows a much higher
threshold of required roles to be compromised in order for attacks to be
feasible.

92

6.1 Design Evaluation and Comparison

BECAUSE
mild moderate major severe

EA DoS FEA PBIA MBA WIA RBA MaMA ASA

no compromise X X

T X X

P X X

V X X

T+P X X x∗

V+P X X

V+T X X

INV (complete
INV system)

X X X X

T+V+P X X X∗ X∗ X∗ X∗ X∗ X∗

T+V+P+INV X X X X X X X X

T. . . Target Role X. . . attack is possible
P. . . Package Role x. . . attack is possible with compromised DM
V. . . Version Role ∗. . . attack can be detected
INV. . . Inventory Role (complete Inventory system, e.g. TUF instance)

Table 6.3: Attack Matrix of the BECAUSE framework

93

6 EVALUATION

6.2 Proof-of-Concept

In the chapter, the proof-of-concept implementation of the proposed system
is compared to TUF and ASSURED. The metadata sizes as well as the runtime
of common operations are compared and discussed below.

6.2.1 Data transmission

In this chapter the size of the transmitted metadata in each update frame-
work is evaluated. RQ3 is covered in this section, see 3.2. The evaluation
is split into two parts: the evaluation of the metadata downloaded by the
vehicle (e.g. primary ECU in UPTANE), see Fig. 6.1 and the metadata ac-
tually distributed to the individual ECUs, see Fig. 6.2. To make the update
process between the systems more comparable, a common configuration for
the calculation was chosen:
The update is calculated for one bus-system with one domain controller
acting as primary ECU for UPTANE, Controller for ASSURED, and
Domain Master for BECAUSE. The update itself consists of one file per ECU.
No delegations of metadata signing are performed. Metadata originating
from TUF-roles is encoded in the ASN.1 format since it is the most common
format used for the distribution of these files in practice. ed25519 was cho-
sen as the digital signature algorithm for all signatures, except for the root
role. Since BECAUSE utilizes SHA512, the hashing algorithms used by the
other frameworks were set to be sha512 or at least sha256. Fig. 6.1 depicts
the total sum of bytes which has to be fetched by the domain controller
from the individual servers. Due to its efficient metadata composition and
the missing root-metadata, BECAUSE requires multiple times fewer bytes
than UPTANE and ASSURED.

Fig. 6.2 depicts the total sum of bytes which have to be distributed to
the individual ECUs on the bus-system. Since ASSURED only sends each
ECU its individual update envelope, ASSURED performs slightly better
than BECAUSE in this comparison. However, considering automotive bus-
systems are unauthenticated channels by default, ASSURED is difficult to

94

6.2 Proof-of-Concept

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

number of ECUs to update

to
ta

ls
iz

e
of

m
et

ad
at

a
[k

By
te

]

UPTANE
ASSURED
BECAUSE

Figure 6.1: Total metadata to be downloaded by the vehicle

95

6 EVALUATION

compare to the other solutions in this scenario. As in the previous exam-
ple, the proposed system benefits from its efficient metadata composition.
For an update including two ECUs, the complete metadata sent to these
two ECUs with the proposed update system is about the same size as one
target-metadata file using UPTANE or ASSURED. As shown in chapter 5,
BECAUSE can deliver updates over LIN, the slowest bus-system used in
modern vehicles. Therefore, any currently used automotive bus-system can
be used since bandwidth as the limiting factor is no issue in this case. This
answers RQ3.

The calculation of the metadata sizes for UPTANE and ASSURED with
the given configuration was performed by generating sample metadata
according to the example metadata given by the update framework2. As
proposed by Anton Gerasimov, see [Gerasimov, 2018], the director metadata
for UPTANE, was split up into a director-manifest-file and a director-target-
file. Both file-sizes were calculated using the structure depicted on page 13

and 14 of [Gerasimov, 2018].
Note that the calculated metadata size for UPTANE and ASSURED may
vary depending on the concrete implementation. Fig. 6.1 and Fig. 6.2 should
therefore be considered as best-effort depictions of the actual data-traffic for
the given configuration.

6.2.2 Runtime Comparison

In this chapter, the measured timings of the most relevant bootloader oper-
ations are presented. Timings which include metadata transmission were
measured using the proof-of-concept implementation with its 20kBit/s LIN-
Bus implementation. All depicted timing values were each calculated from
ten distinct measurements.

Table 6.4 depicts the timings of the metadata verification in the differ-
ent update systems. The values for TUF and ASSURED in table 6.4 were
adopted from Table I in Asokan et al., 2018. For more information on the
measurements of the metadata verification timings in TUF and ASSURED,

2see https://theupdateframework.io/metadata/

96

https://theupdateframework.io/metadata/

6.2 Proof-of-Concept

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

number of ECUs to update

to
ta

ls
iz

e
of

m
et

ad
at

a
[k

By
te

]

UPTANE - full verification
UPTANE - partial verification
ASSURED
BECAUSE

Figure 6.2: Total metadata to be distributed to a set of ECUs on one bus-system

97

6 EVALUATION

Hardware
I.MX-SABRELITE

@ 800MHz
GD32VF103CBT6 @ 108MHz

System TUF ASSURED
BECAUSE

Target
Metadata

Version Metadata
(3 ECU entries)

Total

Time [ms] 14.57 2.56 0.3± 0.1 0.5± 0.1 0.8± 0.2

Table 6.4: Metadata Verification Time (source of data for TUF and ASSURED: Asokan et al.,
2018, Table I)

see [Asokan et al., 2018]. Since these timings were measured on different
hardware with different clock speeds, the values can not be directly com-
pared. However, since all systems use ed25519 for signature verification and
assuming the verification times are mainly dependent on the number of
signatures to verify in combination with the processing units clock-speeds,
BECAUSE performs several times better than both TUF and ASSURED.

Bootloader

Verification

create and send

ECU Manifest

transmit, receive and verify metadata

Version Metadata
(3 ECU entries)

Target Metadata

Time [ms] 18± 1 199± 3 227± 5 123± 1

Table 6.5: Measured timings for bootloader operations (20kBit/s LIN-bus system)

Table 6.5 depicts the timings of the most relevant operations of the proposed
system. These timings are each the calculated mean values of 10 consecutive
measurements taken with the proof-of-concept. The results are discussed in
the following. The bootloader verification, where the bootloader verifies the
integrity of the stored metadata and its images at the start of its execution,
takes about 18ms. This is mainly due to the SHA3-512 hash computations.
The time between the reception of the ECU Manifest request, the creation of
the ECU Manifest and its complete transmission takes around 200ms. The
time between the start of Version-Metadata transmission by the DM and its
verification being completed by the ECU takes around 230ms and 123ms for
the Target-Metadata. The variations in the timings are due to the LIN-Bus
communication.

All bootloader operations combined, except the reception of a software

98

6.3 Limitations and Future Work

image, can be performed in under one second. The execution time for an
update is therefore almost exclusively dependent on the size of the software
image(s) and the speed of the bus-system between the DM and the ECU.
Through modifying the LIN-bus protocol for the communication between
the DM and ECU bootloaders, by shortening the Break-Field of the LIN-
Frames carrying the bytes of the software image, a complete 30kB update
for one ECU (without VMV), takes only around 20± 1 seconds.

6.3 Limitations and Future Work

LIMITATION: Memory Consumption
The main drawback of this solution is the flash-memory consumption,
mainly caused by the two images being stored at the same time. However,
this 2-image approach provides significantly higher fault-tolerance than e.g.
delta-update approaches and is therefore an integral part of update systems
like UPTANE, see [Community, 2019] for more information.
As the proof-of-concept implementation and also ASSURED have shown,
more than 50% of the bootloader size is used for the implementation of the
verification algorithm, namely ed25519 in both cases. For further informa-
tion see 5.2.4. In contrast, all metadata stored by an ECU combined only
accounts for less than 1kB in the proof-of-concept implementation, see 5.3.
This also answers RQ4, see 3.2.

LIMITATION: Authenticated ECU replacement
Every ECU is identified by a unique ECU_ID which is assigned to a specific
PID-domain within a vehicle, which in turn is identified by a unique VIN.
Information about this relation is encoded in every type of metadata. This
approach allows for easy ECU blacklisting and decommissioning, see 6.1,
but also requires an update of the associated INV database entry for every
ECU exchange. The consequence is the requirement for an authenticated
ECU exchange system. An example is given in 4.5.3. The OEM is therefore
able to limit third-party workshops from exchanging ECUs and favor its
own workshops. This trend can already be seen with manufacturer specific
diagnostics, see 2.4.

99

6 EVALUATION

FUTURE WORK: Updateable Crypto-modules
As described in 3, vehicles today have an expected operation phase of up
to fifteen years. For the proof-of-concept implementation, cryptographic
algorithms were chosen which are expected to provide sufficient resistance
against computational capabilities available in this time period. Neverthe-
less, flaws in these cryptographic principles are likely to be discovered
during this period. It may be advantageous to organize the cryptographic
algorithms for the bootloader into modules and provide means for up-
dating/exchanging them. BECAUSE is already designed with this future
improvement in mind by explicitly defining metadata fields that identify
the used cryptographic primitives (e.g. hashing algorithms).

FUTURE WORK: PID-Change procedure
As mentioned in 4.6, a process for a change of the PID of a PID-domain was
not implemented but is supported by the design of the proposed system
and may hold several advantages. An OEM can already predefine several
PIDs (with different TIDs) for the same hardware. An update of a PID
identifier would allow a customer to purchase premium functionality like
more detailed road-maps or in-vehicle internet access any time after the
vehicle purchase. This would also allow a manufacturer to sell the same
vehicle model to every customer and upgrade the PID values according to
the purchased features during the first update.

FUTURE WORK: Compatibility between manufacturers
An ECU from one supplier may be used in many vehicles from several
automotive manufacturers. It may be advantageous for all parties using the
proposed system, to provide an overarching system for assigning TID/TIDv
numbers. Otherwise, the same ECU with the same functionality will have
different ECU IDs in the manufacturer’s ecosystems. Regarding diagnostic
functionality, this approach can become rather complex. However, compati-
bility between different manufacturers/automotive brands would probably
provide more advantages than disadvantages.

100

7 CONCLUSION

In this thesis, a new automotive update system was proposed, which adopts
the principle of multiple roles signing different metadata. The resulting
roles are more specifically tailored to accustom the requirements of the
automotive industry than previous update systems. This results in higher
compromise resilience against the most relevant attacks on automotive up-
date systems.
The compact metadata sizes allow for fast update delivery even on the
lowest-speed bus-systems in state-of-the-art vehicles and also reduces the
flash-memory required for its storage. Procedures for initial ECU cod-
ing/flashing at the end of the production line, the replacement of faulty
ECUs as well their decommissioning are included in the design of the pro-
posed solution. Its non-dependability from the actual software functionality
of the ECU, the diagnostic specification of the overall system as well as
secure storage capabilities of the ECU makes its integration in existing
systems rather trivial.
The proof-of-concept implementation shows that the proposed system is
practicable and more efficient than current update systems in terms of
metadata overhead and therefore update distribution.

101

Appendix

103

BIBLIOGRAPHY

Al-Ashaab, A. et al. (2014). “Set-based concurrent engineering model for
automotive electronic/software systems development.” In: Competitive
Design - Proceedings of the 19th CIRP Design Conference. January 2009,
pp. 464–468. url: https : / / www . researchgate . net / publication /

228901184 (cit. on p. 3).
Al-Taee, Majid A., Omar B. Khader, and Nabeel A. Al-Saber (2007). “Remote

monitoring of vehicle diagnostics and location using a smart box with
global positioning system and general packet radio service.” In: 2007
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA 2007, pp. 385–388. doi: 10.1109/AICCSA.2007.370910 (cit. on
p. 5).

Asokan, N. et al. (2018). “ASSURED: Architecture for secure software up-
date of realistic embedded devices.” In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37.11, pp. 2290–2300. issn:
02780070. doi: 10.1109/TCAD.2018.2858422. arXiv: 1807.05002 (cit. on
pp. 32, 34–36, 39, 52, 96, 98).

Barber, Angela (2018). “Status of Work in Process on ISO/SAE 21434 Auto-
motive Cybersecurity Standard.” In: pp. 1–25. url: https://fdocuments.
net/document/isosae-21434-cybersecurity-engineering-proposal-

isosae-21434-purpose-the.html (cit. on p. 28).
Bennett, Charles H. et al. (1997). “Strengths and weaknesses of quantum

computing.” In: SIAM Journal on Computing 26.5, pp. 1510–1523. issn:
00975397. doi: 10.1137/S0097539796300933. arXiv: 9701001 [quant-ph]
(cit. on p. 82).

Bernstein, Daniel J. et al. (2012). “High-speed high-security signatures.” In:
Journal of Cryptographic Engineering 2.2, pp. 77–89. issn: 21908508. doi:
10.1007/s13389-012-0027-1 (cit. on p. 82).

105

https://www.researchgate.net/publication/228901184
https://www.researchgate.net/publication/228901184
https://doi.org/10.1109/AICCSA.2007.370910
https://doi.org/10.1109/TCAD.2018.2858422
https://arxiv.org/abs/1807.05002
https://fdocuments.net/document/isosae-21434-cybersecurity-engineering-proposal-isosae-21434-purpose-the.html
https://fdocuments.net/document/isosae-21434-cybersecurity-engineering-proposal-isosae-21434-purpose-the.html
https://fdocuments.net/document/isosae-21434-cybersecurity-engineering-proposal-isosae-21434-purpose-the.html
https://doi.org/10.1137/S0097539796300933
https://arxiv.org/abs/9701001
https://doi.org/10.1007/s13389-012-0027-1

BIBLIOGRAPHY

Bosch (2012). “CAN with Flexible Data-Rate Specification Version 1.0.” In:
p. 32. url: https://can-newsletter.org/assets/files/ttmedia/raw/
e5740b7b5781b8960f55efcc2b93edf8.pdf (cit. on p. 20).

Brendel, Jacqueline et al. (2020). “The Provable Security of Ed25519: Theory
and Practice.” In: IACR Cryptology ePrint Archive Report 2020/823, pp. 1–
25. url: https://eprint.iacr.org/2020/823 (cit. on p. 83).

Broadcom, Cooperation (2014). “BroadR-Reach® Physical Layer Transceiver
Specification For Automotive Applications.” In: url: http : / / www .

ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_

V3.0.pdf (cit. on p. 22).
Chakraborty, Sandip and Sukumar Nandi (2013). “IEEE 802.11s mesh back-

bone for vehicular communication: Fairness and throughput.” In: IEEE
Transactions on Vehicular Technology 62.5, pp. 2193–2203. issn: 00189545.
doi: 10.1109/TVT.2013.2239672 (cit. on p. 4).

Charette, Robert N (2009). “This car runs on code.” In: IEEE Spectrum 46.3,
p. 3. url: https://spectrum.ieee.org/transportation/systems/
this-car-runs-on-code (cit. on p. 9).

Chowdhury, Thomas et al. (2018). “Safe and Secure Automotive Over-the-
Air Updates.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11093 LNCS, pp. 172–187. issn: 16113349. doi: 10.1007/978-3-319-
99130-6_12 (cit. on p. 26).

Community, Uptane Alliance (2019). “Uptane IEEE-ISTO Standard for
Design and Implementation.” In: url: https://uptane.github.io/
papers/ieee-isto-6100.1.0.0.uptane-standard.html (cit. on p. 99).

Dobraunig, Christoph, Maria Eichlseder, and Florian Mendel (2015). “Secu-
rity Evaluation of SHA-224, SHA-512/224, and SHA-512/256.” In: Febru-
ary, pp. 1–44. url: https://www.cryptrec.go.jp/exreport/cryptrec-
ex-2401-2014.pdf (cit. on p. 83).

Economic Commission for Europe of the United Nations (2019). “Regulation
No 83 of the Economic Commission for Europe of the United Nations
(UNECE) — Uniform provisions concerning the approval of vehicles
with regard to the emission of pollutants according to engine fuel
requirements [2019/253].” In: Official Journal of the European Union. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:

2019:045:FULL&from=EN (cit. on p. 24).

106

https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://eprint.iacr.org/2020/823
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
https://doi.org/10.1109/TVT.2013.2239672
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://doi.org/10.1007/978-3-319-99130-6_12
https://doi.org/10.1007/978-3-319-99130-6_12
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html
https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2401-2014.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2401-2014.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:045:FULL&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:045:FULL&from=EN

BIBLIOGRAPHY

Farrugia, Mario et al. (2017). “The usefulness of diesel vehicle onboard diag-
nostics (OBD) information.” In: Proceedings of the 2016 17th International
Conference on Mechatronics - Mechatronika, ME 2016 (cit. on p. 24).

Ford Motor Company (1919). Ford Model-T Manual. url: https://archive.
org/details/1919_Ford_Model-T_Manual (cit. on p. 2).

Gai, Paolo and Massimo Violante (2016). “Automotive embedded software
architecture in the multi-core age.” In: Proceedings of the European Test
Workshop 2016-July. issn: 15581780. doi: 10.1109/ETS.2016.7519309
(cit. on p. 13).

Gerasimov, Anton (2018). “Secure OTA updates for small devices with
Uptane and RIOT.” In: RIOT Summit. HERE Technologies. url: http:
//summit.riot-os.org/2018/wp-content/uploads/sites/10/2018/

09/3_4-Anton-Gerasimov-OTA.pdf (cit. on p. 96).
Halder, Subir, Amrita Ghosal, and Mauro Conti (2019). “Secure OTA Soft-

ware Updates in Connected Vehicles: A survey.” In: 26262, pp. 1–18.
arXiv: 1904.00685. url: http://arxiv.org/abs/1904.00685 (cit. on
pp. 7, 9, 37).

Hank, Peter et al. (2013). “Automotive ethernet: In-vehicle networking and
smart mobility.” In: Proceedings -Design, Automation and Test in Europe,
DATE, pp. 1735–1739. issn: 15301591. doi: 10.7873/date.2013.349
(cit. on p. 23).

International Organization for Standardization (2003). “ISO 11898-1.” In:
2003, p. 52. url: http://read.pudn.com/downloads209/ebook/986064/
ISO11898/ISO11898-1.pdf (cit. on p. 18).

Kamkar, Samy (2015). Drive It Like You Hacked It. url: https://samy.pl/
defcon2015/2015-defcon.pdf (cit. on p. 7).

Khovratovich, Dmitry, Christian Rechberger, and Alexandra Savelieva (2012).
“Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family.”
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 7549 LNCS,
pp. 244–263. issn: 03029743. doi: 10.1007/978-3-642-34047-5_15
(cit. on p. 83).

Klanner, Wilfried et al. (2004). Unfallverletzungen in Fahrzeugen mit Airbag.
isbn: 3865091938 (cit. on p. 9).

Kuppusamy, Trishank Karthik, Lois Anne DeLong, and Justin Cappos (2018).
“Uptane: Security and Customizability of Software Updates for Ve-

107

https://archive.org/details/1919_Ford_Model-T_Manual
https://archive.org/details/1919_Ford_Model-T_Manual
https://doi.org/10.1109/ETS.2016.7519309
http://summit.riot-os.org/2018/wp-content/uploads/sites/10/2018/09/3_4-Anton-Gerasimov-OTA.pdf
http://summit.riot-os.org/2018/wp-content/uploads/sites/10/2018/09/3_4-Anton-Gerasimov-OTA.pdf
http://summit.riot-os.org/2018/wp-content/uploads/sites/10/2018/09/3_4-Anton-Gerasimov-OTA.pdf
https://arxiv.org/abs/1904.00685
http://arxiv.org/abs/1904.00685
https://doi.org/10.7873/date.2013.349
http://read.pudn.com/downloads209/ebook/986064/ISO 11898/ISO 11898-1.pdf
http://read.pudn.com/downloads209/ebook/986064/ISO 11898/ISO 11898-1.pdf
https://samy.pl/defcon2015/2015-defcon.pdf
https://samy.pl/defcon2015/2015-defcon.pdf
https://doi.org/10.1007/978-3-642-34047-5_15

BIBLIOGRAPHY

hicles.” In: IEEE Vehicular Technology Magazine 13.1, pp. 66–73. issn:
15566072. doi: 10.1109/MVT.2017.2778751 (cit. on p. 85).

Kuppusamy, Trishank Karthik et al. (2016). Uptane: Securing Software Updates
for Automobiles. url: https://uptane.github.io/papers/kuppusamy_
escar_16.pdf (cit. on pp. 31, 32, 34, 40, 52, 88–90).

Mercedes-Benz Canada, Inc. (2005). Instrument Cluster SCN Coding for Com-
ponent Replacement. url: http://www.cardiagnostics.be/-now/DAS-
WIS_bestanden/Instrument_Cluste_SCN_Coding.pdf (cit. on p. 17).

Miller, Charlie and Chris Valasek (2015). “Remote Exploitation of an Un-
altered Passenger Vehicle.” In: Defcon 23 2015, pp. 1–91. url: http:
//illmatics.com/RemoteCarHacking.pdf (cit. on pp. 6, 37).

Mössinger, Jürgen (2010). “Software in automotive systems.” In: IEEE Soft-
ware 27.2, pp. 92–94. issn: 07407459. doi: 10.1109/MS.2010.55 (cit. on
p. 10).

Nakamoto, Yuya, Daisuke Nishijima, and Shigemi Kagawa (2019). “The role
of vehicle lifetime extensions of countries on global CO2 emissions.”
In: Journal of Cleaner Production 207, pp. 1040–1046. issn: 09596526. doi:
10.1016/j.jclepro.2018.10.054. url: https://doi.org/10.1016/j.
jclepro.2018.10.054 (cit. on p. 6).

OSEK/VDX (2005). “OSEK/VDX history and structure.” In: IEE Colloquium
(Digest) 523. issn: 09633308. doi: 10.1049/ic:19981073 (cit. on p. 30).

Rao, Sandeep Kumar et al. (2017). “The AES-256 Cryptosystem Resists Quan-
tum Attacks.” In: International Journal of Advanced Research in Computer
Science 8.3, pp. 404–408. issn: 0976-5697 (cit. on p. 82).

Ribeiro, Leandro Batista and Marcel Baunach (2017). “Towards dynamically
composed real-time embedded systems.” In: Informatik aktuell book series.
Springer Fachmedien, pp. 11–20. doi: 10.1007/978-3-662-55785-3_2.
url: https://link.springer.com/chapter/10.1007/978- 3- 662-
55785-3_2 (cit. on p. 11).

Satnam Singh, Bangalore (IN); Vineet R. Khare, Bangalore (IN); Rahul
Chougule, Bangalore (IN) (2013). FAULT DIAGNOSIS AND PROGNOSIS
USING DAGNOSTIC TROUBLE CODEMARKOV CHAINS. url: https:
//patentimages.storage.googleapis.com/c8/de/e0/aaf56115a69026/

US8498776.pdf (cit. on p. 25).
Schäuffele, Jörg and Thomas Zurawka (2003). Automotive software engineering.

6th ed. Springer Fachmedien, pp. 719–720. isbn: 9783658118143. doi:
10.1007/1-4020-7991-5_21 (cit. on pp. 12, 17, 37).

108

https://doi.org/10.1109/MVT.2017.2778751
https://uptane.github.io/papers/kuppusamy_escar_16.pdf
https://uptane.github.io/papers/kuppusamy_escar_16.pdf
http://www.cardiagnostics.be/-now/DAS-WIS_bestanden/Instrument_Cluste_ SCN_Coding.pdf
http://www.cardiagnostics.be/-now/DAS-WIS_bestanden/Instrument_Cluste_ SCN_Coding.pdf
http://illmatics.com/Remote Car Hacking.pdf
http://illmatics.com/Remote Car Hacking.pdf
https://doi.org/10.1109/MS.2010.55
https://doi.org/10.1016/j.jclepro.2018.10.054
https://doi.org/10.1016/j.jclepro.2018.10.054
https://doi.org/10.1016/j.jclepro.2018.10.054
https://doi.org/10.1049/ic:19981073
https://doi.org/10.1007/978-3-662-55785-3_2
https://link.springer.com/chapter/10.1007/978-3-662-55785-3_2
https://link.springer.com/chapter/10.1007/978-3-662-55785-3_2
https://patentimages.storage.googleapis.com/c8/de/e0/aaf56115a69026/US8498776.pdf
https://patentimages.storage.googleapis.com/c8/de/e0/aaf56115a69026/US8498776.pdf
https://patentimages.storage.googleapis.com/c8/de/e0/aaf56115a69026/US8498776.pdf
https://doi.org/10.1007/1-4020-7991-5_21

BIBLIOGRAPHY

Schmittner, Christoph (2019). “Automotive Cybersecurity and SW Updates.”
In: FUSACOM. AIT (cit. on pp. 6, 29, 39).

Schmittner, Christoph and Georg Macher (2019). “Automotive Cybersecurity
Standards - Relation and Overview.” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11699 LNCS, pp. 153–165. issn: 16113349. doi: 10.
1007/978-3-030-26250-1_12 (cit. on pp. 26, 27).

Shanmugam, Karthik (2014). “Secure Software Update Mechanism for Auto-
motive ECU.” In: International Journal of Innovative Research in Advanced
Engineering (IJIRAE) 1.10, pp. 246–249 (cit. on p. 1).

Skavhaug, Amund et al. (2016). “Computer Safety, Reliability, and Security.”
In: SAFECOMP. isbn: 9783319454801 and 3319454803. doi: 10.1007/978-
3-319-45480-1. url: http://dx.doi.org/10.1007/978-3-319-45480-
1 (cit. on p. 28).

Steger, Marco et al. (2016). “Generic framework enabling secure and efficient
automotive wireless SW updates.” In: IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA 2016-Novem. issn:
19460759. doi: 10.1109/ETFA.2016.7733575 (cit. on p. 4).

Steger, Marco et al. (2018). “Secure Wireless Automotive Software Updates
Using Blockchains: A Proof of Concept.” In: pp. 137–149. doi: 10.1007/
978-3-319-66972-4_12 (cit. on p. 1).

Susumu Akiyama, Kariya (JP) (2015). VEHICULAR RELAY DEVICE, IN-
VEHICLE COMMUNICATION SYSTEM, FAILURE DIAGNOSTIC SYS-
TEM, VEHICLE MANAGEMENT DEVICE, SERVER DEVICE AND DE-
TECTION AND DIAGNOSTIC PROGRAM. url: https://patentimages.
storage.googleapis.com/e3/12/65/fadfa7db2f2026/US6694235B2.

pdf (cit. on p. 14).
Technology, Globalplatform Device (2016). TEE Management Framework v1.0.

url: https://globalplatform.org/wp-content/uploads/2018/06/
GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf (cit. on p. 35).

Upstream Security Inc. AutoThreat Intelligence Cyber Incident Repository. url:
https://www.upstream.auto/research/automotive-cybersecurity/

(visited on 11/25/2020) (cit. on p. 1).
Wanzhong, Sun et al. (2007). “Design and optimized implementation of

the SHA-2(256, 384, 512) hash algorithms.” In: ASICON 2007 - 2007
7th International Conference on ASIC Proceeding 2.3, pp. 858–861. doi:
10.1109/ICASIC.2007.4415766 (cit. on p. 82).

109

https://doi.org/10.1007/978-3-030-26250-1_12
https://doi.org/10.1007/978-3-030-26250-1_12
https://doi.org/10.1007/978-3-319-45480-1
https://doi.org/10.1007/978-3-319-45480-1
http://dx.doi.org/10.1007/978-3-319-45480-1
http://dx.doi.org/10.1007/978-3-319-45480-1
https://doi.org/10.1109/ETFA.2016.7733575
https://doi.org/10.1007/978-3-319-66972-4_12
https://doi.org/10.1007/978-3-319-66972-4_12
https://patentimages.storage.googleapis.com/e3/12/65/fadfa7db2f2026/US6694235B2.pdf
https://patentimages.storage.googleapis.com/e3/12/65/fadfa7db2f2026/US6694235B2.pdf
https://patentimages.storage.googleapis.com/e3/12/65/fadfa7db2f2026/US6694235B2.pdf
https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_MgmtFramework_v1.0_PublicRelease.pdf
https://www.upstream.auto/research/automotive-cybersecurity/
https://doi.org/10.1109/ICASIC.2007.4415766

BIBLIOGRAPHY

Wouters, Lennert et al. (2019). “Fast, Furious and Insecure: Passive Keyless
Entry and Start Systems in Modern Supercars.” In: tCHES 2019 2019,
Issu.3, pp. 66–85. doi: 10.13154/tches.v2019.i3.66-85. url: https:
//tches.iacr.org/index.php/TCHES/article/view/8289 (cit. on p. 7).

Yang, Yalian et al. (2013). “Research and development of hybrid electric
vehicles can-bus data monitor and diagnostic system through OBD-II
and android-based smartphones.” In: Advances in Mechanical Engineering
2013. issn: 16878132. doi: 10.1155/2013/741240 (cit. on p. 24).

110

https://doi.org/10.13154/tches.v2019.i3.66-85
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://doi.org/10.1155/2013/741240

	INTRODUCTION
	What is an Automotive System
	Automotive Context
	Advanced Driver Assistant Systems
	Remote Diagnostics

	Motivation
	Personal Motivation

	BACKGROUND AND RELATED WORK
	Automotive System Components
	Electronic Control Units
	Hardware
	Gateway ECUs
	Software

	Bus systems
	CAN Bus
	LIN Bus
	Automotive Ethernet

	Diagnostics
	On-Board-Diagnostic
	Off-Board-Diagnostic

	Norms And Standards
	IEC 61508
	ISO 26262
	SAE J3061
	ISO/SAE 21434
	UNECE WP.29 (Activities on Automotive Cybersecurity and OTA)
	ISO/AWI 24089 Road vehicle - Software update Engineering
	ISO 17356 Open interface for embedded automotive applications

	Existing Update Solutions
	UPTANE
	ASSURED

	PROBLEM
	Problems With Existing Solutions
	UPTANE
	ASSURED

	Research Questions

	SOLUTION
	Reference Network Topology
	Identifiers
	TID - Target Identifier
	PID - Package Identifier
	PID-domains
	ECU_ID

	Roles
	TARGET - Target Role
	PACKAGE - Package Role
	VERSION - Version Role
	INV - Inventory Role
	DM - Domain-Master Role

	ECU Memory Content
	Supplementary Procedures
	Initial ECU Flashing
	Vehicle Assembly
	Replacing ECUs
	Renewing Public Role Keys

	Update Process
	Part A - Fetching Data
	Part B - Distributing Data

	PROOF-OF-CONCEPT
	Hardware
	The ECU (32-bit RISC-V)
	LIN bus
	Domain Master (32-bit ARM11)

	Software
	Domain-Master Implementation
	ECU Implementation
	Metadata and Datatypes
	Cryptographic Algorithms
	Data-Transmission Volume

	EVALUATION
	Design Evaluation and Comparison
	Compromise Resilience

	Proof-of-Concept
	Data transmission
	Runtime Comparison

	Limitations and Future Work

	CONCLUSION
	BIBLIOGRAPHY

