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Salmo 30

2 Te alabaré, Señor, porque me has levantado y muy poco se han reido mis contrarios.

3 Señor, Dios mio, clamé a ti y tu me sanaste.

4 Señor, me has sacado de la tumba, me iba a la fosa y me has devuelto a la vida.

5 Que sus fieles canten al Señor, y den gracias a su Nombre santo.

6 Porque su enojo dura unos momentos, y su bondad toda una vida.

Al caer la tarde nos visita el llanto, pero a la mañana es un grito de alegría.

7 Cuando me iba bien, decía entre mí: «Nada jamás me perturbará».

8 Por tu favor, Señor, yo me mantenía como plantado en montes poderosos; apenas escondiste
tu rostro, vacilé.

9 A ti clamé, Señor, a mi Dios supliqué.

10 ¿Qué ganas si me muero y me bajan al hoyo? ¿Podrá cantar el polvo tu alabanza o pregonar
tu fidelidad?

11 !Escúchame, Señor, y ten piedad de mí; sé, Señor, mi socorro!

12 Tu has cambiado mi duelo en una danza, me quitaste el luto y me ceñiste de alegría.

13 Así mi corazón te cantará sin callarse jamás. !Señor, mi Dios, por siempre te alabaré!

Salmo 40, 2-3

2 Esperaba, esperaba al Señor, él se inclinó hacia mí y escuchó mi clamor,

3 me sacó de la fosa fatal del barro del pantano; puso mis pies sobre roca y aseguró mis pasos.

Salmo 23

1 El Señor es mi pastor: nada me falta;

2 en verdes pastos él me hace reposar. A las aguas de descanso me conduce,

3 y reconforta mi alma. Por el camino del bueno me dirige, por amor de su nombre.

4 Aunque pase por quebradas oscuras, no temo ningún mal, porque tú estás conmigo con tu
vara y tu bastón, y al verlas voy sin miedo.

5 La mesa has preparado para mí frente a mis adversarios, con aceites perfumas mi cabeza y
rellenas mi copa.

6 Irán conmigo la dicha y tu favor mientras dure mi vida, mi mansión será la casa del Señor
por largos, largos días.







Abstract

In the first chapter of this thesis, we prove that a uniformly distributed random circular au-
tomaton An of order n synchronizes with high probability (w.h.p.). More precisely, we prove
that

P [An synchronizes] = 1−O
(

1

n

)
.

The main idea of the proof is to translate the synchronization problem into a problem concerning
properties of a random matrix; these properties are then established with high probability by
a careful analysis of the stochastic dependence structure among the random entries of the
matrix. Additionally, we provide an upper bound for the probability of synchronization of
circular automata in terms of chromatic polynomials of circulant graphs.

Multivariate regression models and ANOVA are probably the most frequently applied meth-
ods of all statistical analyses. In the second chapter of this thesis, we propose an alternative
to the classic approaches that do not assume homoscedasticity or normality of the error term
but assumes that a Markov chain can describe the covariates’ correlations. This approach
transforms the dependent covariate using a change of measure to independent covariates. The
transformed estimates allow a pairwise comparison of the mean and variance of the contribu-
tion of different values of the covariates. We show that under standard moment conditions,
the estimators are asymptotically normally distributed. Additionally, we test our method with
simulated data and apply it to several classic data sets.
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Introduction

The central point of this thesis is to use probabilistic tools to study discrete structures: circular
automata and DAGs (directed acyclic digraphs). In the first chapter, we pose a question of the
following type: “how probable is that one discrete structure (a circular automaton) will have a
given property (synchronizing) if we choose one of them at random?” In the second chapter,
we pose a reverse engineering question: “given an indirect information about a discrete random
structure (DAG with random variables in each node), what can we say about the nature of its
internal states (moments of random variables associated to each node)?”

The main motivation of Chapter I are the exiting results made in recent years by Berlinkov
and Nicaud on the probabilistic Černý conjecture ([Berlinkov, 2016], [Nicaud, 2019]). The main
tools used in Chapter I are related to graph theory, automata theory and probabilistic tools.
In more specific terms, one of the hardest bottlenecks in the first chapter was a tailor-made
treatment of a non-Lipschitz random variable (see Lemma 7). The lack of general results in
the field of concentration inequalities for non-Lipschitz random variables forced us to create
a tailor-made solution; this proof strongly contrasts with the relative simplicity of Lemma’s 6
proof, for which we were able to apply a ready-to-use tool (MacDiarmid’s Inequality, Azuma’s
inequality) for Lipschitz random variables. I also must add that there might be an alternative
way to prove Lemma 7 via chromatic-polynomials. We were unfortunately not able to realize
this alternative proof because the necessary results are in some cases generalizations of well-
known open problems in the chromatic-polynomial’s community. Nevertheless, we consider
that these connections can be of interest to the graph-theoretical community. This was the
main motivation to add Section 1.6 in Chapter I.

The problem in Chapter II was proposed to me by Alessandro Chiancone, who at the time
was working in Know-Center in Graz. As a whole, I find the motivation of this chapter’s
problem very natural and easy to explain. This was one of the main reasons I felt so motivated
to work on this problem. This allowed to create a suitable mathematical model and solve the
first moment case in the uniform and non-uniform cases. In addition, this natural motivation
was big help to easily enlist the invaluable expertise of Sebastian Müller. Joining forces, we
lifted the solution to the second moment and figured out the asymptotic distributions of the
constructed estimators. The main tools used in the second chapter are related to Markov
chains, change of measures and stopped random walks. One of my favorite tools, used in this
chapter, is the Rényi’s version of Ascombe’s theorem which is a central limit theorem in which
the deterministic sample size n is replaced by a random variable. This result was essential
to calculate the asymptotic distribution of the estimators we constructed. I also find quite
interesting the change of measure we did in order to retrieve information about the moments
in the Markov chain case.

The contents of Chapter I are based on the paper [Aistleitner et al., 2021] which was written
in collaboration with Christoph Aistleitner, Daniele D’Angeli, Emanuele Rodaro and Amnon
Rosenmann. The contents of Chapter II are based on the papers [Gutierrez and Müller, 2019]
and [Gutierrez and Müller, 2020] which were written in collaboration with Sebastian Müller.

The following subsections are meant to be an informal explanation of the thesis’ chapters.
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Chapter I
This subsection is an informal explanation of Chapter I. Let us consider the following puzzle
(see Figure 1). The rules are the following: given a state s (0,1,2 or 3, see Figure 1) and word
w formed by the letters a and b (e.g aba), we position ourselves into the state s and then follow
the arrows according to the letters (from left to right) in the word w. For example, if we begin
in the state 0 and the given word is aba, first we move from state 0 to state 1 after reading a
and then we stay in state 1 after reading the b and finally we move from state 1 into state 2
after reading the last letter a in the word. So, we say that the ending state in this case is 2; we
abbreviate this in the following way

0 · aba= 2.

Now that we understand the rules of the game, the puzzle is to find out if there is a word w
such that

0 · w = 0; 1 · w = 0;
2 · w = 0; 3 · w = 0;

i.e. no matter where you begin, the word w will send you to the state 0 at the end. Such a
word exits indeed, one example of a word that accomplishes this is baaabaaabaaab or in short
notation ba3ba3ba3b; actually, this is just one of many words that accomplish this task.

0 1

23

a

b

b

bb

a

a

a

Figure 1: The Černý automaton of order four.

We now ask a more general question: is there a word such w such that

0 · w = s; 1 · w = s;
2 · w = s; 3 · w = s;

for some state s? i.e. now we are only interested in a word w with a unique ending state; we say
that such a word is synchronizing (or reset) word for the automaton. Of course, our previous
word ba3ba3ba3b is synchronizing but now there are new words like ab3ab3a which have ending
state 0 and are shorter. In particular, one can ask: which is the shortest synchronizing word?
One can prove that the minimal word for the automaton in Figure 1 is ab3ab3a.

A deterministic finite automaton A is a tuple of states Q and input alphabet Σ which are
mappings from Q to Q, they basically tell you "if you are in state s and you read the letter
l, then you must go to state ŝ". If an automaton has synchronizing words, we say that the
automaton is synchronizing. An automaton is not necessarily synchronizing (see Figure 2);
it is relatively easy to construct a non-synchronizing automaton: just take each letter in the
alphabet Σ to be a permutation of Q. Let us explain this, if l induces a permutation, we have
that |Q·l| = |Q| i.e. the cardinality of the state-set stays the same after applying l to each state,
therefore if every letter in alphabet is a permutation, we have that |Q ·w| = |Q| for every word
w; on the other hand, a synchronizing word ŵ satisfies that |Q · ŵ| = 1 because every state will
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be sent to a unique state. Therefore it is impossible for an automaton with at least two states
to be synchronizing if every word in its alphabet induces a permutation. In addition, there are
non-synchronizing automata whose letters are not all permutations; consider the automaton on
Figure 2b.

0 1
a

a

b b

(a)

0 1

23

a

b

b

b

a

a

a

(b)

Figure 2: Examples of non-synchronizing automata. The letters in automaton (a) are all
permutations. The letter b of automaton (b) is not a permutation.

We are interested in automata of the form A = 〈{0, 1, . . . , n− 1} , {a, b}〉 where a is the
cycle

0
a−→ 1

a−→ 2
a−→ . . .

a−→ n− 1
a−→ 0,

and b is a mapping from {0, 1, . . . , n − 1} to itself. This class of automata is called circular

4 3

2

1

0

6

5

a

a

a

a

a

a

a

b

b

b

b

bb

b

Figure 3: A circular automaton with six states.

automata with n states and two letters; in particular Figures 1, 2a, 3 are examples of circular
automata with two letters and four, two and six states respectively. We are interested in the
following question: if we choose one circular automaton with n states and two letters uniformly
at random, how probable is that the chosen automaton is synchronizing? The main result
of Chapter I answer this question: if n is "big enough," it is very probable that a circular
automaton with n states will be synchronizing. In more precise terms, we prove

Theorem. There exist a constant c > 0 such that

P [{b ∈Mn : An(b) synchronizes}] ≥ 1− c

n
.
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In words, an uniformly randomly chosen circular automaton An(b) synchronizes with high
probability as n→∞.

Chapter II

This subsection is an informal explanation of Chapter II. Imagine that we have a network that
is an arrangement of machines into c columns and at most r rows in each column (see Figure 4).
The raw material is delivered from the source node s on the left-hand side of the network into a
random machine of the first column, then it moves into a random machine of the second column
and so on until it ends up in the terminal node t as a finished product p. To the product p, we
associate ~p, which is the path that p followed in the network; we call ~p the production-path of p.
A finished product might have flaws at the end of its production, therefore, each finished product
p gets assigned a quality-score b(p). Given the data {(~p1, b(p1)), (~p2, b(p2)), . . . , (~pk, b(pk))}, what
can we say about the “broken” machines? Can we identify them? Let us begin with a simple

s

0

1

1

0

0

0

1

0

0

0

1

0

1

t

Figure 4: An illustration of a network with 4 columns. The highlighted path is ~p = (1, 3, 1, 4)
and its quality-score is b(p) = 0 + 1 + 0 + 1 = 2.

example: assume that the machine in row i and column j is assigned the value S(i, j) ∈ R.
As an example, we can think on the binary case S(i, j) ∈ {0, 1} where a broken machine is
assigned a 1 and a non-broken machine a 0. Furthermore, the product’s quality in a specific
product p is defined as

b(p) =
c∑
j=1

S(~p[j], j)

i.e. the addition of the assigned values of the machines in its production-path ~p. For example,
in the binary case, b(p) is the number of broken machines lying in its production-path ~p (see
Figure 4 for an example). Can we find the values S(i, j)? The answer to this question depends
on the network and the assumptions we can make about the values S(i, j). For example, we
will soon see that in the binary setting S(i, j) ∈ {0, 1}, if we have enough data and under mild
assumptions (at least one non-broken machine per column) we can recover the values S(i, j).
In the general setting S(i, j) ∈ R, the problem can be transformed into a neat linear algebra
problem, where {S(i, j)}i,j is the set of variables. Then

b(p) =
c∑
j=1

S(~p[j], j)

is a linear equation on the variables S(i, j). Furthermore, if there are w machines in the network,
let us numerate the machines in a fixed order from 1 to w, then we can associate to each product
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p a vector e(p) ∈ Rw were

e(p)[k] =

{
1, if the production-path of p passes through machine k;
0, otherwise;

see Figure 5 for an example. So the question is: given the vectors e(p), can we find the values
S(i, j)? The answer depends on the network at hand (see Figures 5 and 7 for examples). For
large enough networks (enough columns and enough machines per column) one can prove that
the vectors

~vk = (0, 0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , 0)

are linearly independent from the vectors e(p). Therefore, if we only know that S(i, j) ∈ R,
the values S(i, j) can not be calculated given the pairs (~p, b(p)) (see Figure 5 for an example).
Even if we assume that S(i, j) ∈ {0, 1}, there are cases where it is not possible to calculate
these values (see Figures 7 and 8 for examples). On the other hand, vectors of the form

~vk,k′ = (0, 0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , −1︸︷︷︸
k′

, 0, . . . , 0)

where the machines associated to k, k′ belong to the same column, can be generated as linear
combinations of the vectors e(p) which means that differences of the type S(i, j)− S(i′, j) can
be calculated. For example, in the binary case S(i, j) ∈ {0, 1}, the value S(i, j)−S(i′, j) equals
1,−1 or 0. If S(i, j)− S(i′, j) = 1 then S(i, j) = 1 meaning that the machine located in row i
and column j is broken; if S(i, j) − S(i′, j) = −1 then S(i′, j) = 1 and if S(i, j) − S(i′, j) = 0
then S(i, j) = S(i′, j) which means that both machines are either broken or non-broken. So,
in the binary case, if we assume that there is at least one non-broken machine in each column,
the problem of recognizing the broken machines in the network can be indeed solved given that
the amount of data (enough equations) is sufficient.

In the general case S(i, j) ∈ R, given the data (~p1, b(p1)), (~p2, b(p2)), . . . , (~px, b(px)) for x
products, how can we know if the value S(i, j)− S(i′, j) can be retrieved from this data? Let
k, k′ be the numbers associated to the machines with locations (i, j) and (i′, j) respectively and
let r be the rank of the matrix with rows e(p1), . . . , e(px) and let r′ the rank of the matrix with
rows e(p1), . . . , e(px), ~vk,k′ then: if r = r′ this means that ~vk,k′ can be expressed as a linear combi-
nation in terms of the vectors e(p1), . . . , e(pt) which means that the value of S(i, j)−S(i′, j) can
indeed be calculated out of the data (~p1, b(p1)), (~p2, b(p2)), . . . , (~px, b(px)). On the other hand, if
r < r′ then the vector ~vk,k′ is independent from the vectors e(p1), . . . , e(pt), which means that the
value of S(i, j)−S(i′, j) can not be retrieved from the data (~p1, b(p1)), (~p2, b(p2)), . . . , (~px, b(px)).
Therefore, if r < r′, we need to wait until r = r′ in order to calculate the value S(i, j)−S(i′, j).

The previous example shows that the problem is relatively simple when the variables S(i, j)
are constants. If we assume that the variables S(i, j) are random variables, we can no longer use
the previous approach. Considering random variables instead of constants is a more realistic
scenario: the “amount” of mistakes behaves randomly every time a product passes through
a broken machine. In Chapter II we study this setting and create estimators for the values
E [S(i, j)]−E [S(i′, j)] and V [S(i, j)]−V [S(i′, j)] which allows to compare the expected values
and variances of the random variables of machines that are located in the same column. We
treat two main cases: when the transitions from column to column are uniform and the case
when a Markov chain describes the transitions.

15



s

1

0

0

0

t

Figure 5: In this network the equations associated to production paths are S(1, 1)+S(1, 2) = 1,
S(1, 1) + S(2, 2) = 1, S(2, 1) + S(1, 2) = 0, S(2, 1) + S(2, 2) = 0 which in the binary case
S(i, j) ∈ {0, 1} is enough to deduce that S(1, 1) = 1 and S(2, 1) = S(1, 2) = S(2, 2) = 0. Let
us order the machines in the following way S(1, 1), S(2, 1), S(1, 2), S(2, 2) then the correspond-
ing e(p) vectors are (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1) which are linearly independent
from (1, 0, 0, 0) and by symmetry also linearly independent from (0, 1, 0, 0) and (0, 0, 1, 0) and
(0, 0, 0, 1). This means that it is not possible to calcualte the values S(i, j) in the general case
S(i, j) ∈ R.

s

1

0

0

0

0

0

t

Figure 6: In this network, it is possible to calculate the values S(i, j) in the binary case
S(i, j) ∈ {0, 1} but it is not possible to do it in the general case S(i, j) ∈ R.

s 1 0 t

Figure 7: In this network it is not possible to know which machine (S(1, 1), S(1, 2)) is broken
since the only equation at hand is S(1, 1) + S(1, 2) = 1 which is not enough to deduce if
S(1, 1) = 1 or S(1, 2) = 1.

s 1

0

0

0 t

Figure 8: In this network it is not possible to know if S(1, 1) = 1 or S(1, 3) = 1 given the pairs
(~p, b(p)).
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Chapter 1

Circular automata synchronize with high
probability

In this chapter we prove that a uniformly distributed random circular automaton An of order
n synchronizes with high probability (w.h.p.). More precisely, we prove that

P [An synchronizes] = 1−O
(

1

n

)
.

The main idea of the proof is to translate the synchronization problem into a problem concerning
properties of a random matrix; these properties are then established with high probability by
a careful analysis of the stochastic dependence structure among the random entries of the
matrix. Additionally, we provide an upper bound for the probability of synchronization of
circular automata in terms of chromatic polynomials of circulant graphs.

The contents of this chapter are based on the paper [Aistleitner et al., 2021] which was
written in collaboration with Christoph Aistleitner, Daniele D’Angeli, Emanuele Rodaro and
Amnon Rosenmann.
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1.1 Introduction

A complete deterministic finite automaton (DFA) is a tupleA = (Q,L), whereQ := {q1, q2, . . . , qn}
is a finite set of states and L := {a1, a2, . . . , ak} is a finite set of mappings ai : Q → Q, where
a(q) = q′ is also written as qa = q′, q, q′ ∈ Q, a ∈ L. The number of states n is the order of A.
Each ai is called a letter and a sequence w = ai1ai2 . . . air ∈ L∗ is a word of length r. The action
of L on Q naturally extends to an action of L∗ on Q, defined recursively by q(aw) = (qa)w,
q ∈ Q, a ∈ L, w ∈ L∗. This action further extends to an action of L∗ on subsets of Q by
{qi1 , qi2 , . . . , qik}w = {qi1w, qi2w, . . . , qikw}. We say that the subset S = {qi1 , qi2 , . . . , qik} ⊆ Q
synchronizes if there exists a word w ∈ L∗ such that qi1w = qi2w = . . . = qikw (equivalently, we
say that w synchronizes S). If the set Q synchronizes then we say that A(Q,L) synchronizes
(or that it is a synchronizing automaton). A word w ∈ L∗ that synchronizes Q is called a
synchronizing (or reset) word of A.

The following simple criterion for synchronization is well-known and plays a crucial role
throughout the chapter:

Claim 1. A = (Q,L) synchronizes ⇐⇒ every pair of states q, q′ ∈ Q synchronizes.

Proof. It is clear that if Q is synchronized by a reset word w then w synchronizes every pair
of states of Q. Conversely, a reset word for Q can be formed by concatenating words wi that
synchronize pairs of states until we end up with a single state.

The synchronization property may be described in terms of the graph representation of A.
The set Q of states comprises the vertices of the graph and for each pair of states q, q′ and a
letter a ∈ L such that qa = q′ there is an arrow (q, q′)a labeled with a ∈ L and connecting q to
q′. Each q ∈ Q and w = ai1ai2 . . . aik ∈ L∗ defines a directed path

γ(qw) := q, qai1 , qai1ai2 , . . . , qai1ai2 · · · aik

that begins in q and ends in qw. A then synchronizes if and only if there is a word w, such
that the paths {γ(qw) : q ∈ Q} have a common endpoint.

Synchronizing automata have been intensely studied by theoretical computer scientists as
well as pure mathematicians since the 1960’s; see [Volkov, 2008] for a detailed introduction on
synchronization of automata. A driving force in this research field is the Černỳ conjecture.

Conjecture 2 (The Černỳ conjecture). A synchronizing automaton A of order n has a shortest
synchronizing word of length at most (n− 1)2.

The bound in the Černỳ conjecture is tight: In [Cerny, 1964] Černỳ provided a series of
synchronizing circular automata C2, C3, . . ., such that Cn has order n and its shortest synchro-
nizing word is of size exactly (n− 1)2 (see Fig. 1.1). Furthermore, the Černỳ series of circular
automata C2, C3, . . . is the only known infinite series of automata whose shortest synchronizing
words are of length (n − 1)2 [Ananichev et al., 2010]. The best known general upper bounds
for the size of shortest synchronizing words of an automaton with n states are of order O(n3)
[Frankl, 1982][Pin, 1983][Szykuła, 2017][Shitov, 2019]. Nevertheless, there are many classes of
automata for which the Černỳ conjecture has been established (see [Volkov, 2008] for examples).

During the last decade, probabilistic approaches to the synchronization problem have been
developed. Typical questions in this setting are: let A({0, 1, . . . , n − 1}, L) be a uniformly
chosen DFA with k letters on a certain probability space, is it true that with high probability the
automaton A({0, 1, . . . , n− 1}, L) is synchronizing? Does the Černỳ conjecture hold with high
probability? Here we give a (non-comprehensive) list of recent achievements in this probabilistic
setting:
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Figure 1.1: The automaton Cn

• In [Skvortsov and Zaks, 2010] the authors study random automata A where the number
of letters k grow together with n. In particular, they prove that A synchronizes w.h.p.
when k(n) grows fast enough;

• In [Berlinkov, 2016] the author proves that P [A synchronizes] = 1 − O(n−k/2), for arbi-
trary k ≥ 2, it is also proved that P [A synchronizes] = 1−Θ(1/n) for k = 2;

• In [Nicaud, 2019] the author proves that A admits w.h.p. a synchronizing word of length
O(n log3 n) for arbitrary k ≥ 2;

• In [Berlinkov and Nicaud, 2018] the authors prove that if A is uniformly chosen among
the strongly-connected almost-group automata then A synchronizes with probability 1−
Θ((2k−1 − 1)n−2(k−1)) for arbitrary k ≥ 2.

Since the sequence of circular automata Cn depicted in Fig. 1.1 is the only known infinite
series of synchronizing automata reaching Černỳ ’s bound (n − 1)2, one might suspect that
the class of circular automata is somehow difficult to synchronize. However, as we show in
the present chapter, it turns out that a random circular automaton is synchronizing with high
probability.

The rest of the chapter is organized as follows: in Section 1.2 we present the main result
together with its proof and the statement of the two key lemmas for the proof. In Section 1.3
we study the dependence structure of the random matrix used in the proof of the main result;
the result obtained in this section is crucial for the proof of the key lemmas. In Section 1.4 we
prove the first lemma while in Section 1.5 we prove the second one. In Section 1.6 we present
some interesting connections between synchronization of circular automata and chromatic poly-
nomials of circulant graphs. Finally, in Section 1.7 we present some possible directions towards
generalizing and improving the results presented in this chapter.

1.2 Main result
Let n be a positive integer. An automaton A(Zn, L), where Zn := {0, 1, . . . , n− 1} is the set of
states, is called a circular automaton if L contains a permutation that decomposes in exactly
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one cycle. Let (i)n := i mod n. LetMn denote the set of all mappings from Zn to itself, and
let P denote the uniform probability measure on Mn. We will write the elements of Mn as
vectors by identifying the mapping b(i) = bi, i = 0, . . . , n−1 with the vector b = (b0, . . . , bn−1).

In what follows, we denote by An(b) := (Zn, {a,b}) a circular automaton of order n ∈ N,
with a : Zn → Zn being the circular right shift permutation a(i) = (i+1)n and b := (b0, ..., bn−1)
being an element ofMn. We will understand that b is “randomly” chosen fromMn according
to the uniform probability measure P, making An(b) a random circular automaton.

In 1977 as a consequence of a work of [Perrin, 1977] it follows that a circular automaton
A(Q,L) of prime order synchronizes if and only if L contains a non-permutation. In 1978
[Pin, 1978] proved with combinatorial methods that a circular automaton A(Q,L) of prime
order which has a letter of rank n−1

2
≤ k ≤ n has a minimal word of size at most (n− k)2. We

restate Perrin’s implicit theorem in a probabilistic way.

Theorem 3 ([Perrin, 1977][Pin, 1978]). Let p be a prime. Then

P [{b ∈Mp : Ap(b) synchronizes}] = 1− p!

pp
= 1−Θ

(√
p

ep

)
.

Thus, a uniformly distributed random circular automaton of prime order p with k ≥ 2 letters
synchronizes with high probability (w.h.p.).

Remark. Theorem 3 is not explicitly stated in [Perrin, 1977], but it’s observed by [Pin, 1978]
that Perrin’s work implies the theorem.

The Černỳ conjecture holds true for the class of circular automata [Dubuc, 1998]. In a
closely related work, Béal, Berlinkov and Perrin [Béal et al., 2011] gave an O (n2) upper bound
for the shortest words of synchronizing automata with a single cluster.

A natural question arises: do random circular automata of order n (not necessarily prime)
synchronize with high probability? We give a positive answer to this question in the following:

Theorem 4 (Main result). We have

P [{b ∈Mn : An(b) synchronizes}] = 1−O
(

1

n

)
as n→∞. In words, a randomly chosen An(b) synchronizes w.h.p. as n→∞.

Remark 5. Theorem 4 does not follow from the results of Berlinkov or Nicaud. In their models,
they use a random automaton A(Q,L) of order n where L is a collection of k mappings from
Q to Q i.i.d. uniformly chosen. For a fixed k, the probability of randomly chosen k mappings
to contain a permutation with exactly one cycle is bounded from above by k · n!

nn

n→∞−−−→ 0.

Given n ∈ N and r ∈ Z, we define the n-cyclic absolute value of r to be∣∣r∣∣
n

:= min {(r)n, (−r)n)} ∈
{

0, 1, . . . ,
⌊n

2

⌋}
.

When r, s ∈ Z then
∣∣r − s

∣∣
n
is the n-cyclic distance between r and s. When the numbers

0, 1, . . . , n − 1 are identified with the vertices of a cycle of length n, the n-cyclic distance
between two such numbers is the length of the shortest path between them in the cycle. We
now introduce the main tool for the proof of the main theorem.
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Definition. Let An(b) := (Zn, {a,b}) be a circular automaton with b = (b0, b1, . . . , bn−1).

Tb :=



∣∣b0 − b1

∣∣
n

∣∣b1 − b2

∣∣
n

. . .
∣∣bk − bk+1

∣∣
n

. . .
∣∣bn−1 − b0

∣∣
n∣∣b0 − b2

∣∣
n

∣∣b1 − b3

∣∣
n

. . .
∣∣bk − b(k+2)n

∣∣
n

. . .
∣∣bn−1 − b1

∣∣
n...

... . . . ... . . . ...∣∣b0 − bi
∣∣
n

∣∣b1 − b1+i

∣∣
n

. . .
∣∣bk − b(k+i)n

∣∣
n

. . .
∣∣bn−1 − b(n−1+i)n

∣∣
n...

... . . . ... . . . ...∣∣b0 − bbn2 c
∣∣
n

∣∣b1 − b1+bn2 c
∣∣
n

. . .
∣∣bk − b(k+bn2 c)n

∣∣
n

. . .
∣∣bn−1 − b(n−1+bn2 c)n

∣∣
n


,

(1.1)
shortly written as

Tb(i, j) =
∣∣bj − b(j+i)n

∣∣
n
for 1 ≤ i ≤

⌊n
2

⌋
and 0 ≤ j ≤ n− 1.

As before, bi = b(i), i.e., the image of state i under b. To be clear, note that the first row
of Tb is formed of the cyclic distances of the images of states r, s such that

∣∣r − s∣∣
n

= 1; in
general, the i-th row of Tb is formed of the cyclic distances of the images of pairs of states r, s
of cyclic distance i. Notice that the columns are counted from 0 to n− 1.

For b ∈Mn and i = 1, . . . ,
⌊
n
2

⌋
, let Ri(b) denote the number of different entries in row i of

Tb :
Ri(b) := #

{∣∣b0 − b(0+i)n

∣∣
n
,
∣∣b1 − b(1+i)n

∣∣
n
, . . . ,

∣∣bn−1 − bi−1

∣∣
n

}
. (1.2)

Set

Erow(α) :=

bn2 c⋂
i=1

{
b ∈Mn : Ri(b) ≥ α

⌊n
2

⌋}
, (1.3)

i.e., Erow(α) contains those b for which every row of Tb has at least α
⌊
n
2

⌋
different elements.

Its complement is

Ecrow(α) :=

bn2 c⋃
i=1

{
b ∈Mn : Ri(b) < α

⌊n
2

⌋}
. (1.4)

We also define
Ezero(β) :=

{
b ∈Mn : D(b) ≥ β

⌊n
2

⌋}
, (1.5)

and its complement
Eczero(β) :=

{
b ∈Mn : D(b) < β

⌊n
2

⌋}
, (1.6)

where

Di(b) :=

{
1, if there exist k, l ∈ Zn such that

∣∣k − l∣∣
n

= i and
∣∣bk − bl∣∣n = 0;

0, otherwise,

and

D(b) :=

bn2 c∑
i=1

Di(b).

That is, Ezero(β) is the set of those b for which the matrix Tb has at least β
⌊
n
2

⌋
rows containing

the entry zero.

The proof of Theorem 4 relies on the following two lemmas.
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Lemma 6. Let ε > 0 and let α = 1− e−1 − ε. Then

P [Ecrow(α)] = O

(
1

n

)
as n→∞.

Lemma 7. Let ε ∈ (0, 1) and let β = 1/2− ε. Then

P [Eczero(β)] = O

(
1

n

)
.

as n→∞.

Proof of Theorem 4. The main idea of the proof is to transform the question of synchroniza-
tion of An(b) into a question concerning properties of the matrix Tb. The entries Tb(i, j) of
the matrix are random variables overMn, and to obtain our desired probability estimates we
will need to understand the joint stochastic dependence structure of these random variables.

Let b ∈Mn, and consider the associated Matrix Tb. The first observation is that a zero in
row i of Tb means that two states r, s with cyclic distance i synchronize under b (i.e., br = bs),
which implies that any pair r′, s′ with cyclic distance i can be synchronized with a word of the
form alb because {r′, s′}al = {r, s} for some l. The second observation is that if the i-th row
of Tb contains a number j = |bk − b(k+i)n|n and the j-th row contains a zero, then every pair
of states (r, s) with cyclic distance i can be synchronized with a word of the form al1bal2b.

Indeed, we can proceed as follows: {r, s} al1→ {k, (k + i)n}
b→ {bk, b(k+i)n}, where this last pair

has n-cyclic distance j; then {bk, b(k+i)n} synchronizes with a word of the form al2b, for some
l2 because the j-th row contains a zero, thus we can synchronize {r, s} with a word of the
form al1bal2b. With these two observations, we establish sufficient conditions on Tb for the
synchronization of An(b). The sets Erow(α) and Ezero(β) which we defined in (1.3) and (1.5)
play a crucial role.
Let b ∈ Mn. If b is contained in both Erow(α) and Ezero(β) for some α, β > 0 such that
α+ β > 1, then An(b) synchronizes. This follows from the two previous observations together
with the union bound. In fact, let (r, s) be any pair of different states. Set i = |r − s|n. If
row i contains a zero, we can synchronize {r, s} with a word of the form alb; otherwise, row i
contains an entry j 6= 0 such that row j contains a zero (because α+β > 1), which implies that
{r, s} can be synchronized with a word of the form al1bal2b. Therefore, every pair of different
states synchronizes, thus An(b) synchronizes by Claim 1. Therefore, for any α, β > 0 satisfying
α + β > 1, we have the following bound:

P [{b ∈Mn : An(b) synchronizes}] ≥ P [Erow(α) ∩ Ezero(β)] = 1− P [Ecrow(α) ∪ Eczero(β)]

≥ 1− P [Ecrow(α)]− P [Eczero(β)] .

(1.7)

Now, by this last inequality and by Lemmas 6 and 7 we obtain the bound stated in the main
theorem. We choose ε′ = 1

20
, α? = 1 − e−1 − ε′ ≈ 0.582 and β? = 1/2 − ε′ = 0.45, so that

α? > 0, β? > 0 and α? + β? > 1. Then we have

P [{b ∈Mn : An(b) synchronizes}] ≥ 1− P [Ecrow(α?)]︸ ︷︷ ︸
=O( 1

n)

−P [Eczero(β?)]︸ ︷︷ ︸
=O( 1

n)

= 1−O
(

1

n

)

as n→∞.
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1.3 Independence among the entries of Tb
For every i and j in the range from 0 to n−1, the matrix entry Tb(i, j) assigns an integer value
to every b ∈ Mn. In other words, for every such i and j, the function Tb(i, j) : Mn 7→ Z is
an (integer-valued) random variable on the spaceMn, equipped with the uniform probability
measure P (and with the power set ofMn as the natural sigma-field). It is crucial for our proof
to give a criterion on pairs of indices (i1, j1), . . . , (ik, jk) which guarantees that the random
variables Tb(i1, j1), . . . , Tb(ik, jk) are independent. First, notice that not every subset of entries
of Tb is independent. For example,

Tb(1, 0) =
∣∣b0 − b1

∣∣
n
, Tb(1, 1) =

∣∣b1 − b2

∣∣
n
, Tb(2, 0) =

∣∣b0 − b2

∣∣
n

are clearly dependent: if the first two random variables Tb(1, 0) and Tb(1, 1) are zero, then
b0 = b1 = b2, which implies that

∣∣b0 − b2

∣∣
n

= 0 and so Tb(2, 0) necessarily also is zero. This
dependence comes from the fact that there is a “cycle” of the form b0 → b1 → b2 → b0 generated
by the indices of these three random variables. Generally, it will turn out that a set of entries
of Tb is independent if and only if the corresponding indices are “acyclic”. We formalize this in
the following

Definition. We call {j, (j + i)n} the associated edge of the matrix entry Tb(i, j). Let

S = {(i1, j1), (i2, j2), . . . , (ik, jk)}

be a multi-set. The associated (multi-)graph G(S) is the (multi-)graph with vertex set Zn and
edge (multi-)set {

{j1, (j1 + i1)n}, {j2, (j2 + i2)n}, . . . , {(jk, (jk + ik)n}
}
.

We call S acyclic if its associated multi-graph G(S) is acyclic.

The relation between acyclic index sets and independent variables is stated in the following

Proposition 8. The variables Tb(i1, j1), Tb(i2, j2), . . . , Tb(ik, jk) are i.i.d. ⇐⇒ the (multi-)set
S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is acyclic. Furthermore, if the variables are independent, then

P

[
k⋂

w=1

{b ∈Mn : Tb(iw, jw) = sw}

]
=

∏k
w=1msw

nk
, ∀k ≥ 1, (1.8)

where s1, s2, . . . , sw are arbitrary integers and

ms = #{d ∈ Zn :
∣∣1− d∣∣

n
= s} =


2, if 0 < s < n

2
;

1, if s = 0;

1, if s = n
2
and n

2
∈ N;

0, otherwise.

Henceforth in this chapter we use the concepts “acyclic” and “independent” interchangeably
when we refer to a multi-set of independent entries of Tb , resp. to entries whose associated
multi-graph is acyclic.

Remark 9. Note that different entries Tb(i, j), Tb(i′, j′) may be associated with the same edge;
this only happens when n is even and i = i′ = n/2 and j ≡ j′ mod n

2
. Thus, for n odd, a pair

of different entries of Tb is always acyclic/independent.
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Remark 10. For a vector b ∈Mn, we can write its entries b0, . . . , bn−1 as functions of b. In other
words, b0 = b0(b), . . . , bn−1 = bn−1(b) are random variables onMn, equipped with the uniform
measure P. The random variables b0, . . . , bn−1 are independent and identically distributed over
this space; this follows immediately from the fact that the uniform measure onMn is a product
of n one-dimensional uniform measures.

Proof of Proposition 8. First note that any two random variables Tb(i, j) =
∣∣bj − b(j+i)n

∣∣
n

and Tb(i′, j′) =
∣∣bj′ − b(j′+i′)n

∣∣
n
are always identically distributed. This follows from the fact

that b0, b1, . . . , bn−1 are i.i.d. (see Remark 10). Note also that for all s

P
[{

b ∈Mn :
∣∣bp − bp+q∣∣n = s

}]
=
n ·ms

n2
=
ms

n
,

which can seen by an easy counting argument: There are n different possible choices of bp,
and then there are ms independent different choices of b(p+q)n such that

∣∣bp − bp+q
∣∣
n

= s.
Thus equation (1.8) is just a rephrasing of the fact that the random variables are independent.
Therefore, what we need to prove is that independence holds if and only if the associated
(multi-)graph acyclic.
⇒) (by contraposition) Let S = {(i1, j1), (i2, j2), . . . , (ik, jk)} be a (multi-)set which is not
acyclic. Thus its associated multi-graph G(S) has a cycle C of length l ≥ 2. Let this cycle be
w.l.o.g.

j1 → (j1 + i1)n = j2 → (j2 + i2)n = j3 → . . .→ (jl−1 + il−1) = jl → (jl + il)n = j1.

Recall that Tb(i, j) = 0 ⇐⇒ bj = b(j+i)n . Thus if for some b ∈Mn we have

Tb(i1, j1) = Tb(i2, j2) = . . . = Tb(il−1, jl−1) = 0,

then bj1 = bj2 = . . . = bjl , and so we automatically also have Tb(il, jl) =
∣∣bjl − b(jl+il)n

∣∣
n

=∣∣bjl − bj1∣∣n = 0. Thus the variables Tb(i1, j1), . . . , Tb(i`, j`) are not independent. We conclude
that an independent multi-set must be acyclic.
⇐) (by induction on k) Let k ≥ 2. Assume that the multi-set Sk = {(i1, j1), (i2, j2), . . . , (ik, jk)}
is acyclic. We want to show that Tb(ik, jk) is independent of Tb(i1, j1), . . . , Tb(ik−1, jk−1). This
will allow us to factor out the k-th factor on the left-hand side of (1.8), leading (by induction)
to the formula on the right-hand side of (1.8), which is equivalent to independence.
We distinguish two cases: The first case is when the edge {jk, (jk + ik)n} is a connected com-
ponent by itself in G(S). This means that the sets

S1 := {j1, (j1 + i1)n, j2, (j2 + i2)n, . . . , jk, (jk−1 + ik−1)n}

and S2 := {jk, (jk + ik)n} are disjoint. By construction the random variables

Tb(i1, j1), . . . , Tb(ik−1, jk−1)

depend only on bs with s ∈ S1, while Tb(ik, jk) depends only on bs with s ∈ S2. Since
b0, . . . , bn−1 are independent by Remark 10, this implies that Tb(ik, jk) is independent of
Tb(i1, j1), . . . , Tb(ik−1, jk−1), as desired.
For the second case, the edge {jk, (jk + ik)n} is not a connected component by itself in G(S).
Since it is also not part of a cycle by assumption,we can assume that (jk + ik)n is a leaf vertex
in G(S). In principle, Tb(ik, jk) depends on bjk as well as on b(jk+ik)n . However, since Tb(ik, jk)
is defined as a cyclic distance, the conditional distribution of Tb(ik, jk) given bjk is always the
same. In formulas, for every sk we have

P [{b ∈Mn : Tb(ik, jk) = sk}] = P [{b ∈Mn : Tb(ik, jk) = sk and bjk = r}] (1.9)
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for every r ∈ {0, . . . , n−1}. This fact can be simply established by counting the possible configu-
rations of bjk and b(jk+ik)n . By definition, Tb(ik, jk) is independent of all b` with ` 6= jk, (jk + ik)n.
Thus for every numbers s1, . . . , sk we have, using the independence of b0, . . . , bn−1 and (1.9),
that

P

[
k⋂

w=1

{b : Tb(iw, jw) = sw}

]

=
n−1∑
r=0

P

[
k⋂

w=1

{b : Tb(iw, jw) = sw and bjk = r}

]

=
n−1∑
r=0

P


(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}

)
︸ ︷︷ ︸

depends only on b` with ` 6= jk, (jk + ik)n when bjk is fixed

∩{b : Tb(ik, jk) = sk and bjk = r}︸ ︷︷ ︸
depends only on b(jk+ik)n

when bjk is fixed


=

n−1∑
r=0

(
P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}

)]
P [{b : Tb(ik, jk) = sk and bjk = r}]

)

=
n−1∑
r=0

(
P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw and bjk = r}

)]
P [{b : Tb(ik, jk) = sk}]

)

= P

[(
k−1⋂
w=1

{b : Tb(iw, jw) = sw}

)]
P [{b : Tb(ik, jk) = sk}] .

This is exactly the independence property that we wanted to establish.

1.4 Proof of Lemma 6
The overview of the proof is as follows. Recall that we understand the entries of the matrix Tb as
random variables. We will prove that every row of Tb contains a “large” number of independent
random variables. Then we give a lower bound for the expected value of the number of different
elements in each row. Then we apply McDiarmid’s inequality to each row and finally we use
the union bound together with the exponential decay delivered by McDiarmid’s inequality to
guarantee that w.h.p. every row of Tb has at least ∼ (1 − e−1)

⌊
n
2

⌋
different elements. We

denote by Cn(i) the circulant graph on n vertices, i.e., the graph with vertex set Zn where two
vertices r, s are adjacent if

∣∣r − s∣∣
n

= i.
We need the following property.

Claim 11. For every i, the i-th row of Tb contains a set of at least n − gcd(n, i) random
variables which are i.i.d.

Proof. The variables in row i are given by the multi-set

Ei(b) := {
∣∣b0 − b(0+i)n

∣∣
n
, . . . ,

∣∣bs − b(s+i)n

∣∣
n
, . . . ,

∣∣bn−1 − bi−1

∣∣
n
}. (1.10)

Let i 6= n
2
. By Remark 9 the multi-set Ei(b) does not have repeated elements and the associated

multi-graph G(Ei(b)) is isomorphic to the circulant graph Cn(i). It is well know and easy to
show that Cn(i) is a disjoint union of gcd(n, i) cycles of length n

gcd(n,i)
[Boesch and Tindell, 1984].

We obtain an acyclic set of variables by removing variables that correspond to exactly one edge
of each cycle in G(Ei(b)). The resulting set of variables is i.i.d. by Proposition 8. In the case
i = n

2
, the first n

2
variables in row n

2

En
2
(b) = {

∣∣b0 − bn
2

∣∣
n
, . . . ,

∣∣bs − b(s+n
2

)n

∣∣
n
, . . . ,

∣∣bn
2
−1 − bn−1

∣∣
n
}
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have an associated multi-graph that is isomorphic to the circulant graph Cn(n
2
), which is a

disjoint union of n
2

= gcd(n, n
2
) edges. This last graph is acyclic, thus the variables are i.i.d. by

Proposition 8.

We prove the following lower bound

Claim 12. We have E [Ri] ≥
⌊
n
2

⌋
(1− e−1)− 1, where for all b ∈Mn

Ri(b) = #{
∣∣b0 − b(0+i)n

∣∣
n
, . . . ,

∣∣bs − b(s+i)n

∣∣
n
, . . . ,

∣∣bn−1 − bi−1

∣∣
n
}

(see (1.2)) is the cardinality of different elements in row i of Tb.

Proof. First, for every d ∈ {0, . . . ,
⌊
n
2

⌋
}, we define the random variables

δ
(i)
j (b, d) := 1− 1{

∣∣bj − b(j+i)n

∣∣
n

= d} =

{
0, if

∣∣bj − b(j+i)n

∣∣
n

= d;

1, otherwise.

and

r
(i)
d (b) :=

∏
j∈Zn

δ
(i)
j (b, d) =

{
0 if ∃ p, q ∈ Zn such that dn(p, q) = i and d(bp,bq) = d;

1, otherwise.

Note that r(i)
d (b) is zero if the number d is included in the i-th row of Tb , and that it is one

otherwise. Recalling that the entries of Tb can only have values in {0, 1, . . . ,
⌊
n
2

⌋
}, we write the

number of distinct elements in row i as

Ri(b) =
(⌊n

2

⌋
+ 1
)
−
bn2 c∑
d=0

r
(i)
d . (1.11)

By Claim 11 there is a subset I of Zn of cardinality n − gcd(n, i) such that the variables
{δ(i)

w : w ∈ I} are i.i.d., and thus

E
[
r

(i)
d

]
= E

[∏
j∈Zn

δ
(i)
j (b, d)

]
≤ E

[∏
w∈I

δ(i)
w (b, d)

]
= E

[
δ

(i)
0 (b, d)

]n−gcd(n,i)

.

Furthermore, by Proposition 8 we have E
[
δ

(i)
0 (b, d)

]
= 1− md

n
, and thus

E
[
r

(i)
d

]
≤
(

1− md

n

)n−gcd(n,i)

≤
(

1− md

n

)n
2

=

{ (
1− 2

n

)n
2 , if d 6= 0, n

2
;(

1− 1
n

)n
2 , otherwise ,

for d ∈ {0, 1, . . . ,
⌊
n
2

⌋
}. Using the inequality 1− x ≤ e−x, which is valid for any real number x,

we obtain

E

 bn2 c∑
d=0

r
(i)
d

 ≤ ⌊n
2

⌋(
1− 2

n

)n
2

︸ ︷︷ ︸
≤e−1

+2

(
1− 1

n

)n
2

︸ ︷︷ ︸
≤e−1/2

≤
⌊n

2

⌋
e−1 + 2.

Plugging this inequality into (1.11) yields

E [Ri] =
(⌊n

2

⌋
+ 1
)
− E

 bn2 c∑
d=0

r
(i)
d

 ≥ ⌊n
2

⌋
(1− e−1)− 1.

This proves Claim 12.
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We introduce McDiarmid’s inequality to prove Claim 14.

Definition. Let L : (Zn)n → R be a function. We say that L has Lipschitz coefficient r ∈ R+ if

|L(−→v )− L(−→w )| ≤ r

for every −→v ,−→w ∈ (Zn)n such that −→v (j) = −→w (j) for all j except for at most one index.

Proposition 13 (McDiarmid’s Inequality [McDiarmid, 1989]). Let X̄ := (X1, X2, . . . , Xn) ∈
(Zn)n be a random vector where the variables X1, X2, . . . , Xn are independent and let L :
(Zn)n → R be a function with bounded Lipschitz coefficient r. Then

(lower tail) P
[
L(X̄) ≤ E

[
L(X̄)

]
− r
√
λn
]
≤ e−2λ,

for all λ ≥ 0.

Remark. This is just a special case of the general form of McDiarmid’s inequality. The general
inequality also bounds the upper tail, and allows different Lipschitz coefficients in the respective
components.

In the following claim we use Proposition 13 to estimate the probability that row i of Tb
has less than ∼ (1− e−1)

⌊
n
2

⌋
different elements.

Claim 14. Let ε > 0. Then

P
[
b ∈Mn : Ri(b) <

⌊n
2

⌋
(1− e−1 − ε)

]
≤ e−Θ(n),

for i = 1, 2, . . . ,
⌊
n
2

⌋
.

Proof. Let b = (b0, b1, . . . , bn−1). Let Ei(b) be defined as in (1.10). The function Ri(b) :=
#Ei(b) has Lipschitz coefficient 2: changing one bj affects at most two entries, namely

∣∣bj −
b(j+i)n

∣∣
n
and

∣∣b(j−i)n − bj
∣∣
n
. Using McDiarmid’s inequality, we deduce that

P
[
b ∈Mn : Ri(b) ≤ E [Ri]− 2

√
λn
]
≤ e−2λ, ∀λ ≥ 0.

Using the lower bound E [Ri] ≥
⌊
n
2

⌋
(1− e−1)− 1 of Claim 12 we obtain

P
[
b ∈Mn : Ri(b) <

(⌊n
2

⌋
(1− e−1)− 1

)
− 2
√
λn
]

≤ P
[
b ∈Mn : Ri(b) ≤ E [Ri]− 2

√
λn
]

≤ e−2λ, ∀λ ≥ 0.

Let ε > 0 be arbitrary but fixed, and let

λε(n) :=
1

4n

(
ε
⌊n

2

⌋
− 1
)2

= Θ(n); (1.12)

we observe that λε(n) is independent of i. Let n > 2
ε
, then plugging λ = λε(n) into the previous

inequality yields

P
[
b ∈Mn : Ri(b) <

⌊n
2

⌋
(1− e−1 − ε)

]
≤ e−2λε(n) = e−Θ(n). (1.13)
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Recall that Erow(α) contains those b ∈ Mn for which every row of Tb has at least α
⌊
n
2

⌋
different elements, so that

Ecrow(α) =

bn2 c⋃
i=0

{
b ∈Mn : Ri(b) < α

⌊n
2

⌋}
.

Let ε > 0 be arbitrary and let α∗ = 1− e−1 − ε. Then

P [Ecrow(α?)] = P

bn2 c⋃
i=1

{
b ∈Mn : Ri(b) < α?

⌊n
2

⌋}
≤
bn2 c∑
i=1

P
[
b ∈Mn : Ri(b) < α?

⌊n
2

⌋]
≤ ne−Θ(n), (1.14)

where we use Claim 14 for the second inequality. This proof of Lemma 6 follows by noticing
that

ne−Θ(n) = O

(
1

n

)
.

1.5 Proof of Lemma 7

The overview of the proof is as follows. We will define two random variables Z0(b) and Z1(b)
such that

•D(b) ≥ Z0(b)−Z1(b), ∀b : Zn → Zn;

• E [Z0 −Z1] ∼ n

2
.

Then we will show that Z0 and Z1 concentrate around their respective means, and use this
fact to give an upper bound on the probability that D is small. For this purpose, we note the
following property.

Claim 15. Let Z0,Z1 and D be random variables which take non-negative values, such that
D ≥ Z0 −Z1. Let ν > 0 and let δ ≤ E [Z0 −Z1]− 2ν. Then

P [D < δ] ≤ P [Z0 < E [Z0]− ν] + P [Z1 > E [Z1] + ν] .

Proof. This follows easily from the assumption that Z0 −Z1 ≤ D and the union bound.

To prove concentration of Z0 and Z1 around their respective means, we use Chebyschev’s
inequality. Notice that D : Znn → Zn does not have a bounded Lipschitz coefficient, so we
cannot use McDiarmid’s inequality to guarantee its concentration.

1.5.1 Lower bound for D(b)

Recall that D(b) counts the number of rows of Tb that contain at least one zero. Let

zi = zi(b) := #(Zeros in row i of Tb)
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and
Z0(b) := #(Zeros in Tb) =

∑
(i,j)∈[1,bn2 c]×[0,n−1]

1 {Tb(i, j) = 0} .

Then

D(b) = Z0(b)−
bn2 c∑
i=1

max(zi − 1, 0). (1.15)

It is easy to verify that the number of non-ordered pairs of entries in the i-th row with zero
value is ∑

0≤j<j′≤n−1

1 {Tb(i, j) = 0}1 {Tb(i, j′) = 0} =
zi(zi − 1)

2
≥ max(zi − 1, 0), ∀i,

therefore

Z1(b) :=

bn2 c∑
i=1

∑
0≤j<j′≤n−1

1 {Tb(i, j) = 0}1 {Tb(i, j′) = 0} ≥
bn2 c∑
i=1

max(zi − 1, 0).

From this and (1.15), we conclude that

Claim 16. D(b) ≥ Z0(b)−Z1(b), ∀b : Zn → Zn.

1.5.2 Estimates for E [Z0], E [Z1], E [Z0 −Z1], V [Z0], V [Z1]

In this subsection we prove that

• E [Z0 −Z1] ∼ n
2
,

• E [Z0] = Θ(n),

• E [Z1] = Θ(n),

• V [Z0] = O(n), and

• V [Z1] = O(n).

For the rest of this subsection, we use the notation

yi,j = yi,j(b) := 1 {Tb(i, j) = 0} ,

for 1 ≤ i ≤
⌊
n
2

⌋
and 0 ≤ j ≤ n− 1.

Definition. The variables yi1,j1 , yi2,j2 . . . , yik,jk are called acyclic if the multi-set
⋃k
w=1{(iw, jw)}

is acyclic. Let

G ({yi1,j1 , yi2,j2 . . . , yik,jk}) = G

(
k⋃

w=1

{(iw, jw)}

)
be the associated multi-graph of the multi-set {yi1,j1 , yi2,j2 . . . , yik,jk} and let e(yi,j) := {j, (j+i)n}
be the associated edge to yi,j. The length of e(yi,j) is

∣∣j − (j + i)n
∣∣
n

= i.

Remark 17. If the variables yi1,j1 , yi2,j2 . . . , yik,jk are acyclic then they are i.i.d.; this is an im-
mediate consequence of Proposition 8.

We begin with the easy part: the bounds for the expected values.
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Claim 18. Let n ∈ N. We have E [Z0] = Θ(n), E [Z1] = Θ(n), and E [Z0 −Z1] ≥ 0.5
⌊
n
2

⌋
− 1.

Proof. Using the linearity of the expectation, we get that

E [Z0] =
∑

(i,j)∈[1,bn2 c]×[0,n−1]

E [yi,j] =
⌊n

2

⌋
n

1

n
=
⌊n

2

⌋
= Θ(n), (1.16)

where for the second equality we use that

E [yi,j] = P [{b : Tb(i, j) = 0}] = P
[
{b : bj = b(j+i)}

]
=

1

n
. (1.17)

Now we calculate an upper bound for E [Z1], depending on the parity of n.

Case 1: n odd. Every product yi,jyi,j′ in the sum

Z1 =

bn2 c∑
i=1

∑
0≤j<j′≤n−1

yi,jyi,j′

is formed of independent random variables yi,j, yi,j′ by Remarks 9,17. Thus

E [Z1] =

bn2 c∑
i=1

∑
0≤j<j′≤n−1

E [yi,jyi,j′ ] =

bn2 c∑
i=1

∑
0≤j<j′≤n−1

E [yi,j]E [yi,j′ ]

(1.17)
=
⌊n

2

⌋(n
2

)
1

n2

=
1

2

⌊n
2

⌋(
1− 1

n

)
︸ ︷︷ ︸

≤ 1
2bn2 c

= Θ(n).

Case 2: n even. Using Remark 9, we write Z1 as

Z1 =
∑

1≤i<n
2

0≤j<j′≤n−1

yi,jyi,j′ +
∑

0≤r<r′≤n−1
r 6≡r′ (mod n/2)

yn/2,ryn/2,r′ +

n
2
−1∑
s=0

yn/2,s.

Every product yi,jyi,j′ in the first sum is formed of independent variables yi,j, yi,j′ by Remark 9
and the same is valid for the products yn

2
,ryn

2
,r′ in the second sum, therefore

E [Z1] =

n
2
−1∑
i=1

∑
0≤j<j′≤n−1

E [yi,j]E [yi,j′ ] +
∑

0≤r<r′≤n−1
r 6≡r′ (mod n/2)

E
[
yn/2,r

]
E
[
yn/2,r′

]
+

n
2
−1∑
s=0

E
[
yn/2,s

]

=

n
2
−1∑
i=1

∑
0≤j<j′≤n−1

1

n2
+

∑
0≤r<r′≤n−1
r 6≡r′ (mod n/2)

1

n2
+

n
2
−1∑
s=0

1

n

=
(n

2
− 1
)
·
(
n

2

)
· 1

n2
+

((
n

2

)
− n

2

)
· 1

n2
+
n

2
· 1

n

=
1

2
· n

2
·
(

1− 1

n
+

(
2

n
− 2

n2

))
︸ ︷︷ ︸

≤ 1
2
·n
2

+1

= Θ(n).
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We deduce from the previous cases that E [Z1] = Θ(n) and E [Z1] ≤ 0.5
⌊
n
2

⌋
+ 1 for all n. Using

this last inequality and (1.16), we conclude that

E [Z0]− E [Z1] =
⌊n

2

⌋
− E [Z1] ≥ 0.5

⌊n
2

⌋
− 1.

This concludes the proof of Claim 18.

Now we estimate the variance of Z0 and Z1.

Claim 19. Let n ∈ N, then V [Z0] = O(n) and V [Z1] = O(n).

Proof. Here we also divide the calculations according to the parity of n.

Case 1: n odd. We expand the variance of Z0 to get that

V [Z0] =
∑

1≤i≤bn2 c
0≤j≤n−1

V [yi,j] +
∑

1≤i,i′≤bn2 c
0≤j,j′≤n−1
(i,j)6=(i′,j′)

Cov [yi,j, yi′,j′ ] ,

where the covariances are calculated among pairs of independent variables yi,j, yi′,j′ due to
Remark 9. Thus

V [Z0] =
∑

1≤i≤bn2 c
0≤j≤n−1

V [yi,j] .

We notice that y2
i,j = yi,j because yi,j ∈ {0, 1}, therefore

V [yi,j] = E
[
y2
i,j

]
− E [yi,j]

2 =
1

n
− 1

n2
, ∀n ∈ N, (1.18)

where we use (1.17) in the last equality. Then, for all n odd, we get that

V [Z0] =
⌊n

2

⌋
n

(
1

n
− 1

n2

)
=
⌊n

2

⌋(
1− 1

n

)
= O(n). (1.19)

Now we calculate

V [Z1] =
∑

1≤i≤bn2 c
0≤j<j′≤n−1

V [yi,jyi,j′ ] +
∑

1≤i,r≤bn2 c
0≤j,j′,s,s′≤n−1

j<j′; s<s′

(i,j,j′)6=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] ; (1.20)

We first note that

V [yi,jyi,j′ ] = E
[
y2
i,jy

2
i,j′

]
− E [yi,jyi,j′ ]

2 =
1

n2
− 1

n4
, for n odd and ∀i and j 6= j′; (1.21)

this follows since the variables yi,j and yi,j′ are different and therefore independent (see Re-
mark 9). Thus ∑

1≤i≤bn2 c
0≤j<j′≤n−1

V [yi,jyi,j′ ] =
⌊n

2

⌋(n
2

)
1

n2

(
1− 1

n2

)
= O(n). (1.22)

For the sum of the covariances, we proceed as follows: if the variables yi,j, yi,j′ , yr,s, yr,s′ are
acyclic then they are independent (see Proposition 8), therefore

Cov [yi,jyi,j′ , yr,syr,s′ ] = 0.
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On the other hand, if the variables yi,j, yi,j′ , yr,s, yr,s′ are not acyclic, let

Y := {{yi,j, yi,j′ , yr,s, yr,s′} : (i, j, j′) 6= (r, s, s′), j < j′, s < s′} ,

and let
Y = {yi,j, yi,j′ , yr,s, yr,s′} ∈ Y .

Then G(Y ) is a multi-graph with four edges e(yi,j), e(yi,j′), e(yr,s), e(yr,s′) such that e(yi,j) 6=
e(yi,j′) and e(yr,s) 6= e(yr,s′) (see Remark 9). In particular, there cannot be 3 equal edges. If
G(Y ) has at least one cycle, it is isomorphic to one of the multi-graphs in Figure 1.2 below.

G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

Figure 1.2: Possible non-acyclic multi-graphs for n odd.

We will now estimate the contribution of each of these possible non-acyclic multi-graphs.

Claim 20. Let n ∈ N, then

#{Y ∈ Y : G(Y ) ∼= Gc} =

{
O(n4), if c = 1, 2, 3, 5, 6, 7, 12;

O(n3), if c = 4, 8, 9, 10, 11.

Proof. The cases c = 1, 2, 5, 6, 7 can be bounded by the trivial bound O(n4), and the same for
the cases c = 4, 8 with the bound O(n3). The remaining cases c = 3, 9, 10, 11, 12 require better
estimates than their respective trivial bounds.

First, notice that for all cases, the four edges of the multi-graph G({yi,j, yi,j′ , yr,s, yr,s′}) are
divided into two pairs: e(yi,j), e(yi,j′) of length i and e(yr,s), e(yr,s′) of length r. The case G3

is bounded by
(
n
3

)
∗ 2n = O(n4) because three vertices can be chosen freely to form a triangle

whose edges have at most two different lengths i, r, then we choose a vertex v for the free edge
and finally we choose v′ such that

∣∣v− v′∣∣
n

= i or
∣∣v− v′∣∣

n
= r depending on the lengths of the

edges in the triangle, therefore v′ has only two choices.

The case G12 is also bounded by O(n4). To show this, we distinguish between two subcases.
In the first subcase, the multi-edge is formed of the associated edges of the same pair, w.l.o.g.
e(yi,j) = e(yi,j′) (this can only happen in the case n even). Then the free edges are formed of
the edges e(yr,s), e(yr,s′), which have length r; we choose two vertices for the multi-edge and
two more vertices v1, v2 (one for each of the free edges), but then the two missing vertices
v′1, v

′
2 have at most two options each, because

∣∣v − v1

∣∣
n

=
∣∣v2 − v′2

∣∣
n

= r. Thus this subcase is
bounded by O(n4). The second subcase is when e(yi,j) 6= e(yi,j′) and e(yr,s) 6= e(yr,s′). Then
w.l.o.g. the multi-edge is formed of the e(yi,j) = e(yr,s) then i = r, thus all edges have the
same length; we choose two vertices v, v′ for the multi-edge and two more vertices v1, v2 (one
for each of the free edges). The missing vertices v′1, v′2 have at most two choices each because∣∣v1 − v′1

∣∣
n

=
∣∣v2 − v′2

∣∣
n

=
∣∣v − v′∣∣

n
, which gives again a O(n4) bound.

33



For G9, if we are in the case n odd, then the multi-edge is formed of edges of different groups,
w.l.o.g. e(yi,j) = e(yr,s) and i = r. Therefore the edge attached to the multi-edge is uniquely
defined because its length is determined, and the isolated edge is almost uniquely defined once
one of the end points is chosen, because the other end has at most two choices. Overall, this
gives the O(n3) bound. In the case n even, it can happen that w.l.o.g. e(yi,j) = e(yi,j′) but
this can only happen when i = n/2. Then the multi-edge is uniquely defined by choosing one
end, the isolated edge is defined by choosing two end points, and the last edge has at most four
options since its length is already determined by the length of the isolated edge. This gives
again a O(n3) bound.

For G10, in the case n odd we can assume as before e(yi,j) = e(yr,s). Then i = r,
and the multi-edge is determined by choosing two vertices and the remaining two edges are
uniquely defined by the central vertex. This yields the bound O(n3). In the other case, w.l.o.g.
e(yi,j) = e(yi,j′), and i = n/2. The multi-edge can be defined by choosing only one vertex, and
the isolated path can be defined by choosing two vertices for one edge, while the remaining
edge will have at most two options. This yields again a O(n3) bound.

For G11, if e(yi,j) = e(yr,s), then all edges have the same length i = r, we can choose two
vertices for the first multi-edge and one vertices for the second multi-edge, while the remaining
vertex has at most two options. This yields a O(n3) bound. In the case when e(yi,j) = e(yi,j′)
then e(yr,s) = e(yr,s′) and i = r = n/2. In this case we can choose two vertices (one for
each multi-edge), and the remaining two vertices are automatically determined. This yields a
O(n2) = O(n3) bound. Thus we have established Claim 20.

We continue with the proof of Claim 19 in the case when n is odd. We observe that

E [yi,jyi,j′yr,syr,s′ ] = P [yi,jyi,j′yr,syr,s′ = 1] = P [{b : Tb(i, j) = Tb(i, j′) = Tb(r, s) = Tb(r, s′) = 0}] ,

and thus for Y = {yi,j, yi,j′ , yr,s, yr,s′} ∈ Y , we have that

E [yi,jyi,j′yr,syr,s′ ] =

{
1
n3 , if G(Y ) ∼= G1,2,3,5,6,7,9,10,12;
1
n2 , if G(Y ) ∼= G4,8,11.

(1.23)

The last equation, combined with Claim 20, implies that∑
1≤i,r≤bn2 c

0≤j,j′,s,s′≤n−1
j<j′; s<s′

(i,j,j′)6=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] ≤
∑

1≤i,r≤bn2 c
0≤j,j′,s,s′≤n−1

j<j′; s<s′

(i,j,j′)6=(r,s,s′)

E [yi,jyi,j′yr,syr,s′ ]

≤ 7 ·O(n4)
1

n3
+ 3 ·O(n3)

1

n2
+ 2 ·O(n3)

1

n3

= O(n).

Using the previous inequality and (1.22) we get that

V [Z1] =
∑

1≤i≤bn2 c
0≤j<j′≤n−1

V [yi,jyi,j′ ] +
∑

1≤i,r≤bn2 c
0≤j,j′,s,s′≤n−1

j<j′; s<s′

(i,j,j′)6=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] = O(n) +O(n) = O(n).

(1.24)
This completes the proof of Claim 19 in the case when n is odd.
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Case 2: n even. We estimate the variances of Z0 and Z1. For n even, we can write Z0 as

Z0 =
∑

1≤i<n
2

0<j≤n−1

yi,j + 2

n
2
−1∑
j=0

yn
2
,j,

where all variables involved in the sums are mutually independent (see Remark 9). Thus

V [Z0] =
∑

1≤i<n
2

0≤j≤n−1

V [yi,j] + 4

n
2
−1∑
j=0

V
[
yn

2
,j

]
.

Using (1.17), we deduce that

V [Z0] =
(n

2
− 1
)
n

(
1

n
− 1

n2

)
+ 4

n

2

(
1

n
− 1

n2

)
= O(n), (1.25)

for all n even. By Remark 9, we can write Z1 as

Z1 =
∑

1≤i≤n
2

0≤j<j′≤n−1
j 6≡j′ (mod n/2)

yi,jyi,j′ +

n
2
−1∑
s=0

yn/2,s.

Therefore

V [Z1] =
∑

1≤i≤n
2

0≤j<j′≤n−1
j 6≡j′ (mod n/2)

V [yi,jyi,j′ ] +

n
2
−1∑
s=1

V
[
yn/2,s

]
+

∑
1≤i,r≤n

2
0≤j,j′,s,s′≤n−1

j<j′;s<s′

j 6≡n
2
j′; s 6≡n

2
s′

(i,j,j′)6=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ]

+ 2
∑

1≤u≤n
2

0≤v<v′≤n−1
v 6≡n

2
v′

0≤w≤n
2
−1

Cov
[
yu,vyu,v′ , yn

2
,w

]
+

∑
0≤w,w′≤n

2
−1

w 6=w′

Cov
[
yn

2
,w, yn

2
,w′
]

︸ ︷︷ ︸
= 0 (by Remark 9)

.

(1.26)

We divide the analysis into three parts: the first two sums, the third sum, and the fourth sum.
Using Remark 9, we write the first two sums in (1.26) as

∑
1≤i≤n

2
0≤j<j′≤n−1
j 6≡j′ (mod n/2)

V [yi,j]V [yi,j′ ] +

n
2
−1∑
s=1

V
[
yn/2,s

] (1.17)

≤ n · n2

(
1

n
− 1

n2

)2

+ n

(
1

n
− 1

n2

)
= O(n).

(1.27)
The third sum in (1.26) can be bounded above in the same way as in the odd case: the associated
graphs of variables yi,j, yi,j′ , yr,s, yr,s′ with non-zero covariance in the third sum, are isomorphic
to one of the graphs in Figure 1.2. Thus we can use Claim 20 and (1.23) to obtain∑

1≤i,r≤n
2

0≤j,j′,s,s′≤n−1
j<j′;s<s′

j 6≡n
2
j′; s 6≡n

2
s′

(i,j,j′)6=(r,s,s′)

Cov [yi,jyi,j′ , yr,syr,s′ ] = O(n). (1.28)
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G13 G14 G15

In the fourth sum in (1.26), the variables with non-zero covariance have an associated multi-
graph which is isomorphic to one of the following multi-graphs.
Let X :=

{
{yu,v, yu,v′ , yn

2
,w} : 1 ≤ u ≤ n

2
; 0 ≤ v < v′ ≤ n− 1; v 6≡n

2
v′; 0 ≤ w ≤ n

2
− 1
}
. In the

same way as Claim 20, we can prove that

# {X ∈ X : G(X) ∼= Gc} = O(n3), c = 13, 14, 15.

As in (1.23), we can prove that E
[
yu,vyu,v′yn

2
,w

]
= 1

n2 for all X = {yu,v, yu,v′ , yn
2
,w} ∈ X . Thus∑

1≤u≤n
2

0≤v<v′≤n−1
0≤w≤n

2
−1

Cov
[
yu,vyu,v′ , yn

2
,w

]
≤ 3 ·O(n3)

1

n2
= O(n). (1.29)

Plugging (1.27),(1.28),(1.29) into (1.26) finally yields

V [Z1] = O(n) +O(n) + 2 ·O(n) = O(n), (1.30)

for all n even. Equations (1.19),(1.24),(1.25) and (1.30) together yield Claim 19 in the case
when n is even. Thus we have fully established Claim 19.

1.5.3 Ezero(1/2− ε) has high probability

Using Chebyshev’s inequality, we obtain that

P [|Z0 − E [Z0] | ≥ λ0] ≤ V [Z0]

λ2
0

; P [|Z1 − E [Z1] | ≥ λ1] ≤ V [Z1]

λ2
1

,

for every λ0, λ1 > 0. In particular, this implies that

P [Z0 < E [Z0]− λ0] ≤ V [Z0]

λ2
0

; P [Z1 > E [Z1] + λ1] ≤ V [Z1]

λ2
1

.

Let ε ∈ (0, 1) be the constant from the statement of Lemma 7, and set ν = εn/8. Choosing
λ0 = λ1 = ν and using Claims 18 and 19 we get that

P [Z0 < E [Z0]− ν] ≤ V [Z0]

ν2
=
O(n)

n2
= O

(
1

n

)
;

P [Z1 > E [Z1] + ν] ≤ V [Z1]

ν2
=
O(n)

n2
= O

(
1

n

)
.

By Claim 18 we have
δ := (1/2− ε)

⌊n
2

⌋
≤ E [Z0 −Z1]− 2ν

for all sufficiently large n. Thus using Claim 15 we can conclude that

P [Eczero(1/2− ε)] = P
[{

b ∈Mn : D(b) < (1/2− ε)
⌊n

2

⌋}]
≤ P

[
Z0 < E [Z0]− ν

]
︸ ︷︷ ︸

= O
(

1
n

)
+P
[
Z1 > E [Z1] + ν

]
︸ ︷︷ ︸

= O
(

1
n

)

= O

(
1

n

)
.

This concludes the proof of Lemma 7.
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1.6 Connections with chromatic polynomials of circulant
graphs

As we have already seen in the proof of Claim 11, the multi-graph associated with the vari-
ables in row i 6= n

2
of Tb is the circulant graph Cn(i), and the same holds for the variables in

row n/2 if we consider the associated graph and not the associated multi-graph. Furthermore,
we can express the probability of synchronization of circular automata in terms of chromatic
polynomials of circulant graphs: this is a consequence of the close connection of the moments
ofD(b) to chromatic polynomials of circulant graphs. We formalize this in the following results.

Definition. The circulant graph Cn(i1, i2, . . . , ik) is a graph with vertex set Zn where two vertices
r, s are adjacent if

∣∣r − s∣∣
n
∈ {i1, i2, . . . , ik}.

Definition. Let G be a graph with vertex set {0, 1, . . . , n − 1}. The chromatic polynomial
P (G;x) : N→ N of G is defined by

P (G;x) := #{b ∈ {0, . . . , x− 1}n : b is a proper coloring of G}.

Remark 21. Let G be of order n. Then P (G;x) =
∑n

j=1 λjx
j, where λj ∈ Z (see, for instance,

[Fengming et al., 2005]).

Claim 22. Let D(b) and b = (b0, b1, . . . , bn−1) ∈Mn be as in Lemma 7. Then

E [D] =
⌊n

2

⌋
−
bn2 c∑
i=1

Pi(n)

nn

and

V [D] =
n∑
i=1

(
Pi(n)

nn
− P 2

i (n)

n2n

)
+ 2

∑
1≤i<j≤bn2 c

(
Pi,j(n)

nn
− Pi(n)Pj(n)

n2n

)
,

where Pi is the chromatic polynomial of the circulant graph Cn(i) and Pi,j is the chromatic
polynomial of the circulant graph Cn(i, j).

Remark 23. • It is easy to derive that Pi(x) =
(
(x− 1)li + (−1)li(x− 1)

) n
li where li = n

gcd(n,i)
,

because Cn(i) is a collection of gcd(n, i) disjoint cycles of length n
gcd(n,i)

[Boesch and Tindell, 1984].
With this explicit expression, an easy corollary of Claim 22 is the estimate E [D] ∼ (1−e−1)

⌊
n
2

⌋
.

• We could not find an explicit expression for Pi,j. The calculation of the chromatic number of
circulant graphs with an arbitrary number of parameters is an NP-Hard problem
[Codenotti et al., 1998]. This implies that the calculation of chromatic polynomials of circulant
graphs is also NP-Hard since χ(G) = argminw∈NP (G;w) > 0 – we believe that our unfruitful
attempts to estimate V [D] are connected to this. To circumvent these issues, the variables Z0

and Z1 in Section 1.5 were introduced.

Proof of Claim 22. Let us recall that D(b) =
∑bn2 c

i=1 Di(b), where

Di(b) :=

{
1, if there exist k, l ∈ Zn such that

∣∣k − l∣∣
n

= i and
∣∣bk − bl∣∣n = 0.

0, otherwise,

Then Di(b) = 1− xi(b), where

xi(b) :=
n∏
j=0

(
1− 1{

∣∣bj − b(j+i)n

∣∣
n

= 0}
)
.
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We observe that xi(b) = 1 if and only if every two numbers r, s ∈ Zn at cyclic distance i have
different images under b and xi(b) = 0 otherwise. If we consider b as a random coloring of
Cn(i), then xi(b) = 1 if and only if Cn(i) is properly colored by b. Thus

E [xi] = P [{b : xi(b) = 1}] =
Pi(n)

nn
.

In a similar way

E [xixj] = P [{b : xi(b)xj(b) = 1}] =
Pi,j(n)

nn
.

Therefore

E [D] =

bn2 c∑
i=1

E [Di] =

bn2 c∑
i=1

(1− E [xi]) =
⌊n

2

⌋
−
bn2 c∑
i=1

Pi(n)

nn
,

as well as

V [Di] = E
[
D2
i

]
− E [Di]

2 =

(
1− Pi(n)

nn

)
−
(

1− Pi(n)

nn

)2

=
Pi(n)

nn
− P 2

i (n)

n2n

and

Cov [Di, Dj] = E [DiDj]− E [Di]E [Dj] = E [(1− xi)(1− xj)]− E [1− xi]E [1− xj]
= E [xixj]− E [xi]E [xj]

=
Pi,j(n)

nn
− Pi(n)Pj(n)

n2n
.

Plugging the two previous equations into

V [D] =

bn2 c∑
i=1

V [Di] + 2
∑

1≤i<j≤bn2 c
Cov [Di, Dj]

yields Claim 22.

We get the following relation between chromatic polynomials of circulant graphs and synchro-
nization of circular automata. The number 0.13 in the statement of Theorem 24 comes from
1/2− e−1 ≈ 0.13.

Theorem 24. Let An(b) be a circulant graph as introduced in Section 1.2. Let ε ∈ (0, 0.13],
then there exist nε ∈ N such that for all n ≥ nε it holds that

P [{b ∈Mn : An(b) synchronizes}] ≥ 1−
⌊n

2

⌋
exp

{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
− V [D](

ε
⌊
n
2

⌋
− 1
)2 ,

where V [D] is as given in Claim 22.

Proof. By (1.12),(1.14) we know that

P [Ecrow(α?)] ≤
⌊n

2

⌋
exp

{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
, (1.31)
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for all ε > 0 and n large enough, where α? = 1 − e−1 − ε. Using the expression for Pi in
Remark 23, together with the well-know inequality 1 − x ≤ e−x, x ∈ R, we bound Pi(n)/nn

from above

Pi
nn

=

(
n− 1

n

)n(
1 +

(−1)`i

(n− 1)`i−1

) n
`i

≤ e−1

(
1 +

1

(n− 1)`i−1

) n
`i

≤ e−1e
n
`i
· 1

(n−1)`i−1

= exp

{
−1 +

n

`i · (n− 1)`i−1

}
and thus

Pi
nn
≤


exp

{
−1 + 1

2
·
(

n
n−1

)}
, if i = n

2
i.e. `i = 2;

exp
{
−1 + n

3(n−1)2

}
, if i 6= n

2
i.e. `i ≥ 3.

(1.32)

Using Equation 1.32 and the equation E [D] =
⌊
n
2

⌋
−
∑bn2 c

i=1
Pi(n)
nn from Claim 22 we get that

E [D] ≥
⌊n

2

⌋(
1− exp

{
n

3(n− 1)2
− 1

})
− 1 = η?.

By Chebyshev’s inequality and elementary manipulations, we get that

P [{b ∈Mn : D(b) < η? − λ}] ≤
V [D]

λ2
,

for all λ > 0. Let ε > 0. Setting λ = λ′ε(n) = η? −
⌊
n
2

⌋
(1− e−1 − ε) + 1 and noting that λ > 0

for n large enough, we get that

P
[(
E β̃zero

)c]
= P

[{
b ∈Mn : D(b) <

⌊n
2

⌋ (
1− e−1 − ε

)
− 1
}]
≤ V [D]

(λ′ε(n))2 ≤
V [D](⌊
n
2

⌋
ε− 1

)2

(1.33)
for n sufficiently large, where β̃ = 1 − e−1 − ε − 1/

⌊
n
2

⌋
. Using the previous inequalities, we

conclude that

P [{b ∈Mn : An(b) synchronizes}]
(1.7)
≥ 1− P [Ecrow(α?)]− P

[
Eczero(β̃)

]
(1.34)

≥ 1−
⌊n

2

⌋
exp

{
− 1

2n

(
ε
⌊n

2

⌋
− 1
)2
}
− V [D](

ε
⌊
n
2

⌋
− 1
)2

(1.35)

for n large enough where the relations α?, β̃ > 0 and α? + β̃ > 1 are valid when ε ∈ (0, 0.13]
and n is large enough.

Actually, we formulate the following conjecture:

Conjecture 25. V [D] = O(n).

This conjecture can be reduced to prove that there is g : N→ R such that |Pi,j(n)

nn − Pi(n)Pj(n)

n2n | ≤
g(n) = O(1/n) for all i, j, indeed: from Equation 1.32 we see that 0 ≤ Pi(n)/nn ≤ f(n) = O(1)

for all i, therefore the first part of the sum of V [D] given in Claim 22 is |
∑n

i=1

(
Pi(n)
nn − P 2

i (n)

n2n

)
| ≤
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nf(n) = O(n), the second part of the sum
∑

1≤i<j≤bn2 c
(
Pi,j(n)

nn − Pi(n)Pj(n)

n2n

)
has a quadratic

number of elements of the form Pi,j(n)

nn − Pi(n)Pj(n)

n2n and it can be bounded by O(n2)g(n) = O(n)

if the assumption |Pi,j(n)

nn − Pi(n)Pj(n)

n2n | ≤ g(n) = O(1/n) for all i, j is true, making V [D] =
O(n) + O(n) = O(n). In particular, a positive answer to this chromatic-polynomial question
would give an alternative proof of Theorem 4.

1.7 Future work
Let An(a,b) be an automaton where a : Zn → Zn is fixed and b ∈ Mn. These are natural
lines of research to extend/improve the results in this chapter:
• We want to explore in more detail the strengths and limitations in the ideas presented in
this chapter. For example, we think that these ideas can extend Theorem 4 to the case where
a : Zn → Zn is in the form of a finite number of pairwise disjoint cycles of almost-equal length.
We also think that (probabilistic) upper bounds for the length of the synchronizing minimal
words can be given with our techniques, in the spirit of the results of [Nicaud, 2019].
• Theorem 3 has a decay rate in Θ

(√
p

ep

)
. Based on Theorem 3 and computational simulations,

we believe that this can be extended:

Conjecture 26. There is some ε > 0 such that

P [{b ∈Mn : An(b) synchronizes}] = 1−O(e−εn)

as n→∞.
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Chapter 2

Estimations of means and variances in a
Markov linear model

Multivariate regression models and ANOVA are probably the most frequently applied methods
of all statistical analyses. We study the case where the predictors are qualitative variables,
and the response variable is quantitative. In this case, we propose an alternative to the classic
approaches that do not assume homoscedasticity or normality of the error term but assumes
that a Markov chain can describe the covariates’ correlations.

This approach transforms the dependent covariate using a change of measure to independent
covariates. The transformed estimates allow a pairwise comparison of the mean and variance
of the contribution of different values of the covariates. We show that under standard moment
conditions, the estimators are asymptotically normally distributed. We test our method with
simulated data and apply it to several classic data sets.

The contents of this chapter are based on the papers [Gutierrez and Müller, 2019] and
[Gutierrez and Müller, 2020] which were written in collaboration with Sebastian Müller.
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2.1 Introduction
We propose a linear model for qualitative predictors, X(1), . . . , X(m) and a categorical re-
sponse variable Y . In contrast to classic linear approaches as linear regression and ANOVA,
our approach allows us to model different variances for each category and the error term
to be arbitrary. It weakens the assumptions of independent predictors of a previous work
[Gutierrez and Müller, 2019], in the following way: the value of X(k+1) conditioned on X(k) is
independent of X(k−1), for all reasonable choices of k.

Our approach is in a “probabilistic spirit” since we use Markov chains and a change of
measure similar to a Girsanov transform to model the correlation between the predictors and
use classic results on random walks to study the asymptotic behavior of the resulting estimators.

The approach is probably best understood with a comparison to standard linear models. Let
us assume that there are two categorical predictors or groups X(1) and X(2) and a quantitative
response Y . We assume that each predictor can take values in {1, . . . , ki}, i ∈ {1, 2} and encode
the values of these variables using the vectors1

X̂(i) = (1{X(i) = 1}, . . . ,1{X(i) = ki}). (2.1)

Let α(i) ∈ Rki be real vectors and ε(i) be random vectors taking values in Rki ; we assume that
E[ε(i)] = 0, but allow the variances of each component to be different and denote σ(i)

j = V[ε
(i)
j ].

We assume the following linear relationship between the two categorical predictors and the
response variable:

y = (α(1) + ε(1))x̂t1 + (α(2) + ε(2))x̂t2. (2.2)

In a standard linear regression model or ANOVA the linear relationship between predictors and
the response variable looks like

y = α(1)x̂t1 + α(2)x̂t2 + ε. (2.3)

Note that here ε is a random error that it supposed to be centered and gaussian. In particular,
the classic models assume that the contribution to the random error is the same for each
category. In our proposed model, we generalize this to possible different variances and also
provide estimators for these differences for different categories.

We propose a modeling of dependencies between different predictors using Markov chains
and a pathwise approach. Since the predictors are categorical variables, every individual of
the sample corresponds to a path. For instance, in Figure 2.1 the bold path corresponds to
an individual with X(1) = X(2) = 1. A Markov chain now gives the dependencies between
the different categories. The probability of choosing category i in predictor one is ps,1i; cor-
responding to the initial measure of a Markov chain. Now, the probability of choosing j in
predictor two conditioned on having chosen i in predictor one is given by p1i,2j. Again, each
path corresponds to the categories of an individual. If the transition probability is those of a
uniform distribution, the categories of the individuals are independent.

In the case of non-uniform transition, estimations for the contribution of specific factors can
be biased. For instance, in the situation of Figure 2.1 assume that factor 1 has no contribution,
but the category in factor 2 has a much higher contribution than the other categories of this
factor. Now, if the probability that category 1 of factor 1 is chosen together with category 1
of factor 2 with much higher probability than the other categories in factor 1, the contribution
of category 1 of factor 1 is generally overestimated if one works under the assumption of
independence of the factors. This situation corresponds to multicollinearity in linear models.
The correlation between predictor variables makes estimation and interpretation of the models

1In contrast to the standard encoding of categorical variables in linear models with ki − 1 dummy variables,
we choose ki dummy variables.
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Factor 1 Factor 2

ps,11

p11,21

p21,t

Figure 2.1: An illustration of a path passing through different workstations in a production
network.

more complicated than in the independent case, since it is difficult to disentangle the impacts
of different predictor variables on the response.

We solve this problem in transferring the non-uniform setting to a uniform setting using a
discrete Girsanov transform, see Lemma 35. This transforms quantifies the biases introduced
by the variables’ dependence. Here, the martingale measure in the standard Girsanov transform
corresponds to the setting of uniform transition or independence of the predictors. In other
words, the Girsanov transform allows us to quantify the dependence of the predictors and
change the measure to a uniform or independent setting.

As presented in Section 2.6, the estimators proposed show a good performance if the number
of covariates (number of workstations in the network) is small or if the correlation structure
is known (how the transitions behave). However, we have to note that the estimators may
have a large variance in the case of a large number of covariates. This is because the variance
of the estimator of given paths increases with the number of possible states. These effects
amplify if the probabilities of the given paths are close to zero since these quantities are in the
denominator of the final estimators (see Definition 1).

2.1.1 Motivation

The proposed model applies in a very general setting. However, it is motivated by real-world
applications in the quality control of parallel production networks, see also the previous work
[Gutierrez and Müller, 2019], and we think it might be useful to have this particular use case
in mind.

In parallel production networks, the quality of the end product depends on various inter-
mediate production steps. Therefore, a recent challenge is to achieve a level of visibility into
the production flows that allow us to optimize throughput by guaranteeing at the same time
given quality standards.

We consider a production network consisting of several workstations; see Figure 2.1. Each
workstation is a parallel configuration of machines performing the same kind of tasks on a given
part. Parts move from one workstation to another, and at each workstation, a part is assigned
randomly to a machine. We assume that the production network is acyclic, i.e., a part does
not return to a workstation where it previously received service. Furthermore, we assume that
the quality of the end product is additive, that is, the final quality is the sum of the machines’
quality contributions along the production path. Separate latent random variables model the
contribution of each machine. Note that the product’s quality can be replaced by the time it
takes to perform specific tasks. In this language, our main result is constructing estimators
that allow pairwise and multiple comparisons of the means and variances of different machines
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in the same workstation. These comparisons then may lead to the identification of unreliable
machines.

In Section 2.6, we treat examples of different kinds to illustrate that the method applies to
various kinds of use cases.

2.1.2 Related work

As mentioned above, estimations for the mean can also be conducted using multivariate regres-
sion with categorical covariates or ANOVA, e.g., [Rutherfors, 2011]. However, since in linear
models, homoscedasticity is necessary, this approach naturally does not allow to compare dif-
ferences of the variances. Linear regression models are often plagued by different variabilities
or heteroskedasticity. We refer to [Kleiber and Zeileis, 2008, Chapter 4] for an overview of how
to detect and control heteroskedasticity. In contrast to these problems, our approach naturally
allows different variabilities between variables and can detect differences in the variability of
values of a given variable.

Multifactor experimental designs, [Draper and Pukelsheim, 1996, Selvamuthu and Das, 2018]
are also alternatives to estimate the mean differences but again rely on homoscedasticity. They
are mostly used in the context of statistically planned experiments, which consists of a few
experimental runs to obtain data on the characteristics under consideration. If the number
of observations for each setting (or path in our notation) is sufficiently high and under fur-
ther conditions described in [Draper and Pukelsheim, 1996, Section 4], these methods allow a
comparison of the variances, too. While this may offer a feasible, however not direct, way to
identify differences in variability if the number of covariates is small, it seems not practical in
more complex situations.

There is also a connection to critical paths analysis, e.g., [Bohme et al., 2019, Schulz, 2005].
While these methods allow us to find critical paths in acyclic networks, they are not suited to
compare nor estimate differences in mean and variances of given tasks.

2.1.3 Outline

In Section 2.2, we define the model using Markov chains and directed acyclic graphs. In Section
2.3 we summarize the results on the case of independent covariates from [Gutierrez and Müller, 2019].
Section 2.4 contains the main results. Lemma 35 describes the Girsanov transform . In Theo-
rems 36, we prove asymptotic consistency of the estimators for mean and variance. In Section
2.5, their asymptotic distribution is given for the case where the correlations are known in
Theorem 39, and where the correlations are unknown in Theorem 42. Last but not least, we
present several examples in Section 2.6.

2.2 The model

We use a directed acyclic graph (DAG) to describe the dependencies of the covariates. A DAG
is a finite directed graph with no directed cycles. It consists of a finite vertex set V and a finite
set of directed edges E = {(v, w) : v, w ∈ V, v 6= w}. In our setting the DAG contains two
special vertices: a source s and a sink t. We are interested in the paths from the source to the
sink in this graph. We denote a path ~p in the DAG as ~p = (p0, p1, . . . , pc, pc+1) where p0 = s
and pc+1 = t and (pi, pi+1) ∈ E. We define ~p[j] := pj. We refer to Figure 2.2 for an illustration
and to [Bang-Jensen and Gutin, 2009] for more details on directed graphs.

We assume that at each step 1 ≤ i ≤ c the path ~p has ri ≤ r different choices and the
nodes in each column are always numerated starting with 1. The possible choices of a path can
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Figure 2.2: An illustration of a DAG with c = 4 and r1 = 4, r2 = 3, r3 = 2 and r4 = 4. Every
node in column i has outgoing edges to every node in column i+ 1, i = 1, . . . , c− 1.

therefore be modeled through an r × c matrix. More precisely, given a path ~p, we associate an
r × c binary matrix V~p that has 1’s only in the nodes visited by the path:

V~p := (V~p(i, j))i∈[r], j∈[c],

where we denote [k] := {1, 2, . . . , k} for an integer k. We call V~p the indicator matrix of the
path ~p.

Each path contains exactly one node of each column. This chapter aims to study differences
among nodes of the same columns. We think of nodes in the same columns as different possi-
bilities for a given task, as different persons performing the same job, as different machines in
the same workstation, or as variations of the same kind of treatment.

The given data consists of the list of paths {~pi}i=1,...,n in the DAG and the list of outputs
{b(~pi)}i=1,...,n for each path. We consider the quality matrix S, which is a random matrix of
size r × c with real entries:

S := (s(i, j))i∈[r], j∈[c], s(i, j) ∈ R.

We model the paths with a random vector ~P := (P1, . . . , Pc) where the components Pi are
random variables over the set [r].

Throughout the chapter we work under the following standing assumptions:
Assumption 27. We assume that:

1. the paths ~P1, ~P2, . . . are chosen independently and according to a Markov chain, see
Section 2.4 for more details.

2. all entries of S have finite second moments;

3. the random variables S(i, j), i ∈ [r], j ∈ [c] are (jointly) independent and the are inde-
pendent from the paths ~P1, ~P2, . . .

Note that, we do not assume the entries of S to be identically distributed or having the same
variance.

Let ~p = (p0, p1, . . . , pc, pc+1) be a realization of ~P , where p0 = s and pc+1 = t almost surely.
Then, the quality of the construction path ~p is defined as

b(~p, S) :=
c∑
j=1

S(pj, j).
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In some situation we will abbreviate b(~p, S) and write only b(~p). We also can think of b(~p) as
the quality (or error) cumulated along the path ~p or as the response variable Y in the language
of linear models. We want to stress out that the model fits the description in (2.2) and that we
will continue to use the “graph-based” description of the model since it is best suited for our
approach and used methods.

Let us make precise how the randomness enters in our model. We choose a random path ~P
and a random matrix S. The corresponding probability measure is denoted by P. The random
choice of ~P and S induces a random variable b( ~P) = b( ~P , S) and allows to generate a sequence
of i.i.d. random variables ( ~P1, b( ~P1)), ( ~P2, b( ~P2)), . . ..

Our goal is to give estimates on the law of S by observing the paths ~P and its cumulated
qualities b( ~P). Note that, ( ~Pn, b( ~Pn))n∈N is in general not a sufficient statistic for S, i.e., we
can not recover the distribution of S by only observing realizations of ( ~P , b( ~P)), as we see in
the following remark.

Remark 28. Let us consider the case r = 1 and c = 2. Let S(1, 1) ∼ N (0, 1) and S(1, 2) ∼
N (1, 1) and define S̃(1, 1) := S(1, 1) + 1 and S̃(1, 2) := S(1, 2)− 1. Then for any given path ~p
we have that

∑2
j=1 S(pj, j) =

∑2
j=1 S̃(pj, j). Hence, the statistic (~pn, b(~pn))n∈N does not allow

us to distinguish between S and S̃.

Example 29 (Binary errors). The matrix S consists of independent Bernoulli random variables
S(i, j). The value 1 of this Bernoulli may encode a defect and hence b(~p) counts the number of
defects of the end product.

Example 30 (Gaussian error). The matrix S consists of independent Gaussian random variables
S(i, j). The quality or response b(~p) is then distributed as a (random) mixture of Gaussian
random variables.

Given a sequence of realizations (~pk)k∈[n] of ~P , we define the following matrices that are at
the core of our analysis:

B(n) :=
n∑
k=1

b(~pk)V~pk , V
(n) :=

n∑
k=1

V~pk , n ≥ 1.

The value B(n)(i, j) is the sum of all cumulated qualities of paths containing node (i, j), whereas
V (n)(i, j) just counts the number of times node (i, j) was used. We define the sample mean
matrix as the sample mean quality matrix :

T (n) := (T (n)(i, j))i∈[r], j∈[c], where T (n)(i, j) :=

{
B(n)(i,j)

V (n)(i,j)
, if V (n)(i, j) 6= 0;

0, otherwise.

The corresponding sample variance matrix Σ(n) is defined by

Σ(n)(i, j) :=

{
1

V (n)(i,j)

∑n
k=1

(
b(~pk)V~pk(i, j)− T (n)(i, j)

)2
, if V (n)(i, j) 6= 0;

0, otherwise.

Remark 31. In this chapter, we assume every path has one vertex per column. However, it is
relatively straightforward to generalize this model to the case where columns can be "skipped."
, we can construct a new DAG by adding a dummy node in each column. For instance, this
new dummy variable may describe the effect if a certain production step was skipped. Note
also that in theory, the model can be generalized to general DAGs; however, we do not expand
here on this since we did not find suitable applications of the more general model.
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2.3 Uniform transition model.
In this section we review some results from [Gutierrez and Müller, 2019] in the special case
where the paths ~P1, ~P2, . . . are chosen independently and uniformly.

Theorem 32. Let the paths ~P1, ~P2, . . . be chosen independently and uniformly. Let (i, j), (i′, j) ∈
[r]× [c], then

T (n)(i, j)− T (n)(i′, j)
a.s.−−−→
n→∞

E[S(i, j)]− E[S(i′, j)]

and
Σ(n)(i, j)− Σ(n)(i′, j)

a.s.−−−→
n→∞

V[S(i, j)]− V[S(i′, j)].

Proof. We give the proof from [Gutierrez and Müller, 2019] since it illustrates the idea behind
the construction of the estimators. Let D(n) = ( ~P1, . . . , ~Pn) be the the (multi-)set of the first n
paths and D(n)

(i,j) be the the multi-set containing only those paths passing through (i, j). Using
twice the law of large numbers and the continuous mapping theorem, we obtain

T (n)(i, j) =
1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)

=
n

|D(n)
(i,j)|

1

n

∑
~p∈D(n)

(i,j)

b(~p)

a.s.−−−→
n→∞

1

P( ~P [j] = i)
E[b( ~P); ~P [j] = i] = E

[
b( ~P) | ~P [j] = i

]
.

In the same way

T (n)(i′, j) =
1

|D(n)
(i′,j)|

∑
~p∈D(n)

(i′,j)

b(~p)
a.s.−−−→
n→∞

E
[
b( ~P) | ~P [j] = i′

]
.

Using the assumption that the paths are chosen uniformly and the definition of b( ~P), we obtain
the first part of the theorem from

E
[
b( ~P)| ~P [j] = i

]
− E

[
b( ~P) | ~P [j] = i′

]
=

E
[
b( ~P); ~P [j] = i

]
− E

[
b( ~P); ~P [j] = i′

]
P( ~P [j] = i)

=
E
[
S(i, j); ~P [j] = i

]
− E

[
S(i′, j); ~P [j] = i′

]
P( ~P [j] = i)

= E[S(i, j)]− E[S(i′, j)].

For the second part of the theorem, we use the law of large numbers and the continuous mapping
theorem to get that

Σ(n)(i, j) =

 1

|D(n)
ij |

∑
~p∈D(n)

ij

b2(~p)

− (T (n)(i, j)
)2

a.s.−−−→
n→∞

E
[
b( ~P)2| ~P [j] = i

]
− E

[
b( ~P)| ~P [j] = i

]2

.

Using the definition of b(~p) and the jointly independence of the entries of S (see Assumption 27)
we deduce with elementary calculations that

E
[
b( ~P)2| ~P [j] = i

]
− E

[
b( ~P)| ~P [j] = i

]2

= Aj + V [S(i, j)]
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Figure 2.3: An example of the Markov chain transition model.

where

Aj =
c∑
l=1
l 6=j

V
[
S( ~P [l], l)| ~P [j] = i

]
is a quantity that only depend on the column j. Applying this identify for (i, j) and (i′, j) we
obtain that

Σ(n)(i, j)− Σ(n)(i′, j)
a.s.−−−→
n→∞

V [S(i, j)]− V [S(i′, j)] .

2.4 Markov chain transition model.
In this Section, we will treat the more general case where the random path ~P is the path of a
Markov chain. This case corresponds to the situation where the covariates may be dependent,
and their correlation follows a Markov structure. For instance, in the example of a production
network, this means that the effect of machines of different production steps (or columns) are
correlated.

More formally, we consider the time-inhomogeneous Markov chain on {1, . . . , r} with initial
state s and absorbing state t. At the time 0, we start the Markov chain in the source s. The
transition kernel for the first step is given by

Q(1)(s, i) =

{
q

(1)
s,i , if i ≤ r1;

0, otherwise.
(2.4)

The next c− 1 steps are defined as follows. For 2 ≤ k ≤ c:

Q(k)(i, j) =

{
q

(k)
(i,j), if i ∈ [rk−1], j ∈ [rk]);

0, otherwise.
(2.5)

Finally, the last step is determined by

Q(c+1)(i, t) =

{
1, if i ∈ [rc];

0, otherwise.
(2.6)

The matrices Q(k), k ∈ [c+1], are all supposed to be stochastic matrices. Equation (2.4) forces
the initial state s to jump into a state of the first column. Equation (2.5) forces a node in
column j to jump into a node of column j + 1. In the case that the node is in the last column
c, Equation (2.6) forces it to jump into the final absorbing state t.
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Remark 33. The uniform transition model is a special case of the Markov chain transition
model. In fact, setting q(1)

s,i := 1/ri, i ∈ [r1] and q
(k)
i,j := 1/rk, i ∈ [rk−1], j ∈ [rk] yields the

uniform transition model.

A Markov chain, as given above, defines a natural probability measure on the paths in the
DAG. The measure that chooses a path ~p according to Q := (Q(1), Q(2), . . . Q(c+1)), and the
values along ~p according to S is denoted by PQ, where

PQ
[
~P = ~p

]
= Q(1)(s, ~p[1]) ·

c∏
k=2

Q(k)(~p[k − 1], ~p[k]).

We define the support of the measure Q as

SuppQ :=
{
~p : PQ( ~P = ~p) > 0

}
.

A node is reachable if there exists a path with positive probability through this node. We
enumerate the reachable nodes in each column starting from 1. The set

SuppQi,j := {~p ∈ SuppQ : ~p[j] = i}

is the set of all paths of positive probability passing through (i, j). We consider the (multi-)set
D(n) = ( ~P1, . . . , ~Pn) of the first n paths and the multi-set D(n)

(i,j) containing only those paths
passing through (i, j).

Remark 34. Let (i, k) and (i′, k) be two Q-reachable nodes in the same column. A consequence
of the proof of Theorem 32 is that if for all ` ∈ [r]

q(k)(`, i) = q(k)(`, i′),
q(k+1)(i, `) = q(k+1)(i′, `),

then
T (n)(i, j)− T (n)(i′, j)

PQ−a.s.−−−−→
n→∞

E[S(i, j)]− E[S(i′, j)].

and
Σ(n)(i, j)− Σ(n)(i′, j)

PQ−a.s.−−−−→
n→∞

V[S(i, j)]− V[S(i′, j)].

Let Q := (Q(1), Q(2), . . . , Q(c+1)) et Q̃ := (Q̃(1), Q̃(2), . . . Q̃(c+1)) be two sequences of transition
matrices. We say that Q and Q̃ are equivalent (as measures) if

Q(k)(i, j) > 0⇐⇒ Q̃(k)(i, j) > 0,

for all meaningful choices of i, j and k. In particular, Q and Q̃ are equivalent iff SuppQ = SuppQ̃.
Moreover, the induced measures on the set of paths are equivalent and there exists a discrete
Radon-Nykodym derivative that allows a change of measures.

Lemma 35. Let (i, j) be a node and let Q, Q̃ be two equivalent sequences of transition matrices
and let f : PQ × Rr×c → R be a measurable function, then

EQ
f( ~P , S)

PQ̃
(
~P ′ = ~P| ~P ′[j] = i

)
PQ
(
~P ′ = ~P| ~P ′[j] = i

)
∣∣∣∣∣∣ ~P [j] = i

 = EQ̃[f( ~P , S)| ~P [j] = i]

where ~P ′ is an independent copy of ~P.
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Proof. Given a fixed path ~p, we observe that

EQ̃ [f(~p, S)] = EQ [f(~p, S)] ,

because S is independent of the random paths ~P by point (3) in Assumption 27. Using this,
the theorem of total probability and a change of measure, we get that

EQ̃[f( ~P , S)| ~P [j] = i] =
∑

~p:~p[j]=i

EQ̃ [f(~p, S)]PQ̃
(
~P = ~p| ~P [j] = i

)

=
∑

~p∈ SuppQ
i,j

EQ [f(~p, S)]PQ
(
~P = ~p| ~P [j] = i

) PQ̃
(
~P = ~p| ~P [j] = i

)
PQ
(
~P = ~p| ~P [j] = i

)
=

∑
~p∈ SuppQ

i,j

EQ
f(~p, S)

PQ̃
(
~P = ~p| ~P [j] = i

)
PQ
(
~P = ~p| ~P [j] = i

)
PQ

(
~P = ~p| ~P [j] = i

)

= EQ
f( ~P , S)

PQ̃
(
~P ′ = ~P| ~P ′[j] = i

)
PQ
(
~P ′ = ~P| ~P ′[j] = i

)
∣∣∣∣∣∣ ~P [j] = i

 .

We can now define the estimators for the means and variances.
Definition 1. We define

T
(n)

Q,Q̃
(i, j) :=

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)


and

Σ
(n)

Q,Q̃
(i, j) :=

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)
PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)
− (T (n)

Q,Q̃
(i, j).

)2

Theorem 36. Let (i, j) be a node and let Q, Q̃ be two equivalent sequences of transition ma-
trices. Then,

T
(n)

Q,Q̃
(i, j)

PQ−a.s.−−−−→
n→∞

EQ̃
[
b( ~P)

∣∣∣ ~P [j] = i
]
,

Σ
(n)

Q,Q̃
(i, j)

PQ−a.s.−−−−→
n→∞

VQ̃[b2( ~P)| ~P [j] = i].

Proof. The first observation is that

T
(n)

Q,Q̃
(i, j) =

n

|D(n)
(i,j)|
· 1

n

n∑
k=1

1{~pk[j] = i}b(~pk)
PQ̃
(
~P = ~pk

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~pk

∣∣∣ ~P [j] = i
)
 .

Using twice the law of large numbers and the continuous mapping theorem we obtain

T
(n)

Q,Q̃
(i, j)

PQ−a.s.−−−−→
n→∞

PQ( ~P [j] = i)−1EQ
1{ ~P [j] = i}b( ~P)

PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)
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= EQ
b( ~P)

PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)
∣∣∣∣∣∣ ~P [j] = i

 ,
where ~P ′ is an independent copy of ~P . Now, using Lemma 35 with f = b and recalling that
b( ~P) = b( ~P , S), we get that:

EQ
b( ~P)

PQ̃
(
~P ′ = ~P| ~P ′[j] = i

)
PQ
(
~P ′ = ~P| ~P ′[j] = i

)
∣∣∣∣∣∣ ~P [j] = i

 = EQ̃[b( ~P)| ~P [j] = i].

For the second part of the theorem, we note that

Σ
(n)

Q,Q̃
(i, j) =

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)
PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)
− (T (n)

Q,Q̃
(i, j)

)2

PQa.s.−−−→
n→∞

EQ
b2( ~P)

PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)
∣∣∣∣∣∣ ~P [j] = i

− (EQ̃ [b( ~P)

∣∣∣∣ ~P [j] = i

])2

.

Using again Lemma 35 but this time with f = b2, we get that

EQ
b2( ~P)

PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)
∣∣∣∣∣∣ ~P [j] = i

 = EQ̃
[
b2( ~P)

∣∣∣ ~P [j] = i
]
,

therefore

ΣQ,Q̃(i, j)
PQa.s.−−−→
n→∞

EQ̃
[
b2( ~P)

∣∣∣∣ ~P [j] = i

]
−
(
EQ̃
[
b( ~P)

∣∣∣∣ ~P [j] = i

])2

= VQ̃[b2( ~P)| ~P [j] = i].

We obtain the following consequence of the Theorems 32 and 36.

Corollary 37. Let Q̃ = U be the transition matrix corresponding to the uniform transitions.
If Q and Q̃ are equivalent transition matrices then

T
(n)
Q,U(i, j)− T (n)

Q,U(i′, j)
PQ−a.s.−−−−→
n→∞

E[S(i, j)]− E[S(i′, j)],

and
Σ

(n)
Q,U(i, j)− Σ

(n)
Q,U(i′, j)

PQ−a.s.−−−−→
n→∞

V[S(i, j)]− V[S(i′, j)].

Remark 38. In the case Q̃ = U the estimators can be written in a more explicit form. For
example,

T
(n)
Q,U(i, j) =

∏
` 6=j(r`)

−1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)PQ
(
~P [j] = i

)
PQ
(
~P = ~p

)
 .
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2.5 Asymptotic distribution of the estimators

2.5.1 Known Q and Q̃

In the case where both distributions, Q and Q̃, are known, we deduce the asymptotic distribu-
tion of the estimators T (n)

Q,Q̃
(i, j) and Σ

(n)

Q,Q̃
(i, j).

Theorem 39. We have that√
|D(n)

(i,j)|(T
(n)

Q,Q̃
(i, j)− µi,j)

PQ−distr.−−−−−→
n→∞

N (0, σ2
i,j)

where

µi,j = EQ̃[b( ~P)| ~P [j] = i] and σ2
i,j = EQ̃[b( ~P)2| ~P [j] = i]− EQ̃[b( ~P)| ~P [j] = i]2.

If we assume that the entries of S have finite forth moments, we have that√
|D(n)

(i,j)|
(

Σ
(n)

Q,Q̃
(i, j)− σ2

i,j

)
PQ−distr.−−−−−→
n→∞

N (0, (1,−1)Σi,j(1,−1)T ),

where Σi,j equals to VQ
[
b2(~P)Ci,j(~P)

∣∣~P[j] = i
]

2µi,jCovQ
[
b2(~P)Ci,j(~P), b(~P)Ci,j(~P)

∣∣~P[j] = i
]

2µi,jCovQ
[
b2(~P)Ci,j(~P), b(~P)Ci,j(~P)

∣∣~P[j] = i
]

4µ2
i,jVQ

[
b(~P)Ci,j(~P)

∣∣~P[j] = i
] 

and Ci,j(~p) =
PQ̃(~P=~p|~P[j]=i)
PQ(~P=~p|~P[j]=i)

.

Remark 40. The assumption of existence of second moments for S is natural because this
guarantees the existence of a CLT for the first moments of its entries. In the same way, the
existence of fourth moments guarantees the existence of a CLT for the variances of the entries
of S.

Proof. Let us observe that

T
(n)

Q,Q̃
(i, j) =

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)
PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)

=
1

|D(n)
(i,j)|

n∑
k=1

b( ~Pk)
PQ̃
(
~P = ~Pk

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~Pk

∣∣∣ ~P [j] = i
)1{ ~P [j] = i

}
.

The last sum can be interpreted as a sum of i.i.d. random variables appearing in an acceptance-

rejection sampling. More precisely, we start with
(
~P1, b( ~P1)

PQ̃(~P=~P1|~P[j]=i)
PQ(~P=~P1|~P[j]=i)

)
and k = 1; if

~Pk[j] = i then we set

Yi,j := b( ~Pk)
PQ̃
(
~P = ~Pk

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~Pk

∣∣∣ ~P [j] = i
) (2.7)

and stop, otherwise we increase k and repeat until ~PK [j] = i for the first K := inf{k| ~Pk[j] = i}.
Now, letting

f( ~Pk) := b( ~Pk)
PQ̃
(
~P = ~Pk

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~Pk

∣∣∣ ~P [j] = i
) (2.8)
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we obtain for y ∈ R that

PQ[Yi,j ≤ y] =
∞∑
k=1

PQ[f( ~Pk) ≤ y|K = k]PQ[K = k] = PQ[f( ~P1)| ~P1[j] = i];

this means that the distribution of Yi,j equals the distribution of f( ~P1) conditioned on ~P1[j] = i.

Iterating this acceptance-rejection method, we see that |D(n)
i,j | describes the number of accep-

tances among ( ~Pk, f( ~Pk)) for 1 ≤ k ≤ n. Therefore, the estimator T (n)

Q,Q̃
has the same distribu-

tion as

1

|D(n)
i,j |

|D(n)
i,j |∑

k=1

Y
(k)
i,j ,

where Y (k)
i,j , k ∈ N is a sequence of i.i.d. random variables distributed as f( ~P1) conditioned on

~P1[j] = i. Finally, Anscombe’s Theorem [Gut, 2009] implies that√
|D(n)

(i,j)|(T
(n)

Q,Q̃
(i, j)− µi,j)

PQ−distr.−−−−−→
n→∞

N (0, σi,j) (2.9)

where

µi,j = EQ̃[b( ~P1)| ~P1[j] = i] and σ2
i,j = EQ̃[f( ~P)2| ~P [j] = i]− EQ̃[f( ~P)| ~P [j] = i]2.

For the variance, we assume that the entries of S have finite fourth moments. The estimator
for the variance has the following form:

Σ
(n)

Q,Q̃
(i, j) =

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)
PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)

PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)
− (T (n)

Q,Q̃
(i, j)

)2

; (2.10)

We consider the following i.i.d. vectors ~Y (k)
i,j = (Y1,k, Y2,k) where ~Y (k)

i,j is distributed asb2( ~P)
PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
) , b( ~P)

PQ̃
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)

PQ
(
~P ′ = ~P

∣∣∣ ~P ′[j] = i
)


under PQ conditioned on ~P ′[j] = i. We write Ci,j(~p) :=
PQ̃(~P=~p|~P[j]=i)
PQ(~P=~p|~P[j]=i)

and, due to Lemma 35,

for k ∈ {1, 2}
µ

(k)
i,j := EQ[b( ~P)kCi,j( ~P)| ~P [j] = i] = EQ̃[b( ~P)k| ~P [j] = i], (2.11)

and covariance matrix

Σ′i,j =

 VQ
[
b2(~P)Ci,j(~P)

∣∣~P[j] = i
]

CovQ
[
b2(~P)Ci,j(~P), b(~P)Ci,j(~P)

∣∣~P[j] = i
]

CovQ
[
b2(~P)Ci,j(~P), b(~P)Ci,j(~P)

∣∣~P[j] = i
]

VQ
[
b(~P)Ci,j(~P)

∣∣~P[j] = i
]  .

(2.12)
We conclude from Theorem 48 that

√
|D(n)

(i,j)|

(
1

|D(n)

(i,j)
|

∑
~p∈D

(n)
(i,j)

(
b2(~p)Ci,j(~p)− µ(2)

i,j

)
, 1

|D(n)

(i,j)
|

∑
~p∈D

(n)
(i,j)

(
b(~p)Ci,j(~p)− µ(1)

i,j

))
PQ−distr.−−−−−−→

n→∞
N (0,Σ′i,j).

(2.13)
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Plugging in the definition of T (n)

Q,Q̃
(i, j) and using Anscombe’s delta method (see Theorem 49)

with the function h(x, y) =

(
x,
(
y + µ

(1)
i,j

)2

− µ(1)
i,j

)
we obtain

√
|D(n)

(i,j)|

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

(
b2(~p)Ci,j(~p)− µ(2)

i,j

)
,
(
T

(n)

Q,Q̃
(i, j)

)2

− µ(1)
i,j

2


PQ−distr.−−−−−→
n→∞

N
(

0,
(
∇h(~0)

)T
· Σ′ · ∇h(~0)

)
, (2.14)

where

∇h(~0) = Jh(~0) =

[
1 0

0 2µ
(1)
i,j

]
. (2.15)

Noting that µ(1)
i,j = µi,j, by Equation (2.11), the latter results in

Σi,j :=
(
∇h(~0)

)T
· Σ′ · ∇h(~0) =

[
Σ′i,j(1, 1) 2µi,jΣ

′
i,j(1, 2)

2µi,jΣ
′
i,j(2, 1) 4µ2

i,jΣ
′
i,j(2, 2)

]
. (2.16)

Hence, by the continuous mapping theorem with the function f(x, y) = x− y we get that√
|D(n)

(i,j)|
(

ΣQ,Q̃(i, j)− σ2
i,j

)
PQ−distr.−−−−−→
n→∞

N (0, (1,−1) · Σ′i,j · (1,−1)T ),

which concludes the proof.

2.5.2 Unknown Q and known Q̃

If Q is unknown, we don’t know a priori if it is equivalent to a matrix with a desirable form.
We can deduce this by looking at the generated data: if all possible transitions in the network
appear at least once, the unknown matrix Q is equivalent to a uniform transition matrix. If Q
is not equivalent to a uniform matrix, we can still apply the method described in Remark 34,
which is less restrictive than a uniform transition matrix.

When Q is unknown, we have to replace the probabilities PQ
(
~P = ~p

∣∣∣ ~P [j] = i
)
by estima-

tors. Define

Ĉi,j(~p, n) := PQ̃
(
~P = ~p

∣∣∣ ~P [j] = i
)( ∑n

k=1 1{~pk = ~p}∑n
k=1 1{~pk[j] = i}

)−1

(2.17)

which is a random variable that converges PQ-a.s. to Ci,j(~p) =
PQ̃(~P=~p|~P[j]=i)
PQ(~P=~p|~P[j]=i)

. Therefore, we

propose the following variation of T (n)

Q,Q̃
(i, j):

T̂
(n)

Q,Q̃
(i, j) :=

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)Ĉi,j(~p, n). (2.18)

The estimator Σ
(n)

Q,Q̃
(i, j) for the variance becomes:

Σ̂Q,Q̃(i, j) =

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)Ĉ(~p, n)

− (T̂ (n)

Q,Q̃
(i, j)

)2

.
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Lemma 41. Let Q, Q̂ be two equivalent transition matrices then for all i, j, we have that

T̂
(n)

Q,Q̃
(i, j)− µi,j

PQ−a.s−−−−→
n→∞

0;

Σ̂Q,Q̃(i, j)− σ2
i,j

PQ−a.s−−−−→
n→∞

0,

where µi,j = EQ̃[b( ~P1)| ~P1[j] = i] and σ2
i,j = EQ̃[b( ~P)2| ~P [j] = i]− EQ̃[b( ~P)| ~P [j] = i]2.

Proof. Let q1, q2, . . . , qm be the elements of all pairwise different paths such that q[j] = i and
let D(n)

(i,j) = {p1, p2, . . . , pn}, then

T̂
(n)

Q,Q̃
(i, j) =

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)Ĉi,j(~p, n)

=
n

D
(n)
(i,j)

m∑
l=1

Ĉi,j(ql, n)

(
1

n

n∑
k=1

1{pk = ql}b(pk, Sk)

)
.

(2.19)

By the strong law of large numbers, we get that

n

D
(n)
(i,j)

PQ−a.s−−−−→
n→∞

(
PQ[ ~P [j] = i]

)−1

;

Ĉi,j(ql, n)
PQ−a.s−−−−→
n→∞

Ci,j(ql);

1

n

n∑
k=1

1{pk = ql}b(pk, Sk)
PQ−a.s−−−−→
n→∞

EQ[1{ ~P = ql}b( ~P , S)].

(2.20)

Since m is a finite constant, we obtain, using the continuous mapping theorem and Lemma 35
in the last equality, that

T̂
(n)

Q,Q̃
(i, j)

PQ−a.s−−−−→
n→∞

(
PQ[ ~P [j] = i]

)−1
m∑
l=1

Ci,j(ql)EQ[1{ ~P = ql}b( ~P , S)]

=
(
PQ[ ~P [j] = i]

)−1
m∑
l=1

EQ[1{ ~P = ql}b( ~P , S)Ci,j( ~P)]

=
(
PQ[ ~P [j] = i]

)−1

EQ[1{ ~P [j] = i}b( ~P , S)Ci,j( ~P)]

= EQ[b( ~P , S)Ci,j( ~P)| ~P [j] = i]

= EQ̃[b( ~P , S)| ~P [j] = i] = µi,j.

(2.21)

For the second part of the statement, we obtain similarly, that(
T̂

(n)

Q,Q̃
(i, j)

)2 PQ−a.s−−−−→
n→∞

EQ̃[b( ~P , S)| ~P [j] = i]2. (2.22)

Furthermore,

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)Ĉ(~p, n) =
n

D
(n)
(i,j)

m∑
l=1

Ĉ(ql, n)

(
1

n

n∑
k=1

1{pk = ql}b2(pk, Sk)

)
(2.23)
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In the same fashion as in (2.20) and (2.21) we get that

1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)Ĉ(~p, n)
PQ−a.s−−−−→
n→∞

EQ̃[b2( ~P , S)| ~P [j] = i]. (2.24)

Hence, using (2.22) and (2.24) we conclude that

Σ̂Q,Q̃(i, j) =

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b2(~p)Ĉ(~p, n)

− (T̂ (n)

Q,Q̃
(i, j)

)2 PQ−a.s−−−−→
n→∞

σ2
i,j. (2.25)

Theorem 42. Let Q, Q̂ be two equivalent transition matrices then for all i, j, we have that√
|D(n)

(i,j)|(T̂
(n)

Q,Q̃
(i, j)− µi,j)

PQ−distr.−−−−−→
n→∞

N (0, ~CΣi,j
~CT )

where µi,j = EQ̃[b( ~P)| ~P [j] = i] and

Σi,j(`, `
′) =

{
PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b (~q`, S~P)

∣∣ ~P [j] = i
]
, ` = `′;

0, otherwise,

for `, `′ ∈ {1, . . . ,m} and ~C = (Ci,j(~q1), . . . , Ci,j(~qm)) and Ci,j(~p) =
PQ̃(~P=~p|~P[j]=i)
PQ(~P=~p|~P[j]=i)

. If we

assume that the entries of S have finite forth moments, we have that√
|D(n)

(i,j)|
(

Σ̂
(n)

Q,Q̃
(i, j)− σ2

i,j

)
PQ−distr.−−−−−→
n→∞

N (0, ~C ′Σ′i,j ~C
′T ),

where σ2
i,j = EQ̃[b( ~P)2| ~P [j] = i]− EQ̃[b( ~P)| ~P [j] = i]2 and

Σ′i,j(`, `
′) =



PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b(~q`)

∣∣ ~P [j] = i
]
, ` = `′ ∈ {1, . . . ,m};

PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b2(~ql)

∣∣ ~P [j] = i
]
, ` = `′ ∈ {m+ 1, . . . , 2m};

PQ
[
~P = ~q`

∣∣ ~P [j] = i
]

CovQ
[
b2(~q`), b(~q`)

∣∣ ~P [j] = i
]
, ` ∈ {1, . . .m}, `‘ = `+m;

PQ
[
~P = ~q′`

∣∣ ~P [j] = i
]

CovQ
[
b2(~q′`), b(

~q′`)
∣∣ ~P [j] = i

]
, `′ ∈ {1, . . .m}, ` = `′ +m;

0, otherwise,

,

(2.26)
for `, `′ ∈ {1, . . . , 2m} and ~C ′ = (2µi,jCi,j(~q1), . . . , 2µi,jCi,j(~qm), Ci,j(~q1), . . . , Ci,j(~qm)).

Proof. The key result to get the asymptotic distribution in this case is the multi-dimensional
Anscombe’s theorem, Theorem 48 in Appendix 2.6. In order to apply this result we do some
preparations. Using Lemma 35, we write

µi,j = EQ̃[b( ~P)| ~P [j] = i] = EQ[b( ~P)Ci,j( ~P)| ~P [j] = i],

with Ci,j( ~P) =
PQ̃(~P ′=~P|~P ′[j]=i)
PQ(~P ′=~P|~P ′[j]=i) . Let ~q1, ~q2, . . . , ~qm be all the pairwise different paths such that

SuppQi,j. Notice that in fact b( ~P) = b( ~P , S) and that ~P and S are drawn from a product measure.
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Hence, it makes sense to write also b(~q) = b(~q, S) for a given path ~q. For any realization (~pn, Sn)

of PQ or PQ̃ we also write b(~pn) = b(~pn, Sn). We can decompose µi,j using all possible paths:

µi,j =
m∑
`=1

EQ[b(~q`)Ci,j(~q`)1{ ~P = ~q`}| ~P [j] = i]. (2.27)

Let us write µ̃` = EQ[b(~q`)Ci,j(~q`)1{ ~P = ~q`}| ~P [j] = i] and µ` = EQ[b(~q`)Ci,j(~q`)| ~P [j] = i], and
consider

T̂
(n)

Q,Q̃
(i, j)− µi,j =

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)Ĉi,j(~p, n)

− µi,j
=

1

|D(n)
(i,j)|

m∑
`=1

Ĉi,j(~ql, n)

 ∑
~p∈D(n)

(i,j)

1{~p = ~q`}b(~p)

− m∑
`=1

µ̃`

=
1

|D(n)
(i,j)|

m∑
`=1

Ĉi,j(~q`, n)

 ∑
~p∈D(n)

(i,j)

1{~p = ~q`}
(
b(~q`)− EQ[b(q`)| ~P [j] = i]

)
+

m∑
`=1

(
Ĉi,j(~q`, n)

|D(n)
` |

|D(n)
(i,j)|

EQ[b(q`)| ~P [j] = i]

)
−

m∑
`=1

µ̃`

with |D(n)
` | =

∑n
k=1 1{~pk = ~q`} for ` ∈ {1, . . . ,m}. By independence, we deduce for every

` ∈ {1, . . . ,m} that

µ̃` = EQ[b(~q`)Ci,j(~q`)1{ ~P = ~q`}| ~P [j] = i]

= EQ[b(~q`)| ~P [j] = i] · Ci,j(~q`) · PQ[ ~P = ~q`| ~P [j] = i]

= EQ[b(~q`)| ~P [j] = i] · PQ̃[ ~P = ~q`| ~P [j] = i].

(2.28)

Moreover, recalling that Ĉi,j(~q`, n) := PQ̃
(
~P = ~q`

∣∣∣ ~P [j] = i
) |D(n)

(i,j)
|

|D(n)
` |

, it follows from the previous
equality that

Ĉi,j(~q`, n)
|D(n)

` |
|D(n)

(i,j)|
EQ[b(q`)| ~P [j] = i] = PQ̃

[
~P = ~q`

∣∣∣ ~P [j] = i
]
EQ[b(q`)| ~P [j] = i] = µ̃` (2.29)

for every ` ∈ {1, . . . ,m}, implying that

T̂
(n)

Q,Q̃
(i, j)− µi,j =

m∑
`=1

Ĉi,j(~q`, n)

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

1{~p = ~q`}
(
b(q`)− EQ[b(q`)| ~P [j] = i]

) .

(2.30)
Since 1{ ~P = ~q`} and b(q`) = b(q`, S) are independent we also have that

EQ
[
1{ ~P = ~q`}EQ

[
b(q`)| ~P [j] = i

] ∣∣ ~P [j] = i
]

= EQ
[
b(q`)| ~P [j] = i

]
EQ
[
1{ ~P = ~q`}

∣∣ ~P [j] = i
]

= EQ
[
b(q`)| ~P [j] = i

]
EQ
[
1{ ~P = ~q`}

∣∣ ~P [j] = i
]

= EQ
[
1{ ~P = ~q`}b(q`)| ~P [j] = i

]
(2.31)
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Hence,

EQ
[
1{ ~P = ~q`}

(
b(q`)− EQ

[
b(q`)| ~P [j] = i

]) ∣∣ ~P [j] = i
]

= 0, for all ` = 1, . . . ,m. (2.32)

We now define the random variables Y in order to apply Theorem 48. In the following we
assume all random variables to be distributed under PQ conditioned on ~P [j] = i. Define for
k ∈ {1, . . . , n},

Ξ(k) =
m∑
`=1

` · 1{ ~Pk = ~q`}

the variable indicating which path passing through (i, j) is chosen. For ` ∈ {1, . . . ,m} define

Y
(k)
` = 1{Ξ(k) = `}

(
b(q`)− EQ[b(q`)| ~P [j] = i]

)
(2.33)

and
Y (k) =

(
Y

(k)
1 , . . . , Y (k)

m

)
which by Equation 2.32 satisfies

EQ
[
Y (k)| ~P [j] = i

]
= ~0.

Furthermore, we define
N(n) = |D(n)

(i,j)|.

Then we have that,
N(n)

n

PQ−a.s.−−−−→
n→∞

θ > 0.

We define for ` ∈ {1, . . . ,m}

S
(`)
N(n) =

N(n)∑
k=1

Y
(k)
` .

Then, by Theorem 48, we get that

SN(n) :=
1√
N(n)

(
S

(1)
N(n)), . . . , S

(m)
N(n))

)
PQ−distr.−−−−−→
n→∞

N (0,Σ) (2.34)

where

Σ(`, `′) =

{
PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b (~q`)

∣∣ ~P [j] = i
]

` = `′;

0 otherwise.
(2.35)

We also know that Ĉi,j(~q`, n) converges almost surely to the constant C(~q`) for every ` =
1, . . . ,m and therefore,(

Ĉi,j(~q1, n), . . . , Ĉi,j(~qm, n)
)

PQ−a.s−−−−→
n→∞

~C = (Ci,j(~q1), . . . , Ci,j(~qm)) . (2.36)

Hence, by the multidimensional Slutsky’s Theorem (Lemma 2.8 in [Van der Vaart, 2000]),
the continuous mapping theorem, and the fact that a linear transformation of a gaussian vector
is again gaussian we have by Equation (2.30) that

1√
|D(n)

(i,j)|

(
T̂

(n)

Q,Q̃
(i, j)− µi,j

)
P−distr.−−−−→
n→∞

N
(

0, ~C · Σ · ~CT
)
, (2.37)
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which concludes the first part of the proof.
For the second estimator we proceed in a similar way. As in Equation (2.27), we get that

EQ̃
[
b2( ~P)

∣∣ ~P [j] = i
]

=
m∑
l=1

PQ̃
[
~P = q`| ~P [j] = i

]
EQ
[
b2(q`)

∣∣ ~P [j] = i
]
, (2.38)

and we also see that

1

|D(n)
i,j |

∑
~p∈D(n)

i,j

b2(~p)Ĉ(~p, n) =
m∑
l=1

Ĉ(q`, n)

 1

|D(n)
i,j |

∑
~p∈D(n)

i,j

1{~p = q`}
(
b2(q`)− EQ

[
b2(q`)

∣∣ ~P [j] = i
])

+
m∑
l=1

|D(n)
l |

|D(n)
i,j |

Ĉ(q`, n)EQ
[
b2 (q`)

∣∣ ~P [j] = i
]

(2.39)

where

|D(n)
l |

|D(n)
i,j |

Ĉ(q`, n)EQ
[
b2 (q`)

∣∣ ~P [j] = i
]

= PQ̃
[
~P = q`| ~P [j] = i

]
EQ
[
b2(q`)

∣∣ ~P [j] = i
]
. (2.40)

Equations (2.38) and (2.40) imply that

1

|D(n)
i,j |

∑
~p∈D(n)

i,j

(
b2(~p)Ĉ(~p, n)

)
− EQ̃

[
b2( ~P)

∣∣ ~P [j] = i
]

=

m∑
l=1

Ĉ(q`, n)

 1

|D(n)
i,j |

∑
~p∈D(n)

i,j

1{~p = q`}
(
b2(q`)− EQ

[
b2(q`, S~P)

∣∣ ~P [j] = i
]) (2.41)

which implies that

Σ
(n)

Q,Q̃
(i, j)− σ2

i,j =
1

|D(n)
i,j |

∑
~p∈D(n)

i,j

(
b2(~p)Ĉ(~p, n)

)
− EQ̃

[
b2( ~P)

∣∣ ~P [j] = i
]

+
(
T̂

(n)

Q,Q̃
(i, j)

)2

− µ2
i,j

=
m∑
l=1

Ĉ(q`, n)

 1

|D(n)
i,j |

∑
~p∈D(n)

i,j

1{~p = q`}
(
b2(q`)− EQ

[
b2(q`, )

∣∣ ~P [j] = i
])

+

 m∑
`=1

Ĉi,j(~q`, n)

 1

|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

1{~p = ~q`}
(
b(q`)− EQ[b(q`)| ~P [j] = i]

)
(T̂ (n)

Q,Q̃
(i, j) + µi,j

)
(2.42)

where we use Equation (2.30) in the second line of the last equality. We are now almost ready
to apply Theorem 48. In the following we assume all random variables to be distributed under
PQ conditioned on ~P [j] = i. For ` ∈ {1, . . . ,m} define

W
(k)
` = 1{Ξ(k) = `}

(
b(q`)− EQ[b(q`)| ~P [j] = i]

)
(2.43)

where by Equation 2.32, we have for all ` = 1, . . . ,m that

EQ
[
W

(k)
` | ~P [j] = i

]
= 0.
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Furthermore, for l = m+ 1, . . . , 2m, define

W
(k)
` = 1{Ξ(k) = `−m}

(
b2(q`−m)− EQ

[
b2(q`−m)

∣∣ ~P [j] = i
])

where for all ` = m+ 1, . . . , 2m we get that EQ
[
W

(k)
`

]
equals to

EQ
[
1{ ~P = q`−m}b2(q`−m)

∣∣ ~P [j] = i
]
− EQ

[
b2(q`−m)

∣∣ ~P [j] = i
]
EQ
[
1{ ~P = q`−m}

∣∣ ~P [j] = i
]

= 0.

We then define
W (k) =

(
W

(k)
1 , . . . ,W

(k)
2m

)
which by the previous calculations satisfies for all k = 1, . . . , n that

EQ
[
W (k)

∣∣ ~P [j] = i
]

= ~0.

We define for ` ∈ {1, . . . , 2m}

S
′(`)
N(n) =

N(n)∑
k=1

W
(k)
` ,

where N(n) = |D(n)
(i,j)|. It follows from Theorem 48 that

S ′N(n) :=
1√
N(n)

(
S

(1)′

N(n)), . . . , S
(2m)′

N(n))

)
PQ−distr.−−−−−→
n→∞

N (0,Σ′′) = (S ′1, . . . , S
′
2m) (2.44)

where the covariance matrix is given by

Σ′i,j(`, `
′) =



PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b(~q`)

∣∣ ~P [j] = i
]
, ` = `′ ∈ {1, . . . ,m};

PQ
[
~P = ~q`

∣∣ ~P [j] = i
]
VQ
[
b2(~ql)

∣∣ ~P [j] = i
]
, ` = `′ ∈ {m+ 1, . . . , 2m};

PQ
[
~P = ~q`

∣∣ ~P [j] = i
]

CovQ
[
b2(~q`), b(~q`)

∣∣ ~P [j] = i
]
, ` ∈ {1, . . .m}, `‘ = `+m;

PQ
[
~P = ~q`′

∣∣ ~P [j] = i
]

CovQ
[
b2(~q`′), b(~q`′)

∣∣ ~P [j] = i
]
, `′ ∈ {1, . . .m}, ` = `′ +m;

0, otherwise.

,

(2.45)
We also know that the vector

~C(n)′ =
(
ĈQ,Q̃(q1, n), . . . , ĈQ,Q̃(qm, n), T̂

(n)

Q,Q̃
(i, j) + µi,j

)
PQ−a.s−−−−→
n→∞

~C ′ := (Ci,j(~q1), . . . , Ci,j(~qm), 2µi,j) .

The remaining part of the proof is similar to the end of the first part of the proof.

2.6 Examples

The first example illustrates how we can unbias estimates if the covariates are dependent; we
use simulation data to compare the estimates with the “real” values2 .

2An implementation of the estimators in the language R together with the following examples can be found
at https://github.com/NaitsabesMue/MarkovLinearModel
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Example 43 (Unbiasing). Let us consider a DAG with 2 lines and 2 columns, and a random
matrix S with first moments

E[S] =

(
0 1
−2 2

)
The transition Q of the Markov chain are given as

q(1)(s, 1) = q(1)(s, 2) = 1/2,

q(2)(1, 1) = 3/4, q(2)(1, 2) = 1/4, q(2)(2, 1) = 1/4, and q(2)(2, 2) = 3/4.

We calculate
EQ[b(~p)|~p[1] = 1] =

3

4
· 1 +

1

4
· 2 =

5

4

EQ[b(~p)|~p[1] = 2] =
1

4
· (−1) +

3

4
· 0 = −1

4
and

EQ[b(~p)|~p[2] = 1] =
3

4
· 1 +

1

4
· (−1) =

1

2
=

1

4
· 2 +

3

4
· 0 = EQ[b(~p)|~p[2] = 2]

This implies that the biased estimators T (n)(i, j) won’t be able to detect the difference in quality
in the second column and would underestimate the difference in the first column. However,
Corollary 37 ensures that

T
(n)
Q,U(i, j) =

1

2|D(n)
(i,j)|

∑
~p∈D(n)

(i,j)

b(~p)PQ
(
~P ′[j] = i

)
PQ
(
~P ′ = ~p

)


allows to detect the differences in the second column. If we write ~p1 = (s, 1, 1), (1, 2), r), ~p2 =
(s, (1, 1), (2, 2), r), ~p3 = (s, (2, 1), (1, 2), r) and ~p4 = (s, (1, 1), (2, 2), r) the estimators for the
second column become:

T
(n)
Q,U(1, 2) =

1

2|D(n)
(1,2)|

1

2

∑
~p∈D(n)

(1,2)

(
8

3
b(~p)1{~p = ~p1}+ 8b(~p)1{~p = ~p3}

)
,

T
(n)
Q,U(2, 2) =

1

2|D(n)
(2,2)|

1

2

∑
~p∈D(n)

(2,2)

(
8b(~p)1{~p = ~p2}+

8

3
b(~p)1{~p = ~p4}

)
.

Let us consider some data from simulations. We suppose S to be a matrix with independent
Gaussian entries. The means are given by E[S] above, and the variances are chosen as follows

V(S) =

(
2 1
1 1

)
. (2.46)

We perform n = 1000 simulation runs and compare the estimations under the assumption of
uniform transition, known transitions, and estimated transitions in Tables 2.1 and 2.2. The
asymptotic distributions of the estimators also allow constructing confidence intervals or tests
for the difference.
Example 44 (Wafer production). Our study was motivated by a root-cause analysis in the
wafer fabrication. Wafer fabrication is, in general, a procedure of many repeated sequential
processes. For instance, a simplified illustration consists of 12 subsequent fabrication steps, see
[contributors, 2019], where intermediate measurement of qualities is not feasible. Our concrete
example treated up to 30 different steps and more than 90 machines. Unfortunately, since our
industrial partner insists on fulfilling an NDA, we cannot publish any more information about
the project. Probably for the same reasons, we could not find publicly available data on other
industrial projects.
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E[S(1, j)]− E[S(2, j)] T (n)(1, j)− T (n)(2, j) T
(n)
Q,U (1, j)− T (n)

Q,U (2, j) T̂
(n)
Q,U (1, j)− T̂ (n)

Q,U (2, j)

j = 1 2 1.54 2.15 2.01
j = 2 −1 −0.13 −1.21 −1.04

Table 2.1: Different estimations for the differences in mean in Example 43; values rounded to
the third decimal, n = 1000.

V[S(1, j)]− V[S(2, j)] Σ(n)(1, j)− Σ(n)(2, j) Σ
(n)
Q,U (1, j)− Σ

(n)
Q,U (2, j) Σ̂

(n)
Q,U (1, j)− Σ̂

(n)
Q,U (2, j)

j = 1 1 0.99 1.08 1.05
j = 2 0 0.68 0.13 0.21

Table 2.2: Different estimations for the differences in variance in Example 43; values rounded
to the third decimal, n = 1000.

In the following, we treat some textbook examples to illustrate the possible application of
our method.
Example 45 (Tooth growth). We consider the classical tooth growth data set, [Crampton, 1947]
or [R Documentation, ], that studies the effect of vitamin C on tooth growth in Guinea pigs. We
also refer to [Greenwood, 2020] for a detailed analysis of this data set. The response is the length
of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one
of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two sources of vitamin C;
ascorbic acid (VC) or orange juice (OJ). This experiment is balanced and corresponds to the
uniform case, under the additional assumption that every path appears 10 times. See Figure
2.4 for violin plots of the six different groups.

The figure suggests that the mean tooth growth increases with the dosage level and that
OJ seems to lead to higher growth rates than VC except at a 2 mg/day dosage. The variability
around the means looks to be different, however relatively small to the differences among
the means. There might be some skew in the responses in some of the groups (e.g., the
group OJ with dose 0.5 has a right skew) that may violate the standard normality assumption.
However, a classic analysis does not reveal statistical evidence against constance variances and
the normality assumption. The fitted coefficients in a multivariate linear model then give an
increase of 3.7 from VC to OJ and that the lengths increase with a dose of 1mg/day (resp.
2mg/day) by 9.13 (resp. 15.49) to the baseline of 0.5 mg/day. These differences are reported
with p-values smaller than 0.001. Without having to verify the above conditions, our method
obtains the same value for the difference in mean contribution. Also, we can estimate the
differences of the variances: the variance increases from VC to OJ by 23.87. Passing from
0.5mg/day to 1mg/day (resp. 2mg/day) increases the variance by 0.71 (resp. 5.70). As expected,
these values coincide with the pairwise difference of the empirical variances in each group.

The next examples treats a situation where variances are not constant.
Example 46 (Biomass response). We consider the experiment in [Sokolowska K and MC., 2017]
that studied the impacts of Nitrogen (N) additions on the mass of two feather moss species
(Pleurozium schreberi (PS) and Hylocomium (HS)) in an experimental forest in Sweden. More
details on the classic analysis of this data set can be found in [Greenwood, 2020]. The study
used a randomized block design. Here, pre-specified areas were divided into three experimental
units of area 0.1 hectare, and one of the three treatments was randomly applied. This procedure
resulted in a balanced design with six replicates at each combination of species and treatment.
The three treatments involved different levels of Nitrogen applied immediately after snowmelt:
no additional Nitrogen (control), 12.5 kg N per ha and year, (N12.5), and 50 kg N per ha and
year (N50). The study’s primary objective was whether the treatments would have differential
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Figure 2.4: Violin plot of odontoplast growth (in microns).

impacts on the two species; while they measured additional variables, we will only observe
the variables mentioned above. The violin plot in Figure 2.5 provides a first overview of the
responses. Figure 2.5 indicates some differences in variability in the different groups. Classical
residual versus fitted plots reveal that there is a problem with non-constant variances. The
normality assumption seems, however, to be verified. A standard remedy for non-constant
variance is to transform the data to a logarithmic scale. This transformation reduces the
differences in variances but induces a slight violation of the normality assumption. Our method
does not demand such a transformation, and we can directly perform the pairwise comparison.
However, since the experiment is balanced, we obtain the same estimates as in the multivariate
regression model: the treatment with N12.5 (resp. N50) decreases the growth by −488.55 (resp.
−1138.76), and the species PS has in mean more 955.78 mass grow per ha and year than the
species HS. Our method allows also quantifying the difference in variability. The increase in
variance from HS to PS is estimated with 287118.5, and the loss of variability in N12.5 (resp.
N50) is 29235.43 (resp. 252389.76) compared to the control group.

We now turn to an examples with non-constant variability and dependency between the
predictors.

Example 47 (California test score data). We consider the California test score data, see
[Zeiles, Achim, ]. This data concerns all 420 K − 6 and K − 8 districts in California between
1998 and 1999. Test scores are on the Stanford 9 standardized test administered to 5th-grade
students. We add a new variable, called score, that is the mean of the English and math results.
This score will be our response variable.

The original data set contains many possible school characteristics or predictors for the score,
as enrollment, number of teachers, number of students, number of computers per classroom, and
expenditures per student. Besides, there are demographic variables for the students that are
averaged across each district. These demographic variables include the percentage of English
learners, that is, students for whom English is a second language. We call this variable “english”.

This dataset is an interesting textbook example since it illustrates many different aspects
of multivariate regression models. In the following, we do not aim to conduct a scientific study
of this data set, but only want to illustrate our method. A natural guess is that the student-
teacher ratio may impact the pupils’ test scores. For this purpose, we add a variable STR that
gives the ratio between students and teachers to the dataset. The correlation between STR
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Figure 2.5: Violin plot of moss growth.

Figure 2.6: Bubble plot of the score as a function of STR. The sizes of the bubbles correspond
to the percentage of students for whom English is a second language.

and scores is about −0.22 and can be considered statistically significant, e.g., the Pearson’s
correlation test leads to a p-value of less than 0.1%. However, the conclusion that smaller class
sizes lead to better performances might be made too fast, or their impact may be overestimated.
Other variables may influence the test scores, too. The next variable that we are looking at is
english; its correlation with scores is −0.64, which can be considered statistically significant.
Moreover, STR and english correlate 0.19. A first visual glimpse of the data can be obtained
through Figure 2.6.

Our method is a priori suited to categorical predictors. We, therefore, discretize our data
and create 5 groups of equal size for STR and english. The groups in STR are defined by
the following breaks (rounded to two decimals): 14.00, 18.16, 19.27, 20.08, 21.08, and 25.80.
The new variable is called STRCat. For instance, group 1 contains all observations with STR
between 14.00 and 18.16. The five groups of english are defined by the breaks: 0.00, 1.16, 5.01,
13.14, 30.72, and 85.54. The new variable is called englishCat. Figure 2.7 shows violin plots
of discretized data and gives a strong indication of non-constant variances. Our Markov model
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Figure 2.7: Influence of student-teacher ratio and percentage of the non-native speaker on the
score.

can now be applied to the adapted data. Since we only have two predictors, the assumption of
Markov dependencies is satisfied. We consider the variable english as the first column and the
variable STRcat as the second.

The transition of our Markov chain describes the correlation between these two categorical.
Since we choose every group in englischCat of equal size Q̂(1) is the uniform distribution of
{1, . . . , }. The second Markov transition kernel is estimated by:

Q̂(2) =


0.32 0.24 0.19 0.18 0.07
0.25 0.23 0.24 0.18 0.11
0.20 0.12 0.20 0.19 0.29
0.11 0.27 0.23 0.17 0.23
0.12 0.14 0.14 0.29 0.31

 . (2.47)

We compare the different estimators for the differences in means. Let ∆(i, j) = E[S(1, j)] −
E[S(i, j)] for i ∈ {2, 5} and j ∈ {1, . . .}. We denote ∆

(n)
U (i, j) = T

(n)
U (1, j) − T (n)

U (i, j) for the
estimation under the assumption of uniform transitions and obtain

∆
(n)
U =


3.91 −3.37
−5.45 −8.66
−14.71 −8.81
−30.29 −13.41

 . (2.48)

The unbiased estimations are given by ∆̂
(n)
Q,U(i, j) = T̂

(n)
Q,U(1, j)− T̂Q,U(i, j):

∆̂
(n)
Q,U =


2.68 −1.11
−5.41 −6.69
−14.14 −3.34
−30.32 −6.64

 . (2.49)

To compare the model with a multivariate regression we give the corresponding estimates
resulting from the standard linear regression:

∆
(n)
regression =


4.39 −0.66
−4.29 −6.29
−13.68 −2.88
−29.09 −5.26

 . (2.50)

66



We can observe that the biased estimator T (n)
U leads to an overestimation of the effect of

STR on the scores. Finally, let us consider the estimates for the differences in variances. For
i ∈ {2, 5} and j ∈ {1, . . .} let Γ(i, j) = V[S(1, j)] − V[S(i, j)] and its estimators Γ

(n)
U (i, j) =

Σ
(n)
U (1, j)− Σ

(n)
U (i, j) and Γ̂

(n)
Q,U(i, j) = Σ̂

(n)
Q,U(1, j)− Σ̂Q,U(i, j). We obtain

Γ
(n)
U =


−64.24 185.54
−72.11 198.51
−0.56 149.28
47.12 198.30

 and Γ̂
(n)
Q,U =


−68.59 190.41
−84.87 190.47
−29.32 196.33

9.40 244.44

 . (2.51)

For instance, this shows that the variances in the group 1 and 5 of english are similar and are
smaller than in the other groups. The variance in group of STRcat is much higher than in
the other four groups. We also see that the unbiasing leads to very different estimates on the
variability.
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Appendix

A multidimensional version of Anscombe’s theorem

We present a multi-dimensional version of the classical Anscombe’s Theorem. The proof follows
with simple modification the argument given by Renyi in his proof of Anscombe’s theorem
[Gut, 2009]; it is presented here for the sake of completeness.

Theorem 48 (Multidimensional Anscombe). Let Y (i) := (Y
(i)

1 , Y
(i)

2 , . . . , Y
(i)
m ), for i ≥ 1, be a

sequence of i.i.d. real-valued random vectors with E[Y (i)] = 0 ∈ Rm and covariance matrix Σ.
Let N(t) be a random integer-valued random variable such that N(t)/t

a.s.−−−→
t→∞

θ ∈ R+, then

1√
N(t)

N(t)∑
i=1

Y (i) distr.−−−→
t→∞

N (0,Σ).

Proof. Let n(t) := bθtc and let Sk :=
∑k

i=1 Y
(i) and let S(j)

k =
∑k

i=1 Y
(i)
j then

SN(t)√
N(t)

=

((
S

(1)
n(t)√
n(t)

+
S

(1)
N(t) − S

(1)
n(t)√

n(t)

)√
n(t)

N(t)
, . . . ,

(
S

(m)
n(t)√
n(t)

+
S

(m)
N(t) − S

(m)
n(t)√

n(t)

)√
n(t)

N(t)

)
.

(2.52)
The first observation is that, since n(t) is deterministic, due to the multi-dimensional central
limit theorem we have that

(
S

(1)
n(t)√
n(t)

, . . . ,
S

(m)
n(t)√
n(t)

)
distr.−−−→
t→∞

N (0,Σ), (2.53)

where Σ is the covariance matrix of the random vector Y (1). Next, let ε ∈ (0, 1/3) be given and
n1(t) := bn(t)(1− ε3)c+ 1 and n2(t) := bn(t)(1 + ε3)c, then

P

[
m⋃
i=1

{∣∣S(i)
N(t) − S

(i)
n(t)

∣∣ > ε
√
n
}]
≤

m∑
i=1

P
[∣∣S(i)

N(t) − S
(i)
n(t)

∣∣ > ε
√
n
]
, (2.54)
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by the union bound. Let σ2
i := E

[(
Y

(1)
i

)2
]
<∞, then we also know that

P
[∣∣S(i)

N(t) − S
(i)
n(t)

∣∣ > ε
√
n(t)

]
= P

[∣∣S(i)
N(t) − S

(i)
n(t)

∣∣ > ε
√
n(t), N(t) ∈ [n1(t), n2(t)]

]
+ P

[∣∣S(i)
N(t) − S

(i)
n(t)

∣∣ > ε
√
n(t), N(t) /∈ [n1(t), n2(t)]

]
≤ P

[
max

n1(t)≤n≤n(t)

∣∣S(i)
n − S

(i)
n(t)

∣∣ > ε
√
n(t)

]
+ P

[
max

n(t)≤n≤n2(t)

∣∣S(i)
n − S

(i)
n(t)

∣∣ > ε
√
n(t)

]
+ P [N(t) /∈ [n1(t), n2(t)]]

≤ (n(t)− n1(t))σ2
i

ε2n(t)
+

(n2(t)− n(t))σ2
i

ε2n(t)
(Kolmogorov’s inequality)

+ P [N(t) /∈ [n1(t), n2(t)]]

≤ 3ε

for all i = 1, . . . ,m where the last inequality is valid for t sufficiently large. Plugging this last
estimation in Inequality (2.54) yields for t sufficiently large

P

[
m⋃
i=i

{∣∣S(i)
N(t) − S

(i)
n(t)

∣∣ > ε
√
n
}]
≤ 3mε,

for any ε ∈ (0, 1/3). Since ε can be chosen arbitrarily small we deduce that(
S

(1)
N(t) − S

(1)
n(t)√

n(t)
, . . . ,

S
(m)
N(t) − S

(m)
n(t)√

n(t)

)
prob.−−−→
t→∞

(0, 0, . . . , 0).

By noticing that
√

n(t)
N(t)

prob.−−−→
t→∞

1 and using the multidimensional version of Slutsky’s theorem
(Lemma 2.8 in [Van der Vaart, 2000]), we deduce that√

n(t)

N(t)

(
S

(1)
N(t) − S

(1)
n(t)√

n(t)
, . . . ,

S
(m)
N(t) − S

(m)
n(t)√

n(t)

)
prob.−−−→
t→∞

(0, 0, . . . , 0),

where the last convergence is indeed in probability since it is a convergence in distribution to a
constant. Using this last equation, Equation (2.52), and the multidimensional Slutsky theorem,
we conclude that

SN(t)√
N(t)

distr.−−−→
t→∞

N (0,Σ).

An Anscombe version of the multivariate delta method

Here we present a modification of the multivariate delta method that also works in the case
when n is replaced with a random variable. The proof is a simple modification of the argument
used for the multivariate delta method and it is presented for the sake of completeness.
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Theorem 49 (Anscombe’s multivariate delta method). Let θ ∈ Rk and {Tn}n∈N be a sequence
of k dimensional random vectors and {Xn}n∈N be sequence of natural valued random variables
such that

•
√
Xn(TXn − θ)

distr.−−−→
n→∞

Nk(0,Σ).

• TXn

prob.−−−→
n→∞

θ

Furthermore, let h : Rk → Rm be once differentiable at θ with the gradient matrix ∇h(θ). Then√
Xn (h(TXn)− h(θ))

distr.−−−→
n→∞

Nk(0,∇h(θ)TΣ∇h(θ)).

Proof. By the definition of differentiability of a vector field, we have that

h(x) = h(θ) + (x− θ) · ∇h(θ) + |x− θ|R2(x) (2.55)

where |R2(x)| −−→
x→θ

0. In particular, we have that

√
Xn · (h(TXn)− h(θ)) =

√
Xn · (TXn − θ) · ∇h(θ) +

(√
Xn · |TXn − θ|

)
R2(TXn). (2.56)

On the other hand, it follows from the assumptions and the definition of R2 that

•
√
Xn · (TXn − θ) = (

√
Xn (TXn − θ))

distr.−−−→
n→∞

Nk(0,Σ),

•R2(TXn)
prob.−−−→
n→∞

0.

Therefore, using the multidimensional Slutsky’s theorem (Lemma 2.8 in [Van der Vaart, 2000]),
we get that (√

Xn · |TXn − θ|
)
R2(TXn)

prob.−−−→
n→∞

0, (2.57)

where the last convergence is in probability because it is towards a constant. Using once more
the multidimensional Slutsky’s theorem together with Equations (2.56),(2.57) we conclude that√

Xn · (h(TXn)− h(θ))
distr.−−−→
n→∞

Nk(0,∇h(θ)TΣ∇h(θ)). (2.58)
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