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1
Abstract

Data imbalances consist of an uneven distribution of the dataset in Machine

Learning, where one or more classes have a number of instances significantly

higher than the others. As a consequence, the algorithm will prioritize

learning the majority classes, while the minority will be poorly estimated.

This problem affects the quality and reliability of machine learning tasks,

and several techniques have been developed in order to manage it. These

are, among others, undersampling, oversampling and weight loss balancing.

In this work, our main goal is to investigate the effects of these techniques

on a set of convolutional neural network models from the EfficientNet

architecture in Scanning Electron Microscopy (SEM) image classification

during wafer manufacturing. Since current inspection of wafer defects in the

production line is performed manually, and has proven to be a tedious and

time consuming task, this strategy would constitute a powerful alternative

for automated defect detection that would speed up considerably the wafer

inspection process. Our work proves that this approach leads to significant

headcount reduction in the wafer production line, with accuracy equivalent

to that of an actual operator, to whom defect classification not only becomes

now faster, but also more manageable.

17





2
Introduction

2.1 Motivation

Out of all the branches from the semiconductor industry, wafer manufacturing constitutes

the core of the business. Since even the smallest speck of dust is capable of harming the

microcircuit structure of a wafer, whose features fall within the nanoscale size, this pro-

cess requires the use of high precision equipment to ensure efficient detection. To further

avoid the entrance of any kind of particle within the wafer, the production of such devices

is performed in a clean room, that is, a hermetically sealed environment. There’s a wide

range of defect classes, and they possess a long tail distribution, which constitutes a source

for data imbalances.

Silicon has usually been the preferred material for building the microcircuit, which starts

out completely blank. First, through a process called photo-masking, the different pho-

toresist patterns are masked onto the wafer’s surface in micrometer detail. Afterwards,

short-wave ultraviolet light is used in such a manner that the unexposed areas are etched

away and cleaned. On the desired zones of the wafer surface, chemical vapors will be

deposited in such a way that, as they are baked at high temperatures, they’ll heat enough

to permeate into the desired zones. Ions can also be implanted at specifics depths and

patterns into the wafer through the use of RF-driven ion sources.

The number of times these steps need to be repeated depends on the complexity of the

wafer, and are usually repeated hundreds of times. As time goes on, new techniques have

been developed in order to improve the resolution with with these steps are completed. As

new technologies arise, so does the scale of the circuits, and microcircuit features such as

transistors and micro-electro-mechanical systems (MEMS) are packed in a denser manner.

This increased density continues the trend of Moore’s Law.

Since wafers require high sensitivity technology for surface inspection, devices such as

Scanning Electron Microscopes are one of the main tools used for such task, which can be

configured to review defects found on the wafer. In short, SEMs can enlarge the defect

in such a way that it can be properly reviewed and classified by an operator, for these

19
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high magnification images contain a detailed representation of the surface topography and

composition.

Human visual inspection no longer constitutes a feasible approach for defect detection

and classification, and computer vision systems such as Convolutional Neural Networks

(CNNs) have proven to be the best approach due to both cost reduction and efficiency

[41],[43],[44]. Though the current networks used for classification have respectable accu-

racy, there are available deeper and more powerful architectures developed in the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC), a project designed for research use

in the field of visual object recognition software [52].

The purpose of this thesis is to improve defect classification in the production line of In-

fineon Technologies Villach through data augmentation techniques (oversampling). Addi-

tionally, we plan to replace the current model used for classification with a state-of-the-art

architecture, EfficientNet [13],[38]. We faced several problems along the way, such as label

noise, hardware limitations, noisy images, bugs, etc. However, we managed to implement

the techniques we desired.

We compared the reliability and performance of different models from the EfficientNet

family, with different oversampling magnitudes and hyperparameters to investigate its

benefits. Preprocessing tuning as well as further inspection of techniques such as class

weighted loss, label smoothing and Geometrical Augmentation (GA) allowed us to further

optimize our classifier. Both class precision and recall are our main measure of model per-

formance, and visual inspection of heatmaps and saliency maps provide additional insight

into the networks.

Chapter 3 provides background information surrounding the main object of this thesis.

We introduce the basics of Machine Learning and Deep Learning, followed by the main

components of a wafer fabrication plant and SEM defects. In Chapter 4, we discuss

the different preprocessing techniques used, and justify the reason behind their selection.

Chapter 5 comprehends the implementation and results of these techniques, and con-

stitutes the base upon which we’ll determine our final parameters and models, whose

performance we’ll be included in Chapter 6. In chapter 7 we’ll discuss our results and

evaluate alternative techniques for model optimization. Finally, we close the paper with

a brief conclusion in Chapter 8.

2.2 Related Work

Image classification. Our main goals consists on improving as much as possible defect

classification, that is, an image classification task. The performance of algorithms related

to such field is usually evaluated in datasets such as Imagenet [52]. With the passage of

time, improving the architecture of neural networks has been a hot topic in the scientific

community, and a lot of effort has been invested into the realization of such goal. For

example, the introduction of residual connections in Convolutional Neural Networks has

led to the development of competitive architectures [18],[31],[1],[13] widely adopted by
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the community.

However, the introduction for residual connections has not been the only direction taken

for pushing the development of state-of-the-art networks [24]. Other approaches, such as

those based on high input image resolution, a key factor in classification performance

[25], led to the development of enormous Convolutional Neural Networks [30]. Other

works include the use of weakly labeled datasets for high-capacity CNN development [26]

Knowledge distillation. Also known as Transfer Learning, in this task a high

architecture model, teacher, is used in order to train a small one, student. In order to

achieve this, the large model is trained using a great amount of labelled samples, for

which other tasks do not have enough data available. Therefore, the teacher must select

only those instances that are most informative, which therefore leads to a better training

of the student network.

Examples of tasks where this technique can be applied include fine-grained classification,

where we lack a proper amount of labels, properly process multi-labeled datasets [48],

learning adequate curriculums for the training dataset [47], and instances where we face

noisy labels, such as for MentorNet [49]. Finally, [27] provides further insight into the

different challenges faced in this field.

Data augmentation. This technique has proven successful at improving model

performance, be it by estimating the best transformations that can be used for

augmentation [33],[36], or by creating artificial samples through the mixture of images

[34]. Semi-supervised learning, where new images are added to the main dataset from a

supplemental unlabeled one, has also been used for performance improvement [42]. So

far, data augmentation has proven essential to optimize image classification tasks [28].

In the field of automated data augmentation, [36] has developed an algorithm capable of

automatically searching for the best transformations that can be applied in such field.

In this paper, a policy in the search space is composed of many sub-policies, and each

sub-policy is composed of a pair of image transformations such as rotation, shearing, etc.

as well as their associated probabilities and magnitudes. Each sub-policy will be selected

randomly per mini-batch, and the goal of the search algorithm is thus to find the best

possible policy, through a separate search phase, that leads to the highest validation

accuracy.

However, in [33] a new approach is proposed where no separate search phase is required.

To achieve this, the search phase is reduced in such a dramatic manner that a simple

grid is sufficient to find data augmentation policies powerful enough to outperform

previous studies, see [36], where a separate search phase couldn’t be avoided. This low

size method of data augmentation is termed RandAugment.

One-shot image recognition. Unlike other branches of deep learning, one can

assess that one-shot learning has not received as much attention by the machine
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learning community as with other fields. Thus, one-shot learning still remains somewhat

immature, but some works have been done that research the boundaries of this field. In

the early 2000’s, [50] developed a variational Bayesian framework for one-shot image

classification. Their premise was that, given very few examples from a specific class/es,

one could use the previously learned classes as leverage in order to help determine future

ones.

Another method based its approach on ranking the similarity between inputs [41]. This

paper looked to capitalize on the discriminative features between samples thanks to the

unique architecture of their network, which allows a generalization of the predictive

power of the network not only to new data, but also classes never seen before from

completely unknown distributions.

2.3 Theoretical background

2.3.1 Machine learning

Machine learning consists of the study and development of computer algorithms capable

of learning and improving automatically through the experience they gather when facing

the desired task, without being explicitly programmed to learn such task.

Taking a set of sampled data, known as a training set, these algorithms are capable of

constructing a mathematical model precise enough to perform reliable predictions. They

have gained a great deal of reputation due to their high performance in applications where

using conventional algorithms has proven either difficult or infeasible, this includes game

theory, information theory, computer vision, etc.

Machine learning algorithms can be categorized as follows:

1. Supervised machine learning algorithms: the algorithm is capable of learn-

ing a function that properly maps an input to its corresponding output based on

labeled samples. With a known training set as the starting point, the learning al-

gorithm is capable of inferring a function that predicts output values by comparing

the generated/predicted outputs with the actual/correct output, finding any errors

and modifying the parameters of the model accordingly. After sufficient training is

done, the algorithm should be able to efficiently generalize the training data so that

it can properly classify new unseen data reasonably.

2. Unsupervised machine learning algorithms: unlike supervised learning, the

information used for training is neither classified nor labeled. The goal of the algo-

rithm for such task is now different, to explore the given dataset, find out and learn

any hidden features contained within it. Therefore, one of the most common tasks

associated with this category of machine learning is cluster analysis, which focused
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on grouping the data in a feasible manner through measures of similarity between

samples, such as probabilistic or Euclidean distance.

3. Semi-supervised machine learning algorithms: a middle point between su-

pervised and unsupervised learning, these algorithms make use of partially labeled

datasets. These datasets usually contain a high proportion of unlabeled samples

while only a small amount of labeled data is available. This technique is usually

used when the required labeled data for training must come from a skilled and rele-

vant source. A perfect example for this is text documents, which are predominantly

composed of unlabeled data (blogs, scripts, novels, etc.).

4. Reinforcement machine learning algorithms: these algorithms have a specific

goal in mind, the maximization of their cumulative reward. In order to achieve this,

they must take a set of actions in a given environment and automatically determine

from these interactions the ideal behavior that must be followed within a specific

context in order to maximize performance. Since a balance between exploration and

exploitation must be reached in order to optimize performance, features such as trial

and error search and the notion of delayed rewards are most relevant in reinforcement

learning.

In this work, we’ll focus on supervised Machine learning in the field of computer vision

(image classification).

2.3.2 Neural Networks

Neural networks are a variety of algorithms modeled after the structure of the human

brain, composed of a set of connected input/output nodes (perceptrons) in which each

connection has a weight associated with it. The network is capable of learning a task by

adjusting automatically its associated weights so that it can reliably predict the actual

labels of the given inputs.

Artificial neurons, Figure 2.1, also known as perceptrons, are the basic processing

units of the model [43]. They consist of a parametrized function that maps RD 7→ R, with

weights, wn, bias, bn, and activation function, f , as parameters.

For a Neural Network to learn a specific task, it requires a training dataset composed

of the known inputs and their corresponding result. With these pairs the algorithm is

capable of forming probability-weighted associations between the two of them, which will

be embedded within the network itself. Given an input sample, determining the actual

difference between the processed predicted output of the network and the actual output

associated with said input will constitute the learning procedure during training. This

difference between predicted and correct is known as the error, and will be used in order

to adjust the weights accordingly, wn, bn, based on a specific learning rule. As the learning

procedure continues, more and more adjustments will take place so that the network will



24 Chapter 2. Introduction

Figure 2.1: Perceptron learning process scheme [2],[3]. The data, xn, is fed into the input
layer, to be later on multiplied by their weight, wn, add the bias, bn, and finally feed the sum to
the activation function, f , to produce the output.

be capable of producing predictions increasingly similar to the target output. After suf-

ficient training, the learning process will be terminated based upon certain criteria. This

process constitutes an example of supervised learning.

While the bias and weights are both adjustable, the output of the neurons can actually

range from -inf to +inf. Through the use of activation functions as our mapping mech-

anism, we are capable of setting the boundaries of the neurons. The activation function

can be understood as an abstraction of the rate of action potential firing in the neuron,

but for non-trivial problems, only non-linear activation functions are feasible in solving

them. Non-linear activation functions allow the development of a complex mapping be-

tween inputs and outputs, which is essential when facing complex datasets (video, audio,

etc.) that usually feature high dimensionality, non-linearity, etc. Non-linear activation

functions are referred to as nonlinearities, and provide the network expressiveness.

There’s a wide range of activation functions available for model training, Figure 2.2, among

the most commonly used we can find:

• Linear or Identity function: the derivative of the function is a constant, and

therefore shares no relationship with the input, X, which leads to several disadvan-

tages. For example, it’s not possible to optimize performance by determining which

weights in the input neurons can provide a better prediction. Additionally, no mat-

ter how large the architecture of the network is, given that all layers of the network

collapse into one, the last layer will be a linear function of the first one.

• Heaviside or Binary Step function: if the value of Y is above a certain threshold,

the output is True, and if it’s less than the threshold, then it’s False. Due to the fact

that the step-function is discontinuous and thus non-differentiable, this function is
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not done in practice with back-propagation.

• Binary Sigmoid function: logistic function where the input values are mapped

into probabilities between 0 and 1. Unlike the Heaviside function, this function is

differentiable and its output normalized, which usually facilitates learning. However,

it suffers from the vanishing gradient problem, that is, given very high/low input

values, there is little to no change in the prediction, causing the gradient to vanish.

• Hyperbolic Tangent function or Tanh: logistic function where the output value

varies from -1 to 1. It facilitates modeling strongly positive, negative and neutral

input values, since the function is zero-centered. However, just like the Binary

sigmoid function, it also suffers from the vanishing gradient problem, but tends to

work better than the sigmoid.

• Ramp function: this function maps a range of inputs to outputs over the range

from 0 to 1, so it looks like a more definitive version of the sigmoid function. How-

ever, it imposes definitive cut off points T1 and T2 in the x-axis, so it can also be

understood as a truncated version of the linear function. It allows some level of

uncertainty in the lower regions, while also possessing the ability to fire the node

very definitively above the threshold.

• Rectified Linear Unit (ReLU): this function maps inputs to proportional output

values, and outputs zero for negative input values. It can be seen as a special

case of the ramp function, and though it might look linear, in reality it’s not and

therefore possibilitates backpropagation. However, it also has its disadvantages, such

as suffering from the dying ReLU problem, that is, when the inputs are negative, the

gradient of the function becomes zero and back-propagation cannot be performed,

which means that the network is unable to learn. It’s one of the most used activation

functions worldwide in a wide variety of powerful Convolutional Neural Network

(CNN) architectures.

Neural Networks are usually structured into layers, rows of artificial neurons/nodes,

but there are three different kinds of layers present in almost all Neural Network

architectures. These are the input, hidden and output layer.

The initial data is brought into the system through the input layer of the Neural

Network, this data will be later on processed by the subsequent layers of the network. It

is important to note that input layer nodes are addressed as ’passive’ due to their lack

of weights and biases, since they constitute the very beginning of the workflow of the

network and therefore do not take information from any previous layers.

Between the input and the output layers one can find the so-called hidden layers. In these

layers the function applies weights to the inputs and directs them through an activation

function as the output. They are nothing more than mathematical functions designed to

produce an output specific to an intended result, and vary significantly depending on
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Figure 2.2: Activation functions table [4]. In order to ensure proper learning, all activation
functions must fulfill two requirements: ensure non-linearity as well as large gradients through the
hidden units.

the function of the neural network and their associated weights. Each layer’s output

is simultaneously the subsequent layer’s input, and the further you advance into the

network, the more complex the features your nodes are able to recognize.

At the very end of the neural network one can find the output layer, responsible for

producing predictions for the network given the input. Their neurons can be seen as

identical to that of the rest of the layers, but given that they are the last “actor”

nodes on the network, they are addressed in a rather different view. Thus, the

output layer is responsible for merging and producing the concrete end result of the model.
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The variety of Neural Networks is quite broad, but the most well-known architectures

can be counted into one of the following categories:

• Feed-Forward Neural Networks: where the first layer constitutes the input and

the last layer the output of the model, they are referred to as ’deep’ neural networks

as well, so long as they have several hidden layers in their architecture. Each layer’s

neuron activities are a non-linear function of the activities in the layer below, and

the network overall computes a series of transformations that change the similarities

between cases. They are by far the most common type of neural network for practical

applications.

• Recurrent Networks: characterized by containing directed cycles, loops, in their

architecture. Despite the fact that they are biologically more realistic, these networks

are very difficult to train due to their complicated dynamics. These loops in their

connection graph, the presence of distributed hidden states and complex updates of

these states thanks to their non-linear dynamics grant these networks the ability to

store information about the past efficiently, making them capable of remembering

information in their hidden state for long periods of time

• Symmetrically Connected Networks: unlike recurrent neural networks, with

which they share similar architectures, the connections between nodes for these

Symmetrically Connected Networks have the same weight in both directions (sym-

metry). Therefore, they are more restricted in what they can learn, but at the same

time are significantly easier to analyze. Those SCNs that lack any hidden units are

known as “Hopfield Networks”, and those connected with hidden units are called

“Boltzmann machines.”

We seek to optimize wafer defect image classification. Therefore, Convolutional Neural

Networks, an architecture from the Feed-Forward Neural Network category, will prove the

best model for such task.

2.3.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are algorithms in Deep learning capable of

differentiating various objects within an image, assigning them their associated weights

and biases during training, and ultimately telling one apart from the other. Previous

methods required the different filters used for such tasks to be hand-engineered, while

with CNNs, these very filters are automatically learned by the network itself given

sufficient training. These algorithms are mainly used in computer vision tasks such as

image classification, segmentation and object detection.
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The connectivity pattern encountered in the organization of the animal visual cortex

served as inspiration [19],[20],[21],[23] for the development of Convolutional Neural

Networks, whose architectures resemble such structure. Two main features of the visual

cortex can be highlighted as key for the later construction of CNNs: first, individual

cortical neurons respond to stimuli only in a restricted region of the visual field known as

the receptive field. Second, the receptive fields of different neurons partially overlap such

that they cover the entire visual field.

When designing a CNN, it is important to make it in such a way that the architecture

efficiently learns the sample’s features and can also be scalable to massive datasets. By

reducing the format of an image to a new easy-to-process format in such a manner that

critical features are not lost/distorted, CNNs are capable of generating good predictions.

Each neuron analyzes a small region of the image, and in order to do so these neurons

have to be split into 3-D structures, Figure 2.3. The output layer of the CNN will finally

generate a probability score vector that indicates the likelihood of a specific sample

belonging to one of the known classes.

Figure 2.3: Architecture of standard CNN [5]. After the network identifies the main features
of the original input by means of convolution, the pooling layers will downsample the results of
these to identify further sub-features from smaller parts of the image. This kind of structural logic
is used repeatedly in CNNs.

CNNs are composed of the following types of layers:

• Convolutional layer: responsible for abstracting the images to a feature map

through the use of filters that scan the whole image, reading a few pixels at a

time. Convolutional layers can be mathematically understood as a cross-correlation

or sliding dot product. Mimicking the biological architecture, each convolutional

neuron processes only the data of its receptive field and passes its result to the next

layer. Among the different attributes a convolutional layer should have within a
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network, one can name:

– The convolutional kernels, defined by their a width and height.

– The number of input and output channels.

– The depth of the Convolution filter (the input channels) must be equal to the

number channels (depth) of the input feature map.

• Pooling layer: through a combination of the outputs of the neuron clusters into a

single neuron in the next layer, pooling layers are capable of reducing the dimensions

of the input data. One can distinguish local pooling layers, responsible for combining

small clusters, from global pooling, which acts on all the neurons of the convolutional

layer. In addition, pooling may compute the maximum value from each cluster of

neurons at the prior layer, max. pooling, or the average value from each cluster of

neurons at the prior layer, average pooling. The most common approach used is

max pooling.

• Fully connected layer: also known as flatten layers, they are responsible for a full

connection of every neuron from one layer to every neuron on the subsequent layer.

This way, they turn the outputs into a single vector, which can be used later on as

input for the next layer. Usually it is this flattened matrix what is used in order to

finally perform image classification.

Many CNN architectures have gained recognition, [18],[29],[31],[40] [1],[13], by achiev-

ing state-of-the-art results at the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC). This annual competition fosters the development of top algorithms in the field

of computer vision thanks to a very large collection of human annotated photographs de-

signed by academics. It is thanks to the ILSVRC project that the fields of deep learning

and computer vision have actually experienced the birth of true milestone architetures and

techniques. Nowadays, the ImageNet dataset counts with more than 14 million images

specifically created for the purpose of training CNNs in the field of object detection.

2.3.2.1.1 EfficientNet Architecture

Usually, there’s a limited resource budget when designing Convolutional Neural

Networks, and as soon as more budget is available, the network is scaled up. There are

three different features one can tune in order to scale-up a CNN, that is, their depth

[14], width [15] or image resolution [16]. Unfortunately this process requires manual

tuning, and though one can scale-up up to two or three dimensions, it tends to lead to

sub-optimal performance.

In opposition to these conventional approaches where one arbitrarily scales network

dimensions, [13] proposes the so-called compound scaling method, that uniformly scales

each dimension with a set of fixed scaling coefficients. Through this method, the authors
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were capable of generating a lightweight convolutional neural network architecture known

as EfficientNet, Figure 2.4, that achieves state-of-the-art performance with up to six

commonly used datasets, such as ImageNet, CIFAR, etc.

In [13], the width, depth and resolution of the architecture were uniformly scaled using a

compound coefficient φ in the following manner:

depth : d = αφ

width : w = βφ

resolution : r = λφ

s.t. α.β2.λ2 = 2

α ≥ 1, β2 ≥ 1, λ2 ≥ 1

(2.1)

A small grid search suffices in order to determine the constants α, β and λ, which

specify how to assign these extra resources to network width, depth, and resolution

respectively. φ is user-specified and controls how many more resources are available for

model scaling.

Figure 2.4: EfficientNet model scaling [13]. As stated in the paper: (a) is a baseline
network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) Proposed compound scaling method that uniformly scales all three
dimensions with a fixed ratio.

It is important to note that in [13], a new baseline network was developed by using

neural architecture search [17] and subsequently scaled-up in order to obtain the family

of models that constitute EfficientNet, which significantly outperform other CNNs such

as GPipe [30], ResNet-50 [29], etc. The development of such baseline was done due to
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the fact that the effectiveness of the compound scaling method heavily depends on the

baseline network.

There are currently available 8 different architectures from the EfficientNet family

(EficientNet B0-B7), whose computation and build consisted on: for EfficientNet B0,

assuming twice more resources available and a small grid search of α, β, λ based on

Equation 2.1. They found α = 1.2 , β = 1.1 , λ = 1.15 as the best values for this

architecture, under constraint of αβ2 λ2 = 2. For EfficientNet-B1 to B7, they fixed α,

β, λ as constants and scaled up baseline network with different φ using Equation 2.1,

obtaining the remaining architectures.

Given the state-of-the-art performance of the EfficientNet family, we’ll investigate this

line of models for defect classification. However, due to hardware limitations, we’ll limit

our scope to the first 5 architectures (EficientNet B0-B4).

2.3.2.2 Loss function

The loss function constitutes a comparison between the prediction performed by the

model and the actual label the output should generate. In other words, it computes how

poorly our networks performs, being therefore one of the most important components in

Neural Network training. Having prediction ypred, if this one differs too much from the

actual value ytrue, then the loss will be consequently very high. On the other hand, as

long as both values are close to each other, the loss will become very low.

Hence, the loss function is used to calculate the gradients, which are used to update the

weights of the NN. High losses cause the weights to change significantly, while low ones

will lead only to small changes. We need to keep a loss which can penalize a model

effectively while it is training on a given dataset. This is how Neural Networks learn.

The most essential loss functions, which could be used for most objectives are:

• Mean Squared Error (MSE): calculated by taking the mean of squared differences

between the actual and predicted values:

MSE = 1
N

∑N
i=1(ypred − ytrue)2

• Binary Cross-entropy (BCE): used for the binary classification tasks, where data

can only be divided into two classes. The output value should be passed through

a sigmoid activation function and the range of the output will consequently lie

between 0 and 1:
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BCE = −
∑C=2

i=1 yitruelog(ypred) = −ytruelog(ypred)− (1− ytrue)log(1− ypred)

• Categorical Cross-entropy (CC): for multi-class classification tasks. The number of

output nodes must be equal to the number of classes. The output layer should pass

through a softmax activation to obtain a probability vector with values between 0

and 1.

CC = −
∑C=N

i=1 yitruelog(ypred)

Since or goal consists in the development of a model capable of classifying 11 different

classes, categorical cross-entropy will be our loss function of choice.

2.3.2.3 Backpropagation

In machine learning, backpropagation consists on the computation of the gradient of

the loss function one layer at a time with respect to each weight through the chain rule.

In order to avoid redundant calculations of intermediate terms in the chain rule, this

technique is performed backwards from the last layer of the network, and it is this flow

of the error information what allows an efficient computation per layer of the gradient,

in opposition to the naive approach of calculating the gradient of each layer separately.

Backpropagation is therefore a widely used algorithm in supervised training that tunes a

neural network’s weights to improve the prediction accuracy.

This technique addresses not only the algorithm for computing the gradient, but also the

adjustments of the network’s weights during the entirety of the learning process, Figure

2.5, including how the gradient is used in order to update the parameters of the network.

A wide range of variants for backpropagation algorithms have been developed, some more

complex than others. Among the most well-known are: Root Mean Square backpropa-

gation (RMSProp), Stochastic Gradient Descent (SGD), Nesterov Momentum, and algo-

rithms with adaptive learning rates such as AdaGrad, Adam, RAdam, etc.
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Figure 2.5: Schematic of backpropagation training algorithm [9]. Calculate the output
for every neuron from the input layer to the output layer. Calculate the error in the outputs and
travel back from the output to the input layer to adjust the weights such that the error is decreased.

2.3.2.3.1 Stochastic Gradient Descent

Stochastic gradient descent is based, as its names suggests, on the iterative algorithm

known as Gradient Descent, which consists on localizing and reaching the lowest point of

a function by traveling down its slope in steps with a randomly selected starting point.

Unlike Gradient Descent, SGD replaces the actual gradient, computed from the entire

dataset, by an estimate consisting of a randomly selected subset of the dataset or batch.

In this manner, SGD can be better understood as an stochastic estimation of Gradient

Descent, and it is this estimation what allows faster iterations at the cost of a lower
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convergence rate.

In this way, ’mini-batch’ stochastic gradient descent, which computes the gradient

against more than one training example, can actually make use of vectorization libraries

rather than computing each step separately, which translates into a performance that

can be significantly better than through the ’true’ stochastic gradient descent. Not only

that, but it can lead to smoother results due to the fact that an average of the gradient

computed per step over the training set is performed. Therefore, ’mini-batch’ stochastic

gradient descent results from a compromise between computing the gradient at a single

example and the actual true gradient.

The learning rate in stochastic gradient descent constitutes a flexible and highly

influential parameter in the convergence of the algorithm. Only a single learning rate is

maintained, also termed as ’alpha’, and it does not change during training. The larger

the learning rate is, the larger the will steps taken down the slope be. This could lead to

a jump across the minimum point, thereby missing it. Consequently, it is always advised

to stick to low learning rates, such as 0.01. However, if the value is too small, it will lead

to slow convergence to the optimal point

Theories such as convex minimization and stochastic approximation provided a tool

for analysis of the convergence of the stochastic gradient descent. From these theories

the following conclusion can be inferred: stochastic gradient descent converges to a

global minimum when the objective function is convex or pseudoconvex, and otherwise

converges to a local minimum as long as an appropriate decrease of the learning rate is

ensured, along with a few relatively mild assumptions

Machine learning algorithms such as graphical models, support vector machines (SVMs)

and logistic regression use stochastic gradient descent as their default algorithm for train-

ing, and it is the combination of this technique with backpropagation what constitutes the

de facto standard algorithm for training artificial neural networks. Its formulation follows:
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Let ε be the learning rate for update k.

Sufficient condition to guarantee convergence of SGD.

∑∞
k=0 εk =∞, and

∑∞
k=0 ε

2
k <∞

Commonly used in practice:

• Start with initial rate ε0

• Decrease linearly until update τ :

εk = ( 1−k
τ ) ε0 + k

τ ετ

• Then keep constant rate ετ

Choosing meta parameters:

• τ ...A few 10 passes through the training examples

• ετ ... about 1% of ε0

• ε0...

– Monitor first several iterations

– Choose learning rate higher than the best performing one

– But not so high that it causes severe instability

2.3.2.3.2 Adam

Building on top of the stochastic gradient descent algorithms, the Adam or Adaptive

moment estimation [46] optimization algorithm performs an estimation of both the first

and second moments of the gradients in order to compute individual adaptive learning

rates for different parameters

The authors describe Adam as combining the advantages of two other extensions of

stochastic gradient descent. Specifically:

1. Adaptive Gradient Algorithm (AdaGrad): This algorithm is based on a per-

parameter learning rate approach that leads to improvements in model performance

when facing problems with sparse gradients, such as natural language and computer

vision problems. In fact, when the scaling of the weights is unequal, this algorithm

proves better than SGD since it converges both faster and more reliably.

2. Root Mean Square Propagation (RMSProp): based on computing the average

of the magnitudes of recent gradients for a specific weight, to later on divide the

learning rate of that weight by its corresponding average. This algorithm is usually

used for online and non-stationary problems.
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While in RMSProp only the average of the first moments are used in order to adapt

the parameter learning rates, in Adam one makes use of the average of both the first

(mean) and second (uncentered variance) moments of the gradients.

Specifically, the algorithm calculates an exponential moving average of the gradient and

the squared gradient, and the parameters ε1 and ε2 control the decay rates of these

moving averages.

When facing non-convex optimization problems, Adam counts with a wide array of

benefits. The algorithm shows computational efficiency, the memory requirements for

such method are small, little tuning is required for the hyper-parameters, which one can

as well interpret intuitively, the algorithm proves a great tool for the resolution of large

size dataset/parameter problems, etc.

Through an estimation of first and second moment of the gradients, the algorithm

is capable of computing individual adaptive learning rates for different param-

eters, while remaining computationally efficient. The algorithm’s formulation is as follows :

Required:

• α: step size

• ε1, ε2 ∈ [0, 1): exponential decay rates for the moment estimates

• ft(θ): stochastic objective function with parameters θ

• θ0: initial parameter vector.

Initialize:

• m0 ←− 0: 1st moment vector

• v0 ←− 0: 2nd moment vector

• t←− 0: timestep

while θt not converged do

• t←− t+ 1

• gt ←− 5θft(θt−1): get gradient w.r.t stochastic objective at timestep t

• mt ←− ε1mt−1 + (1− ε1)gt: update biased first moment estimate

• vt ←− ε2vt−1 + (1− ε2)g2t : update biased second raw moment estimate

• m̂t ←− mt/(1− εt1): compute bias-corrected first moment estimate

• v̂t ←− vt/(1− εt2): compute bias-corrected second raw moment estimate

• θt ←− θt−1 − αm̂t/(
√
v̂t + ε): update parameters

end while

return θt: resulting parameters



2.3. Theoretical background 37

2.3.2.3.3 Rectified Adam

In the same manner that Adam was developed using stochastic gradient descent as the

building base, so does RAdam emerge. This rectification of the Adam optimizer achieves

better precision, generalization, and fewer number of epochs during training.

Converging to local optima is one of the many challenges faced in Deep Learning when

making use of adaptive learning rates, and in order to battle such obstacle researchers

have resorted to a ’heuristic warmup’, that is, the use of a small learning rate during the

first epochs of training in the hopes of mitigating such problem. However, to determine

the settings of such warm-up phase constitutes a tedious and time-consuming task, since

each application demands different settings, which forced the operator to a trial-and-error

approach.

In [45], authors claim to have found the root cause of such convergence issue through an

empirical and theoretical analysis. The origin of such problem seems to lie in the fact

that, given the limited amount of training samples being used in the early stage of model

training, the adaptive learning rate experiences undesirably large variance. Thus, through

the use of smaller learning rates in the first few epochs of training one should be able to

reduce such variance, consequently optimizing the warmup heuristic phase.

These findings led Liu et al. [45] to rectify the Adam optimizer, and this explicit recti-

fication of the variance of the adaptive learning rate produced as a result an algorithm

that surpassed Adam in regards to accuracy, generalization, and the number of epochs em-

ployed during training. This new proposal received the name of Rectified Adam (RAdam).

The fact that adaptive learning rate optimizers have difficulties generalizing during the

first batch updates during training, as well as the undesirably high variance of the learning

rate in these stages, were the pivoting points used by the authors to develop their method.

They implemented two changes: first, training was initialized with a small learning rate,

and second, the momentum term for the first few input train batches was turned off. By

doing this, the aforementioned issues could be actually rectified.

The authors evaluated their experiments on language modeling, image classification, and

neural machine translation and found that their Rectified Adam implementation brings

consistent improvement over the vanilla Adam.

Its formula follows:
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Input:{αt}Tt=1: step size, {ε1, ε2}: decay rate to calculate moving average and moving

2nd moment, θ0: initial parameter, ft(θ): stochastic objective function

Output: θt: resulting parameters

Initialize:

• m0, v0 ←− 0, 0: moving 1st and 2ndmoment

• ρ∞ ←− 2/(1− ε2)− 1: compute the maximum length of the approximated SMA

while θt not converged do

• t←− t+ 1

• gt ←− 5θft(θt−1): get gradient w.r.t stochastic objective at timestep t

• vt ←− ε2vt−1 + (1− ε2)g2t : update biased second raw moment estimate

• mt ←− ε1mt−1 + (1− ε1)gt: update biased first moment estimate

• m̂t ←− mt/(1− εt1): compute bias-corrected first moment estimate

• ρt ←− ρ∞ − 2tθt2/(1− θt2)): compute the length of the approximated SMA

• if the variance is tractable, i.e, ρt > 4 then:

– v̂t ←−
√
vt/(1− εt2) : compute bias-corrected moving 2nd moment

– rt ←−
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt : compute the variance rectification term

– θt ←− θt−1 − αtrtm̂t/v̂t: update parameters with adaptive momentum

• else

– θt ←− θt−1 − αtm̂t: update parameters with un-adapted momentum

end while

return θt: resulting parameters
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Figure 2.6: Optimization algorithms comparison [45]. As stated in the paper: performance
of RAdam, Adam and SGD with different learning rates on CIFAR10.

In the development of this work, we’ll use RAdam as our default optimizer.

2.3.3 Manufacturing Process of Integrated Circuits

The manufacture of semiconductor devices constitutes the core process of the Semicon-

ductor industry. They usually constitute an integral part of the circuitry of chips that are

currently present in all kinds of electrical devices.

Starting out with a wafer made of pure semiconducting material [51], the different elec-

tronic circuits are gradually built through a multiple-step sequence of chemical and photo-

lithographic processes onto the surface. Silicon Carbide/Gallium Nitride are becoming the

most popular materials for integrated circuits.

Due to the sensitivity of the nanoscale structure of these circuits, the manufacturing pro-

cess requires the use of hermetically sealed environments in order to reduce the appearance

of defects and increase the proportion of properly functional microchips in a wafer (yield).

To achieve this goal, semiconductor fabrication plants tend to be highly specialized and

completely automated.

2.3.3.1 Wafer processing

Wafer manufacturing facilities compose the heart of the production line for integrated

circuits. Microelectronic devices require a semiconductor substrate material where they

can be built in and upon, these substrates consists of thin slices of semiconductor known

as wafers. One wafer contains several microcircuits, which are later on separated and

packaged as integrated circuits through a process known as wafer dicing.
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In order to obtain these wafers, it is first required to produce a seed crystal, a perfect

single crystal from which they can be sliced. Two processes can be followed in order to

obtain these seeds, Figure 2.7.

• The Czochralski process, where a seed crystal on a rotating rod is brought to the

surface of the silicon melt. An immediate solidification of the seed crystal is possible

due to the fact that the crucible temperature remains just slightly above the melting

point. It is important to note that only when the melt enters in contact with the

seed crystal, its architecture is overtaken by the melt.

The seed grows as it is slowly pulled upwards with constant rotation, while also

remaining continuously in contact with the melt. In order to ensure a steady growth

of the crystal the temperature must remain constant. The drawing speed determines

the diameter of the crystal, and the faster the drawing speed is, the thinner the

crystal becomes. Finally, to avoid silicon oxidation, the entirety of the device must

be placed under a controlled atmosphere.

• The Float-zone silicon, where only a small polysilicon area of a few millimeters is

molten. Once again, a seed crystal introduced at the end of the polycrystalline

silicon rod sets the crystal structure. The heated region is slowly guided along the

rod, and as the polycrystalline crystal enters in contact with the seed, it overtakes

the seedling’s structure and slowly transforms into a single crystal.

With the passage of time, the manufacture of integrated circuits has developed consid-

erably. Starting with a wafer diameter of only 25 mm, this size has reached up to 150-300

mm diameter today, and research is already being done in order to efficiently generate 450

mm diameter wafers, Figure 2.8. In fact, the wafer surface has increased by more than

300-fold from the tiny 1-inch original wafer, whereas the disk diameter has in comparison

only increased by a factor of 18.

This increase in wafer diameter not only leads to significant increases in the production

rate of microchips in the manufacturing process, but also to considerable cost reductions.

Two advantages are particularly important: first, more than twice as many chips can be

produced on a 300 mm wafer as on a 200 mm wafer, and second, since the wafer’s edge

is less curved as the diameter increases, the cut-off, due to the rectangular shape of the

chips, is consequently minimized.

The cut-off step is performed due the existing conflict between the wafer and microcircuit

shape. Despite the fact that microchips are rectangular, wafers are fabricated in a round

shape. This translates into some areas, or blend, on the wafer where no entire chips can

be placed and which has to be consequently discarded at the end of the manufacturing

process.

The round wafers have several advantages over an angular shape, even though it is possible

to cut the round single crystal into rectangular shape. These are:

• The quality of the silicon has proven to be compromised if we try to straighten the
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Figure 2.7: Methods of crystal growth in semiconductor manufacturing [51]. Left, the
Czochralski method. Right, the Float-zone silicon method.

round silicon, leading to defects and dislocations. This is caused by the additional

stress the crystal is subject to when applying this process.

• Round wafers have proven not only to be more stable, but also more robust dur-

ing transportation, since angular wafers could hardly be transported and processed

without damage.

• Radially symmetrical processes are much easier than angular ones for homogen pro-

cessing during microchip manufacturing.

• Angular wafers are not without cut-off, since it is impossible to process to the out-

ermost edge, which means the extreme edges must be discarded. In order to avoid

layers spalling off of the edge, the wafer must be clamped during transport.

Since even a speck of dust is capable of ruining a microcircuit due to its nanoscale

architecture, we require the use of highly specialized plants known as clean rooms, Figure

2.9, in order to control the amount of intruding agents present in the manufacturing

process. Additionally, clean rooms must be warded off against other possible sources of

perturbations such as static electricity, which is controlled through narrow bands of

temperature and humidity, or damping the room against vibrations.
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Figure 2.8: Development of the wafer size [51]. In the solar cell manufacturing process wafers
can be poured in a rectangular form and their production is easier in comparison to microchip
fabrication.

All high precision equipment required for semiconductor manufacturing can be found

within the clear room, these include all machinery used for etching, doping, dicing and

cleaning. In order to minimize the amount of contamination brought by the operators to

the room, these are required to wear clean room suit, also known as bunny suits, that

cover the totality of their body, and must step into air showers to blow everything clear

before entering the actual room. As explained above, the running trend of producing

larger diameter wafers has led to a significant increase in the amount of chips produced

at once in the production line.

The structure of a fabrication plant often follows the following design:

• The ground floor: which contains all electrical equipment.
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Figure 2.9: Illustration of a clean room [51]. The production line is only the region between
the light-red colored and the yellow colored area. At the bottom one can find the basement,
equipped with supply units, and on the top the air filters.

• The clean sub-fabrication plant: that contains chemical delivery, purification, and

destruction systems.

• The clean room: which can be composed of several floors.

• The roof: composed of air handling equipment that draws, purifies and cools the

outside air.

2.3.3.2 Defect Detection in production line

Despite the quality of the facility and its equipment, wafer defects remain unavoidable,

and surface inspection tools are required for evaluation. Visual inspection is one the

most important steps in semiconductor manufacturing, since it constitutes a source of

information relevant for the identification and correction of problems encountered in the

production line, consequently improving the quality of the product.

Defects can be divided into two categories according to their cause: random defects, mainly

caused by the class 200 defects and that become attached to the surface, and systematic

defects, caused by the exposure process as well as the conditions of the mask. The most

common wafer defects are small particles and pattern defects. There’s a wide variety of

defect classes, Figure 2.10, and some appear more often than others. This constitutes a

source of data imbalances in machine learning.

Additionally, while some defects are critical to the product, and if present imply the

removal of the wafer from the production line, others do not pose a real threat to the
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circuits and can be tolerated up to a certain threshold. This further emphasises the

importance of defect classification during wafer inspection.

Figure 2.10: Illustration of early wafer defects distribution. Long tail distribution of
some of the defects encountered during wafer inspection. Green box contains all those classes with
over 1000 samples (majority classes) and light-red box contains those with less than 1000 samples
(minority classes).

In this work, we’ll focus on the classification of 10 different defects, plus a No-Defect

class, Figure 3.6. It is important to note that some classes will be implemented in later

stages of the work, see Section 3.1.4.

2.3.3.2.1 Scanning Electron Microscope

The Scanning Electron Microscope (SEM) is a kind of microscope that uses an electron

beam as illumination source in order to scan the surface of the sample at hand, in our case

the wafer’s, and generate images of its topography. The interaction between the electrons

of the focused beam and the materials from the sample can produce several kinds of

signals that contain different types of information that relate to the sample’s topography

and composition, and can be processed to generate images that contain specific features

from it. Due to the high sensitivity of this device, it is one of the most used technologies

for visual inspection in the manufacturing process.

The SEM consists of the following main components: the electron gun, a Tungsten filament
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heated up to 24000oC that emits the electrons, an anode, responsible for accelerating the

electrons, magnetic lenses, which focus the electrons in a narrow beam, as well as the

amount that reaches the sample, scanning coils, which allow the electron beam to move

row by row across the sample surface, and the objective lenses, that regularize the focus

of the lenses. See Figure 2.12.

The sample is placed upon a holder and fixed in the microscope. All measurements must

be done in vacuum in order to ensure a clean surface as well as no interaction between

electrons and gases. In this work, datasets consists exclusively of secondary electron

images.

The surface point bombarded by the electrons will generate 3 different kinds of signals,

which will be detected by three different channels respectively. These signals are composed

of:

1. Secondary electrons: characterized by having low energy, these electrons are

’kicked out’ of the sample by inelastic scattering interactions with beam electrons

and can only escape near the surface. They are detected by the collector and due

to their low energy, they can only originate from within a few nanometers below the

sample surface.

• The brightness of the signal depends on the number of secondary electrons

that reach the detector. For this detector, edges and steep surfaces will appear

brighter than other flat structures, for example, protrusions will appear bright

in contrast to holes and cracks, which will appear dark. This is caused by the

angle of incidence of the beam and its interaction with the sample, that is, as

the angle of incidence increases, the interaction volume increases and so does

the number of expelled secondary electrons.

2. Back-scattered electrons: these electrons managed to penetrate deeper the sam-

ple and were ’bounced back’ in a similar direction. They originate in the electron

beam and their interactions with the sample’s materials, known as elastic scattering,

reflects/back-scatters them out of the specimen.

• Number of back-scattered electrons depends on the atomic number of the el-

ements of the sample. Therefore, images will appear brighter for high atomic

number elements, while dark for low atomic number elements. These electrons

can also be used in order to determine the crystallography of the specimen by

means of an electron back-scatter diffraction (EBSD) image.

3. Characteristic X-rays: primary beam electrons ’kick out’ an inner shell electron

from the sample’s atom, which consequently leads to an outer shell electron occu-

pying the available spot, emitting characteristic radiation for sample composition

measurement.
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• Analysis of the x-ray signals are usually used in order to determine the number

of elements that constitute the sample, as well as the distribution of these.

While we have at our disposal samples from all three detectors, Figure 2.11, we decided

to focus this work on those taken only with the secondary electron detector, considered

to represent best the specimen topography.

Figure 2.11: Illustration of samples from SEM channels. CH1 corresponds to the secondary
electron detector, CH2 to the back-scattered electron detector, and CH3 to the X-ray detector.



2.3. Theoretical background 47

Figure 2.12: Schematic of a SEM [6]. The microscope allows a degree of magnification up to
500,000 times the original scale. In contrast, the best light microscopes provide a magnification
limit of 250 times the original size.





3
Methodology

In section 3.1 we perform a theoretical introduction of the different preprocessing and

regularization steps considered to improve model performance, followed by a brief expla-

nation of the additional classes that will be implemented, as well as the techniques used

for model visualization.

In section 3.2, after initial evaluation of the oversampling effects on minority class pre-

diction, each regularization/preprocesing step will be evaluated independetly in order to

determine which ones lead to performance reduction, which will be therefore not consid-

ered any further.

On the other hand, all those that led to no significant variations or to actual improvements

will constitute part of our final preprocessing process, which will thus be composed of the

combination of these, section 3.2.4. Afterwards, we’ll proceed to increase the number of

classes implemented in the model, improve the consistency of our heatmaps, and evalu-

ate higher architectures, further explained in section 3.2.5. Finally, after addtional data

cleaning, class expansion, and hyperparameter tuning, we’ll reach the realization of our

final models, section 3.2.6.

3.1 Experiments

3.1.1 Preprocessing

Feature scaling. Originally, our dataset’s intensity values ranged between 0 and 255.

On this account, we scaled down the range so that the features lie on a similar scale that

can help the gradient descent converge faster towards the minimum, since all the features

would contribute equally to the result. Therefore, we normalized our data.

When the distribution of your dataset differs from a Gaussian distribution, its is

recommended to use Min-Max scaling (normalization). This technique shifts the values

of your data in such a manner that they end up ranging between 0 and 1.

49
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Standardization. Another scaling technique where the values are centered around

the mean with unit standard deviation. The new distribution of the dataset behaves in

such a way that the mean becomes zero and the resultant standard deviation equals one.

Our original approach was to use standardization in combination with normalization, but

after inspection of the images generated after such preprocessing, we decided to discard

standardization due to its extreme effects on the images’ contrast, Figure 3.1.

This is caused due the fact that, in standardization, both mean and standard deviation

are sensitive to outliers, and thus does not guarantee a common numerical range for the

normalized dataset. Moreover, as long as the input scores are not Gaussian distributed,

this technique is not able to retain the input distribution at the output.

Label removal. The samples generated by the SEM contain by default labels which

indicate the size of the defect. In order to ensure that our samples contain only crucial

information, we removed these labels. Though it must be noted that, given the size and

location of these labels, as long as we count with a large enough set of samples per class,

no significant variation should be noted.

We formulated two hypothesis: on one hand, these labels could prove beneficial for

learning, since they provide additional information about defect features. On the other

hand, they could pose a source of noise for our model, which could focus on them as the

actual feature, rather than the defect itself. This applies largely to the minority classes,

due to their small size.

Image background. Geometrical transformations such as rotation and shearing

produce images were the background is, by default, completely white. Several options

[35] were evaluated to properly cover the background, and due to the features of the

surface topography surrounding the defect, reflecting the original sample proved the

fittest alternative, Figure 3.3.

Reduction to grayscale. All SEM samples are by default in RGB (Red-Green-Blue)

format, but it’s clear defect images consist only of black and white features, Figure 3.1.

Therefore, we reduced our dataset to grayscale, Figure 3.4.

Nonetheless, it’s worth mentioning that all models evaluated in this paper were built

with the RGB architecture in mind. The fact that grayscale reduction may lead to

relevant information loss remains to be seen.

Geometrical Augmentation. For the sake of model generalization improvement, a

set of simple transformations was applied randomly to our dataset [33],[36], among these

operations we count with rotation, shearing and solarizing. Though solarizing, inversion

of pixel values, is not considered a geometrical transformation, it was included in this

stage in order to further improve generalization.

There are three main differences between our algorithms for Random Augmentation
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Figure 3.1: Illustration of image scaling techniques. Normalization of sample (left) led
to no changes in defect features, while combination of normalization and standardization (right)
darkened considerably the image.

Figure 3.2: Example of label and right border cropping. Right border black line and
bottom label cause conflict during preprocessing, see Section 3.1.2. After cropping, all images were
resized to their original shape (480x480).

(RA) and Geometrical augmentation (GA). First, GA applies only one transformation

per sample, while RA applies one pair instead, second, the magnitude of these

transformation is larger in RA, and third, RA counts with additional transformations

not available in GA, Figure 3.5. This is done to guarantee that artificial samples differ

as much as possible from the originals, while also allowing some level of base generalization.

3.1.2 Data Augmentation

Oversampling. One of the most reasonable approaches in order to compensate data

imbalances. This procedure is based on the creation of artificial samples by applying

basic image transformations such as rotation, shearing, cropping, noising, blurring, etc.

to the original dataset.



52 Chapter 3. Methodology

Figure 3.3: Illustration of image borders/padding for geometrical transformations.
From top to bottom: border replication, border wrapping and border reflection. Reflection gener-
ated the best results.

In this work, we used EfficientNet Auto Augmentation algorithm [36] as a reference for

the development of our own data augmentation space. It is important to note that we

do automatically search for improved data augmentation policies [36],[33], but directly

defined the operations we wish to apply and investigate its effects on a trial-an-error

setting.

The following operations were considered for augmentation: rotation, shearing, cropping,

flipping, noising, blurring, solarizing and contrasting, Figure 3.5. In accordance to [36],

we designed a augmentation space where a policy consists of many sub-policies, one of

which is randomly chosen for each image. A sub-policy consists of two operations, with

customizable probabilities and magnitudes with which the functions are applied.

Undersampling. A simple technique based on the random removal of samples from
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Figure 3.4: Grayscale reduction. RGB images from the SEM actually consist of the same
grayscale image copied three times in a row. This process is done by default by the SEM.

the majority classes. Though data imbalances are compensated by such method, its main

pitfall is the loss of information (samples) from the majority classes in order to facilitate

minority learning.

Our main interest lies on oversampling as our sole data augmentation technique.

However, both of these procedures were tested independently, as well as combined, to

investigate the variability of minority class prediction.

3.1.3 Regularization

Class Balanced Loss. When facing a long-tailed dataset, Figure 2.10, balancing the

loss is counted among the procedures most commonly used for data balancing. Weight

loss is a regularization technique based on re-weighting the losses of the different classes

based on the number of samples available for each class. For our cases, the weights are

set to the inverse of the number of images per class.

Re-sampling or re-weighting based on the number of images per class are some of the

currently existing re-balancing strategies followed for imbalanced datasets. However, as

stated in [10], in these strategies the additional benefit of a newly added image will

decrease as the number of samples increases.

Label smoothing. The use of one-hot encoded labels during model training gives

rise to the appearance of large logit gaps in the softmax function from the output layer.

Combining this with the bounded gradient leads to the generation of a model that is not

only too confident about its predictions, but also less adaptive.

This overconfidence will lead to predictions where the probabilities are consistently

higher than the accuracy. For example, for inputs with an actual accuracy of 75%, it may

generate predictions of 95%. This indicates that the model is not properly calibrated.
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Figure 3.5: Table of image transformations. Border reflection leads to duplication of the
defect for those samples where the defect is close to the border. Wether this has or not a negative
effect on model performance remains to be seen.

Label smoothing [37] mixes the one-hot encoded target vector, yhot, with the uniform

distribution, effectively replacing the original target label. This modification will

encourage the appearance of small logit gaps, preventing model overconfidence and

ensuring proper calibration.

The formula for label smoothing is:

yls = (1− α)yhot + α/K

Where α is computed as follows:

α = Nclasses(1− softth)/(Nclasses − 1) (3.1)

where K is the number of known classes, α the degree of smoothing, and softth the

minimum confidence our model’s prediction must assign to one of the label classes. If α =

0, we obtain the original one-hot encoded yhot. If α = 1 we get the uniform distribution.
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3.1.4 Class expansion.

Even though our dataset originally counted with only eight different defect classes, Figure

2.10, our end goal was the successful classification of eleven different classes, 2 additional

defects and a No-Defect class.

Therefore, after initial training, two additional classes were included in the dataset, class

575 and 301. 575 consists of particles whose main feature lies in their sharp shape. Class

301 is similar to 360, but as an additional feature their main bump is surrounded by a

’staircase’ structure, Figure 3.22.

Finally, the No-Defect class only contains samples from the intact surface of the wafer.

Since the generation of these samples cannot be avoided in production, we implemented

them as an additional class in our models for simplicity’s sake.

Figure 3.6: Illustration of full wafer defects distribution. Long tail distribution of the
defects encountered during wafer inspection after data cleaning. The cleaning process led to changes
in class size for some defects classes (check-marked). Light-green box contains all those classes with
over 1000 samples (majority classes) and light-red box contains those with less than 1000 samples
(minority classes). Additional minority classes contained within light-blue boxes. The No-defect
class is required due to SEM shortages during sampling.

3.1.5 Visual inspection.

In order to determine if our model is properly focusing its attention on the relevant

features of the image, the use of visualizing tools have proven crucial to help ensure

the network is not actually cheating. Example of CNNs making wrong decision in

classification include: classifying an image as a train when the actual focus of the model

falls into the train tracks (since both of them appear often together), or the identification

within an x-ray image of a patient of a disease that in reality is not there, since the
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model does not actually focus on the appearance of such illness, but on perturbations

like metallic tokens placed upon the patients’ shoulder during the measurement (which

would be understood as a continuous feature by the network), etc.

Thus, we would like to highlight the regions in an image that the CNN focuses on in

order to ensure the model is learning the actual features we are interested in, and to

estimate its robustness to new examples.

Class Activation Mapping (CAM) or Heatmaps. In order to generate these

kind of images, we must ensure and take advantage of the following structures from

within the CNN architecture: the last convolutional layer, from which the heatmap will

be computed, and its subsequent Global Average Pooling layer (GAP), responsible

for averaging all values within the feature map, effectively turning them into a single

number. For example, if we had K feature maps, we would end up with K numbers after

Global Average Pooling.

The different output classes are therefore estimated by multiplying each of these

numbers by their corresponding weights, Figure 3.7. Class Activation Mapping

follows a similar logic, instead of multiplying each weight by their corresponding GAP

averages, it multiplies them by their corresponding feature maps obtained from the last

convolutional layer. The resulting grid of numbers is what we actually refer to as heatmap.

Figure 3.7: Example of Class Activation Mapping generation [7]. One needs to select
the class of interest, e.g. Australian terrier, in order to compute its corresponding heatmap.

Saliency maps. This technique makes use of the most alluring regions within the

image, which are estimated by evaluating its unique features such as pixels, resolution,

etc. (’saliency’ in visual processing) in order to compute a topographical representation

that processes this data in such a manner that a clear differentiation of the different
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Figure 3.8: Example of a raw saliency map [8]. Pixels with a high gradient show up in
yellow versus those with a low gradient in blue.

features is possible.

By applying refine adjustments to the values of the pixels across the whole input

image, we are capable of estimating the relative importance each one of them has in the

ultimate prediction of the network. In short, saliency maps plot the gradient of the

predicted output respect to the input’s pixels, Figure 3.8.

In this work, we produce our heatmaps as described in [22], where it’s stated that,

despite the fact that the class score Sc(I) is a highly non-linear function of the input

image in deep CNNs, it is possible to approximate Sc(I) with a linear function close to

I0 by computing the first-order Taylor expansion:

SC(I) ≈ wTc I + bc

where b is the model bias and w is the derivative of Sc with respect to the image I at

the point (image) I0:

w =
δSc
δI
|I0 (3.2)
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Given an image I0 (with m rows and n columns) and a class c, the class saliency map

M ∈ Rm×n is computed as follows for RGB images. First, the derivative of w (3.2) is com-

puted by back-propagation. Afterwards, a rearrangement of the elements of w will yield

the saliency map. In order to derive a single class saliency value for each pixel (i, j), [22],[11]

takes the maximum magnitude of w across all colour channels: Mij = maxc|wh(i,j,c)|.
It is important to note that, to produce a saliency map, it is required but a single back-

propagation pass, and since these are extracted using a CNN trained on a labeled dataset

(supervised learning) no additional annotation is required.
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3.2 Evaluation

3.2.1 Under-/Oversampling.

As stated in Section 3.1.2, RA consists of a search space where a policy is composed

of many sub-policies, one of which is randomly chosen for each image. Different sets of

oversampling magnitudes (from lower to higher) were developed in order to determine the

border between generalization improvement, overfitting and noise. These are Oversam-

pling 1 (OV1), Oversampling 2 (OV2), etc.

Respect to underfitting, three different maximum sizes were imposed upon all classes.

These are 100, 1000 and 5103 samples, where the last of these actually comprises all sam-

ples, that is, the maximum size of the largest majority class (360), Figure 2.10.

In those cases were oversampling was performed, 100 as maximum class size implied 600

and 128 samples for training and validation set respectively. For 1000 class size, 6000 and

852 for training and validation set respectively. Finally, for 5103 class size, 30618 and 2702

for training and validation set respectively.

On the other hand, for the reference, were the data remained imbalanced, 100 maximum

class size implied 384 and 128 samples for training and validation set respectively. For

1000 class size, 2556 and 852 for training and validation set respectively. Finally, for 5103

class size, 8104 and 2702 for training and validation set respectively.

We generated a reference model, where only underfitting took place, in addition to four

more models where we performed a combination of both underfitting and four different

hyperparameter sets for oversampling.

As maximum class size increases, the precision and recall of the minority classes tends to

decrease, while the majority classes remain almost unchanged (Figure 3.11). In fact, when

analyzing the overall base accuracy of the models, size increase will lead to better accuracy

(Figure 3.10), but only majority classes will actually benefit from such population growth.

In those models were oversampling was applied, precision, recall and overall accuracy of

minority classes improved. So far, increasing the magnitude and probability of the poli-

cies did not seem to have any negative effects on model predictability. Therefore, it would

stand to reason to select the most pushing hyperparameter set, referred to as Oversam-

pling 4 (OV4), to reinforce generalization, since it provided the best performance.

It’s worth mentioning that for all models evaluated in this section, weight loss was enabled,

even for those where oversampling took place, and consequently assigned a weight of 1 to

all classes.
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Figure 3.9: Illustration of balanced defect distribution after oversampling. Light-green
box contains all those classes with over 1000 samples (majority classes) and light-red box contains
those with less than 1000 samples (minority classes). After oversampling, all defect classes posses
the same size as that of the largest majority class. Number of new artificial samples highlighted in
green boxes. Therefore, defect dataset will be first split into 4 folds, and afterwards the training
set will be oversampled so that all classes posses the same size as the maximum majority class.
Validation set remains untouched.
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Figure 3.10: Test accuracy boxplot over class maximum size. 1-time 4-fold cross vali-
dation per hyperparameter set. Larger datasets lead to higher test accuracy. However, minority
classes do not benefit from this growth, as it further accentuates imbalances.
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Figure 3.11: Model performance over class maximum size. 1-time 4-fold cross validation
per hyperparameter set. Mean precision, first row, and recall, second row, over majority and
minority classes, see Figure 3.9, per maximum class size. It is important to note that class 575,
301 and 255 have yet to be implemented. See Figures 6.1 & 6.2 for further details.
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3.2.2 Hyperparameters test

The following scenarios were investigated independent from one another, in order to

determine if the individual implementation/removal of the following techniques had

beneficial effects on performance, to later combine all those that had it for the next

stage of the experiment. In all cases, maximum class size was set to 1000, that is, for

oversampling models 6000 and 852 samples, while for reference models 2556 and 852

samples for training and validation set respectively.

Weight loss removal. Class balanced loss proves a helpful tool for model

regularization, but it isn’t without pitfalls [10]. Its main problem lies in the majority

classes, because as the number of samples increases, the additional benefit of new samples

for these classes diminishes. To investigate further the effects of class balanced loss, we

trained all previous models in Section 3.2.1 with balanced loss disabled.

Results indicate that weight loss removal had no significant effect on model performance,

Figure 3.12, remaining fairly similar to previous runs, Figure 3.11. In fact, minority class

550 seems to benefit greatly from this change, which suggests disabling weight loss may

actually have a positive effect. However, since class size was reduced, this improvement

might be caused by undersampling.

We decided that, for future models, balancing the class loss would no longer be

implemented, in order to avoid the pitfalls related to such technique [10].

Label removal. As stated in Section 3.1.1, we held two different hypothesis

concerning the presence of size labels within defect images: either it would facilitate

image classification or prove a source of noise.

Model performance remained mostly unchanged, Figure 3.13, which suggests that label

inclusion did not provide any useful information for classification, nor did it introduce

any significant noise. However, in order to ensure our samples remain as clean as

possible, these labels were cropped out.
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Figure 3.12: Model performance without weight loss. 1-time 4-fold cross-validation per
hyperparameter set. Mean precision, first row, and recall, second row, over majority and minor-
ity classes, see Figure 3.9. It is important to note that class 575, 301 and 255 have yet to be
implemented. See Figure 6.3 for further details.
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Figure 3.13: Model performance after label removal. 1-time 4-fold cross-validation per
hyperparameter set. Mean precision, first row, and recall, second row, over majority and minor-
ity classes, see Figure 3.9. It is important to note that class 575, 301 and 255 have yet to be
implemented. See Figure 6.4 for further details.
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Background reflection. Rotation and shearing generate white background spaces

that contain no relevant information, Figure 3.3. That being the case, filling these spaces

with an appropriate had to be implemented to ensure proper sample format.

It is worth mentioning the presence of labels within images during this stage. This means

that image reflection would lead not only to the reflection of the background, but of the

label as well. Additionally, the presence of a black line border on the left size of the

image would also be reflected as well. Given these two sources of irrelevant information,

applying reflection alone (without cropping first) was expected to decrease performance

and increase class confusion.

However, as results show (Figure 3.14), there were no significant changes in model

performance, matching previous results. Therefore, for future stages, where cropping

will be applied first as part of preprocessing, reflection was enabled for background in

geometrical transformations.

Reduction to grayscale. Despite the RGB format of the SEM samples we work

with, only one channel is actually required in order to represent all defect features. In

fact, even though the microscope generates images in RGB format, these are in truth

composed of the same channel cloned three times in a row (Figure images). Therefore, it

stands to reason to reduce our dataset to grayscale.

Since all architectures we worked so far have been developed for three channels (RGB), this

reduction must be followed by decreasing the dimensionality of the convolutional layers of

the models tested down to one channel as well.

The results suggest, Figure 3.15, a loss of information that leads to consistent significant

reductions in minority class recall, up to over 10% compared to previous cases (Figure

3.12, 3.13, 3.14). As expected, majority classes’ prediction remains essentially unchanged.

However, for the minority classes, especially 100 and 150, see Appendix, both precision

and recall start to decrease. It stands to reason then, to discard grayscale from the

preprocessing stage.

However, despite its negative effects on performance, we decided to implement it as well

for future models in the hopes that, by combining it with all previous changes, this loss

could be compensated.
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Figure 3.14: Model performance with background reflection. 1-time 4-fold cross-
validation per hyperparameter set. Mean precision, first row, and recall, second row, over majority
and minority classes, see Figure 3.9. It is important to note that class 575, 301 and 255 have yet
to be implemented. See Figure 6.5 for further details.
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Figure 3.15: Model performance after grayscale reduction. 1-time 4-fold cross-validation
per hyperparameter set. Mean precision, first row, and recall, second row, over majority and
minority classes, see Figure 3.9. It is important to note that class 575, 301 and 255 have yet to be
implemented. See Figure 6.6 for further details.
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3.2.3 Full preprocessing test

After indepndently evaluating the effects of the different preprocessing hyperparameters

in the Section 3.2.2, we combined all these parameters to determine the fittest

preprocessing technique for the models.

Since individually all hyperparameters led to no significant losses in model performance,

except for grayscale, two different preprocessing pipelines were implemented and tested.

Both of them included size label removal, normalization and background reflection

during Geometrical and Random Augmentation. Additionally, one of them implemented

grayscale as well, to finally determine if its previously observed performance reduction

(Figure 3.15) could be compensated. Finally, maximum class size was set to 1000, that is,

2556 and 852 samples for training and validation set respectively, to speed up training.

Results indicate that, despite the inclusion of all previous parameters during

preprocessing, grayscale loss in overall performance remains while RGB format provides

consistently better models, Figure 3.16. Therefore, grayscale was discarded from the final

preprocessing stage.
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Figure 3.16: Model performance with/-out grayscale. 1-time 4-fold cross-validation per
hyperparameter set. Mean precision, first row, and recall, second row, over majority and minority
classes, see Figure 3.9, per image format. It is important to note that class 575, 301 and 255 have
yet to be implemented. See Figure 6.7 & 6.8 for further details.
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Figure 3.17: Illustration of dataset final preprocessing pipeline. Images in RGB format.
Background reflection enabled for all geometrical augmentations.
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3.2.4 First stage model

Final Oversampling. Results so far, Section 3.2.1, suggest that increasing

oversampling’s magnitudes does not lead to performance reduction, and potentially

increases generalization since new artificial samples are more likely to be more

distinguishable from one another, we decided to investigate even larger magnitudes and

probabilities for the policies that compose RA.

Taking OV4 as a reference, we expect to reach some threshold over which the magnitudes

would be too large, and the new artificial defects would end up deformed by the

transformations applied, thus losing information and decreasing performance. Finally,

maximum class size was set to 1000, that is, 6000 and 852 samples for training and

validation set respectively, to speed up training.

However, our results suggest greater flexibility for oversampling than originally thought,

Figure 3.18, since increasing the magnitudes does not seems to have a consistent

tendency towards lower performance. Therefore, the probabilities and magnitudes for

RA policies could be selected with relative freedom, and we chose a set of values we

considered would work best on our dataset for later models. We’ll refer to this set as

Oversampling Final (OVF)
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Figure 3.18: Model performance with additional oversampling. 1-time 4-fold cross-
validation per hyperparameter set. Mean precision, first row, and recall, second row, over majority
and minority classes, see Figure 3.9. It is important to note that class 575, 301 and 255 have yet
to be implemented. See Figure 6.9 for further details.



74 Chapter 3. Methodology

Data cleaning and full size dataset. Once determined the final set of magnitudes

during oversampling, we removed the threshold imposed upon the maximum class

size so that all samples could be considered. Therefore, all minority classes would be

oversampled in order to reach the same size as the largest majority class, that is, class

360 (5103 samples). Thus, for oversampling models 30618 and 2702, while for reference

models 8104 and 2702 samples for training and validation set respectively.

Additionally, we inspected and cleaned the dataset, since we realized some of the samples

were either located in the wrong class (mislabelled), or contained no defect at all,

appearing simply as a gray background (Figure 3.27).

Results, Figure 3.19, indicate that: first, models with oversampling surpass those without

it for minority class recall, while in precision they fall short. Therefore, overall accuracy

in both cases is almost identical.

Analysis of the models’ heatmaps indicated the presence of more noise within the

dataset, despite previous cleaning, so further visual inspection and data cleaning was still

required. Additionally, the models sometimes focused their attention on the background

rather than the defect itself, which seems to have no relation to oversampling itself, since

it happens for the reference as well, Figure 3.20. We considered label noise the reason

behind such behavior, and expect data cleaning to improve heatmap visualization.

On an additional note, we further investigated model robustness through its saliency

maps, Figure 3.21. Unlike the heatmaps, which despite their arbitrary activation on the

background for some samples, keeps most of its focus on the features of interest, saliency

maps seem to lack this consistency.

We attributed this behavior to a faulty implementation of the code, but further

experimentation with different models indicated otherwise. Since heatmaps already

provided a clear representation of the model robustness, we decided to remove saliency

maps from the visual inspection stage and focus solely on CAM.

After inspecting the dataset, more mislabelled samples were located, within these classes.

Therefore, further data cleaning was required.



3.2. Evaluation 75

Figure 3.19: First stage model performance. 5-times 4-fold cross-validation per hyperpa-
rameter set. Mean precision, first row, and recall, second row, over majority and minority classes,
see Figure 3.9. It is important to note that class 575, 301 and 255 have yet to be implemented.
See Figure 6.10 for further details.



76 Chapter 3. Methodology

Figure 3.20: First stage model heatmap examples. Overactivation on the background
seems more clearly visible in models with oversampling (left), though they are also present in the
reference model (right). Pixels with a high activation show up in red/yellow versus those with a
low activation in purple/blue.
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Figure 3.21: First stage model saliency map examples. Overactivation on the background
takes place for all samples, independent of the class. Pixels with a high gradient show up in yellow
versus those with a low gradient in blue.
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3.2.5 Second stage model

Class expansion. Now that the model training for our imbalanced dataset has been

completed, which achieved great performance for all eight classes so far (Figure 3.19), we

proceed to the next step of our work. This consists on the inclusion of two additional

classes to the dataset, 575 and 301. See Section 3.1.4.

Further inspection and cleaning of the dataset was performed after introduction of both

classes. Therefore, despite similarities between class 575 and 200, as well as class 301 and

360, Figure 3.22, we expect to have minimized the confusion between them.

In order to investigate in greater detail the individual effect that each class inclusion had,

we developed three different dataset configurations: the first contained only the original

eight classes; the second contained nine classes, where we included class 575 and 301, but

575 were labeled as class 200; and the third had the same structure as the second, but

with the class 575 now labelled as an independent class. They are referred to as C8, C9

and C10 respectively.

According to the previous statement, we therefore counted with three different datasets.

Maximum class size was set to 1000, which led to 6000 and 852 samples for C8, and 7500

and 992 for C9 and C10 for the training and validation set respectively.

Results (Figure 3.23) indicate that data cleaning improved base accuracy for all cases,

while the inclusion of class 575 and 301 didn’t decrease model performance. In fact,

precision and recall of both new minority classes is considerably high, which increased

mean performance.

Figure 3.22: Illustration of between-class similarities. Class 575 differentiating feature is
their sharp outline. For class 301, their differentiating feature consists on the ’staircase’ effect
surrounding the main bump.
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Figure 3.23: Second stage model performance over class expansion. 1-time 4-fold cross-
validation per number of classes implemented (C8, C9, C10 ). Mean precision, first row, and recall,
second row, over majority and minority classes, see Figure 3.9. It is important to note that class
255 has yet to be implemented. See Figure 6.11 for further details.
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Label smoothing. The presence of noisy images within the dataset has been a

constant issue during the project. Despite the several sessions of data cleaning performed,

noise might still remain within the dataset. Naturally, after subsequent sessions this

noise has decreased, but in order to guard off further against this, we proceeded to the

implementation of label smoothing into our models. Maximum class size was set to 1000,

which implies 7500 and 992 samples for the training and validation set respectively.

It’s worth noting that before implementing label smoothing, another session of data

cleaning was performed. In addition, Label smoothing is already implemented in

Tensorflow within the cross entropy loss functions, and since no common convention or

formula exists regarding the value of alpha, its selection had to be done through trial and

error using our own estimation. See Section 3.1.

Results (Figure 3.24) suggest that label smoothing does not significantly change model

performance. However, inspection of the heatmaps showed that small values of label

smoothing improved activation distribution, which is now more focused on the defect and

less scarce (Figure 3.25), with α = 0.025 providing the best heatmaps.

The reason behind such behavior lies in the interaction between the target labels and the

backpropagation algorithm [37],[45]. Since label smoothing softens the targets, all output

neurons’ values will be superior to zero. Thus, all hidden units will be updated during

backpropagation, reducing scarcity, since target values equal to zero do not modify

hidden weights.

Given these results, we decided to implement label smoothing with an alpha of 0.025,

which according to Eq. 3.1, corresponds to 97.7% prediction confidence.
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Figure 3.24: Second stage model performance over label smoothing. 1-time 4-fold cross-
validation per alpha value. Mean precision, first row, and recall, second row, over majority and
minority classes, see Figure 3.9. It is important to note that class 255 has yet to be implemented.
See Figure 6.12 for further details.
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Figure 3.25: Second stage model heatmap improvement. Implementation of label smooth-
ing led to more evenly distributed activation maps in all defects since backpropagation scarcity
was reduced.
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Evaluation of larger architectures. Now that the second stage model for defect

classification using the smallest architecture, EfficientNet B0, available is completed, we’ll

investigate the effects of higher complexity structures, EfficientNet B1, B2, B3 and B4, on

performance. We expect to reach maximum performance with EfficientNet B1, since the

architecture’s size is almost doubled from B0 to B1, while for higher versions this change

is considerably smaller, which would lead to more diificult to notice improvements.

Due to hardware limitations, as network architectures increased, we had to reduce both the

maximum size of the classes, 1000 samples per class, and the size of our batches so that the

models could train without interruptions. Starting from EfficientNet B0 up until B4, we

used batches of size 64, 32, 24, 14 and 6 samples respectively. Finally, the maximum class

size was set to 1000, that is, 7500 and 992 for the training and validation set respectively.

Using EfficientNet B1 as the reference (Figure 3.26), we observe no significant changes in

model performance for architectures above B1, with B3 and B4 providing similar results,

while B2 led to the weakest improvements. It’s clear B1 shows better results in precision

and recall when compared to EfficientNet B0, as expected.

Therefore, for the remaining of the thesis we focused our efforts on the two smallest

architectures available from EfficientNet, B0 and B1.



84 Chapter 3. Methodology

Figure 3.26: EfficicentNet architectures performance. 1-time 4-fold cross-validation per
architecture. Mean precision, first row, and recall, second row, over majority and minority classes,
see Figure 3.9. It is important to note that class 255 has yet to be implemented. See Figure 6.13
for further details.
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3.2.6 Third stage model

Class expansion. Once the second stage model was implemented and tested in the

production line with new defect samples from the SEM, we found out that considerable

amount of these did not contain any actual defects. The presence of these kind of images is

related to the lack of precision of the SEM, which samples the wafer surface automatically.

Since the generation of No-Defect samples cannot be avoided in production, the simplest

solution was to introduce this new set as an additional class for our model.

It is important to note the mark left by the secondary electron detector when sampling,

Figure 3.27, which appears in the form of a square. Though this mark can be found in all

classes learnt so far, our concern is that it might be mistaken by an actual feature for the

No-defect class.

Therefore, we’ll count with two different datasets, one without and another one with No-

Defect class implemented, C10 and C11 respectively. Maximum class size was set to 5103,

which means 38272 and 2842 in C10, and 42099 and 2866 samples in C11 for the training

and validation set respectively.

Results indicate that introduction of No-Defect class had small effects on model per-

formance, Figure 3.28, remaining fairly similar to the second stage model. Increases in

precision and recall are caused by the high accuracy of the No-Defect class, which could

be easily predicted by our model. Confusion graphs have now been replaced by matrices

in order to analyze in greater detail the degree of missclassification. Confusion matrix,

Figure 3.29, further proves there’s no conflict between No-Defect and any of the other

classes, being completely differentiable from one another.

Figure 3.27: Illustration of No-Defect class. Green arrow points out the presence of the
square mark left by the electron beam on wafer surface.
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Figure 3.28: Third stage model performance after No-Defect inclusion. 1-time 4-fold
cross-validation per number of classes on EfficientNet B0 architecture. Mean precision, first row,
and recall, second row, over majority and minority classes, Figure 3.9. See Figure 6.14 for further
details.
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Figure 3.29: Third stage model confusion matrix after No-Defect inclusion. 1-time
4-fold cross-validation on EfficientNet B0 architecture.
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OV1 OV2 OV3 OV4 OV5 OV6 OV7 OVF OVF/2

µ 0 0 0 0 0 0 0 0 0

σ 0.5 1 1.5 2 3 4 5 4 2

Crop left 2% 4% 6% 8% 10% 10% 10% 8% 4%

Crop right 2% 4% 6% 8% 10% 10% 10% 8% 4%

Crop top 2% 4% 6% 8% 10% 10% 10% 8% 4%

Crop bottom 2% 4% 6% 8% 10% 10% 10% 8% 4%

Shear X 0.15 0.3 0.45 0.6 0.75 0.9 0.9 0.5 0.4

Shear Y 0.15 0.3 0.45 0.6 0.75 0.9 0.9 0.5 0.4

Shear XY 0.05 0.1 0.2 0.3 0.4 0.5 0.5 0.4 0.2

βlow -15 -30 -45 -60 -75 -90 -90 -70 -50

βhigh 15 30 45 60 75 90 90 70 50

φ 5 10 15 20 25 30 40 25 20

Reflect True True True True True True True True True

Flip 1 1 1 1 1 1 1 1 1

Blur 3 3 3 3 3 3 3 3 3

Table 3.1: Oversampling hyperparameter sets. µ and σ stand for the mean and standard
deviation of the Gaussian filter. Crop left, right, top and bottom are the maximum percentage
of the image to crop out. Shear X, Y and XY contain the angle of shearing. βlow and βhigh
stand for the maximum and minimum change in contrast. φ is the maximum angle of rotation.
Reflect determines if image reflection as background is enabled or not (default True). Flip value
determines if flipping is performed horizontally, -1, vertically, 0, or both, 1 (default 1). Blur
contains the blurring kernel size (default 3).
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Oversampling mitigation. Model performance so far has been considerably high.

However, we still wonder if the final hyperparameter set we have chosen for oversampling

is in fact the optimal one. This concern arises from the fact that, for geometrical

transformations, defect duplication due to background reflection remains an issue.

Though it doesn’t seem to affect model performance significantly, Figure 6.9, other

instabilities such as class confusion, background over activation in defect heatmaps,

especially for class 575, or the lack of consistency in saliency maps might be one of its

consequences.

Therefore, we reduced the magnitude of the oversampling parameters down to half of

the original values of OVF, and trained a new model to investigate its effects. Table 3.1

contains all hyperparameters sets we experimented upon for data augmentation. Finally,

we set maximum class size to 5103, with 42099 and 2866 samples for the training and

validation set respectively.

Results on performsance, Figure 3.30, suggest that by reducing oversampling’s

magnitude, we obtain significant increases on precision/recall for the minority

classes, up to +2%, without any significant changes in class confusion, Figure 3.31.

However, saliency and heatmaps instabilities still remain, which leads us to the next point.
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Figure 3.30: Third stage model performance after oversample mitigation. 1-time 4-
fold cross-validation per oversampling hyperparameter set on EfficientNet B0 architecture. Mean
precision, first row, and recall, second row, over majority and minority classes, Figure 3.9. See
Figure 6.15 for further details.
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Figure 3.31: Third stage model confusion matrix after oversampling mitigation. 1-time
4-fold cross-validation on EfficientNet B0 architecture.
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Class 575 resampling and mixed defects removal. As mentioned before, model

heatmaps revealed that activations distribution where more unstable than usual for the

class 575. We concluded that this behavior arises from the class 575 itself, whose original

samples contained additional labels on the top side of the picture that had to be cropped

together with the bottom labels and right black lines, concluding with a re-escalation of

the image (Figure 3.33).

This preprocessing on class 575 was significantly more aggressive than for the rest of the

classes, since a considerable portion of the sample had to be cropped out. This led to

a downgrade of image resolution, which consequently deformed the features present.

This specific issue took place before we found out the top labels could be disabled in

production.

As a solution, all images from class 575 had to be resampled and properly preprocessed in

the same manner as all other classes. Through this change, we hope to fix the activation

instabilities observed in the heatmaps, as well as improve generalization.

On an additional note, we observed that for some of our minority classes, such as class

150 and 575, several defects were contained within the same image. Since the model

that we wish to obtain is intended for multiclass classification and not multilabelling,

we decided to remove and replace this kind of samples from the dataset. Finally, we set

maximum class size to 5103, with 42099 and 2866 samples for the training and validation

set respectively.

Results indicate that mixed defects removal had little to no effect on the confusion

matrix (Figure 3.32). However, class 575 resampling did lead to heatmap improvement,

and the activation maps now properly focus on the defect (Figure 3.34). Nonetheless,

regarding model performance (Figure 3.35), it seems EfficientNet B1 architecture proved

weaker in comparison to B0, despite the former counting with higher complexity.
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Figure 3.32: Third stage model confusion matrix after class 575 resampling. 1-time
4-fold cross-validation on EfficientNet B0 architecture.
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Figure 3.33: Class 575 label cropping and re-scaling. In exchange of label removal, the
resolution of the image gets significantly lower. Labels have been concealed to the reader since
they contained sensitive information.

Figure 3.34: Class 575 heatmap improvement. Top row contains activation maps of original
low-resolution samples from class 575. Bottom row contains the activation maps of the new higher
resolution samples.
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Figure 3.35: Third stage model performance after class 575 resampling. 5-times 4-fold
cross-validation per EfficientNet architecture. Mean precision, first row, and recall, second row,
over majority and minority classes, Figure 3.9. See Figure 6.16 for further details.





4
Results

Out of the 20 models trained, remember we applied 5-times 4-fold cross-validation in Sec-

tion 3.2.6, we proceeded to select what we considered the best one based on the following

conditions: average precision, average recall and heatmap consistency. Table 4.1 provides

a summary of the hyperparameters used during training.

For the EfficientNet B0 family, the chosen model possessed great values in precision and

recall, over 93% and 88% for all classes respectively; little confusion among classes, with

200 and 575 as the most conflicting ones; stable training, with no oscillations neither for

the training nor validation set, and high robustness, where up to 95% of the images were

predicted with over 99% confidence. For the EfficientNet B1 family, the chosen model

behaves almost identically to the one from B0 (Figures 4.1,4.2).

Since both models are quasi-equivalent in performance, it would stand to reason to select

the one belonging to the B0 architecture for implementation in the production line, since

its size is almost half that of the B1 family, whose implementation would therefore spare

in computational effort. However, all performance measurements so far have only taken

into account the validation set, so a proper evaluation of the model with a new unseen

testing set would provide us further insight in which architecture to select for our final

decision. As a consequence, we further tested the robustness of each model on a new noisy

dataset, that is, samples were not cropped and there were additional labels on the top for

all classes. However, images were normalized and rescaled. This testing dataset consisted

of the samples shown in Figure 4.4. Unfortunately, we were not able to obtain additional

samples for class 100, 301 and 550, due to their low frequency of appearance.

The model from the B1 architecture surpassed the one from the B0 by a large margin,

with a difference of almost 15% in precision, and 10% in recall (Figure 4.5). As expected,

model prediction/recall in both cases decreased significantly due to the presence of noise,

especially for class 150, 255, 300 and 350 for B0, but only 100 and 350 for B1, see Ap-

pendix.

Furthermore, B1 validation heatmaps, Figure 4.3, showed proper focus on the defects,

with little to no background overactivation for all classes, remaining most active on the
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features of interest.

Model was implemented in the production line for a week, and the samples classified by

it were compared with those of an operator in order to test its precision. The algorithm

reached an accuracy of over 98%, with little to no missclassification rate. Regarding head-

count reduction, that is, the amount of time saved by the model in contrast to manual

classification, an operator has to inspect a minimum of 7 wafer lots per week, and this

inspection process takes up to 30 minutes per lot. On the other hand, our model requires

only a few seconds for lot inspection, which leads to a weekly headcount reduction of 2

hours and 30 minutes per operator. Given these results, we selected the EfficientNet B1

model as our final choice for implementation in the production line.

Max. size 40000

Training mode one-step

No Epochs 100

lrmin 10−5

lrmax 1

No steps lr 100

lrdecay 0

Optimizer RAdam

Patience stop 15

lrpatience 8

lrfactor 0.33

Callback metric val acc

Class weighted loss False

Label smoothing level 0.025

Table 4.1: Final EfficientNet B0 model hyperparameters. Max.size stands for the max-
imum number of samples allowed per class. Training mode is used to set how the model will be
trained, it can be one-step, two-step, frozen-base or pretrained-top. No Epochs sets the maximum
number of epochs for training, which is only reached if early stopping is not triggered. lrmin and
lrmax stand for the maximum and minimum value of the learning rate search. No steps lr sets the
number of steps to take in the learning rate search space. lrdecay is the value of the learning rate
decay rate. Optimizer is used to specify the kind of optimizer used for model training. Patience
stop. lrpatience. lrfactor. Callback metric. Class weighted loss. Label smoothing level.
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Figure 4.1: Best models precision/recall over defect classes. First row plots correspond to
EfficientNet B0 architecture, second row to B1. X-axis contains the number of validation samples
per class. Y-axis contains the corresponding precision/Recall.
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Figure 4.2: Best models training history. First row plots correspond to EfficientNet B0
architecture, second row to B1. Evolution over number of epochs of training/validation accuracy
(left) and loss (middle). Model operating curve (right) with validation confidence in the X-axis
and proportion of the validation images predicted with such confidence on the Y-axis.

Figure 4.3: Final model activation heatmaps. EfficicentNet B1 architecture. Each heatmap
indicates at the top: Predicted, model prediction based on the sample, Correct, actual label of the
sample, and Softmax, confidence of the prediction.
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Figure 4.4: Illustration of noisy samples from the testing dataset. From left to right: class
360, 500, 575, 150, 200, 300 and 350. Labels have been concealed since they contained sensitive
information.
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Figure 4.5: Final model testing acccuracy for raw dataset. Investigation on EfficientNet
B0 and B1 architecture. Mean precision, first row, and recall, second row, over majority and
minority classes, Figure 3.9. See Figure 6.17 for further details



5
Discussion

Data imbalances and their treatment through data augmentation techniques, mainly by

oversampling, was the main focus of this work. However, the geometrical augmentations

applied led to defect duplication and even deformation for some of the classes. Though

this event does not seem to produce losses in model performance, which further proves

the robustness of the EfficientNet family, it is recommended to avoid generating this kind

of artificial samples.

The algorithm developed for this thesis applied the same set of transformations, with the

same magnitudes, to all defect classes. However, as stated before, these transformations

lead to feature degradation for some of these classes. Therefore, it would stand to reason

to develop a more customized version of the algorithm used, which would use different

magnitudes according to the class being oversampled.

Additionally, previous studies trained independent models that used SEM channels 2 and

3 respectively, which attained identical performance to those based only on channel 1.

However, a combination of all three channel images into one same image may provide fur-

ther insight into the sample’s features. Since all three channels share the exact same defect

location, blending is a plausible approach. Another alternative was to grayscale each SEM

channel image and then build a new sample where each RGB channel is composed of one

of the grayscaled images.

A few samples contain more than one defect at once. These images are often seen in the

production line, and more than once these defects share a causal relationship. For example,

class 360 defects make wafers more susceptible to the appearance of cracks, and therefore

tend to appear together. Though not as frequent as individual defects, the presence of

these kind of samples made us wonder whether the use of a multi-label classification model

would prove more efficient for production than the current multi-classification technique.

A more detailed study of the frequency of multiple defect images and consequent training

of new models would provide further information to optimize defect classification.

In the production, defects are detected automatically by the equipment, and the presence

of no-defect samples are a consequence of its lack of precision. Unfortunately, since these
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kind of images are unavoidable during wafer inspection, the inclusion of such class was

the most reasonable step to ensure proper classification. Ideally, only relevant samples

should be detected by the equipment, and working on its improvement would speed up

wafer evaluation.

Furthermore, images’ bottom label cannot be disabled during sampling, so we need to crop

them out during preprocessing. This is fairly easy, but not optimal, since we remove a

section of the sample that might contain relevant features. The study of other alternatives,

such as automatic detection and replacement of the label with background information,

remains to be done. However, enabling label removal during sampling would prove the

best solution.

Originally, we planned on investigating the first five versions of the EfficientNet family.

However, due to hardware limitations, not only did we have to reduce significantly both

the size of the training set and the batch size, but also discard the EfficientNet B5 archi-

tecture, which was of particular interest to us, since its input dimensions were closest to

those of our samples. A proper study of these architectures with the same set of parame-

ters as our final models could lead to higher performance classifiers.

Finally, knowledge distillation [32] was considered in order to train higher order archi-

tectures. However, due to lack of data, we were unable to see this process through.

Investigation of Master-Student learning as a means to improve generalization remains to

be done, and could potentially lead to higher performance in defect classification.

In conclusion, this research aimed to determine the viability of oversampling as a means

to optimize minority class wafer defect classification. Using the EfficientNet family as our

main architecture, we proved our oversampling strategies do improve model generaliza-

tion, with results that indicated consistent increases in class recall when implemented,

as well as significant robustness when facing noisy samples. Additionally, our model was

considerably smaller than previous architectures considered for defect classification, such

as Xception [1], as well as noticeably fast in comparison with manual inspection. While

the model required approximately 5 minutes in order to completely inspect a wafer lot,

an operator needed up to 30 minutes in order to fulfill the same task. Thus, we obtained

a headcount reduction of over 2 hours per week when applying automated classification,

reducing the workload on the operators, which can use this saved-up time to focus on

other operations.
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6
Appendix

Figure 6.1: Precision over class maximum size. Mean precision out of 1-time 4-fold cross
validation per hyperparameter set. Minority classes highlighted in green.
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Figure 6.2: Recall over class maximum size. Mean recall out of 1-time 4-fold cross validation
per hyperparameter set. Minority classes highlighted in green.
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Figure 6.3: Model performance without weight loss. 1-time 4-fold cross-validation per
hyperparameter set. Maximum class size set to 1000. Minority classes contained in light green
boxes.
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Figure 6.4: Model performance after label removal. 1-time 4-fold cross-validation per
hyperparameter set. Maximum class size set to 1000. Minority classes contained in light green
boxes.
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Figure 6.5: Model performance with background reflection. 1-time 4-fold cross-validation
per hyperparameter set. Maximum class size set to 1000. Minority classes contained in light green
boxes.
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Figure 6.6: Model performance after grayscale reduction. 1-time 4-fold cross-validation
per hyperparameter set. Maximum class size set to 1000. Minority classes contained in light green
boxes.
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Figure 6.7: Model performance with grayscale. 1-time 4-fold cross-validation per hyperpa-
rameter set. Maximum class size set to 1000. Minority classes contained in light green boxes.
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Figure 6.8: Model performance with RGB. 1-time 4-fold cross-validation per hyperparameter
set. Maximum class size set to 1000. Minority classes contained in light green boxes. Results
comparison with Figure 6.7 indicate consistent improvements (green values) for all classes
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Figure 6.9: Model performance with additional oversampling. 1-time 4-fold cross-
validation per hyperparameter set. Maximum class size set to 1000. Minority classes contained in
light green boxes. Comparison with OV4, Figure 6.8, to highlight improvements, green values, or
losses, red values, in performance.

Figure 6.10: First stage model performance. 5-times 4-fold cross-validation per hyperpa-
rameter set. Maximum class size set to 5103. Minority classes contained in light green boxes.
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Figure 6.11: Second stage model performance over class expansion. 1-time 4-fold cross-
validation. Evaluation of model base accuracy, precision and recall after implementation of eight,
C8, nine, C9, and ten, C10, different defect classes.
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Figure 6.12: Second stage model performance over label smoothing alpha. 1-time 4-fold
cross-validation per alpha value. Maximum class size set to 1000. Minority classes contained in
light green boxes.



120 Chapter 6. Appendix

Figure 6.13: EfficicentNet architectures performance. 1-time 4-fold cross-validation per
architecture. Maximum class size set to 1000. Minority classes contained in light green boxes.
Improvements in performance (green values) and losses in performance (red values) using B1
architecture as reference.

Figure 6.14: Third stage model performance after No-Defect inclusion. 1-time 4-fold
cross-validation on EfficientNet B0 architecture. Maximum class size set to 5103. Minority classes
contained in light green boxes.

Figure 6.15: Third stage model performance after oversample mitigation. 1-time 4-fold
cross-validation on EfficientNet B0 architecture. Maximum class size set to 5103. Minority classes
contained in light green boxes.
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Figure 6.16: Third stage model performance after class 575 resampling. 5-times 4-fold
cross-validation on EfficientNet B0 and B1 architecture. Maximum class size set to 5103. Minority
classes contained in light green boxes.

Figure 6.17: Final model testing acccuracy for raw dataset. EfficicentNet B0 & B1
architecture. Minority classes contained in light green boxes. Class 150 and 350 defects proved the
most difficult to predict in both families.
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