NAWI Graz TU

Natural Sciences Grazm

Bernhard Ramsauer, BSc

Autonomous Nanocars based
on Reinforcement Learning

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master's degree programme:
Advanced Materials Science

submitted to
Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Oliver Hofmann

Institute of Solid State Physics

Graz, November 2020

AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used
other than the declared sources/resources, and that | have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master’s thesis.

Date, Signature

Acknowledgment

I would like to express my sincere gratitude to my supervisor Oliver T. Hofmann for the continuous
support, his motivation, enthusiasm, and knowledge. His guidance helped me in becoming a better
scientist and his style of leadership also immensely assisted my personal development immensely. I
would also like to thank my team for all the animated discussions, brainstorming sessions and the
inspiring ideas, which have made the development of my thesis so much easier.

I would like to express my immeasurable appreciation and deepest gratitude to Grant Simpson, who
not only prepared the sample for me but also assisted me for two weeks straight with carrying out the
experiment, measurements, additional specimen preparation and the experimental setup.

Furthermore, I also want to thank Leonhard Grill, Nacci Christophe and Monika Schied for giving me
the opportunity to carry out the experiment on their scanning tunnelling microscope but also for the
opportunity to test the code in advance whenever there was a time window.

Last but not least, I would like to wholeheartedly thank my partner Sarah for her support and patience.
She made it possible for me to completely focus and be on top of things while giving me joy and love.
In the end, I would like to express my cordial gratitude to my parents Elfriede and Alfred for giving
me encouragement as well as their financial and mental support.

Abstract

Autonomous Nanocars
based on Reinforcement Learning

Bernhard Ramsauer
Institute of Solid State Physics, Graz University of Technology

In April 2017, the Rice-Graz team, named after their Universities, with pilot Grant Simpson (Graz),
participated at the world’s first race of nanocars at the Center for Materials Development and Structure
Studies (CEMES-CNRS) in Toulouse, France. At this race, participants had to direct a nanocar across
a “racetrack” [6], which is 100 nm long for gold and 150 nm for silver, including two 45 ° turns and is
set on a metallic substrate. In order to control their nanocar, they had to pull it via an STM-tip, but
without being in direct contact with the nanocar.

The nanocars can be readily synthesized by using different shapes and properties. The physics that
govern the molecule’s movement and rotation is complex and involves the interaction between the
molecule and the tip as well as the molecule and the substrate [8]. Therefore, it requires some
expertise for humans to manoeuvre the nanocar and predict the outcome of a performed action.

This can be seen by taking the race from Toulouse as an example. Although the Rice-Graz team
finished in first place by solving the 150 nm in 1.33 h, which gives an average speed of 112 nm/h and
was much faster than anyone else, the rate of successful manouevres shows that there is a lot of room
for improvement. Over the course of the race, the yield of successful pulling actions was about 54%
and therefore only slightly better than predicting a coin flip. Thus, the idea of an artificial intelligence
(AI)-controlled nanocar arose, which is the topic of this master thesis.

Here, we show how an artificial intelligence based on reinforcement learning can be implemented to
manipulate single molecules. The Al is implemented in the form of an off-policy reinforcement learning
algorithm, known as the Q-Learning algorithm. Being off-policy, enables the Al to learn without the
necessity of a physical model. This also allows to learn from human-generated data. This means
that the Al can be trained without operating directly at the STM, which saves time and operational
costs.

After training from a rather small data set, the Al was further trained directly at the STM, where it
manoeuvred the nanocar across a silver (111) surface. The Al is doing so by controlling the STM-tip
position based on the position of the nanocar on the surface. The experiment showed that it is indeed
possible to Al-control the nanocar. In a prime example, the Al showed an incredible success-rate of
89%, manoeuvring the nanocar at an average speed of 248 nm /h, which is more than double the speed
compared to the race from Toulouse. Additionally, the experiment yields highly interesting insights
that will help to create an efficient, and significantly improved Al that is more accurate and reliable,
such that it can set itself apart from the manoeuvrability of humans.

Our results can easily be the basis for more sophisticated techniques of molecular manipulations where
molecules are manoeuvred by Als based on reinforcement learning and complemented by a deep neural
network to analyse the current signal. The deep neural network can be used to find the correlations
between the molecular manipulation and the induced current signal, which contains a unique rotation
and translation pattern that is acting like a fingerprint for every molecule. This allows to identify and
dislocate molecules at will, building the basis for future bottom-up constructions of nanotechnology.

Kurzfassung

Autonome Nanocars
basierend auf bestarkendem Lernen

Bernhard Ramsauer
Institut fiir Festkorperphysik, Technische Universitit Graz

Im April 2017 nahm ein 6sterreichisch-texanisches Team der Universitdt Graz und der Rice University
(Houston, TX) mit ,Fahrer“ Grant Simpson (Graz) am weltweit ersten Molekiil-Rennen teil. Bei
diesem ersten Nanorennen der Welt, das am Center for Materials Development and Structure Studies
(CEMES-CNRS) im franzosischen Toulouse stattfand, mussten die Fahrzeuge mithilfe eines Raster-
tunnelmikroskops (REMs) entlang eines vorgegebenen Parcours, eine Strecke von 100 Nanometern
auf Gold bzw. 150 nm auf Silber inklusive zweier 45 °-Kurven, manévriert werden. Dabei durfte die
Spitze des REM keinen direkten Kontakt mit dem Nanocar haben.

Nanocars mit unterschiedlichen Formen und Eigenschaften kénnen auf einfache Weise hergestellt wer-
den. Die Physik dahinter, welche fiir Bewegungen und Rotationen der einzelnen Molekiile verant-
wortlich ist, gestaltet sich allerdings als sehr komplex und beinhaltet auch die Wechselwirkung von
Molekiil zur Metallspitze sowie von Molekiil zur Oberfliche. Ein Nanocar zu mandvrieren und das
Ergebnis einer Handlung vorherzusagen, ist deshalb fiir Menschen alles andere als einfach.

Das kann anhand des Rennens in Toulouse veranschaulicht werden. Obwohl das Rice-Graz-Team die
Strecke von 150 Nanometern innerhalb von 1,33 Stunden zuriicklegte und somit als Sieger des Rennens
hervorging, ist in Bezug auf die Anzahl der tatséchlich erfolgreichen Manéver noch Luft nach oben. Im
Laufe des Rennens waren in etwa 54 % der Zieh-Aktionen erfolgreich und demnach nur etwas hoher als
die Wahrscheinlichkeit, das Ergebnis eines Miinzwurfs richtig zu erraten. Diese Beobachtung fiihrte
zur Idee, ein von kiinstlicher Intelligenz gesteuertes Nanocar zu entwerfen — was auch das Thema
dieser Masterarbeit darstellt.

Durch die Implementierung einer kiinstlichen Intelligenz, welche auf bestédrkendem Lernen basiert und
Aktionen auch dann ausfithren kann, wenn sich die Umgebung fortlaufend verédndert, kénnen einzelne
Molekiile manipuliert werden. Die kiinstliche Intelligenz wird als off-policy-Algorithmus, auch bekannt
als Q-Learning, implementiert. Durch den off-policy-Algorithmus kann die kiinstliche Intelligenz auch
ohne das Vorhandensein eines physischen Modells lernen — demnach kann auch von Daten gelernt wer-
den, die von Menschen generiert wurden. Da dazu nicht direkt am Rastertunnelmikroskop gearbeitet
werden muss, werden Zeit und Kosten gespart.

Nachdem die kiinstliche Intelligenz zunachst von einigen wenigen Daten gelernt hatte, wurde sie direkt
am Rastertunnelmikroskop trainiert. Die KI schafft dies, indem sie die Position der Metallspitze des
REMs aufgrund der Positionierung des Nanocars auf der Oberfliche kontrolliert. Dieses Experiment
zeigte, dass es durchaus moglich ist, ein Nanocar mittels einer KI zu steuern. Im erfolgreichsten Fall
konnte die KI eine Erfolgsrate von 89 % erzielen, als das Nanocar mit durchschnittlich 248 nm/h und
somit im Vergleich zum Rennen in Toulouse mehr als doppelt so schnell manévriert wurde. Durch das
Experiment konnten auflerdem wichtige Erkenntnisse fiir die Entwicklung einer effizienteren, genaueren
und verldsslicheren KI gewonnen werden, die sich auch von der menschlichen Mandvrierfahigkeit ab-
hebt.

Unsere Ergebnisse kénnen als Ausgangspunkt fiir komplexere Manipulationen an Molekiilen dienen,
bei der Molekiile mit Hilfe einer auf bestdrkendem Lernen basierenden KI mandvriert werden und
das induzierte Stromsignal mit Hilfe eines Deep-Learning neuronalen Netzes (DLNN) analysiert wird.
Dadurch kénnen Molekiile identifiziert und willkiirlich platziert werden, was die Grundlage fiir zukiin-
ftige Bottom-up-Konstruktionen in der Nanotechnologie darstellt.

The mind
drives the mass

PUBLIUS VERGILIUS MARO

Contents

1 Introduction

1.1 Thenanocar. i e e e e
1.1.1 The nanocar race o it e e e
1.1.2 The structure of the Dipolar Racer
1.1.3 The procedure of manipulating the nanocar
1.1.4 The human’s capability to control the nanocar

1.2 Artificial Intelligence
1.2.1 Machine Learning
1.2.2 Inmtelligent Agents. e

1.2.2.1 Agent and Environment L L.
1.2.2.2 Performance Measurement
1.2.2.3 The Nature of Environments
1.2.2.4 The Structure of Agents
1.3 Reinforcement Learningo
1.3.1 Finite Markov Decision Process
1.3.1.1 Agent-Environment Interface
1.3.1.2 Goalsand Rewards
1.3.1.3 Returns and Episodes
1.3.1.4 Policies and Value Functions
1.3.1.5 Optimal Policies and Optimal Value Functions
1.3.2 Temporal Difference Learning o0
1.3.2.1 Q-Learning
1.3.22 Q-Table
2 Python Code Development
2.1 Controlling the nanocar by the STM
2.1.1 The Python to STM interface
2.1.1.1 The code of the Python to STM interface
2.1.2 The graphical user interface for environment initialization
2.1.21 Thecodeofthe GUL.
2.1.3 The design of the environment
2.1.3.1 Thereward function,
2.1.3.2 The code of the environment
2.1.4 Thecreationofanagent
2.1.4.1 The importance of the Q-table size.
2.1.4.2 Discretization of the multidimensional Q-table
2.1.4.3 Update process of the Q-table
2.1.4.4 Enhanced exploration and exploitation
2.1.4.5 Thecodeoftheagent
2.1.5 Thecode of the main
2.2 Learning from human experience or existing data
2.2.1 The filemanager L
2.2.1.1 The code of the filemanager.
2.2.2 The environment for learning oo
2.2.2.1 The reward function Lo L oo
2.2.2.2 The code of the environment

0~ 1O OO U WN = = -,

el e ol e e
T W NN, R OOOO

2.2.3 The learning agent . .

2.2.3.1 Thecodeof theagent

3 Experiment and Proof of Concept
3.1 Experimental Setup
3.2 Experiment

3.2.1 Nanocar extraction procedure oo

3.2.2 Al-controlled nanocar
4 Conclusion and outlook
List of Figures
Bibliography

Appendix

74

76
77

1 Introduction

In the following chapters, I will introduce the world’s first nanocar race - the structure of the world’s
fastest nanocar [8] - and an artificial intelligence designed to control it. Although the designed nanocar
finished in first place, we will see that the manoeuvrability, even for an experienced human operator,
is almost random - meaning an action leads to an unpredictable outcome. In order to enhance the
controllability of the nanocar, a reinforcement-based artificial intelligence is used to control the nanocar
on an beyond human-level of accuracy.

On the one hand, this thesis provides the complete design process for an artificial intelligence as
well as the python code that is used to control the nanocar. On the other hand, it provides the
physics and structure behind the nanocar and a glance on the theory of artificial intelligence by
providing a detailed description of reinforcement learning and the applied learning algorithm, known
as Q-Learning. The complete python code is fully annotated and for easier understanding described
literally and figuratively in chapter 2. The code provides a program (agent) that can learn from human
generated data and a program to control the scanning tunnelling microscope.

1.1 The nanocar

This section will provide a short introduction to the world’s first nanocar race, the design choices
for this particular nanocar - called Dipolar Racer, which closely follows [8], and shows the ability of
humans to control nanocars.

1.1.1 The nanocar race

The world’s first nanocar race took place on 28 and 29 April 2017 at the Centre for Materials Develop-
ment and Structure Studies (CEMES-CNRS) in Toulouse, France. Six teams participated with their
self-designed nanocars. The teams had to deposit their nanocar on a gold or silver (111) surface at
~5 K and manoeuvre it over 100 nm or 150 nm respectively by using a scanning tunnelling microscope.
The participants had to reach the goal within 36 hours. The nanocar could either be manoeuvred
by using the tip-induced electric field gradient or the inelastic electron tunnelling current. Thus, no
mechanical manipulation, such as pushing with the STM-tip, was allowed.

The deposition procedure is as follows. The nanocars were deposited on the metallic surface and then
located by imaging the surface by using the STM. At the beginning, a large area is being imaged to
find a racetrack that fulfils the rules of the race. These rules are for the racetrack to have at least two
45 ° turns and dependent on the surface, the racetrack has to be either 100 nm long for gold and 150
nm long for silver. Since the Dipolar Racer moved uncontrollably fast on a gold surface even during
STM imaging, the team back then selected to race on silver, which solved this problem. The complete
racetrack from the world’s first race in Toulouse is shown in figure 1.1.

Chapter 1. Introduction 2

Figure 1.1: a: STM image (120 x 50 nm?) of the Ag (111) surface at the start of the race showing a
Dipolar Racer (red circle) on the left with two nearby nanocars, the two asperity pylons and the finish
line between the juxtaposed pylons (blue circles). b: STM image of the same surface area where one
Dipolar racer has crossed the finish line. The dotted line shows the 150 nm racetrack. The image is
modified from reference [8]

1.1.2 The structure of the Dipolar Racer

In the following, the design features for optimal nanocar manipulation are explained. These are based
on decades of STM manipulation and nanocar design expertise.

1. The molecular weight should be as low as possible, because it is difficult to deposit intact
molecules under ultra-high vacuum conditions. A higher molecular weight provides more sites
for surface adhesion. This in turn raises the diffusion barrier, and consequently slowing the
Dipolar Racer.

2. The wheels should be aliphatic rather than alkenylic, aromatic or heteroatomic to minimize
surface interactions. They should also be large enough to lift the chassis off the surface to
minimize chassis-surface attraction. For the Dipolar Racer, the wheels are adamantane since
they are aliphatic, while also being relatively spherical. The Dipolar Racer consists of two
wheels, which are connected to opposite sites of the chassis. Since surface adhesion should be
minimized, two wheels are a good choice for reducing surface interactions, while also lifting the
chassis off the surface.

3. The chassis should be rigid and the axles as short as possible to prevent the overall structure
from sagging towards the surface. This in turn decreases chassis-surface interactions. However,
the axle also has to be long enough to minimize steric interactions between the wheels and the
chassis and should be able to rotate freely around the axle to minimize rotational barriers.

4. The molecular structure should be stable enough to be deposited under ultra-high vacuum
conditions, while also prevent bond breaking when a voltage pulse is applied at the STM-tip.

The structure of the nanocar, which in this specific case is called the Dipolar Racer, is shown in figure
1.2 and consists of two wheels, which are connected via axles to the chassis.

For translation on a surface, high forces are necessary to overcome the diffusion barrier. The easiest
mechanism to overcome the diffusion barrier is 'pushing’ the nanocar with the STM-tip by utilizing
Pauli repulsion to translate the molecule. However, the rules of the race state that physical contact is
forbidden, allowing only for tip-induced electric field gradient or inelastic electron tunnelling current
to translate the nanocar.

Therefore, the Dipolar Racer was equipped with a strong net dipole in the chassis to improve the
interaction with the electric field of the STM. The dipole is formed by two functional groups attached
to a phenyl ring. The nitro group and the dimethylamine are connected to the phenyl ring and create
a net dipole moment, shown in figure 1.2. To achieve a strong donor-acceptor interaction, the two
functional groups have to be coplanar with the aromatic ring. This dipole supports the movement
towards the STM-tip.

Chapter 1. Introduction 3

Wheel Axle Chassis

C T Toew
e — D

02N O ’_N ~

Net dipole

Figure 1.2: Molecular structure of the Dipolar Racer and its resonance form, which highlights the
strong net dipole direction. The Dipolar Racer is ~2.5 nm in length.[8]

1.1.3 The procedure of manipulating the nanocar

At first, the location of the nanocar is determined by imaging the surface with a low voltage. When
the exact position is known, the lateral movement of the nanocar is induced by bringing the STM-tip
towards the nanocar and applying a relatively high bias voltage. This creates a strong local electric
field at the STM-tip with which the dipole moment interacts. If this field is sufficiently strong with
respect to the diffusion barrier on the surface, a lateral displacement of the nanocar towards the
STM-tip is induced. Afterwards, the nanocar is re-imaged with a low bias voltage to confirm its
position. The schematic for a manipulation procedure is given in figure 1.3. A successful pulling
action translates the molecule on average about 1 nm over the surface.

Low voltage
(imaging)

High voltage
(manipulation)

Low voltage
(imaging)

Figure 1.3: Schematic of the manipulation procedure. A low voltage (0.70 V) is used for imaging
the molecule and a high voltage (1.8 V) is used to induce movement. [8]

However, since imaging the nanocar after every displacement step is the major bottleneck, as it limits
the speed, it should be avoided if possible, as it is very time-consuming and takes between one and
five minutes. Thus, instead of repeatedly imaging the surface, the tunnelling current during voltage
pulses is measured and used as an indicator of how the nanocar moved towards the STM-tip. The
tunnelling current signal has been shown to identify hopping distances and to distinguish between
pulling, pushing and rolling modes during a lateral motion of the STM-tip over a molecule [1] and

[5].

Chapter 1. Introduction 4

A tunnelling current profile, as shown in figure 1.4, is measured while a voltage pulse is applied.

40
35+
30
a)54 -
20+ Translation
157
10 -
5 Rotation

]

0 i i T
0] 0.5 1.0 1.5 2.0
Time (s)

A)

Current (

Figure 1.4: An order of magnitude jump in the current versus time plot indicates that the molecule
has translated, after which the molecule rotates. [8]

Dependent on the translation behaviour of the nanocar, the profile may contain flat regions correspond-
ing to no molecular motion and a region with abrupt and high current changes, which correspond to
translation towards the tip and rotation under the tip. Thus, the current signal alone indicates if the
translation of the Dipolar Racer was successful without imaging the surface after each step.

In the end, the Dipolar Racer completed the 150 nm silver-surface racetrack in a record time of 1
hour and 33 minutes, travelling at an average speed of almost 112 nm h™'. Seeing these values, one
might think that this works extremely well, and it does, but if we take a closer look at the data from
Toulouse, there is a lot of time and potential unexploited.

1.1.4 The human’s capability to control the nanocar

At first glance, controlling the nanocar over the surface is easy and straightforward, but for humans
it is impossible to predict the outcome for a specific action. In figure 1.5 the successful and failed
pulling attempts for the complete race from Toulouse are shown, exhibiting a successful pulling rate
of about 54%, which is almost random and the predictability is slightly better than a coin flip.

Chapter 1. Introduction)

5120 ' . Failed pulling
£100 . - Success pulling
CIL) : .

8 80 t s p :

© LT

S 60 SR :

-] I ..- ., .

© R .

£ 120 — e

% . ‘ R . . ; : '.' .
g 20 S ‘J, . -

> . : PRI TR :

© : . . o4 o 8 'l“i! o sodeh Boo %0 . . .

O L Y o
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
pulling distance / nm

Figure 1.5: The race from Toulouse showed a pulling success rate of about 54%. A successful and
failed pulling is indicated by either green or red dots respectively. A pulling action is considered to be
successful, if the derivative of the current exceeds a certain threshold and failed otherwise. In general,
the x-axis can be seen as the distance from the STM-tip to the nanocar or if the pulling action was
successful - the travel distance of the nanocar.

Since the number of variables that have to be considered for its complex behaviour, it is extremely hard
or impossible for humans to precisely control the nanocar. Thus, this would be a great opportunity to
explore the performance of an artificial intelligence to manoeuvre the nanocar across the racetrack.

1.2 Artificial Intelligence

This chapter will provide you with the necessary concepts for this thesis and make you familiar with
the kind of terminology that is used, when it comes to artificial intelligence or Al for short. However,
since Al covers a very broad range of topics in the field of computer science, I will not go into much
detail, as this would go beyond the scope of this master thesis. However, if you are highly interested
in Al there is a great book called Artificial Intelligence: A Modern Approach from Stuart Russell,
Peter Norvig, on which parts of this chapter are based.

The understanding of how we think - meaning, how we perceive, predict, understand and process
information has preoccupied humans for thousands of years.

The recent development regarding formulating algorithms that mimic thinking processes comprises a
multitude of possibilities for solving highly complex problems, which are far beyond human’s capability
of solving. [9, p. 1]

The underlying potential to solve complex problems or finding meaning in seemingly random datasets,
created a new field in computer science. This field is called artificial intelligence, which was invented
in 1956 [9, p. 17] and is not just about understanding intelligence but also creating intelligent entities.
During the 1990s, these created entities became known as “intelligent agents” [9, p. 26], which will be
discussed in section 1.2.2.

Chapter 1. Introduction 6

1.2.1 Machine Learning

AT is a much broader field of study compared to machine learning (ML). In general, AT aims to make
machines "intelligent" using multiple approaches and different learning algorithms, whereas ML focuses
on making machines that can learn to perform tasks. Nevertheless, it is quite hard to define whether
a machine or entity is intelligent, but it is clear that ML is a subfield of Al [4, p. 3]

In the field of computer science, machine learning studies algorithms and techniques for automating
solutions that are hard to program in computer language. A conventional program consists of two
steps. During the first step, a detailed design for the program is created, in terms of what the program
is supposed to do. During the second step, this detailed design has to be translated into a computer
language. Despite a very clear and complete specification about the real environment, this second step
is extremely challenging when it comes to real-world problems. This is where ML algorithms come
into play. ML can solve many problems in a generic way, meaning that they do not require an explicit
design or model of the real environment and are able to learn from data. [4, p. 2]

Machine learning can provide knowledge based on a large dataset by identifying patterns or regularities.
This is done by algorithms that construct a statistical model based on the training data, but can also
be applied to unknown datasets. [4, p. 4]

1.2.2 Intelligent Agents

The aim of the following section is to explain the terminology used in the field of Al. First and foremost,
the concept and meaning of intelligent agents will be described by introducing the idea of an agent and
the environment as well as the interaction between them. Moreover, the general terminology which is
used in the field of AT research will be introduced.

How well an agent performs in a specific situation, strongly depends on the complexity of the task.
However, an universal intelligence that is capable of solving each and every task does not exist.

1.2.2.1 Agent and Environment

The Agent is the computer program that is learning due to interactions with the Environment. The
agent perceives the environment through sensors and operates upon it through actuators. [9, p. 34]
This concept is illustrated in figure 1.6, where the agent is interacting and modifying the environment
through the scanning tunnelling microscope (STM). Thus, it is immediately clear that for the precent
case the STM is both sensor and actuator.

Continuous Space

|
|
e
|
|
I

Discrete Space

Precepts

S0l 11-e | Discretization Environment

State Space Real Space

-

Figure 1.6: A schematic drawing of the agent interacting with the environment through the scanning
tunnelling microscope, which functions as sensor and actuator.

Chapter 1. Introduction 7

The agent interacts sequentially with the environment, meaning there needs to be a notion of time
to uniquely describe each time step. Thus, the system (agent + environment) starts at time 0 and
is incremented by 1 before the next observation is received. [4, p. 196] As soon as the objective is
achieved, the episode is finished.

The agent’s choice of actions for a given situation, or state, can depend on the complete history of
everything the agent has ever perceived. This perceived information for every time step is called
percept sequence.

The agent’s behaviour is described by the agent function, that maps any given state to an action. The
agent is performing every action towards achieving the objective. Thus, the agent receives a reward for
each action in order to determine its quality. Designing an excellent reward function is by no means
trivial and highly influences the learning rate and performance of the agent.

1.2.2.2 Performance Measurement

An agent without any knowledge about the environment starts exploring the environment. At first,
the agent performs random actions for which it gets feedback from the environment. This feedback is
a numeric value, usually a real number and known as reward.

All agents are programmed with one objective: accumulating maximum reward from the environment
due to the action that was taken. Thus, the agent has no direct knowledge about the environment,
but it indirectly observes the environment via the reward function. This makes clear - how the reward
structure is designed, depends on the task-specific objective. [9, p. 37]

1.2.2.3 The Nature of Environments

The state of the environment is a numerical description, which uniquely describes the environment at
any given time. The state is described by a set of features called state variables. The state within the
environment at a specific time is determined by the numeric values of these state variables.

The total number of possible environment states is given by the dot product of the number of values for
each of the feature variables. E.g.: There are four feature variables and each contains 20 entries, then
the state space of the environment or the total number of possible states is 160,000. This immediately
implies the necessity of a discrete state space, as for real feature values the number of entries rapidly
goes to infinity. This mapping from the real space to the state space is called discretization. This
discretization is mostly caused by limited memory capacity. [4, p. 199]

Figure 1.7 shows the schematic drawing for how the agent is interacting with the discrete environ-
ment.

Chapter 1. Introduction 8

Action
Environment
State Space
State
Reward

Figure 1.7: Interaction between agent and state space environments

At this point, it should be emphasised that the agent is not directly interacting with the real environ-
ment (real space), but the discrete environment state space. In other words, due to the discretization,
the agent perceives the state space instead of the real space. A more detailed description about the
environment is given in chapter 2.1.3.

The agent receives the state and the reward from the discrete environment and performs an action.
After the action was performed, the time is incremented. Afterwards, the environment passes on the
next state and reward to the agent. This creates a recurrent sequence of state s, reward r and action
a So,T0,aQ, 81,71, A1, ...St, T't, A¢, ..., which is known as trajectory. A full trajectory from the initial state
to the final state is known as episode. [4, p. 200]

1.2.2.3.1 Markov Decision Process

The agent-environment framing is described by a mathematical model known as Markov Decision
Process (MDP). In order to formulate a finite MDP, the state space and action space has to be finite.
The finite MDP is a model, where at any time t, from some state s; and with some state transition
probability, the system performs any action a; that is available in this state s and for which a one-step
reward r(s,a) is gained. [3, p. 3]

In a stochastic environment, the outcome is predictable for any given state and possible action within
this state. If the chosen action at time t is independent of the history of all states or actions, up
to t-1, then these states are known as Markov states. In reinforcement learning, we only consider
environments that can be described in terms of Markov-states. Environments are described by Markov-
state-environments because of their easy analysis and appliance to many real-world situations.

The mathematical description of MDPs is stated in chapter 1.3.1.

1.2.2.4 The Structure of Agents

The focus of Al is to design an agent program that maps from perceptions of the environments to
actions. The architecture is made up of the computing device, sensors and actuators:

agent = architecture + program

Chapter 1. Introduction 9

There are numerous types of agents based on various methods for selecting actions to achieve certain
objectives. The most interesting ones for reinforcement learning are called learning agents.

1.2.2.4.1 Learning Agents

In many areas of Al, learning agents are the state-of-the-art approach in creating intelligent agents.
The huge advantage of learning agents is their ability to operate in initially unknown environments.

A learning agent, as shown in 1.8, can be divided into four conceptual components, which are known
as learning element, performance element, critic and problem generator.

The performance element percepts an environment state and selects an action based on its know-
ledge.

The critic is rating the agents performance based on a performance standard.

The learning element receives feedback from the critic and determines how the actions should be
modified to increase positive feedback in the future. The information gathered by the learning element
is communicated with the knowledge of the performance element in order to update its knowledge
data base.

The problem generator is suggesting new actions, that will lead to unknown responses from the
environment and enable the agent to gather new experiences. This exploration of the environment
will lead to suboptimal performance at first place; but it enables the agent to discover better actions
for the future.

Performance
standard

Learning Sy Performance

element element

m
i
B <
® o
|7 B |
o3
o M@
&

Figure 1.8: Conceptual components of a Learning Agent

Since we are now familiar with the terminology used when it comes to artificial intelligence, we can
continue with reinforcement learning.

Chapter 1. Introduction 10

1.3 Reinforcement Learning

Reinforcement learning is learning by mapping states to actions, such that a numerical reward signal
gets maximized. When the agent starts learning, it has no knowledge about the environment and does
not know which actions are good or bad, so it discovers the environment by choosing random actions.
Each action will then lead to a reward that judges the chosen action based on its performance. The
goal of the agent is to accumulate the highest reward. These two characteristics, namely reward max-
imization and trial-and-error search, are the most important distinguishing features of reinforcement
learning compared to other machine learning methods.

The problem of reinforcement learning is formalized using ideas from dynamical systems theory, known
as the optimal control of incompletely-known Markov decision processes. The idea, as already men-
tioned in section 1.2.2, is to present the agent with an environment that captures the most significant
aspects of the real problem, while interacting with this environment to achieve a goal. The agent must
be able to observe the environment and take actions that affect its state within the environment, while
also having a goal. Markov decision processes are intended to include these three features - perceive,
action and goal. [11, pp. 1-2]

1.3.1 Finite Markov Decision Process

The following section will give a mathematical representation of finite Markov decision process (MDPs),
which was already mentioned in section 1.2.2.3.1. This involves reward evaluation for choosing certain
actions in specific situations. In MDPs, either the value function V*(s) of each state s is estimated
by taking an optimal action a, or the state-value function ¢*(s,a) for each action in each state is
estimated. This chapter closely follows [11, pp. 47-68].

1.3.1.1 Agent-Environment Interface

An MDP consists of a finite set of states, actions and rewards, noted as (S, A, R) respectively. The
agent interacts with the environment and at each time step t, the agent perceives some environment
state s; € S and selects an action based on this state a; € A(s). After the action is performed, the
time step is increased to t+ 1 and the agent receives a numerical reward r € R C R and finds itself in a
new state s;+1. The state transition probability p(s¢11|s¢, a;) is the probability that when performing
action a; in state s¢, the resulting state will be s;11, and is given by:

p(seralse, a)) =D p(seer,rlse, ar) (1.1)
reR
The expected rewards for state-action pairs can be computed by:

T(St’at)izr Z p(St+1,7[st, at) (1.2)

reR St+1 es

1.3.1.2 Goals and Rewards

In reinforcement learning, the objective of the agent is formalized by a reward signal that is received
from the environment. At each time step, the agent receives the reward as numerical value r; € R.
The goal is not to maximize the immediate reward, but the cumulative reward.

Chapter 1. Introduction 11

The use of a reward signal to formalize the idea of an objective is one of the most distinctive features
of reinforcement learning. The formulation of a goal using only a reward signal might first appear to
be limiting, but in practice it has proved to be flexible and applicable.

1.3.1.3 Returns and Episodes

The agent’s goal is to maximize the cumulative reward received in the long run. Let us consider, the
received rewards after time step t are denoted ry41, 7442, 7143, - -, then the maximum expected return,
until the terminal state T is reached, is denoted G;. In the simplest case, the return is the sum of the
individual rewards:

Gi=rip1 + T2+ -+ 1 (1.3)

After reaching time step T, the episode is finished. This type of return is useful for sequences with
a terminal state. When this is not the case and the agent-environment interaction does not end and
continues without any limitations, then the return formulated in this way is problematic, because for
T = oo the return itself will be infinite.

Therefore, an additional factor has to be included in equation 1.3 to ensure that the expected discounted
return is limited with increasing time steps.

o0
Gi=rip1 + e + Y s+ = > Y e (1.4)
=1

where 7 is a parameter, 0 < v < 1, called the discount factor.

The discount rate can also show how relevant the immediate and the future reward is, as a discount
rate will make future rewards worth only v*~! compared to immediate rewards.

1.3.1.4 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions V(s), or action-value
functions q(s,a) that estimate the expected future reward depending on what action is taken. The
policy function 7 defines the action that the agent is going to perform for a certain state in the
environment. Thus, a policy is a mapping from states in the environment to all possible actions that
the agent can take, while every action has its probability to be chosen. The performance of the agent
is represented by the expected reward 7 (s, s¢+1) under the policy function 7. The function Vi (s;) is
called state-value function for policy :

Va(st) = Ex [Z Vreprals: (1.5)

k=1

The agent’s objective is finding the best policy, which is the equivalent of accumulating maximum
reward. This equation can be rephrased as the expected reward for taking action a; in state s; under
policy m. The function ¢ (s¢, at) is called action-value function for policy 7:

Chapter 1. Introduction 12

oo
4r(st,a1) = Er [> A resrslse, at} (1.6)
k=1

where 0 < « < 1 is the discount factor that determines the importance of rewards gained in the
future.

1.3.1.5 Optimal Policies and Optimal Value Functions

The core of a reinforcement learning problem is finding a policy that achieves maximum reward in the
long run. For finite MDPs, a policy 7 is defined to be better than or equal to another policy «’ if its
expected reward is greater than or equal to that of @', or in other words, if v;(s) > v,/(s). There is
always at least one policy that is better than or equal to all other policies. This is an optimal policy
Ty.

Under an optimal policy, the state-value function is called the optimal state-value function v., and
defined as:

Vi (81)= max vr(8t) (1.7)

for Vs; € S.

While their optimal action-value function q. is defined as:

q*(8t7at)£m7?‘x qﬂ(staat) (18)

for Vs; € S and Va; € A(s).

Thus, we can write g, in terms of v, as follows:

@ (St at) = E[reg1 + yvi(sep1)|5e, at]. (1.9)

1.3.2 Temporal Difference Learning

Temporal Difference (TD) algorithms can learn directly from raw experience or datasets, either gen-
erated by other Als or by humans without the necessity of modelling the environment dynamics. TD
methods update their estimates based on already learned estimates to adjust and make more accurate
predictions about the future, without waiting for the end of an episode, as it is the case in Monte
Carlo methods. Updating the learned values immediately is known as bootstrapping.

The policy evaluation or prediction problem deals with the estimation of the value function v, for a
given policy 7, while the control problem focuses on iteratively finding an optimal policy.

The value function gets updated for the next time step ¢t + 1 by comparing the difference between the
observed reward r.y; and the estimate V(si41):

V(se) = V(se) +afreer + vV (se1) —V(se)] (1.10)

TD target

Chapter 1. Introduction 13

This method is called TD(0) or one-step TD, because it is updated immediately at the transition s;41
by using the reward received in the next time step ryy1.

This is a special case of the general TD(\) method, where \ is a decay parameter with 0 < A < 1.
For A = 1 every value function Q(-,-) that was visited during the episode gets updated at the end of
the episode, we call this Monte Carlo (MC) methods. [10]

1.3.2.1 Q-Learning

The reinforcement learning algorithm that is most suitable for our purpose is called the Q-Learning
algorithm and is based on Temporal Difference Learning. In temporal difference learning, an entry in
the lookup table gets updated for every time step t by using the Q-learning algorithm, whose core is
the Bellman equation 1.11.

The state at time t be s;. The decision process begins at time 0 in the initial state sg. At any time
t, the possible action depends on the current state a; € I'(s;), where the action a; represents one or
more control variables. After action a is taken, the state changes from s to a new state T(s,a) and the
current pay-off from taking action a in state s is F(s,a). The discount factor 0 < 5 < 1 is representing
impatience.

V(s) = aréllgé)[F(s, a) + BV (T (s,a))] (1.11)

Q-Learning is based on temporal difference learning and is a model-free approach of reinforcement
learning. It enables an agent to act optimally in Markov Decision Processes by experiencing reward
based on actions taken and without requiring a model for the environment.

Learning is considered to be off-policy, because the learned action-value function Q(s,a;) directly
approximates the optimal action-value function g, by taking the best action in the particular state s;.
This is known as a greedy policy. However, the policy still has an effect in determining which state-
action pairs Q(s¢, a;) are visited and updated. An action-value function Q(s¢, a;) is updated by the
following equation, which is based on the Bellman equation.

Q(s¢,at) < Q(s¢,ar) + afrep1 +vQ(st41, a) —Q(s¢, ay)] (1.12)

Q—Learning target

The agent’s next action as41 is chosen using the behaviour policy ai+1 ~ u(:|s¢), but the update of
Q(st, ar) is performed using an alternative successor action a under policy 7, a ~ 7(+|s;). Both, the
behaviour policy p and the target policy w, were updated. The target policy 7 is greedy with respect

to Q(s¢, ar)

T(st41) = argmaxQ(se41, a) (1.13)

and the behaviour policy p is a greedy policy with respect to Q(st, at). This is also the reason why
Q-learning is off-policy. The action-values Q(s¢, a;) were updated using the next state action-values
Q(s¢+1,a) and the greedy action a. The @-Learning target under an e-greedy policy is given by:

Chapter 1. Introduction 14

— 71 +YQ(5t41,a) (1.14)

= 11 +YQ(S¢41, arg maxQ(siy1,a)) (1.15)
a

= Tyl +ymax Q(st41,0a) (1.16)

In the end, substituting this expression for the @Q-Learning target of equation 1.12, the QQ-Learning
Control Algorithm is given as:

temporal dif ference

Q" (st,ae) < Qlst,ar) + o [+ gl max Q(s¢+1,a) — Q(st, ar)]
old value learning rate reyqrd discount factor . - old value
estimate of optimal future value
new value (temporal dif ferenc target)
(1.17)

By visiting all states and trying all actions repeatedly, it learns which actions are the best in each state.
Thus, Q-Learning Control converges to the optimal action-value function Q(s¢, ar) — g«(s¢, a). [12,
pp. 282-285]

This equation builds the core of the agent. Therefore, let us take a closer look and understand the
meaning behind the equation, and how it can be tuned using the two hyperparameters a and ~.
For the update process, we add the temporal difference times the learning rate o to the old Q-value
Q(st,ar). The temporal difference includes the next step reward, which is received after action a;
was performed, plus the discount factor v times the optimal future Q-value, which is the Q-value for
the next state with the action that achieved the most reward. This is called the temporal difference
target, which gets subtracted from the old Q-value.

The two hyperparameters o and v get adjusted over time, as the agent’s knowledge about the envi-
ronment increases.

e «: essentially determines how important or high-weight future rewards are

e 7: determines how impactful already established action-value functions are compared to newly
learned ones

The procedural form of the Q-learning algorithm is shown below:

Definition 1.3.2.1 Q-Learning (off-policy TD control) for estimating = ~ .,

Algorithm parameters: step size a € (0, 1], small rate of exploration € > 0
Initialize Q(s, a), for all s € ST, a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g. e-greed policy)
Take action A, observe R, S’
Q(st,at) < Q(st,ar) + afrr +ymaxg Q(si41,a) — Q(se, ar)]
St < St41
until S is final

Chapter 1. Introduction 15

1.3.2.2 Q-Table

These action-value functions Q(s¢,a;), or Q-values, are stored in a Q-table. The Q-table is a multidi-
mensional array, where the states can be seen as the pages of the array and the actions are the entries
within a page.

In order to understand how Q-Learning updates its Q-values, the famous Taxi problem from the
OpenAl Gym library is introduced [2]. The following figure 1.9 shows the Taxi environment, which
consists of different fields either directly connected or separated by walls. At the start of an episode,
the passenger and the taxi randomly spawn at the field, but the passenger can only spawn at one of the
four possible pick-up or destination locations (R, G, Y, B), while the taxi can spawn anywhere except
at the passenger location. The goal of the agent, alias the taxi-driver, is to pick up a passenger from
one of the four locations and drop him off in another. The total number of states in this environment
is given by the grid size 5x5, time another 5 for the possible locations of the passenger, namely the
4 pick-up locations and the location inside the taxi time another 4 for the four destination locations.
The agent controls the taxi by using the six possible actions (down, up, right, left, pick-up, drop-off),
which are chosen according to the entries in the Q-table. The taxi environment and the corresponding
Q-table are shown in figure 1.9. The reward for a successful drop-off is 420, and -1 for every time step
it takes. There is also a 10 point penalty for illegal pick-up and drop-off actions and also for driving
into walls.

0 1 2 3 4
o T U rs epey
’ 5@«’@‘:‘_’,/ £9.40.11 6030 -40) state 500
1 l1- (__!:',_-)
(-7-9-12-2<70-40) ﬂ@(stﬂ,a)
) e
(L15 «+-)

(-7-3-4-20-40-20) *ﬁi—a Q(st, ar)

actions: a

Figure 1.9: Left: OpenAl Gym Taxi environment [7] Right: The Q-table for the Taxi environment

The complete update process for a Q-table entry is given below. Assuming that the taxi is positioned
as it is shown in figure 1.9 and moves up.

1. Being in state s; = 1 (yellow page) and when performing action a; = 1, we end up in the next
state: s;+1 = 250 (green page)

2. We receive a reward ryy1 from the environment that judges the quality of the action. The
received reward is -1, because every time step is rewarded with -1. This encourages the agent to
find the shortest way possible.

3. The Q-value at state 1, action 1, given by Q(1,1), gets updated by the Q-Learning algorithm

4. The update procedure adds the temporal difference target to the old Q-value. This includes the
received reward ry11 = —1 and the highest Q-value entry from the next state max, Q(250,a) = —2,
which was taken from figure 1.9.

Chapter 1. Introduction 16

5. With the two hyperparameters being o = 0.95 and v = 0.5 the new Q-value is given as:

QU(1,1) « QU(1,1)+0.95 [riy1 +0.50 - max Q(250,a) — Q"(1,7)]
O™(1,1) + —3.00 +0.95[—1.00 + 0.50 - (—2.00) — (—3.00)]
O™ (1,1) « —2.05

This concludes the introduction chapter and provides all the information to understand the basics of
reinforcement learning and the used Q-learning algorithm. This theoretical knowledge will be used to
develop an Al written in the programming language Python.

17

2 Python Code Development

In the following chapters, I will explain how I designed an AI, which is capable of maneuvering a
nanocar across a racetrack using a low-temperature scanning tunnelling microscope.

This chapter represents the Python code of the Q-Learning based Al. The Python code shows how
the agent can learn either from human experience by using already existing datasets or by controlling
the nanocar directly at the STM.

The first part of this chapter shows how the agent can control the nanocar by using the STM. The
STM is connected to the agent via the OLE Control Interface. OLE (Object Linking & Embedding)
is a protocol developed by Microsoft, that allows embedding and linking to objects. These objects can
implement interfaces to export their functionality - like enabling a Python program to make use of
these objects.

The second part of this chapter shows how the agent can learn from human generated data. This
was implemented, because of the short time the STM was available and to train the agent beforehand
from already existing data, like the nanocar race from Toulouse, and to use a pre-trained agent to

drive at the STM.

In order to check how the agent would perform at the STM, a simulator was implemented, that
provides a quick feedback on how the agent would select actions. Of course the simulation does not
provide a physical feedback, which means it can not be used for training the agent, but it will represent
the current learning state of the agent. The code of the simulator is given in the appendix 4.

The following chapters provide a fully annotated Python code as well as graphical representations to
complement the code in order to give you a better imagination and allow for a much easier under-
standing.

2.1 Controlling the nanocar by the STM

This chapter explains the Python code I developed to manoeuvre a nanocar across a silver (111)-
surface by giving commands to control the scanning tunnelling microscope. The code is explained by
going through it one by one. First, the lowest level (hardware) is explained, followed by the GUI and
the environment and, last but not least, the agent. In this way, every function that is used in a class
is already explained beforehand and the code becomes more clear.

The overview of the code is illustrated by the flow diagram 2.1.

Chapter 2. Python Code Development 18

Legend:

Agent

Environment
GUI
STM

Load the Q-table

Initialize sub-goals
and goals

Get STMH-ip position

Yes ey NV

the goal?

Select action based

Save Q-table on Q-table

Calculate STM-tip

Finish "
position

Update environment
variables

Set STM-tip position 33

Define voltage pulse

Update Q-table shape

Search algorithm

Perform a vertical

Determine reward : :
manipulation

Yes Is the No
induced current
right?

Figure 2.1: The flow diagram for manoeuvring the nanocar across a given race-track by controlling
the STM. The Legend indicates to which class a processes belongs.

1
2
3
4
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Chapter 2. Python Code Development 19

2.1.1 The Python to STM interface

The STM class utilizes the OLE control interface to connect with the STM and perform actions
according to the agent’s target. This should be seen as an interface class, where commands are
rephrased to use the OLE control interface provided by Createc. The advantage here is that for an
OLE enabled device the existing STM-class can be swapped out, while still being able to use the rest
of the code. However, depending on your system, you will also have to adjust the threshold values in
the environment class.

The STM is connected via FEthernet to the STM. For the OLE control interface to function, two
packages are required: the win32com.client package, which contains a number of modules to provide
access to automation objects, and the pythoncom package, which initializes COM-ports (hardware
interface).

2.1.1.1 The code of the Python to STM interface

import numpy as np

import math

import glob

import os

import time

import pythoncom

import logging

import win32com. client

import matplotlib.pyplot as plt
from scipy import signal

class STM(object):
The class sends commands to the STM by using the OLE control protocol and interacts with the
STMAFM software .

Comment: If you want to see the available methods in python use dir(stm) and for properties use
stm._prop_map_get_

Methods
connect ()
Initializes the connection to the STM/AFM program.

update_parameters ()
Updates all parameters and synchronizes the parameters with the DSP (dual digital feedback
controller).

get_date ()
Reads the date from the STM.

beep ()
Makes a beep sound and writes ’'Beep’ into the log-file.

get_float_param (name)
Reads the parameter specified by name and tries to convert it to float. The parameter is a
string and has to be within the ’'Basic Parameter’-Frame of the STM/AFM software.

set_position ()
This sets the new position of the STM.

get_relative_position ()
Returns the actual relative STM position.

get_absolute_position ()
Returns the actual absolute STM position.

define_voltage_pulse ()
Defines the voltage pulse.

perform_vertical_manipulation ()
This performs a vertical manipulation and generates a current spectrum.

perform_lateral_manipulation ()
This performs a lateral manipulation and creates a Z-topography. This is used for searching.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Chapter 2. Python Code Development

20

get_

current_spectrum ()
Returns the current spectrum.

is_idle ()

Checks the status of the STM and returns true when idle.

is_busy ()

def

def

def

def

def

def

Checks the status of the STM and returns true when busy.

__init__(self):

self.logger = logging.getLogger ("STV")
self.pos_STM = []

self.voltage_STM = 0

self.val_Current = 0
self.val_Current_Duration = 0

connect(self):

Initializes the connection to the STM/AFM program.
self.logger.info("Connecting to STM")

Initializes the COM libraries for the calling thread
pythoncom. Colnitialize ()

self.stm = win32com. client.Dispatch ("pstmafm.stmaimrem")
self.stm.serverneverclose ()

self .beep()

self.update_parameters ()

update_parameters(self):

Updates all parameters and synchronizes the parameters with the DSP (dual digital

controller).

self.logger.info("Synchronize all parameters with DSP")
self.stm.updatedspfbparam ()

self.stm.updatedspparam ()

get_date(self):

Reads the date from the STM.

date = self.stm.date
self.logger.info("read current date: %s" % date)
return date

beep(self):

Makes a beep sound and writes ’'Beep’ into the log-file.

self.logger.info("Beep!!l")
self.stm.stmbeep()

get_float_param(self, name):

Reads the parameter specified by the argument and tries to convert it to float.

parameter is a string as it appears in the Basic Parameter form.

Parameters

name : str
String given by the Basic Parameter in the STM/AFM program and the menu
bar under 'Forms’ —-> ’'Basic Parameters’.

Returns
value : float
The requested value from the STM as float variable - if possible.
value = self.stm.getparam(name)
try:
value = float(value)
except:
self.logger.error("$s cannot be read” % name)
else:

The

feedback

132
133
134
135
136
137
138
139

146

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204
205
206

208

Chapter 2. Python Code Development 21

def

def

def

def

self.logger.info("read %s of %s" % (name, value))
return value

set_position(self, pos_STM):

Moves STM-tip to new position. Coordinates are given in relative DAC units (relative: X,Y
Offset and rotation are added afterwards) Control is returned after the move has been
completely finished.

Attributes

pos_STM : np.array(2)
The position from the environment in DAC units.

Functions

stm.move_tip_relofs(x_dac, y_dac, 2000.0, 0.0))

1 | x_dac | single | X new position in relative DAC units
2 | y_dac | single | Y new position in relative DAC units
3 | Speed | single | Speed in DAC units/s

4 | Units | integer| reserved

x_dac, y_dac = float (pos_STM[0]), float(pos_STM[1])
self.stm. move_tip_relofs (x_dac,y_dac,2000,0)
self.update_parameters ()

get_relative_position(self):

Gets the relative position of the STM in DAC units.

Functions
get_float_param (’name’)
Returns the value of the standard parameter you passed over to the STM/AFM program.

Return
relative_stm_position : np.array(2)
The relative position of the STM-tip.

relative_stm_position = np.array(np.zeros(2))
relative_stm_position[0] = self.get_float_param(VeriSpecPosX")
relative_stm_position[1] = self.get_float_param('VeriSpecPosY ")
return relative_stm_position

get_absolute_position(self):
Gets the absolute position of the STM in DAC units.

Functions
get_float_param (’name’)
Returns the value of the standard parameter you passed over to the STM/AFM program.

absolute_stm_position : np.array(2)

The absolute position of the STM-tip.
X_Offset = self.get_float_param(OffseixX’)
Y_Offset = self.get_float_param(OffsetY ")
X_Relativ = self.get_float_param(VeriSpecPosX ")
Y_Relativ = self.get_float_param(VertiSpecPosY ")
absolute_stm_position = np.array(np.zeros(2))
absolute_stm_position[0] = X_Offset+X_Relativ
absolute_stm_position[1] = Y_Offset+Y_Relativ
return absolute_stm_position

define_voltage_pulse(self):

Sets the shape of the voltage pulse for controlling the nanocar. Voltage and time parameters
are set individually to generate the voltage pulse.

Parameter

Functions

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

246

267

269

271
272
273
274
275
276

278
279
280
281
282
283
284
285

Chapter 2. Python Code Development

22

def

def

stm.setparam (’'name’, ’'value’)
Sets the parameter called name to the desired value.

Sets the duration of the voltage pulse:

The time per datapoint:

t_datapoint = DSP-Cycles (50kHz) x Vertmandelay = 0.02ms x Vertmandelay
The total time:

t = t_datapoint x number_of_datapoints = 0.02ms x 100 x 1000 = 2s

Zoffset: 54=0.5A, 65=0.6A, 76=0.7A, 87=0.8A, 98=0.9A, 109=1.0A, 271=2.5A

self.stm.setparam(Zoffset ', '271")
self.stm.setparam (' Vertmandelay ", "100")
self.stm.setparam(' Vertmangain', '9")

self.stm.setparam(' VpointO.t",0")
self.stm.setparam(Vpoint! . t', 5000")
self.stm.setparam(' Vpoint2.t"°,'0")
self.stm.setparam(' Vpoinit3.t",°0")
self.stm.setparam(' Vpoint4.t",°0")
self.stm.setparam(' Vpoint5.t"°,°0")
self.stm.setparam(Vpoint6.t","0")
self.stm.setparam(' Vpoint7.t",'0")
self.stm.setparam (' VpointO. V', 1800")
self.stm.setparam(Vpoint1 . V', 1800")
self.stm.setparam(' Vpoint2 . V', 0")
self.stm.setparam(' Vpoint3.V','0")
self.stm.setparam(' Vpoint4 . V', 0")
self.stm.setparam(' Vpoint5.V','0")
self.stm.setparam(' Vpoint6. V', 0")
self.stm.setparam(' Vpoint7.V',0")
self.stm.setparam(' ZpointO .1, 0")
self.stm.setparam(' Zpointl . t,°0")
self.stm.setparam(' Zpoint2 . t°,°0")
self.stm.setparam(' Zpoint3.1",'0")
self.stm.setparam(' Zpoint4 . 1°,°0")
self.stm.setparam(' Zpoint5.1",'0")
self.stm.setparam(' Zpoini6 .t ,'0")
self.stm.setparam(' Zpoint7.1",'0")
self.stm.setparam(' Zpoint0.z ", 0")
self.stm.setparam(' Zpointl .z, '0")
self.stm.setparam(' Zpoint2.z", 0")
self.stm.setparam(' Zpoint3.z",'0")
self.stm.setparam(' Zpoint4.z","0")
self.stm.setparam(' Zpoint5.z",'0")
self.stm.setparam(' Zpoini6.z",'0")
self.stm.setparam(' Zpoint7.z",'0")

self.stm.updatedspmanipparam ()

perform_vertical_manipulation(self):

Takes a vertical manipulation spectrum at the current image point X,Y. Control is returned
after the spectrum has been completely finished. The tip remains at the current lateral
position and the current signal is captured.

Functions

stm.vertspectrum
Takes a Vert.Spectrum at the current image point X,Y. Control is returned after the

spectrum has been completely finished. The tip remains at the current lateral position.

stm.vertsave

Saves the current vertspecdata.
Measures a vertspectrum at current position
self.define_voltage_pulse ()
self.stm.vertspectrum ()
self.stm.vertsave ()

perform_lateral_manipulation(self, start, end, steps):

Takes a lateral manipulation spectrum between start and end point where steps defines the
number of measured points.

286
287
288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

339

346

360

Chapter 2. Python Code Development

23

Functions

latmanipxymove (Xstart, Ystart, Xend, Yend, steps, delay, preampgain,

biasvoltage, currentset)

X start position in relative DAC units
Y start position in relative DAC units
X end position in relative DAC units
Y end position in relative DAC units

Delay between steps in DSP Cycles
Gain of Preamp during manipulation
Bias Voltage during manipulation

point during manipulation in

1 | Xstart | integer |

2 | Ystart | integer |

3 | Xend | integer |

4 | Yend | integer |

5 | steps | integer | Number of steps

6 | delay | integer |

7 | preampgain | integer |

8 | biasvoltage | integer |

9 | currentset | integer | Current set
constant current mode

Returns

data : list ([steps])

Contains the Z-topography between start and end.

self.stm.setparam
self.stm.setparam
self.stm.setparam
self.stm.setparam
self.stm.setparam(' Latmanlgi ™, "12")
self.stm.setparam('Latmanddx ', "12")
self.update_parameters ()

Latmanmode ', '1 ")
"LatmanVolt’, 1000 ")
‘Latmangain’, ’9")

—~ e~ o~~~ o~

self.stm.latmanipxymove (start[0], start[1], end[0], end[1], steps,

self.update_parameters ()

data = self.stm.latmandata(15,2)
data = np.ravel(data)

return data

def get_current_spectrum(self):

Reads the current spectrum from the ADC

stm.vertdata (channel, units)

1 | channel | integer | 0:Time in
2 | units | integer | 0:Default
4:nm ==
Returns
val_I : list ([number of datapoints])

Contains the current spectrum.

Reads time signal in default units
val_t = self.stm.vertdata(0,0)
self.update_parameters ()

Latchannelselectval ’,

’1052673 ")

channels of the STM/AFM program.

sec == 1:X == 2:Y == 3:Current_|
== 1:Volt == 2:DAC == 3:Ampere ==

‘Hz

Reads current signal from channel (ADCO) in DAC units

val_| = self.stm.vertdata(3,2)
return val_t, val_lI

def is_idle(self):

Checks the status of the STM and returns true when idle.

status = self.stm.scanstatus

self.logger.info ("STM status: %" % status)

if status ==

self.loggeé.info(“Checking STM status: STM is idle")

else:

self.logger.info("Checking STM status: STM is busy")

return status == 0

def is_busy(self):

Checks the status of the STM and returns true when busy.

return not self.is_idle ()

10, 9, 1000, 12)

Chapter 2. Python Code Development 24

2.1.2 The graphical user interface for environment initialization

The graphical user interface (GUI), shown in figure 2.2, allows to adjust the number of intermediate
goals, also known as sub-goals, and shows a button that reads the current STM-tip position from
the STM/AFM software (v.4.3) to initialize the environment. The initialization is done manually
by measuring a vertical manipulation spectrum by using the "Single Spectrum"' button within the
software. A vertical manipulation spectrum measures the current signal at a specific x/y position on
the surface and initializes the environment positions for the agent. The initialization spectra are saved
as ".VERT-file" in the STM/AFM software. In the end, the necessary parameters for this initialization
process can be loaded from the previously saved ".VERT-files" by right clicking the data and select
"Load File with All Parameters" or by double clicking it. When all the goal positions are initialized,
the GUI closes automatically and the agent takes control of the STM.

The agent needs the starting and goal position of the environment. The GUI is used to add additional
sub-goals, because depending on the topography of the surface, it can be necessary to have sub-goals
to manoeuvre around obstacles.

t? Environment Initialization — O X

Define the number of sub-geals:
0

Read Position

Figure 2.2: GUI to initialize the environment. The number of sub-goals is set in the textbox and a
button click reads the relative position (VertX, VertY) of the currently loaded VERT-file.

Y UL R W N

(SIS S TS G IO
- oo

S

[== - - o S, <, IS B |
U W N = O © 0O

66
67

Chapter 2. Python Code Development 25

2.1.2.1 The code of the GUI

from stm import STM

import numpy as np
import collections
import logging
import random
import threading
import time

import tkinter as tk
import os

Defines the settings for logging

logging . basicConfig(level=logging .INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s’,
filename="app.log ")

console = logging.StreamHandler ()

console.setLevel(logging .INFO)

formatter = logging.Formatter(%(name)-12s: %(levelname)-8s %(message)s)

console.setFormatter (formatter)
logging . getLogger(') .addHandler(console)

class GUI(tk.Frame, threading.Thread):

The class visualizes the GUI. The button is used to read the position of the currently loaded
VERT-file and the number in the textbox defines how many sub-goals the course has. This
positional data is used to initialize the environment.

Attributes

tk.Frame : class

A widget container from Tkinter.

create_widgets ()
Creates the button to initialize the environment.

button_pressed ()
When pressed, the current STM-tip position is read and saved in an array.

on_close ()
When the GUI is closed, the main window gets terminated and the Al takes

control of the STM.

def __init__ (self, stm, master=None):
self.stm = stm
super().__init__ (master)

threading.Thread.__init__ (self)

self.logger = logging.getLogger("GUI")
self.master = master
self.grid (column=0, row=0)

self.master. protocol ("WM DELETE WINDOW", self.on_close)

Defines the number of positions (>=2) to define the environment: start, goal
self.number_of_points_in_environment = 2
self.number_of_additional_points_in_environment = 0
Initializes the array to define the environment
self.positions_to_define_environment = np.array (
np.zeros ([self.number_of_points_in_environment ,2]))
Array index
self.position_index = 0

self.evt_get_position = threading.Event()
self.evt_interrupted = threading.Event()
self.evt_idle = threading.Event()
self.start()

self.create_widgets ()

def create_widgets(self):

76
77
78
79
80
81
82
83
84

86
87

88

90
91
92
93
94

95

146
147
148
149
150

Chapter 2. Python Code Development

26

Creates the initialization button in the GUI.
self.master. title ()
self.master.geometry ()

Creates label and textbox

tk.Label(self.master, text=
self.ent_number_additional_points = tk.Entry(self.master)
self.ent_number_additional_points.grid (column=2, row=2)
self.ent_number_additional_points.insert (0,)

Creates button

self.btn = tk.Button(self.master)
self.btn|] =
self.btn]] = self.button_pressed

self.btn.grid(column=2, row=4)

def button_pressed(self):

When the button

is pressed, the STM position is
if self.evt_idle.is_set():
self.logger.info()
self.get_position ()

def on_close(self):

When the GUI

is closed, the main window and all
self.evt_interrupted.set()
self.master.destroy ()

def run(self):

This method is
environment is completely

initialized .

self.stm.connect()
self.logger.info()
self.evt_idle.set()
Loops until the environment is completely initialized
while (not self.evt_interrupted.is_set()

read from the

).grid (column=2, row=1)

latest loaded VERT-file.

its widgets are terminated.

representing the thread’s activity. The GUI is terminated when the

or self.position_index

== self.number_of_points_in_environment+self.number_of_additional_points_in_environment-1):

self.number_of_additional_points_in_environment =

int(

self.ent_number_additional_points.get())

if ((self.number_of_additional_points_in_environment+2)

> len(self.positions_to_define_environment)):

self.positions_to_define_environment = np.append(
self.positions_to_define_environment,

np.array(np.zeros ([self.number_of_additional_points_in_environment ,2])), axis=0)

print(self.positions_to_define_environment)
elif
positions_to_define_environment):

self.positions_to_define_environment =
self.positions_to_define_environment,

self.number_of_additional_points_in_environment,

print(self.positions_to_define_environment)

if self.evt_get_position.is_set():
self.evt_idle.clear ()

if self.stm.is_busy():
self.evt_get_position.clear ()
self.stm.beep()
continue

np.delete (

(self.number_of_additional_points_in_environment+2) < len(self.

axis=0)

self.positions_to_define_environment[self.position_index] = self.stm.

get_relative_position ()
print(self.positions_to_define_environment)
self.evt_get_position.clear ()
self.position_index+=1
self.start_time = time.time()

151
152

153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Chapter 2. Python Code Development

27

self.evt_idle.set()

if self.position_index==self.number_of_points_in_environment+self.

number_of_additional_points_in_environment -1:

def

def

self.evt_interrupted.set()

print(self.positions_to_define_environment)
self.logger.info ()
self.evt_interrupted.set()
self.master.destroy ()

get_position(self):

This method reads the tip-position from the currently loaded VERT-file .

if self.evt_idle.is_set():

self.evt_get_position.set()
else:

self.logger.info ()
get_environment_positions(self):

Returns the initialized environment positions.

return self.positions_to_define_environment

2.1.3 The design of the environment

The environment contains all the information the agent needs to interact with the real world. The

environment is a representation of the environment in the real world environment, but of course limited

in the sense that only necessary information is tracked and synchronized between environments using

the STM as sensor and actuator; like it is illustrated in figure 1.6.

The following chapter explains how the environment is designed. The Python code is described
alongside with the schematic illustration 2.3 to allow for easier understanding. The schematic shows

two situations, one where the manipulation step was successful and another where the manipulation

step was unsuccessful, which means the nanocar translated undefined across the surface and has to be
found again using a search algorithm.

Chapter 2. Python Code Development

28

Next State:
§1 = [w4]

30

Action:
[¢1,d4]

=10

Nanocar

State:

So = [@o]

WI‘MM"“““‘“*'1'«*.,@'«,,«“«;4«

A

0.0 0.5 1.0 1.5 2.0
time [s]

(3]
dit)

25

STM

.wmaw.w:.wmw.»w'r.&”-"W“"N.*"1’-“.“-*}Jﬂ'ﬂ4r‘*‘f3'r"‘rl'-l’ ol

I(t)

Search di(t)
Algorithm S = o] 0.5
‘ 0.0
_ (b) 0.0 0.5 1.'otime [511;5 2.0 2.5
STM Search
Goal v Algorithm
Action:
[(‘p21 dZ]
Next State:
Sz = [@3] State:
S :\‘[‘Pl]
(c)

Figure 2.3: This schematic shows all the states and actions for (a) a successful manoeuvre step
followed by an (b) unsuccessful manoeuvre step, for which the nanocar has to be (c) located by using
the search algorithm. The first two graphs on the right represent the induced current spectra and its
derivatives for a successful and a failed pulling action and the third graph represents the Z-topography
of the nanocar after the search algorithm is completed.

In every time ¢, we know the position of the nanocar and the position of the goal. With this information,
the current state of the nanocar can be determined and the agent chooses the best action in this
particular state. Note: How the best action is evaluated, is part of the agent program and will be
explained in the next chapter. The performed action from the agent’s perspective is limited by the
positioning of the STM-tip; being the most critical part anyway, and it has no control over the voltage
pulse itself - which it could, but that would also increase the complexity.

Chapter 2. Python Code Development 29

To (a): We do not know how a state is defined yet, but let us assume the nanocar is currently
determined by state ¢g. Then depending on this state g, the agent chooses the best action, which
determines where the STM-tip is positioned to pull the nanocar towards the tip. An action consists
of an angle ¢ and a distance d. ¢ is defined as the angle between two vectors, namely the vector from
nanocar to goal and from nanocar to STM-tip.

After the STM-tip is positioned at @1, di, a voltage pulse is applied for 2.5 s and an amplitude of
1.800 V. The high voltage at the sharp STM-tip creates a high electric field, which interacts with the
dipole of the nanocar and attracts it towards the tip.

When the nanocar has moved below the tip while applying the voltage pulse, the tunnelling current
drastically increases due to the decreasing tunnelling distance. Experiments and a lot of practice
showed a successful step can be ensured, if the the derivative in the current shows a significant
step. The performed action ¢1, d; indicates a successful pulling step, because of the relatively high
derivative of the tunnelling current. The next state is simply given by the angle of the just performed
action 1.

To (b): Now, the nanocar is in state ¢; and the agent’s best action is ¢, do. After performing this
action and applying the voltage pulse, the nanocar translates over the surface and no change in the
tunnelling current is measured. Thus, the nanocar moved to some random position and got lost.

To (c¢): In order to find its position, a kicks in. The algorithm performs multiple
successive lateral manipulations, such that a square of 5 nm (twice the nanocar size) is scanned. This
square is centred at half the trajectory of the previous known nanocar position and the latest tip
position (where the nanocar should be when it would not be lost). The search algorithm creates a Z-
topography of this area and calculates its centre of mass. The centre of mass for this area corresponds
to the centre of the nanocar and hence its position is found. The parameters of the lateral manipulation
are such that the position and orientation of the nanocar remains unchanged. In this case, the next
state is not defined by the angle ¢- of the just performed action, as it was before, but the angle 3,
that was determined based on the position obtained by the search algorithm.

2.1.3.1 The reward function

Strictly speaking, the reward function is everything the agent perceives from the environment. There
is no position the agent observes or current spectrum it measures. There is only the reward function
it receives after every action and which determines how good or bad the performed action was.

As a consequence, the reward function determines the behaviour of the agent within the environment
and is the most important choice to make in reinforcement learning. It is easy to define when the
agent reached the goal, but it is much more difficult to design the reward function, such that it
enables the agent to get there efficiently. Since the reward function determines the agent’s behaviour,
it is important to encode all the necessary information into the reward function to make sure it is
representative of the behaviour you would like to see.

There are two behaviours the agent should learn in order to manoeuvre the nanocar successfully across
any given racetrack. These behaviours are realized by using two separate reward functions.

The first reward function Ry (2.1) encourages the agent to approach the goal. This means decreasing
the distance at every time step leading to a positive reward. However, when this is not the case and
the distance becomes greater than or equal to the previous time step, it gets penalized by receiving
a negative reward, that is twice the highest positive reward it could receive. In this way, the agent
wants to decrease the distance towards the goal for every time step. Penalizing equal distances also
solves another undesired behaviour, namely the accumulation of maximum reward by just driving in
circles around the goal.

Chapter 2. Python Code Development 30

The first reward function Ry (2.1) in figure 2.4 shows the received reward plotted against Az, divided
by dgoar, where Axy is the already covered distance and dyqq the initial distance between the nanocar
and a sub-goal or the nanocar and the final goal.

R = {0.5 (fogeom) =05 (£2) <2y 2.1)
-1 Ty 2 X1

0.8
0.6
0.4
0.2

Reward
o

02 -1 -0.5 0 0.5 1
-0.4
0.6
-0.8

AXt / dgoal

Figure 2.4: Reward function that encourages the agent to move towards the goal and decrease
distance for every time step

The second reward function Rs (2.2) encourages the agent to precisely pull the nanocar below the
STM-tip. The reward function is raised by the power of 0.4, which gives it a steep curvature as the
nanocar is close to the STM-tip and flattens the further away the nanocar has moved from the tip
position. This form of the reward function encourages the agent to move the nanocar directly below
the STM-tip.

The second reward function in figure 2.5 shows the reward versus z/d;,q., Where x is the distance from
the nanocar to the STM-tip and d,,., the largest distance where a pulling action can be successful,
which is 2350 DAC units (£ 13.19 A). This value comes from the experimental data of the race in
Toulouse and will be discussed in chapter 2.2.

The exact position of the nanocar is obtained by determining the centre of mass of the nanocar. If
the derivative of the current is greater or equal to a certain threshold, the position of the nanocar
is assumed to be right below the STM-tip without further investigating its real spatial position. If
the derivative of the current is smaller than a certain threshold, the search algorithm kicks in and
determines the centre of mass of the nanocar. Thus, z the distance from the nanocar to the initial
STM-tip position can be calculated. Thus, the reward function is in essence only calculated for
unsuccessful pulling actions, as for a successful pulling actions the received reward is just 1.

0 T > dmas

Chapter 2. Python Code Development 31

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Reward

0 0.2 0.4 0.6 0.8 1
X / dmax

Figure 2.5: Reward function that encourages the agent to pull the nanocar as close to the STM-tip
as possible

This concludes all the fundamentals necessary to easily understand the following Python code.

2.1.3.2 The code of the environment

1 import numpy as np
2 import math

3 import random

4 import itertools

5 import statistics

7 from scipy import ndimage

s from scipy import signal

o import matplotlib.pyplot as plt

10 from matplotlib import cm

11 from mpl_toolkits.mplot3d import Axes3D

13 import os
14 import glob
15 from datetime import datetime

17 import tkinter as tk
18 import socket # socket.gethostname ()

20 from gui import GUI

21 from stm import STM

22

23 class EnvDriving(object):
o

25 This class represents the virtual environment which is essentailly a copy of the real
26 environment but only with the parameters the agent needs.

27

28 Methods

29—

30 init_env ()

31 Initializes the environment.

32

33 init_reward_variables ()

34 Calculates the distance between consecutive sub-goals or sub-goal to goal.

Chapter 2. Python Code Development 32

36 set_position ()

37 Sets the STM-tip position.

38

39 get_relative_position ()

40 Overrides the relative STM-tip position of the environment by the position provided by the
41 STMAFM program.

42

43 get_current_spectrum ()

44 Returns the current spectrum of the latest vertical manipulation step.

45

46 get_derivative_current ()

a7 Calculates and returns the average current of the latest vertical manipulation step.
48

49 define_voltage_pulse ()

50 Defines the voltage pulse that is used for pulling the nanocar towards the STM-tip.

51

52 perform_vertical_manipulation ()

53 Performs a vertical manipulation by applying a defined voltage pulse and measures the
54 induced current response.

55

56 set_position_history ()

57 Saves either the position of the nanocar as long as its position is known or the position
58 of the STM-tip while searching for it.

59

60 update_environment_variables ()

61 Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
62 final goal. Deletes the position of a goal when the goal is reached and also deletes the
63 reward variable of the previous sub-goal distance.

64

65 get_nanocar_position ()

66 Returns the latest known position of the nanocar.

67

68 get_state_position_of_goals ()

69 Returns all the goal positions, like sub-goals and the final goal.

70

71 get_total_distance ()

72 Returns the total distance from the nanocar to the final goal.

73

74 unit_vector (vector)

75 Returns the unit vector of the vector.

76

77 distance_between_vectors(vectorl, vector2)

78 Returns the distance between two vectors.

79

80 angle_between_vectors(v_base, v_car, v_goal)

81 Return the angle in degrees between the two vectors, namely from ’v_base to v_car’ and
82 from ’v_base to v_goal .

83

84 calc_next_position (distance, alpha)

85 Calculates the next position of the STM-tip by using the distance and angle chosen by the
86 agent.

87

88 check_current_pattern ()

89 Checks if the derivative of the current pattern measured after a pulling action and checks
90 if a the treshhold is exceeded or not.

91

92 search_car ()

93 Search for the nanocar in a circular pattern with increasing radius. A high current response
94 will indicate, that the nanocar is below the STM-tip .

95

96 reward_function ()

97 Calculates the reward to measure the performance of the agent’s actions. The reward is
98 calculated by using two functions.

99

100 is_done ()

101 Checks if the episode is finished.

.

103 def __init__(self):

104 self.directory_of_data = os.getcwd()+ /Data/1/’

105

106 # Instantiation of the STM and connecting to the STMAFM program

107 self.stm = STM()

108 self.stm.connect()

109

110 # Environment constants

111 self . TRESHHOLD CURRENT = 700 # Current treshhold for determining if the

112 # nanocar is or is not below the tip.

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

Chapter 2. Python Code Development 33

def

self .SEARCH_DISTANCE = 250

self .HALF_SEARCH_LENGTH = 4000

self .SEARCH_STEPSIZE = 250

self .DISTANCE_REACH_GOAL = 2500 # Treshhold in DAC units between nanocar
and sub-goal/final goal

Environment variables

self.position_nanocar = np.array(np.zeros(2))
self.position_stm_tip = np.array(np.zeros(2))
self.initial_stm_position = None

self.position_of_environment = []
self.number_of_manipulations = 0 # Number of manipulations
self.min_height_values = 0
self.max_height_values = 0
self.current_spectrum = []
self.derivative_current =
self.know_Car = True
self.done = False

(]

Initialize the environment using the GUI

self.init_env ()

self.stm.connect()

State variables

self.state_position_of_goals = np.array(self.position_of_environment[1:])
self.state_position_of_nanocar_past_present = [self.position_nanocar, self.position_nanocar]

Reward variables and initialization

self.reward =0
self .DISTANCE_ERROR MAX = 2250
self.distance_to_nearest_goal = 0

self.total_distance_to_goal = 0
self.distance_subgoals = np.zeros(len(self.position_of_environment))
self.init_reward_variables ()

try:
files = glob.glob(self.directory_of_data +)

if not files == []:
latest_file = max(files , key=o0s.path.getmtime)
with open(latest_file , newline="") as csv_file:
for line in csv_file.readlines(1):
self.number_of_episodes = int(line.split(y[11)
else:
self.number_of_episodes = 0
print()
except OSError:
self.number_of_episodes = 0
print()

self.datetime_start = datetime.now()
self.datetime_end = 0

self .number_of_manipulations = 0
self.number_of_successful_manipulations = 0
self.number_of_failed_manipulations = 0
self.total_reward_per_episode = 0
self.number_of_searching = 0
self.number_of_search_steps = 0

self.average_steps_for_searching = 0
self.x_history_nanocar = []
self.y_history_nanocar = []
self.x_history_searching_nanocar = []

self.y_history_searching_nanocar = []
Total racetrack distance in [nm]
self.total_distance = self.total_distance_to_goal+0.000561142

init_env(self):
Initializes the environment by using the GUI. Also the GUI is created here which is
based on tkinter.

The first stm-tip position selected with the GUI is equivalent to the nanocar position and
the starting position, where the STM starts manouvering the nanocar.

Creates the tkinter object

root = tk.Tk()

Creates all widgets in the GUI

gui = GUI(self.stm, master=root)

190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

Chapter 2. Python Code Development 34

def

def

def

def

def

Calls the mainloop method which is inherited from Tk

gui.mainloop ()

Sets positions for the environment: Nanocar, Sub-goals and Goal
self.position_of_environment = gui.get_environment_positions ()

Sets first environment position equivalent to nanocar position and start
STM-tip position

self.position_stm_tip np.array(self.position_of_environment[0])
self.position_nanocar = self.position_stm_tip

init_reward_variables (self):
Calculates the distance between all following sub-goals or sub-goal to goal that were set in
the initialization step of the environment. These are necessary for the reward function.
Distance between initial nanocar position to first sub-goal or already to the
final goal
self.distance_subgoals[0] = np.linalg.norm(np.subtract(
self.position_nanocar,
self.position_of_environment[1]))

Distances between sucessive sub-goals and sub-goal to final goal.
if len(self.position_of_environment) > 1:
for i in range(1,len(self.position_of_environment)):
self.distance_subgoals[i] = np.linalg.norm(np.subtract(
self.position_of_environment[i-1],
self.position_of_environment[i]))

set_position(self):
""" Sets the STM-tip position either based on the agents choice or by the search-algorithm.

Functions
stm.set_position(self.position_stm_tip)
Sets the STM-tip position.

set_position_history ()
Saves every STM-tip position.
self.stm.set_position(self.position_stm_tip)
self.set_position_history ()

get_relative_position(self):
Overrides the relative STM-tip position of the environment by the position provided by the
STMAFM program.

Functions

stm.get_relative_position ()
Overrides the position_stm_tip of the environment with the position given by the STMAFM
program.

self.position_stm_tip = self.stm.get_relative_position ()

get_current_spectrum(self):
""" Returns the current spectrum of the latest vertical manipulation step.

Function
stm.get_current_spectrum ()
Reads the current spectrum from the ADC channels of the STMAFM program.

Return
self.current_spectrum : list ([number of datapoints])
Contains the current spectrum.
self.current_spectrum = self.stm.get_current_spectrum ()
return self.current_spectrum

get_average_current(self):
""" Calculates and returns the average current of the latest vertical manipulation step.

Functions

stm.get_current_spectrum ()
Reads the current spectrum from the ADC channels of the STMAFM program.

267
268
269
270
271
272

274
275
276
277
278
279

281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Chapter 2. Python Code Development

35

def

def

def

def

Return

self.current_spectrum : list ([number of datapoints])

Contains the current spectrum.

current_spectrum = np.array(self.stm.get_current_spectrum())

self.average_current = float(np.mean(current_spectrum[current_spectrum > 1000]))

print(self.average_current)
return self.average_current

get_derivative_of_current(self):

Calculates and returns the derivative of the current from the

manipulation step.

Functions

stm.get_current_spectrum ()

Reads the current spectrum from the ADC channels of the STMAFM program.

Return

self.current_spectrum : list ([number of datapoints])

Contains the current spectrum.

time, current_spectrum = self.stm.get_current_spectrum ()
current_spectrum = np.ravel(current_spectrum)

#current_spectrum_smoothed = signal.savgol_filter (current_spectrum ,53,3)
self.derivative_current = np.gradient(current_spectrum, axis=0)

plt.plot(time, current_spectrum)

#plt.plot(time, current_spectrum_smoothed)

plt.plot(time, self.derivative_current)
plt.show ()

return self.derivative_current

define_voltage_pulse(self):

Defines the voltage pulse that is used for pulling the nanocar towards the STM-tip.

Functions

stm.define_voltage_pulse ()

Defines the voltage pulse by loading a .VZDATA-file .

self.stm.define_voltage_pulse ()

perform_vertical_manipulation(self):

Performs a vertical manipulation by applying a defined voltage pulse and measures the

induced current response.

Functions

stm.perform_vertical_manipulation ()

Takes a vertical manipulation spectrum at the current image point

self.stm.perform_vertical_manipulation ()

set_position_history (self):

latest vertical

(X,y) -

Saves either the position of the nanocar as long as its position is known or the position of

the STM-tip while searching for it.
if self.know_Car == True:
self.x_history_nanocar=np.append(self
self
self.y_history_nanocar=np.append(self
self
else:

self.x_history_searching_nanocar=np.append(self.x_history_searching_nanocar,

self.y_history_searching_nanocar=np.append(self.y_history_searching_nanocar,

.x_history_nanocar,
.position_stm_tip[0])
.y_history_nanocar,
.position_stm_tip[1])

self.position_stm_tip[0])

self.position_stm_tip[1])

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

Chapter 2. Python Code Development 36
def update_environment_variables(self):
Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
final goal. Deletes the position of a goal when the goal is reached and also deletes the
reward variable of the previous sub-goal distance.
Calculates the distance to the nearest goal
self.distance_to_nearest_goal = np.linalg.norm(np.subtract(
self.position_nanocar,
self.state_position_of_goals[0]))
Calculates the total distance to the goal
self.total_distance_to_goal = self.distance_to_nearest_goal
for i in range(1,len(self.state_position_of_goals)):
self.total_distance_to_goal += np.linalg.norm(np.subtract(
self.state_position_of_goals[i-1],
self.state_position_of_goals[i]))
When a sub-goal is reached, the sub-goal gets deleted. Also, the reward variable for the

previous sub-goal distance gets deleted.

def

def

def

def

def

if len(self.state_position_of_goals) > 0:

if self.distance_to_nearest_goal < self.DISTANCE_REACH_GOAL:
self.state_position_of_goals = np.delete(self.state_position_of_goals ,0,0)
self.distance_subgoals = np.delete(self.distance_subgoals,0,0)

get_nanocar_position(self):

Returns the latest known position of the nanocar.

return self.position_nanocar

get_state_position_of_goals(self):

Returns all the goal positions, like sub-goals and the final goal.
Returns
self.state_position_of_goals : lol

The goal positions.

return self.state_position_of_goals

get_total_distance(self):

Returns the total distance from the nanocar to the final

Returns
self.total_distance_to_goal : float
The total distance from nanocar to goal.

return self.total_distance_to_goal

unit_vector(self, vector):

Returns the unit vector of the vector.

Attributes
vector : list
A vector.

unit_vector : list
The unit vector.
vector = np.array(vector)
if vector.all() == 0:
return [0,0]
elif not vector.all() == 0:
unit_vector = vector / np.linalg.norm(vector)
return unit_vector

distance_between_vectors(self, vector1l, vector2):

Returns the distance between two vectors.

goal.

420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443

446

464

466

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494
495
496

Chapter 2. Python Code Development 37

def

def

Attributes
vectorl : list
Vector 1.
vector2 : list
Vector 2.
Return

vector_distance : float
The distance between vector1 and vector2.
vectorl = np.array(vector1)
vector2 = np.array(vector2)
vector_distance = 0
if not np.array_equal(vectorl vector2):
vector_distance = np.linalg.norm(np.subtract(vector1 ,vector2))
return vector_distance

angle_between_vectors(self, v_base, v_car, v_goal):
Returns the angle in degrees between the two vectors, namely from ’v_base to v_car’ and from
'v_base to v_goal’.

Note: The function considers if the relative vector of the nanocar 'v_base to v_car’ is
positioned clockwise or counter-clockwise from the relative vector ’'v_base to v_goal .

Attributes
v_base : list

Vector to the basis.
v_car : list

Vector to the nanocar.
v_goal : list

Vector to the goal.

Return

angle : float
The angle spanned by the two vectors: ’v_base to v_car’ and from
'v_base to v_goal .

v_base = np.array(v_base)

v_car = np.array(v_car)

v_goal = np.array(v_goal)

Calculates the relative vectors of the nanocar and the goal
v_car_rel = v_car-v_base
v_goal_rel = v_goal-v_base

Calculates the unit vectors of the relative vectors nanocar and goal
v_car_u = self.unit_vector(v_car_rel)
v_goal_u = self.unit_vector(v_goal_rel)

Calculates the angle between the two relative vectors nanocar and goal
angle = np.arccos(np.clip(np.dot(v_car_u, v_goal_u), -1.0, 1.0))«180/np. pi
Uses the property of the determinant that is, if the det < 0 the, relative
vector of the nanocar is clockwise to the relative vector of the goal.
if np.linalg.det([v_goal_u,v_car_u]) <0:

angle = -angle
return angle

calc_next_position(self, distance, alpha):
Calculates the next position of the STM-tip by using the distance and angle chosen by the
agent.

Attributes

distance : int
The relative distance the STM-tip is position with respect to the
position of the nanocar.

alpha : int
The relative angle at which the STM-tip is position relative to the
vector reaching from the nanocar to the goal position.

Converts alpha from degree to radiant

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

(SIS S S S S e
NN
D TR W N =

[S NI

~

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546

RIS
= 3o © ®

(SN BN NS NS S S, G RS, BV B
at
¥

Chapter 2. Python Code Development 38

def

def

alpha = alpha=+np.pi/180

theta = 0

Calculates the angle theta, which correlates the fixed STM coordination

system with the relative coordination system of the agent.

dx = np.subtract(self.state_position_of_goals[0][0], self.position_nanocar[0])
dy np.subtract(self.state_position_of_goals[0][1], self.position_nanocar[1])

if dx>0:

theta = np.arctan(dy/dx)
elif dx<0 and dy>=0:

theta = np.arctan(dy/dx)+np. pi
elif dx<0 and dy<O:

theta = np.arctan(dy/dx)-np. pi
elif dx==0 and dy>0:

theta = np.pi/2
elif dx==0 and dy<O0:

theta = —-np.pi/2

Calculates STM-tip position in the fixed coordination system using the

relative angle alpha and the absolute angle theta

pos_stm_x int(round(self.position_nanocar[0]+distance«np.cos(alpha+theta) ,2))
pos_stm_y int(round(self.position_nanocar[1]+distance+np.sin(alpha+theta) ,2))

Sets the new STM-tip position

self.position_stm_tip = np.array ([pos_stm_x, pos_stm_y])
self.set_position ()

Increases the number of manipulation steps
self.number_of_manipulations+=1

check_current_pattern(self):

Checks if the average current of the current pattern measured after a pulling action is
higher than a certain treshhold.

If this is:

- TRUE: The position of the nanocar is below the STM-tip

- FALSE: The position of the nanocar is not below the STM-tip and the
search-algorithm is executed.

Functions
get_derivative_current ()
Calculates the derivative to the STM-tip induced current after a pulling action.
reward_function ()
Calculates the reward the agnet receives.
search_car ()
Searching the nanocar if its lost.
self.get_derivative_of_current ()
if (abs(self.derivative_current) >= self . TRESHHOLD CURRENT) .any () and self.know_Car == True:
| is RIGHT
print("Current pattern is right!")
self.number_of_successful_manipulations += 1
self.position_nanocar = self.position_stm_tip.copy ()
print(Check | — Nanocar (X,Y): %s ' % self.position_nanocar)
self.state_position_of_nanocar_past_present = |
self.state_position_of_nanocar_past_present[1],
self.position_nanocar]
self.initial_stm_position = None
self.reward_function ()

elif (abs(self.derivative_current) < self .TRESHHOLD _CURRENT) .any() and self.know_Car== True:

| is WRONG

print("Current pattern is wrong! == Car is lost =="

self.number_of_failed_manipulations += 1

self.know_Car = False

self.initial_stm_position = self.position_stm_tip.copy()

print('Check | — STM-tip initial (X,Y): %s’ % self.initial_stm_position)

self.search_car()

search_car(self):

Search for the nanocar in a line-by-line pattern measuring the Z-topography centred around
half the distance betweem the previous nanocar position and the current position of the
STM-tip , where the nanocar should be. The centre of mass is calculated from the Z-topography
and determines the nanocar’s position.

Chapter 2. Python Code Development 39

572 Functions
3
1 set_position ()
75 Sets the STM-tip position based on the search-algorithm.
576 perform_lateral_manipulation(start, end, steps)
77 Performs a vertical manipulation between the start and end point and returns the
8 Z-Signal .

80 self.number_of_search_steps+=1

81 # Determines the step size of the y-direction for the search algorithm
582 step_size = 500
83

584 # The center of the search-algorithm is the last pulling position of the STM-tip

585 centre_of_search_float = np.subtract(self.initial_stm_position, self.position_nanocar)/2+
self.position_nanocar

586 centre_of_search_algorithm = [int(round(centre_of_search_float[0])),

587 int (round(centre_of_search_float[1]))]

588 print(% centre_of_search_algorithm)

589

590 # Necessary to convert DAC units into pixel

591 deltaX = self.stm.get_float_param()

592 deltaY = self.stm.get_float_param()

593

594 # Sets relative STM-tip to top left corner

595 x_rel_start_for_search = int(round(centre_of_search_algorithm[0]-self .HALF_SEARCH _LENGTH))

596 y_rel_start_for_search = int(round(centre_of_search_algorithm[1]-self .HALF SEARCH LENGTH))

597 print(f)

598

599 start_lateral_manipulation = [x_rel_start_for_search, y_rel_start_for_search]

600 end_lateral_manipulation = np.add(self.position_stm_tip, [self.HALF SEARCH LENGTH+2,0])

601 start_lateral_manipulation_pixel = [start_lateral_manipulation[0]/deltaX,

602 start_lateral_manipulation[1]/deltaY]

603 end_lateral_manipulation_pixel = [end_lateral_manipulation[0]/deltaX,

604 end_lateral_manipulation[1]/deltaY]

605
606 # Initialises lateral manipulation to know the number of datapoints the function will

measure
607 length_lat_manip_spectrum = len(self.stm.perform_lateral_manipulation (

608 start_lateral_manipulation,

609 end_lateral_manipulation ,

610 self .HALF_SEARCH_LENGTH+2))

611

612 # Defines the number of points in the y-direction of the Z-topography

613 number_of_steps = int(self.HALF_SEARCH_LENGTH+2/step_size)

614

615 # Initialises the Z-topography

616 z_topography = np.array(np.zeros ([number_of_steps, length_lat_manip_spectrum]))

617

618 # Performing lateral manipulations to record the Z-topography

619 for y in range(0, self.HALF_SEARCH_LENGTH=«2, step_size):

620 self.position_stm_tip = [x_rel_start_for_search, y_rel_start_for_search+y]

621 self.set_position ()

622

623 start_lateral_manipulation = [x_rel_start_for_search, y_rel_start_for_search+y]
624 end_lateral_manipulation = np.add(self.position_stm_tip, [self.HALF SEARCH LENGTH=2,0])
625 start_lateral_manipulation_pixel = [start_lateral_manipulation[0]/deltaX,

626 start_lateral_manipulation[1]/deltaY]

627 end_lateral_manipulation_pixel = [end_lateral_manipulation[0]/deltaX,

628 end_lateral_manipulation[1]/deltaY]

629

630 val_lateral_manipulation = self.stm.perform_lateral_manipulation (

631 start_lateral_manipulation ,

632 end_lateral_manipulation ,

633 self .HALF_SEARCH_LENGTH=*2)

634

635 # Multiply by -1, because the Z-signal of the piezos is the inverse of the Z-topography.
636 z_signal_to_z_topography = np.multiply (val_lateral_manipulation, -1)

637 # Creates a Z-topography by filling the matrix row-by-row.

638 z_topography[int(y/step_size)] = z_signal_to_z_topography

639
640 # Setting all the Z-values below the mean Z-value to 1 to create an improved Z-topography
641 centre_of_mass_threshold = np.mean(z_topography)

642
643 super_threshold_indices = z_topography <= centre_of_mass_threshold
644 z_topography_improved = z_topography.copy ()

645 z_topography_improved[super_threshold_indices] = 1
646

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

N =

~ 1

2
2
2

Chapter 2. Python Code Development 40

def

Calculates the centre of mass from the improved Z-topography; given in indices
centre_of_nanocar = ndimage.measurements.center_of_mass(z_topography_improved)
print(% centre_of_nanocar)

Rescales the centre of mass indices to DAC units

centre_of_nanocar_DAC = |
int (round(centre_of_nanocar[1]~self .HALF_SEARCH_LENGTH=2/length_lat_manip_spectrum)),
int (round(centre_of_nanocar[0]«100))]

print(% centre_of_nanocar_DAC)

Shows the Z-topography after searching is complete
X, Y = np.mgrid[0:np.shape(z_topography)[0], O:np.shape(z_topography)[1]]
Z=z_topography[X,Y]
fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z,
rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
plt.show ()

Calculates the absolute coordinates of the nanocar
position_nanocar = [x_rel_start_for_search+centre_of_nanocar_DAC][O0],
y_rel_start_for_search+centre_of_nanocar_DAC[1]]
self.position_nanocar = [int(round(position_nanocar[0])),
int (round(position_nanocar[1]))]
print(% self.position_nanocar)
self.know_Car = True

reward_function(self):
Calculates the reward to measure the performance of the agents actions. The reward is
calculated by using two functions.

1. Reward function calculates how precisely the nanocar has moved below the STM-tip
2. Reward function calculates how close the nanocar moved towards the goal.

Functions
distance_between_vectors(vector1, vector2)
Calclates the distance between two vectors.

self.reward =0

if self.number_of_manipulations >= 1:
position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]
position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]
position_of_nearest_goal = self.state_position_of_goals[0]

Calculates the distane to the goal before and after the pulling action
distance_of_past_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_past,
position_of_nearest_goal)
distance_of_present_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_present,
position_of_nearest_goal)
difference_in_distance_from_goal_between_pulling_action = np.subtract(
distance_of_past_nanocar_to_goal,
distance_of_present_nanocar_to_goal)

Calculates by how much the nanocar translated to an unknown position
if self.initial_stm_position is None:
nanocar_deviates_from_initial_stm_position = 0
self.initial_stm_position = position_of_nanocar_present
else:
nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(
self.initial_stm_position,
position_of_nanocar_present)

Calculates the reward using two reward functions
self.reward = 0
1. Reward function
if (difference_in_distance_from_goal_between_pulling_action > 0
and self.total_distance_to_goal > 0):
self.reward += 0.5+(1-self.distance_to_nearest_goal/self.distance_subgoals[0])
elif (difference_in_distance_from_goal_between_pulling_action <= 0
and self.total_distance_to_goal >= 0):
self.reward -= 1

-~
0N
SIS

NN NN

N

-
1

4
o N
©

=

b S S B

N

R

N

~N

Chapter 2. Python Code Development 41

2. Reward function
if nanocar_deviates_from_initial_stm_position <= self.DISTANCE_ERROR_MAX:
self.reward += 1-math.pow(
nanocar_deviates_from_initial_stm_position/self .DISTANCE_ERROR _MAX,0.4)

print (f)

def is_done(self):
' Checks if the episode is finished.

Returns

self.done : boolean
Returns TRUE if the episode is finished.

if len(self.state_position_of_goals) <= 0:
self.done = True
self.datetime_end = datetime.now()
self.number_of_episodes+=1

print()
return self.done

2.1.4 The creation of an agent

This is the final part of the program describing how the agent performs actions and learns by exploring
and exploiting the environment.

The agent performs actions based on the learned Q-table. The Q-table relates states to actions, a so
called state-action pair that is represented as a Q-value within the Q-table. The Q-table represents
the knowledge database of the agent and is saved after an episode is finished.

2.1.4.1 The importance of the Q-table size

In table 2.1, you can see how fast the Q-table can drastically increase in size even when the environment
is not that complicated. The number of Q-value entries is given by the stats (¢) times actions (¢,
d).

The number of the Q-table entries is simply given by:

n=¢**d (2.3)

The agent uses angles ¢ ranges from -180 to +180°, where angles are ranging from -4 to +4° relative
to the axis, which is defined by the line between the old nanocar position and the goal. These narrow
angles are higher resolved by using a discretization of 1° and angles larger than +4° with a discretization
of 30°. The distance for a pulling action ranges from 1250 to 2350 DAC units (= 7.01 to 13.19 A).
Within this range, experiments show that pulling actions are successful. The first row "Inflated states"
shows the number of states with a step size of 1 unit for both ¢ and d. A visual representation of the
angle discretization is shown in 2.6.

Chapter 2. Python Code Development 42

Goal

Psmall

L%

Figure 2.6: Angle discretization for states and actions

A single pulling action, while simultaneously measuring the current spectrum and saving it afterwards,
takes about 2 s. This would take almost 2.3 years to at least visit every Q-table entry once, which is
obviously an unfeasible approach. Therefore, the angle ¢ for states and actions were discretized by 20
and the distance d by 10, which by comparison will take about 5 h to fill up the whole Q-table once.

Note: These are theoretical numbers, as they assume every pulling action is successful and the nanocar
will never be lost. Dependent on the resolution of the search algorithm, the nanocar position has
recovered after a relatively large area of 5 by 5 nm, double the size of the nanocar, is scanned, which
will take a minimum of 5 seconds.

Table 2.1: The size of the Q-table

¢ ... off-axis angle; axis being the previous nanocar position to goal in °
d ... pulling distance in DAC units

n ... number of Q-table entries

states actions
p/°|d/DAC | p/° n

Discrete states 12 110 12 15,840

Chapter 2. Python Code Development 43

2.1.4.2 Discretization of the multidimensional Q-table

The Q-table in figure 2.7 is a multidimensional array of size 20 x 110 x 20. By extracting the states
and actions for a specific Q-value from the indices of the array, the file size of the Q-table is decreased
by a factor of three, which enhances performance due to faster writing it on the disc.

All possible states range from -180 to +180° and pgna = 4°. To ensure indices are always positive
values starting at 0 (page 0), an offset n, ¢4t is applied. The offset ngffser is determined by the grade
of discretization. In this case, two different discretization steps are used, namely ng;scret 1arge = 30° for
large and ngiscret smair = 1° for small angles, the n, st is given as follow:

Nof fset narrow + Noffset large — 1 y Preal < Psmall (2 4)

Nof fset =
{2 Nof fset narrow + Nof fset large — 1 y Preal > Psmall

, where @,¢q; is the perceived real angle which is non-discretized and continuous.

In this work, the offset n,f g6 is given by:

Noffset = MNoffset narrow T Nof fset large — 1
_ Psmall 4 Plarge 1
Ndiscret small Ndiscret large
_ 4,180
130
= 446-1=9

The discrete angel pgiserete is simply given by the following equations:

Mof fset = Pdiscrete = nif::;let y Preal < —Psmall (2 5)
of fset —) .
Pdiscrete = % + Nof fset ,else

Thus, if the nanocar is in state ¢ = +3, the performed action is chosen within page 3 +9 = 12.

When exploiting the environment, the agent chooses the highest Q-value entry within page 12. The
position of the entry is uniquely defined by the index that can be decoded to determine the real action
behind this index.

Chapter 2. Python Code Development 44

Actions:

C T e

ActlonS. N Page %9"/’”,-
(¢, d)

Page 12

! ~next state
Page O

Figure 2.7: The multidimensional Q-table with two highlighted states. The current state of the
nanocar is @req = 95°, which is page 12 in the Q-table. The highest Q-table entry is the action the
agent performs, which is indicated by the purple square in column 45, row 5. This corresponds to
action @reqr = —10°, dyeqp = 1700 DAC units (= 9.54 A) After this action is performed, the nanocar
is in the next state @,cq; = —20°, which is page 0.

2.1.4.3 Update process of the Q-table

The final part of this chapter explains how the Q-table gets updated and filled while manoeuvring
along the racetrack and which improvements were implemented to learn more efficient when exploring
the environment. The following figure 2.8 shows a one step Q-table update starting with (a) the
previous figure 2.7. In addition to the previous example, the @Q-Learning equation 1.17 is used to see
how the Q-table entries were obtained and updated.

Q(st; ar) < Q(st,ar) + o [Tt+1 +ymax Q(s41,a) — Q(st, at)} (2.6)
Q(st,ar) < 2.00 +0.90[0.81 +0.77 - 4.00 — 2.00] (2.7)
Q(St, at) + 3.70 (28)
The agent gets the of the nanocar, ¢ = —20°, from the environment and determines

the best action by looking up the highest Q-table entry in page 12. The action is performed and
the nanocar translates over the surface to the next position. From this new position, the next state
¢ = —5° and the reward 741 = 0.82 are determined by the environment and returned to the agent.
In this next state, the highest Q-value max, Q(s;+1,a) = 4 is used for the update process. The old
Q-value gets updated using the Q-Learning algorithm and is replaced by Q(s¢, a;) = 3.7.

Chapter 2. Python Code Development

I Actions:
T 0D
N EmEEm
d Actions: | W
(¢, d) Eia
Page 12 .~
Page 0
(@)
s¢=—20° ,
Sgg1=—5° 1| Actions:
1),,)\\\ \‘(,p B = ‘. . . ((PJ d)
Tig1 = 0.82 Fr Zk\ : 45
o S R ER RN PagT
d
mc?XQ(Stﬂ:a) SHEE | Page 12\
Q(s:,ae)
Page O
(D)
..‘;". .
1~ Actions:
P T (¢, d)
7 3,75 . 45
SRR : PagT
d
Page 12
Q(s,ar)
Page 0
(©)

Figure 2.8: A Q-table update process for one time step. Starting at (a) the current state of the
nanocar and the highest Q-value in this state is the performed action. After the action is performed,
(b) the next state, the reward and the highest Q-value of the next state are determined and used to
(c) update the old Q-value by applying the Q-Learning algorithm.

Chapter 2. Python Code Development 46

2.1.4.4 Enhanced exploration and exploitation

Although the used discretization of the Q-table reduces the number of Q-table entries from 142.56
million vs 44,000, it is still a very large number.

Therefore, the Q-table gets limited by narrowing the action space. This does not mean the Q-table
itself is reduced, but the angles ¢, from which the agent can choose, are limited. These limitations
will be softened as the limited Q-table gets populated.

The reason for limiting the angles is based on the fact that the dipole of the nanocar enhances the
manoeuvrability in three directions, namely at the position of the negative dipole at 0°, but also at
a clockwise offset of about 45 and 225° to the negative dipole position. Considering the position at
225° is at the back of the nanocar, only the 0 and 45° positions are relevant for this discussion. (Grant
Simpson, personal communication, March 19, 2020)

Here in the code, a preferred direction between 0 and 45° is assumed, in which the manoeuvrability
is enhanced. At first, not the whole Q-table ranging from -180 to +180° is filled, but the action ¢
is limited between -4 and +4°, which reduces the Q-table entries to 8,800 compared to the former
44,000.

2.1.4.5 The code of the agent

1 from environment import EnvDriving

2

3 import numpy as np
4 import random

S5

import math

6 import os

7

import glob

s from datetime import datetime
o import matplotlib.pyplot as plt
10 from pathlib import Path

11 import statistics

12

13 class QDriving (EnvDriving) :

14
15
16
17
18
19
20

This class represents the agent program. The goal of the agent is to manouver a nanocar across
race—-track and accumulate maximum reward. This is done by positioning the STM-tip based on the
current state of the nanocar within the environment. The learning algorithm of the agent is
based on an off-policy temporal difference algorithm, known as ’'Q-Learning .

Methods
convert_distance_to_index ()
Converts the distance into a sub-index for the Q-table.

convert_angle_to_index ()
Converts the angle into a sub-index for the Q-table.

evaluate_state ()
Evaluates the current state of the nanocar based on its position within the environment.

select_action ()
The agent chooses the best action in a particular state based on the Q-table or
by choosing a random action to explore the state.

g_table_function ()
Calcuate the Q-Learning algorithm and updates the Q-table.

save_q_table ()
Saves the Q-table as a binary file.
def __init__(self):
Directory to save the Q-table
self.qtable_directory = os.path.dirname(os.getcwd ())+

Q-learning hyperparameters
self .ALPHA = 0.9
self .GAMMA = 0.95

a

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Chapter 2. Python Code Development

47

def

Learning variables
self.epsilon = 0.9 # Exploration rate [%]

self .ANGLE_LOWER_LIMIT = -4

self .ANGLE_UPPER_LIMIT = 4

self .DISTANCE_LOWER_LIMIT = 1500
self .DISTANCE_UPPER_LIMIT = 1900

Q-learning variables
self.q_t = []
self.q_tt = []
self.q_tt_max = []

Discretization variables

self .DISTANCE_MIN = 1250

self .DISTANCE_MAX = 2350

self.DISTANCE_DIV 10

self .DISTANCE RANGE = self.DISTANCE MAX-self.DISTANCE_MIN
self .DISTANCE_STEP = int (self.DISTANCE_RANGE/ self.DISTANCE_DIV)
self .ANGLE_MIN = -30

self .ANGLE MAX = 30

self .ANGLE RANGE = self.ANGLE MAX-self.ANGLE MIN

self .ANGLE_DIV = 2

self .ANGLE_DIV_ROUGH = 30

self .ANGLE_STEP = int(self.ANGLE_RANGE/self.ANGLE_DIV)

self .ANGLE RANGE ROUGH = int((180-self .ANGLE MAX)/self.ANGLE_DIV_ROUGH)
self .POSITIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE RANGE ROUGH)))
self .NEGATIVE_Q_TABLE_DISCRETIZATION = np.array (np.zeros(int(self.ANGLE_RANGE ROUGH)))

Q-table initialization based on discretization variables
for i in range(self.ANGLE_ RANGE_ROUGH) :
Additional 7 States: [30, 180]
self .POSITIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MAX
+ self.ANGLE_DIV_ROUGH~ i
+ self .ANGLE_DIV_ROUGH/2)
Additional 7 States: [-30,-180)
self .NEGATIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MIN
— self .ANGLE_DIV_ROUGH=* i
— self .ANGLE_DIV_ROUGH/2)

State variables
self.state_angle = 0

Action variables
self.action_distance
self.action_angle =

=0
0

Initialize environment
self.env = EnvDriving ()

self.q_table = np.zeros ([self.ANGLE_STEP+self .ANGLE RANGE ROUGH-2,
self .DISTANCE_STEP+1,
self . ANGLE_STEP+self .ANGLE RANGE ROUGH-+2])

Load existing Q-table

files = glob.glob(f)

if not files == []:
latest_file = max(files , key=0s.path.getmtime)
self.q_table = np.load(latest_file)
print(latest_file)
print(self.qg_table[np.nonzero(self.q_table)])
print(

else:
print ()

convert_distance_to_index (self, var):

Converts the distance into an index or sub-index. The distance is given by the distance
between the STM-tip and the nanocar.

Note: In general the index determines exactly where the entry is located in the Q-table.

This subsequently means an entry of the multidimensional Q-table uniquely defines the state

and the action.

126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199

Chapter 2. Python Code Development 48

def

and

def

def

Returns the distance as index value.
var = np.round(var)
index_of_var = 0
if var < self.DISTANCE_MAX-self.DISTANCE_DIV and var > self.DISTANCE_MIN:
index_of_var = round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV)
elif var >= self .DISTANCE_MAX-self.DISTANCE_DIV:
index_of_var = round(
(self .DISTANCE_MAX-self.DISTANCE_MIN-self .DISTANCE_DIV)/self.DISTANCE_DIV)
return int(index_of_var)

convert_angle_to_index(self, var):

Converts the angle into a sub-index. The angle is given by the angle between the two vectors

namely the vector previous nanocar to goal position and previous nanocar to current nanocar
position.

Note: In general, the index determines exactly where the entry is located in the Q-table.
This subsequently means an entry of the multidimensional Q-table uniquely defines the state
the action.

Return

Returns the angle as index value.
if var >= self . ANGLE_MIN and var <= self.ANGLE MAX:
index = int(np.around((var+self.ANGLE MAX)/self.ANGLE_DIV,1)) + self .ANGLE RANGE ROUGH
else:
if var <= self.ANGLE_MIN:
index = —(np.digitize (var, self .NEGATIVE_Q_TABLE_DISCRETIZATION)
+ self.ANGLE_RANGE_ROUGH)
elif var >= self .ANGLE MAX:
index = (np.digitize (var, self.POSITIVE_Q_TABLE_DISCRETIZATION)
+ self .ANGLE_RANGE ROUGH
+ self .ANGLE_STEP)
if index == 40:
index = 0
return index

evaluate_state(self):

Evaluates the current state of the nanocar based on its position within the environment.

The state is given by the angle between the two vectors, namely the vector pointing from
the previous nanocar to the goal and the previous nanocar to the current nanocar position.

Functions
angle_between_vectors(v_base, v_car, v_goal)
Return the angle in degrees between the two vectors, namely from
'v_base to v_car’ and from ’'v_base to v_goal’.
Calculates the state and sets the state to 0 before any manipulation was performed
self.state_angle = 0
if self.env.number_of_manipulations > 0:
self.state_angle = self.angle_between_vectors(
self.env.state_position_of_nanocar_past_present[0],
self.env.state_position_of_nanocar_past_present[1],
self.env.state_position_of_goals[0])

select_action(self):

The agent chooses the best action in a particular state based on the Q-table or by choosing

a random action to explore the state.

Exploitation: If two or more indices are equally good, meaning their Q-values are the same,
the action is chosen randomly from these equally good actions.

Exploration: EPSILON rate of exploration defines how often the agent takes a random action.
At least in the beginning the agent’s action space is limited, meaning that small angles and
statistically better distances were chosen first.

self.evaluate_state ()

state_index = self.convert_angle_to_index(self.state_angle)

action_index = np.zeros(2)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250

Chapter 2. Python Code Development

49

def

Chooses the best action OR a random action that was never used before

if random.uniform(0,1) < self.epsilon:
Calculate indices to corresponding limits
lower_distance_index = self.convert_distance_to_index(self.DISTANCE_LOWER_LIMIT)
upper_distance_index = self.convert_distance_to_index (self.DISTANCE_UPPER_LIMIT) +1
lower_angle_index = self.convert_angle_to_index(self.ANGLE_LOWER_LIMIT)
upper_angle_index = self.convert_angle_to_index(self.ANGLE_UPPER_LIMIT)+1

Determine all Q-table entries that were never used: Q-value == 0
actions_never_used_index = np.where(self.q_table[state_index]==0)

Determine indices which are within the limit

limited_actions_never_used_index = |
(actions_never_used_index[0][:] <=upper_distance_index) &
(actions_never_used_index[0][:] >=lower_distance_index) &
(actions_never_used_index[1][:] <=upper_angle_index) &
(actions_never_used_index[1][:] >=lower_angle_index)]

Select the actions that have never been used and are within the limits
actions_never_used_index=[actions_never_used_index [0][limited_actions_never_used_index],
actions_never_used_index[1][limited_actions_never_used_index]]

From all actions within the limit randomly chose one action
action_random_never_used_index = np.random.randint(0,len(actions_never_used_index[0]))
distance_never_used_index = actions_never_used_index[0][action_random_never_used_index]
angle_never_used_index = actions_never_used_index[1][action_random_never_used_index]
action_index = [distance_never_used_index, angle_never_used_index]
else:

Select the best action
action_best_index = np.where(self.q_table[state_index]

== np.max(self.q_table[state_index]))

From equally good actions select one of them randomly
action_random_best_index = np.random.randint(0,len(action_best_index[0]))
distance_best_index = action_best_index[0][action_random_best_index]
angle_best_index = action_best_index[1][action_random_best_index]
action_index = [distance_best_index, angle_best_index]

Convert the index to real values in DAC units
self.action_distance = self.DISTANCE_MIN + action_index[0]self.DISTANCE_DIV
if action_index[1] <= self.ANGLE_ RANGE_ROUGH:
self.action_angle = —-180+action_index[1]+self.ANGLE_DIV_ROUGH
elif action_index[1] >= self .ANGLE RANGE_ROUGH + self.ANGLE_STEP:
self.action_angle = (self.ANGLE MAX + self.ANGLE_DIV_ROUGH+(action_index[1]
- self .ANGLE_RANGE ROUGH
- self .ANGLE_STEP))

else:
self.action_angle = (self .ANGLE_MIN + self.ANGLE_DIV«(action_index[1]
- self .ANGLE_RANGE ROUGH))

Calculates the next STM-~tip positon based on the agents choosen actions
self.env.calc_next_position(self.action_distance, self.action_angle)

gq_table_function(self):

Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.

Functions

convert_distance_to_index (var)
Converts the distance into an index or sub-index. The distance is given by the distance
between the STM-tip and the nanocar.

convert_angle_to_index(var)
Converts the angle into a sub-index. The angle is given by the angle between the two
vectors, namely the vector previous nanocar to goal position and previous nanocar to
current nanocar position.

if self.env.know_Car == True and self.env.number_of_manipulations > 1:
q_t=20
q_tt_max =0
q_tt =0

Action space: converts real actions to index values
action_index = [self.convert_distance_to_index(self.action_distance),
self.convert_angle_to_index(self.action_angle)]

State space: converts real state to index value

NN NN
0 N
= O © W

0 0 0 00
W N

NN NN
0
~

© 0
o »

O N NN
% 5
1

N
w0 0
© o -

290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309
310
311

10

Chapter 2. Python Code Development

50

state_index = self.convert_angle_to_index(self.state_angle)
next_state_index = action_index[1]

The Q-Learning algorithm

g_t = self.q_table[state_index, action_index[0], action_index[1]]
g_tt_max = np.max(self.q_table[next_state_index])

q_tt = g_t + self.ALPHA«(self.env.reward + self .GAMMAx(q_tt_max) - q_t)
self.q_table[state_index, action_index[0], action_index[1]] = q_tt
self.save_q_table ()

def save_q_table(self):

Saves the Q-table as a binary file.

path = f
now = datetime.now ()
current_time = now. strftime ()

path_with_timestamp = f

try:
print()
np.save(path, self.q_table)
np.save (path_with_timestamp, self.q_table)
print(self.qg_table[self.q_table >0])
except:

try:
os.mkdir(self.qtable_directory)
np.save(path, self.q_table)
np.save(path_with_timestamp, self.q_table)
print(self.qg_table[np.nonzero(self.q_table)])
except OSError:

print(% path)
print()

else:
print (% path)

2.1.5 The code of the main

#!/bin/env python3
from agent import QDriving
import numpy as np

import csv
from time import mktime

import logging
import tkinter as tk
import matplotlib.pyplot as plt

def analysis(agent):
Calculate Analysis Variables
if agent.env.number_of_searching ==
agent.env.average_steps_while_searching
else:
agent.env.average_steps_while_searching = agent.env.number_of_search_steps/agent.env.
number_of_searching

0

timestamp_file = agent.env.datetime_end. strftime ()
path_with_timestamp = f

time_difference_in_s = abs(mktime(agent.env.datetime_start.timetuple ())-mktime (agent.env.
datetime_end.timetuple ()))
speed = agent.env.total_distance/time_difference_in_s

with open(path_with_timestamp, , newline="") as csv_file:

csv_write = csv.writer(csv_file)

csv_write.writerow ([, f 1
csv_write . writerow ([

csv_write . writerow ([

csv_write.writerow ([

csv_write.writerow ([, f 1)
csv_write.writerow ([

csv_write . writerow ([

csv_write . writerow ([,f

Chapter 2. Python Code Development 51

csv_write.writerow ([,f

D

csv_write . writerow ([,f

1

csv_write . writerow ([D

csv_write.writerows ([[], np.swapaxes(agent.env.position_of_environment,0,1)[0], np.
swapaxes (agent.env. position_of_environment ,0,1)[1],
[], agent.env.x_history_nanocar, agent.env.y_history_nanocar])
csv_write . writerow ([1
for i in range(len(agent.env.x_history_searching_nanocar)):
csv_write.writerow ([agent.env.x_history_searching_nanocar[i], agent.env.

y_history_searching_nanocar[i]])

def driving_routine (agent):
agent.select_action ()
agent.env.perform_vertical_manipulation ()
agent.env.check_current_pattern ()
agent.q_table_function ()
agent.env.update_environment_variables ()

def main () :
agent = QDriving ()

while not agent.env.is_done():
driving_routine (agent)

#agent.save_q_table ()

analysis (agent)

plt.show ()

if __name__ ==
main ()

2.2 Learning from human experience or existing data

The following section provides an example code for how an agent is able to learn from human gen-
erated data by using VERT-files, that are generated by the STM after an action is performed. This
enables the agent to learn without the necessity of controlling the STM directly, which is saving time
and operational costs. As in the previous section, the code starts with the lowest level, being the
filemanager, followed by the environment and the agent program.

In the following flow diagram 2.9 the learning procedure is illustrated.

Chapter 2. Python Code Development 52
Legend:
Agent
Environment
Load the Q-table :
Filemanager

Load every

positional data

Initialize sub-goals
and goals
Yes Did
Save Q-table D Take action from data
the goal?
Finish Update Qata for next
iteration step
Update Q-table Update gnvironment
variables
Determine reward
Is the
induced current
right?
Figure 2.9: The flow diagram for training the agent from human generated data. The Legend

indicates to which class a processes belongs.

Chapter 2. Python Code Development

2.2.1 The filemanager

The filemanager chronologically loads all VERT-files within a directory. A VERT-file contains the
STM settings and most importantly the current response at each tip position. The complete directory
is loaded, such that the agent has the complete trajectory from start to finish ahead of it and iterates
through every time step by perceiving every state, the "performed" action, and its associated reward,

as if it

2.2.1.1

import

would control the STM directly.

The code of the filemanager

time

from datetime import datetime

import
import
import
import
import

os
glob

shutil

math

numpy as np

class FileManager(object):
""" A class used to read and/or write the VERT-files for learning from human-generated data.

def

def

def

def

def

Methods

get_files : list

Provides the complete path for every VERT-file within the

get_latest_file : str
pProvides the complete path for the latest VERT-file

get_num_files : int

in the ’directory ’.

Provides the number of files within the given ’directory ’.

write_simulation_data (xy_data, know_Car=True)

"directory’ sorted by name.

Writes artificial data with the STM-tip position and a high or low current dependent on
determined randomly) .

weather the nanocar is below the tip or not (this is

read_position : array(2)
Read X/Y position from the VERT-file.

__init__(self, directory_of_data):

A unique naming scheme for every written VERT-file
self.last_timestamp = None

The number of files within the given ’directory’
self.num_files = 0

get_files(self):

Returns the complete path for every VERT-file within the

Returns

files : list

"directory”’

and sorts

A list of strings that contain the complete filepath of every VERT-

file within the ’directory’
files = sorted(glob.glob("« .VERT"))
self .num_files = len(files)
return files

get_latest_file(self):

files = sorted(os.listdir (os.getcwd()), key=o0s.path.getmtime)

newest = files[-1]
return newest

get_num_files(self):
return self.num_files

write_simulation_data(self, xy_data, know_Car=True):
dateTimeObj = datetime .now ()

it by name.

timestampStr = f"{dateTimeObj.year}-{dateTimeObj.month}-{dateTimeObj.day}_{dateTimeObj.hour
}—{dateTimeObj. minute}-{dateTimeObj.second}.{dateTimeObj.microsecond}"

self.last_timestamp = timestampStr
new_filename = f ' {timestampSir} VERT’

63
64
65
66

67

69

IR

=~ 3
0 N o«

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Chapter 2. Python Code Development 54

def

def

def

if know_Car == True:
shutil.copyfile(, new_filename)
else:
shutil.copyfile(, new_filename)
with open(new_filename, mode= , encoding =) as f:
lines = f.readlines ()
with open(new_filename, mode= , encoding =) as f:
lines[298] = .format(1000, xy_data[0], xy_data[1], 1)+
f.writelines(lines)

read_position(self, file=None):
position = np.empty(2)

if file is None:
file = self.get_latest_file ()

with open(file , mode= , encoding=) as f:
f_data = f.read().split()

X/Y-position from datafile
xdac = float(f_data[298].split()[1])
ydac float (f_data[298].split()[2])

Offset correction

offsetx = float(f_data[20].split(Y[11)
offsety = float(f_data[21].split(Y[1])
Additional parameters

dx = float(f_data[3].split(Y[11)

dy = float(f_data[4].split()Y [1])

nx = float(f_data[5].split(Yy[11)

ny = float(f_data[6].split() [1])

rot = float(f_data[14].split(Y[11)

driftxoff
driftyoff

0
0
Rotation matrix: cos —-sin | xx xy
sin cos | yx yy

x_with_rotation= —(xdacsnp.cos(rot=np.pi/180)-ydac+np.sin(rot«np.pi/180)+offsetx—driftxoff)
y_with_rotation= —(xdac+np.sin(rot«np.pi/180)+ydac«np.cos(rot=np.pi/180)+offsety—-driftyoff)

position = np.array ([xdac+offsetx ,ydac+offsety])
return position

read_current(self, file=None):
if file is None:
file = self.get_latest_file ()

with open(file , mode= , encoding=) as f:
f_data = f.read().split()
f_It = f_data[299:-1] # Data for current and time

t =]
I = 1]
for z in f_lt:
trunc = z.split()
t.append(int(trunc[0]))
| .append(float(trunc[3]))
data_It = [t, I]
return data_lIt

read_voltage(self, file=None):
if file is None:
file = self.get_latest_file ()

with open(file , mode= , encoding=) as f:
f_data = f.read().split()

f_Vt = f_data[299:-1] # Data for current and time

t =]

V =

for z in f_Vt:
trunc = z.split()
t.append(int(trunc[0]))

140
141
142

Chapter 2. Python Code Development 55

V.append(float (trunc[1]))
data_Vt = [t, V]
return data_Vt

2.2.2 The environment for learning

Although every VERT-file within a directory is loaded chronologically, the sub-goals that are evaluated
by the environment are different than those the human headed for when maneuvering the nanocar
towards a sub-goal. The reason for this is based on how the absolute position is defined, as (X,Y") are
given relative to the latest image scanned. Figure 2.10 shows how the absolute position (Xups, Yaps) is
determined by using the offset (Xoffset, Yorfset) Plus the relative position (X,Y) within the scanned
image.

Xabs = XOffset +X (29)
Yors = YOffset +Y (2.10)

However, the (Xoffset; Yoffset) is not really consistent and shows a drift between images. Thus,
when learning from data which is gathered from two recorded images, the data points do not process
continuously, but show a random offset. This can be either due to thermal drift or due to the inaccurate
coarse positioning system of the STM.

However, this problem is solved by calculating every distance of two successive points and if this
distance is larger than 5000 DAC units, then the first point is defined as a sub-goal. The value of 5000
DAC units is a bit larger than double the distance (2350 DAC units), which is the largest distance
where successful pulling actions can be achieved.

Note: Determining the absolute position is irrelevant for directly controlling the STM with the agent,
because the agent only operates within the scanned image. Thus, all positions are determined relatively
to the origin of the scanned image. If, for some reason the nanocar cannot be found by the search
algorithm and a human has to take an image in order to locate the nanocar, the relative coordinates
would change - meaning all goals would have to be re-initialized as the origin changes with the newly
scanned image.

10

16

Chapter 2. Python Code Development

56

(0, 0) Absolute Coordination System

S

(XOffset: YOffset)

First Scalimed Image

! Second Scanned Image

Figure 2.10: How the absolute and relative coordinates are defined by the STM. The origin of the
scanned image is the center of the top boarder, while the offset and therefore the origin of the absolute
coordination system is originated at the top left corner of the absolute coordination system.

2.2.2.1 The reward function

The reward function for learning is equivalent to the one defined in the environment section 2.1.3.1 of

Controlling the nanocar with the STM.

2.2.2.2 The code of the environment

from filemanager import FileManager

import numpy as np
import math

import random
import os

import itertools
import statistics

import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

from scipy.signal import savgol_filter

5 import scipy.fftpack

7 class EnvLearning(FileManager):

This class represents the virtual environment generated from human data. This enables the agent

20
21
22
23
24
25
26
27
28

30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

66

96

Chapter 2. Python Code Development

o7

to learn like itself is controlling the STM without the requirement of a real STM.

Methods

init_env ()
Initialize the environment.

init_reward_variables ()

Calculates the distance between all following sub-goals or sub-goal to goal.

load_position_data ()

Loads the absolute position from every VERT-files in the working directory.

load_current_data ()

Loads the current spectra from every VERT-files in the working directory.

load_goals ()
Evaluates the sub-goals and goal from the complete racetrack data.

set_Position ()
Virtually sets the STM-tip to the next position.

unit_vector (vector)
Returns the unit vector of the vector.

distance_between_vectors(vector1, vector2)
Returns the distance between two vectors.

angle_between_vectors(v_base, v_car, v_goal)

Return the angle in degrees between the two vectors, namely from ’v_base to v_car’ and from

'v_base to v_goal .

calc_distance ()

Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
final goal. Deletes the position of a goal when the goal is reached and also deletes the

reward variable of the previous sub-goal distance.

set_next_iteration ()
Updates all the data for the next iteration step.

calc_average_current(current_spectrum)
Calculates the average current from the current spectrum.

check_current_pattern ()

Checks if the average current of the current pattern measured after a pulling action

higher than a certain treshhold.

reward_function ()

Calculates the reward to measure the performance of the agent’s actions.

calculated by using two functions.

is_done ()
Checks if the episode is finished.

def __init__(self):
Set the path of the data files as the working directory
self.directory_of_data = os.getcwd()+ /Data/0/"
os.chdir(self.directory_of_data)

Environment constants

Treshhold: know car position YES/NO?

self . TRESHHOLD CURRENT = 1000

Treshhold: distance above which a new sub-goal is defined
self . TRESHHOLD_TO_EVALUATE _SUBGOAL = 5000

Environment variables
self.number_of_iterations = 0
self.initial_stm_position = None
self.position_for_environment = []
self.current_for_environment = []
self.average_current_for_environment = []
self.derivative_current_for_environment = []
self.know_Car = True

self.done = False

Inizializes the complete environment data from the ’directory’
self.init_env ()

The reward

is

is

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Chapter 2. Python Code Development 58

def

def

def

def

self.position_nanocar = np.array(self.position_for_environment[0])
self.position_stm_tip np.array(self.position_for_environment[0])

State variables

self.state_position_of_goals = []

self.load_goals ()

self.state_position_of_nanocar_past_present = [None, self.position_for_environment[0]]

Reward variables and initialization

self .DISTANCE_ERROR_MAX = 2250

self.distance_to_nearest_goal = 0

self.total_distance_to_goal = 0

self.distance_subgoals = np.zeros(len(self.state_position_of_goals))
Calculates distances between following environment positions
self.init_reward_variables ()

Calculates distances to the closest sub-goal and to the final goal
self.calc_distance ()

Statistic variables
self.success = 0
self. failure 0

init_env(self):

Initialize the environment by loading a complete racetrack from VERT-files.

A VERT-file is genereated after every vertical manipulation measurement and contains every
setting of the STM.

Functions
load_position_data ()
Loads the absolute position from the VERT-files for the given episode.
load_current_data ()
Loads the measured spectrum from the VERT-files for the given episode.
load_goals ()
Evaluates which data points are sub-goals or goals.
Loads the positional data
self.load_position_data ()
Loads the current spectra
self.load_current_data ()
Evaluates sub-goals and the final goal
self.load_goals ()

init_reward_variables (self):
Calculates the distance between all following sub-goals or sub-goal to goal that were set
in the initialization step of the environment. These are necessary for the reward function.
Distance between initial nanocar position to first sub-goal or already to the final goal
self.distance_subgoals[0] = np.linalg.norm(np.subtract(
self.position_nanocar,
self.state_position_of_goals[0]))

Distances between sucessive sub-goals and sub-goal to final goal.
if len(self.state_position_of_goals) > 1:
for i in range(1,len(self.state_position_of_goals)):
self.distance_subgoals[i] = np.linalg.norm(np.subtract(
self.state_position_of_goals[i-1],
self.state_position_of_goals[i]))

load_position_data(self):
Loads the absolute position from every VERT-file in the working directory into a list.
These positions represent the whole racetrack of an episode.
self.position_for_environment = []
files = self.get_files ()
for file in files:

self.position_for_environment.append(self.read_position(file))

load_current_data(self):

Loads the current spectra from every VERT-file in the working directory into a list.

self.current_for_environment = []

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

Chapter 2. Python Code Development

99

def

def

def

def

files = self.get_files ()

for file in files:
self.current_for_environment.append(self.read_current(file))

for data in self.current_for_environment:
self.average_current_for_environment.append(self.calc_average_current(data[1]))
self.derivative_current_for_environment.append(np.gradient(data[1]))

load_goals(self):

Evaluates the sub-goals and goal from the complete racetrack data.

A goal is evaluated by finding a position where its ensuing position is located futher away
than a given treshhold. This has to be done in such a way, because the data gained by the
STM is relative to the last taken image. This means, if for some reason the car could not
be found, the surface has to be imaged. This changes the position of nanocar because its
position is given by the relative position from the centre position of the image. Thus, the
previous position does not correlate to the current position.
self.state_position_of_goals = []
for i in range(1,len(self.position_for_environment)):
Defines a positon as a goal, if two points are further away than a given treshhold
if np.linalg.norm(np.subtract(
self.position_for_environment[i-1],
self.position_for_environment[i])) >= self.TRESHHOLD TO EVALUATE_SUBGOAL:
self.state_position_of_goals.append(self.position_for_environment[i])
The last position in a given racetrack is set to be the final goal
self.state_position_of_goals.append(
self.position_for_environment[len(self.position_for_environment) -1])

set_position(self):

Virtually sets the STM-tip to the next position

self.position_stm_tip = self.position_for_environment[0].copy ()

unit_vector(self, vector):

Returns the unit vector of the vector.

Attributes
vector : np.array(len(vector))
A vector.

Return
unit_vector : np.array(len(vector))
The unit vector.
vector = np.array(vector)
if vector.all() ==
return [0,0]
elif not vector.all() ==
unit_vector = vector / np.linalg.norm(vector)
return unit_vector

distance_between_vectors(self, vectorl, vector2):

Returns the distance between two vectors.

Attributes

vectorl : np.array(len(vectorl))
Vector 1.

vector2 : np.array(len(vector2))
Vector 2.

vector_distance : float
The distance between vector1 and vector2.
vectorl = np.array(vector?)
vector2 = np.array(vector2)
vector_distance = 0
if not np.array_equal(vector1 , 6 vector2):
vector_distance = np.linalg.norm(np.subtract(vector1 vector2))

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

Chapter 2.

Python Code Development

60

return vector_distance

def angle_between_vectors(self, v_base, v_car, v_goal):

Return the angle in degrees between the two vectors, namely from ’v_base to v_car’ and from

’V_

Note: The function considers if the relative vector of the nanocar ’'v_base to v_car’ is

base to v_goal .

positioned clockwise or counter-clockwise from the relative vector ’'v_base to v_goal .

Attributes

v_base : np.array(2)

Vector to the basis.

v_car : np.array(2)

Vector to the nanocar.

v_goal : np.array(2)

Vector to the goal.

angle : float

The angle spanned by the two vectors: ’v_base to v_car’ and from ’'v_base to v_goal’.

v_base = np.array(v_base)
v_car = np.array(v_car)
v_goal = np.array(v_goal)

Calculates the relative vectors of the nanocar and the goal
v_car_rel = v_car-v_base
v_goal_rel = v_goal-v_base

Calculates the unit vectors of the relative vectors nanocar and goal
v_car_u = self.unit_vector(v_car_rel)
v_goal_u = self.unit_vector(v_goal_rel)

Calculates the angle between the two relative vectors nanocar and goal

angle = np.arccos(np.clip(np.dot(v_car_u, v_goal_u), -1.0, 1.0))«180/np. pi

Use the property of the determinant that is, if the det < 0 the,

relative vector of the nanocar is clockwise to the relative vector of the goal.

if

np.linalg .det([v_goal_u,v_car_u]) <0:
angle = -angle

return angle

def calc_distance(self):

Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
final goal. Deletes the position of a goal when the goal is reached and also deletes the

reward variable of the previous sub-goal distance.

if

len(self.position_for_environment) > 1:

Calculates the distance between the old and new stm-tip position

self.moving_distance_stm_tip = np.linalg.norm(np.subtract(
self.position_for_environment[0],
self.position_for_environment[1]))

Calculates the distance to the nearest goal

self.distance_to_nearest_goal = np.linalg.norm(np.subtract(
self.position_nanocar,
self.state_position_of_goals[0]))

Calculates the total distance to the goal
self.total_distance_to_goal = self.distance_to_nearest_goal
for i in range(1,len(self.state_position_of_goals)):
self.total_distance_to_goal += np.linalg.norm(np.subtract(
self.state_position_of_goals[i-1],
self.state_position_of_goals[i]))

def set_next_iteration(self):

Updates all the data for the next iteration step.

This means the first entry in the list of positional data as well as reached sub-goals are

deleted.

if

len(self.position_for_environment) > 0:

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373

® 0 N N =
= O © 00 N O Ok

382

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

404

Chapter 2. Python Code Development

61

def

def

def

Deletes the reached sub-goal
if len(self.state_position_of_goals) > 0:
if np.linalg.norm(np.subtract(self.position_for_environment[0],
self.state_position_of_goals[0])) ==
self.state_position_of_goals = np.delete(self.state_position_of_goals, 0, 0)

Deletes the currentrly reached position in the list positional data
self.position_for_environment = np.delete(self.position_for_environment, 0, 0)
Deletes the current spectrum that goes with the positional data
self.derivative_current_for_environment = np.delete(
self.derivative_current_for_environment, 0, 0)
self.number_of_iterations += 1

calc_average_current(self, current_spectrum):
""" Calculates the average current from the current spectrum.

Returns
average_current : int
The average current of the spectrum.
current_spectrum = np.array (current_spectrum)
average_current = np.mean(current_spectrum[current_spectrum > 0])
return average_current

check_current_pattern(self):
Checks if the derivative of the current pattern after a pulling action is higher than a
certain treshhold.

If this is:

- TRUE: The position of the nanocar is below the STM-tip - hence it is known

- FALSE: The position of the nanocar is not below the STM-tip - hence it is unknown and a
search-algorithm starts searching for the nanocar.

Functions
reward_function ()
Calculates the reward the agnet receives.
search_car ()
Searching the nanocar if the it got lost.
if ((abs(self.derivative_current_for_environment[0]) >= self.TRESHHOLD_CURRENT) .any ()
and self.know_Car == True): # 1| is RIGHT
print("Current pattern is right!")
self.position_nanocar = self.position_stm_tip.copy()
self.state_position_of_nanocar_past_present = |
self.state_position_of_nanocar_past_present[1],
self.position_nanocar]
self.initial_stm_position = None
self.reward_function ()

elif ((abs(self.derivative_current_for_environment[0]) < self.TRESHHOLD_CURRENT) . any ()
and self.know_Car == True): # 1 is WRONG

print("Current pattern is wrong! == Car is lost =="

self.know_Car = False

self.initial_stm_position = self.position_stm_tip.copy()

elif ((abs(self.derivative_current_for_environment[0]) >= self.TRESHHOLD_CURRENT) .any ()
and self.know_Car == False): # | is RIGHT
print("Current pattern is right! == Car is found ==")
self.know_Car = True
self.position_nanocar = self.position_stm_tip.copy ()
self.state_position_of_nanocar_past_present = |
self.state_position_of_nanocar_past_present[1],
self.position_nanocar]
self.reward_function ()

reward_function(self):

Calculates the reward to measure the performance of the agent’s actions. The reward is
calculated by using two functions:

1. Reward function calculates how precisely the nanocar has moved below the STM-tip
2. Reward function calculates how close the nanocar moved towards the goal.

105
106
407
408
109
410
111
412
413
414
415
416
417
118
419
120
121
122
423
424
125
426
127
428
129
430
431
132
433
134
435
436
437
138
439
440
141
442
143
144
145
446
447
148
449
150
451
452
453
454
155
456
157
458
459
160
161
462
463

Chapter 2. Python Code Development 62

Functions
distance_between_vectors(vector1, vector2)
Calculates the distance between two vectors.

self.reward =0

if self.number_of_iterations >= 1:
position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]
position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]
position_of_nearest_goal = self.state_position_of_goals[0]

Calculates the distance to the goal before and after the pulling action
distance_of_past_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_past,
position_of_nearest_goal)
distance_of_present_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_present,
position_of_nearest_goal)
difference_in_distance_from_goal_between_pulling_action = np.subtract(
distance_of_past_nanocar_to_goal,
distance_of_present_nanocar_to_goal)

Calculates by how much the nanocar translated to an unknown position
if self.initial_stm_position is None:
nanocar_deviates_from_initial_stm_position = 0
self.initial_stm_position = position_of_nanocar_present
else:
nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(
self.initial_stm_position ,
position_of_nanocar_present)

Calculates the reward using two reward functions
self.reward = 0
1. Reward function
if (difference_in_distance_from_goal_between_pulling_action > 0
and self.total_distance_to_goal > 0):
self.reward += 0.5«(1-self.distance_to_nearest_goal/self.distance_subgoals[0])
elif (difference_in_distance_from_goal_between_pulling_action <= 0
and self.total_distance_to_goal >= 0):
self.reward -= 1
2. Reward function
if nanocar_deviates_from_initial_stm_position <= self .DISTANCE_ERROR MAX:
self.reward += 1-math.pow(
nanocar_deviates_from_initial_stm_position/self .DISTANCE_ERROR_MAX,0.4)

print(f)

def is_done(self):
""" Checks if the episode is finished.

Returns

self.done : boolean
Returns TRUE if the episode is finished.

if self.number_of_iterations >= self.get_num_files():
self.done = True

print()
return self.done

2.2.3 The learning agent

This code creates a Q-table by learning from human generated data. The chosen actions are already
judged by the reward function of the environment. Thus, the performance of actions is pre-selected.

Important: The Q-table size has to be chosen, such that it corresponds with the final use case of
the agent. Changing the discretization of states and actions afterwards is of course not possible, as it
would break the correlation between state-action-pairs.

The Q-table size and discretization given in state space ranges from -40 to +40°, that is discretized
by 2 leading to 21 states, centred around 0° with a discretization size of -1 to +1°. These settings are
also used for the angle part of an action, while the distance is discretized by steps of 10 ranging from
1250 to 2350 DAC units — 110. A more detailed explanation is given in section 2.1.4.

Y Ul R W N e

66
67

Chapter 2. Python Code Development

63

2.2.3.1 The code of the agent

from environment import EnvLearning

import numpy as np

import math

import statistics

import os

from pathlib import Path
import matplotlib.pyplot as plt

class TDQLearning(object):

This class represents the agent program to learn from human data. The goal of the agent is to
manouver a nanocar across a race-track and accumulate maximum reward. This is done by
positioning the STM-tip based on the current state of the nanocar within the environment. The
learning algorithm of the agent is based on an off-policy temporal difference algorithm, known
as 'Q-Learning .

Methods
convert_distance_to_index ()
Converts the distance into an sub-index for the Q-table.

convert_angle_to_index ()
Converts the angle into an sub-index for the Q-table.

evaluate_state ()
Evaluates the current state of the nanocar based on its position within the environment.

select_move ()
The agent chooses the best action in a particular state based on the Q-table or
by choosing a random action to explore the state.

q_table_function ()
Calcuates the Q-Learning algorithm and updates the Q-table.

save_q_table ()
Saves the Q-table as a binary file.
def __init__(self):
Directory to save the Q-table
self.qgtable_directory = os.path.dirname(os.getcwd())+ /Qtable/’

Q-learning hyperparameters
self .ALPHA = 0.9
self . GAMMA = 0.95

Q-learning variables
self.q_t = []
self.q_tt = []
self.q_tt_max = []

Discretization variables

self .DISTANCE_MIN = 1250

self .DISTANCE_MAX = 2350

self .DISTANCE_DIV 10

self .DISTANCE_RANGE = self .DISTANCE_MAX-self.DISTANCE_MIN

self .DISTANCE_STEP = int(self.DISTANCE_RANGE/self.DISTANCE_DIV)
self .ANGLE_MIN -30

self .ANGLE_ MAX = 30

self .ANGLE RANGE =
self.ANGLE_DIV 2
self .ANGLE DIV_ROUGH = 30

self .ANGLE_STEP = int(self.ANGLE RANGE/ self.ANGLE_DIV)

self .ANGLE_MAX-self.ANGLE_MIN

nmunu

self .ANGLE RANGE ROUGH = int((180-self.ANGLE_MAX) /self.ANGLE_DIV_ROUGH)
self.POSITIVE_Q_TABLE_DISCRETIZATION np.array(np.zeros(int(self.ANGLE_RANGE ROUGH)))
self .NEGATIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))

Q-table initialization based on discretization variables
for i in range(self.ANGLE_RANGE ROUGH) :
Additional 7 States: [30, 180]
self.POSITIVE_Q_TABLE_DISCRETIZATIONT[i] (self .ANGLE MAX
self .ANGLE_DIV_ROUGH= i

self .ANGLE_DIV_ROUGH/2)

+ +

Additional 7 States: [-30,-180)

90

93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

Chapter 2. Python Code Development

64

self .NEGATIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MIN
- self .ANGLE_DIV_ROUGHx i
- self .ANGLE_DIV_ROUGH/2)

State variables
self.state_angle = 0

Action variables
self.action_distance
self.action_angle =

=0
0

Initialize environment
self.env = EnvLearning ()

self.q_table = np.zeros ([self .ANGLE_STEP+self .ANGLE RANGE _ROUGH=+2 ,
self .DISTANCE_STEP+1,
self .ANGLE_STEP+self .ANGLE_RANGE ROUGH=2])

Load existing Q-table

if Path(f"{self. qgtable directory}qgtable npy").is_file():
self.q_table = np.load(f"{self.qgtable directory}qgtable npy")
print(self.q_table[np.nonzero(self.q_table)])

else:
print ("Q-table does not exist")

def convert_distance_to_index(self, var):

Converts the distance into a sub-index. The distance is given by the distance between the
STM-tip and the nanocar.

Note: In general the index determines exactly where the entry is located in the Q-table.
This subsequently means an entry of
the multidimensional Q-table uniquely defines the state and the action.

Returns the distance as index value.

var = np.round(var)
index_of_var = 0
if var < self .DISTANCE_MAX-self .DISTANCE_DIV and var > self.DISTANCE_MIN:
index_of_var = round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV)
elif var >= self .DISTANCE_MAX-self.DISTANCE_DIV:
index_of_var = round((self.DISTANCE_MAX-self.DISTANCE_MIN-self .DISTANCE_DIV)/self.
DISTANCE_DIV)
return int(index_of_var)

def convert_angle_to_index(self, var):

Converts the angle into an index or sub-index. The angle is given by the angle between the
two vectors, namely the vector previous nanocar to goal position and previous nanocar to
current nanocar position.

Note: In general the index determines exactly where the entry is located in the Q-table.

This subsequently means an entry of the multidimensional Q-table uniquely defines the state

and the action.

Return

Returns the angle as index value.

if var >= self .ANGLE_MIN and var <= self .ANGLE MAX:
index = int(np.around((var+self.ANGLE_ MAX)/self.ANGLE_DIV,1)) + self .ANGLE RANGE ROUGH
else:
if var <= self.ANGLE_MIN:
index = —(np.digitize (var, self .NEGATIVE_Q_TABLE_DISCRETIZATION)
+ self .ANGLE_RANGE ROUGH)
elif var >= self .ANGLE MAX:
index = (np.digitize (var, self.POSITIVE_Q_TABLE_DISCRETIZATION)
+ self .ANGLE_RANGE ROUGH
+ self.ANGLE_STEP)
if index == 40:
index = 0
return index

def evaluate_action(self):

176
177
178
179
180
181
182
183
184
185
186
187
188

189

190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

Chapter 2. Python Code Development 65

def

Evaluates the action state of the agent based on the positional data from the given
environment.

The action is given by the angle between the two vectors, namely the vector pointing from
previous nanocar to goal and previous nanocar to current STM-tip position.

Functions
angle_between_vectors(v_base, v_car, v_goal)
Return the angle in degrees between the two vectors, namely from ’v_base to v_car’ and
from ’'v_base to v_goal .
self.action_distance = self.env.distance_between_vectors(
self.env.state_position_of_nanocar_past_present[0],
self.env.position_stm_tip)

self.action_angle = self.env.angle_between_vectors(
self.env.state_position_of_nanocar_past_present[0],
self.env.position_stm_tip,
self.env.state_position_of_goals[0])

evaluate_state(self):

Evaluates the current state of the nanocar based on its position within the environment.

The state is given by the angle between the two vectors, namely the vector pointing from
previous nanocar to goal and previous nanocar to current nanocar position.

Functions
angle_between_vectors(v_base, v_car, v_goal)
Return the angle in degrees between the two vectors, namely from ’'v_base to v_car’ and
from ’v_base to v_goal .
Calculates the state and sets the state to 0 before any manipulation was performed
self.state_angle = 0
if self.env.number_of_iterations > 0:
self.state_angle = self.env.angle_between_vectors(self.env.

state_position_of_nanocar_past_present[0],

(11,

def

self.env.state_position_of_nanocar_past_present
self.env.state_position_of_goals[0])

g_table_function(self):

Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.

Functions

convert_distance_to_index (var)
Converts the distance into an index or sub-index. The distance is given by the distance
between the STM-tip and the nanocar.

convert_angle_to_index(var)
Converts the angle into a sub-index. The angle is given by the angle between the two
vectors, namely the vector previous nanocar to goal position and previous nanocar to
current nanocar position.

if self.env.know_Car == True and self.env.number_of_iterations > 1:
qt=20
g_tt_max = 0
q_tt =0

self.evaluate_state ()
self.evaluate_action ()

Action space: converts real actions to index values
action_index = [self.convert_distance_to_index(self.action_distance),
self.convert_angle_to_index(self.action_angle)]

State space: converts real state to index value
state_index = self.convert_angle_to_index(self.state_angle)
next_state_index = action_index[1]

The Q-Learning algorithm

q_t = self.q_table[state_index, action_index[0], action_index[1]]
g_tt_max = np.max(self.q_table[next_state_index])

q_tt = g_t + self .ALPHA«(self.env.reward + self .GAMMAx(q_tt_max) - q_t)

NN NN N NN

Chapter 2. Python Code Development

self.q_table[state_index, action_index[0], action_index[1]] = q_tt

def save_q_table(self):
Saves the Q-table as a binary file.
np.save (f , self.q_table)
print(self.q_table[np.nonzero(self.q_table)])

67

3 Experiment and Proof of Concept

3.1 Experimental Setup

In this work, the nanocar manipulation is carried out on a PAN Slider /K LT-STM/AFM, which is
a low-temperature scanning tunnelling microscope (LT-STM) developed by Createc. The experiment
was carried out at the setup shown in figure 3.1. The equipment for the experiment was kindly
provided by the group of Leonhard Grill from the University of Graz.

The STM provides a fully open OLE/COM control interface, which allows the STM to be controlled
by the agent program.

Both, preparation chamber and STM chamber, are cooled to 5 K. The synthesized nanocars are filled
into a crucible and put inside the preparation chamber, where the nanocars get deposited on the
surface by evaporating them at 150 °C for 30 min. After deposition, the sample was transferred into
the STM chamber. The sample holder resides at room-temperature and therefore increases sample
temperature while transferring it to the STM chamber. Since molecular movement is enhanced at
elevated temperatures, the transfer time should be kept as short as possible.

Figure 3.1: The PAN Slider 4K LT-STM/AFM is a low temperature STM. The nanocar is manoeu-
vred in (a) the STM chamber under UHV conditions. Inside the preparation chamber (b), the nanocar
was deposited on the surface using an evaporator (c). Before depositing the nanocar, the surface was
sputtering with an ion beam system (d) to provide an extremely flat and clean silver (111)-surface.

Chapter 3. Experiment and Proof of Concept 68

The nanocars are extracted from the island using a lateral manipulation. A lateral manipulation is
a manoeuvre, where the STM-tip is moved within the xy-plane of the surface while maintaining a
constant current. When extracting a molecule from an island, a small voltage in combination with a
relatively high current is used and therefore the STM-tip approaches very close to the surface tearing
out nanocars from the island.

While searching for the nanocar, a Z-topography is measured by using a higher voltage, but a much
lower current. This moves the STM-tip further away from the nanocar and prevents additional trans-
lation or rotation. It should be emphasised that it is extremely important to not induce additional
movement while searching, because the agent should learn the cause and effect for specific actions.

The manipulation of the nanocar was done using a vertical manipulation. The vertical manipulation
is used for performing a voltage pulse at a given xy-position while maintaining a constant current.
The electric field of the STM-tip interacts with the dipole of the nanocar and induces a movement
towards the tip. The detailed settings for the different scenarios are given in table 3.1.

Table 3.1: Experimental condition and STM settings

Ts ... Temperature of the sample stage
P ... Pressure within the STM chamber
Vhias ... Bias voltage between tip and surface
I ... Tunnelling current between tip and surface
Zoffset - Z approach towards the surface during the measurement
Parameter Value
Conditions
Ts 5 K
p 5.00 - 10710 mbar

Nanocar extraction: lateral manipulation

Viias 0.010 V

Iy 0.300 nA

Zojfset 0.00 A

Nanocar manoeuvre: vertical manipulation
Viias 1.800 V

Iy 0.012 nA

Zofpset 2.50 A

Nanocar searching: lateral manipulation

Viias 1.000 V

I 0.012 nA

Zoj et 0.00 A

The following table 3.2 shows the conversion formulas for DAC to Angstroms, Ampere, Volt and Pixel
units.

Chapter 3.

Experiment and Proof of Concept

69

Table 3.2:

DAC
DACType
Gain
piezoconstant..

gainpreamp ...

Conversion formulas for DAC units to:

. DAC value
. Digital to analogue converter (DAC) is 20 bit so its value is 20
. Gain for the piezocrystals in X and Y direction is given by 10

Piezoconstant in X and Y direction is 29.42 for the STM used for learning and

43.50 for the STM used in the experiment

Tunnelling current amplification by a factor of 10

Unit Formula
DACT,pe , -
Angstroms | DAC - JPACT e - GainX - Xpiezoconst
DACType . :
DAC - QDACi?Z/Ze -GainY - Ypiezoconst
DACT,pe
Ampere DAC 2DACTyp5.logainpreamp
DACType .
Volt DAC - DA Type GainX
DACT,pe ,
DAC - W - GainY
. DAC
Pixel DeltaX
DAC

DeltaY

Chapter 3. Experiment and Proof of Concept 70

3.2 Experiment

3.2.1 Nanocar extraction procedure

Before the agent can manoeuvre a nanocar, it has to be extracted from an island. Islands with well-
ordered structures, shown in figure 3.2, are formed when only nanocars are present on the surface. If
there are adsorbates within the island, the pattern gets disrupted or is not formed at all. The nanocars
deposited on a silver (111)-surface will form large islands, which preferably start to grow at the step
edges of a terrace.

(b)

Figure 3.2: The STM image of an island on the right-hand side is mostly composed of nanocars (a)
forming perfectly ordered structures. In the magnified image (b) of the island, the individual nanocars
are resolved.

The complete extraction procedure is pictured in figure 3.3. A single nanocar can be extracted by
performing lateral manipulations at the border of an island with the settings given in table 3.1.
The extraction process can be considered successful, when a characteristic Z-signal is measured. An
undamaged and fully functional nanocar is shaped like a peanut, shown in figure 3.3d.

Chapter 3. Experiment and Proof of Concept

71

(b)

;i MM, H, !M
}W 'ﬂ U Y' $’ Iy n{! il 'V f M n"" " ‘N
121:#M i

Figure 3.3: The extraction process of a single nanocar from an island. (a) Overview of an island

composed of almost pure nanocars and a large empty space to manoeuvre afterwards. (b) Magnified
image of pure nanocars at the border of the island and forming a well-ordered structure. (c) The
boarder of the island, where a nanocar is extracted (d) Single nanocar extracted after several lateral
manipulations. Also the island was torn apart in this procedure. (e) Characteristic feedback of the
Z-signal while the nanocar is extracted from the island.

Chapter 3. Experiment and Proof of Concept 72

3.2.2 Al-controlled nanocar

After a single nanocar is extracted, it gets manoeuvred over a racetrack, as it is shown in figure 3.4.
The environment for the agent is defined by the blue dots: the start, one sub-goal and the finish. The
AT completed the racetrack with eight successful and one failed action and is showing a success-rate
of 89%. The nanocar was manoeuvred over a distance of about 7.5 nm in 110 s, which means the
nanocar was manoeuvred at a speed of 248 nm h™! over the surface.

The analysis of the race gives interesting insights into the movement behaviour of nanocars, but also
what crucial role its orientation plays relative to the positioning of the vertical manipulation.

The first vertical manipulation was successful and moved the border of the nanocar towards the STM-
tip. Due to the suboptimally chosen starting position, the movement was just a small fraction. The
second vertical manipulation did not promote a translation, but a rotation - leading to a failed action.
The search algorithm was performed and determined the nanocars centre of mass, which was pretty
close to the previous tip position, which is supporting the theory of rotation. This rotation moved
the border of the nanocar closer to the next position of vertical manipulation, such that although the
position is quite the same, this time the action succeeded.

After a pulling action, the border of the nanocar moved to the tip position, like it can be seen, when the
nanocar reached the finish in figure 3.4b. This is clear, when considering the STM-tip is predominantly
interacting with the dipole of the nanocar, which is pointing outwards and located at its boarder 1.2.
Thus, not the centre of the nanocar, but the head and tail position of the dipole are the ones we are
interested in.

(a) Start (b)

Figure 3.4: The Al manoeuvring the nanocar over a given racetrack defined by start and goals and
solving the racetrack by manoeuvring the nanocar with eight successful actions and one failed action
towards the goal. After a failed action, meaning the nanocar did not translate below the STM-tip,
the search algorithm of the nanocar again.

The environment determines when the goal is reached by defining a distance around the goal. If the
STM-tip is located within this range, the goal is supposed to be reached after a successful action.
This can be seen at the sub-goal, where the Al changes the direction right before the sub-goal, and
manoeuvres the nanocar straight towards the finish, where it again stops within a 1.4 nm radius
around the goal.

73

4 Conclusion and outlook

In the proof of concept 3.2.2, the Al impressively demonstrated its performance. In the prime example
shown here, the nanocar was manoeuvred with eight successful steps towards the goal showing an
success-rate of 89%; compared to 54% for humans. Hence impressive stats were accomplished, as the
nanocar solved a 7.5 nm racetrack in 110 s moving at an average speed of 248 nm h~!. In the first
nanocar race in Toulouse, a 150 nm racetrack was solved in about 1.33 h, which corresponds to an
average speed of 112 nm h™1.

Our experiment showed the alluring prospect of reinforcement learning based Al in controlling single
molecules across a surface. However, not every racetrack could be solved with the current version
of the agent and the issues that persist could not be solved, as this would go beyond the scope of
this thesis. There are minor and major solutions required - like defining states in terms of the dipole
orientation and using a deep-neural network to analyse the current - that will tackle this issue and
improve reliability as well as universality of the Al

In this thesis, the state is based on the fact that the Al will figure out which action is the best in a
particular state, and this state is given by the angle between the vectors, starting at the old nanocar
position once to the to goal and the other to the current nanocar position. This is not the most elegant
way of defining the state of the nanocar, because the nanocar on a FCC (111)-surface has a six-fold
symmetry.

A more sophisticated definition for the states would be to use the angle between dipole direction of
the nanocar relative to the direction of the goal. In that way, the orientation of the nanocar would
be completely defined. This would be done by extending the search algorithm and determining the
dipole direction via the central axis of the nanocar, because the axis and the dipole orientation are
simply shifted by an angle of 90 °.

This approach would be ideal for learning the perfect actions to the corresponding states and vice
versa - knowing the effect (next state) for any taken action. In order to learn perfect correlations
while still being competitive, there would have to be a training mode and a performance mode. In
the training mode, where speed is irrelevant, a topography profile of the nanocar is recorded after
every action in order to determine its exact state. While in performance mode, the topography is only
recorded when the nanocar gets lost and the agent assumes to know every state of the nanocar due
to the correlation of the performed action.

The universality of the agent could be realised by complementing the existing Al, which is responsible
for manoeuvring the nanocar with a deep neural network. The neural network analyses the current
signal, which contains a unique rotation and translation pattern that is acting like a fingerprint for
every molecule. This allows molecules to be identified and provide insight into how they move during
a manipulation.

This can easily be the foundation for more sophisticated techniques of molecular manipulations, where
the Al is not limited to specific molecules, but every molecule can be placed at will - forming the basis
for autonomous assembly and future bottom-up constructions of nanotechnology.

74

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6
1.7

1.8
1.9

21

2.2

2.3

24

2.5

2.6
2.7

a: STM image (120 x 50 nm?) of the Ag (111) surface at the start of the race showing a
Dipolar Racer (red circle) on the left with two nearby nanocars, the two asperity pylons
and the finish line between the juxtaposed pylons (blue circles). b: STM image of the
same surface area where one Dipolar racer has crossed the finish line. The dotted line
shows the 150 nm racetrack. The image is modified from reference [8]
Molecular structure of the Dipolar Racer and its resonance form, which highlights the
strong net dipole direction. The Dipolar Racer is ~2.5 nm in length.[8]
Schematic of the manipulation procedure. A low voltage (0.70 V) is used for imaging
the molecule and a high voltage (1.8 V) is used to induce movement. [8]
An order of magnitude jump in the current versus time plot indicates that the molecule
has translated, after which the molecule rotates. [8]
The race from Toulouse showed a pulling success rate of about 54%. A successful and
failed pulling is indicated by either green or red dots respectively. A pulling action is
considered to be successful, if the derivative of the current exceeds a certain threshold
and failed otherwise. In general, the x-axis can be seen as the distance from the STM-
tip to the nanocar or if the pulling action was successful - the travel distance of the
NANOCAT. © « « v v e et e et e e e e e e e e e e e e
A schematic drawing of the agent interacting with the environment through the scanning
tunnelling microscope, which functions as sensor and actuator.
Interaction between agent and state space environments
Conceptual components of a Learning Agent
Left: OpenAI Gym Taxi environment [7] Right: The Q-table for the Taxi environment

The flow diagram for manoeuvring the nanocar across a given race-track by controlling
the STM. The Legend indicates to which class a processes belongs.
GUI to initialize the environment. The number of sub-goals is set in the textbox and a

© 0o O

15

button click reads the relative position (VertX, VertY) of the currently loaded VERT-file. 24

This schematic shows all the states and actions for (a) a successful manoeuvre step
followed by an (b) unsuccessful manoeuvre step, for which the nanocar has to be (c)
located by using the search algorithm. The first two graphs on the right represent
the induced current spectra and its derivatives for a successful and a failed pulling
action and the third graph represents the Z-topography of the nanocar after the search
algorithm is completed.o
Reward function that encourages the agent to move towards the goal and decrease
distance for every time step
Reward function that encourages the agent to pull the nanocar as close to the STM-tip
as possible . . . Lo L
Angle discretization for states and actions oL Lo
The multidimensional Q-table with two highlighted states. The current state of the
nanocar is ,.q; = 5°, which is page 12 in the Q-table. The highest Q-table entry is the
action the agent performs, which is indicated by the purple square in column 45, row
5. This corresponds to action @eq = —10°, dyeqr = 1700 DAC units (= 9.54 A) After

this action is performed, the nanocar is in the next state ¢,.q = —20°, which is page 0.

28

30

31
42

44

List of Figures

75

2.8

2.9

2.10

3.1

3.2

3.3

3.4

A Q-table update process for one time step. Starting at (a) the current state of the
nanocar and the highest Q-value in this state is the performed action. After the action
is performed, (b) the next state, the reward and the highest Q-value of the next state
are determined and used to (c) update the old Q-value by applying the Q-Learning
algorithm. e
The flow diagram for training the agent from human generated data. The Legend
indicates to which class a processes belongs.
How the absolute and relative coordinates are defined by the STM. The origin of the
scanned image is the center of the top boarder, while the offset and therefore the origin
of the absolute coordination system is originated at the top left corner of the absolute
coordination system. L Lo

The PAN Slider 4K LT-STM/AFM is a low temperature STM. The nanocar is manoeu-
vred in (a) the STM chamber under UHV conditions. Inside the preparation chamber
(b), the nanocar was deposited on the surface using an evaporator (c). Before deposit-
ing the nanocar, the surface was sputtering with an ion beam system (d) to provide an
extremely flat and clean silver (111)-surface.
The STM image of an island on the right-hand side is mostly composed of nanocars
(a) forming perfectly ordered structures. In the magnified image (b) of the island, the
individual nanocars are resolved. L L Lo L
The extraction process of a single nanocar from an island. (a) Overview of an island
composed of almost pure nanocars and a large empty space to manoeuvre afterwards.
(b) Magnified image of pure nanocars at the border of the island and forming a well-
ordered structure. (c) The boarder of the island, where a nanocar is extracted (d)
Single nanocar extracted after several lateral manipulations. Also the island was torn
apart in this procedure. (e) Characteristic feedback of the Z-signal while the nanocar
is extracted from the island.o L oo
The Al manoeuvring the nanocar over a given racetrack defined by start and goals and
solving the racetrack by manoeuvring the nanocar with eight and
one failed action towards the goal. After a failed action, meaning the nanocar did not

o6

translate below the STM-tip, the search algorithm of the nanocar again. 72

76

Bibliography

[1] L. Bartels, G. Meyer, and K.-H. Rieder. “Basic Steps of Lateral Manipulation of Single Atoms
and Diatomic Clusters with a Scanning Tunneling Microscope Tip”. In: Phys. Rev. Lett. 79 (4
July 1997), pp. 697-700. DOI: 10.1103/PhysRevLett.79.697. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.79.697.

[2] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[3] Adam Shwartz (eds.) Eugene A. Feinberg. Handbook of Markov Decision Processes: Methods
and Applications. reprint. Springer, 2002. 1SBN: 9780792374596.

[4] Rebala Gopinath, Ravi Ajay, and Churiwala Sanjay. An Introduction to Machine Learning.
Springer International Publishing, 2019.

[5] L. Grill et al. “Rolling a single molecular wheel at the atomic scale”. In: Nature Nanotechnology
(2 Feb. 2007), pp. 95-98. DOI: https://doi.org/10.1038/nnano.2006.210.

[6] Rapenne Gwénagl and Joachim Christian. “The first nanocar race”. In: Nature Reviews Materials
2.6 (June 6, 2017), p. 17040. DOI: 10.1038/natrevmats.2017.40. URL: https://doi.org/10.
1038/natrevmats.2017.40.

[7] Kansal Satwik and Martin Brendan. Reinforcement @Q-Learning from Scratch in Python with
OpenAI Gym. URL: https://www.learndatasci.com/tutorials/reinforcement-q-learning-
scratch-python-openai-gym/.

[8] Grant J. Simpson et al. “How to build and race a fast nanocar”. In: Nature Nanotechnology 12
(2017), pp. 604-606.

[9] Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach. 3rd. Prentice Hall Series
in Artificial Intelligence. Prentice Hall, 2010. 1SBN: 9780136042594.

[10] Richard S. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine
Learning 3 (1988), pp. 9-44. URL: https://doi.org/10.1007/BF00115009.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The
MIT Press, 2018. URL: http://incompleteideas.net/book/the-book-2nd.html.

[12] Christopher J. C. H. Watkins. “Q-learning”. In: Machine Learning 8 (1992), pp. 279-292. URL:
https://doi.org/10.1007/BF00992698.

https://doi.org/10.1103/PhysRevLett.79.697
https://link.aps.org/doi/10.1103/PhysRevLett.79.697
https://link.aps.org/doi/10.1103/PhysRevLett.79.697
arXiv:1606.01540
https://doi.org/https://doi.org/10.1038/nnano.2006.210
https://doi.org/10.1038/natrevmats.2017.40
https://doi.org/10.1038/natrevmats.2017.40
https://doi.org/10.1038/natrevmats.2017.40
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/
https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/
https://doi.org/10.1007/BF00115009
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1007/BF00992698

7

Appendix

The code of the Simulator

The filemanager

import time

from datetime import datetime
import os

import glob

5 import shutil

; import math

import numpy as np

class FileManager(object):
" A class used to read and/or write the VERT-files for either learning form human data or
doing simulations.

get_files : list
provides the complete path for every VERT-file within the ’directory’ sorted by name
get_latest_file : str
provides the complete path for the latest VERT-file in the ’directory’
get_num_files : int
provides the number of files within the given ’directory’
write_simulation_data (xy_data, know_Car=True)
writes artificial data with the STM-tip position and a high or low current dependent on
weather the nanocar is below the tip or not (this is determined randomly)
read_position : array(2)
read X/Y positin form the VERT-file

def __init__ (self, directory_of_data):
self.directory_of_data = directory_of_data
A unique naming scheme for every written VERT-file
self.last_timestamp = None
The number of files within the given ’directory’
self.num_files = 0

def get_files(self):
" Returns the complete path for every VERT-file within the ’directory’ and sorts it by

name
Returns
files : list
A list of strings that contain the complete filepath of every VERT-file withing the
"directory”’

files = sorted(glob.glob("« .VERT"))
self.num_files = len(files)
return files

"""o os.chdir messes up the path as the next time it is called it

def get_latest_file(self):
files = sorted(os.listdir(self.directory_of_data), key=o0s.path.getmtime)
newest = files[-1]
return newest

def get_num_files(self):
return self.num_files

def write_simulation_data(self, xy_data, know_Car=True):

dateTimeObj = datetime .now ()

timestampStr = f"{dateTimeObj.year}-{dateTimeObj.month}-{dateTimeObj.day}_{dateTimeObj.hour
}—{dateTimeObj.minute}-{dateTimeObj.second}.{dateTimeObj. microsecond}"

Appendix

56 self.last_timestamp = timestampStr

57 new_filename = f

59 if know_Car == True:

60 shutil.copyfile(, new_filename)

61 else:

62 shutil.copyfile (, new_filename)

63 with open(new_filename, mode= , encoding =) as f:

64 lines = f.readlines()

65 with open(new_filename, mode= , encoding =) as f:

66 lines[298] = .format(1000, xy_data[0], xy_data[1], 1)+

67 f.writelines(lines)

68

69 def read_position(self, file=None):

70 position = np.empty(2)

71

72 if file is None:

73 file = self.get_latest_file ()

74

75 with open(file , mode= , encoding=) as f:

76 f_data = f.read().split()

78 # X/Y-position from datafile

79 xdac = float(f_data[298].split()[1])

80 ydac = float(f_data[298].split()[2])

81

82 # Offset correction

83 offsetx = float(f_data[20].split()y[11)

84 offsety = float(f_data[21].split(Y[1])

85

86 # Additional parameters

87 dx = float(f_data[3].split(Yy[11)

88 dy = float(f_data[4].split(y[11)

89 nx = float(f_data[5].split(Y[1])

90 ny = float(f_data[6].split(Y[11)

91

92 rot = float(f_data[14].split(Yy[11)

93

94 driftxoff =0

95 driftyoff =0

96

97 # Rotation matrix: cos -sin | xx Xy

98 # sin cos | yx yy

99 Xx_with_rotation = —(xdacsnp.cos(rot=np.pi/180) - ydac«np.sin(rot«np.pi/180) + offsetx -
driftxoff)

100 y_with_rotation = —(xdacsnp.sin(rotsnp.pi/180) + ydac«np.cos(rot«np.pi/180) + offsety -
driftyoff)

101

102 position = [xdac, ydac]

103 return position

104

105 def read_current(self, file=None):

106 if file is None:

107 file = self.get_latest_file ()

108

109 with open(file , mode= , encoding=) as f:

110 f_data = f.read().split()

111 f_It = f_data[299:-1] # Data for current and time

112

113 t =]

114 I =]

115 for z in f_lIt:

116 trunc = z.split()

117 t.append(int(trunc[0]))

118 | .append(float(trunc[3]))

119 data_It = [t, I]

120 return data_lIt

121

122 def read_voltage(self, file=None):

123 if file is None:

124 file = self.get_latest_file ()

125

126 with open(file , mode= , encoding=) as f:

127 f_data = f.read().split()

128 f_Vt = f_data[299:-1] # Data for current and time

129

130 t =[]

131
132
133
134
135
136
137

AW N -

10
11
12

13

15
16
17
18
19
20

NN N
@ N =

NN N
N BN N

N
0

29

Appendix 79
V=]
for z in f_Vt:
trunc = z.split()
t.append(int(trunc[0]))
V.append(float (trunc[1]))
data_Vt = [t, V]
return data_Vt
The environment
from filemanager import FileManager
import numpy as np
import math
import random
import os
import glob
from datetime import datetime
import csv
import itertools
import statistics
from scipy.signal import savgol_filter
import scipy.fftpack
class EnvSimulation (FileManager) :
def __init__(self, pos_Env):
self.directory_of_data = os.getcwd()+
Environment constants
self . TRESHHOLD CURRENT = 4000 # Current treshhold for determining if the nanocar is or

is not below the tip.

self .SEARCH_DISTANCE = 250

self .SEARCH_STEPSIZE = 50

self .DISTANCE_REACH_GOAL = 2500
final goal

Treshhold

Environment variables

self.position_of_environment =
self.
self.
self.
self.

pos_Env

position_stm_tip = np.array(np.zeros(2))
initial_stm_position = None
current_spectrum = []

self.average_current = 0
self.know_Car = True

self.done = False
self.position_nanocar_random =

[None, None]
self.set_current_spectrum_right ()
State variables
self.state_position_of_goals =
self.state_position_of_nanocar_past_present =

Reward variables and initialization

in DAC units between nanocar and sub-goal/

position_nanocar = np.array(self.position_of_environment[0])

np.array(self.position_of_environment[1:])
[self.position_nanocar,

self.position_nanocar]

self.reward =0

self .DISTANCE_ERROR_MAX = 2350

self.distance_to_nearest_goal = 0

self.total_distance_to_goal = 0

self.distance_subgoals = np.zeros(len(self.position_of_environment))

self.init_reward_variables () # Calculates distances between following environment
positions

self.calc_distance () # Calculates distances to the closest sub-goal and to
the final goal

Analysis Variables FIXME: try catch if

try:
files = glob.glob(self.directory_of_data +)
if not files == []:
latest_file = max(files, key = os.path.getctime)
print(latest_file)
with open(latest_file , newline="") as csv_file:

for line in csv_file.readlines(1):
self.number_of_episodes = int(line.split(
else:

self.number_of_episodes = 0

episodes.csv does not

exist

)[1])

63
64
65
66
67
68
69

I~ BEES BEPS BN B |
gl W N =

0 0 N N ~ I
= O © 0 N O

82
83
84

86
87
88

89
90
91
92

93

94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122

129

Appendix 80

print()
except OSError:
self.number_of_episodes = 0

print()

self.datetime_start = datetime.now()
self.datetime_end = 0
self.number_of_manipulations = 0
self.number_of_successful_manipulations = 0
self.number_of_failed_manipulations = 0
self.total_reward_per_episode = 0
self.number_of_searching = 0
self.number_of_search_steps = 0
self.average_steps_for_searching = 0
self.x_history_nanocar = []
self.y_history_nanocar = []
self.x_history_searching_nanocar = []
self.y_history_searching_nanocar = []
self.total_distance = self.total_distance_to_goal+0.000561142

def init_reward_variables(self):
""" Calculates the distance between all following sub-goals or sub-goal to goal that were
set in the initialization step of the environment.
These are necessary for the reward function.
Distance between initial nanocar position to first sub-goal or already to the final goal
self.distance_subgoals[0] = np.linalg.norm(np.subtract(self.position_nanocar,self.
position_of_environment[1]))

Distances between sucessive sub-goals and sub-goal to final goal.
if len(self.position_of_environment) > 1:
for i in range(1,len(self.position_of_environment)):
self.distance_subgoals[i] = np.linalg.norm(np.subtract(self.position_of_environment]|
i-1],self.position_of_environment[i]))

def set_position(self):

""" Writes simulation data

#self.write_simulation_data(self.position_stm_tip, self.know_Car) # know_Car is necessary
for "test data" writing

def random_Car_Data(self):
if np.random.randint(0,100) < 60:
print(
#self.write_simulation_data(self.position_stm_tip, False)
#range_rnd_pos = self .DISTANCE_ERROR_MAX/np.sqrt(2)/2 # Enable!
range_rnd_pos = self .DISTANCE_ERROR_MAX/np.sqrt(2)/5

pos_rnd_x = np.random.randint(-range_rnd_pos, range_rnd_pos)
pos_rnd_y = np.random.randint(-range_rnd_pos, range_rnd_pos)

self.position_nanocar_random[0] = int(np.round(self.position_stm_tip[0] + pos_rnd_x))
self.position_nanocar_random[1] = int(np.round(self.position_stm_tip[1] + pos_rnd_y))
self.set_current_spectrum_wrong ()

#else:

#self.set_position ()

def set_position_history(self):
""" Saves either the position of the nanocar as long as its position is known or the
position of the STM-tip while searching for it.
if self.know_Car == True:
self.x_history_nanocar=np.append(self.x_history_nanocar, self.position_stm_tip[0])
self.y_history_nanocar=np.append(self.y_history_nanocar, self.position_stm_tip[1])
else:
self.x_history_searching_nanocar=np.append(self.x_history_searching_nanocar, self.
position_stm_tip[0])
self.y_history_searching_nanocar=np.append(self.y_history_searching_nanocar, self.
position_stm_tip[1])

def calc_distance(self):
""" Calculates the distance from the nanocar to the nearest goal; and from the nanocar to
the final goal.
Deletes the position of a goal when the goal is reached and also deletes the reward
variable of the previous sub-goal distance.

Calculates the distance to the nearest goal

Appendix 81

130 self.distance_to_nearest_goal = np.linalg.norm(np.subtract(self.position_nanocar, self.
state_position_of_goals[0]))

131 # Calculates the total distance to the goal

132 self.total_distance_to_goal = self.distance_to_nearest_goal

133 for i in range(1,len(self.state_position_of_goals)):

134 self.total_distance_to_goal += np.linalg.norm(np.subtract(self.state_position_of_goals[i
-1],self.state_position_of_goals[i]))

135

136 # When a sub-goal is reached, the sub-goal gets deleted. Also, the reward variable for the
previous sub-goal distance gets deleted.

137 if len(self.state_position_of_goals) > 0:

138 if self.distance_to_nearest_goal < self.DISTANCE_REACH_GOAL:

139 # When a goal is reached, the relative angle changes dramatically , this has to be
compensated by adding the absolute angle

140 self.state_position_of_goals = np.delete(self.state_position_of_goals ,0,0)

141 self.distance_subgoals = np.delete(self.distance_subgoals,0,0)

142

143 def get_nanocar_position(self):

144 """ Returns the latest known position of the nanocar.

145 L

146 return self.position_nanocar

147

148 def get_state_position_of_goals(self):

149 """ Returns all the goal positions, like sub-goals and the final goal.

150

151 Returns

152

153 self.state_position_of_goals : np.array(len(self.position_of_environment[1:]), 2)

154 The goal positions.

155 e

156 return self.state_position_of_goals

157

158 def get_total_distance(self):

159 """ Returns the total distance from the nanocar to the final goal.

160

161 Returns

62 ——————

163 self.total_distance_to_goal : float

164 The total distance from nanocar to goal.

165

166 return self.total_distance_to_goal

167

168 def unit_vector(self, vector):

169 """ Returns the unit vector of the vector. """

170 vector = np.array(vector)

171 if vector.all() ==

172 return [0,0]

173 elif not vector.all() == 0:

174 return vector / np.linalg.norm(vector)

175

176 def distance_between_vectors(self, vector1l, vector2):

177 """ Returns the distance between two vectors.

178

179 Attributes

i

181 vectori : np.array(len(vectorl))

182 Vector 1.

183 vector2 : np.array(len(vector2))

184 Vector 2.

185

186 Return

87 e

188 vector_distance : float

189 The distance between vector1 and vector2.

190 e

191 vectorl = np.array(vectort)

192 vector2 = np.array(vector2)

193 vector_distance = 0

194 if not np.array_equal(vector1 , 6 vector2):

195 vector_distance = np.linalg.norm(np.subtract(vector1 , vector2))

196 return vector_distance

197

198 def angle_between_vectors(self, v_base, v_car, v_goal):

199 """ Return the angle in degrees between the two vectors, namely from ’v_base to v_car’ and

from ’v_base to v_goal .

201

202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242

243

262

264
265
266
267
268
269
270
271
272
273

Appendix 82

Note: The function considers if the relative vector of the nanocar ’'v_base to v_car’ is

positioned

def

clockwise or counter-clockwise from the relative vector ’'v_base to v_goal .

Attributes

v_base : np.array(2)
Vector to the basis.

v_car : np.array(2)
Vector to the nanocar.

v_goal : np.array(2)
Vector to the goal.

angle : float
The angle spanned by the two vectors: ’v_base to v_car’ and from ’v_base to v_goal .
v_base = np.array(v_base)
v_car = np.array(v_car)
v_goal = np.array(v_goal)

Calculates the relative vectors of the nanocar and the goal
v_car_rel = v_car-v_base
v_goal_rel = v_goal-v_base

Calculates the unit vectors of the relative vectors nanocar and goal
v_car_u = self.unit_vector(v_car_rel)
v_goal_u = self.unit_vector(v_goal_rel)

Calculates the angle between the two relative vectors nanocar and goal
angle = np.arccos(np.clip(np.dot(v_car_u, v_goal_u), -1.0, 1.0))=180/np. pi
Use the property of the determinant that is, if the det < 0 the,
relative vector of the nanocar is clockwise to the relative vector of the goal.
if np.linalg.det([v_goal_u,v_car_u]l)<0:
angle = -angle
return angle

set_current_spectrum_right(self):
self.current_spectrum = np.array(self.read_current(self.directory_of_data+ ' /Current_Right.

VERT"))

def

set_current_spectrum_wrong(self):
self.current_spectrum = np.array(self.read_current(self.directory_of_data+ /Current Wrong.

VERT"))

def

get_average_current(self):
""" Calculates and returns the average current of the latest vertical manipulation step.

Functions
stm.get_current_spectrum ()
Reads the current spectrum from the ADC channels of the STMAFM program.

self.current_spectrum : list ([number of datapoints])
Contains the current spectrum.
self.average_current = int(np.mean(self.current_spectrum[self.current_spectrum > 0]))
return self.average_current

Calculates the position of the STM-tip due to a given moving_length

def

calc_next_position(self, length, angle):

angle = angle«np.pi/180

theta = 0

""" Defines the direction the nanocar has to drive. This is the relative
direction the tip will be positioned next, while the distance will be

solved by the neural network. """

dx = np.subtract(self.state_position_of_goals[0][0], self.position_nanocar[0])
dy = np.subtract(self.state_position_of_goals[0][1], self.position_nanocar[1])

if dx>0:
theta = np.arctan(dy/dx)
elif dx<0 and dy>=0:

Appendix 83

274 theta = np.arctan(dy/dx)+np. pi

275 elif dx<0 and dy<O:

276 theta = np.arctan(dy/dx)-np. pi

277 elif dx==0 and dy>0:

278 theta = np.pi/2

279 elif dx==0 and dy<O:

280 theta = -np.pi/2

281

282 #print(f’Angle: {angle«180/np.pi}"’)

283 print(f’ 'Theta: {theta«180/np.pi}")

284 print('Nanocar position: %s % self.position_nanocar)

285 print(Goal position: %s ' % self.state_position_of_goals[0])

286 pos_STM_x = int(np.round(self.position_nanocar[0] + lengthsnp.cos(angle+theta) ,2))

287 pos_STM_y = int(np.round(self.position_nanocar[1] + length«np.sin(angle+theta) ,2))

288

289 self.position_stm_tip = [pos_STM_x, pos_STM_y]

290

291 # Sets the STM-position or puts the nanocar with a certain percentage to a random position

292 self.random_Car_Data ()

293 self.number_of_manipulations += 1

294

295 def check_current_pattern(self):

296 """ Checks if the average current of the current pattern measured after a pulling action is
higher than a certain treshhold.

297 If this is:

298 - TRUE: The position of the nanocar is below the STM-tip - hence it is known

299 - FALSE: The position of the nanocar is not below the STM-tip - hence it is unknown and

a search-algorithm starts searching for the nanocar.
300

301 Functions

30z —_———————

303 get_average_current()

304 Calculates the average current induces to the STM-tip after a pulling action.

305 reward_function ()

306 Calculates the reward the agnet receives.

307 search_car ()

308 Searching the nanocar if the it got lost.

309

310 self.get_average_current()

311

312 if self.average_current >= self .TRESHHOLD_CURRENT and self.know_Car == True:
| is RIGHT

313 print("Current pattern is right!")

314 self.number_of_successful_manipulations += 1

315 self.position_nanocar = self.position_stm_tip.copy ()

316 self.state_position_of_nanocar_past_present = [self.
state_position_of_nanocar_past_present[1], self.position_nanocar]

317 self.initial_stm_position = None

318 self.reward_function ()

319

320 elif self.average_current < self .TRESHHOLD CURRENT and self.know_Car == True:
1 is WRONG

321 print("Current pattern is wrong! == Car is lost ==")

322 self.number_of_failed_manipulations += 1

323 self.know_Car = False

324 self.initial_stm_position = self.position_stm_tip.copy()

325 self.search_car ()

326

327 elif self.average_current >= self .TRESHHOLD_CURRENT and self.know_Car == False:
| is RIGHT

328 print("Current pattern is right! == Car is found ==")

329 self.know_Car = True

330 self.position_nanocar = self.position_stm_tip.copy ()

331 self.state_position_of_nanocar_past_present = [self.
state_position_of_nanocar_past_present[1], self.position_nanocar]

332 self.reward_function ()

333

334 def search_car(self):

335 XXX XXX XXX Adjust search parameters such that it is in the dimension of the nanocar XXX
XXX XXX

336 """ Search for the nanocar in a circular pattern with increasing radius. A high current
response will indicate, that the nanocar is below the STM-tip.

337

338 Functions

339 ———————

340 define_voltage_pulse_searching ()

Appendix 84

341 Defines the voltage pulse to search for the nanocar such that it does not translate
when the voltage is applied.

342 set_position ()

343 Sets the STM-tip position based on the search-algorithm.

344 e

345 # The center of the search-algorithm is the last pulling position of the STM-tip

346 centre_of_search_algorithm = self.position_stm_tip.copy()

347 self .number_of_searching+=1

348 search_steps=0

349 # Positions the STM-tip in a circular pattern and search pattern with increasing radius

350 for radii, phi in itertools.product(range(self.SEARCH_STEPSIZE, 10000, self.SEARCH_STEPSIZE)

, range(0, 370, 5)): #FIXME: radii and angle step size
dx = radii*np.cos(phi*np.pi/180)
dy = radii=np.sin(phi*np.pi/180)
self.position_stm_tip = [int(round(centre_of_search_algorithm[0] + dx)), int(round(
centre_of_search_algorithm[1] + dy))]
4 search_steps+=1
55 self.check_distance_to_random_nanocar ()
56 self.check_current_pattern ()
7 self.set_position_history ()
58 self.number_of_search_steps+=1

359

360 # If the current pattern is right, searching is finished

361 if self.know_Car == True:

362 break

363

364 def check_distance_to_random_nanocar(self):

365 distance = self.distance_between_vectors(self.position_stm_tip, self.position_nanocar_random
)

366 if distance <= self.SEARCH _DISTANCE:

367 self.set_current_spectrum_right ()

368

369 def reward_function(self):

370 """ Calculates the reward to measure the performance of the agents actions. The reward is

calculated by using two functions.

71 1. Reward function calculates how precisely the nanocar has moved below the STM-tip
72 2. Reward function calculates how close the nanocar moved towards the goal.
73

| Functions

6 distance_between_vectors(vectorl, vector2)

77 Calclates the distance between two vectors.

79 self.reward =0

380

381 if self.number_of_manipulations >= 1:

382 position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]

383 position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]

384 position_of_nearest_goal = self.state_position_of_goals[0]

385

386 # Calculates the distane to the goal before and after the pulling action

387 distance_of_past_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_past, position_of_nearest_goal)

388 distance_of_present_nanocar_to_goal = self.distance_between_vectors(
position_of_nanocar_present, position_of_nearest_goal)

389 difference_in_distance_from_goal_between_pulling_action = np.subtract(

distance_of_past_nanocar_to_goal, distance_of_present_nanocar_to_goal)
390

391 # Calculates by how much the nanocar translated to an unknown position

392 if self.initial_stm_position is None:

393 nanocar_deviates_from_initial_stm_position = 0

394 self.initial_stm_position = position_of_nanocar_present

395 else:

396 nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(self.

initial_stm_position , position_of_nanocar_present)
397

398 # Calculates the reward using two reward functions

399 self.reward = 0

400 # 1. Reward function

401 if difference_in_distance_from_goal_between_pulling_action > 0 and self.
total_distance_to_goal > O:

402 self.reward += 0.5+(1-self.distance_to_nearest_goal/self.distance_subgoals[0])

403 elif difference_in_distance_from_goal_between_pulling_action <= 0 and self.
total_distance_to_goal >= 0:

404 self.reward -= 1

405 # 2. Reward function
406 if nanocar_deviates_from_initial_stm_position <= self.DISTANCE ERROR MAX:

407

408
409
410
411
412
413
414
415
416
417

ot Ut C
OIS

o C

IS IS I B S R
J o @

o

Appendix

85

self.reward += 1-math.pow(nanocar_deviates_from_initial_stm_position/self.
DISTANCE_ERROR_MAX,0.4)
self.total_reward_per_episode += self.reward
print (f 'Reward: {self.reward}’)
def is_done(self):
if len(self.state_position_of_goals) <= 0:
self.done = True
self.datetime_end = datetime.now ()
self.number_of_episodes+=1
print("The course was solved!")
return self.done
The agent
import numpy as np
import random
import math
import os
import glob
import matplotlib.pyplot as plt

from pathlib import Path

import

statistics

from environment import EnvSimulation
from datetime import datetime

class TDQSimulation(object):

This class represents the agent program.
The goal of the agent is to manouvers a nanocar across a race-track and accumulate maximum

reward .

This is done by positioning the STM-tip based on the current state of the nanocar within the

environment.

kn

def

The learning algorithm of the agent is based on an off-policy temporal difference algorithm,
own as 'Q-Learning ’.

convert_distance_to_index ()
Converts the distance into an sub-index for the Q-table.
convert_angle_to_index ()
Converts the angle into an sub-index for the Q-table.
evaluate_state ()
Evaluates the current state of the nanocar based on its position within the environment.
select_move ()
The agent chooses the best action in a particular state based on the Q-table or
by choosing a random action to explore the state.
q_table_function ()
Calcuate the Q-Learning algorithm and updates the Q-table.
save_q_table ()
Saves the Q-table as a binary file.

__init__(self, pos_Env):
Directory to save the Q-table
self.qgtable_directory = os.path.dirname(os.getcwd())+ /Qtable/’

Q-learning hyperparameters
self .ALPHA = 0.9
self . GAMMA = 0.95

Learning variables
self.epsilon = 0.7 # Exploration rate [%]

self .ANGLE_LOWER_LIMIT = -4
self . ANGLE_UPPER_LIMIT = 4
self .DISTANCE_LOWER_LIMIT = 1500
self .DISTANCE_UPPER_LIMIT = 1900

Q-learning variables
self.q_t = []
self.q_tt = []
self.q_tt_max = []

Discretization variables
self .DISTANCE_MIN = 1250
self .DISTANCE_MAX = 2350
self .DISTANCE_DIV = 10

Appendix 86

59 self .DISTANCE_RANGE = self.DISTANCE_MAX-self.DISTANCE_MIN
60 self .DISTANCE_STEP = int (self.DISTANCE_RANGE/self.DISTANCE_DIV)
61 self .AANGLE_MIN = -30

62 self .ANGLE_MAX = 30

63 self .ANGLE RANGE = self .ANGLE_MAX-self .ANGLE_MIN

64 self .AANGLE_DIV = 2

65 self .ANGLE_DIV_ROUGH = 30

66 self .ANGLE_STEP = int(self.ANGLE RANGE/ self.ANGLE_DIV)

68 self .ANGLE RANGE ROUGH = int((180-self.ANGLE MAX)/self.ANGLE_DIV_ROUGH)
69 self .POSITIVE_Q_TABLE_DISCRETIZATION = np.array (np.zeros(int(self.ANGLE_RANGE ROUGH)))
70 self .NEGATIVE_Q_TABLE_DISCRETIZATION = np.array (np.zeros(int(self.ANGLE_ RANGE ROUGH)))

72 # Q-table initialization based on discretization variables

73 for i in range(self.ANGLE RANGE ROUGH) :

| # Additional 7 States: [30, 180]

5 self .POSITIVE_Q_TABLE_DISCRETIZATION[i] = self.ANGLE MAX+self .ANGLE_DIV_ROUGH+i+self.
ANGLE_DIV_ROUGH/2

76 # Additional 7 States: [-30,-180)

77 self .NEGATIVE_Q_TABLE_DISCRETIZATION[i] = self.ANGLE_MIN-self .ANGLE_DIV_ROUGH+i-self.
ANGLE_DIV_ROUGH/2

79 # State variables

80 self.state_angle = 0

81

82 # Action variables

83 self.action_distance = 0

84 self.action_angle =0

86 # Initialize environment

87 self.env = EnvSimulation (pos_Env)

88

89 self.q_table = np.zeros ([self .ANGLE_STEP+self .ANGLE RANGE ROUGH+2, self .DISTANCE_STEP+1,
self .ANGLE_STEP+self .ANGLE_RANGE ROUGH=*2])

90

91 # Load existing Q-table

92 files = glob.glob(f)

93 if not files == []:

94 latest_file = max(files , key=os.path.getmtime)
95 self.q_table = np.load(latest_file)
96 print(latest_file)

97 print(self.qg_table[np.nonzero(self.q_table)])
98 print(

99 else:

100 print ()

101

102

103

104 def convert_distance_to_index(self, var):

105 """ Converts the distance into an index or sub-index. The distance is given by the distance
between the STM-tip and the nanocar.

106

107 Note: In general the index determines exactly where the entry is located in the Q-table.
This subsequently means an entry of

108 the multidimensional Q-table uniquely defines the state and the action.

109

110 Return

T —————

112 Returns the distance as index value.

113 T

114 var = np.round(var)

115 index_of_var = 0

116 if var <= self .DISTANCE_MAX and var >= self.DISTANCE_MIN:

117 index_of_var = np.round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV,1)

118 elif var > self.DISTANCE_MAX:

119 index_of_var = np.round ((self.DISTANCE_MAX-self.DISTANCE_MIN)/self.DISTANCE_DIV,1)

120 return int(index_of_var)

121

122 def convert_angle_to_index(self, var):

123 """ Converts the angle into an sub-index. The angle is given by the angle between the two
vectors, namely the vector

124 previous nanocar to goal position and previous nanocar to current nanocar position.

125

126 Note: In general the index determines exactly where the entry is located in the Q-table.
This subsequently means an entry of

127 the multidimensional Q-table uniquely defines the state and the action.

129
130
131

132
133
134
135
136
137
138

139
140

141
142
143
144
145
146
147
148
149
150
151
152
153

154

155
156
157
158
159

160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

188

189

190

191

192

193

194

Appendix

87

Returns the angle as index value.

if var >= self .ANGLE_MIN and var <= self.ANGLE _MAX:
return int(np.around((var+self .ANGLE MAX)/self.ANGLE_DIV,1)) + self.ANGLE RANGE_ROUGH
else:
#var = np.around(var,-1)
if var <= self .ANGLE_MIN:
return —-np.digitize (var, self .NEGATIVE_Q_TABLE_DISCRETIZATION) + self.
ANGLE_RANGE_ROUGH
elif var >= self .ANGLE MAX:
index = np.digitize (var, self.POSITIVE_Q_TABLE_DISCRETIZATION) + self.
ANGLE_RANGE_ROUGH + self.ANGLE_STEP
if index == 40:
index =0
return index

def evaluate_state(self):
""" Evaluates the current state of the nanocar based on its position within the environment.

The state is given by the angle between the two vectors, namely the vector pointing from
previous nanocar to goal and previous nanocar to current nanocar position.

Functions
angle_between_vectors(v_base, v_car, v_goal)
Return the angle in degrees between the two vectors, namely from ’v_base to v_car’
and from ’v_base to v_goal’.
Calculates the state and sets the state to 0 before any manipulation was performed
self.state_angle = 0
if self.env.number_of_manipulations > 0:
self.state_angle = int(self.env.angle_between_vectors(self.env.
state_position_of_nanocar_past_present[0],

(11,

self.env.state_position_of_nanocar_past_present
self.env.state_position_of_goals[0]))

def select_move(self):
""" The agent chooses the best action in a particular state based on the Q-table or
by choosing a random action to explore the state.

XXX Choose small angles first to fill the Q-table at smaller angles first XXX
XXX Explore function to explore state using random actions XXX
self.evaluate_state ()
print(self.state_angle)
state_angle_index = self.convert_angle_to_index(self.state_angle)
action_index = np.zeros(2)

if random.uniform(0,1) < self.epsilon:
Calculate indices to corresponding limits
lower_distance_index = self.convert_distance_to_index (self.DISTANCE_LOWER_LIMIT)
upper_distance_index = self.convert_distance_to_index (self.DISTANCE_UPPER_LIMIT)+1
lower_angle_index = self.convert_angle_to_index (self.ANGLE_LOWER_LIMIT)
upper_angle_index self.convert_angle_to_index (self.ANGLE_UPPER_LIMIT)+1

Determine all Q-table entries that were never used: Q-value ==
actions_never_used_index = np.where(self.q_table[state_angle_index]==0)

Determine indices which are within the limit
limited_actions_never_used_index = [(actions_never_used_index[0][:] <=
upper_distance_index) &
(actions_never_used_index[0][:] >=
lower_distance_index) &
(actions_never_used_index[1][:] <=
upper_angle_index) &
(actions_never_used_index[1][:] >=
lower_angle_index)]

Select the actions that are never used and are within the limits
actions_never_used_index = [actions_never_used_index[0][
limited_actions_never_used_index],
actions_never_used_index[1]]
limited_actions_never_used_index]]

195
196

197

198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213

214

216

219
220
221
222
223
224
225
226
227
228
229
230
231

232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250

Appendix

88

From all actions within the limit randomly chose one action
action_random_never_used_index = np.random.randint(0,len(actions_never_used_index

[01))
distance_never_used_index = actions_never_used_index[0][
action_random_never_used_index]

angle_never_used_index = actions_never_used_index[1][action_random_never_used_index]

action_index = [distance_never_used_index, angle_never_used_index]
else:
Select the best action
action_best_index = np.where(self.q_table[state_angle_index]==np.max(self.q_table[
state_angle_index]))

From equally good actions select one of them randomly
action_random_best_index = np.random.randint(0,len(action_best_index[0]))
distance_best_index = action_best_index[0][action_random_best_index]
angle_best_index = action_best_index[1][action_random_best_index]
action_index = [distance_best_index, angle_best_index]

self.action_distance = self.DISTANCE_MIN + action_index[0]+self.DISTANCE_DIV
if action_index[1] <= self.ANGLE RANGE ROUGH:
self.action_angle = —-180+action_index[1]+self.ANGLE_DIV_ROUGH
elif action_index[1] >= self .ANGLE RANGE_ROUGH + self.ANGLE_STEP:
self.action_angle = self .ANGLE_MAX+(action_index[1]-self .ANGLE RANGE ROUGH-self .
ANGLE_STEP) « self . ANGLE_DIV_ROUGH
else:
self.action_angle = self .ANGLE_MIN + (action_index[1]-self .ANGLE RANGE ROUGH) «self .
ANGLE_DIV

Calculates the next STM-tip positon based on the agents choosen actions
self.env.calc_next_position(self.action_distance, self.action_angle)

print (f)
print(f)
print(f)

def q_table_function(self):
""" Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.

Functions
convert_distance_to_index (var)
Converts the distance into an index or sub-index. The distance is given by the
distance between the STM-tip and the nanocar.
convert_angle_to_index(var)
Converts the angle into an sub-index. The angle is given by the angle between the
two vectors, namely the vector

previous nanocar to goal position and previous nanocar to current nanocar position.

if self.env.know_Car == True and self.env.number_of_manipulations > 1:
qt=20
g_tt_max =0
q_tt =0

Action space: converts real actions to index values
action_index = [self.convert_distance_to_index(self.action_distance),
self.convert_angle_to_index(self.action_angle)]

State space: converts real state to index value
state_index = self.convert_angle_to_index(self.state_angle)
next_state_index = action_index[1]

The Q-Learning algorithm

q_t = self.q_table[state_index, action_index[0], action_index[1]]
g_tt_max = np.max(self.qg_table[next_state_index])

q_tt = g_t + self .ALPHA«(self.env.reward + self .GAMMAx(q_tt_max) - q_t)
self.q_table[state_index, action_index[0], action_index[1]] = q_tt

def save_q_table(self):
""" Saves the Q-table as a binary file.

path = f
now = datetime .now()
timestamp_file = now. strftime ()

path_with_timestamp = f

try:
print()

NN NN

[SEE IS RN

16

0N N NN
W N = O

¥
=~

1 o O

0N N NN
o N O C

N

Appendix

89

np.save (path_with_timestamp, self.q_table)
print(self.qg_table[np.nonzero(self.q_table)])
except:
try:
os.mkdir(self.qtable_directory)
np.save(path, self.q_table)
np.save (path_with_timestamp, self.q_table)
print(self.q_table[self.q_table >0])
except OSError:
print(% path)
print()
else:
print (% path)

The main

from agent import TDQSimulation

import matplotlib.pyplot as plt
import statistics

import numpy as np

import math

import csv

from itertools import zip_longest
from time import mktime

def draw_position_driving (agent):
plt.figure (2)
ax = plt.axes()
scatter1 = plt.scatter(None, None, color= , marker= , s=100)
scatter2 = plt.scatter (None, None, color= , marker= , $=100)
scatter3 = plt.scatter(None, None, color= , marker= , §=200)

scatter2 plt.scatter(agent.env.x_history_nanocar, agent.env.y_history_nanocar, color=
marker= , $=100)
scatter1 = plt.scatter(agent.env.x_history_searching_nanocar, agent.env.
y_history_searching_nanocar, color= , marker= , §=100)
x_data_Goal = []
y_data_Goal = []
print (len(pos_Env))
print(pos_Env[0][0])
for i in range(len(pos_Env)):
scatter3 = plt.scatter(pos_Env[i][0], pos_Env[i][1], color= , marker= , §=200)

plt.title(, fontsize=24)
plt.xlabel(, fontsize=24)
plt.ylabel(, fontsize=24)

plt.legend ((scatterl, scatter2), (,), scatterpoints=1, loc=

» prop={ 20}
plt.xlim (0, 200000)
plt.ylim(0, 200000)
plt.draw ()

def simulation_routine (agent):

agent.select_move () # Includes set_position() and set_Current/Voltage | For Testing

write Artificial Data
agent.env.check_current_pattern ()
agent.env.calc_distance ()
agent.q_table_function ()
agent.env.set_position_history ()
draw_position_driving (agent)

def epoch_is_done(episode):
final_episode = 100
return episode==final_episode

def analysis(agent):
Calculate Analysis Variables
if agent.env.number_of_searching ==
agent.env.average_steps_while_searching
else:
agent.env.average_steps_while_searching = agent.env.number_of_search_steps/agent.env.
number_of_searching

0

timestamp_file = agent.env.datetime_end. strftime ()

60
61
62
63
64
65
66

67

69
70

79

Appendix 90

path_with_timestamp = f

time_difference_in_s = abs(mktime(agent.env.datetime_start.timetuple ())-mktime(agent.env.
datetime_end.timetuple ()))
speed = agent.env.total_distance_to_goal/time_difference_in_s

with open(path_with_timestamp, , newline="") as csv_file:

csv_write = csv.writer(csv_file)

csv_write . writerow ([, f 1
csv_write.writerow ([

csv_write.writerow ([

csv_write . writerow ([

csv_write.writerow ([, f 1)
csv_write.writerow ([

csv_write . writerow ([

csv_write.writerow ([
csv_write . writerow ([,f

csv_write.writerow ([,f

csv_write.writerow ([1

csv_write.writerows ([[], np.swapaxes(agent.env.position_of_environment,0,1)[0], np.
swapaxes(agent.env.position_of_environment ,0,1)[1],

[], agent.env.x_history_nanocar, agent.env.y_history_nanocar])
csv_write . writerow ([
for i in range(len(agent.env.x_history_searching_nanocar)):
csv_write.writerow ([agent.env.x_history_searching_nanocar[i], agent.env.

y_history_searching_nanocar[i]])

80 pos_Env = np.array([[37000, 10000], [16000,35000]])# [10000,70000], [60000,180000], [150000,75000]])
x_data_Goal =[]
y_data_Goal =[]

81
82

83

g4 def main () :

85
86
87
88
89
90
91
92
93
94
95

96

agent = TDQSimulation (pos_Env)

while not agent.env.is_done():
simulation_routine (agent)

analysis (agent)

agent.save_q_table ()

plt.show ()

	Introduction
	The nanocar
	The nanocar race
	The structure of the Dipolar Racer
	The procedure of manipulating the nanocar
	The human's capability to control the nanocar

	Artificial Intelligence
	Machine Learning
	Intelligent Agents
	Agent and Environment
	Performance Measurement
	The Nature of Environments
	The Structure of Agents

	Reinforcement Learning
	Finite Markov Decision Process
	Agent-Environment Interface
	Goals and Rewards
	Returns and Episodes
	Policies and Value Functions
	Optimal Policies and Optimal Value Functions

	Temporal Difference Learning
	Q-Learning
	Q-Table

	Python Code Development
	Controlling the nanocar by the STM
	The Python to STM interface
	The code of the Python to STM interface

	The graphical user interface for environment initialization
	The code of the GUI

	The design of the environment
	The reward function
	The code of the environment

	The creation of an agent
	The importance of the Q-table size
	Discretization of the multidimensional Q-table
	Update process of the Q-table
	Enhanced exploration and exploitation
	The code of the agent

	The code of the main

	Learning from human experience or existing data
	The filemanager
	The code of the filemanager

	The environment for learning
	The reward function
	The code of the environment

	The learning agent
	The code of the agent

	Experiment and Proof of Concept
	Experimental Setup
	Experiment
	Nanocar extraction procedure
	AI-controlled nanocar

	Conclusion and outlook
	List of Figures
	Bibliography
	Appendix

