

Bernhard Ramsauer, BSc

Autonomous Nanocars based on Reinforcement Learning

MASTER'S THESIS

to achieve the university degree of Diplom-Ingenieur

Master's degree programme: Advanced Materials Science

submitted to Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Oliver Hofmann

Institute of Solid State Physics

AFFIDAVIT
I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.
Date, Signature

Acknowledgment

I would like to express my sincere gratitude to my supervisor Oliver T. Hofmann for the continuous support, his motivation, enthusiasm, and knowledge. His guidance helped me in becoming a better scientist and his style of leadership also immensely assisted my personal development immensely. I would also like to thank my team for all the animated discussions, brainstorming sessions and the inspiring ideas, which have made the development of my thesis so much easier.

I would like to express my immeasurable appreciation and deepest gratitude to Grant Simpson, who not only prepared the sample for me but also assisted me for two weeks straight with carrying out the experiment, measurements, additional specimen preparation and the experimental setup.

Furthermore, I also want to thank Leonhard Grill, Nacci Christophe and Monika Schied for giving me the opportunity to carry out the experiment on their scanning tunnelling microscope but also for the opportunity to test the code in advance whenever there was a time window.

Last but not least, I would like to wholeheartedly thank my partner Sarah for her support and patience. She made it possible for me to completely focus and be on top of things while giving me joy and love. In the end, I would like to express my cordial gratitude to my parents Elfriede and Alfred for giving me encouragement as well as their financial and mental support.

Autonomous Nanocars based on Reinforcement Learning

Bernhard Ramsauer Institute of Solid State Physics, Graz University of Technology

In April 2017, the Rice-Graz team, named after their Universities, with pilot Grant Simpson (Graz), participated at the world's first race of nanocars at the Center for Materials Development and Structure Studies (CEMES-CNRS) in Toulouse, France. At this race, participants had to direct a nanocar across a "racetrack" [6], which is 100 nm long for gold and 150 nm for silver, including two 45° turns and is set on a metallic substrate. In order to control their nanocar, they had to pull it via an STM-tip, but without being in direct contact with the nanocar.

The nanocars can be readily synthesized by using different shapes and properties. The physics that govern the molecule's movement and rotation is complex and involves the interaction between the molecule and the tip as well as the molecule and the substrate [8]. Therefore, it requires some expertise for humans to manoeuvre the nanocar and predict the outcome of a performed action.

This can be seen by taking the race from Toulouse as an example. Although the Rice-Graz team finished in first place by solving the 150 nm in 1.33 h, which gives an average speed of 112 nm/h and was much faster than anyone else, the rate of successful manouevres shows that there is a lot of room for improvement. Over the course of the race, the yield of successful pulling actions was about 54% and therefore only slightly better than predicting a coin flip. Thus, the idea of an artificial intelligence (AI)-controlled nanocar arose, which is the topic of this master thesis.

Here, we show how an artificial intelligence based on reinforcement learning can be implemented to manipulate single molecules. The AI is implemented in the form of an off-policy reinforcement learning algorithm, known as the Q-Learning algorithm. Being off-policy, enables the AI to learn without the necessity of a physical model. This also allows to learn from human-generated data. This means that the AI can be trained without operating directly at the STM, which saves time and operational costs.

After training from a rather small data set, the AI was further trained directly at the STM, where it manoeuvred the nanocar across a silver (111) surface. The AI is doing so by controlling the STM-tip position based on the position of the nanocar on the surface. The experiment showed that it is indeed possible to AI-control the nanocar. In a prime example, the AI showed an incredible success-rate of 89%, manoeuvring the nanocar at an average speed of 248 nm/h, which is more than double the speed compared to the race from Toulouse. Additionally, the experiment yields highly interesting insights that will help to create an efficient, and significantly improved AI that is more accurate and reliable, such that it can set itself apart from the manoeuvrability of humans.

Our results can easily be the basis for more sophisticated techniques of molecular manipulations where molecules are manoeuvred by AIs based on reinforcement learning and complemented by a deep neural network to analyse the current signal. The deep neural network can be used to find the correlations between the molecular manipulation and the induced current signal, which contains a unique rotation and translation pattern that is acting like a fingerprint for every molecule. This allows to identify and dislocate molecules at will, building the basis for future bottom-up constructions of nanotechnology.

Kurzfassung

Autonome Nanocars basierend auf bestärkendem Lernen

Bernhard Ramsauer Institut für Festkörperphysik, Technische Universität Graz

Im April 2017 nahm ein österreichisch-texanisches Team der Universität Graz und der Rice University (Houston, TX) mit "Fahrer" Grant Simpson (Graz) am weltweit ersten Molekül-Rennen teil. Bei diesem ersten Nanorennen der Welt, das am Center for Materials Development and Structure Studies (CEMES-CNRS) im französischen Toulouse stattfand, mussten die Fahrzeuge mithilfe eines Rastertunnelmikroskops (REMs) entlang eines vorgegebenen Parcours, eine Strecke von 100 Nanometern auf Gold bzw. 150 nm auf Silber inklusive zweier 45 °-Kurven, manövriert werden. Dabei durfte die Spitze des REM keinen direkten Kontakt mit dem Nanocar haben.

Nanocars mit unterschiedlichen Formen und Eigenschaften können auf einfache Weise hergestellt werden. Die Physik dahinter, welche für Bewegungen und Rotationen der einzelnen Moleküle verantwortlich ist, gestaltet sich allerdings als sehr komplex und beinhaltet auch die Wechselwirkung von Molekül zur Metallspitze sowie von Molekül zur Oberfläche. Ein Nanocar zu manövrieren und das Ergebnis einer Handlung vorherzusagen, ist deshalb für Menschen alles andere als einfach.

Das kann anhand des Rennens in Toulouse veranschaulicht werden. Obwohl das Rice-Graz-Team die Strecke von 150 Nanometern innerhalb von 1,33 Stunden zurücklegte und somit als Sieger des Rennens hervorging, ist in Bezug auf die Anzahl der tatsächlich erfolgreichen Manöver noch Luft nach oben. Im Laufe des Rennens waren in etwa 54 % der Zieh-Aktionen erfolgreich und demnach nur etwas höher als die Wahrscheinlichkeit, das Ergebnis eines Münzwurfs richtig zu erraten. Diese Beobachtung führte zur Idee, ein von künstlicher Intelligenz gesteuertes Nanocar zu entwerfen – was auch das Thema dieser Masterarbeit darstellt.

Durch die Implementierung einer künstlichen Intelligenz, welche auf bestärkendem Lernen basiert und Aktionen auch dann ausführen kann, wenn sich die Umgebung fortlaufend verändert, können einzelne Moleküle manipuliert werden. Die künstliche Intelligenz wird als off-policy-Algorithmus, auch bekannt als Q-Learning, implementiert. Durch den off-policy-Algorithmus kann die künstliche Intelligenz auch ohne das Vorhandensein eines physischen Modells lernen – demnach kann auch von Daten gelernt werden, die von Menschen generiert wurden. Da dazu nicht direkt am Rastertunnelmikroskop gearbeitet werden muss, werden Zeit und Kosten gespart.

Nachdem die künstliche Intelligenz zunächst von einigen wenigen Daten gelernt hatte, wurde sie direkt am Rastertunnelmikroskop trainiert. Die KI schafft dies, indem sie die Position der Metallspitze des REMs aufgrund der Positionierung des Nanocars auf der Oberfläche kontrolliert. Dieses Experiment zeigte, dass es durchaus möglich ist, ein Nanocar mittels einer KI zu steuern. Im erfolgreichsten Fall konnte die KI eine Erfolgsrate von 89 % erzielen, als das Nanocar mit durchschnittlich 248 nm/h und somit im Vergleich zum Rennen in Toulouse mehr als doppelt so schnell manövriert wurde. Durch das Experiment konnten außerdem wichtige Erkenntnisse für die Entwicklung einer effizienteren, genaueren und verlässlicheren KI gewonnen werden, die sich auch von der menschlichen Manövrierfähigkeit abhebt.

Unsere Ergebnisse können als Ausgangspunkt für komplexere Manipulationen an Molekülen dienen, bei der Moleküle mit Hilfe einer auf bestärkendem Lernen basierenden KI manövriert werden und das induzierte Stromsignal mit Hilfe eines Deep-Learning neuronalen Netzes (DLNN) analysiert wird. Dadurch können Moleküle identifiziert und willkürlich platziert werden, was die Grundlage für zukünftige Bottom-up-Konstruktionen in der Nanotechnologie darstellt.

The mind drives the mass

PUBLIUS VERGILIUS MARO

Contents

		Introduction 1						
	1.1	The n	anocar					
		1.1.1	The nanocar race					
		1.1.2	The structure of the Dipolar Racer					
		1.1.3	The procedure of manipulating the nanocar					
		1.1.4	The human's capability to control the nanocar	4				
	1.2	Artific	ial Intelligence					
		1.2.1	Machine Learning	6				
		1.2.2	Intelligent Agents	6				
			1.2.2.1 Agent and Environment	6				
			1.2.2.2 Performance Measurement					
			1.2.2.3 The Nature of Environments					
			1.2.2.4 The Structure of Agents	8				
	1.3	Reinfo	rcement Learning	10				
		1.3.1	Finite Markov Decision Process	10				
			1.3.1.1 Agent-Environment Interface	10				
			1.3.1.2 Goals and Rewards	10				
			1.3.1.3 Returns and Episodes	11				
			1.3.1.4 Policies and Value Functions	11				
			1.3.1.5 Optimal Policies and Optimal Value Functions					
		1.3.2	Temporal Difference Learning	12				
			1.3.2.1 Q-Learning	13				
			1.3.2.2 Q-Table					
_		_						
2	-		de Development	17				
	2.1		blling the nanocar by the STM					
		2.1.1	The Python to STM interface					
			The Python to STM interface					
			2.1.1.1 The code of the Python to STM interface	19				
		2.1.2	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization					
			2.1.1.1 The code of the Python to STM interface					
		2.1.22.1.3	2.1.1.1 The code of the Python to STM interface					
			2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
			2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
			2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
		2.1.3	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
		2.1.3	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
		2.1.3	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
		2.1.3	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization 2.1.2.1 The code of the GUI					
		2.1.3	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization	24 25 27 29 31 41 42 42 44 46				
		2.1.3 2.1.4 2.1.5	2.1.1.1 The code of the Python to STM interface The graphical user interface for environment initialization	19 24 25 27 29 31 41 41 42 44 46 46 50				
	2.2	2.1.3 2.1.4 2.1.5	2.1.1.1 The code of the Python to STM interface	19 24 25 27 29 31 41 42 44 46 46 50				
	2.2	2.1.3 2.1.4 2.1.5	2.1.1.1 The code of the Python to STM interface	19 22 25 27 29 31 41 41 42 46 46 50 51				
	2.2	2.1.3 2.1.4 2.1.5 Learn	2.1.1.1 The code of the Python to STM interface	19 24 25 27 27 29 31 41 41 42 44 46 46 50 51				
	2.2	2.1.3 2.1.4 2.1.5 Learn	2.1.1.1 The code of the Python to STM interface	19 24 25 27 27 29 31 41 41 42 46 46 50 51				
	2.2	2.1.3 2.1.4 2.1.5 Learn 2.2.1	2.1.1.1 The code of the Python to STM interface	19 24 25 27 27 29 31 41 41 42 46 46 50 51 55				

		2.2.3							
			2.2.3.1 The code of the agent	63					
3	Experiment and Proof of Concept								
	3.1	Exper	imental Setup	67					
	3.2	Exper	iment	70					
		3.2.1	Nanocar extraction procedure	70					
		3.2.2	AI-controlled nanocar	72					
4	Conclusion and outlook								
List of Figures Bibliography									
								Αŗ	ppendix 7

1 Introduction

In the following chapters, I will introduce the world's first nanocar race - the structure of the world's fastest nanocar [8] - and an artificial intelligence designed to control it. Although the designed nanocar finished in first place, we will see that the manoeuvrability, even for an experienced human operator, is almost random - meaning an action leads to an unpredictable outcome. In order to enhance the controllability of the nanocar, a reinforcement-based artificial intelligence is used to control the nanocar on an beyond human-level of accuracy.

On the one hand, this thesis provides the complete design process for an artificial intelligence as well as the python code that is used to control the nanocar. On the other hand, it provides the physics and structure behind the nanocar and a glance on the theory of artificial intelligence by providing a detailed description of reinforcement learning and the applied learning algorithm, known as Q-Learning. The complete python code is fully annotated and for easier understanding described literally and figuratively in chapter 2. The code provides a program (agent) that can learn from human generated data and a program to control the scanning tunnelling microscope.

1.1 The nanocar

This section will provide a short introduction to the world's first nanocar race, the design choices for this particular nanocar - called Dipolar Racer, which closely follows [8], and shows the ability of humans to control nanocars.

1.1.1 The nanocar race

The world's first nanocar race took place on 28 and 29 April 2017 at the Centre for Materials Development and Structure Studies (CEMES-CNRS) in Toulouse, France. Six teams participated with their self-designed nanocars. The teams had to deposit their nanocar on a gold or silver (111) surface at \sim 5 K and manoeuvre it over 100 nm or 150 nm respectively by using a scanning tunnelling microscope. The participants had to reach the goal within 36 hours. The nanocar could either be manoeuvred by using the tip-induced electric field gradient or the inelastic electron tunnelling current. Thus, no mechanical manipulation, such as pushing with the STM-tip, was allowed.

The deposition procedure is as follows. The nanocars were deposited on the metallic surface and then located by imaging the surface by using the STM. At the beginning, a large area is being imaged to find a racetrack that fulfils the rules of the race. These rules are for the racetrack to have at least two 45° turns and dependent on the surface, the racetrack has to be either 100 nm long for gold and 150 nm long for silver. Since the Dipolar Racer moved uncontrollably fast on a gold surface even during STM imaging, the team back then selected to race on silver, which solved this problem. The complete racetrack from the world's first race in Toulouse is shown in figure 1.1.

Figure 1.1: a: STM image (120 x 50 nm²) of the Ag (111) surface at the start of the race showing a Dipolar Racer (red circle) on the left with two nearby nanocars, the two asperity pylons and the finish line between the juxtaposed pylons (blue circles). b: STM image of the same surface area where one Dipolar racer has crossed the finish line. The dotted line shows the 150 nm racetrack. The image is modified from reference [8]

1.1.2 The structure of the Dipolar Racer

In the following, the design features for optimal nanocar manipulation are explained. These are based on decades of STM manipulation and nanocar design expertise.

- 1. The **molecular weight** should be as low as possible, because it is difficult to deposit intact molecules under ultra-high vacuum conditions. A higher molecular weight provides more sites for surface adhesion. This in turn raises the diffusion barrier, and consequently slowing the Dipolar Racer.
- 2. The **wheels** should be aliphatic rather than alkenylic, aromatic or heteroatomic to minimize surface interactions. They should also be large enough to lift the chassis off the surface to minimize chassis-surface attraction. For the Dipolar Racer, the wheels are adamantane since they are aliphatic, while also being relatively spherical. The Dipolar Racer consists of two wheels, which are connected to opposite sites of the chassis. Since surface adhesion should be minimized, two wheels are a good choice for reducing surface interactions, while also lifting the chassis off the surface.
- 3. The **chassis** should be rigid and the **axles** as short as possible to prevent the overall structure from sagging towards the surface. This in turn decreases chassis-surface interactions. However, the axle also has to be long enough to minimize steric interactions between the wheels and the chassis and should be able to rotate freely around the axle to minimize rotational barriers.
- 4. The molecular structure should be **stable** enough to be deposited under ultra-high vacuum conditions, while also prevent bond breaking when a voltage pulse is applied at the STM-tip.

The structure of the nanocar, which in this specific case is called the Dipolar Racer, is shown in figure 1.2 and consists of two wheels, which are connected via axles to the chassis.

For translation on a surface, high forces are necessary to overcome the diffusion barrier. The easiest mechanism to overcome the diffusion barrier is 'pushing' the nanocar with the STM-tip by utilizing Pauli repulsion to translate the molecule. However, the rules of the race state that physical contact is forbidden, allowing only for tip-induced electric field gradient or inelastic electron tunnelling current to translate the nanocar.

Therefore, the Dipolar Racer was equipped with a strong net dipole in the chassis to improve the interaction with the electric field of the STM. The dipole is formed by two functional groups attached to a phenyl ring. The nitro group and the dimethylamine are connected to the phenyl ring and create a net dipole moment, shown in figure 1.2. To achieve a strong donor-acceptor interaction, the two functional groups have to be coplanar with the aromatic ring. This dipole supports the movement towards the STM-tip.

Figure 1.2: Molecular structure of the Dipolar Racer and its resonance form, which highlights the strong net dipole direction. The Dipolar Racer is ~ 2.5 nm in length.[8]

1.1.3 The procedure of manipulating the nanocar

At first, the location of the nanocar is determined by imaging the surface with a low voltage. When the exact position is known, the lateral movement of the nanocar is induced by bringing the STM-tip towards the nanocar and applying a relatively high bias voltage. This creates a strong local electric field at the STM-tip with which the dipole moment interacts. If this field is sufficiently strong with respect to the diffusion barrier on the surface, a lateral displacement of the nanocar towards the STM-tip is induced. Afterwards, the nanocar is re-imaged with a low bias voltage to confirm its position. The schematic for a manipulation procedure is given in figure 1.3. A successful pulling action translates the molecule on average about 1 nm over the surface.

Figure 1.3: Schematic of the manipulation procedure. A low voltage (0.70 V) is used for imaging the molecule and a high voltage (1.8 V) is used to induce movement. [8]

However, since imaging the nanocar after every displacement step is the major bottleneck, as it limits the speed, it should be avoided if possible, as it is very time-consuming and takes between one and five minutes. Thus, instead of repeatedly imaging the surface, the tunnelling current during voltage pulses is measured and used as an indicator of how the nanocar moved towards the STM-tip. The tunnelling current signal has been shown to identify hopping distances and to distinguish between pulling, pushing and rolling modes during a lateral motion of the STM-tip over a molecule [1] and [5].

A tunnelling current profile, as shown in figure 1.4, is measured while a voltage pulse is applied.

Figure 1.4: An order of magnitude jump in the current versus time plot indicates that the molecule has translated, after which the molecule rotates. [8]

Dependent on the translation behaviour of the nanocar, the profile may contain flat regions corresponding to no molecular motion and a region with abrupt and high current changes, which correspond to translation towards the tip and rotation under the tip. Thus, the current signal alone indicates if the translation of the Dipolar Racer was successful without imaging the surface after each step.

In the end, the Dipolar Racer completed the 150 nm silver-surface racetrack in a record time of 1 hour and 33 minutes, travelling at an average speed of almost 112 nm h^{-1} . Seeing these values, one might think that this works extremely well, and it does, but if we take a closer look at the data from Toulouse, there is a lot of time and potential unexploited.

1.1.4 The human's capability to control the nanocar

At first glance, controlling the nanocar over the surface is easy and straightforward, but for humans it is impossible to predict the outcome for a specific action. In figure 1.5 the successful and failed pulling attempts for the complete race from Toulouse are shown, exhibiting a successful pulling rate of about 54%, which is almost random and the predictability is slightly better than a coin flip.

Figure 1.5: The race from Toulouse showed a pulling success rate of about 54%. A successful and failed pulling is indicated by either green or red dots respectively. A pulling action is considered to be successful, if the derivative of the current exceeds a certain threshold and failed otherwise. In general, the x-axis can be seen as the distance from the STM-tip to the nanocar or if the pulling action was successful - the travel distance of the nanocar.

Since the number of variables that have to be considered for its complex behaviour, it is extremely hard or impossible for humans to precisely control the nanocar. Thus, this would be a great opportunity to explore the performance of an artificial intelligence to manoeuvre the nanocar across the racetrack.

1.2 Artificial Intelligence

This chapter will provide you with the necessary concepts for this thesis and make you familiar with the kind of terminology that is used, when it comes to artificial intelligence or AI for short. However, since AI covers a very broad range of topics in the field of computer science, I will not go into much detail, as this would go beyond the scope of this master thesis. However, if you are highly interested in AI, there is a great book called *Artificial Intelligence: A Modern Approach* from *Stuart Russell*, *Peter Norvig*, on which parts of this chapter are based.

The understanding of *how we think* - meaning, how we perceive, predict, understand and process information has preoccupied humans for thousands of years.

The recent development regarding formulating algorithms that mimic thinking processes comprises a multitude of possibilities for solving highly complex problems, which are far beyond human's capability of solving. [9, p. 1]

The underlying potential to solve complex problems or finding meaning in seemingly random datasets, created a new field in computer science. This field is called artificial intelligence, which was invented in 1956 [9, p. 17] and is not just about understanding intelligence but also creating intelligent entities. During the 1990s, these created entities became known as "intelligent agents" [9, p. 26], which will be discussed in section 1.2.2.

1.2.1 Machine Learning

AI is a much broader field of study compared to machine learning (ML). In general, AI aims to make machines "intelligent" using multiple approaches and different learning algorithms, whereas ML focuses on making machines that can learn to perform tasks. Nevertheless, it is quite hard to define whether a machine or entity is intelligent, but it is clear that ML is a subfield of AI. [4, p. 3]

In the field of computer science, machine learning studies algorithms and techniques for automating solutions that are hard to program in computer language. A conventional program consists of two steps. During the first step, a detailed design for the program is created, in terms of *what* the program is supposed to do. During the second step, this detailed design has to be translated into a computer language. Despite a very clear and complete specification about the real environment, this second step is extremely challenging when it comes to real-world problems. This is where ML algorithms come into play. ML can solve many problems in a generic way, meaning that they do not require an explicit design or model of the real environment and are able to learn from data. [4, p. 2]

Machine learning can provide knowledge based on a large dataset by identifying patterns or regularities. This is done by algorithms that construct a statistical model based on the training data, but can also be applied to unknown datasets. [4, p. 4]

1.2.2 Intelligent Agents

The aim of the following section is to explain the terminology used in the field of AI. First and foremost, the concept and meaning of intelligent agents will be described by introducing the idea of an agent and the environment as well as the interaction between them. Moreover, the general terminology which is used in the field of AI research will be introduced.

How well an agent performs in a specific situation, strongly depends on the complexity of the task. However, an universal intelligence that is capable of solving each and every task does not exist.

1.2.2.1 Agent and Environment

The Agent is the computer program that is learning due to interactions with the Environment. The agent perceives the environment through sensors and operates upon it through actuators. [9, p. 34] This concept is illustrated in figure 1.6, where the agent is interacting and modifying the environment through the scanning tunnelling microscope (STM). Thus, it is immediately clear that for the precent case the STM is both sensor and actuator.

Figure 1.6: A schematic drawing of the agent interacting with the environment through the scanning tunnelling microscope, which functions as sensor and actuator.

The agent interacts sequentially with the environment, meaning there needs to be a notion of time to uniquely describe each time step. Thus, the system (agent + environment) starts at time 0 and is incremented by 1 before the next observation is received. [4, p. 196] As soon as the objective is achieved, the *episode* is finished.

The agent's choice of actions for a given situation, or *state*, can depend on the complete history of everything the agent has ever perceived. This perceived information for every time step is called *percept sequence*.

The agent's behaviour is described by the *agent function*, that maps any given state to an action. The agent is performing every action towards achieving the objective. Thus, the agent receives a *reward* for each action in order to determine its quality. Designing an excellent reward function is by no means trivial and highly influences the learning rate and performance of the agent.

1.2.2.2 Performance Measurement

An agent without any knowledge about the environment starts exploring the environment. At first, the agent performs random actions for which it gets feedback from the environment. This feedback is a numeric value, usually a real number and known as *reward*.

All agents are programmed with one objective: accumulating maximum reward from the environment due to the action that was taken. Thus, the agent has no direct knowledge about the environment, but it indirectly observes the environment via the reward function. This makes clear - how the *reward structure* is designed, depends on the task-specific objective. [9, p. 37]

1.2.2.3 The Nature of Environments

The state of the environment is a numerical description, which uniquely describes the environment at any given time. The *state* is described by a set of features called *state variables*. The state within the environment at a specific time is determined by the numeric values of these state variables.

The total number of possible environment states is given by the dot product of the number of values for each of the feature variables. E.g.: There are four feature variables and each contains 20 entries, then the state space of the environment or the total number of possible states is 160,000. This immediately implies the necessity of a discrete state space, as for real feature values the number of entries rapidly goes to infinity. This mapping from the real space to the state space is called discretization. This discretization is mostly caused by limited memory capacity. [4, p. 199]

Figure 1.7 shows the schematic drawing for how the agent is interacting with the discrete environment.

Figure 1.7: Interaction between agent and state space environments

At this point, it should be emphasised that the agent is not directly interacting with the real environment (real space), but the discrete environment state space. In other words, due to the discretization, the agent perceives the state space instead of the real space. A more detailed description about the environment is given in chapter 2.1.3.

The agent receives the state and the reward from the discrete environment and performs an action. After the action was performed, the time is incremented. Afterwards, the environment passes on the next state and reward to the agent. This creates a recurrent sequence of state s, reward r and action $a s_0, r_0, a_0, s_1, r_1, a_1, ...s_t, r_t, a_t, ...$, which is known as trajectory. A full trajectory from the initial state to the final state is known as episode. [4, p. 200]

1.2.2.3.1 Markov Decision Process

The agent-environment framing is described by a mathematical model known as Markov Decision Process (MDP). In order to formulate a finite MDP, the state space and action space has to be finite. The finite MDP is a model, where at any time t, from some state s_t and with some state transition probability, the system performs any action a_t that is available in this state s_t and for which a one-step reward r(s,a) is gained. [3, p. 3]

In a stochastic environment, the outcome is predictable for any given state and possible action within this state. If the chosen action at time t is independent of the history of all states or actions, up to t-1, then these states are known as *Markov states*. In reinforcement learning, we only consider environments that can be described in terms of Markov-states. Environments are described by Markov-state-environments because of their easy analysis and appliance to many real-world situations.

The mathematical description of MDPs is stated in chapter 1.3.1.

1.2.2.4 The Structure of Agents

The focus of AI is to design an agent program that maps from perceptions of the environments to actions. The architecture is made up of the computing device, sensors and actuators:

There are numerous types of agents based on various methods for selecting actions to achieve certain objectives. The most interesting ones for reinforcement learning are called *learning agents*.

1.2.2.4.1 Learning Agents

In many areas of AI, learning agents are the state-of-the-art approach in creating intelligent agents. The huge advantage of learning agents is their ability to operate in initially unknown environments.

A learning agent, as shown in 1.8, can be divided into four conceptual components, which are known as learning element, performance element, critic and problem generator.

The performance element percepts an environment state and selects an action based on its knowledge.

The critic is rating the agents performance based on a performance standard.

The learning element receives feedback from the critic and determines how the actions should be modified to increase positive feedback in the future. The information gathered by the learning element is communicated with the knowledge of the performance element in order to update its knowledge data base.

The problem generator is suggesting new actions, that will lead to unknown responses from the environment and enable the agent to gather new experiences. This exploration of the environment will lead to suboptimal performance at first place; but it enables the agent to discover better actions for the future.

Figure 1.8: Conceptual components of a Learning Agent

Since we are now familiar with the terminology used when it comes to artificial intelligence, we can continue with reinforcement learning.

1.3 Reinforcement Learning

Reinforcement learning is learning by mapping states to actions, such that a numerical reward signal gets maximized. When the agent starts learning, it has no knowledge about the environment and does not know which actions are good or bad, so it discovers the environment by choosing random actions. Each action will then lead to a reward that judges the chosen action based on its performance. The goal of the agent is to accumulate the highest reward. These two characteristics, namely reward maximization and trial-and-error search, are the most important distinguishing features of reinforcement learning compared to other machine learning methods.

The problem of reinforcement learning is formalized using ideas from dynamical systems theory, known as the optimal control of incompletely-known Markov decision processes. The idea, as already mentioned in section 1.2.2, is to present the agent with an environment that captures the most significant aspects of the real problem, while interacting with this environment to achieve a goal. The agent must be able to observe the environment and take actions that affect its state within the environment, while also having a goal. Markov decision processes are intended to include these three features - perceive, action and goal. [11, pp. 1–2]

1.3.1 Finite Markov Decision Process

The following section will give a mathematical representation of finite Markov decision process (MDPs), which was already mentioned in section 1.2.2.3.1. This involves reward evaluation for choosing certain actions in specific situations. In MDPs, either the value function $V^*(s)$ of each state s is estimated by taking an optimal action a, or the state-value function $q^*(s,a)$ for each action in each state is estimated. This chapter closely follows [11, pp. 47–68].

1.3.1.1 Agent-Environment Interface

An MDP consists of a finite set of states, actions and rewards, noted as (S, A, R) respectively. The agent interacts with the environment and at each time step t, the agent perceives some environment state $s_t \in S$ and selects an action based on this state $a_t \in A(s)$. After the action is performed, the time step is increased to t+1 and the agent receives a numerical reward $r \in R \subset \mathbb{R}$ and finds itself in a new state s_{t+1} . The state transition probability $p(s_{t+1}|s_t, a_t)$ is the probability that when performing action a_t in state s_t , the resulting state will be s_{t+1} , and is given by:

$$p(s_{t+1}|s_t, a_t) \doteq \sum_{r \in R} p(s_{t+1}, r|s_t, a_t)$$
(1.1)

The expected rewards for state-action pairs can be computed by:

$$r(s_t, a_t) \doteq \sum_{r \in R} r \sum_{s_{t+1} \in S} p(s_{t+1}, r | s_t, a_t)$$
(1.2)

1.3.1.2 Goals and Rewards

In reinforcement learning, the objective of the agent is formalized by a reward signal that is received from the environment. At each time step, the agent receives the reward as numerical value $r_t \in \mathbb{R}$. The goal is not to maximize the immediate reward, but the cumulative reward.

The use of a reward signal to formalize the idea of an objective is one of the most distinctive features of reinforcement learning. The formulation of a goal using only a reward signal might first appear to be limiting, but in practice it has proved to be flexible and applicable.

1.3.1.3 Returns and Episodes

The agent's goal is to maximize the cumulative reward received in the long run. Let us consider, the received rewards after time step t are denoted $r_{t+1}, r_{t+2}, r_{t+3}, \cdots$, then the maximum expected return, until the terminal state T is reached, is denoted G_t . In the simplest case, the return is the sum of the individual rewards:

$$G_t \doteq r_{t+1} + r_{t+2} + \dots + r_T$$
 (1.3)

After reaching time step T, the episode is finished. This type of return is useful for sequences with a terminal state. When this is not the case and the agent-environment interaction does not end and continues without any limitations, then the return formulated in this way is problematic, because for $T = \infty$ the return itself will be infinite.

Therefore, an additional factor has to be included in equation 1.3 to ensure that the expected *discounted* return is limited with increasing time steps.

$$G_t \doteq r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=1}^{\infty} \gamma^k r_{t+k+1}$$
 (1.4)

where γ is a parameter, $0 \le \gamma \le 1$, called the discount factor.

The discount rate can also show how relevant the immediate and the future reward is, as a discount rate will make future rewards worth only γ^{k-1} compared to immediate rewards.

1.3.1.4 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions V(s), or action-value functions q(s,a) that estimate the expected future reward depending on what action is taken. The policy function π defines the action that the agent is going to perform for a certain state in the environment. Thus, a policy is a mapping from states in the environment to all possible actions that the agent can take, while every action has its probability to be chosen. The performance of the agent is represented by the expected reward $r(s_t, s_{t+1})$ under the policy function π . The function $V_{\pi}(s_t)$ is called state-value function for policy π :

$$V_{\pi}(s_t) = \mathbb{E}_{\pi} \left[\sum_{k=1}^{\infty} \gamma^k r_{t+k+1} | s_t \right]$$
 (1.5)

The agent's objective is finding the best policy, which is the equivalent of accumulating maximum reward. This equation can be rephrased as the expected reward for taking action a_t in state s_t under policy π . The function $q_{\pi}(s_t, a_t)$ is called *action-value function* for policy π :

$$q_{\pi}(s_t, a_t) = \mathbb{E}_{\pi} \left[\sum_{k=1}^{\infty} \gamma^k r_{t+k+1} | s_t, a_t \right]$$
 (1.6)

where $0 \le \gamma \le 1$ is the discount factor that determines the importance of rewards gained in the future.

1.3.1.5 Optimal Policies and Optimal Value Functions

The core of a reinforcement learning problem is finding a policy that achieves maximum reward in the long run. For finite MDPs, a policy π is defined to be better than or equal to another policy π' if its expected reward is greater than or equal to that of π' , or in other words, if $v_{\pi}(s) \geq v_{\pi'}(s)$. There is always at least one policy that is better than or equal to all other policies. This is an optimal policy π_* .

Under an optimal policy, the state-value function is called the optimal state-value function v_* , and defined as:

$$v_*(s_t) \doteq \max_{\pi} v_{\pi}(s_t) \tag{1.7}$$

for $\forall s_t \in S$.

While their optimal action-value function q_* is defined as:

$$q_*(s_t, a_t) \doteq \max_{\pi} q_{\pi}(s_t, a_t) \tag{1.8}$$

for $\forall s_t \in S$ and $\forall a_t \in A(s)$.

Thus, we can write q_* in terms of v_* as follows:

$$q_*(s_t, a_t) = \mathbb{E}[r_{t+1} + \gamma v_*(s_{t+1})|s_t, a_t]. \tag{1.9}$$

1.3.2 Temporal Difference Learning

Temporal Difference (TD) algorithms can learn directly from raw experience or datasets, either generated by other AIs or by humans without the necessity of modelling the environment dynamics. TD methods update their estimates based on already learned estimates to adjust and make more accurate predictions about the future, without waiting for the end of an episode, as it is the case in Monte Carlo methods. Updating the learned values immediately is known as bootstrapping.

The policy evaluation or prediction problem deals with the estimation of the value function v_{π} for a given policy π , while the control problem focuses on iteratively finding an optimal policy.

The value function gets updated for the next time step t+1 by comparing the difference between the observed reward r_{t+1} and the estimate $V(s_{t+1})$:

$$V(s_t) \leftarrow V(s_t) + \alpha \underbrace{\left[\underbrace{r_{t+1} + \gamma V(s_{t+1})}_{TD \ target} - V(s_t) \right]}_{TD \ target}$$
(1.10)

This method is called TD(0) or one-step TD, because it is updated immediately at the transition s_{t+1} by using the reward received in the next time step r_{t+1} .

This is a special case of the general $TD(\lambda)$ method, where λ is a decay parameter with $0 \le \lambda \le 1$. For $\lambda = 1$ every value function $Q(\cdot, \cdot)$ that was visited during the episode gets updated at the end of the episode, we call this *Monte Carlo* (MC) methods. [10]

1.3.2.1 Q-Learning

The reinforcement learning algorithm that is most suitable for our purpose is called the Q-Learning algorithm and is based on Temporal Difference Learning. In temporal difference learning, an entry in the lookup table gets updated for every time step t by using the Q-learning algorithm, whose core is the Bellman equation 1.11.

The state at time t be s_t . The decision process begins at time 0 in the initial state s_0 . At any time t, the possible action depends on the current state $a_t \in \Gamma(s_t)$, where the action a_t represents one or more control variables. After action a is taken, the state changes from s to a new state T(s,a) and the current pay-off from taking action a in state s is F(s,a). The discount factor $0 \le \beta \le 1$ is representing impatience.

$$V(s) = \max_{a \in \Gamma(s)} [F(s, a) + \beta V(T(s, a))]$$
 (1.11)

Q-Learning is based on temporal difference learning and is a model-free approach of reinforcement learning. It enables an agent to act optimally in Markov Decision Processes by experiencing reward based on actions taken and without requiring a model for the environment.

Learning is considered to be off-policy, because the learned action-value function $Q(s_t, a_t)$ directly approximates the optimal action-value function q_* by taking the best action in the particular state s_t . This is known as a greedy policy. However, the policy still has an effect in determining which stateaction pairs $Q(s_t, a_t)$ are visited and updated. An action-value function $Q(s_t, a_t)$ is updated by the following equation, which is based on the Bellman equation.

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \underbrace{[r_{t+1} + \gamma Q(s_{t+1}, a)}_{Q-Learning \ target} - Q(s_t, a_t)]$$

$$(1.12)$$

The agent's next action a_{t+1} is chosen using the behaviour policy $a_{t+1} \sim \mu(\cdot|s_t)$, but the update of $Q(s_t, a_t)$ is performed using an alternative successor action a under policy π , $a \sim \pi(\cdot|s_t)$. Both, the behaviour policy μ and the target policy π , were updated. The target policy π is greedy with respect to $Q(s_t, a_t)$

$$\pi(s_{t+1}) = \arg\max_{a} Q(s_{t+1}, a)$$
(1.13)

and the behaviour policy μ is a greedy policy with respect to $Q(s_t, a_t)$. This is also the reason why Q-learning is off-policy. The action-values $Q(s_t, a_t)$ were updated using the next state action-values $Q(s_{t+1}, a)$ and the greedy action a. The Q-Learning target under an ϵ -greedy policy is given by:

$$\rightarrow r_{t+1} + \gamma Q(s_{t+1}, a) \tag{1.14}$$

$$= r_{t+1} + \gamma Q(s_{t+1}, \arg\max_{a} Q(s_{t+1}, a))$$

$$= r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$$
(1.15)

$$= r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) \tag{1.16}$$

In the end, substituting this expression for the Q-Learning target of equation 1.12, the Q-Learning Control Algorithm is given as:

$$Q^{new}(s_{t}, a_{t}) \leftarrow \underbrace{Q(s_{t}, a_{t})}_{old \ value} + \underbrace{\alpha}_{learning \ rate} \underbrace{\left[\underbrace{r_{t+1}}_{reward} + \underbrace{\gamma}_{discount \ factor}\underbrace{\max_{a} Q(s_{t+1}, a)}_{estimate \ of \ optimal \ future \ value} - \underbrace{Q(s_{t}, a_{t})}_{old \ value}\right]}_{new \ value \ (temporal \ difference target)}$$

$$(1.17)$$

By visiting all states and trying all actions repeatedly, it learns which actions are the best in each state. Thus, Q-Learning Control converges to the optimal action-value function $Q(s_t, a_t) \rightarrow q_*(s_t, a_t)$. [12, pp. 282–285]

This equation builds the core of the agent. Therefore, let us take a closer look and understand the meaning behind the equation, and how it can be tuned using the two hyperparameters α and γ . For the update process, we add the temporal difference times the learning rate α to the old Q-value $Q(s_t, a_t)$. The temporal difference includes the next step reward, which is received after action a_t was performed, plus the discount factor γ times the optimal future Q-value, which is the Q-value for the next state with the action that achieved the most reward. This is called the temporal difference target, which gets subtracted from the old Q-value.

The two hyperparameters α and γ get adjusted over time, as the agent's knowledge about the environment increases.

- α : essentially determines how important or high-weight future rewards are
- γ: determines how impactful already established action-value functions are compared to newly learned ones

The procedural form of the Q-learning algorithm is shown below:

```
Definition 1.3.2.1 Q-Learning (off-policy TD control) for estimating \pi \sim \pi_*
```

```
Algorithm parameters: step size \alpha \in (0,1], small rate of exploration \epsilon > 0
Initialize Q(s, a), for all s \in \mathbb{S}^+, a \in \mathbb{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
      Initialize S
      Loop for each step of episode:
            Choose A from S using policy derived from Q (e.g. \epsilon-greed policy)
            Take action A, observe R, S'
            Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]
            s_t \leftarrow s_{t+1}
      until S is final
```

1.3.2.2 Q-Table

These action-value functions $Q(s_t, a_t)$, or Q-values, are stored in a Q-table. The Q-table is a multidimensional array, where the states can be seen as the pages of the array and the actions are the entries within a page.

In order to understand how Q-Learning updates its Q-values, the famous Taxi problem from the OpenAI Gym library is introduced [2]. The following figure 1.9 shows the Taxi environment, which consists of different fields either directly connected or separated by walls. At the start of an episode, the passenger and the taxi randomly spawn at the field, but the passenger can only spawn at one of the four possible pick-up or destination locations (R, G, Y, B), while the taxi can spawn anywhere except at the passenger location. The goal of the agent, alias the taxi-driver, is to pick up a passenger from one of the four locations and drop him off in another. The total number of states in this environment is given by the grid size 5x5, time another 5 for the possible locations of the passenger, namely the 4 pick-up locations and the location inside the taxi time another 4 for the four destination locations. The agent controls the taxi by using the six possible actions (down, up, right, left, pick-up, drop-off), which are chosen according to the entries in the Q-table. The taxi environment and the corresponding Q-table are shown in figure 1.9. The reward for a successful drop-off is +20, and -1 for every time step it takes. There is also a 10 point penalty for illegal pick-up and drop-off actions and also for driving into walls.

Figure 1.9: Left: OpenAI Gym Taxi environment [7] Right: The Q-table for the Taxi environment

The complete update process for a Q-table entry is given below. Assuming that the taxi is positioned as it is shown in figure 1.9 and moves up.

- 1. Being in state $s_t = 1$ (yellow page) and when performing action $a_t = \uparrow$, we end up in the next state: $s_{t+1} = 250$ (green page)
- 2. We receive a reward r_{t+1} from the environment that judges the quality of the action. The received reward is -1, because every time step is rewarded with -1. This encourages the agent to find the shortest way possible.
- 3. The Q-value at state 1, action \uparrow , given by $Q(1,\uparrow)$, gets updated by the Q-Learning algorithm
- 4. The update procedure adds the temporal difference target to the old Q-value. This includes the received reward $r_{t+1} = -1$ and the highest Q-value entry from the next state $\max_a Q(250, a) = -2$, which was taken from figure 1.9.

5. With the two hyperparameters being $\alpha = 0.95$ and $\gamma = 0.5$ the new Q-value is given as:

$$\begin{array}{lcl} Q^{new}(1,\uparrow) & \leftarrow & Q^{old}(1,\uparrow) + 0.95 \left[r_{t+1} + 0.50 \cdot \max_{a} Q(250,a) - Q^{old}(1,\uparrow) \right] \\ Q^{new}(1,\uparrow) & \leftarrow & -3.00 & + 0.95 \left[-1.00 + 0.50 \cdot (-2.00) - (-3.00) \right] \\ Q^{new}(1,\uparrow) & \leftarrow & -2.05 \end{array}$$

This concludes the introduction chapter and provides all the information to understand the basics of reinforcement learning and the used Q-learning algorithm. This theoretical knowledge will be used to develop an AI written in the programming language Python.

2 Python Code Development

In the following chapters, I will explain how I designed an AI, which is capable of maneuvering a nanocar across a racetrack using a low-temperature scanning tunnelling microscope.

This chapter represents the Python code of the *Q-Learning* based AI. The Python code shows how the agent can learn either from human experience by using already existing datasets or by controlling the nanocar directly at the STM.

The first part of this chapter shows how the agent can **control the nanocar by using the STM**. The STM is connected to the agent via the OLE Control Interface. OLE (Object Linking & Embedding) is a protocol developed by Microsoft, that allows embedding and linking to objects. These objects can implement interfaces to export their functionality - like enabling a Python program to make use of these objects.

The second part of this chapter shows how the agent can **learn from human generated data**. This was implemented, because of the short time the STM was available and to train the agent beforehand from already existing data, like the nanocar race from Toulouse, and to use a pre-trained agent to drive at the STM.

In order to check how the agent would perform at the STM, a simulator was implemented, that provides a quick feedback on how the agent would select actions. Of course the simulation does not provide a physical feedback, which means it can not be used for training the agent, but it will represent the current learning state of the agent. The code of the simulator is given in the appendix 4.

The following chapters provide a fully annotated Python code as well as graphical representations to complement the code in order to give you a better imagination and allow for a much easier understanding.

2.1 Controlling the nanocar by the STM

This chapter explains the Python code I developed to manoeuvre a nanocar across a silver (111)-surface by giving commands to control the scanning tunnelling microscope. The code is explained by going through it one by one. First, the lowest level (hardware) is explained, followed by the GUI and the environment and, last but not least, the agent. In this way, every function that is used in a class is already explained beforehand and the code becomes more clear.

The overview of the code is illustrated by the flow diagram 2.1.

Figure 2.1: The flow diagram for manoeuvring the nanocar across a given race-track by controlling the STM. The Legend indicates to which class a processes belongs.

2.1.1 The Python to STM interface

The STM class utilizes the OLE control interface to connect with the STM and perform actions according to the agent's target. This should be seen as an interface class, where commands are rephrased to use the OLE control interface provided by Createc. The advantage here is that for an OLE enabled device the existing STM-class can be swapped out, while still being able to use the rest of the code. However, depending on your system, you will also have to adjust the threshold values in the environment class.

The STM is connected via *Ethernet* to the STM. For the OLE control interface to function, two packages are required: the *win32com.client* package, which contains a number of modules to provide access to automation objects, and the *pythoncom* package, which initializes COM-ports (hardware interface).

2.1.1.1 The code of the Python to STM interface

```
1 import numpy as np
2 import math
з import glob
4 import os
5 import time
6 import pythoncom
7 import logging
8 import win32com.client
9 import matplotlib.pyplot as plt
10 from scipy import signal
11
12 class STM(object):
13
      The class sends commands to the STM by using the OLE control protocol and interacts with the
14
      STMAFM software.
15
16
      Comment: If you want to see the available methods in python use dir(stm) and for properties use
17
       stm._prop_map_get_
18
19
      Methods
20
      connect()
21
          Initializes the connection to the STM/AFM program.
22
23
24
      update parameters()
           Updates all parameters and synchronizes the parameters with the DSP (dual digital feedback
           controller).
26
27
      get_date()
28
           Reads the date from the STM.
29
30
31
      beep()
           Makes a beep sound and writes 'Beep' into the log-file.
32
33
      get_float_param (name)
34
           Reads the parameter specified by name and tries to convert it to float. The parameter is a
35
           string and has to be within the 'Basic Parameter'-Frame of the STM/AFM software.
36
37
       set_position()
38
           This sets the new position of the STM.
39
40
       get_relative_position()
41
           Returns the actual relative STM position.
42
43
44
       get_absolute_position()
           Returns the actual absolute STM position.
45
46
      define_voltage_pulse()
47
48
           Defines the voltage pulse.
49
      perform vertical manipulation()
50
           This performs a vertical manipulation and generates a current spectrum.
51
52
       perform_lateral_manipulation()
53
54
           This performs a lateral manipulation and creates a Z-topography. This is used for searching.
```

```
56
        get_current_spectrum()
57
            Returns the current spectrum.
58
59
       is_idle()
60
            Checks the status of the STM and returns true when idle.
61
       is_busy()
62
           Checks the status of the STM and returns true when busy.
63
        ...
64
65
            __init__(self):
            self.logger = logging.getLogger("STM")
66
67
            self.pos_STM = []
            self.voltage_STM = 0
68
            self.val_Current = 0
69
70
            self.val_Current_Duration = 0
71
72
       def connect(self):
73
            Initializes the connection to the STM/AFM program.
74
75
76
            self.logger.info("Connecting to STM")
            # Initializes the COM libraries for the calling thread
77
            pythoncom. CoInitialize ()
78
79
            self.stm = win32com.client.Dispatch("pstmafm.stmafmrem")
80
            self.stm.serverneverclose()
81
            self.beep()
            self.update_parameters()
82
83
84
       def update_parameters(self):
85
86
            Updates all parameters and synchronizes the parameters with the DSP (dual digital feedback
            controller).
87
88
            self.logger.info("Synchronize all parameters with DSP")
89
            self.stm.updatedspfbparam()
90
91
            self.stm.updatedspparam()
92
93
94
95
        def get_date(self):
96
97
            Reads the date from the STM.
98
99
            date = self.stm.date
            self.logger.info("read current date: %s" % date)
100
            return date
102
       def beep(self):
103
104
            Makes a beep sound and writes 'Beep' into the log-file.
106
            self.logger.info("Beep!!!")
108
            self.stm.stmbeep()
109
       def get_float_param(self, name):
110
111
            Reads the parameter specified by the argument and tries to convert it to float. The
112
            parameter is a string as it appears in the Basic Parameter form.
113
114
            Parameters
115
116
            name: str
117
                String given by the Basic Parameter in the STM/AFM program and the menu
118
                bar under 'Forms' -> 'Basic Parameters'.
119
120
            Returns
121
            value : float
                The requested value from the STM as float variable - if possible.
124
125
126
            value = self.stm.getparam(name)
127
                value = float(value)
128
129
            except:
                self.logger.error("$s cannot be read" % name)
130
131
            else:
```

```
self.logger.info("read %s of %s" % (name, value))
133
            return value
134
       def set_position(self, pos_STM):
136
            Moves STM-tip to new position. Coordinates are given in relative DAC units (relative: X,Y
137
138
            Offset and rotation are added afterwards) Control is returned after the move has been
            completely finished.
139
140
            Attributes
141
142
            pos_STM : np.array(2)
143
144
                The position from the environment in DAC units.
145
            Functions
146
147
            stm.move\_tip\_relofs(x\_dac, y\_dac, 2000.0, 0.0))
148
                1 | x_dac | single | X new position in relative DAC units
149
150
                    y_dac
                             single
                                      Y new position in relative DAC units
                3 | Speed
                             single | Speed in DAC units/s
151
                4 | Units | integer | reserved
            x_dac, y_dac = float(pos_STM[0]), float(pos_STM[1])
154
            self.stm.move_tip_relofs(x_dac,y_dac,2000,0)
            self.update_parameters()
156
157
158
        def get_relative_position(self):
159
160
            Gets the relative position of the STM in DAC units.
161
            Functions
162
163
            get float param ('name')
164
165
                Returns the value of the standard parameter you passed over to the STM/AFM program.
166
            Return
167
168
            relative_stm_position : np.array(2)
169
                The relative position of the STM-tip.
170
171
            relative_stm_position = np.array(np.zeros(2))
172
            relative_stm_position[0] = self.get_float_param('VertSpecPosX')
173
174
            relative_stm_position[1] = self.get_float_param('VertSpecPosY')
            return relative_stm_position
175
177
        def get_absolute_position(self):
178
            Gets the absolute position of the STM in DAC units.
179
180
            Functions
181
182
            get float param ('name')
183
184
                Returns the value of the standard parameter you passed over to the STM/AFM program.
185
            Return
186
187
            absolute_stm_position : np.array(2)
188
189
                The absolute position of the STM-tip.
190
            X_Offset = self.get_float_param('OffsetX')
191
            Y_Offset = self.get_float_param('OffsetY')
192
            X_Relativ = self.get_float_param('VertSpecPosX')
193
            Y_Relativ = self.get_float_param('VertSpecPosY
194
            absolute_stm_position = np.array(np.zeros(2))
195
            absolute\_stm\_position[0] = X\_Offset+X\_Relativ
196
            absolute_stm_position[1] = Y_Offset+Y_Relativ
197
198
            return absolute_stm_position
199
200
       def define_voltage_pulse(self):
201
            Sets the shape of the voltage pulse for controlling the nanocar. Voltage and time parameters
202
203
            are set individually to generate the voltage pulse.
204
            Parameter
205
206
207
            Functions
208
```

```
209
                  stm.setparam('name', 'value')
210
211
                        Sets the parameter called name to the desired value.
212
                  # Sets the duration of the voltage pulse:
213
                  # The time per datapoint:
214
215
                  # t_datapoint = DSP-Cycles (50kHz) x Vertmandelay = 0.02ms x Vertmandelay
                  # The total time:
                  # t = t_datapoint x number_of_datapoints = 0.02ms x 100 x 1000 = 2s
217
218
                  # Zoffset: 54=0.5A, 65=0.6A, 76=0.7A, 87=0.8A, 98=0.9A, 109=1.0A, 271=2.5A
219
                  self.stm.setparam('Zoffset','271')
self.stm.setparam('Vertmandelay','10
self.stm.setparam('Vertmangain','9')
220
                                                                      <sup>'</sup>100 ')
221
222
223
                 self.stm.setparam('Vpoint0.t','0')
self.stm.setparam('Vpoint1.t','5000')
self.stm.setparam('Vpoint2.t','0')
self.stm.setparam('Vpoint3.t','0')
self.stm.setparam('Vpoint4.t','0')
self.stm.setparam('Vpoint5.t','0')
self.stm.setparam('Vpoint6.t','0')
self.stm.setparam('Vpoint7.t','0')
224
225
226
227
228
229
230
231
232
                  self.stm.setparam('Vpoint0.V', '1800')
self.stm.setparam('Vpoint1.V', '1800')
233
234
                 self.stm.setparam('Vpoint1.V','180
self.stm.setparam('Vpoint2.V','0')
self.stm.setparam('Vpoint3.V','0')
self.stm.setparam('Vpoint4.V','0')
self.stm.setparam('Vpoint5.V','0')
self.stm.setparam('Vpoint6.V','0')
self.stm.setparam('Vpoint7.V','0')
235
236
237
238
239
240
241
                  self.stm.setparam('Zpoint0.t','0')
self.stm.setparam('Zpoint1.t','0')
self.stm.setparam('Zpoint2.t','0')
242
243
244
                  self.stm.setparam('Zpoint3.t','0')
245
                  self.stm.setparam('Zpoint4.t','0')
self.stm.setparam('Zpoint5.t','0')
246
                  self.stm.setparam('Zpoint5.t','0')
self.stm.setparam('Zpoint6.t','0')
self.stm.setparam('Zpoint6.t','0')
247
248
249
250
251
                  self.stm.setparam('Zpoint0.z','0')
                  self.stm.setparam('Zpoint1.z','0')
self.stm.setparam('Zpoint2.z','0')
self.stm.setparam('Zpoint3.z','0')
252
253
254
                  self.stm.setparam('Zpoint4.z','0')
self.stm.setparam('Zpoint5.z','0')
self.stm.setparam('Zpoint6.z','0')
self.stm.setparam('Zpoint6.z','0')
255
256
257
                  self.stm.setparam('Zpoint7.z','0')
258
259
                  self.stm.updatedspmanipparam()
260
261
262
           def perform_vertical_manipulation(self):
263
                  Takes a vertical manipulation spectrum at the current image point X,Y. Control is returned
264
265
                  after the spectrum has been completely finished. The tip remains at the current lateral
266
                  position and the current signal is captured.
267
                  Functions
268
269
                  stm.vertspectrum
270
                        Takes a Vert.Spectrum at the current image point X,Y. Control is returned after the
271
                        spectrum has been completely finished. The tip remains at the current lateral position.
272
273
274
                  stm.vertsave
                        Saves the current vertspecdata.
276
                  # Measures a vertspectrum at current position
277
278
                  self.define_voltage_pulse()
                  self.stm.vertspectrum()
279
280
                  self.stm.vertsave()
281
           def perform_lateral_manipulation(self, start, end, steps):
282
                  Takes a lateral manipulation spectrum between start and end point where steps defines the
284
285
                  number of measured points.
```

```
286
287
            Functions
288
            latmanipxymove(Xstart, Ystart, Xend, Yend, steps, delay, preampgain,
289
                             biasvoltage, currentset)
290
                                          X start position in relative DAC units
                               integer
291
                Xstart
                                          Y start position in relative DAC units
                Ystart
292
            2
                                integer
            3
                Xend
                                          X end position in relative DAC units
293
                                integer
                                           Y end position in relative DAC units
                Yend
294
                                integer
            5
295
                steps
                                integer
                                           Number of steps
                delay
                                           Delay between steps in DSP Cycles
296
                                integer
                preampgain
                                           Gain of Preamp during manipulation
297
                                integer
298
            8
                biasvoltage
                                integer
                                           Bias Voltage during manipulation
                                           Current set point during manipulation in
            9 | currentset
299
                             | integer |
300
                                           constant current mode
301
            Returns
302
303
304
            data : list([steps])
                Contains the Z-topography between start and end.
305
306
307
            self.stm.setparam('Latmanmode', '1')
308
            self.stm.setparam('Latchannelselectval', '1052673')
            self.stm.setparam('LatmanVolt','1000')
self.stm.setparam('Latmangain','9')
self.stm.setparam('Latmanlgi','12')
310
311
312
            self.stm.setparam('Latmanddx','12')
313
314
            self.update_parameters()
            self.stm.latmanipxymove(start[0], start[1], end[0], end[1], steps, 10, 9, 1000, 12)
315
316
            self.update_parameters()
            data = self.stm.latmandata(15,2)
317
            data = np.ravel(data)
318
319
            return data
320
        def get_current_spectrum(self):
321
322
            Reads the current spectrum from the ADC channels of the STM/AFM program.
323
324
            stm. vertdata (channel, units)
325
                1 | channel | integer
                                           \mid 0:Time in sec == 1:X == 2:Y == 3:Current_I
326
                                           \mid 0:Default == 1:Volt == 2:DAC == 3:Ampere ==
327
                2 | units
                              | integer
328
                                             4:nm == 5:Hz
329
330
            Returns
331
            val_I : list([number of datapoints])
332
                Contains the current spectrum.
333
334
335
336
            # Reads time signal in default units
            val_t = self.stm.vertdata(0,0)
337
338
            self.update_parameters()
339
            # Reads current signal from channel (ADCO) in DAC units
340
            val_l = self.stm.vertdata(3,2)
341
342
            return val_t, val_l
343
        def is_idle(self):
344
345
346
            Checks the status of the STM and returns true when idle.
347
348
            status = self.stm.scanstatus
349
            self.logger.info("STM status: %i" % status)
350
351
            if status == 0:
                 self.logger.info("Checking STM status: STM is idle")
352
353
                 self.logger.info("Checking STM status: STM is busy")
354
355
            return status == 0
356
357
        def is_busy(self):
358
            Checks the status of the STM and returns true when busy.
359
            return not self.is idle()
361
```

2.1.2 The graphical user interface for environment initialization

The graphical user interface (GUI), shown in figure 2.2, allows to adjust the number of intermediate goals, also known as sub-goals, and shows a button that reads the current STM-tip position from the STM/AFM software (v.4.3) to initialize the environment. The initialization is done manually by measuring a vertical manipulation spectrum by using the "Single Spectrum" button within the software. A vertical manipulation spectrum measures the current signal at a specific x/y position on the surface and initializes the environment positions for the agent. The initialization spectra are saved as ".VERT-file" in the STM/AFM software. In the end, the necessary parameters for this initialization process can be loaded from the previously saved ".VERT-files" by right clicking the data and select "Load File with All Parameters" or by double clicking it. When all the goal positions are initialized, the GUI closes automatically and the agent takes control of the STM.

The agent needs the starting and goal position of the environment. The GUI is used to add additional sub-goals, because depending on the topography of the surface, it can be necessary to have sub-goals to manoeuvre around obstacles.

Figure 2.2: GUI to initialize the environment. The number of sub-goals is set in the textbox and a button click reads the relative position (VertX, VertY) of the currently loaded VERT-file.

2.1.2.1 The code of the GUI

```
1 from stm import STM
2
3 import numpy as np
4 import collections
5 import logging
6 import random
7 import threading
8 import time
9 import tkinter as tk
10 import os
11
12 # Defines the settings for logging
13 logging.basicConfig(level=logging.INFO,
                        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
14
                       filename='app.log')
15
16 console = logging.StreamHandler()
17 console.setLevel(logging.INFO)
18 formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
19 console.setFormatter(formatter)
20 logging.getLogger(''').addHandler(console)
21
  class GUI(tk.Frame, threading.Thread):
22
23
       The class visualizes the GUI. The button is used to read the position of the currently loaded
24
      VERT-file and the number in the textbox defines how many sub-goals the course has. This
25
26
       positional data is used to initialize the environment.
27
       Attributes
28
29
30
      tk.Frame: class
          A widget container from Tkinter.
31
32
      Methods
33
34
35
      create_widgets()
           Creates the button to initialize the environment.
36
37
38
      button pressed()
          When pressed, the current STM-tip position is read and saved in an array.
39
40
      on_close()
41
           When the GUI is closed, the main window gets terminated and the AI takes
42
43
           control of the STM.
44
45
             _init__(self, stm, master=None):
           self.stm = stm
46
47
           super().__init_
                           (master)
           threading. Thread. __init__(self)
48
49
50
51
           self.logger = logging.getLogger("GUI")
           self.master = master
52
53
           self.grid(column=0, row=0)
54
           \verb|self.master.protocol("WM_DELETE\_WINDOW"", self.on_close|)| \\
56
57
           # Defines the number of positions (>=2) to define the environment: start, goal
58
           self.number_of_points_in_environment = 2
           self.number_of_additional_points_in_environment = 0
59
           # Initializes the array to define the environment
60
61
           self.positions_to_define_environment = np.array(
                                                    np.zeros([self.number_of_points_in_environment,2]))
62
           # Array index
63
           self.position_index = 0
64
65
           self.evt_get_position = threading.Event()
66
           self.evt_interrupted = threading.Event()
67
           self.evt_idle = threading.Event()
69
70
           self.start()
71
72
           self.create_widgets()
73
74
      def create_widgets(self):
75
```

```
Creates the initialization button in the GUI.
76
77
78
             self.master.title("Environment Initialization")
             self.master.geometry('360x100')
79
80
             # Creates label and textbox
81
            tk.Label(self.master, text="Define the number of sub-goals:").grid(column=2, row=1)
82
             self.ent_number_additional_points = tk.Entry(self.master)
             \textcolor{red}{\textbf{self}}.\, \texttt{ent\_number\_additional\_points}.\, \texttt{grid} \, (\texttt{column=2}, \ \ \texttt{row=2})
84
85
             self.ent_number_additional_points.insert(0, '0')
86
            # Creates button
87
88
             self.btn = tk.Button(self.master)
             self.btn["text"] = "Read Position
89
             self.btn["command"] = self.button_pressed
90
             self.btn.grid(column=2, row=4)
91
92
93
        def button_pressed(self):
94
            When the button is pressed, the STM position is read from the latest loaded VERT-file.
95
96
97
             if self.evt idle.is set():
                 self.logger.info("button pressed")
98
99
                 self.get_position()
100
101
        def on_close(self):
            When the GUI is closed, the main window and all its widgets are terminated.
103
             self.evt_interrupted.set()
106
             self.master.destroy()
        def run(self):
108
109
             This method is representing the thread's activity. The GUI is terminated when the
             environment is completely initialized.
111
             self.stm.connect()
             self.logger.info("start loop")
114
             self.evt_idle.set()
116
            # Loops until the environment is completely initialized
117
118
             while (not self.evt_interrupted.is_set() or self.position_index
            == self.number_of_points_in_environment+self.number_of_additional_points_in_environment-1):
119
                 self.number_of_additional_points_in_environment = int(
                                                                       self.ent_number_additional_points.get())
121
122
                 if ((self.number_of_additional_points_in_environment+2)
123
                     > len(self.positions_to_define_environment)):
124
126
                     self.positions_to_define_environment = np.append(
                          self.positions_to_define_environment,
                          np.array(np.zeros([self.number_of_additional_points_in_environment,2])), axis=0)
128
                     print(self.positions_to_define_environment)
129
                 \begin{array}{l} \textbf{elif.} \ (\textbf{self.} \textbf{number\_of\_additional\_points\_in\_environment+2}) \ < \ \textbf{len} \ (\textbf{self.} \end{array}
130
        positions_to_define_environment):
131
132
                     self.positions_to_define_environment = np.delete(
                          self.positions_to_define_environment,
133
                          self.number_of_additional_points_in_environment, axis=0)
134
135
                     print(self.positions_to_define_environment)
136
                 if self.evt_get_position.is_set():
137
                     self.evt_idle.clear()
138
139
140
                     if self.stm.is_busy():
                          self.evt_get_position.clear()
141
                          self.stm.beep()
142
143
                          continue
144
                     self.positions_to_define_environment[self.position_index] = self.stm.
145
        get_relative_position()
                     print(self.positions_to_define_environment)
146
147
                     self.evt_get_position.clear()
                     self.position_index+=1
148
                     self.start_time = time.time()
149
```

```
self.evt idle.set()
151
152
                if self.position_index==self.number_of_points_in_environment+self.
153
        number_of_additional_points_in_environment -1:
154
                    self.evt_interrupted.set()
            print(self.positions_to_define_environment)
156
            self.logger.info("exit loop")
            self.evt interrupted.set()
158
159
            self.master.destroy()
160
       def get_position(self):
161
162
            This method reads the tip-position from the currently loaded VERT-file.
163
164
            if self.evt_idle.is_set():
165
                self.evt_get_position.set()
            else:
167
168
                self.logger.info("Can't get position: Device is not idle")
169
       def get_environment_positions(self):
170
171
            Returns the initialized environment positions.
172
173
            return self.positions to define environment
174
```

2.1.3 The design of the environment

The environment contains all the information the agent needs to interact with the real world. The environment is a representation of the environment in the real world environment, but of course limited in the sense that only necessary information is tracked and synchronized between environments using the STM as sensor and actuator; like it is illustrated in figure 1.6.

The following chapter explains how the environment is designed. The Python code is described alongside with the schematic illustration 2.3 to allow for easier understanding. The schematic shows two situations, one where the manipulation step was successful and another where the manipulation step was unsuccessful, which means the nanocar translated undefined across the surface and has to be found again using a search algorithm.

Figure 2.3: This schematic shows all the states and actions for (a) a successful manoeuvre step followed by an (b) unsuccessful manoeuvre step, for which the nanocar has to be (c) located by using the search algorithm. The first two graphs on the right represent the induced current spectra and its derivatives for a successful and a failed pulling action and the third graph represents the Z-topography of the nanocar after the search algorithm is completed.

In every time t, we know the position of the nanocar and the position of the goal. With this information, the current state of the nanocar can be determined and the agent chooses the best action in this particular state. Note: How the best action is evaluated, is part of the agent program and will be explained in the next chapter. The performed action from the agent's perspective is limited by the positioning of the STM-tip; being the most critical part anyway, and it has no control over the voltage pulse itself - which it could, but that would also increase the complexity.

To (a): We do not know how a state is defined yet, but let us assume the nanocar is currently determined by state φ_0 . Then depending on this *state* φ_0 , the agent chooses the *best action*, which determines where the STM-tip is positioned to pull the nanocar towards the tip. An *action* consists of an angle φ and a distance d. φ is defined as the angle between two vectors, namely the vector from **nanocar to goal** and from **nanocar to STM-tip**.

After the STM-tip is positioned at φ_1 , d_1 , a voltage pulse is applied for 2.5 s and an amplitude of 1.800 V. The high voltage at the sharp STM-tip creates a high electric field, which interacts with the dipole of the nanocar and attracts it towards the tip.

When the nanocar has moved below the tip while applying the voltage pulse, the tunnelling current drastically increases due to the decreasing tunnelling distance. Experiments and a lot of practice showed a successful step can be ensured, if the the derivative in the current shows a **significant step**. The performed action φ_1 , d_1 indicates a successful pulling step, because of the relatively high derivative of the tunnelling current. The *next state* is simply given by the angle of the just performed action φ_1 .

To (b): Now, the nanocar is in state φ_1 and the agent's best action is φ_2 , d_2 . After performing this action and applying the voltage pulse, the nanocar translates over the surface and no change in the tunnelling current is measured. Thus, the nanocar moved to some random position and got lost.

To (c): In order to find its position, a search algorithm kicks in. The algorithm performs multiple successive lateral manipulations, such that a square of 5 nm (twice the nanocar size) is scanned. This square is centred at half the trajectory of the previous known nanocar position and the latest tip position (where the nanocar should be when it would not be lost). The search algorithm creates a Z-topography of this area and calculates its centre of mass. The centre of mass for this area corresponds to the centre of the nanocar and hence its position is found. The parameters of the lateral manipulation are such that the position and orientation of the nanocar remains unchanged. In this case, the next state is not defined by the angle φ_2 of the just performed action, as it was before, but the angle φ_3 , that was determined based on the position obtained by the search algorithm.

2.1.3.1 The reward function

Strictly speaking, the reward function is everything the agent perceives from the environment. There is no position the agent observes or current spectrum it measures. There is only the reward function it receives after every action and which determines how good or bad the performed action was.

As a consequence, the reward function determines the behaviour of the agent within the environment and is the most important choice to make in reinforcement learning. It is easy to define when the agent reached the goal, but it is much more difficult to design the reward function, such that it enables the agent to get there efficiently. Since the reward function determines the agent's behaviour, it is important to encode all the necessary information into the reward function to make sure it is representative of the behaviour you would like to see.

There are two behaviours the agent should learn in order to manoeuvre the nanocar successfully across any given racetrack. These behaviours are realized by using two separate reward functions.

The first reward function R_1 (2.1) encourages the agent to approach the goal. This means decreasing the distance at every time step leading to a positive reward. However, when this is not the case and the distance becomes greater than or equal to the previous time step, it gets penalized by receiving a negative reward, that is twice the highest positive reward it could receive. In this way, the agent wants to decrease the distance towards the goal for every time step. Penalizing equal distances also solves another undesired behaviour, namely the accumulation of maximum reward by just driving in circles around the goal.

The first reward function R_1 (2.1) in figure 2.4 shows the received reward plotted against Δx_t divided by d_{goal} , where Δx_t is the already covered distance and d_{goal} the initial distance between the nanocar and a sub-goal or the nanocar and the final goal.

$$R_1 = \begin{cases} 0.5 \left(\frac{d_{goal} - x_t}{d_{goal}} \right) = 0.5 \left(\frac{\Delta x_t}{d_{goal}} \right) & x_t < x_{t-1} \\ -1 & x_t \ge x_{t-1} \end{cases}$$

$$(2.1)$$

Figure 2.4: Reward function that encourages the agent to move towards the goal and decrease distance for every time step

The second reward function R_2 (2.2) encourages the agent to precisely pull the nanocar below the STM-tip. The reward function is raised by the power of 0.4, which gives it a steep curvature as the nanocar is close to the STM-tip and flattens the further away the nanocar has moved from the tip position. This form of the reward function encourages the agent to move the nanocar directly below the STM-tip.

The second reward function in figure 2.5 shows the reward versus x/d_{max} , where x is the distance from the nanocar to the STM-tip and d_{max} the largest distance where a pulling action can be successful, which is 2350 DAC units ($\triangleq 13.19$ Å). This value comes from the experimental data of the race in Toulouse and will be discussed in chapter 2.2.

The exact position of the nanocar is obtained by determining the centre of mass of the nanocar. If the derivative of the current is **greater or equal** to a certain threshold, the position of the nanocar is assumed to be right below the STM-tip without further investigating its real spatial position. If the derivative of the current is **smaller** than a certain threshold, the search algorithm kicks in and determines the centre of mass of the nanocar. Thus, x the distance from the nanocar to the initial STM-tip position can be calculated. Thus, the reward function is in essence only calculated for unsuccessful pulling actions, as for a successful pulling actions the received reward is just 1.

$$R_2 = \begin{cases} 1 - \left(\frac{x}{d_{max}}\right)^{0.4} & x \le d_{max} \\ 0 & x > d_{max} \end{cases}$$
 (2.2)

Figure 2.5: Reward function that encourages the agent to pull the nanocar as close to the STM-tip as possible

This concludes all the fundamentals necessary to easily understand the following Python code.

2.1.3.2 The code of the environment

```
1 import numpy as np
2 import math
3 import random
4 import itertools
5 import statistics
7 from scipy import ndimage
8 from scipy import signal
9 import matplotlib.pyplot as plt
10 from matplotlib import cm
11 from mpl_toolkits.mplot3d import Axes3D
13 import os
14 import glob
15 from datetime import datetime
16
17 import tkinter as tk
18 import socket # socket.gethostname()
19
20 from gui import GUI
21 from stm import STM
22
  class EnvDriving(object):
24
       This class represents the virtual environment which is essentailly a copy of the real
25
26
       environment but only with the parameters the agent needs.
27
       Methods
28
29
       init_env()
30
31
           Initializes the environment.
32
33
       init_reward_variables()
34
           Calculates the distance between consecutive sub-goals or sub-goal to goal.
35
```

```
set position()
36
           Sets the STM-tip position.
37
38
        get_relative_position()
39
            Overrides the relative STM-tip position of the environment by the position provided by the
40
           STMAFM program.
41
42
       get_current_spectrum()
43
            Returns the current spectrum of the latest vertical manipulation step.
44
45
46
       get_derivative_current()
            Calculates and returns the average current of the latest vertical manipulation step.
47
48
       define_voltage_pulse()
49
           Defines the voltage pulse that is used for pulling the nanocar towards the STM-tip.
50
51
       perform vertical manipulation()
52
           Performs a vertical manipulation by applying a defined voltage pulse and measures the
53
54
            induced current response.
55
56
        set_position_history()
57
            Saves either the position of the nanocar as long as its position is known or the position
           of the STM-tip while searching for it.
58
59
       update environment variables()
60
            Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
61
            final goal. Deletes the position of a goal when the goal is reached and also deletes the
62
           reward variable of the previous sub-goal distance.
63
64
65
       get_nanocar_position()
            Returns the latest known position of the nanocar.
66
67
       get state position of goals()
68
69
           Returns all the goal positions, like sub-goals and the final goal.
70
       get total distance()
71
72
           Returns the total distance from the nanocar to the final goal.
73
       unit vector(vector)
74
           Returns the unit vector of the vector.
75
76
77
       distance_between_vectors(vector1, vector2)
78
            Returns the distance between two vectors.
79
80
       angle_between_vectors(v_base, v_car, v_goal)
81
            Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and
           from 'v_base to v_goal'.
82
83
       calc_next_position(distance, alpha)
84
            Calculates the next position of the STM-tip by using the distance and angle chosen by the
85
86
           agent.
87
88
       check_current_pattern()
89
            Checks if the derivative of the current pattern measured after a pulling action and checks
            if a the treshhold is exceeded or not.
90
91
92
       search_car()
           Search for the nanocar in a circular pattern with increasing radius. A high current response
93
            will indicate, that the nanocar is below the STM-tip.
94
95
96
       reward_function()
            Calculates the reward to measure the performance of the agent's actions. The reward is
97
            calculated by using two functions.
98
99
       is done()
100
           Checks if the episode is finished.
            init (self):
            self.directory_of_data = os.getcwd()+'/Data/1/'
104
           # Instantiation of the STM and connecting to the STMAFM program
106
107
            self.stm = STM()
108
            self.stm.connect()
109
           # Environment constants
            self.TRESHHOLD CURRENT = 700
                                                 # Current treshhold for determining if the
111
                                                 # nanocar is or is not below the tip.
112
```

```
self.SEARCH DISTANCE = 250
113
114
            self.HALF SEARCH LENGTH = 4000
            self.SEARCH_STEPSIZE = 250
            self.DISTANCE_REACH_GOAL = 2500
                                                  # Treshhold in DAC units between nanocar
116
                                                  # and sub-goal/final goal
117
118
119
            # Environment variables
120
            self.position_nanocar = np.array(np.zeros(2))
121
            self.position_stm_tip = np.array(np.zeros(2))
            self.initial_stm_position = None
123
            self.position_of_environment = []
                                                  # Number of manipulations
124
            self.number_of_manipulations = 0
            self.min_height_values = 0
            self.max_height_values = 0
126
            self.current_spectrum = []
            self.derivative_current = []
            self.know Car = True
129
            self.done = False
130
131
            # Initialize the environment using the GUI
133
            self.init_env()
            self.stm.connect()
135
            # State variables
            self.state_position_of_goals = np.array(self.position_of_environment[1:])
            self.state_position_of_nanocar_past_present = [self.position_nanocar, self.position_nanocar]
137
138
139
            # Reward variables and initialization
            self.reward = 0
140
            self.DISTANCE_ERROR_MAX = 2250
141
            self.distance_to_nearest_goal = 0
142
143
            self.total_distance_to_goal = 0
            self.distance_subgoals = np.zeros(len(self.position_of_environment))
            self.init reward variables()
145
146
147
            try:
                files = glob.glob(self.directory_of_data + '*.CSV')
148
149
                if not files == []:
                    latest_file = max(files, key=os.path.getmtime)
                    with open(latest_file, newline='') as csv_file:
                        for line in csv_file.readlines(1):
                             self.number_of_episodes = int(line.split(',')[1])
154
                    self.number_of_episodes = 0
156
                    print("There are no previous episodes.")
            except OSError:
158
159
                self.number_of_episodes = 0
                print("The CSV file does not exist.")
160
161
162
            self.datetime_start = datetime.now()
163
            self.datetime_end = 0
            self.number_of_manipulations = 0
164
165
            self.number_of_successful_manipulations = 0
            self.number_of_failed_manipulations = 0
166
            self.total_reward_per_episode = 0
167
            self.number_of_searching = 0
169
            self . number_of_search_steps = 0
170
            self.average_steps_for_searching = 0
171
            self.x_history_nanocar = []
            self.y_history_nanocar = []
172
173
            self.x_history_searching_nanocar = []
            self.y_history_searching_nanocar = []
174
            # Total racetrack distance in [nm]
175
            self.total_distance = self.total_distance_to_goal*0.000561142
176
177
178
       def init_env(self):
            Initializes the environment by using the GUI. Also the GUI is created here which is
180
181
            based on tkinter.
182
            The first stm-tip position selected with the GUI is equivalent to the nanocar position and
183
184
            the starting position, where the STM starts manouvering the nanocar.
185
            # Creates the tkinter object
186
            root = tk.Tk()
187
            # Creates all widgets in the GUI
188
189
            gui = GUI(self.stm, master=root)
```

```
# Calls the mainloop method which is inherited from Tk
190
191
            gui.mainloop()
192
            # Sets positions for the environment: Nanocar, Sub-goals and Goal
            self.position_of_environment = gui.get_environment_positions()
            # Sets first environment position equivalent to nanocar position and start
194
            # STM-tip position
195
196
            self.position_stm_tip = np.array(self.position_of_environment[0])
            self.position_nanocar = self.position_stm_tip
197
199
        def init_reward_variables(self):
200
            Calculates the distance between all following sub-goals or sub-goal to goal that were set in
201
202
            the initialization step of the environment. These are necessary for the reward function.
203
            # Distance between initial nanocar position to first sub-goal or already to the
204
205
            self.distance subgoals[0] = np.linalg.norm(np.subtract(
206
207
                 self.position_nanocar,
208
                 self.position_of_environment[1]))
209
210
            # Distances between sucessive sub-goals and sub-goal to final goal.
            if len(self.position_of_environment) > 1:
211
                for i in range(1,len(self.position_of_environment)):
212
                     self.distance_subgoals[i] = np.linalg.norm(np.subtract(
213
                         self.position_of_environment[i-1],
214
215
                         self.position_of_environment[i]))
216
        def set_position(self):
217
                Sets the STM-tip position either based on the agents choice or by the search-algorithm.
218
219
                Functions
220
221
                stm.set position(self.position stm tip)
222
223
                     Sets the STM-tip position.
224
                set position history()
225
                     Saves every STM-tip position.
226
227
            \textcolor{red}{\textbf{self}}. \texttt{stm.set\_position} (\textcolor{red}{\textbf{self}}. \textcolor{blue}{\textbf{position\_stm\_tip}})
228
            self.set_position_history()
229
230
231
        def get_relative_position(self):
232
            Overrides the relative STM-tip position of the environment by the position provided by the
233
234
            STMAFM program.
235
            Functions
236
237
            stm.get_relative_position()
238
                Overrides the position_stm_tip of the environment with the position given by the STMAFM
239
240
                program.
241
242
            self.position_stm_tip = self.stm.get_relative_position()
243
        def get_current_spectrum(self):
244
                Returns the current spectrum of the latest vertical manipulation step.
245
246
247
                Function
248
                stm.get current spectrum()
249
                     Reads the current spectrum from the ADC channels of the STMAFM program.
250
251
                Return
252
253
                 self.current_spectrum : list([number of datapoints])
254
255
                     Contains the current spectrum.
            self.current_spectrum = self.stm.get_current_spectrum()
257
258
            return self.current_spectrum
259
        def get_average_current(self):
260
261
                Calculates and returns the average current of the latest vertical manipulation step.
262
                Functions
263
264
                stm.get current spectrum()
265
                     Reads the current spectrum from the ADC channels of the STMAFM program.
266
```

```
267
                Return
268
269
                self.current_spectrum : list([number of datapoints])
270
                    Contains the current spectrum.
271
272
            current_spectrum = np.array(self.stm.get_current_spectrum())
273
            self.average_current = float(np.mean(current_spectrum[current_spectrum > 1000]))
274
275
            print(self.average current)
            return self.average_current
276
277
       def get_derivative_of_current(self):
278
279
            Calculates and returns the derivative of the current from the latest vertical
280
281
            manipulation step.
            Functions
283
284
            stm.get_current_spectrum()
285
                Reads the current spectrum from the ADC channels of the STMAFM program.
286
287
288
            Return
289
            self.current_spectrum : list([number of datapoints])
                Contains the current spectrum.
291
292
293
            time, current_spectrum = self.stm.get_current_spectrum()
            current_spectrum = np.ravel(current_spectrum)
294
295
            #current_spectrum_smoothed = signal.savgol_filter(current_spectrum,53,3)
            self.derivative_current = np.gradient(current_spectrum, axis=0)
296
297
298
            plt.plot(time, current_spectrum)
            #plt.plot(time, current spectrum smoothed)
299
300
            plt.plot(time, self.derivative_current)
301
            plt.show()
302
303
            return self.derivative_current
304
        def define_voltage_pulse(self):
305
306
            Defines the voltage pulse that is used for pulling the nanocar towards the STM-tip.
307
308
309
            Functions
310
311
            stm.define_voltage_pulse()
                Defines the voltage pulse by loading a .VZDATA-file.
312
313
            self.stm.define_voltage_pulse()
314
315
316
       def perform_vertical_manipulation(self):
317
            Performs a vertical manipulation by applying a defined voltage pulse and measures the
318
319
            induced current response.
320
            Functions
321
323
            stm.perform_vertical_manipulation()
324
                Takes a vertical manipulation spectrum at the current image point (x,y).
325
            self.stm.perform_vertical_manipulation()
327
        def set_position_history(self):
328
329
            Saves either the position of the nanocar as long as its position is known or the position of
330
            the STM-tip while searching for it.
331
332
            if self.know_Car == True:
333
                self.x_history_nanocar=np.append(self.x_history_nanocar
334
335
                                                   self.position_stm_tip[0])
336
                self.y_history_nanocar=np.append(self.y_history_nanocar
337
                                                   self.position_stm_tip[1])
338
339
                self.x_history_searching_nanocar=np.append(self.x_history_searching_nanocar,
340
                                                              self.position_stm_tip[0])
                self.y_history_searching_nanocar=np.append(self.y_history_searching_nanocar,
341
                                                              self.position_stm_tip[1])
342
343
```

```
def update_environment_variables(self):
344
345
346
            Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
            final goal. Deletes the position of a goal when the goal is reached and also deletes the
347
            reward variable of the previous sub-goal distance.
348
349
350
            # Calculates the distance to the nearest goal
            self.distance_to_nearest_goal = np.linalg.norm( np.subtract(
351
                                                               self.position nanocar,
352
353
                                                               self.state_position_of_goals[0]))
            # Calculates the total distance to the goal
354
            self.total_distance_to_goal = self.distance_to_nearest_goal
355
356
            for i in range(1,len(self.state_position_of_goals)):
357
                self.total_distance_to_goal += np.linalg.norm(
                                                                  np.subtract(
                                                                   self.state_position_of_goals[i-1],
358
359
                                                                   self.state_position_of_goals[i]))
360
361
            # When a sub-goal is reached, the sub-goal gets deleted. Also, the reward variable for the
        previous sub-goal distance gets deleted.
            if len(self.state_position_of_goals) > 0:
362
363
                if self.distance_to_nearest_goal < self.DISTANCE_REACH_GOAL:</pre>
                    self.state_position_of_goals = np.delete(self.state_position_of_goals,0,0)
364
365
                    self.distance_subgoals = np.delete(self.distance_subgoals,0,0)
366
367
        def get_nanocar_position(self):
368
            Returns the latest known position of the nanocar.
369
370
371
            return self.position_nanocar
372
       def get_state_position_of_goals(self):
373
374
            Returns all the goal positions, like sub-goals and the final goal.
375
376
377
            Returns
378
379
            self.state_position_of_goals : lol
            The goal positions.
380
381
            return self.state_position_of_goals
382
383
384
        def get_total_distance(self):
385
            Returns the total distance from the nanocar to the final goal.
386
387
            Returns
388
389
            self.total_distance_to_goal : float
390
                The total distance from nanocar to goal.
391
392
393
            return self.total_distance_to_goal
394
395
       def unit_vector(self, vector):
396
            Returns the unit vector of the vector.
397
398
399
            Attributes
400
            vector: list
401
                A vector.
402
403
            Return
404
405
            unit_vector : list
406
                The unit vector.
407
408
409
            vector = np.array(vector)
            if vector.all() == 0:
410
411
                return [0,0]
412
            elif not vector.all() == 0:
                unit_vector = vector / np.linalg.norm(vector)
413
414
                return unit_vector
415
       def distance_between_vectors(self, vector1, vector2):
416
417
            Returns the distance between two vectors.
418
419
```

```
Attributes
420
421
            vector1 : list
422
                Vector 1.
423
            vector2 : list
424
425
                Vector 2.
426
            Return
428
429
            vector_distance : float
430
                The distance between vector1 and vector2.
431
432
            vector1 = np.array(vector1)
            vector2 = np.array(vector2)
433
434
            vector_distance = 0
435
            if not np.array_equal(vector1, vector2):
                vector_distance = np.linalg.norm(np.subtract(vector1, vector2))
436
437
            return vector_distance
438
       def angle_between_vectors(self, v_base, v_car, v_goal):
439
440
            Returns the angle in degrees between the two vectors, namely from 'v_base to v_car' and from
441
442
            'v base to v goal'.
            Note: The function considers if the relative vector of the nanocar 'v base to v car' is
444
            positioned clockwise or counter-clockwise from the relative vector 'v_base to v_goal'.
445
446
            Attributes
447
448
            v_base : list
449
450
                Vector to the basis.
451
            v_car : list
                Vector to the nanocar.
452
453
            v_goal : list
454
                Vector to the goal.
455
456
            Return
457
            angle : float
458
                The angle spanned by the two vectors: 'v_base to v_car' and from
459
460
                 'v base to v goal'.
461
462
            v_base = np.array(v_base)
            v car = np. array(v car)
463
464
            v_{goal} = np. array(v_{goal})
465
466
            # Calculates the relative vectors of the nanocar and the goal
            v_car_rel = v_car_v_base
467
            v_goal_rel = v_goal-v_base
468
469
470
            # Calculates the unit vectors of the relative vectors nanocar and goal
            v_car_u = self.unit_vector(v_car_rel)
471
472
            v_goal_u = self.unit_vector(v_goal_rel)
473
            # Calculates the angle between the two relative vectors nanocar and goal
474
            angle = np. \arccos(np. clip(np. dot(v_car_u, v_goal_u), -1.0, 1.0)) *180/np. pi
475
476
            # Uses the property of the determinant that is, if the det < 0 the, relative
            # vector of the nanocar is clockwise to the relative vector of the goal.
477
            if np.linalg.det([v\_goal\_u,v\_car\_u]) < 0:
478
                angle = -angle
479
480
            return angle
481
       def calc_next_position(self, distance, alpha):
482
483
            Calculates the next position of the STM-tip by using the distance and angle chosen by the
484
485
            agent.
            Attributes
487
488
489
            distance: int
                The relative distance the STM-tip is position with respect to the
490
491
                position of the nanocar.
492
            alpha: int
                The relative angle at which the STM-tip is position relative to the
493
                vector reaching from the nanocar to the goal position.
495
            # Converts alpha from degree to radiant
496
```

```
alpha = alpha * np. pi/180
497
            theta = 0
498
499
            # Calculates the angle theta, which correlates the fixed STM coordination
            # system with the relative coordination system of the agent.
500
            dx = \frac{np.subtract(self.state_position_of_goals[0][0], self.position_nanocar[0])}{self.position_nanocar[0]}
501
            dy = np.subtract(self.state_position_of_goals[0][1], self.position_nanocar[1])
502
503
            if dx > 0:
504
505
                theta = np.arctan(dy/dx)
            elif dx<0 and dy>=0:
506
507
                theta = np. arctan (dy/dx)+np. pi
            elif dx<0 and dy<0:
508
509
                theta = np. arctan (dy/dx)-np. pi
            elif dx==0 and dy>0:
510
511
                theta = np.pi/2
            elif dx==0 and dy<0:
                theta = -np.pi/2
514
            # Calculates STM-tip position in the fixed coordination system using the
515
            # relative angle alpha and the absolute angle theta
516
517
            pos\_stm\_x = int(round(self.position\_nanocar[0]+distance*np.cos(alpha+theta),2))
            pos_stm_y = int(round(self.position_nanocar[1]+distance*np.sin(alpha+theta),2))
518
519
            # Sets the new STM-tip position
            self.position_stm_tip = np.array([pos_stm_x, pos_stm_y])
521
522
            self.set_position()
            # Increases the number of manipulation steps
523
            self.number_of_manipulations+=1
524
        def check current pattern(self):
526
527
528
            Checks if the average current of the current pattern measured after a pulling action is
            higher than a certain treshhold.
530
            If this is:
            - TRUE: The position of the nanocar is below the STM-tip
            - FALSE: The position of the nanocar is not below the STM-tip and the
                search-algorithm is executed.
535
            Functions
536
537
538
            get_derivative_current()
539
                Calculates the derivative to the STM-tip induced current after a pulling action.
            reward function()
540
541
                Calculates the reward the agnet receives.
            search_car()
542
                Searching the nanocar if its lost.
543
544
            self . get_derivative_of_current()
545
            if (abs(self.derivative_current) >= self.TRESHHOLD_CURRENT).any() and self.know_Car == True:
546
                          # I is RIGHT
                print("Current pattern is right!")
547
                self.number_of_successful_manipulations += 1
                self.position_nanocar = self.position_stm_tip.copy()
549
                print('Check I - Nanocar (X,Y): %s' % self.position_nanocar)
550
                self.state_position_of_nanocar_past_present = [
552
                     \textcolor{red}{\textbf{self}}. \\ \textbf{state\_position\_of\_nanocar\_past\_present[1]} \,, \\
553
                     self.position_nanocar]
                self.initial_stm_position = None
554
                self.reward_function()
556
            elif (abs(self.derivative_current) < self.TRESHHOLD_CURRENT).any() and self.know_Car== True:
                         # I is WRONG
                print("Current pattern is wrong! == Car is lost ==")
                self.number_of_failed_manipulations += 1
559
560
                self.know Car = False
561
                self.initial_stm_position = self.position_stm_tip.copy()
                print('Check I - STM-tip initial (X,Y): %s' % self.initial_stm_position)
562
563
                self.search_car()
564
       def search_car(self):
565
566
567
            Search for the nanocar in a line-by-line pattern measuring the Z-topography centred around
568
            half the distance betweem the previous nanocar position and the current position of the
            STM-tip, where the nanocar should be. The centre of mass is calculated from the Z-topography
            and determines the nanocar's position.
570
571
```

646

```
Functions
572
573
574
            set_position()
                Sets the STM-tip position based on the search-algorithm.
575
            perform_lateral_manipulation(start, end, steps)
576
                Performs a vertical manipulation between the start and end point and returns the
577
578
                Z-Signal.
            self.number_of_search_steps+=1
580
            # Determines the step size of the y-direction for the search algorithm
581
           step\_size = 500
582
583
584
           # The center of the search-algorithm is the last pulling position of the STM-tip
           centre_of_search_float = np.subtract(self.initial_stm_position, self.position_nanocar)/2+
585
        self.position_nanocar
           centre_of_search_algorithm = [int(round(centre_of_search_float[0]))
                                           int(round(centre_of_search_float[1]))]
587
            print ('Centre of search Algorithm (X,Y): %s' % centre_of_search_algorithm)
588
589
            # Necessary to convert DAC units into pixel
590
591
            deltaX = self.stm.get_float_param('Delta X [DAC]')
            deltaY = self.stm.get_float_param('Delta Y [DAC]
            # Sets relative STM-tip to top left corner
            x_rel_start_for_search = int(round(centre_of_search_algorithm[0]-self.HALF_SEARCH_LENGTH))
596
            y_rel_start_for_search = int(round(centre_of_search_algorithm[1]-self.HALF_SEARCH_LENGTH))
597
            print(f'Relative Search param: x={x_rel_start_for_search} y={y_rel_start_for_search}')
598
            start_lateral_manipulation = [x_rel_start_for_search, y_rel_start_for_search]
            end_lateral_manipulation = np.add(self.position_stm_tip, [self.HALF_SEARCH_LENGTH*2,0])
600
            start_lateral_manipulation_pixel = [start_lateral_manipulation[0]/deltaX
601
602
                                                 start_lateral_manipulation[1]/deltaY]
            end lateral manipulation pixel = [end lateral manipulation[0]/deltaX
603
604
                                               end_lateral_manipulation[1]/deltaY]
605
           # Initialises lateral manipulation to know the number of datapoints the function will
606
       measure
           length_lat_manip_spectrum = len(self.stm.perform_lateral_manipulation(
607
                start_lateral_manipulation,
608
                end_lateral_manipulation
609
                self.HALF_SEARCH_LENGTH + 2))
610
611
612
            # Defines the number of points in the y-direction of the Z-topography
            number_of_steps = int(self.HALF_SEARCH_LENGTH*2/step_size)
613
614
615
            # Initialises the Z-topography
616
           z_topography = np.array(np.zeros([number_of_steps, length_lat_manip_spectrum]))
617
            # Performing lateral manipulations to record the Z-topography
618
            for y in range(0, self.HALF_SEARCH_LENGTH*2, step_size):
619
620
                self.position_stm_tip = [x_rel_start_for_search, y_rel_start_for_search+y]
                self.set_position()
621
622
                start_lateral_manipulation = [x_rel_start_for_search, y_rel_start_for_search+y]
623
                end_lateral_manipulation = np.add(self.position_stm_tip, [self.HALF_SEARCH_LENGTH*2,0])
624
                start_lateral_manipulation_pixel = [start_lateral_manipulation[0]/deltaX
                                                     start lateral manipulation[1]/deltaY]
626
                end_lateral_manipulation_pixel = [end_lateral_manipulation[0]/deltaX
627
628
                                                   end_lateral_manipulation[1]/deltaY]
629
                val_lateral_manipulation = self.stm.perform_lateral_manipulation(
630
                    start_lateral_manipulation,
631
632
                    end lateral manipulation
                    self.HALF_SEARCH_LENGTH + 2)
633
634
635
                # Multiply by -1, because the Z-signal of the piezos is the inverse of the Z-topography.
                z_signal_to_z_topography = np. multiply (val_lateral_manipulation, -1)
                # Creates a Z-topography by filling the matrix row-by-row
637
                z_topography[int(y/step_size)] = z_signal_to_z_topography
638
639
            # Setting all the Z-values below the mean Z-value to 1 to create an improved Z-topography
640
641
            centre_of_mass_threshold = np.mean(z_topography)
642
            super_threshold_indices = z_topography <= centre_of_mass_threshold</pre>
643
            z_topography_improved = z_topography.copy()
            z_topography_improved[super_threshold_indices] = 1
645
```

```
# Calculates the centre of mass from the improved Z-topography; given in indices
647
           centre_of_nanocar = ndimage.measurements.center_of_mass(z_topography_improved)
648
649
           print('Centre of Mass [indices]: %s' % centre_of_nanocar)
650
           # Rescales the centre of mass indices to DAC units
651
           centre_of_nanocar_DAC = [
652
               int(round(centre_of_nanocar[1]*self.HALF_SEARCH_LENGTH*2/length_lat_manip_spectrum)),
653
                int(round(centre_of_nanocar[0]*100))]
655
           print('Centre of Mass [DAC]: %s' % centre_of_nanocar_DAC)
656
657
           # Shows the Z-topography after searching is complete
658
659
           X, Y = np.mgrid[0:np.shape(z_topography)[0], 0:np.shape(z_topography)[1]]
           Z=z_{topography}[X,Y]
660
661
           fig = plt.figure()
           ax = Axes3D(fig)
662
           ax.plot\_surface(X, Y, Z,
663
               rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
664
665
           plt.show()
666
667
           # Calculates the absolute coordinates of the nanocar
           position_nanocar = [x_rel_start_for_search+centre_of_nanocar_DAC[0]
668
                                y_rel_start_for_search+centre_of_nanocar_DAC[1]]
669
            self.position_nanocar = [int(round(position_nanocar[0])),
670
                                     int(round(position_nanocar[1]))]
671
672
            print('Nanocar position (X,Y): %s' % self.position_nanocar)
673
           self.know_Car = True
674
       def reward_function(self):
675
676
           Calculates the reward to measure the performance of the agents actions. The reward is
677
678
            calculated by using two functions.
679
680
            1. Reward function calculates how precisely the nanocar has moved below the STM-tip
681
           2. Reward function calculates how close the nanocar moved towards the goal.
682
           Functions
683
684
           distance between vectors (vector1, vector2)
685
               Calclates the distance between two vectors.
686
687
688
           self.reward = 0
689
           if self.number_of_manipulations >= 1:
690
691
                position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]
               position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]
692
693
                position_of_nearest_goal = self.state_position_of_goals[0]
694
                # Calculates the distane to the goal before and after the pulling action
695
696
               distance_of_past_nanocar_to_goal = self.distance_between_vectors(
697
                                                                 position_of_nanocar_past,
                                                                 position_of_nearest_goal)
698
699
                distance_of_present_nanocar_to_goal = self.distance_between_vectors(
                                                                 position_of_nanocar_present,
700
                                                                 position_of_nearest_goal)
701
               difference_in_distance_from_goal_between_pulling_action = np.subtract(
703
                                                                 distance_of_past_nanocar_to_goal,
704
                                                                 distance_of_present_nanocar_to_goal)
705
                # Calculates by how much the nanocar translated to an unknown position
706
707
                if self.initial_stm_position is None:
                   nanocar_deviates_from_initial_stm_position = 0
708
                    self.initial_stm_position = position_of_nanocar_present
709
                else:
710
                   nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(
711
712
                                                                 self.initial_stm_position
713
                                                                 position_of_nanocar_present)
714
715
               # Calculates the reward using two reward functions
716
                self.reward = 0
               # 1. Reward function
717
718
                if (difference_in_distance_from_goal_between_pulling_action > 0
               and self.total_distance_to_goal > 0):
719
                    720
                elif (difference_in_distance_from_goal_between_pulling_action <= 0</pre>
721
               and self.total_distance_to_goal >= 0):
723
                    self.reward -= 1
```

```
# 2. Reward function
724
                 if nanocar_deviates_from_initial_stm_position <= self.DISTANCE_ERROR_MAX:</pre>
725
726
                     self.reward += 1-math.pow(
                                  nanocar_deviates_from_initial_stm_position/self.DISTANCE_ERROR_MAX, 0.4)
727
            print(f'Reward: {self.reward}')
728
729
730
        def is_done(self):
                Checks if the episode is finished.
731
732
                Returns
733
734
                 self.done : boolean
735
                     Returns TRUE if the episode is finished.
736
737
            if len(self.state_position_of_goals) <= 0:</pre>
738
                 self.done = True
739
                 self.datetime end = datetime.now()
740
741
                 self.number_of_episodes+=1
742
                 print("The episode is finished!")
            return self.done
743
```

2.1.4 The creation of an agent

This is the final part of the program describing how the agent performs actions and learns by exploring and exploiting the environment.

The agent performs actions based on the learned Q-table. The Q-table relates states to actions, a so called state-action pair that is represented as a Q-value within the Q-table. The Q-table represents the knowledge database of the agent and is saved after an episode is finished.

2.1.4.1 The importance of the Q-table size

In table 2.1, you can see how fast the Q-table can drastically increase in size even when the environment is not that complicated. The number of Q-value entries is given by the stats (φ) times actions (φ, d) .

The number of the Q-table entries is simply given by:

$$n = \varphi^2 * d \tag{2.3}$$

The agent uses angles φ ranges from -180 to +180°, where angles are ranging from -4 to +4° relative to the axis, which is defined by the line between the old nanocar position and the goal. These narrow angles are higher resolved by using a discretization of 1° and angles larger than ± 4 ° with a discretization of 30°. The distance for a pulling action ranges from 1250 to 2350 DAC units ($\hat{=}$ 7.01 to 13.19 Å). Within this range, experiments show that pulling actions are successful. The first row "Inflated states" shows the number of states with a step size of 1 unit for both φ and d. A visual representation of the angle discretization is shown in 2.6.

Figure 2.6: Angle discretization for states and actions

A single pulling action, while simultaneously measuring the current spectrum and saving it afterwards, takes about 2 s. This would take almost 2.3 years to at least visit every Q-table entry once, which is obviously an unfeasible approach. Therefore, the angle φ for states and actions were discretized by 20 and the distance d by 10, which by comparison will take about 5 h to fill up the whole Q-table once.

Note: These are theoretical numbers, as they assume every pulling action is successful and the nanocar will never be lost. Dependent on the resolution of the search algorithm, the nanocar position has recovered after a relatively large area of 5 by 5 nm, double the size of the nanocar, is scanned, which will take a minimum of 5 seconds.

Table 2.1: The size of the Q-table

 φ ... off-axis angle; axis being the previous nanocar position to goal in $^\circ$

d ... pulling distance in DAC units

n ... number of Q-table entries

	states	actions		
	φ / °	d / DAC	φ / $^{\circ}$	n
Inflated states	360	1100	360	142,560,000
Discretization	30	10	30	9000
Discrete states	12	110	12	15,840
Addition φ_{small}	8		8	64
Discrete states	20	110	20	44,000

2.1.4.2 Discretization of the multidimensional Q-table

The Q-table in figure 2.7 is a multidimensional array of size $20 \times 110 \times 20$. By extracting the states and actions for a specific Q-value from the indices of the array, the file size of the Q-table is decreased by a factor of three, which enhances performance due to faster writing it on the disc.

All possible states range from -180 to +180° and $\varphi_{small} = 4^{\circ}$. To ensure indices are always positive values starting at 0 (page 0), an offset n_{offset} is applied. The offset n_{offset} is determined by the grade of discretization. In this case, two different discretization steps are used, namely $n_{discret\ large} = 30^{\circ}$ for large and $n_{discret\ small} = 1^{\circ}$ for small angles, the n_{offset} is given as follow:

$$n_{offset} = \begin{cases} n_{offset \ narrow} + n_{offset \ large} - 1 &, \ \varphi_{real} \le \varphi_{small} \\ 2 \ n_{offset \ narrow} + n_{offset \ large} - 1 &, \ \varphi_{real} > \varphi_{small} \end{cases}$$

$$(2.4)$$

, where φ_{real} is the perceived real angle which is non-discretized and continuous.

In this work, the offset n_{offset} is given by:

$$n_{offset} = n_{offset \ narrow} + n_{offset \ large} - 1$$

$$= \frac{\varphi_{small}}{n_{discret \ small}} + \frac{\varphi_{large}}{n_{discret \ large}} - 1$$

$$= \frac{4}{1} + \frac{180}{30} - 1$$

$$= 4 + 6 - 1 = 9$$

The discrete angel $\varphi_{discrete}$ is simply given by the following equations:

$$n_{offset} = \begin{cases} \varphi_{discrete} = \frac{\varphi_{real}}{n_{discret}} &, \ \varphi_{real} < -\varphi_{small} \\ \varphi_{discrete} = \frac{\varphi_{real}}{n_{discret}} + n_{offset} &, else \end{cases}$$

$$(2.5)$$

Thus, if the nanocar is in state $\varphi = +3$, the performed action is chosen within page 3 + 9 = 12.

When exploiting the environment, the agent chooses the highest Q-value entry within page 12. The position of the entry is uniquely defined by the index that can be decoded to determine the real action behind this index.

Figure 2.7: The multidimensional Q-table with two highlighted states. The current state of the nanocar is $\varphi_{real} = 5^{\circ}$, which is page 12 in the Q-table. The highest Q-table entry is the action the agent performs, which is indicated by the purple square in column 45, row 5. This corresponds to action $\varphi_{real} = -10^{\circ}$, $d_{real} = 1700~DAC~units~(= 9.54~Å)$. After this action is performed, the nanocar is in the next state $\varphi_{real} = -20^{\circ}$, which is page 0.

2.1.4.3 Update process of the Q-table

The final part of this chapter explains how the Q-table gets updated and filled while manoeuvring along the racetrack and which improvements were implemented to learn more efficient when exploring the environment. The following figure 2.8 shows a one step Q-table update starting with (a) the previous figure 2.7. In addition to the previous example, the Q-Learning equation 1.17 is used to see how the Q-table entries were obtained and updated.

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$
 (2.6)

$$Q(s_t, a_t) \leftarrow 2.00 + 0.90 [0.81 + 0.77 \cdot 4.00 - 2.00]$$
 (2.7)

$$Q(s_t, a_t) \leftarrow 3.70 \tag{2.8}$$

The agent gets the current state of the nanocar, $\varphi = -20^{\circ}$, from the environment and determines the best action by looking up the highest Q-table entry in page 12. The action is performed and the nanocar translates over the surface to the next position. From this new position, the next state $\varphi = -5^{\circ}$ and the reward $r_{t+1} = 0.82$ are determined by the environment and returned to the agent. In this next state, the highest Q-value $\max_a Q(s_{t+1}, a) = 4$ is used for the update process. The old Q-value gets updated using the Q-Learning algorithm and is replaced by $Q(s_t, a_t) = 3.7$.

Figure 2.8: A Q-table update process for one time step. Starting at (a) the current state of the nanocar and the highest Q-value in this state is the performed action. After the action is performed, (b) the next state, the reward and the highest Q-value of the next state are determined and used to (c) update the old Q-value by applying the Q-Learning algorithm.

2.1.4.4 Enhanced exploration and exploitation

Although the used discretization of the Q-table reduces the number of Q-table entries from 142.56 million vs 44,000, it is still a very large number.

Therefore, the Q-table gets limited by narrowing the action space. This does not mean the Q-table itself is reduced, but the angles φ , from which the agent can choose, are limited. These limitations will be softened as the *limited Q-table* gets populated.

The reason for limiting the angles is based on the fact that the dipole of the nanocar enhances the manoeuvrability in three directions, namely at the position of the negative dipole at 0°, but also at a clockwise offset of about 45 and 225° to the negative dipole position. Considering the position at 225° is at the back of the nanocar, only the 0 and 45° positions are relevant for this discussion. (Grant Simpson, personal communication, March 19, 2020)

Here in the code, a preferred direction between 0 and 45° is assumed, in which the manoeuvrability is enhanced. At first, not the whole Q-table ranging from -180 to +180° is filled, but the action φ is limited between -4 and +4°, which reduces the Q-table entries to 8,800 compared to the former 44,000.

2.1.4.5 The code of the agent

```
1 from environment import EnvDriving
3 import numpy as np
4 import random
5 import math
6 import os
7 import glob
8 from datetime import datetime
9 import matplotlib.pyplot as plt
10 from pathlib import Path
11 import statistics
12
13 class QDriving(EnvDriving):
14
15
       This class represents the agent program. The goal of the agent is to manouver a nanocar across a
      race-track and accumulate maximum reward. This is done by positioning the STM-tip based on the
16
       current state of the nanocar within the environment. The learning algorithm of the agent is
17
      based on an off-policy temporal difference algorithm, known as 'Q-Learning'.
18
19
      Methods
20
21
      convert_distance_to_index()
22
           Converts the distance into a sub-index for the Q-table.
23
24
25
      convert_angle_to_index()
           Converts the angle into a sub-index for the Q-table.
26
27
      evaluate state()
2.8
           Evaluates the current state of the nanocar based on its position within the environment.
29
30
31
       select_action()
           The agent chooses the best action in a particular state based on the Q-table or
32
           by choosing a random action to explore the state.
33
34
       q_table_function()
35
           Calcuate the Q-Learning algorithm and updates the Q-table.
36
37
      save q table()
38
          Saves the Q-table as a binary file.
39
40
           __init__(self):
41
           # Directory to save the Q-table
42
           self.qtable_directory = os.path.dirname(os.getcwd())+'/Qtable/'
43
44
           # Q-learning hyperparameters
           self.ALPHA = 0.9
46
           self.GAMMA = 0.95
47
```

```
# Learning variables
49
            self.epsilon = 0.9
                                 # Exploration rate [%]
50
51
            self.ANGLE LOWER LIMIT = -4
            self.ANGLE_UPPER_LIMIT = 4
53
            self.DISTANCE_LOWER_LIMIT = 1500
54
            self.DISTANCE_UPPER_LIMIT = 1900
55
            # Q-learning variables
57
58
            self.q_t = []
59
            self.q_tt = []
            self.q_tt_max = []
60
61
            # Discretization variables
62
            self.DISTANCE_MIN = 1250
63
            self.DISTANCE_MAX = 2350
            self.DISTANCE DIV = 10
65
            self.DISTANCE_RANGE = self.DISTANCE_MAX-self.DISTANCE_MIN
66
67
            self.DISTANCE_STEP = int(self.DISTANCE_RANGE/self.DISTANCE_DIV)
            self.ANGLE MIN = -30
68
69
            self.ANGLE\_MAX = 30
            self.ANGLE_RANGE = self.ANGLE_MAX-self.ANGLE_MIN
70
            self.ANGLE DIV = 2
71
            self.ANGLE_DIV_ROUGH = 30
72
            self.ANGLE STEP = int(self.ANGLE RANGE/self.ANGLE DIV)
73
74
            self.ANGLE_RANGE_ROUGH = int((180-self.ANGLE_MAX)/self.ANGLE_DIV_ROUGH)
75
            self.POSITIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
76
77
            self.NEGATIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
78
            # Q-table initialization based on discretization variables
79
80
            for i in range(self.ANGLE_RANGE_ROUGH):
                # Additional 7 States: [ 30, 180]
81
82
                 self.POSITIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MAX
                                                             + self.ANGLE_DIV_ROUGH*i
83
                                                             + self.ANGLE_DIV_ROUGH/2)
84
85
                # Additional 7 States: [-30,-180)
                 self.NEGATIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MIN
86
                                                              self.ANGLE_DIV ROUGH* i
87
                                                             self.ANGLE_DIV_ROUGH/2)
88
89
            # State variables
90
91
            self.state_angle = 0
92
93
            # Action variables
            self.action_distance = 0
94
            self.action_angle = 0
95
96
            # Initialize environment
97
98
            self.env = EnvDriving()
            \textcolor{red}{\texttt{self.}} \, \texttt{q\_table} \, = \, \textcolor{red}{\texttt{np.zeros}} \, ( \texttt{[self.ANGLE\_STEP+self.ANGLE\_RANGE\_ROUGH} \star \texttt{2} \, ,
100
                                        self.DISTANCE STEP+1,
                                        self.ANGLE_STEP+self.ANGLE_RANGE_ROUGH * 2])
            # Load existing Q-table
105
            files = glob.glob(f'{self.qtable_directory}*.npy')
            if not files == []:
106
                latest_file = max(files, key=os.path.getmtime)
                 self.q_table = np.load(latest_file)
                 print(latest_file)
109
                 print(self.q_table[np.nonzero(self.q_table)])
                 print('The Q-table is loaded!')
111
            else:
112
                 print ("Q-table does not exist")
113
114
        def convert_distance_to_index(self, var):
116
117
            Converts the distance into an index or sub-index. The distance is given by the distance
118
            between the STM-tip and the nanocar.
119
120
            Note: In general the index determines exactly where the entry is located in the Q-table.
121
            This subsequently means an entry of the multidimensional Q-table uniquely defines the state
            and the action.
122
123
            Return
124
```

```
Returns the distance as index value.
126
128
            var = np.round(var)
            index of var = 0
129
            if var < self.DISTANCE_MAX-self.DISTANCE_DIV and var > self.DISTANCE_MIN:
130
                index_of_var = round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV)
131
132
            elif var >= self.DISTANCE_MAX-self.DISTANCE_DIV:
133
                index of var = round(
                    (self.DISTANCE MAX-self.DISTANCE MIN-self.DISTANCE DIV)/self.DISTANCE DIV)
134
            return int(index_of_var)
135
136
       def convert_angle_to_index(self, var):
137
138
            Converts the angle into a sub-index. The angle is given by the angle between the two vectors
139
            namely the vector previous nanocar to goal position and previous nanocar to current nanocar
            position.
141
142
143
            Note: In general, the index determines exactly where the entry is located in the Q-table.
            This subsequently means an entry of the multidimensional Q-table uniquely defines the state
144
        and the action.
145
            Return
146
147
               Returns the angle as index value.
148
149
            if var >= self.ANGLE_MIN and var <= self.ANGLE_MAX:
150
                index = int(np.around((var+self.ANGLE_MAX)/self.ANGLE_DIV,1)) + self.ANGLE_RANGE_ROUGH
151
            else:
                if var <= self.ANGLE_MIN:</pre>
                    index = -(np. digitize(var, self.NEGATIVE_Q_TABLE_DISCRETIZATION)
154
                              + self.ANGLE_RANGE_ROUGH)
                elif var >= self.ANGLE MAX:
156
                    index = (np.digitize(var, self.POSITIVE_Q_TABLE_DISCRETIZATION)
157
                              + self.ANGLE_RANGE_ROUGH
158
                              + self.ANGLE_STEP)
159
                    if index == 40:
160
                        index = 0
161
            return index
162
163
       def evaluate_state(self):
164
165
166
            Evaluates the current state of the nanocar based on its position within the environment.
            The state is given by the angle between the two vectors, namely the vector pointing from
            the previous nanocar to the goal and the previous nanocar to the current nanocar position.
169
170
            Functions
171
172
            angle_between_vectors(v_base, v_car, v_goal)
173
174
                Return the angle in degrees between the two vectors, namely from
                'v_base to v_car' and from 'v_base to v_goal'
175
176
            # Calculates the state and sets the state to 0 before any manipulation was performed
177
178
            self.state angle = 0
            if self.env.number_of_manipulations > 0:
180
                self.state_angle = self.angle_between_vectors(
181
                                                  self.env.state_position_of_nanocar_past_present[0],
182
                                                  self.env.state_position_of_nanocar_past_present[1],
                                                 self.env.state_position_of_goals[0])
183
184
       def select_action(self):
185
186
            The agent chooses the best action in a particular state based on the Q-table or by choosing
187
         a random action to explore the state.
188
            Exploitation: If two or more indices are equally good, meaning their Q-values are the same,
189
            the action is chosen randomly from these equally good actions.
190
191
192
            Exploration: EPSILON rate of exploration defines how often the agent takes a random action.
            At least in the beginning the agent's action space is limited, meaning that small angles and
193
194
            statistically better distances were chosen first.
195
196
            self.evaluate_state()
            state_index = self.convert_angle_to_index(self.state_angle)
197
            action_index = np.zeros(2)
199
```

```
# Chooses the best action OR a random action that was never used before
200
            if random.uniform (0,1) < self.epsilon:
201
                # Calculate indices to corresponding limits
202
                lower\_distance\_index = \underbrace{\texttt{self}.convert\_distance\_to\_index}(\underbrace{\texttt{self}.DISTANCE\_LOWER\_LIMIT})
203
                upper_distance_index = self.convert_distance_to_index(self.DISTANCE_UPPER_LIMIT)+1
204
                lower_angle_index = self.convert_angle_to_index(self.ANGLE_LOWER_LIMIT)
205
206
                upper_angle_index = self.convert_angle_to_index(self.ANGLE_UPPER_LIMIT)+1
                # Determine all Q-table entries that were never used: Q-value == 0
208
                actions_never_used_index = np.where(self.q_table[state_index]==0)
209
210
                # Determine indices which are within the limit
211
212
                limited_actions_never_used_index = [
                                              (actions_never_used_index[0][:] <= upper_distance_index) &
213
214
                                              (actions_never_used_index[0][:]>=lower_distance_index) &
                                              (actions_never_used_index[1][:] <= upper_angle_index) &
215
                                              (actions_never_used_index[1][:]>=lower_angle_index)]
216
217
                # Select the actions that have never been used and are within the limits
218
                actions_never_used_index = [actions_never_used_index [0][limited_actions_never_used_index]
219
220
                                           actions_never_used_index[1][limited_actions_never_used_index]]
221
                # From all actions within the limit randomly chose one action
222
                action_random_never_used_index = np.random.randint(0, len(actions_never_used_index[0]))
                distance never used index = actions never used index[0][action random never used index]
224
225
                angle_never_used_index = actions_never_used_index[1][action_random_never_used_index]
226
                action_index = [distance_never_used_index, angle_never_used_index]
            else:
227
                # Select the best action
228
                action_best_index = np.where(self.q_table[state_index]
229
230
                                               == np.max(self.q_table[state_index]))
231
                # From equally good actions select one of them randomly
232
233
                action_random_best_index = np.random.randint(0,len(action_best_index[0]))
234
                distance_best_index = action_best_index[0][action_random_best_index]
                angle_best_index = action_best_index[1][action_random_best_index]
235
                action_index = [distance_best_index, angle_best_index]
236
237
            # Convert the index to real values in DAC units
238
            self.action_distance = self.DISTANCE_MIN + action_index[0]*self.DISTANCE_DIV
239
            if action_index[1] <= self.ANGLE_RANGE_ROUGH:</pre>
240
                self.action_angle = -180+action_index[1]*self.ANGLE_DIV_ROUGH
241
242
            elif action_index[1] >= self.ANGLE_RANGE_ROUGH + self.ANGLE_STEP:
                self.action_angle = (self.ANGLE_MAX + self.ANGLE_DIV_ROUGH*(action_index[1])
243
                                                                              - self.ANGLE_RANGE_ROUGH
                                                                               self.ANGLE_STEP))
245
246
            else:
                self.action_angle = (self.ANGLE_MIN + self.ANGLE_DIV*(action_index[1])
247
                                                                       - self.ANGLE_RANGE_ROUGH))
248
249
            # Calculates the next STM-tip positon based on the agents choosen actions
250
            self.env.calc_next_position(self.action_distance, self.action_angle)
251
252
       def q_table_function(self):
253
254
            Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.
255
256
257
            Functions
            convert_distance_to_index(var)
259
260
                Converts the distance into an index or sub-index. The distance is given by the distance
                between the STM-tip and the nanocar.
261
262
            convert_angle_to_index(var)
                Converts the angle into a sub-index. The angle is given by the angle between the two
263
                vectors, namely the vector previous nanocar to goal position and previous nanocar to
264
265
                current nanocar position.
266
            if self.env.know_Car == True and self.env.number_of_manipulations > 1:
267
268
                q_t = 0
269
                q_tt_max = 0
270
                q_t = 0
271
272
                # Action space: converts real actions to index values
                action_index = [self.convert_distance_to_index(self.action_distance),
273
                                 self.convert_angle_to_index(self.action_angle)]
274
275
276
                # State space: converts real state to index value
```

```
state index = self.convert angle to index(self.state angle)
                next_state_index = action_index[1]
278
279
                # The Q-Learning algorithm
280
                q_t = self.q_table[state_index, action_index[0], action_index[1]]
281
                q_tt_max = np.max(self.q_table[next_state_index])
282
                q_t = q_t + self.ALPHA*(self.env.reward + self.GAMMA*(q_tt_max) - q_t)
283
                self.q_table[state_index, action_index[0], action_index[1]] = q_tt
                self.save_q_table()
285
286
287
       def save_q_table(self):
288
289
            Saves the Q-table as a binary file.
290
            path = f'{self.qtable_directory}/qtable'
291
292
            now = datetime.now()
            current time = now.strftime("%y-%m-%d %H-%M-%S")
293
            path_with_timestamp = f'{self.qtable_directory}/{current_time}_qtable'
294
295
296
297
                print('The Q-table is saved!')
                np.save(path, self.q_table)
298
                np.save(path\_with\_timestamp, self.q\_table)
299
                print(self.q_table[self.q_table>0])
            except:
301
302
                try
303
                    os.mkdir(self.qtable_directory)
304
                    np.save(path, self.q_table)
                    np.save(path_with_timestamp, self.q_table)
305
                    print(self.q_table[np.nonzero(self.q_table)])
306
                except OSError:
307
308
                    print ("Creation of the directory %s failed" % path)
                    print("Q-table could not be created.")
309
310
                else:
                    print ("Successfully created the directory %s " % path)
311
```

2.1.5 The code of the main

```
1 #!/bin/env python3
2 from agent import QDriving
3 import numpy as np
5 import csv
6 from time import mktime
8 import logging
9
  import tkinter as tk
  import matplotlib.pyplot as plt
11
12
13
   def analysis(agent):
       # Calculate Analysis Variables
14
       if agent.env.number_of_searching == 0:
15
            agent.env.average_steps_while_searching = 0
16
17
            agent.env.average_steps_while_searching = agent.env.number_of_search_steps/agent.env.
       number_of_searching
19
       timestamp_file = agent.env.datetime_end.strftime("%y-%m-%d_%H-%M-%S")
20
       path_with_timestamp = f'{agent.env.directory_of_data}/{timestamp_file}_episode_{agent.env.
21
        number_of_episodes}_epsilon_{agent.epsilon}.csv
       time_difference_in_s = abs(mktime(agent.env.datetime_start.timetuple())-mktime(agent.env.
22
       datetime_end.timetuple()))
       speed = agent.env.total_distance/time_difference_in_s
24
       with open(path_with_timestamp, 'w', newline='') as csv_file:
25
            csv_write = csv.writer(csv_file)
            csv_write.writerow(['Episode', f
                                                '{agent.env.number_of_episodes}'])
27
            csv_write.writerow(['Epsilon', f'{agent.epsilon}'])
28
            csv_write.writerow(['Duration in s', f'{time_difference_in_s}'])
csv_write.writerow(['Length', f'{agent.env.total_distance}'])
29
30
            csv_write.writerow(['Speed in nm / h', f'{speed}'])
31
            csv_write.writerow(['Manipulations', f'{agent.env.number_of_manipulations}'])
csv_write.writerow(['Succeesful Manipulations',f'{agent.env.
32
33
       number_of_successful_manipulations}'])
            csv_write.writerow(['Failed Manipulations',f'{agent.env.number_of_failed_manipulations}'])
34
```

```
csv_write.writerow(['Total reward per Episode',f'{np.around(agent.env.
35
       total_reward_per_episode ,2) } '])
           csv_write.writerow(['Average Steps while Searching',f'{agent.env.
36
       average_steps_while_searching } ", ])
           csv_write.writerow(['== Positional Dataset =='])
37
           csv_write.writerows([['Goal'], np.swapaxes(agent.env.position_of_environment,0,1)[0], np.
38
       swapaxes(agent.env.position_of_environment,0,1)[1],
                                 ['Nanocar'], agent.env.x_history_nanocar, agent.env.y_history_nanocar])
39
           csv_write.writerow(['Search-Algorithm'])
40
           for i in range(len(agent.env.x_history_searching_nanocar)):
41
               csv_write.writerow([agent.env.x_history_searching_nanocar[i], agent.env.
42
       y_history_searching_nanocar[i]])
43
  def driving_routine(agent):
44
      agent.select_action()
45
       agent.env.perform_vertical_manipulation()
46
47
      agent.env.check_current_pattern()
48
      agent.q_table_function()
49
       agent.env.update_environment_variables()
50
51
  def main():
      agent = QDriving()
52
53
       while not agent.env.is_done():
54
           driving_routine (agent)
55
56
       #agent.save_q_table()
       analysis (agent)
57
      plt.show()
58
59
       _name__ == "__main__":
60
      main()
```

2.2 Learning from human experience or existing data

The following section provides an example code for how an agent is able to learn from human generated data by using *VERT-files*, that are generated by the STM after an action is performed. This enables the agent to learn without the necessity of controlling the STM directly, which is saving time and operational costs. As in the previous section, the code starts with the lowest level, being the *filemanager*, followed by the environment and the agent program.

In the following flow diagram 2.9 the learning procedure is illustrated.

Figure 2.9: The flow diagram for training the agent from human generated data. The Legend indicates to which class a processes belongs.

2.2.1 The filemanager

The *filemanager* chronologically loads all VERT-files within a directory. A VERT-file contains the STM settings and most importantly the current response at each tip position. The complete directory is loaded, such that the agent has the complete trajectory from start to finish ahead of it and iterates through every time step by perceiving every state, the "performed" action, and its associated reward, as if it would control the STM directly.

2.2.1.1 The code of the filemanager

```
1 import time
2 from datetime import datetime
3 import os
4 import glob
5 import shutil
6 import math
7 import numpy as np
9 class FileManager(object):
       """ A class used to read and/or write the VERT-files for learning from human-generated data.
10
11
12
           Methods
           get_files : list
14
               Provides the complete path for every VERT-file within the 'directory' sorted by name.
15
16
           get_latest_file : str
17
               pProvides the complete path for the latest VERT-file in the 'directory'.
18
19
           get_num_files : int
20
               Provides the number of files within the given 'directory'.
21
22
           write_simulation_data(xy_data, know_Car=True)
23
               Writes artificial data with the STM-tip position and a high or low current dependent on
24
               weather the nanocar is below the tip or not (this is determined randomly).
26
27
           read position : array(2)
28
               Read X/Y position from the VERT-file.
29
           __init__(self , directory_of_data):
30
           # A unique naming scheme for every written VERT-file
31
           self.last_timestamp = None
32
           # The number of files within the given 'directory'
           self.num_files = 0
34
35
36
       def get_files(self):
37
           Returns the complete path for every VERT-file within the 'directory' and sorts it by name.
38
39
               Returns
40
41
               files : list
42
                   A list of strings that contain the complete filepath of every VERT-
43
                   file within the 'directory
44
45
           files = sorted(glob.glob('*.VERT'))
46
47
           self.num_files = len(files)
           return files
48
49
      def get_latest_file(self):
50
           files = sorted(os.listdir(os.getcwd()), key=os.path.getmtime)
51
           newest = files[-1]
           return newest
54
55
      def get_num_files(self):
           return self.num_files
56
57
      def write_simulation_data(self, xy_data, know_Car=True):
58
59
           dateTimeObj = datetime.now()
           timestampStr = f"{dateTimeObj.year}-{dateTimeObj.month}-{dateTimeObj.day}_{dateTimeObj.hour
60
       -{dateTimeObj.minute} -{dateTimeObj.second}.{dateTimeObj.microsecond}
61
           self.last_timestamp = timestampStr
62
           new_filename = f'{timestampStr}.VERT
```

63

```
64
            if know_Car == True:
                 shutil.copyfile('Current_Right.VERT', new_filename)
65
66
            else:
                 shutil.copyfile('Current_Wrong.VERT', new_filename)
67
            with open(new_filename, mode='r', encoding = "ISO-8859-1") as f:
68
69
                lines = f.readlines()
            with open(new_filename, mode='w', encoding = "ISO-8859-1") as f:
                 lines[298] = '{:8d}{:8d}{:10}'.format(1000, xy_data[0], xy_data[1], 1)+'\n'
71
72
                f.writelines(lines)
73
        def read_position(self, file=None):
74
75
            position = np.empty(2)
76
            if file is None:
77
                 file = self.get_latest_file()
78
79
            with open(file, mode='r', encoding="ISO-8859-1") as f:
80
81
                f_{data} = f.read().split('\n')
82
83
            # X/Y-position from datafile
            xdac = float(f_data[298].split()[1])
84
            ydac = float (f_data[298]. split()[2])
85
            # Offset correction
87
            offsetx = float(f_data[20].split('=')[1])
88
            offsety = float (f_data[21]. split ('=')[1])
89
90
91
            # Additional parameters
            dx = float(f_data[3].split('=')[1])
92
            dy = float (f_data [4]. split ('=') [1])
nx = float (f_data [5]. split ('=') [1])
93
94
            ny = float (f_data[6]. split ('=')[1])
95
96
            rot = float (f_data[14]. split ('=')[1])
98
99
            driftxoff = 0
            driftyoff = 0
100
            # Rotation matrix: cos -sin | xx xy
                                  sin cos | yx yy
103
            x\_with\_rotation = -(xdac*np.cos(rot*np.pi/180) - ydac*np.sin(rot*np.pi/180) + offsetx - driftx off)
104
            y_with_rotation= -(xdac*np.sin(rot*np.pi/180)+ydac*np.cos(rot*np.pi/180)+offsety-driftyoff)
106
            position = np.array([xdac+offsetx,ydac+offsety])
            return position
108
109
        def read_current(self, file=None):
110
            if file is None:
111
112
                file = self.get_latest_file()
113
            with open(file, mode='r', encoding="ISO-8859-1") as f:
114
                 f_data = f.read().split('\n')
            f_{It} = f_{data}[299:-1]
                                         # Data for current and time
116
117
            t = []
118
            I = []
119
120
            for z in f_lt:
                trunc = z.split()
121
                t.append(int(trunc[0]))
123
                 I.append(float(trunc[3]))
            data_It = [t, I]
124
            return data_lt
125
126
        def read_voltage(self, file=None):
127
128
            if file is None:
                 file = self.get_latest_file()
130
            with open(file , mode='r', encoding="ISO-8859-1") as f:
131
                f_data = f.read().split('\n')
132
                                        # Data for current and time
            f_Vt = f_{data}[299:-1]
133
134
135
            t = []
            V = []
136
            for z in f_Vt:
137
                trunc = z.split()
139
                t.append(int(trunc[0]))
```

2.2.2 The environment for learning

Although every VERT-file within a directory is loaded chronologically, the sub-goals that are evaluated by the environment are different than those the human headed for when maneuvering the nanocar towards a sub-goal. The reason for this is based on how the absolute position is defined, as (X, Y) are given relative to the latest image scanned. Figure 2.10 shows how the absolute position (X_{abs}, Y_{abs}) is determined by using the offset (X_{Offset}, Y_{Offset}) plus the relative position (X, Y) within the scanned image.

$$X_{abs} = X_{Offset} + X (2.9)$$

$$Y_{abs} = Y_{Offset} + Y (2.10)$$

However, the (X_{Offset}, Y_{Offset}) is not really consistent and shows a drift between images. Thus, when learning from data which is gathered from two recorded images, the data points do not process continuously, but show a random offset. This can be either due to thermal drift or due to the inaccurate coarse positioning system of the STM.

However, this problem is solved by calculating every distance of two successive points and if this distance is larger than 5000 DAC units, then the first point is defined as a sub-goal. The value of 5000 DAC units is a bit larger than double the distance (2350 DAC units), which is the largest distance where successful pulling actions can be achieved.

Note: Determining the absolute position is irrelevant for directly controlling the STM with the agent, because the agent only operates within the scanned image. Thus, all positions are determined relatively to the origin of the scanned image. If, for some reason the nanocar cannot be found by the search algorithm and a human has to take an image in order to locate the nanocar, the relative coordinates would change - meaning all goals would have to be re-initialized as the origin changes with the newly scanned image.

Figure 2.10: How the absolute and relative coordinates are defined by the STM. The origin of the scanned image is the center of the top boarder, while the offset and therefore the origin of the absolute coordination system is originated at the top left corner of the absolute coordination system.

2.2.2.1 The reward function

The reward function for learning is equivalent to the one defined in the environment section 2.1.3.1 of Controlling the nanocar with the STM.

2.2.2.2 The code of the environment

```
from filemanager import FileManager
  import numpy as np
  import math
  import random
6 import os
  import itertools
  import statistics
10 import matplotlib.pyplot as plt
  from matplotlib import cm
12 from mpl_toolkits mplot3d import Axes3D
14 from scipy.signal import savgol_filter
15 import scipy.fftpack
17 class EnvLearning(FileManager):
18
      This class represents the virtual environment generated from human data. This enables the agent
19
```

```
to learn like itself is controlling the STM without the requirement of a real STM.
20
21
22
      Methods
23
      init_env()
24
25
           Initialize the environment.
26
      init_reward_variables()
27
           Calculates the distance between all following sub-goals or sub-goal to goal.
28
29
30
      load_position_data()
           Loads the absolute position from every VERT-files in the working directory.
31
32
      load_current_data()
33
           Loads the current spectra from every VERT-files in the working directory.
34
35
      load goals()
36
           Evaluates the sub-goals and goal from the complete racetrack data.
37
38
       set_Position()
39
40
           Virtually sets the STM-tip to the next position.
41
       unit_vector(vector)
42
           Returns the unit vector of the vector.
44
      distance_between_vectors(vector1, vector2)
45
           Returns the distance between two vectors.
46
47
48
       angle_between_vectors(v_base, v_car, v_goal)
49
           Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and from
           'v_base to v_goal'.
50
51
       calc distance()
52
53
           Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
           final goal. Deletes the position of a goal when the goal is reached and also deletes the
           reward variable of the previous sub-goal distance.
55
56
57
       set_next_iteration()
           Updates all the data for the next iteration step.
58
59
       calc_average_current(current_spectrum)
60
           Calculates the average current from the current spectrum.
61
62
       check_current_pattern()
63
           Checks if the average current of the current pattern measured after a pulling action is
64
           higher than a certain treshhold.
65
66
67
       reward_function()
           Calculates the reward to measure the performance of the agent's actions. The reward is
68
69
           calculated by using two functions.
70
      is done()
71
72
          Checks if the episode is finished.
73
             _init__(self):
74
           # Set the path of the data files as the working directory
75
76
           self.directory_of_data = os.getcwd()+'/Data/0/
77
           os.chdir(self.directory_of_data)
78
           # Environment constants
79
80
           # Treshhold: know car position YES/NO?
81
           self.TRESHHOLD_CURRENT = 1000
82
           # Treshhold: distance above which a new sub-goal is defined
83
           self.TRESHHOLD_TO_EVALUATE_SUBGOAL = 5000
84
85
           # Environment variables
           self.number of iterations = 0
87
88
           self.initial_stm_position = None
89
           self.position_for_environment = []
           self.current_for_environment = []
90
91
           self.average_current_for_environment = []
92
           self.derivative_current_for_environment = []
93
           self.know Car = True
           self.done = False
           # Inizializes the complete environment data from the 'directory'
95
96
           self.init_env()
```

```
self.position_nanocar = np.array(self.position_for_environment[0])
97
98
            self.position_stm_tip = np.array(self.position_for_environment[0])
99
            # State variables
100
            self.state_position_of_goals = []
101
            self.load_goals()
            self.state_position_of_nanocar_past_present = [None, self.position_for_environment[0]]
104
            # Reward variables and initialization
            self.DISTANCE\_ERROR\_MAX = 2250
106
            self.distance_to_nearest_goal = 0
            self.total_distance_to_goal = 0
108
109
            self.distance_subgoals = np.zeros(len(self.state_position_of_goals))
            # Calculates distances between following environment positions
111
            self.init_reward_variables()
            # Calculates distances to the closest sub-goal and to the final goal
            self.calc distance()
113
114
            # Statistic variables
            self.success = 0
116
117
            self.failure = 0
118
       def init_env(self):
119
120
            Initialize the environment by loading a complete racetrack from VERT-files.
121
122
123
            A VERT-file is genereated after every vertical manipulation measurement and contains every
            setting of the STM.
124
            Functions
126
128
            load_position_data()
                Loads the absolute position from the VERT-files for the given episode.
129
130
            load_current_data()
                Loads the measured spectrum from the VERT-files for the given episode.
            load goals()
                Evaluates which data points are sub-goals or goals.
134
            # Loads the positional data
135
            self.load_position_data()
136
            # Loads the current spectra
137
138
            self.load_current_data()
139
            # Evaluates sub-goals and the final goal
            self.load_goals()
140
141
        def init_reward_variables(self):
142
143
            Calculates the distance between all following sub-goals or sub-goal to goal that were set
144
            in the initialization step of the environment. These are necessary for the reward function.
145
146
147
             # Distance between initial nanocar position to first sub-goal or already to the final goal
            self.distance_subgoals[0] = np.linalg.norm(np.subtract(
148
149
                                                               self.position_nanocar
                                                               self.state_position_of_goals[0]))
150
151
            # Distances between sucessive sub-goals and sub-goal to final goal.
152
            if len(self.state_position_of_goals) > 1:
153
154
                for i in range(1,len(self.state_position_of_goals)):
                    self.distance_subgoals[i] = np.linalg.norm(np.subtract(
                                                               \textcolor{red}{\textbf{self}}. \ \textbf{state\_position\_of\_goals[i-1]},\\
157
                                                               self.state_position_of_goals[i]))
158
       def load_position_data(self):
159
160
            Loads the absolute position from every VERT-file in the working directory into a list.
161
162
            These positions represent the whole racetrack of an episode.
163
            self.position_for_environment = []
164
165
            files = self.get_files()
166
            for file in files:
                self.position_for_environment.append(self.read_position(file))
167
168
169
        def load_current_data(self):
            Loads the current spectra from every VERT-file in the working directory into a list.
171
172
173
            self.current_for_environment = []
```

```
files = self.get files()
174
175
            for file in files:
176
                self.current_for_environment.append(self.read_current(file))
            for data in self.current for environment:
177
                self.average_current_for_environment.append(self.calc_average_current(data[1]))
178
                self.derivative_current_for_environment.append(np.gradient(data[1]))
179
180
181
        def load goals (self):
182
183
            Evaluates the sub-goals and goal from the complete racetrack data.
184
            A goal is evaluated by finding a position where its ensuing position is located futher away
185
186
            than a given treshhold. This has to be done in such a way, because the data gained by the
            STM is relative to the last taken image. This means, if for some reason the car could not
187
            be found, the surface has to be imaged. This changes the position of nanocar because its
188
            position is given by the relative position from the centre position of the image. Thus, the
            previous position does not correlate to the current position.
190
191
192
            self.state_position_of_goals = []
            for i in range(1,len(self.position_for_environment)):
193
194
                # Defines a positon as a goal, if two points are further away than a given treshhold
                if np.linalg.norm(np.subtract(
195
                             \textcolor{red}{\textbf{self}}.\, position\_for\_environment\, [\, i\, -1\, ]\,,
196
                             self.position_for_environment[i]) >= self.TRESHHOLD_TO_EVALUATE_SUBGOAL:
                    self.state_position_of_goals.append(self.position_for_environment[i])
198
199
            # The last position in a given racetrack is set to be the final goal
200
            self.state_position_of_goals.append(
                                      self.position_for_environment[len(self.position_for_environment)-1])
201
202
       def set_position(self):
203
204
205
            Virtually sets the STM-tip to the next position
206
207
            self.position_stm_tip = self.position_for_environment[0].copy()
208
       def unit_vector(self, vector):
209
210
            Returns the unit vector of the vector.
211
212
            Attributes
213
214
            vector : np.array(len(vector))
215
216
                A vector.
217
            Return
218
219
220
            unit_vector : np.array(len(vector))
                The unit vector.
221
222
223
            vector = np.array(vector)
224
            if vector.all() == 0:
                return [0,0]
225
226
            elif not vector.all() == 0:
227
                unit_vector = vector / np.linalg.norm(vector)
228
                return unit vector
229
230
        def distance_between_vectors(self, vector1, vector2):
231
            Returns the distance between two vectors.
232
233
            Attributes
234
235
            vector1 : np.array(len(vector1))
236
                Vector 1.
237
            vector2 : np.array(len(vector2))
238
239
                Vector 2.
240
            Return
241
242
243
            vector_distance : float
                The distance between vector1 and vector2.
244
245
246
            vector1 = np.array(vector1)
247
            vector2 = np.array(vector2)
            vector_distance = 0
            if not np.array equal(vector1, vector2):
249
250
                vector_distance = np.linalg.norm(np.subtract(vector1, vector2))
```

```
return vector distance
251
252
253
        def angle_between_vectors(self, v_base, v_car, v_goal):
254
            Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and from
255
             'v_base to v_goal'.
256
257
            Note: The function considers if the relative vector of the nanocar 'v_base to v_car' is
258
            positioned clockwise or counter-clockwise from the relative vector 'v base to v goal'.
259
260
261
            Attributes
262
263
            v_base : np.array(2)
                Vector to the basis.
264
265
            v_car : np.array(2)
                Vector to the nanocar.
266
            v goal : np.array(2)
267
                Vector to the goal.
268
269
            Return
270
271
            angle: float
272
                The angle spanned by the two vectors: 'v\_base to v\_car' and from 'v\_base to v\_goal'.
273
274
            v_base = np.array(v_base)
275
276
            v_{car} = np. array(v_{car})
277
            v_goal = np.array(v_goal)
278
            # Calculates the relative vectors of the nanocar and the goal
279
            v_car_rel = v_car_v_base
280
            v_goal_rel = v_goal-v_base
281
            # Calculates the unit vectors of the relative vectors nanocar and goal
283
284
            v_car_u = self.unit_vector(v_car_rel)
285
            v_goal_u = self.unit_vector(v_goal_rel)
286
287
            # Calculates the angle between the two relative vectors nanocar and goal
            angle = np. \arccos(np. clip(np. dot(v_car_u, v_goal_u), -1.0, 1.0)) *180/np. pi
288
            # Use the property of the determinant that is, if the det < 0 the
289
            # relative vector of the nanocar is clockwise to the relative vector of the goal.
290
            if np.linalg.det([v_goal_u,v_car_u]) <0:</pre>
291
292
                angle = -angle
293
            return angle
294
295
        def calc_distance(self):
296
297
            Calculates the distance from the nanocar to the nearest goal; and from the nanocar to the
            final goal. Deletes the position of a goal when the goal is reached and also deletes the
298
            reward variable of the previous sub-goal distance.
299
300
301
            if len(self.position_for_environment) > 1:
302
303
                # Calculates the distance between the old and new stm-tip position
304
                self.moving_distance_stm_tip = np.linalg.norm(np.subtract())
                                                                   self.position_for_environment[0].
305
                                                                   self.position_for_environment[1]))
306
307
308
                # Calculates the distance to the nearest goal
309
                self.distance_to_nearest_goal = np.linalg.norm(np.subtract())
                                                                   self.position_nanocar
310
311
                                                                   self.state_position_of_goals[0]))
312
                # Calculates the total distance to the goal
313
                self.total_distance_to_goal = self.distance_to_nearest_goal
314
                for i in range(1,len(self.state_position_of_goals)):
315
316
                    self.total_distance_to_goal += np.linalg.norm(np.subtract(
                                                                   self.state_position_of_goals[i-1],
317
                                                                   self.state_position_of_goals[i]))
318
319
320
       def set_next_iteration(self):
321
322
            Updates all the data for the next iteration step.
323
            This means the first entry in the list of positional data as well as reached sub-goals are
324
            deleted.
            if len(self.position_for_environment) > 0:
327
```

```
328
                # Deletes the reached sub-goal
329
330
                if len(self.state_position_of_goals) > 0:
                    if \ np. \ linalg.norm (np. subtract (self.position\_for\_environment \cite{Golden}), \\
331
                                                     self.state_position_of_goals[0])) == 0:
332
                         self.state\_position\_of\_goals = np.delete(self.state\_position\_of\_goals, 0, 0)
333
334
                # Deletes the currentrly reached position in the list positional data
336
                self.position_for_environment = np.delete(self.position_for_environment, 0, 0)
                # Deletes the current spectrum that goes with the positional data
337
338
                self.derivative_current_for_environment = np.delete(
                                                           self.derivative current for environment, 0, 0)
339
340
            self.number_of_iterations += 1
341
342
       def calc_average_current(self, current_spectrum):
343
                Calculates the average current from the current spectrum.
344
                Returns
345
346
                average current : int
347
348
                    The average current of the spectrum.
349
350
            current_spectrum = np.array(current_spectrum)
            average_current = np.mean(current_spectrum[current_spectrum > 0])
351
            return average current
352
353
354
        def check_current_pattern(self):
355
            Checks if the derivative of the current pattern after a pulling action is higher than a
356
357
            certain treshhold.
358
359
            If this is:
            - TRUE: The position of the nanocar is below the STM-tip - hence it is known
360
361
            - FALSE: The position of the nanocar is not below the STM-tip - hence it is unknown and a
362
                      search-algorithm starts searching for the nanocar.
363
            Functions
364
365
            reward function()
366
                Calculates the reward the agnet receives.
367
            search_car()
368
                Searching the nanocar if the it got lost.
369
370
            if ((abs(self.derivative_current_for_environment[0]) >= self.TRESHHOLD_CURRENT).any()
371
372
            and self.know_Car == True):
                                                           # I is RIGHT
                print("Current pattern is right!")
373
                self.position_nanocar = self.position_stm_tip.copy()
374
                self.state_position_of_nanocar_past_present
375
                                                       self.state_position_of_nanocar_past_present[1],
376
377
                                                       self.position_nanocar]
378
                self.initial_stm_position = None
                self.reward_function()
379
380
            elif ((abs(self.derivative_current_for_environment[0]) < self.TRESHHOLD_CURRENT).any()
381
            and self.know_Car == True):
382
                                                          # I is WRONG
                print("Current pattern is wrong! == Car is lost ==")
383
                self.know_Car = False
384
385
                self.initial_stm_position = self.position_stm_tip.copy()
386
             \textbf{elif} \ ((abs(self.derivative\_current\_for\_environment[0]) >= self.TRESHHOLD\_CURRENT).any() \\
387
388
            and self.know_Car == False):
                                                        # I is RIGHT
                print("Current pattern is right! == Car is found ==")
389
                self.know Car = True
390
                self.position_nanocar = self.position_stm_tip.copy()
391
                self.state_position_of_nanocar_past_present = [
392
393
                                                       self.state_position_of_nanocar_past_present[1],
394
                                                       self.position_nanocar]
                self.reward function()
395
396
397
        def reward_function(self):
398
399
            Calculates the reward to measure the performance of the agent's actions. The reward is
400
            calculated by using two functions:
401
            1. Reward function calculates how precisely the nanocar has moved below the STM-tip
            2. Reward function calculates how close the nanocar moved towards the goal.
403
404
```

```
Functions
405
406
407
            distance_between_vectors(vector1, vector2)
                Calculates the distance between two vectors.
408
409
            self.reward = 0
410
411
412
            if self.number_of_iterations >= 1:
                position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]
413
                position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]
414
415
                position_of_nearest_goal = self.state_position_of_goals[0]
416
417
                # Calculates the distance to the goal before and after the pulling action
                distance\_of\_past\_nanocar\_to\_goal = \underbrace{self}.distance\_between\_vectors(
418
419
                                                                   position_of_nanocar_past
                                                                   position_of_nearest_goal)
                distance_of_present_nanocar_to_goal = self.distance_between_vectors(
421
                                                                   position_of_nanocar_present,
422
423
                                                                   position_of_nearest_goal)
                difference_in_distance_from_goal_between_pulling_action = np.subtract(
424
425
                                                                   distance_of_past_nanocar_to_goal,
426
                                                                   distance_of_present_nanocar_to_goal)
427
                # Calculates by how much the nanocar translated to an unknown position
                if self.initial stm position is None:
429
430
                    nanocar_deviates_from_initial_stm_position = 0
                    self.initial_stm_position = position_of_nanocar_present
431
                else:
432
                    nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(
433
                                                                   self.initial_stm_position,
434
435
                                                                   position_of_nanocar_present)
                # Calculates the reward using two reward functions
437
438
                self.reward = 0
439
                     Reward function
                if (difference_in_distance_from_goal_between_pulling_action > 0
440
                and self.total_distance_to_goal > 0):
441
                    self.reward += 0.5*(1-self.distance_to_nearest_goal/self.distance_subgoals[0])
442
                elif (difference_in_distance_from_goal_between_pulling_action <= 0</pre>
443
                and self.total_distance_to_goal >= 0):
                    self.reward -= 1
445
                # 2. Reward function
446
447
                if nanocar_deviates_from_initial_stm_position <= self.DISTANCE_ERROR_MAX:</pre>
                    self.reward += 1-math.pow(
448
449
                                 nanocar_deviates_from_initial_stm_position/self.DISTANCE_ERROR_MAX, 0.4)
            print(f'Reward: {self.reward}')
450
451
        def is_done(self):
452
                Checks if the episode is finished.
453
454
455
                Returns
456
457
                self.done : boolean
                    Returns TRUE if the episode is finished.
458
459
            if self.number_of_iterations >= self.get_num_files():
461
                self.done = True
462
                print("The training is finished!")
            return self.done
```

2.2.3 The learning agent

This code creates a Q-table by learning from human generated data. The chosen actions are already judged by the reward function of the environment. Thus, the performance of actions is pre-selected.

Important: The Q-table size has to be chosen, such that it corresponds with the final use case of the agent. Changing the discretization of states and actions afterwards is of course not possible, as it would break the correlation between state-action-pairs.

The Q-table size and discretization given in state space ranges from -40 to +40°, that is discretized by 2 leading to 21 states, centred around 0° with a discretization size of -1 to +1°. These settings are also used for the angle part of an action, while the distance is discretized by steps of 10 ranging from 1250 to 2350 DAC units \rightarrow 110. A more detailed explanation is given in section 2.1.4.

2.2.3.1 The code of the agent

```
1 from environment import EnvLearning
2
3 import numpy as np
4 import math
5 import statistics
6 import os
7 from pathlib import Path
8 import matplotlib.pyplot as plt
10 class TDQLearning(object):
11
      This class represents the agent program to learn from human data. The \underline{g}oal of the agent is to
12
13
      manouver a nanocar across a race-track and accumulate maximum reward. This is done by
       positioning the STM-tip based on the current state of the nanocar within the environment. The
14
      learning algorithm of the agent is based on an off-policy temporal difference algorithm, known
15
      as 'Q-Learning'.
17
18
      Methods
19
      convert_distance_to_index()
20
           Converts the distance into an sub-index for the Q-table.
21
22
      convert_angle_to_index()
23
           Converts the angle into an sub-index for the Q-table.
25
26
      evaluate state()
           Evaluates the current state of the nanocar based on its position within the environment.
27
28
29
       select_move()
30
           The agent chooses the best action in a particular state based on the Q-table or
           by choosing a random action to explore the state.
31
32
       q table function()
33
34
           Calcuates the Q-Learning algorithm and updates the Q-table.
35
      save q table()
36
37
          Saves the Q-table as a binary file.
38
      def
             _init__(self):
39
           # Directory to save the Q-table
40
           self.qtable_directory = os.path.dirname(os.getcwd())+'/Qtable/'
41
42
43
           # Q-learning hyperparameters
           self.ALPHA = 0.9
44
           self.GAMMA = 0.95
45
46
           # Q-learning variables
47
           self.q_t = []
48
           self.q_tt = []
49
50
           self.q_tt_max = []
51
           # Discretization variables
52
           self.DISTANCE\_MIN = 1250
53
           self.DISTANCE_MAX = 2350
54
           self.DISTANCE DIV = 10
55
           self.DISTANCE_RANGE = self.DISTANCE_MAX-self.DISTANCE_MIN
57
           self.DISTANCE_STEP = int(self.DISTANCE_RANGE/self.DISTANCE_DIV)
58
           self.ANGLE_MIN = -30
           self.ANGLE\_MAX = 30
           self.ANGLE_RANGE = self.ANGLE_MAX-self.ANGLE_MIN
60
           self.ANGLE_DIV = 2
61
           self.ANGLE_DIV_ROUGH = 30
62
           self.ANGLE_STEP = int(self.ANGLE_RANGE/self.ANGLE_DIV)
63
64
           self.ANGLE_RANGE_ROUGH = int((180 - self.ANGLE_MAX) / self.ANGLE_DIV_ROUGH)
65
           self.POSITIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
66
           self.NEGATIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
67
68
           # Q-table initialization based on discretization variables
69
           for i in range(self.ANGLE_RANGE_ROUGH):
70
               # Additional 7 States: [ 30, 180]
71
               self.POSITIVE_Q_TABLE_DISCRETIZATION[i] = (self.ANGLE_MAX
72
                                                         + self.ANGLE_DIV_ROUGH* i
73
                                                         + self.ANGLE_DIV_ROUGH/2)
74
               # Additional 7 States: [-30,-180)
75
```

```
self.NEGATIVE Q TABLE DISCRETIZATION[i] = (self.ANGLE MIN
76

    self.ANGLE DIV ROUGH*i

77
78
                                                           - self.ANGLE_DIV_ROUGH/2)
79
            # State variables
80
            self.state_angle = 0
81
82
            # Action variables
            self.action distance = 0
84
85
            self.action_angle
86
            # Initialize environment
87
88
            self.env = EnvLearning()
89
            self.q_table = np.zeros([self.ANGLE_STEP+self.ANGLE_RANGE_ROUGH*2,
90
                                       self.DISTANCE_STEP+1,
91
                                      self.ANGLE STEP+self.ANGLE RANGE ROUGH * 2])
92
93
94
            # Load existing Q-table
            if Path(f"{self.qtable_directory}qtable.npy").is_file():
95
                self.q_table = np.load(f"{self.qtable_directory}qtable.npy")
96
                print(self.q_table[np.nonzero(self.q_table)])
97
            else:
98
                print ("Q-table does not exist")
99
100
101
        def convert_distance_to_index(self, var):
            Converts the distance into a sub-index. The distance is given by the distance between the
103
104
            STM-tip and the nanocar.
            Note: In general the index determines exactly where the entry is located in the Q-table.
106
        This subsequently means an entry of
            the multidimensional Q-table uniquely defines the state and the action.
107
108
            Return
109
110
                Returns the distance as index value.
112
113
            var = np.round(var)
            index_of_var = 0
114
            if var < self.DISTANCE_MAX-self.DISTANCE_DIV and var > self.DISTANCE_MIN:
115
                index_of_var = round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV)
116
117
            elif var >= self.DISTANCE_MAX-self.DISTANCE_DIV:
                index_of_var = round((self.DISTANCE_MAX-self.DISTANCE_MIN-self.DISTANCE_DIV)/self.
118
        DISTANCE_DIV)
            return int(index_of_var)
119
120
        def convert_angle_to_index(self, var):
121
            Converts the angle into an index or sub-index. The angle is given by the angle between the
123
124
            two vectors, namely the vector previous nanocar to goal position and previous nanocar to
            current nanocar position.
126
127
            Note: In general the index determines exactly where the entry is located in the Q-table.
            This subsequently means an entry of the multidimensional Q-table uniquely defines the state
128
            and the action.
129
130
            Return
131
                Returns the angle as index value.
133
134
            if var >= self.ANGLE_MIN and var <= self.ANGLE_MAX:</pre>
                index = int(np.around((var+self.ANGLE_MAX)/self.ANGLE_DIV,1)) + self.ANGLE_RANGE_ROUGH
136
137
            else:
                if var <= self.ANGLE_MIN:</pre>
138
                    index = -(np. digitize(var, self.NEGATIVE_Q_TABLE_DISCRETIZATION)
139
                                self.ANGLE_RANGE_ROUGH)
140
                elif var >= self.ANGLE MAX:
141
                              (np. digitize (var, self.POSITIVE_Q_TABLE_DISCRETIZATION)
142
                    index =
                               + self.ANGLE_RANGE_ROUGH
143
                               + self.ANGLE_STEP)
144
145
                     if index == 40:
146
                         index = 0
            return index
147
148
       def evaluate_action(self):
149
150
```

```
Evaluates the action state of the agent based on the positional data from the given
151
            environment.
152
153
            The action is given by the angle between the two vectors, namely the vector pointing from
154
            previous nanocar to goal and previous nanocar to current STM-tip position.
156
           Functions
158
            angle_between_vectors(v_base, v_car, v_goal)
159
                Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and
160
161
                from 'v_base to v_goal'
162
163
            self.action_distance = self.env.distance_between_vectors(
                                                 self.env.state_position_of_nanocar_past_present[0],
164
165
                                                 self.env.position_stm_tip)
            self.action angle = self.env.angle between vectors(
                                                 self.env.state_position_of_nanocar_past_present[0],
168
                                                 self.env.position_stm_tip
169
                                                 self.env.state_position_of_goals[0])
170
171
       def evaluate_state(self):
172
173
            Evaluates the current state of the nanocar based on its position within the environment.
174
175
           The state is given by the angle between the two vectors, namely the vector pointing from
177
            previous nanocar to goal and previous nanocar to current nanocar position.
178
            Functions
179
180
            angle_between_vectors(v_base, v_car, v_goal)
181
                Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and
                from 'v_base to v_goal'
183
184
            # Calculates the state and sets the state to 0 before any manipulation was performed
185
186
            self.state angle = 0
            if self.env.number_of_iterations > 0:
187
                self.state_angle = self.env.angle_between_vectors( self.env.
188
        state_position_of_nanocar_past_present[0],
                                                          self.env.state_position_of_nanocar_past_present
189
        [1],
190
                                                          self.env.state_position_of_goals[0])
191
       def q_table_function(self):
193
            Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.
194
195
            Functions
196
197
            convert_distance_to_index(var)
198
199
                Converts the distance into an index or sub-index. The distance is given by the distance
                between the STM-tip and the nanocar.
200
201
            convert_angle_to_index(var)
                Converts the angle into a sub-index. The angle is given by the angle between the two
202
                vectors, namely the vector previous nanocar to goal position and previous nanocar to
203
               current nanocar position.
204
205
206
            if self.env.know_Car == True and self.env.number_of_iterations > 1:
207
                q_t = 0
                q_tt_max = 0
208
200
                q_t = 0
210
                self.evaluate state()
211
                self.evaluate_action()
212
213
214
                # Action space: converts real actions to index values
                action_index = [self.convert_distance_to_index(self.action_distance),
215
                                 self.convert_angle_to_index(self.action_angle)]
216
217
218
                # State space: converts real state to index value
                state_index = self.convert_angle_to_index(self.state_angle)
219
220
                next_state_index = action_index[1]
221
                # The Q-Learning algorithm
                q_t = self.q_table[state_index, action_index[0], action_index[1]]
                q_tt_max = np.max(self.q_table[next_state_index])
224
225
                q_tt = q_t + self.ALPHA*(self.env.reward + self.GAMMA*(q_tt_max) - q_t)
```

```
self.q_table[state_index, action_index[0], action_index[1]] = q_tt

def save_q_table(self):
    """ Saves the Q-table as a binary file.
    """

np.save(f"{self.qtable_directory}/qtable", self.q_table)
    print(self.q_table[np.nonzero(self.q_table)])
```

3 Experiment and Proof of Concept

3.1 Experimental Setup

In this work, the nanocar manipulation is carried out on a *PAN Slider 4K LT-STM/AFM*, which is a low-temperature scanning tunnelling microscope (LT-STM) developed by Createc. The experiment was carried out at the setup shown in figure 3.1. The equipment for the experiment was kindly provided by the group of Leonhard Grill from the University of Graz.

The STM provides a fully open OLE/COM control interface, which allows the STM to be controlled by the agent program.

Both, preparation chamber and STM chamber, are cooled to 5 K. The synthesized nanocars are filled into a crucible and put inside the preparation chamber, where the nanocars get deposited on the surface by evaporating them at 150 °C for 30 min. After deposition, the sample was transferred into the STM chamber. The sample holder resides at room-temperature and therefore increases sample temperature while transferring it to the STM chamber. Since molecular movement is enhanced at elevated temperatures, the transfer time should be kept as short as possible.

Figure 3.1: The PAN Slider 4K LT-STM/AFM is a low temperature STM. The nanocar is manoeuvred in (a) the STM chamber under UHV conditions. Inside the preparation chamber (b), the nanocar was deposited on the surface using an evaporator (c). Before depositing the nanocar, the surface was sputtering with an ion beam system (d) to provide an extremely flat and clean silver (111)-surface.

The nanocars are extracted from the island using a lateral manipulation. A lateral manipulation is a manoeuvre, where the STM-tip is moved within the xy-plane of the surface while maintaining a constant current. When extracting a molecule from an island, a small voltage in combination with a relatively high current is used and therefore the STM-tip approaches very close to the surface tearing out nanocars from the island.

While searching for the nanocar, a Z-topography is measured by using a higher voltage, but a much lower current. This moves the STM-tip further away from the nanocar and prevents additional translation or rotation. It should be emphasised that it is extremely important to not induce additional movement while searching, because the agent should learn the cause and effect for specific actions.

The manipulation of the nanocar was done using a vertical manipulation. The vertical manipulation is used for performing a voltage pulse at a given xy-position while maintaining a constant current. The electric field of the STM-tip interacts with the dipole of the nanocar and induces a movement towards the tip. The detailed settings for the different scenarios are given in table 3.1.

Table 3.1: Experimental condition and STM settings

 $\begin{array}{lll} T_s & & \dots & \text{Temperature of the sample stage} \\ \text{p} & & \dots & \text{Pressure within the STM chamber} \\ V_{bias} & & \dots & \text{Bias voltage between tip and surface} \\ I_t & & \dots & \text{Tunnelling current between tip and surface} \end{array}$

 Z_{offset} ... Z approach towards the surface during the measurement

Parameter	Value			
Conditions				
T_s	5 K			
p	$5.00 \cdot 10^{-10} \text{ mbar}$			
Nanocar extraction: lateral manipulation				
V_{bias}	0.010 V			
I_t	$0.300~\mathrm{nA}$			
Z_{offset}	$0.00~\mathring{A}$			
Nanocar ma	anoeuvre: vertical manipulation			
V_{bias}	1.800 V			
I_t	0.012 nA			
Z_{offset}	$2.50\; \mathring{A}$			
Nanocar se	earching: lateral manipulation			
V_{bias}	1.000 V			
I_t	$0.012~\mathrm{nA}$			
Z_{offset}	$0.00~\mathring{A}$			

The following table 3.2 shows the conversion formulas for DAC to Angstroms, Ampere, Volt and Pixel units.

Table 3.2: Conversion formulas for DAC units to:

DAC ... DAC value

 DAC_{Type} ... Digital to analogue converter (DAC) is 20 bit so its value is 20 Gain ... Gain for the piezocrystals in X and Y direction is given by 10

piezoconstant. Piezoconstant in X and Y direction is 29.42 for the STM used for learning and

43.50 for the STM used in the experiment

gain preamp \dots Tunnelling current amplification by a factor of 10

Unit	Formula
Angstroms	$DAC \cdot \frac{DAC_{Type}}{2^{DAC_{Type}}} \cdot GainX \cdot Xpiezoconst$
	$DAC \cdot \frac{DAC_{Type}}{2^{DAC_{Type}}} \cdot GainY \cdot Ypiezoconst$
Ampere	$DAC \cdot \frac{DAC_{Type}}{2^{DAC_{Type}} \cdot 10^{gainpreamp}} \cdot$
Volt	$DAC \cdot \frac{DAC_{Type}}{2^{DAC_{Type}}} \cdot GainX$
	$DAC \cdot \frac{DAC_{Type}}{2^{DAC_{Type}}} \cdot GainY$
Pixel	$rac{DAC}{DeltaX}$
	$rac{DAC}{DeltaY}$

3.2 Experiment

3.2.1 Nanocar extraction procedure

Before the agent can manoeuvre a nanocar, it has to be extracted from an island. Islands with well-ordered structures, shown in figure 3.2, are formed when only nanocars are present on the surface. If there are adsorbates within the island, the pattern gets disrupted or is not formed at all. The nanocars deposited on a silver (111)-surface will form large islands, which preferably start to grow at the step edges of a terrace.

Figure 3.2: The STM image of an island on the right-hand side is mostly composed of nanocars (a) forming perfectly ordered structures. In the magnified image (b) of the island, the individual nanocars are resolved.

The complete extraction procedure is pictured in figure 3.3. A single nanocar can be extracted by performing lateral manipulations at the border of an island with the settings given in table 3.1. The extraction process can be considered successful, when a characteristic Z-signal is measured. An undamaged and fully functional nanocar is shaped like a peanut, shown in figure 3.3d.

Figure 3.3: The extraction process of a single nanocar from an island. (a) Overview of an island composed of almost pure nanocars and a large empty space to manoeuvre afterwards. (b) Magnified image of pure nanocars at the border of the island and forming a well-ordered structure. (c) The boarder of the island, where a nanocar is extracted (d) Single nanocar extracted after several lateral manipulations. Also the island was torn apart in this procedure. (e) Characteristic feedback of the Z-signal while the nanocar is extracted from the island.

3.2.2 Al-controlled nanocar

After a single nanocar is extracted, it gets manoeuvred over a racetrack, as it is shown in figure 3.4. The environment for the agent is defined by the blue dots: the start, one sub-goal and the finish. The AI completed the racetrack with eight successful and one failed action and is showing a success-rate of 89%. The nanocar was manoeuvred over a distance of about 7.5 nm in 110 s, which means the nanocar was manoeuvred at a speed of 248 nm h^{-1} over the surface.

The analysis of the race gives interesting insights into the movement behaviour of nanocars, but also what crucial role its orientation plays relative to the positioning of the vertical manipulation.

The first vertical manipulation was successful and moved the border of the nanocar towards the STM-tip. Due to the suboptimally chosen starting position, the movement was just a small fraction. The second vertical manipulation did not promote a translation, but a rotation - leading to a failed action. The search algorithm was performed and determined the nanocars centre of mass, which was pretty close to the previous tip position, which is supporting the theory of rotation. This rotation moved the border of the nanocar closer to the next position of vertical manipulation, such that although the position is quite the same, this time the action succeeded.

After a pulling action, the border of the nanocar moved to the tip position, like it can be seen, when the nanocar reached the finish in figure 3.4b. This is clear, when considering the STM-tip is predominantly interacting with the dipole of the nanocar, which is pointing outwards and located at its boarder 1.2. Thus, not the centre of the nanocar, but the head and tail position of the dipole are the ones we are interested in.

Figure 3.4: The AI manoeuvring the nanocar over a given racetrack defined by start and goals and solving the racetrack by manoeuvring the nanocar with eight successful actions and one failed action towards the goal. After a failed action, meaning the nanocar did not translate below the STM-tip, the search algorithm finds the position of the nanocar again.

The environment determines when the goal is reached by defining a distance around the goal. If the STM-tip is located within this range, the goal is supposed to be reached after a successful action. This can be seen at the sub-goal, where the AI changes the direction right before the sub-goal, and manoeuvres the nanocar straight towards the finish, where it again stops within a 1.4 nm radius around the goal.

4 Conclusion and outlook

In the proof of concept 3.2.2, the AI impressively demonstrated its performance. In the prime example shown here, the nanocar was manoeuvred with eight successful steps towards the goal showing an success-rate of 89%; compared to 54% for humans. Hence impressive stats were accomplished, as the nanocar solved a 7.5 nm racetrack in 110 s moving at an average speed of 248 nm h^{-1} . In the first nanocar race in Toulouse, a 150 nm racetrack was solved in about 1.33 h, which corresponds to an average speed of 112 nm h^{-1} .

Our experiment showed the alluring prospect of reinforcement learning based AI in controlling single molecules across a surface. However, not every racetrack could be solved with the current version of the agent and the issues that persist could not be solved, as this would go beyond the scope of this thesis. There are minor and major solutions required - like defining states in terms of the dipole orientation and using a deep-neural network to analyse the current - that will tackle this issue and improve reliability as well as universality of the AI.

In this thesis, the state is based on the fact that the AI will figure out which action is the best in a particular state, and this state is given by the angle between the vectors, starting at the old nanocar position once to the to goal and the other to the current nanocar position. This is not the most elegant way of defining the state of the nanocar, because the nanocar on a FCC (111)-surface has a six-fold symmetry.

A more sophisticated definition for the states would be to use the angle between dipole direction of the nanocar relative to the direction of the goal. In that way, the orientation of the nanocar would be completely defined. This would be done by extending the search algorithm and determining the dipole direction via the central axis of the nanocar, because the axis and the dipole orientation are simply shifted by an angle of 90 $^{\circ}$.

This approach would be ideal for learning the perfect actions to the corresponding states and vice versa - knowing the effect (next state) for any taken action. In order to learn perfect correlations while still being competitive, there would have to be a training mode and a performance mode. In the training mode, where speed is irrelevant, a topography profile of the nanocar is recorded after every action in order to determine its exact state. While in performance mode, the topography is only recorded when the nanocar gets lost and the agent assumes to know every state of the nanocar due to the correlation of the performed action.

The universality of the agent could be realised by complementing the existing AI, which is responsible for manoeuvring the nanocar with a deep neural network. The neural network analyses the current signal, which contains a unique rotation and translation pattern that is acting like a fingerprint for every molecule. This allows molecules to be identified and provide insight into how they move during a manipulation.

This can easily be the foundation for more sophisticated techniques of molecular manipulations, where the AI is not limited to specific molecules, but every molecule can be placed at will - forming the basis for autonomous assembly and future bottom-up constructions of nanotechnology.

List of Figures

1.1	a: STM image (120 x 50 nm ²) of the Ag (111) surface at the start of the race showing a Dipolar Racer (red circle) on the left with two nearby nanocars, the two asperity pylons and the finish line between the juxtaposed pylons (blue circles). b: STM image of the same surface area where one Dipolar racer has crossed the finish line. The dotted line	
	shows the 150 nm racetrack. The image is modified from reference [8]	2
1.2	Molecular structure of the Dipolar Racer and its resonance form, which highlights the	
1.0	strong net dipole direction. The Dipolar Racer is ~ 2.5 nm in length.[8]	3
1.3	Schematic of the manipulation procedure. A low voltage (0.70 V) is used for imaging the molecule and a high voltage (1.8 V) is used to induce movement. [8]	3
1.4	An order of magnitude jump in the current versus time plot indicates that the molecule	4
1 5	has translated, after which the molecule rotates. [8]	4
1.5	The race from Toulouse showed a pulling success rate of about 54%. A successful and failed pulling is indicated by either green or red dots respectively. A pulling action is	
	considered to be successful, if the derivative of the current exceeds a certain threshold	
	and failed otherwise. In general, the x-axis can be seen as the distance from the STM-	
	tip to the nanocar or if the pulling action was successful - the travel distance of the	
	nanocar	5
1.6	A schematic drawing of the agent interacting with the environment through the scanning	
	tunnelling microscope, which functions as sensor and actuator	6
1.7	Interaction between agent and state space environments	8
1.8	Conceptual components of a Learning Agent	9
1.9	Left: OpenAI Gym Taxi environment [7] Right: The Q-table for the Taxi environment	15
2.1	The flow diagram for manoeuvring the nanocar across a given race-track by controlling	
	the STM. The Legend indicates to which class a processes belongs	18
2.2	GUI to initialize the environment. The number of sub-goals is set in the textbox and a	2.4
0.0	button click reads the relative position (VertX, VertY) of the currently loaded VERT-file.	24
2.3	This schematic shows all the states and actions for (a) a successful manoeuvre step followed by an (b) unsuccessful manoeuvre step, for which the nanocar has to be (c)	
	located by using the search algorithm. The first two graphs on the right represent	
	the induced current spectra and its derivatives for a successful and a failed pulling	
	action and the third graph represents the Z-topography of the nanocar after the search	
	algorithm is completed	28
2.4	Reward function that encourages the agent to move towards the goal and decrease	
	distance for every time step	30
2.5	Reward function that encourages the agent to pull the nanocar as close to the STM-tip	
	as possible	31
2.6	Angle discretization for states and actions	42
2.7	The multidimensional Q-table with two highlighted states. The current state of the	
	nanocar is $\varphi_{real} = 5^{\circ}$, which is page 12 in the Q-table. The highest Q-table entry is the	
	action the agent performs, which is indicated by the purple square in column 45, row	
	5. This corresponds to action $\varphi_{real} = -10^{\circ}$, $d_{real} = 1700 \ DAC \ units (= 9.54 Å)$. After	
	this action is performed, the nanocar is in the next state $\varphi_{real} = -20^{\circ}$, which is page 0.	44

List of Figures 75

2.8	A Q-table update process for one time step. Starting at (a) the current state of the nanocar and the highest Q-value in this state is the performed action. After the action	
	is performed, (b) the next state, the reward and the highest Q-value of the next state are determined and used to (c) update the old Q-value by applying the Q-Learning	
	algorithm	45
2.9	The flow diagram for training the agent from human generated data. The Legend indicates to which class a processes belongs	52
2.10	How the absolute and relative coordinates are defined by the STM. The origin of the scanned image is the center of the top boarder, while the offset and therefore the origin of the absolute coordination system is originated at the top left corner of the absolute coordination system	56
3.1	The PAN Slider 4K LT-STM/AFM is a low temperature STM. The nanocar is manoeuvred in (a) the STM chamber under UHV conditions. Inside the preparation chamber (b), the nanocar was deposited on the surface using an evaporator (c). Before depositing the nanocar, the surface was sputtering with an ion beam system (d) to provide an	
3.2	extremely flat and clean silver (111)-surface	67
	(a) forming perfectly ordered structures. In the magnified image (b) of the island, the individual nanocars are resolved	70
3.3	The extraction process of a single nanocar from an island. (a) Overview of an island composed of almost pure nanocars and a large empty space to manoeuvre afterwards. (b) Magnified image of pure nanocars at the border of the island and forming a well-ordered structure. (c) The boarder of the island, where a nanocar is extracted (d) Single nanocar extracted after several lateral manipulations. Also the island was torn apart in this procedure. (e) Characteristic feedback of the Z-signal while the nanocar	70
	is extracted from the island	71
3.4	The AI manoeuvring the nanocar over a given racetrack defined by start and goals and solving the racetrack by manoeuvring the nanocar with eight successful actions and one failed action towards the goal. After a failed action, meaning the nanocar did not	11
	translate below the STM-tip, the search algorithm finds the position of the nanocar again.	72

Bibliography

- [1] L. Bartels, G. Meyer, and K.-H. Rieder. "Basic Steps of Lateral Manipulation of Single Atoms and Diatomic Clusters with a Scanning Tunneling Microscope Tip". In: *Phys. Rev. Lett.* 79 (4 July 1997), pp. 697–700. DOI: 10.1103/PhysRevLett.79.697. URL: https://link.aps.org/doi/10.1103/PhysRevLett.79.697.
- [2] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.
- [3] Adam Shwartz (eds.) Eugene A. Feinberg. *Handbook of Markov Decision Processes: Methods and Applications*. reprint. Springer, 2002. ISBN: 9780792374596.
- [4] Rebala Gopinath, Ravi Ajay, and Churiwala Sanjay. An Introduction to Machine Learning. Springer International Publishing, 2019.
- [5] L. Grill et al. "Rolling a single molecular wheel at the atomic scale". In: *Nature Nanotechnology* (2 Feb. 2007), pp. 95–98. DOI: https://doi.org/10.1038/nnano.2006.210.
- [6] Rapenne Gwénaël and Joachim Christian. "The first nanocar race". In: Nature Reviews Materials 2.6 (June 6, 2017), p. 17040. DOI: 10.1038/natrevmats.2017.40. URL: https://doi.org/10.1038/natrevmats.2017.40.
- [7] Kansal Satwik and Martin Brendan. Reinforcement Q-Learning from Scratch in Python with OpenAI Gym. URL: https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/.
- [8] Grant J. Simpson et al. "How to build and race a fast nanocar". In: *Nature Nanotechnology* 12 (2017), pp. 604–606.
- [9] Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach. 3rd. Prentice Hall Series in Artificial Intelligence. Prentice Hall, 2010. ISBN: 9780136042594.
- [10] Richard S. Sutton. "Learning to predict by the methods of temporal differences". In: *Machine Learning* 3 (1988), pp. 9–44. URL: https://doi.org/10.1007/BF00115009.
- [11] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018. URL: http://incompleteideas.net/book/the-book-2nd.html.
- [12] Christopher J. C. H. Watkins. "Q-learning". In: *Machine Learning* 8 (1992), pp. 279–292. URL: https://doi.org/10.1007/BF00992698.

The code of the Simulator

The filemanager

```
1 import time
2 from datetime import datetime
3 import os
4 import glob
5 import shutil
6 import math
7 import numpy as np
9 class FileManager(object):
       """ A class used to read and/or write the VERT-files for either learning form human data or
       doing simulations.
11
           Methods
12
13
           get_files : list
14
               provides the complete path for every VERT-file within the 'directory' sorted by name
15
16
           get_latest_file : str
               provides the complete path for the latest VERT-file in the 'directory'
17
           get_num_files : int
               provides the number of files within the given 'directory'
19
           write_simulation_data(xy_data, know_Car=True)
20
              writes artificial data with the STM-tip position and a high or low current dependent on
21
      weather the nanocar is below the tip or not (this is determined randomly)
           read_position : array(2)
              read X/Y positin form the VERT-file
24
25
           __init_
                  _(self, directory_of_data):
           self.directory_of_data = directory_of_data
26
           # A unique naming scheme for every written VERT-file
27
           self.last_timestamp = None
           # The number of files within the given 'directory'
29
30
           self.num_files = 0
31
      def get_files(self):
32
              Returns the complete path for every VERT-file within the 'directory' and sorts it by
      name
34
               Returns
36
               files : list
37
                   A list of strings that contain the complete filepath of every VERT-file withing the
       'directory'
           files = sorted(glob.glob('*.VERT'))
40
           self.num\_files = len(files)
41
           return files
43
       """o os.chdir messes up the path as the next time it is called it
44
      def get_latest_file(self):
           files = sorted(os.listdir(self.directory_of_data), key=os.path.getmtime)
46
47
           newest = files[-1]
48
           return newest
49
      def get_num_files(self):
51
           return self.num files
52
      def write_simulation_data(self, xy_data, know_Car=True):
           dateTimeObj = datetime.now()
54
           timestampStr = f"{dateTimeObj.year}-{dateTimeObj.month}-{dateTimeObj.day}_{dateTimeObj.hour
       }-{dateTimeObj.minute}-{dateTimeObj.second}.{dateTimeObj.microsecond}"
```

```
self.last timestamp = timestampStr
56
57
            new_filename = f'{timestampStr}.VERT'
58
            if know Car == True:
59
                shutil.copyfile('Current_Right.VERT', new_filename)
60
61
            else:
                shutil.copyfile('Current_Wrong.VERT', new_filename)
62
            with open(new_filename, mode='r', encoding = "ISO-8859-1") as f:
                lines = f.readlines()
64
            with open(new_filename, mode='w', encoding = "ISO-8859-1") as f:
65
                lines[298] = \frac{38d}{38d}{38d}{310}, format(1000, xy_data[0], xy_data[1], 1)+^n
66
                f. writelines (lines)
67
68
       def read_position(self, file=None):
69
70
            position = np.empty(2)
71
72
            if file is None:
73
                file = self.get_latest_file()
74
            with open(file, mode='r', encoding="ISO-8859-1") as f:
75
76
                f_data = f.read().split('\n')
77
            # X/Y-position from datafile
78
            xdac = float(f_data[298].split()[1])
79
            ydac = float (f_data[298].split()[2])
80
81
82
            # Offset correction
            offsetx = float(f_data[20].split('=')[1])
83
84
            offsety = float(f_data[21].split('=')[1])
85
            # Additional parameters
86
            dx = float(f_data[3].split('=')[1])
87
            dy = float (f_data[4]. split ('=')[1])
88
            nx = float(f_data[5].split('=')[1])
89
90
            ny = float(f_data[6].split('=')[1])
91
92
            rot = float (f_data[14]. split ('=')[1])
93
            driftxoff = 0
94
            driftyoff = 0
95
96
            # Rotation matrix: cos -sin | xx xy
97
                                  sin cos | yx yy
98
            x_{\text{with\_rotation}} = -(xdac*np.cos(rot*np.pi/180) - ydac*np.sin(rot*np.pi/180) + offsetx-
99
        driftxoff)
            y_with_rotation = -(xdac*np.sin(rot*np.pi/180) + ydac*np.cos(rot*np.pi/180) + offsety-
100
        driftyoff)
101
            position = [xdac, ydac]
103
            return position
104
       def read_current(self, file=None):
106
            if file is None:
107
                file = self.get_latest_file()
108
            with open(file, mode='r', encoding="ISO-8859-1") as f:
110
                f_{data} = f.read().split('\n')
                                       # Data for current and time
111
            f_{t} = f_{data}[299:-1]
112
113
            t = []
114
            I = []
            for z in f_lt:
                trunc = z.split()
116
                t.append(int(trunc[0]))
117
                I.append(float(trunc[3]))
118
119
            data_It = [t, I]
            return data_It
120
       def read_voltage(self, file=None):
123
            if file is None:
                file = self.get_latest_file()
124
            with open(file, mode='r', encoding="ISO-8859-1") as f:
126
                f_{data} = f.read().split('\n')
                                        # Data for current and time
            f_Vt = f_{data}[299:-1]
128
            t = []
130
```

The environment

```
1 from filemanager import FileManager
2
3
  import numpy as np
4 import math
5 import random
6 import os
7 import glob
8 from datetime import datetime
9 import csv
10 import itertools
11 import statistics
12 from scipy.signal import savgol_filter
13 import scipy.fftpack
15 class EnvSimulation(FileManager):
16
      def
             _init__(self, pos_Env):
           self.directory_of_data = os.getcwd()+'/Data/1/'
17
18
           # Environment constants
19
           self.TRESHHOLD_CURRENT = 4000
                                                 # Current treshhold for determining if the nanocar is or
20
        is not below the tip
21
           self.SEARCH_DISTANCE = 250
           self.SEARCH STEPSIZE = 50
22
23
           self.DISTANCE\_REACH\_GOAL = 2500
                                                # Treshhold in DAC units between nanocar and sub-goal/
       final goal
24
           # Environment variables
25
           self.position_of_environment = pos_Env
26
           self.position_nanocar = np.array(self.position_of_environment[0])
27
           self.position_stm_tip = np.array(np.zeros(2))
28
           self.initial\_stm\_position = None
29
30
           self.current_spectrum = []
31
           self.average_current = 0
           self.know\_Car = True
32
33
           self.done = False
           self.position_nanocar_random = [None, None]
34
35
           self.set_current_spectrum_right()
36
           # State variables
37
           self.state_position_of_goals = np.array(self.position_of_environment[1:])
38
39
           self.state_position_of_nanocar_past_present = [self.position_nanocar, self.position_nanocar]
40
           # Reward variables and initialization
41
           self.reward = 0
42
           self.DISTANCE ERROR MAX = 2350
43
           self.distance_to_nearest_goal = 0
           self.total_distance_to_goal = 0
45
           self.distance_subgoals = np.zeros(len(self.position_of_environment))
46
                                                # Calculates distances between following environment
47
           self.init_reward_variables()
       positions
           self.calc_distance()
                                                # Calculates distances to the closest sub-goal and to
       the final goal
49
50
           # Analysis Variables FIXME: try catch if episodes.csv does not exist
51
52
               files = glob.glob(self.directory_of_data + '*.CSV')
53
54
               if not files == []:
                   latest_file = max(files, key = os.path.getctime)
56
                   print(latest_file)
57
                   with open(latest_file, newline='') as csv_file:
58
59
                        for line in csv_file.readlines(1):
                            self.number_of_episodes = int(line.split(',')[1])
60
61
                   self.number of episodes = 0
62
```

```
print("There are no previous episodes.")
63
            except OSError:
64
65
                self.number_of_episodes = 0
                print("The CSV file does not exist 2")
66
67
            self.datetime start = datetime.now()
68
69
            self.datetime\_end = 0
            self.number_of_manipulations = 0
70
71
            self.number\_of\_successful\_manipulations = 0
72
            self.number_of_failed_manipulations = 0
73
            self.total_reward_per_episode = 0
            self.number_of_searching = 0
74
75
            self.number_of_search_steps = 0
            self.average_steps_for_searching = 0
76
77
            self.x_history_nanocar = []
78
            self.y_history_nanocar = []
79
            self.x_history_searching_nanocar = []
80
            self.y_history_searching_nanocar = []
81
            self.total_distance = self.total_distance_to_goal*0.000561142
82
83
       def init_reward_variables(self):
                Calculates the distance between all following sub-goals or sub-goal to goal that were
84
        set in the initialization step of the environment.
                These are necessary for the reward function.
86
           # Distance between initial nanocar position to first sub-goal or already to the final goal
87
            self.distance_subgoals[0] = np.linalg.norm(np.subtract(self.position_nanocar, self.
88
        position_of_environment[1]))
89
            # Distances between sucessive sub-goals and sub-goal to final goal.
90
            if len(self.position_of_environment) > 1:
91
92
                for i in range(1,len(self.position_of_environment)):
                    self.distance_subgoals[i] = np.linalg.norm(np.subtract(self.position_of_environment[
93
        i-1]\,,self\,.\,position\_of\_environment\,[\,i\,])\,)
94
       def set_position(self):
95
96
                Writes simulation data
97
           #self.write_simulation_data(self.position_stm_tip, self.know_Car) # know_Car is necessary
98
        for "test data" writing
99
       def random_Car_Data(self):
100
            if np.random.randint(0,100) < 60:
                print('Random Nanocar')
                #self.write_simulation_data(self.position_stm_tip, False)
                #range_rnd_pos = self.DISTANCE_ERROR_MAX/np.sqrt(2)/2 # Enable!
                range_rnd_pos = self.DISTANCE_ERROR_MAX/np.sqrt(2)/5
                pos_rnd_x = np.random.randint(-range_rnd_pos, range_rnd_pos)
107
                pos_rnd_y = np.random.randint(-range_rnd_pos, range_rnd_pos)
108
109
                self.position_nanocar_random[0] = int(np.round(self.position_stm_tip[0] + pos_rnd_x))
                self.position_nanocar_random[1] = int(np.round(self.position_stm_tip[1] + pos_rnd_y))
110
                self.set_current_spectrum_wrong()
           #else:
112
                #self.set_position()
113
114
       def set_position_history(self):
115
116
               Saves either the position of the nanocar as long as its position is known or the
        position of the STM-tip while searching for it.
117
            if self.know_Car == True:
118
                self.x_history_nanocar=np.append(self.x_history_nanocar, self.position_stm_tip[0])
119
                self.y_history_nanocar=np.append(self.y_history_nanocar, self.position_stm_tip[1])
120
            else:
                self.x_history_searching_nanocar=np.append(self.x_history_searching_nanocar, self.
        position_stm_tip[0])
                self.y_history_searching_nanocar=np.append(self.y_history_searching_nanocar, self.
        position_stm_tip[1])
124
       def calc_distance(self):
                Calculates the distance from the nanocar to the nearest goal; and from the nanocar to
126
        the final goal.
127
                Deletes the position of a goal when the goal is reached and also deletes the reward
        variable of the previous sub-goal distance.
           # Calculates the distance to the nearest goal
```

```
self.distance\_to\_nearest\_goal = np.linalg.norm(np.subtract(self.position\_nanocar, self.distance\_to\_nearest\_goal) = np.linalg.norm(np.subtract(self.position\_to\_nearest\_goal) = np.linalg.norm(np.subtract(self.position\_to\_nearest\_goal) = np.linalg.norm(np.subtract(self.position\_to\_nearest\_goal) = np.lin
130
              state_position_of_goals[0]))
                      # Calculates the total distance to the goal
                      self.total_distance_to_goal = self.distance_to_nearest_goal
                      for i in range(1,len(self.state_position_of_goals)):
133
                             self.total_distance_to_goal += np.linalg.norm(np.subtract(self.state_position_of_goals[i
              -1], self.state_position_of_goals[i]))
                     # When a sub-goal is reached, the sub-goal gets deleted. Also, the reward variable for the
136
              previous sub-goal distance gets deleted
                      if len(self.state_position_of_goals) > 0:
137
                             if self.distance_to_nearest_goal < self.DISTANCE_REACH_GOAL:</pre>
138
139
                                     # When a goal is reached, the relative angle changes dramatically, this has to be
              compensated by adding the absolute angle
                                     self.state_position_of_goals = np.delete(self.state_position_of_goals,0,0)
140
                                     self.distance_subgoals = np.delete(self.distance_subgoals,0,0)
141
142
143
              def get_nanocar_position(self):
                            Returns the latest known position of the nanocar.
144
145
146
                      return self.position_nanocar
147
              def get_state_position_of_goals(self):
148
                            Returns all the goal positions, like sub-goals and the final goal.
149
150
                             Returns
151
                             self.state_position_of_goals : np.array(len(self.position_of_environment[1:]), 2)
153
                                     The goal positions.
154
                     return self.state_position_of_goals
156
              def get total distance(self):
158
159
                             Returns the total distance from the nanocar to the final goal.
160
                             Returns
161
162
                             self.total_distance_to_goal : float
163
                                     The total distance from nanocar to goal.
164
165
                     return self.total_distance_to_goal
166
167
168
              def unit_vector(self, vector):
                             Returns the unit vector of the vector.
170
                      vector = np.array(vector)
                      if vector.all() == 0:
171
                             return [0,0]
172
                      elif not vector.all() == 0:
173
                             return vector / np.linalg.norm(vector)
174
175
              def distance_between_vectors(self, vector1, vector2):
                             Returns the distance between two vectors.
177
178
                             Attributes
179
180
                             vector1 : np.array(len(vector1))
181
                                     Vector 1.
182
183
                             vector2 : np.array(len(vector2))
184
                                     Vector 2.
185
                             Return
186
187
                             vector_distance : float
188
                                     The distance between vector1 and vector2.
189
190
191
                      vector1 = np.array(vector1)
192
                      vector2 = np.array(vector2)
                      vector distance = 0
194
                      if not np.array_equal(vector1, vector2):
195
                             vector_distance = np.linalg.norm(np.subtract(vector1, vector2))
                     return vector_distance
196
197
198
              def angle_between_vectors(self, v_base, v_car, v_goal):
                            Return the angle in degrees between the two vectors, namely from 'v_base to v_car' and
199
              from 'v_base to v_goal'.
```

200

```
Note: The function considers if the relative vector of the nanocar 'v base to v car' is
201
        positioned
                clockwise or counter-clockwise from the relative vector 'v_base to v_goal'.
202
203
                Attributes
204
205
                v_base : np.array(2)
206
                    Vector to the basis.
207
208
                v car : np.arrav(2)
                    Vector to the nanocar.
209
210
                v_goal : np.array(2)
                    Vector to the goal.
211
212
                Return
213
214
                angle: float
215
                    The angle spanned by the two vectors: 'v base to v car' and from 'v base to v goal'.
216
217
            v_base = np.array(v_base)
218
            v_car = np.array(v_car)
219
220
            v_goal = np.array(v_goal)
221
            # Calculates the relative vectors of the nanocar and the goal
222
            v_car_rel = v_car_v_base
            v_goal_rel = v_goal-v_base
224
225
            # Calculates the unit vectors of the relative vectors nanocar and goal
226
            v_car_u = self.unit_vector(v_car_rel)
227
            v_goal_u = self.unit_vector(v_goal_rel)
228
            # Calculates the angle between the two relative vectors nanocar and goal
230
231
            angle = np.arccos(np.clip(np.dot(v_car_u, v_goal_u), -1.0, 1.0))*180/np.pi
            \# Use the property of the determinant that is, if the det < 0 the,
232
233
            # relative vector of the nanocar is clockwise to the relative vector of the goal.
234
            if np.linalg.det([v_goal_u,v_car_u]) <0:</pre>
235
               angle = -angle
            return angle
236
237
       def set_current_spectrum_right(self):
238
            self.current_spectrum = np.array(self.read_current(self.directory_of_data+'/Current_Right.
240
241
       def set_current_spectrum_wrong(self):
            self.current_spectrum = np.array(self.read_current(self.directory_of_data+'/Current_Wrong.
242
243
244
       def get_average_current(self):
                Calculates and returns the average current of the latest vertical manipulation step.
245
246
247
                Functions
248
                stm.get current spectrum()
249
250
                    Reads the current spectrum from the ADC channels of the STMAFM program.
251
                Return
252
253
254
                self.current_spectrum : list([number of datapoints])
255
                    Contains the current spectrum.
            self.average_current = int(np.mean(self.current_spectrum[self.current_spectrum > 0]))
257
258
            return self.average_current
259
260
       """ Calculates the position of the STM-tip due to a given moving_length
261
262
       def calc_next_position(self, length, angle):
263
            angle = angle * np. pi/180
            theta = 0
264
             "" Defines the direction the nanocar has to drive. This is the relative
265
266
            direction the tip will be positioned next, while the distance will be
            solved by the neural network.
267
268
            dx = np.subtract(self.state\_position\_of\_goals[0][0], self.position\_nanocar[0])
269
           dy = np.subtract(self.state_position_of_goals[0][1], self.position_nanocar[1])
270
            if dx > 0:
271
                theta = np.arctan(dy/dx)
272
            elif dx<0 and dy>=0:
273
```

```
theta = np.arctan(dy/dx)+np.pi
274
            elif dx<0 and dy<0:
275
276
                theta = np.arctan(dy/dx)-np.pi
            elif dx==0 and dy>0:
277
                theta = np.pi/2
278
            elif dx==0 and dy<0:
279
280
                theta = -np.pi/2
            #print(f'Angle: {angle*180/np.pi}')
282
            print(f'Theta: {theta*180/np.pi}')
283
            print('Nanocar position: %s' % self.position_nanocar)
284
            print('Goal position: %s' % self.state_position_of_goals[0])
285
286
            pos_STM_x = int(np.round(self.position_nanocar[0] + length*np.cos(angle+theta),2))
           pos\_STM\_y = int(np.round(self.position\_nanocar[1] + length*np.sin(angle+theta), 2))
287
288
            self.position_stm_tip = [pos_STM_x, pos_STM_y]
289
290
            # Sets the STM-position or puts the nanocar with a certain percentage to a random position
291
292
            self.random_Car_Data()
            self.number\_of\_manipulations += 1
293
294
295
       def check_current_pattern(self):
                Checks if the average current of the current pattern measured after a pulling action is
296
        higher than a certain treshhold.
                If this is:
297
                - TRUE: The position of the nanocar is below the STM-tip - hence it is known
298
                - FALSE: The position of the nanocar is not below the STM-tip - hence it is unknown and
299
       a search-algorithm starts searching for the nanocar.
300
                Functions
301
302
303
                get average current()
                    Calculates the average current induces to the STM-tip after a pulling action.
304
305
                reward_function()
306
                    Calculates the reward the agnet receives.
307
                search car()
                    Searching the nanocar if the it got lost.
308
309
            self.get_average_current()
310
311
            if self.average_current >= self.TRESHHOLD_CURRENT and self.know_Car == True:
312
         # I is RIGHT
313
                print("Current pattern is right!")
                self.number_of_successful_manipulations += 1
314
315
                self.position_nanocar = self.position_stm_tip.copy()
                self.state_position_of_nanocar_past_present = [self.
316
        state_position_of_nanocar_past_present[1], self.position_nanocar]
                self.initial_stm_position = None
317
                self.reward_function()
318
319
320
            elif self.average_current < self.TRESHHOLD_CURRENT and self.know_Car == True:</pre>
         # I is WRONG
321
                print("Current pattern is wrong! == Car is lost ==")
                self.number_of_failed_manipulations += 1
322
                self.know Car = False
323
                self.initial_stm_position = self.position_stm_tip.copy()
324
325
                self.search car()
326
            elif self.average_current >= self.TRESHHOLD_CURRENT and self.know_Car == False:
327
         # I is RIGHT
                print("Current pattern is right! == Car is found ==")
328
                self.know\_Car = True
329
                self.position_nanocar = self.position_stm_tip.copy()
330
                self.state_position_of_nanocar_past_present =
331
        state_position_of_nanocar_past_present[1], self.position_nanocar]
332
                self.reward_function()
333
       def search car(self):
334
335
             XXX XXX Adjust search parameters such that it is in the dimension of the nanocar XXX
               Search for the nanocar in a circular pattern with increasing radius. A high current
336
        response will indicate, that the nanocar is below the STM-tip.
337
                Functions
338
                define_voltage_pulse_searching()
340
```

```
Defines the voltage pulse to search for the nanocar such that it does not translate
341
        when the voltage is applied.
                set_position()
342
                 Sets the STM-tip position based on the search-algorithm.
343
344
            # The center of the search-algorithm is the last pulling position of the STM-tip
345
346
            centre_of_search_algorithm = self.position_stm_tip.copy()
347
            self.number_of_searching+=1
            search steps=0
348
            # Positions the STM-tip in a circular pattern and search pattern with increasing radius
349
            for radii, phi in itertools.product(range(self.SEARCH_STEPSIZE, 10000, self.SEARCH_STEPSIZE)
350
        , range(0, 370, 5)): #FIXME: radii and angle step size
351
                dx = radii*np.cos(phi*np.pi/180)
                dy = radii*np.sin(phi*np.pi/180)
352
                self.position_stm_tip = [int(round(centre_of_search_algorithm[0] + dx)), int(round(
353
        centre_of_search_algorithm[1] + dy))]
                search steps+=1
354
                self.check_distance_to_random_nanocar()
355
356
                self.check_current_pattern()
                self.set_position_history()
357
358
                self.number_of_search_steps+=1
359
                # If the current pattern is right, searching is finished
360
                if self.know_Car == True:
361
                    break
362
363
364
       def check_distance_to_random_nanocar(self):
            distance = self.distance_between_vectors(self.position_stm_tip, self.position_nanocar_random
365
            if distance <= self.SEARCH_DISTANCE:</pre>
366
367
                self.set_current_spectrum_right()
368
       def reward function(self):
369
               Calculates the reward to measure the performance of the agents actions. The reward is
370
        calculated by using two functions.
                1. Reward function calculates how precisely the nanocar has moved below the STM-tip
371
                2. Reward function calculates how close the nanocar moved towards the goal.
372
373
                Functions
374
                distance_between_vectors(vector1, vector2)
376
                    Calclates the distance between two vectors.
377
378
            self.reward = 0
379
380
            if self.number_of_manipulations >= 1:
381
                position_of_nanocar_past = self.state_position_of_nanocar_past_present[0]
382
                position_of_nanocar_present = self.state_position_of_nanocar_past_present[1]
                position_of_nearest_goal = self.state_position_of_goals[0]
384
385
                # Calculates the distane to the goal before and after the pulling action
                distance_of_past_nanocar_to_goal = self.distance_between_vectors(
387
        position_of_nanocar_past, position_of_nearest_goal)
                distance_of_present_nanocar_to_goal = self.distance_between_vectors(
388
        position_of_nanocar_present , position_of_nearest_goal)
                difference_in_distance_from_goal_between_pulling_action = np.subtract(
389
        distance_of_past_nanocar_to_goal, distance_of_present_nanocar_to_goal)
390
                # Calculates by how much the nanocar translated to an unknown position
391
                if self.initial_stm_position is None:
392
303
                    nanocar_deviates_from_initial_stm_position = 0
                    self.initial_stm_position = position_of_nanocar_present
394
                else:
395
                    nanocar_deviates_from_initial_stm_position = self.distance_between_vectors(self.
396
        initial_stm_position , position_of_nanocar_present)
397
                # Calculates the reward using two reward functions
                self.reward = 0
399
                # 1. Reward function
400
401
                if difference_in_distance_from_goal_between_pulling_action > 0 and self.
        total_distance_to_goal > 0:
402
                    self.reward += 0.5*(1-self.distance_to_nearest_goal/self.distance_subgoals[0])
                elif difference_in_distance_from_goal_between_pulling_action <= 0 and self.</pre>
403
        total_distance_to_goal >= 0:
                    self.reward -
                # 2. Reward function
405
                if nanocar_deviates_from_initial_stm_position <= self.DISTANCE_ERROR_MAX:</pre>
406
```

```
+= 1-math.pow(nanocar_deviates_from_initial_stm_position/self.
                     self.reward
407
       DISTANCE_ERROR_MAX, 0.4)
408
            self.total_reward_per_episode += self.reward
            print(f'Reward: {self.reward}')
409
410
       def is_done(self):
411
412
            if len(self.state_position_of_goals) <= 0:</pre>
                self.done = True
413
                self.datetime end = datetime.now()
414
415
                self.number_of_episodes+=1
                print("The course was solved!")
416
            return self.done
417
```

The agent

```
1 import numpy as np
2 import random
3 import math
4 import os
5 import glob
6 import matplotlib.pyplot as plt
7 from pathlib import Path
8 import statistics
9 from environment import EnvSimulation
10 from datetime import datetime
12 class TDQSimulation(object):
           This class represents the agent program.
13
           The goal of the agent is to manouvers a nanocar across a race-track and accumulate maximum
14
       reward\,.
          This is done by positioning the STM-tip based on the current state of the nanocar within the
        environment
          The learning algorithm of the agent is based on an off-policy temporal difference algorithm,
        known as 'Q-Learning'.
17
           Methods
18
19
           convert_distance_to_index()
20
               Converts the distance into an sub-index for the Q-table.
21
           convert_angle_to_index()
22
               Converts the angle into an sub-index for the Q-table.
23
24
           evaluate_state()
25
               Evaluates the current state of the nanocar based on its position within the environment.
26
           select move()
27
               The agent chooses the best action in a particular state based on the Q-table or
               by choosing a random action to explore the state.
28
29
           q_table_function()
               Calcuate the Q-Learning algorithm and updates the Q-table.
30
           save_q_table()
31
32
               Saves the Q-table as a binary file.
33
      def
            __init__(self, pos_Env):
34
           # Directory to save the Q-table
35
36
           self.qtable_directory = os.path.dirname(os.getcwd())+'/Qtable/'
37
           # Q-learning hyperparameters
38
           self.ALPHA = 0.9
39
           self.GAMMA = 0.95
40
41
           # Learning variables
42
                               # Exploration rate [%]
43
           self.epsilon = 0.7
44
           self.ANGLE LOWER LIMIT = -4
45
           self.ANGLE\_UPPER\_LIMIT = 4
46
           self.DISTANCE_LOWER_LIMIT = 1500
47
48
           self.DISTANCE_UPPER_LIMIT = 1900
49
           # Q-learning variables
50
51
           self.q_t = []
52
           self.q_tt = []
           self.q_tt_max = []
53
54
55
           # Discretization variables
           self.DISTANCE_MIN = 1250
56
           self.DISTANCE\_MAX = 2350
57
           self.DISTANCE DIV = 10
58
```

```
self.DISTANCE RANGE = self.DISTANCE MAX-self.DISTANCE MIN
59
            self.DISTANCE_STEP = int(self.DISTANCE_RANGE/self.DISTANCE_DIV)
60
61
            self.ANGLE_MIN = -30
            self.ANGLE_MAX = 30
62
            self.ANGLE_RANGE = self.ANGLE_MAX-self.ANGLE_MIN
63
            self.ANGLE_DIV = 2
64
            self.ANGLE_DIV_ROUGH = 30
65
            self.ANGLE_STEP = int(self.ANGLE_RANGE/self.ANGLE_DIV)
67
            self.ANGLE_RANGE_ROUGH = int((180 - self.ANGLE_MAX)/self.ANGLE_DIV_ROUGH)
68
            self.POSITIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
69
            self.NEGATIVE_Q_TABLE_DISCRETIZATION = np.array(np.zeros(int(self.ANGLE_RANGE_ROUGH)))
70
71
            # Q-table initialization based on discretization variables
72
             \begin{tabular}{ll} for & i & in & range (self.ANGLE_RANGE_ROUGH): \\ \end{tabular}
73
                # Additional 7 States: [ 30, 180]
74
                self.POSITIVE_Q_TABLE_DISCRETIZATION[i] = self.ANGLE_MAX+self.ANGLE_DIV_ROUGH*i+self.
75
       ANGLE_DIV_ROUGH/2
76
                # Additional 7 States: [-30,-180)
                self.NEGATIVE_Q_TABLE_DISCRETIZATION[i] = self.ANGLE_MIN-self.ANGLE_DIV_ROUGH*i-self.
77
       ANGLE_DIV_ROUGH/2
78
            # State variables
79
            self.state_angle = 0
80
81
82
            # Action variables
            self.action_distance = 0
83
            self.action\_angle = 0
84
85
86
            # Initialize environment
            self.env = EnvSimulation(pos_Env)
87
88
            self.q table = np.zeros([self.ANGLE STEP+self.ANGLE RANGE ROUGH*2, self.DISTANCE STEP+1,
89
        self.ANGLE_STEP+self.ANGLE_RANGE_ROUGH * 2])
90
            # Load existing Q-table
91
            files = glob.glob(f'{self.qtable_directory}*.npy')
92
            if not files == []:
93
                latest_file = max(files , key=os.path.getmtime)
94
                self.q_table = np.load(latest_file)
95
                print(latest_file)
96
97
                print(self.q_table[np.nonzero(self.q_table)])
                print('The Q-table is loaded!')
            else:
99
100
                print ("Q-table does not exist")
103
       def convert_distance_to_index(self, var):
104
              " Converts the distance into an index or sub-index. The distance is given by the distance
        between the STM-tip and the nanocar.
106
                Note: In general the index determines exactly where the entry is located in the Q-table.
         This subsequently means an entry of
                the multidimensional Q-table uniquely defines the state and the action.
108
                Return
110
111
                    Returns the distance as index value.
113
114
            var = np.round(var)
            index_of_var = 0
115
            if var <= self.DISTANCE_MAX and var >= self.DISTANCE_MIN:
116
                index_of_var = np.round((var-self.DISTANCE_MIN)/self.DISTANCE_DIV,1)
117
            elif var > self.DISTANCE_MAX:
118
119
                index_of_var = np.round((self.DISTANCE_MAX-self.DISTANCE_MIN)/self.DISTANCE_DIV,1)
            return int(index_of_var)
120
122
       def convert_angle_to_index(self, var):
123
               Converts the angle into an sub-index. The angle is given by the angle between the two
        vectors, namely the vector
124
                previous nanocar to goal position and previous nanocar to current nanocar position.
125
                Note: In general the index determines exactly where the entry is located in the Q-table.
126
         This subsequently means an entry of
                the multidimensional Q-table uniquely defines the state and the action.
128
```

```
Return
130
                    Returns the angle as index value.
            if var >= self.ANGLE_MIN and var <= self.ANGLE_MAX:</pre>
133
                return int(np.around((var+self.ANGLE_MAX)/self.ANGLE_DIV,1)) + self.ANGLE_RANGLE_ROUGH
134
135
            else:
                \#var = np.around(var, -1)
136
                if var <= self.ANGLE MIN:
137
                    return -np.digitize(var, self.NEGATIVE_Q_TABLE_DISCRETIZATION) + self.
138
       ANGLE RANGE ROUGH
                elif var >= self.ANGLE_MAX:
139
                    index = np.\,digitize\,(var\,,self\,.POSITIVE\_Q\_TABLE\_DISCRETIZATION) \,\,+\,\,self\,.
140
       ANGLE_RANGE_ROUGH + self.ANGLE_STEP
141
                    if index == 40:
                        index = 0
142
                    return index
143
144
145
       def evaluate_state(self):
                Evaluates the current state of the nanocar based on its position within the environment.
146
147
                The state is given by the angle between the two vectors, namely the vector pointing from
148
149
                previous nanocar to goal and previous nanocar to current nanocar position.
                Functions
151
152
153
                angle_between_vectors(v_base, v_car, v_goal)
                    Return the angle in degrees between the two vectors, namely from 'v_base to v_car'
154
        and from 'v_base to v_goal'
            # Calculates the state and sets the state to 0 before any manipulation was performed
156
            self.state angle = 0
            if self.env.number of manipulations > 0:
158
                self.state_angle = int(self.env.angle_between_vectors( self.env.
159
        state_position_of_nanocar_past_present[0],
                                                          self.env.state_position_of_nanocar_past_present
        [1],
                                                          self.env.state_position_of_goals[0]))
161
162
       def select_move(self):
163
                The agent chooses the best action in a particular state based on the Q-table or
164
165
                by choosing a random action to explore the state.
166
                XXX Choose small angles first to fill the Q-table at smaller angles first XXX
                XXX Explore function to explore state using random actions XXX
169
170
            self.evaluate_state()
            print(self.state_angle)
171
            state_angle_index = self.convert_angle_to_index(self.state_angle)
172
173
            action_index = np.zeros(2)
174
            if random.uniform(0,1) < self.epsilon:
175
                    # Calculate indices to corresponding limits
                    lower_distance_index = self.convert_distance_to_index(self.DISTANCE_LOWER_LIMIT)
177
                    upper_distance_index = self.convert_distance_to_index(self.DISTANCE_UPPER_LIMIT)+1
178
                    lower_angle_index = self.convert_angle_to_index(self.ANGLE_LOWER_LIMIT)
                    upper_angle_index = self.convert_angle_to_index(self.ANGLE_UPPER_LIMIT)+1
180
181
                    # Determine all Q-table entries that were never used: Q-value == 0
182
                    actions_never_used_index = np.where(self.q_table[state_angle_index]==0)
183
184
                    # Determine indices which are within the limit
185
                    limited_actions_never_used_index = [(actions_never_used_index[0][:] <=</pre>
186
        upper_distance_index) &
                                                          (actions_never_used_index[0][:]>=
187
        lower_distance_index) &
                                                          (actions_never_used_index[1][:]<=
188
        upper angle index) &
189
                                                          (actions_never_used_index[1][:]>=
        lower_angle_index)]
190
191
                    # Select the actions that are never used and are within the limits
                    actions_never_used_index = [actions_never_used_index[0][
        limited_actions_never_used_index],
193
                                                  actions_never_used_index[1][
        limited actions never used index 11
194
```

```
# From all actions within the limit randomly chose one action
195
                    action_random_never_used_index = np.random.randint(0,len(actions_never_used_index
196
        [0]))
                    distance never used index = actions never used index[0][
197
        action_random_never_used_index]
                    angle_never_used_index = actions_never_used_index[1][action_random_never_used_index]
198
199
                    action_index = [distance_never_used_index, angle_never_used_index]
200
                # Select the best action
201
                action_best_index = np.where(self.q_table[state_angle_index]==np.max(self.q_table[
202
        state_angle_index]))
203
204
                # From equally good actions select one of them randomly
                action_random_best_index = np.random.randint(0,len(action_best_index[0]))
205
206
                distance_best_index = action_best_index[0][action_random_best_index]
                angle_best_index = action_best_index[1][action_random_best_index]
207
                action_index = [distance_best_index, angle_best_index]
208
209
            self.action_distance = self.DISTANCE_MIN + action_index[0]*self.DISTANCE_DIV
210
            if action_index[1] <= self.ANGLE_RANGE_ROUGH:</pre>
211
212
                self.action_angle = -180+action_index[1]*self.ANGLE_DIV_ROUGH
            elif action_index[1] >= self.ANGLE_RANGE_ROUGH + self.ANGLE_STEP
213
                self. action\_angle = self. ANGLE\_MAX + (action\_index[1] - self. ANGLE\_RANGE\_ROUGH-self.
214
       ANGLE_STEP) * self.ANGLE_DIV_ROUGH
            else:
215
                self.action_angle = self.ANGLE_MIN + (action_index[1]-self.ANGLE_RANGE_ROUGH) * self.
216
       ANGLE_DIV
217
            # Calculates the next STM-tip positon based on the agents choosen actions
218
            self.env.calc_next_position(self.action_distance, self.action_angle)
219
220
221
            print(f'State in deg: {self.state_angle}')
            print(f'Action in DAC: {self.action distance}')
222
223
            print(f'Action in deg: {self.action_angle}')
224
       def q_table_function(self):
225
               Calcuate the Q-value based on the Q-Learning algorithm and updates the Q-table.
226
227
                Functions
228
229
                convert_distance_to_index(var)
230
                    Converts the distance into an index or sub-index. The distance is given by the
231
        distance between the STM-tip and the nanocar.
                convert_angle_to_index(var)
232
233
                    Converts the angle into an sub-index. The angle is given by the angle between the
        two vectors, namely the vector
                    previous nanocar to goal position and previous nanocar to current nanocar position.
234
235
            if self.env.know_Car == True and self.env.number_of_manipulations > 1:
236
237
                q_t = 0
238
                q_{t_max} = 0
                q_tt = 0
239
240
                # Action space: converts real actions to index values
241
                action index = [self.convert distance to index(self.action distance),
242
                                 self.convert_angle_to_index(self.action_angle)]
243
244
                # State space: converts real state to index value
245
                state_index = self.convert_angle_to_index(self.state_angle)
246
                next_state_index = action_index[1]
247
248
                # The Q-Learning algorithm
249
                q_t = self.q_table[state_index, action_index[0], action_index[1]]
250
                q_tt_max = np.max(self.q_table[next_state_index])
251
                q_tt = q_t + self.ALPHA*(self.env.reward + self.GAMMA*(q_tt_max) - q_t)
252
253
                self.q_table[state_index, action_index[0], action_index[1]] = q_tt
254
       def save_q_table(self):
255
256
              ' Saves the Q-table as a binary file.
257
            path = f'{self.qtable_directory}/qtable_simulation'
258
259
            now = datetime.now()
            timestamp_file = now.strftime("%y-\%m-\%d_\%H-\%M-\%S")
260
            path_with_timestamp = f'{self.qtable_directory}/{timestamp_file}_qtable_simulation'
261
262
263
                print('The Q-table is saved!')
264
```

```
np.save(path with timestamp, self.q table)
265
266
                print(self.q_table[np.nonzero(self.q_table)])
267
            except:
268
                try:
                    os.mkdir(self.qtable_directory)
269
                    np.save(path, self.q_table)
270
271
                    np.save(path_with_timestamp, self.q_table)
                    print(self.q_table[self.q_table>0])
                except OSError:
273
                    print ("Creation of the directory %s failed" % path)
274
                    print("Q-table could not be created.")
275
                else:
276
                    print ("Successfully created the directory %s " % path)
```

The main

```
1 from agent import TDQSimulation
3 import matplotlib.pyplot as plt
4 import statistics
5 import numpy as np
6 import math
7 import csv
8 from itertools import zip_longest
9 from time import mktime
10
11
  def draw_position_driving(agent):
       plt.figure(2)
      ax = plt.axes()
13
      scatter1 = plt.scatter(None, None, color='red', marker=".", s=100)
scatter2 = plt.scatter(None, None, color='green', marker=".", s=10
14
                                                                      ', s=100)
       scatter3 = plt.scatter(None, None, color='grey', marker=".", s=200)
16
17
       scatter2 = plt.scatter(agent.env.x_history_nanocar, agent.env.y_history_nanocar, color='green',
18
       \verb|scatter1| = \verb|plt.scatter(agent.env.x_history_searching_nanocar, agent.env.|\\
19
       y_history_searching_nanocar, color='red', marker=".", s=100)
      x_data_Goal = []
20
      y_data_Goal = []
21
       print(len(pos_Env))
22
       print(pos_Env[0][0])
23
24
       for i in range(len(pos_Env)):
25
           scatter3 = plt.scatter(pos_Env[i][0], pos_Env[i][1], color='grey', marker=".", s=200)
26
27
       plt.title('Part of the race-track from the nanocar race in Toulouse', fontsize=24)
      plt.xlabel('X / a.u.', fontsize=24)
plt.ylabel('Y / a.u.', fontsize=24)
28
       29
30
        best', prop={'size': 20})
       plt.xlim(0, 200000)
31
32
       plt.ylim(0, 200000)
       plt.draw()
33
34
35
  def simulation_routine(agent):
36
       agent.select_move()
                                          # Includes set_position() and set_Current/Voltage | For Testing
        write Artificial Data
       agent.env.check_current_pattern()
38
      agent.env.calc_distance()
39
40
      agent.q_table_function()
41
      agent.env.set_position_history()
       draw_position_driving(agent)
42
43
  def epoch_is_done(episode):
44
      final_episode = 100
45
46
      return episode==final_episode
47
  def analysis(agent):
48
       # Calculate Analysis Variables
49
50
       if agent.env.number_of_searching == 0:
           agent.env.average_steps_while_searching = 0
51
52
           agent.env.average_steps_while_searching = agent.env.number_of_search_steps/agent.env.
53
       number_of_searching
       timestamp file = agent.env.datetime end.strftime("%y-\%m-\%d \%H-\%M-\%S")
```

```
path_with_timestamp = f'{agent.env.directory_of_data}/{timestamp_file}_episode_{agent.env.
56
        number_of_episodes}_epsilon_{agent.epsilon}.csv
       time_difference_in_s = abs(mktime(agent.env.datetime_start.timetuple())-mktime(agent.env.
57
       datetime_end.timetuple()))
       speed = agent.env.total_distance_to_goal/time_difference_in_s
58
59
       with open(path_with_timestamp, 'w', newline='') as csv_file:
60
            csv_write = csv.writer(csv_file)
61
            csv_write.writerow(['Episode', f'{agent.env.number_of_episodes}'])
csv_write.writerow(['Epsilon', f'{agent.epsilon}'])
62
63
            csv_write.writerow(['Duration in s', f'{time_difference_in_s}'])
64
            csv_write.writerow(['Length', f'{agent.env.total_distance}'])
csv_write.writerow(['Speed in nm / h', f'{speed}'])
csv_write.writerow(['Manipulations', f'{agent.env.number_of_manipulations}'])
65
66
67
            csv_write.writerow(['Succeesful Manipulations',f'{agent.env.
68
        number_of_successful_manipulations}'])
            csv write.writerow(['Failed Manipulations',f'{agent.env.number of failed manipulations}'])
            csv_write.writerow(['Total reward per Episode',f'{np.around(agent.env.
70
        total_reward_per_episode ,2) } '])
           csv_write.writerow(['Average Steps while Searching',f'{agent.env.
71
        average_steps_while_searching } '])
            csv_write.writerow(['== Positional Dataset =='])
            csv_write.writerows([['Goal'], np.swapaxes(agent.env.position_of_environment,0,1)[0], np.
73
       swapaxes(agent.env.position_of_environment,0,1)[1],
                                   ['Nanocar'], agent.env.x_history_nanocar, agent.env.y_history_nanocar])
74
            csv_write.writerow(['Search-Algorithm'])
75
            for i in range(len(agent.env.x_history_searching_nanocar)):
76
                csv_write.writerow([agent.env.x_history_searching_nanocar[i], agent.env.
77
       y_history_searching_nanocar[i]])
78
79
  pos_Env = np.array([[37000, 10000], [16000,35000]])# [10000,70000], [60000,180000], [150000,75000]])
  x data Goal=[]
81
82
  y_data_Goal =[]
  def main():
84
       agent = TDQSimulation(pos_Env)
85
86
       while not agent.env.is_done():
87
            simulation_routine(agent)
88
       analysis (agent)
89
90
       agent.save_q_table()
91
       plt.show()
92
93
94
               _ == "__main_
95
   i f
       name
       main()
```