
Gregor Liebisch, BSc

Level of Detail Selection for Foveated
Rendering in Virtual Reality

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Development and Business

Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

Institute of Computer Graphics and Vision

Graz, January 2021

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis.

Date Signature

Abstract

In computer graphics one approach to save performance is the use of Levels
of Detail. The different levels represent the same object with a simplified
version of the mesh. The higher the level, the higher the simplification.
Those levels are then switched during run-time by certain criteria like the
size of the object on the screen. It is quite obvious that smaller objects need
less detail.

Every VR Headset consists of a display and a lens through which the
renderings on the display can be seen. The lens is used to increase the
field of view, which is a very important aspect in Virtual Reality. The lens
itself introduces distortions, which are compensated in software by applying
a barrel distortion to the rendered output. This kind of distortion squeezes
objects at the edge of the screen, which makes them appear smaller. As
smaller objects need less detail, the eccentricity, which is the distance to
the center of the screen, is another criterion for the selection of the Level of
Detail.

The Level of Detail Framework is based on a metric commonly used in
visual applications, called Structural Similarity Score. The score of each
object gets better with increasing distance to the camera. It was observed
that there is a linear relation between the threshold of the accepted SSIM
score and the current distance of a certain object. The linear relation was
evaluated by conducting a user study. The final step was to measure the
performance savings with respect to number of triangles as well as rendering
time for the different criteria of the LOD selection.

In conclusion, the SSIM based Level of Detail Framework works well and
delivers good results. The performance savings in terms of triangles and
render time are a bit less than expected. The foveation function for the
properties of a human eye shows more potential for performance savings and
is therefore probably the future way to go.

i

Kurzfassung

Levels of Detail (LOD) ist eine bekannte Methode um in der Computer Grafik
Leistung zu sparen. Ein Objekt besteht aus mehreren Versionen die sich im
Detailgrad unterscheiden, wobei dieser durch die Anzahl der Polygone des
Objektes bestimmt wird. Generell wird angenommen, dass kleinere Objekte
weniger Detail benötigen.

Ein Virtual Reality Headset besteht aus einem Bildschirm und einer Lin-
se. Die Ausgabe wird vom Benutzer durch die Linse betrachtet. Diese wird
benützt, um das Sichtfeld zu erweitern und jenem des menschlichen Auges
näher zu kommen. Das Bild wird durch die Linse verzerrt und per Software
wieder entzerrt. Der Benutzer erhält dadurch ein unverzerrtes Bild. Durch
die Entzerrung erscheinen Objekte am Rand des Bildschirms kleiner als in
der Mitte. Dieser Effekt nimmt mit der Entfernung zur Bildschirmmitte zu.
Die Eccentricity, die Distanz vom Zentrum des Bildschirms, wird daher als
weiteres Kriterium für die Auswahl des korrekten LODs in Betracht gezogen.

Das LOD Framework basiert auf einer in der Bildverarbeitung häufig ver-
wendeten Kennzahl, der strukturellen Ähnlichkeit. Die Ähnlichkeit zwischen
dem Original eines Objektes und einer Version mit weniger Detail, wird ge-
messen und steigt mit zunehmender Entfernung zur Kamera. Die Auswahl
des korrekten LODs erfolgt über einen Schwellwert der Messwerte, wobei ein
linearer Zusammenhang zwischen diesem und der Distanz angenommen wird.
Diese Annahme wird durch eine Benutzerstudie bestätigt. Als letzten Schritt
werden die Einsparungen bezüglich der Leistung durch die Verwendung der
LODs ermittelt.

Generell funktioniert die auf dem strukturellen Ähnlichkeit basierenden
LOD Framework sehr gut. Die gemessenen Einsparungen liegen etwas un-
ter den Erwartungen. Zieht man statt den Eigenschaften der Linse die des
menschlichen Auges für die Auswahl der LODs heran, erhält man mehr Po-
tenzial um Leistung zu sparen.

ii

Preface

This thesis is the final work of my Master Studies at the Graz University of
Technology. The researches done in order to compose this thesis were started
in 2019.
I would like to use this opportunity to thank my supervisor for his excellent
guidance and help during this process. My parents also deserve a particular
note of thanks without whom this thesis and my whole studies would have
not been possible. You’ve always kept me motivated.

Gregor Liebisch
Graz, January 11, 2021

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Structure of the Thesis . 2

2 Related work 3
2.1 Virtual Reality . 3

2.1.1 VR vs. AR vs. MR . 4
2.1.2 Visual Perception - Human Eye 5
2.1.3 Head Mounted Displays 6

2.1.3.1 Screen . 7
2.1.3.2 Lenses . 7
2.1.3.3 Metrics within the HMD 9
2.1.3.4 Tracking . 9

2.1.4 Problems with VR . 9
2.1.4.1 Motion Sickness 10
2.1.4.2 Vergence Accommodation Conflict 10

2.2 Vulkan . 12
2.2.1 Rendering Pipeline . 12
2.2.2 Coordinate Systems . 13

2.3 Stereo Rendering . 14
2.3.1 Toe-In Stereo . 14
2.3.2 Off-Axis Stereo . 14

2.4 Radial Lens Distortion . 15
2.4.1 Brown-Conrady Model 15
2.4.2 Lens Distortion in VR 17
2.4.3 Rendering Lens Distortion 19

2.4.3.1 Texture lookup in fragment shader 19
2.4.3.2 Texture to grid assignment 19

iv

Contents v

2.4.3.3 Distorting geometry 19
2.5 Level of Detail . 20

2.5.1 Level of Detail Frameworks 21
2.5.1.1 Discrete . 21
2.5.1.2 Continuous 21
2.5.1.3 View-dependent 22

2.5.2 Generating Levels of Detail 22
2.5.2.1 Vertex Removal 22
2.5.2.2 Edge Collapse 23
2.5.2.3 Vertex Clustering 24

2.5.3 Choosing Level of Detail 25
2.5.3.1 Fidelity Metric 25
2.5.3.2 Measuring Error 25
2.5.3.3 LOD Selection 26

2.6 Structural Similarity Index . 27
2.6.1 Luminance . 28
2.6.2 Contrast . 28
2.6.3 Structure . 28
2.6.4 SSIM in Images . 29

2.6.4.1 SSIM for Objects in Images 29
2.6.5 Comparison to MSE 29

2.7 Vector Streaming Framework 31
2.7.1 Basic Structure . 31
2.7.2 Scene Setup . 32
2.7.3 OpenVR . 33

3 Method 34
3.1 System Diagram and Components 34

3.1.1 Display Parameters . 34
3.1.2 Parameters at Runtime 36
3.1.3 Object specific Input 36
3.1.4 Structural Similarity Score Threshold 36

3.1.4.1 Size-dependant Threshold 37
3.2 Creating LODs . 37

3.2.1 Blender Decimate . 37
3.2.2 Automation via Python Script 38

3.3 Object Specific Input . 39
3.3.1 SSIM Inputfile Test . 39

Contents vi

3.3.1.1 Inputfile Data 40
3.3.1.2 Fitting the Data 41

3.3.2 Elimination Criteria 42
3.3.3 Appearance Parameters 42

4 Implementation 44
4.1 Subtended Solid Angle . 44
4.2 Bounding Sphere . 45

4.2.1 Center z . 46
4.2.1.1 Average of Vertices 46
4.2.1.2 Min-Max of Vertices 46

4.2.2 Radius rz . 47
4.3 Computing Eccentricity . 47

4.3.1 Subtended Solid Angle 47
4.3.2 Distortion Correction 48

4.3.2.1 Lookup of r-1 48
4.3.2.2 Conversion Functions 48

4.4 LOD Selection Function . 51
4.5 LOD in Vector Streaming Framework 51

5 Evaluation 52
5.1 User Study . 52

5.1.1 Procedure . 52
5.1.1.1 Phase 1 . 53
5.1.1.2 Phase 2 . 53

5.1.2 Setup . 53
5.1.2.1 Head Mounted Displays 53
5.1.2.2 Tested Objects 55

5.1.3 User Profiles . 55
5.1.4 Results . 56

5.1.4.1 Normality Test 57
5.1.4.2 Difference between HMDs 59
5.1.4.3 Correlation between k and d 60
5.1.4.4 Appearance Parameters Influences 62
5.1.4.5 Conclusion User Study 63

5.2 Performance Evaluation . 63
5.2.1 Setup for Performance Evaluation 64

5.2.1.1 Hardware . 65

Contents vii

5.2.1.2 Scene Setup 65
5.2.2 Results . 66

5.2.2.1 Run-Time Plots and LOD Distribution 66
5.2.2.2 Triangle Savings 68
5.2.2.3 Render Time Savings 70

6 Conclusions 74

A Appendix 80

List of Figures

2.1 Milgram et al explanation - Adapted from Milgram, Takemura,
Utsumi, Kishino. Augmented reality: A class of displays on
the reality-virtuality continuum [1] 4

2.2 Distribution of rods and cones in the human eye - Reprinted
from Brian A. Wandell. Foundations of Vision: The Photore-
ceptor Mosaic [2] . 5

2.3 (Left) Optical Lens (Middle) Construction of Fresnel Lens by
removing Material and aligning remaining segments (Right)
Fresnel Lens - Adapted from Parabolix Lightning LLC. Fresnel
Lens [3] . 8

2.4 (Left) Outside-in Tracking (Right) Inside-out Tracking 10
2.5 Vergence and Accommodation Conflict - Adapted from Hoff-

man et al. Vergence-accommodation conflicts hinder visual
performance and cause visual fatigue [5] 11

2.6 Simplified Vulkan Rendering Pipeline - Adapted from Alexan-
der Overvoorde. Vulkan Tutorial [7] 12

2.7 Coordinate Systems in Rendering 13
2.8 Toe-In Stereo . 14
2.9 Off-Axis Stereo . 15
2.10 (Left) Undistorted (Middle) Pincushion Distortion (Right) Bar-

rel Distortion . 16
2.11 Barrel distorted image on the display cancels the pincushion

distortion of the lens resulting in perfectly aligned output -
Reprinted from Daniel Pohl. Virtual Reality Blog [11] 18

2.12 Mesh simplifications . 20
2.13 (Top) Vertex Removal (Middle) Edge Collapse (Bottom) Ver-

tex Clustering . 24

viii

List of Figures ix

2.14 All images with same MSE but different values for SSIM -
Reprinted from Z. Wang. et al. The SSIM Index for Image
Quality Assessment [18] . 30

2.15 Sample Scene Configuration File 33

3.1 LOD Selection System Diagram 35
3.2 Blender Decimate Modifier . 38
3.3 Sample LOD Input File with 4PL Fitting 41

4.1 Solid Angle . 45
4.2 Conversion from Angle to Radius and vice versa 49
4.3 Distortion Correction . 50

5.1 Objects used in the user study 56
5.2 Distribution of Parameter d for both HMDs 58
5.3 Distribution of Parameter k for both HMDs 58
5.4 Scatter Plot for Parameters k and d 61
5.5 Histogram of Levels of Detail 66
5.6 Plot of average subtended solid angles in a scene 67
5.7 Plot of average render times in a scene 68

6.1 Comparison of barrel distortion functions and foveation - Ad-
apted from Guenter et al. Foveated 3D graphics [40] 75

List of Tables

5.1 HTC Vive Pro . 54
5.2 Oculus Rift S . 55
5.3 Oculus Rift S . 56
5.4 Normality Tests for different HMDs 57
5.5 Descriptives of the user study data 59
5.6 Normality Tests for different HMDs 60
5.7 Categorization of Correlation Coefficients 61
5.8 Correlation Coefficients for Parameters k and d 62
5.9 Measured field of view values for both HMDs 64
5.10 Lens Distortion Coefficients 64
5.11 Hardware component description 65
5.12 Oculus Rift - Percent of saved polygons for different scene

configurations and LOD modes 68
5.13 HTC Vive - Percent of saved polygons for different scene con-

figurations and LOD modes 69
5.14 Oculus Rift - Actual values in millions of polygons for different

scene configurations and LOD modes 70
5.15 HTC Vive - Actual values in millions of polygons for different

scene configurations and LOD modes 70
5.16 Oculus Rift - Percent of saved render time for different scene

configurations and LOD modes 71
5.17 HTC Vive - Percent of saved render time for different scene

configurations and LOD modes 72
5.18 Oculus Rift - Actual values in milliseconds for different scene

configurations and LOD modes 72
5.19 HTC Vive - Actual values in milliseconds for different scene

configurations and LOD modes 73

x

List of Equations

2.1 Structural Similarity Index . 28
2.2 Comparison Metric Luminance 28
2.3 Comparison Metric Contrast 28
2.4 Comparison Metric Structure 28
2.5 Structural Similarity Index Parts 29
2.6 Mean Squared Error . 30

3.2 Starting Subtended Solid Angle 39
3.3 Percentile . 40
3.4 Four Parameter Logistic Regression 41

4.2 Bounding Sphere Center Average 46
4.3 Bounding Sphere Center Min-Max 47
4.4 Bounding Sphere Radius . 47
4.5 Solid Angle Approximation . 47
4.6 Subtended Solid Angle . 47
4.7 Eccentricity . 48
4.8 Angle to Radius . 48
4.9 Radius to Angle . 49
4.10 Angle Distorted + . 49
4.11 Angle Distorted - . 49
4.12 Distortion Correction . 50
4.13 LOD Selection Function for VR 51

xi

Acronyms

AR Augmented Reality

VR Virtual Reality

MR Mixed Reality

API Application Programming Interface

GLSL OpenGL Shading Language

SSIM Structural Similarity Index

LOD Level of Detail

HMD Head Mounted Display

GLM OpenGL Mathematics

GLFW Graphics Library Framework

SPSS Statistical Package for the Social Sciences

ANOVA Analysis of Variances

FOV Field of View

IPD Interpupillary Distance

GPU Graphics Processing Unit

xii

Chapter 1

Introduction

Virtual Reality (VR) has gained more and more popularity throughout the
last couple of years while still being a quite young and new technology and
therefore pushed the development of new hardware in terms of Head Mounted
Displays (HMDs) as well as the general exploration of this topic quite a lot.
The most important thing in VR is a perfect immersion into the virtual world
which comes with a lot of requirements. Replaying the virtual world in real
time requiring around sixty frames per second is one key factor to meet in
order to be able to get a good virtual experience. To reach this goal good
performance is the key.

Geometric Level of Detail (LOD) is a very good way to boost the perform-
ance for renderings in general. It takes advantage of using simpler models
for objects meeting certain criteria. An example for one of those criteria is
the size of the object. This results in the assumption that a smaller object
needs less detail. For this work the comparative metric is not the size of the
object but a certain score which is normally used to estimate the similarity
of two images.

After getting to know the VR hardware a bit better an additional LOD
criterion can be found. Lenses, which are part of every HMD, introduce
distortions which have to be compensated in software. There is one aspect
in the compensation process which can contribute to save performance.

1

1.1. Motivation 2

1.1 Motivation

Finding a new criterion for Levels of Detail especially for VR environments
by taking lens distortions into account seems to be a good way to further
improve performance savings. The evaluation of considering this additional
criterion for LOD selection will reveal the importance of it. Furthermore
creating a LOD framework based on scores achieved by a metric used to
compare two images is a new approach and it will be interesting to see how
this implementation performs in the end.

1.2 Structure of the Thesis

The first section deals with related work of all the key aspects required to
understand the later presented method. First a brief introduction into VR in
general is given followed by some important aspects about the used rendering
Application Programming Interface (API). Afterwards renderings, specific-
ally for VR applications, are explained in more detail. Next up is another key
component of this work which is Level of Detail. This work uses a specific
score reached by each Level of Detail which is part of the next section. Lastly
further information about the framework which was used for implementation
and evaluation is given.

After getting to know all the background information, the model of the
LOD framework is presented and more information on how to acquire the
LODs as well as how to rate and choose them is given.

The next chapter deals with the implementation and goes into more detail
how to calculate the important parameters to finally select the level of detail
sufficient for current settings.

Another really important part is the evaluation of the presented ideas.
This chapter is divided into two parts. At first a user study was performed
and the results of the study are discussed. Followed by the evaluation of the
performance savings based on the presented framework.

In the end a conclusion is made about the components discussed before
and how well they performed. Furthermore future improvements and exten-
sions are listed.

Chapter 2

Related work

This chapter is used to introduce the reader to a number of important aspects
in order to be able to understand all the parts mentioned in later chapters.
The chapter contains information about Virtual Reality in general, discussing
basic concepts as well as hardware. Afterwards some steps how to setup
renderings for VR are explained. Another part is about Level of Detail and
different approaches how to implement LOD systems. The last section gives
information about the Structural Similarity score which is later used to run
the LOD framework.

2.1 Virtual Reality

Virtual reality is a field of computer graphics which gained significant import-
ance recently. There is a wide field of applications ranging from environment
simulation and training, such as surgical training or virtual flight and driv-
ing training or even psychotherapies in order to overcome certain phobias,
to more entertaining applications like in education, arts or computer games.
Because of the increasing interest in VR a lot of different hardware and soft-
ware has been developed in the past decade and the technology continues
to evolve rapidly. Companies compete to create virtual reality devices with
the best feeling of immersion which means diving into the virtual environ-
ment. There are a lot of different aspects which have to be considered in
order to reach this goal. Those requirements are further discussed later in
the document.

3

2.1. Virtual Reality 4

2.1.1 VR vs. AR vs. MR

Although in general this topic gained a lot of popularity there is a high chance
that some terms are mixed or the difference between them is not clear. This is
also the case for terms categorizing the field of virtual environments. Milgram
et al. [1] have already tried to explain this in 1995 which is what can be seen
in figure 2.1.

Figure 2.1: Milgram et al explanation - Adapted from Milgram, Takemura,
Utsumi, Kishino. Augmented reality: A class of displays on the reality-
virtuality continuum [1]

Augmented Reality (AR) focuses on bringing virtual objects into the real
world. AR applications use optical or video see through displays. While
optical see through displays like special glasses require additional hardware
AR applications can be run on common devices like mobile phones. The real
world is captured with the back camera, virtual objects are added to this
image and the final rendering is displayed on the mobile phone’s screen.

Virtual Reality (VR) on the other hand does not include any real world
information. Everything is virtual. In order to perfectly immerse into the
real world VR has some very important requirements which have to be met.
In recent times we got closer to perfectly meet those requirements and there-
fore technology got better in fooling the human brain to believe the virtual
environment is the real one.

Mixed Reality (MR) is just the hypernym for both fields explained above.
In the next chapters some of the components and their specifications are

explained as well as information about the human eye and how to render
images which are aligned to what the human eye sees is given.

2.1. Virtual Reality 5

2.1.2 Visual Perception - Human Eye

In order to get a better understanding of how VR and the corresponding
renderings work one has to understand how the human eye works. Probably
everyone is aware of the fact that the human eye has a great resolution which
enables us to see the real world very well but only a few know that this large
resolution in only available in the very center of our eye. This part of the
human eye is called fovea centralis. This means the resolution decreases with
increasing distance to the center. It’s not only the resolution which decreases
but also the ability of color vision.

No one is able to perceive colors outside of the central part of our eye.
Luckily the human brain does a perfect job and once the color of an object
is seen, it is remembered and therefore it appears as if color vision is always
available.

The whole visual field is called the retina and we have two types of photo
receptors namely rods and cones. As seen in figure 2.2 cones are concentrated
in the foval area while rods are absent there but dense everywhere else.
Although the overall number of rods we have is way larger than the number
of cones the latter ones are responsible for color vision. The density of the
cones in the fovea is also larger resulting in a better resolution.

Figure 2.2: Distribution of rods and cones in the human eye - Reprinted from
Brian A. Wandell. Foundations of Vision: The Photoreceptor Mosaic [2]

When looking at the distribution of rods and cones there is a certain
area without any photo receptors. This are is called the blind spot. That’s

2.1. Virtual Reality 6

where the information of all the rods and cones is bundled and leaves the
eye. It could be described as the cable which is needed to transfer visual
information. As there are no photo receptors in this small portion of the
retina we are completely blind there.

Until now only the spatial resolution was described while the temporal
resolution also plays an important role regarding VR renderings. The tem-
poral resolution is around 25-60 Hz or even higher. This depends on aspects
like the perceived brightness and frequency modulation as well as the position
on the retina. That’s also why one of the requirements for VR applications
is that everything is rendered with at least sixty frames per second.

Another very important aspect in VR is the field of view of the head
mounted displays. Let’s first look at the field of view of the human eye. One
eye has the following specifications:

� 60° towards the nose

� 90° towards the side

� 50° up

� 70° down

When counting right and left eye together, everyone is able to perceive
information for range of around 190° horizontally with about 120° overlap-
ping.

2.1.3 Head Mounted Displays

A head mounted display is the hardware enabling us to dive into the vir-
tual environment. With new and better technology and the development in
this sector the displays got better and therefore the quality of the virtual
immersion improved a lot recently.

In later chapters where the implemented model was evaluated with the
help of a user study different head mounted displays were used and further
descriptions of those can be found there.

A virtual reality headset mainly consists of two parts: firstly the screen
itself which shows the virtual environment and secondly lenses which are
placed directly in front of this screen. Those two main components are
obviously held together by a frame which is then mounted directly onto the
head via elastic straps.

2.1. Virtual Reality 7

2.1.3.1 Screen

As for every display one obvious specification is the resolution which states
how many pixels there are to show image data. The resolution is getting
larger and larger which obviously improves the quality of the final images
but also increases the load to render them. For the playback of videos it
does not really matter how long it takes to render the output but for VR
applications it’s important that the rendering runs in real time because the
output depends on real time measurements like the head pose and therefore
it cannot be rendered in advance.

Two temporal characteristics are important for the display: the refresh
rate which is the rate of refresh from memory and the frame rate which is the
rate of new image generation. The limiting factor is the refresh rate but if the
frame rate is higher the quality of the image for each refresh from memory
can be improved, for example with anti aliasing. As previously mentioned the
final output should run at approximately sixty frames per second therefore
each display should be able achieve this required refresh rate.

Another important aspect in VR is the field of view. The human eye has
a pretty large field of view and to be able to fully immerse into the virtual
environment the same field of view should be covered. The larger the screen
the more of the human view can be covered. The screen size cannot be
arbitrarily large because the weight of the screen is quite important as the
headset is worn. Obviously moving the screen closer to the eyes covers more
of the field of view but unfortunately the human eye is not able to comfortably
focus on something very close. This is where the second important part of a
HMD kicks in, the lenses.

2.1.3.2 Lenses

The lens is put between the user’s eye and the screen and therefore the screen
is seen through the lens which has the desired positive effect that the eye is
now able to comfortably look at the screen although the distance between
them is very close. While lenses are a very good solution to increase the field
of view and therefore also increase the feeling of immersion they also come
with two downsides:

� Chromatic Aberration
Lenses are bending the rays that come through but not all wavelengths
are bend in the same way. Different colors have different wavelengths

2.1. Virtual Reality 8

and therefore their ways through the lens differ. This effect is called
chromatic aberration. One solution to overcome this is to introduce
scaling factors for each color channel to compensate the differences.
For this work the effect of chromatic aberration was not taken into
account as it does not really influence the final result in this case.

� Distortion
Another effect which is probably more widely known is that lenses in-
troduce distortions. This means that the image does not look natural
anymore but is stretched towards the edge. The distortion, the cor-
responding compensation, and their effects are the main part of this
thesis and discussed in an own section later on.

Normal optical lenses which are the typical lenses for magnifying glasses
were also used for virtual reality HMDs but are now often replaced by an
alternative, the Fresnel lens. The refractive power of any lens comes from
the curvature of it’s surface. Compared to optical lenses Fresnel lenses try
to reduce as much material of the lens itself while maintaining the desired
curvature. Figure 2.3 shows how this type of lens can be constructed.

Figure 2.3: (Left) Optical Lens (Middle) Construction of Fresnel Lens by
removing Material and aligning remaining segments (Right) Fresnel Lens -
Adapted from Parabolix Lightning LLC. Fresnel Lens [3]

The advantages of Fresnel lenses are that by removing a lot of material
they get lighter and are thinner than optical lenses which is just perfect for
virtual reality applications as they contribute to reduce the weight of the
HMD. Another advantage is that they are cheaper than the original ones.

2.1. Virtual Reality 9

2.1.3.3 Metrics within the HMD

The two above presented main components of an HMD result in the following
metrics for a VR headset.

� Lens Separation
This is the distance between the center of the lenses. It should be the
exact same as the distance between the eyes of the user. Some headsets
have the possibility to modify this metric.

� Screen to Lens Distance
This is the distance between the screen and the lens and it is fixed for
each HMD. As the HMD is configured to work perfectly at this distance
the setting is not configurable.

� Eye to Lens Distance
Describes the distance from the eye of the user to the lens. It is com-
monly stated as Interpupillary Distance (IPD). As the eye should be
places as closely as possible to the lens this metric contributes to the
quality of the VR experience.

2.1.3.4 Tracking

Another extremely important aspect in VR is the tracking of the device. As
the head moves around the user expects that those movements are perfectly
mirrored in the virtual environment. Therefore tracking of the headset is
needed. In general there are two different types of tracking. Inside-out and
outside-in tracking. Both approaches are used for VR HMDs.

Inside-out tracking means that cameras are placed on the HMD itself
which then track the environment. Outside-in tracking needs to have cameras
placed somewhere in the environment which then track the headset. For the
user study the Oculus Rift S, which is using Inside-out tracking, as well as
the HTC Vive, using the other approach, were used. In figure 2.4 the two
techniques are illustrated.

2.1.4 Problems with VR

Now information about the human eye and the key components and aspects of
a head mounted display were given but there are still some things to consider

2.1. Virtual Reality 10

Figure 2.4: (Left) Outside-in Tracking (Right) Inside-out Tracking

to avoid motion sickness as well as vergence accommodation mismatch which
both destroy the VR experience.

2.1.4.1 Motion Sickness

Dizziness, feeling of sickness or simply feeling uncomfortable are quite often
associated with virtual reality, that’s because of the so called motion sickness
[4]. In general this feeling can occur if different sensory inputs of the human
body do not match each other. In the case of VR this can happen if for
example the eye observes motion while looking through the HMD but this
motion is not confirmed by the sense of balance of the body. Because of those
mismatches the human body raises an alarm. The brain thinks the human
is hallucinating and therefore concludes the body is poisoned. The recover
from this nausea is activated and that’s the reason for feeling of sickness for
bad immersions into the virtual environment.

To overcome this problem it’s obvious that the measurements taken from
the head’s pose have to match the real pose but it is as important to deliver
this information really fast which means trying to achieve low latency. And
as already mentioned earlier the playback of the virtual environment should
have a high frame rate.

2.1.4.2 Vergence Accommodation Conflict

Accommodation is the ability of the eye to focus on objects. Humans are
able to sharply see object which are closer to their eyes as well as distant
ones, but it takes quite some time to focus if they switch between them.

Vergence on the other hand is the ability to move both eyes in opposite
direction in order to maintain single binocular vision. This means that if

2.1. Virtual Reality 11

someone looks at an object placed at a certain distance, the eyes’ line of
sight would intersect exactly at this distance.

(a) Real World (b) Virtual Reality

Figure 2.5: Vergence and Accommodation Conflict - Adapted from Hoffman
et al. Vergence-accommodation conflicts hinder visual performance and cause
visual fatigue [5]

Both vergence and accommodation are depth cues and in the real world
they are always in sync. This is not the case in VR. The screen is at a
fixed distance to the eyes and they are always focusing (accommodating)
on it. The virtual objects have different distances tough and the eyes are
converging at those distances. Therefore in VR objects which are far away
as well as objects which are closer both are in perfect focus which is definitely
not possible in real world. This is the reason why sometimes people suffer
from headache after taking off their headsets [5]. That’s because the eyes
have to switch back to their normal way of operating.

A solution to this problem are so called lightfields. They try to solve the
problem by multiple focal planes where the eye can accommodate on. This
is closer to the real world and behaviour of the human eye.

2.2. Vulkan 12

2.2 Vulkan

In this thesis a framework was used which relies on the Vulkan graphics and
compute API [6]. The following sections should give a brief overview of ren-
dering in general to gain a better understanding of the latter implementation
and their corresponding benefits in respect to performance.

2.2.1 Rendering Pipeline

In general we want to make use of a powerful component in computer systems
namely the Graphics Processing Unit (GPU). It is optimized to work with
parallelism which perfectly suits the needs for graphics rendering. Imagine
computations for every pixels on a display. In order to get an image as final
output we have to run through the so called rendering pipeline and perform
certain operations. A simplified overview of this pipeline ca be seen in 2.6.

Figure 2.6: Simplified Vulkan Rendering Pipeline - Adapted from Alexander
Overvoorde. Vulkan Tutorial [7]

Stages colored in green are fixed-functions stages which means they can-
not be changed whereas orange stages are programmable and therefore the
interesting parts of the pipeline. The most popular stages are the vertex
shader and the fragment shader. Both look like simple functions written in
OpenGL Shading Language (GLSL). They have input parameters and out-
put parameters where some of them are fixed. As the name tells the fragment
shader is called for every fragment in the output image. Multiple fragments
result in one pixel value after color blending. In this work the focus lies on
the vertex shader. This shader program processes each incoming vertex. The
main purpose is to map an input vertex position which is in world space to
a final position in clip space. This final position is the mandatory output for
this shader. In most cases the vertex shader takes additional attributes like
color or texture coordinates which are then processed in later stages. This
work aims to reduce the load of the vertex shader, this means reducing the
number of vertices in the scene and the number of vertex shader invocations.

2.2. Vulkan 13

2.2.2 Coordinate Systems

As already mentioned before in rendering there are different coordinate sys-
tems. They will appear more often later in the thesis when discussing the
implemented model therefore I want to give a brief introduction. In 2.7 we
can see different matrices and a multiplication of one of these matrices with
a 3D position results in a transformation from one coordinate system to an-
other. In object space we have the object as it is but when multiplying it
with its corresponding model matrix we are able to perform certain trans-
formations like translation, rotation or scaling. This means we can move the
object around and place it somewhere in world space. The final output will
be seen through a camera which is placed somewhere in the scene. Moving
the camera around will give us different viewing angles and therefore different
output images. The view matrix is the inverse of the camera’s transformation
matrix and transforms from world space to view space. The projections is
responsible for removing things that can’t be seen anyway due to the viewing
frustum therefore is clips those areas away.

Figure 2.7: Coordinate Systems in Rendering

Therefore the vertex shader gets the 3D position of the current vertex as
input in object space and multiplies it with the so called ModelViewProjec-
tion matrix which transforms this position directly from object space to the
final clip space. Now we know the position of the vertex on the final output
image. Another thing to mention here is that the final 2D coordinate in the
output image ranges from -1 to 1 for both X and Y coordinate. Specifically
for Vulkan this means that (-1, -1) describes the top left corner whereas (1,
1) is in the bottom right.

2.3. Stereo Rendering 14

2.3 Stereo Rendering

Stereo rendering means rendering two slightly different images one for each
eye [8]. This is essential in order to simulate the behaviour of the human eyes.
Two eyes and respectively two rendered images enable us to gather three
dimensional information. To achieve stereoscopic rendering two cameras with
a slightly different viewport are used. There are two common methods how
to align those cameras.

2.3.1 Toe-In Stereo

Two cameras with identical opening angle and symmetric frustum pointed
towards a single focal point to models the vergence of the eyes. The advantage
of this method is that it is very easy to set up but it comes with vertical
parallax. Vertical parallax means that the projection of points is vertically
shifted. It does not help to perceive depth and results in uncomfortable stress
for the muscular system of the eyes. Therefore this method is incorrect and
should be avoided. It’s better to use the approach described in the next
paragraph.

Figure 2.8: Toe-In Stereo

2.3.2 Off-Axis Stereo

The eye’s rays are parallel with a fixed distance. Because of the parallel
axis the projection plane is identical and therefore vertical parallax does not

2.4. Radial Lens Distortion 15

occur. The disadvantage is that a standard camera cannot be used because
of the asymmetric frustum. The frustum has to be manually computed.

Figure 2.9: Off-Axis Stereo

2.4 Radial Lens Distortion

We already heard that lenses are needed in order to feel immersive for virtual
reality applications. The downside of using lenses is that they come with
image distortions. When looking through the lens the image is magnified.
Magnifying an image means that pixels position on the image with a given
distance to the center of the image are moved further away from the center.
The amount of shifting the pixels out increases with increasing distance to
the image center. This means the effect of the radial lens distortion is almost
not recognizable in the center but can be easily seen towards the edge of
the image. The distortion can be corrected by the use of Brown’s distortion
model [9] which is more commonly know as Brown-Conrady model based on
earlier work by Conrady [10].

2.4.1 Brown-Conrady Model

In general the Brown-Conrady Model corrects both radial as well as tangen-
tial distortion. Tangential distortion is also known as decentering distortion.
While the radial distortion is only moving points further away or closer to
the center which means simply scaling the distance to the center, tangential

2.4. Radial Lens Distortion 16

Figure 2.10: (Left) Undistorted (Middle) Pincushion Distortion (Right) Bar-
rel Distortion

distortions moves the point to the left or to the right maintaining the same
radial distance but changing the angle opened by the point and the x or
y axis. For this thesis the focus lies on the radial distortion and therefore
tangential distortion is not further taken into account.

The radius is zero at the image center and grows towards the edge of
the screen. This means that if coordinates do not have the position (0,0)
in the middle of the screen the coordinate position of the center has to be
subtracted from the point of interest, respectively the point the distortion has
to be calculated for. The Brown-Conrady model makes use of the following
formula, assuming the center of the image is at position (0,0) for x and y
coordinate:

rdistorted = r ∗ (1 + k1 ∗ r2 + k2 ∗ r4 + ...)

where the result xdistorted is the image point as radially distorted by the
lens. The distorted radius is smaller than the original radius for negative
distortion coefficients which results in a barrel distortion while it’s larger
for positive coefficients resulting in a pincushion distortion. The factor the
original radius is multiplied with is essentially a taylor series approximating
the actual optics of a lens with as many parameters kn as wanted in order to
increase accuracy. For this thesis only two lens distortion parameters were
used which already yields quite good accuracy. Whereas k1 is multiplied by
the radius with lower power therefore having more impact on the distortion
when the radius is rather small which results in controlling the amount of
inner distortion. For k2 it’s the other way round which means k2 control the
amount of outer distortion. The original radius r can be computed as follows

2.4. Radial Lens Distortion 17

r =
√

(x− xc)2 + (y − yc)2

where x and y are the coordinate positions of the affected pixel and (xc,
yc) is the center of the image which has to be subtracted in order to maintain
(0,0) as center values. The value of the radius itself has to be normalized in
order for the coefficients to be in the correct scale. This results in the radius
being in the range from -1 to 1.Typical values of the distortion coefficients k1

and k2 can be found in a later section describing the head mounted displays
which were used for the user study.

2.4.2 Lens Distortion in VR

The lenses in virtual reality headset increase our field of view and therefore
they magnify the image which means image positions with a specific radius
are moved out to an even larger radius. As explained this results in a pincush-
ion distortion. As the user of the HMD does not want to look at a distorted
image a compensation is applied in software. The output on the display
which is seen through the lens is distorted in a way that it perfectly cancels
out the lens distortion resulting in a normal undistorted image. Figure 2.11
shows the describe procedure.

For specific radial lens distortion coefficients k1 and k2 one can com-
pute the pincushion distortion with the use of the Brown-Conrady model
as described above. The inverse of the radial distortion which is needed for
compensation is not available in closed form. With the formula the inverse
would result in

r =
rdistorted

(1 + k1 ∗ r2 + k2 ∗ r4 + ...)

but the radius r which is of interest does also appear in the divisor which
is the fraction the original radius was multiplied with in order to get the
distorted position.

One possible way to overcome this problem is to iteratively refine the
distorted point until convergence as illustrated in Algorithm 1.

2.4. Radial Lens Distortion 18

Figure 2.11: Barrel distorted image on the display cancels the pincushion
distortion of the lens resulting in perfectly aligned output - Reprinted from
Daniel Pohl. Virtual Reality Blog [11]

Algorithm 1 Iterative reverse lens distortion

1: function ComputeInverseR(rdistorted, k1, k2)
2: rundistorted = rdistorted
3: while rundistorted not converging do
4: r = ‖rundistorted‖
5: dr = (1 + k1 ∗ r2 + k2 ∗ r4 + ...)
6: rundistorted = rdistorted / dr

7: end while
8: return rundistorted
9: end function

The second method is to simply save a lookup table which saves pairs of
values containing the distorted r value and the fraction it was multiplied with.
This way the radius we want to use for the images shown on the display can
be acquired via the look up table which is way faster than the first approach.
For this thesis those calculations will be done twice for each object visible in
the viewing frustum for each frame. As performance could be an issue there
obviously the second approach with the lookup table was chosen.

2.4. Radial Lens Distortion 19

This way a position on an undistorted image with radius r is first moved
towards the center by a fraction f and shown on the display. By viewing the
display via the lens this radius is moved away from the center by a fraction
f resulting in the original radius and therefore undistorted as in the original
image.

2.4.3 Rendering Lens Distortion

After getting to know how the barrel distortion is mathematically applied the
following section will show how to apply distortion in respect to rendering.
In this case the three most common methods are briefly described below.

2.4.3.1 Texture lookup in fragment shader

For this approach the whole scene is rendered to a large texture. In the
fragment shader a lookup into this texture is performed in order to obtain
the color value in its undistorted location. As this is done for every pixel in
the image this is a quite taxing approach.

2.4.3.2 Texture to grid assignment

The second method is similar to the first one but the lookup is not performed
for every pixel in the image but for each vertex of the grid. The quality of
course depends on the number of vertices used for the grid.

2.4.3.3 Distorting geometry

The last and most complex approach is distorting the geometry itself as
it is being rendered. This requires and extremely high level of geometry
tessellation in order to avoid significant aliases.

The framework used for this thesis implemented the second approach.
The lens distortion effect is applied as a post processing step. Everything is
rendered normally and in the end the final image is saved into a large texture
which is then used for the grid morphing. - perceptual models - eye tracking
techniques - human visual vision

2.5. Level of Detail 20

2.5 Level of Detail

As already discussed in previous chapters one compulsory requirement for
VR applications is a constant and high frame rate. On the other hand a rich
and highly detailed graphical world supporting the realism of immersion is
quite important as well. The computational power of the graphics hardware
is limited, therefore a tradeoff between the mentioned points has to be made.
One way to keep the frame rate high while maintaining an attractive graph-
ical world is by regulating the amount of detail used to represent the virtual
world.

Three dimensional meshes in computer graphics are often very complex
which means they consist of a very high number of polygons describing the
surface and shape of the geometry. The higher the number of polygons the
higher the computational power required to render the object. Levels of
detail are used to overcome this issue. In this case lowering the level of detail
means varying the geometric resolution resulting in simplified less complex
meshes by reducing the number of polygons.

(a) 100% polygons (b) 20% polygons (c) 3% polygons

Figure 2.12: Mesh simplifications

There are different approaches when to use less detailed version of the
object, e.g. smaller or distant objects or objects which are placed in un-
important parts of the screen. Whenever a specified criteria to use a less
detailed version is met the resulting level is used for rendering.

2.5. Level of Detail 21

2.5.1 Level of Detail Frameworks

In general three different basic frameworks for managing levels of detail exist
[12]. The next section briefly describes those three approaches and their
advantages as well as disadvantages.

2.5.1.1 Discrete

Discrete level of detail describes the traditional approach originally proposed
by James Clark in 1976 [13]. For each object in the scene a certain number
of LODs are pre-computed and the selection of the correct level is done at
runtime. The most common criterion for LOD selection is the distance to
the camera. The larger the distance to the camera the smaller the object
appears on the screen and therefore less detail is needed.

Because the creation of the LODs is done as an preprocessing step the
creation process is completely decoupled from the rendering and therefore
does not have to meet any real-time or specific performance constraints.

There are cases where the object itself does not really suit this approach.
If objects are very large the distance to the camera is computed once for
the entire object, whereas the distance can vary a lot depending on which
point of the object is taken into account. A solution for this would be to
subdivide the object and select LODs for each subdivision. This results in
several different LOD selection within one large object. The best example
here is to imagine a large terrain object which obviously somehow has to be
split in order to select less detailed version for far regions.

Although the level of detail frameworks described in the next chapters
come with advantages the traditional approach is still the by far most com-
monly used one in practice. It’s the simplest approach and works best with
most current graphics hardware. Discrete LOD is used in this thesis.

2.5.1.2 Continuous

Continuous level of detail continuously tries to find the perfect LOD at run-
time. This means the grade of detail is not chosen from any number of
pre-computed models but directly calculated. This way every object in the
scene uses exactly the number of polygons it should use. This results in
overall better resource utilization. While with the traditional approach it
can be happen that visual popping effects can be recognized when switching

2.5. Level of Detail 22

between different LODs, this is not the case for continuous level of detail as
the detail is adjusted gradually and therefore reducing visual pops.

2.5.1.3 View-dependent

The last of the three frameworks is an extension of continuous level of detail
where the current viewing parameters are also taken into account for the
LOD selection. The best selection should be made for the current view.
One criterion could again be the distance to the eyepoint. Another criterion
could result in showing silhouette regions of object with more detail than
inner regions. One last example deals with the aspect of the user’s focus.
More detail is needed where the user focuses his vision whereas less detail is
needed in the periphery.

The most popular application for view-dependant level of detail which
almost requires this technique is in terrain rendering. Depending on the
view a large terrain spans multiple levels of detail.

Continuous and view-dependant LOD provide better fidelity but also re-
quire more memory and increased run-time performance.

2.5.2 Generating Levels of Detail

In order to produce different levels of detail for the mesh of an object the mesh
has to be simplified. The geometry of each mesh is represented by vertices
while the connectivity is represented by edges connecting the vertices. By
removing vertices or edges the mesh is simplified. Mesh decimation in general
is a greedy iterative approach to gradually reduce the complexity of the mesh
as shown in Algorithm 2.

Each decimation performed simplifies the mesh by a small amount. This
is done until no further decimations can be performed due to a error threshold
describing the desired amount of simplification. Different mesh decimation
operators exist which are briefly described in the following sections.

2.5.2.1 Vertex Removal

One vertex is selected and completely removed from the mesh. As the vertex
is removed the edges connected to this vertex are also removed resulting in
a hole. This hole is then filled with new triangles via re-triangulation.

2.5. Level of Detail 23

Algorithm 2 Mesh decimation

1: for all regions in the mesh do
2: Measure error after decimation
3: queue(region, error)
4: end for
5:

6: while reduction possible do
7: Get best decimation in queue
8: if error < limit then
9: Perform decimation

10: Re-evaluate error metrics
11: end if
12: end while

2.5.2.2 Edge Collapse

This approach was first introduced by Hoppe et al. [14] in 1993. By collapsing
an edge in the mesh the two vertices connected by the edge are merged. This
operation removes all triangles which share the collapsed edge. The two
merged vertices result in one final vertex. The inverse of the edge collapse is
a vertex split. If the final vertex is one of the initial vertices the operation is
called half-edge collapse and is actually a special case of the vertex removal.
Vertex removal and edge collapse both require the mesh around the vertex
to be manifold. If a mesh is manifold one edge can only be shared by one or
two faces and faces connected to a vertex can only form an open or closed
fan. Furthermore both operations preserve local topological structures which
means the layout of the wireframe stays the same. So both operations have
some properties in common.

Edge collapse is a quite simple operation but care has to taken because
mesh foldovers can happen. This means that if an edge is collapsed the
resulting vertex connects to another vertex via an edge which is crossing
another edge. This did not happen before the edge collapse because the
position on the vertex was somewhere else. As this results in a crease in the
surface of the geometry it can be detected by measuring the change of the
normals of the triangles of the mesh. A large change, usually larger than
ninety degrees is a sign for a foldover.

2.5. Level of Detail 24

2.5.2.3 Vertex Clustering

A cluster is applied and all vertices in the cluster will be represented by one
final vertex. Different from the first two techniques vertex clustering can also
handle non-manifold meshes. It also allows topological changes. In general
it is a very fast and robust approach but it is hard to control the simplified
mesh and may not achieve best quality.

Figure 2.13: (Top) Vertex Removal (Middle) Edge Collapse (Bottom) Vertex
Clustering

2.5. Level of Detail 25

2.5.3 Choosing Level of Detail

After discussing how LODs are created this section deals with the selection of
a desired amount of detail at run-time. Which metrics influence the selection
and how the measure of difference between original model and any LOD is
performed.

2.5.3.1 Fidelity Metric

If the selection of LODs should not be done by hand as it was commonly done
in the past a certain metric is needed to automatically choose the amount of
mesh simplification.

Fidelity-based simplification
The user can choose a desired fidelity of the simplification and then the al-
gorithm should choose the number of polygons accordingly without violating
the set constraint.

Budget-based simplification
In this case the user can set a specific number of polygons which should not
be exceeded. Then the fidelity of simplification is being maximized without
violating the constraint of maximum polygons.

In most cases a combination of fidelity-based as well as budget-based
simplification is the best choice.

2.5.3.2 Measuring Error

Now that the two approaches are known the question is how can fidelity be
measured? Most algorithms use some sort of geometric error which means
the geometric difference between the original model and a certain level of
detail. The perceptual error on the other hand should be of higher interest
as it tells if the simplified model looks the same as the original one.

Geometric Error
There are various different approaches from which two were picked in order to
understand the basic principles. One method is the vertex-vertex distance,
where the distance of each vertex connected to the vertex which is being

2.5. Level of Detail 26

removed is measured and the max of all measured distances is taken as error
metric. This technique was first introduced by Rossignac and Borrel in 1993
[15].

Another metric is resulting from surface-surfaces distances. In this case
the error is the maximum of all distances between the surface of the original
mesh and the simplified one.

Perceptual Error
As already mentioned it may be more interesting to investigate the visual
differences. This is also where the work of this thesis has its focus on. The
selection of LODs depends on their scores reached which are measured by the
Structural Similarity Index, from now on abbreviated by SSIM. This metric
is further described in later chapters.

2.5.3.3 LOD Selection

The last section in this chapter about LOD management deals with the
question of when the switching to simpler meshes should happen. When
and under which circumstances is less detail sufficient? The following listed
factors can all influence the LOD selection:

� Size
One of the first things that come to ones mind as a factor for LOD
selection is the size of the object. Smaller things most probably need
less detail than larger objects. Size can be measured in e.g. pixels
occupied.

� Distance
Another obvious factor is the distance to camera of the scene. If the
object is far away it is probably less important and can be rendered
with less detail. With increasing distance the object also gets smaller
which is what was described in the previous factor. But object can of
course have different sizes with equal distance (e.g. an elephant and a
mouse).

� Priority
Object can also be prioritized depending on their semantic importance
in the scene. Is one specific object more important to the user than

2.6. Structural Similarity Index 27

others? As an example objects in the periphery could be less important
than the ones in the area of focus.

There are of course a lot of other factors influencing the LOD selection
but the above mentioned ones are one of the most common and should give
a good idea of what could be an aspect choosing less detailed meshes.

LOD Selection for VR
Another aspect this work should take into account is an additional factor for
LOD selection especially suited for virtual reality applications. As the user
should most likely have the focus in the middle of the screen, which is even
more true for VR as head movements are more probable than only moving
the eyes, using eccentricity for LOD selection has already been proposed a
long time ago [16].

Most of the approaches taking the eccentricity as an additional factor
have an psychological background, dealing with the user’s attention on the
screen. What is proposed within this thesis is not a psychological approach
but a technique making use of the optics of the lenses in VR systems. As
already heard in previous chapters lenses in VR HMDs introduce distortions
which are compensated in software. The compensation distorts the final
rendered image in a way that object at the edge of the screen are a little
smaller than the ones in the center. As mentioned before the size of the
object could be one factor for the LOD selection and smaller objects would
need less detail which can now also be applied by the eccentricity in VR
headsets. How much smaller the objects get via the distortion and how the
shrinking can be calculated is part of one of the next chapters dealing with
the implementation of this idea.

2.6 Structural Similarity Index

As already mentioned in previous chapters there are certain measures to rate
LODs and use the desired one for the current state of the rendering. For
this thesis the measure used is the Structural Similarity Index, from now on
abbreviated by SSIM. This metric was first introduced in 2004 by Z. Wang,
A.C. Bovik, H.R. Sheikh and E.P. Simoncelli [17] and gained significant pop-
ularity in the field of image processing since then.

2.6. Structural Similarity Index 28

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.1)

µx the average of x
µy the average of y
σ2
x the variance of x
σ2
y the variance of y
σxy the covariance of x and y
c1, c2 constants

where the values of the constant variables where chosen to be c1 = 0.0001
and c2 = 0.0009 in our implementation. The purpose of those constants is
to stabilize the division with a weak denominator.

The SSIM index consists of three different comparison metrics which are
described below.

2.6.1 Luminance

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(2.2)

In this case c1 is important to overcome instability when µ2 for x and y
is close to zero.

2.6.2 Contrast

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(2.3)

2.6.3 Structure

s(x, y) =
σxy + c3
σxσy + c3

(2.4)

with c3 = c2
2

.

The combination of theses three metrics results in the following equation:

2.6. Structural Similarity Index 29

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2.5)

where alpha, beta and gamma are weights for each part of the metric
as described above. With even weighting e.g. α = β = γ = 1 the formula
reduces to the form as given by equation 2.1.

2.6.4 SSIM in Images

The previously explained equations to calculate the SSIM score always take
two inputs x and y which are compared. For this thesis the inputs are two
slightly different images with the same dimensions in height and width. There
are different approaches to calculate the similarity score between two input
images. The difference between each pixel in image x versus the correspond-
ing pixel in image y can be compared but it is recommended to calculate the
score over a window of pixels. A window size of 10x10 pixels was used for
this work. Additionally the weight of each pixel was not equally distributed
in the window but a Gaussian kernel was applied which leads to the pixel
in the center of the windows being the most important one with the largest
weight. Furthermore in the end the average of all pixels was taken as the
final score.

2.6.4.1 SSIM for Objects in Images

As for this work the interest was not the difference between two images but
the difference between two objects in those images only the pixels occupied
by the corresponding objects were taken into account for the calculation of
the SSIM score as described above.

2.6.5 Comparison to MSE

Another metric commonly used in image processing is the mean squared
error, abbreviated by MSE. This metric simply takes the squared difference
for each pixel in two images and uses the mean as a result. This results in
the formula given in 2.6.

MSE(x, y) =
1

n

n∑
i=1

(x− y)2 (2.6)

2.6. Structural Similarity Index 30

The disadvantage of MSE is that there is no relation to real visual differ-
ences in two comparing images. That’s where SSIM outperforms MSE which
can also be seen in figure 2.14.

Figure 2.14: All images with same MSE but different values for SSIM - Re-
printed from Z. Wang. et al. The SSIM Index for Image Quality Assessment
[18]

The first image in figure 2.14 is the original one and in all others some
sort of distortion was applied. All distorted images have the same value for
MSE. The values for SSIM were different and closer to real visual differences.
The following distortions were applied to the images:

� mean-shifted

� contrast-stretched

� salt-pepper noise

2.7. Vector Streaming Framework 31

� blurred

� JPEG compressed

2.7 Vector Streaming Framework

All the work for this thesis was implemented in the vector streaming frame-
work [19] which is mainly used by the researchers of the institute of computer
graphics of the technical university of Graz. This section should give a brief
overview of some important parts of the framework.

The framework itself is written in C++ and uses the Vulkan API [6] for
rendering. OpenGL Mathematics (GLM) [20], which is a mathematics library
especially for graphics software, as well as the Graphics Library Framework
(GLFW) [21], which is commonly used for vulkan development providing and
API for creating and setting up windows and similar things, are included in
the frameworkg.

2.7.1 Basic Structure

The framework consists of multiple main components each with its own re-
sponsibilities in order to create the final rendering. Those components are
listed below with a short description of the corresponding tasks.

� Scene Manager
The scene manager is the main component and is responsible for loading
and setting up all other manager listed below.

� Entity Manager
Each object in the scene is entitled as entity. It consists of a desired
number of models each with its own mesh and a material as well as a
model matrix defining the position in the scene. While rendering the
entity manager iterates through all entities and check their visibility via
view frustum culling and then sets the correct level of detail for each
visible object according to the current LOD selection criteria. This is
exactly where the main code of this work can be found.

� Model Manager
This component is responsible for managing all the models of one entity.

2.7. Vector Streaming Framework 32

One entity can have arbitrary number of models which correspond to
the same entity, but each additional model with less detail in term of
polygons in the mesh, compared to the base model.

� Material Manager
Each entity has a material. A material can be used by multiple entities
and the material manager is responsible for the mapping. In general
there are three different material properties which differ in the used
shader for calculating the final color. The first one uses simple phong
shading and mainly depends on the given base color of the object. The
next material is used to render metallic effects. The third shading tech-
nique more complex and requires image based lightning to introduce
specular effects.

� Light Manager
Another important thing for each scene is the lighting setup. That’s
what the light manager is responsible for. It manages the scene’s light-
ing which consists of three different light types which are spot lights,
point lights and directional lights. Furthermore it is responsible for the
image based lighting which is important for the object’s materials as
explained above. Another thing which is done by the light manager is
setting up an environment. This is done by a cube map with a specific
image for each side of the cube.

� Display
For the final output three different kinds of displays can be chosen. One
is an OpenVR display which uses the connected headset for rendering.
The other two are both for rendering the scene directly on the computer
screen. One is a mono display which outputs the renderings in the usual
way as seen from one viewport while the stereo display outputs the
scene seen from two slightly different viewports which are the two eyes.
What can be seen when using the stereo display is what is actually
seen when wearing a VR headset. Furthermore the stereo display uses
a grid warping technique to render the barrel distortion effect.

2.7.2 Scene Setup

Every scene in the vector streaming framework is set up via configuration files
describing the scene. A desired number of .cfg files can be concatenated to

2.7. Vector Streaming Framework 33

produce the final output. Those files store data which is used to be loaded for
every component explained in the previous section. A sample configuration
file can be seen in figure 2.15.

Figure 2.15: Sample Scene Configuration File

The first part of the configuration file references other files to setup the
image based lighting. Afterwards an ambient light with the specified color is
declared. The next section has some rendering related information such as
the field of view. Then the size of the output windows is specified. On the
right side of figure 2.15 one entity is declared which should then be visible
in the final rendering. It is an entity called ”Spot” with a base model and
two more levels of detail each with their own meshes and a material which
is specified above. The material uses the standard shader which is phong
shading and has an image used for texturing the object.

2.7.3 OpenVR

The framework is also able to render scenes for specific head mounted dis-
plays. The interface used to access the hardware is an API and runtime called
OpenVR [22]. It allows the access of different headsets without requiring the
application to have specific knowledge of the connected hardware. It uses
SteamVR [23] in order to detect and connect to headsets.

Chapter 3

Method

After getting to know all the details about VR in general and why we need
lenses in HMDs and which advantages as well as disadvantages they come
with, this section should present a model to increase the performance of VR
renderings by taking into account the effects of the lens distortion compens-
ation. As already mentioned a barrel distortion is applied in software which
distorts the image in a way that objects with a larger radial distance to the
center of the lens are smaller in size, because of this fact the level of detail
required decreases with increased eccentricity while maintaining the same
distance to the camera.

3.1 System Diagram and Components

Figure 3.1 describes the relations of all the different factors which are used to
determine the desired LOD at runtime. There are three main groups which
are parameters of the display in the headset, runtime parameters as well as
an input file which should be available for each object in the scene.

3.1.1 Display Parameters

There are three different types of display parameters which all contribute to
the selection of the correct LOD.

� Resolution
The resolution plays a major role because with higher resolution there

34

3.1. System Diagram and Components 35

SSIM for different SSA

Eccentricity
(camera coords)

Depth
(camera coords)

LOD Selection

Barrel Distortion
CoefficientsField of View Display Resolution

Subtended solid
angle of Object

Display Parameters

Parameters at runtime

VR specific

SSIM Threshold

LOD Input File

User Study
size-dependant SSIM Threshold

threshold = k*x + d

SSA/SSIM fitted Function
(four parameter logistic curve fit)

Input for every unique object

SSIM Score reached
by object

Model Matrix
Scale

Figure 3.1: LOD Selection System Diagram

are more pixels available to render the object. More pixels mean that
the object can be rendered with more detail.

� Field of View
When the field of view is increased more information has to fit on the
same screen which means less pixels are available per degree of field
of view. While maintaining the same resolution an increase in field of
view results in less pixels available for a certain object and therefore it
can be rendered with less detail.

� Distortion Coefficients

3.1. System Diagram and Components 36

The most important factor for this work is the VR specific one de-
scribing the amount of distortion needed to compensate the distortion
introduced by the lens. The coefficients itself were already explained
in earlier chapters.

3.1.2 Parameters at Runtime

The following parameters are acquired at runtime because they are depending
on the viewing parameters of the camera for the current scene. As also
seen in the system diagram the model can be scaled via the model matrix,
which obviously changes its size and therefore the LOD selection. Non rigid
transformation though can also be applied via the model matrix but will
cause problems because shape of the object in completely changed. On the
one hand this results in a new bounding sphere and on the other hand this
would also change the SSIM scores used later for the LOD selection.

� Depth
Describes the distance between the object and the camera. This dis-
tance is calculated once per object. Every object has a bounding sphere
and the point of the bounding sphere closest to the camera is taken for
further calculations.

� Eccentricity
The eccentricity is the distance to the center of the screen expressed in
either radial distance or in degrees of an angle.

3.1.3 Object specific Input

Another thing needed in order to evaluate the LOD is an input file describing
the behaviour of the SSIM scores. This file is evaluated for each object in
the scene and has to be available at runtime. More information about the
creation of this and the containing data is described in section 3.3. In general
the object specific input serves for the evaluation of the reached SSIM score
for the current settings and for each level of detail for the specific object.

3.1.4 Structural Similarity Score Threshold

As a last step for the evaluation of the sufficient level of detail needed for
the current runtime parameters as well as the current display configuration

3.2. Creating LODs 37

the score reached by a specific object is compared to a SSIM threshold. This
threshold is not a fixed value but changes with decreasing subtended solid
angle given by a linear function.

3.1.4.1 Size-dependant Threshold

After several observations of different objects and settings a conclusion was
made that a fixed threshold is not sufficient. A linear relation was expected
and therefore a function of the form

y = k ∗ x+ d (3.1)

was used to calculate the SSIM threshold for different sizes respectively sub-
tended solid angles. To evaluate the parameters k and d a user study was
performed which is described in more detail in section 5.1.

3.2 Creating LODs

In previous chapters certain different techniques to simplify a mesh were
explained in order to create levels of detail of any desired object. The mesh
simplifications respectively the creation of LODs were done using Blender
2.82. Blender has different modifiers which can be applied on a meshes and
one of them is a modifier called Decimate [24].

3.2.1 Blender Decimate

This modifier has three different types of mesh simplification approaches to
choose from.

� Collapse
Vertex collapse techniques merging vertices together as described in
section 2.5.2.2.

� Un-Subdivide
This is more or less the reverse step of a subdivide modifier which is
trying to remove edges introduced by a subdivide operation. This is
mainly used for geometry with flat surfaces.

3.2. Creating LODs 38

Figure 3.2: Blender Decimate Modifier

� Planar
An angle limit can be set for this approach and geometry forming
angles between surfaces higher than the given setting is dissolved. This
achieves good results mainly for almost flat surfaces.

For this work the first decimate type is suited well and was therefore
chosen to create the LODs. When merging vertices together the collapse
type also takes the overall shape of the mesh into account.

The collapse approach has one parameter called ratio which is used to
control the amount of mesh decimation. It is in the range from zero to one.
Setting it to one results in the mesh being unchanged and setting it to e.g.
0.7 results in a mesh where seventy percent of the original number of faces
remain. As seen in figure 3.2 the remaining face count is already displayed
while configuring the parameters for the simplification.

The modifier can also be applied on different sub parts of the mesh. This
is done via a vertex group but was not needed in our case. Another option
is to keep triangulated geometry which results from the decimation process
but as our input meshes are already triangulated this option does not have
any effect. One more setting is aiming to maintain symmetry along a desired
axis but this setting was not used either.

3.2.2 Automation via Python Script

The process of applying the decimate modifier was automated by running a
python script which can be directly fed into blender. The script takes each
mesh in the blender scene and creates one output obj file for each decimate

3.3. Object Specific Input 39

ratio defined in the script. The output files can then be directly used LODs
for the given object.

3.3 Object Specific Input

The system diagram that was explained before needs an object specific input
which will be the topic of this section. First the procedure in order to create
those input files as well as the files content is discussed followed by explana-
tions which LODs to pick and which ones to discard for the final rendering
framework.

The general intention is to create one input file per object describing
the behaviour of the SSIM scores over a certain amount of given subtended
solid angles. This is done for each level of detail generated from the original
model. The input file is then used at runtime in order to get the scores
reached by every LOD for the current viewing parameters. The scores are
then compared to the current SSIM threshold and a LOD selection can be
made.

3.3.1 SSIM Inputfile Test

The SSIM score in images as already discussed in section 2.6.4 is the mean
over all scores for each pixel of interest which are the ones related to the
object. As one criteria is that switching to models with lower complexity
should start when the object is smaller than one sixteenth of the screen size,
the creation of the input file data also started at this specific subtended solid
angle which is calculated as shown in equation 3.2. Furthermore the object
is placed exactly in the middle of the screen.

SSA(
1

16
) = 2π(1− cos(arcsin(0.25 ∗ tan(ω))) (3.2)

By starting at this subtended solid angle another advantage is that the
bad stretching effects of perspective projection do not kick in as the object
is in the screen’s center and rather small. The distance between the camera
and the object is now increased in linear depth steps. The score is evaluated
for every distance.

It is possible that objects are more complex on a certain side than on
others. For this reason, every object is rotated in order to be seen from

3.3. Object Specific Input 40

different viewing angles to reveal otherwise unseen more complex areas. The
object is rotated around four different axes with a step size of ten degrees
per axis resulting in 144 scores per distance and LOD. The chosen axes were
a horizontal and a vertical one as well as combinations of those resulting in
two diagonal axes.

It was observed that the gathered scores for the different axes were fluc-
tuating quite a lot. This is probably due to rendering artifacts especially for
larger depth where the object really small. What was desired in theory was
the worst scores of all rotations as this way it is not possible to see the object
from a worse viewing angle and the quality of the chosen LOD will always
be sufficient. In order to avoid scores the 25th percentile was taken. This
measure yielded good results and removed a huge part of the noisy values.

The percentile is defined as follows

xp =

{
0.5(xnp + xnp+1), if np ∈ Z
xbnp+1c, otherwise

(3.3)

with n being the number of values in the pool and p the percentile of
interest. In case of the input file test procedure the interest was in the 25th

percentile which means p = 0.25 from a pool of n = 144 values. Resulting in
n ∗ p = 36 which is an integer therefore the score used is the average of the
36th and the 37th score.

3.3.1.1 Inputfile Data

After generating all the data as described with the procedure before an input
data file consists of three values per line which are the following:

� Level of Detail

� Subtended Solid Angle

� Structural Similarity Score

This means that scores are available for every level of detail of the object
and a certain amount of different subtended solid angles which is everything
needed for the LOD selection. The distance between camera and object of
interest was linearly increased leading to a higher number of data points
for smaller subtended solid angles. When the distance between camera and

3.3. Object Specific Input 41

object is doubled the size of the object in terms of width and height is halved
but the number of pixels which corresponds to the subtended solid angle is a
fourth of the original one. This leads to the following relation: SSA = 1

depth2
.

The data points were fitted which is subject to the next section.

3.3.1.2 Fitting the Data

In order to use the generated data for the LOD selection framework it was
fitted with the use of four parameter logistic regression [25], abbreviated 4PL.

y = d+
a− d

1 + (x
c
)b

(3.4)

with the four parameters denoted a, b, c and d as well as the input x
which is the subtended solid angle resulting in the value y being the score.
The result of the fitting as well as the data points generated by the test
procedure can be seen in figure 3.3.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Subtended Solid Angle

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

Fitting Plot

1
2
3
4
5
6
7
8
9
10

Figure 3.3: Sample LOD Input File with 4PL Fitting

3.3. Object Specific Input 42

3.3.2 Elimination Criteria

A certain number of LODs can be created as explained in section 3.2 with
different reduction ratios. The reduction ratio is not directly relatable to the
score reached by the LOD. Therefore a fixed amount of LODs is generated
with a certain step size for the reduction ratio and only a subset of those
is used for the LOD framework. In order to choose the subset the object is
set to have a size of one sixteenth of the screen size and the reached score is
evaluated. A certain step size is SSIM score is set, for example five percent
and the subset of LODs is picked accordingly. Figure 3.3 already shows only
a picked subset.

3.3.3 Appearance Parameters

Every object has a material assigned used to determine the final color of
the surface. Different settings can be made to change the material. As
every setting slightly changes the appearance of the object it also influences
the SSIM score. The following appearance parameters were investigated
regarding their influence on the final SSIM score and the described behaviour
was observed:

� metallicity
With increasing metallicity, the score decreased. Higher metallicity
leads to more reflective surfaces, which means edges can be seen more
clearly, and this was the assumption for the lower scores.

� specularity
This parameters was showing the same behaviour as the metallicity,
with the same assumption as stated above.

� texture frequency
The higher the texture frequency, the lower the score. An increased
frequency leads to a more complex texture, which then leads to more
differences between LODs and therefore to a lower score.

� texture contrast
A higher contrast in the texture means that again the texture will
be visually perceived as more complex, which ends up in the same
assumptions as for the texture frequency.

3.3. Object Specific Input 43

The behaviour described above will most likely be the same for every
object, therefore a future improvement could be that a correction factor is
introduced which depends on the material used and corrects the final score.
This was the intention while investigating the material parameters, but in
the end the conclusion was made that there was not enough data to build a
good correction factor.

Chapter 4

Implementation

In this section all the relevant aspects for the implementation of the model
presented in the previous section should be given. Furthermore the equations
in order to calculate different parameters are explained in more detail.

4.1 Subtended Solid Angle

The basic idea of this thesis was that the SSIM scores of a certain object
increase with increasing distance to the camera which is one criteria of the
LOD selection function. The increase in the score is due to the object getting
smaller. As already explained because of the compensation of the magnifying
effect of the lenses in VR HMDs the objects also get smaller with increasing
eccentricity. Therefore is was also assumed that the SSIM scores are getting
better with increasing eccentricity. Unfortunately this was not the case.
After further investigation the issue was found in the effect of perspective
projection which is applied for the renderings. As we want to map a flat
2D screen onto sphere, which is the human eye ball, perspective projection
is necessary. In order to do this mapping correctly the object is stretched
towards the edge of the screen. The stretching increases with increasing field
of view as we want to map the screen to a larger area of the sphere. Instead
of increasing scores with increasing eccentricity the scores got worse towards
the edge of the screen. When comparing two results with same field of view
but different settings for the lens coefficients the desired effect of better SSIM
scores was observed.

To be independent of the perspective distortion the solid angle was the

44

4.2. Bounding Sphere 45

metric used for all further calculations. This is exactly the measure needed
as the solid angle in geometry describes the amount of field of view covered
by an object. The unit of the solid angle is called steridian. The solid angle
is calculated by

σ =
A

r2
(4.1)

where A is the area which is cut out of a sphere with radius r. Therefore
one steridian equals an area cut out of the sphere with the size of A = r2. As
the whole surface of a sphere is given by 4πr2 the entire sphere has a solid
angle of 4sr.

r

A

σ

Figure 4.1: Solid Angle

The simplest approximation of the subtended solid angle of an object is
based on a bounding sphere. Therefore the size of every object in the rendered
scene is given by the subtended solid angle covered by the bounding sphere
of the object.

4.2 Bounding Sphere

In order to evaluate the distance to the camera as well as the eccentricity,
the distance to the center of the screen, a bounding sphere is used for each

4.2. Bounding Sphere 46

object in the scene. This sphere should obviously completely cover the object.
Each sphere Z is defined by its center z = (zx, zy, zz)

T and a radius rz. Also
important is that the values calculated to define the sphere are given in 3D
camera coordinates.

Finding the smallest fitting bounding sphere is a popular mathematical
problem more commonly known as smallest-circle problem, initially proposed
by James Joseph Sylvester in 1857 [26]. There are different algorithms trying
to solve this problem but for this work it was sufficient to come up with a
more simple approaches. A tighter better fitting bounding sphere would not
have an huge impact in this case.

Therefore the implementation calculates the center of the bounding sphere
in two different ways explained below. The sphere with the smaller radius
respectively with the better fit is taken for further calculations.

4.2.1 Center z

The following two approaches for the calculations of the center of the bound-
ing sphere were taken into account.

4.2.1.1 Average of Vertices

The center of the sphere is calculated by the average of all vertices of the
model. If the vertices are equally distributed over the whole mesh of the
object this yields good results.

z =
1

n
∗

n∑
i=0

vi (4.2)

With n being the number of vertices in the mesh.

4.2.1.2 Min-Max of Vertices

This approach is better suited if the vertices are not equally distributed.
Consider a mesh consisting of two parts one with higher density of vertices
and one with lower density, then the min max approach will result in a
bounding sphere with smaller radius. The center is calculated by evaluating
the minimum and the maximum of every vertex for each axis and then taking

4.3. Computing Eccentricity 47

average as the final result.

z =
1

2
∗ ∀v ∈ V

min(vx) + max(vx)
min(vy) + max(vy)
min(vz) + max(vz)

 (4.3)

4.2.2 Radius rz

The two mentioned approaches only differ in the calculation of the center of
the bounding sphere but the calculation of the radius rz is the same. The
radius is given by the largest distance from the center to any vertex.

rz = max
∀v∈V
|z, v| (4.4)

4.3 Computing Eccentricity

This section deals with the computation of the eccentricity as well as the
amount of shrinking of the object introduced by the compensation of the lens
distortion. As already mentioned the eccentricity serves as second criterion
for the LOD selection function.

4.3.1 Subtended Solid Angle

First of all the subtended angle of the desired object is calculated. The
bounding sphere results in a circle as silhouette. With the radius of the
bounding sphere a cone can be formed seen from the eye point. The angle
µz resulting from this can be calculated by the following equation:

µz = arcsin
rz
|z|

(4.5)

The subtended solid angle of a cone is the area of a spherical cap on a
unit sphere and is calculated as shown in equation 4.6.

σz = 2π(1− cos(µz)) (4.6)

4.3. Computing Eccentricity 48

4.3.2 Distortion Correction

The next step is to calculate the amount of reduction of σz resulting from
the lens distortion compensation. The eccentricity of an object is calculated
by the center of the bounding sphere, denoted αz.

αz = arctan(

√
z2x + z2y
zz

) (4.7)

4.3.2.1 Lookup of r-1

Already explained in earlier chapters the lens distortion compensation func-
tion, a barrel distortion, is reducing the size of the objects towards the edge
of the screen. The distance of a point to the screen’s center is multiplied by
a factor describing this reduction. This reduction factor is stored in lookup
table which has to be available for the current HMD’s distortion coefficients.

4.3.2.2 Conversion Functions

Before continuing with further calculations it is necessary to understand how
to convert the angle α of a given point to a radial distance r and vice versa.
The mentioned angle and radial distance of a point can be seen in figure 4.2.

Angle to Radius
As the lookup table takes the distance of a point to center of the screen, the
radial distance, and the object’s size is determined using angles a conversion
has to be applied given in equation 4.8.

α2r(s) =
tan(α(s))

tan(ω)
(4.8)

Radius to Angle
After applying the effect of the barrel distortion to the given radial distance
a conversion back to angles is needed in order to proceed.

r2α(s) = arctan(r(s) ∗ tan(ω)) (4.9)

4.3. Computing Eccentricity 49

Figure 4.2: Conversion from Angle to Radius and vice versa

One last parameter is needed to calculate the correction factor for the
lens distortion effect. This is the amount of distortion applied to the radial
distance which was already explained in algorithm 1 in a previous section.

The distorted angles α+ and α− are calculated with the difference of those
two values being exactly the subtended angle of 2µz in an undistorted way.
The values (αz + µz) and (αz − µz) are the boundary values of the object.
They are first converted from angle to radial distance in order to scale them
accordingly by the reverse lens distortion function r-1. After the scaling the
values are converted back to angles and now describe the new size of the
object.

α+ = r2α(r-1(α2r(αz + µz))) (4.10)

α− = r2α(r-1(α2r(αz − µz))) (4.11)

The last step is to scale the previously calculated subtended solid angle
of the object by the amount if shrinking introduced by the barrel distortion.

4.3. Computing Eccentricity 50

Figure 4.3: Distortion Correction

This is done by calculating the ratio between the new boundary values and
the original ones.

σ′z = σz
α+ − α−

2µz
(4.12)

The resulting subtended solid angle σ′z is then used for the LOD selection
function to evaluate the amount of detail which is sufficient for the current
parameters.

When the object is positioned in the center of the screen the barrel dis-
tortion does not have any effect which results in α+ and α− being equal to
2µz which means the initial subtended solid angle σz is multiplied by one
resulting in no distortion correction.

4.4. LOD Selection Function 51

4.4 LOD Selection Function

The previously calculated parameters lead to the following LOD selection
function:

LOD(O, σ, e) = maxi(f(σ) <= M(Oi, σ
′)) (4.13)

This equation evaluates the desired level of detail of an specific object
O which covers the subtended solid angle σ at the current eccentricity e by
checking all LODs Oi of the current object against a SSIM threshold given
by f(σ) where the score reached is given by M(Oi, σ

′) which is considering
the lens optics by shrinking the subtended solid angle σ′ by the amount of
distortion applied towards the edge of the screen.

4.5 LOD in Vector Streaming Framework

After setting up the window, loading the scene and initializing all the man-
agers as described in section 2.7 the application maintains in the render loop
until the window is closed and therefore the application is terminated. The
render loop is a continuous execution of two functions which are first updat-
ing the scene and the animations according to the current timestamp and
then rendering the scene.

In the second part of the render loop each manager in the vector streaming
framework takes care of the parts it is responsible for. For example the entity
manager culls the view frustum in order to check which entities are visible.
Another thing the entity manager does at this point is checking the level of
detail of each object in the scene. So this is exactly where all the calculations
which were previously explained are done and the final LOD per object is
evaluated. If the LOD of an object changes the the visibility of the old model
is set to false while the new one is set to be visible.

For now there is no specific algorithm implemented to switch between
the LODs which is one point for future extensions, for example by smoothly
blending LOD representations. Hard LOD switching introduces the negative
effect of visual pops but as this work focuses on when to switch LODs and
not on how to switch them as well as the performance improvements this was
sufficient.

Chapter 5

Evaluation

This chapter is divided into two different parts. The first part deals with
the performed user study while the second part discusses the results of the
performance evaluation and the savings resulting from the foveation aspect
which was taken into account.

5.1 User Study

In order to evaluate the thresholds for the LOD selection, the already men-
tioned parameters k and d for the linear relation between the size of the object
the SSIM score, a user study was performed. The first section explains the
procedure of the user study while the second section gives an overview of the
used hardware and the software setup. Finally the results of the study are
discussed.

5.1.1 Procedure

The general idea was to present different objects and let the user decide
how much the model can be simplified without seeing a significant difference
compared to the base model. Furthermore this assumption should be valid
for all distances to the camera, respectively for all sizes of the object.

For the duration of the whole study each object was rotating so the user
is able to see it from different angles. The user was also able to stop the
rotation in order to focus on different areas of the object. The certain object
to evaluate was the only thing visible in the scene besides a small window

52

5.1. User Study 53

showing the instructions and current progress. Furthermore the object was
presented on a neutral gray background with no complex lighting but only a
normal ambient light. In order to compare the LODs to the base model the
object always fades between the two. Fading was desired to avoid seeing the
typical popping effects.

For each object the user had to go through two phases. The settings
evaluated in both phases should always be as bad as possible and as good as
needed.

5.1.1.1 Phase 1

Phase one was used to evaluate the d value for the linear relation. This was
done by presenting the object at the size of one sixteenth of the entire screen
size. This is exactly the size where the use of lower levels of detail should
start. The user was then able to go through the ten LODs which are available
for each object. When a level of detail with almost no difference to the base
model was found the user accepted the decision and was led to phase two.

5.1.1.2 Phase 2

The aim of the second phase was to find the slope setting for the linear
relation. The slope settings lets the user decide how much detail can be lost
with increasing depth while still remaining the main assumption of almost
not seeing a difference to the full resolution model. In this phase the user has
to try different slope settings and the check if the setting is sufficient for the
whole range of distances. When a good setting was found the next object
was shown and phase one was executed again.

5.1.2 Setup

This section will briefly describe the used HMDs as well as the objects presen-
ted during the user study.

5.1.2.1 Head Mounted Displays

The evaluation of all the objects for the user study was performed on two
different head mounted displays. This was done in order to see how the
results change when different hardware is used. The differences are discussed

5.1. User Study 54

in a later section while the purpose of this section is to describe the used
hardware and list the specifications.

HTC Vive Pro
The first headset used is the HTC Vive Pro [27] which was introduced in
January 2018 as an upgraded model of the previous Vive. The more recent
version has higher resolution displays and is a bit lighter in terms of overall
weight. Further specifications are listed below.

HTC Vive Pro Specifications

Display Technology OLED
Resolution 1440x1600 pixels per eye
Refresh Rate 90 Hz
Field of View 110°
Lens Type Fresnel
Price 700¿ *

* price for HMD only (as of July 2020)

Table 5.1: HTC Vive Pro

Oculus Rift S
The Oculus Rift S [28] was the second headset used in the user study. It is
officially available on the market since May 2019. The Oculus Rift S is also
a newer version of the previous Oculus Rift. Again the display resolution is
a tiny bit higher in the newer version but what is more interesting is that
the newer version has an LCD panel while the older one was equipped with
an OLED display. Table 5.2 lists further specifications.

5.1. User Study 55

Oculus Rift S Specifications

Display Technology LCD
Resolution 1280x1440 pixels per eye
Refresh Rate 70 Hz
Field of View NA
Lens Type Fresnel
Price 450¿ *

* price for HMD + controller (as of July 2020)

Table 5.2: Oculus Rift S

5.1.2.2 Tested Objects

The user had to go through the test phases for a total of ten different objects.
For the objects itself the aim was to have a good variation of different kind
of aspects like the following:

� geometry: round object and objects with rather flat surfaces as well as
objects with complex high curvature meshes

� texture: differing in texture contrast and texture frequency

� material: a variation of materials with different effects like specularity
or metallicity

� polygon count: meshes with varying number of polygons of the original
base model

In figure 5.1 eight of the tested objects can be seen. Two objects were
shown with the same geometry but without any texture or special material.
The object were presented with a white to gray base color and normal phong
shading. This was done in order to check the influences of the appearance
on the geometry itself.

5.1.3 User Profiles

A total number of twenty four users was tested. None of them had any idea
what the user study was about nor got any information or instructions in
advance. All users were at the time of the user study working for the Institute

5.1. User Study 56

Figure 5.1: Objects used in the user study

of Computer Graphics of the TU Graz. Some statistics about the user can
be seen in table 5.3.

User Statistics

Total Number of Participants 25
Age 23 to 43
Males 21 of 25
Females 4 of 25
Corrected Vision 14 of 25
Computer Experience 4.84* on average
VR Experience 3.08* on average

*rating ranging from 1 (lowest) to 5 (highest)

Table 5.3: Oculus Rift S

5.1.4 Results

The aim of this section is the discussion of the results gained from the user
study. All outputs from the user study were processed using Statistical Pack-

5.1. User Study 57

age for the Social Sciences (SPSS) [29] by IBM. First thing to investigate was
if there is a remarkable difference between the two different headsets.

5.1.4.1 Normality Test

Before continuing with further evaluation steps the acquired data has to be
tested for normality. A lot of statistical tests for further investigations have
the prerequisite for the data to be normally distributed. Two different kinds
of normality tests were executed for each parameter from the user study
which were the initial starting threshold at one sixteenth of the screen size
d and the corresponding slope setting k which evaluates the SSIM threshold
for larger distances.

To test the data for normality two different approaches were used. The
first one is called Kolmogorov-Smirnov [30] and the second one is called
Shapiro-Wilk [31]. The results of both are shown in table 5.4.

HMD Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

d rift 0.135 240 0.00 0.885 240 0.00
vive 0.142 240 0.00 0.842 240 0.00

k rift 0.201 240 0.00 0.913 240 0.00
vive 0.167 240 0.00 0.936 240 0.00

Table 5.4: Normality Tests for different HMDs

The output above was created by SPSS and the important column is
denoted Sig. which corresponds to p the probability of the hypothesis. In this
case the hypothesis was that the data is normally distributed. In statistical
application a threshold value to reject the hypothesis is p < 0.05. This is the
case in the performed normality tests and therefore the hypothesis is rejected
which means the data for the parameters k and d is not normally distributed.

Further investigation concluded that both test probably failed because
the data is skewed, especially for the parameter d. The distribution plots
show that the data is not perfectly normally distributed but almost has the
correct shape.

When looking at the descriptives of the data in table 5.5 the skewness
can be seen. The difference between the column statistic and std. error is

5.1. User Study 58

0.5 0.6 0.7 0.8 0.9
d

0

5

10

15

20

25

30

35

di
st

rib
ut

io
n

d Histogram

Rift
Vive

Figure 5.2: Distribution of Parameter d for both HMDs

0.5 0.0 0.5 1.0 1.5
k

0

10

20

30

40

50

60

70

di
st

rib
ut

io
n

k Histogram

Rift
Vive

Figure 5.3: Distribution of Parameter k for both HMDs

5.1. User Study 59

quite high which is a good indicator why the normality tests failed. For the
parameter d this obviously makes sense as the values the user picked have a
high chance to be close to one but definitely cannot be higher than one.

HMD Statistic Std. Error

k rift Mean 0.2677 0.02526
Std. Deviation 0.39139
Skewness 0.852 0.156
Kurtosis 0.597 0.313

vive Mean 0.2792 0.02719
Std. Deviation 0.42130
Skewness 0.619 0.157
Kurtosis -0.006 0.313

d rift Mean 0.9050 0.0053
Std. Deviation 0.08365
Skewness -1.201 0.157
Kurtosis 1.474 0.313

vive Mean 0.8971 0.0061
Std. Deviation 0.0958
Skewness -1.783 0.157
Kurtosis 4.384 0.313

Table 5.5: Descriptives of the user study data

5.1.4.2 Difference between HMDs

To see if there exists a difference between the headsets based on the two eval-
uated parameters the first idea was to do an Analysis of Variances (ANOVA)
[32]. The result showed that there is no significant difference between the
headsets but as normality is a prerequisite in order to perform ANOVA the
result was not valid. The same prerequisite of normality holds for another
popular approach which is the T-Test [33]. A non parametric test has to be
performed which does not have the prerequisite of normality.

Wilcoxon
Wilcoxon [34] also showed that there is no difference between the headsets
which can be seen by the values Sig. in table 5.6. As it was with the normality

5.1. User Study 60

tests a value of Sig. and respectively p smaller than 0.05 indicates that the
hypothesis of recognizing a difference can be rejected and an alternative
hypothesis is accepted which says there is no difference between the HMDs.

Test Statisticsa

d Vive - d Rift k Vive - k Rift

Z -0.567b -0.341c

Asymp. Sig. (2-tailed) 0.571 0.733

a Wilcoxon Signed Ranks Test
b Based on positive ranks
c Based on negative ranks

Table 5.6: Normality Tests for different HMDs

Personal HMD Rating
Throughout the whole user study, general opinions about the HMDs were
collected. The majority of users considered the Oculus Rift S as the better
headset in terms of comfort and ease of use. For the Vive the opinion was
that it is way harder to find the sweet spot, if found though users reported
a very good quality. Furthermore the quality at larger eccentricities was not
that good for the Vive.

5.1.4.3 Correlation between k and d

The next thing to investigate was the correlation of k and d. The assumption
was that the parameter k depends on the previously chosen parameter d.

In figure 5.4 a scatter plot for the two parameters can be seen. This plot
also helps to understand correlations between two variables. When fitting a
linear line through the data a positive or negative correlation can be easily
seen. When the slope of the linear fit is rather low, resulting in a horizontal
line, there is almost no correlation. This seems to be the case for the given
data.

To confirm the assumption made from the plot some statistical tests were
performed again.

Pearson’s r
A popular method to check for correlation between two variables is Pearson’s

5.1. User Study 61

0.5 0.6 0.7 0.8 0.9 1.0
d_lod_score

0.5

0.0

0.5

1.0

1.5

k
Scatter Plot k and d

Figure 5.4: Scatter Plot for Parameters k and d

r [35] but again this test has the prerequisite of normality and was therefore
no option.

Kendall’s tau b and Spearman’s rho
Two common non parametric methods to test for correlation are Kendall’s
tau [36] and Spearman’s rho [37] which were both performed. In general
correlation coefficients are in the range of minus one to plus one. Negative
values mean that there is a negative correlation and the opposite for positive
values. In general values close to zero indicate that there is not correlation
and absolute values close to one show a high correlation. A classification for
the strength of the correlation is shown in table 5.7.

Correlation Coefficients

0.0 - 0.3 negligible correlation
0.3 - 0.5 low correlation
0.5 - 0.7 moderate correlation
> 0.7 high correlation

Table 5.7: Categorization of Correlation Coefficients

The results of the non parametric tests for correlation are listed in table

5.1. User Study 62

5.8 representing a typical correlation matrix. According to the information
given above the correlation between d and k is rather low and therefore
negligible.

d k

Kendall’s tau d 1.0 -0.164
k -0.164 1.0

Spearmans’s rho d 1.0 -0.220
k -0.220 1.0

Table 5.8: Correlation Coefficients for Parameters k and d

For both tests the correlation is significant at the 0.01 level which was the
case as the values were almost zero. This results in a significant correlation
but the correlation itself is so low that it is negligible.

5.1.4.4 Appearance Parameters Influences

The SSIM score of every tested object does not only depend on the reduction
ratio to produce levels with different amount of detail but also on other
aspects as the geometry of the object or different material properties. This
is also the reason why some models in the user study were duplicated with
the only difference in having another material.

One example from the dataset for the user study is the elephant which was
shown textured and untextured. The SSIM score for the textured elephant
were lower because the differences between each pixel were higher due to a
more complex texture. The human eye on the other hand could probably see
more difference in the simpler shaded model as the texture is too complex to
see differences.

This led to the general assumption that a correction factor should be
implemented. This factor should improve the scores of complex material
parameters because those differences can hardly be seen by the human eye.
As the SSIM score in general should deliver results closer to the human
perception this aspect could possibly seen as a little downside. In order to
create a correction term based on material parameters the results of the user
study were scanned for correlations between the parameters k and d and
some aspects of material parameters.

5.2. Performance Evaluation 63

5.1.4.5 Conclusion User Study

After discussing all the results and investigating correlations between differ-
ent parameters the conclusion was made to take the average of all user study
results as final result for further evaluation steps.

The average values are d = 0.90 and k = 0.27.

5.2 Performance Evaluation

In order to evaluate the performance savings as a result by the level of detail
implementation three different LOD modes were compared. The first one
being disabled meaning the only model is the base model and no other levels
are used. The second one does only take the distance to the camera into
account, denoted as depth only and the third mode which takes both the
distance to the camera as well as the distance to the center of the screen
(eccentricity) as criterion for the level of detail selection. The last mode is
called depth and eccentricity.

Additional Information on FOV
As mentioned in earlier sections the field of view of the used HMD is one
relevant specification which influences the result of the LOD selection. The
real FOV is not always stated by the manufacturing company of the headset.
Lately FOV became a key aspect for VR headset and therefore for the values
stated it is unclear which FOV it really is. For marketing reasons, the higher
the field of view the better, often the diagonal FOV is given. What is of
interest for this work is the horizontal and the vertical field of view.

To be independent from any company revealed values the field of view
was measured. This was done via a small tool which places a target on the
screen which is then moved to the edge of the screen by moving the head.
When the object is exactly at the edge the values of the current field of view
can be read.

As the field of view differs from person to person due to different distances
between eyes and lens as well as the eyes’ position within the HMD it was
tried to get the largest field of view possible. Even though some people may
experience a smaller field of view objects at the edge of the screen are still
rendered even though they are not seen by the user anymore. Therefore what
is of interest is the field of view of the screen itself not of a specific person.

5.2. Performance Evaluation 64

The values acquired for the two headsets of the user study are listed in table
5.9.

HMD measured Field of View

rift 86-88°horizontal 90°vertical
vive 94-96°horizontal 94-96°vertical

Table 5.9: Measured field of view values for both HMDs

Acquiring Distortion Coefficients
The next parameters relevant for the LOD selection in order to correctly run
the third LOD mode also considering the eccentricity are the lens distortion
coefficients. Those values are definitely not of interest for anyone desiring to
buy a VR headset. That is the reason why it is very hard to obtain those
values for a large amount of hardware.

The distortion coefficients for the Oculus Rift S were found as parameters
in the Oculus Software Development Kit [38].

For the HTC Vive there is the possibility to up and download a configura-
tion file which is later used for the rendering by SteamVR. This configuration
file does also contain information of the distortion coefficients used. The file
contains coefficients for all three color channels in order to automatically
consider chromatic aberration. The average of all color channels was taken
as input for the LOD selction framework. The results for both headsets can
be seen in table 5.10.

HMD k1 k2

rift 0.22 0.24
vive 0.2063 0.0576

Table 5.10: Lens Distortion Coefficients

5.2.1 Setup for Performance Evaluation

First the used hardware components and specifications are described, and
then the setup of the different scenes used in the rendering framework is
presented.

5.2. Performance Evaluation 65

5.2.1.1 Hardware

All performance tests were executed on a machine equipped with the hard-
ware components listed and further described in table 5.11. There were no
applications other than the performance tests running in order to produce
comparable results.

Component Name Description

GPU NVIDIA GeForce RTX 2060 SUPER 8GB GDDR6
CPU Intel Core I5 9600K 3.70 GHz
RAM Corsair Vengeance LPX 16GB DDR4

Table 5.11: Hardware component description

5.2.1.2 Scene Setup

For the scene setup, a variation of two parameters was tested. The first
parameter is the density of the scene, which means the number of objects in
the scene varied. The second parameter is the size of the scene the objects
are placed in, which will be described in more detail later.

The scenes were created in Unity [39], which is a very common and well
known tool, and then exported as gltf files, which can then be converted and
imported into the Vector Streaming framework. In the Vector Streaming
framework, a simple forward rendering approach was used for the perform-
ance evaluation.

To create the scenes in Unity, a script was used in order to place the
desired amount of objects randomly in a sphere with an desired radius. The
number of objects as well as the radius of the sphere are the parameters
mentioned before. The radius of the sphere is given in world coordinates.
The advantage of using a sphere is that the maximum distance as seen from
the center of the sphere is always the same which, would not be the case for
a cube.

The performance evaluation was executed for the specs of both headsets,
which were already used in the user study. As discussed before, the field
of view as well as the distortion parameters were changed according to the
headset.

To generate the values presented later, the camera was placed in the
middle of the sphere. This camera was then smoothly rotated around one

5.2. Performance Evaluation 66

axis. For each of the acquired values, the average of 2500 frames was taken.

5.2.2 Results

This section is organized in three different parts. First, some plots of the
performance evaluation are shown and explained in more detail, and then
the overall results for both triangle count savings as well as render time
savings are presented.

5.2.2.1 Run-Time Plots and LOD Distribution

The first plot in figure 5.5 shows the distribution of levels for two different
LOD modes and one specific scene configuration. It can be seen that the
distribution of the LOD, which also takes the eccentricity into account, has
more values for higher levels, which results exactly in the amount of triangles
which can be saved activating this additional criterion for the LOD selection.
The chosen scene was the one with a rather small radius for the sphere, which
results in selection of lower levels of detail and therefore a distribution located
on the left side of the plot.

0 2 4 6 8 10
LODs

0

100

200

300

400

500

LOD Histogram

depth only
depth & eccentricity

Figure 5.5: Histogram of Levels of Detail

Figure 5.6 shows one part of the frames which are captured by the cam-
era rotation inside the sphere. The y axis gives the values for the average

5.2. Performance Evaluation 67

subtended solid angle of all objects currently in the view frustum of the cam-
era. Again, the two LOD modes are presented, and it can be seen that the
values for the LOD mode with eccentricity are lower and therefore result in
lower levels of detail. How much lower the average subtended solid angle is
compared to the one without eccentricity depends on the barrel distortion
coefficients and the amount of object placed closer to the edge of the screen.

0 100 200 300 400 500 600
Frame

0.12

0.14

0.16

0.18

0.20

0.22

Av
er

ag
e

Su
bt

en
de

d
So

lid
 A

ng
le

depth only
depth & eccentricity

Figure 5.6: Plot of average subtended solid angles in a scene

The last figure in this sections shows the impact of the previously de-
scribed techniques on render times. Larger amounts of higher levels of detail
result in less triangles to be processed and therefore result is lower render
times.

5.2. Performance Evaluation 68

0 100 200 300 400 500 600
Frame

0.004

0.005

0.006

0.007

0.008

G
PU

 R
en

de
r T

im
e

depth only
depth & eccentricity

Figure 5.7: Plot of average render times in a scene

5.2.2.2 Triangle Savings

Table 5.12 and 5.13 show the results in respect to saved triangles for different
scene configurations, as described in the section before. The values in the
table show the differences between the LOD modes. The first value tells
how many triangles are saved by enabling LOD with distance as the only
criterion. The second one compares the distance based LOD with another
mode which also takes the eccentricity into account.

Size

10 15 20 30

Density Depth Ecc Depth Ecc Depth Ecc Depth Ecc

100 92.2% 29.5% 96.8% 23.6% 97.5% 14.8% 99.1% 8.7%
500 91.7% 29.5% 97.4% 24.7% 98.6% 13.2% 98.8% 9.1%
1000 91.9% 29.0% 97.4% 24.0% 98.4% 14.4% 98.6% 9.1%

Table 5.12: Oculus Rift - Percent of saved polygons for different scene con-
figurations and LOD modes

5.2. Performance Evaluation 69

Size

10 15 20 30

Density Depth Ecc Depth Ecc Depth Ecc Depth Ecc

100 92.7% 22.7% 97.4% 19.1% 97.4% 10.4% 99.0% 8.6%
500 92.5% 21.6% 97.7% 18.7% 98.7% 10.1% 99.0% 9.1%
1000 92.7% 21.4% 97.6% 18.1% 98.5% 11.8% 99.0% 8.7%

Table 5.13: HTC Vive - Percent of saved polygons for different scene config-
urations and LOD modes

In general, it can be seen that with increasing distance, the savings are
larger, as the selected levels are also higher. Additionally, the values for the
mode with eccentricity decrease with increasing depth, because the difference
in number of triangles is lower, the higher the LOD is. For example, level
two to level three saves 1000 triangles, whereas level nine to level ten only
saves 100.

A difference between the two HMDs can also be seen. The savings for the
rift are higher as the ones for the vive. This makes sense, as the distortion
coefficients for the rift are larger, which results in more distortion compens-
ation and therefore in smaller objects at the edge of the screen, which lead
to higher levels of detail.

What can be observed as well is that the triangle savings do not depend
on the density of the scene, which means it does not matter how many objects
are placed, the percent of saved triangles will be roughly the same.

Furthermore one has to keep in mind that the values presented can vary
a bit as the objects were randomly placed in the scene. Recreating the scenes
will obviously result in different values, but in a very similar range as the
ones presented.

In table 5.14 and 5.15, the actual values of overall triangles currently in
the view frustum of the camera and averaged over all rendered frames are
listed.

5.2. Performance Evaluation 70

Size

10 15 20 30

Density Off Depth Ecc Off Depth Ecc Off Depth Ecc Off Depth Ecc

100 35.8 2.78 1.96 19.5 0.62 0.47 14.3 0.36 0.31 10.3 0.09 0.08
500 175 14.5 10.2 94.9 2.52 1.90 64.7 0.91 0.79 50.5 0.62 0.57
1000 334 27.0 19.2 179 4.71 3.58 132 2.10 1.79 96.2 1.01 0.91

Table 5.14: Oculus Rift - Actual values in millions of polygons for different
scene configurations and LOD modes

Size

10 15 20 30

Density Off Depth Ecc Off Depth Ecc Off Depth Ecc Off Depth Ecc

100 35.6 2.61 2.02 20.8 0.55 0.45 13.8 0.36 0.32 9.29 0.10 0.09
500 178 13.4 10.49 101 2.37 1.93 69.2 0.92 0.83 56.2 0.56 0.51
1000 339 24.9 19.6 189 4.60 3.77 142 2.12 1.87 104 1.02 0.94

Table 5.15: HTC Vive - Actual values in millions of polygons for different
scene configurations and LOD modes

5.2.2.3 Render Time Savings

The second part of the performance evaluation deals with the savings in
respect to render times. First, the method how the values were acquired is
discussed, and then the results are presented and explained.

Rendering Overhead
The first thing which was done was to measure the overhead of the rendering
engine itself. This overhead was then subtracted from every value measured
for the rendering time. The overhead was calculated by running a scene with
zero objects in it.

For the used machine and configuration of the framework, a value of 0.332
milliseconds was established.

5.2. Performance Evaluation 71

Timing Values
In general it is important to mention that GPU timings have to be meas-
ured directly on the GPU and not on any other processor, like the CPU.
The Vulkan API offers this possibility by configuring a query to return
timestamps. There are different query types such as Occlusion, Pipeline
Statistics and Timestamps. The query type Occlusion for example can give
information about how many fragments pass a certain test, whereas Pipeline
Statistics type is able to return the number of vertex shader invocations.
Timestamps query, as the name says, returns timestamps and is the import-
ant one for this work.

The functionality is activated right before a Vulkan graphics command
and queried afterwards. The timestamps can be configured to be taken at
a specified pipeline stage, such as the vertex shader. Due to the parallelism
of the GPU, this does not mean that it only measures this pipeline stage,
as previously processed graphics commands can be executed in parallel in
another pipeline stage. Because of this, the render times include all pipeline
stages for all the models in the scene. In order to produce meaningful results,
it was important to reduce the impact of other programmable stages such
as the fragment shader. Therefore the fragment shader simply returns one
specific color without further processing.

Results
Table 5.16 and 5.17 show the results which, were acquired for render time
savings.

Size

10 15 20 30

Density Depth Ecc Depth Ecc Depth Ecc Depth Ecc

100 91.0% 20.3% 93.8% 9.5% 93.5% 4.6% 95.7% <1.5%
500 90.8% 20.9% 95.8% 9.7% 97.0% 4.6% 95.3% <1.5%
1000 91.2% 19.9% 96.1% 10.6% 96.5% 4.9% 96.3% <1.5%

Table 5.16: Oculus Rift - Percent of saved render time for different scene
configurations and LOD modes

5.2. Performance Evaluation 72

Size

10 15 20 30

Density Depth Ecc Depth Ecc Depth Ecc Depth Ecc

100 91.9% 14.4% 94.5% 7.4% 96.7% 4.2% 97.5% <1.5%
500 91.5% 14.8% 96.1% 7.2% 97.3% 4.0% 96.8% <1.5%
1000 91.8% 14.7% 96.5% 7.3% 96.7% 3.8% 96.3% <1.5%

Table 5.17: HTC Vive - Percent of saved render time for different scene
configurations and LOD modes

As already described, the values include all pipeline stages. Therefore, it
has to be mentioned that, for lower number of triangles, the other pipeline
stages do have more effect on the final output value. Other than that, the
decreasing amount of render time savings is due to smaller differences in
levels, as already explained for the triangle savings.

Furthermore, there is again no considerable difference in term of scene
density, which was also the case for the triangle savings described before.

Table 5.18 as well as table 5.19 list the actual values of the evaluation in
respect to render time.

Size

10 15 20 30

Density Off Depth Ecc Off Depth Ecc Off Depth Ecc Off Depth Ecc

100 7.43 0.67 0.53 4.15 0.25 0.23 3.14 0.21 0.20 2.30 0.010 0.099
500 37.0 3.40 2.68 20.5 0.87 0.79 14.3 0.42 0.40 11.5 0.542 0.536
1000 71.1 6.24 5.00 38.6 1.49 1.33 29.3 1.03 0.98 21.9 0.811 0.799

Table 5.18: Oculus Rift - Actual values in milliseconds for different scene
configurations and LOD modes

5.2. Performance Evaluation 73

Size

10 15 20 30

Density Off Depth Ecc Off Depth Ecc Off Depth Ecc Off Depth Ecc

100 7.5 0.61 0.52 4.38 0.24 0.22 3.01 0.10 0.09 2.07 0.052 0.051
500 38.3 3.24 2.76 22.0 0.85 0.79 15.5 0.43 0.41 12.7 0.403 0.399
1000 73.3 6.00 5.12 41.76 1.46 1.35 31.6 1.03 0.99 23.6 0.865 0.856

Table 5.19: HTC Vive - Actual values in milliseconds for different scene
configurations and LOD modes

Chapter 6

Conclusions

In conclusion, the SSIM based LOD framework in this work did a quite good
job. One of the advantages of the SSIM based approach is that, no matter
how many triangles an object has, the simplification of the meshes and the
amount of applied simplification can be very well measured with the SSIM
metric. This is one aspect of the metric which is really close to the real human
visual perception. There is definitely some future work left to determine the
behaviour of the metric for different materials, material properties and shad-
ing as well as lightning techniques. This aspect was shortly mentioned, but
for sure deserves more attention. With more investigation in this direction,
the SSIM score may be even more useful to categorize objects.

In terms of performance savings, the approach chosen in this work has
some potential to ensure that there is no visual difference in the final render-
ings compared to renderings without foveation. The savings for the foveation
via barrel distortion functions were less than originally expected. The com-
parison between the foveation function of a human eye and the ones for the
two HMDs used in this work can be seen in figure 6.1. There clearly is a
huge difference between the functions in the plot and the potential of the
foveation function for a human eye is definitely way higher. This is also the
reason why this will most likely be the direction of future researches.

This work can also be extended in terms of hardware. As a start the
two HMDs, which are the Oculus Rift and the HTC Vive, were evaluated
while there are way more HMDs on the market which could be added for
the technique presented. With the future development of new hardware for
Virtual Reality the HMDs may also have different properties, which could
also influence the performance of this technique.

74

75

0.0 0.2 0.4 0.6 0.8 1.0
Eccentricity

0.2

0.4

0.6

0.8

1.0

Sc
al

e
Barrel Distortion vs. Human Eye Foveation

Foveation
Barrel Rift
Barrel Vive

Figure 6.1: Comparison of barrel distortion functions and foveation - Adap-
ted from Guenter et al. Foveated 3D graphics [40]

In the end, render times are a very important factor not only for Virtual
Reality, but all real-time renderings in general. Level of Detail is a simple,
but very efficient way to boost the performance. This boost can be further
enhanced by including a foveation function. There will be room for future
research in this direction.

Bibliography

[1] Paul Milgram et al. “Augmented reality: A class of displays on the
reality-virtuality continuum”. In: Telemanipulator and Telepresence Tech-
nologies 2351 (1st Jan. 1994). doi: 10.1117/12.197321.

[2] Stanford University Brian A. Wandell. Foundations of Vision � Chapter
3: The Photoreceptor Mosaic. url: https://foundationsofvision.
stanford.edu/chapter-3-the-photoreceptor-mosaic/ (visited on
15/12/2020).

[3] Fresnel Lens and Parabolic Reflectors. parabolix-light. url: https:

/ / www . parabolixlight . com / fresnel - lens - and - parabolic -

reflectors (visited on 15/12/2020).

[4] omnia360. Motion Sickness: 6 Tipps, damit VR nicht zum Kotzen wird.
url: https://omnia360.de/blog/motion-sickness-in-virtual-
reality/ (visited on 09/01/2021).

[5] David M. Hoffman et al. “Vergence-accommodation conflicts hinder
visual performance and cause visual fatigue”. In: Journal of vision
(2008). doi: 10.1167/8.3.33.

[6] The Khronos Group Inc. Vulkan API. url: https://www.khronos.
org/vulkan/ (visited on 20/10/2019).

[7] Introduction - Vulkan Tutorial. url: https://vulkan-tutorial.com/
Drawing_a_triangle/Graphics_pipeline_basics/Introduction

(visited on 20/12/2020).

[8] Calculating Stereo Pairs. url: http://paulbourke.net/stereographics/
stereorender/ (visited on 09/01/2021).

[9] Duane C. Brown. “Decentering distortion of lenses”. In: Photogram-
metric Engineering (1966).

76

Bibliography 77

[10] A. E. Conrady. “Decentred Lens-Systems”. In: Monthly Notices of the
Royal Astronomical Society (1919).

[11] Improved Pre-Warping for Wide Angle, Head Mounted Displays, Daniel
Pohl’s Virtual Reality Blog. url: http://blog.qwrt.de/improved-
pre-warping-for-wide-angle-hmds/ (visited on 20/12/2020).

[12] David Luebke et al. Level of Detail for 3D Graphics. Elsevier, 31st July
2002. isbn: 978-0-08-051011-8.

[13] James H. Clark. “Hierarchical geometric models for visible surface al-
gorithms”. In: Communications of the ACM (1st Oct. 1976). doi: 10.
1145/360349.360354.

[14] SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques. Anaheim, CA: Association
for Computing Machinery, 1993. isbn: 0897916018.

[15] Jarek Rossignac and Paul Borrel. “Multi-resolution 3D approximation
for rendering complex scenes”. In: (1st Jan. 1993). doi: 10.1007/978-
3-642-78114-8_29.

[16] Thomas A. Funkhouser and Carlo H. Séquin. “Adaptive display al-
gorithm for interactive frame rates during visualization of complex vir-
tual environments”. In: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’93. Ana-
heim, CA: Association for Computing Machinery, 1st Sept. 1993. isbn:
978-0-89791-601-1. doi: 10.1145/166117.166149.

[17] Zhou Wang et al. “Image quality assessment: from error visibility to
structural similarity”. In: IEEE Transactions on Image Processing (2004).

[18] The SSIM Index for Image Quality Assessment. url: https://www.
cns.nyu.edu/~lcv/ssim/ (visited on 20/12/2020).

[19] Joerg Mueller et al. “Shading atlas streaming”. In: ACM Transactions
on Graphics. 4th Dec. 2018. doi: 10.1145/3272127.3275087.

[20] OpenGL Mathematics. url: https://glm.g- truc.net/0.9.9/

index.html (visited on 17/08/2020).

[21] GLFW - An OpenGL library. url: https://www.glfw.org/ (visited
on 17/08/2020).

[22] ValveSoftware/openvr. 17th Aug. 2020. url: https://github.com/
ValveSoftware/openvr.

Bibliography 78

[23] SteamVR – Valve Corporation. url: https://www.steamvr.com/de/
(visited on 17/08/2020).

[24] Decimate Modifier — Blender Manual. url: https://docs.blender.
org/manual/en/latest/modeling/modifiers/generate/decimate.

html (visited on 20/07/2020).

[25] Masseyeff RF et al. Methods of Immunological Analysis Volume 1: Fun-
damentals. New York, NY: VCH Publishers, Inc., 1993.

[26] James Joseph Sylvester. “A question in the geometry of situation”. In:
Quarterly Journal of Pure and Applied Mathematics (1857).

[27] VIVE� — Discover Virtual Reality Beyond Imagination. url: https:
//www.vive.com/sea/ (visited on 15/07/2020).

[28] Oculus Rift S: VR-Headset für VR-fähige PCs — Oculus. url: https:
//www.oculus.com/rift-s/?locale=de_DE (visited on 15/07/2020).

[29] IBM SPSS – IBM Analytics – Österreich. 15th Feb. 2017. url: https:
//www.ibm.com/analytics/at/de/technology/spss/ (visited on
15/08/2020).

[30] Frank J. Massey. “The Kolmogorov-Smirnov Test for Goodness of Fit”.
In: Journal of the American Statistical Association (1951). doi: 10.
2307/2280095.

[31] S. S. Shapiro and M. B. Wilk. “An analysis of variance test for normal-
ity (complete samples)”. In: Biometrika (1st Dec. 1965). issn: 0006-
3444. doi: 10.1093/biomet/52.3-4.591.

[32] R. A. Fisher. “Statistical Methods for Research Workers”. In: Break-
throughs in Statistics: Methodology and Distribution. Ed. by Samuel
Kotz and Norman L. Johnson. Springer Series in Statistics. New York,
NY: Springer, 1992. isbn: 978-1-4612-4380-9. doi: 10.1007/978-1-
4612-4380-9_6. url: https://doi.org/10.1007/978-1-4612-
4380-9_6.

[33] Student. “The Probable Error of a Mean”. In: Biometrika (1908). issn:
0006-3444. doi: 10.2307/2331554.

[34] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In:
Biometrics Bulletin (1945). doi: 10.2307/3001968.

Bibliography 79

[35] Karl Pearson and Francis Galton. “VII. Note on regression and inher-
itance in the case of two parents”. In: Proceedings of the Royal Society
of London (1st Jan. 1895). doi: 10.1098/rspl.1895.0041.

[36] M. G. Kendall. “A NEW MEASURE OF RANK CORRELATION”.
In: Biometrika (1st June 1938). doi: 10.1093/biomet/30.1-2.81.

[37] C. Spearman. “The Proof and Measurement of Association between
Two Things”. In: The American Journal of Psychology (1987). issn:
0002-9556. doi: 10.2307/1422689.

[38] Oculus SDK for Windows — Developer Center — Oculus. url: https:
//developer.oculus.com/downloads/package/oculus-sdk-for-

windows/ (visited on 24/08/2020).

[39] Unity Technologies. Unity Real-Time Development Platform — 3D, 2D
VR & AR Engine. url: https://unity.com/ (visited on 06/12/2020).

[40] Brian Guenter et al. “Foveated 3D graphics”. In: ACM Transactions
on Graphics (1st Nov. 2012). issn: 0730-0301. doi: 10.1145/2366145.
2366183.

Appendix A

Appendix

The Appendix contains all documents used in the user study such as the
guidance sheet presented to all participants as well as forms which were filled
and signed by all users. Additionally attached are the entire results of the
performed user study. These results were used to evaluate the parameters k
and d which were then used in all the performance measurements.

80

Gregor Liebisch
gregor.liebisch@student.tugraz.at

User Study Guidance

Please double click user_study.bat now. Afterwards read through the document.

Introduction:

My master thesis is about Levels of Detail (LOD) of objects in VR. LODs represent the same object

with simplified meshes. The criteria for switching to lower detail is the distance to the camera.

The Structural Similarity Index (SSIM) is used to measure the error between original model and LOD

for different distances to the camera. The score is then used for the LOD selection. The aim of the

user study is to evaluate the thresholds of the scores which should be reached by the models with

less detail.

Procedure:

Different objects will be shown to you. They will rotate so they can be seen from more angles.

Rotation can be stopped via enter button. The object constantly switches between original model

and LOD.

Regarding the thresholds a linear behavior in respect to the distance to the camera is assumed.

Therefore, first the starting threshold is evaluated, and then different slope settings are evaluated.

For the second phase, the object can be moved further away in order to evaluate the current slope

setting.

Your Action:

(instructions also visible in the HMD while evaluating)

1. Evaluate Starting Threshold

LOD-- LOD++

 when you are fine with your selection hit

2. Evaluate Slope Setting

 distance++

slop-- slope++

 when you are fine with your selection hit

 distance—

Decisions can always be undone with the backspace button!

Repeat above steps for each object in the scene (10 in total). After evaluating both settings, the next

object appears. The application exits when all object in the scene have been tested. Repeat the

above procedure for the next HMD.

Pick up your well-deserved chocolate Thank you!

ICG – Institute of Computer Graphics and Vision

 Institute of Computer Graphics and Vision - Inffeldgasse 16/II 8010 Graz 1

Consent Form

I agree to participate in the study conducted by the ICG – Institute of Computer Graphics and Vision (TU Graz).

I understand that participation in this usability study is voluntary and I agree to immediately raise any concerns
or areas of discomfort during the session with the study administrator.

Please sign below to indicate that you have read and you understand the information on this form and that
any questions you might have about the session have been answered.

Date:_________

Please print your name: __

Please sign your name: __

Thank you!

We appreciate your participation.

Gender (select): ___ m ___ f

Age: ______

Profession: _______________________________

Corrected Vision (select): ___ Yes ___ No

How do you rate your experience with computers in general (1 ... very low, 5 ... very high)?

1 2 3 4 5

How do you rate your experience with VR applications (1 ... very low, 5 ... very high)?

1 2 3 4 5

Notes __

hmd model index d k hmd model index d k
rift chair 0 1,0000 0,75 vive chair 4 0,6803 0,25
rift orchid 0 1,0000 0,25 vive orchid 3 0,8589 0,75
rift falcon 3 0,8968 0,75 vive falcon 3 0,8968 0,25
rift elephant 3 0,8783 0,75 vive elephant 3 0,8783 0,75
rift elephant_plain 3 0,8826 1,25 vive elephant_plain 1 0,9739 -0,25
rift spot_lod 3 0,9378 0,75 vive spot_lod 2 0,9612 -0,25
rift mustang 3 0,8672 0,75 vive mustang 3 0,8672 1,00
rift dragon 2 0,9412 0,75 vive dragon 1 0,9741 1,00
rift buddha 4 0,8010 1,50 vive buddha 1 0,9757 0,75
rift buddha_plain 2 0,9453 0,75 vive buddha_plain 1 0,9804 -0,25
rift chair 3 0,7261 0,00 vive chair 2 0,7899 0,75
rift orchid 3 0,8589 0,75 vive orchid 3 0,8589 0,75
rift falcon 3 0,8968 0,25 vive falcon 1 0,9696 0,75
rift elephant 2 0,9164 0,50 vive elephant 2 0,9164 0,75
rift elephant_plain 1 0,9739 0,25 vive elephant_plain 3 0,8826 0,50
rift spot_lod 2 0,9612 0,75 vive spot_lod 2 0,9612 0,00
rift mustang 3 0,8672 0,25 vive mustang 3 0,8672 1,25
rift dragon 1 0,9741 0,00 vive dragon 3 0,8944 1,50
rift buddha 1 0,9757 -0,25 vive buddha 1 0,9757 0,75
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 2 0,9453 0,00
rift chair 1 0,8226 -0,25 vive chair 2 0,7899 0,50
rift orchid 2 0,9123 0,00 vive orchid 2 0,9123 0,00
rift falcon 3 0,8968 0,75 vive falcon 3 0,8968 0,75
rift elephant 3 0,8783 0,25 vive elephant 3 0,8783 0,50
rift elephant_plain 1 0,9739 -0,25 vive elephant_plain 2 0,9275 0,25
rift spot_lod 2 0,9612 0,75 vive spot_lod 2 0,9612 0,50
rift mustang 2 0,9039 0,25 vive mustang 3 0,8672 0,50
rift dragon 0 1,0000 0,00 vive dragon 3 0,8944 0,75
rift buddha 1 0,9757 -0,25 vive buddha 1 0,9757 0,00
rift buddha_plain 1 0,9804 0,75 vive buddha_plain 1 0,9804 0,00
rift chair 1 0,8226 0,25 vive chair 1 0,8226 -0,25
rift orchid 2 0,9123 0,00 vive orchid 1 0,9810 0,50
rift falcon 2 0,9280 0,00 vive falcon 2 0,9280 0,25
rift elephant 2 0,9164 1,00 vive elephant 2 0,9164 0,50
rift elephant_plain 1 0,9739 -0,25 vive elephant_plain 1 0,9739 -0,25
rift spot_lod 1 0,9872 0,50 vive spot_lod 1 0,9872 0,00
rift mustang 2 0,9039 0,00 vive mustang 1 0,9476 0,25
rift dragon 1 0,9741 0,75 vive dragon 0 1,0000 0,25
rift buddha 1 0,9757 0,25 vive buddha 1 0,9757 0,00
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 1 0,9804 0,00
rift chair 2 0,7899 1,00 vive chair 1 0,8226 0,00
rift orchid 6 0,7001 0,75 vive orchid 2 0,9123 0,25
rift falcon 6 0,6936 1,00 vive falcon 2 0,9280 0,00
rift elephant 7 0,6118 1,00 vive elephant 2 0,9164 0,00
rift elephant_plain 5 0,7923 0,75 vive elephant_plain 0 1,0000 -0,25
rift spot_lod 8 0,7232 1,25 vive spot_lod 4 0,9194 0,00
rift mustang 3 0,8672 0,75 vive mustang 4 0,8036 -0,25
rift dragon 6 0,7693 1,25 vive dragon 3 0,8944 1,25
rift buddha 4 0,8010 1,25 vive buddha 3 0,8629 -0,25
rift buddha_plain 3 0,8991 1,00 vive buddha_plain 0 1,0000 0,00
rift chair 1 0,8226 -0,25 vive chair 6 0,5328 0,75
rift orchid 2 0,9123 0,50 vive orchid 5 0,7862 0,50
rift falcon 2 0,9280 0,50 vive falcon 5 0,7818 0,25
rift elephant 3 0,8783 0,25 vive elephant 6 0,6600 1,00
rift elephant_plain 1 0,9739 -0,25 vive elephant_plain 3 0,8826 0,25
rift spot_lod 3 0,9378 0,25 vive spot_lod 5 0,8674 0,75
rift mustang 2 0,9039 0,25 vive mustang 5 0,7505 -0,25
rift dragon 2 0,9412 0,50 vive dragon 4 0,8669 0,75
rift buddha 2 0,9318 -0,25 vive buddha 2 0,9318 0,50
rift buddha_plain 0 1,0000 0,00 vive buddha_plain 1 0,9804 0,25
rift chair 3 0,7261 -0,25 vive chair 1 0,8226 0,75
rift orchid 3 0,8589 0,00 vive orchid 2 0,9123 0,50

rift falcon 3 0,8968 0,25 vive falcon 1 0,9696 0,50
rift elephant 3 0,8783 0,00 vive elephant 3 0,8783 0,25
rift elephant_plain 1 0,9739 0,00 vive elephant_plain 1 0,9739 0,50
rift spot_lod 1 0,9872 0,00 vive spot_lod 2 0,9612 0,50
rift mustang 3 0,8672 0,00 vive mustang 2 0,9039 0,25
rift dragon 1 0,9741 0,50 vive dragon 4 0,8669 1,50
rift buddha 1 0,9757 0,25 vive buddha 1 0,9757 0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 2 0,9453 0,50
rift chair 1 0,8226 0,25 vive chair 1 0,8226 0,50
rift orchid 3 0,8589 0,25 vive orchid 2 0,9123 0,00
rift falcon 2 0,9280 1,25 vive falcon 2 0,9280 0,50
rift elephant 2 0,9164 0,75 vive elephant 3 0,8783 0,00
rift elephant_plain 1 0,9739 0,50 vive elephant_plain 1 0,9739 0,00
rift spot_lod 3 0,9378 0,00 vive spot_lod 3 0,9378 0,00
rift mustang 2 0,9039 0,25 vive mustang 2 0,9039 0,25
rift dragon 1 0,9741 0,75 vive dragon 1 0,9741 0,25
rift buddha 1 0,9757 0,50 vive buddha 1 0,9757 0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 2 0,9453 -0,25
rift chair 2 0,7899 0,25 vive chair 2 0,7899 0,00
rift orchid 2 0,9123 0,25 vive orchid 2 0,9123 0,25
rift falcon 4 0,8256 -0,25 vive falcon 3 0,8968 0,50
rift elephant 4 0,7987 0,25 vive elephant 3 0,8783 0,25
rift elephant_plain 2 0,9275 0,25 vive elephant_plain 2 0,9275 0,00
rift spot_lod 4 0,9194 0,00 vive spot_lod 3 0,9378 0,25
rift mustang 2 0,9039 0,25 vive mustang 3 0,8672 0,25
rift dragon 4 0,8669 0,75 vive dragon 3 0,8944 0,25
rift buddha 2 0,9318 0,00 vive buddha 2 0,9318 0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 1 0,9804 -0,25
rift chair 0 1,0000 0,00 vive chair 6 0,5328 0,25
rift orchid 1 0,9810 -0,25 vive orchid 2 0,9123 0,75
rift falcon 1 0,9696 0,00 vive falcon 5 0,7818 0,75
rift elephant 2 0,9164 -0,25 vive elephant 3 0,8783 0,75
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 1 0,9739 1,25
rift spot_lod 0 1,0000 0,00 vive spot_lod 0 1,0000 0,75
rift mustang 1 0,9476 -0,25 vive mustang 2 0,9039 0,75
rift dragon 1 0,9741 0,00 vive dragon 0 1,0000 0,75
rift buddha 1 0,9757 -0,25 vive buddha 0 1,0000 -0,50
rift buddha_plain 1 0,9804 -0,25 vive buddha_plain 0 1,0000 0,00
rift chair 1 0,8226 0,50 vive chair 0 1,0000 0,00
rift orchid 1 0,9810 -0,25 vive orchid 1 0,9810 0,00
rift falcon 1 0,9696 0,00 vive falcon 2 0,9280 0,25
rift elephant 0 1,0000 0,00 vive elephant 1 0,9638 -0,25
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 0 1,0000 0,00
rift spot_lod 2 0,9612 -0,25 vive spot_lod 0 1,0000 0,00
rift mustang 1 0,9476 0,00 vive mustang 1 0,9476 -0,25
rift dragon 1 0,9741 0,00 vive dragon 0 1,0000 0,00
rift buddha 1 0,9757 -0,25 vive buddha 0 1,0000 0,00
rift buddha_plain 1 0,9804 -0,25 vive buddha_plain 1 0,9804 -0,25
rift chair 0 1,0000 0,50 vive chair 4 0,6803 -0,25
rift orchid 2 0,9123 0,00 vive orchid 2 0,9123 0,00
rift falcon 4 0,8256 0,00 vive falcon 4 0,8256 -0,25
rift elephant 4 0,7987 0,00 vive elephant 2 0,9164 -0,25
rift elephant_plain 2 0,9275 0,00 vive elephant_plain 0 1,0000 0,00
rift spot_lod 2 0,9612 0,00 vive spot_lod 1 0,9872 0,00
rift mustang 4 0,8036 0,00 vive mustang 2 0,9039 0,25
rift dragon 5 0,8148 0,25 vive dragon 0 1,0000 0,00
rift buddha 2 0,9318 0,25 vive buddha 1 0,9757 0,00
rift buddha_plain 2 0,9453 -0,25 vive buddha_plain 0 1,0000 0,00
rift chair 2 0,7899 -0,25 vive chair 4 0,6803 -0,25
rift orchid 1 0,9810 0,50 vive orchid 2 0,9123 0,00
rift falcon 2 0,9280 0,25 vive falcon 4 0,8256 0,00
rift elephant 2 0,9164 0,00 vive elephant 3 0,8783 -0,25
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 2 0,9275 0,25

rift spot_lod 1 0,9872 0,00 vive spot_lod 3 0,9378 0,50
rift mustang 2 0,9039 0,50 vive mustang 4 0,8036 0,00
rift dragon 0 1,0000 0,00 vive dragon 5 0,8148 0,50
rift buddha 1 0,9757 -0,25 vive buddha 2 0,9318 0,25
rift buddha_plain 1 0,9804 -0,25 vive buddha_plain 1 0,9804 -0,25
rift chair 1 0,8226 0,25 vive chair 7 0,4823 0,25
rift orchid 1 0,9810 0,25 vive orchid 5 0,7862 0,00
rift falcon 3 0,8968 0,50 vive falcon 1 0,9696 0,25
rift elephant 4 0,7987 0,25 vive elephant 1 0,9638 0,00
rift elephant_plain 1 0,9739 1,75 vive elephant_plain 0 1,0000 -0,25
rift spot_lod 5 0,8674 0,75 vive spot_lod 1 0,9872 0,75
rift mustang 6 0,7014 0,25 vive mustang 3 0,8672 -0,25
rift dragon 4 0,8669 0,00 vive dragon 2 0,9412 0,50
rift buddha 3 0,8629 0,25 vive buddha 5 0,7460 0,00
rift buddha_plain 3 0,8991 0,25 vive buddha_plain 0 1,0000 0,00
rift chair 2 0,7899 0,25 vive chair 3 0,7261 0,00
rift orchid 2 0,9123 0,00 vive orchid 2 0,9123 0,50
rift falcon 2 0,9280 0,00 vive falcon 4 0,8256 0,25
rift elephant 1 0,9638 -0,25 vive elephant 5 0,7279 0,25
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 3 0,8826 0,25
rift spot_lod 2 0,9612 0,00 vive spot_lod 5 0,8674 0,50
rift mustang 2 0,9039 0,25 vive mustang 4 0,8036 -0,50
rift dragon 1 0,9741 -0,25 vive dragon 6 0,7693 0,50
rift buddha 1 0,9757 0,25 vive buddha 2 0,9318 -0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 3 0,8991 -0,25
rift chair 6 0,5328 0,00 vive chair 3 0,7261 0,25
rift orchid 2 0,9123 0,00 vive orchid 0 1,0000 0,75
rift falcon 1 0,9696 0,00 vive falcon 0 1,0000 0,75
rift elephant 1 0,9638 0,50 vive elephant 8 0,5041 0,50
rift elephant_plain 2 0,9275 0,25 vive elephant_plain 1 0,9739 0,75
rift spot_lod 3 0,9378 0,50 vive spot_lod 7 0,7663 0,75
rift mustang 3 0,8672 0,25 vive mustang 4 0,8036 0,00
rift dragon 2 0,9412 0,50 vive dragon 4 0,8669 0,75
rift buddha 1 0,9757 0,25 vive buddha 2 0,9318 0,75
rift buddha_plain 1 0,9804 0,25 vive buddha_plain 1 0,9804 0,75
rift chair 3 0,7261 0,25 vive chair 4 0,6803 1,00
rift orchid 5 0,7862 0,25 vive orchid 2 0,9123 0,25
rift falcon 5 0,7818 0,00 vive falcon 2 0,9280 0,25
rift elephant 5 0,7279 0,25 vive elephant 2 0,9164 0,25
rift elephant_plain 1 0,9739 0,75 vive elephant_plain 1 0,9739 0,50
rift spot_lod 4 0,9194 0,75 vive spot_lod 2 0,9612 0,50
rift mustang 3 0,8672 0,75 vive mustang 2 0,9039 0,25
rift dragon 5 0,8148 0,75 vive dragon 2 0,9412 0,50
rift buddha 1 0,9757 0,75 vive buddha 1 0,9757 0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 3 0,8991 0,00
rift chair 2 0,7899 0,25 vive chair 2 0,7899 0,00
rift orchid 3 0,8589 0,25 vive orchid 2 0,9123 0,00
rift falcon 4 0,8256 0,25 vive falcon 2 0,9280 0,00
rift elephant 4 0,7987 0,25 vive elephant 2 0,9164 0,25
rift elephant_plain 2 0,9275 0,25 vive elephant_plain 1 0,9739 0,00
rift spot_lod 3 0,9378 0,00 vive spot_lod 2 0,9612 0,25
rift mustang 2 0,9039 0,00 vive mustang 2 0,9039 0,00
rift dragon 1 0,9741 0,00 vive dragon 2 0,9412 -0,25
rift buddha 1 0,9757 0,00 vive buddha 1 0,9757 0,00
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 1 0,9804 0,00
rift chair 4 0,6803 0,50 vive chair 1 0,8226 -0,50
rift orchid 3 0,8589 0,50 vive orchid 2 0,9123 0,25
rift falcon 2 0,9280 1,00 vive falcon 3 0,8968 0,00
rift elephant 4 0,7987 0,25 vive elephant 1 0,9638 -0,25
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 1 0,9739 0,25
rift spot_lod 4 0,9194 1,00 vive spot_lod 3 0,9378 0,00
rift mustang 4 0,8036 1,25 vive mustang 2 0,9039 0,25
rift dragon 2 0,9412 0,25 vive dragon 3 0,8944 0,00

rift buddha 1 0,9757 0,75 vive buddha 2 0,9318 -0,25
rift buddha_plain 0 1,0000 0,25 vive buddha_plain 1 0,9804 0,00
rift chair 1 0,8226 0,00 vive chair 4 0,6803 0,25
rift orchid 2 0,9123 1,00 vive orchid 4 0,8306 1,00
rift falcon 2 0,9280 0,50 vive falcon 4 0,8256 1,25
rift elephant 2 0,9164 0,00 vive elephant 4 0,7987 1,25
rift elephant_plain 1 0,9739 -0,25 vive elephant_plain 1 0,9739 1,25
rift spot_lod 3 0,9378 0,25 vive spot_lod 5 0,8674 0,75
rift mustang 4 0,8036 0,25 vive mustang 3 0,8672 0,50
rift dragon 4 0,8669 0,00 vive dragon 3 0,8944 0,50
rift buddha 1 0,9757 0,25 vive buddha 3 0,8629 1,25
rift buddha_plain 1 0,9804 -0,25 vive buddha_plain 1 0,9804 1,25
rift chair 3 0,7261 0,50 vive chair 1 0,8226 -0,25
rift orchid 4 0,8306 0,50 vive orchid 3 0,8589 -0,25
rift falcon 5 0,7818 0,50 vive falcon 4 0,8256 0,50
rift elephant 5 0,7279 0,50 vive elephant 3 0,8783 0,25
rift elephant_plain 3 0,8826 -0,25 vive elephant_plain 0 1,0000 0,75
rift spot_lod 4 0,9194 0,25 vive spot_lod 1 0,9872 1,00
rift mustang 5 0,7505 -0,25 vive mustang 2 0,9039 0,75
rift dragon 4 0,8669 0,75 vive dragon 6 0,7693 0,50
rift buddha 1 0,9757 0,50 vive buddha 3 0,8629 0,50
rift buddha_plain 1 0,9804 0,25 vive buddha_plain 1 0,9804 -0,50
rift chair 1 0,8226 0,00 vive chair 4 0,6803 0,00
rift orchid 4 0,8306 -0,50 vive orchid 3 0,8589 0,25
rift falcon 2 0,9280 0,75 vive falcon 3 0,8968 0,00
rift elephant 2 0,9164 0,25 vive elephant 3 0,8783 0,25
rift elephant_plain 1 0,9739 0,00 vive elephant_plain 3 0,8826 -0,25
rift spot_lod 2 0,9612 0,50 vive spot_lod 3 0,9378 0,00
rift mustang 2 0,9039 0,25 vive mustang 3 0,8672 0,00
rift dragon 6 0,7693 0,75 vive dragon 4 0,8669 1,00
rift buddha 3 0,8629 0,00 vive buddha 2 0,9318 0,25
rift buddha_plain 1 0,9804 0,25 vive buddha_plain 2 0,9453 0,00
rift chair 0 1,0000 0,25 vive chair 4 0,4823 0,50
rift orchid 2 0,9123 0,75 vive orchid 3 0,8589 0,75
rift falcon 1 0,9696 0,50 vive falcon 3 0,8256 0,50
rift elephant 1 0,9638 1,00 vive elephant 4 0,7987 0,50
rift elephant_plain 0 1,0000 0,00 vive elephant_plain 4 0,8452 0,25
rift spot_lod 1 0,9872 0,25 vive spot_lod 4 0,9194 0,50
rift mustang 1 0,9476 0,00 vive mustang 2 0,9039 0,50
rift dragon 1 0,9741 0,00 vive dragon 4 0,8669 1,50
rift buddha 1 0,9757 0,25 vive buddha 2 0,9318 0,50
rift buddha_plain 0 1,0000 0,00 vive buddha_plain 1 0,9804 0,00
rift chair 3 0,7261 0,00 vive chair 1 0,8226 0,00
rift orchid 3 0,8589 0,25 vive orchid 1 0,9810 1,00
rift falcon 3 0,8968 0,25 vive falcon 1 0,9696 0,25
rift elephant 3 0,8783 0,50 vive elephant 1 0,9638 -0,25
rift elephant_plain 2 0,9275 0,25 vive elephant_plain 0 1,0000 -0,25
rift spot_lod 4 0,9194 0,50 vive spot_lod 1 0,9872 -0,25
rift mustang 4 0,8036 0,00 vive mustang 4 0,8036 -0,25
rift dragon 6 0,7693 0,50 vive dragon 1 0,9741 -0,25
rift buddha 2 0,9318 0,00 vive buddha 0 1,0000 0,00
rift buddha_plain 2 0,9453 -0,25 vive buddha_plain 1 0,9804 -0,25
rift chair 3 0,7261 0,50 vive chair 2 0,7899 0,25
rift orchid 2 0,9123 0,00 vive orchid 2 0,9123 0,00
rift falcon 3 0,8968 0,25 vive falcon 2 0,9280 0,00
rift elephant 1 0,9638 0,50 vive elephant 2 0,9164 0,25
rift elephant_plain 1 0,9739 0,00 vive elephant_plain 1 0,9739 0,00
rift spot_lod 1 0,9872 0,25 vive spot_lod 2 0,9612 0,25
rift mustang 3 0,8672 0,25 vive mustang 2 0,9039 0,25
rift dragon 1 0,9741 0,00 vive dragon 1 0,9741 0,00
rift buddha 1 0,9757 0,00 vive buddha 3 0,8629 0,25
rift buddha_plain 1 0,9804 0,00 vive buddha_plain 2 0,9453 0,25

