
Michael Draxler, BSc

Development of a Python toolbox for
the drift kinetic equation solver NEO-2

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Technical Physics

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Winfried Kernbichler

Institute of Theoretical and Computational Physics

Graz, January 2021

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,
und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochge-
ladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum Unterschrift

ii

Kurzfassung

Kernfusionsreaktoren haben das Potenzial, große Mengen an nachhaltig
produzierter Energie zu liefern. Allerdings ist diese vielversprechende
Technologie noch nicht weit genug fortgeschritten, um in großem Maßstab
elektrische Energie zu produzieren. Für einen stabilen Betrieb sind noch
erhebliche Verbesserungen in vielen verschiedenen Bereichen erforder-
lich. Diese Arbeit soll zur Forschung im Bereich der Kernfusion beitra-
gen, indem Möglichkeiten für einen einfachen Einstieg in dieses Gebiet
aufgezeigt werden.

Diese Arbeit stellt verschiedene Werkzeuge zur Verfügung, um die
Anwendung eines etablierten Simulationspakets (NEO-2) zu erleichtern.
NEO-2 löst die driftkinetische Gleichung und ermöglicht ein besseres
Verständnis der Transportmechanismen in Fusionsreaktoren. Im Rahmen
dieser Arbeit wurde ein Python Paket implementiert, welches das Open-
Source-Tool Jupyter Notebook mit NEO-2 verbindet. Das entwickelte
Python Paket wird neo2tools genannt. Neo2tools bietet eine Schnittstelle,
die ein einfaches Aufsetzen und Starten von NEO-2 Simulationen für
eine Reihe häufiger Anwendungsfälle ermöglicht. Zusätzlich werden
Methoden zur Visualisierung von NEO-2 Ergebnissen, bis zur Ebene
der Verteilungsfunktion, vorgestellt. Die interaktiven Funktionen von
Jupyter Notebook werden genutzt, um die erzeugten Daten auf intuitive
Weise zu präsentieren.

iii

Abstract

Nuclear fusion reactors have the potential to provide large amounts of
energy in a sustainable fashion. However, this promising technology is
not yet advanced enough to serve as an energy source on a large scale.
Significant improvement in many different fields is still required for
a steady state operation. This thesis aims to contribute to the fusion
related research activities by lowering the barriers to get active in this
field.

This thesis provides different tools to facilitate the application of an estab-
lished simulation package (NEO-2). NEO-2 provides a solver for the drift
kinetic equation and enables a better understanding of transport mech-
anisms in fusion reactors. During this thesis a Python package, which
connects the popular open source tool Jupyter Notebook with NEO-2,
was implemented. The developed Python toolbox is called neo2tools.
Neo2tools provides an interface, that enables straight forward deploy-
ment of NEO-2 runs for a number of common use cases. Additionally,
methods to visualize the results of NEO-2 runs, up to the level of the
distribution function, are provided within neo2tools. The interactive
features of Jupyter Notebook are utilized to present the produced data
in an intuitive way.

iv

Contents

1 Introduction 1

2 Theoretical background 3
2.1 Coordinates . 3

2.1.1 Boozer coordinates 6

2.2 Drift kinetic equation . 8

3 Computational principles 17
3.1 NEO-2 . 17

3.1.1 NEO-2 branches . 19

3.1.2 NEO-2 input . 20

3.1.3 Matrix elements of the collision operator 21

3.1.4 NEO-2 output . 24

3.2 Programming environment 25

3.2.1 Python . 26

3.2.2 IPython . 26

3.2.3 Jupyter Notebooks 27

4 Implementation/Results 29
4.1 Preprocessing . 30

4.1.1 Description of classes 30

4.1.2 Jupyter Notebook NEO-2 integration 37

4.1.3 Reconstruction run 43

4.2 Runtime optimization . 45

4.2.1 Precomputation of the matrix elements 45

4.3 Postprocessing . 49

4.3.1 Description of classes 50

v

Contents

4.3.2 Data collection . 57

4.3.3 Graphical data representation 61

4.3.4 Interactive Jupyter elements 70

5 Summary 73

Bibliography 75

vi

1 Introduction

In the last decades, the emission of greenhouse gases and the correlated
anthropogenic climate change has been causing rising temperature all
around the world [1]. This development is accelerated by the rapid
growth of population and wealth and the corresponding increasing
energy demand.

Fossil fuels cannot be the right means to supply this demand, due to
the emission of greenhouse gases and their limited abundance on our
planet.

For a sustainable world, the primary energy source has to be renewable.
Existing renewable energy sources, like solar and wind, can already
supply large amounts of energy. However, the power supplied by these
sources strongly relies on external influences like weather conditions
that cannot be controlled. Peaks of high-energy demand do generally
not match with peaks of energy production of these fluctuating sources.
Therefore, a significant part of energy production must be covered by on-
demand energy sources, like the combustion of fossil fuels and nuclear
fission.

Nuclear fission enables the controllable supply of energy without the
emission of greenhouse gases, but the problem of the storage of the
nuclear waste with long half-life periods remains unsolved.

Nuclear fusion has the potential to supply large amounts of energy in
a controllable way, without emitting greenhouse gases and burdening
future generations with radioactive waste.

1

1 Introduction

Because of the large potential of the promising nuclear fusion tech-
nology, large efforts are made to make it a useable energy source. A
promising concept is magnetically confined fusion. Recently two dif-
ferent approaches to magnetically confined fusion were realized on a
large scale. Iter, in the south of France, is a fusion reactor based on the
tokamak approach and Wendelstein 7x, in northeast Germany, relies on
the stellarator approach. Both of these facilities are research objects and
cannot be operated steady state for energy production.

To make this technology useable, significant progress in many fields is
still necessary. Problems still to be solved include, precise control of the
plasma, huge thermal stress on the walls, fuel and energy injection and
waste depositing, and the fuel production for a steady-state operation.
The research to overcome these problems is not restricted to experiments
but is always led by simulation results.

In this thesis, the framework for simulations, to improve the precise
control of the plasma, was implemented. It was implemented using open-
source software. The fact that open-source software is easily available
and free of charge makes it a well-suited tool for international research
projects in a globalized world. The implemented framework facilitates
the application of an established simulation package and lowers the
barriers to get active in the field of nuclear fusion related simulations.

One fundamental equation to describe the plasma is the drift kinetic
equation. It follows from the neoclassical transport theory [2]. The code
NEO-2 is developed to apply this theory to calculate transport in fusion
reactors [3]. It is a cooperation of the Institute of Theoretical and Com-
putational Physics at Graz University of Technology, Austria and the
National Science Center Kharkov Institute of Physics and Technology,
Ukraine.

The scope of this work was to build a Python toolbox for the NEO-2
code. It enables preprocessing and postprocessing of NEO-2 calcula-
tions, generation of meaningful data by consecutive application, and
comprehensive graphical representation of data for further analysis.

2

2 Theoretical background

The derivations of this section follow in large parts the books of
P.Helander [2] and D’haeseleer [4]. In Section 2.1 the basics of a coordi-
nate system in general and the Boozer coordinate system, in particular,
are explained. In Section 2.2 the main quantities of the neoclassical
theory are derived.

2.1 Coordinates

Depending on the geometry of a specific problem choosing one or an-
other coordinate system can make calculations more or less cumbersome.
Devices in magnetically confined fusion physics have a toroidal geome-
try. Therefore, toroidal coordinates offer a good possibility to describe
problems in such devices.

Tokamaks are built axisymmetrically and the magnetic field is treated
axisymmetrically. Sometimes small non-axisymmetric perturbations are
added. Of course, these coordinate systems can also be used in stellara-
tors, which are not axisymmetric but possess periodicity in the toroidal
direction.

An additional useful concept is flux coordinates. Flux coordinates are
oriented on flux surfaces. These flux surfaces are labeled. This flux sur-
face labeling is comparable to the small radius in a toroidal description.
A special set of flux coordinates are straight magnetic field line coor-
dinates and one special set of straight magnetic field line coordinates
are Boozer coordinates. Flux coordinates are well suited to describe

3

2 Theoretical background

the non-axisymmetric plasma in a stellarator, but can also be used to
describe the plasma in a tokamak.

Any spatial vector can be described in a variety of different coordinate
systems. Generally, a vector r in 3D space can be described by three
coordinates:

r = r(u1, u2, u3). (2.1)

These coordinates have to be linearly independent to reach every spatial
point with a weighting of these coordinates in exactly one combina-
tion.

These three coordinates define the basis vectors. There are two possi-
bilities to define the basis vectors, co-variant and contra-variant basis
vectors. Both basis will later be used to describe the magnetic field. The
co-variant vector can be described as a tangent vector. The co-variant
basis vectors are defined as

e1 =
∂r

∂u1 , e2 =
∂r

∂u2 , e3 =
∂r

∂u3 . (2.2)

The basis vector ei is tangent and is called a co-variant basis vector. This
can be seen as ei is parallel to the curve described by ui.

The contra-variant basis vector can be described by the coordinate sur-
face. The other two coordinates define the surface and the contra-variant
basis vector is perpendicular to this surface. The contra-variant basis
vectors can be written with the gradients

e1 = ∇u1, e2 = ∇u2, e3 = ∇u3. (2.3)

These two basis vector sets are connected and called reciprocal sets of
vectors. The transformation of a co-variant basis to a contra-variant basis
is done with

4

2 Theoretical background

ei =
ej × ek√

g
(2.4)

and vice versa:

ei =
√

g · ej × ek, (2.5)

with (i, j, k) as the three cyclic indices for the three dimensions, and with√
g as the metric determinant.

The metric determinant can also be written as

√
g =

∣∣∣∣∂r
xi

∣∣∣∣ . (2.6)

A generic vector field can then be described by

D(r) = Di(r)ei(r) = Di(r)ei(r) (2.7)

with summation over the index i.

So far, only basis vectors have been used. In Equation 2.7 vector compo-
nents have been introduced. The quantities

Di = D · ei (2.8)

are the contra-variant components and

Di = D · ei (2.9)

are the co-variant components.

5

2 Theoretical background

2.1.1 Boozer coordinates

This subsection aims to formulate the magnetic field in Boozer coordi-
nates. Because the magnetic field is a vector field, the magnetic field B
can be written in two representations as Equation 2.7 demonstrates.

The vector of the magnetic field line is described by the position vector
r, such that

B = c · dr, (2.10)

with c as a constant.

If the magnetic field line is followed long enough, it will either ergodi-
cally fill a magnetic surface or the magnetic field line will be closed at
some point. In the latter case, the magnetic field line will still on this
described magnetic surface.

The next step is to define such a surface properly. The force balance [5]
in the magneto-hydrodynamic equilibrium is

j× B = ∇p, (2.11)

with j as the current density and p as the pressure.

By multiplying Equation 2.11 with B and applying a little vector calcu-
lus,

B∇p = 0. (2.12)

This leads to the consequence that flux surfaces of constant pressure
exist. These surfaces of constant pressure define the first coordinate of
the Boozer coordinates.

Through stellarator optimization and due to the axisymmetric nature of
tokamaks, it it is implied, that these flux surfaces are nested. Although
in general, magnetic islands may disturb this assumption [6].

6

2 Theoretical background

Boozer coordinates are written as

r(u1, u2, u3) = r(r, ϑ, ϕ). (2.13)

In comparison to toroidal coordinates, Boozer coordinates look similar
but in a deformed way. Toroidal coordinates are orthogonal, but Boozer
coordinates are not. r acts like the small radius. ϕ and ϑ are angle-like
variables.

In Boozer coordinates, different surfaces can be defined. With the def-
inition of the surfaces Stor, Sr

pol, Sd
pol, from ref. [4]¸ the corresponding

magnetic fluxes Ψtor, Ψr
pol, Ψd

pol, are calculated:

Ψ =
∫∫

S
BdS. (2.14)

The currents Itor, Ir
pol, Id

pol, within these surfaces can also be calculated:

I =
∫∫

S
jdS. (2.15)

A magnetic field with the Boozer coordinates in the contra-variant form
can be written as

B = Bϑeϑ + Bϕeϕ. (2.16)

It should be noted that Br = 0 and Br is therefore missing because as a
consequence of Equation 2.10.

With the flux from Equation 2.14 and their corresponding surfaces, the
contra-variant components of the magnetic field are written as:

Bϑ =
1

2π
√

g

∂Ψr
pol

∂r
, Bϕ =

1
2π
√

g
∂Ψtor

∂r
(2.17)

7

2 Theoretical background

Boozer coordinates are straight field line coordinates and therefore the
magnetic field line appears as a straight line. The safety factor q, which
represents the twisting of the magnetic field lines, is defined through
the ratio

q(r) =
dΨtor

dΨpol
, (2.18)

which is equal to

q(r) =
Bϕ

Bϑ
. (2.19)

The magnetic field in the co-variant form is represented by

B = Br∇r + Bϑ∇ϑ + Bϕ∇ϕ, (2.20)

containing the components

Br = −
4π

c
η +

∂Φm

∂r
, Bϑ =

2
c

Itor +
∂Φm

∂ϑ
, Bϕ =

2Id
pol

c
+

∂Φm

∂ϕ
, (2.21)

with the speed of light c, the normalized invariant η and Φm as the
scalar magnetic potential, which is an integration constant defined from
the boundary conditions.

2.2 Drift kinetic equation

In this section, the basics of the neoclassical transport ansatz is explained.
Therefore, the drift kinetic equation will be derived. The result will be
the neoclassical transport matrix and the derived neoclassical fluxes.

A particle can be exactly described through its position r and its velocity
v at time t. Combining position and velocity gives the six-dimensional

8

2 Theoretical background

phase-space z = (r, v). To describe a large number of particles of the
same kind, a distribution function fa(z, t) is used, where you get the
particle density of species a, in a point of the six-dimensional phase-
space z at time t.

Using Gauss’s theorem a continuity equation can be written, when no
collisions appear:

∂ fa(z, t)
∂t

+
∂

∂r
(ṙ fa(r, t)) +

∂

∂v
(v̇ fa(v, t)) = 0. (2.22)

When collisions appear, Equation 2.22 is not valid anymore. To compen-
sate for that, a Coloumb collision operator C(f) on the right side has to
be introduced:

∂ fa(z, t)
∂t

+
∂

∂r
(ṙ fa(r, t)) +

∂

∂v
(v̇ fa(v, t)) = C(f). (2.23)

Equation 2.23 is called the Fokker-Planck equation. The contributions
to the collision operator are now explained. Equation 2.22 is not valid
for Coulomb collisions, because little jumps in the velocity occur. The
Coulomb collisions do not affect the position. Looking closer at a colli-
sion, and comparing the situation before and after a collision, the velocity
jumps immediately from one value to another without going through
the velocities between. These jumps in the velocity space generate rather
small holes, but they still have to be taken into account. These holes in
velocity space have now to be filled up. Therefore a series expansion for
the flux in velocity space (j = v̇ fa) is made:

ji f = ai f + bij
∂ f
∂vj

+ cijk
∂2 f

∂vj∂vk
+ ..., (2.24)

with ai, bij, cijk... as coefficients of the series expansion and ji as the i-th
component of the flux j.

The zeroth and the first order of Equation 2.24 satisfy the required
accuracy. Comparing the second term of the continuity condition in

9

2 Theoretical background

Equation 2.22, with the zeroth-order expansion of Equation 2.24 follows
that the zeroth-order expansion represents the continuous flow. The first-
order expansion can be interpreted as a diffusion operator D, which is a
tensor in general. Rewriting Equation 2.24 with these changes gives

j = v̇ fa − D∇v fa. (2.25)

The quantity v̇ can be expressed by the external force F(e)
a , which acts

on the particles:

v̇ =
F(e)

a

ma
, (2.26)

with ma as the mass of the particle species a.

With the first-order correction of the flow, the force, which acts on the
particles, has also to be changed. In comparison to Equation 2.26 a
friction force Fcol due to the collisions was introduced:

v̇ =
1

ma
(F(e)

a + Fcol). (2.27)

Grouping the collision terms of Equation 2.25 and Equation 2.27 to the
collision operator C(fa), results in Equation 2.23.

For further simplifications, the neoclassical ordering is introduced. Due
to the Lorentz force, particles gyrate around the magnetic field lines.
This gyration leads to a complex description of the particles’ trajectories.
In the guiding center formalism, only the trajectory of the guiding
center is described. This formalism is simpler than describing the whole
gyration motion and the wanted derived quantities are not sufficiently
affected by this simplification. This simplification is possible because
different physical effects play a different role on different length scales.
By introducing an ordering parameter ε, these different length scales are
formalized [7].

It is defined as
ε =

ρ

L
, (2.28)

10

2 Theoretical background

with L as the macroscopic scale length, e.g. the major radius of a tokamak
and ρ, as the Larmor radius

ρ =
mavTa

eaB
, (2.29)

with vTa as thermal velocity and ea as the charge of particles a.

The Larmor radius is in the range of µm for electrons and L is in the
range of meters. Therefore ε << 1. The distribution function can be
expanded in powers of ε:

fa = fa0 + fa1 +O(ε
2). (2.30)

The subscript denotes the order of ε. The expansion is truncated at
O(ε2).

To describe the dynamics of the particles, it is useful to formulate a
Lagrangian. For the guiding-center description of the particles and using
the ordering parameter ε, a Lagrangian was found by Littlejohn [7].

With this Lagrangian, Euler-Lagrange equations can be formulated,
resulting in the equations of motions. In a slightly different notation
than that of LittleJohn, Kapper derived it very detailed in [8]. The latter
notation is used in this thesis.

The result of the six equations of motion is

ṙg = vg, J̇⊥ = 0, φ̇ =
−ωc,a

ε
, ω̇ = ea ṙgE(A), (2.31)

with three equations packed in the vector formalism in the first term.
For the velocity space v, the perpendicular adiabatic invariant J⊥, the
gyrophase φ, and ω as the total energy are introduced. E(A) is the electric
field and ωc,a as the cyclotron frequency. The subscript g stands for the
guiding center description.

11

2 Theoretical background

The distribution function fa still depends on six coordinates. There
was no constraint on the spatial coordinates. But straight field line flux
coordinates rg(r, ϑ, ϕ,) as explained in Subsection 2.1.1 will be used.
With these equations of motions, Equation 2.23 can be written as

∂ fa

∂t
+ ṙg · ∇rg fa + φ̇

∂ fa

∂φ
+ ω̇

∂ fa

∂ω
= C(fa). (2.32)

Analyzing the terms before each fa in Equation 2.32 on which order of ε

they depend on, results in

∂

∂t
∼ ε2,

φ̇ ∼ ε−1,

vϕ
g ∼ ε0 + ε1,

vϑ
g ∼ ε0 + ε1,

vr
g ∼ ε1,

ω̇ ∼ ε1.

(2.33)

Because the gyration φ̇ is from the order ε−1, it will be considered that
it does not affect fa. The term φ̇

∂ fa
∂φ is considered to be 0 and ω̇

∂ fa
∂ω and

C(fa) are now gyro-averaged values. Equation 2.32 can then be written
as

∂ fa

∂t
+ ṙg · ∇rg fa + ω̇

∂ fa

∂ω
= C(fa). (2.34)

The distribution function fa now depends only on four coordinates
anymore.

With the notation of C(fa) only collisions of particles a with particles
a were considered. For a generalization, a second particle species b is
introduced. The Stoss operator St represents the collisions between two
species a and b. Together with the expansion from Equation 2.30, the
two-particle interactions, written in terms of the Stoss operator St:

12

2 Theoretical background

St(fa, fb) = St(fa0 , fb0) + St(fa1 , fb0) + St(fa0 , fb1) + St(fa1 , fb1). (2.35)

St(fa0 , fb0) = 0, if fa0 and fb0 have the same flow velocity and the same
temperature. St(fa1 , fb1) is from the order O(ε2) and therefore not fur-
ther considered. Depending on which particle is interacting with which
other particle, the collision operator can be a very complex problem. Var-
ious names and operators cover different physical effects, on handling
and calculating the collision operator. [2].

The further considerations are done with the linearized collision opera-
tor:

L̂CL f ≡ St(fa, fb0) + St(fa0 , fb), (2.36)

with a test particle part and a field particle part. The field particle part
can be solved with the help of Rosenbluth potential as shown in [2].

The next steps are defining thermodynamic forces and sources and
include them in Equation 2.34. For consistency with NEO-2, the test
particle part is written with L̂(D)

ab and the field particle part with L̂(I)
ab .

Equation 2.36 is written as

L̂CL f ≡ L̂(D)
ab (fa, fb0) + L̂(I)

ab (fa0 , fb). (2.37)

The zeroth-order drift kinetic equation is defined by only considering
the zeroth order of ε in Equation 2.32:

ṙg · ∇rg f0 = L̂CL f0. (2.38)

Following the Boltzmann H-theorem the lowest order of the distribution
function fa must be a Maxwellian only depending on r and ω:

13

2 Theoretical background

f0 = fM(r, ω) =
n

π
3
2 v3

T

e−
(ω−eφ)

T , (2.39)

with T as the temperature.The first-order drift kinetic equation is then
written as

vr
g

∂ f0

∂r
+ vϕ

g
∂ f1

∂ϕ
+ vϑ

g
∂ f1

∂ϑ
+ ω̇

∂ f0

∂ω
= L̂CL f1, (2.40)

keeping in mind that f1 has also an ε1 dependence. The new operator

L̂ f1 ≡ vϕ
g

∂ f1

∂ϕ
+ vϑ

g
∂ f1

∂ϑ
− L̂CL f1, (2.41)

is defined to simplify the notation. Constructing the total time derivative
of f0(r, ω) yields, together with Equation 2.41 and Equation 2.40

ḟ0 = vr
g

∂ f0

∂r
+ ω̇

∂ f0

∂ω
≡ L̂ f1. (2.42)

The derivative of the Maxwellian can be written as

ḟM(r, ω) = vr
g

(
mv2 − 3T

2T2 · fM

)
+ ω̇

(
− 1

T
· fM

)
= − fM

3

∑
k=1

qk Ak +
e fM

T
v‖h · ∇δφ,

(2.43)

with the thermodynamic forces A1, A2, and A3:

A1 =
1
na

∂na

∂r
− eaEr

Ta
− 3

2Ta

∂Ta

∂r
, A2 =

1
Ta

∂Ta

∂r
, A3 =

ea〈E‖B〉
Ta〈B2〉 ,

(2.44)

14

2 Theoretical background

where 〈〉 denotes the flux surface average and with the sources q1,q2,
q3:

q1 = −vr
g, q2 = −mav2

2Ta
vr

g, q3 = v‖B. (2.45)

The second term in the thermodynamic force A1 is here to take into
account the precession of deeply trapped particles with cos α ' 0 [9]
and does not derive directly from the Maxwellian, but from the gyro
averaged collision operator.

f1 can then be written as a superposition of solutions for each thermo-
dynamic force:

f1 =
3

∑
k=1

f1,k Ak −
eδφ fM

T
, (2.46)

with

L̂ fM f1,k = qk fM. (2.47)

Solving Equation 2.47 is a central task of the program package NEO-2,
which will be explained in Section 3.1.

The magnetic differential equation of Equation 2.43,

h · ∇δφ = B
ea〈E‖B〉
〈B2〉 − E‖, (2.48)

is separately solved.

The influence of the different sources qj, to the different distribution func-
tion f1,k can be described by the 9 neoclassical diffusion coefficients:

Djk =
1
na

〈∫
d3v qj fM f1,k

〉
. (2.49)

15

2 Theoretical background

The neoclassical diffusion coefficients are one result of the postprocessing
part of neo2tools as described in Section 4.3. This derivation of Djk only
accounts for particles of the same species. The derivation of Dab

jk , with a
and b for different particle species can be found in [10].

Together with the thermodynamic forces Ak from Equation 2.44 one can
reconstruct the thermodynamic flux

Ij = −na

3

∑
k=1

Djk Ak, (2.50)

in which namely, I1 is the particle flux density, I2 the heat flux density
and I3 the parallel flow.

16

3 Computational principles

This thesis’s main goal was to implement a NEO-2 interface in Python,
which can be controlled through a Jupyter Notebook. In this chapter,
the computational fundamentals for this thesis will be explained. These
are, on the one hand the implementation of the NEO-2 code and, on the
other hand, Python.

3.1 NEO-2

The code NEO-2 solves the drift kinetic equation and computes the
neoclassical transport coefficients [3].

NEO-2 is a large Fortran project and has about 100000 lines of code
in two main branches. Around 250 input parameters can be set. These
input parameters are not all independent, and some parameters are
already obsolete. Additionally, there are input files for different plasma
profiles and magnetic fields.

The three-dimensional toroidal magnetic field configuration is normally
passed to NEO-2 in magnetic flux coordinates, like Boozer coordinates,
but NEO-2 can also handle magnetic field representations in real space
coordinates. NEO-2 solves the simplified drift kinetic equation, shown in
Equation 2.47. There, f1,k is the variable of interest. A variety of physical
properties can be determined by integrating f1,k, to obtain velocity space
moments. Examples of these physical properties can be particle, energy,
and heat fluxes. NEO-2 covers the flux surface with the magnetic field

17

3 Computational principles

line integration technique [11]. To obtain a physical property, F, the flux
surface average is built:

〈F〉 = lim
L→∞

(∫ L

0

dl
B

)−1 ∫ L

0
dl

F
B

, (3.1)

where L is the length of the magnetic field line.

The safety factor q, from Equation 2.19, is the proportion of toroidal
revolutions to poloidal revolutions of the field line. Therefore, the order
of the proportion of q specifies the field line length.

In simulations, L is limited, but the length of the field line is so adjusted,
that the field line closes smoothly. With a low-order rational q, the closing
of the magnetic field line happens fast and the field line is short. With
a high-order rational q, the field line will be accordingly longer. Too
short field lines may falsify the flux surface average; too long field lines
increase the computational costs. For that reason, a good adjustment of
the magnetic field line length is essential.

To solve the drift kinetic equation, the magnetic field line is divided into
so-called field periods. The drift kinetic equation is solved in these field
periods separately [12].

NEO-2 works in a wide range of collisional regimes. Most codes in the
low collisionality regime work with Monte Carlo methods. For high
collisionality regimes, the neoclassical transport ansatz is often also used
in other codes. For even higher collisionalities magnetohydrodynamic
theory is applied. NEO-2 is based on the neoclassical transport ansatz.

At the trapped-passing boundary, a collision has the most impact because
it decides if a particle after a collision is in a trapped or in a passing orbit.
In a passing orbit, the probability of a collision is orders of magnitude
lower than in a trapped orbit. Therefore, it is important to highly resolve
the collisions near the trapped-passing boundary. On the other hand,
collisions far away from the trapped-passing boundary do not need such
a high resolution in the velocity space. After a collision, the particle will

18

3 Computational principles

be in the trapped region anyway, because a collision does only change
slightly the direction of the particle. In non-axisymmetric magnetic fields,
there are many classes of trapped particles. Between two local maxima of
the magnetic field strength, particles can be trapped. In addition, there it
is important to highly resolve the transition layer between these various
trapped particle classes. NEO-2 has an adaptive grid, that highly resolves
such boundary layers. Outside of these boundary layers, memory is
saved with a reduced resolution.

3.1.1 NEO-2 branches

Stellarators have 3D magnetic fields. Tokamaks have, due to the toroidal
symmetric structure, 2D magnetic fields with small perturbations. To
properly treat these two magnetic field geometries, NEO-2 is divided
into two branches. Depending on how the drift kinetic equation is solved,
either the parallel branch (NEO-2-PAR) [8] or the quasilinear branch
(NEO-2-QL) [10] is used.

In 3D magnetic field configurations, NEO-2 is used to compute the neo-
classical transport coefficients. This is handled with the parallel branch
(NEO-2-PAR). For this computation, it is required to have a negligible
poloidal drift of particles due to the radial electric field. Furthermore, it is
possible to calculate the efficiency of microwave radiation absorption for
the electron cyclotron resonance heating (ECRH). The generalized Spitzer
function plays an important role in finite low-collisionality regimes to
determine this efficiency. The use of the reconstruction run makes it
possible to visualize the generalized Spitzer functions.

In nearly axisymmetric magnetic field configurations, like in tokamaks,
NEO-2 uses a quasilinear approach (NEO-2-QL) to handle small non-
axisymmetric magnetic field perturbations. The toroidal torque produced
from this perturbation can be calculated. This toroidal torque is called
neoclassical toroidal viscosity. In contrast to the calculations of stellara-
tors, the computation of the neoclassical transport coefficients is not
limited to the slow plasma rotation regime. The perturbation field and

19

3 Computational principles

the employment of the quasilinear approach enable to solve non-slow
plasma rotations.

3.1.2 NEO-2 input

The code NEO [11] is the predecessor of NEO-2. NEO-2 uses the mag-
netic field handling parts of NEO. To control the NEO parts, there is
an input file named neo.in. Except for the unperturbed magnetic field
settings, the settings in neo.in do not influence NEO-2. All other settings
are handled in the neo2.in input file. The neo2.in input file is a Fortran
input file and the command and control file for NEO-2. The input file
is grouped in several namelists, and can be generally divided into two
sections of settings. These two sections are the physical settings and
numerical settings and do not necessarily coincide with the namelists’
grouping.

In Section 2.2, the drift kinetic equation is split into three thermodynamic
forces. Each thermodynamic force can be assigned to a physical effect.
With the physical settings, every force can be individually controlled
and turned on or off. One example is the parallel electric field acting on
the particles. Other settings are the type of collision operator and the
physical effects considered by the influence of small perturbed magnetic
fields, or different plasma parameter settings.

The numerical settings control different numerical approximations. The
type of basis functions used and the level placement for calculating the
collision operator can be controlled. These mentioned settings constitute
only a small fraction of the large number of settings in NEO-2. The two
already mentioned magnetic fields, the unperturbed and the perturbed
one, are passed to NEO-2 as separated files. In these magnetic field files,
the toroidal magnetic field is usually described in Boozer coordinates.
These magnetic field equilibria are calculated with the code nemec be-
forehand [13]. The perturbed magnetic field is only utilized from the
NEO-2-QL version of the code. For multispecies calculations with the

20

3 Computational principles

NEO-2-QL version, each species’ temperature and density distributions
have to be passed.

3.1.3 Matrix elements of the collision operator

Parts of the collision operator can be represented in an arbitrary basis
with respect to the velocity. In this representation, the collision opera-
tor can be expressed by matrix elements. The velocity distribution is
expanded with the help of basis functions. This representation of parts
of the collision operator makes it possible to precalculate these parts.
Therefore, the calculation of the distribution function is facilitated.

As described in Equation 2.37 the linearized collision operator is sep-
arated into a test particle part L̂(D)

ab and a field particle part L̂(I)
ab . In

the linearized collision operator, the particles, momentum, and energy
are conserved and not lost in the linearization process [2]. Using the
linearization of the collision operator, the drift kinetic equation can be
written as

vλhϑ fa0

∂ga

∂ϑ
+ iω fa0 ga −∑

b

(
L̂(D)

ab fa1 + L̂(I)
ab fb1

)
= qa fa0 , (3.2)

with ω as the rotation frequency of the plasma. The indices a and b
denotes different particle species. ga is a newly introduced distribution
function defined by fa1 = fa0 ga.

So far, the dependencies of the distribution function have not been closer
explained. A convenient choice for the velocity space is

η =
v2
⊥

v2B
(3.3)

and the magnitude of the velocity with

x =
v

vTa

(3.4)

21

3 Computational principles

as dimensionless variable, with vTa as the thermal velocity. Because η has
not the information of the sign of the velocity, the sign σ was introduced.
Equation 3.5 shows the approximation of the velocity distribution by ba-
sis functions ϕm′(x) and coefficients ga,m′(ϑ, η, σ). Different approaches
to the underlying basis functions have been made. Local and global
acting basis functions have been used. Laguerre Polynomials, B-splines
of different orders, and Taylor expansion have been used and combined.
[14] [8, p.33ff]. With

ga(ϑ, x, η, σ) =
M

∑
m′=0

ga,m′(ϑ, η, σ)ϕm′(x), (3.5)

Equation 3.2 can be written:

vλhϑ fa0

M

∑
m′=0

ϕm′(x)
∂ga,m′(ϑ, η, σ)

∂ϑ
+ iω fa0

(
M

∑
m′=0

ga,m′(ϑ, η, σ)ϕm′(x)

)
−∑

b

(
L̂(D)

ab fa1 + L̂(I)
ab fb1

)
= qa fa0 .

(3.6)

After the reordering

M

∑
m′=0

(
vλhϑ fa0 ϕm′(x)

∂ga,m′(ϑ, η, σ)

∂ϑ
+ iω fa0 ga,m′(ϑ, η, σ)ϕm′(x)

)
−∑

b

(
L̂(D)

ab fa1 + L̂(I)
ab fb1

)
= qa fa0 ,

(3.7)

with

fa1 = fa0 ga = fa0

(
M

∑
m′=0

ga,m′(ϑ, η, σ)ϕm′(x)

)
(3.8)

22

3 Computational principles

follows

M

∑
m′=0

(
vλhϑ fa0 ϕm′(x)

∂ga,m′(ϑ, η, σ)

∂ϑ
+ iω fa0 ga,m′ϕm′(x)

−∑
b

(
L̂(D)

ab fa0 ga,m′ϕm′ + L̂(I)
ab fb0 gb,m′ϕm′

))
= qa fa0 .

(3.9)

To define a compact notation, a scalar product was introduced. The
definition of the scalar product shows

〈i|j〉 ≡ 1
nav2+α

Ta

∫ ∞

0
dvv3+αe−β v

vT
2

i(v)j(v) =
v2

Ta

na

∫ ∞

0
dxx3+αe−βx2

i(x)j(x),

(3.10)

with α and β as weighting constants in the velocity space. The matrix
elements

ρm,m′ =

〈
ϕm

(
v

vTa

)∣∣∣∣v fa0(v)
∣∣∣∣ϕm′

(
v

vTa

)〉
, (3.11)

ωm,m′ =

〈
ϕm

(
v

vTa

)∣∣∣∣ω fa0(v)
∣∣∣∣ϕm′

(
v

vTa

)〉
, (3.12)

L̂(D),ab
m,m′ =

〈
ϕm

(
v

vTa

)∣∣∣∣L̂(D)
ab fa0(v)

∣∣∣∣ϕm′

(
v

vTa

)〉
, (3.13)

L̂(I),ab
m,m′ =

〈
ϕm

(
v

vTa

)∣∣∣∣L̂(I)
ab fa0(v)

∣∣∣∣ϕm′

(
v

vTa

)〉
, (3.14)

qa,m =

〈
ϕm

(
v

vTa

)∣∣∣∣qa

〉
, (3.15)

23

3 Computational principles

are shown in respect to the represented basis functions ϕm and ϕm′ . The
nomenclature of these elements are the same as in [8].

With the definitions above, Equation 3.9 evolves to

M

∑
m′=0

(
ρm,m′λhϑ ∂ga,m′

∂ϑ
+ iωm,m′ga,m′

−∑
b

(
L̂(D),ab

m,m′ ga,m′ + L̂(I),ab
m,m′ gb,m′

))
= qa,m.

(3.16)

Part of this thesis was the handling of the matrix elements described
above. In Section 4.2, the implementation of utilizing the matrix elements
more efficiently is presented.

3.1.4 NEO-2 output

As NEO-2 is based on the neoclassical transport theory, the output is
neoclassical transport coefficients. The neoclassical transport coefficients
are explained in detail in Section 2.2. With the neoclassical transport
coefficients different fluxes can be calculated.

In axisymmetric magnetic fields with a non-axisymmetric perturbation,
the neoclassical transport coefficients are split into an axisymmetric
and a non-axisymmetric contribution [10]. The distribution functions
gk, with k = 1, 2, 3, are also an output by NEO-2, if the reconstruction
run is applied. The bootstrap current is an important prediction of the
neoclassical theory. For example, the coefficient D31, is connected to this
current, and is called bootstrap coefficient. Equation 2.49 shows that D31
is connected to the gradient driven distribution function g1. With the
use of the reconstruction run g1 can be displayed.

With the use of radio-frequency waves a parallel current in fusion re-
actors can be driven. In high collision plasmas, the classical Spitzer
function can describe the electron current drive efficiency with high
precision. For low collision plasmas, the generalized Spitzer function has

24

3 Computational principles

been developed. In the transition between high collision plasmas to colli-
sion less plasmas, the generalized Spitzer function reveals new physical
properties [15]. The distribution function g3 is linked to the generalized
Spitzer function and can be shown by applying the reconstruction run.

Representations of the distribution functions g1 and g3, are shown in
Section 4.3.

Reconstruction run The reconstruction run is a special mode of NEO-2
to reconstruct the distribution functions. These distribution functions
are normally not saved, as the main interest of NEO-2 runs are nor-
mally the neoclassical transport coefficients. Nevertheless, there are use
cases where the distribution function is required. One use case is the
representation of the generalized Spitzer functions.

The distribution functions have up to four dimensions and to save all of
them, a large amount of storage is required. Depending on the magnetic
field line length, saving the distribution functions can take up to several
100 GB. The correct usage of the reconstruction run is explained in detail
in Section 4.3.

3.2 Programming environment

The Jupyter NEO-2 interface relies not only on NEO-2, as described in
the last section. It also relies on the program Jupyter Notebook. There-
fore, the fundament of Jupyter Notebooks is outlined in this section. It is
the programming language Python and its interactive version IPython.
As further development of Jupyter Notebooks, a short forecast to Jupyter-
Labs is given. So the consecutive structure of Python, IPython, Jupyter
Notebooks, and JupyterLabs are explained in this section.

25

3 Computational principles

3.2.1 Python

Python is a high-level programming language invented by Guido van
Rossum in 1991. It has a less formal syntax approach and focuses on
high readability. For example, control commands, like loops, definitions,
or conditionals, are structured by indentation and not by curly braces,
like in the programming language C. It is also not necessary to end state-
ments with a semicolon. Python uses the concept of object-orientation
and implements this concept continuously. Therefore, in Python, every-
thing is an object, like a list, numbers, classes, etc. The programming
done for this thesis uses the concept of object-orientation.

Python is a popular language, in particular to the wide range of available
libraries. In the scientific community, Numpy, Scipy, and matplotlib are
heavily used. Numpy and Scipy implement calculations of vectors and
matrices. These two libraries also offer many numeric routines. The
matplotlib library is an interface to visualize data. In this thesis, a child
class of matplotlib will be used as described in Section 4.3.

3.2.2 IPython

IPython[16] (Interactive Python) as the name already suggests, offers
many features you normally only get in an Integrated Development
Environment (IDE). The name IPython refers to both, the IPython kernel
and the IPython shell, which communicates with the kernel. IPython has
a cell-based execution workflow. Historically there was also an IPython
Notebook, but the notebook utility moved to the Jupyter Project.

IPython works after the principle of REPL (Read, Eval, Print, Loop). Al-
though Python itself supports a REPL mode, IPython has some other im-
portant features, supports a wide field of code completion and path com-
pletion. Furthermore, it can plot with different graphic backends.There
are also the powerful so-called magic commands, where you can run
external commands in the shell, use timing functions of the executing
cell or define plot settings, and many more.

26

3 Computational principles

3.2.3 Jupyter Notebooks

As already mentioned, the Jupyter project is the evolution of the IPython
Notebook. This evolution was necessary because the Jupyter project
contains also kernels from programming languages other than Python,
e.g. R and Julia. In the modules explained in this thesis, only Python
with the IPython kernel is used.

Through the growing scientific interest in open source software and
open data [17], one aim of this thesis was to write an interface for NEO-2
in Python. The interface should be easy to use, also for people who are
not in the development of the NEO-2 code itself.

Each run of the NEO-2 code produces a lot of data, and if you want to
have meaningful results, you have to make dozens or even hundreds of
runs, which are producing up to 100 GB per configuration [18]. Therefore
if you want to use the produced data, you also need an robust framework
and tools for analyzing the results.

It has been stated in ref. [19] that notebook style is the new form of
scientific writing A large scientific community is already using the
Jupyter Notebooks. One is namely the LIGO Scientific Collaboration
and Virgo Collaboration. They have set up a wide range of tutorials,
beginning from understanding signal processing up to reproducing
single plots of papers [20]. They have also published their data [21]. To
reproduce the data of an important scientific paper, everyone can use
the prepared Juptyer Notebooks and verify the results.

As a consequence of an easy to use and easy to reproduce concept,
IPython/Jupyter Notebooks was chosen. It is also possible to use online
tools like Binder or Azure to remotely run the Notebooks and reproduce
the results, without taking care of the server-client connection.

An important part of this thesis is also about IPyWidgets shown in
Subsection 4.3.4. IPyWidgets is a library for Python for HTML interactive
controls inside the Jupyter Notebooks. It adds, user interfaces to the
Jupyter Notebook, like sliders, buttons, and text fields. Because the

27

3 Computational principles

output can be displayed nearly immediately, it is easier to ’explore’ the
data.

A Jupyter Notebook is running on a server-client structure. So first, you
have to start the notebook server. This server can run locally on your
machine, or you can run it remotely and use it, e.g. with ssh and port
forwarding. This server can then be accessed via the browser, which
automatically opens by default, when starting the server on a local
machine. To access the server also a unique token is required. This token
is normally passed automatically as an extension of the URL to the
server address.

As the Jupyter project evolves, JupyterLabs were developed. JupyterLabs
is the next generation of the Jupyter Notebook. JupyterLabs offers the
comfort of a web-based integrated development environment. Jupyter-
Labs still uses the notebook format for its files.

28

4 Implementation/Results

The name of the program package, which was implemented during this
thesis, is neo2tools. Neo2tools is written in Python and designed to be
used inside of a Jupyter Notebook. The expression ”NEO-2 Jupyter inter-
face” implies the interaction of neo2tools with the Jupyter Notebook.

As in Section 3.1 already mentioned, NEO-2 is a large project with about
250 input parameters and different input files for magnetic fields and
profiles. The NEO-2 Jupyter Interface, tries to simplify to control this
process. With the NEO-2 Jupyter Interface, it should be possible that
persons, who are not familiar with the internal structure of NEO-2, can
start runs and get meaningful results.

This chapter explains and shows how the program package neo2tools is
implemented and laid out. Furthermore, step by step instructions, how
to apply the package are provided. Examples of the graphical interactive
output using different physical boundary conditions are shown.

This chapter is divided into three sections. The first section, Section 4.1
shows the preparing procedures performed before a single or multiple
NEO-2 runs can be started. Section 4.2 focuses on optimizations of
the NEO-2 runtime. The interaction of the program with the matrix
elements is explained in detail. The final section, Section 4.3 covers
plotting of the reconstruction run and displaying of the distribution
function. Illustration and interactive display of the NEO-2 output are
shown, and the implementation is explained.

29

4 Implementation/Results

4.1 Preprocessing

The preprocessing part of neo2tools enables running the NEO-2 code
using the Jupyter Notebook. During the preprocessing, the required
structure of files and directories is initialized. Starting NEO-2 runs and
monitoring them, also on remote machines and computing nodes, is
handled from the preprocessing part of neo2tools.

Common style for the class diagrams is used. Each box represents a
class. The top section of the box is the name of each class. The middle
section lists the class’s attributes, and the bottom section specifies the
class’s methods. The arrows display relations between two classes. The
unfilled triangle arrowhead indicates class inheritance. The filled rect-
angle arrowhead implies composition. One instance of the composited
class is then an attribute of the other class. The blue name next to the
arrow annotates the connected attribute. Hidden methods and attributes
are indicated by a leading underscore.

In Figure 4.1, the class diagram for the preprocessing part is shown. The
three classes Neo2QL, Neo2Par and Neo2_common_objects, constitute the
base structure, inspired by the NEO-2 source code structure. The classes
and their functionalities are now described.

4.1.1 Description of classes

Neo2 common objects The abstract class Neo2_common_objects col-
lects variables and methods required for both branches. Therefore these
methods and attributes are generic. Base of all NEO-2 runs is the NEO-2
program, and the base of the NEO-2 program is the source code. If a
NEO2PATH environment variable on the running system is defined, the
hidden attribute, _path2code, is automatically set and points to the
source code. The _path2code attribute can also be set manually. To build
the executable, the compile() method is called. The compile() method
relies on the NEO-2 build process, which is based on cmake and make.

30

4 Implementation/Results

Neo2File

_neo2dict : dict
_neo2nml : Namelist
ischanged : bool

_checktype()
_nmltodict()
chval()
write()

Neo2_common_objects

_path2code : str
_path2exe : str
_runiscreated : bool
neo2nml
req_files_names : dict
req_files_paths : dict
rundir : str
templatepath : str

_checkreqfiles()
_compare_nml2file()
_fill_req_files_names()
_fill_req_files_paths()
compile()
createfiles()
run_local()
setneo2nml()

neo2nml

Neo2Par

recon
singlerunpath : str

run_recon()

Neo2Scan

folder_format : str
neo2plot : Neo2Plot
scanparameter : str
scanvalues : list
singlerun_templatepath : str
singleruns_instances : list
singleruns_names : dict
structure : str

_generate_instances()
_get_folder_names()
_load_instances()
_set_folder_name_singlerun()
_set_folder_names()
createfiles()
loadfiles()
run_condor()

singleruns_instances

Neo2QL

singlerunpath : str

_fill_req_files_names()
runinitruns()

singleruns_instances

RadialScan

_set_folder_names()
automatic_set()
check_fluxsurfaces()

Figure 4.1: Classdiagram of the preprocessing part of neo2tools

During the build process, the _path2exe attribute will be set and saves
the executable’s absolute path.

An instance of Neo2File class is saved in the neo2nml attribute by using
the method setneo2nml(). If a new neo2.in input file is loaded, it is
automatically compared to the already done settings with the hidden
method _compare_nml2file(). The Neo2File class handles the neo2.in

input file and will be described later on.

Each NEO-2 run needs different additional input and control files. These

31

4 Implementation/Results

files will be called required files and they are necessary for successfully
starting a NEO-2 run. Depending on the branch of NEO-2, the required
files are altering and are not always the same. The basic required files
are shown in Figure 4.2 and Figure 4.3. Also the executable is defined as
of one of the required files.

Some of the required files are specified as parameters in other re-
quired files. For example, in neo2.in the name of the file, which con-
tains the perturbed magnetic field, is defined. The interplay of the
attributes req_files_names and req_files_paths and the two methods
_fill_req_files_names() and _fill_req_files_paths(), make sure,
that all required files are found and set. With the use of the templatepath
attribute, an existing run and all the settings can be taken from there. The
rundir attribute defines the absolute path, where the prepared NEO-2
run will be executed.

With the createfiles() method, all files and directories are written to
disk. The _checkreqfiles() method ensures, that the creation is only
done, when all required files are available.

The run_local() method starts the NEO-2 run on the local machine and
the _runiscreated attribute is set to true.

Neo2File The neo2.in input file is the command and control file for
the NEO-2 runs. Because of the importance of this file, the class Neo2File
has been created.

The Neo2File class handles the correct setting of the neo2.in input file.
The input file is a fortran namelist file and for a proper handling in
Python the Neo2File class is derived from the f90nml package [22]. A
type checking method explicitly for NEO-2 is handled by the hidden
method _checktype(). The methods chval() and write(), change de-
sired parameters in the namelist file and write them to the disk. The
_nmltodict() method together with the _neo2dict and _neo2nml at-
tributes handle the internal handling of the attributes. If parameters

32

4 Implementation/Results

are changed but the file is not written to disk, this is marked with the
boolean attribute ischanged.

Neo2Par The Neo2Par class is for running single NEO-2 runs from
the NEO-2-Par branch. Every single NEO-2 run needs its own folder
and the required files. The required files for the NEO-2-PAR branch
are the neo.in and neo2.in input files, the executable neo_2.x and the
magnetic field file boozer.bc. These files are shown in Figure 4.2.

The Neo2Par class utilizes mostly the methods from the class
Neo2_common_objects. One additional method is run_recon(). This
method starts the reconstruction run. To plot data from the reconstruc-
tion runs directly from this class, the recon attribute is an instance of
the ReconPlot class and is explained in Section 4.3.

Neo2Par Run

neo.in

neo2.in

boozer.bc

neo 2.x

Figure 4.2: File structure for NEO-2-PAR runs

In addition to the rundir attribute of the Neo2_common_objects class
the correct location of the NEO-2 run is saved in the singlerunpath

attribute.

Neo2QL For starting runs of the NEO-2-QL branch, the Neo2QL class
is used. The methods and attribute of this class are shown in Figure 4.1.
NEO-2 runs from the NEO-2-QL branch need additional files compared
to the NEO-2-PAR branch. With the multi_spec.in file, multispecies
runs are managed. There is a special method for the multispecies runs

33

4 Implementation/Results

called runinitruns(), which is normally called right before the start of
a NEO-2 run. To handle the perturbation of the axisymmetric magnetic
field (axi.bc), with the quasilinear ansatz, the perturbed magnetic field
is provided in the pert.bc file. The required files are shown in Figure 4.3.

Neo2QL Run

neo.in

neo2.in

axi.bc

pert.bc

multi spec.in

neo 2.x

Figure 4.3: File structure for NEO-2-QL runs

Note, that with the use of the precomputation, explained in Section 4.2,
the required files change. To account for the additionally required files,
the _fill_req_files_names() method of the base class is overwritten.
The singlerunpath attribute is the same as in the Neo2Par class.

Neo2Scan The Neo2Scan class facilitates parameter scans using NEO-2.
Comparing results of single runs to experimental data is often difficult.
Therefore, typically several NEO-2 runs scanning over a range of param-
eter values are performed. The Python package presented in this thesis
aims to offer straightforward method to performing these scans.

The Neo2Scan class is inherited from the Neo2_common_objects class.
The file and directory handling get greater importance than in the two
single run classes Neo2Par and Neo2QL. The base of a parameter scan
are the single NEO-2 runs, with each in its own folder. Each folder is

34

4 Implementation/Results

containing the required files, depending on the NEO-2 branch, as shown
in Figure 4.2 and Figure 4.3.

The Neo2Scan class can create new NEO-2 scans or load existing NEO-2
scans. The createfiles() method will create all files for a new scan
from the single_runs_instances list. If the list is not filled or the va-
lidity check fails the _set_folder_names() and _generate_instances()

methods are called. The _set_folder_names() method is responsible
for setting all the files and directories. The _single_run_names attribute
is populated by repeated calls of the _set_folder_name_singlerun()

method. The structure attribute defines how the storage hierarchy is
constructed. There are different possibilities to realize this, which are
explained in Subsection 4.1.2

During the creation of the structure each layer of directories will be
expanded depending on the scanned parameter scanparameter. If the
name of one directory layer conforms to a parameter of the NEO-2
input file, this will be marked. If this marked directory layer is then
also conform with the scanparameter attribute, for each value in the
scanvalues attribute list, a new directory will be created. If more than
one scanning parameter is defined, the spanning of the directories
applies to the subdirectories.

The _set_folder_name_singlerun() method creates the directory name
for a single run. The directory name is a joined name of the parameter
itself, saved in the attribute scanparameter, and the value of this param-
eter from the scanvalues list. The exact typesetting can be controlled
with the attribute folder_format.
The _generate_instances() method generates a list of instances, saved
in the singleruns_instances attribute, of either the Neo2Par class or
the Neo2QL class. The singlerun_templatepath attribute points to the
directory of the required files, which are needed to create a NEO-2 run.
With this instantiation of all single NEO-2 runs, generic modifications of
parameter settings can quickly be passed and written to each single run.
Finally all files from the singleruns_instances list are written to disk.

run_condor() is a particular method to deploy the NEO-2 runs to the

35

4 Implementation/Results

high-throughput HTCondor1 distribute computation system [23]. The
HTCondor system is a batch system, which assign jobs to different nodes
with enough free resources in an heterogeneous computer infrastructure.
Consequently the HTCondor system also monitors the running jobs
and reassigns jobs to other machines, if necessary. The documentation
of the HTCondor system can be found online [24]. Therefore a NEO-2
scan is solved in an efficient way, utilizing the whole available computer
infrastructure.

Pre-existing NEO-2 scans can be loaded using the loadfiles() method.
This method first calls _get_folder_names() to determine the file struc-
ture. After this, the individual NEO-2 runs are loaded using the method
_load_instances(). These can then be graphically analysed using the
Neo2Plot class saved in the neo2plot attribute. A showcase of the
Neo2Plot class is shown in Section 4.3.
The _get_singlerun_names() method is used for analysing the exist-
ing runs and fills the singleruns_names and the singleruns_instances

attributes.

RadialScan The RadialScan class is inherited from the Neo2Scan class.
The RadialScan class enables straightforward implementation of radial
scans by a number of preset parameters and additional checking routines.
The RadialScan class provides access to the radial dimension of the
magnetic field. With the method automatic_set(), the resolution in the
radial dimension is controlled by the number of the flux surfaces. Each
flux surface corresponds to a single NEO-2 run, which name is set with
the _set_folder_names() method.

The check_fluxsurface() method ensures that the field line’s number
of toroidal field rotations is between a minimum and a maximum. The
minimum guarantees a sufficient covering of the flux surface with the
magnetic field line. The maximum restricts the calculation time of the
program, because the length of the field line is proportional to the
calculation time.

1The system’s name was originally Condor. It was renamed, due to legal reasons.

36

4 Implementation/Results

A low-order rational surface can cause the field line to close before the
minimum of toroidal field rotations is reached. The RadialScan class, in
this case, slightly shifts the flux surface to a surface of higher rational
order.

4.1.2 Jupyter Notebook NEO-2 integration

In this subsection the correct usage of the neo2tools, which was created
in this thesis, is shown. First, the procedure for creating a single run
is explained in detail. Second, the correct usage for the Neo2Scan class
is demonstrated. Third the automatic setting and checking of a radial
scan using the RadialScan class is shown. The single run starts with an
empty Jupyter Notebook with Python3. The explanation of the other
classes continues in the same Jupyter Notebook.

Single run All the single run examples will be shown on the Neo2QL

class. It would also be possible to use the Neo2Par class. Input cell [1]
shows the first commands, which are required to start a single run. In
the first line the neo2tools package is imported.

In [1]: 1 import neo2tools

2 runpath = "/temp/Neo2QL/newrun/"

3 templatepath = "/temp/Neo2QL/oldrun/"

4 Job_ql = neo2tools.Neo2QL(runpath , templatepath)

The runpath parameter locates the preparing NEO-2 run. Because this is
the preparing procedure for a NEO-2 run, the runpath parameter does
not have to exist. This will be managed from the preprocessing part of
neo2tools. The second required parameter is the templatepath value.
The templatepath is the location of a template NEO-2 run directory.
This can be an already existing NEO-2 directory or it can be an explicit
template directory.

The forth line in input cell [1] shows how to create an instance of the
Neo2QL class. The two path parameters are passed in the instantiation.

37

4 Implementation/Results

In [2]: 1 Job_ql._path2code

2 Job_ql.compile ()

Out[2]: "/temp/Codedir/"

After the instantiation it is checked, if the path to the NEO-2 source code
is correctly set. This step is shown in the first line in input cell [2]. The
path to the NEO-2 source code is printed into the output cell. The path
has to point, where the NEO-2 Fortan source code is located. Using the
compile() method the executable is built. To compile the executable, the
programs make and cmake are applied. If the path to the NEO-2 code
is not correct, the compile() method fails and an error message will
appear. A manual set of the _path2code parameter is then necessary. The
command Job1._path2code = "/temp/correctpath/" sets the path.

In [3]: 1 Job_ql.setneo2nml("/temp/neo2.in")

To manually set a neo2.in file, the setneo2nml() method has to be
invoked. Input cell [3] shows this. If the template directory contains
a neo2.in input file, this is set automatically as default. The setting is
important, because a copy of the neo2.in file is saved as the attribute
neo2nml. The attribute neo2nml is an instance of the Neo2File class,
which is handling the changing of parameters.

In [4]: 1 Job_ql.neo2nml.lag

Out[4]: lag = 4

Every parameter check and change is done with the attribute neo2nml.
The first line in input cell [4] checks the parameter lag. The parameter
lag is representing the number of basisfunctions. The output shows the
current value.

In [5]: 1 Job_ql.neo2nml.lag = 3

Input cell [5] demonstrates how to change the parameter lag to the
value 3.

38

4 Implementation/Results

In [6]: 1 Job_ql.run_local ()

Out[6]: (Neo2 output)

When all parameter settings are done, the NEO-2 run can be started
with the method run_local(). Input cell [6] displays this. The output
[6] displays the output of the NEO-2 program. Because the output of
the NEO-2 program is large, the output is not explicitly shown here.
However, in Jupyter Notebook, the output of a cell can be folded or
hidden and therefore also large outputs integrate conveniently in the
notebook.

NEO-2 Scan A NEO-2 scan consists of many single NEO-2 runs. In
comparison to the Neo2QL class, there are a few new attributes in the
Neo2Scan class. As noted before, the Jupyter Notebook continues in the
same Jupyter Notebook as the explanation of the Neo2QL class.

In [7]: 1 runpath = "/temp/Neo2Scan/"

2 templatepath = "/temp/Neo2QL/oldrun/"

3 Job_scan = neo2tools.Neo2Scan(runpath ,

4 templatepath)

Input cell [7] shows the instantiation of the Neo2Scan class. In compari-
son to the input cell [1] the runpath changed to a new directory. The
templatepath stayed the same, as the templatepath is the template for
each single NEO-2 run within the NEO-2 scan. If the template direc-
tory contains a compiled NEO-2 program, the compilation process, as
described in input cell [2] for the single run, can be skipped. The com-
piled program in the template directory will be utilized. For changing
parameter and for setting the NEO-2 input file, the same procedure as
for the single run described in input cells [5] and [3] can be used.

A NEO-2 scan is for example a radial scan. NEO-2 labels the radial com-
ponent as boozer_s. Compared to Equation 2.13 the Boozer coordinates
are now written as (s, ϑ, ϕ) with s as the radial component. Line 1 of
input cell [8] assigns the string boozer_s to the attribute scanparameter.

39

4 Implementation/Results

This parameter has to be part of NEO-2 input file, otherwise the scan
fails. The desired scan values are passed as a list. For a radial scan with
three radial points, line 2 of input cell [8] demonstrates the passing.

In [8]: 1 Job_scan.scanparameter = "boozer_s"

2 Job_scan.scanvalues = [1, 0.1, 0.01]

For this simple, one-dimensional scan a flat directory hierarchy is ap-
propriate and input cell [9] shows how to set this flat hierarchy using
the structure attribute.

In [9]: 1 Job_scan.structure = "boozer_s/"

The directory structure of this example is illustrated on the left side of
Figure 4.4. The directory is containing the three single run folder, which
are containing the required files for each run. Each single run folder’s
name is a combination of the name and the value of the scanparameter.

Often it is necessary that complex scans with more than one changing
parameter are made. With the prerequisite that each NEO-2 run needs a
distinct folder, more complex storage hierarchies arise. The structure

attribute of the Neo2Scan class defines where each single run of a NEO-2
scan is located. The Neo2Scan class can span a whole tree of directories.
The starting point of this tree is the runpath parameter defined in input
cell [7]. Each arm of the tree ends in a single NEO-2 run. The user only
defines one arm, and the program spans the rest of the tree automatically.
The structure attribute is the path, describing the defining arm of the
directory tree. The furcations of the tree are the directories and the
subdirectories and the subsubdirectories. Using the path limiter ’/’,
each level of directory is defined. If a level’s directory name agree with
a parameter of the NEO-2 input file, the value will be added to the
directory’s name. The spanning occurs if the parameter is the scan
parameter.

40

4 Implementation/Results

Main

boozer s=1p0d01

neo.in

neo2.in

axi.bc

pert.bc

multi spec.in

neo 2.x

boozer s=2p0d01

neo.in

neo2.in

axi.bc

pert.bc

multi spec.in

neo 2.x

boozer s=5p0d01

neo.in

neo2.in

axi.bc

pert.bc

multi spec.in

neo 2.x

Main

lag=3

boozer s=1p0d01

boozer s=2p0d01

boozer s=5p0d01

lag=4

boozer s=1p0d01

boozer s=2p0d01

boozer s=5p0d01

lag=5

boozer s=1p0d01

boozer s=2p0d01

boozer s=5p0d01

neo.in

neo2.in

axi.bc

pert.bc

multi spec.in

neo 2.x

Figure 4.4: Folder hierarchy for a one-dimensional and a two-dimensional NEO-2 scan

41

4 Implementation/Results

Input cell [10] shows the setting for a two and a three-dimensional scan.
There are the new instances Job_scan2d and Job_scan3d to emphasize,
that these are seperated runs.

In [10]: 1 Job_scan2d.structure = "lag/boozer_s/"

2 Job_scan3d.structure = "boozer_s/lag/leg/"

The illustration of the directory hierarchy for the two-dimensional scan
is shown on the right side of Figure 4.4. In this example the template
files for the single runs are in the Main folder. For the sake of clarity the
required files for each single run are not displayed.

In [11]: 1 Job_scan.run_condor ()

Additionally to the run_local() method, explained in input cell [6],
another method for the Neo2Scan class has been implemented. Input
cell [11] shows the use of the run_condor() method utilizing the net-
work infrastructure. Each single run is running on a different machine
and therefore the NEO-2 scan is finished faster. The condor method is
described in detail above.

42

4 Implementation/Results

RadialScan The RadialScan enables straightforward implementation
of radial scans. Without the RadialScan class these radial scans are
more cumbersome as shown above in the example of the Neo2Scan class
(Job_scan). In the first line of input cell [12], the new scan is instantiated
as in the previous examples. The second line of input cell [12] creates
the flux surfaces. With the method automatic_set(), the number of
20 flux surfaces is set with the numbers parameter. The further passed
parameters to the automatic_set() method restricts the radial range of
the created flux surfaces. In this example the the minimum (min_s) is
set to 0 and the maximum (max_s) to 1.

In [12]: 1 Job_radial=RadialScan(runpath , templatepath)

2 Job_radial.automatic_set(numbers =20, min_s=0,

3 max_s =1)

In contrast to performing radial scans with the Neo2Scan class, the
RadialScan class offers additional checking routines for guaranteeing
the minimum field line length. The scan is then started locally or remote
with the methods shown in input cell [6] or input cell [11].

4.1.3 Reconstruction run

The reconstruction run is a special mode of NEO-2. The reconstruction
run has to be run if the distribution function should be saved. A default
saving of the four-dimensional distribution function is not intended,
because of the high computational cost as explained in Subsection 3.1.4.
For a more precise analysis, the reconstruction run can be applied and
the distribution function is saved.

So far, the reconstruction run is only implemented in the parallel version
of NEO-2, as the method run_reconstruction(). Therefore, in Figure 4.1
can be seen, that only the Neo2Par class has the run_reconstruction()

method.

43

4 Implementation/Results

The setup of an instance for the Neo2Par class is the same as for Neo2QL
class. The instance Job_par passed through the same steps from in-
put cell [1] to [6]. In input cell [13] can be seen, that running the
reconstruction needs no further input parameter.

In [13]: 1 Job_par.run_reconstruction ()

Internally the prop_reconstruct value of the neo2.in input file is set to
one. Subsequently, a NEO-2 run is performed. After the run has finished,
prop_reconstruct value is increased by one, and another NEO-2 run is
performed. This is repeated until the value of prop_reconstruct reaches
three. In Table 4.1 the meaning of each value can be seen. To complete
the reconstruction run, all values are run in order.

Table 4.1: Values for the NEO-2 reconstruct setting

prop_reconstruct Description
0 Normal NEO-2 run
1 Preparing for the reconstruction run
2 Actual reconstruction run
3 Clean up run

The reconstruction run is highly cost- and memory intensive. The output
of the reconstruction run is saved in the file final.h5. The size of the
file can up to be several 100 GB. In Subsection 4.3.3 the plotting of the
distribution function is explained.

44

4 Implementation/Results

4.2 Runtime optimization

4.2.1 Precomputation of the matrix elements

The calculation of the collision operator’s matrix elements is an impor-
tant part of the calculation for the NEO-2 runs. A detailed derviation of
the collision operator and its matrix elements is shown in [14].

Table 4.2: Computed matrix elements of the collision operator

Variable Shape Mathematical Expression
anumm_aa lag x lag x leg x leg ν̂ab

m,m′

anumm_inf lag x lag ν̂a∞
m,m′

ailmm_aa 5D L̂(I),ab
m,m′

denmm_aa 4D L̂(D),ab
m,m′

C_m lag Cm
asource lag x 3 qm

M_transform lag x lag ρm,m′

M_transform_inv lag x lag ρ−1
m,m′

Amm lag x lag ρm,m′

Equation 3.16 describes the relation of the matrix elements and the
collision operator. The matrix elements that are used in this calculation
are listed in Table 4.2. This table relates the mathematical expressions,
as used in Subsection 3.1.3, to the variable names of the matrix elements
used in the code. The shapes of the matrix elements depend on the input
parameters lag and leg. These dependencies are given in the second
column of Table 4.2

As seen in Subsection 3.1.3, the basis functions used, are the fundaments
of the matrix elements. In addition to the type of the basic functions and
the temperatures and masses of each particle species, the weighting in
velocity space and the order of Legendre polynomials act as the input
parameters for calculating the matrix elements of the collision operator.

45

4 Implementation/Results

Table 4.3 lists the names of the input parameters as used in the code,
their type, and descriptions.

Table 4.3: Required input parameter for the matrix elements of the collision operator

Input Parameter Type Description
lag scalar Number of basisfunctions in direction v
leg scalar Number of Legendre polynominals

collop base exp scalar type of expanded basisfunction
collop base prj scalar type of projected basisfunction

lsw multispecies logical single species run or multispecies
n spec scalar density of each species
m spec array mass of each species
T spec array Temperature of each species

scalprod alpha scalar weighting in velocity space
scalprod beta scalar weighting in velocity space

All input parameters of the Table 4.3 are located in the neo2.in input
file in the namelist collision. It is noted here that the parameter lag

was historically used for Laguerre polynomials, but now it is also used
for all other basis functions. Depending on the basis function used and
the order of the basis functions and the number of particle species used,
the matrix elements’ calculation can be of significant computational cost
compared to the rest of the NEO-2 run. This is especially the case if the
number of species is high. However, the memory demand is usually low.
In the conventional approach of NEO-2 [12], the computation of the ma-
trix elements and the solving the drift kinetic equation is performed in
one single run without intermediate calculation steps. As NEO-2 is usu-
ally memory limited and there is only a limited amount of high-memory
computing nodes available, it is useful to split the matrix elements’ calcu-
lation from the rest of the calculations. Splitting the computation of the
matrix elements from the rest of the calculations has been implemented
in this thesis. This splitting has the additional advantage that various
sets of computations can then use the precomputed matrix elements
because they are largely independent of the plasma parameters.

46

4 Implementation/Results

The program flow of NEO-2, before (hollow arrow) and after (filled
arrow) the implementation of the matrix elements precomputation is
schematically illustrated in Figure 4.5.

Figure 4.5: Program flow of NEO-2, before (hollow arrow) and after (filled arrow) the
implementation of the matrix elements precomputation

As a result of this thesis, the conventional NEO-2 input file is ex-
tended by two new boolean variables. These two variables, named
lsw_read_precom and lsw_write_precom, define whether matrix ele-
ments are read from or written to the file precom_collop.h5. The new in-
troduced variables lsw_write_precom and lsw_read_precom are added
to the namelist collisions in the neo2.in input file. The following
paragraphs describe the behaviour of these two variables.

If the lsw_write_precom is set to true, only the precomputation of the
matrix elements will be performed, and then the program stops without
solving the drift kinetic equation. This behaviour was implemented be-
cause the precomputation of the matrix elements often will be performed
on another machine than the actual run. The precalculation of the matrix
elements can be done on a machine with comparably small memory. The
memory demanding part of solving the drift kinetic equation can then
be executed on another machine with more memory. For comparison
of these values: the matrix elements’ memory demand is in the order
of a few GB, solving the drift kinetic equation needs several 10 or up
to 100’s GB of memory. As soon as the matrix elements are computed,
they are saved in an hdf5-file named precom_collop.h5. After the ma-
trix elements are saved, the NEO-2 runs are started as normal with the
neo2.in input file and the normal executable of the NEO-2-QL version.

47

4 Implementation/Results

If the lsw_read_precom variable is set to true, an algorithm checks the
new NEO-2’s run compatibility with the precomputed matrix elements
saved in the file precom_collop.h5. The compatibility is given, if the
input file’s parameters that are listed in Table 4.3 agree with the cor-
responding values in the precom_collop.h5 file. In addition to these
parameters also the compatibility of various auxiliary parameters is
checked. If the compatibility is not given, the run will be aborted. If this
compatibility check is successful, the run will be started utilizing the
precomputed matrix elements from the file precom_collop.h5.

If lsw_read_precom and lsw_write_precom are set to false, NEO-2 is
first calculating the collision matrix, without saving it, and then solving
the drift kinetic equation, as it used to be.

48

4 Implementation/Results

4.3 Postprocessing

The postprocessing is described in four parts. The first part is the descrip-
tion of the involved classes. The second part covers collecting different
data from different runs. The third part addresses the graphical data
representation and is described in Subsection 4.3.3. This section covers
how to easily display the produced data and how neo2tools enables
interaction with the produced data. The final section demonstrates the
interactive mode of the neo2tools package.

Figure 4.6 shows the class diagram of the relevant classes in postpro-
cessing. The classes shown in the diagram are explicitly explained in the
following subsection.

MagneticsPlot

line_end : int
line_start : int
plotdir
poi : list

plot_magnetics()
plot_poi()

ReconPlot

magplot
neo2plot
req_files_names : dict
req_files_paths : dict

interactive_plot()
plot_g()

magplot

MultipleReconPlot

plot_g()
plot_g_anti()

Neo2Plot

def_x : str
file

plot()

neo2plot

Figure 4.6: Classdiagram of the postprocessing part of neo2tools

49

4 Implementation/Results

4.3.1 Description of classes

ReconPlot The ReconPlot class is designed to plot the data from re-
construction runs. The reconstruction run is a special mode of NEO-2 on
which an already performed run is started again with the same physical
and numerical settings and is explained in Subsection 4.1.3.

This thesis tries to simplify the usage of NEO-2. In the ReconPlot class a
previously developed NEO-2 interface [8] was integrated. The mentions
of the name NEO-2 interface, in the following paragraphs refer to this.

The NEO-2 interface exports the distribution function f1,k, of a Point of
Interest (PoI) along the magnetic field line. The NEO-2 interface itself
needs an input file. Furthermore, the desired PoI or the list of PoI have
to be transferred to the interface. The points are transmitted in Boozer
coordinates (s, ϑ, ϕ) together with a labeling tag. The NEO-2 interface
returns then the distribution function f1,k for all PoI.

The ReconPlot class manages all the steps interacting with the NEO-
2 interface. The involved methods and attributes are now explained.
Figure 4.7 shows all public and hidden attributes and methods of the
ReconPlot class. A leading underscore denotes the hidden attributes
and methods.

If the NEO-2 interface’s required files are incomplete, the hidden method
_fill_req_files_names() fills them in the corresponding attributes
req_files_names and req_files_paths.
The _plot_write(), _createfiles() and the _run_dentf() methods fill
the NEO-2 interface input file and call the NEO-2 interface.

The attributes _plotdir, _rundir, _templatepath are set during the
instantiation.

To simplify the user interaction, the class merges two other classes, as
displayed by the arrows in Figure 4.6 and by the name of the composite
class in Figure 4.7.

50

4 Implementation/Results

ReconPlot

_plotdir : str
_rundir : str
_templatepath : str
magplot : MagneticsPlot
neo2plot : Neo2Plot
req_files_names : dict
req_files_paths : dict

_createfiles()
_fill_req_files_names()
_plot_write()
_run_dentf()
interactive_plot()
plot_g()

Figure 4.7: Classdiagram of the ReconPlot class

The attribute magplot of the ReconPlot class contains an instance of the
class MagneticsPlot. The MagneticsPlot class only needs the magnetic
field’s directory as initialization parameter. Because each NEO-2 run
contains a magnetic field file, the run directory’s information will be
passed at the initialization of magplot.
Under the attribute neo2plot, the second compositing class, Neo2Plot
is held. This is useful, as it simplifies the plotting procedure. With the
use of autocompletion, the possible plotting parameters are displayed
and easily selected. An illustrative example is shown in Subsection 4.3.2.
Further explanations are made in the Neo2Plot class description.

The distribution functions f1,k are renamed to gk for consistency with the
NEO-2 interface. Plotting the distribution function gk offers an insight
to the velocity distribution of the particles. The plot method plot_g()

offers this possibility to plot the distribution function of selected PoI
on the magnetic field line. Additionally, derivatives with respect to the

51

4 Implementation/Results

direction of the particle motion can be plotted.

At the instantiation of the Reconplot class, the NEO-2 run directory
rundir, and the plot directory plotdir, are required as input parameters.
The parameter templatepath is optional. Also one of the distribution
functions g1, g2 or g3 has to be chosen. This is done by setting the
parameter index to the wanted index k of gk:

neo2tools.ReconPlot(rundir ,plotdir ,templatepath ,index).

Upon initiating the class instance, the run directory will be checked
if it is a valid NEO-2 run directory. The plot directory can be set as
an absolute path or otherwise, it is set as a relative path to the run
directory.

The method plot_g() is for plotting gk. In contrast to the way, the PoI
are transmitted to the NEO-2 interface with Boozer coordinates (s, ϑ, ϕ),
plot_g() uses the parameter poi as a one-dimensional distance along
the magnetic field line:

ReconPlot.plot_g(typ ,poi ,tags ,subplot).

By default, the reconstructed distribution functions of all chosen PoI are
plotted. This can be limited, by passing the desired PoI’s labels as a list
to the parameter tags. Also, the derivative parallel and perpendicular
to the direction of the magnetic field line are plotted and controlled
through the parameter typ. If the boolean parameter subplot is set to
true, separate plots are generated for each, of the derivatives and of
the field line. To limit the number of plotted distribution functions to
specific tags, these tags can be chosen and passed as list to the parameter
tags.

Calling of interactive_plot() needs no input parameter.
The interactive_plot() method uses the Jupyter Notebook function-
alities to internally call the plot_g() method. In this case, only one
PoI can be chosen. This point can be changed interactively with the
text field or with the slider. To limit large magnetic field lines, also the
range of this field line can be adjusted. With a drop-down menu, either

52

4 Implementation/Results

the distribution function or one of the derivatives can be plotted. The
interactive mode is illustrated in Subsection 4.3.4.

Neo2Plot The Neo2Plot class is built upon the matplotlib module.
The Neo2Plot class enriches the plot functionality of matplotlib with a
default x-axes. In addition to the known properties of matplotlib, there
are some meta-information saved, like where the data is located. The
main purpose of this class is to plot the results of NEO-2 runs.

At the instantiation of the Neo2Plot class a hdf5 file handle has to be
passed to the parameter h5file. hdf5 is a storage efficient file format. A
default x-Axes with the parameter name def_x can be passed as well:

neo2tools.Neo2Plot(h5file , def_x).

If def_x is not set in the instantiation, the default x-Axes is automatically
set with boozer_s. The hdf5 file handle and the default x-Axes are saved
as the attributes file and def_x and is displayed in the class diagram
in Figure 4.8.

The plot method plot() is usually called on its own and is mostly
used by other classes, e.g. the Neo2Scan class. The method plot() is
internally called when the name of the parameter to plot is appended
to the instance like an attribute and executed. An example is shown in
Subsection 4.3.2. The speciality of the Neo2Plot class and the integrated
plot() method is, that it caches the possible plot parameters, depending
on the chosen default x-Axes. This is managed due to processing the
results of NEO-2() runs and validating it, through checking the plot
compatibility with the x-Axes. The _get_valid_keys() method checks
this plot compatibility and saves the allowed plot parameters in the
attribute _valid_keys.

The method plot_overview() plots all possible plot parameters of the
_valid_keys list in one overview plot. Furthermore, the Neo2Plot class
also uses a key feature of Jupyter Notebooks: the autocompletion. If
the user presses the Tabulator key, a list of possible plot parameters is
shown. With the integration of the method _ipython_key_completion(),

53

4 Implementation/Results

Neo2Plot

_valid_keys : list
def_x : str
file

_get_valid_keys()
_ipython_key_completions_()
plot()

Figure 4.8: Classdiagram of the Neo2Plot class

pressing the tabulator key, offers the possibilities to plot of the NEO-2
results. Figure 4.9 shows the popped up list after pressing the tabulator
key.

Figure 4.9: IPython key completion

The possible plot parameters depend on the NEO-2 Version used. The
neo2plot attribute is an instance of the Neo2Plot class and therefore, the
autocompletion to the possible plot parameters works.

54

4 Implementation/Results

MagneticsPlot

_fieldline : list
line_end : int
line_start : int
plotdir
poi : list

_plot_singlepoi()
_read_magnetics()
_write_poi()
plot_magnetics()
plot_poi()

Figure 4.10: Classdiagram of the MagneticsPlot class

MagneticsPlot The MagneticsPlot class provides methods to plot the
magnetic field of a given flux surface. Each NEO-2 run covers the flux
surface with one magnetic field line. With the MagneticsPlot class, it is
possible to plot this magnetic field line on top of the flux surface. The
class diagram with the corresponding attributes and methods is shown
in Figure 4.10.

The instantiation of MagneticsPlot needs only the directory with the
NEO-2 run. This directory is passed with the parameter rundir:

neo2tools.MagneticsPlot(rundir).

The flux surface is plotted with the method plot_magnetics(). This
method uses internally the _read_magnetics() method to read the mag-
netic field files:

neo2tools.MagneticsPlot.plot_magnetics(length ,startphi ,

starttheta).

The correct usage of the plot_magnetics() method is shown in Sub-
section 4.3.3. The parameters length, startphi, starttheta, define the

55

4 Implementation/Results

field line. The magnetic field line’s start and end position are saved in
the line_start and line_end attributes of the MagneticsPlot class.

The method plot_magnetics() plots also the magnetic field line. The
field line is saved in the _fieldline attribute. The method plot_poi()

places PoI on top of the magnetic field line. This is also useful to de-
termine the position of the PoI at the flux surface. The PoI are saved
in the attribute poi. The method _write_poi() has been implemented
to pass the points. The ReconPlot class can then plot the distribution
function of these points if the reconstruction run has been done. The
_plot_singlepoi() method is utilized from the interactive_plot()

method of the ReconPlot class.

MultipleReconPlot The MultipleReconPlot class is derived from the
ReconPlot class. As explained in Section 4.1, meaningful results needs
various NEO-2 runs. Therefore, it is useful to extend the functionality of
investigating PoI, from single NEO-2 runs to multiple NEO-2 runs. The
MultipleReconPlot class enables this extension.

The instantiation of the MulitpleReconPlot class is similiar to the
ReconPlot class. The only change is the parameter rundirs replaces
the rundir parameter:

neo2tools.MulitpleReconPlot(rundirs ,plotdir ,templatepath ,

index).

The different NEO-2 directories have to be passed as list to the parameter
rundirs. The rest of the instantiation parameter are explained in the
ReconPlot class at page 52.

Due to the different structures of the directories, the plot_g() method
is adapted and overwritten to perform correctly. Consequently, it is
displayed in Figure 4.11. The methods plot_g() and plot_g_anti()

for plotting the different distribution functions is demonstrated in Sub-
section 4.3.3. Because the data based for the plots is not a single run,
but multiple runs the attribute _runs handles the different run directo-
ries. The syntax of plot_g() stays the same. Also plot_g_anti() has the

56

4 Implementation/Results

MultipleReconPlot

_runs : list
_single_recon : list

_write()
plot_g()
plot_g_anti()

Figure 4.11: Classdiagram of the MultpleReconPlot class

same syntax. The method _write() ensures that the correct distributions
functions are selected. For manual use of single ReconPlot instances,
the _single_recon attribute saves these instances in a list.

The parameter poi defines the wanted PoI as a list. This is normally
done by the MagneticsPlot class. For an alternative choice, _write()
sets them:

neo2tools.MulitpleReconPlot._write(poi).

4.3.2 Data collection

The data collection can be seen as the reverse process of the prepro-
cessing part, which is explained in Section 4.1. Every single NEO-2 run
provides only limited information. To get sufficient information about
diffusion coefficients, or torque, data must be collected from multiple
runs. How data from different runs are collected depends on what
kind of information should be plotted. One example is a radial scan
(Figure 4.12), where data from all magnetic flux surfaces are needed.
Another one is a scan for different collisionalities (Figure 4.13). The
bootstrap coefficient λbb from Figure 4.12 and Figure 4.13 is often of
interest because it can be compared to analytical theory [25].

57

4 Implementation/Results

Figure 4.12: Radial scan

The type of scan is usually already defined in the preprocessing part.
In the preprocessing, different input parameters for different NEO-2
runs are prepared to scan along a parameter. In the data collection, the
relevant data as a function of the scanned parameter are collected. There-
fore, also the Neo2Scan class and especially the loadfiles() method to-
gether with the Neo2Plot class is utilised. Continuing with the Job_scan

instance of Subsection 4.1.2, the required files are loaded with the
loadfiles() method.

A dictionary of the possible single runs used is generated. The dictionary
is called singlerun_names and is an attribute of the Neo2Scan class. The
keys of the generated dictionary are the paths to each single run. The
values of singlerun_names contain the information, how the input file
for each single NEO-2run is altered. For the data collection, only the
keys of the singlerun_names are relevant. The keys are used to identify
each NEO-2 run. The loadfiles() method searches for the output of
the NEO-2 runs in the respective directory. This output is then sorted
by the scanned parameter. Because of the high dimensionality of the
output, it is rearranged to enable easier data access.

58

4 Implementation/Results

Figure 4.13: Collisionallity scan

The Neo2Plot class can access this collected data to produce the graphi-
cal output. The Neo2Scan class has the neo2plot attribute, which is an
instance of the Neo2Plot class.
Therefore, also the _ipython_key_completion() method works as shown
in Figure 4.9. Depending on the version and the exact input parame-
ters of the performed NEO-2 run, there are a lot of possible output
parameters to plot. The plot_overview() method plots all possible plot
parameters in an overview plot. Figure 4.14 shows the overview plot
of an NEO-2-QL multispecies scan run. From the 98 subplots in this
example Figure 4.14 shows only a cropped view .

59

4 Implementation/Results

Figure 4.14: Overview plot of a NEO-2-QL multispecies scan run

60

4 Implementation/Results

4.3.3 Graphical data representation

This subsection, focused on the graphical data representation of the
neo2tools package, is divided into three parts. The first part is about
plotting the flux surface. The second part covers the magnetic field line;
the third shows the distribution function for the selected PoI. In the
first and the second part, examples of both stellarator and tokamak
geometries are presented.

Plotting the flux surface

1 Job_surf=neo2tools.MagneticsPlot(rundir="/temp/singlerun/")

2 Job_surf.plot_magnetics ()

Listing 4.1: Plotting of the flux surface

Listing 4.1 shows how to use the MagneticsPlot class without integra-
tion in another class. The first line in Listing 4.1 shows the instantiation
with the required NEO-2 directory. The second line plots the flux sur-
face.

The illustration of the flux surface in Boozer coordinates provides an
overview of the relevant magnetic field for the NEO-2 run. Figure 4.15

and Figure 4.16 show examples of this flux surfaces in Boozer coor-
dinates. The x-axis describes the toroidal angle ϕ and the y-axis the
poloidal angle ϑ- The z-axis is showed in color representation and covers
the magnetic field strength for each ϕ and ϑ pair.

Figure 4.15 shows the surface of a tokamak. The magnetic field in a
tokamak does not depend on the ϕ direction. Because the coordinate
system is designed that ϕ ∈ [0, 2π) and ϑ ∈ [0, 2π), the whole flux
surface is plotted. The data shown in Figure 4.15 originates from Asdex
Upgrade in Garching. The magnetic field strength on the surface shown
is between 1.7 T and 2.3 T.

61

4 Implementation/Results

Figure 4.15: Flux surface of a tokamak

Figure 4.16 shows the flux surface of a stellarator. In contrast to the
magnetic field in a tokamak, the magnetic field in a stellarator in not
axisymmetric and does therefore dependent on ϕ. The data shown in
Figure 4.16 is from the Wendelstein 7-x in Greifswald. Because the
stellarator has a five-fold recurrence of the magnetic field, the x-axis only
goes to 2π

5 . This symmetry is retrieved from the magnetic field input file
for NEO-2. The magnetic field varies between 2.8 T and 3.5 T.

Figure 4.16: Flux surface of a stellarator

62

4 Implementation/Results

On top of the surface plot described above, the magnetic field line can
be plotted. Because of the equilibrium of the magnetic field, the safety
factor is a fixed value for each surface. The start tuple (ϕ, ϑ) of magnetic
field line can be freely chosen. The endpoints will be calculated with the
length of the line. Listing 4.2 shows how to pass the three parameters
length, startphi and starttheta to the method plot_magnetics().

1 Job_surf.plot_magnetics(length =15, startphi =0.5, starttheta =1)

Listing 4.2: Plotting of the flux surface with magnetic field line

Figure 4.17 shows the magnetic field line plotted on top of the flux sur-
face of a stellarator. The start point is denoted with the blue, filled circle.
The trajectory of the red magnetic field line demonstrates the periodic
nature of the coordinate system. If the field line hits the boundary at 2π

in ϑ or 2π
5 in ϕ the line continues with the angle of 0 in the respective

coordinate. The other coordinate remains unchanged.

Figure 4.17: Flux surface and the magnetic field line

In Figure 4.18 the length of the field line is significantly raised. The
longer the field line is, the closer every point can be approached by the
field line. The RadialScan class described in Subsection 4.1.1 takes care,
that the magnetic field does not close too early.

63

4 Implementation/Results

Figure 4.18: Flux surface covered by a long magnetic field line

Plotting of the magnetic field along the magnetic field line

This subsection shows the magnetic field following the magnetic field
line on the flux surface, as discussed in the previous sites. NEO-2 saves
the whole magnetic field line in the file magnetics.h5. To plot this
magnetic field line, the class MagneticsPlot is used. In Listing 4.3 the
plotting routine is shown. The parameter rundir has to point to a NEO-2
directory.

1 run_mag = "/temp/singlerun/"

2 Job_mag=MagneticsPlot(rundir=run_mag)

3 Job_mag.plot_poi(poi=[3,4,5], write=True)

Listing 4.3: Plotting the magnetic field line

The first line in Listing 4.3 defines the path to the NEO-2run directory.
The second line shows the instantiation. In the ReconPlot class this is
done automatically to the attribute magplot.

Figure 4.19 shows an example of a magnetic field line plot with three PoI.
The x-axis of this plot is ϕs. This is the distance along the magnetic field
line. This is the same length parameter as in Listing 4.2. In contrast to

64

4 Implementation/Results

Figure 4.19: Magnetic field module along the magnetic field line with inserted Point of
Interests

the flux surface plots, the magnetic strength is now plotted in 1
B̂

, where
B̂ is the magnetic field module. In Figure 4.19 can be seen, that the full
magnetic field line is closed. The start and the endpoint have the same
value.

One purpose of plotting the magnetic field line, is defining PoI for
plotting the distribution function. PoI are passed as values of the length
along the magnetic field line ϕs. By default, plotting the PoI also converts
these points for the reconstruction input file. If there is already an input
file, this will be overwritten. To change this writing behaviour to the
reconstruction input file, the parameter write has to set to false. In
Section 4.3.3 it is explained how to move one PoI interactively.

Plotting of the distribution function

Plotting the distribution function gk offers an insight to the velocity
distribution of the particles. The plot method plot_g() offers this possi-
bility to plot the distribution function of selected PoI on the magnetic

65

4 Implementation/Results

Table 4.4: Explanation of parameter type for plot g()

plot type description
g distribution function

gpa parallel derivative of the distribution function
gtr orthogonal derivative of the distrbution function

field line. Additionally, derivatives with respect to the direction of the
particle motion can be plotted. The plot type has to be passed at the first
position to the method plot_g(). Table 4.4 explains the possible plot
types.

The instantiation is done by assigning the parameter rundir the desired
NEO-2 run. The plotdir parameter is the name were the plots will be
saved. The parameter index defines the chosen distribution function.

1 Job_recon=neo2tools.ReconPlot(rundir="/temp/singlerun/",

2 plotdir="Plot",index =1)

3 Job_recon.plot_g("g")

Listing 4.4: Plotting of the distribution function g1

Listing 4.4 shows the command for plotting the distribution func-
tion for the PoI in Figure 4.19. As the distribution function is a four-
dimensional function and through fixing the spatial position, it is only a
one-dimensional function in velocity space left. Figure 4.20 shows the
distribution function g1 plotted over λ =

v‖
v . g1 is plotted, because the

parameter index was set to 1 at the instantiation of Job_recon.

66

4 Implementation/Results

Figure 4.20: Distribution function g1 for three different Point of Interests

The derivative of the generalized Spitzer function in the field line direc-
tion is from special interest. Depending on the spatial point, where the
microwave hits the plasma, the current generations is constructive or
destructive. Therefore, g3 is plotted together with ∂g3

∂v‖
. Figure 4.21 shows

g3 and ∂g3
∂v‖

of the three spatial points from Figure 4.19. The commands is
stated in Listing 4.5.

A new instance of Reconplot is needed, because the index of g changed
to 3. The first line in Listing 4.5 shows this. The second line displays
the passing of the two types "g" and "gpa" as string to the plot_g()

method. If more than one type of distribution function is plotted, (see
Table 4.4), the different lines can be grouped with setting the parameter
subplot to True as it is displayed.

1 Job_spitz=neo2tools.ReconPlot(run1 ,plot1 ,template1 ,index =3)

2 Job_spitz.plot_g("g","gpa",subplot=True)

Listing 4.5: Plotting the distribution function with subplots

67

4 Implementation/Results

Figure 4.21: Distribution function g3 and the derivative ∂g3
∂v‖

for three different Point of
Interests

Another way to compare different distribution functions is to use the
MultipleReconPlot class. With this class, one PoI has to be chosen. The
second input parameter are the different NEO-2 runs.

The bootstrap coefficient λbb from Figure 4.12 is based on the gradient
driven distribution function g1. Of special interest is g1 at spatial points
next to the trapped-passing boundary. With the selection of one PoI
next to a local maxima, the effect of different collisionalities to g1 is
illustrated.

The result for different collisionalities of Listing 4.6 is shown in Fig-
ure 4.22.

1 Job_mult=neo2tools.MultipleReconPlot(rundirs ,index =1)

2 Job_mult.magplot._write_poi ([1 ,745])

3 Job_mult.plot_g("g")

Listing 4.6: MultipleReconPlot

68

4 Implementation/Results

Figure 4.22: Distribution function g1 for three different collisionalities

Because of the symmetric nature of g1 near local maxima, the second
method plot_g_anti() plots the antisymmetric part ga = (g+ − g−)/2
of the distribution function, where the upper index is the sign of the
velocity. In addition, in plot_g_anti() the x-axes is η defined in Equa-
tion 3.3. The command for this plot routine is stated in Listing 4.7.

1 Job_mult.plot_g_anti("g")

Listing 4.7: Plotting with the antisymmetric plot function

The graphical output of the antisymmetric distribution function is shown
in Figure 4.23. The broadening of the distribution function with higher
collisionalities can be clearly seen.

69

4 Implementation/Results

Figure 4.23: Antisymmetric part of the distribution function g1

4.3.4 Interactive Jupyter elements

Alternatively to the method plot_g(), the distribution function’s plot
can also be generated in an interactive mode. Listing 4.8 shows how the
interactive mode is started.

1 Job_recon.interactive_mode ()

Listing 4.8: Interactive mode of plot g

Figure 4.24 shows an example of the graphical interface produced, upon
starting the interactive mode. On the left side, there is the magnetic
field line and on the right side, the distribution function. There are four
interactive input elements in the interface. There is one text input cell.
Two sliders and one dropdown menu.

The text field on the upper left is directly connected with the slider
below. With these, the PoI can be changed along the magnetic field line.
Directly connected to the position of the PoI is the plot on the right side.

70

4 Implementation/Results

Figure 4.24: Graphical output of the interactive mode

If the PoI changes, the distribution function of the right plot updates,
according to the new position of the PoI.

Figure 4.25: Graphical output of the interactive mode, Range Slider

Figure 4.25 shows a zoom to the left side of the interactive interface. It
displays the magnetic field line. The range slider on the bottom controls
how much of the magnetic field line is displayed in the plot above. The
slider’s both end positions are the start and the end position of the

71

4 Implementation/Results

magnetic field line. The current values for them are shown, on the right
side of the slider.

In Figure 4.26 the expanded dropdown menu is shown.

Figure 4.26: Graphical output of the interactive mode, Dropdown menu

72

5 Summary

This thesis aims to provide different tools to facilitate the application
of the NEO-2 package. Basic concepts of the drift kinetic equation,
neoclassical transport and the coordinate system used are introduced.

The drift kinetic equation solver NEO-2 is explained in more detail. The
origin of the matrix elements is shown and their precomputation is
described. In addition, Python, its interactive version IPython and the
development environment Jupyter Notebooks are explained.

The Python toolbox neo2tools developed in this thesis is explained.
The application procedure is divided into three sections, covering the
preprocessing, the runtime optimization and the postprocessing of NEO-
2 runs. The preprocessing part is for setting up single and multiple
runs for NEO-2. Depending on the branch used, different prerequisites
are required. Therefore, multiple classes were constructed. To simplify
the application of the toolbox, a common class for all branches was
created. Derived from this common class, different classes for different
use cases were implemented. A special radial scanning class ensures that
the setting of the correct flux surfaces is done correctly. A special mode
of NEO-2, the reconstruction run, which enables saving the distribution
function, is also explained. Examples are shown to demonstrate the
application of the classes in Jupyter Notebook.

With the precomputation of the matrix elements, the calculation of the
matrix elements is separated from solving the drift kinetic equation and
therefore it can save expensive computation time. It can also be utilized
by multiple NEO-2 runs.

73

5 Summary

Furthermore, the application procedure and exemplary results of differ-
ent visualization tools are shown. These tools can be used for plotting
the results of NEO-2 runs and NEO-2 reconstruction runs, configured
and deployed with the methods explained before. The predefined plot
routines enable the visualization of flux surfaces, the magnetic field
line along the flux surfaces, neoclassical transport coefficients or the se-
lected distribution functions. A special mode to visualize the distribution
function from the reconstruction run is the interactive mode provided
by Jupyter Notebook. In the interactive mode, one point of interest
can be moved along the magnetic field line. The distribution function,
corresponding to the selected point, is updated automatically.

74

Bibliography

[1] IPCC Climate Change et al. The physical science basis. 2007.

[2] Per Helander and Dieter J. Sigmar. Collisional Transport in Magne-
tized Plasmas. Cambridge University Press, 2002. isbn: 978-0-521-
80798-2.

[3] Winfried Kernbichler et al. “Recent Progress in NEO2 — A Code
for Neoclassical Transport Computations Based on Field Line
Tracing.” In: Plasma and Fusion Research 3 (Jan. 2008). doi: 10.1585/
pfr.3.S1061.

[4] W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, J. L. Shohet. Flux
Coordinates and Magnetic Field Structure. A Guide to a Fundamental
Tool of Plasma Theory. Springer Berlin Heidelberg, 1991. isbn: 978-3-
642-75597-2.

[5] Jeffrey P. Freidberg. Plasma Physics and Fusion Energy. Cambridge
University Press, 2007. isbn: 978-0-521-85107-7.

[6] Harold Grad. “Toroidal Containment of a Plasma.” In: The Physics
of Fluids 10.1 (1967), pp. 137–154. doi: 10.1063/1.1761965.

[7] Robert G. Littlejohn. “Variational principles of guiding centre
motion.” In: Journal of Plasma Physics 29.1 (1983), pp. 111–125. doi:
10.1017/S002237780000060X.

[8] Gernot Kapper. “Impact of finite plasma collisionality on the cur-
rent drive efficiency in tokamaks and stellarators.” PhD thesis.
Institute of Theoretical and Computational Physics, Graz Univer-
sity of Technology, 2017.

75

https://doi.org/10.1585/pfr.3.S1061
https://doi.org/10.1585/pfr.3.S1061
https://doi.org/10.1063/1.1761965
https://doi.org/10.1017/S002237780000060X

Bibliography

[9] S. P. Hirshman et al. “Plasma transport coefficients for nonsym-
metric toroidal confinement systems.” In: The Physics of Fluids 29.9
(1986), pp. 2951–2959. doi: 10.1063/1.865495.

[10] Andreas Martitsch. “Modeling of Plasma Rotation in Tokamaks.”
PhD thesis. Institute of Theoretical and Computational Physics,
Graz University of Technology, 2016.

[11] V. V. Nemov et al. “Evaluation of 1/ neoclassical transport in
stellarators.” In: Physics of Plasmas 6.12 (1999), pp. 4622–4632. doi:
10.1063/1.873749.

[12] W Kernbichler et al. “Solution of drift kinetic equation in stellara-
tors and tokamaks with broken symmetry using the code NEO-2.”
In: Plasma Physics and Controlled Fusion 58.10 (Aug. 2016), p. 104001.
doi: 10.1088/0741-3335/58/10/104001.

[13] E. Strumberger, S. Günter, and C. Tichmann. “MHD instabilities
in 3D tokamaks.” In: Nuclear Fusion 54.6 (May 2014), p. 064019.
doi: 10.1088/0029-5515/54/6/064019.

[14] Georg O. Leitold. “Computation of neoclassical transport coeffi-
cients and generalized Spitzer functions in toroidal fusion plas-
mas.” PhD thesis. Institute of Theoretical and Computational
Physics, Graz University of Technology, 2010.

[15] H. Maaßberg, C. D. Beidler, and N. B. Marushchenko. “Electron
cyclotron current drive modelling with parallel momentum cor-
rection for tokamaks and stellarators.” In: Physics of Plasmas 19.10

(2012), p. 102501. doi: 10.1063/1.4751436.

[16] Fernando Pérez and Brian E. Granger. “IPython: a System for
Interactive Scientific Computing.” In: Computing in Science and
Engineering 9.3 (May 2007), pp. 21–29. issn: 1521-9615. doi: 10.
1109/MCSE.2007.53. url: https://ipython.org.

[17] Helen Shen. “Interactive notebooks: Sharing the code.” In: Nature
515.7525 (2014), pp. 151–152. doi: 10.1038/515151a.

76

https://doi.org/10.1063/1.865495
https://doi.org/10.1063/1.873749
https://doi.org/10.1088/0741-3335/58/10/104001
https://doi.org/10.1088/0029-5515/54/6/064019
https://doi.org/10.1063/1.4751436
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://ipython.org
https://doi.org/10.1038/515151a

Bibliography

[18] Gernot Kapper et al. “Electron cyclotron current drive simulations
for finite collisionality plasmas in Wendelstein 7-X using the full
linearized collision model.” English. In: Physics of plasmas 23.11

(Nov. 2016), p. 112511. issn: 1070-664X. doi: 10.1063/1.4968234.

[19] Jupyter, Mathematica, and the Future of the Research Paper. https:
//paulromer.net/jupyter-mathematica-and-the-Future-of-

the-Research-Paper. Accessed: 2020-09-07.

[20] Gravitational Wave Open Science Center 2020 GWOSC tutorials. www.
gw-openscience.org/tutorials/. Accessed: 2020-07-13.

[21] R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collabo-
ration). Open data from the first and second observing runs of Advanced
LIGO and Advanced Virgo. 2019. arXiv: 1912.11716 [gr-qc].

[22] Marshall L. Ward. “f90nml - A Python module for Fortran namelists.”
In: Journal of Open Source Software 4.38 (2019), p. 1474. doi: 10.
21105/joss.01474.

[23] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed
computing in practice: the Condor experience.” In: Concurrency -
Practice and Experience 17.2-4 (2005), pp. 323–356.

[24] HTCondor Manual. Accessed: 2020-10-20. 2020. url: https : / /

htcondor.readthedocs.io/en/latest/.

[25] S. Kasilov et al. “Evaluation of the parallel current density in a
stellarator using the integration technique along the magnetic field
line.” In: 27th EPS Conference on Contr. Fusion and Plasma Phys.
Budapest, 12-16 June (2000).

77

https://doi.org/10.1063/1.4968234
https://paulromer.net/jupyter-mathematica-and-the-Future-of-the-Research-Paper
https://paulromer.net/jupyter-mathematica-and-the-Future-of-the-Research-Paper
https://paulromer.net/jupyter-mathematica-and-the-Future-of-the-Research-Paper
www.gw-openscience.org/tutorials/
www.gw-openscience.org/tutorials/
https://arxiv.org/abs/1912.11716
https://doi.org/10.21105/joss.01474
https://doi.org/10.21105/joss.01474
https://htcondor.readthedocs.io/en/latest/
https://htcondor.readthedocs.io/en/latest/

	Introduction
	Theoretical background
	Coordinates
	Boozer coordinates

	Drift kinetic equation

	Computational principles
	NEO-2
	NEO-2 branches
	NEO-2 input
	Matrix elements of the collision operator
	NEO-2 output

	Programming environment
	Python
	IPython
	Jupyter Notebooks

	Implementation/Results
	Preprocessing
	Description of classes
	Jupyter Notebook NEO-2 integration
	Reconstruction run

	Runtime optimization
	Precomputation of the matrix elements

	Postprocessing
	Description of classes
	Data collection
	Graphical data representation
	Interactive Jupyter elements

	Summary
	Bibliography

