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Abstract

Nowadays data becomes more and more prevalent. With the prevalence of
data storage in the cloud, privacy becomes more and more important too.
Usually users do not want that everyone can access their data, and, moreover,
they would like to control who has access. However, in certain cases users have
to share their data in order to have a specific functionality; like computing
something together with other parties. Such scenarios are called multi-party
computation. Multi-party computation with a focus on security & privacy is
called secure multi-party computation (MPC).

In today’s world, pseudo-random functions (PRFs) are an important building
block. Given an input and key, a secure PRF provides an output which is
indistinguishable from an output of a truly random function. One such use
case for PRFs is in the context of privacy-preserving searchable symmetric
encryption. And the challenge of key exchange in this use case can be solved
by leveraging PRF evaluations in MPC. As described by [Gra+16], PRFs which
allow to perform evaluations in MPC efficiently, are so-called MPC-friendly
PRFs. This new requirement for PRFs heralds the dawn of a new era: MPC-
friendly cipher design.

Normally, new ciphers are created analytically based on their requirements.
Then, when a new cipher has been created, the cipher has to be benchmarked
in the envisioned environments. This benchmarking allows to (1) evaluate
the general performance of the cipher and (2) compare the cipher with other
ciphers in this area, based on sound metrics; such as the runtime of the
execution. Though, the benchmarking of several MPC programs, like several
PRFs, considering MPC-related metrics simulated in different environments
with various settings, has to be done manually and is a cumbersome process;
up until now .
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The main contributions of this thesis are fourfold: (1) Creation of the bench-
mark framework Benchmarking for MPC (b4M) for the MPC-engine SCALE-
MAMBA; (2) Identification of relevant benchmark metrics (i.e. requirements),
for (a) MPC programs in general and also (b) specifically for MPC-friendly
PRFs; (3) Identificaton of interesting and (potentially) relevant benchmark set-
tings and questions; (4) Benchmarking and evaluation of the two use cases (a)
3-players with (basically) no network restrictions (local area network (LAN)),
and (b) 3-players which are connected within a limited network (wide area net-
work (WAN)). Moreover, with respect to future work, we identified interesting
paths to follow.
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Kurzfassung

Heutzutage ist die Generierung, Speicherung und Verarbeitung von Daten
immer weiter verbreitet. Mit der Verbreitung der Datenspeicherung in der
Cloud wird die Privatsphäre immer wichtiger. Normalerweise möchten Be-
nutzer nicht, dass jede/r auf ihre Daten zugreifen kann, und sie möchten
außerdem steuern wer Zugriff hat. In bestimmten Fällen müssen Benutzer
jedoch ihre Daten freigeben, um eine bestimmte Funktionalität zu erhalten;
wie etwas zusammen mit anderen Personen zu berechnen. Solche Szenar-
ien werden als Multi-Party Computation bezeichnet. Multi-Party Computation
mit Schwerpunkt auf Sicherheit und Datenschutz wird weiters als Secure
Multi-Party-Computation (MPC) bezeichnet.

In der heutigen Welt sind Pseudo-Zufalls-Funktionen (PRFs) ein wichtiger
Baustein. Bei der Eingabe von Daten und einem Schlüssel liefert eine sichere
PRF eine Ausgabe, die nicht von der Ausgabe einer wirklichen Zufalls-
Funktion zu unterscheiden ist. Ein solcher Anwendungsfall für PRFs ist die
privatsphärenschützende Suche von verschlüsselten Daten via symmetrischer
Verschlüsselung. Die Herausforderung des Schlüsselaustauschs in diesem An-
wendungsfall, kann durch die Nutzung von PRF-Berechnungen in MPC gelöst
werden. Wie von [Gra+16] beschrieben, sind PRFs, mit denen Auswertungen
in MPC effizient durchgeführt werden können, sogenannte MPC-freundliche
PRFs. Diese neue Anforderung an PRFs läutet den Beginn einer neuen Ära
ein: MPC-freundliches Chiffrendesign.

Normalerweise werden neue Chiffren basierend auf ihren Anforderungen
analytisch erstellt. Wenn dann eine neue Chiffre kreiert wurde, wird sie in
den vorgesehenen Umgebungen getestet. Dieses Testen ermöglicht es, (1) die
allgemeine Leistung der Chiffre zu bewerten und (2) sie mit anderen Chiffren
in diesem Bereich basierend auf fundierten Metriken zu vergleichen; wie
etwa die Laufzeit der Ausführung. Das Testen mehrerer MPC-Programme,
wie verschiedene PRFs, unter Berücksichtigung von Metriken bezogen auf
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MPC, die in verschiedenen Umgebungen mit unterschiedlichen Einstellungen
simuliert werden, muss jedoch manuell durchgeführt werden und ist ein
mühsamer Prozess; bis jetzt .

Die Hauptbeiträge dieser Arbeit beziehen sich auf vier Bereiche: (1) Erstellung
des Test-Frameworks Benchmarking für MPC (b4M) für das MPC-Framework
SCALE-MAMBA; (2) Identifizierung relevanter Test-Metriken, die sogenan-
nten Anforderungen, für (a) MPC-Programme im Allgemeinen und (b) speziell
für MPC-freundliche PRFs; (3) Identifizierung interessanter und (potenziell)
relevanter Test-Einstellungen und -Fragen; (4) Testen und Bewerten der bei-
den Anwendungsfälle (a) 3-Parteien mit (grundsätzlich) keinen Netzwerkein-
schränkungen (lokales Netzwerk (LAN)) und (b) 3-Parteien, die innerhalb
eines begrenzten Netzwerks verbunden sind (Weitverkehrsnetzwerk (WAN)).
Darüber hinaus haben wir im Hinblick auf weiterführende Arbeit interessante
Pfade identifiziert.
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Chapter 1

Introduction

Data prevalence & cloud storage. Nowadays data becomes more and more
prevalent. For instance, many people use their smartphones to track activities,
such as sports, food, or general tasks. This tracking is, however, not limited to
smartphones. Activities can also be tracked with smartwatches, smartglasses,
or just by entering it on a laptop or the more “static” Personal Computer (PC).
What all of these devices have in common is their access to storage on another
entity’s computer via the internet; this “internet storage” is referred to as the
cloud. Many people use the cloud for data storage, as it enables convenient
use cases. One such use case is that data is accessible on all the users’ devices,
not on only one.

Privacy & (secure) multi-party computation. With the prevalence of data
storage in the cloud, privacy becomes more and more important too. Usually
users do not want that everyone can access their data, and, moreover, they
would like to control who has access. However, in certain cases users have to
share their data in order to have a specific functionality; like sharing data with
friends or computing something together with other parties. One example
for such a joint computation is to calculate the average age in an audience.
Everyone has to give data, the age, and someone is computing the average.
Such scenarios are called multi-party computation. In terms of privacy, people
are usually interested to keep their input private; like the person’s age in the
mentioned example of the audience’s average age. Multi-party computation
with a focus on security & privacy is called secure multi-party computation.
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(Secure) multi-party computation based on a TTP. To realize (secure)
multi-party computation in the naive way, one could think of a trusted third
party (TTP). This TTP receives the input of all participating parties, and
responds with the result. Figure 1.1 illustrates the appraoch using a TTP with
three parties. This works fine as long as the TTP (1) behaves honestly and (2) no
data leaks, e.g., due to a hack. In January 2018 a group of researchers publicly
announced the critical vulnerabilities Meltdown and Spectre; with which it is
possible to steal data from other applications, in certain circumstances even
when they are operating in a cloud environment [Gra20; Lip+18; Koc+19].
Thus, the solution with the TTP works, in principle, but might not always
achieve the goal of security & privacy of the parties’ data. Can we do better
than that? Yes, we can.
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d i
np

ut 0) Send input

0) Send  
   input

2) 
Retu

rn 
res

ult 2) Return result

2) Return  
  result

1) Compute
function

Figure 1.1: (Secure) multi-party computation based on a TTP with three parties.

Secure multi-party computation based on secret sharing. With concepts
such as secret sharing, one can achieve secure multi-party computation while
having better guarantees to ensure data privacy. In a secret-sharing scheme,
each party splits its secret value into several parts. These parts are shared with
the participating parties. Then, each party computes a sum of their parts and
shares this with the other parties. Now, each party can compute the overall
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sum of the secret values without knowing the specific values. This example
shows the case for secure addition, without relying on a TTP. Figure 1.2
illustrates the approach using secret sharing with three parties. Though, if
parties cheat and share more than their partial sums, it is possible to recover
the secrets of the individual parties. There exist different attack scenarios, as
well as different countermeasures, which are shown later on.
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     Compute function

Bob

ClaireAlice
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ata
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Figure 1.2: Secure multi-party computation based on secret sharing with three parties.

Throughout the rest of this thesis, when we say secure multi-party compu-
tation (MPC), we refer to approaches where no TTP is needed and parties
compute the function collaboratively, such as the mentioned secret-sharing-
based approach.

Applications for secure addition. Already secure addition on its own enables
useful applications. For instance, in the context of “simple” voting, where
people vote for yes or no. A yes could be represented as a 1, and a no could be
represented as a 0. Now, the computed sum represents the amount of votes for
yes, without revealing who voted for yes or no. However, one could do “logical”
attacks by analyzing the sum. This reveals, e.g., how many people voted for
yes. On the other side, this is probably intended as part of the protocol, as
people usually want to know how many people voted for yes, and how many
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voted for no. And if there are, e.g., only two parties, one gets to know, of
course, the input of the other party.

Another context for secure addition is computing the average. One could think
of a presentation where the speaker would like to announce the average age
of the audience, as was shown before. Usually, not everyone likes to publicly
announce their age. With the approach of secure addition, as described above,
each party can privately compute the sum of all people in the audience, and
then divides the result by the amount of people. This approach can also be
applied to, e.g, compute the average salary of employees in a certain field
among several companies.

Programs evaluated in MPC. By leveraging secure addition, among other
things, we are able to evaluate “normal” programs in MPC. For instance, with
this approach we can write a program which outputs a secret-shared value.
Now, c parties would need to get corrupted or collude in order to get the
plaintext value of the result. Whereas, depending on the underlying MPC
protocol, c can either be some of the participating parties, or even all.

Pseudo-random functions & their evaluation in MPC. In today’s world,
pseudo-random functions (PRFs) are an important building block [Bon+18].
Given an input and key, a secure PRF provides an output which is indistin-
guishable from an output of a truly random function [Gol01]. For instance,
when we access a website in a secure way, thus using tansport layer secu-
rity (TLS) (the s in https), the content is (normally) encrypted using a sym-
metric block cipher [DA99]. Currently, one of the most common block ciphers
is the Advanced Encryption Standard (AES) [DR98]. And block ciphers like
AES can also be seen as PRFs.

Another use case for PRFs is in the context of privacy-preserving searchable
symmetric encryption (SSE) [SWP00; Goh03; Cur+06]. In the (currently) typical
way, a client uploads along with some encrypted data, also an encrypted index
for these data items to a server. Now, when a client wants to search on the
encrypted data on the server, essentially four steps are necesary:

0. as a note, the client used key k to create the encrypted index;
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1. the client locally encrypts the keyword kw, using a PRF such as AES
with a key k: kwe = EncAES

k (kw);
2. then, the client sends the encrypted keyword kwe to the server;
3. now, the server uses the encrypted keyword kwe to search on the en-

crypted index for matching data items;
4. finally, the server responds with the matching data items.

This way, clients can search on their encrypted data items while the server
does not learn the corresponding keywords.

Though, there is one drawback with this SSE approach. When a client, say
Dave, shares his data items on the server with another client, say Emma,
Emma also needs key k in order to search remotely on Dave’s encrypted data
items. Thus, there is the challenge of secure key exchange; and the challenge
grows linearly with the number of “shared clients”. Figure 1.3 illustrates the
typical SSE approach.
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Figure 1.3: The typical multi-user SSE approach, where the data owner (Dave) needs to share a
key with other users (e.g. Emma).

One solution to this challenge is provided by leveraging MPC. Specifically,
PRF evaluations in MPC, and it works as follows:

1. Dave uploads some encrypted data items with an encrypted index, using
key k;
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2. Dave splits k into n parts onto n MPC nodes;
3. Dave shares the encrypted data items with Emma. And now, Emma

wants to search on Dave’s encrypted data for keyword kw;
4. Emma splits kw into n parts and sends each part to the corresponding

MPC node;
5. the MPC nodes compute the encrypted keyword kwe, and each node

returns kwei to Emma;
6. finally, Emma can reconstruct the different parts to the encrypted key-

word kwe, and as in the typical way, Bob can use kwe to search on Dave’s
encrypted data.

In the “MPC way”, the challenge of secure key exchange is shifted to trusting
MPC nodes. And there exist strong MPC protocols which guarantee security
even when all nodes bar one are malicious. However, this challenge does not
grow linearly with the number of “shared clients”. Furthermore, as “shared
clients” do not get the key k, revocation of access might be easier; for instance,
it might not be necessary to re-encrypt the index with another key k′. Figure 1.4
illustrates the multi-user SSE approach using MPC.

Also, please note that we do not address the actual decryption of shared
data items. Though, as with the encryption of the keyword kw, MPC can also
be leveraged to compute the decryption of data items without knowing k.
Moreover, this kind of distributed PRF evaluation can be interesting for many
applications. Actually, whenever a PRF is evaluated and k needs to be shared.
For instance, to search for items in an encrypted database, which reflects the
previously mentioned application of searching on encrypted data items. Or
even for a single user to have a secure (secret-shared) backup of k.

More general, in the MPC setting the input, the key, or the output of a
PRF evaluation might be secret-shared, or even all of them. As described
by [Gra+16], PRFs which allow to perform evaluations in MPC efficiently, are
so-called MPC-friendly PRFs. This new requirement for PRFs heralds the dawn
of a new era: MPC-friendly cipher design.

The challenge: ease of evaluations. Normally, new ciphers are created ana-
lytically based on their requirements. These requirements comprise (usually)
efficiency and security. Then, when a new cipher has been created, the cipher
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Figure 1.4: The multi-user SSE approach leveraging MPC, where the data owner (Dave) splits
the key among n MPC nodes. In this example n = 3. Other users which got access
to the data (e.g. Emma), can request an encrypted keyword from the MPC nodes.
Please note that the nodes share only parts of the data; so if enough nodes are
honest, they do not get to know the plain data. How many enough is, depends on
the underlying protocol.

has to be benchmarked in the envisioned environments. This benchmarking
allows to (1) evaluate the general performance of the cipher and (2) compare
the cipher with other ciphers in this area, based on sound metrics; such as the
runtime of the execution.

[Gra+16] benchmarked five PRFs which were evaluated in MPC. AES is very
efficient for plaintext data. However, in the MPC setting, AES does not perform
so well; especially when compared to other PRFs, like Efficient Encryption
and Cryptographic Hashing with Minimal Multiplicative Complexity (MiMC)
or Legendre (Leg). In their paper, [Gra+16] compared the different PRFs in a
local area network (LAN) and a wide area network (WAN) using two players,
one underlying MPC protocol, and some parallel execution. Now, it would be
interesting to see the performance of the PRFs also for, e.g., three players, as
well as different protocols and settings; like comparing the different parallel
executions. Though, this benchmarking of different settings usually works
like this:

9



Chapter 1 Introduction

1. Manually. . .

a) . . . compile the program (one PRF) with the right settings;
b) . . . execute the program in the right environment, like two players;
c) . . . parse the program-execution’s output;
d) . . . collect the data of the different metrics;
e) . . . visualize the results by, e.g., creating a graph.

2. Repeat this manual process for all combinations of PRFs, environments,
and settings.

Another challenge in the area of MPC-friendly cipher design is to get a clear
overview of the different metrics and potential environments for programs
evaluated in MPC. These environments reflect use cases in potential real-life
scenarios.

Thus, the benchmarking of several MPC programs, like several PRFs, consid-
ering MPC-related metrics simulated in different environments with various
settings, is a cumbersome process; up until now .

1.1 Goals & Contributions of this Thesis

Solving the identified challenges of the previous section is the primary goal
of this thesis. Hence, we aim to (1) ease the cumbersome process of bench-
marking different settings and (2) shed more light on MPC-related metrics
and (potentially) relevant settings. Next to this primary goal, we also aim to
showcase the results in a restricted environment with a subset of the identified
settings.

By achieving these goals, our main contributions of this thesis are fourfold:

1. Creation of the benchmark framework Benchmarking for MPC (b4M)
for the MPC-engine SCALE-MAMBA (SCALE);

2. Identification of relevant benchmark metrics (i.e. requirements), for

a) programs evaluated in MPC in general and also
b) specifically for MPC-friendly PRFs;

3. Identificaton of interesting and (potentially) relevant
benchmark settings and questions;

10
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4. Benchmarking and evaluation of the two use cases

a) 3-players with (basically) no network restrictions
(LAN), and

b) 3-players which are connected within a limited network
(WAN).

1.2 Outline

The story of this thesis continues as follows:

• In Chapter 2, Secure Multi-Party Computation (MPC), we
give some background information and further references to MPC.
• In Chapter 3, Benchmarking PRFs for MPC, we

present the selected PRFs for showcasing the benchmark framework,
identify relevant MPC-related metrics (i.e. requirements) and bench-
mark dimensions, show our approach for tackling the benchmarks for
this thesis, and, finally, we introduce our created benchmark framework
Benchmarking for MPC (b4M).
• In Chapter 4, Performance Evaluation & Recommendations, we

describe our benchmark environment, give a comparison with the
benchmarks of the paper by [Gra+16], and further showcase b4M with
two 3-player use cases; one in a local area network (LAN), and one in a
wide area network (WAN).
• In Chapter 5, Future Work, we

outline potential future work in the area of (1) the (identified) benchmark
metrics, dimensions, and questions, (2) the benchmark framework b4M,
and (3) PRF evaluations in MPC.
• In Chapter 6, Conclusion, we

conclude this thesis.

11



Chapter 2

Secure Multi-Party Computation
(MPC)

This chapter briefly mentions essential building blocks for secure multi-party
computation (MPC).

2.1 Definitions & Notations

Throughout this thesis, we note the following definitions and notations:

• “ $←−” means to get a value uniformly at random.
• Secret-shared variables are written with square brackets; for instance, [s]

denotes the secret-shared representation of the variable s.
• “XORing” in this thesis means to simply add two elements in Fp.
• Programs evaluated in MPC, thus, e.g., the MAMBA bytecode for

SCALE-MAMBA (SCALE), are throughout the thesis simplified called
MPC programs. Please see Section 2.6 for further details on SCALE’s
approach.
• MPC nodes participating in the distributed computation are called

players.

12



Chapter 2 Secure Multi-Party Computation (MPC)

2.2 Secret-Sharing-based MPC

As MPC based on Shamir’s secret sharing is one of the most common MPC
techniques, in this focus we mainly focus on this approach. There exist differ-
ent variants of it; for instance Linear Secret Sharing, Additive Secret Sharing,
Replicated Maurer, or Replicated Reduced.

2.3 Security Models

In terms of security, we mainly distinguish between active and passive security
models in MPC.

Active Security. In an active security model, we assume that corrupted par-
ties actively disturb the protocol. One way of disturbing is to send malformed
input to another party. Another way of disruption is to abort the message and
send nothing at all to other parties.

Passive Security. In a passive security model, we assume that corrupted
parties behave like in the semi-honest model. In the semi-honest model no party
disturbs the protocol, they try to get as much information as possible from
the data they receive anyways.

Player corruptions. There exist different ways how various player corrup-
tions are reflected in the description of MPC protocols. For instance, t-
threshold, Q2, Q3, or fully-malicious. t-threshold describes the security for
an MPC protocol of up to t corruptions.

The security models of MPC are further described in Section 3.2.4.

13



Chapter 2 Secure Multi-Party Computation (MPC)

2.4 Protocols

There exist different approaches, so-called protocols, to tackle MPC. In this
thesis, we use the Smart-Pastro-Damgård-Zakarias (SPDZ) protocol.

2.5 Circuits

MPC programs can either be evaluated in an arithmetic, garbled, or MArBled
(mixed arithmetic and boolean) circuit.

2.6 MPC Engines

There exist several MPC engines, http://www.multipartycomputation.com/
mpc-software and https://github.com/rdragos/awesome-mpc give a com-
prehensive overview of the different engines and their properties. In this
thesis, we use the MPC-engine SCALE-MAMBA (SCALE).
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Chapter 3

Benchmarking PRFs for MPC

This chapter first describes our selected pseudo-random functions (PRFs) for
benchmarking and the requirements on the execution of a secure-multi-party-
computation (MPC) program. Then, based on the requirements, we show our
benchmark dimensions and our benchmarking plan. Finally, we describe our
benchmarking framework Benchmarking for MPC (b4M).

3.1 Selection of PRFs

This section describes our selected PRFs for benchmarking. First, we describe
the criteria and process of selecting the PRFs for this thesis. Then, we describe
for each PRF (1) briefly the background, (2) the used approach, (3) potential
variants, if they exist, (4) suggested security parameters, and (5) how the PRF
is evaluated using MPC.

3.1.1 Choosing PRFs

The baseline. As the paper by [Gra+16] serves as starting point for this thesis,
the used PRFs in this paper also serve as starting point for the selection of
PRFs. The main focus of the paper is to benchmark primarily ciphers operating
on Fp natively, for large p. Such ciphers are well suited for arithmetic circuits,
and are more costly to realize with garbled circuits [KPR18].

When MPC started to become practical, many people used the Advanced
Encryption Standard (AES) [DR98] to perform benchmarks of PRF evaluations
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in MPC. Though, it was not designed for use cases of, e.g., a low multiplicative
depth, and thus is not a natural choice for MPC. The PRF Low Multiplicative
Complexity (LowMC) [Alb+15], on the other hand, was designed for, e.g., a
low multiplicative depth (hence the name LowMC ). But both AES as well
as LowMC operate natively on F28 and F2 respectively. Because of these facts,
[Gra+16] used AES and LowMC primarily only as reference comparison to
the, back then, state of the art of PRFs for MPC. Thus, we do not include AES
and LowMC in the benchmarks of this thesis.

Furthermore, [Gra+16] used the elliptic-curve variant of Naor-Reingold (NR)
[NR97], and SCALE-MAMBA (SCALE) does not support elliptic curves out of
the box. Hence, we do not include NR either. Therefore, our baseline PRFs are:
Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative
Complexity (MiMC) [Alb+16] and Legendre (Leg) [Dam88; Gra+16].

The successors. At the time of writing this thesis, MiMC has two succes-
sors: Generalized Feistel MiMC (GMiMC) [Alb+19b] and HADES MiMC
(HMiMC) [Gra+20]. As these succesors further improved in the area of Fp, for
large p, we include them for the benchmarks in this thesis.

Further PRFs. Apart from the mentioned PRFs, there exist of course more.
For instance, the encoded-input PRF by [Bon+18], or Rescue [Aly+19]. Though,
for showcasing b4M and giving example evaluations, we limit ourselves to
the aforementioned PRFs.

Thus, our list of selected MPC-friendly PRFs for benchmarks of this thesis
comprises:

• MiMC,
• GMiMC,
• HMiMC, and
• Leg.
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3.1.2 Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity (MiMC)

Background. LowMC was published at EuroCrypt 2015 and was one of the
first ciphers which was specifically designed for areas where a low multiplica-
tive depth in the computation circuit is important. Such areas are, e.g., MPC
and Succinct Non-interactive Arguments of Knowledge (SNARKs). LowMC
was able to outperform the competitors at that time. However, there were still
little to no ciphers which natively support operations on Fp, for large primes
p. Though, this property is especially relevant for MPC when computing in
an arithmetic circuit. This need led to the initial idea of MiMC [Alb+16] (Asi-
acrypt 2016); thus, somehow it can be seen as a kind of successor of LowMC
(there is also the similarity in the name ).

Approach. MiMC provides three cryptographic primitives: (1) a block cipher
(PRF), (2) a permutation, and (3) a (permutation-based) hash function. The
primitives operate either in Fp, where p is a prime, or in F2n . In this thesis we
focus on the block-cipher primitive operating in Fp.

In order to achieve the low multiplicative depth for large Fp, MiMC takes up
a (relatively old) design idea by Knudsen-Nyberg (from 1995); namely to use
F(x) = x3 as round function [NK95]. This round function has the advantage
that it does not need too many multiplications, as in contrast to using, e.g.,
an Sbox. One condition for the exponent, in this case 3, and the prime p is:
gcd(3, p− 1) = 1. This condition ensures that we get a full permuation, which
is required for the security guarantees of the PRF.

MiMC takes as input (plaintext) an element in Fp. The key and round con-
stants, as well as the output (ciphertext), are in Fp too. In each round, first,
the current state, key, and a random round constant get XORed; and second,
the cubing round function is applied to update the current state. The state
is initially the plaintext and the first round constant is 0; whereas the other

round constants ci are chosen uniformly at random (ci
$←− Fp). When the

defined number of rounds have been performed, the key is XORed to the
current state one more time to give us the ciphertext. One encryption of MiMC
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looks then as follows:

y0 = (x⊕ k ⊕ c0)
3

yi = (yi−1 ⊕ k⊕ ci)
3

i = 1, . . . , r− 1
y (= the output) = yr−1 ⊕ k

(3.1)

whereas the XORing of the constant c0 is grayed out because the value of c0 is
0, and r denotes the number of rounds. Figure 3.1 represents the encryption
process.

x

k k k k

c1 cr−1

33 3

y

r rounds

Figure 3.1: One encryption of MiMC. The first round has no constant because c0 is defined to
be 0.

Variants of MiMC. Besides the aforementioned approach of MiMC, there
exist also other, slightly modified, variants. One of these approaches is to
use a Feistel network. When we use a Feistel network, in each round two
plaintext blocks get processed. Due to this “double processing” of plaintext
blocks, the number of rounds need to be doubled too. The encryption process
works basically the same, only the round function is different:

xL||xR → (xL ⊕ k⊕ ci)
3 ⊕ xR||xL (3.2)

Figure 3.2 represents the encryption process of MiMC-Feistel. As we have for
each round one more XOR and the number of rounds need to be doubled,
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the encryption process should be slightly slower than the regular variant.
However, when we need to perform a decryption, MiMC-Feistel is likely
faster because for MiMC-Regular we need to compute multiplicative inverses.
The multiplicative inverse of x3 is slower because they need more computation
steps than the “simple” cubing:

x = y
2n+1−1

3 (3.3)

For more details on computing the inverse, please refer to the original MiMC
paper [Alb+16].
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Figure 3.2: One encryption of MiMC-Feistel. The first round has no constant because c0 is
defined to be 0.

Another variation is to use an extended key size. This extension does not use
the same key for each round, but introduces a larger one; for instance, ε-times
larger. Then, in the individual rounds, the keys get chosen iteratively over
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these ε keys. One round with an extended key size looks like this:

Fi(x) = (x⊕ ki mod ε ⊕ ci)
3 (3.4)

Since these additional keys only add one more modulo operation and a lookup
(e.g., in a table) for each XOR with the key, the extended key size should not
significantly increase the runtime. On the other hand, the extended key size
makes certain algebraic attacks more difficult; such as the greatest-common-
divisor (GCD) attack.

A further approach is to use different round functions:

Fi(x) = (x⊕ k⊕ ci)
d (3.5)

Whereas [Alb+16] were limiting themselves to specific values of d. d has to be
either (2t − 1) or (2t + 1), and t has to be a positive integer. However, they also
state that for Fp, these kind of exponents do not offer an advantage over d = 3.
Furthermore, as with d = 3, the condition gcd(d, p− 1) = 1 has to be fulfilled
to guarantee full permutation. This condition holds for MiMC-Regular, but
not for MiMC-Feistel. For further details on the choice of the exponent d,
please refer to the original MiMC paper [Alb+16].

Security parameters. In the context of MPC, the selection of appropriate
security parameters is a twofold process. First, we choose the parameters for
MPC; such as the prime size or amount of shares. Second, based on the choice
of Step One, we choose the parameters for the PRFs.

A common prime size for MPC programs is 128-bit.For MiMC, we have to
choose the number of rounds r accordingly. We do this based on the analysis
by [Gra+16] (the baseline paper). If there is no restriction on the amount of
encryptions for an attacker: r = dlog3(p)e. Otherwise, if we can restrict the
amount of encryptions n for an attacker, such that n < p:

r = max{dlog3(n)e, dlog3(p)− 2log3(log3(p))e} (3.6)

Since the introduction of MiMC, its security has been further evaluated. For
instance, [Eic+20] successfully attacked all rounds of the F2n -variant of MiMC.
As a consequence, the number of rounds for the F2n -variant needs to be
increased. However, please note that for the variant used in this thesis, the
Fp-variant of MiMC, the security is still intact (so far).
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Main applications. The main intended application of MiMC was for SNARKs
[Ben+13]; by using MiMC as hash function. This is interesting, e.g., for the
digital privacy-preserving currency Zerocash [Ben+14]. Another interesting
area for this new kind of cipher design is Scalable Transparent ARgument of
Knowledge (STARK) [Ben+18]. From August 2019 until March 2020, Stark-
Ware [Sta20a] ran the STARK-friendly hash challenge [Sta20b; BGL20] to find
a suitable (new) cipher meeting the requirement of being STARK-friendly.
MiMC’s successors, GMiMC and HMiMC, were two of the three candidate
families for this new STARK-friendly hash primitive. Moreover, as shown
by [Gra+16], MiMC is also a competitive block cipher in the area of MPC.

MiMC for MPC. With regard to actually implementing the PRF, [Gra+16]
showed that there is more than one way; at least for secret-sharing-based
MPC. One cubing (x3) can be realized either in the basic, or “naive”, way, or
in the “cube” way.

In the basic way, we first compute the square: x2 ← x · x. Then, we compute
the cube: x3 ← x2 · x. Thus, we have one squaring and one multiplication
per round, which gives us for r rounds: 3 × r openings in 2 × r rounds of
communication.

In the “cube” way, we first precompute for each round the following 3-tuple:

([t], [t2], [t3]), whereas t $←− Fp. Then, in the actual round, to compute the cube
of the input x, we follow a two-step approach:

1. Compute and open an intermediate value tmp, which serves as hidden
representation of x:
tmp = open(x− t)

2. Compute the secret-shared representation of x3:
[x3] = (3× tmp× [t2]) + (3× tmp2 × [t]) + (tmp3 + [t3]),
which can be computed essentially linearly in the Smart-Pastro-Damgård-
Zakarias protocol (SPDZ).

With the “cube” way in SPDZ, we need for the precomputation 2× r openings
in r rounds of communication, when we take a 2-tuple ([t], [t2]) and compute:
[t3] ← [t] × [t2]. For the actual round, we essentially only need 1 opening.
Thus, when we do not consider the negligible communication cost during the
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actual round, we end up in total with 3× r openings in r rounds of communication.
Hence, r rounds fewer communication than in the basic way.

3.1.3 Generalized Feistel MiMC (GMiMC)

Background. Due to the success of MiMC, further similar approaches with
respect to Feistel networks have been tried out. This follow-up work of MiMC-
Feistel, led to the birth of GMiMC [Alb+19b] (ESORICS 2019).

Approach. The standard version of GMiMC uses the same cubing round
function as MiMC, F(x) = x3, but different Feistel structures. Due to these
Feistel structures the (approximately) doubling of the number of rounds r is
not required anymore; r is much smaller. And because of these fewer rounds
GMiMC is even more competitive than MiMC.

Variants of GMiMC. The different variants of GMiMC are mostly reflected
in the different Feistel structures. Specifically, [Alb+19b] introduced four
Feistel structures for GMiMC. Other possibilities of variations lie in the area of
using different key schedules or different exponents for the round functions.

One of the four Feistel structures is a contracting round function (CRF).
GMiMC-CRF makes use of an unbalanced Feistel network (UFN), and can be
written as:

(Xt−1, Xt−2, . . . , X1, X0)

→
(Xt−2, Xt−3, . . . , X0, Xt−1 + F(Xt−2, . . . , X0)

(3.7)

with the key-dependent round function in the i-th round defined as:

F(Xt−2, . . . , X0) =

(
t−2

∑
j=0

Xj + ki + ci

)3

(3.8)

Figure 3.3 represents one round of GMiMC-CRF.
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F

t branches

Figure 3.3: One round of GMiMC with a contracting round function (CRF) in an unbalanced
Feistel network (UFN) (GMiMC-CRF), using t branches.

Another variant is using an expanding round function (ERF), which is also
embedded in a UFN. GMiMC-ERF can be written as:

(Xt−1, Xt−2, . . . , X1, X0)

→
(Xt−2 + Fi(Xt−1), Xt−3 + Fi(Xt−1), . . . , X0 + Fi(Xt−1), Xt−1)

(3.9)

with the key-dependend round function in the i-th round defined as:

F(Xt−1) = (Xt−1 + ki + ci)
3 (3.10)

Figure 3.4 represents one round of GMiMC-ERF.

GMiMC with a Nyberg’s generalized-feistel-network round function (NGF)
embedded in a balanced Feistel network (BFN) is the third variant. GMiMC-
NGF can be written as:
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F

t branches

Figure 3.4: One round of GMiMC with an expanding round function (ERF) in an unbalanced
Feistel network (UFN) (GMiMC-ERF), using t branches.

(Xt−1, Xt−2, . . . , X1, X0)

→
(Xt−2 + F0(Xt−1), Xt−3, ..., X0 + F(t/2)−1(X1), Xt−1)

(3.11)

with the key-dependend round function in the i-th round defined as:

Fj(X) = (X + k j+i· t
2
+ cj+i· t

2
)3 (3.12)

Figure 3.5 represents one round of GMiMC-NGF.

The fourth variant of a Feistel structure for GMiMC is using a multi-rotate
round function (MRF), embedded in a BFN. GMiMC-MRF can be written as:
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F0

t = 4 branches

F1

Figure 3.5: One round of GMiMC with a Nyberg’s generalized-feistel-network round function
(NGF) in a balanced Feistel network (BFN) (GMiMC-NGF), using t = 4 branches.

(Xt−1, Xt−2, ..., X1, X0)

→
(X t

2−1 + F0−s mod ( t
2 )
(Xt−1− f x(s,0)), X t

2−2 + F1−s mod ( t
2 )
(Xt−1− f x(s,1)),

..., X0 + F t
2−1−s mod ( t

2 )
(Xt−1− f x(s, t

2−1)), Xt−1, ..., X t
2+1, X t

2
)

(3.13)

with the key-dependend round function in the i-th round defined as:

Fj(X) = (X + k j+i· t
2
+ cj+i· t

2
)3 (3.14)

Figure 3.6 represents one round of GMiMC-MRF with a branch size t of 4.

In terms of the different key schedules and different exponents for the round
function, it is the same as for GMiMC’s predecessor MiMC. When using a
univariate key schedule (always the same key for each branch and round),
the PRF is less secure, than using a multivariate key schedule (different keys
for the branches and rounds). However, for MPC this should not matter, as
the different keys can be precomputed. When we use a different exponent
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F0

t = 4 branches

F1

Figure 3.6: One round of GMiMC with a multi-rotate round function (MRF) in a balanced
Feistel network (BFN) (GMiMC-MRF), using t = 4 branches.

than 3, and following the restriction that the exponent needs to be odd and
in the form of 2a − 1, for some integer a, we do not get any advantage or
disadvantage. Thus, we follow the approach of the authors of GMiMC and
use the exponent 3.

Security parameters. Same as for MiMC, we first choose a prime size,
and then an according number of rounds r. Based on the security analy-
sis of [Alb+19b], r should be the maximum number of rounds of a given set
of considered attacks. These attacks are in the area of statistical and algebraic
attacks. Moreover, [Bey+20] further analyzed the security of GMiMC(-ERF)
and also HMiMC, and revealed new attacks against those two primitives.
For GMiMC(-ERF) the authors found a zero-sum distinguisher for the full
permutation. Thus, for practical security, the original minimum number of
rounds for GMiMC should be updated. For the details of the specific attacks
and their formula for calculating the minimun number of rounds, as well as
the whole security analysis, we refer to the corresponding papers.
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Main applications. As with its predecessor MiMC, GMiMC is a competitive
PRF for SNARKs and MPC. In the area of STARK, GMiMC is one of the
three candidate families for the STARK-friendly hash challenge [Sta20b; BGL20].
Furthermore, GMiMC is also a competitive hash function in the area of post-
quantum-secure signature schemes. In this area, GMiMC offers the benefit of
small signature sizes.

[Alb+19b] concluded that GMiMC-ERF is the most competitive variant in the
area of MPC. Thus, for our benchmarks in this thesis we will only consider
GMiMC-ERF.

GMiMC-ERF for MPC. The function evaluation, x → x3, is the same as
for MiMC. Further, t− 1 branches get “XORed” with x3, and this is a simple
addition in Fp. Therefore, the complexity from the MPC point of view, openings
and rounds of communication per round r, are for GMiMC-ERF the same as for
MiMC. Hence, the main advantage of GMiMC-ERF over MiMC is the faster
processing of more than one branch t.

3.1.4 HADES MiMC (HMiMC)

Background. After the success of MiMC and GMiMC in the area of MPC,
the following question came up: Are there also other (relatively old) design ideas
which could be benefical in the area of MPC? This question led to the successor of
MiMC and GMiMC, HADES MiMC (HMiMC) [Gra+20] (Eurocrypt 2020).

Approach. HMiMC is combining two worlds: substitution-permutation net-
works (SPNs) and partial substitution-permutation networks (P-SPNs). In the
beginning and end of one encryption process, there are r f rounds of SPNs
(i.e., full S-box layers). In between these SPN rounds, there are rp rounds of
P-SPNs (i.e., a mixture of S-box layers and identity mappings). One round
consists of three steps:

1. add the round key,
2. apply the substitution, with . . .

a) . . . full S-box layers for SPN rounds (r f ), and
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b) . . . partial S-box layers combined with identity mappings for P-SPN
rounds (rp), and finally

3. multiply the whole state with a matrix M.

The i-th round key is produced by adding the key k with the i-th round
constant. In the MPC case, each branch uses the same round key.

Applying the substitution (S-box layers) means that the state gets cubed.
Hence, this round layer is the same concept as with MiMC and GMiMC. And
as with HMiMC’s predecessors, to achieve a full permutation, we have to
choose an appropriate prime p, such that p 6= 1 mod 3. For branches with no
S-box layer in a P-SPN round, the identity mapping is applied. Applying the
identity mapping means that such a branch is forwarded unchanged to the
next round layer.

M is a maximum distance separable (MDS) matrix, which guarantees that
each branch depends on each other branch in each round. The whole state,
so all t branches, gets multiplied with the t× t MDS matrix M. The result of
the multiplication is the input state for the next round. In the last round, the
multiplication with M is omitted.

After the last round, the key, with a random round constant, gets added
one more time to produce the ciphertext. Figure 3.7 represents one round of
HMiMC’s SPN. Figure 3.8 represents one round of HMiMC’s P-SPN. Figure
3.9 represents the last round of HMiMC.
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Figure 3.8: One P-SPN round of HMiMC (with partial S-box layers). In the rounds with P-SPN,
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one S-box. The other branches apply the identity mapping; meaning that the state
gets forwarded unchanged to the next round layer. As with the SPN round, when
adding the i-th round key, also an i-th round constant is added.

Variants of HMiMC. HMiMC is very parameterizable, and thus there are
many variants possible. One parameter to tune the PRF is the number of
rounds r f (start and end layer) and rp (middle layer). Though, for r f , there
have to be at least r fstat rounds of full S-box layers in the beginning and end.
These r fstat rounds are required to guarantee security against certain statistical
attacks. Besides that, the other rounds of r f , let us call them r′f , as well as rp

can be chosen arbitrarily in a defined range. This defined range is given by
the number of rounds r. Let us denote r′ as: r′ = r− 2 · r fstat ; the number of
rounds which can be freely chosen as r′f or rp. The condition on these rounds
is: r′f + rp = r′, for r′f , rp ≥ 0; this means that r′f or rp could even be 0. Thus,
all in all we get for the total number of rounds r the following:

r = 2 · r fstat + r′f + rp (3.15)

whereas r fstat is fixed, and r′f as well as rp can be chosen arbitrarily (≥ 0
though). Figure 3.10 represents one encryption of HMiMC; thus also the
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concept of the different number of rounds r fstat , r′f , and rp.
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Figure 3.10: One encryption of HMiMC. The r fstat rounds, which are necessary in the beginning
and end of the encryption process, are shown in normal blue. The variable rounds,
r′f and rp, are shown in lighter blue and lighter green respectively. In the last
round, the multiplication with the matrix M is omitted; for reasons of simplicity
and space we do not show this in this figure. After processing r rounds, the state
gets added one more time with the key k and a random constant.
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Another parameter is the amount of S-box layers s in one round of a P-SPN:
1 ≤ s < t, whereas t represents the branch size (amount of messages processed
in one encryption). Thus, there has to be at least one S-box layer in a P-SPN
round. Furthermore, we can also change the degree of the S-box’s function.
Though, as with HMiMC’s predecessors MiMC and GMiMC, different degrees
than 3 do not offer a significant advantage in terms of performance.

The MDS matrix M is parameterizable too. The designers of HMiMC, [Gra+20],
state that M can be chosen arbitrarily. However, [KR20] concluded that ac-
cording to certain values of M, the security of HMiMC either increases or
decreases. In any case, different values of M should not have a significant
impact on the performance of the execution, as all operations are in Fp.

The last parameter is the key schedule. HMiMC differentiates two (use) cases:
(1) the normal, or “generic”, case, and (2) the MPC case. For the MPC case,
as explained above, each branch has the same key added with an i-th round
constant. For the normal case, first, each branch has an own key kb; second,
the round keys get multiplied with a matrix Mk. Hence, every branch has
its own key value and every branch depends on every other branch. Mk can
either be equivalent to M or has different values.

Security parameters. As with MiMC and GMiMC, also with HMiMC we
first define the prime size (in the MPC case). Then, we choose an according
number of rounds r, so that HMiMC is secure against all identified attacks
by the designers [Gra+20]. For the MPC case, less rounds are required than
for the normal case. These fewer rounds are possible because an adversary
is restricted to use a maximum of

√
p data in the MPC case. However, as

mentioned for GMiMC, [Bey+20] revealed new attacks against GMiMC and
also HMiMC. For HMiMC, the authors propose a pre-image attack on certain
linear layers. Though, the pre-image attack is independent of the number of
rounds. Thus, for this attack the linear layer has to be chosen properly. For the
details of the specific attacks and their formula for calculating the minimun
number of rounds, as well as the whole security analysis, we refer to the
corresponding papers.
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Main applications. One of the main intended use cases of HMiMC is in the
area of MPC. For MPC HMiMC is a competitive PRF, and outperforms its
predecessors MiMC and GMiMC, as well as Leg, in the throughput metric
(throughput is going to be explained later on in Subsection 3.2.1. Only when
the branch size t is ≥ 16, GMiMC-ERF achieves a better throughput. The
designers of HMiMC relate this “fallback” for t ≥ 16 to the computation of
the, then bigger, t× t MDS matrix M.

Furthermore, as HMiMC aims to minimize the multiplicative depth (non-
linear operations), the PRF could also be competitive in the area of SNARKs.
In the area of STARK, HMiMC is one of the three candidate families for the
STARK-friendly hash challenge [Sta20b; BGL20].

HMiMC for MPC. The “XORing” of the key and the constants to the
branches can be performed linearly and locally. For the S-box layer, as for
its predecessor MiMC, we have the function evaluation of x → x3. Thus,
we can either realize the S-box layer in the basic or in the “cube” way. The
multiplication of the state with the MDS matrix M represents a summation of
multiplications of a secret-shared value (state elements) with a public scalar
(matrix element). For the summation it is the same as for the “XORing” of,
e.g., the key. The multiplications do not require communication either, but
require some more computation effort.

Hence, as with MiMC, the main bottleneck in the MPC case for HMiMC is
the function evaluation in the S-box layer. In addition, HMiMC also has the
multiplication with M. However, as with GMiMC, HMiMC can process more
than one branch t per encryption. This processing of more than one branch
per encryption, allows GMiMC-ERF and HMiMC to outperform MiMC; such
as in the throughput metric.

3.1.5 Legendre (Leg)

Background. The underlying concept of Leg is already a relatively old idea.
The basic concept had been already introduced in the mathematical com-
munity at around the 1930s. For practical cryptography, Damgård was the
first who introduced Leg with a key as a pseudo-random generator (PRG)
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in 1988 [Dam88]. Since then many years passed. And just recently, due to
the practical relevance of MPC, Leg got introduced as MPC-friendly PRF
by [Gra+16] (CCS 2016).

Approach. Leg makes use of Fermat’s little theoreom. Given a prime p and
a positive integer x, Leg outputs either 1 or −1 [Kho19]:

Leg(x) = x
p−1

2 mod p (3.16)

If x is a square of some integer, say x = y2, then Fermat’s little theorem
applies [HS08]:

y
2×(p−1)

2 mod p =

yp−1 mod p =

1
(3.17)

If x is not a square of some integer, but > 0, Leg outputs −1:

x
p−1

2 = −1 (mod p)

x
p−1

2 = p− 1 (mod p)

xp−1 = (p− 1)2 (mod p)

1 = p2 − 2× p + 1 (mod p)
1 = 1 (mod p)

� (3.18)

The only difference occurs when the input x is 0; then also the output of Leg
is 0.

Thus, the essential security assumption of Leg’s PRG is based on the fact,
that the “quadratic-value” representation of x (= y2) is uniformly distributed.
[Dam88] conducted experiments for the outcome of Leg and concluded that
this “quadratic-value” distribution, mod the prime p, occurs uniformly in
terms of the statistics of the experiment.
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[Dam88] introduced a keyed version of this basic Leg approach; denoted as
Legk(x). This keyed version makes use of a key k, when given the input x:

Legk(x) = (x + k)
p−1

2 mod p (3.19)

Hence, now the sum of x + k needs to be the square of some integer y (mod p)
to get 1 as output. [Gra+16] called this the “Shifted-Legendre-Symbol Problem”.
Leg is a special case where the exponent (e) is of the form (p−1)

2 . More generally,
[Ver08] called these kinds of mathematical problems, where we add the key
to the input and apply the exponent e, the “Hidden-Root Problem”.

Though, given the input x ∈ Fp, so far we basically only get 1 bit as output
(1 or −1; given that the input 6= 0). Thus, we have the PRG as described
by [Dam88]. In order to encrypt x, to get a proper PRF, we need to apply the
basic approach of Leg more often.

When using Leg as PRF for MPC, [Gra+16] first, shifted the output of Leg to
be either in 1, (p+1)

2 , or 0:

Legk(x) + 1
2

mod p (3.20)

So if the output of Leg is 1, it is mapped again to 1
( 1+1

2

)
. If the ouput is −1,

it is mapped to 0
(−1+1

2

)
. If the output is 0, we get 1

2 ; which we can map to
(p+1)

2 due to the nature of being in the modulo group p.

Now, to get a PRF, we have not only one Fp as key, but a matrix of Fp
elements. We consider the case where we have only one Fp element as input;
thus a branch size of one. In case we need to apply the PRF for a branch size
> 1, we can, e.g, encrypt each branch separately, or apply the CBC mode of
operation [KL14], as also stated by [Gra+16].

Variants of Leg. Instead of using a single key, we can also use d keys:
Legk0,...,kd−1

(x). With these d keys, the output of Leg is computed as:

(k0 + k1 × x + k2 × x2 + . . . + kd−1 × xd−1 + xd)
p−1

2 mod p (3.21)
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[Beu+20] also showed that, based on Leg, one can also generalize it to the
Jacobi-Symbol PRF or the r-th Power-Residue-Symbol PRF. Though, they
show in their work, that neither the Jacobi Symbol, nor the r-th Power Residue
Symbol offer a practical benefit for MPC over Leg.

Security parameters. Since Leg needs only one “round” per encrypted bit,
the essentially only parameter to tune the PRF is the key. For instance, to
have d > 1 keys per encryption, as shown in the previous paragraph. Another
approach would be to use for each encrypted bit an own key; or even combine
the two approaches (several d > 1 keys per encrypted bit). These approaches,
of larger and more keys respectively, make cryptanalysis more difficult.

Main applications. As shown by [Gra+16], Leg was not considered as a PRF
until recently (2016). In the area of MPC it is a promising cipher, especially
when the network becomes a bottleneck (as we will show later in Section 4.3).
And just more recently (2020), [BS20] introduced Leg as a basis for a promis-
ing post-quantum signature scheme; called LegRoast. Furthermore, currently
Ethereum considers Leg as a potential PRF for their next blockchain version,
the Ethereum 2.0 blockchain [Eth20; dan20; Beu+20].

Leg for MPC. In order to use Leg for MPC, we can either implement it in
a way that the output is public or secret-shared. As with the previous PRFs,
we will use the secret-shared-output variant, using the protocol as described
by [Gra+16]; shown by Protocol 3.1.

With this approach we need to produce one random square, one random bit,
and two random Beaver triples in the preprocessing phase. Please note that
the public quadratic non-residue can be chosen in the very beginning, or even
beforehand, and can be re-used. Then, during the online phase, we need to
multiply two times two secret-shared values and have one opening. Thus,
overall for the computation of an n-bit output, for the preprocessing we need
n random squares, n random bits, and 2× n Beaver triples. For the actual
computation we need 2× n multiplications and n openings in 3× n rounds
of communication.
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1 : pqnr (mod p) ← public quadratic non-residue
// is chosen and can be reused

2 : [s2]
$←− random square

3 : [b] $←− random bit

4 : [mask] ← [s2]× ([b] + pqnr× (1− [b]))

// if b = 0→ [s2]× pqnr

// if b = 1→ [s2]

5 : hidden ← open([mask]× ([input] + [key])

6 : return [output]←
(Legp(hidden)× (2[b]− 1)) + 1

2

Protocol 3.1: Given the secret-shared input and key, this protocol shows the computation of
Leg to obtain a secret-shared output.

In contrast to the approaches of MiMC, GMiMC, and HMiMC, which compute
r times a specific round function, Leg’s computation is one single computation
per bit; like only one round per bit. And as computation-wise the bits do not
depend on each other, they can be computed in parallel. Thus, theoretically
the individual rounds of communication per bit can be batched altogehter,
which would lead overall to just three rounds of communication per PRF
encryption. This parallelization of computation and communication, is an
advantage of Leg over the other PRFs.

3.2 Requirements on MPC Programs

When running an MPC program, we are usually aiming to run it as efficiently
and secure as possible. To run it most efficiently and secure, we need to find a
suitable (1) protocol and (2) underlying cipher, at least for the PRF evaluations;
but based on which metrics? The relevant performance metrics are runtime,
network data, and memory consumption. As the fastest MPC program does
not help us much in terms of privacy, when it is insecure, the security model
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is a complementary requirement. This section explains the different metrics
for MPCs programs in the order mentioned before.

3.2.1 Runtime

For runtime, the leading questions are:

• How long does it take to run the MPC program?
→ Overall Runtime (s or ms)

• How long does it take to compute one PRF encryption?
→ Latency (ms/op)

• How many PRFs can be computed in one second?
→ Throughput (ops/s)

In terms of execution of programs, runtime is the “classic” one, as it is
interesting for basically all programs and algorithms. Usually, when measuring
the timing of a program’s execution, it is only interesting how long the overall
runtime is. In some cases it might also be interesting to get the runtime for
certain sub-parts of the program. In terms of PRFs for MPC programs, the
runtime metric itself is split into three sub-categories: overall runtime, latency,
and throughput.

Overall Runtime

To get the overall runtime of PRF encryptions, we simply start a timer right
before the execution and stop the timer when the program is finished. How-
ever, the overall runtime of all protcols in SCALE can again be split. Therefore,
in addition to the overall runtime, we can also measure the runtime of SPDZ’s
preprocessing and online phase.

The preprocessing phase is independent of the program, but does the heavier
computation (triple generation). The online phase depends on the program
and on the preprocessing-phase’s triples, but the computation is not so heavy.
As the two phases differ in their dependencies and amount of computation,
taking separate timings for the preprocessing and online phase allows to
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optimize separately. Using this approach, we can take a deeper look into the
execution process and optimize in a more fine-grained way.

Thus, for the overall runtime it is interesting to measure the timings for the
execution of the

• whole program,
• preprocessing phase, and
• online phase.

The runtime’s unit for these measurements is usually given in seconds: s. If a
program is very short or the execution is very fast, way below a second, the
unit can also be given in milliseconds: ms.

Latency

In terms of PRF encryptions in an MPC program, besides the overall runtime
of the whole program or a specific phase, it is also interesting how long it
takes to perform one PRF encryption; this is referred to as the latency. The
unit of latency is time (usually milliseconds) per operation (PRF encryption
in our case): ms/op.

Throughput

Another interesting metric for PRF encryptions in MPC, is to see how many
PRF encryptions can be performed in one second; this is referred to as through-
put. The unit of throughput is operations (PRF encryptions in our case) per a
given time frame (usually one second): ops/s.

3.2.2 Communication

For communication, the leading questions are

• How often do the players communicate with each other
during the run of an MPC program?
→ Rounds of communication (#)
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• How much data is sent and received of each player
during the run of an MPC program?
→ Network Data (MB or GB)

In order to compute the desired function in an MPC program, the players
need to exchange data. (1) How often such a data exchange occurs (rounds
of communication), and (2) how much data is transferred (network data), de-
pends on the used access structure and PRF. This dependency makes also the
communication between players an interesting metric for MPC programs.

Rounds of Communication

For the data exchange during an MPC-program’s run, the current state of the
art consists of two approaches: Either the data is exchanged in a synchronous
manner, or in an asynchronous manner [BZL20]. In an asynchronous manner
there is no real limit to the time of the data exchange, but the security guar-
antees are usually a bit lower. In a synchronous manner the time of the data
exchange is limitied, thus it must not exceed a certain time limit (like 500ms),
but the security guarantees are usually higher than for the asynchronous
approach. In this thesis we consider the synchronous approach.

This dependency on the availability for the synchronous approach means
that certain steps in the MPC protocol can only be finished, when the players
received enough data from the other players fast enough; especially for proto-
cols where data from each other player has to be received. Hence, in real-life
executions in a synchronous manner, fewer rounds of communication means
a higher probability of execution success; as the failure, due to the fact that a
player is not available for some time, is less likely. This probability of failure
increases the larger the amount of participating parties is, and the more data
is exchanged, specifically in slow or unstable network environments.

The unit for this occurring of data exchange is the amount of rounds of
communication: #.
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Network Data

As during the execution of an MPC program data is exchanged between the
players, we want to see how much data is exchanged for our chosen PRFs
in combination with the different access structures (ASXs). In a LAN-like
network environment, the data exchange is probably not an issue. But in a
WAN-like network environment the data exchange could be a bottleneck,
especially if a lot of data is exchanged.

Furthermore, in terms of network data we differ between data sent and data
received. Because for certain protocols one player might send more than other
players. In total, when summing up the sent & received data, each player
should get the same amount. However, it is still interesting to see, e.g., how
big the difference of data sent between the players is. The approach of seeing
this difference allows to optimize in the direction of uniform data distribution;
so that not one player unnecessarily blocks the execution because the player
needs to send much more data than the other players.

The unit for data received and sent typically depends on the amount of data,
but is usually given in: MB or GB.

3.2.3 Memory Consumption

For memory consumption, the leading questions are:

• How much memory do the different runtime threads consume
during the run of an MPC program?
→ Thread Memory (MB or GB)

• How much memory does each player consume
during the run of an MPC program?
→ Player Memory (MB or GB)

• How much memory does the whole run of
an MPC program consume?
→ Execution Memory (MB or GB)

Next to the runtime of an MPC program and the communication between
players, there is also a third metric, the memory consumption. Given “normal”
conditions, a relatively modern computer or server and just a few players
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(≤ 5), memory consumption should not be an issue. Though, for the follow-
ing scenarios memory consumption could become a bottleneck or even an
execution issue itself:

1. A memory-restricted environment; such as running MPC programs on
internet-of-things (IoT) devices.
Would resource-restricted IoT devices, such as a Rasperry Pi 4 [Ras20],
be able to run MPC programs?

2. An MPC protocol with many players, such as ≥ 10 players.
How does the execution scale in terms of memory?

3. For local testing, as probably not everyone has access to a server or a
dedicated cluster. In addition, sometimes one might just want to quickly
test an MPC program on the local machine.
Which MPC programs can be run on a relatively modern personal
computer in terms of memory consumption?

Memory-Consumption Aspects. With memory consumption, we mean the
random access memory of a computer, the RAM. As we are interested in
Thread Memory, we will measure the RAM usage of each runtime thread
individually. This way, we see which runtime threads need the most RAM.
Then, when summing up the Thread Memory of each runtime thread, we
compute the Player Memory. Player Memory is especially interesting for real-
life deployments in restricted-memory environments. Finally, when summing
up the Player Memory of each player, we compute the Execution Memory.
Execution Memory is specifically relevant for testing of MPC programs on
a local machine, usually a single computer. The different levels of memory-
consumption aspects allow for a more fine-grained analysis and optimization
of MPC programs, protocols, and engines. Depending on the amount of RAM
usage, the unit of the different memory aspects is usually: MB or GB.

3.2.4 Security Model

As we differ between the way (1) how a malicious player acts and (2) how
players get corrupted [Lin20], for the security model, the essential questions
are:
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• Malicious-player behaviour:

– How secure is the MPC-program’s execution against a pasively malicious
player?
→ Passive-player security

– How secure is the MPC-program’s execution against an actively malicious
player?
→ Active-player security

• Malicious-player corruption:

– How secure is the MPC-program’s execution against
static player corruptions?
→ Static player corruption

– How secure is the MPC-program’s execution against
dynamic player corruptions?
→ Dynamic player corruption

• With respect to adversaries from outside, like an eavesdropper in the
network; i.e., not malicious players:

– How secure is the MPC-program’s execution against an
adversary from outside (non-player adversaries)?
→ Outside Security

We note that, e.g, [Lin20; Lin16; Can00] further split the active-player security
and dynamic player corruption. Though, the essential difference is between
passively and actively malicious players, as well as static and dynamic player
corruptions respectively. Moreover, [Can00] introduced a general approach to
model the security of arbritary cryptographic protocols. And [Lin16] describes
a simulation technique to proof the security of, e.g., MPC in different adversary
scenarios.

Furthermore, we also note that, to the best of our knowledge, the term Outside
Security is not common in the literature. Hence, the term is introduced in this
thesis. Outside Security mainly relates to Network Security; and in the network
aspect, this can be easily omitted using, e.g., tansport layer security (TLS)
and certificate pinning. Another aspect is an intruder, or hacker, in one of the
player’s system. The intruder could, for example, try to read the processed
data in RAM.
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MPC-Protocol Selection. As the runtime, communication, and memory
consumption are metrics for the performance of an MPC program, so is the
selected security model (scenario) the metric for the program’s security level.
For an MPC program, the three security models to consider are: (1) Outside
Security, (2) Semi-Honest-Player Security, and (3) Malicious-Player Security.
Usually, when we select an MPC protocol for our MPC program, we do
not want to leak the input of the data, and sometimes also not the output.
To guarantee the data privacy for all three scenarios, we need to select an
appropriate MPC protocol.

Priority of Requirements. The metric of the desired security level is not mea-
sureable, like the performance metrics. However, usually it is more important
to guarantee the privacy of the relevant data than having a slightly faster
program execution. Though, when the execution of an MPC program is way
too slow, thus not practical, the best security does not help, as the program is
probably not chosen in real-life scenarios. Due to this practical relevance in
real-life scenarios, measuring the performance is important too.

Tackling this security-performance tradeoff is one of the thesis’ goals. We
try to choose an appropriate security level, and find the right settings for
practical performance. These settings are our so-called Benchmark Dimensions
(Section 3.3), and the overall approach of tackling this security-performance
tradeoff is the starting point of Our Benchmarking Plan (Section 3.4).

3.3 Benchmark Dimensions

Variable settings as benchmark dimensions. After the identification of the
requirements on the security level, we look for settings that meet the per-
formance requirements of the MPC-program’s execution. These settings are
tunable variables. We call these variable settings dimensions, as each vari-
able setting spans a dimension for the benchmarking of an MPC-program’s
execution. The more dimensions we have, the more complex the analysis of
finding the right settings for certain requirements on an MPC program is. The
reduction of this benchmarking complexity, is one of the primary goals of the
thesis.
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Two types of dimensions. When we look depper into the benchmark di-
mensions, we can distinguish two types of dimensions. Firstly, the chosen
environment (env); and secondly, settings for the actual MPC program (prog).
The env dimensions are basically selected by the chosen environment, such as
the network bandwidth and latency, or maybe also the amount of players. The
prog dimensions can tweak the actual program, such as parallel computation
of PRF evaluations.

Why do we also look at the env dimensions? One the one hand, simply
because it is still interesting to see the performance of the MPC-program’s
execution in the envisioned environment. On the other hand, they are still
variable settings for the execution of an MPC program, and the benchmarking
of the envisioned environment might give valuable feedback and changes
the environment. For instance, if an execution with six players would be
envisoned, but after the benchmarking one sees that this setting consumes too
much memory (RAM) for the players’ devices; this way, the amount of players
might be reduced to, e.g., three. Again, it boils down to the aforementioned
security-performance tradeoff.

This section explains our different benchmark dimensions for the MPC-
friendly PRFs in this thesis, in the following order:

• Env Dimensions

– Network
– Amount of players
– Access structure (ASX)

• Prog Dimensions

– Amount of evaluations
– Amount of parallel encryptions (batch size)
– Single Instruction, Multiple Data (SIMD)
– Amount of messages (branch size)

3.3.1 Env Dimensions

Env dimensions are basically chosen by the target environment. Though, these
dimensions are still variables for the execution of an MPC program. This
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sub-section describes the env dimensions network, amount of players, and
access structure (ASX).

Network. The network dimension determines the bandwidth and latency
of the players’ network data. We differ between the environments of a local-
area network (LAN) and a wide-area network (WAN). For LAN, the typical
bandwidth is ∼1Gbit/s with a latency of ∼0.5ms. For WAN, e.g., [Gra+16]
chose the MPC-benchmark setting to have a bandwidth of ∼50Mbit/s with
a latency of ∼100ms. Though, it is of course possible to distinguish between
different levels of WAN environments; thus simulating, e.g., a latency of
∼200ms.

Influence of network dimension. As the network has an impact on the band-
width and latency of the data exchange, this dimension influences the runtime
of the MPC-program’s execution. The other performance metrics, communi-
cation and memory consumption, should not be influenced. Given an MPC
program, this influence introduces the following benchmark question:

• Does a change in the network have a linear impact on the
runtime?

Amount of players. The amount of players determines the number of partic-
ipating parties. The more players participate in an MPC-program’s execution,
the more input is needed from other players. Depending on the chosen ASX,
a player needs input from all other players, or only from some of them. The
dimension for the amount of players is probably defined by the envisoned
environment’s use case. However, for some use cases the amount of players
might be free to choose in a range, such as between three and seven players.

Influence of amount-of-players dimension. The more players participate in
an execution, usually the more communication needs to be done. Due to the
fact of more communication, this dimension also influences the runtime and
memory consumption. Thus, this influence leads to the following benchmark
question:
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• Does an increase of the amount of players
linearly increase the three performance metrics?

Access structure (ASX). When we execute an MPC program, we need to
choose an MPC protocol, the so-called ASX. Usually, each ASX can guarantee
the envisioned security level, given the right settings. These settings are, for
instance, the amount of honest players or the modulus-prime’s bit size.

Influence of access-structure (ASX) dimension. Depending on the choice
of the ASX, more or less communication is needed. Due to this impact, the
ASX might also influence the runtime and memory consumption. Therefore,
the ASX dimension introduces the following benchmark question:

• Given an envisioned security level,
how does the ASX influence the three performance metrics?

3.3.2 Prog Dimensions

Prog dimensions define the various settings for the actual MPC program.
We selected four relevant dimensions for PRF evaluations. This sub-section
describes the chosen prog dimensions: amount of evaluations, amount of
parallel encryptions (batch size), amount of messages (branch size), and single
instruction, multiple data (SIMD).

We note that although especially the branch size and batch size dimensions
mainly correspond to benchmarking PRFs, the others are also more general
performance metrics which should guide the user to select a suitable protocol.
And for programs which are able to batch, e.g., encryptions or have several
branches to evaluate, thus very similar to PRF evaluations, even the branch size
and batch size can be relevant benchmark dimensions. Hence, the described
prog dimensions are not limited to PRF evaluations.
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Amount of evaluations. For benchmarking our PRFs, we need to ensure a
runtime which is high enough, so that we have reliable measurements. Usually
a runtime above five minutes is a good lower bound. To achieve this lower
bound on the runtime, we use the amount-of-encryptions dimension. This
dimension determines how often the PRF is encrypting a test value.

Influence of amount-of-evaluations dimension. The more test values are
encrypted, the higher the runtime will be. But it normally also influences the
communication and memory consumption. This collateral influence leads to
the following benchmark question:

• Does the amount of encryptions have a linear impact on
communication and memory consumption?

Batch size. When performing PRF encryptions, we can choose how many
encryptions should be performed in parallel. This setting of parallel encryp-
tions is our batch-size dimension. The main goal of this dimension is to have
a higher throughput of PRF encryptions; thus having a better runtime.

Influence of batch-size dimension. More encryptions in parallel should lead
to a better runtime. However, in addition, a higher batch size might result in a
higher memory consumption. The communication metric, in turn, should not
be much influenced, as in total the same amount of encryptions are performed.
These influences lead to the following benchmark questions:

• How well does the batch size improve the runtime?
• Does a runtime improvement via the batch size

linearly increase the memory consumption?
• When changing the batch size,

does the communication metric stay the same?

Single Instruction, Multiple Data (SIMD). With SIMD, we can apply the
same operation on several bytes simultaneously. Thus, SIMD is very similar
to the batch-size dimension. But SIMD itself is not restricted to the parallel

50



Chapter 3 Benchmarking PRFs for MPC

computation of PRF evaluations. In turn, this also depends on the actual MPC
program, if SIMD can be applied at all.

Influence of SIMD dimension. As SIMD allows us to skip some byte-code
instrunctions, it should decrease the runtime. Though, due to the simulatenous
byte operations, it might increase the (peak) memory consumption. For the
communication metric, SIMD should have no influence. Thus, this expected
influence introduces the following benchmark questions:

• How well does SIMD improve the runtime?
• Does a runtime improvement via SIMD

linearly increase the memory consumption?
• When using SIMD,

does the communication metric stay the same?

Branch size. For each PRF evaluation we can specify how many messages
should be encrypted; this is the branch-size dimension. As we are mainly
interested in the performance of PRF evaluations with one message, usually
this dimension just has the value one. However, GMiMC, for instance, needs a
branch size of two as it uses a Feistel network. Moreover, certain PRFs might
outperform other PRFs when the branch size has a certain number; like we
have seen for GMiMC-ERF, which outperforms HMiMC when using a branch
size of 16.

Influence of branch-size dimension. A branch size of > 1 means that more
than one encryption is computed per PRF evaluation. Thus, for the same
amount of evaluations, more encryptions are performed. Due to more encryp-
tions, different branch sizes should affect all three MPC-benchmark metrics,
which leads to the following benchmark question:

• Does an increase of the branch size linearly increase
the runtime, communication, and memory consumption?
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3.4 Our Benchmarking Plan

Starting point. In the previous sections we have chosen specific PRFs to
benchmark, ascertained requirements on an MPC-program’s execution, iden-
tified relevant benchmark dimensions, and derived interesting benchmark
questions. These requirements, dimensions and benchmark questions serve
as the starting point for our benchmarking plan. We want to answer some
of the questions, in order to give recommendations on the choice of a good
PRF-dimensions combination with a specific requirement in mind. This sec-
tion describes a plan to find the suitable PRF-dimensions combination for the
envisioned use case.

Overall goal. The overall goal of the thesis’ benchmarking approach is to
(1) identify relevant benchmark requirements, and (2) based on given re-
quirements, find the best PRF-dimensions combination which also fulfill
the required security level. To achieve this overall goal, we split it into two
sub-goals. First, we do a sanity check of the benchmarking framework. The
sanity check is done by performing the same experiments as in our baseline
paper [Gra+16]. Second, we aim to give recommendations with a set of re-
quirements in mind. The plan to achieve these sub-goals is described in the
mentioned order in the following sub-sections.

3.4.1 General Benchmarking Approach

The general benchmarking approach, to give recommendations with a set of
requirements in mind, looks as follows. Firstly, we gather relevant benchmark
data; and secondly, we analyze this data. For the gathering of the benchmark
data, we run once a set of defined combinations of dimensions; in order to
get benchmark data of the required variable settings. Then we are going to
extract the relevant results of these tests, and perform an analysis based on
our requirements.
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Data gathering. In terms of gathering relevant benchmarking data, the paper
by [Gra+16] gives us the setting for the sanity check. For the discovery of
recommendations for real-life scenarios, we can run once a set of combinations
of dimensions. Then, based on the specific requirement, we zoom in and
analyze.

Amount of players. For the sanity check we use the same approach as in the
“baseline” paper by [Gra+16]; hence performing benchmarks with two players.
For the recommendations with a set of requirements in mind we extend to
three players. The extension to three players has two reasons: first, to check if
one more player has a linar or non-linear impact on the performance; second,
the already existing ASXs within SCALE support an honest-majority setting
only starting with three players.

Access structures (ASXs). For the benchmarks, we use the ASXs which
already exist in SCALE. And all of these ASXs are in the malicious-adversary
setting. For two players, our sanity check, we use the corresponding ASX:
dishonest majority based on fully homomorphic encryption (FHE) with 128-bit
security (#18).

For three players, there exist five ASXs for honest majority and two ASXs
for dishonest majority. The honest-majority ASXs are (3,1); thus from three
players maximum one player can be malicious to guarantee security. And, the
honest-majority ASXs are based on linear secret sharing. The two dishonest-
majority ASXs are based on FHE and support a 32-bit and an 128-bit prime
respectively. For our benchmarks, we use 128-bit (primes) security. Hence, all
in all we have six three-players ASXs to select for our benchmarks:

• Honest majority based on linear secret sharing

– Shamir (3,1) (#1)
– Replicated (3,1) Maurer (#2)
– Replicated (3,1) Reduced (#3)
– Q2 Shamir (3,1) (#4)
– Q2 Replicated (3,1) (#5)

• Dishonest majority based on FHE
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– FHE Based 3 party 128-bit prime (#19)

The italic names in the bullet-point list are the same as in SCALE’s reposi-
tory [KU 20]. The information about the pre-defined ASXs can be found in
the file README.txt within the folder Auto-Test-Data. Furthermore, each of
the seven mentioned ASXs (one 2-player and six 3-player), got a hashtag with
a number; like #18. These numbered hashtags are used within the description
of the benchmarks and refer to the corresponding ASXs.

Data analysis. The result of the data analysis will be plotted graphs, to
illustrate the benchmarks. After the creation of the graphs, these results will
be presented, evaluated, and discussed in Chapter 4.

3.4.2 Sanity Check

The paper by [Gra+16], which initiated the idea for the thesis, serves as
sanity check for our benchmarking framework. Although the experiments are
roughly four years old, and the MPC engines probably improved since then,
we still expect similar results. The aim of the paper was to compare the PRFs
AES, LowMC, MiMC, Leg, and NR with a focus on the runtime metric, thus
latency and throughput. As mentioned in Section 3.1, we benchmark only
MiMC and Leg from the PRFs of the baseline paper.

Dimensions. In the paper by [Gra+16] an ASX for malicious security with
two players and a branch size of one was used. The amount of PRF evaluations
was set to at least 1,000; in order to get high enough runtimes right away (≥
five minutes), we set the amount of evaluations to 1,000,000. Furthermore,
the authors evaluated the PRFs using the preprocessing and online phase,
within a local-area-network (LAN) and a simulated wide-area-network (WAN)
environment. To get better runtimes, the PRFs were also tested with different
batch sizes.
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Experiment setup. Based on the given dimensions, we can state specific tests
for our experiment. Table 3.1 shows the experiment setup for the sanity check.
Now, we run the tests by executing all combinations of these dimensions.

Dimension Value(s)
PRFs MiMC, Leg
#Evaluations 1,000,000

Batch size 1,2,4,8,. . . ,4096

Branch size 1

#Players 2

Network LAN, WAN
Preprocessing Real
ASX #18

Table 3.1: The set of dimensions of the experiment setup for our sanity check. The bluely high-
lighted dimensions are the variables for the PRFs MiMC and Leg in this experiment.

3.4.3 Recommendations with a Set of Requirements in Mind

Experiment setup for data gathering. Table 3.2 shows the set of test values
for each dimension for our selected PRFs. The first row shows the different
PRFs we are going to benchmark and evaluate. In the middle (three) rows
we have the program (prog) dimensions. In the last (four) rows we have
the environment (env) dimensions. The bluely-highlighted dimensions are
the variables in this experiment: #Evaluations, Batch size, and Branch size
(prog), as well as Network, Preprocessing, and ASX (env). Thus, the only
fixed dimension is the amount of players: #Players (env). #Evaluations is
dynamically chosen so that we have a runtime of ≥ five minutes, and therefore
more reliable benchmarks. Also, the Branch size is only for the PRF MiMC a
variable. Leg is evaluated with a Branch size of only one. Whereas GMiMC
and HMiMC are evaluted with a Branch size of only two respectively. Please
note that both GMiMC and HMiMC can only be evaluted with a Branch Size
of ≥ two. This limitation on GMiMC and HMiMC is due to the fact, that they
are leveraging a Feistel network.

Please note further, that in general more values are possible for the different
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dimensions. Since the main focus of the thesis is to make benchmarking easier,
we showcase the applicability with a limited set.

For each combination of PRF and ASX, which fulfill a set security level, we
benchmark each possible combination of different values for our identified
dimensions.

Dimension Value(s)
PRFs MiMC, GMiMC, HMiMC, Leg
#Evaluations * (large enough)
Batch size 1,2,4,*,512

Branch size 1,2+

#Players 3

Network LAN, WAN
Preprocessing Real, Fake
ASX #1,#2,#3,#4,#5,#19

Table 3.2: The set of dimensions of the experiment setup for our recommendations in real-life
scenarios. The bluely highlighted dimensions are the variables for the PRFs MiMC,
GMiMC, HMiMC, and Leg in this experiment. + The branch size is only a variable
for MiMC. Leg is evaluated only with a branch size of 1. GMiMC and HMiMC are
evaluated only with a branch size of 2.

Data-analysis approach for recommendations in real-life scenarios. For the
sake of simplicity with regards to showcasing the benchmarking framework
b4M, we will analyze the gathered data for two use cases:

Sweet spot of the batch size to achieve best throughput and latency in a. . .

1. . . . LAN environment
2. . . . limited network (WAN)

3.5 Benchmarking for MPC (b4M) in
SCALE-MAMBA (SCALE)

This section describes the design and implementation of our benchmarking
framework b4M. Next to the framework, also the necessary modifications
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in SCALE are described. First, the design of b4M is shown; and second, the
concrete implementation of the framework and modifications in SCALE are
described.

3.5.1 Design

Minor modifications in SCALE. The vision of b4M is to make it as indepen-
dent as possible from SCALE. We want to have the usual MPC framework,
SCALE, and beside that b4M. Thus, b4M should need as little modifications
as possible from SCALE. The most important modification is the additional
benchmark output.

When the execution of the MPC program is finished and the user wants
to benchmark the execution, the additional benchmark data is outputted.
Then we have to parse the benchmark data somehow and extract the relevant
information in b4M.

Parsing of benchmark data. To make parsing easier, we are going to com-
bine HTML and JSON in the benchmarking-relevant output. Each part of
a benchmarking-relevant output is wrapped inside an HTML element, like
<b3m4>. Inside the HTML element, the actual content is given in a JSON-
compatible form. Figure 3.11 illustrates an example of an output containing a
benchmarking-relevant part.

Updating benchmark data. This approach has the advantage that if we want
to update SCALE’s benchmarking output, we only need to add or update the
JSON data inside the HTML elements of the execution’s output. The extraction
and further processing of the (updated) benchmarking data is, then, handled
by b4M.

Pipeline of Benchmarking for MPC (b4M). b4M should not only parse,
extract, and process the benchmarking-relevant data of SCALE’s execution
output, it should also start the benchmark in the first place. The whole pipeline
looks as follows:
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1 ...
2 Exiting aBit production thread
3 <b3m4 >
4 {" player ":1,
5 " thread ":2,
6 " netdata ":{
7 "sent":{"bytes" :159438386 , "MB":159.44} ,
8 " received ":{"bytes" :159438412 , "MB" :159.44}
9 }

10 }
11 </b3m4 >
12 Total Time (with thread locking ) = 17.8034 seconds
13 Produced a total of 5040000 triples
14 ...

Figure 3.11: An example of SCALE’s execution output containing benchmarking-relevant
information. Benchmarking-relevant information is wrapped in the blue HTML
element <b3m4>. Inside the HTML element, the actual benchmarking data is
outputted in a JSON-compatible form.

1. analyze what to benchmark based on a config file, thus define goals,
like which PRFs and network settings (LAN vs. WAN);

2. execute benchmark for benchmark, until every chosen combination is
run;

3. parse each run and extract the relevant information; and
4. view the results.

b4M’s pipeline is going to be implemented in different modules. The modules
are split into diffrent main modules and helper modules. The main modules
are: Main, Analyze, Execute, Parse, and View. The helper modules are: Utils
and Config. Each module has a different focus within the pipeline. Figure
3.12 illustrates the modules of b4M and their position within the pipeline.

3.5.2 Implementation

Modifications in SCALE-MAMBA (SCALE). Before starting with b4M,
SCALE had already output some information of an execution of an MPC
protocol. In order to get the relevant benchmark information in the right
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Main Execute Parse View

Utils Config

Analyze

Helper
b4M

0) Start b4 M

1) Init
goals

2) Run
current
setting

3) Extract
benchmark
output

5) Finally,
visualize
results

4) Repeat, until all combinations run

Figure 3.12: The different modules of b4M and their position within the pipeline. The blue
modules are the main modules. The orange modules are the helper modules.

format, such as memory consumption and network traffic, we have to modify
some parts of the source code. The modification includes only simple things.

Additionally, to even get the benchmark data, we have to tell SCALE to output
it. This “telling” is implemented with compilation flags in SCALE. Now, to
get benchmark output, the added compilation flags have to be set in the first
place.

Runtime measurements. Taking measurements of the runtime was already
possible before. To measure the runtime we have to call the start_timer(i)
function for the start, and the stop_timer(i) function for the end of the timing.
i represents an integer value for the timer. With different integers for the
timer, we can take different runtime measurements for different locations in
the MAMBA code. Figure 3.13 shows a runtime measurement of a cipher
initialization and of a message encryption in a MAMBA code.

Though, in order to get the runtime output in the required HTML-JSON
format, we adapted the output in SCALE’s Machine::stop_timer function,
which is located in src/Online/Machine. Figure 3.14 shows the output of two
timers after the MPC-program’s execution. In the JSON output, we have first
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1 ...
2 start_t imer (1)
3 cipher = init_regular ( num_branches )
4 stop_t imer (1)
5 ...
6 start_t imer (2)
7 priv_res = cipher . encrypt ( message )
8 stop_t imer (2)
9 ...

Figure 3.13: Measuring the runtime of a cipher initialization and message encryption in the
MAMBA code. The timers have the index 1 and 2, for the cipher initialization and
message encryption respectively.

the timer’s index, and then the runtime for the measured area in seconds and
milliseconds (ms).

1 ...
2 <b3m4 >
3 {"timer":1,
4 "time":{" seconds " :179.018120 , "ms" :179018.1199}
5 }
6 </b3m4 >
7 <b3m4 >
8 {"timer":2,
9 "time":{" seconds ":0.005361 ,"ms" :5.3614}

10 }
11 </b3m4 >
12 ...

Figure 3.14: Example benchmark output of the runtime for two different areas in the MAMBA
code; indicated by the timers’ indexes 1 and 2. The runtime is provided in the
JSON object time, in the units seconds and milliseconds (ms). As in all benchmark-
relevant outputs, the JSON-formatted runtime measurements are wrapped in the
HTML elements <b3m4>.

Communication measurements. For communication, we added two coun-
ters; the counting of the sent and received bytes for each player (network data).
Interestingly, the development of b4M and corresponding enhancement of
benchmark measurements, led to a further advancement. Because the core
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developers of SCALE added then also two more counters for the communica-
tion; the counting of the amount of broadcast as well as peer-to-peer messages
(round data). These counters for network data and round data are added for
each player in src/System/Player; specifically, in the functions:

• Player::send_all,
• Player::send_to_player, and
• Player::receive_from_player.

Furthermore, did we add there the function Player::print_network_data,
which prints the relevant network data and round data in the required HTML-
JSON format. Player::print_network_data is then called in the function
Main_Func, which is located in src/System/RunTime, when the program is
finished. As Main_Func is called for each player’s execution thread, the net-
work data and round data are given for each thread separetely. Thus, in b4M
we have to combine the network data and round data of the different threads
for each player.

To activate the benchmark output for communication, we introduced a bench-
mark flag for SCALE’s config file, CONFIG. CONFIG needs to be renamed or
copied to CONFIG.mine in order to work. Figure 3.15 displays the activated
communication compilation flag. Now, when we compile SCALE with this
flag and run an MPC program, we get the benchmark output for communi-
cation. Figure 3.16 shows the output of player 0 for thread 2 and 4. In the
JSON output, we have first the player number and thread number, and then
the network data, given in bytes and kilobytes (KB), as well as round data,
given in amount of messages.

Memory-consumption measurements. For memory consumption, we add
the measurement of the peak RAM usage for each execution process. The
maximum resident set size gives us the the peak RAM usage of the calling
process [Wik20e; Wik20b]. This measurement is taken when the MPC program
is finished, and located in src/System/RunTime. We added there the function
Print_Memory_Info.
Print_Memory_Info prints the maximum resident set size in the required
HTML-JSON format.
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1 ...
2 # Benchmark flags
3 # BENCH_COMMUNICATION = Enable benchmark output of
4 # communication . This includes
5 # sent & received bytes ,
6 # rounds of communication , and
7 # amount of peer -to -peer as well as
8 # broadcast messages .
9 ...

10 FLAGS = -DBENCH_COMMUNICATION
11 ...

Figure 3.15: SCALE’s compilation flag for the benchmark output of communication, which is
located in the file CONFIG and CONFIG.mine respectively.

To activate the benchmark output of memory consumption, we added also for
this case a compilation flag in SCALE’s config file; CONFIG and CONFIG.mine
respectively. Figure 3.17 displays the activated memory-consumption com-
pilation flag. The different compilation flags can be combined; thus, even
all of them could be activated at the same time. Figure 3.18 shows the acti-
vated flags for debug information, communication, memory consumption,
and deterministic computation.

Now, when we compile SCALE with the memory-consumption flag and run
an MPC program, we get the memory-consumption benchmark output. Figure
3.19 shows the memory-consumption of player 0 for thread 2 and 4. In the
JSON output, we have first the player number, thread number, and process
number, and then the maximum resident set size, given in kilobytes (KB) and
megabytes (MB).

Main Modules of Benchmarking for MPC (b4M). b4M consists of five
main modules: Main, Analyze, Execute, Parse, and View. Main is the entry
point of b4M and does the startup procedures as well as cleanup after the
benchmarking. In the startup procedures Main checks if the environment is
properly set up, such as if required folders and files are present. The cleanup
removes temporarily created files which are not needed anymore.

Analyze first checks the current goal, which is set in the helper module Config.
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1 ...
2 <b3m4 >
3 {" player ":0,
4 " thread ":2,
5 " netdata ":{
6 "sent":{"bytes":8423594 ,"MB":8.42} ,
7 " received ":{"bytes":17827569 ,"MB" :17.83}
8 },
9 " roundsdata ":{

10 " broadcast ":6738 ,
11 "p-to -p":71
12 }
13 }
14 </b3m4 >
15 ...
16 <b3m4 >
17 {" player ":0,
18 " thread ":4,
19 " netdata ":{
20 "sent":{"bytes":812 ,"MB":0.00} ,
21 " received ":{"bytes":812 ,"MB" :0.00}
22 },
23 " roundsdata ":{
24 " broadcast ":4,
25 "p-to -p":2
26 }
27 }
28 </b3m4 >
29 ...

Figure 3.16: Example benchmark output of the communication for the execution threads 2 and
4 of player 0. Sent and received bytes are provided in the JSON object netdata, in
the units bytes and megabytes (MB). The amount of broadcast and peer-to-peer
messages are provided in the JSON object roundsdata. As in all benchmark-relevant
outputs, the JSON-formatted communication measurements are wrapped in the
HTML elements <b3m4>.

Then, based on the current goal Analyze prepares the set of combinations
of benchmark dimensions to be executed. After the preparation of the set of
combinations, each combination gets forwarded to the main module Execute.
Finally, when all combinations were executed, Analyze calls the main module
View.
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1 ...
2 # Benchmark flags
3 # ...
4 # BENCH_MEMORY = Enable benchmarking of memory consumption .
5 # This includes the peak RAM usage of each
6 # player ’s execution thread .
7 #
8 ...
9 FLAGS = -DBENCH_MEMORY

10 ...

Figure 3.17: SCALE’s compilation flag for the benchmark output of memory consumption,
which is located in the file CONFIG and CONFIG.mine respectively.

1 ...
2 FLAGS = -DDEBUG -DDETERMINISTIC -DBENCH_MEMORY -DBENCH_COMMU ...
3 ...

Figure 3.18: Combination of compilation flags, which is located in the file CONFIG and
CONFIG.mine respectively. The activated flags here are for debug information,
deterministic computation, memory-consumption benchmark output, and com-
munciation benchmark output. SCALE’s compilation flags can be arbitrarily com-
bined. Even all flags could be activated at the same time.

Execute performs a benchmark of a given set of combinations of benchmark
dimensions. To perform the benchmark, this main module does basically four
things:

1. First, Execute prepares everything that is needed for the execution;
such as loading the access structure or setting the IP addresses for the
participating nodes in the corresponding network environment.

2. Second, Execute runs the MPC program with the given settings.
3. Third, after the run of the MPC program, Execute calls the main module

Parse, to parse the output of the MPC-program’s execution. Depending
on the settings in the helper module Config, the execution-and-parse
procedure might be repeated until the number of runs per benchmark
has been reached.

4. And fourth, Execute calls again the main module Parse, to combine the
parsed output of each benchmarks’ run, as well as tracks the progress of
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1 ...
2 <b3m4 >
3 {" player ":0,
4 " thread ":2,
5 " process ":1,
6 " memory ":{
7 " max_rss ":{"KB":7301972 ,"MB" :7301.97}
8 }
9 }

10 </b3m4 >
11 ...
12 <b3m4 >
13 {" player ":0,
14 " thread ":4,
15 " process ":1,
16 " memory ":{
17 " max_rss ":{"KB":7301972 ,"MB" :7301.97}
18 }
19 }
20 </b3m4 >
21 ...

Figure 3.19: Example benchmark output of the memory consumption for the execution threads
2 and 4 of player 0. The maximum resident set size is provided in the JSON object
max_rss, in the units kilobytes (KB) and megabytes (MB). As in all benchmark-
relevant outputs, the JSON-formatted memory-consumption measurements are
wrapped in the HTML elements <b3m4>.

the current benchmark. The tracking of the progress helps, when a run
fails. Because then, the benchmarks which have already been succesfully
performed can be ignored, and the benchmarking continues with the
previously failed run.

Parse provides mainly two utilities:

1. First, the parsing of an MPC-program run’s output; which includes,
e.g., the parsing of runtime, communication, and memory consumption.
What can be parsed exactly depends on the setting; if SCALE was
compiled with the benchmark flags and a timing was taken in the
MAMBA code respectively.

2. And second, Parse provides the combining of the different runs of a
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benchmark. In this combination of benchmark runs the average runtime,
network data, and memory consumption is calculated.

View illustrates the benchmark results. For the illustration, View provides
support for graphs.Which graph should be created can be defined in the
helper module Config.

Helper Modules of b4M. In addition to the five main modules, b4M also
consists of two helper modules: Config and Utils. Config provides all essential
settings for the preparation, execution, and parsing of runs, as well as for
illustrating the benchmark results.

Utils, as the name already tells, provides helper utility functions and classes.
These functions include, e.g., getting of parsed JSON data or checking if a
file exists. Besides the helper functions, Utils also defines the class Benchmark,
which is used throughout the whole benchmarking pipeline (from Analyze to
View).

Programming language & usage. b4M is implemented in Python 3. Each
module of b4M is a single file. The entry point for starting the benchmarking
is the main module Main. In order to configure the benchmarking, the helper
module Config is used. Thus, first, the desired settings are applied in Config;
and second, the benchmarking is started using Main.

b4M can be started either by using Python, python3 b3m4_main.py, or by exe-
cuting the main module Main directly, ./b3m4_main.py. However, to have all
required Python3 libraries available, the libraries in the file requirements.txt
need to be installed first. At the moment of writing the thesis, the external
Python3 libraries, which need to be installed manually usually, are:

• lxml [Dev20b], for parsing the HTML elements in the execution’s output.
• tqdm [Dev20a], for showing the benchmarking’s progress on the com-

mand line.
• pandas [Tea20], for preparing the benchmarking’s JSON data for plotting,

by converting it into a pandas DataFrame.
• seaborn [Was20], for plotting the benchmarkings’s outcome as graphs.
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Chapter 4

Performance Evaluation &
Recommendations

This chapter (1) describes how the different benchmarks were performed, (2)
shows the results of the benchmarks, and (3) gives recommendations based on
the different secnarios. These three steps are baked into the two main points
of our benchmarking plan: the sanity check and recommendations with a set
of requirements in mind. Though, step (3) of this chapter essentially applies
to the recommendations for real-life scenarios.

4.1 Benchmark Environment

Executing machine. The benchmarks were taken on an Intel(R) Xeon(R) CPU
E5-4669 v4 @ 2.20GHz having 88 threads with (basically) 192GB of RAM.
However, for the actual secure-multi-party-computation (MPC) benchmarks
we limited the amount of RAM and threads per player. Each player got
assigned 30GB of RAM and 10 threads.

Network environment. For simulating the two different network condi-
tions, we used a local area network (LAN) and set up a wide area net-
work (WAN) environment respectively. The LAN network provides a band-
with of ∼1Gbit/s with a latency of ∼0.05ms. The WAN network provides
a bandwith of ∼50Mbit/s with a latency of ∼100ms. And please note that
the two dedicated MPC-friendly networks were installed by the Institute of
Applied Information Processing and Communications (IAIK)’s sysadmins.
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Benchmark target. We use the same benchmark target as stated in the
“baseline” paper by [Gra+16]. Thus, only pseudo-random function (PRF)
encryptions of one Fp element are considered and benchmarked.

4.2 Sanity Check

This section describes how we assure that our benchmarking results are in a
reasonable range. For this we do two things. First, getting the measurements
of the three main components of the preprocessing phase: triples, squares,
and bits. Second, running the same experiment as in the paper by [Gra+16],
which was the baseline for this thesis, and doing a comparison. For the
comparison we check on the one hand, if it seems reasonable with respect to
the preprocessing measurements, and on the other hand, if the measurements
are similar to those of the paper by [Gra+16].

4.2.1 Preprocessing Measurements

Taking benchmarks. In order to take the benchmarks for the preprocessing
phase, we write three MAMBA programs; one for each main component of
the preprocessing:

• triple-demo.mpc

1 import sys
2 params = [int(_) for _ in sys.argv [3:]]
3 n = params [0] # number of total triples to be produced
4 n_parallel = params [1] # number of triples processed in
5 # parallel
6

7 start_t imer (2)
8 @for_ range(n / n_parallel )
9 def _(i):

10 a = sint. get_random_triple (size= n_parallel )
11 stop_t imer (2)

• square-demo.mpc
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1 import sys
2 params = [int(_) for _ in sys.argv [3:]]
3 n = params [0] # number of total squares to be produced
4 n_parallel = params [1] # number of squares processed in
5 # parallel
6

7 start_t imer (2)
8 @for_ range(n / n_parallel )
9 def _(i):

10 a = sint. get_random_square (size= n_parallel )
11 stop_t imer (2)

• bit-demo.mpc

1 import sys
2 params = [int(_) for _ in sys.argv [3:]]
3 n = params [0] # number of total bits to be produced
4 n_parallel = params [1] # number of bits processed in
5 # parallel
6

7 start_t imer (2)
8 @for_ range(n / n_parallel )
9 def _(i):

10 a = sint. get_random_bit (size= n_parallel )
11 stop_t imer (2)

As SCALE-MAMBA (SCALE) usually produces more triples, squares, and bits
than needed, to have leftovers for a potential need in the future, we also add
the execution parameter max. With the parameter max it is possible to restrict
the amount of produced triples, squares, and bits. Thus, when measuring,
e.g., triples, we restrict the production of squares and bits to really have the
measurements for the produced triples. Though, as a value of 0 would mean
infinite production, SCALE will produce at least one batch of triples, squares,
and bits; that is why we set the production of the other components to 1. To
have a long-enough runtime and way more, e.g., triples than squares and bits,
we produce 1,000,000 triples. Given this setting, these are then our values for
the execution parameter max:

• triples: -max 1000000,1,1,
• squares: -max 1,1000000,1, and
• bits: -max 1,1,1000000.
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With respect to our identified benchmark dimensions (in the previous chapter),
Figure 4.1 shows the different settings of this benchmark.

Dimension Value(s)
PRF -
#Triples/Squares/Bits 1,000,000

Batch size 1,2,4,8. . . ,16384

#Evaluations -
Branch size -
#Players 2

Network LAN, WAN
Preprocessing Real
Access structure (ASX) #18

Table 4.1: The set of dimensions of the experiment setup for the preprocessing measurements
as part of our sanity check. The bluely highlighted dimensions are the variables in
this experiment. The grayly highlighted dimensons are variables which are not used
in this experiment; they are added for reasons of comparison.

Benchmark results & evaluation of thereof. Figure 4.1 illustrates the through-
put of the experiment. Figure 4.2 and 4.3 show the latency and runtime respec-
tively. Please note that due to the nature of computing the latency, the graph
is identical to the runtime’s one, it just has different numbers. As expected,
due to the slower network in the wide-area-network (WAN) setting, SCALE
reaches more throughput in the local-area-network (LAN) setting. Triples
have in both network settins the slowest throughput. Interestingly, squares
have a relatively much higher throughput in the LAN setting than in the
WAN setting, when compared to bits, for instance. Also interestingly, bits
have almost the same throughput as triples.

For latency and runtime, the differences are not that significant. In the LAN
setting, the latency between triples (∼ 0.8ms) and squares (∼ 0.7ms) differs
only ∼ 0.1ms In the WAN setting, the latency between triples (∼ 1.9ms)
and sqares (∼ 1.6ms) differs a bit more, but still only ∼ 0.3ms. In the paper
by [Gra+16], the latency of triples and bits is identical. In our preprocessing
measurements, the latency of triples and bits is almost identical; in the LAN
setting yes, in the WAN setting they differ ∼ 0.2ms.
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Figure 4.1: Resulting throughput of our preprocessing measurements, as part of our sanity
check, with parallel computation.

4.2.2 PRF Evaluations

Taking benchmarks. To take benchmarks as in the paper by [Gra+16], we
use a MAMBA program for each PRF to benchmark:

• MiMC-Cube-128.mpc
• Legendre-128.mpc

Please note that the MAMBA code of MiMC-Cube-128.mpc and Legendre-128.mpc
was provided by the authors of [Gra+16].
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Figure 4.2: Resulting latency of our preprocessing measurements, as part of our sanity check,
with parallel computation.

Benchmark results & evaluation of thereof. Figure 4.4 shows the resulting
throughput of our benchmarks for the comparison with our “baseline” paper.
Figures 4.5 and 4.6 show the resulting latency and runtime respectively.

As we measured the preprocessing and online phase together, and [Gra+16]
measured the two phases separately, we cannot do a simple one-to-one com-
parison. Thus we approximate by comparing with their preprocessing phase.
Our throughput for Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity (MiMC) is in the LAN setting significantly
slower, but basically the same in the WAN setting (LAN: ∼ 5 ops/s (ours) vs.
∼ 33 ops/s; WAN: ∼ 1.5 ops/s (ours) vs. ∼ 1.6 ops/s). Our throughput for
Legendre (Leg), on the other side, is not too different for LAN and even better
for WAN (LAN: ∼ 4.5 ops/s (ours) vs. ∼ 9 ops/s; WAN: ∼ 1.5 ops/s (ours)
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Figure 4.3: Resulting runtime of our preprocessing measurements, as part of our sanity check,
with parallel computation.

vs. ∼ 0.5 ops/s). The latency, however, is only shown for the online phase in
our “baseline” paper.

4.3 Recommendations with a Set of Requirements in
Mind

Taking benchmarks. In order to showcase Benchmarking for MPC (b4M)
for the LAN use case, we benchmarked our selected PRFs with two different
branch sizes: one and two. With a branch size of one, we benchmarked MiMC
and Leg. With a branch size of two, we benchmarked MiMC, Generalized
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Figure 4.4: Resulting throughput of our comparison measurements with the paper by [Gra+16],
as part of our sanity check, with parallel computation.

Feistel MiMC (GMiMC)-expanding round function (ERF), and HADES MiMC
(HMiMC). To demonstrate the difference between the two phases of the Smart-
Pastro-Damgård-Zakarias (SPDZ) protocol, each setting got benchmarked
with (1) only the online phase, and (2) the preprocessing and the online
phase.

Primarily, for both LAN and WAN, taking benchmarks with the different
ASXs was taken with a batch size of 1, 2, 4, and 512. As the batch sizes in
between could be interesting too, we also show this case for our selected
dishonest-majority PRF with only the only phase. We chose the maximum
batch size of 512 due to runtime issues for some settings with a higher batch
size.
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Figure 4.5: Resulting latency of our comparison measurements with the paper by [Gra+16], as
part of our sanity check, with parallel computation.

In the graphs’ legend, the programs are shown in different colors and the
ASXs are shown with different kinds of dashed lines. Our dishonest-majority
ASX is shown as FHE-based*. Our honest-majority ASXs are shown as stated
in Section 4.1, just without (3,1).

4.3.1 Focus on Runtime Metrics in a LAN Network

Benchmark results of 3-players LAN. The following figures show the results
of our 3-players LAN benchmarks:

• Branch size = 1

– Preprocessing and online phase
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Figure 4.6: Resulting runtime of our comparison measurements with the paper by [Gra+16], as
part of our sanity check, with parallel computation.

∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.7
· Throughput: Figure 4.8

∗ Honest-majority ASXs
· Latency: Figure 4.9
· Throughput: Figure 4.10

∗ Dishonest-majority ASX
· Latency: Figure 4.11

· Throughput: Figure 4.12

– Only online phase
∗ Honest-majority and dishonest-majority ASXs
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· Latency: Figure 4.13

· Throughput: Figure 4.14

∗ Honest-majority ASXs
· Latency: Figure 4.15

· Throughput: Figure 4.16

∗ Dishonest-majority ASX
· Latency: Figure 4.17

· Throughput: Figure 4.18

• Branch size = 2

– Preprocessing and online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.19

· Throughput: Figure 4.20

∗ Honest-majority ASXs
· Latency: Figure 4.21

· Throughput: Figure 4.22

∗ Dishonest-majority ASX
· Latency: Figure 4.23

· Throughput: Figure 4.24

– Only online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.25

· Throughput: Figure 4.26

∗ Honest-majority ASXs
· Latency: Figure 4.27

· Throughput: Figure 4.28

∗ Dishonest-majority ASX
· Latency: Figure 4.29

· Throughput: Figure 4.30

Evaluation of branch size = 1. As expected, the ASX for dishonest majority
has a significantly worse throughput and latency than the honest-majority
ASXs for the preprocessing and online phase. However, when considering
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Figure 4.7: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with the preprocessing and online phase, all selected ASXs, and a batch size
of 1,2,4, and 512.

only the online phase, the dishonest-majority ASX outperforms the other
ASXs.

In terms of PRFs, MiMC outperforms Leg for all throughput and latency
measurements when the batch size is 512, especially when considering the
preprocessing and online phase.

Interestingly, MiMC benefits in all scenarios of a higher batch size, especially
when it equals 512, except for the case of the dishonest-majority ASX when
considering preprocessing and online phase. For this one case the latency and
throughput becomes even worse with a batch size of > 2, for both MiMC and
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Figure 4.8: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, all selected ASXs, and a batch
size of 1,2,4, and 512.

Leg. Except for this one case, in general, Leg does not benefit too much from
a higher batch size.

Evaluation of branch size = 2. For the evalutions of a branch size of 2, it
is interesting that HMiMC outperforms MiMC and GMiMC, but not in all
ASX combinations. For instance, for the dishonest-majority ASXs with the
preprocessing and online phase, and a batch size of ≥ 4, MiMC with the
Shamir-based ASXs is slightly better than HMiMC with the Replicated-based
ASXs, for both throughput and latency. And in general, the Shamir-based
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Figure 4.9: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with the preprocessing and online phase, our selected honest-majority ASXs,
and a batch size of 1,2,4, and 512.

ASXs achieve a significantly higher throughput and latency than the other
dishonest-majority ASXs.

4.3.2 Focus on Runtime Metrics in a WAN Network

Benchmark results of 3-players WAN. The following figures show the re-
sults of our 3-players LAN benchmarks:

• Branch size = 1
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Figure 4.10: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, our selected honest-majority
ASXs, and a batch size of 1,2,4, and 512.

– Preprocessing and online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.31

· Throughput: Figure 4.32

∗ Honest-majority ASXs
· Latency: Figure 4.33

· Throughput: Figure 4.34

∗ Dishonest-majority ASX
· Latency: Figure 4.35
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Figure 4.11: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with the preprocessing and online phase, our selected dishonest-majority
ASX, and a batch size of 1,2,4, and 512.

· Throughput: Figure 4.36

– Only online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.37

· Throughput: Figure 4.38

∗ Honest-majority ASXs
· Latency: Figure 4.39

· Throughput: Figure 4.40

∗ Dishonest-majority ASX
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Figure 4.12: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, our selected dishonest-
majority ASX, and a batch size of 1,2,4, and 512.

· Latency: Figure 4.41

· Throughput: Figure 4.42

• Branch size = 2

– Preprocessing and online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.43

· Throughput: Figure 4.44

∗ Honest-majority ASXs
· Latency: Figure 4.45
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Figure 4.13: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with only the online phase, all selected ASXs, and a batch size of 1,2,4, and
512.

· Throughput: Figure 4.46

∗ Dishonest-majority ASX
· Latency: Figure 4.47

· Throughput: Figure 4.48

– Only online phase
∗ Honest-majority and dishonest-majority ASXs
· Latency: Figure 4.49

· Throughput: Figure 4.50

∗ Honest-majority ASXs
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Figure 4.14: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with only the online phase, all selected ASXs, and a batch size of 1,2,4,
and 512.

· Latency: Figure 4.51

· Throughput: Figure 4.52

∗ Dishonest-majority ASX
· Latency: Figure 4.53

· Throughput: Figure 4.54
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Figure 4.15: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with only the online phase, our selected honest-majority ASXs, and a batch
size of 1,2,4, and 512.
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Figure 4.16: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with only the online phase, our selected honest-majority ASXs, and a
batch size of 1,2,4, and 512.
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Figure 4.17: The latency of the 3-players-LAN use case for MiMC and Leg using a branch size
of one with only the online phase, our selected dishonest-majority ASX, and a
batch size of 1,2,4,8,16,32,64,128,256, and 512.
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Figure 4.18: The throughput of the 3-players-LAN use case for MiMC and Leg using a branch
size of one with only the online phase, our selected dishonest-majority ASX, and a
batch size of 1,2,4,8,16,32,64,128,256, and 512.
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Figure 4.19: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, all selected
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.20: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, all
selected ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.21: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, our selected
honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.22: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, our
selected honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.23: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, our selected
dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.24: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, our
selected dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.25: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, all selected ASXs, and a
batch size of 1,2,4, and 512.
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Figure 4.26: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, all selected ASXs,
and a batch size of 1,2,4, and 512.
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Figure 4.27: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, our selected honest-majority
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.28: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, our selected
honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.29: The latency of the 3-players-LAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, our selected dishonest-
majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.30: The throughput of the 3-players-LAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, our selected
dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.31: The latency of the 3-players-WAN use case for MiMC and Leg using a branch size
of one with the preprocessing and online phase, all selected ASXs, and a batch
size of 1,2,4, and 512.
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Figure 4.32: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, all selected ASXs, and a batch
size of 1,2,4, and 512.
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Figure 4.33: The latency of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, our selected honest-majority
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.34: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, our selected honest-majority
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.35: The latency of the 3-players-WAN use case for MiMC and Leg using a branch size
of one with the preprocessing and online phase, our selected dishonest-majority
ASX, and a batch size of 1,2,4, and 512.
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Figure 4.36: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with the preprocessing and online phase, our selected dishonest-
majority ASX, and a batch size of 1,2,4, and 512.

107



Chapter 4 Performance Evaluation & Recommendations

Figure 4.37: The latency of the 3-players-WAN use case for MiMC and Leg using a branch size
of one with only the online phase, all selected ASXs, and a batch size of 1,2,4, and
512.
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Figure 4.38: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with only the online phase, all selected ASXs, and a batch size of 1,2,4,
and 512.

109



Chapter 4 Performance Evaluation & Recommendations

Figure 4.39: The latency of the 3-players-WAN use case for MiMC and Leg using a branch size
of one with only the online phase, our selected honest-majority ASXs, and a batch
size of 1,2,4, and 512.
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Figure 4.40: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with only the online phase, our selected honest-majority ASXs, and a
batch size of 1,2,4, and 512.
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Figure 4.41: The latency of the 3-players-WAN use case for MiMC and Leg using a branch size
of one with only the online phase, our selected dishonest-majority ASX, and a
batch size of 1,2,4,8,16,32,64,128,256, and 512.
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Figure 4.42: The throughput of the 3-players-WAN use case for MiMC and Leg using a branch
size of one with only the online phase, our selected dishonest-majority ASX, and a
batch size of 1,2,4,8,16,32,64,128,256, and 512.
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Figure 4.43: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, all selected
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.44: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, all
selected ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.45: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, our selected
honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.46: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, our
selected honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.47: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with the preprocessing and online phase, our selected
dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.48: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with the preprocessing and online phase, our
selected dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.49: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, all selected ASXs, and a
batch size of 1,2,4, and 512.
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Figure 4.50: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, all selected ASXs,
and a batch size of 1,2,4, and 512.
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Figure 4.51: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, our selected honest-majority
ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.52: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, our selected
honest-majority ASXs, and a batch size of 1,2,4, and 512.
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Figure 4.53: The latency of the 3-players-WAN use case for MiMC, GMiMC-ERF, and HMiMC
using a branch size of two with only the online phase, our selected dishonest-
majority ASX, and a batch size of 1,2,4, and 512.
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Figure 4.54: The throughput of the 3-players-WAN use case for MiMC, GMiMC-ERF, and
HMiMC using a branch size of two with only the online phase, our selected
dishonest-majority ASX, and a batch size of 1,2,4, and 512.
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Chapter 5

Future Work

This chapter shows and briefly discusses potential future work. First, we
show potential follow-up work of our identified benchmark (1) metrics, (2),
dimensions, and (3) questions. Then, we show interesting future work in the
area of (4) the framework Benchmarking for MPC (b4M) and (5) the evaluation
of pseudo-random functions (PRFs) in secure multi-party computation (MPC),
specifically the decryption process.

5.1 Improvement of Benchmark Metrics

Runtime. In terms of the runtime, it would be interesting to distinguish
the measurement of the overall runtime in a more fine-grained way, by, e.g.,
splitting the cipher initialization and the actual PRF evaluation. In addition
to showing the benchmark metrics for (1) only the online phase and (2) the
preprocessing and online phase, showing (3) only the preprocessing phase
could be interesting too.

Communication & Memory consumption. Graphs and evaluations of the
communication and memory-consumption metric are not covered in this
thesis, and are not yet part of b4M. When we also consider these two metrics,
we are able to benchmark, compare, and evaluate in a more holistic way.
Thus, in order to push the comparison of MPC-friendly PRFs to the next
level, adding support for the benchmark metrics communicaiton and memory
consumption is a must.
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5.2 Expansion of Benchmark Dimensions

Further PRFs. We leave the benchmarking of further secure-multi-party-
computation (MPC)-friendly PRFs as future work. For instance, benchmarking
also the other variants of Generalized Feistel MiMC (GMiMC) with b4M. Fur-
thermore, other PRFs in the area of Fp are Jarvis [AD18] and its successor
Rescue [Aly+19], e.g. Although, Jarvis was broken recently [Alb+19a] (Asi-
acrypt 2019).

Moreover, evaluating PRFs which operate natively in Fp using garbled circuits
might be interesting to benchmark as well. Such benchmarks would enable
to compare evaluations using arithmetic circuits with recent developments
in garbled circuits [BMR16]. Furthermore, the benchmarking of PRFs which
do not natively operate in Fp might also be interesting. Though, as PRFs are
(simply) programs to be evaluated with MPC, one basically just has to provide
the corresponding program. Of course, the MPC engine has to support the
underlying MPC protocol.

Spanning benchmark dimensions. In this thesis we split the benchmark
dimensions into environment (env) and program (prog) dimensions. As we
benchmarked only a specific setting, such as three parties (=env) and a branch
size of one and two (=prog), evaluating the runtime, communication, and
memory consumption for a more complete setting is an interesting future
work. For instance, Single Instruction, Multiple Data (SIMD) is not covered in
the benchmarks of this thesis. For future benchmarks it would be interesting
to take also possibilities of SIMDs in MPC programs into account. Further
examples are benchmarking with a larger number of parties, using different
wide area network (WAN) settings, or larger branch sizes; to see if the impact
is linear. Such as the impact of a branch size of 16, where GMiMC-expanding
round function (ERF) outperforms HADES MiMC (HMiMC); and maybe one
finds a setting where HMiMC is still better by tweaking, e.g., batch sizes?

Exploring benchmark dimensions. Introducing further benchmark dimen-
sions might lead to interesting discoveries too. One such dimension, which is
not covered in this thesis, is the machine specs (=env). As we have seen that
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HMiMC’s bottleneck for large branch sizes (∼ ≥16) is the local computation,
maybe with a better machine the performance can be further improved? Apart
from the machine specs, maybe also the computer architecture or computer
processor respectively, more specifically some concepts of it, can make an
impact too; such as the SIMD operation, which requires support for advanced
vector extensions (AVX). And AVX seems, currently, to be only supported by
Intel and AMD processors [Wik20c; Wik20a; Che20].

5.3 Evaluation of Benchmark Questions

During the process of identifying benchmark dimensions for MPC programs,
we also discovered interesting benchmark questions. And especially the env
dimensions are relevant for MPC programs in general. Hence, evaluating
these benchmark questions would be an interesting follow-up work.

Tackling the evaluation. Given the fact, that when we focus on one dimen-
sion, there are many possibilities for the other dimensions. For example, when
we look at the question Does a change in the network has a linear impact on the
runtime?, we have to fix all the dimensions besides the network to a specific
value. And there are many possible values for the other dimensions. Thus,
getting reliable answers for all these questions is complex. An approach to
tackle this complexity could be to consider first only a few options for the
other dimensions, like setting them to a specific use case. And then, adding
complexity along they way.

5.4 Enhancement of Benchmarking for MPC (b4M)

On GUIs and engines. The whole process of benchmarking using b4M works
via editing Python files, followed by the execution in the terminal or a Python
interpreter respectively. To simplify the configuration of benchmarks and
execution of thereof, the enhancement of b4M would be interesting future
work. This enhancement could improve, e.g., two aspects. Firstly, instead of
editing configurations in Python files, a dedicated graphical user interface
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(GUI) can be introduced. Secondly, to have a broader view of MPC executions,
b4M can be expanded to benchmark programs using even diffrent MPC
engines; like MP-SPDZ [Kel20] or Fresco [Ale20] in addition. This approach of
comparing the execution with different MPC engines, could lead to interesting
discoveries of advantages and disadvantages (trade-offs) among the different
engines.

5.5 Consideration of Decryption

Inverting encryption. In this thesis, we only considered benchmarking of
the encryption process of the PRFs. There might be use cases where one
does not only need the encryption of a PRF in MPC, but the decryption too.
For such use cases it would be interesting to also consider the decryption
process of the PRFs evaluated in MPC. As this (simply) requires to add the
functionality in the corresponding MPC programs, the evaluation using b4M
is straightforward.

Some PRFs, as, e.g., MiMC note that decryption is much less efficient than
encryption. Thus, the authors of MiMC recommend to use the cipher in a con-
text where only encryption is needed. Furthermore, in the “plain” Legendre
PRF, decryption is not even possible. To also enable decryption for Legendre,
we would need to put it in, e.g., a Feistel Network or a different mode of
operation, such as the counter mode [Wik20d; DH79].
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Conclusion

The main contributions of this thesis are fourfold:

1. Creation of the benchmark framework Benchmarking for MPC (b4M)
for the secure multi-party computation (MPC)-engine SCALE-MAMBA
(SCALE);

2. Identification of relevant benchmark metrics (i.e. requirements), for

a) MPC programs in general and also
b) specifically for MPC-friendly pseudo-random functions (PRFs);

3. Identificaton of interesting and (potentially) relevant
benchmark settings and questions;

4. Benchmarking and evaluation of the two use cases

a) 3-players with (basically) no network restrictions
(local area network (LAN)), and

b) 3-players which are connected within a limited network
(wide area network (WAN)).

Furthermore, with respect to future work, we identified interesting paths to
follow.
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