
Manuel Menzinger

Design and Implementation of an
AI Programming Playground

for Schools

Diploma Thesis

to achieve the university degree of

Magister rerum naturalium

submitted to

Graz University of Technology

Supervisor

Assoc.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer

Institute for Softwaretechnology

Laßnitzhöhe, November 2020

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgements

First I would like to thank my colleagues from the Autonomous Intelligent
System group of the Institute for Software Technology, with which I had
many interesting discussions significantly influencing the direction of this
thesis. Special thanks go to my supervisor Gerald Steinbauer, who provided
valuable feedback and support, which in the end allowed me to finish this
work in time.

Furthermore, I have to thank my colleagues from the Klusemann Extern
(KLEX), as well as my students, for being understanding in times where I
was not as available as usual. I am also grateful for the support and positive
feedback provided, that further helped me to steer this work in the right
direction.

Finally I want to thank my girlfriend for supporting me through all the
stressful times as well as my family, which has always been there for me.
Special thanks go my friends, who not only provided valuable feedback,
but also arranged well needed distractions, by challenging me with coding
problems and playing games together.

v

Abstract

The personal as well as the professional environment becomes increasingly
digitized and the use of Artificial Intelligence (AI) approaches increases.
Thus, AI had become one of the most important technologies. To be able to
successfully navigate through this digital landscape, profound knowledge of
AI, so called AI literacy, becomes increasingly important. While the number
of tutorials and courses for teaching AI increased rapidly over the last years,
the adoption in school is in its very early stages.

In this thesis we present a framework for AI education in class, which is
freely available through a web browser. The goal of the framework is to
provide an AI programming playground, that is easy to use and requires
no installation. Further, it allows the user to program with fully featured
textual programming languages, like JavaScript and Prolog, as well as to use
professional libraries like TensorFlow.

Prior to designing the framework a survey was conducted, focusing on
how teachers currently teach AI and what might be potential barriers for
not including AI topics into their curriculum. Then the framework was
designed, with the goal of reducing these obstacles, as well as further
potential barriers, while providing engaging programming environments.
Modern web technologies were used to create an easily available, reliant
and powerful online development environment. Furthermore ready-to-use
scenarios and example solutions were provided, helping adoption in class.
Finally, a feedback survey was conducted, to review the success of the chosen
approach. The result of the feedback supports the chosen approach, as all
participants fully agreed that the framework is a useful tool for teaching
AI.

vii

Contents

Abstract vii

1. Introduction 1
1.1. Motivation . 1

1.2. Goals and Challenges . 3

1.3. Outline . 5

2. Related Work 7
2.1. Related Research . 7

2.2. Related Frameworks . 8

2.2.1. OpenAI Gym . 9

2.2.2. Web Maker . 11

2.2.3. Google Colaboratory . 13

3. Survey - Teaching AI in School 17
3.1. Design and Implementation . 17

3.2. Evaluation . 18

3.3. Conclusion . 25

4. Prerequisites 27
4.1. Frequently used Names and Abbreviations 27

5. Design 31
5.1. Core Framework . 31

5.1.1. General Structure . 31

5.1.2. Code Execution . 33

5.2. Components . 34

5.2.1. Main Thread . 35

5.2.2. Scenario Worker . 42

ix

Contents

5.2.3. Service Worker . 43

5.2.4. Adaptations for Classrooms 44

5.3. Projects and Scenarios . 46

5.3.1. General Structure . 47

5.3.2. TicTacToe . 49

5.3.3. Wumpus . 50

5.3.4. Flappy Bird . 51

6. Implementation 53
6.1. Prerequisites . 53

6.1.1. Development Environment 53

6.1.2. Libraries . 55

6.1.3. Event Loop and Promises 58

6.2. Core Structure . 59

6.2.1. Main Components . 59

6.2.2. State Management . 61

6.2.3. Handling User Code . 64

6.3. Projects and Scenarios . 66

6.3.1. General Structure . 66

6.3.2. Provided Scenarios . 67

6.4. Technical Limitations . 69

6.4.1. Module Workers . 69

6.4.2. Service Workers . 69

6.4.3. Offscreen Canvas . 70

7. Evaluation 71
7.1. Feedback Questionnaire . 71

7.1.1. Design and Implementation 71

7.1.2. Evaluation Results . 73

7.1.3. Conclusion . 76

8. Conclusion 79
8.1. Discussion . 79

8.2. Future Work . 80

Bibliography 83

x

Contents

A. Survey 89

B. Feedback 95

xi

1. Introduction

1.1. Motivation

Our daily lives increasingly depend on information technology. We are
surrounded by machines, from smartphones to cleaning robots, which are
continuously interacting with their environment in a meaningful way. This
can take the form of taking over chores like mowing the lawn, or of helping
people to communicate in a foreign language. All this technology has their
roots in the field of Artificial Intelligence (AI), in order to make decisions
to fullfil their tasks. AI is not only used in nearly any modern electronic
device, but it also influences the way we teach, learn and communicate
[1, 2]. By shifting the focus to intelligent systems like chat bots [3] and
guided online courses, the way we interact while working, learning or
communicating adjusts. This disruptive change increases the need for a
better understanding of the underlying concepts and systems, not only for
being able to successfully navigate this new electronic landscape, but also
to be able to compete in a relentlessly changing world of jobs.
As a result, more and more courses and curricula, like the European Driving
License for Robotics and Intelligent Systems (EDLRIS) [4], Elements of AI [5] or
the AI for K-12 Guidelines Initiative [6], emerged focusing on fostering basic AI
literacy in young students. Furthermore, the volume of freely available tools
and tutorials is steadily increasing, helping students to test and improve
their knowledge on various theoretical as well as practical problems. Many
of these tasks come in the form of an agent inside a predefined environment.
The students then have to create some form of intelligent decision making
process for the agent to perform well inside the system.

There are many ways to teach topics of the vast field of AI, ranging from
starting a discussion on where machines should be allowed to overtake

1

1. Introduction

human work, to finding mathematical models to describe a problem in an
effective way. Another way of teaching is a hands-on programming approach.
There students have to create intelligent programs to solve problems inside a
given scenario, like manoeuvering an agent safely over a frozen lake, which
is one scenario of the OpenAI Gym [7]. These programming scenarios are
currently either easily accessible online, or downloadable frameworks for
offline use. While the online scenarios only require a web browser and a
stable internet connection, they often use visual programming languages,
which can be a limiting factor when taking on more complex problems, due
to their limited support of advanced features like mathematical libraries. On
the other hand, offline scenarios offer full access to textual programming
languages and powerful libraries but require the installation of tools, an
additional barrier which can prevent the use in a classroom setting.
Thus, the obvious next step is to provide easily accessible online tools, where
one can use professional programming languages and modern libraries,
while removing the need of installing additional components on a local
machine.

Advances in web technology and the introduction of web applications have
empowered programmers to create complex interactive websites, with access
to hardware resources like the graphics cards or webcams. These advance-
ments enabled browser programming frameworks to provide anything from
playgrounds for beginners like Scratch1 up to complete development environ-
ments like repl.it2, which integrate the entire tool chain from programming
to testing and deployment.

The work presented in this thesis contributes to the current online platform
ecosystem for AI programming, by using this new technology in order to
create an educational AI programming framework. The proposed website
provides a powerful and easy to access AI programming environment as
well as scenarios of various complexity.

The source code of the application can be found on GitHub3 and is freely
available under the open MIT license. There is also an instance of the website
running on https://ai.c4f.wtf.

1 https://scratch.mit.edu
2 https://repl.it
3 https://github.com/c4f-wtf/ai

2

https://ai.c4f.wtf
https://scratch.mit.edu
https://repl.it
https://github.com/c4f-wtf/ai

1.2. Goals and Challenges

1.2. Goals and Challenges

The main goal of the work presented in this thesis is to create an online,
AI focused programming environment which enables users to use textual
programming languages like JavaScript4 and Prolog5, as well as modern
libraries like TensorFlow [8], to tackle various problems related to AI. It
should be possible to solve simple and advanced problems like playing
TicTacToe6, manoeuvering an adventurer safely through an unknown cave
or helping a bird to fly through obstacles. The initially provided scenarios,
seen in Figure 1.1, focus on engaging, agent based games, which are not
only appealing environments, but further allow many different approaches
to create successful agents.

Figure 1.1.: Preview of the provided scenarios. For more information see Section 5.3.

The idea is based on the principle of scenario-based environments which is
already successfully used in many different AI teaching environments like
the OpenAI Gym [7] or Google’s AI Experiments [9].
Although both tools provide scenarios which require some form of AI
programming to be solved, they follow different approaches. On the one
hand, OpenAI Gym provides a Python7 library full of scenarios for primarily
reinforcement learning approaches and requires a local Python programming
environment. On the other hand, Google’s AI Experiments provide web-based

4 https://developer.mozilla.org/en-US/docs/Web/JavaScript
5 https://www.geeksforgeeks.org/prolog-an-introduction
6 https://en.wikipedia.org/wiki/Tic-tac-toe
7 https://www.python.org

3

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.geeksforgeeks.org/prolog-an-introduction
https://en.wikipedia.org/wiki/Tic-tac-toe
https://www.python.org

1. Introduction

frameworks which can be programmed by placing and modifying given
blocks (like input, neural-network) to solve primarily supervised learning
problems and requires nothing else but a modern web browser.

The approach proposed in this thesis combines both approaches by creating
a pure web-based programming framework, which provides all the possi-
bilities of a fully featured textual programming language inside a browser.
While it is currently possible to run reduced versions of Python inside a
browser, using JavaScript libraries like Brython8, it is not possible to run most
Python libraries. Despite this problem, there do exist projects which provide
full online Python programming tools by using a backend server for running
the code. An example can be found in Section 2.2.3.

In contrast, the aim of the proposed framework is to not rely on a backend
server, since it creates additional dependencies and requires a constant
connection to the internet, which is another barrier that can prevent adop-
tion in schools. This leads to JavaScript as the programming language of
choice. While not as popular in machine learning settings as Python, it is a
fully featured multi-paradigm language which is supported by all modern
browsers, including tooling support like debugging and profiling. There is
also an emerging landscape of libraries like TensorFlow.js9, the JavaScript port
of TensorFlow, and TauProlog10, a JavaScript based environment for the logical
programming language Prolog, which help bringing AI to the browsers.

Apart from the technical side, reducing barriers is of huge importance
for the project to achieve better acceptance in environments like schools.
Therefore, the whole application has to be accessible without requiring any
form of authentication or registration and should be capable to continue
working even in the event of network disconnects.

8 https://github.com/brython-dev/brython
9 https://www.tensorflow.org/js
10 http://tau-prolog.org

4

https://github.com/brython-dev/brython
https://www.tensorflow.org/js
http://tau-prolog.org

1.3. Outline

1.3. Outline

In the remainder of this thesis, we start with introducing related research
and available frameworks in Chapter 2, to build an understanding of the
state of the art. During planning the proposed framework, a survey was con-
ducted to identify the needs of potential users like educators and students.
The design, implementation and evaluation of this survey are presented in
Chapter 3. Chapter 4 introduces frequently used names and abbreviations,
which are common in a web development environment. The general design
of the proposed framework, including the core components as well as the
provided scenarios, can be found in Chapter 5. Chapter 6 is a detailed
introduction into the most important parts of the implementation, including
the development tools and used libraries. In Chapter 7 the feedback ques-
tionnaire will be discussed and finally in Chapter 8 we provide a conclusion
and remarks on future work.

5

2. Related Work

2.1. Related Research

The digitalization of the world constantly moves forward, therefore, it
becomes more and more important to teach children a solid understanding
of their surrounding digital environment. At the time of writing, the world
is plagued by a global pandemic, forcing people even further into digital
dependency. This sudden change into remote teaching highlighted the
importance of e-skills1 (skills required to create and interact with Information
and Communication Technologies (ICT)) , as well as the field of computer
science in educational settings [10]. Despite the circumstances, teaching and
learning using digital tools was more often than not positively received [11].
While these studies are very recent, the positive effect of e-skills to perform
well in a more and more digitalized society is well known [12, 13, 14].

AI literacy [15] describes the competency to not only know the term AI, but
to understand how AI works and in which way it effects our society. As the
shift to intelligent systems, like self driving vehicles, customer service bots
and personalized advertising continues, AI literacy has become an important
part of e-skills. The work proposed in this thesis, focuses in fostering these
critical skills, by providing environments which allow to experience and
create intelligent systems.

In recent years, web technologies became more prevalent, as their capabili-
ties increased. Nowadays websites can be interactive applications offering
anything from communication platforms, over interactive learning materials
to complete programming environments [16]. This shift further reduces

1 https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:

E-skills

7

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:E-skills
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:E-skills

2. Related Work

barriers that could prevent usage of such tools in the past [17], by making
them more easily accessible.

The website proposed in this thesis, provides an online development envi-
ronment, which is easy to use and freely available for everyone. It focuses on
learning and teaching different concepts of AI, by providing environments
with which the users can interact, using an agent-based approach. The gen-
eral concept is to provide appealing, easy to use game-like environments, in
which the user can focus on improving the intelligent behavior of interacting
agents. By providing engaging environments, students can more easily be
motivated to learn and improve their knowledge, as similar projects have
shown [18, 19].

In the following section, the proposed framework will be compared to
similar projects, highlighting key similarities and differences to already
available tools on the Web.

2.2. Related Frameworks

Nowadays, there are numerous of online programming frameworks avail-
able with very different concepts to address various users. They range
from interactive online tutorials like the w3schools.com2 and learnpython.org3,
through programming playgrounds like Scratch4 and OpenRoberta5, to com-
plete online development tools like repl.it6 and Codeanywhere7.

While many of these frameworks were used as sources of inspiration and
guidance, in this chapter we will discuss three of the available frameworks,
which on the one hand are distinctively different to each other, while on
the other hand are highly related to the proposed framework. First, each
framework will be presented by its general design and functionality, then
we will elaborate on which concepts will or will not be adopted in the

2 https://www.w3schools.com
3 https://www.learnpython.org
4 https://scratch.mit.edu
5 https://lab.open-roberta.org
6 https://repl.it
7 https://codeanywhere.com

8

https://www.w3schools.com
https://www.learnpython.org
https://scratch.mit.edu
https://lab.open-roberta.org
https://repl.it
https://codeanywhere.com

2.2. Related Frameworks

proposed framework. While each of the selected frameworks are free to use,
some do require paid accounts to access additional features.

2.2.1. OpenAI Gym

The OpenAI Gym ”is a toolkit for developing and comparing reinforcement learning
algorithms” [7]. It provides the user with different environments ranging
from physical problems, like balancing a pole on a cart, to complex games
like Ms. Pacman, where the user has to collect items inside a labyrinth while
avoiding enemy ghosts. The framework is written in Python8 and is available
through the official package manager PIP. Furthermore, due to using the
MIT license, it is completely free and open source and the code can be found
on GitHub9.

Design and Functionality

First and foremost, OpenAI Gym was created as a framework for implement-
ing and testing reinforcement learning algorithms [20]. In contrast to other
forms of machine learning, like supervised learning, reinforcement learning
evolves around exploring the environment and adapting the behavior based
on given feedback. The OpenAI Gym uses an agent-based system (Figure
2.1), where the agent has to decide its next action based on observations
regarding the environment and rewards, which indicate progress given a
specific task [21, Ch. 2].

The framework itself provides fully functional environments with prede-
fined actions and easily accessible observations and rewards. All environ-
ments are implemented using a class with a common interface, making it
easy to move from one to the next. As the core of each environment, the step
method updates the internal state given an action and returns the new ob-
servations and a reward, as well as some additional debugging information.
Given this information, the agent has to decide which action to take next
until the goal is reached or the run is aborted.

8 https://www.python.org
9 https://github.com/openai/gym

9

https://www.python.org
https://github.com/openai/gym

2. Related Work

Agent Environment

Action

Observation

Reward

Figure 2.1.: Agent-Environment-Loop

OpenAI Gym comes with dozens of environments, ranging from simple
control problems like swinging a pendulum, to complex robotic simulations
like pick and place an object using a 5-joint robotics arm. It is even possible
to interact with old Atari 260010 video games like Space Invaders or Ms.
Pacman. In addition, it has many user-created environments which can be
installed manually.

While the OpenAI Gym itself can easily be installed on any platform using
the Python package manager PIP, some environments require the installation
of further components like an Atari simulator as well as the Atari games
themselves.

Similarities and Differences

The OpenAI Gym and the ideas of the proposed framework have a lot in
common. Both focus on providing environments (scenarios) for the user
to enable focusing on the agents decision making using approaches like
reinforcement learning. Furthermore, both target a common interface across
their scenarios to ease the transition to a new environment.

However, while the OpenAI Gym focuses on Python and reduces the entry
barrier by integrating into the native package manager, with the proposed
framework we like to go a step further by requiring no installation at all.
This can be achieved by moving the local development environment to a

10 The Atari 2600 is a gaming console released in the EU in 1978 by Atari, Inc.

10

2.2. Related Frameworks

browser-based system. This also changes the programming language to
JavaScript, as it is the only language that works natively inside a browser.
On the other side, every modern operating system includes a web browser,
therefore no additional installation is needed. Furthermore, due to modern
browser technology, the proposed framework is able to function even when
offline, which removes the requirement of a constant internet connection.

The switch from Python to JavaScript, however, has its own drawbacks, as
Python arguably has more libraries like the Atari simulator or TensorFlow, a
machine learning library. On the other side, JavaScript is rapidly evolving
and more and more libraries arrive in a JavaScript version themselves,
like TensorFlow.js, which provides a more and more complete version of
TensorFlow available inside web browsers.

2.2.2. Web Maker

Web Maker11 is a coding playground, which allows the user to create snippets
including Hypertext Markup Language (HTML) for the layout, Cascading Style
Sheets (CSS) for the style and the programming language JavaScript (as well
as other comparable web languages) and simultaneously see the result all
in one page. Such coding playgrounds are commonly used to test and share
code snippets inside programming communities like Stack Overflow12. They
further can be used as simple code editors, as they are easily available using
just a web browser. Therefore, they can be used on every modern operating
system without installation. Web Maker is published under the MIT licence
and is freely available on GitHub13.

Design and Functionality

The framework provides four windows, one for each of the available lan-
guages (HTML, CSS, JavaScript) and one for the resulting page. It also
supports templating- and metalanguages like Markdown or the Syntactically

11 https://webmaker.app
12 https://stackoverflow.com
13 https://github.com/chinchang/web-maker

11

https://webmaker.app
https://stackoverflow.com
https://github.com/chinchang/web-maker

2. Related Work

Awesome Style Sheets (Sass) as well as many JavaScript libraries. When using
any of these higher-level languages, the code gets compiled to basic HTML,
CSS and JavaScript whenever the page is updated. Each of these languages
can be used in their respective window inside a browser-based editor in-
cluding modern features like auto completion, syntax highlighting and code
formatting. Finally, the resulting page is embedded into its window using an
iframe, which allows the inclusion of different websites inside a part of the
page.

The website generally works without registration, but provides the possi-
bility for users to create a free account to synchronize their projects across
multiple computers. Even without an account all projects can be saved
locally inside the browser and exported to and imported from a file. In
version 4.0, released in march 2019, a files mode was introduced to provide
the possibility to work with multiple files of any kind, instead of one file
per type.

Web Maker was designed from ground up to be resilient towards unreliable
network connections. As a result, once loaded the website can be used
even when there is no internet connection. While offline, all features work
normally except the possibility to login and save and load files to an online
profile.

Similarities and Differences

Both Web Maker and the concept presented in this thesis focus on an offline
first, no installation required and easy to use programming playground.
Since the introduction to files mode, the experiences are even more similar.

The differences become apparent with the objectives. Web Maker focuses on
providing users with a web programming editor to play around with small
website projects. The aim of the proposed work, however, is to provide the
user with working scenarios in the field of AI where the user can program
their own intelligent system using JavaScript inside a browser. As a result,
while Web Maker supports multiple web-related languages like HTML and
CSS as well as libraries, the proposed work focuses on JavaScript and a
HTML5 canvas for graphical output, which allows real-time rendering of

12

2.2. Related Frameworks

complex scenes like games. Therefore, Web Maker does not provide any
templates, as it is meant to be a general playground, while the proposed
framework centers around ready to use scenarios in addition for users
to being able to create their own scenarios from scratch. This differences
become more apparent when one is looking into the details. For instance
Web Maker does not provide the ability to use images other than external
hosted ones (which require an internet connection and a place to host the
images), which makes it impossible to create graphical scenarios in the same
manner as in the proposed work.

More differences can be found in the technical implementation. As the
executional context of JavaScript inside a tab of a web browser is single
threaded, whenever JavaScript code is running, the webpage becomes un-
responsive as the browser is not able to run the update process. When
programming complex algorithms, that have to run for multiple seconds
or even minutes, this can become a serious issue. Web Maker solves this by
using external libraries to parse and manipulate the user code to prevent
it from becoming stuck for too long, which makes it impossible to write
more complex programs. The solution selected for the proposed framework
is to move the user code to a different thread, which can be controlled and
aborted externally, but suffering from the consequence that the code loses
access to the structure of the website itself and has to communicate over a
messaging API. A more in depth explanation of the workings of JavaScript
and the specific implementation details can be found in Chapter 6.

2.2.3. Google Colaboratory

Google Colaboratory14, or Colab for short, is a product from Google Research.
Colab allows anybody to write and execute arbitrary Python code through
the browser, and is well suited for machine learning, data analysis and
education [22]. The framework is built on Jupyter Notebook15, an open-source
project for creating documents with included executable code samples,
which is used in many areas of data science [23, 24]. Everyone owning a

14 https://colab.research.google.com
15 https://jupyter.org

13

https://colab.research.google.com
https://jupyter.org

2. Related Work

Google account can create and run Colabs for free with the option to upgrade
to a Colab Pro account for more server resources.

Design and Functionality

The framework is directly integrated into the Google Drive environment,
with the result that anyone who owns a Google account can easily create
and share Colab documents. A Colab document comprises individual cells
which can either contain Python code or text, formatted using Markdown16,
a simple formatting syntax.

Code cells can be run individually, but they share the same scope. This
means that later executed cells can access all global variables and functions
from previously executed cells. Therefore, code can be split into multiple
cells which then have to be executed in order. Each code cell has its own
output which can contain text and images like graphs. Web browsers are
unable to run Python code, therefore the code is sent to a server in the
background for execution. As a result, it is not possible to create real-time
applications, in particular as the only way to interact with a program is to
change its code.

Text cells use Markdown to format the content which is converted to HTML
and CSS, which are native structuring and styling languages inside web
browsers. The syntax is rich enough to create all common forms of format-
ting like hyperlinks, tables, images, sections and more. Furthermore, it is
a well known syntax used in many applications like readme files in source
code repositories as well as in some online forums.

Similarities and Differences

While technically quite different, the fundamental idea of creating an easily
available web platform with fully featured programming environments
out of the box is the same. The same idea applies to the use Markdown to
incorporate descriptions and information into projects.

16 https://daringfireball.net/projects/markdown

14

https://daringfireball.net/projects/markdown

2.2. Related Frameworks

The fundamental differences start with the selection of the used program-
ming language. Colab uses Python, which in contrast to JavaScript is not
available inside the browser. Therefore, the code has to be executed on
a dedicated server, which results in the requirement of constant internet
connection and depends on the availability of the server. This also results in
resource shortages in the event of many users executing their code simulta-
neously. To compensate for the increasing cost of server infrastructure, paid
accounts were introduced to finance the background infrastructure as well
as to assure users availability. On the other hand, the approach selected for
our framework is local execution using JavaScript, a language which can be
executed natively inside the browser. As a result there is no scaling problem,
as every user uses their own hardware. Moreover, the local approach enables
direct user input (mouse, keyboard, camera, ...) and real-time as well as
offline applications.

The structure and workflow in general are different as well, while Colab
focuses on a single file which includes the code as well as text for further
explanations. The proposed framework uses a directory structure with
separate files for code, text and assets. It is worth mentioning, that Colab
does support a folder structure for asset files, which can also be included
using the google drive infrastructure. While the former approach allows to
create a very descriptive document explaining a concept while letting the
user play around with relevant parts of the code, the latter approach, which
was taken in this work, enables the user to create complex programs across
multiple files of different types, similar to a traditional local programming
environment.

15

3. Survey - Teaching AI in School

Prior to the development of the proposed framework, a preliminary survey
was conducted to collect potential requirements for the framework. Because
of the specific target audience for the project, the survey was conducted
with teachers who participated in either the EDLRIS AI Basic or EDLRIS AI
Advanced [4] courses before. Therefore, all participants had a basic knowl-
edge about topics in AI and the motivation to teach AI to students. The
detailed questionnaire can be found in Appendix A.

3.1. Design and Implementation

The survey was designed as a quantitative online questionnaire, targeting
teachers which already have been showing interest in teaching topics of
AI. At the end of the survey, there was an option to register with an email
address to get notified when an early version of the framework would be
available.

Questions were divided in to two categories: (1) teaching AI at schools and
(2) technical circumstances. The former comprises questions targeting the
topics, approach to and reasons not to teach AI in class as well as tutorials,
courses, frameworks and programming languages used at school. To keep
the questionnaire short and easy to complete, all questions in this category
were multiple choice with the option to add additional remarks. Questions
of the latter category were about browser availability and the frequency of
updates for programs at school, which is directly related to the available
feature set that can be used by the framework.

17

3. Survey - Teaching AI in School

The questions were designed to get a better understanding of the contents of,
and the requirements for teaching AI in class. While there can be many rea-
sons for deciding what to teach in school, the survey focused on identifying
barriers, which then could be considered while designing the framework.

For ease of creation and distribution, the questionnaire was created using
Google Forms1. The resulting link was posted on message boards of multiple
EDLRIS AI [4] courses conducted over the last two years as well as send to
specific individuals who stated interest in the project in prior discussions.
In order to increase user participation, the posting also mentioned the
possibility to get early access to the tool by submitting the questionnaire
and providing an email address.

3.2. Evaluation

Over the span of a month, 14 people participated, out of which 12 stated
interest in testing the framework by providing a contact email address. In the
reminder of this chapter we will present the evaluation of each individual
question and conclusions that can be drawn from them.

For readability, the longer labels inside the charts were shortened. The
complete questionnaire can be found in Appendix A.

Q1: Which general AI topics are you teaching or planning to teach in
class?

While for 86% of all participants the ethical and social aspects of AI were the
most selected topics, the same number of people stated interest in traditional
topics of AI like search and knowledge representation and reasoning. These topics
represent the more classical approaches like finding the shortest path on
a road and using logic to make deductions from given facts. With 57%
over half of the participants were teaching or planning to teach supervised
learning in class. Reinforcement learning was the least checked topic with only

1 https://www.google.com/forms/about

18

https://www.google.com/forms/about

3.2. Evaluation

search

knowledge
representation

reinforced
learning

supervised
learning

ethics and social
aspects

other

0 2 4 6 8 10 12

Figure 3.1.: Results of Question 1: Which general AI topics are you teaching or planning to
teach in class?

29%. The category other contained only clarifications about projects around
these topics, like donkey cars (autonomous driving cars) and the focus on the
difference between artificial and biological neuronal networks.

Q2: How do you approach teaching AI?

theoretical

practical

experimental

pen and paper

other

0 2 4 6 8 10 12

Figure 3.2.: Results of Question 2: How do you approach teaching AI?

19

3. Survey - Teaching AI in School

With 79% the majority of the participants chose a mixed theoretical and
practical approach, with 8 of them also incorporating experimental elements.
Two participants focused exclusively on an experimental and practical ap-
proach, while 43% of the participants also included pen and paper exercises.
One participant also mentioned a project-based approach.

Q3: What are your reasons (if any) not to teach AI in class?

time

curriculum

complexity

programs

tutorials

groundwork

other

0 2 4 6 8

Figure 3.3.: Results of Question 3: What are your reasons (if any) not to teach AI in class?

While, as shown in the questions before, all participants had been teaching
or planning to teach some topics of AI, there were still some reasons not to
teach (more) AI topics. The main reasons were the required groundwork
of creating frameworks to be able to work with more complex examples
(50% of participants) and the requirement of installing specific software
(36%). Another 36% of the teachers mentioned the lack of time or space
to fit more topics inside the curriculum. Finally, four participants checked
missing tutorials and courses or the general complexity as reasons not to
teach AI in class.

20

3.2. Evaluation

Q4: Are there any AI tutorials/courses or frameworks you have
participated in or used yourself?

EDLRIS AI Basic

EDLRIS AI
Advanced

OpenAI Gym

Elements of AI

Google AI
Education

Coursera

Udacity

Crash Course

other

0 2 4 6 8 10 12

Figure 3.4.: Results of Question 4: Are there any AI tutorials/courses or frameworks you
have participated in or used yourself?

Due to the selection of participants, everyone participated in either the
EDLRIS AI Basic or AI Advanced course2. The next popular choice with
29% was Google AI Education3 followed by Elements of AI4 with 21%. Other
courses on popular platforms like Coursera5, Udacity6 and the machine
learning lectures of the Johannes Kepler University Linz7 as well as the OpenAI
Gym8 framework were all together only used by 21% of the participants.

2 https://edlris.ist.tugraz.at/modules
3 https://ai.google/education
4 https://www.elementsofai.com
5 https://www.coursera.org
6 https://www.udacity.com
7 https://www.jku.at/en/institute-for-machine-learning
8 https://gym.openai.com

21

https://edlris.ist.tugraz.at/modules
https://ai.google/education
https://www.elementsofai.com
https://www.coursera.org
https://www.udacity.com
https://www.jku.at/en/institute-for-machine-learning
https://gym.openai.com

3. Survey - Teaching AI in School

Setting aside the EDLRIS courses, the net two popular choices are Google AI
Education and Elements of AI, both online courses with a low bar of entry due
to full availability inside the browser. While neither course has a dependency
on external programs, both require user registration to be fully available as
well as a constant internet connection.

Q5: Are you using or planning to use parts of any AI tutorial/course or
framework in class?

EDLRIS AI Basic

EDLRIS AI
Advanced

OpenAI Gym

Elements of AI

Google AI
Education

Coursera

Udacity

Crash Course

other

0 2 4 6 8 10 12

Figure 3.5.: Results of Question 5: Are you using or planning to use parts of any AI
tutorial/course or framework in class?

It is not surprising that 86% of the participants used or were planning to use
parts of the EDLRIS courses, as all participants are teachers who already
took part in at least one of these courses. While 43% of the participants chose
one or more of the other available courses and frameworks, one mentioned
heavy reliance on a custom made OneNote course. Only one participant
selected no answer signaling he or she would not plan to use AI frameworks
or tutorials in class.

22

3.2. Evaluation

Q6: Which programming languages and libraries are you teaching in
class?

Python

C/C++

Java

C#

Javascript

PHP

Scratch/Lego

other

0 5 10 15

Figure 3.6.: Results of Question 6: Which programming languages and libraries are you
teaching in class?

The most popular programming language is Python9, which is used by 93%
of the participants. It is followed by graphical programming languages
like Scratch10 and Lego Mindstorms11 with are used by 36%. 79% of the
participants selected at least one of the other languages including Orange12,
OpenRoberta13, Keras14 and PyTorch15.

It is evident, that even if Python is the most used language, there are still
many other programming languages in use, as each proposed language
was selected by at least three participants. The prevalence of Python comes

9 https://www.python.org
10 https://scratch.mit.edu
11 https://www.lego.com/en-at/themes/mindstorms/about
12 https://orange.biolab.si
13 https://lab.open-roberta.org
14 https://keras.io
15 https://www.pytorch.org

23

https://www.python.org
https://scratch.mit.edu
https://www.lego.com/en-at/themes/mindstorms/about
https://orange.biolab.si
https://lab.open-roberta.org
https://keras.io
https://www.pytorch.org

3. Survey - Teaching AI in School

naturally due to being the language of TensorFlow [8], one of the most
popular machine learning libraries as well as the beginner’s language of
many programming courses.

Q7: Which web browsers are available in your school?

Chrome

Firefox

Edge

Opera

Safari

other

0 2 4 6 8 10 12

Figure 3.7.: Results of Question 7: Which web browsers are available in your school?

While all participants answered that one or more modern browsers are
available in class rooms, two stated that only Firefox16 is available. This is
worth mentioning, as at the present the proposed framework does not work
inside Firefox, due to the lack of support for some modern features. For
more information, see Section 6.4.

Q8: How often are your programs (especially web browsers) updated in
school?

In at least 71% of the participants schools, the browsers get updated at
least once per year, 21% did not know their update cycle. Only one stated
that the browsers would get updated every other year. Due to the frequent

16 https://www.mozilla.org/en-US/firefox/

24

https://www.mozilla.org/en-US/firefox/

3.3. Conclusion

monthly

every 6 months

yearly

every other year

every second
year or less

i don't know

0 2 4 6 8

Figure 3.8.: Results of Question 8: How often are your programs (especially web browsers)
updated in school?

update cycles in the participants schools, new features can be expected to
be available at the latest after two years.

3.3. Conclusion

The survey highlights, that a practical approach is generally considered
important, but also harder to integrate in to a class setting. One of the
main reasons for not taking the practical route is the requirement to install
specific programs and the absence of frameworks, which provide ready-
to-use environments, as can be seen in Figure 3.3. These frameworks help
with the groundwork of creating scenarios, where the user can test their
ideas without writing all the surrounding mechanics themselves. While
there are projects like the OpenAI Gym [7], they still require the installation
and configuration of tools, which can explain the low adaptation rate as
seen in Figure 3.5.

In Figure 3.1 it can be seen that from all AI topics, reinforcement learning
is the least taught one. While reinforcement learning in general is a more
advanced topic, the requirement of a framework providing the environment
for a system to learn in, is an additional diminishing factor.

25

3. Survey - Teaching AI in School

In summary, the survey illustrates that although there are a lot of resources
already available, there still is need for more. Specifically in the area of rein-
forcement learning, new tools with fewer barriers can enable the integration
of the subject in to a class setting.

26

4. Prerequisites

In this chapter we introduce the basic terms required when working with
web technologies. It contains a list with short descriptions of frequently
used names and abbreviations. The goal of this chapter is to familiarize the
reader with the terminology used in the next chapters. This is especially
important as some of the terms often get mixed up like the World Wide Web
and the internet.

If not stated otherwise, the terms are either common knowledge or standard-
ized by the World Wide Web Consortium1 (W3C), an international community
that develops open web standards. For more detailed information we di-
rect the reader to the MDN Web Docs [25], an excellent resource of guides,
references and general documentation about web technologies.

4.1. Frequently used Names and Abbreviations

API
An Application Programming Interface (API) defines the interaction pos-
sibilities between multiple entities. It specifies the exact data formats
that have to be used for communication.

Application
An application, or app, is commonly known as a software program that
provides some functionality to the user, like email clients and web
browsers. In recent years the term web application, or web app, became
popular for websites that provide the same functionality while being
accessible using a web browser. As websites become more and more

1 https://www.w3.org

27

https://www.w3.org

4. Prerequisites

complex, the distinction between websites and web apps becomes blurry
und the terms are often used interchangeably.

Browser
A browser, or web browser, is a program for accessing the World Wide
Web.

CSS
Cascading Style Sheets (CSS) are used to apply styles to HTML elements
and are therefore used to produce the design of a webpage.

DOM
The Document Object Model (DOM) is a interface to programmatically
modify the structure and style of a document. In this thesis it always
refers to the HTML DOM, which enables JavaScript to modify the
content and design of a webpage.

HTML
The TyperText Markup Language (HTML) is used to structure the con-
tent of a webpage using descriptive elemets like paragraph, button and
hyperlink. It is the basic building block of any webpage.

HTTP
The HyperText Transfer Protocol (HTTP) is an application layer network
protocol and the foundation of the World Wide Web. It is a stateless
protocol and communication takes place using request and response
messages, which include all required information. In current times,
mostly the encrypted variant HTTPS is used.

Hyperlink
A hyperlink, or just link, is an HTML element that uses URLs to connect
to resources on the World Wide Web. It is commonly used to create a
connection between different webpages.

Internet
The internet is a global network connecting devises all over the world.
It is used for many purposes like video conferences and messaging as
well as the World Wide Web.

JavaScript
JavaScript is a multi-paradigm, dynamically typed programming lan-
guage, which is available in all modern web browsers. It supports
many imperative as well as declarative concepts and is therefore the
programming language of the Web. While the W3C specifies the APIs
that are available inside a browser, JavaScript in general is based on

28

4.1. Frequently used Names and Abbreviations

the ECMAScript specification from ECMA International2, a standards
organization for information and communication systems.

Page
A page, web page or webpage, contains all information to display content
associated with an URL.

Server
A server, or in the context of this thesis a web server is a computer,
connected to the internet, that provides different functionality to other
devices called clients. This includes handling HTTP requests and pro-
viding webpages as well as storing user information and user authen-
tication.

Site A site, also web site, or website, is a collection webpages which are
usually connected using hyperlinks.

State / Store
A state commonly describes the present condition of a system. The
term store is used to describe objects that store information about the
state of a system.

URI / URL
Uniform Resource Identifiers (URI), commonly also known as Uniform
Resource Locators (URL) and web addresses, specify the location of re-
sources on a network. They come in the form of a single line string
and contain the scheme, the domain as well as a path and additional
queries (scheme://domain/path?query).
For example: https://www.google.com/search?q=URI

WWW / Web
The World Wide Web, also known as the Web, is the biggest information
system on the internet. It allows to share resources like webpages
using URLs which are transferred using the HyperText Transfer Protocol
(HTTP). The Web can be accessed using software called web browsers
and content can be published by using web servers.

2 https://www.ecma-international.org

29

https://www.ecma-international.org

5. Design

This chapter describes the general design philosophy and principals used
for the core framework, as well as provides an overview of the provided
scenarios. Implementation details can be found in Chapter 6.

5.1. Core Framework

5.1.1. General Structure

In general, web applications can be categorized into two categories: (1)
multi-page and (2) single-page. Traditionally, in web development, the multi-
page approach was used to structure the content. In this approach all the
information is split over multiple pages. The user can then use hyperlinks
to navigate from one page to another, which is requested from the server
and rendered in the browser by reloading the window. While this approach
has existed since the beginning of the World Wide Web [26], it is still widely
in use, as can be seen in popular examples like Amazon1, the website of the
Graz University of Technology2 and all the websites build on frameworks like
Wordpress3 and Moodle4.

However, there are some drawbacks when using the multi-page approach.
Whenever a new page is requested, the whole page has to be loaded from the
server which likely contains code duplication in the form of elements that
have not changed. Furthermore, after each request the browser reloads the

1 https://amazon.com
2 https://tugraz.at
3 https://wordpress.com
4 https://moodle.com

31

https://amazon.com
https://tugraz.at
https://wordpress.com
https://moodle.com

5. Design

window to display the new content, throwing away any state information
that was not explicitly saved (for instance by using cookies or a local
database).

A newer approach is to use a single page. While visually indistinguishable,
the approach is quite different internally. Whenever the user requests a new
page, only the relevant content is sent over the network. Then JavaScript
is used to replace the corresponding parts of the website without reload-
ing the window. This approach not only reduces the data required to be
transferred over the network, but it can also sustain state information, as
the window is not automatically reloaded. The drawback of this approach
is the dependency on JavaScript to be able to load and interject the new
content. When a user disables JavaScript for any reason, this approach can
not work and fallbacks have to be provided. Still, single-page applications
rise in popularity as can be seen in popular examples like Youtube5, Twitter6

and Facebook7.

As the proposed framework requires the execution of user code, which
has to be loaded by script anyway, this capability is extended to the entire
website and a single-page approach is used. Furthermore, this framework
makes heavy use of JavaScript to store complex states, like the multiple files
the user is currently editing, which would be thrown away and had to be
loaded again whenever the user switches to a different section of the site
temporarily. The state still has to be stored locally however, as the user
can always decide to reload the window manually, after which it has to be
restored.

Even though the website technically just has a single page, the term page is
used from here on forward to describe a unit of content used to structure
the website like project-page and welcome-page.

5 https://youtube.com
6 https://twitter.com
7 https://facebook.com

32

https://youtube.com
https://twitter.com
https://facebook.com

5.1. Core Framework

5.1.2. Code Execution

By default, web applications run only in a single thread called the main
thread. It has access to all available features like the Document Object Model
(DOM), local databases (localStorage, indexedDB), WebGL and more. Although
this approach can be quite convenient, it has some severe drawbacks:

• There is only one execution unit. When any part of the application
performs anything computational intensive or uses a blocking function,
the entire window becomes unresponsive.

• All resources can be accessed from anywhere inside the code without
restrictions.

While both drawbacks can be avoided by programming carefully and by
making use of asynchronous methods, they are fatal in the context of this
thesis, where the goal is to execute arbitrary code generated by the user.
For instance, if the user adds an infinite loop by accident, the entire page
should not become unresponsive.

To solve this problems, web workers were introduced. They are separate
execution units with their own JavaScript scope and no access to the DOM.
While they still have access to the local database called indexedDB, the
only way of communication with other threads is through messages. Web
workers can execute independent code and are directly controlled by their
creating thread, which can start and stop them at any point. Nowadays, web
workers are supported by all modern browsers8.

In this application, a web worker named scenario-worker is used for the
execution of user generated code and the scenario itself. It is created and
controlled by the main thread and communicates with it through well defined
messages. Still, the main part of this application resides on the main thread,
including the entire Graphical User Interface (GUI) as well as the control over
the different workers and the indexedDB. It contains the state of the website
and stores user generated code inside the database.

The connection to the network is controlled by the service-worker, which is
a special kind of worker that runs in the background and can even persist

8 https://caniuse.com/#search=web%20worker

33

https://caniuse.com/#search=web%20worker

5. Design

when the website is not loaded. It can intercept all network requests (HTTP
requests) and creates caches from network responses for speedup and offline
usage. Furthermore, the service-worker enables access to user generated code
by loading it from the local database and providing it as a network response
to the scenario-worker. This approach has the additional advantage that the
user code is treated like any other code, which allows the debugging tools,
which every modern browser provides, to function properly.
Figure 5.1 illustrates the connection between the main components.

main thread service-worker

scenario-worker

Network

Database

messages

HTTP

read / write read

HTTP

messages HTTP

Figure 5.1.: Overview of the main components. The yellow components are separate ex-
ecution units, which communicate using messages. Furthermore, all HTTP
requests are intercepted by the service-worker, which has access to the database
to provide user generated code as HTTP responses, as well as for caching. The
main thread acts as the main controller and is the only component that can
modify the database.

5.2. Components

This section discusses the design decisions made for each of the three main
components. Further implementation details can be found in Chapter 6.

34

5.2. Components

5.2.1. Main Thread

The main thread represents the basic entry point to the application. Its
purpose is to control the User Interface (UI), manage the general state of the
website as well as to start, stop and communicate with worker threads.

User Interface

The general structure of this framework is build on the Polymer Project [27],
which provides open-source libraries for the use of a new web specification
called Web Components. It was created and released by Google in 2015 under
a permissive BSD license. Furthermore, it is used in many of their most
prominent products like Youtube and Google Maps as well as in other popular
sites like GitHub9. Web Components allow the programmer to not only group
code (structure, style and behavior) by page but also by element inside a
page. Normally, in a single-page application style definitions and behaviors
are applied over the entire page and require careful coding to avoid over-
lapping. With Web Components, styles and behaviors can be limited to the
component itself without generating undesired side effects.

In this application, Web Components in the form of LitElements from the
Polymer Project, are used for all major elements as well as some smaller
reusable parts and all the different pages. LitElements are classes to easily
create and manage Web Components. The following list gives an overview of
all components and how they are used:

tab-group
A reusable component which provides the ability to use tabs to display
multiple elements inside the same space. Only one tab can be active at
any time.

dynamic-split
A reusable component that splits the available space in two using
horizontal or vertical separators, which can be dragged within given
limits. The current position for each separator is stored locally inside

9 https://github.com/Polymer/polymer/wiki/Who’s-using-Polymer%3F

35

https://github.com/Polymer/polymer/wiki/Who's-using-Polymer%3F

5. Design

the browser which allows it to persist after reload. The component can
be nested to create any kind of grid layout.

simulator
The simulator controls the interaction with the user code. It there-
fore has buttons to start or stop scenarios. Furthermore, it provides
canvases for graphical output.

bug-tracker
The bug-tracker makes it easy for the user to report bugs by providing
a simple form which can sent the bug description, in addition to some
information about the current state of the website, to a server.

console
The console consists of a basic output console which also includes file
and line number information of where to find the corresponding call
as well as a link to directly open the file.

editor
The editor is build on the open-source editor Monaco [28], which is
created by Microsoft and released under the MIT license. It provides
the user with a powerful code editor, including many features like
syntax highlighting, code completion across multiple files and many more.

modal
The modal component is a generic element to display popup-boxes
for user interaction. It is used whenever the user has to provide some
information, like the name for a new file.

file-tree
The file-tree lists all files corresponding to the active project in an ex-
tendable tree form. Furthermore, it includes additional documentation
files, explaining the available libraries.

app
The app component groups the entire application together and repre-
sents the main entry point for the website.

header
The header component represents the top bar of the webpage and
contains basic navigation links as well as the bug-tracker.

Additionally, there are four components representing different pages. All
pages contain the header component for basic navigation:

36

5.2. Components

news
The page containing the latest news and updates. This component is
shown when the user first visits the website or when there was an
update since the last visit. See Figure 5.2.

Figure 5.2.: Welcome and news page

project-index
The page displaying an overview over all projects. Each project is
represented by its title and logo, as shown in Figure 5.3. Furthermore,
there are options for exporting/importing each project as well as
creating new and deleting existing projects.

project
The page displaying all elements required to work on a project. To
the left there is a file-tree, which contains not only project files but
global files, which can be shared across multiple projects. Additionally,
documentation files can be found in the docs folder at the top of the
file-tree. In the center there is a fully featured code editor as well as a
Markdown viewer to display documentation files in a well formatted
way. The simulator is to the right including the controls for starting
and stopping a scenario as well as all the visual output from the sce-
nario. In the bottom left the console output can be found, including

37

5. Design

Figure 5.3.: Project index page

links to the corresponding files.
All components can be resized by dragging their separator. Figure 5.4
shows the project page with the opened TicTacToe scenario (see Sec-
tion 5.3.2).

Figure 5.4.: Project page

38

5.2. Components

impressum
The page containing the impressum which includes contact informa-
tion and the privacy policy, legally required for each website, as shown
in Figure 5.5.

Figure 5.5.: Impressum page

The design itself is focused on simplicity, leaning towards the less is more
principle [29] and inspired by apps like Google Drive10 and GitHub11. The
main goal was to reduce visual clutter to a minimum, shifting the focus
to the few present elements. Therefore, very few colors are used and the
only images directly correlate to the scenarios themselves. Additional focus
was laid on spatial proximity and familiarity. Thus, the header component
was introduced as a fixed element on all pages, which includes all basic
navigation elements. Furthermore, all icons for manipulating an element,
like exporting or deleting a scenario, are close to the element itself, visually
grouped together and separated from other elements by thin lines as can be
seen in Figure 5.3.
All icons used for this work are either created by the author or from the

10 https://drive.google.com
11 https://github.com

39

https://drive.google.com
https://github.com

5. Design

Basic User Interface Elements icon set12 by Stefan Taubert released under the
Creative Commons By 3.0 license.

State Management

As an application grows in size and complexity, robust state management
is required. The approach used in this work is a centralized store system,
based on the MobX project, an open source state management solution
released under the MIT licence. In this system there can be multiple stores,
each managing their own state using predefined functions. Furthermore, it
is possible to subscribe to parts of the state by providing callback functions,
which get executed whenever the relevant part of the state has changed.
These stores are just objects in memory, which get lost whenever the window
is reloaded. Therefore, some parts of the state are additionally stored in
either the localStorage, a simple key-value store for persisting data inside the
browser, the asynchronous local database called indexedDB or by modifying
the Uniform Resource Locator (URL) in the address bar of the browser.
However, to ensure data consistency, every modification of the state has to
be done using the stores, while read access can also be done directly but is
usually triggered by a callback from a state modification.

We use three distinct stores, all residing in and controlled by the main thread.
As each thread has a separate scope with no sharing, whenever another
thread needs access to the state, it has to communicate with the main thread
using messages or read the data from one of the persistent storages.

app-store
The app-store contains global information like the currently visible
page and modal as well as network availability. Most of this data is
dynamic, therefore only the opened page is persisted by modifying
the URL. As a result, like in multi-page applications, a specific page
can be linked to using the URL.

project-store
The project-store contains information about the currently opened
project like opened files as well as log and file-tree changes. While

12 https://www.iconfinder.com/iconsets/basic-user-interface-elements

40

https://www.iconfinder.com/iconsets/basic- user- interface-elements

5.2. Components

all user files are stored inside the indexedDB, the opened project is
again stored inside the URL.

settings-store
The settings-store is a simple key-value store containing various user
settings like the color theme of the editor or the position of the space
separators. It is meant to be a flexible store with no predefined fields,
therefore whenever a new element needs to persist some user specific
information, this store can be used. All data is persisted inside the
localStorage which, compared to the indexedDB, has the advantage of
being synchronous which allows fast and easy access.

Worker Management

It is the responsibility of the main thread to manage additional workers. In
the context of a web browser, the main thread controls everything, which
includes rendering and input handling. As a result, a blocking operation
can freeze the entire application and make it completely unresponsive. For
this reason some of the work is transferred to separate threads using Web
Workers and Service Workers. While Web Workers are reliant on the main
thread and exist only when the website is visited (active), Service Workers are
independent and prevail in the background. Furthermore, all network calls
can be intercepted by a Service Worker which enables powerful caching
capabilities. In this work, a Service Worker is also used to provide user
generated files as if they were requested over the network, although they
are actually stored locally. This approach enables all available browser tools
for debugging, as the files are treated like regular code.

The two workers used in this work are:

scenario-worker
The scenario-worker is responsible for running user generated code in a
separate context. Additionally, it provides an enhanced programming
context by passing events like logging and mouse input to and from
the main thread.

service-worker
The service-worker provides access to user generated files and is used
for offline caching.

41

5. Design

5.2.2. Scenario Worker

The scenario-worker provides a separate thread and context for the user code
to be executed. One of the main benefits of separating the user code from
the rest of the application is to not interfere with the general behavior of the
website. Even if the user creates an infinite loop by accident, the main thread
continues to work normally and is able to stop the user code at will. The
separation into a different context means the user code has in general no
access to any other part of the application. Therefore the user can not easily
make the website unusable by accident.
Furthermore, the scenario-worker handles sending and receiving messages
from and to the main thread as well as modifies the globally available console
object to intercepting logging commands. Using messages, these are then
sent to the main thread to be displayed in the console.

The scenario-worker listens to three types of messages:

call-messages
Call-messages allow the main thread to call arbitrary functions inside the
user’s code which are used to start the scenario itself or to run some
training function.

event-messages
Event-messages are responsible for providing access to mouse events
which allow scenarios to be interactive. It makes it possible for the
player to take over control of the game or play against his or her own
created AI.

video-messages
Video-messages provide the possibility to receive video frame updates
when a camera is active which can be used for object or face tracking.

Additionally, there are three types of messages the scenario-worker can send
to the main thread:

log-messages
Log-messages are used to make log commands not only available in the
browsers developer console, which in general is not visible by default,
but to display them in the console component on the project page.

42

5.2. Components

json-messages
Json-messages allow the user to store any information inside a local
file using the JavaScript Object Notation (JSON) format [30]. This can
be used to persist any kind of data during program execution, like
storing the values of a trained neural network for future use.

html-messages
Html-messages are used as a simple way to output small junks of
text or other data like tables, formatted using the Hypertext Markup
Language (HTML) [31]. The main thread then displays the result below
the graphical output, as can be seen with the text ”Your turn, pick a
position...” in Figure 5.4.

5.2.3. Service Worker

Service Workers are workers that behave differently than any other code, as
the browser runs them in the background. They therefore provide features
otherwise unaccessible like background synchronization and push notifica-
tions, which can be used to inform users about changes on the server like
new messages for the user. For this work, the important new feature is the
ability to intercept network requests and to provide a custom result.

In this application, an offline first caching approach is used. At the begin-
ning of each network request, the cache is checked. If there is already a
cached version of the request available it is immediately returned as a result.
Additionally, to be able to receive updates, the network request is further
send to the server and the result is written to the cache. If there was no
cached version before, the new result is returned to the user. Therefore,
the cache is always updated for further requests, while the user gets an
immediate result whenever possible. This drastically improves the respon-
siveness of the application, as the user does not have to wait for the network
response, which can take up to a few seconds, depending on the current
connection.
To improve things even further, the first time the website is visited, it down-
loads all required data, like pages, scenarios and libraries, in the background
and stores them inside the browser cache. Therefore, after a few seconds

43

5. Design

the whole application is locally available and even continues to work if the
network connection is lost.

There are many websites like JSFiddle13 or JSBin14 which enable users to
write JavaScript code and execute it inside the browser. The main method
these sites are using is to store the user created files directly on the server
and then providing the files like normal using a personalized URL. On the
upside users are able to share the code with others the internet, but on the
downside it requires constant network access. Another approach is to store
the code locally and use functions like eval or function objects to execute the
code. This approach has the downside that not all language features are
available especially newer ones like modules.
Therefore, in this work a Service Worker is used to intercept specific network
requests for user generated code and to serve the local files as network files.
To be distinguishable from normal requests, the URL for these files start
with either project/ or global/. As a result it is possible to write any code and
use any feature the browser supports. Additionally, all build in browser
tools like the debugger and performance profiler are fully functional and
can be used like normal.

5.2.4. Adaptations for Classrooms

While the proposed framework can be used in many different contexts, its
main goal is to provide a useful AI development environment for schools.
Therefore, there is a clear focus on removing or reducing any barrier that can
prevent adoption in class like privacy concerns or installation requirements.
This section takes a look at some of the barriers outlined in the preliminary
survey in Chapter 3 as well as some general barriers.

Availability and Usability

One of the main barriers for tools to be used in class is the system ad-
ministration. Not every teacher has the privileges to install his or her own

13 https://jsfiddle.net
14 https://jsbin.com

44

https://jsfiddle.net
https://jsbin.com

5.2. Components

programs and system administrators can, for various reasons like security
concerns, reject or delay the installation of tools. More problems arise when
students have to use the program at home, where different operating sys-
tems or lacking system permissions add to the number of roadblocks.
Therefore, the framework was planned from ground up to be accessible
without installation using only tools every modern system already provides:
a web-browser. While this means there is an initial network connection
required, this app is also designed to work completely offline once loaded.
Even in the case of complete network failure the program can be used
without limitations as long as it was opened once before.

While by the nature of the approach a basic knowledge in programming is
required, the general UI was designed to be as lean as possible, providing
just the most relevant functionality by default. This makes it easier for new
users to navigate through and find the relevant parts in the application.
Nevertheless the site provides powerful utilities inside the editor, as it is
based on the popular editor Monaco [28], for advanced users who are willing
to learn some shortcuts or dig into the depths of the command palette.

Security and Privacy

Another barrier can be the requirement to create an account to use a tool,
due to privacy or security concerns. On the one hand student data can be
quite sensitive, on the other hand most people reuse the same or similar
passwords on multiple sites, reducing the security with each new account
[32][33].

To prevent all these problems, there does not exist user registration in this
application. All the data is stored locally inside the browser and only leaves
the machine when manually exported into a file by the user. Furthermore,
the website uses no tracking and does not store any data at all (with the
exception of optional submitted bug reports) on the server.

Another concern when using user generated code is security and the possi-
bility of writing malicious code. Due to the local nature of this approach
users only have access to their own code which prevents attacks on others.
While the code can be manually exported and imported, which makes it

45

5. Design

possible to run malicious code on different machines, this attack requires
manual access to the targeted machine. At this point the attacker can al-
ready do everything he or she wants. As a point of reference, an attacker
can already do the exact same thing (executing arbitrary JavaScript code)
with the default developer tools available in every browser, which can even
be executed on any website.

Adaptability

While there are ready-to-use scenarios already on the website, it can be
beneficial to create new scenarios for specific purposes. This application
allows easy creation of new or adapted scenarios as well as the possibility
to share these scenarios as templates by exporting them and providing the
resulting file to the students. All features can be accessed directly on the
website, as can be seen due to the fact that all provided scenarios were
programmed on the website itself.

5.3. Projects and Scenarios

In this section, the general structure of all projects and scenarios is presented
as well as the three provided scenarios and the rationale behind them. This
only are the scenarios which are currently available on the website by default.
More scenarios will come in the future (see Section 8.2). Furthermore, each
user can easily create their own scenarios directly inside the application
and share them with their friends or students using the import and export
functionality.

The following chapter will include some algorithms used for creating intel-
ligent programs, like reinforcement learning, Q-learning and minimax. Knowl-
edge about these algorithms is not necessary to understand this thesis, but if
one wants to understand them more, a good reference is the book Artificial
Intelligence - A Modern Approach [21], which was used by the author himself
as a work of reference while creating these scenarios.

46

5.3. Projects and Scenarios

All images are, unless otherwise stated, either created by the author or
released under the Creative Commons Zero license, making them available
without restriction to the public domain. They where found on sites like
https://publicdomainvectors.org and https://opengameart.org.

5.3.1. General Structure

A project is basically a collection of files. It is required to have a unique
name and at least one file called index.js. This file is the main entry point
and has to contain an function named start. Additionally, a function named
train can be provided. While both functions can be manually triggered by
the user using the corresponding buttons in the simulator component, the
start function is called additionally whenever the project is opened. This
ensures that the user can immediately see and interact with the scenario.
While both functions can contain arbitrary code, start is meant to start a
new run of the scenario while train could be used for a learning AI to play
training games against itself.
In addition, in all default projects a file called scenario.js is present, imple-
menting all the functionality of the scenario. Most scenarios also include
a scenario.md file containing documentation on how to use its provided
functions.

A scenario contains all the code required to simulate an environment.
In the provided scenarios the environment is some kind of game, but it
could be anything the user is willing to program. Additionally all provided
environments are modelled around an agent, which uses callback functions
for interaction, as can be seen in Figure 5.6. The most important callback is
update, which has to be present in every agent. Update receives at least the
current state or the agent’s observations as an input and has to return the
action the agent wants to take. Every time the agent has to make a decision
inside the scenario, the update function is called and the returned action is
used.
All other callback-functions are optional and correspond to specific events.
The init and finish functions are called at the beginning and end of a scenario,
the latter also provides information about the final state and some kind of
scoring the agent reached. Finally, the result function is called after each

47

https://publicdomainvectors.org
https://opengameart.org

5. Design

action took place. It provides information about the previous state, the new
state, the chosen action and optionally additional information for calculating
the reward. This function can be used for reinforcement learning to train an
agent by updating its decision process given the success or failure of its
action.

Agent Environment

init
state

update
state / observations

action

result
old_state, action, new_state, [reward]

state, score

finish

Figure 5.6.: In this figure, all four agent callbacks can be seen. These functions are executed
under specific circumstances and provide some information using arguments.
Only the update function has to be provided by the agent, the others can be
omitted. Update is further the only callback that has an action as a return value.

The entire functionality of the scenario resides inside the file scenario.js. In
the provided scenarios, this file includes at least one function called run
which takes one or multiple agents as well as some settings and starts a
new run of the game. While this file in general is not meant to be modified,
a skilled user can change it to provide game variants or increase/reduce the
difficulty of the scenario.

While this structure is currently used in all provided scenarios, it is not
strictly required. A user can simply create a scenario with a completely
different structure, as long as there is an index.js file containing a start
function.

48

5.3. Projects and Scenarios

Figure 5.7.: Scenario TicTacToe

5.3.2. TicTacToe

TicTacToe, also known as Noughts and Crosses, is a two player game, played
on a three by three board. The players take alternating turns and check one
of the fields as theirs, one using the symbol X, the other the symbol O. The
first player who has three of their symbols in a row (horizontally, vertically
or diagonally) wins.
The game itself is quite simple and as long as no player makes a mistake
neither can win. Additionally, the number of possible states is quite limited,
and therefore every possible board state can be calculated and an unbeatable
AI can be created.

The provided scenario.js file does not only provide the run function, but
also intermediate functions like getScore and performAction. This has the
advantage that the user has more control over the game which makes it
easier, for instance, to calculate all possible states in advance. Furthermore,
the run-function can be used with either one or two agents. If only one
agent is present, the second agent is controlled by the user, who can then
play the game against the computer.

Inside the default template there is already a simple agent present, which

49

5. Design

choses random actions to play against. Additionally, further examples are
provided, one creating an unbeatable AI using a minimax algorithm and
another using Q-learning.

5.3.3. Wumpus

Figure 5.8.: Scenario Wumpus

The Wumpus scenario is a variation of the classical Wumpus World, which is
a classical environment for agent-based AIs [21, Ch. 7]. It consists of a cave
and an explorer who has to find a treasure without dying. The map consists
of square tiles, with the default being four tiles wide and tall. Inside the
cave there are two kinds of deadly obstacles: pits where the adventurer can
fall to his death and the Wumpus, a big green monster that eats the explorer.
Furthermore, there is a treasure which he has to reach to win. The agent
has no information about the map and only has his perceptions to make a
decision for his next move. There are three different perceptions: either a
breeze, when he is adjacent to a pit, a stench, when he is adjacent to the
Wumpus or some glitter when he has reached the treasure.
The map in this scenario is randomly generated, using a given seed. While it
is ensured, that every map has a solution, there can be situations where the

50

5.3. Projects and Scenarios

given information is not sufficient to come to a clear conclusion. Therefore,
even a perfect AI has to sometimes make decisions with uncertain outcome.
Furthermore, the map can be modified, as the explorer has a bow and
one single arrow which allows him to kill the Wumpus, signaled by a deep
scream. This makes the previously blocked tile passable.

As in the TicTacToe scenario, the scenario.js file does not only provide the run
function, but intermediate functions like getPercepts and getTile which can
help in the decision making process. Furthermore, the run-function can be
modified using settings which include the size of the cave, the used seed as
well as the complexity. The complexity decides the type of movement that
is available. When set to simple, the adventurer can instantly move to any
unexplored tile, as long as it is adjacent to an already visited tile. If set to
advanced, the adventurer can only move one tile at a time, which increases
the difficulty as additional pathfinding is required.

The default template includes an agent taking random actions. There is an
additional example available using a logic-based approach, highlighting
the use of the programming language Prolog, which can be used using the
JavaScript library TauProlog [34].

5.3.4. Flappy Bird

Flappy Bird is a single player game with the goal to navigate a bird through
a series of obstacles. It is a 2D game where the bird constantly flies with
the same speed from left to right while obstacles occur periodically with
only a small gap for the bird to fly through. At any time the player only has
two possible actions, either to accelerate upwards (jump) or to do nothing,
which results in downwards acceleration due to gravity. Every time the bird
successfully navigates through an obstacle, it gets awarded one point and a
new obstacle, with a randomized gap, appears.

In this scenario, the obstacles are randomly generated with the possibility to
use a fixed seed to be able to recreate specific rounds and compare different
approaches. In contrast to the Wumpus and TicTacToe scenarios which are
turn-based, Flappy Bird is a real-time game. This results in frequent updates

51

5. Design

Figure 5.9.: Scenario Flappy Bird

with only small changes, which makes some approaches like a Q-table harder
to implement.

While the scenario.js-file provides a run-function, only a few helper func-
tions like createAgent and createSettings are present. Additionally there is
a difference for the update-callback, as it provides observations instead of
a complete state. These observations include the horizontal and vertical
distance to the next gap, the current velocities, the score and the distance to
the ground. For learning approaches requiring a state, the user himself has
to find an appropriate mapping from observation to state.

While the default template includes the functionality for the user to play the
game using the mouse, an additional template for Q-learning is provided.
This template already has a working datastructure for the Q-table as well
as a basic framework for a Q-learning algorithm. This can help novice
programmers to focus on the learning algorithm and tweaking the basic
parameters to understand their purpose and effect. Furthermore, there is a
function to visualize the content of the Q-table to get a better understanding
of how the inner workings change during each learning step, by watching it
change in realtime.

52

6. Implementation

This chapter presents the technical details regarding the implementation of
the application. The following sections explain in more detail the structure
and the functions of the core elements. More details can be found on GitHub1,
where the entire source code is available.

6.1. Prerequisites

Web development has changed a lot in recent years, therefore this chapter
provides an overview of the used tools and technologies as well as their
interaction.

6.1.1. Development Environment

For development, the editor Visual Studio Code (or VSCode) [35] from Mi-
crosoft was used. It is a free editor, based on the Monaco [28] editor, which
also is used as the online editor in the application. VSCode is a feature-rich
Integrated Development Environment (IDE) and provides full support for all
other used tools and libraries.

To provide access to all required tools and libraries, a local Node.js [36]
environment was used. Node.js not only allows local execution of JavaScript
code, but is also required for the Node Package Manager (npm) [37]. Npm
provides access to over a million packages, including tools and libraries,
and is considered to be the largest open-source package manager in the

1 https://github.com/c4f-wtf/ai

53

https://github.com/c4f-wtf/ai

6. Implementation

world2. For this work, all tools and libraries, with the exception of VSCode,
were installed using npm. This has the additional advantage, that the entire
project can be installed using the single command npm install, as long as
npm is present. Furthermore, to test the website using a local server one
simply has to use the command npm start.

The code itself is managed by webpack, a ”static module bundler for mod-
ern JavaScript applications” [38]. Webpack is used to merge all project files
together into a few JavaScript files called bundles, grouping connected parts
together using loaders. Loaders allow webpack to process different kinds of
files and to create valid bundles out of them. These loaders also enable the
use of different programming languages by converting them into valid
JavaScript, a process commonly known as transpiling. A transpiler is a com-
piler, that only converts between languages of similar abstraction levels.
Therefore, users can program in any high-level language they want, as long
as a suitable loader exists.

For the proposed framework, the programming language TypeScript [39] is
used. TypeScript is based on JavaScript and enhances the language by adding
static type information. In normal JavaScript, variables can be of any type
and even change their type at will, which makes it harder in larger projects
to ensure the correctness of the code. TypeScript removes this problem by
requiring type annotations on all variables and objects as well as checking
them for validity whenever it is transpiled to JavaScript. This process is done
using the loader Babel [40], which is not only able to generate JavaScript out
of TypeScript, but also to perform additional post-processing optimizations
like code minification and feature transpiling. Code minification reduces the size
of the resulting code to a minimum by removing all unnecessary whitespace
and replacing names with shorter ones. This results in a significant lower
file size, reducing the required network bandwidth to load the website.
Feature transpiling enables the use of new features, even when they are
not readily available in most browsers. It replaces parts of the code with
different instructions that provide the same behavior, while being more
readily available.

2 https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what

-can-we-learn

54

https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn

6.1. Prerequisites

A more comprehensive guide to this approach can be found in the Front-end
Developer Handbook 2019 by Cody Lindley [41].

6.1.2. Libraries

At the current state, this work uses 21 libraries during runtime, not counting
dependencies and plugins for these libraries. All these packages can be
found in the Node Package Manager3 using the provided names.

deepcopy
Deepcopy is a library for creating deep copies of objects. It works recur-
sively and is capable of handling special cases like objects referring to
themselves.

dexie
Dexie provides easy access to the asynchronous local database named
indexedDB, which is available in every modern browser.

file-saver
File-saver allows the download of arbitrary binary data in the form of
a file. In this work, this is used to create exported scenario files.

jquery
jQuery is a well known JavaScript library, providing hundreds of utility
functions. As it is heavily DOM-based, it is only used as a dependency
for jstree, which in its current version does not work without it.

json-stringify-pretty-compact
This small library is used to create well formatted strings out of objects
using the JavaScript Object Notation (JSON). It is mainly used for the
console component.

jstree
jsTree is a library for creating interactive file-trees. It requires jQuery
and is not able to run inside web components.

jszip
JSZip provides functions to create and unpack zip-files.

3 https://www.npmjs.com

55

https://www.npmjs.com

6. Implementation

lit-element
LitElement is the basic building block of the Polymer Project, which is
an efficient framework for using web components.

lodash
Lodash is a library containing hundreds of utility functions like throttle
or flatten. Throttle for instance is able to group frequent function calls
together, which are then reduced to only a single function call in a
given time frame. This is used while logging, as too many calls can
slow down the system. Using throttle, the logging calls get queued up
and then displayed collectively once every 100 milliseconds.

lz-string
lz-string provides access to text compression functions.

mobx
MobX is a lightweight but scalable state management library. It pro-
vides objects called stores, that provide controlled access to state infor-
mation like the currently active page.

monaco-editor
Monaco Editor is a powerful code editor created by Microsoft. It is also
the core of their popular local code editor Visual Studio Code, which
was used to create this project.

prismjs
Prism is a simple code highlighting library, used in this work for
formatting code examples inside markdown files.

pwa-helpers
pwa-helpers provide a few functions useful for programming web
applications. It is mainly used for the functions installRouter and
installOfflineWatcher to handle URL changes as well as changes in
network connectivity.

resize-observer
resize-observer is a small library providing objects to register and handle
changes in the size of DOM elements.

seedrandom
seedrandom.js is a small library providing a seeded random number
generator. It is used to create deterministic randomness.

showdown
Showdown is a library to convert markdown into HTML code. It is used
for all documentation files.

56

6.1. Prerequisites

stacktrace-js
stacktrace.js creates browser independent stacktraces from error objects.

tau-prolog
TauProlog allows to use the programming language Prolog inside the
browser.

tensorflowjs
TensorFlow.js is a machine learning library, providing many machine
learning models and algorithms inside the browser. It is the official
JavaScript version of the popular TensorFlow library.

workbox-expiration, workbox-routing, workbox-strategies
Workbox is library for Service Workers, making it easy to intercept routes
and handle caching.

In addition to the runtime libraries, development libraries are used to
compile all code into a optimized bundles. This can easily be done by using
the command npm run build:prod.

babel
Babel is a JavaScript compiler that can transform modern code into
optimized, better supported code. This can allow the use of new
language features, that are not not currently supported by many
browsers. However, not all features can be transformed that way,
especially more substantial ones like Service Workers and offscreen
rendering. In this work Babel is mainly used to compile TypeScript into
a minimized and optimized JavaScript code.

glob
Glob is a small library allowing to search and list files inside a directory
using patterns like stars.

typescript
TypeScript is a programming language that enhances JavaScript by
providing type safety.

webpack
WebPack is a web bundling library that splits code into optimized
chunks, which then can be loaded individually. It also includes ad-
ditional capabilities like running a development server, while also
updating changes in real time. Furthermore, it is able to run different
compilers, like Babel, on different files.

57

6. Implementation

6.1.3. Event Loop and Promises

Inside modern browsers, each tab has its own thread. As JavaScript is a
single-threaded language, all operations are further performed in the same
thread. Therefore, as long as any part of the website uses more computation
time, all other parts, including rendering and input handling, have to wait
for it to finish. To prevent constant freezing, JavaScript is built on an event
loop. All operations are triggered by specific events, like when the website
has finished loading, the user clicks on an element or a requested network
file is available. Whenever an event occurs, it is pushed to the event queue.
The event loop continuously performs predefined tasks like rendering the
website and handling user input as well as processing the event queue. Each
item on the queue gets processed completely, until the queue is empty and
the loop continues.

There are two major ways of dealing with this-event base approach, one
is to use callbacks, the other is to use promises. When using callbacks, one
simply has to provide a function that will be called whenever the event
is triggered. As an example, when requesting data over the network, the
request is send and a callback function provided. Finally, when the file is
available, the callback function is called. While this approach is easy to use,
it becomes more cumbersome when there are multiple events which have
to be fulfilled simultaneously (for instance multiple files have to be loaded
before the scenario can start).

The more modern approach is to use promises. A promise is an object that
acts like a placeholder for a value. At any point after creation it can get
resolved or rejected. When a promise is resolved, the value is returned to a
registered function. When a promise is rejected, an error is returned to a
different registered function. The main difference to callbacks is, that it is
possible to wait for multiple promises to resolve and then continue with all
results being available.
To improve asynchronous programming even further, async/await was in-
troduced. These new keywords allow a function to be asynchronous, by
automatically changing the result into a promise. Furthermore, await can
now be used inside async-functions to pause the execution until a promise
is resolved while also directly returning the value without the need of any

58

6.2. Core Structure

callbacks.

A more comprehensive explanation of promises and callbacks can be found in
chapter 7 of the book JavaScript (ES2015+) Enlightenment by Cody Lindley
[42].

6.2. Core Structure

This section discusses how the central parts of the framework were im-
plemented. It focuses on the most important functionalities and provides
explanations on how they work as well as why they are used in this way.
The implementation details for the provided scenarios can be found in the
next chapter.

6.2.1. Main Components

Web Components

The core framework in this work is build on the Polymer Project [27]. There-
fore all UI components are made of litElements, which is the basic building
block of Polymer. LitElements handle the creation of web components, which
encapsulate structure, design and functionality in one area. Furthermore,
they use a technology called Shadow DOM, for strict encapsulation. As a
result all structure, style and behavior definitions can only manipulate DOM
elements inside the component itself, and no side effects can occur.

This approach is very different to traditional web development, where all
elements can access everything and separation has to be done manually
by carefully choosing names and ids that are unlikely to overlap. For in-
stance if one would use the name console for an element that outputs some
information, one would have to be certain, that no other element on the
current page has the same name. If name duplication occurs, it becomes
hard to differentiate between two elements when trying to access them.
Furthermore, ids are required to be unique by the HTML standard. This can

59

6. Implementation

become especially problematic when multiple libraries are used which can
create new elements by themselves.

Web components were only standardized in recent years, therefore most of
the available libraries and frameworks use the traditional system, which by
design is incompatible with the strict encapsulation of litElements. While it is
possible to use web components in normal web development, it is impossible
to use normal web development inside web components. Therefore, most of
the available libraries for manipulating the DOM do not work inside of
web components. This also affects the libraries jsTree and monaco-editor in this
work. Although, by February 2020, monaco-editor added support for web
components, it still has a few problems, preventing it from being used in this
form for this application.
To still be able to use these libraries, iframes are used. Iframes in general
enable different websites to be embedded inside an element. To solve the
previously mentioned problem, the file-tree and editor components, both web
components, contain iframes which load custom pages. These pages do not
need to contain web components and therefore are able to use the libraries
through traditional web pages. Using JavaScript, it is still possible to directly
interact with the embedded libraries, as long as they reside on the same
domain.

Messaging

To communicate between the main thread and its workers, messages are used.
In JavaScript, messages can send a variety of data from one place to another.
This data is automatically serialized and deserialized using the structured
clone algorithm4, making messages easy to use. However, not all data types
can be cloned, like function or error objects. This is especially problematic
as this data is frequently used in logging, to provide the user with more
details regarding error messages. Therefore, a custom serialization function
is used, which uses the JavaScript Object Notation (JSON). The advantage of
this approach is that JSON is a human readable format, which further can be

4 https://developer.mozilla.org/en-US/docs/Web/API/Web Workers API/Structu

red clone algorithm

60

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm

6.2. Core Structure

formatted using the json-stringify-pretty-compact library to create appealing
logging entries.

In this work it is often required not only to send a message, but also to wait
for a returning message. Therefore a utility function messageWithResult was
created. This function makes use of message channels, which allow it to send
messages from one point to another, without them being broadcasted to
any other element. By using promises, this function makes it easy to send a
message and to await the result.

6.2.2. State Management

States in this application are managed using the library MobX [43]. In MobX,
states are encapsulated in objects, which in this project are called stores.
Each store consists of observables, which are attributes containing some state
information as well as actions, which are methods for modifying the stored
information. In addition, there can be computed values, which are not used
in this work.
Whenever any event modifies the store using an action, side effects can be
triggered. Side effects can be anything from updating the UI, saving a file to
the indexedDB to modifying the URL. The condition for triggering these side
effects is a change in value of one or more specified observables. Furthermore,
side effects themselves can trigger new actions which continues until all events
are handled. See Figure 6.1.

This approach was chosen as it provides a simple but effective way of storing
and modifying states, while also enabling relevant elements to get updated
when necessary.

Actions Observable
State Side Effects

event update trigger

event

Figure 6.1.: Illustration of the basic MobX event loop. Adapted from https://mobx.js.org

61

https://mobx.js.org

6. Implementation

App Store

The most central store is the app-store which controls the general website
behavior. It uses the observables page and params, to store the currently visited
page and additional information like the opened project. For controlling
these observables the action navigate is used. Using the pwa-helpers library,
navigate is triggered whenever the URL changes. It then parses all the pro-
vided information after the symbol # and stores them inside the observables.
Furthermore, additional actions on different stores are triggered, depending
on the page.
For example, if the URL ends with #project=1, the app-store stores the string
’project’ inside page and the pair [project, 1] inside params. Further-
more, it calls the action openProject from the project-store which then takes care
of loading all required files. As a side effect, the app component reacts to the
change and loads the project page which in itself reacts to the changes in the
project-store and updates the file-tree, editor, console and simulator components.
The whole process can be seen in Figure 6.2 and Figure 6.3.

This approach has the advantage, that the store directly correlates to the
content of the URL, which can not only be easily modified using hyperlinks,
but also be stored using bookmarks and shared with other users. It basically
behaves the same way as a traditional multi-page website, which is what
most users are used to.
The app-store also has observables for storing the network status, the currently
opened modal as well as for when a bug-report is open or not. All these
observables are not saved but always recalculated.

Project Store

The project-store handles all the information related to the currently active
project. Its observables contain an object of the active project, an object of
the active file as well as log messages and a timestamp for the last file-tree
changes. Actions provided are openProject, createProject, openFile and similar
functions. As a side effect it synchronizes all changes regarding the current
file and project to the indexedDB and ensures data consistency, as it is the
only place that is allowed to modify the database.

62

6.2. Core Structure

pwa-helper triggers
app-store.navigate()

update
app-store

observables

update
project-store
observables

update triggers
project-store.openProject()

await updates then
update app

to display project page

trigger
file-tree
update

load
project from local

database

User modifies URL
by clicking on a link

trigger
editor

update

trigger
simulator
update

trigger
console
update

page
equals
project

Yes

B
No

Figure 6.2.: This navigation flowchart illustrates the process when a link is clicked. Gener-
ally, all triggers are only executed, when the corresponding observable actually
changed. For better readability these conditions were omitted. The chart con-
tinues in Figure 6.3

Settings Store

The settings-store is the simplest of the stores and contains only one observable
called data. This data object can store any key-value pair and can be modified
using the actions set and get. As a side effect this data is synchronized to
the localStorage of the browser, which allows synchronous storage of data.
This store is used by many components to save arbitrary user data like the
currently used theme of the editor or the position of a space separator. The
synchronous nature makes it easy to use in comparison to the indexedDB,
which requires asynchronous access using promises.

63

6. Implementation

await updates then
update app

to display projects-page

trigger
projects-page

update

load
projects from local

database

page
equals

projects

Yes

B

No page
equals
news

update app
to display news-page

No
page

equals
impressum

update app
to display

impressum-page

Yes Yes

update app
to display

welcome-page

first
time

visited

No

Yes

No

Figure 6.3.: Continuation of the navigation flowchart, showing additional possible out-
comes. The chart further shows, that when no match fot the page can be found,
either the projects-page or the welcome-page will be displayed.

6.2.3. Handling User Code

The main functionality of this project is the possibility to edit and run
JavaScript code directly in the website, without using a server. This section
explains how the code is locally stored and executed.

Storing User Code

All user data is stored inside the local database indexedDB. It consists of two
tables, one for files and one for projects.

64

6.2. Core Structure

Files are objects containing a unique number as identifier (id), which is incre-
mented automatically for each new file. Furthermore, it stores information
about its name, content, the state of the editor, the timestamp of its latest
change as well as the id of the project it belongs to. Inside the database,
a combination of the project id and the name is used as the primary key,
meaning every file inside a project needs a unique name. This is required as
the import functionality of JavaScript is based on the name of files, therefore
it would not be possible to distinguish between two different files with the
same name. The content of each file can either be a string for text files, or
an object containing binary data (called Blob) for images. Finally, the state
is an object containing information about the cursor position and viewport
scrolling, which enables users to continue working directly from where they
left off.

Projects are objects containing also a numerical unique id, which is auto-
matically incremented. Additionally, a name, the corresponding scenario
as well as the id of the currently opened file are stored. While technically
not strictly necessary, as the projects are always handled using their id, the
name must be unique to prevent confusion.

Executing User Code

All files are stored inside the indexedDB, therefore they can be accessed by
all workers. The connection between all components can be seen in Figure 5.1
in the Section 5.1.2.

When a scenario is started, at first an object containing the name and id from
the current project is sent to the service-worker, which stores it as its active
project. Then a new scenario-worker is generated. Finally a call message is
sent to the scenario-worker instructing it to load the file /project/index.js.
Index.js is a locally stored file, as indicated by the path starting with project,
therefore the request is intercepted by the service-worker. It uses its active
project id and the name of the file to load it from the indexedDB and then
returns it as a HTTPResult to the scenario-worker. Finally the scenario-worker
calls the function start which executes the user generated code.

65

6. Implementation

This approach has the additional advantage, that the users themselves can
import their files by just preceding the filename with project/. As a result,
the user generated code is executed like any other code, therefore it has full
access to all features available in the browser.

6.3. Projects and Scenarios

6.3.1. General Structure

All the code a user can interact with is grouped into projects. To be able
to handle many different use cases, the general structure of each project is
quite simple. The only requirement is that it has to provide a file named
index.js, containing an asynchronous function called start. The function has to
be marked as exported, as the scenario-worker uses a dynamic JavaScript import
to access the function. While it is not strictly required to be asynchronous, it
enables the user to use the keywords async and await, which make dealing
with promises very intuitive. Many scenarios will use promise-based functions,
for instance to react to user input or to create local files, which would
require callback functions otherwise. The user can freely create and delete
files inside each project, with the exception of the file index.js which can not
deleted.

A project can provide a scenario, which simply means it includes code that
provides all the functionalities the scenario requires. As an example, a project
using the TicTacToe scenario simply contains files that provide functions to
display as well as play a game of TicTacToe. All provided scenarios contain a
single file with the name scenario.js, that includes the required code. This
also means, users can modify scenarios inside their projects in whatever
way they want.
To create custom scenarios, the user can either create an empty project and
start from scratch or use an existing project and modify the scenario code.
The project can then easily shared by using the export / import functionality
on the page.

66

6.3. Projects and Scenarios

As the main entry point is just the single function start, the structure of
the project is very flexible. Furthermore, a library called utils.js is available,
providing general functions like storeJson for saving data, getCanvas for
graphical output and onMouseDown for user interaction. Generally it is
possible to use any library inside projects as long as they are based on
ECMAScript 6 modules, using valid export statements. They either can be
imported from any URL, or they can be uploaded to the project as a file.
Additionally, the work currently provides two libraries tensorflow.js and
prolog.js containing module-based versions of the TensorFlow.js and TauProlog
libraries.
While it is possible to load some libraries using other formats, for instance by
using the function includeUrl provided in the utils.js library, not all formats
are compatible. Some libraries automatically try to inject their code inside
the local DOM, which is not available inside the scenario-worker. The only
solution for such libraries is to manually rewrite their code to use a different
export format.

6.3.2. Provided Scenarios

Scenarios that are included in the source code of this project, and therefore
available to all users, are called provided scenarios. These scenarios act as
templates for creating new projects, which already include files providing
the full functionality of the scenario.

Inspired by the OpenAi Gym [44], all provided scenarios use a uniform, agent-
based structure. Therefore, they export an asynchronous function called run,
which takes one or multiple agents as well as some scenario specific settings
and then runs the entire scenario. Agents are objects, containing at least the
required function update which resembles the decision making of the agent.
It is called whenever the agent has a decision to make and provides either
the current state or the current observations as a parameter. The function then
has to return an action the agent is going to take. Optionally an agent can
provide additional callback functions as described in Section 5.3.1.

Figure 6.4 illustrates how the TicTacToe scenario can be used for creating
a simple agent taking random actions. In line 1 everything from the file

67

6. Implementation

scenario.js is included, providing access the the whole functionality using
the symbol $. Next, a settings-object is created defining the computer to be
the starting player. The start function, is called when the scenario begins
and only does three things. First it creates the initial board state using the
previously defined settings. Then it creates an agent-object that contains
the functions update and finish. Finally the game is started by using the run
function and providing the initial state as well as the agent.
The update function simply generates a list of available actions using the
provided function getActions and the current state. It then choses and returns
a randomly selected action. In the end the finish function is called which
logs the final result to the console.

Figure 6.4.: Code example of a simple TicTacToe project.

To be able to easily create new provided scenarios, they are individually
bundled using webpack and reside in a separate folder inside the src directory.
Each scenario has its own folder containing general files like the scenario.js
and images, as well as subfolders for templates and examples. During

68

6.4. Technical Limitations

compilation a custom script parses the folder structure and creates a list
of available scenarios, templates and examples which then is used inside
the scenario-index page to list and create new scenarios. As a result, a new
provided scenarios can be created by simply providing its files inside a folder
and rebuilding the framework.

6.4. Technical Limitations

This work makes use of very modern technology, which is not yet available
in all browsers. However, all used concepts are either in the process of
being standardized by the World Wide Web Consortium (W3C), or already
standardized. Furthermore, they are either on the bug- or todo-list of most
major browsers, resulting in a high likelihood of being widely adopted in
the next few years.

6.4.1. Module Workers

While classic web workers are readily available, they don’t work with
modules. To be able to allow users to use modern ECMAScript 6 modules, a
new type of workers, called module workers, have to be used. Unfortunately,
the support for these workers is quite low. At the time of writing, only
recent versions of Chromium-based browsers (Google Chrome, Opera and as of
2020 also Microsoft Edge) have working implementations available.

6.4.2. Service Workers

In this work, a Service Worker is used to provide access to user-generated
code. While they are available on all modern browsers5, some browsers like
Firefox currently disable them in contexts like private mode. Therefore, even
if a browser does support the technology, depending on the context, settings
or extensions can disable the required functionality.

5 https://caniuse.com/#feat=serviceworkers

69

https://caniuse.com/#feat=serviceworkers

6. Implementation

6.4.3. Offscreen Canvas

HTML5 Canvases are used for rendering, but they have to be created within
the main thread. The scenarios themselves, however, reside on the scenario-
worker. To provide access to the canvas this work relies on a technology called
Offscreen Canvas, which is not available in all browsers at the moment6.

6 https://caniuse.com/offscreencanvas

70

https://caniuse.com/offscreencanvas

7. Evaluation

To be able to evaluate the proposed framework, formal feedback in the form
of a questionnaire, as well as informal feedback during talks with some
users was collected. The goal of this evaluation was to determine which
parts of the framework were well received and which led to problems. These
information will then be used to steer the future direction of the project.

7.1. Feedback Questionnaire

To ensure an easy and consistent way for providing feedback, a feedback
questionnaire was created and published on the project website itself. Every
user of the site can provide feedback by clicking on a link inside the header
portion of the page and submitting the feedback.

The entire questionnaire can be found in Appendix B.

7.1.1. Design and Implementation

The feedback questionnaire was designed as a quantitative online survey,
directly targeting users of the project. To increase user participation, the
general feedback was designed to be short and concise, while still allowing
users to elaborate on specific topics when needed. Therefore, the first part
of the questionnaire consists of three single and multiple choice questions,
in which the users can state how much they agree or disagree with certain
statements as well as a short question about how many hours and for what
purpose the framework has been used. The 11 statements are centered

71

7. Evaluation

around the usability and reliability of the website itself as well as the practi-
cality of provided scenarios, documentation and examples. Questions in the
latter part can be answered by text and cover topics like what new scenarios
the users would like to see or what features they felt were missing.

For ease of creation and distribution, the feedback questionnaire was created
using Google Forms1. The resulting link was incorporated into the header of
the website, easy to find for all users. Additionally, a posting on message
boards of multiple EDLRIS AI [4] courses conducted over the last two
years was created, to thank people for their participation and to make
them aware of the feedback questionnaire, which would help to improve
the project. Information about the project and the questionnaire was also
sent to individuals in the field of computer science education and posted
on the RoboCupJunior Austria channel on Facebook2. Furthermore, a short
paper [45] about this work was written and presented at the 2nd International
Workshop on Education in Artificial Intelligence K-123 which was held online in
conjunction with the 21st International Conference on Artificial intelligence in
Education4. Finally, to help users understand how the project can be used, a
exemplary 40 minute lesson about teaching reinforcement learning with the
Flappy Bird scenario (Section 5.3.4) was recorded and published on Youtube5.
The language of the video is German, to make it easier for local teachers to
directly use it in class.

The response rate was rather low, because of the required expertise to use
the proposed framework for teaching and because of the current Covid19
pandemic. The latter resulted in a lot of additional work for virtual teaching,
as informal talks with individuals from the targeted audience revealed.
Nevertheless, some conclusions can still be drawn despite the small sample
size.

1 https://www.google.com/forms/about
2 https://www.facebook.com/RoboCupJuniorAustria
3 http://eduai.ist.tugraz.at
4 https://aied2020.nees.com.br
5 https://www.youtube.com/watch?v=H939JwHIy0s

72

https://www.google.com/forms/about
https://www.facebook.com/RoboCupJuniorAustria
http://eduai.ist.tugraz.at
https://aied2020.nees.com.br
https://www.youtube.com/watch?v=H939JwHIy0s

7.1. Feedback Questionnaire

7.1.2. Evaluation Results

Over the course of five months, from the first release of the project in June
2020 until the time of writing of this thesis, seven people provided their
feedback. In the reminder of this chapter we present the evaluation of the
individual questions and discuss the results in detail.

For readability, the descriptions of the individual questions have been
shortened inside the figures. The complete questionnaire can be found in
Appendix B.

Q1: How many hours have you been using the framework for?

< 1 hour

1-5 hours

5-10 hours

11+ hours

0 1 2 3 4

Figure 7.1.: Result of Question 1: How many hours have you been using the framework
for?

Four of the participants used the website between 1 to 5 hours, while three
stated they used it for less than an hour, as seen in Figure 7.1. Therefore,
while most participants took at least a fair look at the project, the time
periods were too short to use this project for anything substantial. As a
result, the significance on the provided feedback is quite limited.

Q2: For what purpose have you been using the framework?

Figure 7.2 shows, that while most of the participants reported they used the
framework for learning AI themselves, two also stated that they have used
this work for teaching AI in class. One mentioned the reason was to get to

73

7. Evaluation

teaching AI

learning AI

as simple editor

other

0 1 2 3 4 5

Figure 7.2.: Result of Question 2: For what purpose have you been using the framework?

know the website to use it for subsequently teaching of AI, while another
one stated to just want to support the development of the framework.

Q3: How much do you agree with the following statements?

navigate website

description files

faulty behaviour

examples helpful

not able to use

agent based approach

more similar scenarios

more harder scenarios

more easier scenarios

useful for teaching AI

will be using in class

0 1 2 3 4 5 6 7

fully agree partly agree partly disagree fully disagree

Figure 7.3.: Result of Question 3: How much do you agree with the following statements?

The consensus of all participants was, that in general the website was easy
to use and included useful scenario descriptions. They liked the agent-
based approach very much and they would be looking forward to see more

74

7.1. Feedback Questionnaire

scenarios of similar or lower complexity. Futhermore, Figure 7.3 shows that
all participants found the framework useful for teaching AI in class and five
out of seven stated a high likelihood of using it in class in the future.

While one of the participants partly agreed and two only partly disagreed,
with the statement of encountering bugs or faulty behavior, no bug reports
were filed. Therefore, and due to the generally positive feedback, it can be
assumed that the encountered problems were minor and did not disrupt
the usage of the framework.

Q4: What new scenarios would you like to see?

Half of the participants replied with new scenario ideas, mentioning classical
games like Go, Snake, Tetris, Super Mario, Battleship and 2048. One also
suggested to provide simple games like cat - mouse - cheese, while another
mentioned games with more complexity like Polytopia and popular board
games.

Q5: What general features are you missing?

The only mentions of missing features were ”maybe some more statistics”
and that there were ”none to speak of” as well as ”n.a.”.

Q6: Final thoughts and additional remarks

Four of the participants added additional remarks. One stating ”it is a super
tool” while the other also mentioned that ”it will be interesting to see how
pupils and teachers adopt/apply the framework”. The third one mentioned
he had been reliant on the additional video, which allowed him to work in
parallel, due to the appropriate pace of the video. The last one also liked
the ”good tutorial video on YouTube” as well as the ”very clear UI”.

75

7. Evaluation

7.1.3. Conclusion

While no conclusion of scientific significance can be drawn from such a small
sample size, the general feedback was still quite positive. All participants
found it to be a useful tool for AI education and most stated that they would
like to use it in class. Furthermore, the agent-based approach used for the
scenarios was well received and further scenarios are looked forward to.

From a technical point of view, the website worked decently well, as half
of the participants fully disagreed with the statement of experiencing bugs,
while using the framework. The others partly disagreed and partly agreed,
which probably means they encountered some problems, but nothing that
kept them from using the website.

While the documentation was generally received in a positive way, there
is still room for improvement, as two thirds only partly agreed with the
usefulness of the provided scenario descriptions.

Usage in Workshops and Courses

Since the release of the website in June 2020, it was further used in two
online school workshops, as well as a lecture for students in the teacher
training program of the Graz University of Technology (TU Graz).
The one hour long workshops were held at the WKÖ CodingDay 20206 in
October and used the framework to familiarize two classes with the concept
of Q-learning, using the scenario Flappy Bird. While the time was short, the
lessons and the framework were well received by the participating teachers
and students.

During the lecture ”Einführung in das Studium für das Lehramt Informatik”, a
first year lecture at the TU Graz, the framework was used to familiarize the
students with the possibilities of online tools. The lecture was held online
and a 30 minute section was used for presenting the website. Multiple
questions from the students suggest that the subject was interesting and
engaging. Furthermore, at least some students stated during evaluation
that the reinforcement learning part of the lecture was to technical, which

6 https://www.wko.at/site/codingday/start.html

76

https://www.wko.at/site/codingday/start.html

7.1. Feedback Questionnaire

suggests that the topics were not taught to them in school. This further
emphasizes the need for better AI education in class.

Personal Usage in Class

In addition to usage in workshops, the framework is used by the author
himself in his three year computer science curriculum in school. It is used
in class to educate the students in the field of reinforcement learning and is
further used in the upcoming school leaving examination called Matura. Due
to the ability to continue working even when offline, the framework was a
reliable tool in an environment that lacks reliable network infrastructure.
The website was also very well received by the students as an engaging
and fun project. One student even stated that it will be the base of his
pre-scientific work in the next year, which is also part of the Matura.

During all these practical uses, the framework stayed reliable and no ma-
jor bugs occurred. This shows that the chosen approach and the design
decisions made, were appropriate and the implementation in general a
success.

77

8. Conclusion

8.1. Discussion

Artificial Intelligence is the one of the most important technologies at the
moment. Therefore, educating young people on the underlying principles,
the used methods as well as the risks and potential, not only using theo-
retical but also practical approaches, becomes more and more important.
The AI education framework presented in this thesis aims in this direction
and tries to fill the gap of easy-to-use, low-barrier tools to help educators in
their journey.

The work was developed using an agile approach, which enabled frequent
adaptations and early working prototypes. Therefore, it was possible to try
different libraries and approaches without major time investment, which
was very helpful for finding the chosen path.

While there is always room for improvement, the feedback provided during
the evaluation, but also in informal discussions, reveals that this project in
general is well received as a useful addition to the other available resources
for teaching AI. In Figure 7.3 it can be seen that all of the participants fully
agreed that the framework is a useful tool for teaching AI and most of them
are likely to use it in class in the future. This, and the fact that the website
was used without major issues on multiple occasions, supports the design
decisions made before and during development.

In conclusion, the presented work succeeded in its goal to provide a useful,
low-barrier tool for teaching more complex AI methodologies in school. It
still can be further improved and will be worked on more in the future, as
briefly discussed in the next section.

79

8. Conclusion

8.2. Future Work

The web application presented in this thesis already provides a useful and
well working AI programming environment, as it can be concluded from
the formal and informal feedback. Nevertheless, there is still quite some
room for improvement. One major problem for adoption, and probably the
reason for the low response rate in the evaluation, was the complexity of the
subject, which requires more introductory and guiding resources. This can
be provided in the form of further video tutorials and more detailed written
explanations. Moreover, it is also planned to use the framework directly for
teacher education workshops in the upcoming successor project to EDLRIS
entitled ”Education and Awareness for Intelligent Systems” (ENARIS).

While well received, the UI and usability of the website can still be improved.
This includes small functionalities like renaming files and projects, which
were omitted due to time constraints. Furthermore, all users mentioned that
they wanted more scenarios, especially some with lower complexity. As this
was anticipated from the beginning, it is easy for others to contribute new
scenarios, which then can easily be directly integrated into the framework.

Finally, a personal note from the author about the ongoing work for this
project: As a teacher myself, I already use this website in class and it helped
me a lot to motivate students to take a deeper look into the complex field of
AI. Therefore, I will continue working on this project, not only to keep it up
to date, but to improve it and make it more usable, to help my colleagues
and fellow teachers bringing AI to their students as well.

80

List of Figures

1.1. Preview of the provided scenarios 3

2.1. Agent-Environment-Loop . 10

3.1. Preliminary Survey Question 1 Results 19

3.2. Preliminary Survey Question 2 Results 19

3.3. Preliminary Survey Question 3 Results 20

3.4. Preliminary Survey Question 4 Results 21

3.5. Preliminary Survey Question 5 Results 22

3.6. Preliminary Survey Question 6 Results 23

3.7. Preliminary Survey Question 7 Results 24

3.8. Preliminary Survey Question 8 Results 25

5.1. Overview of the main components 34

5.2. Welcome and news page . 37

5.3. Project index page . 38

5.4. Project page . 38

5.5. Impressum page . 39

5.6. Agent Callbacks . 48

5.7. Scenario TicTacToe . 49

5.8. Scenario Wumpus . 50

5.9. Scenario Flappy Bird . 52

6.1. The MobX event loop . 61

6.2. Navigation flow chart part 1 . 63

6.3. Navigation flow chart part 2 . 64

6.4. Code example of a simple TicTacToe project 68

7.1. Feedback Question 1 Results 73

7.2. Feedback Question 2 Results 74

7.3. Feedback Question 3 Results 74

81

Bibliography

[1] Liu Shuguang, Li Zheng, and Ba Lin. “Impact of Artificial Intelligence
2.0 on Teaching and Learning.” In: Proceedings of the 2020 9th Interna-
tional Conference on Educational and Information Technology. ICEIT 2020:
2020 9th International Conference on Educational and Information
Technology. Oxford United Kingdom: ACM, Feb. 11, 2020, pp. 128–133.
isbn: 978-1-4503-7508-5. doi: 10.1145/3383923.3383928 (cit. on p. 1).

[2] Stefania Druga et al. “Inclusive AI Literacy for Kids around the
World.” In: Proceedings of FabLearn 2019. FL2019: FabLearn 2019. New
York NY USA: ACM, Mar. 9, 2019, pp. 104–111. isbn: 978-1-4503-6244-
3. doi: 10.1145/3311890.3311904 (cit. on p. 1).

[3] Aggeliki Androutsopoulou et al. “Transforming the Communication
between Citizens and Government through AI-Guided Chatbots.” In:
Government Information Quarterly 36.2 (Apr. 1, 2019), pp. 358–367. issn:
0740-624X. doi: 10.1016/j.giq.2018.10.001 (cit. on p. 1).

[4] Martin Kandlhofer and Gerald Steinbauer. “A Driving License for In-
telligent Systems.” In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Ar-
tificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q. Wein-
berger. AAAI Press, 2018, pp. 7954–7955. url: https://www.aaai.or
g/ocs/index.php/AAAI/AAAI18/paper/view/16110 (cit. on pp. 1, 17,
18, 72).

[5] A Free Online Course - Elements of AI. url: https://course.elementso
fai.com/ (visited on 06/02/2020) (cit. on p. 1).

83

https://doi.org/10.1145/3383923.3383928
https://doi.org/10.1145/3311890.3311904
https://doi.org/10.1016/j.giq.2018.10.001
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16110
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16110
https://course.elementsofai.com/
https://course.elementsofai.com/

Bibliography

[6] David Touretzky et al. “Special Session: AI for K-12 Guidelines Initia-
tive.” In: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. SIGCSE ’19. New York, NY, USA: Association for
Computing Machinery, Feb. 22, 2019, pp. 492–493. isbn: 978-1-4503-
5890-3. doi: 10.1145/3287324.3287525 (cit. on p. 1).

[7] Greg Brockman et al. OpenAI Gym. June 5, 2016. arXiv: 1606.01
540 [cs]. url: http : / / arxiv . org / abs / 1606 . 01540 (visited on
12/02/2020) (cit. on pp. 2, 3, 9, 25).

[8] TensorFlow. TensorFlow. url: https://www.tensorflow.org/ (visited
on 08/17/2020) (cit. on pp. 3, 24).

[9] AI Experiments — Experiments with Google. url: https://experimen
ts.withgoogle.com/collection/ai (visited on 02/24/2020) (cit. on
p. 3).

[10] Tom Crick et al. “The Impact of COVID-19 and ’Emergency Remote
Teaching’ on the UK Computer Science Education Community.” In:
United Kingdom & Ireland Computing Education Research Conference. New
York, NY, USA: Association for Computing Machinery, Sept. 3, 2020,
pp. 31–37. isbn: 978-1-4503-8849-8. url: https://doi.org/10.1145/3
416465.3416472 (visited on 12/04/2020) (cit. on p. 7).

[11] J.-L. Gaudiot and H. Kasahara. “Computer Education in the Age of
COVID-19.” In: Computer 53.10 (Oct. 2020), pp. 114–118. issn: 1558-
0814. doi: 10.1109/MC.2020.3011277 (cit. on p. 7).

[12] Fulvio Castellacci, Davide Consoli, and Artur Santoalha. “Technologi-
cal Diversification in European Regions: The Role of E-Skills.” In: (),
p. 35 (cit. on p. 7).

[13] Elena Fleaca and Radu D. Stanciu. “Digital-Age Learning and Busi-
ness Engineering Education – a Pilot Study on Students’ E-Skills.”
In: Procedia Manufacturing. 12th International Conference Interdisci-
plinarity in Engineering, INTER-ENG 2018, 4–5 October 2018, Tirgu
Mures, Romania 32 (Jan. 1, 2019), pp. 1051–1057. issn: 2351-9789. doi:
10.1016/j.promfg.2019.02.320 (cit. on p. 7).

84

https://doi.org/10.1145/3287324.3287525
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://www.tensorflow.org/
https://experiments.withgoogle.com/collection/ai
https://experiments.withgoogle.com/collection/ai
https://doi.org/10.1145/3416465.3416472
https://doi.org/10.1145/3416465.3416472
https://doi.org/10.1109/MC.2020.3011277
https://doi.org/10.1016/j.promfg.2019.02.320

Bibliography

[14] Katarı́na Gašová, Tomáš Mišı́k, and Zuzana Štofková. “EMPLOYERS
DEMANDS ON E-SKILLS OF UNIVERSITY STUDENTS IN CON-
DITIONS OF DIGITAL ECONOMY.” In: CBU International Conference
Proceedings 6 (Sept. 24, 2018), pp. 146–151. issn: 1805-9961. doi: 10.12
955/cbup.v6.1147 (cit. on p. 7).

[15] Duri Long and Brian Magerko. “What Is AI Literacy? Competencies
and Design Considerations.” In: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. CHI ’20. New York, NY, USA:
Association for Computing Machinery, Apr. 21, 2020, pp. 1–16. isbn:
978-1-4503-6708-0. doi: 10.1145/3313831.3376727 (cit. on p. 7).

[16] David Weintrop, David Bau, and Uri Wilensky. “The Cloud Is the
Limit: A Case Study of Programming on the Web, with the Web.”
In: International Journal of Child-Computer Interaction 20 (June 1, 2019),
pp. 1–8. issn: 2212-8689. doi: 10.1016/j.ijcci.2019.01.001 (cit. on
p. 7).

[17] Caitlin Kelleher and Randy Pausch. “Lowering the Barriers to Pro-
gramming: A Taxonomy of Programming Environments and Lan-
guages for Novice Programmers.” In: ACM Computing Surveys 37.2
(June 1, 2005), pp. 83–137. issn: 0360-0300. doi: 10.1145/1089733.108
9734 (cit. on p. 8).

[18] Stefan Friese and Kristian Rother. “Teaching Artificial Intelligence
Using a Web-Based Game Server.” In: Proceedings of the 13th Koli Calling
International Conference on Computing Education Research - Koli Calling
’13. The 13th Koli Calling International Conference. Koli, Finland:
ACM Press, 2013, pp. 193–194. isbn: 978-1-4503-2482-3. doi: 10.1145
/2526968.2526992 (cit. on p. 8).

[19] Sébastien Combéfis, Gytautas Beresnevičius, and Valentina Dagienė.
“Learning Programming through Games and Contests: Overview,
Characterisation and Discussion.” In: Olympiads in Informatics 10.1
(July 10, 2016), pp. 39–60. issn: 18227732, 23358955. doi: 10.15388/io
i.2016.03 (cit. on p. 8).

[20] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning An
Introduction. 2nd ed. MIT Press, 2018 (cit. on p. 9).

[21] Stuard Russell and Peter Norvik. Artificial Intelligence - A Modern
Approach. 3rd. Pearson, 2010 (cit. on pp. 9, 46, 50).

85

https://doi.org/10.12955/cbup.v6.1147
https://doi.org/10.12955/cbup.v6.1147
https://doi.org/10.1145/3313831.3376727
https://doi.org/10.1016/j.ijcci.2019.01.001
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/2526968.2526992
https://doi.org/10.1145/2526968.2526992
https://doi.org/10.15388/ioi.2016.03
https://doi.org/10.15388/ioi.2016.03

Bibliography

[22] Ekaba Bisong. “Google Colaboratory.” In: Building Machine Learning
and Deep Learning Models on Google Cloud Platform: A Comprehensive
Guide for Beginners. Ed. by Ekaba Bisong. Berkeley, CA: Apress, 2019,
pp. 59–64. isbn: 978-1-4842-4470-8. doi: 10.1007/978-1-4842-4470-8
_7 (cit. on p. 13).

[23] B. M. Randles et al. “Using the Jupyter Notebook as a Tool for Open
Science: An Empirical Study.” In: 2017 ACM/IEEE Joint Conference on
Digital Libraries (JCDL). 2017 ACM/IEEE Joint Conference on Digital
Libraries (JCDL). June 2017, pp. 1–2. doi: 10.1109/JCDL.2017.799161
8 (cit. on p. 13).

[24] Dan Toomey. Jupyter for Data Science: Exploratory Analysis, Statistical
Modeling, Machine Learning, and Data Visualization with Jupyter. Packt
Publishing Ltd, Oct. 20, 2017. 236 pp. isbn: 978-1-78588-329-3. Google
Books: sRhKDwAAQBAJ (cit. on p. 13).

[25] Web Technology for Developers. MDN Web Docs. url: https://devel
oper.mozilla.org/en-US/docs/Web (visited on 11/30/2020) (cit. on
p. 27).

[26] History of the Web. World Wide Web Foundation. url: https://web
foundation.org/about/vision/history-of-the-web/ (visited on
11/15/2020) (cit. on p. 31).

[27] Polymer Project. url: https://www.polymer-project.org/ (visited on
05/11/2020) (cit. on pp. 35, 59).

[28] Monaco Editor. url: https://microsoft.github.io/monaco-editor/
(visited on 11/11/2020) (cit. on pp. 36, 45, 53).

[29] Less Is Still More: The Importance Of The Minimalist Approach To Web
Design. Usability Geek. Apr. 13, 2016. url: https://usabilitygeek.c
om/less-is-more-importance-minimalist-web-design/ (visited on
11/12/2020) (cit. on p. 39).

[30] JSON. url: https : / / www . json . org / json - en . html (visited on
11/12/2020) (cit. on p. 43).

[31] HTML Standard. url: https://html.spec.whatwg.org/multipage/
(visited on 11/12/2020) (cit. on p. 43).

86

https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1109/JCDL.2017.7991618
https://doi.org/10.1109/JCDL.2017.7991618
http://books.google.com/books?id=sRhKDwAAQBAJ
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://webfoundation.org/about/vision/history-of-the-web/
https://webfoundation.org/about/vision/history-of-the-web/
https://www.polymer-project.org/
https://microsoft.github.io/monaco-editor/
https://usabilitygeek.com/less-is-more-importance-minimalist-web-design/
https://usabilitygeek.com/less-is-more-importance-minimalist-web-design/
https://www.json.org/json-en.html
https://html.spec.whatwg.org/multipage/

Bibliography

[32] Elizabeth Stobert and Robert Biddle. “The Password Life Cycle: User
Behaviour in Managing Passwords.” In: 10th Symposium On Usable
Privacy and Security (SOUPS 2014), pp. 243–255 (cit. on p. 45).

[33] Dinei Florencio and Cormac Herley. “A Large-Scale Study of Web
Password Habits.” In: Proceedings of the 16th International Conference on
World Wide Web - WWW ’07. The 16th International Conference. Banff,
Alberta, Canada: ACM Press, 2007, pp. 657–666 (cit. on p. 45).

[34] Tau Prolog: A Prolog Interpreter in JavaScript. url: http://tau-prolog
.org/ (visited on 11/12/2020) (cit. on p. 51).

[35] Visual Studio Code - Code Editing. Redefined. url: https://code.visual
studio.com/ (visited on 11/16/2020) (cit. on p. 53).

[36] Node.js. Node.Js. Node.js. url: https://nodejs.org/en/ (visited on
11/16/2020) (cit. on p. 53).

[37] Npm — Build Amazing Things. url: https://www.npmjs.com/ (visited
on 11/16/2020) (cit. on p. 53).

[38] Webpack. webpack. url: https : / / webpack . js . org/ (visited on
11/16/2020) (cit. on p. 54).

[39] Typed JavaScript at Any Scale. url: https://www.typescriptlang.org/
(visited on 11/16/2020) (cit. on p. 54).

[40] Babel · The Compiler for next Generation JavaScript. url: https://babel
js.io/ (visited on 11/16/2020) (cit. on p. 54).

[41] Cody Lindley. Front-End Developer Handbook 2019. url: https://fr
ontendmasters.com/books/front-end-handbook/2019/ (visited on
11/16/2020) (cit. on p. 55).

[42] Cody Lindley. JavaScript (ES2015+) Enlightenment. url: https://fr
ontendmasters.com/books/javascript-enlightenment/ (visited on
11/16/2020) (cit. on p. 59).

[43] MobX. url: https://mobx.js.org/index.html (visited on 11/12/2020)
(cit. on p. 61).

[44] Openai/Gym. OpenAI, Aug. 18, 2020. url: https://github.com/open
ai/gym (visited on 08/18/2020) (cit. on p. 67).

87

http://tau-prolog.org/
http://tau-prolog.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/en/
https://www.npmjs.com/
https://webpack.js.org/
https://www.typescriptlang.org/
https://babeljs.io/
https://babeljs.io/
https://frontendmasters.com/books/front-end-handbook/2019/
https://frontendmasters.com/books/front-end-handbook/2019/
https://frontendmasters.com/books/javascript-enlightenment/
https://frontendmasters.com/books/javascript-enlightenment/
https://mobx.js.org/index.html
https://github.com/openai/gym
https://github.com/openai/gym

Bibliography

[45] Manuel Menzinger and Gerald Steinbauer. “Design and Implementa-
tion of an AI Programming Playground for Schools.” In: 2nd Interna-
tional Workshop on Education in Artificial Intelligence K-12 in conjunction
with the 21st International Conference on Artificial intelligence in Education
(2020) (cit. on p. 72).

88

Appendix A.

Survey

89

search (e.g. pathfinding, searching for the best action ...)

knowledge representation and reasoning (e.g. structuring information to base
decisions of [logic, chatbot, ...])

reinforced learning (e.g. make an agent learn by trial and error)

supervised learning (e.g. categorizing pictures of cats and dogs)

ethics and social aspects (e.g. how is AI affecting us)

Other:

theoretical (discussing topics and their use/relevance)

practical (implementing known algorithms to solve problems)

experimental (trying to create own solutions to solve problems)

using pen and paper exercises

Other:

Teaching AI at School
This survey is about the general use of AI in computer science education. It is part of a
diploma thesis about an online AI programming tool for education.
While this first part is about the general use of available AI teaching resources for k12-
students, the second part is all about technical limitations at school concerning modern
web tools.

In general the survey is anonymous, however it is possible to state interest to get early
access to the tool.

Which general AI topics are you teaching or planning to teach in class?

How do you approach teaching AI?

not enough time

can't fit into curriculum

the content is too complex

the requirement to install specific programs

missing tutorials / courses

more complex examples need more groundwork (e.g. to programm an AI for a game
you need the game first)

Other:

EDLRIS AI Basic

EDLRIS AI Advanced

OpenAI Gym

Elements of AI

Google AI Education

Coursera

Udacity

Crash Course

Other:

What are your reasons (if any) not to teach AI in class?

Are there any AI tutorials/courses or frameworks you have participated in or used
yourself?

EDLRIS AI Basic

EDLRIS AI Advanced

OpenAI Gym

Elements of AI

Google AI Education

Coursera

Udacity

Crash Course

Other:

Python

C/C++

Java

C#

Javascript

PHP

Scratch/Lego Mindstorms or other graphical programming languages

Other:

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Are you using or planning to use parts of any AI tutorial/course or framework in
class?

Which programming languages and libraries are you teaching in class?

Next

 Forms

AI Online Platform

The upcoming online platform is all about providing an easily accessible tool to practice AI programming
on practical examples. Therefore it provides different scenarios (like Tic-Tac-Toe, Wumpus, ...) and tools
(keras [tensorflow], prolog, ...) to master them. While there are documentation and more detailed
examples, its goal is not to teach the basics (which many other courses/tutorials do), but to enable
everyone, without the need of any tools or registration, to play around by writing their own AIs.

The platform itself will be publicly and freely available for all by the end of the year, to get early access
simply provide an email-address at the end. This address will only be used to send one email with basic
instructions on how to use the framework.

Chrome / Chromium

Firefox

Edge

Opera

Safari

Other:

at least once per month

at least once per semester

at least once per year

at least once every other year

it can take more than two years

i don't know

Teaching AI at School

Which web-browsers are available in your school?

How often are your programs (especially web-browsers) updated in school?

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

If any, which online programming tools do you use in class?

Your answer

If you want to gain early access to the platform, insert your email here:

Your answer

Back Submit

 Forms

Appendix B.

Feedback

95

< 1 hour

1-5 hours

5-10 hours

11+ hours

Teaching AI to others

Learning AI for yourself

As a simple JavaScript editor

Other:

AI Playground - Feedback
Thanks for providing your feedback which helps a lot to improve this project.

How many hours have you been using the framework for?

What have you been using the website for?

How much do you agree with the following statements?

fully agree partly agree partly disagree fully disagree

I was able to
navigate the
website without
problems

The scenario
description files
were very helpful

I experienced
faulty behavior
(bugs) while
programming
(like disappearing
code, wrong error
messages, ...)

The examples
were very helpful

I was not able to
figure out how to
use the website,
the
documentation in
general was
insufficient

I like the agent
based approach,
it helps to focus
on the relevant
parts

I would like to see
more scenarios
of the same
complexity

I would like to see
more scenarios
of higher
complexity

I would like to see
more scenarios

I was able to
navigate the
website without
problems

The scenario
description files
were very helpful

I experienced
faulty behavior
(bugs) while
programming
(like disappearing
code, wrong error
messages, ...)

The examples
were very helpful

I was not able to
figure out how to
use the website,
the
documentation in
general was
insufficient

I like the agent
based approach,
it helps to focus
on the relevant
parts

I would like to see
more scenarios
of the same
complexity

I would like to see
more scenarios
of higher
complexity

I would like to see
more scenarios

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

of lower
complexity

I think this tool is
useful for
teaching AI

I will be using this
tool in class, if
possible

of lower
complexity

I think this tool is
useful for
teaching AI

I will be using this
tool in class, if
possible

What general features are you missing?

Your answer

What new scenarios would you like to see?

Your answer

Final thoughts and additional remarks:

Your answer

Submit

 Forms

	Abstract
	Introduction
	Motivation
	Goals and Challenges
	Outline

	Related Work
	Related Research
	Related Frameworks
	OpenAI Gym
	Web Maker
	Google Colaboratory

	Survey - Teaching AI in School
	Design and Implementation
	Evaluation
	Conclusion

	Prerequisites
	Frequently used Names and Abbreviations

	Design
	Core Framework
	General Structure
	Code Execution

	Components
	Main Thread
	Scenario Worker
	Service Worker
	Adaptations for Classrooms

	Projects and Scenarios
	General Structure
	TicTacToe
	Wumpus
	Flappy Bird

	Implementation
	Prerequisites
	Development Environment
	Libraries
	Event Loop and Promises

	Core Structure
	Main Components
	State Management
	Handling User Code

	Projects and Scenarios
	General Structure
	Provided Scenarios

	Technical Limitations
	Module Workers
	Service Workers
	Offscreen Canvas

	Evaluation
	Feedback Questionnaire
	Design and Implementation
	Evaluation Results
	Conclusion

	Conclusion
	Discussion
	Future Work

	Bibliography
	Survey
	Feedback

