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Abstract

In quantum chemistry, material science, physics and other fields, modeling atoms and molec-
ular systems is becoming increasingly popular over the last decades. Approaches, like the
Hartree-Fock method (HF), do not include the total electronic energy as compared to more
advanced ones (e.g. Coupled Cluster), which are computationally much more demanding and
therefore several orders of magnitudes slower to simulate the required task. The difference of
HF and post-HF methods is improved by adding the London-dispersion interaction, an attrac-
tive van der Waals force. While its principle dependence on interatomic distance is well known,
several improvements have been suggested in the past.
In this work interpretable correlations for this correction are searched using a machine learning
method called Symbolic Regression and the data input of atomic pairs moving apart from each
other.



Kurzfassung

Das Modellieren von molekularen Strukturen ist eine zentrale Prblemstellung in der Quan-
tenchemie, der Physik, den Materialwissenschaften und anderen Forschungsgebieten, welche
in den letzten Jahrzehnten signifikante Verbesserungen erfahren hat. Frühe Ansätze, wie die
Hartree-Fock Methode (HF), basieren auf einer Näherung der elektronischen Energie, welche
die Korrelation der Elektronenbewegung vernachlässigt. Verbesserungen wie zB. die Coupled-
Cluster-Methode benötigen jedoch deutlich längere Berechnungszeiten. Der Unterschied zwis-
chen HF und diesen späteren Ansätzen kann in gewissen Fällen über die die London-Dispersion,
eine anziehende Van-der-Waals Wechselwirkung, beschrieben werden. Während die prinzipielle
Abhängigkeit vom interatomaren Abstand gut bekannt ist, gibt es mehrere verschiedene Hy-
pothesen betreffend ihrer genauere Form.
In dieser Arbeit werden interpretierbare analytische Ausdrücke für diese Korrektur mit Hilfe
der Symbolischen Regression, einer Methode des maschinellen Lernens, und einem Datensatz
bestehend aus Potentialkurven zweiatomiger Moleküle.
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1 Introduction

The total energy of two atoms in close contact to each other is the sum of multiple contributions
describing the interaction between nuclei and electrons of both atoms, which originate from
attractive (e.g. van der Waals forces including the London-dispersion interaction) and repulsive
(e.g. Pauli repulsion) forces.
Via the conventional Hartree method London-dispersion interaction can not be captured.

Experimental observations show that the dispersion energy (Edisp) depends to the sixth power
on the distance (R), multiplied by a dispersion coefficient (C6), at least in regions with negligible
overlap of the electron clouds between two atoms: Edisp ∼ −C6/R

6. Damping functions are
introduced for higher accuracy. Many attempts have been made to find the correct damping
function, leading to a set of hypotheses regarding their shape, more details are given in Section
1.4. In this thesis we use machine learning to build mathematical models by automatic learning
with data input (see for example Ref. [3]). Symbolic Regression (SR) allows to mine complex
models for interpretable correlations. The core objective of this work is to compile via SR a
list of analytical expressions giving a close fit to the dispersion energy curve of the full set of
selected diatomic molecules. These expressions shall have low analytical complexity and will
be collected in a database for further investigation. In Figure 1.1, the whole process is shown
in a block diagram.

Figure 1.1: Block diagram of the workflow of this Master Thesis as described above.
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1.1 Outline
In Section 1.2 a brief overview of the interaction between atoms governed by the famous
Schrödinger equation is given. This is followed by Section 1.3, which is dedicated to quan-
tum chemical methods for the calculation of the total energy. An attractive part named the
London dispersion interaction is introduced in Section 1.4. In Section 1.5 Symbolic Regres-
sion and the used tool throughout this thesis, the software package "‘Equation Learner"’, is
described. In Chapter 2 the calculation of London dispersion interaction between atomic pairs
using ab initio methods is reported. In the next chapter 3, Symbolic Regression is used to
find interpretable correlations in the simulated data, followed by the discussion of the results
in chapter 4.

1.2 Total electron energy and Schrödinger equation
The following chapter is based on Density Functional Theory in Quantum Chemistry
by Takao Tsuneda [40].
The state of a quantum mechanical system is described by the time-independent Schrödinger

equation (equation 1.1), originally proposed in the work Quantisierung als Eigenwert problem
(Quantization as an Eigenvalue Problem) [33]. It is an eigenvalue equation inluding the Hamil-
ton operator Ĥ acting on the wave function Ψ and considering the energy interactions of the
system.

ĤΨ = EΨ, (1.1)
In general, the Hamiltonian of an N-body system can be written as

Ĥ =
N∑
i

p2
i

2mi

+ V , (1.2)

with pi and mi denoting the momentum and the mass of the i − th particle and V as some
interaction potential.

1.2.1 Hartree method
For all systems with more than two bodies involved (e.g. every atom other than the hydrogen
atom), solving the Schrödinger equation is not straight-forward due to the so called three-body
problem. It states that for three bodies interacting with each other the state of the motion
can not be solved analytically and a numerical solution needs to be found. Hartree proposed
a method for solving the Schrödinger equation for many-electron systems in 1928: the Hartree
method [14]. The Hamiltonian for such a system is given by equation 1.3

Ĥ = −∇
2
1

2 −
∇2

2
2 + Vne(r1) + Vne(r2) + Vee(r1, r2), (1.3)

The position of the n−th electron is given by rn and its gradient vector operator by ∇n. The
first two terms of equation 1.3 are kinetic energy operators, the next two terms are expressing
nuclear-electron interaction potentials (called one-electron operators) and the last term is con-
sidering electron-electron electrostatic interaction potential (two-electron operator). For this
equation and all other equations in this chapter, atomic units are used as they are commonly
present and considered handy in electronic property calculations. Natural constants such as
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the electron mass me, electron charge e, reduced Planck constant ~ = h/2π and the Coulomb
force constant 1/(4πε0) are assumed to be 1. Therefore the energy is also expressed in a new
unit called Hartree with Eh = 4.3597447222071 · 10−18 J [38]. The potentials are given by

Vne(r) = −
N∑
i=1

M∑
A=1

ZA
riA

, (1.4)

and

Vee(r12) =
N∑
i=1

N∑
j>1

1
rij

, (1.5)

with ZA as the atomic number of nucleus A, N as the numbers of electrons and M as the
number of nuclei [37]. Furthermore Hartree assumes the electrons to be independent from one
another, introducing an effective potential (Veff ) for the electron-electron interaction potential.
The Hamiltonian expressed in equation 1.3 can be divided into two independent terms for each
electron.

Ĥ = [−∇
2
1

2 + Vne(r1) + Veff (r1)] + [−∇
2
2

2 + Vne(r2) + Veff (r2)] = ĥ(r1) + ĥ(r2), (1.6)

In this equation, ĥ(ri) stands for the Hamiltonian operator for the i− th electron. The total
electronic wavefunction can be expressed by a product of functions:

Ψ(r1, r2) = Φ1(r1)Φ2(r2), (1.7)
With εi as the eigenenergy for the motion of the i − th electron one obtains the following

eigenequation 1.8.

ĤΨ = (ε1 + ε2)Φ1Φ2 = εΨ, (1.8)
Solving equation 1.8 and obtaining the eigenenergies is described in section 1.3.1.

1.2.2 Slater Determinant
The Slater determinant is a normalized determinant representing an antisymmetrized n-particle
wavefunction, which is providing a suitable ansatz for solving the Schrödinger equation and also
satisfies the Pauli exclusion principle by its antisymmetric nature. It was proposed by Slater
et al. in 1929 [36].
The Hamilton operator of a helium atom can serve as an example for observing that the

exchange of electrons is independent of the indexing of the two electron coordinates.

Ĥ(r1, r2) = Ĥ(r2, r1), (1.9)
From this follows that the an additionally introduced permutation operator P̂12, which re-

places the coordinates of two electrons, commutes with H:

Ĥ(r1, r2)P̂12Ψ(r1, r2) = P̂12Ĥ(r1, r2)Ψ(r1, r2), (1.10)
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or

[Ĥ(r1, r2), P̂12]Ψ(r1, r2) = 0, (1.11)

Therefore, P̂12
2 = 1 and the eigenvalues of P̂12 are ±1, corresponding to the symmetric

(equation 1.12) and antisymmetric (equation 1.13) wavefunction, respectively.

Ψ(r1, r2)(S) = 1√
2

(Ψ(r1, r2) + Ψ(r2, r1)), (1.12)

Ψ(r1, r2)(A) = 1√
2

(Ψ(r1, r2)−Ψ(r2, r1)) = −Ψ(r2, r1)(A), (1.13)

with 1√
2 as a normalization constant.

When combining these expressions with equation 1.7, the wavefunctions are given by

Ψ(r1, r2)(S) = 1√
2

(Φ1(r1)Φ2(r2) + Φ1(r2)Φ2(r1)), (1.14)

and

Ψ(r1, r2)(A) = 1√
2

(Φ1(r1)Φ2(r2)− Φ1(r2)Φ2(r1)), (1.15)

The Pauli exclusion principle demands that the wavefunctions must be zero when two elec-
trons occupy the same orbital. Only the antisymmetric wavefunction (equation 1.15) is fulfilling
this requirement and therefore electronic motions always have antisymmetric wavefunctions.
Equation 1.15 can be written as a determinant:

Ψ(r1, r2) = 1√
2

∣∣∣∣∣Φ1(r1) Φ1(r2)
Φ2(r1) Φ2(r2)

∣∣∣∣∣
Generalizing this to cases of three or more electrons leads to the so called Slater determinant

formalism ([36]).

Ψ(r1, r2, ..., rN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
Φ1(r1) Φ1(r2) · · · Φ1(rN
Φ2(r1) Φ2(r2) · · · Φ2(rN

... ... ... . . .
ΦN(r1) ΦN(r2) · · · ΦN(rN

∣∣∣∣∣∣∣∣∣∣
1.3 Ab initio methods
In quantum chemistry, material science, physics and other fields, modeling atoms and molecule
systems is becoming increasingly popular over the last decades. One of the tools providing
such a simulation are ab initio methods. Ab initio is latin for "‘from the beginning"’ and ab
initio methods are describing the computational solution of the electronic Schrödinger equation
and obtaining of properties like positions of a collection of atomic nuclei, the total number of
electrons in the system, the total electronic energy, the electron density and other. [7]
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Two of this methods are described in this chapter. The Hartree Fock method as an earlier
approach and Coupled Cluster, a computationally much more demanding but more accurate
method that also take the correlated motion of electrons into account. [40]

1.3.1 Hartree Fock
The Hartree-Fock method was proposed by Fock 1930 and combines the Slater determinant
ansatz (see Section 1.2.1) with the Hartree method (see Section 1.2.2) [6]. In the same year,
Slater independently suggested a similar approach [35].
In this section only the important principles and results of this method will be discussed.

A more detailed mathematical derivation is provided by e.g. Tsuneda [40]. When following
this derivation, one obtains the Coulomb operator Ĵj and the exchange operator K̂j. They are
defined as

Ĵj(r1)Φi(r1) =
∫
d3r2Φ∗j(r2)Φj(r2) 1

r12
Φi(r1), (1.16)

and

K̂j(r1)Φi(r1) =
∫
d3r2Φ∗j(r2)Φi(r2) 1

r12
Φi(r1), (1.17)

The Fock matrix is

F̂ = ĥ+
n∑
j

(2Ĵj − K̂j), (1.18)

with ĥ as the corresponding core Hamilton operator. Aiming at the minimization of the
electronic ground state energy by variation of the orbitals Φi one obtains the effective one-
electron equation known as the Hartree-Fock equation:

F̂Φi = εiΦi (1.19)
with ε as the so-called orbital energies.

εi =
∫
d3r1Φ∗i (r1)F̂Φi(r1), (1.20)

To solve this nonlinear equation 1.19, the self-consistent field (SCF) method is usually applied.
This process is described in Figure 1.2.
Solving the Hartree-Fock equation for molecules with such a iterative method cannot be done

by hand in general and the help of computers is required. [40]

1.3.2 Coupled Cluster
The Coupled cluster method is an advanced ab initio method which takes all electron correlation
into consideration in a highly effective way. It was developed by Čìžek in 1966 [5]. The
wavefunction is expanded in this method to

ΨCC = exp(T̂ )Φ = (1 + T̂ + 1
2 T̂

2 + · · · )Φ, (1.21)
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Figure 1.2: Block diagram of the Hartree-Fock method. The solution of equation 1.19 is
accepted, if the difference between the calculated molecular orbitals and the refer-
ence molecular orbitals (RMOs) is below a threshold value. If not, the calculation
is repeated, using the calculated molecular orbitals as new RMOs. The initial
RMOs are guessed.

with Φ as the Slater determinant of the ground electron configuration and T̂ as an operator
summing all excitations (see equation 1.22)

T̂Φ = T̂1Φ + T̂2Φ + · · · , (1.22)
with T̂1, T̂2 specifying the operators of single, double and higher excitations, respectively.

Using equation 1.22, equation 1.21 can be written as

ΨCC = exp(T̂ )Φ = (1 + T̂1 + T̂2 + 1
2 T̂1

2 + T̂1T̂2 + 1
2 T̂1

2 + · · · )Φ, (1.23)

The coupled cluster singles and doubles (CCSD) method is calculating T̂ up to the double
excitation(T̂2), while CCSD(T) additionally account for perturbative triples coming from triple
excitation. [40]
More details about the Coupled cluster method can be found in Ref. [22].

1.4 London dispersion interaction
Besides Coloumb interaction, several other types of interaction contribute to the total energy.
Some of them repulsive (e.g. Pauli repulsion) while others are attractive. Such an attractive
part is the London dispersion interaction, which is a van der Waals interaction acting between
all bodies, independent of charge or multipole moment. First described by Fritz London in
Ref. [23] via a principle relation and proportionality as stated in equation 1.24 - with element
specific parameters as the atomic ionization potential IP and the dipole polarizability α of
atom A and B, [8]

Edisp ∝ −3/2 IPA IPB

IPA + IPB
αA αB R−6 = −C6

R6 . (1.24)
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R denotes the distance between two bodies (from center to center) and C6 is the sixth-order
dispersion coefficient. The exact nature of this coefficient and additional damping functions,
multiplied to it for compensation at short range, are still under discussion and several hypothe-
ses exist, regarding their shape. The most prominent suggestions are the DFT-D3 variants by
Grimme et al. [13, 12], which are refined versions based on their earlier approaches DFT-D1 [9]
and DFT-D2 [11], along other methods like e.g. the Tkatchenko–Scheffler model (DFT+TS)
[39].

1.4.1 The DFT-D2 Correction
Although the DFT-D2 correction has been surpassed and replaced by later approaches (see
section 1.4.2) it is still worth a detailed description before proceeding to DFT-D3, as it gives a
simpler model for the London-dispersion correction.
The dispersion correction of the DFT-D2 variant is stated in equation 1.25.

EDFT−D2
disp = −1

2s6
∑
A 6=B

CAB
6

RAB
6
fDFT−D2
damp,n (RAB), (1.25)

with s6 as a scaling parameter, CAB
6 as the dispersion coefficient (see equation 1.27 and 1.28),

RAB
6 as the distance between two bodys and a damping function fDFT−D2

damp (see equation 1.26),
which is introduced to take the contribution of overlapping electron clouds into account and
damp the sixth-order decay in this region.

fDFT−D2
damp,n (RAB) = 1

1 + exp(−20(RAB/Rr − 1)), (1.26)

where Rr stands for the sum of the van der Waals radii of atom A and B. The dispersion
coefficient (CAB

6 ) is given as the geometric mean of two element-specific coefficients (CA
6 ).

CAB
6 =

√
CA

6 C
B
6 , (1.27)

CA
6 = 0.05 N IPA αA, (1.28)

with N as a number depending on the row in the periodic table of the respected element:
2,8,15,36, or 54. N = 2 for all elements in the first row (H and He) and analogous for row two
to five. IPA stands for the atomic ionization potential and αA for the dipole polarizability of
the respected element.

1.4.2 The DFT-D3 Correction
The DFT-D3 correction has various versions, with different damping functions. It was intro-
duced first in 2010 [13] - here called DFT-D3(0). 2011 Grimme published a refinement called
the Becke–Johnson damping version (DFT-D3(BJ), [12]) using a different damping function.
Another modification of this approach was done by Schwabe et al. 2015 [32]. All of those
DFT-D3 versions are applicable to the first 94 elements of the periodic table and use the same
dispersion coefficients. Finally, Grimme added another modification in 2019, called DFT-D4
[2], which covers all elements up to radon (Z = 86) and include also three-body effects that are
not in the scope of this master thesis.
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DFT-D3(0)

The proposed DFT-D3(0) dispersion correction is stated in equation 1.29. With s as a scaling
parameter, RAB as the distance between two bodys, CAB as dispersion coefficient and damping
functions fDFT−D3(0)

damp for sixth and eight order terms.

E
DFT−D3(0)
disp = −1

2
∑
A 6=B

∑
n=6,8

sn
CAB
n

Rn
AB

f
DFT−D3(0)
damp,n (RAB), (1.29)

In the following, the damping function in sixth (equation 1.30) and eight order (equation
1.30) are given. RAB

0 is the cut-off radius for the atom pair AB, which is the combined van der
Waals radius of A and B. More details about this radius and why it should not be confused
with the often used term "‘vdW radii"’ is given in [13]. α6 determines the steepness of the
damping function and was adjusted manually to a value of 14, in order to limit the dispersion
correction to 1 % of the maximal dispersion energy.

f
DFT−D3(0)
damp,6 (RAB) = 1

1 + 6(RAB/(RAB
0 )−α6

, (1.30)

f
DFT−D3(0)
damp,8 (RAB) = 1

1 + 6(RAB/(sr,6RAB
0 )−(α6+2) , (1.31)

The CAB
6 dispersion coefficients are calculated from atomic C6 values and also considering

the chemical environment of each atom. More details about the derivation can be found in Ref.
[8]. CAB

8 dispersion coefficients are calculated with equation 1.32.

CAB
8 = 3CAB

6

√
QAQB, (1.32)

with

QA = 1
2
√
ZA
〈r4〉A
〈r2〉A

, (1.33)

With ZA as the nuclear charge of the respected atom, 〈r4〉A as the quadrupole- and 〈r2〉A
as the dipole-moment-type expectation values derived from atomic densities. See Ref. [13] for
more information about the derivation.

DFT-D3(BJ)

The DFT-D3(BJ) variant was proposed 2011 by Grimme et al. [12] and uses a damping function
proposed by Becke and Johnson [1].

E
DFT−D3(BJ)
disp = −1

2
∑
A 6=B

∑
n=6,8

sn
CAB
n

Rn
AB + [fDFT−D3(BJ)

damp,n (RAB
BJ )]n

, (1.34)

While using sn and CAB
n similar to DFT-D3(0), the damping function is different. With α1

and α2 as adjustable parameters.

f
DFT−D3(BJ)
damp,n (RAB

BJ ) = a1R
AB
BJ + a2 (1.35)
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The cut-off radii (RAB
0 ) in DFT-D3(0) is replaced by RAB

BJ and depends on the dispersion
coefficients as stated in equation 1.36.

RAB
BJ =

√√√√CAB
8

CAB
6

=
√

3
2

√√√√√ZA 〈r4〉A
〈r2〉A

√
ZB
〈r4〉B
〈r2〉B

, (1.36)

DFT-D3(CSO)

This variant was proposed by Schwabe et al. 2015 and is called the "‘C-six-only"’ version of
DFT-D3. Eliminating the R−8 term completely with the argumentation that the interpolation
of this term can be expressed with sigmoidal damping functions as well [32]. This variant is
reported to have similar results as DFT-D3(BJ) while only including a R−6 term [32].

E
DFT−D3(CSO)
disp = −1

2
∑
A 6=B

[s6 + c1

1 + exp(RAB − 2.5RBJ
AB) ] CAB

6
R6
AB + (2.52)6 , (1.37)

With c1 as a scaling parameter (in the original publication named a1).

1.4.3 The DFT+TS Correction
In 2009 Tkatchenko and Scheffler proposed a parameter-free version of the London-dispersion
interaction. Using a summation of C6 dispersion coefficients which are derived from the electron
density of a molecule or solid and accurate reference data for the free atoms [39]. To avoid
confusion the dispersion energy is called ETS

disp, similar like in the DFT-D variants, opposed to
the term EvdW in the original publication. R0

A and R0
B denote the van der Waals radii of the

respected atoms and RAB the distance between the atoms.

ETS
disp = −1

2
∑
A 6=B

fdamp(RAB,R0
A,R0

B)C6ABR
−6
AB, (1.38)

with

C6AB = 2C6AAC6BB

[α
0
B

α0
A
C6AA + α0

Aα
0
BC6AA]

, (1.39)

with α0
A as the static polarizability of A and C6AA as homonuclear parameters, calculated

from the respected parameters of free atoms, which are obtained from Ref. [4].

C6AA = v2
AC

AA
6,free (1.40)

and

α0
A = vAα

0
A,free, (1.41)

with vA as the ratio between the effective volume of atom A in a bound state and the volume
of the free atom calculated by a Hirshfeld partioning. [17]

vA =
∫
drwA(r)ρ(r)r3∫
drρfreeA (r)r3

(1.42)
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with ρ(r) as the total density of the system, ρfreeA (r) as reference density of the free atom A
and wA as the atomic Hirshfeld partitioning weight for atom A, given by

wA = ρfreeA (r)∑
B ρ

free
B (r)

. (1.43)

The damping function is stated as

fdamp(RAB,R0
AB) = 1

1 + exp(−d( RAB

srR0
AB
− 1))

, (1.44)

with d and sr as free parameters. The d parameter is controlling the steepness of the damp-
ing function. Tkatchenko and Scheffler suggest a value of d = 20, empirically found by an
investigation done by Grimme et al. [11]. The van der Waals radii R0

AB = R0
A + R0

B in the
damping function are modified similar to equation 1.40 and 1.41.

Rfree
A = v

1/3
A Rfree

A , (1.45)

1.5 Symbolic Regression
Machine Learning methods like deep learning with neural networks are showing promising
results (e.g. Schmidhuber et al. [31]), but lack in interpretability of the found solutions.
Symbolic Regression on the other hand is delivering explainable models by learning analytical
connections from data input.
In this master thesis an Symbolic Regression method called Equation Learner (EQL) from

Martius et al. [26] is used to investigate the ability to test hypotheses on a real problem in
molecular chemistry.

1.5.1 Equation Learner (EQL)
The Equation Learner, introduced by Martius et al. in 2018 [26] is identifying underlying
equations from data for systems governed by an analytical formula, meaning that the data
must originate from an (unknown) analytical expression. It is doing so by using a multi-layer
feed-forward network with units (operations such as multiplication or functions like sinus) which
represent the building blocks of algebraic expressions, learning the connection by a given data
set providing input (x) and output (y) values. The possible units provided in the EQL are
divided into unitary units (e.g sine, cosine, exponential and identity), needing only a single
input and binary units (e.g. multiplication) which require two of them. In 2018 Martius et
al.[30] improved the EQL by adding regularized division units, creating a pole for a/d at d→ 0,
which is bypassed by equation 1.46.

hΘ(a, d) =
{

a
d
, if d > ΘD

0, otherwise , (1.46)

with a threshold value ΘD > 0. With the choice of units to be included in the network,
the number of identical units and the number of hidden layers, the network architecture is
influenced, which is displayed in Figure 1.3. In this description the terms weight and bias are
used to denote floating point numbers (floats) multiplied to the various unitary and binary
units (→ weights) and stand-alone floats (→bias).
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Figure 1.3: The network structure of the improved EQL by Martius et al. [30]. With
intermediate outputs ~zlk = ∑n

i=1(W l
ki

~yl−1) + bk, k = 1, 2, · · · , (u + 2v),l =
1, 2, · · · ,L (W · · ·weight, b · · · bias, n · · · number of inputs, m · · · number of out-
puts, L · · · number of layers, u · · · number of unitary units, v · · · number of binary
units). The division units are added in the final layer.

The output from unitary and binary units are joined to form a formula expression in a linear
read-out,

yL = ŴLyL−1 + bL, (1.47)
with L denoting the last layer, Ŵ as weight matrix and b as bias vector. Details about

the network architecture are provided in The work on extrapolation and learning equations by
Martius et al. [26].
In the following two sections the training and regularization mechanism of the EQL are

explained on the modifications done by myself regarding regularization strength and duration
as well as the total training duration.

Training

A loss function is introduced to obtain a quantitative measure of how well a model is predicting,

L = 1
N

N∑
i=1

(‖Ψ(xi)− yi‖2) + λ
L∑
l=1

∣∣∣Ŵ l
∣∣∣
1

+ PΘ, (1.48)

with N as the number of values in y, L for the number of layers in the network and
∣∣∣Ŵ ∣∣∣

1
as the L1-norm of the weight matrix, summing the absolute values of all entries. The loss
is consisting of three parts. First the regular loss, giving the difference between calculated
values from the model (Ψ) and the results provided (yi). A regularization term is encouraging
networks with sparse connections and prevents overfitting by penalizing complex models with
λ as regularization strength, controlling the contribution to the total loss. Finally, a penalty
term is added for small and negative denominators, calculated via

PΘ = max(ΘD − d) (1.49)
with ΘD as division threshold and d as denominator (see equation 1.46). The goal of the

training is to minimize the loss using back-propagation. Updates are calculated with the Adam
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algorithm ([20]). The training consists of a minimum of 20 training episodes per hidden layer
(layer in between first and last). Each with 50 normal training epochs, where in each of them all
data is fed to the network in mini-batches (denoting the number of training examples) and one
penalty epoch, where randomly sampled input data points in the expected test range is added
to the whole data to prevent overfitting [30]. More details about the concept of overfitting can
be found in Ref. [15].
The input data is split into training data (usually around 80 to 90 percent of all data) used

to train the network and validation data to validate its process, which are both taken from
the same data input domain. Optionally, test data can be provided to extrapolate to unseen
domains as well. To monitor the training process, the loss is calculated after every training
episode, resulting in train loss, validation loss and test loss. Additionally, the number of active
nodes in the network is calculated, meaning that the number of weights bigger than a given
threshold value, which represent terms in the formula that are contributing to the evaluated
result in a specified amount. This value is called (network) complexity.
The network is trained for 20 training episodes per hidden layer. After that the training is

continued, till train loss (Ltrain), validation loss (Lvalidation) and complexity (C) are considered
to be converged. Precisely until the sum of train loss and validation loss over the last 5 training
episodes are not changing for more than 10 percent of the current loss value and the complexity
is not changing at all over the last 5 training episodes:

5∑
i=1

∣∣∣Ltrain
i+1 − Ltrain

i

∣∣∣ < 0.1Ltrain
1

5∑
i=1

∣∣∣Lvalidation
i+1 − Lvalidation

i

∣∣∣ < 0.1Lvalidation
1

5∑
i=1
|Ci+1 − Ci| = 0,

with i counting from the current calculated loss (i = 1) backward till i = 5, representing the
fifth last entry of the monitored value.

Regularization

Regularization is used to encourage sparsity in the network and therefore get analytically more
simple models. The regularization scheme used in the work of this master thesis is different
from the one Martius et al. proposed [26]. First the regularization strength λ is set to zero,
eliminating the second term from the loss calculation (see equation 1.48). After 2L training
episodes, where L is representing the number of hidden layers, λ is set to a value calculated as

λ = λ%
L[−1]

Wsum[−1] (1.50)

with Wsum = ∑L
l=1

∣∣∣W l
∣∣∣
1
as the sum of the L1-norm of the weight matrices and L[−1] as the

loss calculated at the end of the previous training episode. The regularization stays active as
long as it is not changing over three training episodes and is then switched off, meaning λ is set
to zero again to prevent a large impact of the regularization on the whole training procedure.
During this phase the weights are pressed down to lower values and after the regularization
process, all weights smaller than a given threshold value (complexity threshold) are set to zero.
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2 Numerical calculations of
London-dispersion interaction
between atomic pairs

The goal of this master thesis is to fit the London-dispersion interaction between atomic pairs
with models found by Symbolic Regression, including prior knowledge about the correction
from hypotheses (see section 1.4). To do so, a database has to be created that can be provided
to the machine learning algorithm as training data. Therefore, 51 combinations of atoms are
simulated at the Coupled Cluster (see section 1.3.2) and Hartree-Fock (see section 1.3.1) level
of theory. The first three noble gas atoms in the periodic table (helium, neon and argon) are
combined with each element having an atomic number smaller than argon. Involving noble
gas atoms in the considered atomic pairs enforces that van der Waals interactions, like the
London-dispersion, are practically the only attractive contributions to the interaction potential
(see Introduction to Computational Chemistry by Jensen et al. page 35 [18]). An example is
shown in Figure 2.1. As the London-dispersion interaction are not covered in the Hartree-Fock
method (EHF ), but in Coupled Cluster (ECC), the dispersion energy (Edisp) is considered to
be the difference Edisp ≈ ECC − EHF . This approximation is very precise in the long-range
regime, but does not necessarily hold true in the short-range regime, where exchange effects
are dominating the total electron energy, as stated in Ref. [10].

Figure 2.1: Total electronic energy as calculated by Hartree-Fock, Coupled Cluster (exact) and
the dispersion energy (Edisp), as wavenumber in reciprocal centimetres, simulated
for the atomic pair of helium and chlorine with increasing distance in Ångström.
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2.1 Details about ab initio calculations
In this section the settings for the simulation of atomic pairs Coupled Cluster and Hartree-
Fock, using the Molpro package [42], are explained. The atomic pairs are separated from each
other by the distance R (as can be seen in Figure 2.1), which is increased from 2.45 to 20
Ångström (Å) in very small steps to get enough training data for the neural network of the
Equation Learner (see section 1.5.1). A discretization from 2.45 to 10 Å in 0.05 Å steps and
from 10 to 20 Å in 0.1 Å steps is chosen. These very small step sizes are causing effects as
discussed in section 2.4. As an one-electron basis set the augmented correlation-consistent basis
set quintuple zeta (aug-cc-pV5Z) of Dunning et al. [43] is used.
All computations were performed on the Quantum Chemistry Cluster of the Institute of

Experimental Physics at Technical University Graz using Molpro version 2012.1.

2.2 Results
The simulated dispersion energies (Edisp) of 51 atomic pairs, specified at the start of chapter 2,
are presented in the following. At first an overview over all resulting Edisp is given in Figure 2.2.
Showing that the dispersion energies are starting at very different energy values with different
order of magnitude.

Figure 2.2: The simulated dispersion energies Edisp of all 51 atomic pairs, specified at the
start of chapter 2, over the whole distance range.

For a better comparability, the energy values are normalized by their respective minimum
value. As a result all dispersion energies should start with 1 as the minimum value is supposed
to be the one with the closest distance and decreasing until they approach 0 asymptotically.
As we can see in Figure 2.3 not all Edisp trajectories have this curve course. Some of them
(namely HeN, HeP, HeS and NeN) are not starting at their respected minimum value at all
(see Figure 2.4), which is considered to be an unphysical behavior of London-dispersion forces
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and can be explained by a flawed calculation due to multi-reference configuration interaction
(see [18], page 158f).

Figure 2.3: The simulated dispersion energies Edisp of all 51 atomic pairs, normalized to their
respected minimum value. Those starting from a value other than their respected
minimum are colored differently and listed in the legend. The x-axis is cropped
at 10 Å for better visibility.

Figure 2.4: Simulated dispersion energies Edisp of atomic pairs showing a unphysical behavior.
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2.2.1 Curves with outliers
In order for machine learning algorithms to find a clear fit of the dispersion energy with the
simulated data described in section 2.1, it has to be free from physically inconsistent curvatures.
Curves with outliers caused by details of the used simulation techniques are dropped since a
further investigation of these issues lies beyond the scope of this research. These outliers may
cause the neural network trained in the EQL to learn wrong connections (see e.g. the work
of Khamis et al. [19]) and therefore result in analytical expressions not depicting the physical
nature of the desired London-dispersion interaction. To get a clearer view of this problem, the
dispersion energy is displayed logarithmic in Figure 2.5. Note that the natural logarithm is not
defined for negative values and zero. The London-dispersion force is an attractive force and has
negative values approaching zero asymptotically. Therefore, as soon as Edisp is reaching zero,
the values are cropped, although values coming from simulated points with larger distance are
nonzero again, which is considered to be numerical noise. The remaining values of Edisp are
multiplied by -1 and logarithmized: log(−Edisp). The curves with outliers are shown in Figure
2.5.

Figure 2.5: The natural logarithm of the dispersion energy obtained from the performed sim-
ulation of atomic pairs with curve courses including some outliers.

Additionally to the Edisp of atomic pairs shown in Figure 2.4 and 2.5, another atomic pair is
excluded from further investigation. The Edisp of NeS, consisting of the atoms neon and sulfur,
does not decrease monotonic with decreasing distance, but has a minimum at R ≈ 2.6 Å.
Therefore its curvature, shown in Figure 2.6, is not considered to be unphysical, but still not
suitable for the training of machine learning algorithms.
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Figure 2.6: Edisp of the atomic pair NeS with increasing distance R. The respective minimum
value is not at the lowest distance. The x-axis is cropped at 10 Å to see this more
clearly.

After the exclusion of problematic dispersion energy curves, due to numerical details of the
simulation and to obtain a clean data set, 43 (of 51 in total) simulated dispersion energy
calculations of atomic pairs remain (see Figure 2.7).

Figure 2.7: The simulated dispersion energies Edisp of all 43 atomic pairs chosen for further
investigation, specified in section 2.2, over the distance. The x-axis is cropped at
10 Å for better visibility.
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2.3 Classification
The 43 remaining dispersion energy curves (shown in Figure 2.7) are categorized according to
the respective noble gas involved. As two noble gases are combined as well and double counting
is avoided, there are more combination involving Ar (17, shown in Figure 2.10) than with Ne
(13, shown in Figure 2.9) and He (13, shown in Figure 2.8). Note that some of the atomic pairs
are excluded from this investigation, as described in section 2.2.

Figure 2.8: The simulated dispersion energies Edisp of all atomic pairs involving He over the
distance. The x-axis is cropped at 10 Å for better visibility.



Chapter 2. Numerical calculations of London-dispersion interaction between atomic pairs 19

Figure 2.9: The simulated dispersion energies Edisp of all atomic pairs involving Ne over the
distance. The x-axis is cropped at 10 Å for better visibility.

Figure 2.10: The simulated dispersion energies Edisp of all atomic pairs involving Ar over the
distance. The x-axis is cropped at 10 Å for better visibility.
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2.4 Quantization
When investigating the results of ab initio calculations described in section 2.1, a quantization
can be observed, which is clearly visible, when looking at the logarithmized Edisp of some of
the considered atomic pairs, shown in Figure 2.11.

Figure 2.11: The simulated dispersion energies Edisp of some of the considered atomic pairs,
showing a quantization starting at different distances, but with the same (in-
creasing) stepsize.

The dispersion energies displayed in Figure 2.11 consist of the difference of Hartree-Fock
and Coupled Cluster calculations. However, due to the energy threshold in Molpro chosen for
efficiency reasons, Edisp can only be resolved up to the second decimal place in units of inverse
centimeters. Steps of 0.01 cm−1 are visible, which can be seen more clearly in the logarithmized
Edisp curves.
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3 Application of Symbolic Regression

In this chapter the attempt of finding correlations proposed by hypotheses (see section 1.4) with
Symbolic Regression, providing all necessary building blocks (e.g. variables). First the London
formula, as stated in equation 1.24, is tested and additionally damping functions similar to
the ones proposed in the London-dispersion corrections described in section 1.4.1 to 1.4.3 are
identified.
As Symbolic Regression Tool the Tensorflow implementation of the Equation Learner (EQL)

is used, which is an open source software prototype with fully available code at github (Equa-
tion Learner). The modified code of the EQL used in this master thesis, including training
procedure explained in section 1.5.1, is available at: github (Equation Learner - ETC). Python
version 3.6.10, tensorflow version 1.14.0, numpy version 1.18.5 and sympy version 1.6.2 are used
throughout this thesis.

3.1 Training data
Before beginning to search for connections, proposed by hypothesis in section 1.4, in the dis-
persion energy curves, a further step in data cleaning is done by setting Edisp = 0 as soon as
Edisp ≥ −0.1 cm−1. When Edisp is reaching this fluctuations and quantization effects occur
(see Figure 3.1), supposedly caused by the accuracy limits of the used ab initio calculation for
calculating the total energy (CCSDT). Since the London-dispersion is increasing monotonously
until reaching 0 with increasing distance, all values obtained at larger distance are considered
to be numerical noise and do not represent a connection that our machine learning algorithms
are supposed to learn. After this last data cleaning step, a training data set of 6347 values
remains.

https://github.com/martius-lab/EQL_Tensorflow
https://github.com/martius-lab/EQL_Tensorflow
https://github.com/GMillner/eql-etc
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Figure 3.1: The simulated dispersion energies Edisp of a selection of all considered atomic pairs
involving neon over the distance. The displayed Edisp shows fluctuations in the
curves and quantization as soon as Edisp ≥ −0.1 cm−1. This value is marked with
a black line in the figure and all values at larger distance are no longer considered
as training data.

3.2 Network architecture
In the following the decisions influencing the architecture of the neural network in the EQL in
the experiments done in this chapter are described.

3.2.1 Input variables
In order to seek for the proposed hypotheses of the London formula (equation 1.24) and damping
functions as proposed in e.g. equation 1.26, or equation 1.44, the same input parameters as used
in the respected hypotheses are needed. For the acquisition of the atomic ionization potential
IP , the static dipole polarizability α and the sum of the van der Waals radii Rvdw of the
respected atomic pairs the mendeleev package is used [27], which is extracting this information
from literature (Ref. [21], Ref. [34] and Ref. [16]). For predicting analytical expressions similar
to the London formula, R6, the distance between the atomic pair to the power of 6, the IP and
α is needed. The investigation of the damping function demands the introduction of R and
Rvdw.

3.2.2 Network parameters
The EQL is used with network parameters as proposed from Martius et al. in Ref. [30] and
included in the default settings of the EQL tensorflow implementation, including the following:

• batch size = 20: Number of samples that are fed to the network at one iteration.

• layer width = 10: Number of identical nodes of each unit per hidden layer.
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• train val split = 0.9: Percentage of data used for training of the neural network (here
90 %), with the rest used as validation data (here 10 %) to verify the training progress.

• l0 threshold = 0.05: Threshold value for the regularization process. All weights smaller
than this value are set to zero at the end of the regularization process.

3.2.3 Unitary and binary units
Besides the respected input parameters described in section 3.2.1 the functions used to combine
them and resulting in an analytical expression predicting the respected output are needed to
be defined as well. These functions are handed over to the EQL with unitary and binary
units as explained in section 1.5.1. For the London formula investigation only multiplication,
subtraction, division and identity are needed, but the damping function investigation needs
exponential functions as well.

3.3 Model selection and training procedure
In the original proposed model selection procedure (Ref. [26]), the absolut regularization
strength λ and the number of hidden layers L are varied to find the parameter pair creating
the best result, which is considered to be the one with the lowest score, according to equation
3.1

score =
√

(Lvalidation
norm )2 + (Cnorm)2 (3.1)

with Lvalidation
norm as the validation loss normed by the respective maximum and Cnorm as the

network complexity normed by the respective maximum.
In the modifications described in section 1.5.1, λ is replaced by λ%, as can be sees in Equation
1.50. Therefore in the new proposed model selection λ% and L are variied.
As the searched formulas are considered to be analytical simple and EQL runs with L > 1
are resulting in a diverging of the neural network during training, L = 1 is set for all runs in
this investigation. Furthermore multiple runs are done with each parameter, to account for
the random initialization of the weights and possible diverging of the neural network during
training resulting in incomplete data (formula expression, validation error Lvalidation and network
complexity C), which reason is not further investigated in this master thesis.
The regularization, controlled by λ%, is influencing C by lowering the weights and set them
to zero, when they are lower than a given threshold value (e.g. 0.05), which is desired, and
Lvalidation, which is not desired. If λ% is chosen too low, C is not lowered and it has no effect
on the resulting formula expression. If it is too high, all weights are set to zero. Additionally,
Lvalidation is influenced by the regularization at all times depending on the respected strength
and this influence should be as low as possible. In order to find the best fitting λ% for the
given problem, resulting in runs with the lowest score, a two-step model selection is proposed.
First λ% is varied over six orders of magnitude and the two best are identified. Then, a second
finer variation around the two found λ% is done. The three best values are identified and ten
independent runs with these suggested λ% are performed, resulting in 30 individual runs, which
are further investigated. In each run a split of training and validation data is done (here 90 %
is used as training data) and the weights of the network are initialized randomly.
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3.4 Results
In the following, the results of two investigations are presented. First an attempt to find
correlations of the distance between atomic pairs, the atomic ionization potential and the
static dipole polarizability of the involved atoms, similar to the famous London formula stated
in equation 1.24, is done. Then a damping function depending on the distance of the atomic
pair and the sum of the van der Waals radii of the involved atoms, similar to e.g. equation
1.26, is searched. The model selection is done as described in section 3.3 and to quantify the
performance of a run, the score is used as defined in equation 3.1.

3.4.1 London formula
The results of the first model selection are summarized in Table 3.1.

id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.00001 0.000234 0.413832 10 1.0 1.082246
1 0.00001 0.000316 0.558336 9 0.9 1.059122
2 0.00001 0.000228 0.403014 10 1.0 1.078156

mean 1.073175
3 0.00010 0.000202 0.356302 8 0.8 0.875758
4 0.00010 0.000185 0.327615 9 0.9 0.957774
5 0.00010 0.000314 0.555215 8 0.8 0.973789

mean 0.935773
6 0.00100 0.000211 0.373511 5 0.5 0.624108
7 0.00100 0.000195 0.343669 6 0.6 0.691454
8 0.00100 0.000213 0.377051 6 0.6 0.708638

mean 0.674733
9 0.01000 0.000194 0.342561 3 0.3 0.455355
10 0.01000 0.000185 0.327339 7 0.7 0.772756
11 0.01000 0.000235 0.415844 2 0.2 0.461440

mean 0.563183
12 0.10000 0.000555 0.980512 1 0.1 0.985598
13 0.10000 0.000566 1.000000 1 0.1 1.004988
14 0.10000 0.000527 0.930640 4 0.4 1.012961

mean 1.001182
15 1.00000 0.000535 0.944418 4 0.4 1.025634
16 1.00000 0.000546 0.964181 4 0.4 1.043861
17 1.00000 0.000563 0.994423 1 0.1 0.999438

mean 1.022978

Table 3.1: Results of the first model selection of the London formula investigation with Sym-
bolic Regression. Three individual runs are done with each regularization percent-
age and the mean of the score of those three is calculated. λ% . . . regularization
percentage, Lvalidation . . . validation error, C . . . network complexity

The lowest resulting mean score over three individual runs in the first model selection are at
λ% = 0.001 and 0.01. Therefore λ% is varied around those values in the second model selection,
which is summarized in Table 3.2.
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id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.00050 0.000270 0.473336 6.0 0.666667 0.817613
1 0.00050 0.000199 0.349070 8.0 0.888889 0.954973
2 0.00050 0.000196 0.343867 4.0 0.444444 0.561939

mean 0.778175
3 0.00075 0.000206 0.361412 5.0 0.555556 0.662767
4 0.00075 0.000214 0.375449 4.0 0.444444 0.581802
5 0.00075 0.000237 0.414720 9.0 1.000000 1.082586

mean 0.775718
6 0.00100 0.000252 0.441803 6.0 0.666667 0.799772
7 0.00100 0.000214 0.374439 6.0 0.666667 0.764623
8 0.00100 - - - - -

mean 0.782197
9 0.00250 0.000208 0.364490 2.0 0.222222 0.426891
10 0.00250 0.000260 0.454454 9.0 1.000000 1.098421
11 0.00250 0.000200 0.350585 7.0 0.777778 0.853140

mean 0.792817
12 0.00500 0.000238 0.415843 5.0 0.555556 0.693950
13 0.00500 0.000267 0.466828 5.0 0.555556 0.725651
14 0.00500 0.000208 0.364735 4.0 0.444444 0.574945

mean 0.664849
15 0.00750 0.000271 0.474311 2.0 0.222222 0.523788
16 0.00750 0.000174 0.304692 9.0 1.000000 1.045388
17 0.00750 0.000217 0.379866 2.0 0.222222 0.440092

mean 0.669756
18 0.01000 0.000369 0.646772 5.0 0.555556 0.852617
19 0.01000 0.000251 0.439121 3.0 0.333333 0.551306
20 0.01000 0.000301 0.527696 5.0 0.555556 0.766228

mean 0.723384
21 0.02500 0.000550 0.963639 0.0 0.000000 0.963639
22 0.02500 0.000571 1.000000 2.0 0.222222 1.024394
23 0.02500 0.000209 0.366231 2.0 0.222222 0.428378

mean 0.80547
24 0.05000 0.000547 0.958388 0.0 0.000000 0.958388
25 0.05000 0.000204 0.356608 2.0 0.222222 0.420181
26 0.05000 0.000347 0.607681 5.0 0.555556 0.823358

mean 0.733975

Table 3.2: Results of the second model selection of the London formula investiga-
tion with Symbolic Regression. Three individual runs are done with
each regularization percentage and the mean of the score of those three
is calculated. λ% . . . regularization percentage,λ% . . . regularization percentage,
Lvalidation . . . validation error, C . . . network complexity

The three lowest mean scores in the second model selection, according to Table 3.2, are with
λ% = 0.005, 0.0075 and 0.01. In consequence those three values are used in the final runs of
this investigation summarized in Table 3.3 and shown in Figure 3.2.
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id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.0050 0.000303 0.549877 3.0 0.428571 0.697165
1 0.0050 - - - - -
2 0.0050 0.000532 0.964551 3.0 0.428571 1.055477
3 0.0050 0.000307 0.556068 3.0 0.428571 0.702058
4 0.0050 0.000220 0.398467 4.0 0.571429 0.696640
5 0.0050 0.000207 0.374536 3.0 0.428571 0.569167
6 0.0050 0.000215 0.389677 5.0 0.714286 0.813666
7 0.0050 0.000225 0.408268 4.0 0.571429 0.702291
8 0.0050 - - - - -
9 0.0050 0.000205 0.370952 2.0 0.285714 0.468229
10 0.0075 0.000214 0.387252 2.0 0.285714 0.481245
11 0.0075 0.000205 0.371484 7.0 1.000000 1.066771
12 0.0075 - - - - -
13 0.0075 - - - - -
14 0.0075 0.000247 0.447006 6.0 0.857143 0.966699
15 0.0075 0.000191 0.346153 5.0 0.714286 0.793742
16 0.0075 0.000201 0.365037 2.0 0.285714 0.463557
17 0.0075 0.000551 1.000000 2.0 0.285714 1.040016
18 0.0075 0.000198 0.359224 4.0 0.571429 0.674961
19 0.0075 0.000224 0.405984 2.0 0.285714 0.496443
20 0.0100 0.000112 0.202610 6.0 0.857143 0.880764
21 0.0100 0.000217 0.392658 3.0 0.428571 0.581252
22 0.0100 - - - - -
23 0.0100 0.000216 0.390942 2.0 0.285714 0.484219
24 0.0100 0.000185 0.335657 5.0 0.714286 0.789221
25 0.0100 0.000239 0.433833 5.0 0.714286 0.835713
26 0.0100 0.000231 0.418433 2.0 0.285714 0.506674
27 0.0100 0.000230 0.417325 2.0 0.285714 0.505760
28 0.0100 0.000202 0.366598 7.0 1.000000 1.065079
29 0.0100 0.000229 0.414962 2.0 0.285714 0.503812

Table 3.3: Results of the London formula investigation with Symbolic Regression, per-
forming ten individual runs with each choice of regularization percentage.
λ% . . . regularization percentage, Lvalidation . . . validation error, C . . . network com-
plexity

The runs with the lowest five scores are resulting in five formulas that are subject of further
investigation (id = 9, 10, 16, 19 and 23). The runs with id = 10 and 9 as well as with id =
19 and 23 are providing analytical expressions with the same structure, only differing in their
weights. Therefore the formulas resulting from the runs with the lower score are chosen (id =
9 and 23). All those formulas can be seen in equation 3.2 (id = 9), 3.3 (id = 23) and 3.4 (id =
19). Additionally the formula resulting from the run with id = 20 is inspected more closely, as
it results in the lowest validation error, and simplified by using the sympy package for better
representation [28], leading to equation 3.5. Note that these expressions are not actual energy
terms, but rather show a proportionality of atom-specific features to the dispersion energy.
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Figure 3.2: Network complexity C over validation error Lvalidation for the second model se-
lection of the London formula investigation with Symbolic Regression. For each
regularization percentage λ%, ten individual runs are done and the runs which are
subject of further investigation are marked.

EM1
disp = −1.337(6.16αA + 0.192αB)

R6 ∝ Edisp (3.2)

EM2
disp = −0.54αB

R6 ∝ Edisp (3.3)

EM3
disp = −0.168αB

R6 + 39.126αB ∝ Edisp (3.4)

EM4
disp = −3.961αA − 0.372αB + 7.519

0.473R6 + 26.276908αA + 39.162832αB + 24.584 ∝ Edisp (3.5)

3.4.2 Damping Functions
The results of the first model selection in the damping function investigation are summarized
in Table 3.4.
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id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.00001 0.327528 0.777272 14 0.8750 1.170374
1 0.00001 0.308614 0.732385 14 0.8750 1.141058
2 0.00001 0.308998 0.733298 11 0.6875 1.005178

mean 1.105537
3 0.00010 0.321801 0.763680 14 0.8750 1.161392
4 0.00010 0.306223 0.726711 16 1.0000 1.236167
5 0.00010 0.338434 0.803152 16 1.0000 1.282596

mean 1.226718
6 0.00100 0.332008 0.787902 13 0.8125 1.131789
7 0.00100 0.318094 0.754883 15 0.9375 1.203642
8 0.00100 0.306150 0.726539 16 1.0000 1.236066

mean 1.190499
9 0.01000 0.302698 0.718345 10 0.6250 0.952179
10 0.01000 0.317810 0.754209 10 0.6250 0.979518
11 0.01000 0.353423 0.838724 4 0.2500 0.875190

mean 0.935629
12 0.10000 0.312689 0.742057 4 0.2500 0.783038
13 0.10000 0.343272 0.814634 7 0.4375 0.924681
14 0.10000 0.314179 0.745593 7 0.4375 0.864474

mean 0.857397
15 1.00000 0.421382 1.000000 3 0.1875 1.017426
16 1.00000 0.419827 0.996310 2 0.1250 1.004120
17 1.00000 0.416983 0.989560 4 0.2500 1.020651

mean 1.014066

Table 3.4: Results of the first model selection of the damping function investigation with
Symbolic Regression. Three individual runs are done with each regularization per-
centage and the mean of the score of those three is calculated. λ% . . . regularization
percentage, Lvalidation . . . validation error, C . . . network complexity

The lowest resulting mean score over three individual in the first model selection runs are at
λ% = 0.01 and 0.1 and therefore λ% is varied around those values in the second model selection,
which results are summarized in Table 3.5.
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id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.0050 0.325266 0.761678 10.0 0.588235 0.962380
1 0.0050 0.304184 0.712312 12.0 0.705882 1.002825
2 0.0050 0.297897 0.697589 9.0 0.529412 0.875732

mean 0.946979
3 0.0075 0.318777 0.746485 9.0 0.529412 0.915159
4 0.0075 0.305783 0.716055 9.0 0.529412 0.890512
5 0.0075 0.343462 0.804290 7.0 0.411765 0.903567

mean 0.903079
6 0.0100 0.313037 0.733042 17.0 1.000000 1.239900
7 0.0100 0.310185 0.726364 7.0 0.411765 0.834958
8 0.0100 0.374089 0.876009 2.0 0.117647 0.883873

0.986244
9 0.0250 0.314174 0.735705 6.0 0.352941 0.815984
10 0.0250 - - - - -
11 0.0250 0.308789 0.723094 13.0 0.764706 1.052445

mean 0.934214
12 0.0500 0.309035 0.723671 7.0 0.411765 0.832617
13 0.0500 0.414124 0.969760 1.0 0.058824 0.971543
14 0.0500 0.313306 0.733672 10.0 0.588235 0.940370

mean 0.914843
15 0.0750 0.405414 0.949364 2.0 0.117647 0.956626
16 0.0750 0.323913 0.758510 7.0 0.411765 0.863069
17 0.0750 0.317339 0.743117 3.0 0.176471 0.763783

mean 0.861159
18 0.1000 - - - - -
19 0.1000 0.312834 0.732567 4.0 0.235294 0.769427
20 0.1000 0.321941 0.753894 6.0 0.352941 0.832421

mean 0.800924
21 0.2500 0.311862 0.730290 5.0 0.294118 0.787292
22 0.2500 0.391258 0.916214 6.0 0.352941 0.981842
23 0.2500 0.305094 0.714441 4.0 0.235294 0.752190

mean 0.840442
24 0.5000 0.341541 0.799791 5.0 0.294118 0.852156
25 0.5000 0.326700 0.765036 4.0 0.235294 0.800402
26 0.5000 0.427038 1.000000 2.0 0.117647 1.006897

mean 0.886485

Table 3.5: Results of the second model selection of the damping function investigation with
Symbolic Regression. Three individual runs are done with each regularization per-
centage and the mean of the score of those three is calculated. λ% . . . regularization
percentage, Lvalidation . . . validation error, C . . . network complexity

The three lowest mean scores in the second model selection, according to Table 3.2, are with
λ% = 0.075, 0.1 and 0.25. In consequence, those three values are used in the final runs of this
investigation summarized in Table 3.6 and shown in Figure 3.3.
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id λ% Lvalidation Lvalidation
norm C Cnorm score

0 0.075 0.318716 0.758083 5.0 0.625 0.982505
1 0.075 0.312987 0.744459 6.0 0.750 1.056749
2 0.075 0.332993 0.792043 4.0 0.500 0.936660
3 0.075 0.318643 0.757912 3.0 0.375 0.845609
4 0.075 0.307957 0.732494 6.0 0.750 1.048354
5 0.075 0.297532 0.707697 5.0 0.625 0.944171
6 0.075 0.318590 0.757784 7.0 0.875 1.157524
7 0.075 - - - - -
8 0.075 0.312540 0.743395 8.0 1.000 1.246048
9 0.075 0.335172 0.797226 5.0 0.625 1.013012
10 0.100 0.337424 0.802583 5.0 0.625 1.017234
11 0.100 0.392480 0.933536 3.0 0.375 1.006039
12 0.100 0.399320 0.949806 3.0 0.375 1.021154
13 0.100 0.321778 0.765367 5.0 0.625 0.988136
14 0.100 0.369400 0.878640 3.0 0.375 0.955318
15 0.100 0.300912 0.715738 7.0 0.875 1.130445
16 0.100 0.314205 0.747355 7.0 0.875 1.150724
17 0.100 0.369199 0.878162 4.0 0.500 1.010529
18 0.100 - - - - -
19 0.100 0.319373 0.759648 5.0 0.625 0.983712
20 0.250 0.389672 0.926858 5.0 0.625 1.117896
21 0.250 0.365646 0.869710 4.0 0.500 1.003193
22 0.250 0.385373 0.916631 6.0 0.750 1.184362
23 0.250 0.332922 0.791873 7.0 0.875 1.180122
24 0.250 0.340025 0.808769 6.0 0.750 1.102999
25 0.250 0.315599 0.750670 8.0 1.000 1.250402
26 0.250 0.360408 0.857252 4.0 0.500 0.992412
27 0.250 0.343835 0.817831 6.0 0.750 1.109661
28 0.250 0.420423 1.000000 1.0 0.125 1.007782
29 0.250 - - - - -

Table 3.6: Results of the damping function investigation with Symbolic Regression, where ten
individual runs with each regularization percentage are done. λ% . . . regularization
percentage, Lvalidation . . . validation error, C . . . network complexity
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Figure 3.3: Network complexity C over validation error Lvalidation for the second model se-
lection of the London formula investigation with Symbolic Regression. For each
regularization percentage λ%, ten individual runs are done and the three runs
which are subject of further investigation are marked.

The run with the lowest score (id=3) is resulting in the formula shown in equation 3.6.
The runs with the lowest complexity (id=28, equation 3.8) and lowest validation error (id=5,
equation 3.7) are also selected for further investigation. Equation 3.7 has been simplified again
by using the sympy package [28].

fM1
damp = 0.269 R2 + 0.332 exp(0.22 R + 0.13 Rvdw)

0.225 R2 + 0.796(0.568 R + 0.741 Rvdw) (−0.542 R + 0.705 Rvdw) (3.6)

fM2
damp = (0.519 R Rvdw − 0.48 exp(−0.268 R + 0.776 Rvdw) + 5.57 exp(0.136 R + 0.155 Rvdw)

+0.143 exp(0.338 R + 0.22 Rvdw)) · 1
2.21 exp(0.258 R) + 3.586 exp(0.136 R + 0.155 Rvdw)

(3.7)

fM3
damp = 1.451 (3.8)
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4 Discussion

In this chapter the results shown in chapter 3 are discussed, starting with the investigation of
the London formula and followed by a detailed analysis of damping functions for the London-
dispersion corrections found in section 3.4.2.

4.1 London formula
In this investigation it was attempted to find correlation similar to the proposed London formula
describing the London-dispersion interaction (Edisp), see equation 1.24, by providing meaning-
ful variables (distance between two atoms, ionization energy and dipole polarization of the
respected atoms) as an input and corresponding simulated dispersion energy as an output to a
neural network that creates analytical expressions called Equation Learner (EQL).

In the resulting expressions in equation 3.2 to 3.5 the R−6 dependence of Edisp is found in all
results and the ionization energy (IP ) is not considered in the correlations in contrast to the
dipole polarization (α), which suggests to a stronger α dependence of Edisp and a rather weak
connection to the IP .

4.1.1 Performance
In order to quantitatively measure the quality of a model, the average difference between the
simulated dispersion energy (Edisp) calculated in chapter 2 and Emodel

disp calculated by models is
given as

∆(Edisp,Emodel
disp ) = 1

N

N∑
i=0

∣∣∣Edisp(i)− Emodel
disp (xi)

∣∣∣ (4.1)

with N as the number of calculated values and x as the input parameters of the respected
model.

∆(Edisp,Emodel
disp ) is shown in Figure 4.1 to 4.4 for all considered atomic pairs, grouped by the

involved noble gas atom and ranked by the dipole polarization (α) of the second involved atom.
A higher α seems to imply a worse approximation of Edisp in all models, which can be partly
explained by larger relative amount of correlation energy involved. In the short range regime,
where the distance is smaller than the sum of the van der Waals radii of the respected atoms,
a higher ∆(Edisp,Emodel

disp ) can be observed. This can be explained by the fact that none of the
models is considering contributions from the R−8 term, as described in section 1.4.2 and other
electronic correlation effects not considered in the Hartree-Fock theory, as mentioned in Ref.
[24].
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Figure 4.1: Barplot of the average difference between the ab initio dispersion energy (Edisp)
and Edisp calculated by the London formula, see equation 1.24, according to equa-
tion 4.1, for all considered atomic pairs over the whole distance and only in the
long range regime, where R is bigger than the combined van der Waals radii of
the respected atoms.

Figure 4.2: Barplot of the average difference between the ab initio dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models found with
Symbolic Regression (M1-4), according to equation 4.1, for all considered atomic
pairs involving He.
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Figure 4.3: Barplot of the average difference between the ab initio dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models found with
Symbolic Regression (M1-4), according to equation 4.1, for all considered atomic
pairs involving Ne.

Figure 4.4: Barplot of the average difference between the ab initio dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models found with
Symbolic Regression (M1-4), according to Equation 4.1, for all considered atomic
pairs involving Ar.
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In the following Figures the dispersion energy of two atomic pairs calculated by various
models are shown, which are approximating Edisp partly very good (Figure 4.5) and much
worse (Figure 4.6), due to an overestimation of the contribution of the high dipole polarization
of the involved atoms.

Figure 4.5: Comparison of the ab initio dispersion energy (Esim
disp) with the calculated Edisp by

the London formula (LE) and models found by Symbolic Regression (M1-4) for
the helium dimer. M4 shows a non physical behavior at short distances due to
the low dipole polarization of He and the factor of +7.519 in equation 3.5. The
short range regime, where R is smaller than the combined van der Waals radii of
the respected atoms, is indicated by the blue area and the x-axis is cropped at 10
Å for better visibility.



Chapter 4. Discussion 36

Figure 4.6: Comparison of the ab initio dispersion energy (Esim
disp) with the calculated Edisp by

the London formula (LE) and models found by Symbolic Regression (M1-4) for
the atomic pair of argon and lithium. The contribution of the dipole polarization is
especially overestimated in the London formula, where its calculated to a value of
about −8976 cm−1 at a distance of R = 2.45 Å compared to Esim

disp ≈ −1315 cm−1

at the same distance. Note that the y axis is cropped at -4000 cm−1, as well as
the x-axis is cropped at 10 Å for better visibility. The short range regime, where
R is smaller than the combined van der Waals radii of the respected atoms, is
indicated by the blue area.

4.2 Damping functions
The idea of a damping function in the given context is to damp the contribution of Edisp in the
short range regime. Therefore a function is multiplied to an approximated dispersion energy
depending only on distance and sum of the van der Waals radii of two atoms, e.g. equation 1.26.
In this investigation Symbolic Regression is used to find damping functions (fMdamp) that correct
the approximation of the dispersion energy by the London formula according to equation 1.24
(ELE

disp), resulting in a better approximation (EDF
disp).

EDF
disp = ELE

disp · fMdamp (4.2)
The functions identified by the Equation Learner, see equation 3.6 to 3.8, are not only

damping the approximation, but also scale it to compensate terms not considered by the London
approximation. This can be seen clearly in fM3

damp, which is only a scaling factor. The course of
the functions are displayed in Figure 4.7 and show a steep rise at greater distances, where the
dispersion energy is very low, therefore the impact is not significant and less data was used for
training the neural network of the EQL.
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Figure 4.7: Functions found in the investigation in section 3.4.2 for the atomic pair of Argon
and Silicon in atomic units over the distance. The short range regime, where R is
smaller than the combined van der Waals radii of the respected atoms, is shaded
blue.

4.2.1 Performance
The quantitative performance of the found damping functions multiplied with the dispersion
energy calculated by the London formula (ELE

disp) are compared to the deviation of the approxi-
mation by the London formula alone over all considered atomic pairs in Figure 4.8 to 4.10. The
results shown are grouped by the involved noble gas atom and ranked by the dipole polarization
(α) of the second involved atom.
In Figure 4.11 and 4.12 two examples (HeHe and ArLi) for the approximation of Edisp of an

atomic pair by the found damping functions multiplied with the London formula are shown.
While the correction of the London formula by the the found fMdamp works very good in the
example of the Helium dimer, Edisp is approximating the simulated energy worse than without
those corrections in the atomic pair of Argon and Lithium.
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Figure 4.8: Barplot of the average difference between the simulated dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models (DF1-4),
according to equation 4.1, for all considered atomic pairs involving He.

Figure 4.9: Barplot of the average difference between the simulated dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models (DF1-4),
according to equation 4.1, for all considered atomic pairs involving Ne.
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Figure 4.10: Barplot of the average difference between the simulated dispersion energy (Edisp)
and Edisp calculated by the London formula (LE) and other models (DF1-4),
according to equation 4.1, for all considered atomic pairs involving Ar.

Figure 4.11: Comparison of the simulated dispersion energy (Esim
disp) with the calculated Edisp

by the London formula (LE) and multiplied with damping functions found by
Symbolic Regression (DF1-3) for the Helium dimer, which shows a very good
approximation. The short range regime, where R is smaller than the combined
van der Waals radii of the respected atoms, is shaded blue and the x-axis is
cropped at 10 Å for better visibility.
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Figure 4.12: Comparison of the ab initio dispersion energy (Esim
disp) with the calculated Edisp

by the London formula (LE) and multiplied with damping functions found by
Symbolic Regression (DF1-3) for the atomic pair of Argon and Lithium. The
short range regime, where R is smaller than the combined van der Waals radii of
the respected atoms, is shaded blue and the x-axis is cropped at 10 Å for better
visibility.



Chapter 4. Discussion 41

4.2.2 Optimization
In this section Equation 3.6 is investigated in more detail by changing the prefactors to fitting
parameters (a0, a1, . . . , a9), as can be seen in Equation 4.3. Now an optimization is done using
the scipy package [41] with the Powell algorithm [29]. On the one hand, the parameters are
optimized for the whole considered data set, which consists of 43 atomic pairs, on the other
hand they are optimized for every atomic pair individually. The difference of the calculated
Edisp from the simulated one is shown in Figure 4.13.

fM1
damp = a0 R

2 + a1 exp(a2 R + a3 Rvdw)
a4 R2 + a5(a6 R + a7 Rvdw) (a8 R + a9 Rvdw) (4.3)

With R as the as the distance between two atomes (from center to center) and Rvdw as the
sum of the van der Waals radii of the respected atoms.

Figure 4.13: Barplot comparing the average difference between the ab initio dispersion energy
(Edisp) and Edisp calculated by multiplying the London formula (Equation 1.24)
with Equation 4.3 using parameters found by the EQL (∆(DF1)), optimized
for the whole data set (∆(DF1opt,all)) and optimized individually (∆(DF1opt)).
The Difference is calculated according to Equation 4.1.

When inspecting Figure 4.13 two things become evident. First, the prefactors found by the
EQL perform in a comparable way to the optimized parameters found by the Powell algorithm,
which is expected as the EQL is simultaneously optimizing formula structure and prefactors.
Additionally the individually optimized parameters are resulting in a significantly better fit in
some cases, e.g. for the atomic pairs ArAr (1 in Figure 4.13) and HeLi (24 in Figure 4.13)
among others. Those two examples are inspected more detailed, the parameters are shown in
Figure 4.14 and 4.16 and the calculated Edisp in Figure 4.15 and 4.17.
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Figure 4.14: Barplot of the parameters in fM1
damp optimized for the whole considered data set

consisting of 43 atomic pairs and optimized for ArAr.

Figure 4.15: Comparison of ab initio dispersion energy (Edisp) and those energies obtained
with the London formula ELE

disp and ELE
disp multiplied with fM1

damp with optimized
parameters for all 43 atomic pairs (EDF1,opt,all

disp ) and for ArAr (EDF1,opt
disp ) over the

distance. The x-axis is cropped at 10 Å for better visibility.
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Figure 4.16: Barplot of the parameters in fM1
damp optimized for the whole considered data set

consisting of 43 atomic pairs and optimized for HeLi.

Figure 4.17: Comparison of ab initio dispersion energy (Edisp), calculated using the London
formula ELE

disp and ELE
disp multiplied with fM1

damp with optimized parameters for all
43 atomic pairs (EDF1,opt,all

disp ) and for HeLi (EDF1,opt
disp ) over the distance. The

x-axis is cropped at 10 Å for better visibility.
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While the individually optimized parameters to caclulate Edisp are increasing the drop of
the trajectory for smaller distances in ArAr (see Figure 4.15), they are damping it in case of
HeLi (see Figure 4.17). This different behavior can also be seen when inspecting the optimized
parameters for those atomic pairs in Figure 4.16 and 4.14, e.g. a5 is much higher in the
optimization for HeLi than for ArAr and the value of a0 is the other way round. This indicates
a lack of of one or more element specific variables in fM1

damp.
The Pearson correlation coefficient of a0 and a5 with some material specific coefficients are
calculated and a correlation matrix is shown in Figure 4.18. The highest correlation is with a0
and alpha, the sum of the dipole polarizability of the involved atoms and its regression line is
shown in Figure 4.19.

Figure 4.18: Correlation matrix of the fit parameters a0 and a5, optimized individually for
every atomic pair in the considered data set and element specific variables of the
involved atoms: alpha . . . sum of the dipole polarizability (Ref. [34]), IP . . . sum
of the ionization potential (Ref. [16]), EN . . . sum of the Allen electronegativity
(Ref. [25]), V E . . . sum of the valence electrons, Z . . . sum of the atomic number.

Figure 4.19: The sum of the dipole polarizability of the involved atoms (alpha) over the fitting
parameter a0, optimized individually for every atomic pair in the considered data
set, with the respected regression line and the Pearson correlation coefficient
given in the legend.
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5 Conclusions

In this master thesis it was attempted to find simple analytical expressions linking known atomic
features and other variables derived by well established hypotheses to the London-dispersion
interaction (Edisp) between two atoms.

A data set had to be created containing Edisp, the distance between the atoms, the ionization
energy, dipole polarization and van der Waals radii for a set of atomic pairs. Hartree-Fock (HF)
and Coupled Cluster (CC) simulations have been performed for 51 atomic pairs combining the
first 18 atoms in the periodic table with the noble gas atoms helium, neon and argon and Edisp
was calculated as the difference between the total energy calculated by HF and CC. The other
variables were gathered from literature. After a detailed investigation of Edisp curves, some of
them were excluded from further investigation and a set of 43 atomic pairs was obtained.

After a last data cleaning step, cropping the Edisp values for large distances where they are
approaching zero, the resulting data set was given as training data to a Symbolic Regression
application called Equation Learner (EQL), a neural network that finds analytical expressions
from a data input, to find on the one hand expression similar to the proposed London formula
(Equation 1.24) and damping functions that multiplied with the London formula are approxi-
mating Edisp more closely.

The EQL finds formula expressions similar to the London formula with similar performance
but without including the ionization potential (IP ) of the involved atoms. This indicates that
the IP of both atoms in atomic pairs do not have a large impact on Edisp and can be ignored
for the correction. Additionally, the corrections seem to be much less effective in the short
range regime, where the distance between the two atoms is smaller than the sum of the van
der Waals radii of the respected atoms and the electron orbitals are overlapping. In this region
forces not captured by HF and differing from the R−6 term of Edisp are contributing to the
total electronic energy in a larger extent and our central approximation that calculates Edisp as
the difference of the electronic energy calculated by HF and CC is compromised. This could be
avoided by including R−8, R−10 and other terms in the search and simultaneously limiting it
to an analytical expressions with a formula structure that separates R−N (N = 6, 8 . . . ) terms,
which remains as an interesting topic for further research.
In the damping function investigation, several corrections were found that improve the fit of
Edisp, as calculated by the London formula, over the whole considered data set in the short
range and also in the long range regime, but failed to do this for Edisp curves of some atomic
pairs. A more detailed investigation revealed that this might be due to the lack of atom-specific
features in the damping function. A (weak) correlation of a fitting parameter with the dipole
polarizability of the involved atoms can be noticed.
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