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Automatic Speech Segmentation using Kaldi

Abstract

Automatic speech segmentation is an often used method to annotate large speech corpora. It
can serve as a starting point for corpus-based linguistic studies. In contrast to segmenting read
speech, the segmentation of spontaneous, conversational speech is a more challenging task. Spon-
taneously pronounced words contain phenomena of reduction, assimilation and deletion and the
task is therefore more complex than read speech. In this thesis, automatic speech segmentation
is performed for the GRASS corpus, which contains both read and conversational speech data
of Austrian German. The approach chosen for the segmentation is a forced alignment with the
state of the art toolkit Kaldi. In addition to studying the impact of different frame-shifts during
the acoustic modelling, also pronunciation modelling for Austrian German is a focus in this
thesis. Pronunciation variation is modelled with a knowledge-based approach with the help of
formalised phonological rules, resulting in a pronunciation lexicon. The results of a quantitative
distance measure to reference alignments for the GRASS read speech component with 8.4%, is
similar to previously reported values for the same speaking style. The analysis of the two speech
style showed that the mean speechrate of conversational speech is more than twice as large as
the mean speechrate of read speech.

Kurzfassung

Automatische Segmentierung wird häufig dazu verwendet, umfangreiche Sprachdatensätze zu
transkribieren. Die so generierten Annotationen bilden oft die Ausgangslage linguistischer Stu-
dien. In Spontansprache kommt es zu Phänomenen wie Auslöschungen, Angleichungen oder
Substituierungen von einzelnen Lauten. Sie ist, im Vergleich zur gelesenen Sprache, für eine
automatische Segmentierung eine besondere Herausforderung. In dieser Masterarbeit wird eine
automatische Segmentierung des GRASS Korpusses durchgeführt. Dies beinhaltet sowohl die
Segmentierung von gelesener Sprache als auch die Segmentierung von Spontansprache. Mit Hilfe
des Kaldi Toolkits werden akustische Modelle trainiert und bekannte orthographischen Trankri-
bierungen werden zu den entsprechenden Audiodaten ausgerichtet. Im Fokus der Arbeit steht
die Untersuchung verschiedener frame-shifts, während die Audiomerkmale berechnet und ver-
schiedene Varianten der Aussprache des Österreichischen Deutschs modelliert werden. Anhand
eines wissensbasierten Ansatzes wird mit Hilfe von phonologischen Regeln ein Aussprachelexikon
erstellt, welches die Ausprachevarianten des Korpusses abedeckt. Mit Hilfe eines Distansmaßes
wird eine quantitative Evaluation zur gelesener Sprache durchgeführt. Die gesamte Distanz
zwischen den automatischen Segmentierungen zu einem Referenzmaß ergibt einen Wert von
8.4%. Vorhergehende Studien berichten über ähnliche Distanzen bei der Evaluation von gelsener
Sprache. Die Analyse der unterschiedlichen Sprachstile zeigt, dass die Sprechgeschwindigkeit
während Spontansprache mehr als doppelt so hoch ist wie die Sprechgeschwindigkeit bei gele-
sener Sprache.
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1
Introduction

Automatic speech segmentation is a frequently used procedure to annotate large speech corpora
(C. Van Bael et al., 2007). Segmentation on phone or word level of a corpus are the start-
ing point for phonetic analysis and further linguistic research (Schuppler, Adda-Decker, and
Morales-Cordovilla, 2014). Compared to manually created phonetic transcriptions, the usage
of forced alignment promises significant time savings with the additional advantage of more
consistent results. This thesis aims to do an automatic segmentation of the Graz corpus of read
and spontaneous speech (GRASS) (Schuppler, Hagmüller, and Zahrer, 2017) with the help of
the Kaldi Automatic Speech Recognition (ASR) toolkit (Povey et al., 2011).
There exist different forced alignment tools to align the orthographic transcriptions with the
audio files on a phone or word level. One of these tools for German language is the MAUS tool
(Schiel, 1999) that was used to segment some of the GRASS read speech (RS) component. The
manually corrected results of the MAUS segmentation serve as a reference for the automatic
segmentation with the Kaldi toolkit and a comparison gives an impression of the performance
of the Kaldi based forced alignment procedure.
In contrast to speech material from RS, the conversational speaking style is a more challenging
task for the forced alignment process (Bigi and Meunier, 2018). However, conversational speech
(CS) is an important starting point for phonetic studies and therefore an automatic speech
segmentation of the GRASS CS component is of interest. CS consists of more complex pro-
nunciation variation than RS (Schuppler, Adda-Decker, and Morales-Cordovilla, 2014) and as a
consequence, the pronunciation modelling during the forced alignment process is an important
task.
A possibility to capture the pronunciation variation is the usage of a pronunciation lexicon that
includes variants in addition to the canonical forms during the forced alignment process. With
the help of existing studies on pronunciation variation of Austrian German, one can create a
pronunciation lexicon that covers the pronunciation variation of the GRASS CS part. Automatic
segmentation for the GRASS CS with the MAUS tool is not sufficient as the MAUS tool does
not cover the pronunciation variation for Austrian German, so there is a need for performing
a forced alignment specially for Austrian German, which can be achieved with the help of the
open-source ASR toolkit Kaldi. In addition to studying the use of different frame-shifts during
the acoustic modelling, also the pronunciation modelling for Austrian German is a focus in this
thesis.

1.1 Forced alignment

In literature, forced alignment is a method for automatic segmentation with the help of a speech
recognition system. The linguistic level of segmentation can be the phonetic level or the word
level. Forced alignment describes a working mode of an ASR system, where the orthography is
already given with the corresponding audio data. This section discusses the basic concepts of
forced alignment and gives a summary of existing forced alignment systems, with a special focus
on the characteristics of these alignment systems.
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Forced Alignment:
In a forced alignment process, speech and its orthographic representation are aligned on a phone
or word level. Figure 1.1 illustrates the typical input data for a forced alignment process. Pfister
and Kaufmann (2017) point out that the orthographic text level differs from the speech level
in many aspects. Text consists of a small amount of elements, the letters of the alphabet, and
the resulting words are clearly separated. In spoken language, sounds are not clearly separated
neither in temporal meaning nor in their characteristics. A discrete speech signal consists of a
sequence of samples but there is no direct mapping between one sample and a corresponding
sound. One step of the forced alignment is to find a mapping between the text level (grapheme
level) and the phone level. The mapping is typically stored in a pronunciation lexicon and find-
ing pronunciation variants is a core component to improve automatic phonetic segmentation
through forced alignment. The second component of a forced aligner is a statistical model, also
called acoustic model that models the realisations of phones. In a first step, the orthographic
transcript of a speech utterance is mapped to the phone level resulting in a sequence of phones.
With the sequence of phones and the speech input, the statistical model finds the best fitting
alignment between the two given inputs. Figure 1.1 illustrates the forced alignment process
with an example alignment of a spoken utterance of the GRASS RS component (Schuppler,
Hagmüller, and Zahrer, 2017).

E s t 6 n S t Y6 m t E s xn Og

Input
Speech signal:

Orthographic transcription: "Gestern stürmte es noch"

Mapping grapheme to phoneme

   Gestern          stürmte       es   noch

   g E s t 6 n    S t Y6 m t E    s    n O x

grapheme level:

phoneme level:

Statistical model

   g E s t 6 n    S t Y6 m t E    s    n O x ?

Output

Figure 1.1: Overview of the forced alignment process with an example from the GRASS RS component.

Architecture
As mentioned in (McAuliffe et al., 2017), the architecture of the statistical model used in the
forced alignment process is a characteristic to distinguish between various forced alignment sys-
tems. Most existing forced alignment systems use Hidden-Markov Models (HMM) as statistical
model. Here are some points in which the acoustic models of forced alignment systems could
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1.1 Forced alignment

vary among each other:

• context dependent or context independent phone modelling (triphone vs. monophone
models)

• account for speaker variability (e.g., acoustic feature transformations)

• topology of the HMM

Training
The same authors McAuliffe et al. (2017) point out that training the acoustic model can happen
in distinct ways. Where some forced aligners work with pre-trained acoustic models of existing
corpora, other forced aligners give the opportunity to retrain the acoustic model with the given
data that should be aligned. The advantage of using existing corpora is that the acoustic models
may be trained on manually created segmentations.

Transcription constraining
Johnson, Di Paolo, and Bell (2018) classified forced alignment in unconstrained alignment, where
the aligner has less given information where to look for given words in the recording, whereas
in constrained alignment, the transcription is time aligned to specific segments like utterances.
Bigi and Meunier (2018) addressed a similar category for transcriptions that are approximated,
which means that errors and omissions can occur during the annotation process.

Toolkit
There are different toolkits for performing an ASR task and each of them could be used to
perform a forced alignment as well. Some of the open-source toolkits are listed below:

• HTK (S. J. Young and Sj Young, 1993)

• CMU Sphinx (Lamere et al., 2003)

• Kaldi (Povey et al., 2011)

• Julius (Lee, Kawahara, and Shikano, 2001)

• DeepSpeech (Hannun et al., 2014)

• RWTH ASR (Rybach et al., 2011)

One can compare characteristics regarding the structure of the toolkit like used algorithms or
the programming language or one can compare characteristics regarding the usability of such
systems like preparation of the documentation, supported OS or license terms. Because Kaldi
supports state of the art algorithms within given template recipes, it was chosen for the auto-
matic speech segmentation task in this thesis.

Pronunciation modelling
Pronunciation modelling is the task of dealing with different pronunciation variants. Especially
for CS, pronunciation modelling is an important task to improve the automatic speech segmenta-
tion. Different concepts for pronunciation modelling within a speech recognition are summarised
in (Chen et al., 2015). Figure 2.1 illustrates such concepts in a tree diagram.
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Pronunciation Modelling

explicitimplicit

creating multiple
pronunciations

estimation of
probabilities of

pronunciation variants

phonological
rules

statistical
decision tree

decoding training
data with automatic
phone recognizer

tying of
densities

observing
feature

changes

dependend on
dynamic features

relative frequency in
training data

Figure 1.2: Overview of pronunciation modelling within an ASR task.

Each node in Figure 2.1 represents a decision criterion for designing a pronunciation model. By
modelling the pronunciation variation within the acoustic model, the pronunciations are mod-
elled in an implicit way (Hain, 2002). The explicit pronunciation modelling way consists of two
parts. Schuppler, Adda-Decker, and Morales-Cordovilla (2014) created multiple pronunciation
variants with a set of rules, which describe phonologically and phonetic reduction processes. By
counting the frequencies of the pronunciation variants in the training data, one can estimate
pronunciation probabilities and incorporate them into an ASR system (Chen et al., 2015).

Forced alignment tools
There are different forced alignment tools in order to perform an automatic speech segmentation
task. Those tools are often based on the HTK toolkit. Table 1.1 lists alignment systems with
some selected properties.

Table 1.1: Some alignment systems and selected characteristics.

Alignment
System

ASR
Toolkit

Trainabilty on
new data

Usage of
pronunciation
probabilities

Embedding
within speech

events
MAUS HTK 7 3 7

MFA Kaldi 3 3 7

SPPAS Julius/HTK 3 7 3

The MAUS tool (Schiel, 1999), which is also available as a web-interface tool (Kisler, Uwe
Reichel, and Schiel, 2017), works for more than 28 languages and also supports the German
language with additional German dialect language settings. The MAUS tool uses a statistical
pronunciation model, which also includes apriori probabilities. The Montreal Forced Alignment
(MFA) tool (McAuliffe et al., 2017) is based on the Kaldi toolkit and supports the usage of
triphone based acoustic models with an option of a speaker adaptive training. The trainability
on new data allows to use an own corpus in order to create the acoustic model. The authors of the
SPPAS tool (Bigi, 2012) addressed the problem of within speech, when performing an automatic
speech segmentation task for spontaneous speech. The events filled pause, laughter, and noise
are taken into account in the acoustic model for the French language (Bigi and Meunier, 2018).
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2
Background

2.1 Pronunciation modelling

The main focus of this thesis is the pronunciation modelling during an automatic speech seg-
mentation task for the GRASS corpus. This section gives an overview of the different methods
existent for pronunciation modelling and is a summary of the paper by Strik and Cucchiarini
(1999). A motivation for pronunciation modelling is the usage of CS corpora, as the amount of
variation grows for CS compared to RS. A first distinction of pronunciation variation is the com-
parison between interspeaker and intraspeaker pronunciation variation. Intraspeaker variation
describes the fact that one speaker can pronounce words in distinct ways depending on various
factors such as assimilation, co-articulation, reduction, deletion or insertion phenomena. The
degree of the mentioned factors depend on the speaking style, for example reduction phenomena
are expected to be more present in CS than in RS. Interspeaker variation relates to the fact
that words are pronounced differently depending on factors that describe differences between the
speakers, like region of origin, accents, sex or age. Another factor for pronunciation variation is
the interlocutor, which describes the speaker adapting his speech to the listener. The mentioned
factors for pronunciation variation in speech can be summed up to linguistic variation, whereas
there is also a variation caused by anatomical differences like vocal tract length or the variation
caused by environmental influences (Lombard effect) (Vlaj and Kačič, 2011). In ASR systems,
some of the mentioned pronunciation variation factors are solved by design, e.g. the temporal
variation of phones with the usage of HMMs, whereas other factors can be modelled in an ex-
plicit way, like the usage of pronunciation lexicons. Nevertheless, it is not easy to say where
pronunciation modelling begins and ASR improvements end, but it is a benefit to characterise
pronunciation modelling in a form of a decision based framework.

What type of pronunciation variation should be modelled?
Mostly, pronunciation variation is modelled on a segmental level in contrast to variation de-
pending on suprasegemental factors. On the segmental level one can distinguish between word-
internal variation or cross-word variation processes. In an ASR task or forced alignment task,
the word-internal variation can be modelled with the help of a pronunciation lexicon as the
lexicon can be extended with additional pronunciation variants. To cover cross-word variation
in a pronunciation lexicon, one can append multi-word entries that are entries with more than
one word.

Where should the information of the variation come from?
In a data-driven approach, the information of the variation is derived from the data, whereas
in a knowledge based approach the information is available in existing literature. Often both
approaches are taken into account and the classification in a data-driven approach or knowledge
based approach refer to the starting point of the research. To give an example, it is possible to
start with a knowledge based approach in form of a pronunciation lexicon with variants and to
analyse the pronunciation variants in a quantitative way with help of a corpus in a data-driven
manner. A drawback of a data-driven approach is that the resulting information of the varia-
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tion depends on the used data and the information can not be generalised to different situations.
Within a knowledge-based approach a possible disadvantage could be the mismatch between the
data and the information based on the literature. Another effect is overgeneralisation when the
pronunciation lexicon contains variants that do not occur in the training data.

Should the information be formalised or not?
When formalising the information of variation one can use for instance rewrite rules (Schuppler,
Adda-Decker, and Morales-Cordovilla, 2014) or artificial neural-networks (Deshmukh, Weber,
and Picone, 1996) to obtain a more abstract representation of the information. Formalising the
information has two main advantages. First, one has full control of the process of generating
pronunciation variants and in addition, the information is present in an abstract representation.
This makes it easier to adapt the process of pronunciation modelling to other corpora.

In which component of the system should the variation be modelled?
There are different components of a speech recognition system, where one can incorporate the
knowledge of the variation. Similar to Strik and Cucchiarini (1999), the paper of Chen et al.
(2015) summarises methods of pronunciation modelling and distinguishes between an implicit
and an explicit pronunciation modelling. In an implicit way, one could model the information
within the acoustic model. In some methods, acoustic parameters of a phone are tied together
with similar phones in order to cover pronunciation variation. An explicit way to model pronun-
ciation variation is to incorporate the knowledge in a pronunciation lexicon. There are different
techniques of generating pronunciation variants. A knowledge-based approach is to use phonolog-
ical rules to extend the word pronunciations in the lexicon. In a data-driven approach, one would
decode labelled training data in order to obtain pronunciation alternatives of frequent words in
the corpus. Figure 2.1 gives an overview of different methods for pronunciation modelling where
each circle marks a decision criterion during the pronunciation modelling task.

Pronunciation Modelling

explicitimplicit

creating multiple
pronunciations

estimation of
probabilities of

pronunciation variants

phonological
rules

statistical
decision tree

decoding training
data with automatic
phone recognizer

tying of
densities

observing
feature

changes

dependend on
dynamic features

relative frequency in
training data

Figure 2.1: Overview pronunciation modelling.

The knowledge-based approach requires linguistic knowledge in the language and the speaking
style of the speech corpora. In a study of Schuppler, Adda-Decker, and Morales-Cordovilla
(2014), a knowledge-based approach is applied to the Austrian German GRASS corpus in order to
obtain a broad phonetic transcription. In an explicit pronunciation model, the authors generate a
pronunciation lexicon with the help of 32 phonological rules and perform a forced alignment task
within HTK experiments. As this paper is the starting point for the pronunciation modelling
in this thesis, said study is discussed in detail in Section 3.3.
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2.2 Statistical description

2.2 Statistical description

As mentioned in the Introduction, the modelling of pronunciation is an important task for the
forced alignment process and can be done in several ways. Schiel (2015) describes a statistical
model for predicting pronunciation as an optimisation problem that contains an acoustic model
and an apriori probability. The starting point is the statistical model for speech recognition and
then I will derive the model for predicting pronunciations. Note that one can find an introduction
to statistical speech recognition based on HMMs in (Pfister and Kaufmann, 2017) or (Gales and
Steve Young, 2008).
In a first step, the input audio waveform is converted to a sequence of feature vectors X =
x1x2...xT . Extracting information from the speech signal is explained in Section 2.3 feature
extraction. The task of the speech recognition is to find a good estimation W of the word
sequence W = w1w2...wK and with help of the maximum-a-posterior rule, the estimation
problem can be written in a statistical way as:

Ŵ = argmax
W∈V

P (W|X), (2.1)

where V represents the set of the vocabulary. With the rule of Bayes it is straightforward to
convert the above equation to

Ŵ = argmax
W∈V

P (X|W) · P (W )
P (X) , (2.2)

where P (X) denotes the acoustic evidence, which can be skipped as it is a scalar factor for the
optimisation problem. Finally, the well-known formula can be written as

Ŵ = argmax
W∈V

P (X|W) · P (W ), (2.3)

where P (X|W) represents the acoustic model and P (W ) describes the language model. Since
the acoustic model is not based on words, as a basic unit but on phones, each word w can be
mapped into a sequence of base phones kw

1:N = k1k2, ..kN , where N is the number of used base
phones. The likelihood can be computed with the help of the sum over all valid pronunciations
with

P (X|W) =
∑
K
P (X|K)P (K|W), (2.4)

where K is a particular sequence of pronunciations. The conditional probability that the pro-
nunciation sequence K occurs for a given word sequence W can be expressed by multiplying all
pronunciation probabilities for each word in the word sequence:

P (K|W) =
L∏

l=1
P (kwl |wl). (2.5)

In a recognition task, one can approximate the sum of Equation 2.4 into an optimisation
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problem

P (X|W) = argmax
K∈Ψ

P (X|K)P (K|W), (2.6)

where Ψ is the space of possible pronunciations for a given word sequence W and depends on the
pronunciation lexicon. By formulating Equation 2.5 as an optimisation problem, the recogniser
treats pronunciation variants as alternative word hypotheses and by inserting Equation 2.6
in Equation 2.3, one can see that the recognition tasks consists of two different optimisation
steps. It is now possible to relate Equation 2.6 to the described statistical model for predicting
pronunciation in the paper of Schiel (2015) and therefore to a forced alignment task. In contrast
to a speech recognition task, the objective of a forced alignment is not to estimate the best
word sequence Ŵ, like in 2.3, but to estimate the best fitting pronunciation sequence. As a
consequence, the two optimisation problems are simplified to the following optimisation problem:

K̂ = argmax
K∈Ψ

P (X|K)P (K|W), (2.7)

where K̂ describes the optimal pronunciation sequence in the search space Ψ. Schiel (2015)
states that automatic segmentation and labelling systems mainly differ in the search space Ψ
and the way how the apriori probability P(K|W) is incorporated into the system.

2.3 Feature extraction

Dave (2013) described different feature extraction techniques for a speech recognition task. This
section focuses on the Mel Frequency Cepstral Coefficients (MFCC), as they are used for the
forced alignment task of this thesis. With the help of the cepstrum, one can decompose the
speech signal production mechanism and the mechanism of sound shaping within the vocal
tract. In the quefrency domain the lower coefficients represent the characteristics of the vocal
tract with its specific shape and resonance frequencies and the higher quefrency coefficients
represent the speech excitation signal. The first coefficient c(0) relates to the logarithm of the
signal energy. The preprocessing step consists of a non-uniformly spaced mel-filterbank with
which the human audio perception is taken into account. The procedure of calculating the
MFCC features is shown in Figure 2.2.

Preemphasis/
Dithering

non-uniform
Mel-filterbankDFTFraming and

windowing log DCTaudio
signal

cepstral
coefficients

Figure 2.2: Calculating the cepstral coefficients during feature extraction.

In a preprocessing step, a preemphasis filter and dithering is applied to the audio signal. Af-
terwards the audio signal is chunked into frames, which are multiplied by a window function in
order to reduce boundary effects. With the help of the Fast Fourier Transformation (FFT), the
Discrete Fourier Transformation (DFT) is implemented in an efficient way. In a next step the
power spectrum is calculated in the frequency domain and, by applying the triangular filters
of the Mel-filterbank, the energy in each mel-bin is calculated. After converting to the loga-
rithmic domain and applying the Discrete Cosinte Transform (DCT), one obtains the cepstral
coefficients. Pfister and Kaufmann (2017) describe the MFCC extraction in a more detailed
way.
Important parameters during a feature extraction process are the frame length and the frame
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shift, the number of mel bands and the number of cepstral coefficients. The default frame shift
in the Kaldi toolkit is 10 ms. Hämäläinen et al. (2009) uses a frame shift of 5 ms in order to
allow the processing of smaller speech segments. This thesis investigates the impact of different
frame shifts on the automatic speech segmentation by using frame shifts of 10 ms, 7 ms and 5
ms.

2.4 Acoustic modelling
Section 2.2 introduces the acoustic model with the conditional probability P (X|W) with the
sequence of feature vectors X = x1x2...xT and the sequence of words W = w1w2...wK . With
the help of the pronunciation lexicon, one can convert the sequence of words into a sequence of
base phones where one specific sequence is called K. A description of the acoustic model is the
Hidden Markov Model (HMM), which consists of two coupled statistical processes. The internal
process is the markov model with a specific number of states and transitions. Emitting states
are coupled with observation distributions that give observation probabilities for a given feature
vector. Because the feature vector has multiple dimensions also the observation distributions
are multi-dimensional and, as each cepstral coefficient is set of the real numbers, the resulting
HMM is called continuous density HMM. Figure 2.3 illustrates the topology of a Kaldi HMM
for a non-silence phone,

0 1 2 3

Figure 2.3: HMM topology of a non-silence phone.

In Figure 2.3, aij represents the transition probabilities between the states and bj [x] represents
the observation distributions for a specific state j. Note that the final state 3 does not emit an
observation distribution and is called non-emitting state. In Figure 2.3, each state only depends
on the previous state and each observation only depends on the current state. This kind of
HMM is called a linear HMM. For the description of multivariate continuous distributions, the
Gaussian Mixture Model (GMM) is a useful concept and

bj [x] =
M∑

m=1
cjmN (x;µjm, Σjm) (2.8)

represents an observation distribution for a specific state j, with a sum over all components m
and the prior probabilty cjm.

Gales and Steve Young (2008) described the architecture of a HMM-based speech recognition
system and the various refinement techniques in order to achieve state-of-the-art performance.
A starting point in the Kaldi toolkit is a monophone based HMM acoustic model, which is a
context independent phone model. A context dependent phone model is the triphone model,
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which can be achieved by refining the monophone acoustic model. McAuliffe et al. (2017) inves-
tigated the impact of a monophone acoustic model in contrast to a a triphone based acoustic
model with speaker-adapted features on the forced alignment process. Within this thesis, a
monophone acoustic model is used to see the explicit pronunciation modelling effects.
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3
Materials & Methods

3.1 GRASS corpus
The Graz corpus of read and spontaneous speech (GRASS) (Schuppler, Hagmüller, and Zahrer,
2017) was recorded in the soundproof recording studio of the SPSC laboratory of TU Graz. It
is a large scale speech database for Austrian German of approximately 30 hours of read and
spontaneous speech from 38 speakers. The corpus was designed to be suitable for linguistic and
phonetic studies as well as serving as the starting point for speech recognition systems. The
corpus promises high-quality super wideband recordings in order to simulate different acoustic
environments by convolution methods. The material for the RS component are phonetically
balanced sentences and digits from each speaker. The material for the CS component consists of
19 conversations with a length of approximately one hour each, allowing to model pronunciation
variation and other speaker phenomena of spontaneous speech. The high quality orthographic
transcriptions allow further automatic procedures in order to create different annotation layers.

Read speech
Each of the 38 speakers read approximately 62 phonetically balanced sentences, which were mo-
tivated by the Kiel corpus, and four telephone numbers as well. In addition, the speakers read
10 conversational like sentences in order to get a point of intersection to the CS component. In
total, the RS component contains 19 511 word tokens from 1 660 word types and 2 774 different
utterances.

Conversational speech
In order to reduce the dialectal variation in the CS component, all speakers were born and grew
up in Austria and are currently living in Graz or Vienna, and had at least high school degrees.
Additional information e.g., education level, region of childhood, working area, etc., were col-
lected from the speakers for possible further linguistic or phonetic studies. The material of the
CS component consists of 19 conversations with mixed pairs and gender-homogenous pairs with
a length of approximately one hour each. The annotations of the CS component are done by
six linguistically educated transcribers in a supervised manner and an additional third inde-
pendent annotator in order to obtain high quality orthographic transcriptions. In order to do
an automatic phonetic speech segmentation, the speech was segmented into chunks of maximal
four seconds length. Furthermore, detailed annotations as for instance laughter, backchannels,
broken words, foreign words, or noise were annotated. The detailed annotations helped to create
an accurate lexicon for automatic speech segmentation or automatic speech recognition tasks.

3.2 Kaldi overview
Kaldi (Povey et al., 2011) is an open-source speech recognition toolkit, which is frequently
used by researchers in the field of speech recognition. Its goal is to provide a modular code
structure that is easy to understand and extend. The core components or used libraries are the
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OpenFST toolkit to allow the implementation of finite state transducers and the BLAS and
LAPACK libraries to support linear algebra routines. On top of the libraries, Kaldi classes
are implemented in C++ and the user can easily interact with the Kaldi toolkit in form of
existing shell scripts that are designed to have one specific functionality. Figure 3.1 illustrates
the structure of the Kaldi toolkit and shows some of the implemented C++ classes.

BLAS/LAPACK OpenFST

External Libraries

Matrix

Kaldi C++ Executables

Kaldi C++ Library

GMMSGMM

Transforms

LM

Decodable

HMM

FST ext

Decoder

(Shell) Scripts

Figure 3.1: Kaldi structure overview motivated by (Povey et al., 2011).

Weighted finite-state transducers (WFST) (Mohri, Pereira, and Riley, 2008) provide a common
and natural representation for major components of an ASR system, such as HMMs, context-
dependency models, pronunciation dicitionaries, statistical grammar models, and word or phone
lattices. Finite-state transducers are closely related to finite automatons, whose state transi-
tions are labelled with both input and output symbols. When adding weights to the finite-state
transducers one can encode probabilities, durations, penalties, or other quantities that accumu-
late along a path through the transducer. The usage of WFSTs for a speech recognition system
promises an efficient implementation with new optimisation opportunities by implementing each
part of an ASR system as a separate transducer and combining them afterwards. In the Kaldi
toolkit, following transducers are implemented and combined to an overall transducer for the
training and decoding step:

• G → encodes the grammar or language model

• L → represents the lexicon: output symbols are words and input symbols are phones

• C → represents the context-dependencies: its output symbols are phones and its input
symbols represent context-dependent phones (windows of N phones)

• H → contains the HMM definitions: output symbols represent context-dependent phones
and its input symbols are transition IDs

This thesis focuses on pronunciation modelling during a forced alignment task, which can be
achieved with a pronunciation lexicon. Figure 3.2 shows a basic lexicon FST for a lexicon with
the two entries: noch [n o x] and ja [j a]. The symbols above the arches between two states
indicate input symbol : output symbol/weight and the state 0/0 indicates a finite state.
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0/0

1

2

3

Figure 3.2: Basic lexicon FST model for the two word entries noch [n o x] and ja [j a]. Note that ε represents
an empty output symbol.

3.3 Pronunciation modelling for Austrian German

Section 2.1 summarised different methods to perform pronunciation modelling and showed that
one can model the pronunciations in an implicit way in the acoustic model or in an explicit
way in form of a pronunciation lexicon. Figure 3.3 illustrates the approach chosen for modelling
variants typical for Austrian German and for CS in all German varieties. First, pronunciation
variants were created, then their probabilities were estimated by their relative frequencies in
the training data. For the CS component, annotations in form of phonetic segmentations do
not exist and as a consequence the pronunciation modelling was done with a knowledge-based
approach. Starting point for the pronunciation modelling was the work of Schuppler, Adda-
Decker, and Morales-Cordovilla (2014), in which pronunciation modelling was performed with
the help of phonological rules based on existing linguistic studies on Austrian German. A part
of the phonological rules are also valid for spoken language of German spoken in Germany and
a part of the phonological rules are specific for Austrian German. The next sections describe
the creation of pronunciation variants for the RS and the CS component of the GRASS corpus.

Pronunciation Modelling

explicitimplicit

creating multiple
pronunciations

estimation of
probabilities of

pronunciation variants

phonological
rules

statistical
decision tree

decoding training
data with automatic
phone recognizer

tying of
densities

observing
feature

changes

dependend on
dynamic features

relative frequency in
training data

Figure 3.3: Solution approach for the knowledge-based pronunciation modelling for Austrian German.

– 21 –



3 Materials & Methods

3.3.1 Creating pronunciation variants for Austrian German

This section describes the creation of the lexicon with pronunciation variants, which is similar
to the method presented by Schuppler, Adda-Decker, and Morales-Cordovilla (2014). Figure
3.4 illustrates the most important steps I took to obtain the final lexicon with pronunciation
variants.

GRASS orthographic
transcriptions

wordlist

Grapheme to
Phoneme Converter canonical

lexicon

tree-structured 
algorithm

plosive_deletion_in_finalposition
fullvowel_substitution
schwadeletion
...

list of rules

lexicon with
pronunciation

variants

Figure 3.4: Overview generating pronunciation variants.

In a first step, a unique word list was created from all orthographic transcriptions. The online
Tool G2P (U.D. Reichel, 2012) converted the words into canonical word pronunciations and
Figure 3.5 shows an example output of the G2P tool:

AUFDREHEN;? ' aU f . d r e: . @ n
BLAUEN;b l ' aU . @ n
DIGITALES;d i . g i . t ' a: . l @ s

Figure 3.5: Example output of the G2P tool with stress and syllabic information.

The next procedure explains the augmentation of the raw lexicon to a lexicon with pronunciation
variants. After obtaining a lexicon with canonical pronunciations for each occurring word, a
tree-structured algorithm generated pronunciation variants with the help of phonological rules.
There were 16 phonological rules reflecting assimilation and deletions that are typical for all
varieties of spoken German and there are 13 phonological rules that reflect processes typically
for Austrian German. An overview of the used phonological rules with an example is given
in Table 3.1. Some of the rules use information about the syllabic structure and word stress
(Schuppler, Adda-Decker, and Morales-Cordovilla, 2014). The rules were applied in a tree-
structured algorithm, i.e., that previous generated pronunciation variants were used for the next
step as well as the canonical pronunciation variant. The advantage of a tree-structured algorithm
is that, compared to other algorithms, the number of pronunciation variants is large.

Table 3.1: Overview of phonological rules used for pronunciation modelling of Austrian German.

# phonological
rules

# deletion
rules

# substitution
rules Example

Assimilation and deletions
typical for all varieties of
spoken German

16 11 5 Deletion of schwa:
a n m a x @ n → a n m a x n

Assimilation and deletions
typical for Austrian German 13 4 9 Full vowel substitution:

a p l aI t @ n→ o p l aI t @ n
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3.3.2 Pronunciation lexicon read speech

For the RS component of the GRASS corpus, I created three different lexicons with different
numbers of phonological rules. Similar to Adda-Decker and Lamel (1999), the complexity of
a lexicon is defined by the ratio between the total number of variants and the total number of
(canonical) entries in the lexicon. Table 3.2 gives an overview of the different lexicons for the
RS component. Starting point for the creation of the pronunciation lexicon with variants was a
word list from the orthographic transcriptions of the RS component with 2 059 word types.

Table 3.2: Overview of the used lexicons for the GRASS RS component.

lexicon name # phonological rules
(#deletion rules/#substitution rules)

average # variants
(complexity) number of phones

canonical Austrian German 2 (D 0/S 2) 0 60
read speech rules 8 (D 4/S 4) 0.64 60
overgeneralised + canonical Austrian German 27 (D 14/S 13) 3.40 60

Note that for all lexicons, two phonological rules were implemented as replacement rules, i.e.,
that the converted pronunciation was replaced in the pronunciation lexicon instead of added as
an additional pronunciation variant. The two phonological rules define the canonical Austrian
German lexicon. The first rule was the word-final -ig realisation as /ik/ and the second rule was
the devoicing of the alveolar fricative /z/.

3.3.3 Pronunciation lexicon conversational speech

For the GRASS CS component, there were transcriptions details in form of tags. Some of
the tags marked following words as dialect words, foreign language words, or words that are not
spoken entirely, also called broken words. With the information from the transcription, one could
create separated lexicons, which allowed to also have separated processing strategies. Table 3.3
gives an overview of the different lexicons used for the GRASS CS component and it shows
whether the G2P tool was used.

Table 3.3: Different lexicons for GRASS CS processing.

lexicon name description usage G2P G2P language setting

foreign words lexicon with words which were marked
as foreign words in the transcription 3

eng, deu, spa-ES, fra-FR,
swe-SE, ita-IT

dialect words lexicon with words which were marked
as dialect words in the transcription 3 deu

broken words lexicon with words which were marked
as broken words in the transcription 3 deu

Austrian German variants lexicon with pronunciation variants,
generated with phonological rules 3 deu

Austrian German manually lexicon with special Austrian German
words, created manually 7 7

For the lexicon foreign words, the G2P tool was used with different language settings than the
German language setting deu. The resulting pronunciations consisted of a different phone set
than the German phone set. With a phone mapping, one could make sure that the phone set
was not extended. The processing structure of the different lexicons is illustrated in Figure
3.6 and starting point for the lexicons foreign words, dialect words, broken words and Austrian German

variants was a word list of 12 925 word types, which was gathered from all occurring words in
the transcription files of the GRASS CS component. For some lexicons, it was necessary to have
a phone mapping to ensure the phone set of 60 phones.
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lexicon_AG_manually
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Figure 3.6: Overview generating lexicons for GRASS CS component.

The following paragraphs summarise information about the distinct lexicons.

Lexicon foreign words
The lexicon of foreign words consisted of 641 word types and 9 different languages other than
German. Most of the foreign words were in English. Table C.2 in Appendix C shows the map-
ping between the tag of the transcription and the G2P language setting. Note that not all
occurring languages were supported from the G2P tool, so a different language setting was used
instead. In order to contain a similar phone set, a phone mapping was applied after the usage
of the G2P tool. Table C.1 in the Appendix C illustrates the phone mapping of the foreign
language words to an Austrian German phone set.

Lexicon dialect words
With the help of the tagged dialect words, it was possible to filter out these words from the word
list and the lexicon consists of 306 word types. The canonical pronunciation of the dialect words
were obtained with the G2P tool and the German language setting. There was no need to create
pronunciation variants for theses words, as their orthography already reflects their pronunciation.

Lexicon broken words
In CS, a common phenomenon is that words are not pronounced entirely but just their begin-
ning, i.e., broken word. Fortunately, these words were marked in the orthographic transcription,
thus they were filtered out (618 word types) from the word list. The G2P tool produced a
systematical error when the broken word did not contain any vowel. A manual correction solved
these errors after the G2P output.
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Lexicon Austrian German with pronunciation variants
Similar to the procedure described for the RS component, the pronunciation variants were gen-
erated with the help of the phonological rules. Depending on the rule set, there were different
lexicons with a different complexity. Some of the words were automatically detected as foreign
words from the G2P tool. Therefore a similar phone mapping than for the foreign word lexicon
was applied after the generation of the pronunciation variants. The mapping details are provided
in Appendix C.

Lexicon Austrian German manually
Some Austrian German pronunciation variants could not be generated by automated rules, and
thus there was a need for importing a manually generated lexicon for frequently used words with
a specific pronunciation. The resulting lexicon contained 83 word types.

Finally, all lexicons were joined to a combined lexicon used for the FA task. Depending on
the used phonological rules, there were three lexicons for the CS component. An overview of
the lexicons and the used rules is shown in Table 3.4.

Table 3.4: Overview of the used lexicons for the GRASS CS component.

lexicon name # phonological rules
(#deletion rules/#substitution rules)

average # variants
(complexity) number of phones

deletion rules 22 (D 15/S 7) 2.98 63
overgeneralised 29 (D 15/S 14) 4.73 63
overgeneralised + canonical Austrian German 29 (D 15/S 14) 4.09 60

3.3.4 Estimation of pronunciation probabilities

As mentioned in Section 3.3, the second part of explicit pronunciation modelling is the estimation
of the pronunciation probabilities. A straightforward and common way to estimate the pronun-
ciation probabilities is to determine the relative frequency of the pronunciations in the training
data. Similar to the work by Chen et al. (2015), I formulate the pronunciation probability as

π(kw
i |w) = C(w,kw

i ) + λ1∑Nw
i=1(C(w,kw

i ) + λ1)
, (3.1)

where kw
i is the ith pronunciation of the word w with Nw different word pronunciations. The

count of the word pronunciation is denoted as C(w,kw
i ) and λ1 is a smoothing constant, typically

set to 1.

3.4 Acoustic models

This section describes the acoustic models that were used during the forced alignment with
Kaldi. The focus of the forced alignment process is to model different frame-shifts during the
feature extraction and to use pronunciation lexicons with different complexities. Table 3.5 lists
the most important feature extraction settings, with which the feature extraction was calculated
for the forced alignment task.
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Table 3.5: Part of feature extraction settings in Kaldi.

parameter value
frame-length 25 ms, 30 ms
frame-shift 5 ms, 7 ms, 10 ms

# melfilterbank bins 23
# cepstral coefficients 13

window type ‘povey’
sample-frequency 48 kHz

Read speech
The acoustic model for RS was a monophone acoustic model with GMM as observation densi-
ties. The topology for the 60 non-silence phones consisted of a linear continuous density HMM
with three states and an additional fourth, non-emitting, final, state. The training data of the
acoustic monophone model was the entire RS component with 4 449 utterances spoken from 38
different speakers. There was no development or evaluation set, as it is a common approach
to use all training data for the forced alignment process (McAuliffe et al., 2017). A cepstral
mean voice tract normalisation (CMVTN) was applied after the feature extraction. The train-
ing procedure of the acoustic model was done in an iterative way with the Viterbi algorithm.
The training of the models was calculated with different frame-shifts and with three lexicons
containing different complexities. For details about the lexicons see Section 3.3.

Conversational speech
In analogy to the acoustic model of RS, the CS acoustic model was also a monophone model
with GMM as observation densities. The training data for the CS component consisted of 19
conversations from 38 speakers resulting in approximately 19 hours of speech. In addition to the
monophone model, I tested a triphone based acoustic model with a Subspace Gaussian Mixture
Models (SGMM) for the observation densities. The motivation for this acoustic model is the fact
that this model leads to the best WER for an ASR task as found in experiments for a baseline
ASR model for the GRASS corpus.

3.5 Workflow

The workflow for performing the task of forced alignment, shown in Figure 3.7, consists of three
major steps. In the Preprocessing step the data from the GRASS corpus is prepared for the
Kaldi required input format. Once the data is prepared for Kaldi, I applied different tasks within
Kaldi. In a first step, an acoustic model was trained and the data was aligned to the model
afterwards. In the Postprocessing step, the alignments from Kaldi were imported to the Python
domain in a user-friendly readable form. After importing the Kaldi alignments, I performed
different tasks like calculating statistics of the used pronunciation variants, comparing different
alignments or exporting the alignments to TextGrid files in order to visualise them in the Praat
software (Boersma and Weenink, 2018). Note that the preprocessing and the postprocessing
code is written in Python and Kaldi tasks were performed with bash-scripts.

– 26 –



3.5 Workflow

extract transcription
from TextGrid file

generate lexicon

generate pronunciation
variants

Kaldi Postprocessing

...

create Kaldi input files

train acoustic models

create language models

align data to model

combine models

import Kaldi alignments

calculate lexicon statistics

import alignments
from TextGrid files

compare alignments

...

Preprocessing

Figure 3.7: Structure of the working flow for forced alignment using Kaldi.

Preprocessing
In the preprocessing step, the data from the GRASS corpus was prepared to fit the Kaldi specific
input format. In the class KaldiPreProcessor, the main text files necessary for Kaldi were prepared.
Note that there is a different class for the RS component than for the CS component, because
the information of the annotations and the audio data are in a different format. In the RS
component, there is one audio file per utterance, whereas in the CS component there are long
audio files with multiple spoken utterances or chunks and a corresponding Praat TextGrid file,
with the information about the segmentation of the chunks. After importing the transcription
information, all occurring words are gathered in a word list, which is the starting point for
generating the lexicon. The class LexiconGenerator takes the word list as an input and generates
the lexicon with Austrian German variants and, in the case of the GRASS CS component, other
lexicons. Inside the class PronVarGenerator the phonological rules are implemented and, depending
on the user input, specific rules are selected and applied in order to generate the lexicon with
pronunciation variants. Figure 3.8 illustrates the folder structure of one Kaldi recipe.

train

text

wav.scp

utt2spk

spk2gender

(segments)

lexicon.txt

nonsilence_phones.txt

optional_silence.txt

(extra_questions.txt)

data/

local/

steps/ utils/ conf/

lang

run.sh

example_recipe/

path.sh cmd.sh

mfcc.conf

Figure 3.8: Folder structure for starting Kaldi experiments.
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Kaldi
The top level of Kaldi consists of bash scripts, with which one can perform tasks for speech
recognition systems. Existing recipes can be used to perform tasks in Kaldi or the scripts can
be used for a speech recognition task with own data. The task of forced alignment consisted
of different steps. First, the feature extraction was performed with a cepstral mean voice tract
normalisation (CMVTN) afterwards. The language model was calculated with the help of the
SRILM software (Stolcke, 2002). Although a language model is not necessary for the forced
alignment task, all components were created in order to create full decoding graphs and during
the training of the acoustic model the language model is reduced to a linear acceptor. All ma-
terial from the CS component of the GRASS corpus was used to train a monophone acoustic
model. After training the acoustic model, the data was aligned to the model and the resulting
alignments were converted to .ctm, which was the starting point for the posprocessing part.

Postprocessing
Once the alignments were calculated with the Kaldi software. I analysed them with Python. I
converted the Kaldi output to Praat using a similar method than Chodroff (2018). In contrast
to the tutorial, I used a single programming language to make the process of converting the
alignments to Praat more robust. The alignments were represented as pandas dataframes in order
to achieve a user-friendly and more flexible format. Another advantage of pandas dataframes
is the support of many vectorised processing techniques, which saves time for huge amounts of
data. I created Python scripts to evaluate the alignments by comparing them with reference
alignments, I calculated statistics about the lexicon and, as a last step, converted them into
Praat TextGrids.

3.6 Evaluation of automatic speech segmentations

I evaluated the phonetic speech segmentations by comparing the automatic produced segmenta-
tions to reference segmentations. It is a common approach to analyse the results of an automatic
speech segmentation task with the help of reference transcripts as described in (C. Van Bael
et al., 2007). As reference alignments are done by human-annotators, there is always a subjec-
tive factor which leads to a certain variance of resulting phone symbols and phone boundaries.
Goldman (2011) found the agreement between a machine alignment and each human alignment
to be comparable to the inter-human agreement. Nevertheless, phonetic speech segmentations,
done with the forced alignment task, is compared to reference segmentations with the help of
the Levenshtein algorithm. The Levenshtein algorithm finds the minimum number of operations
to convert a phone sequence into the reference phone sequence. Analysing the operations in a
quantitative way allows a more detailed insight of the automatic phonetic speech segmentation
process. Figure 3.9 shows an example of the Levenshtein algorithm by comparing an auto-
matic speech segmentation with a reference segmentation of an utterance of the GRASS RS
component.

del subinsdel

reference
transcription

Kaldi alignment
transcription

SIL aI n s S t r I t n s I C n O 6 t v I n U n d s O n @ SIL

SIL aI n s S t r I t n s I C n O 6 t v I n U n t s O n @ SILt

_

@

_

orthographic
transcription Einst stritten sich Nordwind

_

t

und Sonne

Figure 3.9: Comparison of phone sequences with the Levenshtein distance.
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Note that SIL represents the phone for silence. The overall Levenshtein distance, also called
disagreement, between two phone sequences is the sum over all operations related to the number
of reference symbols:

Levenshtein distance = #deletions+ #insertions+ #substitutions
#reference symbols · 100% (3.2)

A similar method of comparing phone sequences is the Algorithm for Dynamic Alignment of
Phonetic Transcriptions (ADAPT) (Elffers, C. Van Bael, and Strik, 2005), which takes articu-
latory effects into account. Here I used the Levenshtein distance.
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4
Forced Alignment of GRASS corpus

4.1 Validation of read speech alignments
For the RS component of the GRASS corpus, there exist reference alignments for a set of spo-
ken utterances. In total there are 887 utterances from 38 different speaker for which reference
alignments were done by human annotators. The correction by the annotators were done af-
ter an automatic speech segmentation of the utterances with the help of the WebMAUS tool
(Kisler, Uwe Reichel, and Schiel, 2017). As described in Section 3.6, the difference between the
automatic speech segmentations with the help of Kaldi and the manual aligned segmentations
was calculated with the Levenshtein distance. Figure 4.1 shows a comparison of the Levenshtein
distance between automatic speech segmentations that were done with different lexicons, and
the reference alignments.
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Figure 4.1: Comparison between Kaldi alignments and reference alignments, when using different lexicons.
Explanation of abbreviations: canonAG - canonical Austrian German, RSR - read speech rules,
OG - overgeneralised.

One can see that the FA model with the canonical Austrian German lexicon has a smaller
distance to the reference alignments than FA models with a lexicon that contains pronunciation
variants. Note that the starting point for the manually corrections for the reference alignments
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is an automatic speech segmentation done with the WebMAUS tool, which is more similar to
the FA model with the canonical Austrian German lexicon. A more detailed comparison is the
analysis of the most frequent mismatches between the FA by Kaldi and the reference alignments
in Table 4.1.

Table 4.1: Most frequent mismatch between the FA models with a frame-shift of 7ms and reference align-
ments, when using different lexicons.

phone
symbol

relative
count
in %

op. phone
symbol

relative
count
in %

op. phone
symbol

relative
count
in %

op.

@ 30.7 del @ 19.7 del t → d 17.4 sub
t 10.2 del t → d 18.5 sub @ 9 ins
r 6.6 del p → b 5.7 sub p → b 7.9 ins
d 3.7 del SIL 5 ins @ 7.4 del
6 3.3 del 6 3.3 del SIL 4.5 ins
lexicon canonical
Austrian German

lexicon read speech
rules lexicon overgeneralised

Table 4.1 shows the most frequent operations, one has to perform to convert the Kaldi FA with
different lexicons to the reference alignments. The most frequent mismatches for the Kaldi FA
model with a canonical Austrian German lexicon are deletion operations, whereas the the most
frequent mismatches for Kaldi FA models with pronunciation variants also contain substitution
and insertion operations. Taking into account that a substitution of articulatory similar phones
has a smaller distance than deletion or insertion operations, one can argue that the distance to
the reference alignments is smaller with Kaldi FA models with pronunciation variants than with
the canonical Austrian German lexicon.

Figure 4.2 illustrates the distance to the reference alignments for Kaldi FA models calculated
with different frame-shifts. The Kaldi FA model, calculated with a frame-shift of 10 ms, has the
smallest median of the Levenshtein distance. Table 4.2 summarises the most frequent Leven-
shtein operations for a FA with an overgeneralised lexicon and different frame-shifts.

Table 4.2: Most frequent mismatches between the FA model with an overgeneralised lexicon and reference
alignments, when using different frame-shifts.

phone
symbol

relative
count
in %

op. phone
symbol

relative
count
in %

op. phone
symbol

relative
count
in %

op.

t → d 18.5 sub t → d 17.4 sub t → d 15.8 sub
@ 8.6 ins @ 9 ins @ 8 del
@ 8.5 del p → b 7.9 sub @ 7.6 ins
SIL 6.6 ins @ 7.4 del SIL 6.1 del

o → a 5.8 sub SIL 4.5 ins p → b 4.8 sub
frame-shift 10ms frame-shift 7ms frame-shift 5ms

Taking into account that substitutions of articulatory similar phones have a smaller distance
than deletion and insertion operations, a smaller distance between the reference alignments and
the Kaldi FA can be reached with a frame-shift of 7ms.
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Figure 4.2: Comparison between Kaldi FA models and reference alignments, when using different frame-shifts
and an overgeneralised lexicon.

4.2 Qualitative analysis of a read speech example

After the forced alignment task in Kaldi, I converted the alignments to the Praat TextGrid
format. Figure 4.3 shows an example of an utterance from the RS component within the Praat
software. There exist four different annotation layer, also called tiers. The first three tiers rep-
resent a phone segmentation for FA models that were calculated with different lexicons and the
last tier shows the spoken sentence. The waveform and the spectrogram of the speech signal are
plotted above the segmentation layers. In Figure 4.3, some phone boundaries of the different
FA models vary among each other. The FA model with the overgeneralised lexicon and the
read speech rules lexicon use a voiceless plosive /p/ instead of the voiced plosive /b/ for the FA
of the word BLAUEN. Note that the phone boundary of the plosive /p/ in the second annotation
layer is placed before the actual plosive sound happens, as you can see in the spectrogram. Also
the phone start boundary of the first phone /a/ is placed into a silence section of the audio
data in the second annotation layer. In contrast to the other alignments, the alignment with
the overgeneralised lexicon annotates the word HIMMEL as /h I m l/ with a deletion of the schwa
phone. The phone start boundaries of the phone /ts/ of the word ZIEHEN is placed into the sound
of the following /l/ phone for the first two phone tiers. Only in the third phone tier, the phone
start boundary of /ts/, is placed after the previous /l/ sound.

The next Figure 4.4 illustrates a Praat example of the same RS utterance with phone seg-
mentations that are calculated with different frame-shifts and with an overgeneralised lexicon.
An obvious error of the FA with a frame-shift of 10 ms and 5 ms is the first phone /o/ of the
word AM, for which the phone boundaries were set inaccurately into silence parts. The vowel
substitution from the canonical pronunciation /a m/ to /o m/ is also not equivalent to the ref-
erence alignment. The plosive burst of the phone /p/ of the word BLAUEN is correctly taken into
account for the FA with a frame-shift of 10 ms and 7 ms, but the first one annotates the phone
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4 Forced Alignment of GRASS corpus

Figure 4.3: Praat example of a RS utterance with Kaldi alignments, calculated with different lexicons and a
frame-shift of 7ms.

Figure 4.4: Praat example of a RS utterance with Kaldi FA, calculated with different frame-shifts and an
overgeneralised lexicon.

as a voiced sound whereas the second alignment tier annotates the phone as a voiceless sound,
which is more accurate. The boundaries of the phone /i/ of the word HIMMEL were not correctly
set for the forced alignment model of the third tier and, as a consequence, the previous phone
/h/ has an unreasonable short duration. All models detect a schwa deletion for the word HIMMEL,
but the following sound /ts/ is best aligned for the alignment model with a frame-shift of 7 ms.

4.3 Validation of conversational speech alignments

There are no reference alignments for the CS component of the GRASS corpus, so an quantitative
evaluation with a distance measure to reference data is not possible. Nevertheless, a distance
measure was done between Kaldi alignments, which were calculated with different acoustical
models. The first model was a monophone acoustical model, which is similar to the RS acoustical
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models and the second model was a triphone based acoustical model. For more information about
the used acoustical models see Section 3.4. Table 4.3 summarises the most frequent mismatches
between the different FA models.

Table 4.3: Most frequent mismatches between a FA with a monophone model and a FA with a triphone
model, both with a frame-shift of 10 ms and a frame-length of 30 ms.

phone
symbol

relative
count
in %

op.

SIL 18.1 del
SIL 13.3 ins
t 4.7 ins

o → a 4.5 sub
a → o 4.4 sub
@ 3.2 ins
d 2.9 ins

It is interesting that the most frequent mismatches were silence deletions and silence insertions
and leads to the presumption that the phone boundaries were different for the monophone
alignment than for the triphone alignment, as different placed silence phones also influence the
neighbouring phone boundaries. The substitutions between the articulatory similar phones /a/
and /o/ indicate that the decision of an /a/ or an /o/ sound is not consistent for different
acoustical models. The next section shows a qualitative analysis of an example from the CS
component for different acoustic models.

4.4 Qualitative analysis of a conversational speech example
Figure 4.5 illustrates a CS example in Praat for two phone alignments, which are calculated
with different acoustical models.

Figure 4.5: Praat example of a CS utterance with a monophone FA model and a triphone FA model, both
with a frame-shift of 10 ms and a frame-length of 30 ms.

When comparing the two models, it is noticeable that almost all phone boundaries differ. The
monophone FA model annotates the word DAS as a single phone /s/, which is a more reduced form
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compared to the triphone FA model. As the utterance is spoken in a fast manner a reduced form
is more consistent. The pronunciation variant for the word HABE differs for the two FA models.
The triphone FA model annotates the word HABE as /h a:/, which is more consistent with the
audio data. Another difference between the FA models is the segmentation of the words GAR

NICHT. Although both models annotate the same pronunciation variants, the placement of the
phones differ. The triphone FA model annotates the phone /t/ of the pronunciation /n e: t/
with a short duration, whereas the monophone FA model annotates a relatively long duration
of the phone /t/. The segmentation of the word NICHT is more consistent to the audio data for
the monophone FA model.

Figure 4.6: Praat example of a CS utterance with a monophone alignment models with an overgeneralised
lexicon, using different frame-shifts.

Figure 4.6 illustrates a phone segmentation for different FA models of a CS utterance. The FA
models were calculated with different frame shifts and an overgeneralised lexicon. All models
annotate a different word pronunciation for the word HABE and as a result, also the phone bound-
aries of the following pronunciation /i:/ is placed differently for the FA models. While listening
to the audio data, it is difficult to distinguish between the word boundaries for the word sequence
HABE ICH DIR NOCH. Also the FA models annotate different phone sequences and phone boundaries
in this section of the example utterance.

4.5 Estimation of pronunciation probabilities
After an automatic speech segmentation with an overgeneralised lexicon, I counted the number
of word pronunciations used in the CS component. The overgeneralised lexicon contained 72 588
word pronunciations with canonical and varying pronunciations. After counting the occurrences
of the word pronunciations, 18 342 word pronunciation entries occurred at least one time in the
CS data. By comparing the word pronunciations and the lexicon, I calculated statistics about
the pronunciation lexicon by counting occurring word pronunciations from the FA output. Table
4.4 shows an example of the lexicon statistic.
It shows that the canonical word pronunciation of the word GEBEN did not occur in the training

data, whereas the most probable word pronunciation for the word GEBEN was the word pronunci-
ation /g e: m/, which is the most reduced word pronunciation. It is interesting to investigate
the usage of varying word pronunciations per speaker and to compare the results for different
speaking styles.
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Table 4.4: Section of pronunciation lexicon with calculated statistics of GRASS CS component.

word word pronunciation absolute occurrence (count) relative occurrence in %
...
ABER a: b 6 1383 59.22
ABER o: b 6 952 40.77
...
DAS d e: s 2893 44.37
DAS s 1905 29.22
DAS @ s 1370 21.01
DAS d a s 351 5.38
...
GEBEN g e: m 19 67.85
GEBEN g e: v @ n 4 14.28
GEBEN g e: v n 4 14.28
GEBEN g e: b m 1 3.57
GEBEN g e: b @ n 0 0.0
GEBEN g e: b n 0 0.0
...

4.6 Comparison of different speaking styles

Starting point for creating the pronunciation variants are the canonical word pronunciations.
With the help of the phonological rules, the canonical word pronunciations are changed and
added as pronunciation variants to the pronunciation lexicon. By counting the used word pro-
nunciations per speaker and categorise them into canonical word pronunciation or varying word
pronunciation, it is possible to calculate the amount of varying word pronunciations per speaker.
In Figure 4.7, the varying word pronunciation usage per speaker is compared for the RS compo-
nent and the CS component. Both FA models used an overgeneralised + canonical AG lexicon
and a frame-shift of 10 ms. As I used different mechanisms to create the pronunciation lexi-
cons, the complexities of the overgeneralised lexicons slightly differ. The complexity of the RS
overgeneralised lexicon was 3.4, whereas the complexity of the CS overgeneralised lexicon was
4.1. Note that the RS overgeneralised + canonical AG lexicon contained two rules less than the
overgeneralised + canonical AG lexicon for CS, as the two rules were not applied once in the
RS component. Except for speaker 029F, all speakers have a larger varying pronunciation usage
for CS than the varying pronunciation usage for RS. In a slightly different representation, the
impact of the different speaking styles on the usage of pronunciation variants can be seen even
more obviously.

Figure 4.8 shows the varying pronunciation usage for different speaking styles per speaker in a
box plot representation. It is clearly visible that the varying pronunciation usage is significantly
higher for the CS component than the varying pronunciation usage for the RS component. The
median value for the RS component is 32.78%, whereas the median value for the CS component
is above fifty percent at 50.53%. Also the absolute variances for the varying pronunciation usage
per speaker is higher for the CS component than for the RS component.

A different comparison between the speech styles is the speechrate, which is the number of
phones per second. Figure 4.9 shows a normalised histogram for the speechrate of RS and CS
speech style. The mean speechrate for CS speech with µ = 11.44 phones/second is more than
twice as large as the mean speechrate for RS with µ = 4.3 phones/second. Also the variances
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Figure 4.7: Amount of pronunciation variant usage for different speaking styles, when using an overgener-
alised + canonical Austrian German lexicon per speaker.
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Figure 4.9: Histogram of speechrates for different speaking styles.

behave in a similar way. Next, I investigated speechrate relations per speaker. First, the mean
speechrates and the variances of the speechrates were calculated for both speaking styles per
speaker. Figure 4.10 illustrates the ratio between the mean speechrate for CS and the mean
speechrate for RS per speaker. Speaker 018M has the lowest ratio between the mean speechrates
for different speaking styles with a value of 2. This means that the average speechrate of speaker
018M is twice as large for CS compared to the speechrate of RS. Speaker 034F has the largest
ratio between the mean speechrates with a value of 3.6. In summary one can say that for all
speakers the mean speechrate for CS is more than twice as large than the mean speechrate for RS.

Figure 4.11 shows the ratio between the variance of the speechrate for CS and the variance
of the speechrate for RS per speaker. As all ratios are greater than 1, one can state that for
all speakers the variance speechrate for CS is more than four times larger than the variance
speechrate for RS. Noticeable is the ratio of speaker 017M with a value of 13.1, which indicates
that the variance of the speechrate for CS is very distinct to the variance of the speechrate for
RS.
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Figure 4.10: Ratio between mean speechrate CS and mean speechrate RS per speaker.
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Figure 4.11: Ratio between variance speechrate CS and variance speechrate RS per speaker.
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4.6 Comparison of different speaking styles

The comparison of the speech styles shows us that the pronunciation variant usage and the
speechrate per speaker differ for RS compared to CS. The median pronunciation variant usage
for RS with 32.78% is significantly smaller then the median pronunciation variant usage for
CS with 50.53%. The variance of the varying pronunciation usage is also smaller for the RS
component than for the CS component. Thus, it is more likely to find varying pronunciations
during CS speaking style than for RS speaking style. Another indicator for the comparison is
the speechrate measured as phones per second. The analysis per speaker showed that the overall
speechrate for CS is more than twice as large as the overall speechrate for RS. Furui et al. (2005)
also reported an increased speechrate for spontaneous speech compared to RS using the Corpus
of Spontaneous Japanese (CSJ). The median pronunciation variant usage for CS with 50.53% is
comparable to the reported value for the citation word pronunciation of 56% for Dutch language
(Schuppler, Ernestus, et al., 2011). The comparison of the pronunciation variant usage and the
speechrates between RS and CS showed that there is a larger amount of variability in CS than in
RS. Finke and Waibel (1997) stated a larger amount of variability due to accents, speaking style
and speechrates in the Switchboard corpus. The authors proposed a speaking mode dependent
pronunciation modelling in order to improve recognition results.

– 41 –



Automatic Speech Segmentation using Kaldi

– 42 –



Automatic Speech Segmentation using Kaldi

5
Discussion & Conclusion

The aim of this thesis was to perform an automatic speech segmentation of the GRASS corpus.
For the automatic segmentation of the corpus, it is relevant to train an acoustic model with the
corpus data. Although the MAUS tool offers different language settings for German, there is
no language setting for Austrian German. The MFA and the SPPAS tool offer the possibility
to use a new language or to train the acoustic model with new data. Nevertheless, it is possi-
ble to use the MAUS tool with the German language setting to perform an automatic speech
segmentation task for the GRASS corpus. For the RS component, the automatic segmentation
from the MAUS tool is quite satisfying and serves as starting point for reference alignments.
However, the CS component of the GRASS corpus is more challenging due to the more complex
speaking style and there is a need to model the pronunciation variations of Austrian German
in an own forced alignment system. Bigi and Meunier (2018) address the challenging task of
within speech during spontaneous speaking style and incorporate knowledge about events of
filled pause, laughter and noise into the acoustic model of the SPPAS tool for the French lan-
guage. The work of Schiel (2015) explains that the statistical model consists of an acoustical
model and an additional apriori probability model. He argues that automatic segmentation and
labelling systems differ in terms of search space and in the way of how the apriori pronunciations
are modelled. In summary, the existing forced alignment systems have different advantages and
it would be of interest to combine the mechanisms that are relevant for CS.

Strik and Cucchiarini (1999) presented a decision based framework in order to characterise
the pronunciation modelling in an ASR system. As the task of automatic speech segmentation
is closely related to the ASR task, I used this decision based framework to characterise the
pronunciation modelling process of Austrian German. In this thesis the pronunciation variation
of Austrian German in a CS style was modelled. The intraspeaker variation within spontaneous
speech contained assimilation, reduction, deletion and insertion phenomena. With the help of
a pronunciation lexicon, the word-internal pronunciation variation was modelled. The infor-
mation of the pronunciation variation of Austrian German came from the study of Schuppler,
Adda-Decker, and Morales-Cordovilla (2014) and is a knowledge-based approach. In contrast to
the knowledge-based approach, a data-driven approach was not possible for the CS component
of the GRASS corpus as the data is not segmented on a phone or word level. With the usage
of phonological rules, the information of the pronunciation variation was represented in a for-
malised way. The advantage of formalised information is that a quantitative analysis of the rules
used gives insight to the pronunciation variation of the training data. Such a study has been
done by Schuppler, Adda-Decker, and Morales-Cordovilla (2014) for parts of the GRASS corpus
with the help of HTK experiments. The pronunciation variation is modelled in the component
of the lexicon with a pronunciation lexicon with variants in an explicit way. In contrast to an
ASR task, for a forced recognition task it is not useful to model the pronunciation variation
in an implicit way within the acoustic model, as one is interested in the direct result of the
pronunciation variation, which is the best fitting phone sequence to given audio data.

I analysed the automatic speech segmentations of the GRASS corpus for the RS component
and the CS component in a quantitative and a qualitative way. For a part of the RS corpus
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data, there are reference alignments available, with which I compared the resulting automatic
speech segmentations. The distance measure between the calculated segmentations and the
reference alignments was done with the Levenshtein algorithm. The comparison of different
models, calculated with different lexicons, showed that the smallest Levenshtein distance can be
achieved with a canonical Austrian German model and a median value of 8.4%. C. P. J. Van
Bael (2007) reported a mean value of a distance measure of a similar segmentation approach by
forced recognition to reference alignments with a value of 8.1%. Note that the distance measure
in the study of C. P. J. Van Bael (2007) was calculated with the ADAPT algorithm, which
differs to the Levenshtein distance by taking articulatory effects into account. By representing
the most frequent mismatches between the different models and the reference alignments the
results showed that some of the most frequent mismatches are substitutions between articula-
tory similar phones. Anticipating that substitutions of articulatory similar phones would have
a smaller distance, by using an algorithm like ADAPT, the best alignment model for RS would
be a model with a lexicon with read speech rules. This is a lexicon which is calculated with a
subset of the phonological rules and has a smaller complexity than an overgeneralised lexicon.
In the qualitative analysis of a RS example the model with the overgeneralised lexicon showed
the most promising alignment results. Furthermore, models with different feature extraction
mechanisms were compared. The acoustic models were trained with a feature extraction, where
different frame-shifts are used. The quantitative analysis showed that the differences between
the models, compared to the reference models, were quite small and the lowest median value
was calculated with a frame-shift of 10ms with a Levensthein distance of 8.5%. In a qualitative
analysis between models with different frame-shifts, a model with a frame-shift of 7ms is the
most promising one.

For the CS component of the GRASS corpus, a comparison between a monophone based forced
alignment model and a triphone based forced alignment model was calculated with the help of
the Levenshtein distance. With an overall Levensthein distance of 12.6%, there is a significant
difference between a monophone based forced alignment model and a triphone based alignment
model. The most frequent mismatches include deletion and insertion of silence phones as well as
substitutions between the phones /a/ and /o/. With different placements of silence phones, also
neighbouring phones were effected and I expected a large difference in the phone boundaries,
when comparing the monophone based model and the triphone based alignment model. The
qualitative analysisis of a CS example showed that there is a significant difference both with
respect to phone symbols and phone boundaries.

An analysis after performing the automatic segmentation task with an overgeneralised lexi-
con is to estimate the pronunciation probabilities. For the CS component, the results showed
that from the original overgeneralised lexicon with 72 588 word pronunciation entries, only 18
342 word pronunciations are actually used in the corpus data. By grouping the pronunciation
lexicons into canonical word pronunciations and varying word pronunciations it was possible to
analyse the usage of varying word pronunciations compared to canonical word pronunciations
per speaker.

It is of interest to compare the RS speech style to the CS speech style in order to gain a
deeper understanding of spontaneous speech. In section 4.6, the usage of varying word pronun-
ciations per speaker was calculated for the RS component and the CS component. The median
for the varying word pronunciation usage per speaker for the RS component is 32.8% and is
significantly lower than the median of the varying word pronunciation usage per speaker for the
CS component with 50.5%. A similar study for the Dutch language reported an overall value for
the citation word pronunciation of 56% (Schuppler, Ernestus, et al., 2011). A second analysis
compared the speechrates of the CS and RS components of the corpus. The overall mean value
of the speechrate for RS was 4.3 phones/second, whereas the overall mean value of the speechrate
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for CS is 11.4 phones/second. Also the variances of the speechrate for the different speaking styles
showed similar behaviour. An analysis of individual speakers showed that for all speakers the
speechrate for CS is more than twice as high as the speechrate for RS. The biggest difference
between the speechrate for CS compared to RS, measured for one speaker, was a factor of 3.6.

Summing up, the automatic speech segmentation of the GRASS corpus consisted of differ-
ent challenges. The quantitative evaluation of the RS component showed that the usage of a
lexicon with pronunciation variants yielded similar results than a lexicon without pronunciation
variants. The FA for the CS component was calculated with an overgeneralised pronunciation
lexicon in order to cover the pronunciation variability of the CS. The automatic speech segmen-
tation was a starting point for the analysis of the speechrate and the pronunciation variation
usage. A comparison between RS and CS in regard to speechrates and pronunciation variation
usage showed that there is a larger amount of variability in CS than in RS. As a result the usage
of a pronunciation variant lexicon in a FA for CS is important to cover the large amount of
variability.
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6
Outlook

One focus of this thesis was the modelling of the pronunciation variants of Austrian German.
In the process of creating such a pronunciation lexicon for the alignment of CS, the detailed
information of the annotations from the GRASS corpus was used. The resulting lexicons were
processed in different ways and merged afterwards. In addition to a foreign-language lexicon
or a broken word lexicon it would be of interest to create a multi-word lexicon, containing the
pronunciations of the annotated multi-words. With help of such a multi-word lexicon cross-word
processes during CS could be also modelled.

Another focus of this work was the observation of using different frame-shifts during the feature
extraction process. As Kaldi offers the possibility to use many triphone based acoustic models
an evaluation of the automatic segmented alignments by using different triphone acoustic mod-
els would be interesting. The authors McAuliffe et al. (2017) report that using triphone based
models and speaker adaptive training leads to a better automatic segmentation when comparing
phone boundaries.

Similar to the quantitative evaluation of the RS component in section 4.1, an evaluation for
the CS component would be of great interest. Starting point for a quantitative distance mea-
sure is the creation of reference alignments. Although the creation of human-labelled alignments
is time-consuming, it would significantly improve the quantitative evaluation of the CS data.
Another benefit during the evaluation process would be the usage of an algorithm that takes
articulatory effects into account. C. Van Bael et al. (2007) developed the ADAPT algorithm to
determine the distance between the automatic segmented alignments and the reference align-
ments. The advantage of using such an algorithm is that the analysis of the most frequent
mismatches would list more relevant phone operations.

Section 4.5 describes the estimation of pronunciation probabilities for CS of the GRASS corpus.
Motivated by improving an ASR task, the authors Chen et al. (2015) incorporate the knowledge
of pronunciation probabilities into the lexicon. In addition to the pronunciation probabilities,
they also investigate the impact of inter-word silence modelling. It would be interesting to anal-
yse if the inter-word silence modelling and the incorporation of pronunciation probabilities have
a positive effect on automatic speech segmentation.
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A
List of abbreviations

ADAPT Algorithm for Dynamic Alignment of Phonetic Transcriptions
AG Austrian German
ASR Automatic Speech Recognition
CMVTN Ceptral Mean Voice Tract Normalisation
CS Conversational Speech
DCT Discrete Cosine Transform
FA Forced Alignment
FFT Fast Fourier Transform
FST Finite State Transducer
GMM Gaussian Mixture Model
HMM Hidden Markov Model
MFCC Mel Frequency Cepstral Coefficients
RS Read Speech
SGMM Subspace Gaussian Mixture Model
WFST Weighted Finite State Transducer
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B
List of phones

symbol example word transcription
Plosive phones

p PAUKE p aU k @
b BÜCHER b y: C 6
t TÄNZE t E n ts @
d DICKICHT d I k I C t
k KONSERVEN k O n z E6 v @ n
g GERÄUSCH g @ r OY S

Affricate phones
ts ZUCKER ts U k 6

dZ * DSCHUNGEL dZ U N @ l
tS CHARLES tS a: l s

Fricative phones
f FRÜHJAHR f r y: j a: r
v WALZER v a l ts 6
s WERKSFERIEN v E6 k s f e:6 j @ n
z * ANGESAGT a n g @ z a: k t
S SPIELE S p i: l @
Z * GENIE Z E n i:
C LEICHT l aI C t
j NEUJAHR n OY j a: r
x OBACHT o: b a x t
h SCHÖNHEIT S 2: n h aI t

Sonorants
m MILCH m I l C
n NORDWIND n O6 t v I n t
N DING d I N
l LESEN l e: z @ n
r RUFEN r u: f @ n

Checked vowels
I SCHILD S I l t
i VIELLEICHT f i l aI C t
E WENN v E n
e RESIGNIERT r e z I g n i:6 t
a SACHEN z a x @ n
O SCHLOSSBERG S l O s b 6 k
o ABDREHEN o p d r e: @ n
U HUNDE h U n d @
u AKTUELL a k t u E l
Y ZURÜCK ts u r Y k
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B List of phones

9 BÖLLERSCHUSS b 9 l 6 S U s
symbol example word transcription

Free vowels
i: FLIEGEN f l i: g @ n
e: FERIEN f e:6 j @ n
E: DÄNEMARK d E: n @ m a r k
a: KARTEN k a: t @ n
o: ROSA r o: z a
u: SCHUH S u:
y: SPÜLEN S p y: l @ n
y BÜROMÖBEL b y r o: m 2: b @ l
2: ÖL 2: l

Free diphtongs
aI DREIRAD d r aI r a: t
aU LAUFEN l aU f @ n
OY HEUTE h OY t @

Schwa vowel
@ GEWINNT g @ v I n t

Diphtongs
6 SCHALTER S a l t 6
i:6 VIER f i:6
I6 VIERZEHN f I6 ts e: n
y:6 TÜR t y:6
Y6 BÜRGER b Y6 g 6
e:6 MEHR m e:6
E6 LERNEN l E6 n @ n
E:6 NÄHER n E:6
2:6 STÖRT S t 2:6 t
96 DÖRFCHEN d 96 f C @ n
a:6 FAHRKARTEN f a:6 k a6 t @ n
u:6 NUR n u:6
U6 WURDE v U6 d @
o:6 DOKTOR d O k t o:6
O6 MORGEN m O6 g @ n

Table B.1: List of phones with example words and pronunciations. Phones marked with * are omitted when
the rule of silibant devoicing of the alveolar fricative /z/ is applied as a replacement rule.
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C
Phone mapping and G2P settings

phone set
foreign language words eI { A: e@ O: @U Q OI V w R 3: ll ttS I@ D H o∼ rr G pp a∼ T

phone set
Austrian German e I E: a:6 e:6 o:6 O U O OY a: v r 2: l tS i: @ s u O r g p o: s

Table C.1: Phone mapping from foreign languages to Austrian German phone set.

transcription tag G2P language
setting

<*ENGL> eng
<*L> deu
<*SP> spa-ES
<*F> fra-FR
<*SV> swe-SE
<*I> ita-IT

<*JAP> spa-ES
<*HR> deu
<*PT> spa-ES

Table C.2: Mapping between transcription tags and G2P language settings.
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