
Eric Gergely, BSc

A Visually Aided Interactive
Content-Based Digital Exploration
System for Document Collections

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Compuer Science

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Tobias Schreck

Institute of Computer Graphics and Knowledge Visualisation

Graz, Austria, Oct. 2020

Abstract

Finding relevant papers from document collections is an important task for researchers

and scholars. However, retrieval systems and visualization frameworks for scientific pub-

lications often tend to neglect visual information (i.e., figures) of papers. The aim of this

thesis is to implement a prototype document retrieval system for medium-sized document

collections, that utilizes textual and visual information for the retrieval process. The

system consists of five different views to support the user along different stages of the ex-

ploration process. Those views provide the user with various tools such as text similarity

searches, content-based image retrieval, different visualization techniques and more. We

evaluate the system by creating a fictional character called Alice, who conducts several

scenarios on a given document collection. Our system provides promising results for the

given scenarios and shows correlations between visual and textual information.

iii

Kurzfassung

Relevante Dokumente in einer gegebenen Dokumentsammlung zu finden ist eine

wichtige Aufgabe, mit der Forscher und Studierende oft konfrontiert sind. Leider

vernachlässigen Retrievalsysteme und Visualisierungen für wissenschaftliche Arbeiten

oftmals visuelle Inhalte (z.B. Bilder) von Dokumenten. Das Ziel dieser Arbeit ist es, ein

Prototyp-Retrievalsystem für mittelgroße Dokumentsammlungen zu implementieren,

welches sowohl textbasierte als auch bildbasierte Informationen bei der Suche verwendet.

Unser System beinhaltet fünf unterschiedliche Ansichten, welche den Benutzer in

den verschiedenen Phasen der Dokumentexploration unterstützen. Die verschiedenen

Ansichten bieten dem Benutzer eine Vielzahl an Möglichkeiten, wie z.B. Suchen anhand

von Text- oder Bildähnlichkeiten, unterschiedliche Visualisierungsmethoden und

vieles mehr. Wir evaluieren das System indem wir eine fiktive Figur, namens Alice,

unterschiedliche Szenarien an einer Dokumentsammlung durchführen lassen. Unser

System zeigt vielversprechende Resultate für die beschriebenen Szenarien, welche unter

anderem auf Zusammenhänge zwischen bildlichen und textbasierten Inhalten hinweisen.

v

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Date Signature

Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Dr. Tobias Schreck for

the opportunity to write this thesis. Further, I want to thank him and my advisor Lin

Shao for always taking time for various meetings and providing me with great feedback

and new ideas when I was stuck along this journey. Also, special thanks go to Hendrik

Lücke-Tieke, who attempted various meetings and shared his knowledge with us by

providing valuable feedback.

Moreover, I want to thank all my friends, especially Markus and Stefan, who made this

journey so enjoyable.

Lastly, I want to thank my whole family for supporting me. Especially, my parents

Claudia and Gerhard, and also my grandparents Erika and Karl, who always had an

open ear for me and supported me throughout my whole life.

Thank you all!

ix

Contents

1 Introduction 1

1.1 Information Retrieval in the Scientific Domain 1

1.2 Information Retrieval Systems and Digital Libraries 2

1.3 Document Visualization . 3

1.4 Outline . 3

2 Related Work 5

2.1 Information Retrieval Systems . 5

2.2 Document Visualization . 8

2.2.1 Single Document Visualization . 9

2.2.2 Document Collection Visualization 12

2.3 Text Summarization . 16

3 Concept 19

3.1 Outline . 19

3.2 Finding Relevant Documents . 20

3.2.1 Text Queries . 20

3.2.2 Image Queries . 20

3.3 Discovering Similar Documents . 21

3.3.1 Visual Explorer . 21

3.3.2 Inspect Documents . 23

3.4 Similar Documents and Subset Exploration with RadVizDoc 26

3.4.1 RadVizDoc . 27

3.4.2 How to Use RadVizDoc for Finding Similar Documents 28

3.5 Finding Relations . 28

xi

xii

4 Implementation 31

4.1 Overview . 31

4.2 Java and Graphical User Interfaces with JavaFX 32

4.3 Document Information Extraction . 32

4.4 Indexing and Searching of Texts and Images 33

4.4.1 Text Search and Indexing . 33

4.4.2 Image Search and Indexing . 33

4.5 Text-Based Similar Document Search . 34

4.6 Document Summary Creation . 34

4.6.1 SumBase Algorithm . 35

4.7 Word Clouds and Word Distributions of Documents or Subsets 36

4.8 Abstract and Conclusion Extraction . 37

4.9 RadVizDoc . 37

4.9.1 Components . 37

4.9.2 Algorithm . 41

4.9.3 History and Snapshot Function . 43

4.10 Final Doxplorer Interface . 44

5 Application 51

5.1 Use Cases . 51

5.1.1 Workflow . 52

5.1.2 Keyword Search . 52

5.1.3 Image Search . 53

5.1.4 Finding Similar Documents with “Inspect” and “Search” 54

5.1.5 Finding Similar Documents with the VisualExplorerView 55

5.1.6 Evaluating Subsets with the RadVizDocView 57

5.2 Scenarios . 58

5.2.1 Scenario 1 . 59

5.2.2 Scenario 2 . 62

5.2.3 Scenario 3 . 69

5.2.4 Scenario 4 . 74

5.2.5 Scenario 5 . 78

5.2.6 Scenario 6 . 81

6 Discussion and Concluding Remarks 87

6.1 General Discussion . 87

6.2 RadVizDocView Discussion . 88

6.3 Future Work . 89

6.4 Conclusion . 90

A List of Acronyms 91

xiii

Bibliography 93

List of Figures

2.1 Context Tree . 7

2.2 Neural Information Retrieval (IR) Paper Percentage 8

2.3 Document Cards . 10

2.4 Semantic Sub-Graph . 11

2.5 Word Tree . 12

2.6 VIStory Glyph . 13

2.7 VIStory Interface . 14

2.8 ThemeRiver . 15

2.9 PivotPaths . 16

2.10 Extractive Summarization Methods . 17

3.1 SearchView of Concept . 21

3.2 VisualExplorerView of Concept . 22

3.3 VisualExplorerView (Document Selected) of Concept 22

3.4 Concept of InspectView . 25

3.5 RadViz Theory Image . 26

3.6 InspectView of Concept (RadVizDoc) . 29

4.1 Summary Comparison . 35

4.2 RadVizDoc Doxplorer showing Image Anchors 39

4.3 RadVizDoc Doxplorer showing Text Search Anchors 40

4.4 Doxplorer History Snapshot . 44

4.5 SearchView Doxplorer . 45

4.6 ImageSearchView Doxplorer . 45

4.7 VisualExplorerView Doxplorer . 46

4.8 VisualExplorerView Doxplorer with Document Card 46

xv

xvi LIST OF FIGURES

4.9 InspectView Doxplorer Summary Creation 47

4.10 InspectView Doxplorer Summary Report . 47

4.11 InspectView Doxplorer Word Cloud . 48

4.12 InspectView Doxplorer Abstract Conclusion 48

4.13 RadVizDocView Doxplorer . 49

5.1 Use Case Diagram: Keyword Search . 53

5.2 Use Case Diagram: Find Similar Documents with Inspect and Search . . . 55

5.3 Use Case Diagram: Finding Relevant Documents 56

5.4 Use Case Diagram: RadVizDoc . 58

5.5 Scenario 1: Text Findings . 61

5.6 Scenario 1: Text Findings 2 . 62

5.7 Scenario 1: Text Findings 3 . 62

5.8 Scenario 2: Images of Interest . 63

5.9 Scenario 2: RadVizDoc . 64

5.10 Scenario 2: RadVizDoc 2 . 64

5.11 Scenario 2: RadVizDoc 3 . 65

5.12 Scenario 2: Similar Images in Dark . 66

5.13 Scenario 2: Similar Images Multi-Screen . 67

5.14 Scenario 2: Similar Images Graphs . 68

5.15 Scenario 3: Graph Paper Distribution . 69

5.16 Scenario 3: Graph Related Authors . 70

5.17 Scenario 3: Document Card Graphs for Video Database 71

5.18 Scenario 3: Correlation between Images and Author 72

5.19 Scenario 3: Graph Figures . 73

5.20 Scenario 4: VisualExplorerView Distribution of Documents over Year of

Publication . 75

5.21 Scenario 4: VisualExplorerView with Document Card 76

5.22 Scenario 4: VisualExplorerView Image Similarity Search 76

5.23 Scenario 4: VisualExplorerView with Document Card 2 77

5.24 Scenario 5: InspectView Summary Generation and Summary Report 79

5.25 Scenario 5: InspectView Abstract and Conclusion 80

5.26 Scenario 5: InspectView Tag Cloud . 80

5.27 Scenario 6: RadVizDocView Summary Anchors 81

5.28 Scenario 6: Images from Network Traffic related Papers 82

5.29 Scenario 6: RadVizDocView Summary Anchors WireVis 83

5.30 Scenario 6: Images from Spatiotemporal related Papers 84

5.31 Scenario 6: Images from Documents for Financial Summary Anchor 85

1
Introduction

Contents

1.1 Information Retrieval in the Scientific Domain 1

1.2 Information Retrieval Systems and Digital Libraries 2

1.3 Document Visualization . 3

1.4 Outline . 3

1.1 Information Retrieval in the Scientific Domain

Researchers and scholars are often confronted with the task of finding relevant literature

or scientific publications within their field of research. Over the years, a vast amount of

techniques and systems (e.g., information retrieval systems) has been developed and re-

searched in order to facilitate information retrieval. Different tools are utilized depending

on the task, research field, document corpus and document collection size. Traditionally,

information retrieval systems, especially digital libraries, strongly rely on text or meta data

based queries instead of images and visualizations. However, in past years new systems

that use visualizations for meta data have been developed. Yet, visualization methods

for scientific publications often neglect visual information (i.e., figures) [52]. Nonethe-

less, researchers recognized the importance of images for analyzing and finding relevant

documents. Thus, different systems and visualizations employing visual information were

developed. A major problem is, that many of them solely focus on images. Still, textual

information should not be neglected either. As a consequence, the objective of this thesis

is to create a proof-of-concept prototype document retrieval and visualization framework

called Doxplorer. In addition to other tools, Doxplorer uses a novel, interactive document

visualization that can use both, text and image search functionalities. The system aims

to aid users in understanding and exploring the contents of a medium-sized document

1

2 Chapter 1. Introduction

collection. Hence, different tools like full-text search, summary creation, and image search

are used in combination with a radial visualization method to support the exploration

of a given document corpus. The proposed radial visualization method is heavily influ-

enced by the RadViz visualization method and creates a 2D document landscape for multi

document exploration. Creating such a system leads to a couple of questions:

• How to efficiently search and store documents?

• How to visualize the contents of a document?

• How to find relations between documents?

• In what way can documents differ from or resemble one another?

• How to convey the information to the user?

1.2 Information Retrieval Systems and Digital Libraries

Nowadays, various different kinds of information retrieval exist which are discussed in

Chapter 2. Tamine-Lechani et al. [42] explain that Information Retrieval Systems (IRSs)

basically have the goal to return the most relevant documents in response to a user

query. Further, they describe that IRSs generally store documents and queries in textual

objects, such as words. Consequentially, this indicates neglecting other information (e.g.,

visual information). Undoubtedly, a digital library can be considered as an IRS . In

simple terms one can think of a digital library as of a traditional library but in digital

form; meaning that the contents (documents) are stored digitally. Of course, there are

many different definitions which also change over time. For example, in 1998 the Digital

Library Federation defined digital libraries as:

“Organizations that provide the resources, including the specialized staff, to

select, structure, offer intellectual access to, interpret, distribute, preserve the integrity

of, and ensure the persistence over time of collections of digital works so that they are

readily available for use by a defined community or set of communities” [33].

Digital libraries are an important source for researchers and students to find scientific

publications within their respective field of research. They often consist of large-sized doc-

ument corpora which makes it difficult to find all documents that could be of interest to

the user. This is especially true for digital libraries that are provided online. Collections of

such size (e.g., ACM Digital Library) often solely utilize text-based user queries and filter-

ing by meta data for information retrieval. But, there are also other information retrieval

systems that focus on small or medium-sized document corpora which allows for different

visualizations. They can be very useful for exploring subsets of larger collections. While

1.3. Document Visualization 3

many information retrieval systems and their visualizations are text and meta data based,

depending on the domain, images or visual representations of results can be as important

as textual information. This brings up challenges, such as how to best store, explore,

combine and display these different types of information. While the prototype system of

this thesis focuses on medium-sized document collections, it definitely has commonalities

with digital libraries (e.g., full-text search).

1.3 Document Visualization

The term “document” can be used to describe a variety of different data types in the digital

domain. If not stated otherwise in this thesis, the term document is used to describe a

Portable Document Format (PDF) document that usually contains text, images and other

meta data. Being bound by time constraints, most people do not have the time to fully

read every paper that could be of interest to them. This leads to the question: How can

we tell if a document is important without reading it fully? Document visualizations try

to provide a solution to this very problem. M. Li et al. [14] provide a general overview of

different document visualization techniques. They point out that document visualizations

can be categorized in single or multi document visualizations, where single document

visualizations primarily focus on single words and core contents of documents, while multi

document visualizations tend to focus on relations, topics and concepts. The overview they

provided indicates that most of the research in this field focuses on text-based content and

meta data. However, some researchers developed systems that also make use of visual

information, which greatly benefits certain domains (e.g., visual analytics). For example,

Strobelt et al. [39] introduced a visualization method called Document Cards which shows

the core contents of a document in concise form. These aforementioned Document Cards

contain information such as important terms, authors, images and other meta data, on a

single page.

1.4 Outline

This thesis is structured in six chapters. Chapter 2 is about previous work that is related to

this thesis. Afterwards, Chapter 3 describes the ideas and core concept behind the system,

while Chapter 4 explains the implementation of the system by describing algorithms,

libraries and the system design. Those chapters are followed by Chapter 5, which includes

use cases and an evaluation of the system on the VAST data set. Chapter 6 is the last

chapter and starts with a discussion and an outlook on future work. The chapter ends

with a conclusion summing up the thesis.

2
Related Work

Contents

2.1 Information Retrieval Systems 5

2.2 Document Visualization . 8

2.3 Text Summarization . 16

This thesis aims to enhance traditional text-based document retrieval with an inter-

active visualization and content-based image retrieval by creating a prototype document

retrieval system. This chapter is dedicated to put this work into perspective with already

existing work from related fields.

2.1 Information Retrieval Systems

In the age of technology we are confronted with large amounts of information more than

ever. Finding relevant information in a seemingly infinite sea of data is a crucial but

difficult task. Therefore, after the invention of computers Information Retrieval (IR)

was already born in the 1950s as a necessity to tackle this problem as described by A.

Singhal [37]. In his work he also describes that information retrieval has come a long way

in past years. Moreover, Singhal describes the most commonly used models of standard

IR (text-based) which are vector space models [32], probabilistic models and inference

network models [45] as follows:

Vector space models in general, are a very high-dimensional vector space where

each term constitutes a single dimension. Typically, in most cases terms consist of words

or phrases. This allows for queries and documents to be represented by vectors. If a term

occurs in the document (or query), the vector entry of the dimension for this term is a non-

zero value. Consequentially, it is zero otherwise. A similarity score between documents

5

6 Chapter 2. Related Work

and queries can be calculated by using their respective vectors. The calculation of the

similarity scores varies depending on different vector space models but often depicts an

angle between two vectors.

Probabilistic models typically calculate a relevance probability estimation of doc-

uments to a given query. Documents of a given collection are then sorted in decreasing

order depending on their probability score. In literature this principle is often referred to

as the probabilistic ranking principle [29]. This type of model was originally proposed by

Maron and Kuhns [22]. The implementation of the probability estimation varies between

different probabilistic models. Over the years many different approaches were introduced.

Inference network models realize the retrieval of documents as inference process

in an inference network [45]. This means that for each document there is a weight which

defines how strong the document instantiates a term. A document score is established by

combining the term weights of the document for a specific query. The calculation of the

weights can be chosen freely and depends on the specific inference network model.

While our system focuses on images, meta data and text, it is important to mention

that information retrieval in general also covers other data types such as audio [12]. In

modern information retrieval there exist various different branches; for example, Private

Information Retrieval (PIR) [7], Cross-Language Information Retrieval (CLIR) [26],

Content Based Image Retrieval (CBIR) [38] and contextual information retrieval which

are active fields of research.

Tamine-Lechani et al. [42] argue that the amount of information makes traditional

IR approaches less effective. Similarly, X. Shen et al. [35] consider the absence of user

and search context as a major limitation for information retrieval systems. Around

2010, in their work, L. Tamine-Lechani and her colleagues [42] also revealed a growing

interest towards contextual information in IR. They explain this rise of interest due to

users being overwhelmed by the information overload they receive when issuing queries

to information retrieval systems. Their work describes that contextual information

retrieval relies on different sources (e.g., user interests, preferences, time and location).

While context-based information retrieval systems use different definitions for the core

concept of users’ context, they have the same core idea which is to present the user with

the most accurate information by utilizing the provided context [42]. For instance, X.

Shen et al. [35] studied how implicit feedback can help to better the accuracy of results

returned by the information retrieval system. Their approach uses search contexts,

such as past navigation actions and queries, to retrieve better results from the system.

Figure 2.1 provides an overview of different contextual information sources. As we

can see, there are various different aspects of context to further refine information retrieval.

2.1. Information Retrieval Systems 7

Figure 2.1: Different aspects of context in the information retrieval domain. Figure taken
from [42].

In recent years, also a lot of research was done in the field of PIR [1, 2, 13, 34, 41].

As described by K. Banawan et al. [1], the PIR problem is defined by a user retrieving

a specific message without any of the individual databases knowing the identity of the

message. Research in this area tends towards capacities of PIR with certain database

structures, about PIR with side information or noisy PIR.

In the last years, researchers, such as B. Mitra et al. [23], also investigated neural

ranking models for learning vector representation of text. In their work, they point out

that tremendous improvements have been made in the fields of computer vision, speech

recognition and machine translation tasks by using neural network models consisting of

multiple hidden layers, which are called deep architectures. Around 2017, work has begun

in the IR community to use this neural models in order to expand the state of the art

or even achieve new levels of performance as in other areas of computer science [23].

Figure 2.2 illustrates the increase in interest.

8 Chapter 2. Related Work

Figure 2.2: Percentage of neural IR papers from the ACM SIGIR conference for different years.
Figure and description are taken from [23].

2.2 Document Visualization

According to M. Li et al. [14] efficient and effective visualization tools became a necessity

due to the amount of information and documents available to us nowadays. In an overview,

they present the fundamental concepts of document visualizations while also discussing

their main challenges. They categorize document visualization in three different groups:

single document visualization, document collection visualization and extended document

visualization. Single document visualizations focus on single words, phrases and core

contents of a document. Whereas, document collection visualizations target relations,

themes and concepts of collections. Extended document visualizations are more concerned

with attributes that are outside the document content and applied in special fields, for

example, social media. In 1996, B. Shneiderman [36] introduced a type by task taxonomy

for visualizations. According to his mantra, there are seven different tasks a visualization

can aim for. Those tasks are:

• Overview: Gain an overview of the entire collection.

• Zoom: Zoom in on items of interest.

• Filter: Filter out uninteresting items.

• Details-on-demand: Select an item or group and get details when needed.

• Relate: View relationship among items.

2.2. Document Visualization 9

• History: Keep a history of actions to support undo, replay, and progressive refine-

ment.

• Extract: Allow extraction of sub-collections and of the query parameters.

Our prototype combines different ideas to achieve most of these principles to a certain

degree within a single system.

2.2.1 Single Document Visualization

Single document visualizations can be of great use depending on the collection size and

task at hand. Furthermore, they should provide a concise overview of the core contents of

a document and its text features [14]. To this date, there exist various distinct techniques

with different priorities for visualizing single documents. There are also visualizations

which could be classified as both, single and document collection visualizations.

An example of such a visualization is called Document Cards and was proposed by

Strobelt et al. [39]. They describe the creation process of those cards as a pipeline.

After extracting the text, they find the most relevant key words by text mining.

Simultaneously, they perform image extraction and preprocess the retrieved images.

The last two steps in the pipeline are image packing and text placement. In Fig. 2.3

numerous different example Document Cards are shown. The cards present authors, title,

important terms and images of a document on a single page. Moreover, on the right side

the user has the option to select any page and view it fully. Users can inspect the page

where a specific image is located by clicking on the image. Additionally, terms can be

selected to highlight their occurrences. This means that lines and page numbers (on the

right) that contain the selected term are highlighted. Also, if the caption text of an image

contains a selected term, the image is highlighted. Hovering over the non-image space

of a Document Card displays a tooltip which shows the abstract of the corresponding

document. This visualization can help to grasp the core contents of a document quickly

and view single pages fully if needed. While one card only represents a single document,

the authors implemented a system which shows all Document Cards for a given collection

in a matrix view as can be seen in Fig. 2.3. Consequentially, the visualization is not only

able to visualize single documents but also multiple documents at the same time. In

order to aid the exploration process, we also included a simpler, more basic version of

such Document Cards within our system in the VisualExplorerView. While Document

Cards also include images and meta data, such as authors, most single document

visualizations tend to be only text-based.

A well known and widely used text-based visualization technique are Tag

Clouds [14, 15, 49] (especially for news media). Tag Clouds generally provide an overview

of term frequencies for a given text. Note that the input text can also stem from multiple

10 Chapter 2. Related Work

Figure 2.3: This figure shows Document Cards for visualizing documents contained in the IEEE
InfoVis 2008 proceedings. When selecting a term its frequency for the different pages is illustrated
on the right side of the Document Card (higher frequency is indicated by a “stronger” red). [39]

2.2. Document Visualization 11

documents and is not restricted to a single one. The layout and graphical representation

can be done in various different ways. Still, most of the time position, colors and

size are used to visualize the importance of a term. This means, for example, that

important terms might have a bigger font-size or are centered in the middle. However,

the importance could also be only shown by color and size while the layout may be

alphabetically. Unimportant terms can be dropped in order to prevent the visualization

from congestion. For this reason, Venetis et al. [48] conducted a study on which terms

to select best for Tag Clouds by comparing different tag selection algorithms. In their

work, they compared a popularity algorithm, a tf-idf based algorithm and the maximum

coverage algorithm and show that selecting the correct terms is still a difficult challenge.

The algorithms performed differently depending on the domain of the text.

There are other visualizations, such as Semantic Graphs [31] proposed by D. Rusu et

al., which target to reveal the semantic structure of a document instead of frequency

distributions. In order to build such graphs, they start by extracting subject - verb

- object triples for every sentence with the Penn Treebank parse tree. Then, those

triplets are assigned to their corresponding entities. In order to find as many good links

as possible, they use WordNet synsets together with pronominal anaphors. Furthermore,

in their work Rusu and his colleagues propose a way to generate summaries by using the

semantic graph and the triplet list together. Figure 2.4 shows an example of a semantic

sub-graph.

Figure 2.4: Semantic sub-graph of a given text. [31]

12 Chapter 2. Related Work

Even if a single term is considered important, it might not deliver enough information

without proper context. Thus, there are visualizations which target to provide not only

term frequencies but also the information in which context words are used. Therefore,

M. Wattenberg and F. B. Viegas [50] introduced a visualization and information retrieval

method called Word Tree. Their visualization is solely text-based and can be queried

in order to explore various input texts. Their method is based on the idea of “keyword

in context” [11], where query results are displayed together with snippets that show the

terms along with the text surrounding them. Figure 2.5 shows a small example of a Word

Tree for the search term “if love”. The authors also describe that in this visualization

the relative size of terms is determined by the square root of their frequency. Users can

enter a search term for creating a Word Tree. After the initial Word Tree is established,

the user can select terms or phrases from that tree to generate a new one. Of course, the

user can also enter new search terms. This interactivity allows broadening and narrowing

a text search.

Figure 2.5: Example of a Word Tree for search term “if love” in Romeo and Juliet. [50]

2.2.2 Document Collection Visualization

Visualizations for entire document collections are crucial due to the amounts of data we

are confronted with nowadays. They can help to find hidden and core topics, relations

among documents, topic changes over time and more. M. Li et al. [14] classify document

collection visualizations from different aspects:

1. Visualization of themes

2. Visualization of core contents

3. Visualization of changes over different versions

4. Visualization of document relationships

5. Visualization of document similarity

It is important to mention, that document collections can also be visualized

by combining different visualizations within a single framework. For example, P.

2.2. Document Visualization 13

Riehmann et al. [28] proposed a visualization framework that helps users analyze and

understand the contents of medium-sized document collections. Their framework utilizes

document visualizations that focus on different aspects. Their visualizations are based

on glyphs which show structure and temporal information. Among other features, they

implemented a TopicCalendar along with TopicTrends in order to provide users with

a topic overview. Moreover, a so called ConceptCircuit reveals different entities of a

collection. Those entities can depict anything ranging from places to persons.

A. Dong et al. [52] created another interesting visualization framework called

VIStory, which focuses on visual information (i.e., figures) of documents. Their

motivation was that exploration methods for scientific publications often neglect

visual information. The VIStory interface incorporates a Faceted View, which enables

querying by meta data. Moreover, the interface comprises documents encoded as glyphs

which are arranged in a ThemeRiver [16] layout in the Storyboard View. Glyphs are

basically paper rings which summarize image attributes such as color and size. A

paper ring consists of different segments, where each segment depicts a figure from

the paper. The length and color of each segment is determined by its corresponding

figure. Figure 2.6 provides and example of such a glyph. Although VIStory enables

filtering by meta data and reports all images from a document, it does not support

a content-based image search functionality. While it is possible to do high-level

analysis, such as investigating which colors are used most by a specific author, there

is no efficient way find similar visualizations or figures. In contrast, our prototype

aims to enhance their idea of using visual information for exploration of scientific

publications by enabling the user to search for documents with similar images. Further-

more, our prototype combines this idea with the strengths of text-based retrieval methods.

Figure 2.6: Shows an example of a paper ring glyph where the input paper consists of 13 images.
Figure taken from [52].

14 Chapter 2. Related Work

Figure 2.7: VIStory interface showing three different data sets of scientific publications. On the
left panel is the Faceted View for meta data querying. The main panel shows the three collections
in a theme river layout with publication years as columns. Selecting a glyph shows the Endgame
View, which displays information such as title, keywords and images. Figure and description are
taken from [52].

Finding document affiliations to certain topics or discovering underlying topics of a

collection can be especially helpful for the exploration process. Document landscapes,

such as the IN-SPIRE ThemeView [44] and IN-SPIRE Galaxy [51], can be used as a

visualization tool for showing document distributions over topics. J. Thomas et al. [44]

describe ThemeView as a 3D visualization that represents topics as mountains while the

distance between two mountains reflects the topic similarities. Further, they explain that

mountains are separated by keywords and that their height is relative to the respective

topic strengths. In their work, they also describe the Galaxy visualization which is a

2D visualization where documents are represented by points which form a theme galaxy.

J. Thomas and his colleagues explain that the galaxies use either hierarchical clustering

or k-means clustering. The centroids of clusters are also visualized along with text labels

showing their corresponding core themes. In another work, P. C. Wong et al. [51] write

about strengths and weaknesses of the Galaxy visualization and further describe that users

can interactively explore the galaxy by selecting documents or moving aside uninteresting

clumps. Moreover, they defined that after each interaction the Galaxy is re-clustered and

re-projected.

In contrast, there are topic centered visualizations that have a strong emphasis on the

temporal aspect as well. For example, S. Havre et al. [16] presented a method called

ThemeRiver. In their work, they describe that the “river” flows through time from left

to right while changing its width according to topic strengths. Further, they explain that

2.2. Document Visualization 15

the river consists of differently colored currents which represent single topics or groups

of topics. By using this technique, they can visualize the relevance of topics at different

times compared to other topics. ThemeRiver as a visualization aims to illustrate theme

changes over a course of time [16]. Figure 2.8 provides an example of the ThemeRiver

prototype system visualization proposed by S. Havre and her colleagues.

Figure 2.8: Illustrative example of a ThemeRiver visualization with X-axis representing time
while Y-axis represents topics. Figure taken from [16].

On the other hand, there are document collection visualizations that aim to depict

relations among different documents. M. Dörk et al. [9] created such a visualization tech-

nique called PivotPaths which provides a graphical and interactive interface for exploring

relations based on meta data (e.g., keywords, authors and citations) in scientific publi-

cations. Their work clarifies that filtering is useful for information retrieval but that it

is hard to comprehend the effect of filter operations without seeing the relations among

different filter options and items. Further, M. Dörk and his colleagues point out that

traditional filtering usually results in abrupt changes from one data set to another. As a

consequence, their visualization aims to depict relations between different meta data at-

tributes which can help to understand filter results. For example, they show that the user

can select an author and show all his meta data relations (see Figure 2.9). Naturally, there

are various other visualizations based on meta data relations such as ContexTour [19] and

FacetAtlas [3].

16 Chapter 2. Related Work

Figure 2.9: PivotPath visualization of a document where references of a specific paper and its
citations are used to show details for a selected author. Figure and description are taken from [9].

2.3 Text Summarization

Text summarization aims to extract the core information from an authentic text and pro-

vides the user with a concise summary report [24]. Automatic text summarization can

save a lot of time when researching or trying to get an overview of documents or document

collections. There are two different types of text summarization, namely, (1) extractive

text summarization and (2) abstractive text summarization [40]. Extractive text sum-

marization methods create summaries by selecting sentences from the original document;

whereas abstractive methods generate summaries with arbitrary words and expressions,

which resemble summaries created by humans [43]. In their work, J. Tan et al. [43] describe

abstractive summarization as the ultimate goal of text summary research. Nevertheless,

they depict a previous shortage of research in this direction due to immaturity of text gen-

eration techniques. But on the other hand, their work points out that impressive progress

was made by using neural networks lately. Still, J. Tan and his colleagues describe ab-

stractive summarization to be in a primitive stage and that extractive methods have better

evaluation scores on benchmark data sets. However, they state that abstractive methods

are generally able to generate better summaries, while being more difficult to produce.

The findings of V. Dalal and Dr. L. Malik [8], who conducted a survey on extractive

and abstractive text summarization techniques, support this claim. They also came to

the conclusion that abstractive approaches can outperform extractive methods in terms of

quality but that they are more expensive computationally. Nonetheless, there were also

significant developments in the field of extractive summarization where neural networks

2.3. Text Summarization 17

were also widely used, as shown in a survey on extractive text summarization conducted

by N. Moratanach et al. [24]. Figure 2.10 provides an overview of different methods which

are discussed in their survey. J. Cheng and M. Lapata [6], for instance, introduced (extrac-

tive) neural summarization as a data-driven approach by extracting sentences and words.

Their system uses a document encoder together with an attention-based extractor where

two models are trained on hundreds of thousands of document-summary pairs. Their pro-

posed system achieved promising results with the sentence based model on the DUC 2002

test data set using Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [18] met-

rics [6]. Moreover, Nallapati et al. [25] also developed a very promising method that uses

a recurrent neural network based sequence model for generating extractive summaries.

In fact, results indicate that neural sentence extraction performs better than traditional

extraction methods [43].

Figure 2.10: Overview of different supervised and unsupervised learning methods for extractive
summary generation. Table and description are taken from [24].

3
Concept

Contents

3.1 Outline . 19

3.2 Finding Relevant Documents . 20

3.3 Discovering Similar Documents 21

3.4 Similar Documents and Subset Exploration with RadVizDoc . 26

3.5 Finding Relations . 28

3.1 Outline

The general idea behind our prototype system is to combine basic tools of document

retrieval systems (e.g., indexing documents, meta data information and query-based text

search) with document visualizations and a novel, interactive multi-document visualization

view, that is strongly inspired by the RadViz [27] visualization technique. The goal is to see

how document retrieval systems, especially digital libraries, could benefit from integrating

visualizations and image browsers. In order to aid the user while exploring a document

collection, the prototype system consists of different views, which also support different

levels of detail. When exploring the document corpus, the user can tag documents as

interesting for further investigation at a later time. The user might consider different

documents as important for various reasons (e.g., images, content or authors). Thus, the

user can tag the documents by using a color tagging system (which supports three colors).

Tagged documents are managed as a subset of the entire document corpus, which in turn

can be further examined. Depending on the current state of the exploration process, the

distinct views can be utilized for different tasks. The system aims to support the user in

three ways:

19

20 Chapter 3. Concept

1. Find documents of interest within the document corpus.

2. Discover new documents that have relations with previously found documents.

3. Find new relations and commonalities in the subset of interesting documents.

The following sections describe how the different views support the user in the afore-

mentioned tasks. Note, at any time it is possible to switch between views. For illustration

purposes, mock-up screenshots of previous design iterations are presented in this chapter.

3.2 Finding Relevant Documents

Since documents can be important to the user for various reasons, the system provides

different options for querying the collection. The two main options for finding an initial

set of interesting documents are explained in this section.

3.2.1 Text Queries

To find documents that are of interest to the user, Doxplorer provides the user with a

text-based query system. Different term modifiers, such as wildcard searches and Boolean

operators enable effective querying of large text corpora. Figure 3.1 shows an early sketch

for the SearchView. Initially, the SearchView displays all documents for browsing and

is usually the starting point of the exploration process. Within this view, the user can

initiate text-based search queries and tag interesting documents. After a search query was

entered, a full-text search starts and the top results for the specified query are presented.

The user can then inspect single documents from the results in a different view (i.e.,

InspectView), open them in a Portable Document Format (PDF) viewer or directly tag a

specific document as important.

3.2.2 Image Queries

As mentioned in previous chapters, images, especially in the field of data visualization,

can be a critical factor when deciding the importance of a document. The design of the

ImageView resembles the SearchView in structure. This means that an image list of all

documents, which the user can browse through, is displayed. By selecting an image from

the image browser or by uploading a local image, the user can initiate an image search.

The 50 top most similar images and their respective similarity scores are returned and

displayed in descending order. Of course, the list also indicates to which document a

certain image belongs. Naturally, when considering an image as important the user can

tag the associated document for further examination.

3.3. Discovering Similar Documents 21

Figure 3.1: SearchView displaying a list of all documents from a collection. The color tagging
system is shown next to each document. Search queries can be entered in the top left.

3.3 Discovering Similar Documents

Finding similar documents is an important task researchers are often confronted with.

However, documents can resemble one another in various different ways (e.g., similar im-

ages, same authors or topics). Since the goal of this thesis is a proof-of-concept system

that aims to combine text and image search with visualizations, we focus on basic simi-

larities, such as authors, year of publication, text and images. There are different ways

for the user to find similar documents when using the Doxplorer system.

3.3.1 Visual Explorer

The VisualExplorerView, see Figure 3.2, sorts the document corpus according to years of

publication. Documents missing this information are put in a separate “unknown date”

category. Documents are depicted by circles within this view. Documents previously

tagged as important are visually emphasized and stored in a subset. When the user

finds new interesting documents in this view, he/she can add them or remove previously

tagged documents from the interest list. By selecting a circle, a document card for the

corresponding document can be opened. The document card shows basic information

about the selected document and provides search functionalities, see Figure 3.3. The

basic information consists of author names, document title and images of the document.

There are three different search options provided by document cards:

22 Chapter 3. Concept

Figure 3.2: VisualExplorerView concept mock-up. Circles depict documents and are sorted
according to their year of publication. A list view, shown on the left, displays previously tagged
documents. Circles representing tagged documents are highlighted visually.

Figure 3.3: VisualExplorerView concept mock-up after selecting a circle. By selecting a circle,
the user can open a document card that depicts core contents of the corresponding document
including authors, title and images.

3.3. Discovering Similar Documents 23

• Author: The user is able to see all authors from a document on the document card

and can search for them within the ExplorerView. Documents written by the queried

author are then visually emphasized and can be further investigated.

• Text: Another feature is the text-based similarity search for finding related docu-

ments. For a detailed explanation on the text-based search see Chapter 4.

• Image: Similarly, the user can initiate an image similarity search by using a document

card. Since a document card displays a list of all images for a given document, the

user can initiate the search by clicking at any image. The documents containing

the most similar images (compared to the selected image) are, then again, visually

highlighted within the VisualExplorerView.

Additionally, this view features a tf-idf based word distribution visualization. The

visualization aims to show the most important key terms for the subset of previously tagged

documents. This should help the user to better grasp the core contents of the selected

subset. This knowledge can be further employed within the RadVizDoc visualization view.

3.3.2 Inspect Documents

Another way to find similar documents is provided by the InspectView, which can be

accessed from various other views (e.g., VisualExplorerView and SearchView). Figure 3.4

shows a design mock-up for the InspectView. The view contains different sub-panels to

provide a concise overview of the different contents from the selected document.

First, there is a summary sub-panel in which summary reports with a prede-

fined sentence number can be generated. The user has the option to choose

the number of sentences for the final summary report and assign special

weights to terms that are more relevant to him/her. Before the summary report

creation, word statistics are presented to aid the user in assigning special weights to terms.

Second, a word cloud sub-panel provides the user with a visual representa-

tion of key terms for a specific document. The word cloud is solely term frequency

based to provide a different perspective compared to the tf-idf based word statistics. In

addition, a separate abstract and conclusion panel gives an overview of the core contents

of a document by showing the authors, title, abstract and conclusion (if present). In

addition, a list containing all images from the document is displayed at all times within

this view.

After inspecting a document with the InspectView, further text-based search

queries or image searches can be conducted in order to find similar documents with the

newly gained knowledge.

24 Chapter 3. Concept

(a) mock-up for concept of InspectView showing the abstract and conclusion panel.

(b) mock-up for concept of InspectView showing the tag cloud panel.

3.3. Discovering Similar Documents 25

(c) mock-up for concept of InspectView showing a summary report of the
document.

Figure 3.4: Different sub-panels of the InspectView. Previously tagged documents are shown in
a list view on the left.

26 Chapter 3. Concept

3.4 Similar Documents and Subset Exploration with Rad-

VizDoc

Another option to find similar documents with our system is by using the RadVizDocView.

Initially, this view was integrated in the InspectView. However, since the RadVizDoc

visualization is applied to the entire subset of interesting documents rather than a single

document, we decided to implement it in a separate view called RadVizDocView. This

view utilizes a visualization technique that is inspired by the traditional RadViz layout

which is a radial projection method [30]. Generally, in this visualization anchor points

(representing dimensions) are positioned in a circular order and “pull” data points by using

Hooke’s Law of physics which allows for multi-dimensional data points to be mapped onto

a plane [27]. Figure 3.5 shows the basic RadViz layout, with S1 to S5 as anchors depicting

dimensions and point u representing a single data point being pulled by the anchor springs.

However, in our visualization anchor points do not depict single dimensions but specific

data items/queries. An example for such a data item would be an image or a specific text

query.

Figure 3.5: Definition of a basic RadViz layout taken from [27]. Anchor points S are positioned
in a radial layout, pulling data point u with the attached strings by using their previously assigned
forces.

3.4. Similar Documents and Subset Exploration with RadVizDoc 27

3.4.1 RadVizDoc

In Figure 3.6, a draft illustrates the initial idea for the RadVizDoc visualization method.

The visualization is supposed to provide the user with an interactive way to query the

system and provide visual feedback on how queries are related to a subset of previously

tagged documents. RadVizDoc enables the user to combine and use multiple queries

at the same time on a given subset and visualize the results. For this objective, the

visualization relies on three different objects. Those objects are called rings, anchors

and elements.

• Rings: There are four different types of rings; namely, image-rings, text-search-

rings, author-rings and summary-rings. Anchors can be created and attached to

rings. However, anchors must have the same data type as their parent ring, otherwise

they can not be attached. Existing rings can be rotated, activated, deactivated and

deleted.

• Anchors: An anchor basically represents a single query to the subset of interesting

documents. There are four different query types which an anchor can represent.

Those types are the same as for rings. Anchors can be freely moved around their

parent ring. Of course, they can also be removed from a ring.

• Elements: Elements represent the documents from the subset and each element

depicts a single document. At the beginning, elements are spawned on the inside

of the most inner circle. When the querying process is initiated, the elements are

pulled by the anchors of the rings. Hovering over an element displays the title of the

document it is associated with. Moreover, it shows connections from the element to

all active image anchors along with their forces since image anchors can be harder

to interpret than other types of anchors.

When rings are rotated or anchors are moved, the elements get repositioned. The way

that the elements travel is visually indicated by path lines. Rings in combination with

their anchors describe the current configuration of the visualization. The subset can be

stored together with different configurations as part of a history function. In order to

do so, the user can create a “history” and take different visualization snapshots which

can be saved and loaded at a later time. It is also possible to use rings of different data

types at the same time. This, for instance, provides a way to combine full-text and author

searches. The user also has the option to select how many anchors can simultaneously

pull on a single element. For example, the user can set the option that only the top three

highest scoring image anchors of an element influence it. Of course, the top three anchors

differ for each element. This feature can provide useful insights for the subset and can

help to separate the subset into different categories or clusters.

28 Chapter 3. Concept

3.4.2 How to Use RadVizDoc for Finding Similar Documents

Generally, there are different ways how to find similar documents with this interactive

visualization. One can, for example, select all documents from a certain year as subset.

This subset then can be investigated within the RadVizDocView visualization. The user

has the possibility to group different anchors together to find similar documents. Elements

which are drawn to the same anchors have a good chance of being related with one another.

Another example would be to use a summary or images from a certain document as

anchors. Thus, elements drawn to those anchors can be considered similar to the document

from which the information was taken.

3.5 Finding Relations

Relations among documents within subsets can also be found by using the RadVizDocView.

By placing different anchors and starting the query process one can find relations among

documents by evaluating the positions of the elements and how they are repositioned

when certain configuration parameters are changed. Additionally, similar configurations

can be used on different subsets to compare them. By limiting the amount of anchors that

simultaneously pull on elements it is also possible to divide the subset of documents in

different content categories. For example, if elements are set to be only pulled by the top

two highest scoring search queries, every element ends up on a line between two anchors.

Consequentially, documents which are on the same line can be considered as being related

with respect to the existing queries. This means that we can visualize similarity categories

or clusters. Elements which stay at the origin might be related in other ways but have

nothing in common with anchors in the current setting.

3.5. Finding Relations 29

Figure 3.6: Intermediate mock-up of the basic RadVizDoc visualization idea.

4
Implementation

Contents

4.1 Overview . 31

4.2 Java and Graphical User Interfaces with JavaFX 32

4.3 Document Information Extraction 32

4.4 Indexing and Searching of Texts and Images 33

4.5 Text-Based Similar Document Search 34

4.6 Document Summary Creation . 34

4.7 Word Clouds and Word Distributions of Documents or Subsets 36

4.8 Abstract and Conclusion Extraction 37

4.9 RadVizDoc . 37

4.10 Final Doxplorer Interface . 44

4.1 Overview

This chapter is devoted to explaining the tools and algorithms that were used to realize

the concepts described in Chapter 3. On top of that, screenshots of the implemented

system are presented to provide the reader with a better understanding. Since the focus

of this thesis lies on the combination of various tools, rather than the tools themselves,

some tools are realized by basic methods and algorithms in order to stay within the scope

of the thesis.

31

32 Chapter 4. Implementation

4.2 Java and Graphical User Interfaces with JavaFX

Due to the support of different Natural Language Processing (NLP) libraries and

various frameworks, such as DKPro1, Java2 is a good choice for building a document

retrieval system. Furthermore, Java is a compiled language which makes it faster

compared to interpreted languages such as Python3. This is an additional advantage

especially for digital libraries that deal with large data collections where performance

is crucial. According to their official website, Java is the number one programming

language used by millions of developers worldwide. Moreover, Java provides very

sophisticated libraries and frameworks for implementing Graphical User Interfaces (GUIs).

Consequently, Java promised to be a good choice for the implementation part of this thesis.

JavaFX4 is an extensive framework for creating modern and rich GUIs for

Java applications and was used for implementing the graphical interface of the system.

The framework supports a variety of different graphical components (e.g., scroll-panes,

buttons, radio-buttons, split-panes) and allows the installation of different community

developed libraries and other frameworks. One of those libraries, which was also used

for this thesis, is JFoenix5 which provides components in material design for JavaFX

applications.

4.3 Document Information Extraction

For this thesis we used the VAST paper collection [17] from past years (2006-2012, ex-

cluding 2011) as document corpus. The first step was to extract all the necessary data

from each document. In order to extract text, title, year, authors and images of each

Portable Document Format (PDF) paper, we used Apache PDFBox6. Apache PDFBox

is an open source library that enables data extraction, manipulation and creation of PDF

documents. Since PDF documents can differ strongly in format and may have corrupt

formats depending on how they were created, in certain cases the image extraction can

sometimes be faulty. Thus, detected images below a certain size (200 pixels in height or

width) are discarded to keep the number of faulty images at a minimum. The extracted

texts are automatically stored in plain text format as text files and images are stored in

Portable Network Graphic (PNG) format in a separate folder.

1https://dkpro.github.io/dkpro-core/
2https://www.oracle.com/java/
3https://www.python.org/
4https://openjfx.io/index.html
5http://www.jfoenix.com/
6https://pdfbox.apache.org/

https://dkpro.github.io/dkpro-core/
https://www.oracle.com/java/
https://www.python.org/
https://openjfx.io/index.html
http://www.jfoenix.com/
https://pdfbox.apache.org/

4.4. Indexing and Searching of Texts and Images 33

4.4 Indexing and Searching of Texts and Images

In order to efficiently search for texts and images, the system uses different libraries that

allow us to index the extracted data. The following two sections describe how indexing

was implemented within the system.

4.4.1 Text Search and Indexing

Querying a document corpus should be fast and efficient. Hence, searching through each

text file separately when a text query is issued is not sufficient. For this purpose sophis-

ticated and extensive libraries, such as Apache Lucene Core7, were developed. Lucene is

a well known search library that, according to their official website, is even used by sites

like Wikipedia or Twitter. Of course, many other applications use Lucene Core as well.

It is easy to implement, has an extensive documentation and provides a lot of features.

Lucene uses inverted indexes and provides different compression modes for fast and effi-

cient data storage. As a result, using Lucene Core for indexing and searching texts was a

very promising option.

Therefore, after text extraction we use Lucene to index the texts along with other meta

data that was extracted by using PDFBox. In order to provide the system with as much

meta data as possible, we additionally used the extracted meta data from [17] for our

data set. Lucene is able to store different fields when writing an index and the user can

issue queries to specified fields. Hence, Doxplorer uses five different fields, namely, content

fields, author fields, title fields, document title fields and date fields. Author fields store

the authors’ names of a document, while title fields and document title fields are concerned

with the file names and document titles. Date fields are responsible for storing the year

of publication of documents.

4.4.2 Image Search and Indexing

When dealing with document collections, it is especially important for the image

comparison to not take too much time. For this reason, we decided to use LIRe8 (Lucene

Image Retrieval) for Content Based Image Retrieval (CBIR) within the system. LIRe

is a widely used open source Java library for image retrieval based on Lucene. Since

it uses a light weight text search engine there is no need for a dedicated database

server which makes it easy to implement LIRe in applications, especially in prototype

applications [21]. The performance and ease of integration make LIRe to one of the best

CBIR libraries for Java. Therefore, LIRe is used by many enterprise applications and

according to their official website:

7https://lucene.apache.org/
8http://www.lire-project.net

https://lucene.apache.org/
http://www.lire-project.net

34 Chapter 4. Implementation

“LIRE is successfully used at the WIPO, a United Nations Agency, to search in

millions of trademark images and the Danish National Police to find similar scenes and

to detect near duplicates” [20].

The library uses Lucene indexes for storing image features to enable fast and

efficient content based image retrieval. LIRe offers a variety of state of the art image

descriptors, for example, Fuzzy Color and Texture Histogram (FCTH), MPEG-7 (color

layout, edge histogram, scalable color), Tamura texture features, Color and Edge

Directivity Descriptor (CEDD) and more as described by M. Lux et al. [21]. After trying

various descriptors, we decided to use FCTH for our system. Note, that depending on

the domain and visual information, other descriptors could perform better on other data

sets. As described by Chatzichristofis and Boutalis [5], FCTH descriptors are low level

features limited to 72 bytes that combine texture and color information of an image in a

single histogram. The limitation in bytes makes FCTH descriptors well suited for large

image collections as described by Chatzichristofis and Boutalis.

4.5 Text-Based Similar Document Search

Initially, we implemented this part by creating term frequency vectors of documents and

calculated the cosine angles in order to receive similarity scores. After the calculation,

the ten most similar documents to a given query document were highlighted in the Ex-

plorerView. However, this implementation did not aid the exploration process the way we

hoped. This method had a too strong emphasis on writing style as compared to semantic

content. Thus, we came up with new ideas on how to find similar documents which led

to the current implementation. At the start, the system calculates the tf-idf scores for all

terms of the given query document. Afterwards, it takes the ten highest scoring terms

which are then passed on to Lucene as a standard text query. Then, we take the top five

hits returned by Lucene and highlight them in the ExplorerView. This implementation

has more focus on core information which helps to find documents with similar content.

4.6 Document Summary Creation

As described in Chapter 2, there are many different types of algorithms and approaches

for creating summaries. After researching different algorithms we decided to use

SumBasic as described in [47] because summaries are only a small part of our system and

not the main focus. This decision was made because SumBasic has a good performance

due to its simplicity while it still provides good results.

L. Vanderwerde et al. [47] created enhanced versions of the SumBasic algo-

rithm with sentence simplification and lexical expansion; yet, the Recall-Oriented

4.6. Document Summary Creation 35

Understudy for Gisting Evaluation (ROUGE) results they achieved on the Document

Understanding Conference (DUC)9 data sets of 2005/2006 did not significantly

outperform the basic algorithm (5% in one case). Nevertheless, according to their paper,

the submitted system was ranked first against 21 other systems when comparing user

summaries against system summaries. Furthermore, they competed against 34 systems

and made the third place for the topic receptivity of their system [47].

Those results also indicate how well the basic version of the algorithm already works

compared to other systems. T. Uçka et al. [46] compared state of the art summarization

methods with their own system, where we can also see the performance of the SumBasic

algorithm as shown in Figure 4.1.

Figure 4.1: Comparison of different summary methods on the DUC data set of 2002 by T. Uçka
and Ali Karcı [46].

4.6.1 SumBase Algorithm

As described in [47], the algorithm has four different steps. Steps 2-4 are repeated until

the desired summary length is reached.

1. Compute the probability distribution for each different word wi of the input text

which is done by:

p(wi) =
n

N
, (4.1)

where N is the total number of words contained in an input text, and n is the number

of times word wi occurs.

9https://duc.nist.gov/

36 Chapter 4. Implementation

2. Calculate a relevance score for each sentence Sj with:

R(Sj) =
∑

wi∈Sj

p(wi)

|{wi|wi ∈ Sj}|
(4.2)

3. Choose the highest scoring sentence which also includes the word with the highest

probability.

4. For each word contained in the previously chosen sentence update its probability

with:

pnew(wi) = pold(wi)pold(wi) (4.3)

Before applying the algorithm we use lemmatization in order to map different forms

of each word to single tokens. We realize this task with the LanguageTool Lemmatizer

provided by the DKPro [10] framework. DKPro10 provides developers with a collection of

different NLP software components that can be used together in pipelines. Since DKPro

allows the user to create and integrate custom components, we decided to implement the

SumBase algorithm as such. The final pipeline consists of four steps:

1. Reading the text file.

2. Segmenting the input text by using the LanguageTool Segmenter from DKPro.

3. Performing lemmatization on all segments.

4. Applying SumBase while using the lemma words as substitutes for the original terms.

Before initiating the summary creation process, the user is presented with a word

distribution of the selected document where he/she can assign special weights to terms.

Section 4.7 describes how those word distributions are created. This allows the user to

alter how the summary report is generated. Furthermore, the user can choose how many

sentences the final summary report contains and whether sentence scores are normalized

during calculation or not. The final summary report displays the sentences in the same

order they appear in the original document. Additionally, the report shows the corre-

sponding sentence score next to each sentence.

4.7 Word Clouds and Word Distributions of Documents or

Subsets

Word distributions are displayed in only two cases: 1) Before creating a summary of a

single document in order to modify term weights. 2) To help the user find key terms

of the current subset in the VisualExplorerView when pressing the “Show Word Dist.”

10https://dkpro.github.io/dkpro-core/

4.8. Abstract and Conclusion Extraction 37

button. Words are presented in descending order with respect to their tf-idf weights. The

word distribution calculation handles the set of tagged documents like a single document

which means we add the tf-idf weights of equal terms from different documents.

We also decided to provide a word cloud generation that is based on Term Frequency

(TF) for single documents. This can be of further help to identify topics or terms of

a document. This task was implemented by using the Kumo11 library for Java which

provides an extensive, easy to use word cloud creation API. Before creating the word cloud,

we remove basic stop words from the term list. Afterwards, we use Kumo to generate a

word cloud and save the result as an image file. The image file is then displayed within

the Doxplorer system.

4.8 Abstract and Conclusion Extraction

The VAST data set that we are using includes XML file versions of all PDF documents.

Therefore, we parse the XML files with the Java Document Object Model (DOM) parser

in order to extract and show the abstracts and conclusions of documents if the respective

tags are present. In case there is no abstract or conclusion tag contained in the XML file,

a message is shown instead which informs the user about the absence of the specific text

passage.

4.9 RadVizDoc

The next two sections are about how the different components of the RadVizDoc visual-

ization were implemented. Furthermore, the implementation of the general algorithm and

component interaction is described. The third section provides a description of the history

function implementation. All graphical and visual parts of this visualization were realized

by using basic JavaFX components.

4.9.1 Components

As previously mentioned in Chapter 3, there are four different types of rings and anchors.

First, we are going to have a look at the different rings. Basically, rings can be created or

deleted at any time while using the visualization. When creating a new ring its radius is

always larger than the radius of already existing rings. Consequentially, rings are layered

on one another. Additionally, all rings have the origin of the visualization pane as center.

The visualization origin (0,0) denotes the center of the visualization pane if not stated

otherwise. Each ring contains a list of all anchors attached to it. An image ring, for

instance, can only have image anchors attached to it. Furthermore, a ring comprises a

unique numeric identifier and a graphical circle which is used for visualizing the ring. A

11https://github.com/kennycason/kumo

38 Chapter 4. Implementation

ring keeps track of its identifier and radius which is changed when inner rings are deleted.

Associated anchors can be moved freely on the respective ring by dragging the anchors

with the mouse. Additionally, rings can be rotated which also repositions the anchors

of the rotated ring. Further, it is possible to distribute the anchors around their parent

rings by using the “Distribute Points” button. This function uses the following formula

for anchor distribution:

Ri = i · 360

N
for i = 0, ..., |Cj | (4.4)

where:

1. Ri represents how many degrees anchor i needs to be rotated around the center of

its parent ring.

2. Cj denotes the anchor set for a specific ring.

3. N depicts the maximum number of anchors any ring has in the current configuration

with N = max {|Cj | : Cj ∈ V } where V denotes the set of rings.

Furthermore, rings can be activated or deactivated, which influences if the anchors of

a ring are taken into account when positioning elements. Naturally, rings can also be

deleted if they are not needed any longer. If a ring is deleted, all associated anchors

are removed as well. However, a ring has to be selected in order to perform those

interactions. At any time there is always at most one “currently selected” ring. Users

can select a ring by simply clicking on it. The “currently selected” ring is always visually

highlighted. Further, rings of the same type also share the same color.

Next, we are going to explain anchors in detail. The specific implementation differs

slightly depending on the anchor type. However, for the most part the distinct anchors are

implemented in a similar way. Basically, an anchor includes a graphical circle, a reference

to the parent ring and an event handler. The last important information held by an anchor

is the associated query data which is used for pulling the elements when computing their

positions later. This query data can be of type string (for summaries, authors and queries)

or FCTH (for images). The event handler ensures that the anchor always sticks to its

parent ring when being dragged by the user. This is achieved by calculating

xi = x · r√
x2 + y2

(4.5)

and

yi = y · r√
x2 + y2

(4.6)

where:

1. x and y denote the current mouse coordinates.

4.9. RadVizDoc 39

2. xi and yi are the new coordinates of anchor i.

3. r is the radius of the parent ring.

Figure 4.2: RadVizDoc showing images of image anchors.

Author anchors and text search anchors can be created by pressing the “Add Point”

button. The user is requested to enter author names or search terms depending on the

selected anchor type. However, summary anchors and image anchors are created in a

different way. Depending on the currently selected ring, the system displays either

images and relevant terms of tagged documents or previously created summary reports

in a list view. By clicking on summaries, terms or images, the user can generate different

anchors. Note, that anchors for search terms are the only ones that can be created in

both ways. When an author ring is selected, the user still has the option to create

search term anchors, image anchors or summary anchors in this way, depending on

which type of ring was selected last. The system displays query information (texts or

images) of anchors when the user hovers over them. Additionally, the user can display

40 Chapter 4. Implementation

Figure 4.3: RadVizDoc showing texts of search query anchors.

this information for all anchors at the same time, for example, by pressing the “Images”

button to show all anchor images (see Fig. 4.2 and Fig. 4.3).

Elements are the last major component used for the RadVizDoc visualization. Each

element in the visualization represents a single document contained in the subset of tagged

documents. Elements hold the most information out of all three main components includ-

ing:

• A graphical circle element representing the document within the visualization.

• A reference to the indexed document itself.

• Four different maps for each anchor type (author, summary, image, search query).

The maps store pairs of vectors and influences. Each vector describes the position

of a single anchor in relation to the origin/center of the visualization. The influence

value of a vector describes how strong an anchor “pulls” on a specific element.

4.9. RadVizDoc 41

• A color reference. Since the user can tag documents as important for different

reasons they can be marked in three different colors. Furthermore, the user can

assign a special color to elements in order to track them during the visualization.

The elements can not be directly repositioned by the user since the position of elements

is calculated by the algorithm and depends on the configuration of the rings and anchors.

However, elements can be marked with a different color in order to track them when

changing the ring and anchor configuration. In addition, the user can toggle tooltips

that display the document titles for all elements by pressing the “Elements” button (see

Figure 4.3).

4.9.2 Algorithm

As an overview, the algorithm can be described in three steps:

1. Spawning elements representing tagged documents at the origin.

2. Calculating vectors from elements to anchors and their respective influences.

3. Moving elements to calculated positions according to vectors and their influences.

Before initiating the algorithm, a ring and anchor configuration has to be created.

After establishing a satisfying configuration, the user can select the number of top scoring

anchors simultaneously pulling on elements. Moreover, the user can set an “average

image comparison” option for the algorithm. This option is turned off by default. A

detailed explanation of what this option changes is discussed later in this section.

Now, let us see how the algorithm works. At first, the algorithm spawns an element

for each tagged document in its respective color (blue, yellow, green). Subsequently,

the algorithm iterates over all elements to calculate their correct positions within the

visualization for the given configuration. Therefore, for each element we iterate over all

rings of a certain type, for example, image rings and their corresponding anchors. Then,

an influence vector pair is created specifically for each anchor. Each of those vectors

describes the direction from the origin to a specific anchor. Since each ring has a different

radius to support clarity within the visualization, the vectors of anchors of distinct rings

have different lengths. Thus, all vectors are adjusted to have the same length. The

influence calculation for a specific anchor naturally depends on its type. Since the user is

provided with different configuration options for the algorithm, the influence calculation

varies based on them. For image vectors the default influence calculation looks as follows:

Iij = 1− dij −minik

maxik −minik
(4.7)

where:

42 Chapter 4. Implementation

1. Iij is the influence of image anchor j for element i.

2. dij is the Euclidean distance of the FCTH image feature vectors of anchor j and

element i.

3. minik is the minimum Euclidean distance out of all image anchors for a certain

element i given by: minik = mink′∈A dik′ , where A is the set of all image anchors.

4. maxik is the maximum Euclidean distance out of all image anchors for a certain

element i given by: maxik = maxk′∈A dik′ , where A is the set of all image anchors.

Note, that a document can comprise more than one image. Thus, in the default

version dij describes the smallest Euclidean distance found when comparing every image

of a document with the anchor image. In case that “average image comparison” is selected,

the algorithm does not take the smallest distance found but averages all image distances

of a single document to a specific image anchor. The rest of the formula stays the same.

Generally, the influence formula for the other types of rings is similar with:

Tij =
rij −minik

maxik −minik

where

1. Tij is the influence of a text-based anchor j for element i.

2. rij is a specific relevance function for an anchor j and element i and depends on the

type (summary, author or query).

3. minik is the lowest relevance score out of all anchors of the same type for a certain

element i given by: minik = mink′∈A rik′ , where A is the set of all anchors of a

certain type.

4. maxik is the highest relevance score of out of all anchors of the same type for a

certain element i given by: maxik = maxk′∈A rik′ , where A is the set of all anchors

of a certain type.

As we can see, the only difference compared to image rings is that we have a relevance

function instead of a distance function, which, of course, needs to be taken into account in

the influence formula. The reason for this distinction is that we use LIRe for fast state of

the art image retrieval, which always returns distance scores between the query image and

other images. However, text-based queries are handled by Lucene which returns relevance

scores instead of distances. Now, let us have a look at the distance and relevance functions

for the different anchor types.

• Image anchor: Here we have two options, as described before: (1) Smallest Euclidean

distance found between query image and all document images. (2) Average Euclidean

distance between query image and all document images.

4.9. RadVizDoc 43

• Summary anchor: Lucene score for an entire summary report that is converted into a

query. Lucene calculates the score for the query to a single document which belongs

to the corresponding element. Stop words are removed before issuing the summary

report to Lucene.

• Author anchor: Authors are indexed in their own field. If this field contains the

queried author name the system returns 1, otherwise 0 is returned.

• Text search anchor: Lucene score for a specific query to a single document which

belongs to the respective element.

We apply this process to calculate vector influence pairs for each element with all

anchor types. Now we need to calculate how to position the elements according to each

anchor type. Let
−→
A be the anchor vector set of a single element for a certain type of query.

Then, with I as the influence set of those anchors we get the vector −→u for positioning the

element by:

−→u =

∑n
i

−→
AiIi∑n
i Ii

After calculating the position of an element for all anchor types, we need to merge the

different positions together in order to obtain the final position. Therefore, depending on

the number x of distinct types of activated rings, we need to scalar multiply each vector

by 1/x before adding them up. This means, for example, that if two different ring types

are active each of them has 50% influence on elements. Element positions are always

calculated and updated in the following cases:

• A ring was rotated.

• A ring was deactivated/activated.

• The “Reposition Elements” button was pressed.

• The “Spawn Elements” button was pressed.

4.9.3 History and Snapshot Function

The history function stores a snapshot collection of previously created RadVizDoc con-

figurations. A history comprises different “snapshots” where each snapshot contains a

single XML file and an image. The image is a screenshot that shows how the visualization

looked during the snapshot creation time. In addition, the XML file contains all infor-

mation needed to restore that specific state. This information includes all rings, anchors,

and documents that were tagged at that time. Furthermore, ring rotations and anchor

positions are stored in order to recreate the exact configuration when loading a snapshot.

The XML files are created by using the Java DOM parser. The user can select different

44 Chapter 4. Implementation

Figure 4.4: Snapshot selection menu after choosing a history.

histories and load a specific snapshots of any history. After selecting a history, the system

shows a list which contains all snapshots of that history along with their corresponding

images. When the user creates a history, a default snapshot of the current visualization

state is created. Afterwards, the user can create new snapshots that are automatically

stored for the current history. The user can create a new history at any time. Figure 4.4

shows an example of the snapshot selection menu.

4.10 Final Doxplorer Interface

This section provides figures depicting the final state of the system.

4.10. Final Doxplorer Interface 45

Figure 4.5: SearchView of the Doxplorer system.

Figure 4.6: ImageSearchView of the Doxplorer system.

46 Chapter 4. Implementation

Figure 4.7: VisualExplorerView of the Doxplorer system.

Figure 4.8: VisualExplorerView of the Doxplorer system after opening a document card.

4.10. Final Doxplorer Interface 47

Figure 4.9: InspectView of Doxplorer showing summary creation menu.

Figure 4.10: InspectView of Doxplorer showing generated summary report.

48 Chapter 4. Implementation

Figure 4.11: InspectView of Doxplorer showing a word cloud.

Figure 4.12: InspectView of Doxplorer showing abstract and conclusion of a given document.

4.10. Final Doxplorer Interface 49

Figure 4.13: RadVizDocView of Doxplorer with example configuration.

5
Application

Contents

5.1 Use Cases . 51

5.2 Scenarios . 58

This chapter comprises two different sections. The first section of this chapter is

dedicated to illustrate general use cases for Doxplorer. Afterwards, application scenarios

of Doxplorer on the VAST data set are demonstrated and evaluated.

5.1 Use Cases

This section describes different use cases for Doxplorer. In total, there are five different

use cases which are listed within this section. Note, that the first two use cases are small

but crucial for the exploration process. They are also part of the larger use cases following

them. In order to avoid too many different use cases, less important ones, such as summary

creation, are comprised in the larger use cases which are more general. Before the first use

case, we give an overview of the workflow how the different views are indented to work

together.

51

52 Chapter 5. Application

5.1.1 Workflow

First, the SearchView and the ImageSearchView are used to create an initial subset of

interesting documents. Further, the VisualExplorerView can be used to find documents

that are similar to documents of the current subset by using document cards and similarity

searches. The aforementioned similarities can be image-based, text-based, year-based or

author-based. Document cards of this view also enable the user to swiftly grasp the core

contents of documents. A term statistics view within this visualization also provides the

user with the most important terms from the current subset. After generating a subset,

the user can investigate it by using the RadVizDocView. This view allows the user to find

relations among documents and created anchors. Furthermore, it can help the user to

cluster or categorize documents according to different queries (which can depict different

information). Lastly, the user can use the InspectView which can be opened from within

any other view. This view has a supporting role and should always be used if the user

needs more information about a document in order to decide if it is relevant.

5.1.2 Keyword Search

The user wants to query the system for relevant documents from a given collection

by entering search terms. The results should be returned in real time, even for

large document collections. Search terms can be entered in form of single words

or phrases. Boolean operators, proximity searches, range searches, term boosting

and wildcard searches (term modifiers) are supported. At the beginning of the ex-

ploration process, this functionality is crucial for finding relevant documents in a collection.

Main Scenario (see Figure 5.1)

The user opens the SearchView which shows a list of all documents from the collection.

Next, the user enters search terms of interest. In succession, the system returns the top

results for the provided query and updates the list. The items are shown in descending

order according to their calculated scores. Afterwards, the user can select and mark

documents with a color, which adds them to the current subset of interesting documents.

Of course, this process can be repeated for as many queries as needed. Queries can be

nested, connected with Boolean logic and more. Figure 5.1 lists the different query features

provided by Lucene.

5.1. Use Cases 53

Figure 5.1: Use Case Diagram: Keyword Search.

5.1.3 Image Search

The user wants to query the system for relevant documents of a given collection based

on images. Results should be returned in real time, even for large document collections.

Search images can be uploaded by the user or selected from the document collection.

This functionality is important to find documents that might include visual information

that is relevant to the user. Further, this can help the user to find documents that use

the same frameworks or interfaces in figures.

Main Scenario

The user opens the ImageSearchView which allows him/her to browse all images from the

collection. He/she can initiate an image search by clicking on an image or by uploading

one. Afterwards, the system updates the list by showing the top results in descending

order. Furthermore, the calculated image distances are shown next to the images. In the

top left, the user can see the query image. Next, the user can mark documents that contain

relevant images within this view which adds them to the subset of interesting documents.

Naturally, the user can perform as many image searches as needed.

54 Chapter 5. Application

5.1.4 Finding Similar Documents with “Inspect” and “Search”

The user has a document and wants to search the collection for similar documents. This

goal can be achieved by using the InspectView combined with the SearchView and

ImageSearchView. The InspectView offers a variety of different tools. For instance,

the user can generate summary reports, word clouds, word statistics or even extract

abstracts and conclusions from documents. These features help to extract knowledge for

finding similar documents.

Main Scenario (see Figure 5.2)

The user can open the InspectView from any other view. This can be done by selecting

a document from any list and pressing the “Inspect Document” button. In the Visual-

ExplorerView, the user can also switch to the InspectView by opening a document card

and pressing the “Inspect Document” button from there. At first, this view displays the

summary generation menu or a previously created summary report if there exists one.

The summary report can help the user to understand the core contents of the document.

Furthermore, in this view, the user can also generate a word cloud, or read the extracted

abstract and conclusion from a document if they exist. Lastly, the user has the option to

open the full document from within this view, if he/she has a Portable Document Format

(PDF) viewer installed. By using these features, the user can gain new insights into doc-

ument contents. This enables the user to discover relevant key terms, that can be used to

find similar documents by using the SearchView. Moreover, the InspectView also provides

the user with all images from the inspected document. This may help to find interesting

images which can in turn be issued to the ImageSearchView to find documents with simi-

lar images. The user can iteratively inspect documents and create queries with the newly

acquired knowledge. This helps to further refine the subset of interesting documents.

5.1. Use Cases 55

Figure 5.2: Use Case Diagram: Find Similar Documents with Inspect and Search.

5.1.5 Finding Similar Documents with the VisualExplorerView

The user wants to find similar documents of a collection by using the VisualExplorerView

of Doxplorer. Of course, the VisualExplorerView can switch to the InspectView in order

to analyze single documents, if needed. The VisualExplorerView enables the user to find

documents with similar year of publication, images, texts and authors. The combination

of the aforementioned tools aids the user in refining the subset of interesting documents

even further.

Main Scenario (see Figure 5.3)

After the user has established an initial subset of interesting documents by using the

SearchView and the ImageSearchView, he/she switches to this view in order to find similar

documents. If the user is interested in a document, he/she can select the corresponding

circle in the visualization and open a document card. From there, the user has the option

to perform the use case we described previously. Yet, there are three other options. First,

56 Chapter 5. Application

we have the image similarity search. The user initiates it by selecting an image from a

document card. As a result, circles depicting the top documents with similar images are

highlighted in yellow. The user has then the option to inspect those documents by opening

their document cards. In case the user decides that a document is important, he/she can

mark it with the corresponding color in the document card which adds the document to the

current subset. The user can also initiate an author search from document cards, where

he/she can enter names of authors. Circles of the resulting documents are highlighted

in green. The final option is to select the text similarity button to find the top related

documents in terms of core content. Then again, resulting documents can be marked as

important. This process can be repeated to refine the subset until a satisfactory result is

achieved.

Figure 5.3: Use Case Diagram: Finding Relevant Documents.

5.1. Use Cases 57

5.1.6 Evaluating Subsets with the RadVizDocView

The user wants to find additional relations between previously tagged documents. In

order to find such similarities, the user can use the RadVizDocView. By projecting the

documents on a plane as two-dimensional points that are being pulled by anchor data

points, the user can observe common behaviors among different documents. Those

anchor points can represent different types of data, e.g., images, keywords, authors and

summary reports. As a consequence, the user can identify new coherences between

documents and anchors. Hence, he/she acquires a better understanding of the selected

document subset.

Main Scenario (see Figure 5.4)

The user opens the RadVizDocView to investigate a previously created subset of docu-

ments. Here, the user has the option to create four different types of rings. The user can

add anchors to rings and change the configuration by rotating rings, repositioning anchors,

removing anchors, limiting the amount of top anchors simultaneously pulling and activat-

ing/deactivating rings. Further, the user has the option to manually highlight certain

elements in red which enables him/her to better follow their movement when changing

the configuration. The user evaluates the positions of elements according to anchors and

further observes how those positions change when the configuration is altered. By doing

this, the user can gain new knowledge about document relations within his/her current

subset.

58 Chapter 5. Application

Figure 5.4: Use Case Diagram: RadVizDoc.

5.2 Scenarios

The application of Doxplorer is demonstrated by using it on example scenarios. All sce-

narios are conducted by a fictional character called Alice. In each scenario, Alice has a

specific starting position and goal in mind which she tries to accomplish by using Dox-

plorer. All scenarios were applied on the combined VAST data sets from the years 2006,

2007, 2008, 2009, 2010 and 2012 which sums up to a total of 153 distinct documents.

5.2. Scenarios 59

Disclaimer

Some of the scenarios show image-based or contextual results retrieved by using the system

on the previously defined data set. For pragmatic reasons, we refrain from providing

specific references for every paper where the scenario results stem from. All scenario results

were retrieved from the IEEE Conference on Visual Analytics Science and Technology

(VAST) papers submitted in the years 2006, 2007, 2008, 2009, 2010 and 2012.

5.2.1 Scenario 1

Alice is interested in different visualization topics and wants to investigate if she can find

trends across different years. In this scenario, Alice decides to compare the VAST paper

data sets from 2006, 2007 and 2008. Instead of conducting a basic text search, Alice

decides to use RadVizDoc for the text search to perform multiple queries simultaneously.

She uses the coloring system to visually differentiate papers according to their year of

publication (2006 blue, 2007 yellow and 2008 green). Alice uses Boolean logic in order

to create anchors resembling different topics. Some of the terms Alice comes up with by

herself and the rest she finds by using the word statistics and word clouds provided by the

other views of Doxplorer. Alice decides on the following five anchors depicting topics:

• visual AND analytics AND decision AND information AND interaction

• time AND events AND temporal AND series

• text AND words AND document AND terms

• graph AND network AND nodes

• clustering AND algorithm

By using Boolean logic, Alice ensures that documents that are being pulled by an

anchor contain all of its topic key words. Alice finds out that only 13 documents include

all terms of three distinct topics simultaneously. Since most of these documents are barely

pulled by their third anchor, Alice decides to limit the amount of simultaneously pulling

anchors to only two. Figure 5.5 shows the corresponding visualization. In Figure 5.6 we

can see the observation Alice previously made (all documents, except for 13 documents,

contain at most two of the anchor topics). Documents that are on a line between two dis-

tinct anchors can be considered as a cluster formed by two anchors. From the presented

visualizations, Alice gains further insights. For instance, by looking at the elements be-

tween two different anchors, Alice concludes that some topics of the selected subset seem

to be more related than others. For example, on the line between anchor six (“graph AND

network AND nodes”) and anchor one (“clustering AND algorithm”) only two elements

are present. In addition, they are very close to one of the anchors and far away from

the other one. However, both of these anchors seem to be strongly related with anchor

60 Chapter 5. Application

two (“visual AND analytics AND decision AND information AND interaction”). From

the visualizations, Alice can also directly tell that eight documents do not relate to her

custom topics. At the end, Alice decides to remove the Boolean “AND” operators from

the anchor queries in order to receive an overview of the general element distribution over

her handcrafted topics (see Fig. 5.7). This allows Alice, for example, to find out that the

documents from 2006 and 2007 (blue and yellow) tend to be more related to graphs, nodes

and networks than VAST documents published in 2008 (green).

5.2. Scenarios 61

(a) Topics with Boolean logic and only two anchors simultaneously pulling. The number in the
middle shows how many documents are not related to any anchors. Thus, they remain in the
center.

(b) Lines illustrating the anchor connections of the visualization.

Figure 5.5: Example topic relations that Alice found by using the RadVizDocView.

62 Chapter 5. Application

Figure 5.6: Example topic relations that Alice found by using the RadVizDocView. Element
movement is visualized after allowing all anchors to pull simultaneously.

Figure 5.7: Example topic relations that Alice found by using the RadVizDocView. Terms are
used without Boolean operator “AND”.

5.2.2 Scenario 2

After browsing the collection with different search features, Alice ends up with a subset

of 36 tagged documents. However, when tagging documents she did not consider visual

information. Nonetheless, there are three images Alice is now particularly interested in

after inspecting some documents more thoroughly (see Fig. 5.8). One of these documents

is about a multi-screen visualization and Alice wants to know if there are other papers

with similar visualizations or multi-screen setups. Another document is about visualizing

5.2. Scenarios 63

high-dimensional data. Alice likes the visualization very much since she prefers dark

mode visualizations. Hence, this image sparks Alice’s interest in finding other dark mode

visualizations. Although Alice prefers flashy and visually appealing visualizations, she

likes how graph-based charts convey information in a very simple, yet effective, way.

Thus, she also wants to find papers that use line-based charts as visualization method

to know in which domains this technique is applied. For the aforementioned reasons,

Alice decides on the goal to see if there are documents with similar visual information

contained within her previously established subset. Further, she wants to know if there

are other documents that could be of interest which are currently not contained within

the subset.

Figure 5.8: Images of interest to Alice taken from the VAST data set.

As a result, Alice starts by using the RadVizDocView (see Figure 5.9). When

inspecting a few of the elements closest to the most right image anchor, Alice finds

documents with similar visual information. The respective elements are highlighted in

red as can be seen in Figure 5.9.

Alice also finds documents with visual information similar to the top left image anchor,

which are highlighted in red again (see Figure 5.10). In order to find all of those documents,

Alice uses the toggle option for “Average Image Comparison” and observes the movement

of the elements which can be seen in Figure 5.11. Alice concludes that elements drawn

closer to the “darker” image anchors are worth inspecting for both comparison options

64 Chapter 5. Application

Figure 5.9: RadVizDoc configuration with three images. Elements with images similar to the
most right image anchor are highlighted in red.

Figure 5.10: RadVizDoc configuration with three images. Elements with images similar to the
top left image anchor are highlighted in red.

5.2. Scenarios 65

Figure 5.11: RadVizDoc configuration with three images and “Average Image Comparison”
toggled on. Elements with images similar to the top left image anchor are highlighted in red.

(especially when their position changes dramatically after toggling the comparison option).

This is because a document can have multiple images. In single image comparison mode,

the best image for each anchor is considered when calculating its force. Consequentially, if

a document has, for example, ten images it could be that nine of them are very similar to

a specific anchor but one image is extremely similar to another anchor. When calculating

the position for this element, this leads to a large disparity depending on which option is

selected. As a result, Alice finds out that some of the documents drawn to this anchor also

include additional images that are similar to the third anchor. Next, the same strategy

is used to find similar documents for the third image anchor. For this last anchor Alice

finds the most examples. This is of no surprise after seeing that most of the elements

are drawn to this anchor. Alice already figured out that some elements are positioned in

the middle between two anchors, because they contain multiple visually different images.

Furthermore, Alice wants to know if there are documents in the collection, which are not

part of her current subset, that contain similar visual information. Those two reasons lead

Alice to use the ImageSearchView. She initiates an image similarity search for each of the

three images that she is interested in. For each of the three images, Alice is presented with

a list of the 50 top most similar images from the whole collection. Because of the color

tagging system, Alice can see if the document belonging to a specific image is already in

her subset. This allows Alice to swiftly browse through the result images and tag new

documents if necessary. By using the RadVizDocView and the ImageSearchView, Alice

found documents that contain visual information that is related to her interests. While

the ImageSearchView allowed her to find documents that contain at least one similar

image, the RadVizDocView enabled her to find documents that contain images similar to

66 Chapter 5. Application

two different anchors at the same time. Furthermore, the RadVizDocView provided Alice

with knowledge about the average image distances from all images of a document to a

certain anchor. Alice also realized that elements with positions close to each other can

contain similar images (even though, they might not have similar images to the current

anchors). Some example results that Alice found can be seen in Figure 5.12, Figure 5.13

and Figure 5.14.

Figure 5.12: Similar images that Alice found in various documents by using Doxplorer. The first
image, which is emphasized by size, depicts the image of interest. The query image shows a dark
mode 3d visualization for high-dimensional data. The system finds images that are visually similar
to the query image.

5.2. Scenarios 67

Figure 5.13: Similar images that Alice found in various documents by using Doxplorer. The
first image, which is emphasized by size, depicts the image of interest. As we can see, the image
comparison managed to find images that contain interfaces which are similar to the query image.
Interestingly, the comparison also yielded images showing humans in front of displays which is in
strong correlation with the query image.

68 Chapter 5. Application

Figure 5.14: Similar images that Alice found in various documents by using Doxplorer. The
first image, which is emphasized by size, depicts the image of interest. As we can see, Alice also
managed to find similar images in this case. In this example, we can also see that the descriptors
find different visualizations that use colors similar to the query image.

5.2. Scenarios 69

5.2.3 Scenario 3

In this scenario, Alice is interested in graph-based visualization types with nodes and

edges. She wants to find out how this visualization method is used in different areas in

order to get some new ideas for her own research. Alice decides to solve this task by using

the image search functionality of Doxplorer. She starts by using the ImageSearchView

in order to browse the images of the document collection. Then, Alice selects the first

image which she considers relevant and tags the corresponding document. Afterwards,

she initiates a similarity search for this specific image. In the results, Alice finds other

visualizations that fit her criteria. However, Alice notices that in the results are also a lot

of images that do not depict graphs with edges and nodes. This is because other images can

still be visually similar in terms of color and edge connections without them being graphs.

Furthermore, Alice realizes that the graphs can differ strongly depending on the data type

they represent. For example, in one visualization the nodes of the graphs are depicted

by images. Consequentially, Alice initiates new similarity searches for the graphs she

previously found. She continues this process for a few iterations. This way, Alice manages

to find various different kinds of graphs that all fit her criteria. Soon, Alice is in a position

where she has marked various documents that seem relevant to her. She switches to the

VisualExplorerView and inspects the document cards of the previously tagged documents.

Hence, Alice can filter out documents that are not relevant by viewing all their contained

images and other data, such as title. Furthermore, she can also use the image similarity

function from the document cards. This enables Alice to find further relevant graph

visualizations in case she missed any during her initial search. Example images of graphs

that Alice found are shown in Figure 5.19. Further, the VisualExplorerView provides Alice

with an overview of her subset according to year of publication (see Figure 5.15). Note

that the two documents in the “No Date Information” category are also from 2006 even

though they do not contain the specific meta data information (Alice knows this from

inspecting the documents in a PDF viewer).

Figure 5.15: This figure shows the distribution for graph related documents according to year of
publication that Alice previously found by using the image similarity functionality of Doxplorer.

Alice finds out that she discovered various papers with graph-based visual information

that were published in 2006; whereas for the year 2012 she found only two. Alice also

starts to investigate some authors. She notices that a lot of authors appear only once in

the collection. Nonetheless, Alice can still use the authors’ names that she finds to search

70 Chapter 5. Application

for them in other collections. However, Alice also finds authors who seem to be related

to graph visualizations. For example, Alice finds Bongwon Suh and Stuart Card, who

worked together on a paper about a graph-based visualization method. Alice decides to

use the author similarity search in order to find out if they contributed to another paper

from the collection (see Figure 5.16).

(a) Author similarity search for Bongwon
Suh.

(b) Author similarity search for Stuart Card.

Figure 5.16: This figure shows the results of the author similarity search for two authors from
the same paper.

Alice notices, that the resulting documents are already in her subset and inspects the

corresponding document cards. As a result, she finds out that Bongwon Suh also worked

on a paper about understanding the social dynamics on Wikipedia by using revert graph

visualizations. Further, Alice discovers that Stuart Card worked on another paper about

entity-based collaboration tools which utilizes graph visualizations. Another example for

an author, that Alice finds, is Pak Chung Wong, who also appears in two papers that

are already in the subset. One of those papers is about a zooming approach for large

graph analytics and the other one describes an analytics framework for large semantic

graphs. Alice realizes, that by using the author similarity search, she often finds papers

that are already in her subset. This way, she can find authors who focus on graph-

based visualizations. This indicates a correlation between certain visualization types and

authors. As shown in this examples, Alice found overlapping documents by using the

image search functionality and the author similarity search. Furthermore, Alice makes an

additional observation when she continues using the author and image similarity searches.

For example, she opens the document card of a paper that uses a graph-based visualization

technique for large-scale news video databases which can be seen in Figure 5.17.

5.2. Scenarios 71

Figure 5.17: Document card for a paper about visualizing large-scale news video databases.

Afterwards, Alice initiates an author similarity search for this document. She discovers

that the collection contains three documents from this author. However, this time only

one of the papers is contained in her subset of graph related documents. Alice takes a look

at the other two documents. She discovers a relation between all three documents; they

are about visualizing image collections or news video databases. Thus, Alice sees that the

author is not focused on graph-based visualization methods but is interested in the field

of exploring visual information. She learns that the author uses different visualization

approaches for similar types of data in the distinct papers. Alice becomes curious about

one of the papers from this author and initiates an image similarity. To Alice’s surprise,

the image similarity search returns all papers from this author and overlaps with the

author search results (see Figure 5.18). This further indicates a correlation between visual

information and authors. In the end, Alice finds most papers from the collection that are

visually related to graph-based visualizations and also authors that focus on this type of

visualization. Later, by inspecting the documents from this subset, Alice can investigate

in which domains graph-based visualizations are used. Most of the documents that Alice

found covered topics or visualization ideas related to graphs. From her findings, Alice

concludes that, depending on the domain, it is possible to find correlations between visual

information, content and authors.

72 Chapter 5. Application

(a) Results of the author similarity search for Hangzai.

(b) Image similarity search for the first image from a paper by Hangzai, which is about exploring
large-scale video news with an interactive visualization method.

Figure 5.18: This figure shows a correlation between the image similarity search and author
similarity search for papers by Hangzai.

5.2. Scenarios 73

Figure 5.19: Different kinds of graphs contained in the collection, that Alice found by iteratively
using the image similarity search functionality of Doxplorer.

74 Chapter 5. Application

5.2.4 Scenario 4

Alice is provided with a document collection which she has no information about

(still the VAST data set with 153 documents) and decides to find out if there are any

documents that are interesting to her. Alice is interested in topics related to health

and wants to know how visual analytics can be applied in this area. Her goal is to

establish a subset which could be analyzed with RadVizDoc at a later point time.

Thus, she uses the SearchView to query the collection. Alice uses the following query:

(healthˆ4 AND “visual analytics”). This query boosts the term “health” and ensures

that the phrase “visual analytics” also appears in the same document. Alice ends up

with a result list comprising 27 documents and decides to further explore the collection

within the VisualExplorerView. She notices that the found documents are spread across

all publication years. However, especially in the years 2007 and 2010 but also in 2012

there were more documents related to that query than in other years (see Fig. 5.20).

Now, Alice selects one of the highest ranking documents and opens its document card as

shown in Figure 5.21. As a result, Alice can directly perceive that the document is about

visualizing links between human and animal health. For the first two images from the

document card, she initiates an image similarity search (see Fig. 5.22). For the second

image, half of the found documents are already contained in the subset which indicates

correlations between content and images. By using the image similarity search from this

document card, Alice finds a document from 2009 which is about genetic mechanisms

of complex human disorders that is not part of the current subset and adds it. When

searching for the second image of the document card, the most interesting document was

about a use case study on spatiotemporal data associated with the Avian flu. After

inspecting document cards from multiple documents of the current subset, Alice notices

that some of the higher scoring health related visualizations use high-dimensional data

(e.g., see Fig. 5.23). By searching for similar images she finds other documents that are,

for example, from the bioinformatics field and deal with visualizing gene expressions.

Since Alice is interested in the paper about linked human and animal health she initiates

an author similarity search for the first two authors. For example, she finds papers about

mobile devices for emergency responses (e.g., health status of agent), and visualization

methods for syndromic hot spots by using the author search. As a consequence of using

the author search for this paper, Alice also finds out that Ross Maciejewski appears

in two high scoring documents related to health. In both papers, spatiotemporal

visualizations are used. Alice realizes that Maciejewski published two more papers,

one about visual analytics for human decision making and one which describes a novel

visual analytics approach for spatiotemporal and multivariate data. Alice realizes

that the methods proposed in the second document could again be applied in fields

related to health. Alice continues to refine the set of interesting documents by using the

author and image similarity functionalities. In addition, Alice inspects document cards

from documents that were previously tagged, after using the SearchView, and removes

5.2. Scenarios 75

them from the subset if they are not of interest to her. After establishing a base of

interesting documents, Alice initiates a text similarity search for the document which

is about the Avian flu. Most of the returned results are already in the current subsets,

for example, the document about syndromic hot spots. However, Alice finds a new

interesting document by using the text similarity search which is about collaborative

synthesis of visual analytics conducted in collaboration with disease biologists where the

task of finding the origin of an influenza outbreak is simulated. Moreover, the similarity

search helps Alice to find a document which is about understanding multi faceted text

corpora of, for example, patient records. Alice continues to use text similarity searches

on the documents which are most relevant to her. She also obtains an understanding of

correlations between documents in the subset when using the text similarity function.

In the end, Alice establishes a subset which is about visualization techniques for multi-

variate data, spatiotemporal data and collaborative visualization of analytic results which

can all be applied to the field of human health or human rescue. While creating this

subset, Alice already acquired a good overview of the documents which are relevant to

her from this collection. While at the beginning it looked like there are not many papers

related to health, Alice found out that multiple interesting documents are related to this

topic in some way even though they do not directly include the term “health”.

Figure 5.20: VisualExplorerView showing the distribution of documents related to query:
healthˆ4 AND “visual analytics” over the year of publication. Particularly high percentage of
documents related to the provided query in the year 2007.

76 Chapter 5. Application

Figure 5.21: VisualExplorerView showing an overview for a previously generated subset. Addi-
tionally, a document card of a high ranking document is opened.

Figure 5.22: VisualExplorerView showing results for two different image similarity searches for
a specific scenario. Results are marked in yellow and discussed in the respective scenario.

5.2. Scenarios 77

Figure 5.23: VisualExplorerView showing documents related to query: healthˆ4 AND “visual
analytics”. Additionally, a document card is opened for further inspection.

78 Chapter 5. Application

5.2.5 Scenario 5

In this scenario, Alice is in the middle of an exploration process and has already established

an intermediate subset of interesting documents. Due to RadVizDoc visualizations and

similarity searchers from the ExplorerView Alice found documents that could be of special

interest to her. Since document cards do not provide enough information in this case,

Alice decides to use the InspectView. Hence, we accompany Alice when she is inspecting a

document within this view. When Alice inspects a document for the first time within this

view, she sees the summary generation menu. Here, she can already see important key

terms from the document. Figure 5.24 shows the summary generation menu and a resulting

summary report. The summary report, which Alice receives, provides a basic overview

of the document content in just a few sentences. Since Alice selected options for a short

summary report, it contains most of the basic information from the abstract and snippets

from the middle and end sections of the paper. Now, that Alice has an understanding of

the basic document content, she wants to know the final conclusion of the paper. Thus, she

opens the abstract and conclusion sub-panel (see Fig. 5.25). Afterwards, Alice decides that

the document is critical to her research. Thus, she chooses to display a tag cloud in order

to find important terms which can be used to cluster documents in the RadVizDocView

(see Fig. 5.26).

5.2. Scenarios 79

(a) Shows the summary generation menu. The top 400 terms are listed according to their tf-idf
scores in descending order.

(b) Displays the summary report that was created beforehand.

Figure 5.24: InspectView showing the summary generation menu and the final summary report.

80 Chapter 5. Application

Figure 5.25: InspectView showing extracted abstract and conclusion of a document.

Figure 5.26: InspectView displaying tag cloud for a specifc document.

5.2. Scenarios 81

5.2.6 Scenario 6

In this scenario, Alice is provided with a subset of documents about different domains.

She is interested in various fields, such as finances, health and network traffic. Within

the subset, Alice knows three documents, one for each topic, that fit those criteria. Alice

already knows how she can find similar documents by using the text similarity and image

similarity features of the VisualExplorerView. However, Alice is interested if there is a way

to find relations between documents by using summary reports. She thinks, that this could

complement the other features; especially, because summary reports are usually longer

than the automatically generated queries for the text similarity search. Consequentially,

Alice creates summary reports for the three aforementioned documents. Next, she uses

those summary reports as anchors within the RadVizDocView (see Figure 5.27).

Figure 5.27: RadVizDocView showing the distribution of a subset according to summary report
anchors.

The anchor on the right depicts a summary of a paper related to network traffic.

When inspecting documents drawn to that anchor, Alice sees that most of them are very

related in terms of content. Those contents range from wormhole detection in wireless

networks over to accelerating network traffic analytics and other network traffic related

papers. Further, she notices that most of those documents contain colorful figures. Alice

concludes, that network traffic related visualizations seem to rely on colors to convey

information (see Figure 5.28).

82 Chapter 5. Application

Figure 5.28: Images from papers that are related to network traffic and pulled by the same
summary anchor.

The bottom left anchor represents a document related to syndromic hotspots. The

visualization shows that only a small part of the subset correlates strongly with this

anchor. Yet, Alice finds three documents that are strongly related in terms of content (flus,

diseases and health). Moreover, she discovers that some documents, which tend towards

this anchor, are related in other ways. For example, they use spatiotemporal visualizations

for different domains, such as syndromic hotspots, abnormal event detection, outbreaks of

flus, surveillance applications and more. By using this summary report as an anchor, Alice

finds different papers that are related to spatiotemporal data visualizations and contain

similar visual information. A few image examples of those papers are shown in Figure 5.30.

The third anchor depicts a summary report about analysis for financial time series

data. Again, Alice finds that most documents drawn to this anchor are related content-

wise in some way. Moreover, she notices something very interesting. Three documents

from the subset, that are drawn to this anchor, contain images from the same visual an-

alytics interface called WireVis [4] (see Figure 5.29). Another interesting observation is,

that the elements depicting those documents are positioned very closely to one another

(even though, the search was only text-based). This indicates a relation between textual

and visual information. Alice learns that WireWis can be used for visual financial anal-

ysis. The three papers containing figures of the WireVis interface are 07 vast chang.pdf,

08 vast jeong.pdf and 10 vast lipford.pdf. Further, Alice discovers that documents drawn

to this anchor tend to contain figures of interfaces, bar charts and line-based charts. Fig-

ure 5.31 shows example images. The first two images illustrate the WireVis interface.

However, Alice becomes very interested in WireVis and wants to know if there are other

documents that are related to it which are currently not in the subset. Thus, Alice de-

cides to initiate an image similarity search for WireVis in the VisualExplorerView. To

5.2. Scenarios 83

her surprise, Alice does not only find the documents that she already knows but also

another paper including an image of WireVis which is currently not part of the subset

(08 vast green.pdf). Finally, Alice concludes that summary anchors can be of great use to

find related papers and that it is also possible to find visual information commonalities

between those documents. Since summary queries contain a lot more words than text

similarity queries, they can help discover different relations, even if the domains of the

papers differ.

Figure 5.29: Distribution of documents according to summary anchors, where documents includ-
ing images of WireVis are marked in red. All three documents are placed very close to each other,
even though, the anchors in this scenario are only text-based.

84 Chapter 5. Application

Figure 5.30: Images from different papers that are related to spatiotemporal data and pulled by
the same summary anchor.

5.2. Scenarios 85

Figure 5.31: Images from different papers that are related to the same summary anchor about
financial time series data. The first two images show the WireVis interface.

6
Discussion and Concluding Remarks

6.1 General Discussion

As we could see in the example scenarios, there are many different ways documents can be

related. While the basic SearchView and ImageSearchView are well suited for establishing

a starting sample of documents, the VisualExplorerView and the RadVizDocView aid the

user in finding related documents or clusters. The document cards and InspectView allow

the system to show details-on-demand when needed. By combining those views, it is

possible to swiftly acquire a good overview of a medium-sized collection. For example, in

one scenario we could see how Alice did not only find documents to her queries, but also

found documents related to the initial subset by using similarity searches. Further, she

discovered relations between documents and gained a basic idea of visualizations that can

be used in various domains. The scenario results also show that the system works well

for finding certain image types. Results suggest that the FCTH descriptors work well for

finding:

• Images showing humans

• Different charts

• Graphs based on nodes and edges

• Colorful visualizations

• Dark images

• Figures showing interfaces

A general problem that we faced when using the system was that for some images there

are no other images in the collection that could be considered similar in a contextual way.

This is due to the fact that our data set consists of only 153 documents and a lot of the

visual information contained in the set is very unique (e.g., novel visualization techniques).

87

88 Chapter 6. Discussion and Concluding Remarks

Nevertheless, the system still provides result images for those unique images which have

similar colors. Thus, they can be considered slightly similar in a visual way. The text-based

similarity function also provides satisfying results. The only minor problem is that the

extraction of Portable Document Format (PDF) document texts is not a hundred percent

reliable; meaning that some words are only extracted partially or headlines merge with

texts due to missing full stops. However, this mainly influences summary reports. Due

to the tf-idf nature of the similarity calculations and text search, the faulty extractions

do not have a great impact on them. Since all similarity calculations are implemented by

using Lucene and LIRe, all views except the DocRadVizView could potentially be applied

on larger data sets as well. Although, the VisualExplorerView would need a redesign

for displaying larger collections. Moreover, at the moment the system is designed to use

provided XML files for abstract and conclusion extraction. Furthermore, it is not possible

to index new documents while the system is running. Those things would need to be

changed in order to use the system on other document collections.

6.2 RadVizDocView Discussion

The visualization proved to be useful in many different ways, as we could see in the

scenarios. We have shown, that it is possible to find documents that are related to each

other in different ways by using this visualization technique. The option to use multiple

queries at the same time, allows us to find relations according to the positions of the

elements. The visualization also provides a way to see document distributions over visual

information or textual content. Additionally, we have shown example findings in the

scenarios that indicate a correlation between textual and visual information. Further, by

using the option to interactively change the amount of anchors simultaneously pulling

on elements, we can cluster elements according to the anchors as shown in one scenario.

This works well for all supported data types and can be of great use to find relations

among documents or anchors, as we could see. Applying only rings of a single data type

concurrently has proven to be the most effective and useful way to use the visualization.

Note, that multiple rings of different data types can still be used, but they should

be activated alternately. Activating rings of different data types with many anchors

simultaneously has shown to be less effective. The reason for this is that it is very hard to

interpret the element positions for such complex configurations (anchor forces are equally

distributed among different data types). For instance, a document could be related to

text query anchors on the right, while it is also related to image anchors on the left. This

would result in the element staying in the middle (images and texts both have 50% of the

available anchor force) of the visualization. However, this problem can be avoided to a

certain degree by limiting the amount of concurrently pulling anchors for a specific data

type and not simultaneously using more than two data types. Then, it is still possible to

interpret the positions in a meaningful way. Nevertheless, we find it most useful to only

activate rings of one data type simultaneously. However, multi-ring configurations can

6.3. Future Work 89

still benefit the user. For example, he/she could create topic anchors (like in scenario

1 before) and afterwards also create an author ring. This way, the user could see how

documents from different topic clusters are related to certain authors. Another possibility

would be to cluster elements according to text queries. Afterwards, the user can mark the

documents in red and activate another ring (perhaps an image ring) while deactivating

the current ring. This procedure enables the user to see if documents, that are clustered

according to one ring, are also positioned close to each other when using another ring.

In the next section, about future work, we also provide an idea how the problem,

that arises when simultaneously using multiple different data type rings, could be avoided.

Since the text search features are all implemented with Lucene, the respective anchors

also work for larger collections in terms of performance. However, at the moment we

extract the image features for this visualization when the view is opened. This, of course,

takes time depending on how many documents and images are contained within the subset.

This puts a limiting factor on the subset size. However, if the images of all documents

from the subset were indexed beforehand in their own folder, it would work for larger

collections as well.

6.3 Future Work

The system could be extended by finding a better way to extract the texts of PDF doc-

uments. Furthermore, the system can be enhanced by using a better summarization

method; perhaps an extractive summarization method based on neural network models

similar to the one proposed by Nallapati et al. [25]. An interesting idea for future research

could also be to develop a method that automatically learns and generates RadVizDoc

configurations. This could perhaps allow the user to use multiple different anchor types

simultaneously by grouping anchors that draw similar elements. This would avoid the cur-

rent problem with too many different data type anchors, where the user has to manually

move anchors to get a feeling for how to position them. The implementation could be done

by creating element clusters for anchors which are then compared to find intersections.

Topic modeling would also be a well suited addition to the system. As a result, the system

could automatically create topics for subsets and generate anchors depicting those topics.

Semantics based state of the art text similarity techniques could also be added to retrieve

even better results when looking for similar documents. Contextual information could be

added as well. For example, by creating a log file of the entire exploration process while

the system is learning from it.

90 Chapter 6. Discussion and Concluding Remarks

6.4 Conclusion

In this thesis we set out to create a prototype document retrieval system called Doxplorer

that uses Content Based Image Retrieval (CBIR), full-text search, summary reports,

meta data information and custom visualizations for exploring medium-sized document

collections. This chapter summarizes the presented work.

In Chapter 2 traditional Information Retrieval (IR) and its neglection of visual

information was described. Additionally, the three basic models used in traditional IR

were covered. Moreover, an overview of different IR fields of research (e.g., Private

Information Retrieval (PIR)) was provided in this chapter. Afterwards, different single

and multi document visualizations were presented. The chapter concluded with an

overview of current state of the art document summarization methods.

Chapter 3 explained the basic concepts for the system. The initial ideas for

the different system views (e.g., ExplorerView, SearchView, ImageSearchView and

RadVizDocView) were explained and illustrated by mock-ups of previous design

iterations. This chapter was dedicated to explain what the system should do and not

how.

Next, we had Chapter 4 which was about the implementation of the concepts

proposed in Chapter 3. In this chapter, the different algorithms and libraries which we

used were described. Especially, the implementation of our custom visualization called

RadVizDoc was explained thoroughly in this chapter.

Chapter 5 started by providing a set of different use cases for the system. Those use

cases described how the system should be used. Afterwards, a fictional character called

Alice performed multiple scenarios on the VAST data set of the years 2006-2012 (except

for the 2011 set) by using our system. The scenarios have shown good results and indicated

correlations between visual and textual information.

Finally, we can say that our prototype has provided promising results and shows that

the principles behind the system work. Undoubtedly, the possibility to search for images

and text within a single system is already powerful on its own. However, the application

of the system illustrated how different document similarity searches and visualizations can

further help to find relevant documents. We also provided an outlook showing that there

are various options for additions to the system that could be made in future work to build

upon those principles.

A
List of Acronyms

CBIR Content Based Image Retrieval

CEDD Color and Edge Directivity Descriptor

CLIR Cross-Language Information Retrieval

DOM Document Object Model

DUC Document Understanding Conference

FCTH Fuzzy Color and Texture Histogram

GUI Graphical User Interface

IR Information Retrieval

IRS Information Retrieval System

NLP Natural Language Processing

PDF Portable Document Format

PIR Private Information Retrieval

PNG Portable Network Graphic

ROUGE Recall-Oriented Understudy for Gisting Evaluation

TF Term Frequency

91

BIBLIOGRAPHY 93

Bibliography

[1] K. Banawan and S. Ulukus. The capacity of private information retrieval from

coded databases. IEEE Transactions on Information Theory, 64(3):1945–1956, 2018.

(page 7)

[2] K. Banawan and S. Ulukus. Noisy private information retrieval: On separability of

channel coding and information retrieval. IEEE Transactions on Information Theory,

65(12):8232–8249, 2019. (page 7)

[3] N. Cao, J. Sun, Y.-R. Lin, D. Gotz, S. Liu, and H. Qu. Facetatlas: Multifaceted

visualization for rich text corpora. IEEE Transactions on Visualization and Computer

Graphics, 16(6):1172–1181, 2010. (page 15)

[4] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma, C. Ziemkiewicz,

D. Kern, and A. Sudjianto. Wirevis: Visualization of categorical, time-varying data

from financial transactions. In 2007 IEEE Symposium on Visual Analytics Science

and Technology, pages 155–162. IEEE, 2007. (page 82)

[5] S. A. Chatzichristofis and Y. S. Boutalis. Fcth: Fuzzy color and texture histogram - a

low level feature for accurate image retrieval. In 2008 Ninth International Workshop

on Image Analysis for Multimedia Interactive Services, pages 191–196, 2008. (page 34)

[6] J. Cheng and M. Lapata. Neural summarization by extracting sentences and words.

ArXiv Preprint ArXiv:1603.07252, 2016. (page 17)

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.

In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 41–50.

IEEE, 1995. (page 6)

[8] V. Dalal and L. Malik. A survey of extractive and abstractive text summarization

techniques. In 2013 6th International Conference on Emerging Trends in Engineering

and Technology, pages 109–110. IEEE, 2013. (page 16)

[9] M. Dörk, N. H. Riche, G. Ramos, and S. Dumais. Pivotpaths: Strolling through

faceted information spaces. IEEE Transactions on Visualization and Computer

Graphics, 18(12):2709–2718, 2012. (page 15, 16)

[10] R. Eckart de Castilho and I. Gurevych. A broad-coverage collection of portable

NLP components for building shareable analysis pipelines. In Proceedings of the

Workshop on Open Infrastructures and Analysis Frameworks for HLT, pages 1–11,

Dublin, Ireland, August 2014. Association for Computational Linguistics and Dublin

City University, https://www.aclweb.org/anthology/W14-5201. (page 36)

[11] M. Fischer. The kwic index concept: A retrospective view. American Documentation,

17(2):57–70, 1966. (page 12)

https://www.aclweb.org/anthology/W14-5201

94

[12] J. Foote. An overview of audio information retrieval. Multimedia Systems, 7(1):2–10,

1999. (page 6)

[13] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk. Private information

retrieval from coded databases with colluding servers. SIAM Journal on Applied

Algebra and Geometry, 1(1):647–664, 2017. (page 7)

[14] Q. Gan, M. Zhu, M. Li, T. Liang, Y. Cao, and B. Zhou. Document visualization:

An overview of current research. Wiley Interdisciplinary Reviews: Computational

Statistics, 6, 01 2014. (page 3, 8, 9, 12)

[15] Y. Hassan-Montero and V. Herrero-Solana. Improving tag-clouds as visual informa-

tion retrieval interfaces. In International Conference on Multidisciplinary Information

Sciences and Technologies, pages 25–28, 2006. (page 9)

[16] S. Havre, B. Hetzler, and L. Nowell. Themeriver: Visualizing theme changes over time.

In IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings,

pages 115–123. IEEE, 2000. (page 13, 14, 15)

[17] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. D. Stolper, M. Sedlmair,

J. Chen, T. Möller, and J. Stasko. Vispubdata.org: A metadata collection about ieee

visualization (vis) publications. IEEE Transactions on Visualization and Computer

Graphics, 23(9):2199–2206, 2017. (page 32, 33)

[18] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text sum-

marization branches out, pages 74–81, 2004. (page 17)

[19] Y.-R. Lin, J. Sun, N. Cao, and S. Liu. Contextour: Contextual contour visual analysis

on dynamic multi-relational clustering. In Proceedings of the 2010 SIAM International

Conference on Data Mining, pages 418–429. SIAM, 2010. (page 15)

[20] D. M. Lux. Lire: Lucene image retrieval. http://www.lire-project.net/. Ac-

cessed: 2020-09-23. (page 34)

[21] M. Lux and S. A. Chatzichristofis. Lire: Lucene image retrieval: An extensible java

cbir library. In Proceedings of the 16th ACM International Conference on Multimedia,

pages 1085–1088, New York, NY, USA, 2008. Association for Computing Machinery,

https://doi.org/10.1145/1459359.1459577. (page 33, 34)

[22] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and information

retrieval. Journal of the ACM (JACM), 7(3):216–244, 1960. (page 6)

[23] B. Mitra and N. Craswell. Neural models for information retrieval. ArXiv Preprint

ArXiv:1705.01509, 2017. (page 7, 8)

http://www.lire-project.net/
https://doi.org/10.1145/1459359.1459577

BIBLIOGRAPHY 95

[24] N. Moratanch and S. Chitrakala. A survey on extractive text summarization. In

2017 International Conference on Computer, Communication and Signal Processing

(ICCCSP), pages 1–6. IEEE, 2017. (page 16, 17)

[25] R. Nallapati, F. Zhai, and B. Zhou. Summarunner: A recurrent neural network

based sequence model for extractive summarization of documents. ArXiv Preprint

ArXiv:1611.04230, 2016. (page 17, 89)

[26] J.-Y. Nie. Cross-language information retrieval. Synthesis Lectures on Human Lan-

guage Technologies, 3(1):1–125, 2010. (page 6)

[27] L. Nováková and O. Štepánková. Multidimensional clusters in radviz. In Proceedings

of the 6th WSEAS International Conference on Simulation, Modelling and Optimiza-

tion, pages 470–475, 2006. (page 19, 26)

[28] P. Riehmann, D. Kiesel, M. Kohlhaas, and B. Froehlich. Visualizing a thinker’s life.

IEEE Transactions on Visualization and Computer Graphics, 25(4):1803–1816, 2018.

(page 13)

[29] S. E. Robertson. The probability ranking principle in ir. Journal of Documentation,

1977. (page 6)

[30] M. Rubio-Sánchez, L. Raya, F. Diaz, and A. Sanchez. A comparative study be-

tween radviz and star coordinates. IEEE Transactions on Visualization and Com-

puter Graphics, 22(1):619–628, 2015. (page 26)

[31] D. Rusu, B. Fortuna, D. Mladenic, M. Grobelnik, and R. Sipoš. Document visualiza-

tion based on semantic graphs. In 2009 13th International Conference Information

Visualisation, pages 292–297. IEEE, 2009. (page 11)

[32] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975. (page 5)

[33] T. Saracevic. Digital library evaluation: Toward evolution of concepts. Library

Trends, 49(2), 09 2000. (page 2)

[34] S. P. Shariatpanahi, M. J. Siavoshani, and M. A. Maddah-Ali. Multi-message private

information retrieval with private side information. In 2018 IEEE Information Theory

Workshop (ITW), pages 1–5. IEEE, 2018. (page 7)

[35] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval using implicit

feedback. In Proceedings of the 28th annual international ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 43–50, 2005. (page 6)

[36] B. Shneiderman. The eyes have it: A task by data type taxonomy for information

visualizations. In Proceedings 1996 IEEE Symposium on Visual Languages, pages

336–343. IEEE, 1996. (page 8)

96

[37] A. Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng.

Bull., 24(4):35–43, 2001. (page 5)

[38] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based

image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(12):1349–1380, 2000. (page 6)

[39] H. Strobelt, D. Oelke, C. Rohrdantz, A. Stoffel, D. Keim, and O. Deussen. Document

cards: A top trumps visualization for documents. IEEE Transactions on Visualization

and Computer Graphics, 15:1145–52, 11 2009. (page 3, 9, 10)

[40] D. Suleiman and A. A. Awajan. Deep learning based extractive text summariza-

tion: Approaches, datasets and evaluation measures. In 2019 Sixth International

Conference on Social Networks Analysis, Management and Security (SNAMS), pages

204–210, 2019. (page 16)

[41] H. Sun and S. A. Jafar. The capacity of robust private information retrieval with

colluding databases. IEEE Transactions on Information Theory, 64(4):2361–2370,

2017. (page 7)

[42] L. Tamine-Lechani, M. Boughanem, and M. Daoud. Evaluation of contextual in-

formation retrieval effectiveness: overview of issues and research. Knowledge and

Information Systems, 24(1):1–34, 2010. (page 2, 6, 7)

[43] J. Tan, X. Wan, and J. Xiao. Abstractive document summarization with a graph-

based attentional neural model. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1171–

1181, 2017. (page 16, 17)

[44] J. J. Thomas, P. J. Cowley, O. Kuchar, L. T. Nowell, J. Thompson, and P. C. Wong.

Discovering knowledge through visual analysis. Journal of Universal Computer Sci-

ence, 7(6):517–529, 2001. (page 14)

[45] H. Turtle and W. B. Croft. Inference networks for document retrieval. In Proceedings

of the 13th annual international ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, pages 1–24, 1989. (page 5, 6)

[46] T. Uçkan and A. Karcı. Extractive multi-document text summarization based on

graph independent sets. Egyptian Informatics Journal, 21(3):145 – 157, 2020, http:

//www.sciencedirect.com/science/article/pii/S111086651930324X. (page 35)

[47] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond sumba-

sic: Task-focused summarization with sentence simplification and lexical expan-

sion. Information Processing & Management, 43(6):1606 – 1618, 2007, http://www.

sciencedirect.com/science/article/pii/S0306457307000507. Text Summariza-

tion. (page 34, 35)

http://www.sciencedirect.com/science/article/pii/S111086651930324X
http://www.sciencedirect.com/science/article/pii/S111086651930324X
http://www.sciencedirect.com/science/article/pii/S0306457307000507
http://www.sciencedirect.com/science/article/pii/S0306457307000507

BIBLIOGRAPHY 97

[48] P. Venetis, G. Koutrika, and H. Garcia-Molina. On the selection of tags for tag clouds.

In Proceedings of the fourth ACM International Conference on Web Search and Data

Mining, pages 835–844, 2011. (page 11)

[49] F. B. Viégas and M. Wattenberg. Timelines tag clouds and the case for vernacular

visualization. Interactions, 15(4):49–52, 2008. (page 9)

[50] M. Wattenberg and F. B. Viégas. The word tree, an interactive visual concordance.

IEEE Transactions on Visualization and Computer Graphics, 14(6):1221–1228, 2008.

(page 12)

[51] P. C. Wong, B. Hetzler, C. Posse, M. Whiting, S. Havre, N. Cramer, A. Shah, M. Sing-

hal, A. Turner, and J. Thomas. In-spire infovis 2004 contest entry. In IEEE Sympo-

sium on Information Visualization. IEEE, 2004. (page 14)

[52] W. Zeng, A. Dong, X. Chen, and Z.-l. Cheng. Vistory: interactive storyboard for

exploring visual information in scientific publications. Journal of Visualization, pages

1–16, 2020. (page 1, 13, 14)

	Introduction
	Information Retrieval in the Scientific Domain
	Information Retrieval Systems and Digital Libraries
	Document Visualization
	Outline

	Related Work
	Information Retrieval Systems
	Document Visualization
	Single Document Visualization
	Document Collection Visualization

	Text Summarization

	Concept
	Outline
	Finding Relevant Documents
	Text Queries
	Image Queries

	Discovering Similar Documents
	Visual Explorer
	Inspect Documents

	Similar Documents and Subset Exploration with RadVizDoc
	RadVizDoc
	How to Use RadVizDoc for Finding Similar Documents

	Finding Relations

	Implementation
	Overview
	Java and Graphical User Interfaces with JavaFX
	Document Information Extraction
	Indexing and Searching of Texts and Images
	Text Search and Indexing
	Image Search and Indexing

	Text-Based Similar Document Search
	Document Summary Creation
	SumBase Algorithm

	Word Clouds and Word Distributions of Documents or Subsets
	Abstract and Conclusion Extraction
	RadVizDoc
	Components
	Algorithm
	History and Snapshot Function

	Final Doxplorer Interface

	Application
	Use Cases
	Workflow
	Keyword Search
	Image Search
	Finding Similar Documents with ``Inspect'' and ``Search''
	Finding Similar Documents with the VisualExplorerView
	Evaluating Subsets with the RadVizDocView

	Scenarios
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6

	Discussion and Concluding Remarks
	General Discussion
	RadVizDocView Discussion
	Future Work
	Conclusion

	List of Acronyms
	Bibliography

