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Abstract

Ambisonics is known to provide a generalised framework for recording, anal-
ysis, and playback of spatial audio signals. While recording and playback in
high spatial resolution has, due to the availability of multichannel microphone
and loudspeaker arrays, already been adopted by the industry, the develop-
ment of signal processing algorithms for the analysis of such recordings is still
a matter of ongoing research. Especially subspace-based algorithms recently
proved to effectively detect the directions of multiple simultaneous sounds.
Consequently, multiple direction-of-arrival detection in this thesis considers
such subspace-based algorithms as a basis to introduce two new algorithms:
(i) a real-valued variant of the vector-based eigenbeam ESPRIT and (ii) a vari-
ant of the spherical harmonics MUSIC algorithm that uses Newton’s method
and recurrence relations of spherical harmonics to avoid an expensive grid
search. Additionally, two specific applications of the algorithms are shown.
The first application is an extension of the Ambisonic spatial decomposition
method (ASDM) to higher Ambisonic orders and enables an enhancement
of the directional resolution of Ambisonic room impulse responses by higher-
order re-encoding of sound instances (acoustic reflections or diffraction) from
multiple directions per times instant. The second application considers the de-
tection of peaks and the two tangential curvatures per peak to analyse and
resynthesise directivity patterns of sound sources.





Kurzfassung

Ambisonics bietet ein generelles Rahmenkonzept zur Aufnahme, Analyse
und Wiedergabe räumlicher Audiosignale. Während die Aufnahme und
Wiedergabe in hoher räumlicher Auflösung durch entsprechende, mittlerweile
etablierte, mehrkanalige Mikrofon- und Lautsprechersysteme den Sprung
von der Forschung in die Industrie bereits geschafft hat, ist die Entwick-
lung von Signalverarbeitungsalgorithmen zur Analyse der entsprechenden
Aufnahmen noch lebendiger Gegenstand der aktuellen Forschung. Hier
haben sich zuletzt besonders signalunterraumbasierte Algorithmen aufgrund
ihrer hohen Genauigkeit als vielversprechend erwiesen. Diese Arbeit
beschäftigt sich mit solchen unterraumbasierten Algorithmen zur gleichzeit-
igen Schätzung mehrerer Quellrichtungen. Es werden zwei neue Algorith-
men vorgestellt, (i) eine reellwertige Variante des vektorbasierten Eigen-
beam ESPRIT und (ii) eine Variante des kugelflächenfunktionsbasierten MU-
SIC Algorithmus, die Newtons Methode und Rekurrenzbeziehungen der
Kugelflächenfunktionen benutzt, um eine aufwändige Rastersuche zu ver-
meiden. Anschließend werden zwei spezifische Anwendungen der Algorith-
men aufgezeigt. Die erste Anwendung ist eine Erweiterung der ambisonis-
chen räumlichen Zerlegungsmethode (engl. Spatial Decomposition Method)
auf höhere ambisonische Ordnungen und erlaubt eine Erhöhung der Rich-
tungsauflösung ambisonischer Raumimpulsantworten basierend auf der gle-
ichzeitigen Richtungsschätzung mehrerer Schallereignisse (Reflektionen oder
Diffraktion). Die zweite Anwendung beinhaltet die Analyse und Resynthese
von Richtwirkungsmustern von Schallquellen basierend auf den beiden tan-
gentialen Krümmungen an den Maxima.
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Nomenclature

(·)H Conjugate transpose.

(·)T Transpose.

(·)∗ Complex conjugate.

(·)† Moore-Penrose pseudoinverse.

Θ Diagonal matrix containing direction-vector components.

θ Direction vector.

En Matrix containing orthogonal noise eigenvectors.

Es Matrix containing orthogonal signal eigenvectors.

g Gradient vector.

G{x,y,z} Matrices containing coefficients of real-valued gradient addition recurrences.

H Hessian.

T Transformation matrix relating array steering matrix and signal subspace.

Un Matrix containing orthogonal spherical-harmonics-domain noise eigenvectors.

Us Matrix containing orthogonal spherical-harmonics-domain signal eigenvectors.

yN Spherical harmonics vector holding coefficients up to order N .

δ Kronecker delta.

O Number of observations.

ϕ Azimuth angle.

ϑ Zenith angle.

i Imaginary unit i =
√
−1.

J, j Number of trials and trial index.

L, l Number of array sensors (microphones) and sensor index.

N, n Maximum spherical harmonics order and order index.

Q, q Number of sources and source index.

Y m
n Complex-valued spherical harmonic of order n and degree m.

Yn,m Real-valued spherical harmonic of order n and degree m.
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Chapter 1

Introduction

This thesis addresses subspace-based algorithms for direction-of-arrival (DOA) estima-
tion of sound sources and applications built upon. Specifically, it covers algorithms work-
ing in the spherical harmonics domain (SHD), i.e. the input signals are expected to be
expressed via spherical harmonics (SHs). Expansion over SHs is used throughout many
fields, e.g. for representation of electromagnetic fields, analysis of the cosmic microwave
background, description of atomic orbitals and efficient simulation of light sources in
computer graphics. In acoustics, SHs are of particular interest as they are solutions to the
wave equation in spherical coordinates. In context of surround sound loudspeaker repro-
duction systems, SHs were first used in the 1970s by Michael Gerzon [Ger73], building
upon work by Cooper and Shiga [CS71]. Soon, a corresponding recording technique
was developed [Ger75], the Sound Field microphone was built [CG77][Far79] and the
name Ambisonics was established [Ger77][Ger85]. With the first higher-order coincident
microphone array, the Eigenmike em32 [ME02], the achievable spatial resolution was
considerably increased and a need for algorithms processing signals from spherical micro-
phone arrays arose. Nowadays, a multitude of higher-order spherical microphone arrays
is available and the development of signal processing algorithms to retrieve information
from such recordings is a highly-researched topic.

Spherical Harmonics. The complex-valued spherical harmonics [Wil99] are com-
posed of a normalisation term, the associated Legendre function Pm

n and a complex expo-
nential,

Y m
n (ϕ, ϑ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cosϑ) eimϕ , (1.1)

where n is the order of the spherical harmonic, m is the degree 1, ϕ and ϑ are azimuth and
zenith angle, and i =

√
−1 is the imaginary unit. In many cases it is sufficient and has a

1. Note that in many subjects other than acoustics, the denotation of order and degree would be switched.
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Figure 1.1 – Real-valued spherical harmonics Yn,m(ϕ, ϑ) from order n = 0 (top) to n = 5
(bottom) and for degree m = −n (left) to m = n (right), evaluated on the surface of the
unit sphere. Red colour depicts positive values, blue colour negative values and colour
intensity depicts magnitude.

computational advantage to use real-valued spherical harmonics,

Yn,m(ϕ, ϑ) =

√
(2n+ 1)(2− δm)

4π

(n− |m|)!
(n+ |m|)! P

|m|
n (cosϑ)

{
cos(mϕ) for m ≥ 0

sin(|m|ϕ) for m < 0
,

(1.2)
where

δm =

{
1, for m = 0

0, else
, (1.3)

is the Kronecker delta. Figure 1.1 shows real-valued spherical harmonics up to fifth order.
The spherical harmonics form a complete set of orthonormal functions on the unit sphere
S2, such that any square-integrable function on the unit sphere f(ϕ, ϑ) can be expanded
over the spherical harmonics Y m

n (ϕ, ϑ) [Wil99],

fnm =

∫
Ω∈S2

f(ϕ, ϑ)Y m∗

n (ϕ, ϑ) dΩ := SHT {f(ϕ, ϑ)} , (1.4)

denoted as spherical harmonics transform (SHT) or spherical Fourier transform. The
inverse operation, the inverse spherical harmonics transform (ISHT), is defined as

f(ϕ, ϑ) =
∞∑
n=0

n∑
m=−n

fnmY
m
n (ϕ, ϑ) := ISHT {fnm} . (1.5)

It is often helpful to describe SHD operations in vector notation. Hence, a (N + 1)2 × 1
vector yN is defined to contain the SHs sorted by their increasing Ambisonic Channel
Number (ACN) [CMZ+09],

yN = [Y 0
0 , Y

−1
1 , Y 0

1 , Y
1

1 , . . . , Y
−N
N , . . . , Y 0

N , . . . , Y
N
N ]T , (1.6)

up to the maximum order N .
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Motivation for subspace-based methods. Consider a two-source
direction-of-arrival (DOA) estimation scenario, where two source signals interfere as
shown in figure 1.2. The magnitude information of the steered response power in
fig. 1.2(c) typically indicates the interference of the signals rather than their original
source directions. However, if several independent observations of the interfered signal
are available, signal and noise subspace can be obtained using the method shown in
section 2.1. In the signal and noise subspace magnitudes, depicted in figure 1.3, the two
interference-free DOAs appear as peaks and roots, respectively. These can be retrieved
using the methods described in chapter 2.

Structure of this thesis. Chapter 2 begins by defining the decomposition of a signal
into a signal and a noise subspace in section 2.1. Then, MUSIC and ESPRIT as the two
most common subspace methods for multiple DOA estimation in sensor array problems
are summarised and their application in the SHD is shown in sections 2.2 and 2.3. Sec-
tions 2.4 and 2.5 develop and propose two new algorithms, namely a real-valued version
of the extended vector-based EB-ESPRIT with an iterative joint-triangularisation method,
and the New MUSIC algorithm, a variant of SH-MUSIC, that avoids the computationally-
intensive grid search by using Newton’s method and SH gradient recurrences. The per-
formance of both new algorithms is evaluated and compared in section 2.6. Chapter 3
considers two applications of the proposed algorithms. Section 3.1 utilises the real-valued
vector-based EB-ESPRIT for estimation of sound-event directions (reflections and diffrac-
tions) in measured Ambisonic room impulse responses (ARIRs) and subsequent upmixing
to an arbitrary higher Ambisonics order. The algorithm is evaluated via a listening exper-
iment regarding created artefacts and preservation of timbre. Section 3.2 shows a new
way of describing and resynthesising measured directivity patterns by evaluation of the
Hessian at the directions of the maxima. Both, the locations of the maxima and their corre-
sponding Hessians are found using the New MUSIC algorithm. In chapter 4 the outcomes
of this thesis are concluded and an outlook for possible further work is given.
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(a) Source 1 at direction ϕ = 0, ϑ = π/2.

(b) Source 2 at direction ϕ = π/4, ϑ = π/4.

(c) Interference of the two source signals.

Figure 1.2 – Directional magnitude of two signals and the corresponding interference
pattern observed in the steered response power and projected onto a world map. Both
original source directions are marked by red asterisks. The peak(s) of the steered response
power strongly depends on the correlation of both signals and often deviates from the
original directions.
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(a) Signal subspace.

(b) Noise subspace.

Figure 1.3 – The directional magnitude of signal and noise subspace consistently displays
the original source directions (marked by red asterisks), despite the specific signal inter-
ference sampled by the independent observations.
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Chapter 2

Subspace-Based Algorithms for
Multiple DOA Estimation

2.1 Decomposition into Signal and Noise
Subspace

Decomposition into a signal and a noise subspace, that either contains all signals or (dif-
fuse) noise, is a helpful way to reduce the dimensionality of a data set without losing the
desired information of the measurement. An introduction to the topic is given in [RK89]
and [Teu07, chapter 4]. When applied to sensor array problems, a good estimation of
signal parameters is achieved by finding intersections (or closest distances) between the
observed signal subspace and the array manifold. The array manifold contains the ar-
ray response (also called array steering vectors) for every direction of a noise-free signal.
Array steering vectors intersecting with the observed signal subspace indicate a signal
direction, and equivalently steering vectors orthogonal to the observed noise subspace do
so. Alternatively, array steering vectors orthogonal to the observed noise subspace allow
for similar deductions. When a particular set of array steering vectors is found, the signal
parameters are extracted from a known unique mapping.

For estimation of the signal subspace, the data model

x(t) = As(t) + ν(t) (2.1)

is introduced, where x(t) is the measurement vector, the columns of A contain the array
steering vectors for signals of every direction θ, s(t) are the sensor signals, and ν(t) is ad-
ditive white Gaussian noise (AWGN) with variance σ2

ν . By observing that the columns of
A span the signal subspace SX , span{A} = SX , an estimation of the Q-dimensional
signal subspace SX is found via the Q orthogonal eigenvectors ei, corresponding to
the Q largest eigenvalues of the normal, positive-definite measurement covariance ma-
trix [RK89],

RXX = E{xxH} = ARSSA
H + σ2

νI , (2.2)

such that SX = span{Es} = span{[e1, . . . , eQ]}. Similarly, the eigenvectors correspond-
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ing to the remaining eigenvalues of lower magnitude span the noise subspace, SN =
span{En} = span{[eQ+1, . . . , eO]}. In practical scenarios, RXX cannot be obtained
directly but is estimated via the sample covariance

R̂XX =
1

OXX
H , (2.3)

where X is the data matrix that collects O observations of x(t) in its columns. Alterna-
tively, R̂XX can be estimated directly from the data matrix X via singular value decom-
position (SVD)X = UΣV H,

R̂XX =
1

OUΣHΣUH = EΛEH , (2.4)

where the left singular vectors U are equal to the (orthogonal) eigenvectors E of R̂XX ,
avoiding numerical problems arising from squaring X [RK89]. If an estimation of the
eigenvalues of the (sample) covariance matrix is needed (as below for the SORTE algo-
rithm), the eigenvalues can hence be calculated from the singular values as

Λ =
1

OΣHΣ . (2.5)

Estimation of the signal subspace dimension. Signal and noise eigenvectors are
distinguished by defining a threshold dividing the magnitude-sorted eigenvalues of the co-
variance matrix into eigenvalues corresponding to the signal eigenvectors and eigenvalues
corresponding to the noise eigenvectors. More precisely, if T eigenvalues are obtained,
the eigenvectors corresponding to the Q largest eigenvalues are assigned to the signal sub-
space and collected in Es, and the remaining T −Q eigenvectors are spanning the noise
subspace and are collected in En. Following the data model in eq. 2.1, the eigenvalues of
the covariance RXX corresponding to the noise eigenvectors would be equal to the noise
variance σ2

ν in an ideal measurement system. Hence an algorithm considering the index
in the magnitude-sorted eigenvalues where the variance of the eigenvalues stays approxi-
mately constant can effectively define such a threshold. SORTE [HCXC10] compares the
variances of subsequences of eigenvalue differences,

var
(
{∇λi}k2i=k1

)
=

1

k2 − k1 + 1

k2∑
i=k1

(
∇λi −

1

k2 − k1 + 1

k2∑
j=k1

∇λj
)2

, (2.6)

with ∇λi = λi − λi+1. More precisely, SORTE analyses the ratio of variances of the
adjacent subsequences of eigenvalue differences starting at index k and k + 1,

o(k) =


var({∇λi}T −1

i=k+1)
var({∇λi}T −1

i=k )
, for var

(
{∇λi}T −1

i=k+1

)
6= 0

∞ , for var
(
{∇λi}T −1

i=k+1

)
= 0

, (2.7)

where k ∈ [1, T − 2]. The number of signal subspace eigenvectors is then found as the
index at which the ratio of the variances of subsequence eigenvalue differences is the
smallest,

Q = arg min
k
o(k) . (2.8)
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In non-ideal measurement systems, var
(
{∇λi}T −1

i=k+1

)
will generally be larger than 0.

Hence the authors of [HCXC10] propose to only consider eigenvalues containing a large
percentage of the cumulative energy,

o(k) =


var({∇λi}T −1

i=k+1)
var({∇λi}T −1

i=k )
, for var

(
{∇λi}T −1

i=k+1

)
6= 0

∞ , for var
(
{∇λi}T −1

i=k+1

)
= 0

∞ , for k > J
, (2.9)

where

J = arg min
j

(
j∑
i=1

λi /

T∑
i=1

λj > ε1

)
, (2.10)

for e.g. ε1 = 0.99.

As the last entry o(T − 2) is zero by design (due to var
(
{∇λi}T −1

i=T −1

)
= 0), SORTE

produces a maximum number of T − 3 non-zero entries. Hence, a different criterion has
to be used if the number of available eigenvalues is small. In SHD problems, such special
cases occur for first-order Ambisonics material, where only T = 4 eigenvalues are avail-
able. Hence, in this work only the variances of subsequences of eigenvalue differences
are analysed in such cases,

ô(k) =

{
∞ , for var

(
{∇λi}T −1

i=k

)
/
∑T −1

j=1 var
(
{∇λi}T −1

i=j

)
< ε2

var
(
{∇λi}T −1

i=k

)
, else

,

(2.11)
i.e. if the variance of a subsequence if smaller than a percentage of the total variance, e.g.
ε2 = 0.1, such entries are neglected. When assuming T = 4 eigenvalues as in first-order
SHD problems, T − 1 = 3 eigenvalue differences ∇λi and T − 2 = 2 corresponding
variances are obtained, which is the maximum number of DOAs extended EB-ESPRIT
algorithms (cf. section 2.4.1) can estimate. If the variation of this difference from the sec-
ond eigenvalue onward is smaller than 10% of the total variation (starting from the first
eigenvalue and second eigenvalue, respectively), variations starting from the second eigen-
value are considered so small, that the corresponding subspace components are assigned
to the noise subspace, resulting in a number of Q = 1 signal subspace components.
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2.2 MUSIC

The Multiple Signal Classification (MUSIC) algorithm was proposed by Schmidt [Sch86]
and independently by Bienvenue [BK79] for multiple-emitter sensor array problems with
arbitrary arrays and applications including DOA estimation and multiple frequency es-
timation. MUSIC assumes a superposition of Q plane-waves impinging on the L array
sensors. This is described by the data model

x(t) = As(t) + ν(t) , (2.12)

where x(t) are the individual sensor signals x(t) = [x1(t), . . . , xL(t)],
A = [a(θ1), . . . ,a(θQ)] contains the array steering vectors for all source directions θq,
s(t) = [s1(t), . . . , sQ(t)] are the corresponding plane-wave signals and ν(t) denotes
additive noise. The steering vectors describe the wave propagation from source to sensor
using the corresponding Green’s function (including possible direction-dependent
sensitivities)

a(θq) = [a1(θq)e
−jω0τ1(θq), . . . , aL(θq)e

−jω0τL(θq)]T . (2.13)

Generally, MUSIC involves a decomposition into signal and noise subspace, e.g. via
eigendecomposition of the covariance matrix, followed by a grid search of roots in the
steered, squared noise subspace, the MUSIC cost function, or by a search of peaks in the
inverse function, the MUSIC pseudo-spectrum,

PMUSIC(θ) =
1

aH(θ)EnEH
n a(θ)

. (2.14)

Here, the matrixEn holds the orthogonal noise eigenvectors and a(θ) is the array steering
vector for an arbitrary search-grid direction θ. As aHEnE

H
n a = aH(I − EsE

H
s )a =

aHa − aHEsE
H
s a, the MUSIC cost function exhibits roots at directions in the signal

subspace independent of the norm of the steering vectors.

Schmidt also provides a geometrical interpretation of the algorithm: When disregard-
ing noise for a moment, the array output x(t) lies in the Q-dimensional signal subspace
(e.g. one-dimensional for one signal) of the L-dimensional column space span{A}. The
steering vectors a(θ) for all possible directions θ, which can be obtained by physical
measurements or, in some cases, by analytical expressions, stem from a set which was
later denoted as the array manifold [RK89]. After obtaining Q independent observations
x(t), the signal subspace is known and the searched parameters can be determined by
a mapping between signal subspace and parameters. When considering noise, MUSIC
searches for the solutions of the observed signal subspace which are closest to the array
manifold, or equivalently, by searching directions in the array manifold which are (nearly)
orthogonal to the noise subspace.

For spherical sensor arrays, MUSIC is reformulated in the SH domain, resulting in SH-
MUSIC [LYMH11][KR12]. DOAs are then found as the peaks of the SHD pseudo-
spectrum PSH−MUSIC, which evaluates (the inverse of) the squared amplitude of the SHD
noise subspace Un at the direction θ,

PSH−MUSIC(θ) =
1

yH
N(θ)UnUH

n yN(θ)
, (2.15)
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where yN is the steering vector containing SHs up to order N . For uniform, linear arrays
(or generally, in cases where the array manifold can be expressed as Vandermonde ma-
trix), the MUSIC cost function aH(θ)EnE

H
n a(θ) can be reformulated as polynomial such

that the roots of the polynomial are the angles of arrival (AOAs) [Bar83]. This enables
super-resolution AOA estimation without discretisation of the MUSIC cost function and
is called Root-MUSIC. SH-Root-MUSIC [KBH16] formulates the Root-MUSIC polyno-
mial in the SH-domain for azimuth-only AOA estimation. In [ZDWC18] and [CKR09],
manifold separation techniques (MST) are used to create bivariate polynomials which are
solved for the DOAs in azimuth and elevation. To reduce the computational complex-
ity needed for bivariate polynomial solving, a one-dimensional MUSIC-type approach
(ODMUSIC) for spherical arrays is proposed in [HC20], where, after a one-dimensional
spectral search, two independent polynomials for azimuth and elevation are solved itera-
tively for joint DOA estimation.

Building upon SH-MUSIC, the New MUSIC algorithm is proposed in section 2.5. New
MUSIC efficiently minimises the SH-MUSIC cost function yH

N(θ)UnU
H
n yN(θ) using

Newton’s method. The gradient and Hessian are expressed analytically via SH recurrence
relations. New MUSIC achieves super-resolution DOA estimation without discretisation
of the MUSIC cost function.
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2.3 ESPRIT

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) was pro-
posed by Roy and Kailath [RK89] and avoids a computationally expensive grid search.
What is more, ESPRIT does not require knowledge of the array manifold. ESPRIT em-
ploys the same data model as MUSIC (cf. eq. 2.12) but exploits a translational invariance
to relate the signal subspaces of subarray responses. This translational invariance is cre-
ated via a translational displacement, i.e. the array needs to consist of matched sensor
pairs, where one element in each pair is displaced by the same displacement vector in the
dimension in which parameters are estimated. For a simultaneous estimation of a mul-
titude of parameters (e.g. azimuth and elevation), multiple matched sensors are grouped
and displaced by multiple displacement vectors. When assuming two subarrays with out-
put signals x(t) and y(t), only one searched parameter ϕ (e.g. azimuthal AOA), and a
displacement vector ∆ of magnitude ∆, the data model is extended as

x(t) = As(t) + νx(t) , (2.16)
y(t) = AΦs(t) + νy(t) . (2.17)

The array manifold rotation operator Φ is a diagonal matrix containing phase delays be-
tween the sensor pairs for each of the Q signals,

Φ = diag
(
[eiω0/c∆ sin(ϕ1), . . . , eiω0/c∆ sin(ϕQ)]

)
, (2.18)

rotating the phase of the array responses corresponding to a translation of the entire array
and hence explaining the acronym ESPRIT. It can further be shown that the signal sub-
space of the second subarray is a rotated version of the signal subspace of the first subarray
and both subspaces are related to the array steering matrix A by a unique transformation
T ,

Es1 = AT , (2.19)
Es2 = AΦT , (2.20)

such that span(Es1) = span(Es2) = span(A) and the subspace Es2 is related to Es1 by a
new operator Ψ,

Es2 = Es1T
−1ΦT := Es1Ψ . (2.21)

Hence, the array manifold rotation operator Φ can be calculated from the observable
matrix Ψ that relates both subspaces via eigendecomposition defining the eigenvectors
contained in T , and the phases of the eigenvalues λq of Ψ reveal the angles ϕq =
arcsin(∠(λq)/(ω0/c∆)). In real physical systems, where measurement noise cannot be
neglected, Ψ needs to be estimated. In [RK89] a least-squares (LS) and a total least-
squares (TLS) solution are derived.

This technique was adapted for use with uniform circular arrays by Mathews and
Zoltowski [MZ94] and for spherical arrays by Teutsch and Kellermann [TK08]. The
deduced algorithms, UCA-ESPRIT and EB-ESPRIT (also called SH-ESPRIT), are
expressed in circular or spherical harmonics (also called beamspace, eigenspace or
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modal domain). Instead of translational invariances of subarrays, these algorithms use
recurrence relations that relate subsets of circular or spherical harmonics to each other
after multiplication by the direction parameters. As before, the subspace Us and the SH
coefficient matrix Y share the same column space, span{Us} = span{Y }, such that they
are related by a transformation Us = Y T . For EB-ESPRIT, the diagonal matrix Φ
contains the directional parameters ϑq and ϕq in form of the trigonometric function
tan(ϑq)e

±jϕq and hence involves an angular ambiguity regarding ±ϕq and a singularity
for ϑq → ±π/2. With EB-ESPRIT bN2/2c DOAs can be estimated simultaneously.
Several beamspace ESPRIT variants were proposed after that, with variations in the
specific multiplication recurrence relations employed: Nonsingular ESPRIT [JC18]
utilises the trigonometric function sin(ϑq)e

iϕq as directional parameter and therefore
solves the singularity problem but exhibits an ambiguity due to the symmetry of the sine
function. It enables simultaneous estimation of bN2 + N/2c DOAs. Two-Step
SH-ESPRIT [HZF18] employs two SH recurrence relations and estimates azimuth and
zenith angles separately, avoiding the ambiguity issue but requiring an additional
matching of the corresponding parameter pairs. With Two-Step SH-ESPRIT, (N − 1)2

DOAs can be estimated simultaneously. Vector-Based EB-ESPRIT (VEB-ESPRIT) was
developed independently by Jo and Choi [JC19] and by Herzog and Habets [HH19a]. As
it uses all three DOA-vector-related direction parameters and the corresponding
multiplication recurrences, VEB-ESPRIT necessitates a joint diagonalisation procedure
to accomplish simultaneous estimation of up to N2 DOAs. VEB-ESPRIT avoids
singularities and ambiguities and was recently extended by Jo, Zotter and Choi [JZC20]
by two additional relations only for the highest order N , enabling simultaneous
estimation of up to N2 + b4/3Nc DOAs. Extended Vector-Based EB-ESPRIT
(EVEB-ESPRIT) is revised in section 2.4.1 and reformulated using real-valued
recurrences in section 2.4.2, in particular because the three DOA parameters in literature
are still complex-valued and their multiplication recurrences most often still refer to
complex-valued spherical harmonics.
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2.4 Real-Valued Extended Vector-Based
EB-ESPRIT (REVEB-ESPRIT)

The proposed Real-Valued Extended Vector-Based EB-ESPRIT (REVEB-ESPRIT) uses
the same techniques as the complex-valued EVEB-ESPRIT [JZC20], as introduced in
section 2.3 above and formally outlined below. REVEB-ESPRIT however employs re-
currences re-formulated fully to real-valued direction vectors and real-valued spherical
harmonics.

2.4.1 Extended Vector-Based EB-ESPRIT (EVEB-ESPRIT)

This section presents VEB-ESPRIT [JC19, HH19a] and EVEB-ESPRIT as a complex-
valued starting point towards REVEB-ESPRIT. VEB-ESPRIT uses three recurrence rela-
tions,

θ∗xyY
m∗

n = w−mn Y m+1∗

n−1 − wm+1
n+1 Y

m+1∗

n+1 , (2.22)

θxyY
m∗

n = −wmn Y m−1∗

n−1 + w−m+1
n+1 Y m−1∗

n+1 , (2.23)

θzY
m∗

n = vmn Y
m∗

n−1 + vmn+1Y
m∗

n+1 , (2.24)

relating a complex-valued spherical harmonic coefficient Y m
n multiplied by the directional

parameters θ∗xy = sinϑe−iϕ, θxy = sinϑeiϕ and θz = cosϑ, to a linear combination of
shifted coefficients, weighted by recurrence coefficients

wmn =

√
(n+m− 1)(n+m)

(2n− 1)(2n+ 1)
, (2.25)

vmn =

√
(n−m)(n+m)

(2n− 1)(2n+ 1)
. (2.26)

Next, the recurrence coefficients and shift operations are stacked into the matrices Dxy∗ ,
Dxy and Dz, and the relation Us = Y T is used, yielding the three independent matrix
equations

MUsT
−1Θ{xy∗,xy,z}T = D{xy∗,xy,z}Us , (2.27)

where Θ{xy∗,xy,z} are three diagonal matrices holding the directional parameters
{θ∗xy,q, θxy,q, θz,q}, and the matrix M =

[
I 0

]
extracts orders [0, N − 1] from Us.

Hence, without explicit knowledge of T , the diagonal matrix with the parameters
Θ{xy∗,xy,z} can be estimated via pseudo-inversion of MUs from the left, followed by a
joint diagonalisation,

Θ̂{xy∗,xy,z} = T (MUs)
†D{xy∗,xy,z}UsT

−1 . (2.28)

The number of simultaneously detectable DOAs is determined by the rank ofM [JZC20],
which is Qmax = rank{M} = N2.
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In EVEB-ESPRIT [JZC20] the recurrences in eqs. 2.22-2.24 are recombined to eliminate
higher-order terms Yn+1 for the highest order N , yielding

θ∗xyη
−m
n Y m∗

n + θzη
m+1
n Y m+1∗

n = η−mn−1Y
m+1∗

n−1 for − n ≤ m ≤ n− 1 , (2.29)

θxyη
m
n Y

m∗

n + θzη
−m+1
n Y m−1∗

n = −ηmn−1Y
m−1∗

n−1 for − n+ 1 ≤ m ≤ n , (2.30)

with the coefficients

ηmn =

√
n+m

2n+ 1
. (2.31)

After reformulation of these relations in matrix form, with the new coefficients and shift
operations in matricesA, Ā,C and C̄, the three equations from 2.27 are not independent
anymore,

M 0 0
0 M 0
0 0 M
Ā 0 A
0 A −Ā


Us 0 0

0 Us 0
0 0 Us

T−1Θxy∗T
T−1ΘxyT
T−1ΘzT

 =


Dxy∗

Dxy

Dz

C̄
−C

Us . (2.32)

Due to the extension via the matrices A and Ā, the rank of the leftmost matrix was ex-
tended from 3N2 to 3N2 +4N , enabling a simultaneous estimation of up to Qmax = N2 +
b4/3Nc DOAs, again by using the pseudoinverse and subsequent joint-diagonalisation.

Instead of a dedicated joint-diagonalisation algorithm, in practice an ad-hoc method has
shown to be effective [HH19a, JZC20]. In the ad-hoc method first all three matrices
Ψ{xy∗,xy,z} := T−1Θ{xy∗,xy,z}T are diagonalised individually, and then the eigenvector
matrix T̂ creating the lowest off-diagonal Frobenius norm is chosen for diagonalisation
of all three matrices,

T̂ = arg min
T

∑
µ∈{xy∗,xy,z}

∥∥zdiag(TΨµT
−1)
∥∥2

F
, (2.33)

where zdiag(·) extracts off-diagonal elements (sets diagonal elements to zero). As first
proposal of this thesis, instead of an eigenvalue decomposition, a Schur decomposition
QΨµQ

T is employed which might yield similar performance at a lower computational
expense. With the operator tril(·) extracting the strictly-lower triangular matrix (setting
elements of the upper triangular to zero), a Schur-decomposition-based ad-hoc method is
formulated as

Q̂ = arg min
Q

∑
µ∈{xy∗,xy,z}

∥∥tril(QΨµQ
T)
∥∥2

F
, (2.34)

and compared to the eigendecomposition-based ad-hoc method in section 2.4.5. It is
shown in appendix C that the Schur decomposition does not jumble the order of eigen-
value tuples and hence might serve as an effective alternative to joint triangularisation.



20

2.4.2 Multiplication Recurrences for Real-Valued SHs

Real-valued multiplication recurrence relations are deducted from the complex-valued
ones in eqs. 2.22-2.24 by evaluating real and imaginary parts of the relations separately,
as shown in the appendices A.2 and A.3. From appendix A.2 we get the following real-
valued recurrence relations for m > 0,

(−1)m√
2− δm

θxYnm = 1
2

[
− (−1)m−1wmn√

2−δm−1

Yn−1,m−1 +
(−1)m−1w−m+1

n+1√
2−δm−1

Yn+1,m−1

+ (−1)m+1w−mn√
2−δm+1

Yn−1,m+1 − (−1)m+1wm+1
n+1√

2−δm+1

Yn+1,m+1

]
, (2.35)

(−1)m√
2− δm

(1− δm)θyYn,−m = 1
2

[
− (−1)m−1wmn√

2−δm−1

Yn−1,m−1 +
(−1)m−1w−m+1

n+1√
2−δm−1

Yn+1,m−1

− (−1)m+1w−mn√
2−δm+1

Yn−1,m+1 +
(−1)m+1wm+1

n+1√
2−δm+1

Yn+1,m+1

]
, (2.36)

(−1)m√
2− δm

(1− δm)θxYn,−m = 1
2

[
− (−1)m−1wmn√

2−δm−1

(1− δm−1)Yn−1,−m+1

+
(−1)m−1w−m+1

n+1√
2−δm−1

(1− δm−1)Yn+1,−m+1 + (−1)m+1w−mn√
2−δm+1

(1− δm+1)Yn−1,−m−1

− (−1)m+1wm+1
n+1√

2−δm+1

(1− δm+1)Yn+1,−m−1

]
, (2.37)

(−1)m√
2− δm

θyYn,m = 1
2

[
(−1)m−1wmn√

2−δm−1

(1− δm−1)Yn−1,−m+1

− (−1)m−1w−m+1
n+1√

2−δm−1

(1− δm−1)Yn+1,−m+1 + (−1)m+1w−mn√
2−δm+1

(1− δm+1)Yn−1,−m−1

− (−1)m+1wm+1
n+1√

2−δm+1

(1− δm+1)Yn+1,−m−1

]
, (2.38)

for m = 0,

θxYn0 =
−1√

2
w0
nYn−1,1 +

1√
2
w1
n+1Yn+1,1, (2.39)

θyYn0 =
−1√

2
w0
nYn−1,−1 +

1√
2
w1
n+1Yn+1,−1 , (2.40)

and for θz,

θzYnm = v|m|n Yn−1,m + v
|m|
n+1Yn+1,m , (2.41)

re-using the weights wmn and vmn from eqs. 2.25, 2.26 and some additional factors/terms.
From appendix A.3 we get the extending recurrences, yielding 4N − 2 independent equa-
tions valid for m > 0,

θxη
−m
n

(−1)m√
2− δm

Yn,m − θyη
−m
n

(−1)m√
2− δm

(1− δm)Yn,−m + θzη
m+1
n

(−1)m+1√
2− δm+1

Yn,m+1

= η−mn−1

(−1)m+1√
2− δm+1

Yn−1,m+1 , (2.42)
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θxη
m
n

(−1)m√
2− δm

Yn,m + θyη
m
n

(−1)m√
2− δm

(1− δm)Yn,−m − θzη
−m+1
n

(−1)−m+1√
2− δ−m+1

Yn,|−m+1|

= −ηmn−1

(−1)m−1√
2− δm−1

Yn−1,m−1 , (2.43)

θxη
−m
n

(−1)m√
2− δm

(1− δm)Yn,−m + θyη
−m
n

(−1)m√
2− δm

Yn,m

+ θzη
m+1
n

(−1)m+1√
2− δm+1

(1− δm+1)Yn,−|m+1|

= η−mn−1

(−1)m+1√
2− δm+1

(1− δm+1)Yn−1,−|m+1| , (2.44)

θxη
m
n

(−1)m√
2− δm

(1− δm)Yn,−m − θyη
m
n

(−1)m√
2− δm

Yn,m

− θzη
−m+1
n

(−1)−m+1√
2− δ−m+1

(1− δ−m+1)Yn,−|m+1|

= −ηmn−1

(−1)m−1√
2− δm−1

(1− δm−1)Yn−1,−|m−1| , (2.45)

and additional 2 independent equations for m = 0,

θxη
0
nYn,0 − θzη

1
n

1√
2
Yn,1 = −η0

n−1

1√
2
Yn−1,1 , (2.46)

−θyη
0
nYn,0 + θzη

1
n

1√
2
Yn,−1 = η0

n−1

1√
2
Yn−1,−1 , (2.47)

also re-using the constant ηmn introduced for the complex-valued recurrences (eq. 2.31).
Here, the real-valued directional Cartesian parameters {θx, θy, θz} are directly contained
in the recurrences, such that DOA angles are obtained by a conventional conversion from
Cartesian to spherical coordinates. As implemented in the corresponding MATLAB code
(provided online 1 and as listing in appendix A.4), these recurrences are stacked into ma-
trices Mx, My, Mz, ML and CL, and arranged similarly to eqs. 2.28 and 2.32 to obtain
a REVEB-ESPRIT formulation,T−1Θ̂xT

T−1Θ̂yT

T−1Θ̂zT

 =

[MT

ML

]Us 0 0
0 Us 0
0 0 Us

†

Mx

My

Mz

CL

Us , (2.48)

where

MT =

M 0 0
0 M 0
0 0 M

 . (2.49)

These recurrences also allow for a simple expression of the extended pseudo-intensity
vector as proposed in [HH19b]. A derivation is provided in appendix B.

1. https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations

https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations
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2.4.3 Joint Triangularisation using Rayleigh Quotient Itera-
tions

Power iterations. A simultaneous Schur decomposition of an ensemble of matricesA
can be achieved via power or Rayleigh quotient iterations and subsequent deflation. First,
the power iterations algorithm [TB97, chapter 5] for a single matrix A is revised. The
recurrence relation

v(k+1) =
Av(k)

‖Av(k)‖ (2.50)

converges to the eigenvector v1 corresponding to the largest eigenvalue λ1 of A, if λ1

is significantly larger in magnitude than the other eigenvalues. Once the eigenvector is
found (up to chosen numerical precision), the corresponding eigenvalue is calculated as

λ1 = vT
1Av1 . (2.51)

Note that the power iteration algorithm reduces the error by a linear factor ≈ |λ2/λ1| in
each iteration. If the two largest eigenvalues λ1, λ2 have similar magnitude, the power
iterations algorithm only converges slowly.

Rayleigh quotient iterations. Cubic convergence is reached by combining inverse
iterations [TB97, chapter 5]

v(k+1) =
(A− µI)−1v(k)

‖(A− µI)−1v(k)‖ , (2.52)

where (A − µI)−1 has the same eigenvectors as A and eigenvalues (λi − µ)−1, making
(A − µI)−1v(k) converge fast to vi if µ is close to λi, and the Rayleigh quotient [TB97,
chapter 5] for the estimation of an eigenvalue

µ = λ(k) =
(
v(k)
)T
Av(k) , (2.53)

not converging to the largest eigenvalue λ1 but to the eigenvalue closest to the initial
guess λ(0). The power iterations and the Rayleigh quotient iterations [TB97, chapter 5]
both only yield an estimate for one eigenvector, exhibiting the need for a deflation step to
find the other eigenvectors and eigenvalues.

Convergence criterion. For both methods, convergence is reached, if the iteration
does not change the direction of the eigenvector anymore. A useful convergence criterion
is hence found by projecting v(k+1) onto v(k) and calculating the norm,∥∥∥v(k+1) −

(
v(k+1)T

v(k)
)
v(k)
∥∥∥ < ε , (2.54)

where ε is a small positive constant, e.g. ε = 10−6 and v(k), v(k+1) are unit vectors.
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Figure 2.1 – The two possible Householder reflections that align the vector v with the unit
vector of the first line e1.

Householder deflation. The idea of the deflation step is to remove the found eigen-
vector from the matrix A via projection to a subspace orthogonal to v, e.g. I − vvT

vTv
. A

numerically more stable deflation method is found by using (orthogonal) Householder re-
flectors P to find the similar matrixB = P TAP , where the first column ofB holds the
first eigenvalue λ1 followed by zeros,

B =

[
λ1 bT

0 B1

]
. (2.55)

After matrix B is found, an eigenvalue of B1 is calculated via one of the iterative al-
gorithms above and deflation can continue. A Householder reflector P is expressed
as [TB97, chapter 2]

P = I − 2
uuT

uTu
, (2.56)

with
u = sign(v1)‖v‖e1 + v , (2.57)

such that
Pv = ‖v‖e1 . (2.58)

As shown in figure 2.1, the idea of Householder reflections can be expressed geomet-
rically: As a first idea to remove the eigenvector v from A one could project A onto
the hyperplane orthogonal to v, H = I − vvT

vTv
. In case of Householder reflections, the

reflected matrix does not have reduced rank but has a unit vector (scaled by the first eigen-
value) as first column and hence is also the first step of triangularisation. When reflecting
A across the orthogonal hyperplane, going twice as far P = I − 2uu

T

uTu
, a scaled version

of the Cartesian coordinate vector e1, Pv = ±‖v‖e1 is supposed to be reached. This re-
quirement is expressed by (I − 2uu

T

uTu
)v = ±‖v‖e1 which is fulfilled by u = v ± ‖v‖e1.

For numerical stability, the sign creating the larger reflection is chosen, yielding equa-
tion 2.57. As the first column of P holds ±v, the first column of P TAP holds e1λ1.
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Simultaneous iterations. The initial idea for joint Schur decomposition in this the-
sis was a power iteration sending an eigenvector candidate through the set of matrices
that is to be jointly decomposed. However, the power iteration algorithm exhibits linear
convergence and only converges if A has a dominant eigenvalue (and the initial guess
v(0) has a non-zero component in direction of the corresponding eigenvector). For a rapid
convergence, we only consider the Rayleigh quotient iterations algorithm below. Only for
initialisation of the eigenvalues for the Rayleigh procedure, a single power iteration can
be beneficial. Following the procedure above, we extend the algorithm for simultaneous
Schur decomposition of J matrices in the ensembleA = {A1, . . . ,AJ}. In each iteration,
the eigenvector v(k+1)

j is approximated by applying Rayleigh quotient iterations to each
of the matrices,

v
(k+1)
j =

(Aj − λ(k)
j I)−1v(k)∥∥∥(Aj − λ(k)
j I)−1v(k)

∥∥∥ . (2.59)

Then, the eigenvector approximation for the next iteration v(k+1) is calculated by con-
structively summing up the individual updated eigenvector estimates v(k+1)

j and their re-
normalisation,

v(k+1) =

∑J
j=1 v

(k+1)
j z

(k+1)
j∥∥∥∑J

j=1 v
(k+1)
j z

(k+1)
j

∥∥∥ , (2.60)

where the sign z(k+1) ensures constructive addition with the eigenvector estimate from the
first matrix in the set

z
(k+1)
j = sign

((
v

(k+1)
j

)T

v
(k+1)
1

)
. (2.61)

The corresponding eigenvalue estimates are updated as for a single-matrix problem,

λ
(k)
j =

(
v(k)
)T
Ajv

(k) . (2.62)

If utilised in VEB-ESPRIT algorithms, where
∑

j λ
2
j

!
= 1, the eigenvalue estimates should

moreover be normalised at the end of each iteration,

λ
(k)
j ←

λ
(k)
j√∑J

i=1

(
λ

(k)
i

)2
. (2.63)

Numerical simulations suggest an additional weighting of the eigenvector estimates v(k+1)
j

that is inversely proportional to the length, such that directions that could not converge
yet and thus get shorter in the iteration are boosted for the subsequent iteration. Corre-
spondingly, we propose the use of an inverse quadratic weighting, that modifies eq. 2.60

v(k+1) =

∑J
j=1 v

(k+1)
j z

(k+1)
j∥∥∥∑J

j=1 v
(k+1)
j z

(k+1)
j

∥∥∥2 . (2.64)
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2.4.4 Algorithm Summary and Complexity

The proposed REVEB-ESPRIT algorithm is a reformulated version of
EVEB-ESPRIT [JZC20], but uses real-valued SHs and corresponding recurrence
relations with real-valued DOA-vector entries {θx, θy, θz} as its directional parameters

T−1Θ̂xT

T−1Θ̂yT

T−1Θ̂zT

 =

[MT

ML

]Us 0 0
0 Us 0
0 0 Us

†

Mx

My

Mz

CL

Us , (2.65)

with the definitions in section 2.4.2. Three eigenvalue-revealing approaches were shown:
Two ad-hoc approaches, either diagonalising (eq. 2.33) or triangularising (eq. 2.34) the
three matrices individually and then choosing the eigen- or Schur vectors creating the
lowest error in a common transform, and one iterative joint triangularisation approach us-
ing Rayleigh quotient iterations (section 2.4.3). As shown in [JZC20], EVEB-ESPRIT in-
volves a complexity of 4O(N6) operations for the subspace identification, 27×4O(N2Q2)
operations for the pseudo-inversion (by QR decomposition) of the EB-ESPRIT matrix,
and 3 × 4O(Q3) operations for the ad-hoc diagonalisation. As REVEB-ESPRIT only in-
volves real-valued operations, the complexity of all three steps is reduced by a factor of
4, i.e. subspace identification requires O(N6) operations, pseudoinversion 27×O(N2Q2)
operations and ad-hoc diagonalisation (or triangularisation) 3 × O(Q3) operations. The
Rayleigh quotient algorithm is of complexity O(Q3) [TB97] and hence the joint variant
from section 2.4.3 is of complexity 3 × O(Q3) as it involves 3 matrix inversions at each
iteration. The complexity of EVEB-ESPRIT, and also REVEB-ESPRIT, can be further
reduced by subspace tracking techniques, such as PASTd [Yan95], and by two-step inver-
sion [JZC20].

2.4.5 Evaluation

Evaluation setup. For comparison, REVEB-ESPRIT is evaluated using three differ-
ent types of eigenvalue-revealing methods with the complex-valued EVEB-ESPRIT using
the ad-hoc method for joint diagonalisation (cf. section 2.4.1, eq. 2.33) as a reference. For
REVEB-ESPRIT, the same ad-hoc eigendecomposition is compared to an ad-hoc Schur
decomposition (cf. section 2.4.1, eq. 2.34) and the iterative approach from section 2.4.3
using ε = 10−6 as a stopping criterion. The methods are evaluated using a simple free-
field scenario: A free-field, aliasing-free SHD signal smn [τ ] of order N = 3 is simulated
by creating O = 20 samples of a varying number of Q ∈ {2, 6, 13} plane-wave, unit-
variance white-noise source signals sq[τ ], where τ denotes the discrete time index. The
source signals are distributed in randomly-drawn directions θq of a spherical 48-point
9-design [HS96]. Additive white Gaussian noise (AWGN) ν[τ ] is added directly in the
SHD, creating varying signal-to-noise ratios (SNRs) in 10 dB steps from 10 dB to 80 dB,

smn [τ ] =

(
Q∑
q=1

Y m∗

n (θq) sq[τ ]

)
+ ν[τ ] . (2.66)
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Each combination of the different number of sources Q and varying SNR-step is repeated
for a number of J = 500 trials. RMSEs of the great-circle distance

∆θ(j)
q = arccos

{
θ(j)T
q θ̂(j)

q

}
, (2.67)

for each source q and each trial j, where θ(j)
q is the found DOA and θ̂(j)

q is the true DOA,
are calculated for each SNR step,

RMSE =

√√√√ J∑
j=1

Q∑
q=1

∣∣∣∆θ(j)
q

∣∣∣2 /(JQ) . (2.68)

Results. Figure 2.2 shows the evaluation results for simultaneous estimation of Q ∈
{2, 6, 13} DOAs. In most cases, the complex-valued ad-hoc diagonalisation (complex,
eigen) outperforms the other algorithms in accuracy as indicated by its low RMSEs. Only
the low SNR and Q = 2 conditions are exceptional and the real-valued ad-hoc variants
(real, eigen and real, schur) yield slightly lower RMSEs. Moreover for the many-sources
case with Q = 13 simultaneously estimated DOAs, the joint Rayleigh iterations approach
can compete with the complex ad-hoc algorithm by delivering similarly accurate results.

A closer look on the inferior accuracy in the results of the real-valued ad-hoc algorithms
(for Q > 2 cases) reveals the occurrence of eigenvalues of algebraic multiplicity as a
cause. As those algorithms do not find a decomposition of all three matrices simultane-
ously, eigenvectors/Schur vectors of the joint problem can lack definition whenever their
eigenvalue is of algebraic multiplicity. For instance, if multiple DOAs lie on the horizon,
their multiple trivial eigenvalues in the z-coordinate problem cannot resolve the x and y
components of the corresponding DOA vectors, even if the ad-hoc decomposition in z
delivers the best approximation of diagonal/upper triangular matrices for the joint decom-
position problem in x, y, and z. The complex-valued ad-hoc algorithm has the advantage
that multiple eigenvalues are less likely as the eigenvalues in x and y can only vanish
at nadir and zenith, and the problem in z is mainly useful to resolve coincidences in az-
imuth with elevations that are symmetric with regard to the horizon. Figure 2.3 shows
RMSEs evaluated in the same way as before, but with a small jitter applied to the direc-
tional test layout, what could be considered as a more natural test scenario free of strict
symmetries, etc. and avoiding algebraic multiplicities of the eigenvalues. The jitter was
applied as Gaussian noise with variance σ2

j ≈ 0.57◦. For this somewhat less artificial
DOA test set, the real-values ad-hoc variants are able to compete slightly better with their
complex-valued counterpart.

The larger RMSEs at high SNRs of the joint Rayleigh iterations approach (e.g. in fig-
ure 2.2(a) for an SNR of 80 dB) are possibly due to spontaneous errors occasionally
caused by disadvantageous random initialisation of a Schur vector.



Deppisch: Multi-Direction Analysis in Ambisonics 27

10 20 30 40 50 60 70 80
0

2

4

6

8

10

SNR (dB)

R
M

SE
(d

eg
)

real, eigen
real, schur
real, joint Rayleigh
complex, eigen

(a) Q = 2.
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(b) Q = 6.
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(c) Q = 13.

Figure 2.2 – RMSE as a function of SNR for complex-valued EVEB-ESPRIT and three
real-valued EVEB-ESPRIT versions using different eigenvalue-revealing decompositions.
The three plots show results for different numbers of sourcesQ (simultaneously estimated
DOAs). The maximum SH order is set to N = 3.
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Figure 2.3 – RMSEs for simultaneous estimation of Q = 13 DOAs, where a jitter was
applied to the source positions to avoid a multiplicity of eigenvalues.
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2.5 New MUSIC

This section introduces the Newton-based Multiple Signal Classification algorithm (New
MUSIC) as another contribution of this work. New MUSIC iteratively retrieves the di-
rection vectors of peaks of the MUSIC spectrum (cf. section 2.2). To enable iterations
via Newton’s method, New MUSIC applies gradient recurrences of real-valued SHs for
efficient calculation of gradient and Hessian. The employed recurrences allow for differ-
entiation of the direction vector components ∂/∂x, ∂/∂y and ∂/∂z and are defined on
the whole surface of the unit sphere S2. Corresponding recurrences for complex-valued
SHs were developed by Chew [Che92] and e.g. applied in an acoustic centreing algorithm
by Deboy and Zotter [DZ11]. Gumerov and Duraiswami [GD01] developed recurrence
relations for complex-valued directional components ∂/∂x + i∂/∂y, ∂/∂x − i∂/∂y and
∂/∂z. Gräf and Potts [GP11] developed a similar Newton-based algorithm for the compu-
tation of spherical designs based on recurrences of complex-valued SHs for differentiation
with respect to the spherical coordinates ∂/∂ϕ and ∂/∂ϑ. Differentiation with respect to
azimuth angle ϕ is however not well-defined at zenith (ϑ = 0) and nadir (ϑ = π).

2.5.1 Gradient Addition Recurrences

From appendix A.1, recurrence relations for the calculation of the gradient of real-valued
SHs,

Ynm(ϕ, µ) = NnmP
m
n (µ)Φm(ϕ) , (2.69)

with sine and cosine harmonics stacked as

Φm(ϕ) =

(
cos(mϕ)
sin(mϕ)

)
, (2.70)

are obtained as,

∂/∂xYnm = −(n+ 1)(n+m− 1)(n+m)Nnm

2(2n+ 1)Nn−1,m−1

Yn−1,m−1 (2.71)

− n(n−m+ 1)(n−m+ 2)Nnm

2(2n+ 1)Nn+1,m−1

Yn+1,m−1

+
(n+ 1)Nnm

2(2n+ 1)Nn−1,m+1

Yn−1,m+1 +
nNnm

2(2n+ 1)Nn+1,m+1

Yn+1,m+1 ,

∂/∂yYnm = −(n+ 1)(n+m− 1)(n+m)Nnm

2(2n+ 1)Nn−1,m−1

LYn−1,m−1 (2.72)

− n(n−m+ 1)(n−m+ 2)Nnm

2(2n+ 1)Nn+1,m−1

LYn+1,m−1

− (n+ 1)Nnm

2(2n+ 1)Nn−1,m+1

LYn−1,m+1 −
nNnm

2(2n+ 1)Nn+1,m+1

LYn+1,m+1 ,

∂/∂zYnm =
(n+ 1)(n+m)Nnm

(2n+ 1)Nn−1,m

Yn−1,m −
n(n−m+ 1)Nnm

(2n+ 1)Nn+1,m

Yn+1,m , (2.73)
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where L changes cosine to minus sine and sine to cosine for the derivative w.r.t. y

L =

(
0 −1
1 0

)
, (2.74)

and for m = 0 we get the exception

∂/∂xY
(cos)
n,0 =

(n+ 1)Nn,0

(2n+ 1)Nn−1,1

Y
(cos)
n−1,1 +

nNn,0

(2n+ 1)Nn+1,1

Y
(cos)
n+1,1 , (2.75)

∂/∂yY
(cos)
n,0 =

(n+ 1)Nn,0

(2n+ 1)Nn−1,1

Y
(sin)
n−1,1 +

nNn,0

(2n+ 1)Nn+1,1

Y
(sin)
n+1,1 . (2.76)

The recurrence relations are stacked into the constant matricesGx,Gy andGz, such that
a tangential gradient w.r.t. x, y and z of an orderN SH pattern γ, evaluated at the variable
direction θ̂, is obtained as

∇θγTyN(θ)
∣∣
θ=θ̂

:= g =

γTGxyN+1(θ̂)

γTGyyN+1(θ̂)

γTGzyN+1(θ̂)

 , (2.77)

where yN+1(θ̂) holds SHs up to the order N +1, evaluated at θ̂. MATLAB code to obtain
the matricesGx,Gy andGz is provided online 2 and as listing in appendix A.4.

2.5.2 Newton’s Method on the Surface of the Sphere

In the following, the gradient recurrences of the previous section are used to formulate
Newton’s method in the SHD. The gradient matrices are employed as a tool: They con-
tain what is required to evaluate the gradient and Hessian, which both enable to set up
Newton’s method for (i) finding the zeros (roots) of an SH expansion, (ii) finding its ex-
trema, and finding extrema (iii) or zeros (iv) of the squared SH expansion; the latter one
is applied in the New MUSIC algorithm.

Roots of a linear SH expansion. Evaluation of an SH pattern γ at the direction θ is
expressed as

f(θ) = yT(θ)γ . (2.78)

Now Newton’s method is employed to iteratively estimate its zeros f(θ) = 0 using the
re-fining update

θk+1 = θk − jT
f

yT(θk)γ

jfjT
f

, (2.79)

where jf is the Jacobian that for f : R3 → R degenerates to the transpose of the gradient
vector g,

jf = gT
f =

[
γTGxyN+1 γTGyyN+1 γTGzyN+1

]
. (2.80)

2. https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations

https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations
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Extrema of a linear SH expansion. Newton’s method is expanded to the search of
extrema by replacing function and gradient by gradient and Hessian, and searching for
the roots of the gradient,

θk+1 = θk −Hf (θk)
−1gf (θk) , (2.81)

using the Hessian

Hf =

γTGxGxyN+2 γTGxGyyN+2 γTGxGzyN+2

γTGyGxyN+2 γTGyGyyN+2 γTGyGzyN+2

γTGzGxyN+2 γTGzGyyN+2 γTGzGzyN+2

 , (2.82)

which is also known as Newton’s method in optimisation.

Roots of a squared SH expansion. Similarly, the method can be applied to a squared
SH-expanded function,

f 2(θ) = yT(θ)γγTy(θ) , (2.83)

to iteratively retrieve its roots by the update

θk+1 = θk −
1

gT
f2gf2

gf2y
T(θ)γγTy(θ) , (2.84)

and the gradient is obtained by applying the product rule,

gf2 =

yT
N+1G

T
xγγ

TyN + yT
Nγγ

TGxyN+1

yT
N+1G

T
y γγ

TyN + yT
Nγγ

TGyyN+1

yT
N+1G

T
z γγ

TyN + yT
Nγγ

TGzyN+1

 . (2.85)

Extrema of a squared SH expansion. Furthermore, extrema of squared
SH-expanded patterns are found via the update equation

θk+1 = θk −Hf2(θk)
−1gf2(θk) , (2.86)

with the Hessian

Hf2 =

Hxx Hyx Hzx

Hxy Hyy Hzy

Hxz Hyz Hzz

 , (2.87)

where

Hαβ = γTGβGαyN+2y
T
Nγ + γTGαyN+1y

T
N+1G

T
βγ

+ γTGβyN+1y
T
N+1G

T
αγ + γTyN+1y

T
N+2G

T
βG

T
αγ . (2.88)

Notice that this Hessian is generally non-symmetric asGαGβ 6= GβGα.
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Towards New MUSIC: Analysis of squared SH expansions via signal and noise
subspaces. For squared SH-expanded functions we can analyse signal subspace Us

and noise subspace Un separately using eigendecomposition, γγT = QΛQT and Q =[
Us Un

]
, yielding

f 2(θ) = yT(θ)γγTy(θ) = yT(θ)QΛQTy(θ) . (2.89)

The MUSIC cost function consists of eigenvectors of the signal covariance (cf. sec-
tion 2.2) and either maximises the signal function

f 2
s (θ) = yT(θ)UsU

T
s y(θ) , (2.90)

or minimises the noise function

f 2
n(θ) = yT(θ)UnU

T
n y(θ) , (2.91)

at DOAs θ of the signal. In particular, the signal and noise functions have roots at direc-
tions of the noise subspace and the signals subspace, respectively, as y(θ) is orthogonal
to the vectors in Us and Un for directions in the noise and signal subspace. Notice that
searching for maxima in the signal space is equivalent to searching for minima in the
noise space and vice versa, asQQT = I = UsU

T
s +UnU

T
n and hence

yTUsU
T
s y = yT(I −UnU

T
n )y =

(N + 1)2

4π
− yTUnU

T
n y . (2.92)

Now four objectives can be analysed: A root search of the signal subspace yields minima
of the quadratic function,

θk+1 = θk − gf2s
y(θk)

TUsU
T
s y(θk)

gT
f2s
gf2s

, (2.93)

and a root search of the noise subspace yields peaks of the quadratic function,

θk+1 = θk − gf2n
y(θk)

TUnU
T
n y(θk)

gT
f2n
gf2n

. (2.94)

Extrema of the signal subspace are found via

θk+1 = θk −Hf2s
(θk)

−1gf2s (θk) , (2.95)

and extrema of the noise subspace are found via

θk+1 = θk −Hf2n
(θk)

−1gf2n (θk) . (2.96)

Here, the gradient of the signal function is described as

gf2s =

yT
N+1G

T
xUsU

T
s yN + yT

NUsU
T
s GxyN+1

yT
N+1G

T
yUsU

T
s yN + yT

NUsU
T
s GyyN+1

yT
N+1G

T
zUsU

T
s yN + yT

NUsU
T
s GzyN+1

 , (2.97)
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and the Hessian of the signal function is

Hf2s
=

Hs,xx Hs,xy Hs,xz

Hs,yx Hs,yy Hs,yz

Hs,zx Hs,zy Hs,zz

 , (2.98)

where

Hs,αβ = yT
N+2G

T
βG

T
αUsU

T
s yN + yT

N+1G
T
αUsU

T
s GβyN+1

+ yT
N+1G

T
βUsU

T
s GαyN+1 + yT

NUsU
T
s GαGβyN+2 . (2.99)

The matrices for the noise subspace are defined by replacing Us by Un. Note that the
Hessian can only be of rank two at most, as its derivatives are all tangential and exclude
any radial component. For its inversion, section 3.2.1 shows how to project the Hessian to
its two relevant tangential dimensions before inversion. Figure 2.4 shows the magnitude
of the signal and noise subspaces of a fifth-order white-noise signal encoded at ϕ = 0,
ϑ = π/2 and converged New MUSIC optimisation points to either find the roots of the
signal subspace, roots of the noise subspace, extrema of the signal subspace, or extrema
of the noise subspace (eqs. 2.93-2.96).



34

(a) Objective 1: Roots of the signal subspace.

(b) Objective 2: Root of the noise subspace.

(c) Objective 3: Extrema of the signal subspace.

(d) Objective 4: Extrema of the noise subspace.

Figure 2.4 – Directional magnitude of signal and noise subspaces of a white-noise signal
encoded at ϕ = 0, ϑ = π/2, depicted via a map projection. Red asterisks show converged
New MUSIC optimisation points for the four different objectives (eqs. 2.93-2.96).
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2.5.3 Summary of the New MUSIC Algorithm for DOA esti-
mation

The search of roots in the noise subspace (objective 2) exhibits a low computational cost
as no Hessian needs to be computed. Moreover, it is particularly effective for DOA es-
timation as it avoids optimisation towards the minima of the function and hence is less
sensitive to local extrema than the other objectives (cf. figure 2.4). As described in sec-
tion 2.5.2, the Newton steps for this objective are performed as

θk+1 = θk − µ gf2n
y(θk)

TUnU
T
n y(θk)

gT
f2n
gf2n

, (2.100)

with

gf2n =

yT
N+1G

T
xUnU

T
n yN + yT

NUnU
T
n GxyN+1

yT
N+1G

T
yUnU

T
n yN + yT

NUnU
T
n GyyN+1

yT
N+1G

T
zUnU

T
n yN + yT

NUnU
T
n GzyN+1

 . (2.101)

In addition to eq. 2.94, a step size parameter µ ∈ [0, 1] is introduced into the equation to
control the convergence speed.

Similar to the case of REVEB-ESPRIT (cf. section 2.4.4), the most complex part of
New MUSIC is the eigen- or singular value decomposition with a general complexity
of O(N6). This complexity can be reduced by using subspace tracking techniques, such
as PASTd [Yan95]. As the matrix multiplications of UnU

T
n during the Newton step and

of GT
{x,y,z}UnU

T
n in the gradient expression do not change while iterating, they can be

precomputed, and the evaluation of SHs can be implemented efficiently using look-up ta-
bles or recurrence relations. This leaves the matrix-vector product

(
GT
{x,y,z}UnU

T
n

)
yN

as the computationally most complex operation performed in every iteration. This prod-
uct consists of a multiplication of a (N + 2)2× (N + 1)2 matrix by a (N + 1)2× 1 vector
and hence generally involves O(N4) multiplication operations.

2.5.4 Maximum Number of Extrema in SH Patterns

When using New MUSIC to retrieve extrema in order N SH patterns, the question arises,
how many extrema such a pattern can exhibit. In the following an upper bound for this
maximum is found by first describing the width of the main lobe of an SH basic beam
of order N and then investigating how close two main lobes can come together without
collapsing into a single maximum.

Beam width of a SH basic beam. Rafaely [Raf04] uses the SH addition theorem,
n∑

m=−n
Y m
n (θ1)Y m∗

n (θ2) =
2n+ 1

4π
Pn(cos Θ) , (2.102)

where θ = {ϕ, ϑ} and Θ is the angle between θ1 and θ2, and a recurrence relation of
Legendre polynomials Pn, to describe the spherical function fN (θ) of maximum order N



36

that peaks at θ0,

fN(θ) =
N∑
n=0

n∑
m=−n

Y m
n (θ)Y m∗

n (θ0) (2.103)

=
N∑
n=0

2n+ 1

4π
Pn(cos Θ) (2.104)

=
N + 1

4π(cos Θ− 1)
(PN+1(cos Θ)− PN(cos Θ)) . (2.105)

Its main-lobe width is found as twice the distance of the first zero Θ0. Note that even
though one might expect a zero at Θ = 0 as PN+1(1)− PN(1) = 1− 1 = 0, this zero is
canceled by the pole 1/(cos(Θ) − 1). Rafaely [Raf04] provides analytic expressions for
the emerging polynomials for orders 1 to 5 and z = cos Θ,

f0(z) =
1

4π
, (2.106)

f1(z) =
1

4π
(3z + 1) , (2.107)

f2(z) =
1

4π

3

2
(5z2 + 2z − 1) , (2.108)

f3(z) =
1

4π

1

2
(35z3 + 15z2 − 15z − 3) , (2.109)

f4(z) =
1

4π

5

8
(63z4 + 28z3 − 42z2 − 12z + 3) , (2.110)

f5(z) =
1

4π

6

16
(231z5 + 105z4 − 210z3 − 70z2 + 35z + 5) , (2.111)

which allows for the calculation of the first zero or beam width. Rafaely also proposes an
approximation for the distance of the first zero, which creates an error of less than two
degree for orders N ∈ [4, 40],

Θ0 ≈
π

N
. (2.112)

Minimum distance of two maxima. As we are interested in the maximum number
of peaks an SH pattern can have, it is not sufficient two distribute SH beams regularly
on the sphere, overlapping at the border of the main lobe. Hence, we now calculate the
minimum angular spacing that two plane-wave sources (SH basic beam peaks) need to
have, such that their combined peaks do not collapse into a single peak. Two additively
superimposed SH beams are denoted as

fN(θ) =
N∑
n=0

n∑
m=−n

(Y m∗

n (θ1) + Y m∗

n (θ2))Y m
n (θ)

=
N∑
n=0

2n+ 1

4π
(Pn(cos(Θ1)) + Pn(cos(Θ2))) , (2.113)
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where Θ1 and Θ2 are the angles between θ and θ1 and between θ and θ2, respectively.
The two peaks collapse into one peak if fN(Θm), evaluated in the middle between both
peaks, Θ1 = −Θ2 = Θm, is larger than fN (θ1) evaluated at one of the peaks. We describe
the peak locations by their angular translation ∆Θ from their common centre, such that
the centre of the peaks Θm has the angular distance ∆Θ to both peaks and original plane-
wave source locations θ1 and θ2 have distance 2∆Θ to each other. Now, we again utilise
the Legendre recurrence relation and get,

N + 1

2π(cos(∆Θ)− 1)
(PN+1(cos(∆Θ))− PN(cos(∆Θ))) (2.114)

>
(N + 1)2

4π
+

(N + 1)(PN+1(cos(2∆Θ)− PN(cos(2∆Θ))))

4π(cos(2∆Θ)− 1)
,

where the first part of the equation evaluates the function in the middle of both peaks and
the second expression evaluates the function at the direction θ1, such that the distance to
peak one is zero (yielding (N + 1)2/(4π)) and the distance to the second peak is 2∆Θ.
The transition where two peaks collapse to a single peak is found by using an equality
relation instead of the inequality above, and simplifying,

2

cos(∆Θ)− 1
(PN+1(cos(∆Θ))− PN(cos(∆Θ)))−N − 1

− 1

cos(2∆Θ)− 1
(PN+1(cos(2∆Θ)− PN(cos(2∆Θ)))) = 0 . (2.115)

We numerically find a relation for ∆Θmin by polynomial fitting,

∆Θmin ≈
−21

N2
+

109

N
+ 1.6 , (2.116)

which creates an absolute error of less than 1.4◦ for N ∈ [1, 20] and an error less than 0.7◦

for N ∈ [1, 20] \ 2. The minimum distance at which two SH basic beam peaks collapse
into one, is calculated accordingly as dmin = 2∆Θmin, exhibiting twice the error margins.

Maximum number of extrema. In practical applications we need to consider not
only maxima but extrema in general, as phase-shifted, "negative" peaks (minima) lead to
intensity peaks just as the maxima. This complicates the derivations as it is not sufficient
anymore to investigate the collapsing of the main lobes, while neglecting side lobes. How-
ever, we can describe an upper bound of extrema in an order N SH pattern, if we describe
the number of main lobes that fit on the surface on the sphere, distributed regularly, with
a minimum distance of dmin. For that, we calculate the surface segment of the unit sphere
covered by a spherical segment with radius ∆Θmin,∫ ∆Θmin

−∆Θmin

∫ π/2+∆Θmin

π/2−∆Θmin

sinϑ dϑdϕ = 4∆Θmin sin(∆Θmin) , (2.117)

and then take the ratio of the whole surface of the unit sphere to the segment,

4π

4∆Θmin sin(∆Θmin)
≈ π(−21

N2 + 109
N

+ 1.6
)

sin(−21
N2 + 109

N
+ 1.6)

. (2.118)
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Order N Upper Bound b Monte-Carlo

1 2 2
2 4 4
3 8 8
4 13 13
5 19 18
6 26 23
7 34 31
8 44 38
9 54 46
10 66 56

Table 2.1 – Calculated upper bound b of the number of extrema found in a Monte-Carlo
simulation using uniformly-distributed SH coefficients and 100 (N + 1)2 runs.

This ratio (the surface of the unit sphere divided by the surface covered by the spherical
segment) describes, after rounding down to the next integer, an upper bound b for the
number of extrema a pattern on the sphere created with SHs of order N can have,

b =

⌊
π

∆Θmin sin(∆Θmin)

⌋
. (2.119)

Table 2.1 shows the upper bound b for orders N ∈ [1, 10]. Note that several assumptions
make this result an upper bound and not an approximation of the real maximum number
of extrema in an SH pattern: i) The sphere surface is divided by the spherical surface seg-
ment, neglecting the actual shape of the (circular) peaks and possible regular distributions
of multiple circular peaks. ii) Side lobes of the maximum directivity SH beam patterns
are neglected, assuming that a distribution of such beam peaks is a valid upper bound for
the number of peaks. However, a 100 (N + 1)2-run Monte-Carlo simulation with random
directivity, where SH coefficients are distributed uniformly between -1 and 1 and extrema
are found by the New MUSIC algorithm, appears to obey the upper bound, cf. table 2.1.
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2.6 Performance Comparison of REVEB-ESPRIT
and New MUSIC

2.6.1 Evaluation Setup

Four scenarios are considered to compare the New MUSIC and REVEB-ESPRIT algo-
rithms. Scenarios (i)-(iii) evaluate the performance for DOA estimation of broadband
acoustic sources while scenario (iv) evaluates the performance for DOA estimation of
individual reflections in a room impulse response. The first three scenarios contain (i)
a simple free-field scenario, similar to the one in section 2.4.5, (ii) a free-field scenario
including spatial aliasing, and (iii), a reverberant scenario employing a room simulation
via the image method [AB79]. In all scenarios the maximum Ambisonics order is set
to N = 3 and the SNR is varied via additive white Gaussian noise (AWGN) simulating
the microphone self noise. Keeping the source distance to the array constant at 2 m, the
source directions were drawn randomly from a 48-point 9-design [HS96]. The evaluation
for the scenarios (i)-(iii) is carried out twice, using either two or six simultaneously es-
timated source directions. In each trial, the SNR is varied in 10 dB steps from 0 to 50
dB, where each SNR step is repeated J = 100 times using different AWGN instances.
In scenarios (ii)-(iv) that include a microphone array simulation, the array is simulated
as rigid-sphere array with a radius of r = 4.2 cm and the microphone layout of a 32-
point 7-design [HS96], similar to the Eigenmike em32. In all scenarios, RMSEs of the
great-circle distance

∆θ(j)
q = arccos

{
θ(j)T
q θ̂(j)

q

}
(2.120)

are calculated for each source q and each trial j,

RMSE =

√√√√ J∑
j=1

Q∑
q=1

∣∣∣∆θ(j)
q

∣∣∣2 /(JQ) , (2.121)

where θ(j)
q is the found DOA vector and θ̂(j)

q is the true DOA vector.

For simulation of room impulse responses in the scenarios (iii) and (iv), the Spherical Mi-
crophone Impulse Response (SMIR) generator [JHTN12] was used. To be able to retrieve
true DOAs, the SMIR generator was extended to additionally output reflection directions
and corresponding timestamps. This extended version is made available online. 3

(i) Simple free-field scenario. For the simple free-field scenario, Q unit-variance,
WGN source signals sq[τ ] are transformed to the spherical harmonics domain as plane
waves from direction θq, where AWGN noise ν[τ ] is added with a trial-dependent SNR,

smn [τ ] =

(
Q∑
q=1

Y m∗

n (θq) sq[τ ]

)
+ ν[τ ] . (2.122)

3. https://github.com/thomasdeppisch/SMIR-Generator

https://github.com/thomasdeppisch/SMIR-Generator
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5120 samples of smn [τ ] are created and directly fed into the REVEB-ESPRIT and New
MUSIC algorithms.

(ii) Free-field scenario including spatial aliasing. Scenarios (ii) and (iii) are car-
ried out in the frequency domain using block-processing and hence include a common
pre-processing step, where all source signals are short-time Fourier transformed using a
frame length of 512 samples, 50% overlap, Hann windowing and an FFT size of 1024
samples, yielding the following formalism for windowing of one frame of one source
signal sq[τ ],

s̃q[τ ] = w[τ ] sq[τ ] . (2.123)

After zero padding of s̃q[τ ] to T = 1024 samples,

ŝq[τ ] =

{
s̃q[τ ], for 0 < τ < 512 ,

0 for 512 < τ < 1024 ,
(2.124)

the signal is transformed to the frequency domain,

Sq[k] =
1∑
τ w[τ ]

T−1∑
τ=0

ŝq[τ ]e−i
2πk
T
τ . (2.125)

For further processing, we only consider the single-sided spectrum S̃q[k] (with 0 < k <
513) and hence apply a factor of 2,

S̃q[k] =
2∑
τ w[τ ]

T−1∑
τ=0

ŝq[τ ]e−i
2πk
T
τ . (2.126)

For the free-field scenario with spatial aliasing, the frequency-domain signals S̃q[k] are
evaluated at bin κ corresponding to kr = 2 (and to f = 2600 Hz when assuming c =
343 m/s and r = 4.2 cm), before being transformed to the SHD. Here, scattering of a
rigid-sphere microphone array of radius r = 4.2 cm is simulated via multiplication by
bn(kr) = 4πin+1/((kr)2h

(2)′
n (kr)) [ZF19, chapter 6],

S̃mn [κ] = bn(kr)

Q∑
q=1

Y m
n (θq)

∗S̃q[κ] . (2.127)

Note that at this stage, the spherical harmonics are truncated at a high simulation order of
Ns = 30 to be able to account for spatial aliasing in a later step. Next, microphone signals
Sl[κ] are obtained via the inverse Spherical Fourier Transform (SFT),

Sl[κ] =

(
Ns∑
n=0

n∑
m=−n

Y m
n (θl)S̃

m
n [κ]

)
+ ν̃[κ] , (2.128)

where the L = 32 microphones are located at directions θl distributed according to
a 32-point 7-design [HS96] and AWGN ν̃[κ] is added after transforming it to the fre-
quency domain (to account for the correct scaling) using eq. 2.126. Finally, the single-bin,
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frequency-domain microphone signals Sl[κ] are transformed back to the SHD at evalua-
tion order N = 3, where Tikhonov-regularised mode-strength compensation [MDB06] is
applied,

Smn [κ] =
b∗n(kr)

|bn(kr)|2 + 10−2

4π

L

L∑
l=0

Y m
n (θl)

∗ Sl[κ] . (2.129)

This procedure is performed for 10 frames which are then fed into the REVEB-ESPRIT
and the New MUSIC algorithms for evaluation.

(iii) Reverberant scenario. For the reverberant scenario, spherical microphone array
room impulse responses of 2048 samples length (at fs = 48 kHz) are generated with the
Spherical Microphone Impulse Response (SMIR) generator [JHTN12], which accounts
for rigid-sphere scattering and spatial aliasing (by using a high simulation order Ns = 30
as in the previous scenario) and uses the image method [AB79]. The microphone array
is placed at [4.103 m, 3.471 m, 2.912 m] in a 8 × 7 × 6 m3 room with reverberation
time T60 = 0.6 s. The retrieved time-domain impulse responses for each of the L = 32
microphones are convolved with their corresponding source signals and AWGN is added,

sl[τ ] =

(
Q∑
q=0

hq,l[τ ] ∗ sq[τ ]

)
+ ν[τ ] . (2.130)

The time-domain microphone signals are then transformed to the SHD,

smn [τ ] =
4π

L

L∑
l=0

Y m
n (θl)

∗ sl[τ ] , (2.131)

before frequency-domain block-processing is applied for all (N + 1)2 channels as in the
previous scenario. Here, the signals are not only evaluated at kr = 2 but at a range
of frequencies between 1300 - 5200 Hz (kr ∈ [1, 4]), where the lower bound is cho-
sen to include highest-order SH components, and the upper bound is chosen to avoid
spatial aliasing. The zero-padded and windowed SHD signals ŝmn [τ ] are transformed to
the frequency-domain and are mode-strength compensated using Thikonov-regularised
filters,

Smn [k] =
b∗n(kr)

|bn(kr)|2 + 10−2

2∑
τ w[τ ]

T−1∑
τ=0

ŝmn [τ ]e−i
2πk
T
τ . (2.132)

The procedure is again performed for 10 frames, after which the signals Smn [k] for all
frames and all evaluated frequencies are fed into the REVEB-ESPRIT and New MUSIC
algorithms.

(iv) DOA estimation with ARIRs. The processing in this scenario is similar to the
processing for the reverberant scenario, with the difference that the block processing is
performed in the time domain and SNRs are evaluated in 10 dB steps from 30 to 80 dB.
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As this scenario analyses room impulse responses, no source signals are convolved with
the simulated RIR,

sl[τ ] = hl[τ ] + ν[τ ] . (2.133)

The impulse responses for all microphones are again transformed to the SHD,

s̃mn [τ ] =
4π

L

L∑
l=0

Y m
n (θl)

∗ sl[τ ] , (2.134)

where the 2048-sample RIRs are first zero-padded to T = 4096 samples, and then trans-
formed to the frequency domain and mode-strength compensated,

Smn [k] =
b∗n(kr)

|bn(kr)|2 + 10−2

T−1∑
τ=0

ŝmn [τ ]e−i
2πk
T
τ . (2.135)

After full-bandwidth mode-strength compensation, the RIRs are transformed back to the
time domain, where they are band limited by front and reverse direction filtering to cre-
ate zero phase distortion. For this, a second-order bandpass filter Bbp{·} with cut-off
frequencies fhp = 1300 Hz (kr = 1) and flp = 5200 Hz (kr = 4) is used,

smn [τ ] = Bbp

{
1

T

T−1∑
k=0

Smn [k]ei
2πk
T
τ

}
. (2.136)

The time-domain signal smn [τ ] is then fed into the REVEB-ESPRIT and New MUSIC
algorithms in frames of 21 samples with 20 samples overlap. A DOA estimation is only
performed if a true reflection is present in the current frame. RMSEs are divided by the
number of found reflections in a trial and frame Q(j,p), the number of active frames P
(where a DOA estimation was carried out) and the number of trials J ,

RMSE =

√√√√ J∑
j=1

Q∑
q=1

P∑
p=1

∣∣∣∆θ(j,p)
q

∣∣∣2 /(JQ(j,p)P ) . (2.137)

Note that in contrast to the other scenarios, where the number of sources Q is static and
fed into the algorithms, in this scenario, the number of reflections (defining the subspace
dimension) is calculated for each frame using the SORTE algorithm (cf. section 2.1).
However, for calculation of the RMSE, only min(Q(j,p), Q̂(j,p)) DOAs are considered,
where Q̂(j,p) are the true DOAs. This means that errors resulting from a wrong estimation
of the number of subspace components are neglected, e.g. if the algorithm finds 5 DOAs
in a frame which only has 3 true DOAs, the RMSE will be calculated only for the 3 found
DOAs with respect to the 3 true DOAs closest to them.

In view of DOA estimation of reflections in an Ambisonic room impulse response
(ARIR), as done by the higher-order Ambisonic Spatial Decomposition Method
(HO-ASDM, introduced in section 3.1), a performance comparison of the New MUSIC
and REVEB-ESPRIT algorithms to the pseudo-intensity vector (PIV) method employed
in the Ambisonic spatial decomposition method (ASDM, see the introduction of
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section 3.1, [TPKL13] for the original SDM and [FZ16] for the use in an Ambisonic
context) is of particular interest. Hence, scenario (iv) is repeated for a maximum SH
order of N = 1, where the lower frequency bound of the bandpass filter is set to
fhp = 100 Hz and the PIV method is added to the comparison. Here, two cases are
investigated: One where the subspace based algorithms (New MUSIC and
REVEB-ESPRIT) are simultaneously estimating up to Q = 2 DOAs, and one where the
number of estimated DOAs is fixed to Q = 1, which is the maximum number of DOAs
the PIV method can estimate.

Parametrisation. In all four scenarios the New MUSIC algorithm is set up identically.
It is initialised using 20 × Q points distributed according to a spherical Fibonacchi grid.
The maximum number of iterations is set to kmax = 40 and the step size is calculated
adaptively as 1 − ((k − 1)/kmax). All scenarios are using the objective for finding roots
in the noise subspace, i.e. the Newton update is calculated as

θk+1 = θk −
(

1− k − 1

kmax

)
gf2n
y(θk)

TUnU
T
n y(θk)

gT
f2n
gf2n

. (2.138)

A convergence criterion terminates the algorithm if the mean of all Newton steps of the
current iteration is smaller than 10−3, or if it is larger than 1.5 times the mean of all New-
ton steps of the previous iteration while being smaller than 10−1. After the algorithm
converged or the maximum number of iterations is reached, points that did not converge
(their corresponding last Newton step being larger than 2 times the median Newton step of
all points while being smaller larger than 10−2) are excluded from the result. Furthermore,
points at which the Hessian is not positive-definite are also excluded. Finally, the remain-
ing points are divided into Q clusters using the k-means algorithm and the means of the
points in each cluster are the resulting Q DOAs. These rather sophisticated convergence
criteria are chosen due to the versatile test setup, under which the algorithm is exposed
to a multitude of different testing conditions. In most applications, static convergence
thresholds, set after an estimation of the SNR and with regard to the specific environment,
should be sufficient.

The REVEB-ESPRIT algorithm uses the ad-hoc Schur decomposition (cf. section 2.4.1)
for simultaneous triangularisation. In scenario (iv), the SORTE algorithm was used with
ε1 = 0.99 and ε2 = 0.1 (cf. section 2.1).

2.6.2 Results

Figure 2.5 shows RMSEs for scenarios (i)-(iii) and Q = 2 simultaneously estimated
DOAs. In most of the cases that were analysed, New MUSIC and REVEB-ESPRIT
perform similar. In the simple free-field scenario, REVEB-ESPRIT achieves between
0.2◦ − 0.4◦ lower RMSEs than New MUSIC. The only larger differences occur for a low
SNR of 0 dB in scenarios (ii) and (iii), where the RMSEs of REVEB-ESPRIT are lower
than the RMSEs of New MUSIC by 2◦ and 15◦, respectively. From 10 dB SNR upwards,
both algorithms perform very similar again, with REVEB-ESPRIT having an advantage
of up to 0.4◦ (for scenario (ii), 50 dB SNR).
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(a) Scenario (i): Simple free-field scenario.
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(b) Scenario (ii): Free-field scenario including spatial aliasing.
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(c) Scenario (iii): Reverberant scenario.

Figure 2.5 – RMSEs for simultaneous DOA estimation of Q = 2 sources for the New
MUSIC and REVEB-ESPRIT algorithms.
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The results for simultaneous estimation of Q = 6 DOAs in figure 2.6 are quite different.
Although REVEB-ESPRIT again performs better for low SNRs in scenarios (i) and (ii),
New MUSIC achieves lower RMSEs for SNRs from 10 dB upwards in scenario (i) (by
up to 1.7◦) and from 30 dB upwards in scenario (ii) (by up to 2.7◦). In the reverberant
condition, scenario (iii), the result is flipped: Here, New MUSIC achieves a lower RMSE
by 5◦ for a low SNR of 0 dB, while for higher SNRs REVEB-ESPRIT performs clearly
better with lower SNRs by between 14◦ − 24◦. In addition to RMSEs, the figure shows
dashed-line RMSEs for both algorithms that retrieve the average of all trials from the
median of the errors of all six simultaneously estimated source directions. In all tested
scenarios, and in scenario (iii) that exhibits large RMSEs in particular, the median-based
RMSEs are distinctly lower (by up to 31◦ for New MUSIC and up to 16◦ for REVEB-
ESPRIT) than their mean-based counterparts. Hence, the large occurring RMSEs are due
to few or single estimated directions that miss the ground truth by far, while most of the
estimations are rather accurate.

Figure 2.7 shows the results for scenario (iv) that evaluates the estimation accuracy of
DOAs of individual reflections in a simulated ARIR. In this task, New MUSIC and
REVEB-ESPRIT perform similarly, which is not surprising as in most trials a maximum
of 3 simultaneously arriving reflections were found by the SORTE algorithm and hence
the scenario is comparable to scenario (iii) for Q = 2, figure 2.5(c). In figure 2.7(b) and
2.7(c) the PIV method is added to the comparison and the maximum SH order is set to
N = 1. Regardless of whether the number of DOAs to be estimated for REVEB-ESPRIT
and New MUSIC is fixed to Q = 1 (figure 2.7(c)), or is allowed vary between one and
two depending on the output of the SORTE algorithm (figure 2.7(b)), both algorithms
outperform the PIV method (which in both cases can only estimated a single DOA) for
SNRs larger than 50 dB, by up to 4.5◦ and up to 2.9◦, respectively. For SNRs of less than
50 dB, the PIV method has the advantage of up to 5.7◦ for an SNR of 30 dB.
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(a) Scenario (i): Simple free-field scenario.
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(b) Scenario (ii): Free-field scenario including spatial aliasing.
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(c) Scenario (iii): Reverberant scenario.

Figure 2.6 – Solid lines show RMSEs for simultaneous DOA estimation ofQ = 6 sources
for the New MUSIC and REVEB-ESPRIT algorithms. Dashed lines show RMSEs based
on the median error of all six simultaneously estimated directions for both algorithms.
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(a) Maximum SH order N = 3.
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(c) Maximum SH order N = 1, number of DOAs for simultaneous estimation fixed to Q = 1.

Figure 2.7 – Scenario (iv): RMSEs for simultaneous estimation of reflection directions
in an ARIR for the New MUSIC and REVEB-ESPRIT algorithms. In (b) and (c) the
maximum SH order is set to N = 1 and the PIV method is added to the comparison.
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Chapter 3

Applications

3.1 Higher-Order Ambisonic Spatial Decom-
position Method (HO-ASDM)

Convolution of a signal with a measured room impulse response is a widely applied tech-
nique for reproduction of the acoustic characteristics of a room. This concept was ex-
tended to multichannel loudspeaker arrays and directional impulse responses by Merimaa
and Pulkki with the spatial impulse response rendering (SIRR) method [MP05, PM06]. In
each frequency band, the method splits the input RIR into a direct part and a diffuse part
and reproduces the direct part directionally sharpened via vector-base amplitude panning
(VBAP) [Pul97] after DOA estimation via the pseudo-intensity vector (PIV). The dif-
fuse part is reproduced after a decorrelation process. The spatial decomposition method
(SDM) is a similar method, but in contrast to SIRR applies broadband processing and
does not explicitly split the signal into a direct and a diffuse part [TPKL13]. Although
originally proposed for reproduction via VBAP, the method was also found useful in the
SHD framework, called Ambisonic SDM (ASDM), see e.g. [FZ16][ZF19, chapter 5]. In
the SHD of higher-order Ambisonics, the method can be seen as a directional upmixing
procedure that renders higher-order RIRs from measured first- and zeroth-order RIRs. So
far, the procedure was based on estimating a single direction by PIV or magnitude sen-
sor response. The directional enhancement of first-order Ambisonic RIRs by the 2+2
directional signal estimator (2DSE2) [GZ20] is a similar method that however manages
to simultaneously estimate two directions in first-order Ambisonic RIRs and is based
on the high angular resolution plane-wave expansion (HARPEX) method [BB10, BB11].
Recently, SIRR was extended to higher-order SH input, called higher-order SIRR (HO-
SIRR), by applying sector-based processing [MPP+20] that is also capable of detecting
multiple simultaneous directions. Clearly, HO-SIRR is the first method to exploit higher-
order SH information in ARIRs. The aim of this section is to introduce HO-ASDM as a
novel counterpart to HO-SIRR.

Similarly to HO-SIRR for SIRR, the higher-order ASDM (HO-ASDM) extends the
ASDM to higher-order SH input. HO-ASDM uses a VEB-ESPRIT algorithm for
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multiple DOA estimation, which is able to simultaneously estimate N2 + b4/3Nc
directions (in an order N input ARIR) and has shown to yield superior performance
when compared to the PIV method (cf. section 2.6). The subspace-based DOA
estimation procedure controls a multi-direction beamformer that extracts directional
signals for the subsequent higher-order re-encoding (upmixing). As directional signals
with stable directions do not include diffuse sounds, a residuum stemming from the noise
subspace is added to the upmixed higher-order ARIR. The resulting ARIR is equalised
based on the squared spectral envelope. Coding and multidirectional parameterisation of
Ambisonic sound scenes (COMPASS) [PTP18] is a similar algorithm for analysis and
synthesis of Ambisonic sound scene recordings that applies sub-band processing.
COMPASS uses MUSIC for the DOA estimation, which has been designed for SHD
signals and but which has not been tested within the context of HO-SIRR to upmix
ARIRs. Another technique for multiple-direction retrieval is compressed sensing, which
was used in an SHD upmixing method by Wabnitz et al. [WEMJ11]. Similar to the
non-parametric MUSIC algorithm that applies a grid-search to estimate directions, the
method employs a large plane-wave dictionary in the optimisation process.

3.1.1 Algorithm

Subspace decomposition and smoothing of the number of subspace compo-
nents. As shown in section 2.1, an estimation of the signal and noise eigenvectors in
matrices Us and Un is accomplished either by eigendecomposition of the sample covari-
ance or by singular value decomposition of the data matrix. The dimension of the signal
subspace, i.e. the number of directional components to be extracted from the original
ARIR is determined using the SORTE algorithm (cf. section 2.1) as it is also suggested
in COMPASS [PTP18]. Strong fluctuations in the number of observable directional com-
ponents Q in Θ = [θ1, . . . ,θQ] are found to create noticeable switching artefacts that
strongly distort the upmixed ARIR. Hence, a temporal moving-median smoothing of the
number of directional components Q is applied before the actual DOA estimation and
upmixing process.

DOA estimation and upmixing. A frame-wise multiple-DOA estimation is achieved
by using the (extended) VEB-ESPRIT algorithm (cf. section 2.4.1) with a pre-specified
number of directional components Q derived from the preceding smoothing process. Up-
mixing to an arbitrary Ambisonic order Ñ is achieved by a multi-direction beamformer
that assumes a (mode-strength compensated) Ambisonic RIR hN(t). Simplistically, a
maximum-directivity beamformer would just evaluate the input SH pattern hN (t) for each
input sample at the found VEB-ESPRIT DOAs Θ(t), and upmixing re-encodes the result-
ing directional signals in an arbitrary order Ñ ,

hÑ(t) = YÑ(Θ(t))Y T
N (Θ(t))hN(t) .

Signal cross-talk across the outputs of the maximum-directivity beamformers Y T
N (Θ(t))

is removed by a crosstalk canceller
(
Y T
N (Θ(t))YN(Θ(t))

)−1, yielding the desired direc-
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tional upmixing procedure

hÑ(t) = YÑ(Θ(t))
(
Y T
N (Θ(t))YN(Θ(t))

)−1
Y T
N (Θ(t))hN(t) . (3.1)

In cases when some of the DOAs get close to each other, the cross-talk cancelling in-
verse

(
Y T
N (Θ(t))YN(Θ(t))

)−1 is ill-conditioned. Hence, a regularised pseudoinverse is
employed by discarding small singular values σi < ε and their corresponding singular
vectors, denoted by the diminished matrices Ũ , S̃ and Ṽ ,

YN = USV T ≈ Ũ S̃Ṽ T , (3.2)

where ε is a small positive constant, e.g. ε = 10−6. To also capture the spectral characteris-
tics of the ARIR that are not directional or diffuse, a residual signal rN (t) is calculated by
projecting the ARIR hN(t) onto the noise subspace (i.e. the column space of the matrix
Un holding the noise eigenvectors),

rN(t) = UnU
T
n hN(t) = (I −UsU

T
s )hN(t) , (3.3)

where the noise eigenvectors are obtained by QR-decomposition of the encoding matrix,

YN = QR =
[
Us Un

]
R . (3.4)

Equivalently, the residuum can be obtained by using the pseudoinverse as done
in [PTP18],

rN(t) = (I − YNY †N)hN(t) . (3.5)

By renormalisation of the directional components with their new Ambisonics order Ñ
using a suitable factor, they can be matched in level to the unmodified residual, and the
upmixed ARIR is expressed as sum

hÑ(t) =

√
(N + 1)2

(Ñ + 1)2
YÑ(Θ(t)) Ṽ S̃−1ŨT hN(t) + rN(t) . (3.6)

Spectral equalisation of the squared signal envelope. To equalise increased spec-
tral brightness that is caused by directional fluctuations of the estimated DOAs [TPKL13,
FZ16] that amplitude modulate the typical longer reverberation of lower frequencies to
higher frequencies, the third-octave envelope of the upmixed ARIR h̃mn (t, b) is equalised
with regard to the third-octave envelope of the original ARIR hm

′

n′ (t, b) ,

h̃mn,eq(t, b) = h̃mn (t, b)

√√√√1/(N + 1)2
∑N

n′=0

∑n′

m′=−n′ E{|hm
′

n′ (t, b)|2}
1/(Ñ + 1)2

∑Ñ
n=0

∑n
m=−n E{|h̃mn (t, b)|2}

, (3.7)

where E{|hmn (t, b)|2} denotes a short-term estimator of the squared signal envelope at the
time t and frequency band b. A similar approach was found to be effective in context of
the ASDM, also denoted as recovery of the spectral decay [ZF19, chapter 5].
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3.1.2 Listening Experiment

Experiment setup. In some cases, despite the spectral equalisation described above,
the upmixed ARIRs exhibit audible artefacts, especially if the input ARIR is only a first-
order response. The listening experiment presented below systematically investigates the
perceived similarity of six different upmixed ARIRs (denoted as conditions) to a reference
in six trials with different RIRs. The reference condition in every trial is a fourth-order
ARIR recorded with an Eigenmike EM32 microphone array. The conditions under test
contain the same ARIR in first order and several upmixed ARIRs using HO-ASDM and
ASDM, see table 3.1 for a description and appendix D for a description of the equalisa-
tion methods. On all input ARIRs, radial filtering is done using the responses described
in [LZ15][ZF19, chapter 6] with 15 dB noise gain and without max-rE side-lobe sup-
pression 1. The ARIRs are decoded to a 7+4+1 loudspeaker array at the IEM production
studio (Produktionsstudio) using the AllRADecoder plug-in from the IEM plug-in suite 2

and are played back directly (without convolution) to allow for a detailed evaluation of
artefacts. Due to the short response of the directly played-back ARIRs, this experiment
does not facilitate an evaluation of the diffuseness or envelopment created by the respec-
tive upmixing technique by design.

HO-ASDM used a 21-sample, Hann-windowed block-wise processing for DOA estima-
tion to facilitate the maximum number of simultaneously detectable DOAs and a 49-
sample (≈ 1 ms) moving median filtering for smoothing of the number of subspace com-
ponents, while both ASDM conditions used 14-sample Hann-windowed block-processing.
For the HO-ASDM, the SORTE algorithm estimates the number of subspace components
using ε1 = 0.95 and ε2 = 0.01, cf. section 2.1. The input RIRs are zero-phase bandpass-
filtered with the input-order-dependent lower cut-off frequency set to the cut-on frequency
of the corresponding highest-order radial filter fl = {150, 950, 2000, 3150} Hz to allow
for full-order DOA estimation and an upper cut-off frequency of fu = 5.2 kHz (corre-
sponding to kr = 4 for the EM32) to avoid spatial aliasing.

The experiment was conducted using an open-source MUSHRA tool 3 as OSC control
for Reaper 4 in the IEM production studio. All conditions and trials were presented in
randomised order and the participants were allowed to listen to the conditions as often
as desired. The test design is based on the multiple stimulus comparison with hidden
reference and anchor (MUSHRA) paradigm. It is similar to the MUSHRA paradigm
in the sense that multiple conditions are compared to a reference by multiple subjects
in a repeated (within-subjects) manner, but differs in the way that it neither employs a
hidden reference nor a dedicated anchor. However, it is assumed that the o3-o4 condition
serves as a quasi-reference and the ASDM-PO condition as a quasi-anchor, due to the strong
similarity to the reference and the strong artefacts, respectively.

1. Responses including max-rE weights are available here: https://phaidra.kug.ac.at/detail/
o:69296

2. https://plugins.iem.at/
3. https://git.iem.at/rudrich/mushra, available after login.
4. http://reaper.fm/
5. https://phaidra.kug.ac.at/view/o:104385
6. https://zenodo.org/record/3477602

https://phaidra.kug.ac.at/detail/o:69296
https://phaidra.kug.ac.at/detail/o:69296
https://plugins.iem.at/
https://git.iem.at/rudrich/mushra
http://reaper.fm/
https://phaidra.kug.ac.at/view/o:104385
https://zenodo.org/record/3477602
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trials

Ligeti13
Measured at Ligeti hall (T60 = 1.4 s), Graz, with an EM32,
0◦ AOA, loudspeaker pointing away from receiver, available online 5.

Ligeti06
Measured at Ligeti hall (T60 = 1.4 s), Graz, with an EM32,
0◦ AOA, loudspeaker pointing towards the receiver, available online5.

M
Measured at St. Paul’s concert hall (T60 = 2.1 s), Huddersfield,
with an EM32, 0◦ AOA, taken from the 3D-MARCo library 6.

Ligeti13 +70◦ Same as in Ligeti13, rotated by 70◦.
Ligeti06 +70◦ Same as in Ligeti06, rotated by 70◦.
M +70◦ Same as in M, rotated by 70◦.
conditions

reference Fourth-order ARIR, no upmixing.
o1 First-order ARIR, no upmixing.
o1-o4 Upmix from first to fourth order using HO-ASDM.
o2-o4 Upmix from second to fourth order using HO-ASDM.
o3-o4 Upmix from third to fourth order using HO-ASDM.

ASDM-PO
Upmix from first to fourth order using ASDM,
per-order equalisation (cf. appendix D).

ASDM-M
Upmix from first to fourth order using ASDM,
equalisation of the mean RMS value (cf. appendix D).

Table 3.1 – Description of the ARIRs for all trials and conditions used in the experiment.

Evaluation and results. 11 trained listeners with previous experience in listening
experiments between 24 and 47 years with an average of 32 years took part in the ex-
periment. On average the experiment took 13.5 minutes. Due to inherent violations in
MUSHRA-like paradigms of several assumptions required for ANOVA-type methods,
such as interval scale, normality, equal variances and independence (see [MDM18] for
a discussion), which are also not mitigated by the specific design of this experiment, the
non-parametric Friedman test is chosen to test if there are significant differences between
the tested conditions. An independent Friedman test was conducted for each trial and for
each trial the null hypothesis (H0: The medians of the data are equal for all conditions)
was rejected with a significance level of α = 0.05. Hence, a pairwise Wilcoxon signed-
rank test was conducted as post-hoc measure to test for significant differences between
each pair of conditions. To account for the inflation of the type I error, the resulting p-
values were corrected by the Bonferroni-Holm method [Hol79]. To verify whether the
results are meaningful, effect sizes were calculated using the matched-pairs rank biserial
correlation coefficient rc [KRM18, chapter 22]. An extensive overview over the results of
all pairwise tests are listed in appendix D. The pairwise Wilcoxon signed-rank test yielded
significant differences between all tested pairs except for the pair o1, o1-o4 in three of
the six trials and the pair o2-o4, o3-o4 in the second trial (Ligeti06). The matched-
pairs rank biserial correlation coefficient is larger than 0.9 in all but one significant cases
(which has rc = 0.77), showing a large effect size. Figure 3.1 shows the medians and 95%
confidence intervals for all conditions and trials.
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Figure 3.1 – Medians and 95% confidence intervals for all conditions and trials.

Assessment of the results. The above results resemble subjective experiences of the
author and of individual participants (gathered via an informal interview directly after the
listening experiment) closely: For stimuli of type o2-o4 and o3-o4 the difference to the
reference is perceived as a subtle difference in timbre, while artefects are hardly ever no-
ticeable. The subtle timbre difference (as a main difference) only turned out significant
in three of six cases. In the environment of the test, the first-order impulse response in
stimulus o1 only differed from the reference in timbre. The timbre difference is presum-
ably caused by the order-dependent radial filtering. The upmix from first to fourth order,
o1-o4, has a similar timbre as o1 but exhibits slight artefacts. Again, the slight arte-
facts were not significant in all trials. It is concluded that both ASDM-based stimuli are
rated inferior mainly because of their strong artefacts that dominate over any perception
of timbre. Despite the clearly inferior ratings of both ASDM conditions, overall spectral
equalisation (ASDM-M) proved to be superior to the per-order equalisation (ASDM-PO) in
avoiding artefacts when using ASDM.

The listening experiment revealed advantages of the HO-ASDM over the ASDM possibly
regarding preservation of sound colour and reduction of artefacts for all tested input or-
ders. Despite the fact that listeners could also have based their answers on properties like
spatial envelopment or diffuseness, it is found from informal interviews after the tasks
that their main focus lied on artefacts and changes in timbre. In the given setting, timbral
changes appeared to yield more pronounced distinction than spatial attributes. Hence,
future investigations should consider attributes like diffuseness, envelopment and size of
the sweet area to rate the actual improvement made by the upmixing procedure, maybe in
a larger listening environment. Especially for the pair o1, o1-o4 significant differences
would be expected in such a test design.
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3.2 Analysis and Synthesis of Directivity Patterns
in Peak Value and Tangential Curvature

When measuring directivity patterns of sound sources such as musical instruments by
means of a surrounding microphone array, an ongoing problem in research remains in the
acoustic centreing of the sound source [DZ10, BPVR11, SV15, Pol15, Zag19]. Acoustic
centreing of the source is a non-trivial task as the acoustic centre of a sound source is
frequency dependent and not generally known. When the measured sound source is not
properly centred, the resulting directivity pattern exhibits an energy shift towards higher-
order patterns, resulting in a more complex directivity pattern than the one of the originally
measured source. As the acoustic centreing problem is essentially a phase-retrieval prob-
lem, common solutions lie in finding an optimal phase to shift the energy of the directivity
pattern back towards lower orders [Zag19] or in evaluating the measured directivity pat-
terns only in magnitude and adding a linear or minimum phase term [AB20, BMKF20].
Recently, the Directivity Sample Combination algorithm (DISCO) [GP19] was proposed
as a simple and efficient parametric alternative. DISCO allows the rendering of a simpli-
fied directivity patterns via VBAP after sampling it at a few regularly-distributed, pattern-
independent points.

By exploiting the algorithms introduced in this work, another parametric approach is de-
veloped that is able to describe simplified directivity patterns after analysis of its peak
locations, peak values and corresponding tangential curvatures. The New MUSIC algo-
rithm is employed to not only find peaks of the measured directivity pattern but also to
evaluate the Hessian at each peak. From this information, complexity-reduced directivity
patterns exhibiting the original’s principal peaks and also following their shape are syn-
thesised. The introduced approach is not only applicable to source centreing problems,
but can be seen as a hands-on tool to reduce the complexity of directivity patterns while
preserving their main directional characteristics, which reduces the computational effort
for simulation of directional sound sources, e.g. in extended reality applications.

3.2.1 Analysis of Directivity Patterns

Analysis of the Hessian. The Hessian contains information like definiteness and cur-
vature at extrema locations, which is beneficial for analysis and synthesis of directivity
patterns. However, interpretation of the 3 × 3 Hessian with tangential derivatives in x, y
and z (as derived in section 2.5.2) is inconvenient and a rotation to tangential azimuthal,
zenithal and radial directions as shown in figure 3.2 is beneficial. Such a mapping on
the tangential plane is accomplished by rotation to unit vectors in azimuthal, zenithal and
radial directions, uϕ, uϑ and ur,

[
uϕ uϑ ur

]T
= RT

[
ix iy iz

]
=
[
uϕ uϑ ur

]T
I
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Figure 3.2 – Rotation of the Cartesian coordinate system using spherical unit vectors uϕ,
uϑ, ur at a point on the unit sphere.

=

− sin(ϕ) cos(ϕ) cos(ϑ) cos(ϕ) sin(ϑ)
cos(ϕ) sin(ϕ) cos(ϑ) sin(ϕ) sin(ϑ)

0 − sin(ϑ) cos(ϑ)

T

. (3.8)

For calculation of the Hessian in spherical coordinates, the coordinate system is rotated
from spherical to Cartesian coordinates, where the Hessian is taken and rotated back,

H̃ =

H̃ϕϕ H̃ϕϑ H̃ϕr

H̃ϑϕ H̃ϑϑ H̃ϑr

H̃rϕ H̃rϑ H̃rr

 = RTHR . (3.9)

A useful 2× 2 Hessian is found as

MTH̃M =

[
H̃ϕϕ H̃ϕϑ

H̃ϑϕ H̃ϑϑ

]
= MTRTHRM , (3.10)

with the projector M that projects H̃ onto azimuthal and zenithal unit vectors and ne-
glects the trivial radial components,

M =

1 0
0 1
0 0

 , (3.11)

allowing for the analysis of the definiteness of the Hessian at extrema locations via eigen-
value decomposition. Following this scheme, the Newton steps are defined via the Hes-
sian in spherical coordinates, where regularisation of the Hessian is avoided as the 2 × 2
Hessian in spherical coordinates has full rank,

θk+1 = θk −RM
(
MTRTHf2RM

)−1
MTRTgf2 . (3.12)
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Figure 3.3 – Directional magnitude of an order N = 5 anisotropic beam pattern and an
ellipse characterising the relative tangential flatness.

Note that these calculations could also be performed directly using recurrence relations in
spherical coordinates. However as explained in section 2.5, the derivative w.r.t. azimuth
angle is not defined a zenith and nadir.

Depicting relative tangential flatness to measure the peak extent in 2D. The
ellipsoidal shape of the extrema is analysed by calculation of major and minor principal
semi-axes via singular value decomposition,

H̃ = UΣV T . (3.13)

Here, the left-singular vectors inUT rotate H̃ to be aligned with the axes of the coordinate
system spanned by the tangential azimuthal and zenithal unit vectors at the maximum
location θ̂, so an ellipse characterising the curvature at the maximum can be drawn by
rotating and stretching the unit circle accordingly, and then rotating back from the local
tangential azimuth and zenith directions to world coordinates,ξx(t)ξy(t)

ξz(t)

 = RMUTΣ−1‖γ‖
[
cos(t)
sin(t)

]
+ θ̂ , (3.14)

where t ∈ [0, 2π]. Here, the ellipse’s axes are weighted with the inverse of the singular
values, to plot flatness of the maximum instead of curvature, and normalised by the norm
of the pattern γ the Hessian is evaluated at. Figure 3.3 shows the directional magnitude
of an order N = 5 anisotropic beam pattern and an ellipse characterising its relative
tangential flatness using the described method.

3.2.2 Synthesis of Hessian-Constrained Directivity Patterns

To resynthesise simplified directivity patterns, a minimum-norm SH pattern γ̂ subject to
a Hessian constraint is searched,

γ̂ = arg min
γ
‖γ‖2 (3.15)
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s.t. h̃γ = h̃ , (3.16)

where

h̃γ =

h̃ϕϕh̃ϕϑ
h̃ϑϑ

 = Aγ , (3.17)

contains the entries of the 2 × 2 Hessian of the pattern γ, which is calculated as before
via projection of a 3×3 Hessian in Cartesian coordinatesHγ onto tangential azimuth and
zenith angles,

H̃γ =

[
h̃ϕϕ h̃ϕϑ
h̃ϕϑ h̃ϑϑ

]
= MTRTHγRM , (3.18)

and h̃ contains the entries of a target Hessian, both evaluated at location θ. With the same
projection matrix M as in the previous section (eq. 3.11), the contents of R from eq. 3.8
described by variables r for mathematical brevity,

R =

− sin(ϕ) cos(ϕ) cos(ϑ) cos(ϕ) sin(ϑ)
cos(ϕ) sin(ϕ) cos(ϑ) sin(ϕ) sin(ϑ)

0 − sin(ϑ) cos(ϑ)

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (3.19)

and the Hessian expressed via SH recurrences as in section 2.5.2,

Hγ =

yT
N+2G

T
xG

T
xγ yT

N+2G
T
xG

T
y γ yT

N+2G
T
xG

T
z γ

yT
N+2G

T
yG

T
xγ yT

N+2G
T
yG

T
y γ yT

N+2G
T
yG

T
z γ

yT
N+2G

T
zG

T
xγ yT

N+2G
T
zG

T
y γ yT

N+2G
T
zG

T
z γ

 , (3.20)

or in vectorised form,

vec(Hγ) =



hT
11

hT
21

hT
31

hT
12

hT
22

hT
32

hT
13

hT
23

hT
33


γ , (3.21)

the evaluated Hessian in half-vectorised form (vectorisation of the upper triangular matrix
assuming a symmetric Hessian at location θ) is found after rotation,

Aγ = vech(H̃γ) (3.22)

=

r11

(
hT

11 r11 + hT
21 r21 + hT

31 r31

)
+ r21

(
hT

12 r11 + hT
22 r21 + hT

32 r31

)
+ r31

(
hT

13 r11 + hT
23 r21 + hT

33 r31

)
r12

(
hT

11 r11 + hT
21 r21 + hT

31 r31

)
+ r22

(
hT

12 r11 + hT
22 r21 + hT

32 r31

)
+ r32

(
hT

13 r11 + hT
23 r21 + hT

33 r31

)
r12

(
hT

11 r12 + hT
21 r22 + hT

31 r32

)
+ r22

(
hT

12 r12 + hT
22 r22 + hT

32 r32

)
+ r32

(
hT

13 r12 + hT
23 r22 + hT

33 r32

)
γ .

We solve using a Lagrange multiplier λ,

J(γ,λ) = γTγ + (Aγ − h)Tλ , (3.23)
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by zeroing the gradients
∂

∂γ
J = 2γ +ATλ = 0 , (3.24)

∂

∂λ
J = Aγ − h = 0 , (3.25)

and solving for

γ̂ = −1

2
ATλ . (3.26)

Inserting into the constraint yields the Lagrange multiplier

λ = −2(AAT)−1h̃ , (3.27)

and inserting back into the equation for γ̂ yields the optimum SH pattern

γ̂ = AT(AAT)−1h̃ . (3.28)

Adding an amplitude constraint. We can add an amplitude constraint, forcing the
amplitude at the target location θ to 1,

yT(θ)γ = 1 , (3.29)

by augmenting the constraint (eq. 3.16) to[
yT(θ)
A

]
γ −

[
1

h̃

]
= 0 . (3.30)

If the amplitude at at the location of the target Hessian is known, the amplitude constraint
can be adapted to perfectly meet it, [

1

h̃

]
←
[
at

h̃

]
, (3.31)

or to create a beam with amplitude 1 that has the same Hessian as the input Hessian scaled
to an amplitude of 1 at the target location,[

1

h̃

]
←
[

1

h̃ 1
at

]
, (3.32)

such that the directivity pattern will be reconstructed with correct relation of Hessian to
amplitude.

Adding inverse weights. To favor energy in lower orders, inverse weightsw, such as
max-rE or in-phase weights [Dan01, ZF12], can be added to the cost function,

J(γ,λ) = γTdiag(w)−1γ + (Aγ − h)Tλ , (3.33)

yielding

γ̂ = −1

2
diag(w)ATλ , (3.34)

λ = −2(A diag(w)AT)−1h̃ , (3.35)

and
γ̂ = diag(w)AT(A diag(w)AT)−1h̃ . (3.36)
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Relation of curvature to amplitude of a SH basic beam. We use a helpful
relation of Legendre polynomials to analyse the beam curvature of an SH pattern at zenith,
where all SHs of degree m 6= 0 vanish,

d2

dϑ2
Pn(z) = −z d

dz
Pn(z) + (1− z2)

d2

dz2
Pn(z) , (3.37)

yielding at zenith z = cosϑ = 1,

d2

dϑ2
Pn(1) = − d

dz
Pn(1) . (3.38)

Via the Legendre differential equation

(1− z2)
d2

dz2
Pn(z)− 2z

d

dz
Pn(z) + n(n+ 1)Pn(z) = 0 , (3.39)

we find at zenith,
d

dz
Pn(1) =

n(n+ 1)

2
Pn(1) . (3.40)

Inserting this in eq. 3.38 yields the curvature at zenith,

d2

dϑ2
Pn(1) = −n(n+ 1)

2
Pn(1) = −n(n+ 1)

2
. (3.41)

Now, the curvature of a basic SH beam (at zenith, summing over m = 0 SHs is sufficient)
is derived as,

∂2

∂ϑ2

N∑
n=0

Y 0
n (0)Y 0

n (ϑ)

∣∣∣∣∣
ϑ=0

=
N∑
n=0

(N0
n)2Pn(1)

∂2

∂ϑ2
Pn(cos(ϑ))

∣∣∣∣
ϑ=0

=
1

4π

N∑
n=0

(2n+ 1)
∂2

∂ϑ2
Pn(cos(ϑ))

∣∣∣∣
ϑ=0

= −1

2

1

4π

N∑
n=0

(2n+ 1)(n(n+ 1))

= −1

4

1

4π
N(N + 1)2(N + 2) , (3.42)

where the series is evaluated using Gauss’ sum formula (or Faulhaber’s formula for higher-

order terms) and fully-normalised SHs (N0
n =

√
2n+1

4π
) are used. We normalise by the am-

plitude yT
b yb = (N+1)2

4π
of a basic beam, and finally get the ratio of curvature to amplitude

of a basic SH beam,
∂2

∂ϑ2

∑N
n=0

∑n
m=−n Y

m
n (θ0)Y m

n (θ)
∣∣∣
θ=θ0∑N

n=0

∑n
m=−n(Y m

n (θ0))2
= −1

4
N(N + 2) . (3.43)

This information can be used to manipulate the target Hessian,[
1

h̃

]
←
[

1
h̃

max(h̃)
1
4
N(N + 2)

]
, (3.44)

such that the Hessian of a basic beam will be recreated perfectly (scaled to have amplitude
1) without knowledge of the original amplitude.
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3.2.3 Exemplary Resynthesis of a Random Directivity Pattern

To demonstrate the proposed approach, a random directivity pattern of maximum SH or-
der N = 5 is analysed and resynthesised in different ways. Figure 3.4 shows (a) the
original random directivity pattern, (b) a map projection and found peaks using New MU-
SIC, (c) a resynthesised pattern using a Hessian constraint and an amplitude constraint
with the original amplitudes (eq. 3.32), and (d) a resynthesised pattern with the Hessian
and amplitude constraints, using only the two dominant peaks. In (c) all 11 peaks of the
original pattern are used and the original pattern is reconstructed perfectly. In (d) a simpli-
fied pattern is obtained, where the two dominant peaks from (a) are still clearly visible but
all other peaks are strongly reduced. Further simplification of the pattern is achieved by
reducing the reconstruction order, as shown in figure 3.5, where the maximum SH order
is set to N = 3. In cases, where a lower reconstruction order is used, the original rela-
tions of amplitude to curvature might not be reproducible anymore. Hence, in figure 3.5,
the amplitude constraint using the original amplitudes (eq. 3.32) is not used anymore,
but rather only the Hessian constraint in (a), the Hessian constraint and inverse max-rE

weights (eq. 3.36) in (b), and the Hessian constraint and inverse in-phase weights in (c).
As expected, the addition of inverse weights decreases side-lobes at the cost of increasing
main-lobe widths.
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(a) Balloon plot of the original pattern. (b) Map projection showing 11 peak locations
and tangential peak curvatures of the original
pattern.

(c) Resynthesised pattern using all Q = 11
found peaks.

(d) Resynthesised pattern using the Q = 2 dom-
inant peaks.

Figure 3.4 – Figures (a) and (b) show a balloon plot and a map projection of a random
directivity pattern of maximum SH order N = 5. In the map projection red asterisks
and ellipses mark peak locations and tangential curvature at the peaks as found by New
MUSIC. Figures (c) and (d) show resynthesised patterns using a Hessian constraint and
an amplitude constraint, a maximum SH order N = 5 and the Q dominant peaks.
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(a) Resynthesised pattern using a Hessian con-
straint only.

(b) Resynthesised pattern using a Hessian con-
straint and inverse max-rE weights.

(c) Resynthesised pattern using a Hessian con-
straint and inverse in-phase weights.

Figure 3.5 – Resynthesised patterns based on the higher-order original in figure 3.4(a),
using a maximum SH order N = 3, the Q = 2 dominant peaks and different constraints.
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Chapter 4

Conclusion and Outlook

This thesis developed and introduced two novel, real-valued subspace-based simultaneous
DOA estimation algorithms: REVEB-ESPRIT and New MUSIC (cf. chapter 2). Both
algorithms perform similar to each other and to related algorithms in several tested sce-
narios. While the RMSEs generated by REVEB-ESPRIT are a bit higher than the RMSEs
of the complex-valued counterpart in many cases, REVEB-ESPRIT has the advantage of
being generally four times more efficient and easier to implement, since all computations
are done using real numbers only. New MUSIC performs similar to REVEB-ESPRIT,
and there are cases in which either New MUSIC or REVEB-ESPRIT brings advantages.
While in black-box scenarios, REVEB-ESPRIT has the advantage that (apart from the
thresholds ε1 and ε2 for the subspace identification with SORTE) no parameters have to
be set, in a highly specific but constant scenario, New MUSIC has an advantage as it can
be adapted to the specific environment by setting convergence criteria and step sizes, and
analysing the convergence behaviour. Moreover, New MUSIC could easily be integrated
into a statistical framework including Bayesian analysis of the convergence points or time-
variant tracking via a Kalman filter, for instance, making use of information from previous
time steps to provide a well-controlled tracking behaviour for the detected DOAs. To sup-
port reproducible research, all recurrence relations of the spherical harmonics required
to express tangential derivatives and multiplication by unit-vector components are made
available online 1 (and in the listings of appendix A.4) along with the required numerical
procedures for verification.

Chapter 3 outlined two possible applications of the algorithms. REVEB-ESPRIT was
demonstrated to enable a powerful, novel upmixing algorithm for ARIRs, called HO-
ASDM. By combination of simultaneous DOA estimation, beamforming, and addition
of a residual signal, a higher-order ARIR is created from a lower-order ARIR of arbi-
trary order. By using REVEB-ESPRIT, multiple reflection directions are estimated si-
multaneously at higher accuracy compared to the conventional pseudo-intensity vector
approach (assuming a large measurement SNR for the RIR measurement). HO-ASDM
outperformed the conventional ASDM in a listening experiment, in particular concerning
ASDM’s transient-response and preservation of timbre. However, HO-ASDM still needs

1. https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations
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to be regarded as a work in progress because evaluation of envelopment and diffuseness
still remains to be investigated in greater detail in the future. A new way of analysing
and synthesising directivity patterns using the curvature at the peaks was introduced using
New MUSIC. Here, New MUSIC can help to better understand the specific characteristics
of directivity patterns and to resynthesise simplified directivity patterns as an alternative
to source centreing and for computationally efficient synthesis of directive sound sources
in virtual environments. In particular the anisotropic curvatures it delivers seem to offer
an appropriate characterisation in analysis and re-synthesis of directivity.



Appendix A

Derivation of SH Recurrence
Relations

A.1 Derivation of Gradient Addition Theorems for
Real-Valued SHs

Following a technical note from Franz Zotter, in this section gradient addition theorems
for real-valued SHs are derived. For derivation of a tangential gradient in Cartesian coor-
dinates, the tangential gradient operator (neglecting radial derivatives) is defined by using
the chain rule,

∇r,tangential =

∂ϕ/∂x ∂µ/∂x
∂ϕ/∂y ∂µ/∂y
∂ϕ/∂z ∂µ/∂z

(∂/∂ϕ
∂/∂µ

)

=


− sin(ϕ)√

1−µ2
−µ cos (ϕ)

√
1− µ2

cos(ϕ)√
1−µ2

−µ sin (ϕ)
√

1− µ2

0 1− µ2

(∂/∂ϕ∂/∂µ

)
, (A.1)

with

ϕ = arctan (y/x) , (A.2)

µ = cos(ϑ) = z/r = z/
√
x2 + y2 + z2 . (A.3)

For mathematical brevity, real-valued SHs are defined as

Ynm(ϕ, µ) = NnmP
m
n (µ)Φm(ϕ) , (A.4)

with

Φm(ϕ) =

(
cos(mϕ)
sin(mϕ)

)
(A.5)

and

L =

(
0 −1
1 0

)
. (A.6)
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In the derivation, the trigonometric identities

cos(ϕ)Φm(ϕ) =
1

2

(
cos((m− 1)ϕ) + cos((m+ 1)ϕ)
sin((m− 1)ϕ) + sin((m+ 1)ϕ)

)
=

1

2
(Φm−1(ϕ) + Φm+1(ϕ)) , (A.7)

and

sin(ϕ)Φm(ϕ) =
1

2

(
− sin((m− 1)ϕ) + sin((m+ 1)ϕ)
cos((m− 1)ϕ)− cos((m+ 1)ϕ)

)
=

1

2
L (Φm−1(ϕ)−Φm+1(ϕ)) , (A.8)

the partial derivative in azimuth,

∂/∂ϕΦm(ϕ) = mLΦm(ϕ) , (A.9)

and the following recurrence relations of associated Legendre functions from [GD04,
chapter 2],

(1− µ2)∂/∂µPm
n =

(n+ 1)(n+m)

2n+ 1
Pm
n−1 −

n(n−m+ 1)

2n+ 1
Pm
n+1 , (A.10)

µ
√

1− µ2∂/∂µPm
n +

mPm
n√

1− µ2
= − n+ 1

2n+ 1
Pm+1
n−1 −

n

2n+ 1
Pm+1
n+1 , (A.11)

µ
√

1− µ2∂/∂µPm
n −

mPm
n√

1− µ2
=

(n+ 1)(n+m− 1)(n+m)

2n+ 1
Pm−1
n−1 +

n(n−m+ 1)(n−m+ 2)

2n+ 1
Pm−1
n+1 ,

(A.12)

will be useful. Applying the tangential gradient yields

∇r,tangentialYnm =

∂/∂x∂/∂y
∂/∂z

Ynm (A.13)

=


− sin(ϕ)√

1−µ2
NnmP

m
n ∂/∂ϕΦm − µ cos (ϕ)

√
1− µ2NnmΦm∂/∂µP

m
n

cos(ϕ)√
1−µ2

NnmP
m
n ∂/∂ϕΦm − µ sin (ϕ)

√
1− µ2NnmΦm∂/∂µP

m
n

(1− µ2)NnmΦm∂/∂µP
m
n

 .

By applying equations A.9, A.7 and A.8 the partial derivative w.r.t x is reformulated as

∂

∂x
Ynm =

Nnm

2
√

1− µ2
Pm
n m(Φm−1−Φm+1)−Nnm

2
µ
√

1− µ2(Φm−1 +Φm+1)∂/∂µPm
n ,

(A.14)
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which is expanded and simplified using the recurrences in eq. A.11 and A.12, yielding

∂/∂xYnm = −(n+ 1)(n+m− 1)(n+m)Nnm

2(2n+ 1)Nn−1,m−1

Yn−1,m−1 (A.15)

− n(n−m+ 1)(n−m+ 2)Nnm

2(2n+ 1)Nn+1,m−1

Yn+1,m−1

+
(n+ 1)Nnm

2(2n+ 1)Nn−1,m+1

Yn−1,m+1 +
nNnm

2(2n+ 1)Nn+1,m+1

Yn+1,m+1 .

Similarly, the result for the partial derivative w.r.t. y is found as

∂/∂yYnm = −(n+ 1)(n+m− 1)(n+m)Nnm

2(2n+ 1)Nn−1,m−1

LYn−1,m−1 (A.16)

− n(n−m+ 1)(n−m+ 2)Nnm

2(2n+ 1)Nn+1,m−1

LYn+1,m−1

− (n+ 1)Nnm

2(2n+ 1)Nn−1,m+1

LYn−1,m+1 −
nNnm

2(2n+ 1)Nn+1,m+1

LYn+1,m+1 .

The partial derivative w.r.t. z is obtained after applying the recurrence in eq. A.10,

∂/∂zYnm =
(n+ 1)(n+m)Nnm

(2n+ 1)Nn−1,m

Yn−1,m −
n(n−m+ 1)Nnm

(2n+ 1)Nn+1,m

Yn+1,m . (A.17)

For m = 0 the expressions for the derivatives w.r.t. x and y are derived explicitly,

∂/∂xY
(cos)
n,0 =

(n+ 1)Nn,0

(2n+ 1)Nn−1,1

Y
(cos)
n−1,1 +

nNn,0

(2n+ 1)Nn+1,1

Y
(cos)
n+1,1 , (A.18)

∂/∂yY
(cos)
n,0 =

(n+ 1)Nn,0

(2n+ 1)Nn−1,1

Y
(sin)
n−1,1 +

nNn,0

(2n+ 1)Nn+1,1

Y
(sin)
n+1,1 , (A.19)

where Y (cos)
n,m and Y (sin)

n,m hold the upper and lower entry of Ynm, respectively.

A.2 Derivation of Multiplication Theorems for
Real-Valued SHs

The following derivations of multiplication theorems for real-valued SHs and correspond-
ing extension relations (cf. section A.3) are based on technical notes from Franz Zotter
and Byeongho Jo, developed during their work on [JZC20]. From [JZC20] the follow-
ing recurrences for the complex-valued spherical harmonics Y m

n are known, for multi-
plication with θxy = sinϑ eiϕ, its conjugate θ∗xy, and θz = cosϑ, with the coefficients

wmn =
√

(n+m−1)(n+m)
(2n−1)(2n+1)

, and vmn =
√

(n−m)(n+m)
(2n−1)(2n+1)

,

θxyY
m
n = w−mn Y m+1

n−1 − wm+1
n+1 Y

m+1
n+1 , (A.20)

θ∗xyY
m
n = −wmn Y m−1

n−1 + w−m+1
n+1 Y m−1

n+1 , (A.21)

θzY
m
n = vmn Y

m
n−1 + vmn+1Y

m
n+1. (A.22)
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The conjugated parameters are θxy = θx + iθy and θ∗xy = θx − iθy, and the complex
harmonics are related to the real ones by [JHN17, chapter 3]

Y m
n =

{
(−1)m√

2−δm [Ynm + i(1− δm)Yn,−m], m ≥ 0
1√

2−δm [Yn|m| − i(1− δm)Yn,−|m|], m < 0 .
(A.23)

We first take the real part of eqs. A.20 and A.21 for m > 0

(−1)m√
2− δm

(θxYnm − (1− δm)θyYn,−m) = (−1)m+1√
2−δm+1

(w−mn Yn−1,m+1 − wm+1
n+1 Yn+1,m+1),

(A.24)
(−1)m√
2− δm

(θxYnm + (1− δm)θyYn,−m) = (−1)m−1√
2−δm−1

(−wmn Yn−1,m−1 + w−m+1
n+1 Yn+1,m−1),

(A.25)

and we see that sum and difference of eqs. A.24 and A.25 divided by two yields form > 0

(−1)m√
2− δm

θxYnm = 1
2

[
− (−1)m−1wmn√

2−δm−1

Yn−1,m−1 +
(−1)m−1w−m+1

n+1√
2−δm−1

Yn+1,m−1

+ (−1)m+1w−mn√
2−δm+1

Yn−1,m+1 − (−1)m+1wm+1
n+1√

2−δm+1

Yn+1,m+1

]
, (A.26)

(−1)m√
2− δm

(1− δm)θyYn,−m = 1
2

[
− (−1)m−1wmn√

2−δm−1

Yn−1,m−1 +
(−1)m−1w−m+1

n+1√
2−δm−1

Yn+1,m−1

− (−1)m+1w−mn√
2−δm+1

Yn−1,m+1 +
(−1)m+1wm+1

n+1√
2−δm+1

Yn+1,m+1

]
. (A.27)

We repeat the process for the imaginary parts of eqs. A.20 and A.21,

(−1)m√
2− δm

(θx(1− δm)Yn,−m + θyYnm)

= (−1)m+1√
2−δm+1

(1− δm+1)[w−mn Yn−1,−m−1 − wm+1
n+1 Yn+1,−m−1],

(A.28)
(−1)m√
2− δm

(θx(1− δm)Yn,−m − θyYnm)

= (−1)m−1√
2−δm−1

(1− δm−1)[−wmn Yn−1,−m+1 + w−m+1
n+1 Yn+1,−m+1].

(A.29)

As before, we calculate the halved sums and differences thereof,

(−1)m√
2− δm

(1− δm)θxYn,−m = 1
2

[
− (−1)m−1wmn√

2−δm−1

(1− δm−1)Yn−1,−m+1

+
(−1)m−1w−m+1

n+1√
2−δm−1

(1− δm−1)Yn+1,−m+1 + (−1)m+1w−mn√
2−δm+1

(1− δm+1)Yn−1,−m−1

− (−1)m+1wm+1
n+1√

2−δm+1

(1− δm+1)Yn+1,−m−1

]
, (A.30)
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(−1)m√
2− δm

θyYn,m = 1
2

[
(−1)m−1wmn√

2−δm−1

(1− δm−1)Yn−1,−m+1

− (−1)m−1w−m+1
n+1√

2−δm−1

(1− δm−1)Yn+1,−m+1 + (−1)m+1w−mn√
2−δm+1

(1− δm+1)Yn−1,−m−1

− (−1)m+1wm+1
n+1√

2−δm+1

(1− δm+1)Yn+1,−m−1

]
. (A.31)

We denote the first recurrence explicitly for m = 0,

θxyY
0
n = w0

nY
1
n−1 − w1

n+1Y
1
n+1, (A.32)

and thereof the real and imaginary parts are

θxYn0 =
−1√

2
w0
nYn−1,1 +

1√
2
w1
n+1Yn+1,1, (A.33)

θyYn0 =
−1√

2
w0
nYn−1,−1 +

1√
2
w1
n+1Yn+1,−1 . (A.34)

For θz there is no shift in degree m, therefore the recurrence is obtained directly,

θzYnm = v|m|n Yn−1,m + v
|m|
n+1Yn+1,m. (A.35)

A.3 Derivation of Extending Multiplication Theo-
rems for Real-Valued SHs

From [JZC20] the following extending recurrence relations for the complex-valued spher-
ical harmonics Y m

n are known, for multiplication with θxy = sinϑ eiϕ, its conjugate θ∗xy,

and θz = cosϑ, with ηmn =
√

n+m
2n+1

,

θxyη
−m
n Y m

n + θzη
m+1
n Y m+1

n = η−mn−1Y
m+1
n−1 , for −N ≤ m ≤ N − 1 (A.36)

θ∗xyη
m
n Y

m
n − θzη

−m+1
n Y −m+1

n = −ηmn−1Y
m−1
n−1 for −N + 1 ≤ m ≤ N . (A.37)

We first take the real part of the above equations for m > 0,

θxη
−m
n

(−1)m√
2− δm

Yn,m − θyη
−m
n

(−1)m√
2− δm

(1− δm)Yn,−m + θzη
m+1
n

(−1)m+1√
2− δm+1

Yn,m+1

= η−mn−1

(−1)m+1√
2− δm+1

Yn−1,m+1 ,

(A.38)

θxη
m
n

(−1)m√
2− δm

Yn,m + θyη
m
n

(−1)m√
2− δm

(1− δm)Yn,−m − θzη
−m+1
n

(−1)−m+1√
2− δ−m+1

Yn,|−m+1|

= −ηmn−1

(−1)m−1√
2− δm−1

Yn−1,m−1 ,

(A.39)
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then we take the imaginary part, m > 0,

θxη
−m
n

(−1)m√
2− δm

(1− δm)Yn,−m + θyη
−m
n

(−1)m√
2− δm

Yn,m

+ θzη
m+1
n

(−1)m+1√
2− δm+1

(1− δm+1)Yn,−|m+1|

= η−mn−1

(−1)m+1√
2− δm+1

(1− δm+1)Yn−1,−|m+1| , (A.40)

θxη
m
n

(−1)m√
2− δm

(1− δm)Yn,−m − θyη
m
n

(−1)m√
2− δm

Yn,m

− θzη
−m+1
n

(−1)−m+1√
2− δ−m+1

(1− δ−m+1)Yn,−|m+1|

= −ηmn−1

(−1)m−1√
2− δm−1

(1− δm−1)Yn−1,−|m−1| , (A.41)

then we take the real part of the equations for m < 0,

θxη
−m
n

1√
2− δm

Yn,|m| + θyη
−m
n

1√
2− δm

(1− δm)Yn,−|m| + θzη
m+1
n

1√
2− δm+1

Yn,|m+1|

= η−mn−1

1√
2− δm+1

Yn−1,|m+1| ,

(A.42)

θxη
m
n

1√
2− δm

Yn,|m| − θyη
m
n

1√
2− δm

(1− δm)Yn,−|m| − θzη
−m+1
n

1√
2− δ−m+1

Yn,−|m+1|

= −ηmn−1

1√
2− δm−1

Yn−1,|m−1| ,

(A.43)

and again the imaginary part, m < 0,

−θxη
−m
n

1√
2− δm

(1− δm)Yn,−|m| + θyη
−m
n

1√
2− δm

Yn,|m|

− θzη
m+1
n

1√
2− δm+1

(1− δm+1)Yn,−|m+1|

= −η−mn−1

1√
2− δm+1

(1− δm+1)Yn−1,−|m+1| , (A.44)

−θxη
m
n

1√
2− δm

(1− δm)Yn,−|m| − θyη
m
n

1√
2− δm

Yn,|m|

+ θzη
−m+1
n

1√
2− δ−m+1

(1− δ−m+1)Yn,−|m+1|

= ηmn−1

1√
2− δm−1

(1− δm−1)Yn−1,−|m−1| . (A.45)
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We notice that the equations from the first recurrence for m > 0 and m < 0 are linearly
dependent with respect to the equations from the second recurrence form < 0 andm > 0,
leaving us with 4N − 2 independent equations so far. Only the recurrences for m = 0 are
missing. We denote the real part of the first recurrence explicitly for m = 0

θxη
0
nYn,0 − θzη

1
n

1√
2
Yn,1 = −η0

n−1

1√
2
Yn−1,1 , (A.46)

and do the same for the imaginary part,

− θyη
0
nYn,0 + θzη

1
n

1√
2
Yn,−1 = η0

n−1

1√
2
Yn−1,−1 . (A.47)

Note that the real and imaginary parts of the second recurrence yield the same results for
m = 0 and can therefore be left out. Finally we found the additional 4N equations for the
REVEB-ESPRIT.

A.4 Code Listings for the Derived Recurrence Re-
lations

This section holds MATLAB code listings to obtain matrices containing the derived recur-
rence relations. Corresponding files are provided online 1.

1 function [Gx ,Gy,Gz] = tg_gradient_matrix_real(N)
2 % tangential gradient addition theorems for real -valued SHs of

maximum order N
3 % Franz Zotter and Thomas Deppisch , 2020
4

5 Nnm = @(n_,m_) (-1)^m_ * sqrt (((2*n_+1)*factorial(n_ -abs(m_))*(2-(
m_==0))) ./ (4*pi*factorial(n_+abs(m_))));

6 nm2acn = @(n_ ,m_) n_.^2 + n_ + m_ + 1;
7

8 Gx=zeros ((N+1)^2,(N+2) ^2);
9 Gy=zeros ((N+1)^2,(N+2) ^2);

10 Gz=zeros ((N+1)^2,(N+2) ^2);
11

12 for n=0:N
13 for m=0:n
14 if abs(m-1) <=n-1 && n-1>=0
15 a=-(n+1)*(n+m-1)*(n+m)*Nnm(n,m)/((2*n+1)*Nnm(n-1,m-1))

/2;
16 if m==1
17 Gx(nm2acn(n,m),nm2acn(n-1,abs(m-1)))=a;
18 Gy(nm2acn(n,-m),nm2acn(n-1,abs(m-1)))=a;
19 elseif m~=0
20 Gx(nm2acn(n,m),nm2acn(n-1,abs(m-1)))=a;
21 Gx(nm2acn(n,-m),nm2acn(n-1,-abs((m-1))))=a;
22 Gy(nm2acn(n,-m),nm2acn(n-1,abs(m-1)))=a;

1. https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations

https://git.iem.at/thomasdeppisch/real-sh-recurrence-relations
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23 Gy(nm2acn(n,m),nm2acn(n-1,-abs((m-1))))=-a;
24 end
25 end
26

27 if abs(m-1) <=n+1 && n+1<=N+1
28 a=-n*(n-m+1)*(n-m+2)*Nnm(n,m)/((2*n+1)*Nnm(n+1,m-1))/2;
29 if m==1
30 Gx(nm2acn(n,m),nm2acn(n+1,abs(m-1)))=a;
31 Gy(nm2acn(n,-m),nm2acn(n+1,abs(m-1)))=a;
32 elseif m~=0
33 Gx(nm2acn(n,m),nm2acn(n+1,abs(m-1)))=a;
34 Gx(nm2acn(n,-m),nm2acn(n+1,-abs(m-1)))=a;
35 Gy(nm2acn(n,-m),nm2acn(n+1,abs(m-1)))=a;
36 Gy(nm2acn(n,m),nm2acn(n+1,-abs(m-1)))=-a;
37 end
38 end
39

40 if abs(m+1) <=n-1 && n-1>=0
41 a=(n+1)*Nnm(n,m)/((2*n+1)*Nnm(n-1,m+1))/2;
42 if m==0
43 Gx(nm2acn(n,m),nm2acn(n-1,m+1))=2*a;
44 Gy(nm2acn(n,m),nm2acn(n-1,-(m+1)))=2*a;
45 else
46 Gx(nm2acn(n,m),nm2acn(n-1,m+1))=a;
47 Gx(nm2acn(n,-m),nm2acn(n-1,-(m+1)))=a;
48 Gy(nm2acn(n,-m),nm2acn(n-1,m+1))=-a;
49 Gy(nm2acn(n,m),nm2acn(n-1,-(m+1)))=a;
50 end
51 end
52

53 if abs(m+1) <=n+1 && n+1<=N+1
54 a=n*Nnm(n,m)/((2*n+1)*Nnm(n+1,m+1))/2;
55 if m==0
56 Gx(nm2acn(n,m),nm2acn(n+1,m+1))=2*a;
57 Gy(nm2acn(n,m),nm2acn(n+1,-(m+1)))=2*a;
58 else
59 Gx(nm2acn(n,m),nm2acn(n+1,m+1))=a;
60 Gx(nm2acn(n,-m),nm2acn(n+1,-(m+1)))=a;
61 Gy(nm2acn(n,-m),nm2acn(n+1,m+1))=-a;
62 Gy(nm2acn(n,m),nm2acn(n+1,-(m+1)))=a;
63 end
64 end
65

66 if abs(m)<=n-1 && n-1>=0
67 a=(n+1)*(n+m)*Nnm(n,m)/((2*n+1)*Nnm(n-1,m));
68 if m==0
69 Gz(nm2acn(n,m),nm2acn(n-1,m))=a;
70 else
71 Gz(nm2acn(n,m),nm2acn(n-1,m))=a;
72 Gz(nm2acn(n,-m),nm2acn(n-1,-m))=a;
73 end
74 end
75 if abs(m)<=n+1 && n+1<=N+1
76 a=-n*(n-m+1)*Nnm(n,m)/((2*n+1)*Nnm(n+1,m));
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77 if m==0
78 Gz(nm2acn(n,m),nm2acn(n+1,m))=a;
79 else
80 Gz(nm2acn(n,m),nm2acn(n+1,m))=a;
81 Gz(nm2acn(n,-m),nm2acn(n+1,-m))=a;
82 end
83 end
84 end
85 end

1 function [Mx ,My,Mz] = multiplication_theorems_real(N)
2 % multiplication theorems for real -valued SHs of maximum order N
3 % Franz Zotter and Thomas Deppisch , 2020
4

5 Mx=zeros ((N)^2,(N+1) ^2);
6 My=zeros ((N)^2,(N+1) ^2);
7 Mz=zeros ((N)^2,(N+1) ^2);
8

9 wnm = @(n_,m_) sqrt((n_+m_ -1)*(n_+m_)/((2*n_ -1) *(2*n_+1)));
10 vnm = @(n_,m_) sqrt((n_-m_)*(n_+m_)/((2*n_ -1) *(2*n_+1)));
11 sm = @(m1_ ,m2_) sqrt(2-(m1_ ==0))/sqrt(2-(m2_ ==0));
12 nm = @(n_ ,m_) n_.^2+n_+m_+1;
13

14 for n=0:N-1
15 for m=0:n
16 %% Mx
17 % n-1,m-1
18 if (n-1 >=0)&&(abs(m-1) <=n-1)
19 Mx(nm(n,m),nm(n-1,abs(m-1))) = -wnm(n,m)/2*sm(m,m

-1) * (-1)^(m-1)/(-1)^m;
20 if (m>1)
21 Mx(nm(n,-m),nm(n-1,-abs(m-1))) = -wnm(n,m)/2*sm

(m,m-1) * (-1)^(m-1)/(-1)^m;
22 end
23 end
24 % n-1,m+1
25 if (m+1<=n-1)&&(n-1>=0)
26 Mx(nm(n,m),nm(n-1,(m+1))) = +wnm(n,-m)/2*sm(m,m+1)

*(1+(m==0)) * (-1)^(m+1)/(-1)^m;
27 if m>0
28 Mx(nm(n,-m),nm(n-1,-(m+1))) = +wnm(n,-m)/2*sm(m

,m+1) * (-1)^(m+1)/(-1)^m;
29 end
30 end
31 % n+1,m-1
32 Mx(nm(n,m),nm(n+1,abs(m-1))) = +wnm(n+1,-m+1)/2*sm(m,m

-1) * (-1)^(m-1)/(-1)^m;
33 if m>1
34 Mx(nm(n,-m),nm(n+1,-abs(m-1))) = +wnm(n+1,-m+1)/2*

sm(m,m-1) * (-1)^(m-1)/(-1)^m;
35 end
36 % n+1,m+1
37 Mx(nm(n,m),nm(n+1,(m+1))) = -wnm(n+1,m+1) /2*sm(m,m+1)

*(1+(m==0)) * (-1)^(m+1)/(-1)^m;
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38 if m>0
39 Mx(nm(n,-m),nm(n+1,-(m+1))) = -wnm(n+1,m+1) /2*sm(m,

m+1) * (-1)^(m+1)/(-1)^m;
40 end
41 %% My
42 % n-1,m-1
43 if (n-1 >=0)&&(abs(m-1) <=n-1)
44 if (m~=1)
45 My(nm(n,m),nm(n-1,-abs(m-1))) = wnm(n,m)/2*sm(m

,m-1) * (-1)^(m-1)/(-1)^m;
46 end
47 if (m>0)
48 My(nm(n,-m),nm(n-1,abs(m-1))) = -wnm(n,m)/2*sm(

m,m-1) * (-1)^(m-1)/(-1)^m;
49 end
50 end
51 % n-1,m+1
52 if (m+1<=n-1)&&(n-1>=0)
53 My(nm(n,m),nm(n-1,-(m+1))) = wnm(n,-m)/2*sm(m,m+1)

*(1+(m==0)) * (-1)^(m+1)/(-1)^m;
54 if (m>0)
55 My(nm(n,-m),nm(n-1,(m+1))) = -wnm(n,-m)/2*sm(m,

m+1) * (-1)^(m+1)/(-1)^m;
56 end
57 end
58 % n+1,m-1
59 if (m>1)
60 My(nm(n,m),nm(n+1,-abs(m-1))) = -wnm(n+1,-m+1)/2*sm

(m,m-1) * (-1)^(m-1)/(-1)^m;
61 end
62 if (m>0)
63 My(nm(n,-m),nm(n+1,abs(m-1))) = +wnm(n+1,-m+1)/2*sm

(m,m-1) * (-1)^(m-1)/(-1)^m;
64 end
65 % n+1,m+1
66 My(nm(n,m),nm(n+1,-(m+1))) = -wnm(n+1,m+1) /2*sm(m,m+1)

*(1+(m==0)) * (-1)^(m+1)/(-1)^m;
67 if (m>0)
68 My(nm(n,-m),nm(n+1,(m+1))) = wnm(n+1,m+1) /2*sm(m,m

+1) * (-1)^(m+1)/(-1)^m;
69 end
70 %% Mz
71 if (n>0)&&(m<=n-1)
72 Mz(nm(n,m),nm(n-1,m)) = vnm(n,m);
73 if m>0
74 Mz(nm(n,-m),nm(n-1,-m)) = vnm(n,m);
75 end
76 end
77 Mz(nm(n,m),nm(n+1,m)) = vnm(n+1,m);
78 if m>0
79 Mz(nm(n,-m),nm(n+1,-m)) = vnm(n+1,m);
80 end
81

82 end



Deppisch: Multi-Direction Analysis in Ambisonics 77

83 end
84 end

1 function [ML ,CL] = extended_multiplication_theorems_real(N)
2 % extension theorems for real -valued SHs of maximum order N
3 % Franz Zotter and Thomas Deppisch , 2020
4

5 h_nm = @(n_ ,m_) sqrt((n_+m_) ./ (2*n_+1));
6 nm2acn = @(n_ ,m_) n_.^2 + n_ + m_ + 1;
7 cspsqrt = @(m_) (-1)^m_ / sqrt(2 - (m_==0));
8 omdm = @(m_) (1 - (m_==0));
9

10 L = (N+1) ^2;
11 % first equation
12 A = zeros (2*N, L); % theta_x
13 B = A; % theta_y
14 C = A; % theta_z
15 D = A; % right side of eq
16 % second equation
17 A2 = A; % theta_x
18 B2 = A; % theta_y
19 C2 = A; % theta_z
20 D2 = A; % right side of eq
21

22 % first recurrence
23 idx = 1;
24 for m = 0:N-1
25 if (m==0)
26 A(idx , nm2acn(N,0)) = h_nm(N,0);
27 C(idx , nm2acn(N,1)) = -h_nm(N,1) / sqrt (2);
28 if (N>1)
29 D(idx , nm2acn(N-1,1)) = -h_nm(N-1,0) / sqrt (2);
30 end
31

32 B(idx+1, nm2acn(N,0)) = -h_nm(N,0);
33 C(idx+1, nm2acn(N,-1)) = h_nm(N,1) / sqrt (2);
34 if (N>1)
35 D(idx+1, nm2acn(N-1,-1)) = h_nm(N-1,0) / sqrt (2);
36 end
37 else
38 % real , m>0
39 A(idx , nm2acn(N,m)) = h_nm(N,-m) * cspsqrt(m);
40 B(idx , nm2acn(N,-m)) = -h_nm(N,-m) * cspsqrt(m) * omdm(

m);
41 C(idx , nm2acn(N,m+1)) = h_nm(N,m+1) * cspsqrt(m+1);
42 if (m<N-1)
43 D(idx , nm2acn(N-1,m+1)) = h_nm(N-1,-m) * cspsqrt(m

+1);
44 end
45

46 % imaginary , m>0
47 A(idx+1, nm2acn(N,-m)) = h_nm(N,-m) * cspsqrt(m) * omdm

(m);
48 B(idx+1, nm2acn(N,m)) = h_nm(N,-m) * cspsqrt(m);
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49 C(idx+1, nm2acn(N,-(m+1))) = h_nm(N,m+1) * cspsqrt(m+1)
* omdm(m+1);

50 if (m<N-1)
51 D(idx+1, nm2acn(N-1,-(m+1))) = h_nm(N-1,-m) *

cspsqrt(m+1) * omdm(m+1);
52 end
53 end
54

55 idx = idx + 2;
56 end
57

58 % second recurrence
59 idx = 1;
60 for m = 1:N
61 % real , m>0
62 A2(idx , nm2acn(N,m)) = h_nm(N,m) * cspsqrt(m);
63 B2(idx , nm2acn(N,-m)) = h_nm(N,m) * cspsqrt(m) * omdm(m);
64 C2(idx , nm2acn(N,abs(-m+1))) = -h_nm(N,-m+1) * cspsqrt(-m

+1);
65 D2(idx , nm2acn(N-1,m-1)) = -h_nm(N-1,m) * cspsqrt(m-1);
66

67 % imaginary , m>0
68 A2(idx+1, nm2acn(N,-m)) = h_nm(N,m) * cspsqrt(m) * omdm(m);
69 B2(idx+1, nm2acn(N,m)) = -h_nm(N,m) * cspsqrt(m);
70 C2(idx+1, nm2acn(N,-abs(-m+1))) = -h_nm(N,-m+1) * cspsqrt(-

m+1) * omdm(-m+1);
71 D2(idx+1, nm2acn(N-1,-(m-1))) = -h_nm(N-1,m) * cspsqrt(m-1)

* omdm(m-1);
72

73 idx = idx + 2;
74 end
75

76 ML = [A, B, C;
77 A2 , B2 , C2];
78

79 CL = [D; D2];
80

81 end



Appendix B

Extended Pseudo-Intensity Vector
from Real Recurrences

If the real-valued VEB-ESPRIT is reformulated for one source and one observation yN
as done for the complex-valued VEB-ESPRIT in [HH19b], a simple formulation for the
extended pseudo-intensity vector (PIV) is obtained as the least squares solutions

x =
yT
NM

TMxyN
||MyN ||2

(B.1)

y =
yT
NM

TMyyN
||MyN ||2

(B.2)

z =
yT
NM

TMzyN
||MyN ||2

(B.3)

of

MyNx = MxyN , (B.4)
MyNy = MyyN , (B.5)
MyNz = MzyN , (B.6)

where M =
[
I 0

]
reduces yN by one order and Mx, My, Mz hold multiplication

recurrences of real-valued spherical harmonics (cf. section 2.4.2).
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Appendix C

Why eigenvalue n-tuples of joint
eigendecomposition are displayed
as consistent diagonal-entry tuples
in joint Schur decomposition

The following shows that a simultaneous Schur decomposition Uk = QHAkQ manages
to preserve the order of the eigenvalues of the simultaneously diagonalisable matricesAk

and hence is effective for simultaneous DOA estimation via matrix decomposition, e.g. in
an EB-ESPRIT context. Simultaneous diagonalisation of matrices Ak is achieved via a
similarity transform using the common eigenvectors in matrixX ,

AkX = Xdiag(λk) . (C.1)

Any real, square matrixAmay be decomposed into an orthogonal matrixQ and an upper
triangular matrix R by means of QR decomposition. We apply the QR decomposition to
the eigenvector matrixX and get

AkQR = QR diag(λk) , (C.2)

or equivalently
QHAkQ = R diag(λk)R

−1 , (C.3)

where R is invertible if Ak is diagonalisable. The upper triangular matrix R can be
expressed as the sum of a diagonal matrix diag(r) and a strictly-upper triangular and
hence nilpotent matrixN . The inverse of upper triangular matrices is still upper triangular
and holds the inverted eigenvalues on its main diagonal. Hence we can also express the
inverse as a sum of diagonal and strictly-upper matrices, R−1 := diag(r)−1 + Ñ , and
rearrange the similarity transform as

QHAkQ = (diag(r) +N ) diag(λk)(diag(r)−1 + Ñ ) . (C.4)

81
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After expansion of the product we get

QHAkQ = diag(r)diag(λk)diag(r)−1 + diag(r)diag(λk)Ñ

+Ndiag(λk)diag(r)−1 +Ndiag(λk)Ñ . (C.5)

On the left side we recognise the Schur decomposition Uk = QHAkQ and after simplifi-
cation on right side we get

Uk = diag(λk) + diag(r)diag(λk)Ñ +Ndiag(λk)diag(r)−1 +Ndiag(λk)Ñ . (C.6)

As the product of (strictly) upper triangular matrices is also (strictly) upper triangular, the
terms containing the strictly-upper triangular, nilpotent matrixN or Ñ do not contribute
any non-zero values to the main diagonal such that we find the eigenvalues on the main
diagonal of Uk as

diag(Uk) = λk , (C.7)

which proves the effectiveness of the simultaneous Schur decomposition.



Appendix D

Additions to the Listening
Experiment

D.1 Compared ASDM Equalisation Methods

The compared methods of spectral equalisation for the ASDM are based on the RMS
equalisation in [ZF19, chaper 5]. The condition ASDM-PO is equalised per-order,

h̃mn,eq(t, b) = h̃mn (t, b)

√√√√(2n+ 1)
(
1/2 E{|h0

0(t, b)|2}+ 1/6
∑1

m′=−1 E{|hm
′

1 (t, b)|2}
)∑n

m=−n E{|h̃mn (t, b)|2}
,

(D.1)
while the condition ASDM-M is equalised via the mean RMS value, as done for the HO-
ASDM (eq. 3.7),

h̃mn,eq(t, b) = h̃mn (t, b)

√√√√1/(N + 1)2
∑N

n′=0

∑n′

m′=−n′ E{|hm
′

n′ (t, b)|2}
1/(Ñ + 1)2

∑Ñ
n=0

∑n
m=−n E{|h̃mn (t, b)|2}

. (D.2)
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84D.2 Extensive Results

condition pair L13 L06 M L13 +70◦ L06 +70◦ M +70◦

pBH rc pBH rc pBH rc pBH rc pBH rc pBH rc

o1, o1-o4 0.0205∗ 0.7727 0.3477 0.4848 0.0059∗ 0.9545 0.3311 0.3485 0.1982 0.4545 0.0049∗ 0.9091
o1, o2-o4 0.0146∗ 1.0000 0.0146∗ 1.0000 0.0078∗ 0.9697 0.0146∗ 1.0000 0.0146∗ 1.0000 0.0146∗ 1.0000
o1, o3-o4 0.0146∗ 1.0000 0.0146∗ 1.0000 0.0078∗ 0.9697 0.0146∗ 1.0000 0.0146∗ 1.0000 0.0146∗ 1.0000
o1, ASDM-PO 0.0127∗ 1.0000 0.0127∗ 1.0000 0.0137∗ 1.0000 0.0127∗ 1.0000 0.0127∗ 1.0000 0.0127∗ 1.0000
o1, ASDM-M 0.0117∗ 1.0000 0.0059∗ 0.9697 0.0127∗ 1.0000 0.0117∗ 1.0000 0.0117∗ 1.0000 0.0117∗ 1.0000
o1-o4, o2-o4 0.0107∗ 1.0000 0.0117∗ 1.0000 0.0117∗ 1.0000 0.0107∗ 1.0000 0.0107∗ 1.0000 0.0107∗ 1.0000
o1-o4, o3-o4 0.0098∗ 1.0000 0.0107∗ 1.0000 0.0107∗ 1.0000 0.0098∗ 1.0000 0.0098∗ 1.0000 0.0098∗ 1.0000
o1-o4, ASDM-PO 0.0088∗ 1.0000 0.0098∗ 1.0000 0.0098∗ 1.0000 0.0088∗ 1.0000 0.0088∗ 1.0000 0.0088∗ 1.0000
o1-o4, ASDM-M 0.0078∗ 1.0000 0.0088∗ 1.0000 0.0088∗ 1.0000 0.0078∗ 1.0000 0.0078∗ 1.0000 0.0078∗ 1.0000
o2-o4, o3-o4 0.0039∗ 0.9848 0.2188 0.5455 0.0078∗ 0.9091 0.0039∗ 0.9848 0.0078∗ 0.9545 0.0078∗ 0.9242
o2-o4, ASDM-PO 0.0068∗ 1.0000 0.0078∗ 1.0000 0.0078∗ 1.0000 0.0068∗ 1.0000 0.0068∗ 1.0000 0.0068∗ 1.0000
o2-o4, ASDM-M 0.0059∗ 1.0000 0.0068∗ 1.0000 0.0068∗ 1.0000 0.0059∗ 1.0000 0.0059∗ 1.0000 0.0059∗ 1.0000
o3-o4, ASDM-PO 0.0049∗ 1.0000 0.0059∗ 1.0000 0.0059∗ 1.0000 0.0049∗ 1.0000 0.0049∗ 1.0000 0.0049∗ 1.0000
o3-o4, ASDM-M 0.0039∗ 1.0000 0.0049∗ 1.0000 0.0049∗ 1.0000 0.0039∗ 1.0000 0.0039∗ 1.0000 0.0039∗ 1.0000
ASDM-PO, ASDM-M 0.0029∗ 1.0000 0.0039∗ 1.0000 0.0059∗ 0.9848 0.0029∗ 1.0000 0.0029∗ 1.0000 0.0029∗ 1.0000

Table D.1 – Bonferroni-Holm corrected p-values pBH of the pairwise Wilcoxon signed-rank test and corresponding matched-pairs rank
biserial correlation coefficient rc for each trial and each condition pair. Statistical significance at α = 0.05 is marked by an asterisk.
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