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Abstract

This work’s focus lies in the development of a new method for the investigation of
thermal vacancies by time-linear heating with superimposed temperature modula-
tion. It allows to simultaneously determine the formation and migration enthalpy
together with the corresponding prefactors for selected materials, such as Fe62Al38,
for which several measurements were conducted.
In the course of this method formulas for the corresponding vacancy signal were
derived, on the basis of which two approaches were developed to obtain these ma-
terial parameters with a minimum of two measurements with different modulation fre-
quencies. On the basis of these two approaches dilatometric measurements were
performed. In addition, a couple of measurements were conducted in order to inves-
tigate systematic variations caused by the measurement setup. The most probable
reason for these systematic deviations was identified constituting the basis for further
improvements.
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1 Introduction

With the development of a new type of dilatometer, which is capable of temperature-
modulated measurements at high temperatures, new methods for the investigation
of bulk metallic alloys became available [1]. There are many alloys, which are of
great importance to the industry as for example iron-aluminum, which is used as
high-temperature structural material because of its excellent physical, chemical and
mechanical properties. To get a deeper insight into these materials, it is important to
understand the diffusion processes taking place in these materials. Diffusion is the
movement of atoms in the material along defects like point defects, dislocations and
grain boundaries, the last two of which are high-diffusivity paths. In crystalline solids
point defects, such as vacant lattice sites, play an important role for the diffusion
mechanisms, which is why the focus of this work lies in the investigation of vacant
lattice sites that are thermally induced. [2]
In the course of this work several approaches were developed, which are making use
of the time-dependency of the length change due to vacancies by applying a sinu-
soidal temperature profile (and a constant heating rate) to the specimen in question.
This results in a phase-shifted length signal, from which vacancy properties such as
the formation enthalpy or the migration enthalpy can be deduced. Time-dependent
dilatometry (and hence this method) requires the material to have a high vacancy
concentration, while the diffusion of these vacancies should be rather slow. For this
reason Fe62Al38 was chosen [3].
Since the performed measurements exhibited some systematic variations caused
by the measurement setup, some zero measurements were conducted to investi-
gate the reason for these and how to counteract them. For this purpose, this work
consists of two parts, from which the first one comprises a description of the mea-
surement setup together with an analysis of the systematic variations by means of
zero measurements and the corresponding solution to counteract these systematic
variations. The second part is considered as the main part of this work and focuses
on the development and application of the aforementioned method and is concluded
with some suggestions for future measurements.
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2 Measurement Setup and Improvement

In the following chapter the measurement setup will be described. While measure-
ments as described in chapter 4 and 5 were conducted, some systematic variations
caused by (fast) temperature changes were observed, which are considered to be
not negligible thus requiring a deeper look into the source of these systematic varia-
tions. The occurrence and analysis of these systematic variations by means of zero
measurements will be presented here together with a solution counteracting these
systematic variations.

2.1 Setup

The following description of the measurement setup is taken from [1].
The measurement setup used in this work is capable of performing non-contact high-
precision dilatometric measurements for temperatures ranging from ambient temper-
atures up to 1300 K at superior long-term stability. It allows to conduct isothermal
measurements on time scales exceeding 106 s as well as non-isothermal measure-
ments, i.e. at constant heating rates ranging from 0.01 K/min to a several 100 K/min,
while it is possible to modulate the temperature signal in both cases.

Figure 2.1: Block diagram of the measurement setup in side view (a more detailed
view of the furnace is shown in fig. 2.2). Reprinted from [1], with the permission of
AIP Publishing.
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2.1 Setup

In fig. 2.1 a block diagram of the measurement setup is shown. Since the high-
precision measurements require for various reasons a maximum degree of stability
of the ambient conditions, i.e. ambient pressure and in particular ambient temper-
ature, the whole measurement setup is located inside a constant climate chamber
guaranteeing a great absolute temperature stability with fluctuations less than 0.1 K.
Furthermore, the vacuum chamber and the interferometer sensor head are mounted
on a heavy stone table which is isolated from vibrations by a passive air suspension
system.

Length measurement:
For the non-contact length change measurement a two-beam Michelson laser in-
terferometer (sensor head, evaluation unit and HeNe-Laser) is placed above the
furnace, which is, being located in a vacuum chamber, evacuated to a pressure
of 10−5 mbar for measuring purposes. The laser beams enter the furnace through
a transparent fast-entry door, which is also used for sample loading. The interfer-
ometer is based on a SP120 DI manufactured by SIOS Messtechnik Ilmenau, Ger-
many, which measures the direction-dependent length change between the reflection
planes of the two beams (differential plane-mirror interferometer) with a resolution
down to 20 pm allowing two measuring modes: a sample together with a reference
(differential dilatometry) and a sample together with a reference plane (high-stability
absolute measurement).

Furnace:
In fig. 2.2 the inside of the furnace (vacuum chamber in fig. 2.1) is shown. The heat-
ing is done by three 117 mm R7s tungsten halogen lamps1 which are placed in one of
the two focal points (position T) of the three elliptically shaped reflectors2. Each lamp
is placed in a fused silica tube to separate it from the vacuum. Because the temper-
ature is measured directly at the sample by thermocouples spot-welded onto it, its
temperature can be controlled very precisely by means of a PID-controller, which
is adjusting the voltage and therefore the power of the lamps. In order to heat up
the specimen very fast a special type of furnace, a so-called “cold-mirror furnace”,
was chosen where only the heating elements, the sample and the sample holder
are heated in contrast to conventional radiation furnaces, where also the furnace

1Halogen lamps are capable of temperature changes up to 2000 K/s.
2In the other focal point the specimen holder insert (SI) is placed.
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2 Measurement Setup and Improvement

Figure 2.2: Longitudinal cut through the furnace showing the sample holder insert
(SI) together with the fused silica tubes in the focal points where the specimen or a
reflector can be placed (S1 and S2) and the elliptically shaped reflectors with fused
silica tubes in the other focal point (T), in which the tungsten halogen lamps are put
inside. Reprinted from [1], with the permission of AIP Publishing.

chamber is heated. Heating the furnace chamber would use up quite a lot of energy
causing a contribution to the length from the furnace. In order to reduce the heating
up of the mirror the whole furnace is cooled by water running through the copper
plate at the bottom of the furnace3 (reddish brown part in fig. 2.2 and fig. 2.3). The
water is held at 20 ◦C by a recirculating chiller with a temperature stability of ± 0.05 K.
However, due to the imperfect reflection of aluminum and the insufficient transition
of heat from the mirror to the water-cooled bottom plate, the furnace is still heating
up to a temperature of 50-70 ◦C. To guarantee a high temperature stability the whole
furnace is placed within a vacuum chamber preventing heat transfer by means of
convection.
In order to permit quenching there is a mass flow controller for helium (see fig. 2.1).
The pressure can be adjusted in the range of 10−5 to 1 mbar by letting argon flow in
through a mass flow controller. Furthermore, a mass flow controller for air ensures
that the lamps are cooled by a continuous air-flow through the fused silica tubes (T
in fig. 2.2) to keep them in the optimum range for halogen lamp operation.

3Beneath the copper plate is the actual bottom plate, which is not water-cooled.
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2.1 Setup

Figure 2.3: Left: Side view of the main parts of the system (without the elliptically
shaped reflectors) showing from top to bottom the transparent fast-entry door, the
plate, which seals the furnace at the top, together with the sample holder insert,
the copper plate (reddish brown), above which the elliptically shaped reflectors are
placed (see fig. 2.2) and the bottom plate. Right: Bottom of the vacuum chamber
showing the outlets of the cooling water of the recirculating chiller (bottom plate is
not water-cooled, unlike the copper plate) and of the aluminum tubes where the air
stream coming from the lamps is going through.

Sample holder insert:
In fig. 2.2 the sample holder insert (SI) inside the furnace (vacuum chamber in
fig. 2.1) is shown. It is placed in the other focal points of the elliptical reflectors.
At position S1 and/or S2 a specimen (S1) or a reference reflector (S2) can be placed
inside a fused silica tube. The laser beams L1 and L2 are reflected either by the
specimen itself or by a nickel coated fused silica rod which is placed on top of the
sample.
The specimen holder is made of fused silica because it has a low thermal expansion
coefficient and the specimen can be radiated through it. In addition, fused silica has
a low thermal conductivity preventing the heat from leaking out into the rest of the
system through heat conduction.
In order to conduct isothermal high-precision measurements the thermocouple is di-
rectly welded to the specimen, for which specimen holders with a small hole on the
bottom are available. In this way the specimen temperature can be adjusted pre-
cisely with an repeatability of ± 2 K. For these measurements the third site remains
unused.
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2 Measurement Setup and Improvement

In case of zero measurements the third focal point is used for the temperature mea-
surement by spot-welding a thermocouple on a dummy sample, which must be iden-
tical to the sample intended to be measured, i.e. the dummy sample’s only purpose
is to have the same temperature as the actual sample and is not used for length
measurements.

2.2 Analysis of systematic Dilatometer Signals caused by fast
Temperature Changes

While taking measurements systematic variations upon fast temperature changes
occurred regarding the length measurement which could not be explained by any
behavior of the specimen itself. In order to see the influence of the measurement
setup we decided to conduct some zero measurements, for which the signal should
be as small as possible or at least should only have large length changes at the very
beginning of the measurement.

To get a first insight into the type of systematic variation we are facing, we conducted
some zero measurements where we heated up and cooled down the furnace to give
various temperatures at the dummy sample (fig. 2.4 and 2.5) and also conducted
some isothermal measurements with different modulation frequencies (fig. 2.6).

By looking at these measurements one can see that the systematic variation lies in
the time range of a few thousand seconds and mainly occurs for large temperature
differences. As shown in fig. 2.4 and 2.5 the systematic variation lies in the range of
a few hundred nm in contrast to fig. 2.6, where the systematic variation is only a few
tens of nm.

To figure out the source of these systematic variations, we conducted measurements
where we always changed exactly one parameter and compared these measure-
ments with each other. For all of these measurements the water temperature of the
recirculating chiller was set to 20 ◦C and the room temperature was set to 21.9 ◦C.

First of all we checked if the specimen holder could have any influence on the mea-
surement since tiny deviations from the nominal dimensions of the specimen holder

6



2.2 Analysis of systematic Dilatometer Signals caused by fast Temperature
Changes

Figure 2.4: Zero measurement. Length change ∆L in dependence of time t upon
and after fast heating from temperature T = 21 ◦C to T = 800 ◦C with a heating rate
of 100 K/min.

Figure 2.5: Zero measurement. Length change ∆L in dependence of time t upon
and after fast temperature changes with a heating rate of 10 K/min and quasi-
instantaneous cooling rates. Temperature profile in red.
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2 Measurement Setup and Improvement

Figure 2.6: Zero measurement. Length change ∆L in dependence of time t in re-
sponse to a modulated temperature profile at the average temperature T = 800 ◦C
with a modulation frequency f = 2 mHz and an amplitude ∆T̂ = 2 K.

Figure 2.7: Testing any influence of the specimen holder by using two different sam-
ple holder inserts (SI in fig. 2.2) with a drill hole diameter for the fused silica tubes of
6.9 mm (left) and 7.2 mm (right). Length change ∆L versus time t upon imposing
temperature profile T(t).
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2.2 Analysis of systematic Dilatometer Signals caused by fast Temperature
Changes

Figure 2.8: Testing any influence of the measuring plane, which corresponds to the
surface the laser beams hit. Length change ∆L versus time t upon imposing temper-
ature profile T(t). Left: Specimen holder; Middle: Drill hole of sample holder insert
covered; Right: Transparent fast-entry door (see fig. 2.3).

can lead to quite large errors. Therefore, we used two sample holder inserts (SI in
fig. 2.2) with a different drill hole diameter for the fused silica tubes, which is where
the sample is put in. We concluded that the sample holder with a drill hole diameter
of 6.9 mm improved indeed the quality of the measurement significantly as this can
be seen in fig. 2.7.

Then we investigated the measuring plane, which corresponds to the surface the
laser beams hit. In fig. 2.84 one can see that as long as the measuring plane is out-
side the chamber (chamber lid) the systematic variation stays small, which is why we
concluded that the source of the systematic variation has to lie inside the chamber.
If there had not been any significant difference between any of these three measure-
ments, the conclusion could have been that, since the interferometer is mounted on
a bridge, it could get skew with respect to the chamber when heating up. This would
have resulted in a systematic variation regardless of the measuring plane.

4The measurement in the middle shows a constant temperature of 1450 ◦C, which was due to
an error of the temperature sensor. The temperature profile is the same as for the first and last
measurement.
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2 Measurement Setup and Improvement

Figure 2.9: Testing any influence of Ar. Length change ∆L versus time t upon im-
posing temperature profile T(t). Left: With Argon (indicated by vertical lines); Right:
No Argon.

Since the systematic variation mainly occurs for large temperature differences we
took a measurement where we let Argon, which has a cooling effect, inside the
chamber for a short while (fig. 2.9), where we chose the measurement plane to be
the transparent fast-entry door. This turned out to have a great impact on the length
measurement since at the time, when the Argon is let in, the length rapidly decreases
and stays at a constant value until the Argon is turned off (left plot). In contrast to
that one can see that without any Argon the length continuously increases (right
plot). This effect might be explained by a cool down of the furnace due to the Argon.

Since up to now the measurements showed strong indication for the influence of
the temperature, we further investigated different methods for cooling the system
and chose the specimen holder as the measuring plane for all subsequent measure-
ments. At this point it should be mentioned that while performing these measure-
ments we noticed that the bottom of the chamber was quite hot, which should not
be the case because the water of the recirculating chiller should keep the system
at moderate temperatures. We therefore put a fan in front of the dilatometer to in-
crease the air flow around the measurement setup. In fig. 2.10 three measurements
are shown. For the one in the middle the fan was put to different positions while the
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2.2 Analysis of systematic Dilatometer Signals caused by fast Temperature
Changes

Figure 2.10: Testing any influence of an outside air flow. Length change ∆L versus
time t upon imposing temperature profile T(t). Left: No air stream; Middle: Fan at
different positions; Right: Air stream coming from the upper left corner.

Figure 2.11: Testing any influence of the air flow, which is cooling the lamps. Length
change ∆L versus time t upon imposing temperature profile T(t). Left: Automatic
control; Right: Manual control (higher air flow indicated by vertical lines).
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2 Measurement Setup and Improvement

measurement was running. After another few measurements the most effective posi-
tion for the fan was concluded to be in the upper left corner, for which we conducted
a measurement with the same temperature profile again. By looking at the right plot
in fig. 2.10 the influence of the fan is evident since the peaks of the length upon the
fast temperature changes are significantly smaller than in the left plot.

We also had a try on how changing the air flow through the fused silica tubes, which
is cooling the lamps, affects the systematic variation. We did this by setting the
air flow manually instead of having the automatic control, which sets the air flow to
a value that the lamps are within their optimum temperature range. As shown in
fig. 2.11 also in this case a significant influence on the length measurement could be
observed.

2.3 Conclusion

After all these measurements we came to the conclusion that there are three rea-
sons for the large systematic variations: the first reason is the direct influence of the
specimen holder as this becomes obvious when looking at fig. 2.7. The origin of the
other two reasons becomes evident in fig. 2.12, where we had a look at the other two
sensors, from which one is inside the chamber measuring the furnace temperature
while the other one is measuring the room temperature. We can see that the furnace
temperature, which should stay constant as in the case of the room temperature, is
going up and down just in the same time range as the systematic variation occurs.
This contributes to the large systematic variation in two ways: Due to the heating
up the furnace itself is expanding asymmetrically (second reason), which affects
the length measurement, and, in addition, the heating up of the bottom plate of the
vacuum chamber causes the furnace in the vacuum chamber to tilt with respect to
the bottom plate as indicated by the green arrows in fig. 2.13 (third reason).

Since we now know that the systematic variation is caused by the heating up of the
chamber, we have to find a way to avoid this. Therefore, we need to analyze the
whole system in terms of heat sinks and sources (see fig. 2.13). In section 2.1 we
saw that the lamps are cooled by a stream of air going through the fused silica tubes
(T in fig. 2.2 and yellow part in fig. 2.13) from the top to the bottom. The copper plate
in fig. 2.3 is the one where the water of the recirculating chiller is running through.
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2.3 Conclusion

Figure 2.12: Testing any influence of the furnace and environmental temperature.
Length change ∆L versus time t upon imposing temperature profile T(t). Left: Spec-
imen temperature; Middle: Furnace temperature; Right: Room temperature.

Beneath this plate there is the bottom plate (see fig. 2.3) which is not water-cooled
(this is the plate which was hot during the measurements as mentioned before).
The hot air stream going through the copper and the bottom plate usually should
be cooled down to low enough temperatures at the copper plate to ensure that the
bottom plate is not heating up. However, as seen in fig. 2.12 this holds only for
lower temperatures since the heating up of the furnace increases with increasing
measuring temperatures, i.e. at a measuring temperature of 400 ◦C (left plot) the
furnace temperature is 26 ◦C (right plot), whereas at 600 ◦C the furnace temperature
goes up to 34 ◦C. The reason for this lies in the fused silica tube, which goes over into
an aluminum tube when going through the copper plate (horizontal, dashed line in
fig. 2.13). This causes the heat to dissipate into the system even faster than it would
if we had a fused silica tube at the bottom plate due to the much higher thermal
conductivity of aluminum compared to fused silica.

Therefore, our solution to counteract the heating up of the system is to put a fused
silica tube inside this aluminum tube, where the hot air is going through. This ther-
mally isolates the bottom plate from the hot air stream. In addition, the bottom plate
will be water-cooled too (as this is already the case for the copper plate) allowing us
to go to much higher temperatures while keeping the systematic variation small.
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2 Measurement Setup and Improvement

Figure 2.13: Longitudinal cut of the dilatometer showing the air stream, which is
cooling the lamps (yellow) and going from the top to the bottom, while dissipating
heat into the system (red arrows). The water-cooled (blue) copper plate is absorbing
the heat, while at the bottom plate the heat is just heating up the bottom plate and
the connected parts asymmetrically. This causes the furnace to tilt (green), which
results in a deterioration of the measurement quality.
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3 Basics on Vacancy Formation and Migration and

thermal Expansion

3.1 Vacancy Formation

Vacancy concentration:
The absolute vacancy concentration at a given temperature in equilibrium is given
as follows:

CV = e−
GFV
kT = e

SFV
k e−

HFV
kT , (3.1)

where T denotes the temperature, SFV the vacancy formation entropy and HF
V the

vacancy formation enthalpy.

Usually the formation entropy SFV and the formation enthalpy HF
V are determined

by means of differential dilatometry, where the length change (dilatometer) and the
change of the lattice constant (XRD) are measured at the same time, or time-dependent
dilatometry (see [3] and this work). By means of positron annihilation spectroscopy

(see [4]) only the formation enthalpy HF
V and the prefactor σe

SFV
k can be determined,

where σ denotes the specific trapping rate and k the Boltzmann constant.

Relation between vacancy concentration and relative length change:
A change in the number of vacancies ∆NV caused by e.g. a temperature change
corresponds to a change in length (∆L)V ac of the sample due to vacant lattice sites.
Since CV is defined as the ratio between vacancies and lattice sites containing
atoms, one can write down a relation between the change in vacancy concentra-
tion and the resulting length change, where one has to consider that the volume of
a lattice site and the volume of a lattice vacancy are not the same due to lattice
relaxation effects, which are taken into account by the relaxation parameter r: [5]

(∆L)V ac

Lref
≈ 1

3

(∆V )V ac

Vref
=

1

3
(1− r)∆NV

N
=

1

3
(1− r) ∆CV , (3.2)

where ∆NV is the change of the number of vacancies, N the number of atoms, r
the relaxation parameter, (∆V )V ac ((∆L)V ac) the change in volume (length) due to
vacancies, Vref (Lref ) the specimen volume (length) at RT and ∆CV the change of
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3 Basics on Vacancy Formation and Migration and thermal Expansion

the vacancy concentration.

3.2 Vacancy Migration

When heating a material two effects come into play with respect to thermally induced
length changes [3]:

Contribution of the lattice:
The greatest part is due to the change of the lattice constant. The reason for this
change lies in the type of the atomic potential which is anharmonic and therefore is
getting broader with increasing temperature, i.e. the lattice constant gets larger with
increasing temperature. The expansion due to the lattice constant is described by
the thermal expansion coefficient, which depends on the temperature:

α =
1

Lref

dL

dT
. (3.3)

Contribution of the vacancies:
The other part arises from the formation of thermal vacancies, which is, in contrast
to the lattice expansion, delayed with the time constant given by

1

τ
=

1

τ0

e−
HMV
kT , (3.4)

where T denotes the temperature, τ0 the preexponential factor and HM
V the vacancy

migration enthalpy.

The pre-exponential factor is given by [4]

1

τ0

= ξν0
Z

N
e−

SMV
k ,

where SMV is the migration entropy, Z the coordination number, N the mean number
of jumps per vacancy to a sink, ξ a geometrical factor and ν0 the attempted frequency
of the order of the Debye frequency.

The preexponential factor τ0 and the vacancy migration enthalpy HM
V can be deter-

mined by positron annihilation spectroscopy (see [4]) or time-dependent dilatometry
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3.2 Vacancy Migration

Figure 3.1: Schematic representation of a time-dependent dilatometry measurement
according to [3], where the temperature instantly jumps from temperature Ti to Tf
exhibiting two length change mechanisms: an instantaneous ∆l′ due to the change
of the lattice constant and a delayed ∆ls due to the formation and migration of thermal
vacancies. Reprinted with permission from [3]. Copyright (2020) by the American
Physical Society.

(see [3] and this work).

For a visualization of the two expansion mechanisms, we have a look at a schematic
representation of an idealized time-dependent dilatometry measurement as per-
formed in [3]. In such a measurement the temperature instantly jumps from tem-
perature Ti to Tf resulting in an instantaneous length change due to the lattice and
a delayed length change due to the vacancies. This is shown in fig. 3.1 with the
corresponding relation as follows: 5

l = l0(Ti) + ∆l′(Ti, Tf ) + ∆ls(Ti, Tf )(1− e
− t
τ(Tf ) ),

where ∆l′ denotes the instantaneous length change due to the change of the lattice
constant and ∆ls the time-delayed length change due to vacancies.

It has to be noted that time-dependent dilatometry measurements are suitable if the

5This relation only holds as long as there is only one diffusion coefficient for the vacancies.
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3 Basics on Vacancy Formation and Migration and thermal Expansion

condition HM
V

HF
V
> 1 is satisfied, i.e. there have to be a lot of vacancies while the diffu-

sion of these vacancies should be rather slow. This is the case for B2 intermetallics,
which is why we are studying Fe62Al38 in this work.6 (For pure metals this ratio is
usually HM

V

HF
V
≤ 1) [3]

6Other suitable materials are discussed later. (tab. 5.5)
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4 Modelling of Vacancy Kinetics for a modulated Tem-

perature Profile

In this chapter a formula for the overall length change for a modulated tempera-
ture profile superimposed to time-linear heating will be derived first. Based on this
formula two approaches for the evaluation of measurements with this temperature
profile will be presented, from which it is possible to determine the material parame-
ters for vacancy formation and migration. In addition, the idea of more complicated
alternatives to the two elaborated approaches will be presented.

4.1 Vacancy Kinetics for a modulated Temperature Profile at con-
stant average Temperature

4.1.1 Derivation

In the following we will derive a formula for the time-dependent vacancy concentra-
tion in case of a sinusoidal temperature profile. For this purpose, we first derive two
formulae, the first of which describes the change of the vacancy concentration upon
a small change in temperature and the second of which describes the relaxation be-
havior, i.e. the time-dependent behavior at a given temperature in case of an initial
excess vacancy concentration. Then we combine these two equations and solve the
resulting differential equation for a sinusoidal temperature profile.

Initial equations:

Variation of the vacancy concentration CV :
Since our sinusoidal temperature profile only has an amplitude of a few Kelvin, we
only look at small temperature changes ∆T = T − T0, where T0 is the average tem-
perature.
Therefore we start out with eq. (3.1) and carry out a Taylor series expansion at the
point T0 with the corresponding vacancy concentration CV (T0) = CV,0. So we are
looking at the change of the vacancy concentration ∆CV,0 with respect to the aver-
age vacancy concentration CV,0, i.e. ∆CV,0(T ) = CV (T )− CV (T0).
We make the assumption that there are only small variations of ∆CV,0 upon small
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

changes in temperature ∆T = T − T0 around the point T0, so we just consider the
first term, which is the derivative with respect to the temperature times the difference
in temperature ∆T = T − T0:

dCV
dT

∣∣∣∣∣
T=T0

= CV,0
HF
V

kT 2
0

. (4.1)

This leads to

∆CV,0(T ) = CV (T )− CV (T0) = CV,0
HF
V

kT0

∆T

T0

, (4.2)

where CV,0 is the vacancy concentration at the average temperature T0 (cf. eq. (3.1))
and ∆CV,0 denotes the change of the vacancy concentration upon a small change in
temperature.

Until now we just treated the vacancy concentration without any time-dependencies,
which means that ∆CV,0 corresponds to the vacancy concentration in equilibrium.

Relaxation:

Now the time-dependency comes into play. As a first step we assume a specimen
with an initial excess vacancy concentration ∆Cini

V with respect to the equilibrium
concentration. Without any further influence of the temperature, i.e. constant tem-
perature, the evolution of the excess vacancy concentration ∆CV (T ) is given by the
relaxation equation (homogeneous equation):

d∆CV (t)

dt
+

∆CV (t)

τ
= 0,

where vacancies annihilate with a time constant τ , which is given by eq. (3.4).

Solving this equation gives (see fig. 4.1):

ln
∆CV (t)

∆Cini
V

= −t
′

τ

∣∣∣∣∣
t

0

= − t
τ
,

which leads to
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4.1 Vacancy Kinetics for a modulated Temperature Profile at constant average
Temperature

Figure 4.1: Sketch of the solution of the homogeneous equation (eq. (4.3)), which
describes the relaxation process with the time constant τ upon an initial excess va-
cancy concentration ∆Cini

V , where ∆CV denotes the difference between the current
vacancy concentration and the equilibrium concentration.

∆CV (t) = ∆Cini
V e−

t
τ . (4.3)

Now the state of the sample is changed continuously, e.g. by changing its tempera-
ture with respect to a reference temperature T0, which results in the inhomogeneous
differential equation (∆CV,0 6= const.)

d∆CV (t)

dt
+

∆CV (t)

τ
=

1

τ
∆CV,0(t) (4.4)

with ∆CV,0(t) being the deviation in equilibrium concentration between T (t) and T0,
i.e. ∆CV,0(t) = CV (T (t))− CV (T0).
To get a more intuitive understanding of this equation, it shall be mentioned here
that in equations of this type the right side, i.e. ∆CV,0(t), is sometimes considered
as some type of driving force, while the left side of such equations describes the
time-dependent behavior. So we could think of it as ∆CV,0(t) being the equilibrium
concentration for the current temperature T (t), while the left side, i.e. ∆CV (t), is
trying to catch up with this equilibrium state, which it only will do in case of constant
temperature as seen in fig. 4.1 and fig. 4.2.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.2: Sketch of the solution of the inhomogeneous equation (eq. (4.4)), which
describes the relaxation process with the time constant τ upon a deviation of the
equilibrium concentration ∆CV,0 = const., where ∆CV denotes the difference be-
tween the current vacancy concentration and the equilibrium concentration.

In case of ∆CV,0 = const. for the inhomogeneous equation, the solution is ∆CV =

∆CV,0(1 − e−
t
τ ), i.e. the exponential function just goes upwards and converges at

∆CV,0 as shown in fig. 4.2.

Limiting cases:

For τ → 0 the vacancy concentration changes instantly with temperature, which
means that it is always in equilibrium. Therefore, the current change in vacancy
concentration ∆CV is equal to the change in equilibrium concentration ∆CV,0:

τ → 0 : ∆CV = ∆CV,0(t). (4.5)

For τ → ∞ the vacancy concentration doesn’t change at all since the process re-
quires infinite time:

τ →∞ :
d∆CV

dt
= 0. (4.6)
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4.1 Vacancy Kinetics for a modulated Temperature Profile at constant average
Temperature

Insert ∆CV,0 from eq. (4.2) into inhomogeneous equation (4.4):

Now we consider only a sinusoidal temperature profile with a small amplitude, for
which deviations in the average vacancy concentration may be approximated by
eq. (4.2) with ∆T (t) = T (t)− T0 = ∆T̂ sinωt, which becomes

d∆CV
dt

+
∆CV
τ

=
1

τ
∆CV,0(t) =

=
1

τ
CV,0

HF
V

kT0

∆T̂

T0

sinωt.

(4.7)

We already solved the homogeneous differential equation (see eq. (4.3)).

The ansatz for the inhomogeneous differential equation is as follows:

∆CV = b sinωt+ c cosωt. (4.8)

Inserting eq. (4.8) into eq. (4.7) gives

b ω cosωt− c ω sinωt+
b

τ
sinωt+

c

τ
cosωt =

CV,0
HF
V

kT0

∆T̂
T0

τ
sinωt,

which leads to

cosωt
(
b ω +

c

τ

)
+ sinωt

−c ω +
b

τ
−
CV,0

HF
V

kT0

∆T̂
T0

τ

 = 0.

Since each expression in brackets must be zero, one gets two equations for two
variables, from which the prefactors b and c can be determined, namely

b =
CV,0

HF
V

kT0

∆T̂
T0

1
τ

ω2 + 1
τ2

1

τ
and c = −

CV,0
HF
V

kT0

∆T̂
T0
ω

ω2 + 1
τ2

1

τ
.

Inserting this result into the Ansatz for the inhomogeneous equation (eq. (4.8)) gives

∆CV (t) = CV,0
HF
V

kT0

∆T̂

T0

1

τ

1

ω2 + 1
τ2

(
1

τ
sinωt− ω cosωt

)
. (4.9)
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Limiting cases:

For the same reasons as in eq. (4.5) and (4.6) (always equilibrated for τ → 0 and
remains in the initial state for τ →∞) we get

τ → 0 : ∆CV = CV,0
HF
V

kT0

∆T̂

T0

sinωt

and
τ →∞ : ∆CV = 0.

Phase shift:

From the general relation between the phase shift and the sum of a sine- and cosine-
function

A sin (ωt+ ϕ) = a sinωt+ b cosωt

one gets the new amplitude with the corresponding phase shift:

A =
√
a2 + b2 =

√
1

τ 2
+ ω2 and tanϕ =

b

a
= −ωτ. (4.10)

Putting everything together (eq. (4.9) and (4.10)) gives the final formula:

∆CV (t) = CV,0
HF
V

kT0

∆T̂

T0

1

τ

1√
ω2 + 1

τ2

sin (ωt+ ϕ)

= CV,0
HF
V

kT0

∆T̂

T0

1√
ω2τ 2 + 1

sin (ωt+ ϕ).
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4.1 Vacancy Kinetics for a modulated Temperature Profile at constant average
Temperature

Figure 4.3: Sketch of the time-dependent vacancy concentration ∆CV (black)
(eq. (4.11)) in case of a sinusoidal temperature profile at constant average tempera-
ture T0 (red).

4.1.2 Result

The major result for ∆CV is summarized in eq. (4.11) once more:

∆CV (t) = CV,0
HF
V

kT0

∆T̂

T0

1√
ω2τ 2 + 1

sin (ωt+ ϕ)

with ϕ = arctan (−ωτ),

(4.11)

where CV,0 is the vacancy concentration at the average temperature T0 (eq. (3.1))
and τ denotes the time constant at the average temperature T0 (eq. (3.4)).

Eq. (4.11) describes the time-dependent vacancy concentration in case of a sinu-
soidal temperature profile with respect to the average vacancy concentration CV (T0) =

CV,0, i.e. ∆CV (t) = CV (T (t))−CV (T0). The solution is schematically plotted in fig. 4.3.

∆CV is lagging behind the sine wave of the temperature, while the amplitude and
the phase shift depend on the temperature T0 and the modulation frequency ω (see
below).
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.4: Amplitude ∆ĈV (eq. (4.12)) of the time-dependent vacancy concentration
in case of a sinusoidal temperature profile for various modulation frequencies with
a temperature amplitude of ∆T̂ = 2K (Fe55Al45: HM

V = 1.5 eV, τ−1
0 = 4 × 105 s−1,

HF
V = 1 eV, SFV

k
= 4.9; cf. tab. 5.1 and 5.4: [3], index 1).

In general ∆CV depends on the material properties, which are given by τ0, HM
V , SFV

and HF
V , the temperature modulation, given by T0, ∆T̂ and ω, and the time.

The amplitude ∆ĈV of eq. (4.11) is given by

∆ĈV = CV,0
HF
V

kT0

∆T̂

T0

1√
ω2τ 2 + 1

with CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1))

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).

(4.12)

The amplitude is plotted in fig. 4.4 as a function of temperature for various modu-
lation frequencies ω. At low temperatures the time constant τ is high and therefore
the amplitude goes to zero, whereas at high temperatures the time constant is so
low that the specimen is equilibrated instantly, which means that ∆ĈV converges to
the vacancy concentration in equilibrium CV,0 (eq. (3.1)). Our temperature range of
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4.1 Vacancy Kinetics for a modulated Temperature Profile at constant average
Temperature

Figure 4.5: Phase shift ϕ (eq. (4.13)) of the time-dependent vacancy concentration in
case of a sinusoidal temperature profile for various modulation frequencies (Fe55Al45:
HM
V = 1.5 eV, τ−1

0 = 4× 105 s−1; cf. tab. 5.1: [3], index 1).

interest lies in the area where the curves do not coincide. Otherwise we would get
the same information from each measurement independent of the chosen modula-
tion frequency. Later on the temperature range will be chosen by determining the
time constants for various temperatures, which should lie somewhere in the range of
the period duration of the modulation (cf. section 5.1).

The phase shift

ϕ = arctan (−ωτ)

with
1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4))

(4.13)

can also be plotted as a function of temperature for various modulation frequencies
as shown in fig. 4.5. At low temperatures the time constant τ is high and therefore
the vacancies can’t catch up with the temperature, which results in a phase shift of
90◦, whereas at high temperatures the time constant is so low that the specimen is
equilibrated instantly, which means that the phase shift converges to zero. Our tem-
perature range of interest lies in the area where the slope is the highest, since only
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

then it is possible to assign our measured values, i.e. the phase shift, to a specific
temperature accurately.

When comparing fig. 4.4 and 4.5, we can see that the temperature range, where the
curves in fig. 4.4 do not coincide, corresponds to the temperature range, where the
slope of the curves in fig. 4.5 is the highest, i.e. both criteria are met by one and the
same temperature range. The reason for this is that within this temperature range
the period duration of the modulation lies in the range of the time constant τ , which
means that slightly different modulation frequencies will give us very different results,
in contrast to the low and high temperature areas, where the time constant is already
way too high or too low and a change of the modulation frequency would not have
any effect.

4.2 Vacancy Kinetics for a modulated Temperature Profile with
linear Increase of Temperature

4.2.1 Idea

The goal is to determine all material parameters (r, τ0, HM
V , SFV , HF

V ) with only a
few measurements, where we also have to consider the lattice part (cf. section 3.2).
Therefore, we linearly increase the average temperature (in addition to the modula-
tion) in order to get information about the vacancy formation from the linear heating
and about the vacancy formation and migration from the modulation.
For each measurement we can adjust the heating rate, the modulation frequency
and the modulation amplitude.
The two most-promising approaches presented here require at least two measure-
ments with very low heating rates in each case since we will assume the specimen
to be equilibrated with respect to the average temperature T0. Therefore, only the
modulation frequency (and the amplitude if necessary) will be varied.

4.2.2 Temperature Profile

As already mentioned we apply a temperature profile, which has, in addition to the
modulation, a linear increase in temperature (fig. 4.6), i.e.
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4.2 Vacancy Kinetics for a modulated Temperature Profile with linear Increase of
Temperature

T (t) = Tstart + At+ ∆T̂ sinωt, (4.14)

where Tstart is the starting temperature, A the heating rate and ∆T̂ the amplitude.

As discussed in section 3.2 thermal expansion arises from an increase of the lattice
constant (instantaneous part) and due to vacancies, where we make the assumption
that no other processes that could also change the volume (e.g. phase formations,
phase transitions) are involved.

We will now look at the linear heating and the modulation separately, for which we
will find a formula that describes the overall thermal expansion. Therefore, each for-
mula consists of two summands, the first of which describes the expansion due to
the change of the lattice constant and the second of which describes the expansion
due to the formation of vacancies.

4.2.3 Linear Increase of Temperature At

We assume that the linear increase of the temperature (dotted line in fig. 4.6) is so
slow that the specimen is equilibrated with respect to the average temperature T0

7.

Therefore, we can use the formula for the vacancy concentration in equilibrium
(eq. (3.1)) and together with eq. (3.2), which describes the relative length change
upon a change in vacancy concentration, we get the overall expansion with respect
to the linear increase in temperature:

(
∆L

Lref

)HR
=

lattice︷︸︸︷
αAt+

vacancies︷ ︸︸ ︷
1

3
(1− r) (CV,0(Tstart + At)− CV,0(Tstart)),

(4.15)

where A is the heating rate, α the thermal expansion coefficient, CV,0 the vacancy
concentration in equilibrium (eq. (3.1)) and HR denotes the contribution from the
time-linear heating.

7The exact condition for the heating rate A is stated in section 4.3.4.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

4.2.4 Temperature Modulation ∆T̂ sinωt

Now we look only at the temperature modulation (fig. 4.6 without time-linear heat-
ing) and make the assumption that the specimen is in equilibrium with respect to
the average temperature T0. (Remember that the time-dependent vacancy concen-
tration for a sinusoidal temperature profile ∆CV is only valid for small temperature
changes since we made a Taylor expansion where we just considered the first term
(cf. sec. 4.1.1).)

Since we have a sinusoidal temperature profile we use eq. (4.11), which describes
the time-dependent vacancy concentration for a sinusoidal temperature profile, and
again eq. (3.2), which describes the relative length change upon a change in va-
cancy concentration, and get the overall expansion with respect to the temperature
modulation:

(
∆L

Lref

)Mod

=


lattice︷ ︸︸ ︷

αT0 sin (ωt) +

vacancies︷ ︸︸ ︷
1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

sin (ωt+ ϕ)

 ∆T̂

T0

,

(4.16)

where ∆T̂ is the temperature amplitude, α the thermal expansion coefficient, CV,0 the
vacancy concentration in equilibrium (eq. (3.1)) and Mod denotes the contribution
from the modulation.

4.2.5 Linear Heating (HR) and Modulation (Mod)

Now we put these two parts together to get the expansion for a temperature profile
as stated in eq. (4.14), i.e. starting at Tstart the average temperature T0 is rising
at a constant rate A, while there is a superimposed modulation with amplitude ∆T̂

(fig. 4.6). In eq. (4.16) T0 is replaced by (Tstart +At) since now the average tempera-
ture is changing over time. This also needs to be done for the time constant τ since
it also depends on T0. This gives
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4.2 Vacancy Kinetics for a modulated Temperature Profile with linear Increase of
Temperature

Figure 4.6: Time-linear heating with the heating rate A and with superimposed mod-
ulation (frequency f = ω

2π
), for which the corresponding length change is given by

eq. (4.17).

∆L

Lref
=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

+

(
∆L

Lref

)Mod,Lat

+

(
∆L

Lref

)Mod, V ac

=

=

lattice (linear heating)︷ ︸︸ ︷
α(T0)At +

+

vacancies (linear heating)︷ ︸︸ ︷
1

3
(1− r)[CV,0(T0)− CV,0(Tstart)] +

+
∆T̂

T0

[ lattice (modulation)︷ ︸︸ ︷
α(T0)T0 sin(ωt) +

+

vacancies (modulation)︷ ︸︸ ︷
1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

sin (ωt+ ϕ)

]

with T0 = Tstart + At and

ϕ = arctan (−ωτ),

(4.17)
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

where A is the heating rate, α the thermal expansion coefficient, CV,0 the vacancy
concentration in equilibrium (eq. (3.1)), ∆T̂ the temperature amplitude, τ the time
constant (eq. (3.4)), HR the contribution from the time-linear heating and Mod the
contribution from the modulation.

The thermal expansion coefficient α (instantaneous length change due to the change
of the lattice constant) is unknown and has to be subtracted from the measurement
to get information about vacancies as we will see in the following (cf. section 4.3, 4.4
and 4.6).

4.3 First Approach: High- and Low-Frequency Measurement

4.3.1 Idea

When heating a material two effects come into play with respect to thermally induced
length changes: The change of the lattice constant, which happens instantaneously,
and a minor part, which arises from the formation of vacancies and is delayed by the
time constant τ .
Now we take two linear heating measurements with a superimposed modulation,
whereby one has a very high and the other one a low frequency. Since for high
frequencies the vacancies have not enough time to migrate in or out of the material,
the modulation part of the high-frequency measurement only consists of the lattice
expansion, i.e. it is possible to directly determine the pure lattice expansion from the
modulation of the high-frequency measurement. Since linear heating is involved, we
get the expansion as a function of the temperature. With respect to length this means
that we can get rid of the lattice contribution by multiplying the pure lattice expansion
with the temperature profile of the low-frequency measurement and subtracting this
from the low-frequency measurement leaving behind the pure vacancy signal as a
response to linear heating with a superimposed modulation. Comparing it with the
formula derived above (eq. (4.17)), the decisive parameters for vacancy formation
and migration can be determined.
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4.3 First Approach: High- and Low-Frequency Measurement

4.3.2 Procedure

For the procedure we split up each measurement into the corresponding summands
given by eq. (4.17), where HR denotes the linear heating, Mod the modulation,
Lat the lattice contribution, V ac the vacancy contribution, HF the high-frequency
measurement and LF the low-frequency measurement, i.e.

(
∆L

Lref

)
HF

=

(
∆L

Lref

)HR,Lat
HF

+

(
∆L

Lref

)HR,V ac
HF

+

(
∆L

Lref

)Mod,Lat

HF

+

(
∆L

Lref

)Mod, V ac

HF

,

(
∆L

Lref

)
LF

=

(
∆L

Lref

)HR,Lat
LF

+

(
∆L

Lref

)HR,V ac
LF

+

(
∆L

Lref

)Mod,Lat

LF

+

(
∆L

Lref

)Mod, V ac

LF

.

Subsequently, the steps of the procedure are listed.

1.
(

∆L
Lref

)Mod, V ac

HF
is assumed to be negligible.

2. The moving average of HF is given by the sum:(
∆L

Lref

)HR,Lat
HF

+

(
∆L

Lref

)HR,V ac
HF

.

3. Subtract the moving average from HF and calculate the thermal expansion
coefficient α by dividing the length amplitude ∆L̂ by the temperature ampli-
tude ∆T̂ and the specimen length Lref . 8

Usually there is a phase shift involved originating from the vacancy part (cf.
eq. (4.11)) but since the vacancy part is zero, there is no phase shift and we
can directly calculate the thermal expansion coefficient without considering
any phase shift (fig. 4.9): 9

(
∆L

Lref

)Mod,Lat

HF

= α∆T̂ sin(ωhight)→ α(T ).

8Instead of calculating the moving average, we could also just directly calculate the average of
each period and get the amplitude from the difference between the minimum and the maximum of
each period.

9Checking if the phase shift is zero is also a good way to check the applicability of the high-
frequency measurement.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

4. Subtract the starting temperature Tstart from the temperature profile of LF10

and multiply it with the thermal expansion coefficient α to get the lattice con-
tribution of LF (Note that α is a function of the temperature due to the linear
heating.):

α(T )T (t)LF =

(
∆L

Lref

)HR,Lat
LF

+

(
∆L

Lref

)Mod,Lat

LF

.

5. Subtract the lattice contribution of LF from LF to get the pure vacancy signal:(
∆L

Lref

)
LF

− α(T ) T (t)LF =

(
∆L

Lref

)HR,V ac
LF

+

(
∆L

Lref

)Mod, V ac

LF

.

6. Repeat steps 2 and 3 but now with LF, i.e. calculate the moving average of
LF and subtract it from LF to get:(

∆L

Lref

)HR,V ac
LF

and
(

∆L

Lref

)Mod, V ac

LF

.

7. Calculate the parameters from

• the linear heating:(
∆L

Lref

)HR,V ac
LF

=
1

3
(1− r)(CV,0(T0)− CV,0(Tstart))

⇒ r, SFV , H
F
V

• the phase shift of the modulation:

ϕ(T0) = arctan (−ω τ)

⇒ τ0, H
M
V

• the amplitude of the modulation:(
∆L̂

Lref

)Mod, V ac

LF

=
1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

∆T̂

T0

⇒ r, SFV , H
F
V , τ0, H

M
V

10T (t) = Tstart +At+ ∆T̂ sin (ωt) (eq. (4.14))
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4.3 First Approach: High- and Low-Frequency Measurement

with T0 = Tstart + At,

ϕ = arctan (−ωτ) (eq. (4.11)),

CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)) and

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).

4.3.3 Requirements: Modulation Frequencies

For the conditions derived in section 4.3.3, 4.3.4 and 4.3.6 a reasonable value for
the time constant τ at various temperatures, the formation enthalpy HF

V and the
formation entropy SFV has to be considered. These values are known for several
FeAl-alloys, from which we will consider Fe55Al45 to get a reasonable estimate for the
material investigated in this work, namely Fe62Al38. In addition, one could also take
measurements as shown in fig. 3.1 with different temperature differences and to dif-
ferent temperatures to determine these values and compare it with literature values
(cf. section 5.1).

There are two conditions that must be fulfilled with regard to the modulation part of

the vacancies
(

∆L
Lref

)Mod, V ac

(last summand in eq. 4.17):

• For the low-frequency measurement LF the amplitude must be higher than the

measurement error of the setup ∆∆L, i.e.
(

∆L̂
)Mod, V ac

LF
> ∆∆L.

• For the high-frequency measurementHF it must be negligible, i.e.
(

∆L
Lref

)Mod, V ac

HF
→

0, which means that it should stay below the measurement error, i.e.
(

∆L̂
)Mod, V ac

HF
<

∆∆L.

For these conditions we need the relation between
(

∆L̂
Lref

)Mod, V ac

LF
and ∆ĈV , which is
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.7: Conditions for the determination of the temperature range (eq. (4.18))
plotted for several frequencies. These two conditions require the amplitude of the

sinusoidal vacancy signal of the low-frequency measurement
(

∆L̂
)Mod, V ac

LF
to be

larger and the amplitude of the high-frequency measurement
(

∆L̂
)Mod, V ac

HF
to be

smaller than the measurement error ∆∆L, which was set to 10 nm (see dashed
line). The solid lines indicate the temperature range in case of a 2 mHz- and a 25
mHz-measurement. This relation is only valid for Fe55Al45, which has the values
HM
V = 1.5 eV, τ−1

0 = 4 × 105 s−1, HF
V = 1 eV and SFV

k
= 4.9 (cf. tab. 5.1 and 5.4: [3],

index 1).
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4.3 First Approach: High- and Low-Frequency Measurement

(cf. eq. (4.12) and (4.16)):

1

3
(1− r)∆ĈV =

(
∆L̂

Lref

)Mod, V ac

LF

.

Since there are no literature values for the relaxation parameter r, we set it to zero
and calculate the resulting length change due to vacancies with regard to the modu-
lation and see if it is larger than the measurement error for the low-frequency mea-
surement and smaller for the high-frequency measurement11, i.e.(

∆L̂
)Mod, V ac

LF
≈ 1

3
∆ĈVLFLref > ∆∆L and(

∆L̂
)Mod, V ac

HF
≈ 1

3
∆ĈVHFLref < ∆∆L.

(4.18)

In case of Fe55Al45 this relation is shown in fig. 4.7 for a temperature amplitude of
∆T̂ = 2 K and for an error of the measurement setup of ∆∆L = 10 nm.

4.3.4 Requirements: Heating Rate

In section 4.2 we made the assumption that the specimen is equilibrated with re-
spect to the average temperature T0, hence we want the heating rate to be as low
as possible. However, we cannot make the heating rate arbitrarily low, which is why
we estimate a lower limit of the heating rate based on the measurement error of the
setup, below which an improvement of the result is not possible. Therefore, we look
at the longest equilibration process taking place in the measurement, i.e. τmax, and
calculate the equilibrated length change due to vacancies within this equilibration
process in order to adjust the heating rate in a way that this change in length during
this equilibration process is smaller than the measurement error of the setup. We do
this as follows:

First, we calculate the length change with the heating rate T
t

per time in equilibrium,

11For a more sophisticated estimate regarding the second condition, please refer to section 4.3.6,
where the remaining vacancy signal after subtraction of the lattice part was calculated.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.8: Condition for the heating rate to ensure that the specimen is equilibrated
with respect to the heating rate, which can be assumed if the error ∆∆L of the
measurement setup is smaller than the equilibrated length change due to vacancies
during an equilibration process with the duration τmax (eq. (4.19)).

which we do by multiplying the expansion due to vacancies per Kelvin ∆L1K

1K
, i.e.

∆L

t
=

∆L1K

1K

T

t
.

Since we now know the equilibrated length change due to vacancies per time, we
multiply the highest time constant of the measurement τmax to see by how much
the length is changing during the longest equilibration process of the measurement
and set the condition that the resulting length change is smaller than or equal to the
measurement error of the setup (fig. 4.8), i.e.

∆L1K

1K

T

t
τmax

!

≤ ∆∆L. (4.19)

During the measurement the temperature increases, hence the time constant de-
creases. This means that the required time for an equilibration process decreases
resulting in a smaller equilibrated length change due to vacancies during this time.
Since we calculated the condition with regard to the longest equilibration process of
the measurement, i.e. τmax, the condition corresponds to the lower limit of the heat-
ing rate, below which an improvement of the result is not possible. Therefore, we set
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4.3 First Approach: High- and Low-Frequency Measurement

the resulting length change during an equilibration process to be roughly the same
as the measurement error and get the condition for the heating rate:

Amin ≈
∆∆L

τmax

1
∆L1K

1K

. (4.20)

Since there are literature values available for the materials in question12, we can
determine the factor τmax∆L1K

1K
together with the heating rate in case of the measure-

ment error being ∆∆L = 10 nm. We will evaluate this factor at a temperature, where
the time constant is about 1000 s since measurements with higher time constants
won’t give reasonable results because they are already higher than the period dura-
tion of the lowest modulation frequency, hence for materials, for which the ratio HM

V

HF
V

is
just slightly above 1, the amplitude is too low to be measurable. This is the case for
Fe55Al45, for which HM

V

HF
V

= 1.513 (fig. 4.7 at 600 ◦C corresponds to τ = 1000 s 14). If the
highest time constant τmax is lower than 1000 s, a higher heating rate can be chosen
because the vacancies are migrating faster then resulting in a smaller length change
due to vacancies within an equilibration process. To get an estimate for the expan-
sion per Kelvin due to vacancies, we use the second term of eq. (4.17) (”vacancies
(linear heating)”):

∆L1K

1K
= Lref

1

3
(1− r)[CV,0(T + 1 K)− CV,0(T )]. (4.21)

Since there are no literature values for the vacancy relaxation of the material in ques-
tion, we set the relaxation parameter r to zero and calculate these values for the
materials in question (tab. 4.1).

Only for the high-frequency measurement we might choose a much higher heating
rate since only the modulation part is of interest. (Remember that we only have the
heating rate to get α as a function of temperature (see section 4.3.1).) Therefore,
we can choose virtually any heating rate as long as the period duration Tp is much
smaller than the lowest time constant τmin of the measurement since only then the
average vacancy concentration within one period can be regarded as constant, i.e.

12The parameters of these materials are listed in tab. 5.5.
13According to [3] (index 1) in tab. 5.1 and 5.4.
14According to τ1 from literature [1] in fig. 5.4.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Table 4.1: Estimation for maximum heating rates A acceptable by means of eq. 4.20
and 4.21 for several materials in question, for which we chose a temperature, where
the time constant τmax is about 1000 s, and a measurement error of ∆∆L = 10 nm
(Fe55Al45: cf. tab. 5.1 and 5.4: [3], index 1; other materials: cf. tab. 5.5).

material T [◦C] A [ K
min

]

Fe55Al45 600 3.2× 10−2

CuZn 250 5.0× 10−2

Al 6 5.5× 105

p-doped Si 430 2.4

Fe3Si 225 1.0× 10

CuZnAl 75 2.0

PdIn 600 1.8× 10−3

the following condition must be fulfilled:

Tp << τmin.

4.3.5 Required Measurements

In the following two measurements are needed (fig. 4.9), for which the conditions for
the required parameters are described here in short.15 The first measurement is a
high-frequency measurement (HF) with

• an arbitrary heating rate, as long as Tp << τmin
16.

Otherwise the heating rate should be A = T
t
≈ ∆∆L

τmax
1

∆L1K
1K

as has just been

explained.

• a modulation frequency as high as possible to ensure that only a marginal
amount of vacancies is diffusing into or out of the sample during one modu-
lation period. Therefore, one has to check if the amplitude of the sinusoidal

15The explanation for these conditions are made in section 4.3.3, 4.3.4 and 4.3.6.
16The corresponding time constant can be obtained either from literature values or from measure-

ments as shown in fig. 3.1. (cf. section 5.1)
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4.3 First Approach: High- and Low-Frequency Measurement

Figure 4.9: Sketch of the temperature profile (red) and the corresponding length
signal (black) of the two required measurements for the approach ”High- and Low-
Frequency Measurement”.

vacancy signal
(

∆L̂
)Mod, V ac

HF
to be expected is smaller than the measure-

ment error, i.e.
(

∆L̂
)Mod, V ac

HF
≈ 1

3
∆ĈVHFLref < ∆∆L, where Lref denotes

the specimen length and ∆ĈV the amplitude of the sinusoidal length signal
given by eq. (4.12). This sets the upper limit of the temperature range.17

For Fe55Al45 this relation is shown in fig. 4.7 with Lref = 14.55 mm.
A more general relation for the determination of the temperature range is
shown in fig. 4.10, where the vacancy signal is considered to be negligible if
the period duration Tp is higher than the time constant τ .

The second measurement is a low-frequency measurement (LF) with

• a heating rate of A = T
t
≈ ∆∆L

τmax
1

∆L1K
1K

.

• a modulation frequency of 1 or 2 mHz, whereby one has to check if the am-

17As a more sophisticated alternative to this condition the remaining vacancy signal after subtraction
of the lattice part for a combination of two measurements was calculated in section 4.3.6 with the
remaining vacancy signals given by fig. 4.11, 4.12 and 4.13.
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

plitude of the sinusoidal vacancy signal
(

∆L̂
)Mod, V ac

LF
to be expected is larger

than the measurement error, i.e.
(

∆L̂
)Mod, V ac

LF
≈ 1

3
∆ĈVLFLref > ∆∆L. This

sets the lower limit of the temperature range.
For Fe55Al45 this relation is shown in fig. 4.7 with Lref = 14.55 mm.
A more general relation for the determination of the temperature range is
shown in fig. 4.10, where the vacancy signal is considered to be measurable
if the period duration Tp is lower than the time constant τ . Nevertheless, one
still needs to determine the amplitude of the modulated vacancy signal to be
expected for the corresponding temperature range since this relation only
shows the fraction of the overall amplitude, which could still be too low to be
measurable for this temperature range.

4.3.6 Appendix: Remaining Vacancy Signal after Subtraction of the Lattice
Part

With regard to the second condition in section 4.3.3 it was assumed that the modu-

lation part of the high-frequency measurement is negligible, i.e.
(

∆L
Lref

)Mod, V ac

HF
→ 0.

However, a small vacancy part remains and when we subtract this from the low-
frequency measurement, we also subtract this small remaining vacancy part, hence
subtract too much from the low-frequency measurement. Therefore, after subtrac-
tion the vacancy signal of the low-frequency measurement is reduced by a certain
amount, which we want to determine in the following.
We look at eq. (4.11)18 and see that in the amplitude only one factor depends on the
modulation frequency:

1√
ω2τ 2 + 1

with
1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).
(4.22)

In addition, this factor also depends on the time constant τ , which itself depends on
the temperature. If we plot this factor as a function of the time constant τ , we get a

18∆CV (t) = CV,0
HF

V

kT0

∆T̂
T0

1√
ω2τ2+1

sin (ωt+ ϕ)
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4.3 First Approach: High- and Low-Frequency Measurement

Figure 4.10: Modulation frequency-dependent factor (eq. (4.22)) plotted as a function
of the time constant τ for various modulation frequencies. The dashed line indicates
the limit, below which the period duration Tp is larger than the time constant τ . The
solid lines show this in case of a 2 mHz- and 25 mHz-measurement.

value independent of the material (fig. 4.10). (If we plot it as a function of tempera-
ture, we have to insert the equation for τ , which contains the material parameters τ0

and HM
V , hence it would not be independent of the material.)

Since we are always combining two measurements here, it is reasonable to find a
way to get an estimate for the remaining vacancy signal after subtraction for the
combination of two measurements. Therefore, we divide the vacancy signals (of the
modulation) of the two measurements to get a value that shows us by which factor
the two vacancy signals are differing, i.e.(

∆L
Lref

)Mod, V ac

HF(
∆L
Lref

)Mod, V ac

LF

=

√
ω2
LF τ

2 + 1√
ω2
HF τ

2 + 1

If we subtract this ratio from one, it corresponds to the vacancy signal that remains
after we subtract the product of the thermal expansion coefficient α, which we got
from the modulation part of the high-frequency measurement, and the temperature
profile of the low-frequency measurement (step 4 and 5 in procedure (section 4.3.2)):
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4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.11: Remaining vacancy signal of the modulation
(

∆L
Lref

)Mod, V ac

LF
after sub-

traction (eq. (4.23)) for the approach ”High- and Low-Frequency Measurement” as a
function of the time constant τ in case of a 1 mHz- (top) and a 2 mHz-measurement
(bottom) being the low-frequency measurement and various modulation frequencies
for the high-frequency measurement, where Tp denotes the corresponding period
duration. This relation is independent of the material.
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Figure 4.12: Remaining vacancy signal of the modulation
(

∆L
Lref

)Mod, V ac

LF
after sub-

traction (eq. (4.23)) for the approach ”High- and Low-Frequency Measurement” as
a function of temperature T in case of a 1 mHz- (top) and a 2 mHz-measurement
(bottom) being the low-frequency measurement and various modulation frequencies
for the high-frequency measurement, where Tp denotes the corresponding period du-
ration. This relation is only valid for Fe55Al45, which has the values HM

V = 1.5 eV
and τ−1

0 = 4× 105 s−1 (cf. tab. 5.1: [3], index 1).
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1−
√
ω2
LF τ

2 + 1√
ω2
HF τ

2 + 1
=

(
∆L
Lref

)Mod, V ac

LF
−
(

∆L
Lref

)Mod, V ac

HF(
∆L
Lref

)Mod, V ac

LF

=̂

=̂ remaining vacancy signal of
(

∆L

Lref

)Mod, V ac

LF

,

(4.23)

which we get for the corresponding time constant and therefore for the correspond-
ing temperature range.19

It is plotted for a 1 mHz- and a 2 mHz-measurement being the low-frequency mea-
surement in fig. 4.11 as a function of the time constant τ , i.e. independent of the
material, and in fig. 4.12 as a function of the temperature for Fe55Al45. From these
plots one can see how much of the vacancy signal of the low-frequency measure-
ment is left after subtraction to set a lower limit for the measurement, e.g. if we have
a 2 mHz- and 12.5 mHz-measurement and want to get a vacancy signal of at least
80 %, we look at fig. 4.11 (bottom, yellow line) and see that the time constant has to
be larger than 100 s or in case of Fe55Al45 the temperature has to stay below 720 ◦C
(fig. 4.12 (bottom, yellow line)).

Until now we only considered the remaining vacancy signal from the modulation of

the low frequency-measurement
(

∆L
Lref

)Mod, V ac

LF
. But we also get a vacancy signal

from the linear heating of the low frequency-measurement
(

∆L
Lref

)HR,V ac
LF

, which cor-
responds to the vacancy concentration in equilibrium. Therefore, we also calculate
the remaining vacancy signal of the linear heating of the low frequency-measurement(

∆L
Lref

)HR,V ac
LF

by setting ωLF to zero (equilibrium, hence no modulation) and get:

1− 1√
ω2
HF τ

2 + 1
=̂ remaining vacancy signal of

(
∆L

Lref

)HR,V ac
LF

. (4.24)

This relation is shown in fig. 4.13. If we compare fig. 4.13 with fig. 4.11 and 4.12,
we see that the remaining vacancy signal of the equilibrium part is larger than from
the modulation part, e.g. in fig. 4.13 (bottom) at 750 ◦C the 12.5 mHz-curve is at 80
%, whereas in fig. 4.12 at the same temperature both 12.5 mHz-curves are already
below 80 %.

19For the determination of the temperature range please also refer to chapter 5.1, where for Fe62Al38
the time constants from various sources were compared and plotted as a function of temperature.
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Figure 4.13: Remaining vacancy signal of the linear heating
(

∆L
Lref

)HR,V ac
LF

after sub-
traction (eq. (4.24)) as a function of the time constant τ (top) and temperature T
(bottom) for the approach ”High- and Low-Frequency Measurement”. (Fe55Al45:
HM
V = 1.5 eV, τ−1

0 = 4× 105 s−1; cf. tab. 5.1: [3], index 1).
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4.4 Second Approach: At least two Measurements with arbitrary
Frequency

4.4.1 Idea

When heating a material two effects come into play with respect to thermally induced
length changes: The change of the lattice constant, which is given by the thermal
expansion coefficient α and happens instantaneously, and a minor part, which arises
from the formation of vacancies and is delayed by the time constant τ .
Now we take only one measurement with arbitrary modulation frequency and a heat-
ing rate, which we assume to be so slow that the specimen is equilibrated with re-
spect to the linear heating (cf. section 4.3.4), and calculate the thermal expansion
coefficient with respect to the linear heating αHR (see step 1 and 2 in section 4.4.3).
This expansion coefficient consists of a contribution from the lattice and a minor con-
tribution from the vacancies. (In the previous approach we calculated the expansion
coefficient from the modulation, whose frequency was so high that the vacancy part
could be considered to be zero. This is why we directly obtained the thermal expan-
sion coefficient α without any vacancy part included.) Since our goal is to get rid of
the lattice part, we multiply αHR with the whole temperature profile and subtract it
from the measurement. As a result the lattice part cancels out and we are left with a
sum of two sine waves, which are just consisting of contributions from the vacancies.

4.4.2 Required Measurements

In the following at least two measurements are needed (fig. 4.14) with

• a heating rate of A = T
t
≈ ∆∆L

τmax
1

∆L1K
1K

, where ∆∆L denotes the measurement

error of the setup. τmax∆L1K

1K
with τmax = 1000 s is given in tab. 4.1 for several

materials in question.

• an arbitrary modulation frequency.
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Figure 4.14: Sketch of the temperature profile (red) and the corresponding length
signal (black) of the required measurements for the approach ”At least two Measure-
ments with arbitrary frequency”.

4.4.3 Procedure

For the procedure we split up the measurement into the corresponding summands
given by eq. (4.17), where HR denotes the linear heating, Mod the modulation, Lat
the lattice contribution and V ac the vacancy contribution, i.e.

(
∆L

Lref

)
=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

(
∆L

Lref

)Mod,Lat

+

(
∆L

Lref

)Mod, V ac

.

1. The moving average is given by: 20

(
∆L

Lref

)HR
=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
.

20Instead of calculating the moving average, we could also just directly calculate the average of
each period.
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2. Calculate the expansion coefficient αHR(T ) by taking the (discrete) deriva-
tive with respect to the temperature (eq. (3.3)): 21

αHR(T ) =
∆
(

∆L
Lref

)HR
∆T

.

3. Subtract the starting temperature Tstart from the temperature profile of this
measurement22 to get the sum of the heating rate THR and the modulation
TMod and multiply it with αHR. We take into consideration that it consists of
the lattice part α(T ) and the vacancy part23:

αHR(T ) T (t) =

α(T ) +
d
(

∆L
Lref

)HR,V ac
dT


 At︷ ︸︸ ︷
THR(t) +

∆T̂ sin (ωt)︷ ︸︸ ︷
TMod(t)

 =

= α(T ) THR(t) +
d
(

∆L
Lref

)HR,V ac
dT

THR(t)+

+ α(T ) TMod(t) +
d
(

∆L
Lref

)HR,V ac
dT

TMod(t) =

=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

+

(
∆L

Lref

)Mod,Lat

+
d
(

∆L
Lref

)HR,V ac
dT

TMod(t).

4. Subtract αHR(T ) T (t) from the measurement and get a sum of two sine

21To improve the result, we could also take the average of the αHR of all measurements.
22T (t) = Tstart +At+ ∆T̂ sin (ωt) (eq. (4.14))
23We will calculate the vacancy part in section 4.4.5.
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waves:[(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

(
∆L

Lref

)Mod,Lat

+

(
∆L

Lref

)Mod, V ac
]
−

−

( ∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

(
∆L

Lref

)Mod,Lat

+
d
(

∆L
Lref

)HR,V ac
dT

TMod(t)

 =

=

(
∆L

Lref

)Mod, V ac

−
d
(

∆L
Lref

)HR,V ac
dT

TMod(t).

5. Calculate the amplitude and the phase shift of this sum of sine waves (see
section 4.4.5), which gives:(

∆L

Lref

)Mod, Sum

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

√
1− 1

ω2τ 2 + 1
sin (ωt+ Φ)

(4.25)

with Φ = arctan

(
1

ωτ

)
,

T0 = Tstart + At,

CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)) and

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).

The equation for the maximum with Tmax being the position of the maximum
is:

Tmax =

√
HF
V

k
+

1

ω2τ 2 + 1

HM
V

k
,

where τ also contains the temperature, which is why this equation is an
implicit function.

6. Now we can simultaneously fit the measurement results of multiple measure-
ments to the new amplitude (fig. 4.15) and the new phase shift (fig. 4.16) with
r, SFV , HF

V , τ0 and HM
V as fitting parameters.

51



4 Modelling of Vacancy Kinetics for a modulated Temperature Profile

Figure 4.15: Amplitude
(

∆L̂
Lref

)Mod, Sum

(eq. (4.25)) of the sum of the two sine waves

for various modulation frequencies with a temperature amplitude of ∆T̂ = 2K. The
vacancy relaxation r (cf. eq. (3.2)) is set to zero since no literature values are avail-
able. (HM

V = 1.5 eV, τ−1
0 = 4× 105 s−1, HF

V = 1 eV, SFV
k

= 4.9; cf. tab. 5.1 and 5.4: [3],
index 1).

Figure 4.16: Phase shift Φ (eq. (4.25)) of the sum of the two sine waves for various
modulation frequencies (Fe55Al45: HM

V = 1.5 eV, τ−1
0 = 4 × 105 s−1; cf. tab. 5.1: [3],

index 1).
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4.4.4 Discussion of the Result

Amplitude:

As seen in fig. 4.15 the amplitude has a maximum and goes to zero with increas-
ing and decreasing temperature. For low temperatures eq. (4.25) is dominated by
CV,0(T0), which goes to zero with decreasing temperature. The high temperature
range is dominated by the square root-term, where τ goes to zero with increasing
temperature, which results in the square root-term going to zero.
The origin of the maximum lies in the fact that we take the difference between the
vacancy concentration in equilibrium and the sinusoidal vacancy signal, the latter of
which converges to the vacancy concentration in equilibrium with increasing temper-
ature. Therefore, the whole amplitude in fig. 4.15 goes to zero at high temperatures.
In the middle a temperature range exists, where both summands are large enough
and differ from each other due to the time-dependency. This behavior becomes
obvious in fig. 4.4, where we could think of the 1 mHz-curve being the vacancy con-
centration in equilibrium and the other curves being the sinusoidal vacancy signal.

Phase shift:

According to eq. (4.25) the phase shift converges at 0◦ (fig. 4.16) for low temper-
atures because the time constant τ goes to infinity and therefore the arctangent-
function goes to zero. In case of high temperatures τ goes to zero and therefore the
term in the arctangent-function goes to infinity, in which case the arctangent-function
converges at 90◦.
For low temperatures the phase shift is 0◦ because there is no modulation part. For
higher temperatures the amplitude of the modulation part increases and at the same
time the phase shift of the modulation part goes from 90◦ to 0◦. However, since we
are subtracting two sine functions, which are at high temperatures only differing by
a slight phase shift, the extrema of this difference lie at the point, where these sine
functions cross the x-axis. This is the reason why the phase shift is 90◦ at high tem-
peratures.
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4.4.5 Derivation

In step 4 in section 4.3.2 we got a sum of two sine waves:

(
∆L

Lref

)Mod, Sum

=

(
∆L

Lref

)Mod, V ac

−
d
(

∆L
Lref

)HR,V ac
dT

TMod(t). (4.26)

We already know from chapter 4.2 (cf. eq. (4.17)) that(
∆L

Lref

)Mod, V ac

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

sin (ωt+ ϕ)

with T0 = Tstart + At.

Since we also know that TMod(t) = ∆T̂ sinωt we only need to find
d

(
∆L
Lref

)HR, V ac
dT

,
which we do by starting out with eq. (4.15):

(
∆L

Lref

)HR
=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
= αAt +

1

3
(1− r) (CV,0(

T0︷ ︸︸ ︷
Tstart + At)− CV,0(Tstart))

with CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)).

In step 2 we calculated αHR by taking the derivative with respect to T, which we now
do with this formula:

αHR(T ) =
d
(

∆L
Lref

)HR,Lat
dT0

+
d
(

∆L
Lref

)HR,V ac
dT0

= α +
1

3
(1− r)CV,0(T0)

HF
V

kT 2
0

.

Putting
d

(
∆L
Lref

)HR, V ac
dT0

into eq. (4.26) we get:
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(
∆L

Lref

)Mod, V ac

−
d
(

∆L
Lref

)HR,V ac
dT0

TMod(t) =

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

sin (ωt+ ϕ)−

−1

3
(1− r)CV,0(T0)

HF
V

kT 2
0

∆T̂ sinωt =

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

(
1√

ω2τ 2 + 1
sin (ωt+ ϕ)− sin (ωt)

)
.

(4.27)

For this result we only need to calculate the new amplitude and the new phase shift,
for which we first derive the relations for arbitrary amplitudes. We start out with the
general formula:

c sin (ωt+ Φ) = a sin (ωt+ ϕ) + b sin (ωt).

Then we set t = 0 and ωt = π
2
, which gives

sin Φ =
a sinϕ

c
and

cos Φ =
a cosϕ+ b

c
.

(4.28)

By making use of the Pythagorean trigonometric identity cos2 Φ + sin2 Φ = 1 we get
the relation for the new amplitude:

c2 = (a cosϕ+ b)2 + (a sinϕ)2 =

= a2 cos2 ϕ+ 2ab cosϕ+ b2 + a2 sin2 ϕ

= a2 + b2 + 2ab cosϕ.

(4.29)

From eq. (4.28) we can also express the new phase shift in terms of the tangent
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function:

tan Φ =
sin Φ

cos Φ
=

a sinϕ

a cosϕ+ b
=

sinϕ

cosϕ+ b
a

. (4.30)

With a = 1√
ω2τ2+1

and b = −1 (cf. eq. (4.27)) we can calculate from eq. (4.29) the
new amplitude (we write the prefactors in front of it and abbreviate them with ”...”):(

∆L̂

Lref

)Mod, Sum

= ...
(
a2 + b2 + 2ab cosϕ

) 1
2 =

= ...

(
1

ω2τ 2 + 1
+ 1− 2

1√
ω2τ 2 + 1

cos (arctan (−ωτ))

) 1
2

=

= ...

(
1

ω2τ 2 + 1
+ 1− 2

1√
ω2τ 2 + 1

1√
ω2τ 2 + 1

) 1
2

=

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

(
1− 1

ω2τ 2 + 1

) 1
2

,

where we used the trigonometric relation cos (arctan (x)) = 1√
x2+1

. From eq. (4.30)
we get the new phaseshift:

tan Φ =
sinϕ

cosϕ+ b
a

=

=
sin (arctan (−ωτ))

cos (arctan (−ωτ))− 1
1√

ω2τ2+1

=

=

−ωτ√
ω2τ2+1

1√
ω2τ2+1

−
√
ω2τ 2 + 1

=

=
−ωτ

1− (ω2τ 2 + 1)
=

=
1

ωτ
,

where we used the trigonometric relations cos (arctan (x)) = 1√
x2+1

and sin (arctan (x)) =
x√
x2+1

.
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Combining these two results we get:

(
∆L

Lref

)Mod, Sum

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

(
1− 1

ω2τ 2 + 1

) 1
2

sin (ωt+ Φ)

with Φ = arctan

(
1

ωτ

)
.

4.5 Comparison between the two presented approaches

4.5.1 Similarities

For both approaches we need at least two measurements. All measurements must
have a heating rate which is so low that the specimen can be regarded as equili-
brated with respect to the linear heating. (Only the high frequency-measurement in
the first approach may have a higher heating rate depending on the modulation fre-
quency and the time constant.)

4.5.2 Differences

Regarding the modulation frequencies the advantage of the second approach over
the first approach is that we can use measurements with virtually any frequency as
long as they are different from each other. For the first approach we must take mea-
surements with the highest frequency possible to keep the remaining vacancy signal
high (fig. 4.11). In the second approach we get the full vacancy signal because the
vacancy part is considered here, i.e. only in the first approach we made the assump-
tion that the vacancy part of the modulation of the high frequency-measurement is
negligible (see first step in section 4.3.2). Furthermore, the calculation of the thermal
expansion coefficient is different: In the first approach we directly get the thermal ex-
pansion coefficient α from the modulation of the high frequency-measurement with-
out considering any vacancy part (steps 1, 2 and 3 in section 4.3.2), whereas in the
second approach we calculate the expansion coefficient αHR from the linear heating
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(steps 1 and 2 in section 4.4.3), for which the vacancy part is not negligible24. In
addition, when calculating αHR we have to take the derivative by means of numerical
differentiation (step 2 in section 4.4.3), which exhibits a quite large error, in contrast
to the first approach, where we just divide the length amplitude by the temperature
amplitude (step 3 in section 4.3.2).

4.6 Other Approaches

The two just presented approaches are the simplest ones but in the course of this
work some ideas for other approaches were found, which will be presented here in
short.

4.6.1 Several Measurements with arbitrary Frequency

The required measurements for this approach are the same as for the previous ap-
proach, i.e. ”At least two Measurements with arbitrary Frequency” (section 4.4.2).
Therefore, we will only go trough the procedure.

The first few steps are the same as in the first approach, i.e. calculate the moving
average and subtract it from the measurement, but this time we do not neglect the
vacancy part in the modulation. This means that since the lattice part is instanta-
neous and the vacancy part delayed and therefore phase shifted (cf. eq. (4.17)), we
cannot just take the plain sum as we did in the second approach, but instead have
to take this phase shift into account. In the previous two approaches the lattice part
always canceled out directly but this is not the case here because the thermal ex-
pansion coefficient α is part of a more complicated expression within a square root.
This is the reason why this approach turns out to be more complicated than the pre-
vious two approaches, which gets evident, when elaborating the first few steps of the
procedure.

24α refers to the thermal expansion coefficient without any vacancy contribution, whereas αHR
includes, in addition to the lattice part, the vacancy part (cf. eq. (4.17)).
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4.6 Other Approaches

1. Calculate the thermal expansion coefficient from the modulation αMod by di-
viding the amplitude of the length ∆L̂ by the amplitude of the temperature
∆T̂ and the specimen length Lref :

αMod =
1

∆T̂

(
∆L̂

Lref

)Mod

.

2. As discussed above αMod consists of a lattice and a vacancy part, which can-

not be described by a plain sum, i.e. αMod 6= α+ 1

∆T̂

(
∆L̂
Lref

)Mod, V ac

. Therefore,
we have to use the formula for the amplitude of the sum of two sine waves,
of which one is phase shifted (eq. (4.29)), which gives (cf. eq. (4.17)):

αMod =

√√√√√α2 +

 1

∆T̂

(
∆L̂

Lref

)Mod
2

+ 2α

 1

∆T̂

(
∆L̂

Lref

)Mod
 cos (ϕ)

with
1

∆T̂

(
∆L̂

Lref

)Mod, V ac

=
1

3
(1− r)CV,0(T0)

HF
V

kT 2
0

1√
ω2τ 2 + 1

and

ϕ = arctan (−ωτ).

3. For the same reason we calculate the phase shift of the sum of the two sine

waves (eq. (4.30)) with a = 1

∆T̂

(
∆L̂
Lref

)Mod, V ac

and b = α (Only a is phase
shifted by ϕ = arctan (−ωτ).):

tan Φ =
sinϕ

cosϕ+ b
a

=

=
sin (arctan (−ωτ))

cos (arctan (−ωτ)) + α

1

∆T̂

(
∆L̂
Lref

)Mod, V ac

=

=

−ωτ√
ω2τ2+1

1√
ω2τ2+1

+ α

1

∆T̂

(
∆L̂
Lref

)Mod, V ac

=

=
−ωτ

1 + ω2τ2+1

1
3

(1−r)CV,0(T0)
HF
V

kT2
0

,

where we used the trigonometric relations cos (arctan (x)) = 1√
x2+1

and
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sin (arctan (x)) = x√
x2+1

.

4. From here the next steps are trying to somehow cancel out the lattice con-
tribution by subtracting αMod(T )T (t) from the measurement and considering
the phase shift Φ in the measurement.

4.6.2 Subtract two Measurements from each Other

Here one just directly subtract the measurement as it is from another measurement,
which results in the sum of four sine functions. The measurements for this approach
must have the same heating rate (Otherwise it won’t cancel out.), which should be
just low enough that the vacancy concentration is not changing significantly within
one period25 and different modulation frequencies.

For the procedure we split up each measurement into the corresponding summands
given by eq. (4.17), where HR denotes the linear heating, Mod the modulation, Lat
the lattice contribution, V ac the vacancy contribution, 1 the first measurement and 2

the second measurement, i.e.

(
∆L

Lref

)
1

=

(
∆L

Lref

)HR,Lat
1

+

(
∆L

Lref

)HR,V ac
1

+

(
∆L

Lref

)Mod,Lat

1

+

(
∆L

Lref

)Mod, V ac

1

,

(
∆L

Lref

)
2

=

(
∆L

Lref

)HR,Lat
2

+

(
∆L

Lref

)HR,V ac
2

+

(
∆L

Lref

)Mod,Lat

2

+

(
∆L

Lref

)Mod, V ac

2

.

1. The heating rate is the same for both measurements, which means that(
∆L

Lref

)HR,Lat
1

=

(
∆L

Lref

)HR,Lat
2

and(
∆L

Lref

)HR,V ac
1

=

(
∆L

Lref

)HR,V ac
2

.

25Same condition as for the heating rate of the high-frequency measurement in section 4.3.4.
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2. We now subtract the second from the first measurement and we are left
with a sum of four sine waves since the contributions from the linear heating
cancel out:

[(
∆L

Lref

)HR,Lat
1

+

(
∆L

Lref

)HR,V ac
1

+

(
∆L

Lref

)Mod,Lat

1

+

(
∆L

Lref

)Mod, V ac

1

]
−

−

[(
∆L

Lref

)HR,Lat
2

+

(
∆L

Lref

)HR,V ac
2

+

(
∆L

Lref

)Mod,Lat

2

+

(
∆L

Lref

)Mod, V ac

2

]
=

=

[(
∆L

Lref

)Mod,Lat

1

+

(
∆L

Lref

)Mod, V ac

1

]
−

−

[(
∆L

Lref

)Mod,Lat

2

+

(
∆L

Lref

)Mod, V ac

2

]
=

=
∆T̂

T0

[
α(T0)T0 sin(ω1t) +

1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2

1τ
2 + 1

sin (ω1t+ ϕ1)

]
−

−∆T̂

T0

[
α(T0)T0 sin(ω2t) +

1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2

2τ
2 + 1

sin (ω2t+ ϕ2)

]

with T0 = Tstart + At,

ϕ = arctan (−ωτ) (eq. (4.11)),

CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)) and

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).

Extracting information out of this sum of four sine functions is for sure more tedious
than doing so for the second approach presented above where we just had a sum of
two sine functions.
However, since we do not need to take any derivative as in the second approach or
calculate any expansion coefficient as in all other approaches, we might get better
results because we only need one step to obtain the result. In addition, owing to
the fact that we combine two measurements every time, we get much more informa-
tion from an additional measurement as we would for the second approach above
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(section 4.4) since we can combine it with all already existing measurements and
therefore get

(
n
2

)
= n!

2! (n−2)!
combinations with n measurements. This means that in

the end having a large amount of measurements we could be far better off with this
approach compared to the second approach.
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perature modulated Measurements

Because of unforeseen events the improvement of the measurement setup was in-
terrupted and could not be finished in time, which is why no measurements with
the improved setup could be conducted. However, the measurements on Fe62Al38

performed with the not yet modified setup will be presented here and comprise pre-
measurements for the determination of the temperature range and modulated mea-
surements, for which we apply the two elaborated approaches. In the last part some
thoughts and suggestions for future measurements are discussed.

5.1 Premeasurements

Before one can conduct modulated measurements with a linear increase in tempera-
ture as described in sec. 4.2, it is necessary to find a temperature range, in which the
time constant τ lies somewhere in the range of the period duration of the temperature
modulation. If not, the process of the vacancy migration would take too long in case
of low temperatures, i.e. the time constant τ is too high. For too high temperatures
the vacancy signal would not be distinguishable from the instantaneous expansion
due to the very low time constant. This behavior was already discussed in section
4.3.6 with regard to the approach ”High- and Low-Frequency Measurement”, where
we looked in fig. 4.10 at the factor 1√

ω2τ2+1
, which is (apart from the phase shift) the

only part in the equation for a sinusoidal vacancy signal (eq. (4.11)) that depends
on the time constant τ . If this factor is one, the time constant is too low and cannot
be distinguished from the instantaneous length change and if it is zero, the vacancy
signal is zero. Therefore we want the temperature range to be not too close to zero
nor to one for any modulation frequency, which is why the time constants of the cho-
sen temperature range should lie in the range of 10 - 1000 s. In addition, the length
change due to vacancies must be high enough to be measurable. This was also
already discussed in section 4.3.3.

So, we first conduct measurements as shown in fig. 3.1, i.e. a quasi-instantaneous
jump from one temperature to another and stay at that temperature until an expo-
nential change in length proportional to (1− e− t

τ ) or e−
t
τ can be observed.
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Table 5.1: Values from literature for migration enthalpies HM
V and pre-exponential

factors τ0 determined by dilatometry (DIL) and positron annihilation spectroscopy
(POS). The time constants are shown in fig. 5.3 and 5.4 together with the time con-
stants obtained from measurements in this work.

Source Material Exp. T [◦C] HM1
V [eV] HM2

V [eV] τ−1
0,1 [s−1] τ−1

0,2 [s−1]

[2] Fe61Al39 DIL 420− 500 1.2± 0.3 0.7± 0.3 2.7× 104 2.2

[3] Fe55Al45 DIL 397− 500 1.5± 0.2 0.6± 0.1 4× 105 0.8

[4] Fe61Al39 POS 350− 400 1.7± 0.3 - 1.9× 108 -

As discussed in section 2 the reliability of the measurements is especially at higher
temperatures rather limited since the systematic variation also exhibits some ex-
ponential behavior that goes in the opposite direction, i.e. when the temperature
drops the length decreases instantly but then slowly increases again (cf. fig. 2.5 at
1.7 × 104 s). Therefore, it is counteracting the time-delayed length change due to
vacancies, though it is not always in the same time range nor in the same length
range as the time constant τ and the length change amplitude ∆l. Nevertheless,
all measured curves could only be fitted by the sum of two exponential functions,
i.e. ∆l1 e

− t
τ1 + ∆l2 e

− t
τ2 + c with ∆l1 and ∆l2 as well as τ1 and τ2 as fit parameters

(see fig. 5.1 and 5.2), which could either be caused by the systematic variation (cf.
fig. 2.12 left) or by two processes taking place in the material. The latter would
be corroborated by [2] and [3], where also two time constants were measured (see
tab. 5.1). Surprisingly, these two time constants can only be measured at higher
temperatures as shown in table 5.1, where for measurements below 400 ◦C only one
time constant was observed [4]. A comparison of the time constants measured in
this work with those from the literature can be seen in fig. 5.3 and 5.4 with the corre-
sponding values in table 5.1 and 5.2.

At this point it has to be mentioned that these measurements only serve as an esti-
mate for the temperature range of the actual measurements described in section 4.2
and were never meant to be used for the determination of the migration enthalpy or
the pre-exponential factor.

When comparing the higher time constants τ2 in fig. 5.3 and 5.4 one can see a
large discrepancy between the measured time constants and the literature values,
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5.1 Premeasurements

Figure 5.1: Length change ∆L after fast cooling from 600 ◦C to 550 ◦C together with
the fitted function ∆l1 e

− t
τ1 + ∆l2 e

− t
τ2 + c (blue line) for the determination of the time

constants τ1 and τ2 of Fe62Al38 at 550 ◦C. The resulting fitting parameters of all these
measurements are shown in tab. 5.2.

Table 5.2: Time constants τ1 and τ2 and length change amplitudes ∆l1 and ∆l2
obtained from measurements as shown in fig. 5.1 and fig. 5.2 by fitting the function
∆l1 e

− t
τ1 +∆l2 e

− t
τ2 +c. The time constants are shown in fig. 5.3 and 5.4 together with

the time constants from literature obtained from eq. (3.4) with the literature values
given in tab. 5.1.

T [◦C] 600→ 550 650→ 600 700→ 650 750→ 700 20→ 750

τ1 [102 s] 31.0 2.2 0.5 5.0 -

∆l1 [102 nm] 7.2 3.7 97.2 5.4 -

τ2 [103 s] 28.2 62.7 22.7 8.6 3.4

∆l2 [102 nm] 5.5 5.0 4.5 8.6 5.3
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Figure 5.2: Length change ∆L after fast cooling from 650 ◦C to 600 ◦C (top) and from
700 ◦C to 650 ◦C (bottom) together with the fitted function ∆l1 e

− t
τ1 +∆l2 e

− t
τ2 +c (blue

line) for the determination of the time constants τ1 and τ2 of Fe62Al38 at 600 ◦C and
650 ◦C. The resulting fitting parameters of all these measurements are shown in
tab. 5.2.
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Figure 5.3: Low time constant τ1 and high time constant τ2 of Fe62Al38 as a function
of temperature obtained from the measurements in this work (tab. 5.2) and from
eq. (3.4) with the literature values given in tab. 5.1.

Figure 5.4: Enlarged view of the low time constant τ1 and the high time constant τ2 of
Fe62Al38 as a function of temperature obtained from the measurements in this work
(tab. 5.2) and from eq. (3.4) with the literature values given in tab. 5.1.
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whereas the two literature values themselves coincide quite well with each other.
The discrepancy at 600 ◦C and 650 ◦C might be due to the fitted curves, which have
a very steep slope at the beginning (fig. 5.2), in contrast to the other measurements
such as fig. 5.1. In tab. 5.2 we see that for the higher time constant τ2 the length
change amplitudes ∆l2 of the fitting function lie all in the same range. For the lower
time constant τ1 the length change amplitude ∆l1 at 650 ◦C deviate from the other
factors significantly, though the lower time constant τ1 lies in the range of the litera-
ture values. Therefore, the measurements at 550 ◦C and 700 ◦C can be considered
as the most reliable ones. The reason for the higher time constant τ2 being generally
higher than the literature values might be that we are actually not measuring any
higher time constant but only the systematic variation of the measurement setup (cf.
fig. 2.12 left).

As discussed above the time constant should lie in the range of 10 - 1000 s for the
modulated measurements. Since a suitable temperature range for the higher time
constant τ2 lies somewhere beyond 800 ◦C, in which range the systematic variation
of the dilatometer is much larger (cf. fig. 2.12), we chose the temperature range ac-
cording to the lower time constant τ1 to be 600-700 ◦C.

5.2 Modulated Measurements

Five modulated measurements with a linear increase in temperature as described in
section 4.2 were performed with the corresponding measurement parameters given
in tab. 5.3. In fig. 5.5 the first and in fig. 5.6 the fifth measurement, i.e. the modulated
temperature profile together with the corresponding length change, is shown.
In the following we will use these measurements to apply the two elaborated ap-
proaches (cf. section 4.3 and 4.4).

5.2.1 First Approach: High- and Low-Frequency Measurement

For this approach we will use the first and the fifth measurement (tab. 5.3), i.e. a 2
mHz and a 25 mHz measurement, which will be denoted as LF and HF, respectively
(fig. 5.5 and 5.6). We will go through the procedure step by step as described in
section 4.3.2.
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5.2 Modulated Measurements

Table 5.3: Measurement parameters of the performed modulated measurements
with a temperature profile according to eq. (4.14), i.e. a linear heating rate with a
superimposed modulation. The first and the fifth measurement is shown in fig. 5.5
and 5.6.

No. T [◦C] A [ K
min

] f [mHz] ∆T̂ [K]

1 600− 695 0.06 2 2

2 600− 700 0.06 2 2

3 600− 710 0.06 12.5 2

4 600− 690 0.06 25 2

5 600− 740 0.06 25 2

Figure 5.5: Measurement of length change ∆L upon modulated time-linear heat-
ing from 600 to 695 ◦C (heating rate: 0.06 K / min, modulation frequency: 2 mHz,
modulation amplitude: 2 K; cf. tab. 5.3: No. 1).
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Figure 5.6: Measurement of length change ∆L upon modulated time-linear heating
from 600 to 740 ◦C (heating rate: 0.06 K / min, modulation frequency: 25 mHz,
modulation amplitude: 2 K; cf. tab. 5.3: No. 5).

1.
(

∆L
Lref

)Mod, V ac

HF
is assumed to be negligible.

According to tab. 5.2 the time constant τ1 is higher than 50 s. By looking at
fig. 4.11 (bottom) we see that for a 2 mHz- and 25 mHz-measurement and
τ > 50 s the remaining vacancy signal is larger than 85 %.

2. The moving average of HF is given by:(
∆L

Lref

)HR,Lat
HF

+

(
∆L

Lref

)HR,V ac
HF

. (5.1)

When calculating the moving average with a fixed number of values per
period, it turned out that this dilatometer suddenly reduces the number of
recorded values, which means that the modulation does not cancel out any
more as seen in fig. 5.7 at 6 × 104 s. This makes the evaluation more te-
dious since we have to split up the measurement several times. Therefore,
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5.2 Modulated Measurements

Figure 5.7: Moving average versus time of the temperature (red) and the correspond-
ing length change (black) calculated with a fixed number of values per period from
the low-frequency measurement in fig. 5.5.

instead of calculating the moving average, the average of each period was
calculated. The amplitude was also directly determined by taking the differ-
ence between the minimum and the maximum of each period and divide it
by two. This was done for both, the temperature T and the length ∆L.

3. Subtract the moving average from HF and calculate the thermal expansion
coefficient α by dividing the length amplitude ∆L̂ by the temperature ampli-
tude ∆T̂ and the specimen length Lref :(

∆L

Lref

)Mod,Lat

HF

= α∆T̂ sin(ωhight)→ α(T ). (5.2)

Since we already have the amplitudes ∆L̂ and ∆T̂ of each period, we can
calculate the thermal expansion coefficient α. Because we calculated the
average value for each period of the temperature, we can use these val-
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Figure 5.8: Thermal expansion coefficient α versus temperature derived from the
high-frequency measurement in fig. 5.5 by means of eq. (5.1) and (5.2) (The moving
average was calculated as described in step 2.). The data was smoothed in order to
eliminate minor fluctuations.

ues to plot the thermal expansion coefficient α as a function of temperature
(fig. 5.8).

4. Subtract the starting temperature Tstart from the temperature profile of LF26

and multiply it with the thermal expansion coefficient α to get the lattice con-
tribution of LF:

α(T )T (t)LF =

(
∆L

Lref

)HR,Lat
LF

+

(
∆L

Lref

)Mod,Lat

LF

. (5.3)

In order to take the temperature dependency of α into account, we have to
split up our measurement into segments of different temperature and mul-
tiply the average α of this segment with the corresponding segment of the

26T (t) = Tstart +At+ ∆T̂ sinωt (eq. (4.14))
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5.2 Modulated Measurements

Figure 5.9: Lattice contribution of the low-frequency measurement in fig. 5.5 versus
time derived from the thermal expansion coefficient α in fig. 5.8 by means of eq. (5.3).

temperature profile of the low-frequency measurement (fig. 5.9). To improve
the result the data of the thermal expansion coefficient α was smoothed, i.e.
the upper and lower limits of the corresponding temperature segment were
slightly extended.

5. Subtract the lattice contribution of LF from LF to get the pure vacancy signal:(
∆L

Lref

)
LF

− α(T ) T (t)LF =

(
∆L

Lref

)HR,V ac
LF

+

(
∆L

Lref

)Mod, V ac

LF

. (5.4)

In fig. 5.10 the low-frequency measurement is plotted before and after sub-
traction.

6. Repeat steps 2 and 3 but now with LF, i.e. calculate the moving average of
LF and subtract it from LF to get:(

∆L

Lref

)HR,V ac
LF

and
(

∆L

Lref

)Mod, V ac

LF

. (5.5)
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Figure 5.10: Low-frequency measurement in fig. 5.5 before (top) and after (bottom)
subtraction of the lattice contribution (fig. 5.9) from the length ∆L by means of
eq. (5.4).
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Here again, we calculated the amplitudes and the average of each period
directly, i.e. without calculating the moving average first (see step 2). In ad-
dition, we also calculated the phase shift (fig. 5.11).

7. Calculate the parameters from

• the linear heating:(
∆L

Lref

)HR,V ac
LF

=
1

3
(1− r)(CV,0(T0)− CV,0(Tstart))

⇒ r, SFV , H
F
V

(5.6)

• the amplitude of the modulation:(
∆L̂

Lref

)Mod, V ac

LF

=
1

3
(1− r)CV,0(T0)

HF
V

kT0

1√
ω2τ 2 + 1

∆T̂

T0

⇒ r, SFV , H
F
V , τ0, H

M
V

(5.7)

• the phase shift of the modulation:

ϕ(T0) = arctan (−ω τ)

⇒ τ0, H
M
V

with T0 = Tstart + At,

ϕ = arctan (−ωτ) (eq. (4.11)),

CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)) and

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4))
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Figure 5.11: Average length (∆L)HR,V acLF (top), amplitude
(

∆L̂
)Mod, V ac

LF
(middle) and

phase shift (bottom) versus temperature derived from the low-frequency measure-
ment (fig. 5.5) after subtraction as shown in fig. 5.10 (bottom) by means of eq. (5.5)
(The moving average was calculated as described in step 6.).
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Figure 5.12: Average length (∆L)HR,V acLF versus temperature (cf. fig. 5.11 (top)) to-
gether with the corresponding fitted function given by eq. (5.6). The only significant
fitting parameter is HF

V = (0.47 ± 0.36) eV. To enhance the quality of the fit, only the
data up to 660 ◦C was used and the relaxation parameter r was assumed to be 0.4.

Now the curves in fig. 5.11 have to be fitted with the corresponding equa-
tions above. In order to get reasonable results we reduce the number of
fitting parameters by assuming the relaxation parameter r = 0.4 (based on
results for nickel [5]). The only significant parameter from these fits was
HF
V = (0.47 ± 0.36) eV with the corresponding fit shown in fig. 5.12, where

only the data below 660 ◦C was used. This value does not coincide with the
literature values (cf. tab. 5.4). The other resulting parameters had no signifi-
cance and had to be discarded.
However, we can still have a look at the values and compare it with liter-
ature values to check if the result lies in the correct range. The overall
average length change (fig. 5.11 (top)) is 5000 nm, which does coincide
with literature values very well since from 600 ◦C to 700 ◦C the overall length
change due to vacancies, i.e. (∆L)HR,V acLR (700 ◦C)− (∆L)HR,V acLR (600 ◦C)27, is
3000 nm and 2000 nm ([3] in tab. 5.4) and 9000 nm ([4] in tab. 5.4). The
amplitude lies in the range of 50-150 nm, whereas the theoretical value, i.e.

27(∆L)HR, V acLR is given by eq. 5.6 (Lref = 14.55 mm and r was set to zero because no literature
values are available).
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Table 5.4: Values from literature for formation enthalpies HF
V and formation entropies

SFV determined by dilatometry (DIL) and positron annihilation spectroscopy (POS).

Source Material Exp. T [◦C] HF1
V [eV] HF2

V [eV]
S
F1
V

k

S
F2
V

k

[3] Fe55Al45 DIL 397− 500 1.0± 0.1 0.9± 0.1 4.9 3.3

[4] Fe61Al39 POS 378− 467 0.98± 0.07 - 5.7 -

(∆L̂)Mod, V ac
LR (700 ◦C) − (∆L̂)Mod, V ac

LR (600 ◦C)28 according to [3] (index one) in
tab. 5.1 and 5.4, should be 2.3-49 nm. The phase shift is in the tempera-
ture range 630-660 ◦C roughly in the same range as shown in fig. 4.5. At
temperatures above 660 ◦C the lattice contribution might be too high due to
the decreasing thermal expansion coefficient (cf. fig. 5.8), hence the phase
shift suddenly goes to zero. The sudden decrease of the thermal expan-
sion coefficient can be explained by a decreasing length amplitude at higher
temperatures. However, an explanation for this decrease could not be found.

5.2.2 Second Approach: At least two Measurements with arbitrary Frequency

For this approach we evaluate all five measurements, from which we will use the
fifth measurement (fig. 5.6) to show how to evaluate it according to the procedure as
described in section 4.4.3 and we will go through it step by step again.

1. Calculating the moving average gives:(
∆L

Lref

)HR
=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
. (5.8)

For the same reason as before (cf. step 2 in section 5.2.1) we calculate the
average of each period (instead of calculating the moving average) for both,
the temperature T and the length ∆L.

28(∆L̂)Mod, V ac
LR is given by eq. 5.7 (Lref = 14.55 mm and r was set to zero because no literature

values are available).
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Figure 5.13: Thermal expansion coefficient αHR versus temperature derived from the
measurement curve in fig. 5.6 by means of eq. (5.8) and (5.9) (The moving average
was calculated as described in step 1.). The data was smoothed in order to eliminate
minor fluctuations.

2. Calculate the expansion coefficient αHR(T ) by taking the (discrete) deriva-
tive with respect to the temperature (eq. (3.3)):

αHR(T ) =
∆
(

∆L
Lref

)HR
∆T

. (5.9)

Taking the derivative will give us large errors because the heating rate is very
low, which means that we divide two values near zero. We can avoid this by
taking the difference of values farther apart instead of adjacent values.
Because we calculated the average value for each period of the tempera-
ture, we can use these values to plot the thermal expansion coefficient αHR
as a function of temperature (fig. 5.13).
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3. Subtract the starting temperature Tstart from the temperature profile of this
measurement29 to get the sum of the heating rate THR and the modulation
TMod and multiply it with αHR. We take into consideration that it consists of
the lattice part α(T ) and the vacancy part:

αHR(T ) T (t) =

α(T ) +
d
(

∆L
Lref

)HR,V ac
dT


 At︷ ︸︸ ︷
THR(t) +

∆T̂ sin (ωt)︷ ︸︸ ︷
TMod(t)

 =

= α(T ) THR(t) +
d
(

∆L
Lref

)HR,V ac
dT

THR(t)+

+ α(T ) TMod(t) +
d
(

∆L
Lref

)HR,V ac
dT

TMod(t) =

=

(
∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

+

(
∆L

Lref

)Mod,Lat

+
d
(

∆L
Lref

)HR,V ac
dT

TMod(t).

(5.10)

As in the previous approach (section 5.2.1) we split up our measurement
into segments of different temperature and multiply the average αHR of this
segment with the corresponding segment of the temperature profile of the
measurement (fig. 5.14) in order to take the temperature dependency of αHR
into account. Also here the data of the thermal expansion coefficient αHR
was smoothed, i.e. the upper and lower limits of the corresponding temper-
ature segment were slightly extended.

29T (t) = Tstart +At+ ∆T̂ sinωt (eq. (4.14))
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Figure 5.14: Thermal expansion coefficient αHR (fig. 5.13) multiplied with the tem-
perature profile of the measurement curve in fig. 5.6 by means of eq. (5.10).

4. Subtract αHR(T ) T (t) from the measurement and get a sum of two sine
waves:[(

∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

(
∆L

Lref

)Mod,Lat

+

(
∆L

Lref

)Mod, V ac
]
−

−

( ∆L

Lref

)HR,Lat
+

(
∆L

Lref

)HR,V ac
+

(
∆L

Lref

)Mod,Lat

+
d
(

∆L
Lref

)HR,V ac
dT

TMod(t)

 =

=

(
∆L

Lref

)Mod, V ac

−
d
(

∆L
Lref

)HR,V ac
dT

TMod(t).

(5.11)

In fig. 5.15 the measurement is plotted before and after subtraction.
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Figure 5.15: Measurement curve in fig. 5.6 before (top) and after (bottom) subtrac-
tion of the product shown in fig. 5.14 from the length ∆L by means of eq. (5.11).
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5. Calculate the amplitude and the phase shift of this sum of sine waves (see
section 4.4.5), which gives:(

∆L

Lref

)Mod, Sum

=
∆T̂

T0

1

3
(1− r)CV,0(T0)

HF
V

kT0

√
1− 1

ω2τ 2 + 1
sin (ωt+ Φ)

(5.12)

with Φ = arctan

(
1

ωτ

)
,

T0 = Tstart + At,

CV,0(T0) = e
SFV
k e
−H

F
V

kT0 (eq. (3.1)) and

1

τ(T0)
=

1

τ0

e
−H

M
V

kT0 (eq. (3.4)).

The equation for the maximum with Tmax being the position of the maximum
is:

Tmax =

√
HF
V

k
+

1

ω2τ 2 + 1

HM
V

k
,

where τ also contains the temperature, which is why this equation is an im-
plicit function.

Before calculating the amplitudes and the phase shift the subtracted mea-
surement was multiplied by minus one since only then the maxima and min-
ima of the temperature and length are at the same position, i.e. a 180◦-phase
shift turns into a 0◦-phase shift.
We calculated the amplitudes directly by taking the difference between the
minimum and the maximum of each period and divide it by two. In addition,
we also calculated the phase shift. In fig. 5.16 the corresponding amplitudes
and phase shifts of each measurement is shown.

6. Now we can simultaneously fit the measurement results of multiple measure-
ments to the new amplitude (fig. 4.15) and the new phase shift (fig. 4.16) with
r, SFV , HF

V , τ0 and HM
V as fitting parameters.
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Figure 5.16: Amplitude
(

∆L̂
)Mod, Sum

(top) and phase shift Φ (bottom) versus tem-
perature derived from the measurement curves in tab. 5.3 after subtraction (as shown
in fig. 5.15 (bottom) for the measurement curve in fig. 5.6) by means of the descrip-
tion provided in step 5.
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Figure 5.17: Amplitude
(

∆L̂
)Mod, Sum

versus temperature (cf. green curve in fig. 5.16
(top)) together with the corresponding fitted function given by eq. (5.12). The only
significant fitting parameter is HF

V = (0.92 ± 0.80) eV. To enhance the quality of the
fit, only the data up to 720 ◦C was used and the relaxation parameter r was assumed
to be 0.4.

As before we reduce the number of fitting parameters to improve the result
by assuming r = 0.4. Also for this approach only one significant value was
obtained from all measurements, which is HF

V = (0.92 ± 0.80) eV and is
shown in fig. 5.17, where only the data below 720 ◦C was used. This value
does coincide with the literature values quite well (cf. tab. 5.4) but still has a
very high uncertainty.
Though also for this approach the other parameters from the fitting were not
significant, we can still compare the resulting values with literature values
as we did for the previous approach. The amplitude lies in the range of
30-200 nm, which is in the range of the literature values, i.e. 11-31 nm (cf.
eq. 5.12 (Lref = 14.55 mm and r was set to zero since no literature values
are available) with values taken from [3] (index one) in tab. 5.1 and 5.4). The
phase shift is converging at 0°, which is contradicting the prediction from the
theory since it should rather converge at 90° (cf. fig. 4.16).
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5.3 Suggestions for future Measurements

As mentioned above no measurements with the improved setup could be conducted.
However, some thoughts and estimates regarding future measurements have al-
ready been made, which will be presented here.

5.3.1 Feasibility of Measurements at higher Frequencies

For the first approach (cf. section 4.3) it is essential to conduct a measurement at
the highest frequency possible. Therefore, we will discuss the feasibility of mea-
surements at high frequencies together with an estimate for the highest possible
frequency regarding the thermal conductance, i.e. if the entire specimen can be
heated fast enough.

Time until entire specimen reaches a specific temperature:

In order to estimate an upper limit for the modulation frequency we calculate the time
required for the entire specimen to reach the set temperature. Therefore, we calcu-
late the Biot number Bi and the Fourier number Fo and then read off the required
time from the corresponding Heisler chart.

The Biot number is defined as follows:

Bi =
h

k
r0,

where h is the heat transfer coefficient, k the thermal conductivity and r0 the radius
of the specimen.

The heat transfer coefficient h is defined as

h =
Q̇
A

∆T
,

where Q̇ is the heat transfer per unit time and A the surface area, where the heat
transfer takes place.
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We assume the outer layer of the specimen to be at the set temperature T∞ and
calculate the heat transfer coefficient h based on Fourier’s law30:

h =
Q̇
A

∆T
=

k

∆x
,

where ∆x corresponds to the thickness of the outer layer of the specimen. Since the
heat transfer coefficient diverges for an infinitely small layer thickness, we calculate
the lowest possible heat transfer coefficient to ensure that we get the correct result,
i.e. we calculate how long the equilibration process will take at most. Therefore, the
outer layer thickness is set to be the radius of the specimen r0.

Inserting h into the definition of the Biot number gives

Bi =
h

k
r0 =

k
r0

k
r0 = 1.

Now we calculate the Fourier number Fo, which is defined as

Fo =
αt

r2
0

=

α︷︸︸︷
k

ρcp

t

r2
0

= 0.605 t,

where α denotes the thermal diffusivity, k = 16.4 W/m K [6] the thermal conductivity,
ρ = 6.06 g/cm3 [7] the density, cp (700 ◦C) = 33 J/K mol [8] the specific heat capacity,
r0 = 2.45mm and t the characteristic timescale. Since cp is given in units of J / K mol,
it was converted as follows:

cp [J /Kmol] =
1

maNA

cp [J /K kg] = 745 J /K kg,

where ma = 0.6maFe + 0.4maAl = 44.3u is the atomic mass and NA the Avogadro
constant.

Having obtained the Biot number and the Fourier number we can read off the re-
quired time from the corresponding Heisler chart as shown on p. W-14 in fig. 5S.4
in [9], for which we need the inverse Biot number, i.e. Bi−1 = 1. In this Heisler
chart the y-axis corresponds to the temperature ratio T0−T∞

Ti−T∞ , where T0 denotes the
temperature in the middle of the cylinder, i.e. the middle of the specimen, Ti the ini-

30 Q̇
A = −k∆T

∆x
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tial specimen temperature and T∞ the set temperature at the outer boundary of the
specimen. The x-axis shows the Fourier number, i.e. the timescale. The red lines
represent the inverse of the corresponding Biot numbers.

To reach 90 % of the lamp’s temperature, i.e. 0.1 on the y-axis of the chart, it takes

t =
Fo

0.605
=

1.6

0.605
= 2.6 s.

Therefore, the highest possible modulation frequency is about 400 mHz.

Over- and undershoot:

One problem at high frequencies (above 25 mHz) arises from some inertia of the
lamps, i.e. the actual temperature produced by the lamps lack behind the set tem-
perature resulting in a smaller amplitude (undershoot).
For one measurement at 12.5 mHz even an overshoot was observed. This might
be caused by some inertia of the control system, i.e. upon reaching the maximum
temperature the control system needs some time to respond, during which the tem-
perature is still rising resulting into an overshoot.

Undershoot can be reduced by taking a lower amplitude, which on the one hand
adversely affects the measurement accuracy since the received signal becomes
smaller too, but on the other hand gives us a well-defined amplitude. Choosing a
smaller amplitude for high-frequency measurements than for low-frequency mea-
surements is a good way to directly compare them since then the measurements
only differ by a certain factor, with which ∆L can be multiplied easily.
So, in practice we want a high and well-defined amplitude, which means that for high
frequencies we could first conduct some measurements at constant average tem-
perature to determine the highest possible amplitude for a certain frequency. Then
we adapt the measurement parameters until we have a well-defined amplitude free
of over- and undershoot.

Another suggestion to improve the response of the system to the set temperature
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is to conduct the measurements under an Argon-atmosphere (but still below atmo-
spheric pressure), which would lead to short-distance convection and might enhance
the heat transfer.

5.3.2 Measurements with two Time Constants

As discussed in section 5.1 there are either two time constants for Fe62Al38 or the
higher time constant is caused by the systematic variation of the measurement setup.
We chose the temperature range according to the lower time constant τ1 since at
lower temperatures the systematic variation is lower (cf. fig. 2.12). In practice we
might not be able to distinguish these two time constants and just get the average of
the two time constants or just get the higher time constant depending on how close
they are to each other.
In case there are two time constants indeed the two simplest explanations for the
occurrence of these two time constants are as follows: Each time constant refers to
a jump process within a sublattice and is therefore only influencing the vacancies of
the corresponding sublattice. Another possibility is that the origin of these time con-
stants lies in jump processes between the two sublattices, for which the vacancies of
one sublattice may not exclusively refer to a specific time constant.
However, since diffusion in intermetallics is a quite complex topic, further investiga-
tion is needed in order to be able to tell, whether these two processes are somehow
coupled or completely decoupled and moreover, whether these two time constants
are referring to the same vacancies or not. It is important to note that we cannot find
any general answers to these questions because each material has its very unique
structure and properties (in case of intermetallics e.g. Laves phases, Hume-Rothery
phases, Zintl phases). Even if we have the same material with the same lattice
structure but slightly different stoichimetric composition, we might have to include
anti-structure atoms into our considerations for one material but not for the other.

To get some insight into the type of process, we could take measurements according
to the higher time constant. In this temperature range the lower time constant can
be regarded as zero (cf. fig. 5.3 and 5.4), i.e. the migration of vacancies happens in-
stantaneously, hence they are not distinguishable from the lattice contribution, which
is instantaneous too. But if there are vacancies, which are not influenced by the
lower time constant, we still get a vacancy signal, from which we can conclude that

89



5 Applications of Theory of Vacancy Kinetics for temperature modulated
Measurements

these two time constants do not refer to the same vacancies.

5.3.3 Suitable Materials

As mentioned in section 3.2 materials, for which the condition HM
V

HF
V
> 1 is satisfied,

are suitable for time-dependent dilatometry measurements. Apart from the already
discussed material Fe62Al38 the materials in tab. 5.5 are suitable for time-dependent
dilatometry measurements and therefore for the method presented in this work. The
materials are listed together with the temperature range suitable for taking measure-
ments and the corresponding vacancy concentration within this temperature range.
The temperature range was chosen according to the time constant τ (eq. (3.4)),
which has to be in the range of the period duration of the modulation, i.e. 10 - 1000
s (cf. section 5.1). Regarding the vacancy concentration PdIn seems to be the best
candidate for future measurements.

Table 5.5: Material parameters of suitable materials, for which the condition HM
V

HF
V
> 1

for time-dependent dilatometry and therefore for the method presented in this work
is satisfied. In addition, the temperature range suitable for taking measurements
together with the order of magnitude of the vacancy concentration within this tem-
perature range is shown.

material τ−1
0 [s−1] HM

V [eV]
SFV
k

HF
V [eV] T [◦C] CV,0 source

p-doped Si 4× 105 1.2 5.00 1.1 430− 640 10−5 [10]

CuZnAl 108 0.76 1.00 0.43 75− 150 10−6 [11]

PdIn 108 1.9 1.00 0.41 600− 790 10−2 [12]

Al 108 0.61 1.00 0.67 6− 70 10−6 [13]

CuZn 108 1.14 1.00 0.42 200− 310 10−4 [14]

Fe3Si 4× 105 0.85 3.70 0.8 225− 375 10−6 [14]
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6 Summary

The first part of this work comprises a description of the measurement setup,
which is capable of performing isothermal and non-isothermal non-contact high-
precision dilatometric measurements with a modulated temperature signal.
While taking measurements we encountered substantial systematic variations
above 600 ◦C and therefore conducted zero measurements to analyze the origin
of the systematic variation. By changing various measurement parameters we found
out that the systematic variation is influenced by the choice of the specimen
holder (cf. fig. 2.7) and that the whole setup is unintentionally tilted by its asym-
metrical expansion upon heating (cf. fig. 2.12 and 2.13). Countermeasures
were conceived in order to prevent the heat from being transferred asymmetrically
to the setup and to reduce the total amount of heat being unintendedly introduced to
parts of the setup.

The second part aims at developing a new method for the simultaneous determi-
nation of the formation and migration enthalpy together with the correspond-
ing prefactors by means of a minimum number of modulated measurements with
time-linear heating. For this purpose two approaches were elaborated, which aim
at cancelling out the lattice part in order to get the pure vacancy signal. These ap-
proaches are

• ”High- and Low-Frequency Measurement”, where the lattice contribution
is obtained from the modulation part of the high-frequency measurement.
The lattice contribution is then subtracted from the low-frequency measure-
ment giving the pure vacancy signal. (cf. section 4.3)

• ”At least two Measurements with arbitrary Frequency”, where the ther-
mal expansion coefficient is calculated from the time-linear heating and (after
multiplication with the temperature profile) subtracted from the same mea-
surement resulting in a sum of two sine waves, which only consists of con-
tributions from the vacancies. This is done for at least two measurements.
(cf. section 4.4)
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In addition, the idea of more complicated alternatives to these approaches is pre-
sented in section 4.6.

In the last chapter Fe62Al38 was investigated. In order to determine the temper-
ature range for the modulated measurements, premeasurements were taken first,
for which two time constants were observed (cf. fig. 5.3 and 5.4). Using the
modulated measurements, the two approaches were applied, for which only the
formation enthalpy could be determined, which is shown in fig. 5.12 for the first
approach and in fig. 5.17 for the second approach. The other resulting values are
not significant. However, the overall length change, the amplitudes and (for the first
approach) the phase shift lie in the correct range (cf. section 5.2.1 and 5.2.2).
In the last part some suggestions for future measurements are made including
an estimation for the time required until the entire specimen reaches a specific tem-
perature, how to counteract over- and undershooting for high frequencies, and a
discussion about measurements with two time constants. It concludes with a list of
suitable materials for time-dependent dilatometry (tab. 5.5).
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Nomenclature

A heating rate

A (in section 5.3) surface area, where the heat transfer takes place

Bi Biot number

cp specific heat capacity of the specimen

CV,0 vacancy concentration in equilibrium (eq. 3.1)

∆CV,0 change of the vacancy concentration upon a small
change in temperature (cf. section 4.1.1)

∆CV difference between current vacancy concentration
and equilibrium concentration (eq. 4.11)

∆ĈV amplitude of ∆CV (eq. 4.12)

∆Cini
V initial deviation from equilibrated vacancy concen-

tration (cf. section 4.1.1)

f frequency of temperature modulation

Fo Fourier number

h heat transfer coefficient

HF
V vacancy formation enthalpy

HM
V vacancy migration enthalpy

k Boltzmann constant

k (in section 5.3) thermal conductivity

Lref specimen length at RT

(∆L)HR length change from time-linear heating (eq. 4.15)

(∆L)Lat length change due to the change of the lattice pa-
rameter (cf. eq. 4.17)

(∆L)Mod length change from modulation (eq. 4.16)
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Nomenclature

(∆L̂)Mod amplitude of length change from modulation (cf.
eq. 4.17)

(∆L)Mod, Sum sum of the two sine functions from the second ap-
proach (eq. 4.25)

(∆L)V ac length change due to vacancies (cf. eq. 4.17)

∆L1K

1K
length change due to vacancies per Kelvin
(eq. 4.21)

∆∆L measurement error of the setup

ma atomic mass

N (in section 3.1) number of atoms

N (in section 3.2) mean number of jumps per vacancy to a sink

NA Avogadro constant

∆NV change of the number of vacancies

Q̇ heat transfer per unit time

r relaxation parameter (cf. eq. 3.2)

r0 radius of the specimen at RT

SFV vacancy formation entropy

t time

T temperature

T0 average temperature (in reference to temperature
modulation)

T0 (in section 5.3) temperature in the middle of the cylinder, i.e. the
middle of the specimen

Tf final temperature for measurements as shown in
fig. 3.1

THR time-linear heating part of the temperature profile
according to eq. 4.14, i.e. At
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Nomenclature

Ti initial temperature for measurements as shown in
fig. 3.1

Ti (in section 5.3) initial specimen temperature

Tmax temperature, where (∆L̂)Mod, Sum has its maximum

TMod modulation part of the temperature profile accord-
ing to eq. 4.14, i.e. ∆T̂ sin (ωt)

Tp period duration

Tstart starting temperature of modulated measurements
with time-linear heating (cf. eq. 4.14)

T∞ set temperature (cf. section 5.3)

∆T̂ amplitude of temperature modulation TMod

Vref specimen volume

(∆V )V ac change in volume due to vacancies

∆x thickness of the outer layer of the specimen (cf.
section 5.3)

Z coordination number

α linear coefficient of thermal expansion

α (in section 5.3) thermal diffusivity

αHR linear coefficient of thermal expansion determined
from the time-linear heating

αMod linear coefficient of thermal expansion determined
from the modulation

ν0 attempted frequency of the order of the Debye fre-
quency

ϕ phase shift between temperature modulation TMod

and sinusoidal vacancy signal ∆CV (eq. 4.13)
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Nomenclature

Φ phase shift of the sum of two sine functions in the
second approach (cf. eq. 4.25)

τ time constant of vacancy migration (eq. 3.4)

τ0 preexponential factor of time constant τ

τmax highest time constant within a measurement

τmin lowest time constant within a measurement

ξ geometrical factor

ρ density of the specimen

ω angular frequency of temperature modulation
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