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Abstract

Traffic simulations are important for decision-making regarding the optimization of
network flows to increase efficiency in real world traffic scenarios. Realistic models of
human behavior are an integral part of such simulations, as human decision-making
on different levels determines the occurrence and state of traffic in a transportation
system. Regarding individual route choice, traffic models often rely on models of
behavior that assume rational choice and utility maximization, implying that agents
have absolute knowledge of the current network state and the cognitive capabilities
to always choose the optimal path within a road network from their source to
their destination. Although this concept is widely adopted as an approximation
for the prediction of traffic, it does not depict real human behavior, which is a
result of past experiences and personal preferences and cannot be described by the
concept of rationality alone. Theories of rational choice and utility maximization
to describe and predict human behavior have thus been challenged for a long time
in scientific research. Furthermore, most choice models used in traffic modeling
are static and do not reflect changing behavior of individuals due to learning and
adaptation based on feedback from the environment. In multi-agent systems such
as traffic systems, this also includes feedback from complex interaction patters
where individual decision-making is influenced by the behavior of other agents in
the environment. This work presents an approach to model individual route choice
behavior in road networks using reinforcement learning, where multiple agents
learn simultaneously in a shared environment. Agents choose their paths en-route
link by link rather than choosing a predefined route, making decisions based on
the current perceived traffic conditions and personal experience from interactions
with each other and the environment. A novel approach is presented where an
individual agent’s state-action space in a network environment is represented as a
decision tree rather than a tabular representation of the network, offering agents
maximum flexibility in route choice while also reducing learning time.
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Kurzfassung

Verkehrssimulationen bilden eine wichtige Grundlage für die Entwicklung von Strate-
gien zur Optimierung von Verkehrsflüssen in Straßennetzwerken. Die Modellierung
von menschlichem Verhalten im Straßenverkehr spielt dabei eine wichtige Rolle.
Verkehrsmodelle greifen bei der Modellierung von individuellem Verkehrsverhalten
wie beispielsweise der Wahl der Route häufig auf klassische Verhaltenstheorien
aus den Wirtschaftswissenschaften zurück, welche meist auf der Hypothese von
rationalem Verhalten und Nutzenmaximierung basieren. Diese Theorien folgen der
Annahme, dass Verkehrsteilnehmer zu jedem Zeitpunkt alle Informationen über
den aktuellen Verkehrszustand im gesamten Netzwerk besitzen und auf Basis dieser
Informationen stets die optimale Route von ihrem Startpunkt zu ihrem Zielpunkt
wählen. Diese Annahme ist jedoch keine realistische Abbildung menschlichen
Verhaltens, welchen durch individuelle Erfahrungen und persönliche Vorlieben
geprägt wird. Darüber hinaus werden Lern- und Anpassungsprozesse in den meis-
ten Entscheidungsmodellen nicht abgebildet. In komplexen Szenarien mit mehreren
gleichzeitig lernenden Agenten sind Interaktionen zwischen den Individuen und
die daraus resultierenden Anpassungsprozesse jedoch prägende Faktoren individu-
ellen Verhaltens. Diese Arbeit beschreibt einen Ansatz zur Modellierung von
menschlichem Verhalten im Kontext von Routenentscheidungen in Verkehrsnetzw-
erken mit der Verwendung von Reinforcement Learning. Mehrere Reinforcement
Learning Agenten lernen simultan in einem Netzwerk und entwickeln individuelle
Routenpräferenzen basierend auf ihren Erfahrungen. Aktionsräume sequentieller
Entscheidungsprozesse in Straßennetzwerken werden als Entscheidungsbäume mod-
elliert, welche alle Routen von Startpunkt zu Zielpunkt im Netzwerk enthalten.
Dies ermöglicht Reinforcement Learning Agenten eine höhere Flexibilität bei der
Routenwahl und führt zu einer Reduktion der Lernzeit.
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Chapter 1

Introduction

1.1 Reinforcement Learning for Route Choice

Modeling: Motivations and Possibilities

In the 20th century, the car became the preferred mode of transportation throughout
the world. For many decades, urban and transportation planning therefore strongly
focused on individual traffic by car, further marginalizing other transportation
alternatives. This dominant status of the car lasts until this day. According to
the European Union, more than 80 percent of all passenger kilometers were still
traveled by car in 2017 [100]. The persisting high number of individuals choosing
the car for their daily mobility needs is causing a variety of problems, with severe
impacts on humans and environment. Traffic congestion still is a major concern
many cities and commuters are facing daily, especially in big urban agglomerations.
This situation has implications for the individual, society and environment alike.
People spend several hours in their cars every week because of traffic congestion, a
situation that also results in higher stress levels. Furthermore, high emissions due
to traffic congestion lead to air pollution, causing problems for the environment and
posing a risk to public health. The economic impacts of traffic congestion is severe
as well, with billions of euros and dollars estimated to be lost every year in gridlock
in the EU and the US [45]. Those problems are prevalent in many urban areas of the
world, making new concepts and solutions to increase efficiency in urban road traffic
an important and urgent goal. This is a complex issue, as traffic is a dynamic system
and the result of many individual choices and processes. For this purpose, traffic
modeling is a crucial field that helps to understand the dynamics of road traffic
and the causing factors for the occurrence of congestion, providing a foundation for
possible measures to prevent it in the future. Models of urban traffic networks can
also help to examine traffic patterns and provide solutions for future infrastructure
projects with the goal to avoid congestion. As it is the case with any model, traffic
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models cannot provide a perfect representation of reality, also having to make certain
assumptions and to rely on simplifications of processes. One major difficulty is the
modeling of human behavior in traffic situations. Individual decisions can often
not be predicted, making the development of a model that represents individual
decisions in a population difficult and inaccurate. Additionally, choice models have
to rely on socio-economic data, which often has to be acquired with costly and
time consuming surveys. Traditional choice models applied for traffic modeling are
often derived from economics and game theory, presuming that individuals have
perfect knowledge of the current traffic conditions in the network and therefore
are able to anticipate the consequences of their decisions exactly, choosing an
action rationally to maximize their personal utility. The parameters that define the
personal utility can be manifold - regarding the modeling of route choices in traffic
networks, each individual normally seeks to minimize his or her personal travel
time, therefore choosing the fastest path to travel on. While this simplified view
can be a valid approximation of real world processes, it does not depict human
behavior and the complex interactions between individuals, where personal utility
functions might deviate from one person to another and past experiences and
interactions with others play a crucial role in the decision-making process. Road
traffic networks can be seen as systems where many individual participants try to
maximize their personal utility and where every decision also has an impact on
many other individuals in the network. Due to the complexity and dynamic nature
of such systems, modeling individual behavior is difficult, as personal experience
and ongoing interactions could lead to individual strategies and behavior that
cannot be anticipated when designing the model. Most choice models used in traffic
modeling are static and do not consider learning and adaptation, providing no
way to change decision behavior with increasing experience. Rather than modeling
experience in advance, creating simulations where personal experience is directly
learned might offer new possibilities for modeling route choice behavior. Artificial
intelligence research, mainly the field of machine learning, provide methods that
can be used for such purposes. Especially reinforcement learning, one of the
three main branches of current machine learning research alongside supervised
and unsupervised learning, offers possibilities to be used in simulating individual
decision-making processes. In reinforcement learning, artificial agents act and learn
based on their experience without the need to explicitly know the dynamics of the
environment they are moving in, nor do they have to rely on a supervisor that tells
each agent what is or would have been the right choice. Actions are taken based
on assumptions of the outcomes of those actions derived from personal experience,
making each agent developing individual behavior based on preferences rooted in
a subjective perception of the environment and its dynamics. It therefore also
offers an opportunity to model traffic without the need for extensive data, with
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the possibility to develop meaningful traffic models for networks where no data
is available. Planned interventions in the infrastructure are one example, which
could be evaluated beforehand. Reinforcement learning thus provides a way for
route choice simulation without using explicit choice models, potentially providing
a different view on human behavior and decision-making processes. The goal of this
thesis is to examine the possibilities of the application of reinforcement learning
to model realistic human route choice behavior in the simulation of traffic in road
networks, drawing from established behavioral theories of human choice. It provides
an approach for creating simulations in traffic networks with multiple agents that
interact and find their preferred route from their source to their destination,
developing individual behavior by learning form experience. Route decisions are
made sequentially link by link, making it possible to adapt to traffic conditions and
to avoid single links due to congestion. The main focus of this work is the application
of reinforcement learning to model route choice behavior. The traffic simulation is
thus implemented at a macroscopic level (according to the definition of macro- and
microscopic traffic models), focusing on the routing aspect of each individual agent.
It is not the aim of this thesis to provide a microscopic traffic simulation. Individual
driving behavior like lane changing, acceleration etc. is therefore not considered
and the application of the present reinforcement learning framework in microscopic
traffic simulations is left for further research. Contributions are made in the field of
reinforcement learning for traffic modeling, providing a new approach to let agents
choose their path in the network en-route rather than relying on predefined paths.
In this approach, network environments in the Markov decision process are modeled
as decision trees, leading to increased learning speed by assuring that agents reach
their destination node in every episode of the simulation and thus offering better
scalability, while still providing maximum flexibility by letting agents choose their
route link after link. To the authors best knowledge, this approach has never been
proposed before in the literature. Additionally, this work proposes the integration
of behavioral concepts such as risk awareness in combination with reinforcement
learning to model human behavior in traffic networks more accurately. The thesis
is structured as follows: The next section of this introductory chapter gives an
overview over the current body of literature regarding the application of multi-
agent systems including multi-agent reinforcement learning for traffic modeling
and simulation. Chapter 2 covers the fundamental theoretical background in traffic
modeling, human choice modeling and reinforcement learning needed for this thesis.
Chapter 3 explains the reinforcement learning framework for route choice modeling
in multi-agent traffic systems developed in this thesis. Chapter 4 describes the
test case of the framework and offers a discussion and interpretation of the results.
Finally, chapter 5 provides a conclusion of the work and potential possibilities for
future research based on the results of this thesis.
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1.2 Related Work

There is an abundant body of literature concerning agent-based systems for traffic
simulation and transportation engineering, spanning applications for all of the four
stages of the classic transport model: trip generation, trip distribution, mode choice
and traffic assignment [74]. So far, agent-based systems and more precisely multi-
agent systems have been used in various segments of transportation engineering
such as traffic modeling and simulation, modeling behavior and decision-making
processes of drivers, as well as traffic management and control. A comprehensive
review of applications in those domains is given in [16], showing that research is not
only restricted to road traffic, but considers air traffic and railway transportation as
well. Another summary of current research in agent-based traffic simulations is given
by Bazzan and Klügl [7], providing an overview of different applications where an
agent-based approach is used in traffic simulation such as modeling travel demand,
route choice or traffic flows, as well as providing agent-based traffic management
solutions. A multi-agent framework for intersection control is presented in [34, 35].
[67] describes a system with multiple agents that learn lane selection strategies based
on reinforcement learning. One important part of traffic simulations, which is also
the focus of this work, is route choice modeling. As described previously, traditional
decision theories assuming rationality are often used to simulate behavior in traffic
networks, although this approach offers only a very simplified view on decision-
making processes in real world traffic situations. This problem has already been
addressed in the literature, resulting in various contributions of alternative route
choice models that offer a more accurate description of the complex decision-making
processes in road networks, ranging from game theoretic considerations to empirical
studies in traffic psychology. [12] offers an overview of many choice models applied
in the domain of transportation modeling. Approaches to incorporate prospect
theory, probably the most influential behavioral decision theory, in traffic models
are reviewed in [60]. Most route choice models applied in traffic modeling are static,
not considering the effect of learning on decisions in repeated traffic scenarios. [17]
offers an approach to model learning in route choice scenarios. The development
of systems using intelligent, adaptive agents that are able to change their route
based on current traffic conditions in the network is an interesting field of research
regarding potential possibilities for traffic simulations. Applications in this domain
has already been studied extensively. [6] describe a traffic simulation using agents
that are able to re-route and choose an alternative path based on the perceived
traffic conditions. The initial path is the shortest path from their origin to their
destination considering travel times with no link demands. When experiencing
congestion, agents are able to compute a new shortest path from their present
node based on three alternative travel time estimations. Additionally, adaptive
traffic lights are implemented in the model that choose between two strategies to
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minimize waiting time. In [91], the authors investigate the effects of varying degrees
of cooperation between agents and uncertainty of travel times on network flows in
a congestion game using the Braess network, showing that cooperation leads to
higher network efficiency. They propose the use of cognitive agents that choose
their route and level of cooperation based on experience. Given the requirements
of such traffic models - agents that learn from experience, ongoing agent-agent and
agent-environment interactions - reinforcement learning is a concept well suited for
this task. The potential of reinforcement learning for general routing tasks was
recognized by researchers already several decades ago and much work has already
been done in this domain. An adaptation of the famous Q-learning reinforcement
learning algorithm suitable for optimization of packet routing tasks in networks
with dynamic link demands and network topologies called Q-routing was proposed
in [20]. This algorithm was developed further in [27], proposing predictive Q-
routing, an algorithm that avoids routing packets on congested links and focuses on
ongoing learning due to the non-stationarity of the network environment where links
can quickly switch between states of congestion and non-congestion. Regarding
reinforcement learning for route choice in traffic modeling, different approaches
can be distinguished. Various works use reinforcement learning for route choice in
traffic networks modeled as a single state multi-armed bandit problem. This is a
simple reinforcement learning task where an agent learns to take the optimal action
from an action set. After taking an action, the agent receives a reward, updates the
reward expectations and tries again, without the environment transitioning to a
new state [103]. Such decision processes are therefor not sequential and can not be
modeled as a Markov decision process. In such scenarios, there is only one single
state that represents the origin node. Agents can choose a route to their destination
from a set of pre-computed paths, immediately receiving the cumulative reward
for all links traveled, computing the reward based on current link demands. Thus
also in this scenario, the decisions of all other agents are influencing the reward.
After the agent receives the reward, a new episode starts. This approach is used
for instance in [4, 56, 73]. [73] compares a stateless variant of Q-learning with
several specific multi-armed bandit algorithms to evaluate performance for route
choice tasks. [56] use the bandit approach for modeling route choice based on k-
shortest paths for a multi-agent traffic scenario in combination with adaptive traffic
lights that try to minimize waiting queues using the microscopic traffic simulation
software SUMO [61]. [4] uses multiple selfish Q-learning agents that choose their
route based on a set of k-shortest paths to model behavior in traffic networks.
This is combined with a central authority that provides route recommendations
based on a genetic algorithm trying to bring the network closer to the system
optimum. The multi-armed bandit approach is an efficient way to implement a
simple reinforcement learning problem for route choice modeling that provides
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fast learning and is suitable also for bigger networks. As a drawback, the agents’
flexibility in route choice is restricted and the travel times used in pre-computation
of routes does not necessarily reflect the real travel times when links are showing
high demands. Furthermore, adaptation and re-routing of the currently traveled
path is not possible. Some of those drawbacks are also discussed in [6, 8]. As
an alternative approach, route choice in networks can be modeled as a Markov
decision process with state transitions as shown in [5, 38, 39], where Q-learning is
used for individual agents to model a multi-agent traffic network scenario where
every agent learns to choose the optimal path. The state-action space represents
the whole network and links are chosen sequentially at every node in the network,
called edge based Q-learning in [38]. The nodes in the network thus represent the
states of the Markov decision process, the outgoing links from the current node
represent the actions. This approach lets the agent travel every possible path
in the network and choose links on the fly based on the current perceived traffic
situation. As a downside, this approach can not guarantee that agents reach their
destination in a time justifiable for simulations. This problem is addressed in [38,
39] by restricting the number of time steps per episode. If the maximum number
of steps is reached, the episode terminates even if not all agents arrived at their
destination. This could impair the learning process of agents, leading to slower
progress in learning. Another problem is scalability: with increasing network size
and length of paths that leads to more actions agents have to take en-route, the
probability for them to reach their destination decreases, especially in the initial
learning phase where choosing good actions is essentially based on trial and error.
Reinforcement learning has also been used for direct optimization of network flows
and autonomous driving. A deep reinforcement learning framework that manages
to optimize congested traffic scenarios with only a few autonomous vehicles that
control flows merely through adaptation of their own mode of driving and without
any initial knowledge of prevalent traffic models is shown in [118].
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Chapter 2

Preliminaries

2.1 Basic Concepts of Traffic Modeling

Modeling traffic has been an integral part of transportation engineering and planning
for several decades already, with early applications dating back to the 1950s [65].
Traffic or transportation modeling is concerned with the analysis of all individual
parts that constitute complex traffic systems, with the goal to create models that
describe real world traffic phenomena. Thereby transportation modeling forms an
essential foundation for creating simulations of real world traffic systems, which
are needed for the analysis of traffic problems and have an important role in
supporting traffic planning and decision-making processes regarding various aspects
of transportation systems. It is a broad field of research, making it only possible to
scratch the surface by describing the basic concepts in this chapter. The aim of
this section is to give a brief overview of the different parts of traffic modeling, to
explain the context this thesis is embedded in and to point out the specific areas
within the research domain where contributions are made in this work. For a more
detailed view on the individual parts of traffic modeling, the interested reader is
referred to the work of Ortúzar and Willumsen [74].

Predicting the intensity and location of traffic as it is likely to occur in reality
is a multidimensional problem, involving many individual parts that eventually
influence and constitute the state of traffic in road networks. The classic model
used since the 1960s to describe traffic systems is the four-step model. This model
divides the formation of traffic into four sequential parts: trip generation, trip
distribution, modal split and trip assignment [74]. The model is shown in figure
2.1. For a holistic traffic model to be useful for further analysis and planning, it
thus has to consider all those sub-problems, finding answers to questions of who
is going to travel, the source and destination of a trip, the frequency those trips
occur and the route that will be taken to travel from point A to point B. Every
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Figure 2.1: The classic four step model of transportation.

step of the four-step model forms its own research domain with an abundant body
of literature including modeling approaches for many different scenarios. Due to
this complexity, models in research and practice often focus on single steps of the
sequence that are of interest rather than the whole system [74]. One of the reasons
that makes accurate traffic modeling a difficult task is that it involves human
decision-making on multiple levels. Be it the decision of going to the supermarket
today or tomorrow, traveling by bus or by car, or either taking the road through the
city or the highway, human behavior and decision-making is a major factor to be
considered in traffic modeling. How human behavior can be modeled and predicted
has been a key question in different scientific domains for many decades, ranging
from economics to behavioral psychology (the next section offers a more detailed
review of choice modeling). In the following section, the sub-models that together
form the four-step model are explained in more detail, based on the explanations
given in [74]:
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Trip Generation

The first stage of the four-step model is concerned with the factors that lead to the
generation or attraction of trips in certain areas. It tries to answer the question
where trips are likely to occur and what the purpose of those trips is. This is usually
predicted at a zonal level, where the area of interest is divided into several different
zones or at household level [65]. A trip generation model gives a statement about
the number of trips that are expected to start or end in a certain zone or household,
which is influenced by various factors. A variety of parameters define the trips
that are undertaken each day, ranging from spatial to socio-economic factors like
income and family structure to the attractiveness of potential trip destinations.
Those parameters can be approximated statistically from available data [74].

Trip Distribution

While the trip generation step predicts the number of trips that either depart
or arrive in a certain area, the trip distribution step generates real trips as pairs
of origin and destination zones. Origin and destination can either be different
zones, with a trip produced in one zone and attracted to another, or a trip can
take place within one zone. The sum of all trip origins and destinations in a zone
are corresponding to or approximating the values generated in the previous step,
depending on the quality and completeness of the data available [74]. For the
generation of origin-destination (OD) pairs, the travel costs have to be considered.
Travel costs are a measure for the attractiveness of a trip and can be defined as
needed. Often, travel costs represent the free flow travel time [65], but can also be
more complex, combining several attributes that contribute to the attractiveness
(or the lack thereof) of a certain trip, called the generalized cost of travel [74].

Modal Split

The third step of the four-step model is concerned with the mode of transport
chosen for a trip. Modeling mode choice is especially important for planning
purposes of public transport, as the necessary capacities that affect bus or subway
frequencies in the schedule can be anticipated from the demand derived from
the model. Analyzing the individual factors that are part in the decision-making
process regarding the transportation mode can also help in defining incentives to
make more people change to public transport, making mode choice an important
factor for reducing car traffic and congestion in urban areas [74].

Trip Assignment

In the final step, the generated origin-destination data is transformed to actual
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routes in the network. This is a crucial task, as it is used to predict the demand
on specific roads or links in the network, making it an important part of the trans-
portation and infrastructure planning process [74]. Many different considerations
fall into the domain of trip assignment. It is a highly diversified field of research
with branches specialized in the modeling of specific parts of this domain. One
major aspect within trip assignment is route choice modeling. This field of research
is concerned with human decision-making in traffic, predicting the routes and
single links in the network that are likely to be used. There are many different
approaches to model route choice, ranging from deterministic models assuming
perfect rational individuals to stochastic models often derived from economics,
game theory and psychology. The next section gives a more in-depth overview of
current state of the art approaches to route choice modeling. The topic of this
thesis is also located within this research domain. Another vital field of research
within trip assignment is traffic flow modeling. Flow models are concerned with
the description of traffic dynamics, how it flows through road networks and how
congestion originates an dissolves and is propagated through the network, taking
into consideration the characteristics of the network such as capacities as well as
the current demand. Traffic flow can be modeled on several levels, from a general
macroscopic view on traffic to fine grained microscopic models. The terminology
used in this work follows the definitions of model levels as used in the domain
of traffic modeling and simulation. Macroscopic models focus on describing the
characteristics of flows and their dynamics, often adopting physical models of
flows and wave propagation in liquids [22]. Hence the movement of individual
vehicles is not the focus of macroscopic models, but a higher-order description of
flow characteristics in terms of vehicle densities and demand [52]. An example of
a macroscopic modeling approach can be found in [31]. Microscopic models on
the other side focus on individual vehicles, how they move in traffic and interact
with others. This includes models for driving behavior such as acceleration and
lane changing models as well as modeling human decision-making with detailed
route choice models [22, 52]. A third approach are mesoscopic models, which are a
hybrid form of macroscopic and microscopic modeling approaches. These models
allow a more accurate description of certain properties on the level of individual
vehicles - such as route choice - while still describing traffic at a macroscopic level
in terms of network capacities and average demand and vehicle density [22, 52].
The methodology of this thesis can be categorized as a mesoscopic approach, as
it models route choice at an agent or vehicle level, while traffic is modeled at a
macroscopic level.
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2.2 Human Behavior and Decision-Making in

Traffic Scenarios

2.2.1 Choice Modeling: Theoretical Foundations of Hu-
man Behavior and Decision-Making

As already stated in the previous section, predicting human behavior is a crucial
part of any reliable traffic model, as human decision-making is involved in every
stage of the four-step model, from trip generation to mode and route choice.
To predict behavior, models rely on socio-economic data - either from available
surveys or from data collected for the study. Transportation planning projects
therefore often conduct their own time and cost intensive surveys to acquire data
of preferences and behavior of inhabitants living in the areas of interest [74]. But
the presence of data alone is not enough to make a good model of future behavior.
Beyond a simple replication of the current traffic situation, the difficulty lies in
giving valid predictions of behavior in the future under changing conditions [32].
In other words, a model of human behavior has to be able to predict, for example,
changes in mode choice when a new bus line is provided or changes in route choice
when speed limits on certain roads are adapted. Since the choice sets underlying
decision-processes in the context of transportation are usually discrete in nature -
such as the decision to travel either by car or bus or the decision to turn left or
right at a junction - this section focuses on discrete choice modeling. Most of the
literature on choice theory and modeling originates from research in economics and
psychology, with interest for the development of scientific models that accurately
reflect human behavior strongly increasing in the second half of the 20th century.
The growing awareness of the importance to describe and predict human behavior
more accurately to generate more precise models is represented in several advances
in this field, such as the development of disaggregate models, where decision-
processes are modeled on the individual level rather than making assumptions for
aggregated populations [109]. While economics and psychology are the scientific
domains leading research on choice theory, applications in transportation have often
been important considerations in the development of discrete choice models [64].
Models of individual behavior in traffic scenarios were primarily applied to describe
decision-processes underlying mode choice [12]. Another important issue where
discrete choice models are used is the modeling of route choice behavior in traffic
networks, which is also the main concern of this thesis. Beside the formulation of
specific models of behavior, advances in computation in the last decades provided
the possibility of model estimation by simulation, allowing for choice models that
incorporate a variety of parameters without the limitations that arise due to the
need of simplification [110].
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Traditional Economic Models of Behavior

Traditional models of human behavior in economics and social sciences assume that
individuals act purely rational to maximize their utility. Utility can be defined as a
measure of attractiveness that makes an individual prefer one option over another
when making a decision [12]. As such, it can be as simple as monetary gains or
a more complex function, incorporating several different factors important to the
decision maker. In the case of transportation, the utility of a commuter deciding
to either use route A or B could for instance be composed from the individual
factors travel time, travel cost (tolls) and scenery. Rationality of behavior for utility
maximization is based on the assumptions that first, the decision maker has perfect
knowledge of the environment and current conditions inside the environment and
second, has the computational or cognitive power to correctly assess all available
alternatives and identify the optimal action, that is the action that maximizes
utility [62, 99]. Additionally, if the outcomes of actions are not deterministic but
stochastic, the decision maker knows the probabilities of all possible outcomes and
thus is able to choose an action that maximizes the expected utility as stated by
expected utility theory [114]. This rational theory of human behavior has been
challenged by scientists for more than half a century already, calling for theories
that better reflect complex human decision-making processes [99]. In the following
decades, several theories were proposed that led to a different examination of
human behavior.

Random Utility Theory

One important foundation for choice modeling is random utility theory, a theory
first proposed in the field of psychology by Thurstone in 1927 [107]. It was later
developed further as reaction to the problem that empirical research in psychology
on human behavior did not reflect the results expected from the theory of rational
behavior [62]. Subsequently, two main theoretical approaches to random utility
theory emerged: constant utility models and random utility models [62]. Both
are probabilistic choice models - i.e. the models do not offer a fixed deterministic
description of decision-making, allowing the same decision process to result in
different choices - but are built on diverging theoretic assumptions of the cause
of the observed probabilistic characteristics of behavior. Constant utility models
assume a probabilistic decision rule, meaning that the utility of each alternative
is constant and that the decision is based on a function that assigns a choice
probability to each alternative depending on the utilities [62]. Random utility
models on the other hand follow the assumption of a rational decision maker who
is consistent in his or her choice selection and follows a deterministic decision rule.
The randomness is due to the incapability of the observer describing the decision-
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process to accurately identify all factors relevant to the decision maker, such as all
variables that constitute the decision maker’s utility function, or all alternatives
in the choice set. This inaccuracy in the model possibly leads to false predictions,
thus making the use of randomized utility functions necessary to account for the
errors in the model resulting from unobserved or falsely described variables [12, 63].
In other words, the constant utility approach describes behavior as probabilistic
in nature, while the random utility approach states it only appears probabilistic
due to the inability do describe it with adequate precision [12]. Random utility
models have been very successful in the domain of transportation science - for an
explanation of the most commonly used models, see [12, 74]. An early application
to travel demand modeling can be found in the work of Domencich and McFadden
[32].

Bounded Rationality and Prospect Theory

While random utility theory provides solutions to explain inconsistencies between
the theoretical assumption of the rationality of behavior and empirical results in
experiments, it still assumes absolute knowledge of the decision maker, as she or
he has to accurately assess all alternatives in the decision-process and all possible
outcomes to be able to maximize utility as hypothesized by the traditional model.
As an alternative to the idea of rational utility maximization, the concept of bounded
rationality was introduced by Herbert Simon, an early critic of the traditional
model [99]. Bounded rationality is based on the assumptions that behavior can
only be rational within the boundaries of the decision maker’s cognitive capabilities
and knowledge and that - rather than trying to find the optimal choice - a decision
maker tries to find an alternative that leads to a satifactory outcome [99]. While
often interpreted as a rational optimization task with constraints defined by limited
cognitive capabilities, it is argued that this is a simplified view and that bounded
rationality can not be interpreted in terms of utility maximization [93, 94]. Ob-
served shortcomings of utility maximization theories shifted the perspective from
prediction of behavior based on normative theories to descriptive behavior models
based on empirical psychological research [1]. One influential theory that provides
a different perspective on rules of human decision-making under risk is the work on
prospect theory by Kahneman and Tversky [50]. A revised version called cumulative
prospect theory was published several years later [113]. Based on psychological
choice experiments, prospect theory explains observed decision-making under risk
that deviates from expected rational behavior of utility maximization, such as the
intransitivity of choices. It states that decision makers are generally loss averse,
meaning that losses or negative outcomes are weighted more than gains or positive
outcomes, that they are overweighting low probabilities, making unlikely outcomes
to be treated with more importance than justified by their probability, and that
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the value of gains or losses is defined from a reference point of the decision maker
rather than in absolute values, making for instance the same monetary gain less
valuable to a person that already possesses the same amount of money than to
someone who starts with nothing. Prospect theory had a big impact on how
human behavior is modeled. It has been used in various domains, although its
application raises difficulties due to open questions regarding formal definitions
[3]. Prospect theory has also already been applied to decision-making processes
in transportation, especially as an alternative model for route choice (see [60]
for an overview). The usefulness of prospect theory as theoretical framework for
choice modeling in traffic scenarios was also reviewed critically in the literature [108].

As shown in this section, human behavior and decision-making is still not fully
understood and cause of ongoing scientific discussion. The application of theories
of choice often proves difficult due to the lack of understanding of the underlying
mechanisms that drive human decision-making. This is especially true for the field
of transportation, where human behavior plays a role in various different contexts.
While progress has been made in the last decades, no single theory is a sufficient
general description of behavior. Cherchi [26] reviews utility theory as well as
prospect theory and their applications in the domain of transportation, focusing on
research in mode choice behavior. The author argues for a combination of theories
to provide more adequate models. De Palma et al. [76] reach a similar conclusion,
acknowledging prospect theory for being useful to describe several aspects of human
behavior in the context of transportation. They moreover make the important
distinction between decision under risk and decision under uncertainty. Decision
under risk describes settings of decision-making where the choice of an alternative
can lead to different outcomes with certain probabilities of occurrence which are
known to the decision maker. Prospect theory is concerned with behavior in such
scenarios. The concept of decision under uncertainty also describes decision-making
processes where a certain choice can lead to different outcomes, but in this case,
the underlying probabilities of occurrence of those outcomes are not known. This
distinction is of big importance in traffic scenarios, where uncertainty about the
outcome of decisions is prevalent. Furthermore, it raises the question of learning
processes and how they affect choice behavior. Theories of behavior are mainly
static, not regarding changing behavior as a result of learning processes. Behavior
of decision-makers is not assumed to change according to theories of choice, thus
choices that diverge from certain theoretical characteristics are often regarded as
’mistakes’ not worth to be considered in choice modeling [89]. [36] show that be-
havior that adapts to feedback indeed does not have to shift towards maximization.
They identify the payoff variability effect as important factor to describe behavioral
adaptation in learning scenarios. This effect states that choice behavior moves
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towards random choice with increasing variability of payoffs. Cherchi [26] discusses
implications of learning and habit for decision-making in transportation scenarios.
The issue of learning in the specific case of route choice behavior is discussed in
the next section.

2.2.2 Modeling Route Choice Behavior in Traffic Networks

The theoretical concepts of human choice are applied in various contexts of trans-
portation modeling, such as mode choice or route choice. This thesis focuses on the
latter, hence route choice modeling will be described in more detail in this section.
A route choice model consists of two main parts: the generation of a choice set,
that is the alternatives the decision maker can choose from, and the choice model,
that is the theoretical approach to choice behavior in decision-making processes as
described in the previous section.

Choice Set Generation

Although the selection of alternatives in the decision process seems like an easy task,
the generation of a choice set is not trivial, as it has to reflect a set of alternatives
that form the basis of real human behavior. Those choice sets are formed mainly
intuitively by humans with the application of specific heuristics in the brain that
are often not known, hence the selection criteria don’t follow rules from simple
rational thinking [81]. Reasonable choice set generation thus is crucial, as the best
fitting choice model will not lead to good results if the alternatives at hand do not
resemble the choice set of the decision maker who is modeled. Another important
consideration is computational feasibility. Because route choice models are used in
traffic simulations, the computational effort of route choice is important for the
performance of the simulation. Although generating a choice set with all possible
alternative routes that exist in a network might avoid the risk of not considering
an important alternative, the computational effort makes it unusable in practice.
Hence the size of the choice set is restricted, making it important to select realistic
alternatives and omit redundant and unrealistic route options [8]. To achieve this,
several approaches to choice set generation were proposed. A thorough review of
several algorithms can be found in [81, 83].

The simplest option is the restriction of the choice set to a single alternative, the
path exhibiting the lowest overall cost, basically reducing route choice to a single
step without the need for complex solutions for choice set generation an choice
modeling. This approach is in line with the idea of rational behavior of classical
economic decision theory, which assumes a decision-maker with perfect knowledge
of the network to choose the optimal alternative. In most cases, the path with the
shortest travel time under free flow (that is without delays caused by congestion
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effects) is regarded as the optimal path. Modeling traffic flows assigning flow only
to shortest paths without regarding the influence of congestion is also called all-
or-nothing assignment [74]. While being a fast and simple solution, this approach
has various downsides. Defining the fastest route from origin to destination as the
optimal path for everyone is not realistic, as humans have different preferences
that also play a role in route choice. As shown by Bekhor et al. [8], paths that
minimize travel time only represented about a third of all commuter paths the
researchers collected from a survey where participants were asked to draw their
daily commuting path. It is an accepted view in research regarding behavior that
human preferences and incentives are much more complex and multidimensional.
Of course, this approach can also be applied defining utility functions with more
parameters than travel time only, such as preferences of road types. Nevertheless,
it relies on the concept of rationality, assuming perfect knowledge and unbounded
cognitive capabilities of the decision maker to find the best solution. This is
especially true in scenarios where congestion effects on single links apply. To find
the optimal path in such scenarios, the driver has to know the current demand on
every link in the network to compute the optimal route. A widely-used approach
to generate choice sets that better reflect realistic decision-making processes is the
application of k-shortest paths algorithms. Those algorithms search for the lowest
cost path from an origin to a destination in a network and sequentially repeat the
search process to find the next shortest paths. Although, as already described, the
cost function that defines the attractiveness of a path is dependent on the decision
maker and reflects his or her personal utility function and thus doesn’t have to
depend on distance or travel time only, the term shortest path will be used in this
context to describe the path with the lowest overall cost from a certain origin to a
destination in the network. Although the use of k-shortest paths provides a simple
solution to the problem of choice set generation that can easily be adapted to
different set sizes, this approach has several drawbacks. The alternatives generated
by such algorithms are often very similar and differ only in single links, additionally
they might include paths with cycles that do not represent realistic alternatives
[81]. Using loopless variants of a k-shortest path algorithm such as the algorithm
proposed by Yen [119] prevents the generation of paths with unrealistic cycles. The
definition of the cost function that defines a shortest path is a very important factor
as well. Beside obvious parameters such as travel time or distance, drivers might
value other criteria in their decision-making such as scenery or show a preference
for certain types of roads, such as highways. Reducing such multidimensional
utility functions to single value representations of preferred paths such as travel
time might lead to choice sets that miss alternatives important to the decision
maker. The decision maker’s utility function thus does not only play a role in the
decision-making process itself, but has to be considered in the generation of a choice
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set as well. The problem of incorporating travel time in the cost function is also
relevant for k-shortest path approaches. Using free flow travel time does not account
for potential congestion effects on links that show high traffic intensity and might
lead to choice sets with unrealistic routes. This is especially true if bottleneck links
are present in the network, links that are constantly showing high demand due to
their importance in the network. In cases where the cost of using such bottlenecks
is small under free flow, they might be included in a disproportionate number
of alternative paths in the choice set generated by k-shortest path algorithms,
although the efficiency of such links rapidly declines with rising demand. Figure 2.2
shows a simplified example of this potential problem. As shown in the figure, from
all eleven possible paths with origin node 1 and destination node 13 in the network,
nine paths include the bottleneck link from node 1 to node 4. Assuming high
demand and limited capacity, the efficiency of link (1, 4) would rapidly decrease
with increasing demand. Individual drivers could use a faster route either with
link (1, 2) or (1, 3), however those would only be included in the set of k-shortest
paths if k > 9. As an alternative, cost functions could be computed using travel
times based on current demands on individual links. This however assumes overall
knowledge of the current state of traffic in the network and the current travel times,
an assumption that is not realistic for every driver even in the age of ubiquitous
access to navigation systems provided by smartphones. Furthermore, the choice
set would have to be updated in every episode.

In addition to using k-shortest paths algorithms to compute shortest paths based
on their costs only, heuristics are often applied to achieve a more differentiated
set of alternative paths, mainly link elimination and link penalty [81, 83]. The
link elimination approach is based on sequential shortest paths searches. After
ever iteration, a number of links that are part of a shortest path are eliminated
and cannot be considered in following iterations. This leads to the generation of a
set of more differentiated paths. The question which links and how many should
be eliminated is not trivial, as some links might be crucial connections for many
different paths. In the worst case, this could lead to disconnected networks where no
further paths for a certain origin-destination pair exist. Furthermore, the choice of
the number of eliminated links has a big impact on the resulting set of alternatives,
as single link eliminations again lead to similar routes and the elimination of too
many links creates unrealistic alternatives [83]. Link penalty approaches on the
other hand don’t exclude certain links from the network, but make them a less
attractive choice. After every iteration of the shortest path algorithm, the cost
of some or all links that are part of the current shortest path are increased. This
way, generation of choice sets with highly similar routes is discouraged while some
downsides of the link elimination approach such as disconnected networks are
avoided [83]. The definition of the cost increase per iteration as well as the choice
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Figure 2.2: An example of a network where a bottleneck link would lead to high
costs in a set of k-shortest paths when only considering free flow travel times.

of routes that are penalized still needs thorough consideration and can lead to
unintended results [81]. A third approach is labeling, proposed in the work of
Ben-Akiva et al. [11]. This approach uses a set of different labels to acknowledge
the fact that drivers might have a variety of preferences when choosing a route.
Route choice behavior is then modeled using a Nested Logit model [83]. So called
simulation approaches where possible alternatives are generated based on utility
functions with parameters sampled from a probability distribution are discussed in
[81, 83].

Bekhor et al. [8] provide a comparison of all approaches mentioned above.
When validating the generated choice sets with route choice data acquired from
a survey, they show that the use of k-shortest paths for choice set generation
in combination with link penalty or link elimination only achieves to include an
accurate representation of 60% of all real paths from the survey. Allowing small
deviations between the generated paths and the paths from the survey data by
defining an overlap of 80% as sufficiently accurate, the choice set generated from
k-shortest paths covers 80% of all paths. Choosing the path with the least travel
time for all origin-destination pairs accounted for only 34% of all routes from
the survey. A combination of several algorithms showed the best results, but the
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computational effort needed makes this approach unfeasible for many practical
applications. This shows the difficulty of generating realistic choice alternatives
and the importance of a better understanding of human decision-making and the
heuristics applied in the process of intuitive or rational thinking about alternatives
in a decision-making process.

Route Choice Modeling

After generating a choice set, a discrete choice model has to be applied to predict
route choice behavior. The same theoretical considerations of decision-making and
rationality of choice apply as described in the previous section. Widely used route
choice models are described in [8, 81, 83]. Behavioral theories of bounded rationality
and prospect theory also play a huge role in route choice modeling, leading to active
research and discussion of the usefulness of such theories for transportation science.
Li and Hensher [60] provide an overview of current literature where prospect
theory is applied for modeling route choice behavior and describe the advantages
and disadvantages of this behavioral theory for choice modeling in the domain
of traffic. They also show that although several works exists that use prospect
theory, the majority applies only parts of it - such as risk aversion - without
considering the whole theoretical framework. Van de Kaa [47] provides a summary
of the crucial concepts of prospect theory and its value for transportation, stating
that prospect theory is able to better explain various forms of decision-making in
traffic situations than classical utility theory. He also proposes an adaptation of
prospect theory for modeling human behavior in traffic scenarios, extended prospect
theory, incorporating aspects of both theoretical backgrounds (for a more detailed
description, see [46]). A more critical review of prospect theory for traffic modeling
can be found in the paper of Timmermans [108], arguing that experimental results
of prospect theory based on monetary gains and losses cannot be translated easily to
the domain of decision-making in traffic scenarios. Other authors also see difficulties
in the definition of gains and losses as well as connected reference points (see [60]
for a summary). Another issue is the distinction between decision under risk and
decision under uncertainty [76] and its implication for behavior modeling in traffic.
Several works recognize this potential problem. Using prospect theory to model
route choice behavior with known probabilities of variable travel times, Gao et al.
[37] for instance acknowledge the fact that uncertainty of probabilities of exact
link costs due to variability in travel time could be a more realistic assumption
regarding decision-making in traffic.
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Learning, Habit and Adaptation in Route Choice Behavior

A crucial problem that is often not addressed in choice modeling is learning and
adaption (see also last section). As choice models are generally static, they do not
provide adequate answers to behavioral changes due to learning processes. This
is true for classical economic theories of utility maximization as well as prospect
theory. The concepts of bounded rationality provides a way to describe limited
knowledge, but how exactly this affects choice behavior such as exploration of
unknown alternatives is another question. This is closely related to the consideration
that different decision theories provide adequate approximations of different stages
in the learning process of the decision-maker. As argued in [76], concepts from
prospect theory reflect behavior in unknown or unfamiliar decision-making scenarios,
whereas with more experience, behavior tends to switch towards (expected) utility
maximization. The assumption that behavior shifts towards rational decision-
making with growing experience is also challenged in the literature. In [68], the
authors observe that learning does not lead to more rational and homogeneous route
choice behavior in traffic networks. The question how information and experience
affects route choice behavior is addressed in the work of Ben-Elia and Shiftan [13,
14], showing that the payoff variability effect is important in route choice adaptation
with experience. A learning model for decision-making in the context of route
choice is described in [17], identifying reinforcement learning as a crucial concept
to model learning and incorporate experience in the decision-making process and
proposing a Markov model for iterative decision making in day-to-day route choice
scenarios. Avinery and Prashker [1] also discuss learning models for route choice
behavior, reviewing traditional utility maximization as well as cumulative prospect
theory and discussing important concepts of learning such as the payoff variability
effect and reinforcement learning.

2.2.3 Rational Choice and Traffic Equilibria in Multi-Agent
Scenarios

Although behavioral approaches to choice modeling in transportation focus on
describing behavior on the level of the individual, it should not be forgot that
decisions in traffic scenarios are always driven by interactions of many decision-
makers whose choices have direct impact on others, influencing their decisions
as well. Traffic flows in road networks are thus the result of complex interaction
patterns. The study of such patterns and the resulting traffic states is an important
line of research in transportation modeling, as accurate models of such traffic
systems are crucial tools for planning and policy making. Modeling traffic flows
as a result of individual behavior is an agent-based modeling (ABM) approach.
This computational concept describes approaches where individuals are modeled
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as artificial (potentially intelligent) autonomous agents that interact with each
other and their environment, making decisions based on their own perceptions
and often showing individual behavior and characteristics [18]. Systems involving
multiple individual agents are also called multi-agent systems (MAS) [96]. Multi-
agent systems have been applied as models for many different domains, including
transportation [16, 33]. Such models often have their theoretical roots in game
theory. This branch of economics is concerned with the analysis of interactions
between individual decision-makers and their cooperative or competitive behavior
to maximize their profit. Such scenarios are modeled as games with rational players,
each choosing a strategy to maximize his or her payoff [75]. The term player to
describe individual decision-makers is often used in game theory and will be used
interchangeably with the term agent in this work. Under the assumption of rational
behavior, game theory is applicable to many scenarios where the understanding of
interactions of individuals with often diverging goals and needs is crucial. It thus
has also been used as a tool to describe dynamics in networks and to study the
effects of rational decision-making in various traffic scenarios. Such scenarios are
part of a special class of games where the price of a resource is dependent on the
number of players using it, which are subsumed under the name congestion games
[84, 105]. Games more specifically concerned with flows in networks are also called
routing games [87]. Multi-agent scenarios can be very complex, since every single
agent or player has to adapt his or her personal strategy to the strategies of the
other players to maximize payoff. Such a strategy is called best response strategy,
which assumes the agent knows about the strategies of all other players. A central
interest of game theory is the study of equilibria in such games where no player
can further maximize personal payoff and therefore sticks to the current strategy
[59]. The concept of such equilibria in non-cooperative games was described in
[69], coining the term Nash equilibrium. Such equilibria emerging from rational
self-centered behavior of each agent are shown to be inefficient, resulting in less
payoff when compared to coordinated behavior between the agents [105]. Equilibria
and their resulting inefficiencies are a central field of research in routing games [87]
and are of great interest for traffic engineering as well, given the potential impact
of such inefficient behavior on traffic networks. The discrepancy between individual
and societal interest in the context of traffic behavior was already described in
1920 in [79], discovering that each agent’s rational behavior to minimize travel
time can lead to a lower overall network performance. This was later described
in more detail by Wardrop in 1952 [115] who showed that this selfish behavior
leads to a state of equilibrium within the network where no agent has incentives to
change routes, the user equilibrium - an idea analogous to the Nash equilibrium.
This state of egoistic minimization of every agent’s own travel time leads to an
overall network flow latency (which corresponds to the average travel time in the

34



v1

v2

v3

v4

x 1

1 x

0

Figure 2.3: The Braess network. Assuming a linear cost function x = de
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depending
on the current link demand de, the Braess paradox occurs when inserting a low
cost edge between v2 and v3 - every selfish acting agent will reroute it’s traffic over
v1 − v2 − v3 − v4, which results in a user equilibrium with higher average travel
times than without the low cost edge.

network) that is larger than the optimal possible system performance, called the
system optimum, which Wardrop describes as the network state with minimum
average journey times [29, 115]. The term selfish routing to describe purely rational
behavior in route choice was introduced in the work of Roughgarden [88]. Much of
the literature on selfish routing is dealing with the quantification of the inefficiency
resulting from selfish routing, a concept first introduced in [51] and later called
the price of anarchy [77]. Upper bounds for the price of anarchy for different link
latency functions were first proven in [85, 86]. The interest in understanding and
quantifying inefficiencies associated with traffic equilibria stems from the need to
design more efficient road networks and develop better route assignment strategies.
The fact that network design plays a crucial role in facilitating efficient network
routing was shown by the discovery of the Braess’s paradox, which describes that
in networks with high travel costs, new low-cost edges inserted in the network
can lead to an increase in overall network costs, that is to a decrease in network
performance due to selfish behavior [21]. The Braess network is shown in figure
2.3 This led to increasing interest in research on inefficiencies in traffic networks
caused by selfish behavior [88].

Selfish routing offers a rich theoretical foundation and has been crucial for
the investigation of traffic equilibria. It has been applied to approximate network
flows in experimental scenarios as well. However, for the purpose of creating a
realistic model of human behavior in real world traffic scenarios, the assumptions
of rationality and homogeneous behavior as used in game theory do not offer an
appropriate and realistic view on individual behavior. The simplistic view of utility
maximization as behavioral strategy has been falsified in experiments and raised
criticism from many scientific researchers, as already described in the last sections.
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Assuming a best response strategy further implies knowledge of the decision-maker
about the actions all other players are going to take. In scenarios where the
same decision-makers repeatedly play the same game, it could be argued that this
knowledge can be acquired through experience by repeatedly playing the same
game. In traffic scenarios, this assumption is unlikely, as drivers can never know the
decisions of all others in the network. Relying on inference to predict the outcomes
of a decision based on past experience will therefore not necessary result in utility
maximizing behavior. Beside rationality and utility maximization, the concept of
homogeneous behavior is also an unlikely assumption for systems such as traffic
networks. In real world scenarios, individuals do not share the same expectations
and values. While arriving home after a full day of work can arguably be seen
as the main goal everybody shares, some people might find it more desirable to
take a route that stays off the highway, even if it means sacrificing a few minutes.
Some might value their habits and always take the same route home, while others
are more willing to change routes based on the current traffic conditions. Such
considerations are part of research in behavioral game theory [24]. The problem
of imperfect knowledge in human decision processes and the modeling thereof has
also been addressed in game theory for several decades already, leading to different
concepts and models of such a bounded rationality [89]. A route choice model
strictly based on selfish routing thus does not provide an adequate representation
of human behavior. This is especially true in dynamic network scenarios with
often changing traffic conditions, where the exact travel times can not be known
beforehand since they are highly dependent on the decision of all other agents
in the network. A lot of work has been done to address this problem, such as
studying flow equilibria in networks with selfish routing where travel times are
only approximately known [86], called ε - approximate Nash equilibria [78] or the
incorporation of behavioral theories in game theory to predict human behavior
[117], also with the help of artificial intelligence [41]. Using reinforcement learning
to let agents learn and adapt to traffic conditions can provide a different perspective
on the problem of traffic modeling in networks where link demands are dynamic
and agents are constantly adapting and changing their strategies.

2.3 Reinforcement Learning

Reinforcement learning (RL) is one of the major branches in current artificial
intelligence (AI) research in addition to the two other fundamental machine learning
approaches supervised learning and unsupervised learning. While initial ideas
already date back to the 1950s [90, 103], research on reinforcement learning currently
receives new interest across different scientific domains. This section gives a brief
introduction to the fundamental concepts of reinforcement learning and provides
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an overview of the crucial aspects underlying the learning process of individual
agents. There exist a variety of books that offer a deeper understanding of various
concepts and methods of reinforcement learning. The book by Sutton and Barto
[103] is the standard introductory book and also forms the foundation of much of
the explanations and equations given in this section. The mathematical notation
used here mostly follows this book. [104] offers another more compact summary,
focusing on the mathematical aspects of different reinforcement learning algorithms.
The key concept behind reinforcement learning can be summarized as follows:
learning how to achieve a goal without initial knowledge or example how to achieve
it, doing so merely through interaction with the environment and feedback from
the environment. While trying different actions, desirable outcomes are rewarded,
making the agent favor those actions. Research shows that his goal-directed
learning process based on trial and error and reinforcement signals are fundamental
mechanisms in infant and animal learning [90, 103]. Reinforcement learning can
be distinguished from other concepts of machine learning in several ways. Unlike
supervised and unsupervised learning, reinforcement learning does not need big
amounts of preexisting data. While supervised learning relies on training sets
of labeled data and unsupervised learning is used to find patterns occurring in
unlabeled data, a reinforcement learning agent collects its own data through
direct perception of the environment and through interaction with it. In addition,
reinforcement learning does not depend on preexisting knowledge. The core of
supervised learning methods is learning to choose the right action from a set of
examples, a training set. For this purpose, supervised learning agents need training
examples of specific situations and information about what to do in this specific
scenario. Given a sufficient amount of data, the agent can then find the right
action in previously unknown situations by generalizing knowledge gained from a
training set. Reinforcement learning on the other hand works by rewarding desired
outcomes while letting the agent find a way to maximize the reward [103]. Of
course, there are gradations in initial knowledge of reinforcement learning agents as
well, mainly distinguishing model-free and model-based approaches. In the model-
free case, the dynamics of the environment are unknown to the agent, whereas in
model-based reinforcement learning, the agent is given a priori knowledge about
the environment. Reinforcement learning problems can be split into two scenarios,
where either a single agent learns in an environment or where multiple agents are
simultaneously learning in a shared environment, called multi-agent reinforcement
learning (MARL). While multi-agent scenarios are based on the principles of single
agent reinforcement learning scenarios, some theoretical assumptions of the single
agent case no longer hold in multi-agent scenarios. The following sections provide
an introduction to both scenarios.
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Figure 2.4: Agent-environment interaction, a key concept of reinforcement learning.
Figure adapted from [103].

2.3.1 Single Agent Reinforcement Learning

The fundamental process in reinforcement learning is the interaction between agent
and environment. The agent perceives the environment and chooses an action
based on those perceptions. This decision-making process is what constitutes
behavior [90, 104]. The agent perceives the environment either through different
sensors or through other signals from the environment. How and what aspects of
the environment it perceives depends on an agent’s function and goal and is an
important consideration when designing an agent. The agent thus is finding himself
in a state St ∈ S at current time t. Based on this perceived environmental state St,
the agent takes an action At. The environment changes corresponding to the action,
transitioning to a new state St+1 and returning the reward Rt+1 following the last
action to the agent. This fundamental agent-environment interaction is shown in
Figure 2.4. This decision-making process, consisting of a sequence of states, actions,
rewards and new states is formally described as a Markov decision process (MDP),
which forms the foundation of almost every reinforcement learning problem [103].
MDPs were first introduced by [10] and are used to model stochastic processes
where an action in a certain state is followed by a reward signal and a new state. It
is defined as the tuple (S,A, p, r), where S is the set of all states in the environment
and A is the set of all actions available to an agent. As ⊂ A denotes the subset
of all possible actions in a given state s ∈ S. In many reinforcement learning
problems, As = A, therefore the simple notation A will be used throughout this
introduction to denote the set of possible actions in a state. This work focuses
on MDPs where the sets S and A are finite, thus called finite Markov decision
processes. p : S×S×A → [0, 1] is the transition probability function, which assigns
a probability P to every possible transition from a state-action pair (s, a) into a
subsequent state s′ ∈ S. The state transition probability is defined as

p(s′ | s, a) = P{St+1 = s′ | St = s, At = a}. (2.1)
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For every action, the agent receives a reward based on the reward function
r : S × A → R. This function computes the reward that can be expected from
taking action a in state s and is given by

r(s, a) = E[Rt+1 | St = s, At = a]. (2.2)

Rt+1 is the immediate reward returned to the agent from the environment after
taking an action. Since the reward is returned after the action is taken, concluding
a single time step of an episode, the notation t+ 1 is used for rewards returned for
actions taken at time step t. Because the reward function only gives an expectation
of the reward received following a certain action and makes no predictions about
future rewards, it is also called immediate reward function [104]. Since a MDP is a
sequential decision-making process, every state has to include enough information
about past actions and states so that all state transition probabilities from a state
s ∈ S given any action a ∈ A to a subsequent state s′ ∈ S can be determined only
by the information an agent can perceive in the current state s. This necessary
condition is called the Markov property [103]. Markov decision processes therefore
are memoryless, since the state description already includes all necessary information
to predict the future without having to explicitly store the whole history of past
agent-environment interactions.

A crucial part of reinforcement learning is how an agent chooses its action
and how it changes its behavior through learning which better actions to take
in future situations. A reinforcement learning agent follows a stochastic policy
π : S ×A → [0, 1] which assigns to every possible action in a state the probability
for taking that action. π can also be deterministic, if for every state s there is only
one possible action a. This overview will focus on the stochastic case. In general, an
agent tries to maximize the sum of all received rewards, called the return denoted
as G. The return Gt is computed from the current time step t onward as the sum
of all rewards to be received in the future:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1. (2.3)

γ is called the discount factor, defined as γ ∈ [0, 1]. This parameter reduces the
value of future rewards, meaning immediate rewards are worth more than rewards
that are expected to be received in the far future. There are various reasons for
applying a discount factor. Most importantly, the use of a discount factor γ < 1
in continuous reinforcement learning scenarios where tasks don’t terminate has
mathematical reasons, since otherwise the total return would accumulate to infinity
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[103]. Such continuous tasks include for example ongoing control tasks. This does
not apply to episodic tasks, which are reinforcement learning tasks that have a
defined terminal state. The scenario in this work where an agent travels from origin
to destination in a network is episodic, since it terminates when the agent reaches
the destination. For episodic tasks, a value of γ = 1 is often used. Another reason
for using a discount factor is to account for the uncertainty of reward predictions
that lie far in the future [23]. Since rewards received in future states cannot be
determined with absolute certainty, the expected return is maximized, which is
an estimation of all future rewards expected to be received when being in state
s following a policy π. This estimator is called a value function. There are two
ways of predicting the future return. One possibility is a statement about how
much future reward can be expected starting in state s and following π, called the
state-value function vπ : S → R:

vπ(s) = Eπ[Gt | St = s] ∀s ∈ S. (2.4)

In other words, the state-value function evaluates the state s based on the return
that can be expected from this state onward, assuming actions are chosen under
policy π. It does not evaluate single actions in A an agent might take. Hence,
another way is to estimate the return from a particular state-action pair (s, a), that
is the total return that can be expected when taking an action a in state s under
the policy π. This is called the action-value function qπ : S ×A → R:

qπ(s, a) = Eπ[Gt | St = s, At = a] ∀s ∈ S, a ∈ A. (2.5)

The difference is that the state-value function evaluates the state, assuming that
every next decision which action to take follows π, whereas the action-value function
evaluates single actions, making the same assumption for any action a onward
which itself does not have to follow π. Looking at the definition of the return Gt

in equation 2.3, it is apparent that the state- and action-value functions consider
not only immediate rewards, but also all future estimated rewards. This is a very
important condition for reinforcement learning and ultimately means that a value
function vπ(s) depends also on the value function of the next state vπ(s′). This
recursive property is formulated in the Bellman equation, which is a fundamental
concept in dynamic programming [15, 103]:

vπ(s) = E[Rt+1 + γvπ(s′) | St = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′ | s, a)
[
r(s, a) + γvπ(s′)

]
∀s ∈ S. (2.6)
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This shows that the value function vπ(s) is actually computing the average of the
value functions of all possible next states vπ(s′), weighting them by their probability
of occurrence, which is the combination of the probability for choosing an action
a when in s following policy π and the transition probability for s′ following s
given that action a. When an agent interacts with the environment, visiting states,
choosing actions and receiving rewards many times, it will learn what rewards
to expect from certain states and actions, leading to more precise estimations of
expected rewards which ultimately form the basis for an agent’s behavior. A policy
that maximizes the return is called an optimal policy π∗ and is based on the optimal
value function v∗(s):

v∗(s) = max
π

vπ(s) ∀s ∈ S. (2.7)

For a finite MDP, there exists a unique optimal state-value function [103]. The
optimal action-value function q∗(s, a) is defined by

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S, a ∈ A. (2.8)

From the definition of the optimal value function, the Bellman equation for v∗ can
be formulated, also called the Bellman optimality equation [15, 103]. It describes
that v∗(s), which is the expected return in state s under an optimal policy π∗, is
the expected return when taking an optimal action, that is an action with the
highest value from the action-value function.

v∗(s) = max
a∈A

qπ∗(s,a)

= max
a∈A

∑
s′∈S

p(s′ | s, a)
[
r(s, a) + γv∗(s

′)
]
∀s ∈ S. (2.9)

Similarly, the Bellman optimality equation can be formulated for the action-value
function:

q∗(s, a) =
∑
s′∈S

p(s′ | s, a)
[
r(s, a) + γmax

a′
q∗(s

′, a′)
]
∀s ∈ S. (2.10)

While v∗ gives the optimal state values, q∗ directly leads to the optimal policy. If
q∗ is known, an agent only has to choose those actions with the highest q-value.
The optimal policy is therefore
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π∗(s) = arg max
a

q∗(s, a) ∀s ∈ S. (2.11)

If the optimal action-value function is known, the optimal policy in this case is
thus a greedy policy that always chooses the action that maximizes the return and
neglects other possible actions. To find those best actions, agents have to be able
to try various different actions from which they have no knowledge what return to
expect. It is therefore necessary for agents to take risks that might lead to higher
rewards. This is called exploration and is a vital concept in reinforcement learning,
meaning that agents follow a stochastic policy that introduces randomness in the
decision-making process. There are a variety of possibilities to permit exploratory
behavior in reinforcement learning while still exploiting already known actions with
high rewards. This exploration-exploitation dilemma is one of the crucial problems
in designing reinforcement learning tasks [103]. One widely used approach to enable
exploration is to make agents follow a ε - greedy policy. Following such a policy, the
agent will choose the action with the highest estimated return - the greedy action -
with a probability of 1− ε. With a probability of ε, the agent will choose a random
action. Equation 2.12 shows the probability of an action A to be chosen in a state St
following an ε - greedy policy, given a set of feasible actions As of size n. The value
of ε is usually decreased over time to enable convergence towards the optimal policy.

P (A |St) =

{
1− ε+ ε

n
if A = arg maxa q(St, a)

ε
n

if otherwise
(2.12)

Starting from these fundamental concepts, there are many ways to make agents learn
and change their behavior over time to optimize the return. Reinforcement learning
research provides various approaches based on different theoretical concepts on how
the learning process can be constituted, including algorithms, policy designs, etc.
with the goal to maximize performance and to provide a fast learning mechanism
for agents. For a more in-depth explanation of these approaches and actual
implementations, the reader is referred to [103, 104].

2.3.2 Multi-Agent Reinforcement Learning

Multi-agent systems, where several independent agents interact in a shared environ-
ment, have been an active field of research for many years already, emerging from
artificial intelligence research to study possible implementations of such complex
systems [102]. A fundamental part of multi-agent systems is multi-agent learning
(MAL), which is concerned with learning processes in systems where multiple
agents interact. It is a complex field spanning various scientific domains from
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social, life and computer sciences, involving questions about learning mechanisms in
living beings, human interactions and decision-making processes as well as digital
representations of such processes and interactions. Much of research lies at the
intersection of game theory and artificial intelligence research and has received
much attention from both sides [98]. Due to the conceptual diversity of multi-agent
systems, ranging from scenarios of competition to cooperative tasks, many different
approaches have been studied to solve the question of how to facilitate learning
in environments with multiple agents. Stone [102] defines four main classes of
multi-agent systems, differentiating whether agents are homogeneous or hetero-
geneous in their behavior, goals, etc. and whether they communicate with each
other or act independently. The application of reinforcement learning is one of the
main strategies to make agents learn and develop their behavior in MAS research,
commonly known as multi-agent reinforcement learning (MARL). Such systems
offer many possibilities to model environments with complex agent-environment and
agent-agent interactions where behavior is directly learned from experience rather
than designed beforehand. This could potentially lead to new behavioral strategies
of agents in the system which could not be anticipated in an a priori behavior
design [23]. The occurrence of intrinsic innovation in multi-agent reinforcement
learning systems has already been observed and is discussed as an important topic
for further research [2, 55]. Though the application of single agent strategies to
multi-agent systems has shown some success, theoretical understanding of the
underlying processes is difficult due to the complexity of such systems, leading to
many questions that are still unsolved [120]. There is a rich body of literature with
approaches ranging from direct application of single agent reinforcement learning
to the multi-agent case to the design of specific MARL algorithms involving game
theoretic concepts. For comprehensive summaries of multi-agent reinforcement
learning and algorithms see [23, 42, 120].

For multi-agent reinforcement learning, some of the fundamental concepts apply-
ing to the single agent case have to be adapted. As studied in game theory, a Markov
decision process including more than one agent in an environment can be described
as a stochastic game [96]. A stochastic game is defined as a tuple (S,N ,A, p, r)
where S is a finite set of states, N is a finite set of players, A = A1×A2×· · ·×An is
the joint action set where Ai is the finite set of all actions available to player i ∈ N .
As in the single agent case, for simplicity it is assumed that the actions available
to player i are the same in every state, so that Asi = Ai. p is the state transition
function shown in equation 2.1 and r is the reward function defined in equation
2.2. Analogous to the single agent case, every agent acts rational to maximize the
expected return, following a policy πi(ai|s). In multi-agent settings, the expected
return following a policy is not only depending on every agent’s own actions, but
on the actions of all other agents in the environment as well, the joint action
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a = (ai, a−i) ∈ A, where −i = N \ {i}, that is the set of all agents N except agent
i ∈ N [42]. A joint policy of all agents is thus given by π(a|s) =

∏
j∈N πj(aj|s), lead-

ing to the joint value function adapted from the Bellman equation (eq. 2.6) [42, 120]:

vπi(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′ | s, a)
[
r(s, a) + γvπi(s

′)
]
∀s ∈ S. (2.13)

In the multi-agent setting, the best action is thus dependent on the action of all
other agents in the environment. This leads to a fundamental problem in multi-
agent learning: In a Markov decision process, the transition probabilities (eq. 2.1)
define the dynamics of the environment, as they tell the agent how the environment
is likely to change or behave after a certain action from the agent. In the model-free
reinforcement learning case, those dynamics are initially unknown and learned over
time from experience, following the assumption that the environment is stationary.
This means that the environment dynamics remain the same over time, i.e. the
probabilities for possible state transitions to occur after a certain action is taken are
static, thus following rules that can be observed and learned to later act upon those
observations. If there are more agents learning independently in an environment,
each following its own behavior and adapting constantly, the environment becomes
non-stationary. The agent can no longer sufficiently learn the dynamics of the
environment, because rewards and state transitions now also depend on the decisions
of all other learning agents in the environment. State transitions can no longer be
anticipated just from the current state alone, thus the Markov property is lost [54].
Finding an optimal policy in such a constantly changing environment becomes a
moving target problem [112]. Possible approaches to solve this problem depend
highly on the nature of the multi-agent scenario. [23] define three core scenarios:
the fully cooperative case, where all agents have a joint goal and share one reward
function (r1 = r2 = · · · = ri), trying to maximize the collective payoff. In the
fully competitive case, the scenario resembles a zero-sum game: what one player
wins, the other loses [96], resulting in contrary reward functions r1 = −r2. Though
zero-sum games are also possible with more agents, most literature focuses on the
two player case [23]. The third scenario are mixed tasks, where each agent is purely
self-interested and acts to maximize its own reward, called general-sum games [96].
This involves cases where agent decisions are completely independent from each
other as well as scenarios including congestion games where agents compete for
resources, therefore influencing each others rewards. In all scenarios, the problem of
a non-stationary environment due to multiple agents populating it can be addressed
differently. A major factor regarding non-stationarity is the level of knowledge
every agent has about the decisions and actions of others in the environment. This
knowledge and adaptation to the behavior of others can be modeled very differently,
ranging from complete disregard of the presence of other agents to sophisticated
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predictions about possible actions of others [42]. In the simplest case, one agent
treats all other agents as part of the environment, perceiving all fluctuations in
rewards and state transitions caused by the ongoing learning process of all other
agents as dynamics of the environment. Such independent learners [28] make use of
single agent reinforcement learning algorithms like Q-learning [116] in multi-agent
settings, neglecting some of the theoretical shortcomings of this approach. For
algorithms used in single agent settings to converge, a stationary environment
is required, which means that convergence guarantees in multi-agent settings no
longer hold [28, 53, 54]. Regardless of this problem, there are many practical
examples where the application of algorithms like Q-learning in MARL have shown
good results (see [23, 42, 120] for an overview). Much work has also been done
in developing new methods specifically for the multi-agent setting and extending
existing single agent algorithms for multi-agent applications [19, 25, 44, 57, 106].
Since optimal actions in single agent Markov decision processes are translated
to best response actions in multi-agent scenarios that result in Nash equilibria,
many of those concepts for designing MARL algorithms treat the convergence
towards such an equilibrium as an essential property. Nevertheless, this strong
focus on equilibria in multi-agent learning as it is practiced in game theory has been
questioned critically in the literature, especially for complex scenarios or where
realistic human decision-making is the objective [53, 97, 98]. Beyond a critical view
on the goal of convergence to equilibria, the usefulness of reducing interactions
in complex multi-agent systems to game theoretic concepts to find solutions has
been challenged altogether [101]. Besides theoretical considerations about the
objective of multi-agent reinforcement learning algorithms and the definition of
research categories, many other open questions still have to be answered, be it
the investigation of multi-agent scenarios with more than two agents (at least
in game theory) and the need for better models of human behavior [98] to the
need to study interactions between diversified agents, that is agents with different
learning processes and objectives [42]. In addition to develop efficient learning
schemes for various applications in artificial intelligence, multi-agent reinforcement
learning could also help in providing a better understanding of complex systems
where exact behavior cannot be anticipated beforehand. A potential field of use
is thus the investigation of complex systems by modeling individual behavior
and continuous adaptation through interactions and experience. In this context,
this thesis examines the potential of multi-agent reinforcement learning to model
realistic decision-making and route choice in road networks that can be applied in
traffic simulations.
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Chapter 3

Reinforcement Learning
Framework for Traffic Networks

3.1 The Environment

As described in section 2.3, Markov decision processes with ongoing agent - envi-
ronment interactions are the foundation of reinforcement learning. The model of
the environment is thus a crucial part of reinforcement learning, as information
about the quality of a certain action is transferred back to the agent as reward.
In this work, the environment is given by a traffic network represented as a graph
G = (V , E), consisting of a finite set of vertices or nodes V 6= {} and a set of edges,
links or arcs E , where each link e ∈ E is defined as a tuple of two connected vertices
v ∈ V, so that e = (v, v′). Since the main focus in this work are road networks,
only directed graphs are considered feasible networks, that is graphs where traffic
can only flow in the given direction of each link. Every agent i ∈ N in the network,
with N denoting the set of all agents corresponding to the definition of a stochastic
game in section 2.3.2, is moving from its source node oi to its destination node di.
The tuple (oi, di) is called an agent’s origin-destination pair or OD pair. When
moving through the network, an agent travels on a path p ∈ Pk(oi,di) ⊂ P, with P
denoting the set of all simple paths in the network and Pk(o,d) denoting the subset of
paths for a specific origin-destination pair in the network, with the size of the subset
determined by the number of paths in the choice set k. A simple path in graph
theory is defined as a path that has distinct source and destination nodes and no
self-loops, so that every node in the network is visited at most once. Especially in
larger networks, the number of available paths for every agent has to be restricted as
the size of the set of simple paths P can be too large to compute in reasonable time.
Therefore, the size of the choice set is determined by k. Methods to restrict the
choice set are discussed in section 2.2.2. For simplicity, the agent specific notation
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Pki = Pk(oi,di) will be used to denote a subset of size k of all simple paths from an
agent’s origin to its destination. Each path p ∈ P consists of a sequence of vertices
p = {v1, · · · , vn}. Every agent knows the vertex v it is located on, as well as all
previous nodes it visited so far (for the description of the exact implementation, see
section 3.4). In every step of the episode, each agent i chooses an action from the set
of possible actions Asi ∈ A at current state s ∈ S. Each action represents a network
link e = (vs, vs′) with vs, vs′ ∈ p ∈ Pki , with the current state node vs as start and
a possible next state node vs′ as end. Additionally, the agent perceives the current
level of congestion of the link e it chose in the last step and the current level of
congestion of all links represented as actions in the current state action set Asi . This
one-step lookahead follows the assumption that in real world scenarios, congested
roads can be spotted early when reaching an intersection, making it possible to react
and choose a different road. The congestion level le of a link e is determined by the
ratio of its current demand or load de, defined as the number of agents currently
traveling on that link, and its capacity ce, that is the maximum demand on the link
where free traffic flow is possible without leading to congestion. Three congestion
levels were defined so that le ∈ {0, 1, 2}, where level 0 translates to ’not congested’,
level 1 means ’congested’ and level 2 translates to ’heavily congested’. The conges-
tion levels are derived from the ratio of the demand de and the capacity ce as follows:

le =


0 if de

ce
< 1

1 if 1 ≥ de
ce
< 1.5

2 if de
ce
≥ 1.5

(3.1)

A state s ∈ S in the MDP is thus determined by the current state node vs from
the set of all vertices of all simple paths in the network v ∈ p ∈ P , the sequence of
all previously visited nodes, the congestion level of the last traveled link and the
current congestion levels of all links e = (vs, vs′) that are possible actions. Note
that also when considering all simple paths of a network, the set {v ∈ p ∈ P} 6= V ,
as each node v ∈ V can be represented as a distinct state multiple times, once
for every path p ∈ P where v ∈ p. The cost function c : N → R represents the
current cost for traveling on a link e ∈ E . In the specific case of this work, the cost
function is defined globally as the current travel time on a link e depending on the
current demand. The environment observes the demand on each link and computes
the corresponding link travel times based on the cost function c. An explanation
of the specific cost function used in the experiment is given in section 4.1.1. The
reward Rt+1 returned to the agent i for taking an action At in state St is computed by

Ri,t+1 = − c(de,t), (3.2)
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where the current travel time on an edge e with demand de is given by the cost
function c(de) and is returned to the agent as negative reward. The return G of an
episode, defined as the sum of all rewards received in an episode (eq. 2.3) is thus
the negative value of the sum of all link travel times of the simple path p traveled
by an agent i,

Gi = −
∑
e∈p

c(de). (3.3)

Since many agents are present in the same environment, individual decisions
affect the travel times of all other agents as well, making the agent - environment
interaction also an agent - agent interaction where agents indirectly influence the
decision of others by changing the characteristics of the environment. The MDP
can thus be seen as a sequence of congestion games at every step of an episode.

3.2 Agent Learning and Behavior

The reinforcement learning framework consists of a network environment where
several individual learning agents try to find the fastest route from their origin
or start node oi to their destination node di. The setting resembles a congestion
game where travel times on single links are computed by a link cost function and
increase with the number of agent using it. The scenario can thus be seen as a
competition for scarce resources. OD pairs assigned to agents are restricted to
pairs of origin and destination nodes where oi 6= di. Furthermore, no cycles within
a path are allowed, which means every vertex of the network can only be visited
once in each trip. Paths that meet those two preconditions - paths have distinct
source and destination nodes and every node is just visited once - are called simple
paths. Q-Learning [116] is used as the learning framework for individual agents.
This algorithm is very well studied and has been used for a variety of different
reinforcement learning tasks in single agent as well as multi-agent settings. This
algorithm updates the Q-value for a certain state action pair at every step of the
episode, incorporating the received reward Rt+1 and a predicted return based on a
greedy action taken in the next state St+1 [103]. In Q-Learning, the corresponding
action values are updated as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)]. (3.4)

The Q value represents the expected reward from taking an action A in a certain
state S, called a state-action pair (St, At) and can be seen as the experience an
agent collects over time (measured in steps t of an episode). In the specific case of
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this work, the actions are the set of possible route choices from a network node v
the agent is currently located on. Thus, for every state s there is a different action
set As. Since the task is modeled as a Markov decision process as described in
section 2.3, the state description has to include any information necessary to predict
state transitions. As already stated, only simple paths are considered valid paths,
rendering already visited nodes invalid action choices. The definition of a state
therefore has to include not only the current node location, but also the sequence
of all actions taken in previous steps. The parameter α ∈ [0, 1] is the learning rate.
The learning rate controls the influence of the most recent experience on the overall
evaluation of a certain state-action pair, represented as the Q-value. The higher
the learning rate, the more influence the outcome of the most recent decision has
on the Q-value. In other words, a higher α value emphasizes an agent’s short-term
memory whereas a lower α value makes an agent value past experiences more,
emphasizing a long-term memory. In the case of α = 1, the Q-value represents
only the most recent experience, overwriting any previous experiences. γ ∈ [0, 1] is
the discount factor as described in section 2.3.1. The future reward is predicted
based on the Q-value of the next state under a strictly greedy policy, notated as
maxaQ(St+1, a). Q-Learning is thus an off-policy reinforcement learning algorithm,
since it evaluates states based on the return that can be expected following a
greedy policy, although the Q-learning agent is actually following another policy,
making decisions that diverge from a strictly greedy policy. For a more thorough
explanation of the Q-Learning algorithm and also a discussion about performance
see [103]. The reward R returned from the environment at each step is the negative
travel time, as shown in equation 3.2. It is assumed that agents are generally
congestion averse, trying to minimize time spent on congested links. As suggested
in [43], commuter satisfaction decreases with increased time spent in congestion,
leading to a perceived longer travel time. The negative reward returned from
the environment corresponding to the travel time is thus increased if time was
spent in congestion, based on the severity of the congestion of the link given by
the congestion level le as defined in equation 3.1. The weighted negative reward
representing the perceived travel time and denoted as Rw,t is computed as follows:

Rw,t =


Rt if le = 0

Rt · 1.25 if le = 1

Rt · 1.5 if le = 2

(3.5)

To prevent unrealistic congestion scenarios due to every agent departing at the same
time, the initial time step of an agent defined as tinit ∈ N is chosen randomly. The
interval of possible time steps for an agent to depart has to be defined according to
the characteristics of the network and the simulation needs.
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Humans act and learn differently, and those differences in individual behavior
should be also reflected in reinforcement learning agents when trying to simulate
human route choice behavior. For the decision-making process, two important
factors are affecting the resulting decision: First, past experiences as well as
current perception of the environment. Second, the weighting of those individual
perceptions during the decision-making process. While agents are collecting different
experiences over time and thus all have a subjective view of the environment that
forms the basis for their further actions, the question how those experiences are
exactly influencing future decisions also has to be considered when trying to model
individual behavior. The parameters α and γ and the exploration parameters
used in the multi-agent reinforcement learning scenario can be sampled from a
probability distribution to emphasize differences in human characteristics within a
population. The choice of the method and parameter values to enable exploration
can be used as an abstract measure of how ’adventurous’ an agent’s behavior is,
while differences in the influence of past experience on decision-making can be
modeled with the α parameter. γ can be used to differentiate between agents
that consider mainly short-term consequences of their actions and agents that act
more farsighted. As the previous chapters have shown, human behavior however is
complex and the question how artificial intelligence can be used to model it is part
of ongoing research. This is of course also true in traffic scenarios [58]. Trying to
condense diversity in behavior to only a handful of variables can thus only be a
mere approximation. Another factor to consider is individually different perception
of variances in travel time. This is addressed in this work by the introduction of
risk-sensitivity in the algorithm, as described in the next section.

3.3 Risk-Sensitive Decision-Making

As discussed in section 2.2, empirical evidence indicates that human behavior
cannot accurately be described by the (expected) utility maximization approach
of classical economic theories of decision-making. Furthermore, learning and
adaptation are problems not considered in the majority of models of behavior,
which are mostly static. Reinforcement learning not only has shown major advances
in artificial intelligence research, but also offers an opportunity to model realistic
learning processes of individuals based on experience. This is also due to the fact
that the computational concept of reinforcement learning is based on theories of
learning and behavior from psychology and cognitive sciences and thus resembles
strategies of learning observed in humans and animals [71]. Incorporating this
concept in simulations concerned with the implications of decision-making thus
has the potential to generate more accurate models. However, to better replicate
human behavior, concepts of theories of decision-making have to be integrated in
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the learning process. Behavioral theories suggest that risk is an important factor
for decision-making. Many works regarding behavior modeling acknowledge the
implications of risk on decisions, such as avoiding risk and the preference of choices
with safer outcomes (see section 2.2). Risk-aware reinforcement learning can thus
be a concept to further enhance the performance of such models in predicting
decisions. Apart from realistically modeling human behavior, there are several
reinforcement learning and control tasks that require risk assessment as part of the
action decision process. This includes scenarios where the outcomes of decisions
could potentially have severe implications. Such implications could include safety
risks in tasks where humans are involved or the risk of high cost due to potential
damage of the agent [49]. In reinforcement learning, evaluations of the quality of
states and actions are usually based on estimates of rewards to be expected defined
as the mean value of past rewards (in the case of a decreasing learning rate α, it
is a weighted average). In many cases, rewards received for a certain action are
dependent on processes in the environment the agent cannot perceive or control,
which are observed as random fluctuations in the reward signal. If the reward signal
shows high variance, the mean value is not an appropriate criteria to estimate the
quality of a decision. This is especially true in scenarios where the distribution
of rewards is an important factor the decision-making, such as cases where risk
has to be avoided. Several approaches to risk-sensitive reinforcement learning have
been proposed in the literature, ranging from methods that strictly avoid risk
by evaluating worst-case scenarios to approaches including transformation of the
return (utility) based on expected utility theory. A more detailed overview can be
found in [66].

Another approach evaluates the risk of an action based on the TD error (tem-
poral difference error). The TD error is the difference between the estimated
return from a state and the updated estimate after the reward for a certain action
was received. TD errors are an important aspect of temporal difference learning
algorithms [103]. Equation 3.6 shows the computation of the TD error, with V (St)
representing the value estimate of a state S at time step t:

δt = Rt+1 + γV (St+1)− V (St). (3.6)

After an action was taken, the new estimate is the received reward Rt+1 plus the
discounted estimate of the new state St+1. The TD error is also included in the
Q-value update of the Q-learning algorithm (eq. 3.4), computing the difference
between the expected return from a state-action pair and the updated expectation
of the return after receiving the reward:

δt = Rt+1 + γmax
a
Q(St+1, a)−Q(At). (3.7)
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The concept of TD errors in reinforcement learning is supported by the hypothesis
of reward prediction error described in [92], where observed dopamine neuron
activity in laboratory experiments showed patterns corresponding to TD errors.
Risk-sensitive reinforcement learning algorithms based on this concept are proposed
in [66, 72, 95]. [66] propose a risk-sensitive version of TD-learning and Q-learning
algorithms, where the temporal difference value is transformed based on an asym-
metrical piecewise linear weighting function depending on whether the TD error is
positive or negative. This approach weights outcomes that are worse than expected
differently to those that are better. A slightly modified version of this TD-learning
algorithm is used in [72], also transforming the TD difference value based on the
TD error. The temporal difference update is multiplied by a coefficient 0 ≤ η ≤ 1
depending the TD error δ:

V (St) =

{
V (St) + η+δt if δt > 0

V (St) + η−δt otherwise
(3.8)

In this approach, the learning rate α is completely substituted by η. The model
was compared to fMRI (functional magnetic resonance imaging) images of brain
activity where participants had to choose between actions with sure or uncertain
outcomes, showing the benefit of including risk awareness in reinforcement learning
models that reflect human behavior. A third similar approach for a risk-sensitive
variant of the Q-learning algorithm incorporating prospect theory is proposed in
[95]. Instead of using a piecewise linear function, the authors use an asymmetrical
piecewise nonlinear function as proposed by prospect theory to model utilities for
gains and losses, where a positive TD error represents a gain and a negative TD
error a loss. The algorithm performance is compared to fMRI data, also showing
correlation between neural activity and the risk-sensitive Q-learning algorithm.
The nonlinear transformation function u(x) where x = δt was defined as follows:

u(x) =

{
k+xl if x ≥ 0

k−xl otherwise
(3.9)

Different values for k were used (k+, k−), depending on whether the TD error
is positive or negative. Several combinations of k and l were discussed in the
paper. The idea of variable learning rates was also discussed in a different research
context. In [19], the authors propose a multi-agent reinforcement learning algorithm
WoLF (Win or Learn Fast) based on game theory, using a variable learning rate
to make agents learn faster from bad experiences. In [80], the authors propose a
reinforcement learning framework that integrates cumulative prospect theory for
risk-sensitive control applications.
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The reinforcement-learning framework proposed in this work implements risk-
sensitivity based on TD prediction errors as described in [66, 72]. TD errors
are computed to evaluate outcomes in comparison to predictions based on past
experienced returns. TD updates are then transformed based on an asymmetrical
piecewise nonlinear function following the approach used in [95]. The function is
defined as:

Q(St, At) =

{
Q(St, At) + α[λ δ σt ] if δt ≥ 0

Q(St, At) + α[(1 + λ) δ σt ] otherwise
(3.10)

Parameter λ ∈ [0, 1] is the transformation parameter for the TD error δt. The
exponent σ ∈ (0, 1) shapes the function so that it is concave for gains and convex
for losses and is thus an approximation of the utility function proposed by prospect
theory. The definition of a reference point for gains and losses was identified as
a crucial difficulty in the application of prospect theory in various works. In this
approach, the reference point is the agent’s TD prediction before choosing an action,
following the reward prediction hypothesis. Receiving a higher reward, resulting in
a more optimistic new expectation of the total return and a positive TD error, is
thus perceived as a gain, whereas a low reward and a worse new expectation of the
return results in a negative TD error and is perceived as a loss. Both parameters η
and σ can be sampled from a probability distribution to simulate different levels of
risk aversion and different levels of travel time variability across agents.

Behavior under risk plays a crucial role also in classic reinforcement learning
tasks that are not explicitly risk-sensitive. The exploration - exploitation dilemma
in reinforcement learning, which describes the trade-off between the exploitation
of actions that are known to result in high rewards and the exploration of new
actions and strategies that could potentially lead to even better rewards, but also
to worse outcomes is a key difficulty. Reinforcement learning agents have to take
risky decisions from time to time to be able to explore the state space and find the
best actions. Otherwise, convergence would not be guaranteed. This exploration
can also result in actions with less attractive or even poor outcomes. When risk-
sensitivity is a key concept, the exploration scheme thus has to be considered as
well. The proposed transformation function that weights good or bad outcomes has
to be combined with a exploration scheme that takes those different state-action
values into account. The widely used ε - greedy exploration scheme described in
section 2.3.1 assigns a probability of 1 - ε to the action with the highest predicted
return. All other actions are chosen with a probability of ε divided by the number
of possible actions. Differences in the expected return between those actions have
no influence on their probability of being selected. The ε - greedy policy is thus not
practical to use in combination with the proposed temporal difference weighting, as
selection probabilities of actions aside from the greedy action are not influenced by
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the different risk evaluations of those actions. Therefore, the Boltzmann or softmax
exploration scheme is used, which is also widely applied in reinforcement learning
research [48, 103]. The selection probability of an action a ∈ As is computed based
on the Boltzmann distribution:

P (a | s) =
eQ(a)/τ∑

a′∈As eQ(a′)/τ
(3.11)

τ > 0 represents the temperature parameter. A higher the temperature τ results in
more exploratory behavior as the probabilities of all actions align with τ →∞ [48].
The advantage of the Boltzmann exploration method is that it assigns selection
probabilities to all possible actions a ∈ As based on their relative value [104].
This means that unlike the ε - greedy strategy, which assigns a high probability
to the best action and the same smaller probability to all other actions, the
Boltzmann exploration scheme assigns different probabilities to all actions based
on their expected return. As the evaluation of risk of an action is integrated in
the action value by shifting the Q-value according to the difference in prediction
and real outcome of an action, the Boltzmann scheme is useful as it takes this into
consideration by differentiating between single actions and their expected returns
during exploration.

3.4 Modeling Road Networks as MDP Environ-

ments

The agent behavior model is based on the assumption that, as opposed to the
concept of selfish routing, agents have no knowledge of the network and the traffic
conditions and do not know the shortest path from their origin to their destination.
Agents therefore have to rely on trial and error to find their way in the beginning
of the learning phase. Finding a way to the desired destination node might thus
be a time intensive task. This is particularly true in larger networks with many
hundreds or thousands of nodes, making scalability of the reinforcement learning
framework a concern. Aside from scalability issues, letting agents simply roam
the network to find their destinations can lead to slow learning, especially in the
initial phase of the simulation, as agents have to explore many different paths
to find routes that lead to their destination. While this might be less significant
in single agent scenarios, this approach is impractical for multi-agent tasks with
many thousands of agents learning simultaneously. As described in section 1.2,
the potential problem that agents could roam around the network without ever
finding their destination is addressed in the literature by simply terminating the
episode after a predefined number of time steps, even with agents still traveling
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through the network. However, this solution does not solve the problem of slow
learning and does not help agents reaching their destination faster. This problem
can be solved by applying heuristics to the route finding process. As described in
section 2.2.2, a possible solution is the restriction of possible paths to a set of routes
computed by a k-shortest path algorithm. From this choice set, a predefined route
is selected. This approach is used widely in the literature (see section 1.2), however
it reduces the MDP to a stateless multi-armed bandit problem. Furthermore, it
strictly reduces the number of possible routes to a set of already fixed paths, thus
restricting an agent’s set of decisions, and eliminates the possibility of choosing
individual links en-route. To allow agents to navigate through the network by
choosing individual links sequentially and reduce simulation time compared to
pure trial and error wayfinding, a different approach is proposed in this work. The
main requirement to the model is the possibility for agents to select links in the
network sequentially, thus building their path on the fly and with the ability to
adapt the route to current congestion patters. To prevent agents from traveling
through the network without ever finding their destination or reaching dead ends,
the agent’s state-action space representation of the network environment has to
ensure that agents will reach their destination node while still allowing on the fly
route decisions. Each agent’s representation of the network environment is thus
modeled as a decision tree including all paths the agent can travel on to reach the
destination. This approach guarantees that the agent will arrive at the desired
destination, independent on the actions chosen along the way. The number of paths
in the set of possible routes can be chosen freely. Depending on the network size
and application, either all simple paths or a set of k-shortest paths in the network
are computed in advance for every agent’s OD pair using the all simple path or
shortest path algorithm implemented in the python networkx library [40]. The set
of paths is of course not limited to those options and choice sets can be generated
by any method. From those paths, a decision tree is generated with the start node
as root and the destination node as leave nodes. An example for such a decision
tree for the Braess network is shown in figure 3.1.

As a result, every agent perceives the shared environment as a decision tree,
navigating through the tree to find the best path rather than traveling though
the whole network. Conceptually, MDPs can be described as trees, consisting of
sequences of states and actions. Such a representation is used for example for backup
diagrams in [103] to visualize reinforcement learning algorithms. Modeling network
environments as tree structures is thus a consequent extension of this concept.
This approach has several advantages compared to tabular network representations.
It ensures that all actions taken by the agent are leading toward its destination,
regardless the size of the choice set. This is especially useful in larger networks and
big choice sets, making learning progress faster. Furthermore, a state is sufficiently
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Figure 3.1: An example of an agent decision tree using the Braess network (left).
The network is transformed into a decision tree including all possible action
sequences that bring an agent to the destination node. Here, the state transitions
are deterministic, but the same concept can be applied to MDPs with stochastic
environment dynamics.

described as an agent’s current location inside the tree. By computing the set of
paths in a preprocessing step, no further computation time is needed during the
simulation for agents to find possible routes. Computing choice sets of a large
network can of course be time intensive, but the computation has to be done only
once in the preprocessing step. Network and path data can later be shared to
facilitate ongoing research and validation of research results.

In a network environment representation as seen in figure 3.1, every node of
the network is represented as a state, actions in the MDP correspond to links in
the network. State transitions are thus deterministic, as every action is always
followed by the same state. The only feedback agents receive about the current
traffic conditions in the network is the reward signal after every step, corresponding
to the travel time on the used link. As travel time in such a multi-agent scenario is
depending on the actions of all other agents in the environment, the reward signal
an agent receives will show fluctuations, with every agent constantly adapting to
the new conditions. This leads to a feedback of seemingly random rewards. To
provide the agent with more information about the current traffic conditions, the
agent observes the current level of congestion of the link it travels on as well as
of all links that represent next actions, as described in section 3.1. A node in the
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tree is thus modeled as a set of 3 × 3 matrices for every link in the action set
As. Every cell of the matrix represents a different state, depending on the traffic
conditions experienced on the previously used link and the currently perceived
traffic conditions of the next link, i.e. action. The traffic condition refers to
the congestion level le of a link as defined in equation 3.1. Every node is thus
represented as 9n states, where n describes the number of possible actions (i.e.
links) at the current node, a state consisting of all individual Q-values of the
next actions depending on their current congestion level and the congestion in the
previously used link. Figure 3.2 shows a visualization of such an MDP based on
the Braess network. The actual algorithm is shown on page 59. Providing agents
with knowledge about the traffic conditions on the current link and a one-step
lookahead is a realistic assumption for human behavior in route choice scenarios
and offers more flexibility of choice for agents, as they are able to make decisions
based on knowledge about the current network state. However, it also introduces
non-stationarity. An action can lead to different states depending on link congestion,
which means that state transitions in the environment become stochastic. As link
congestion levels in multi-agent scenarios with constantly adapting agents cannot
be predicted with sufficient precision, the MDP becomes non-stationary, possibly
interfering with convergence. However, it can be argued that convergence to the
optimal policy anyway is an unrealistic assumption regarding the prediction of
human behavior. The topic of non-stationarity in Markov decision processes in
multi-agent reinforcement learning is already discussed in section 2.3.2.
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Figure 3.2: Decision tree representation of traffic network with stochastic transition
probabilities. Agents observe the traffic conditions of the previous used link as well
as the traffic conditions on all links that are possible actions.
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Algorithm 1: Q-Learning for Route Choice

Input: Set of agents N with parameters τ > 0, α, γ, λ ∈ [0, 1], σ ∈ (0, 1),
tinit ∈ N.

Input: Network environment as graph G = (V , E).

Build decision tree and initialize Q(s, a) = 0 ∀s ∈ Si ⊂ S, a ∈ Ai ⊂ A,
∀i ∈ N

for n in number of episodes do
Initialize set of agents not in terminal state Na = N .
while Na 6= {} do

for i ∈ Na do
if current time step t ≥ ti,init then

take action A = e ∈ E from current state S based on
Boltzmann policy.

else
do nothing.

update link demands d and link congestion levels l ∈ {0, 1, 2}.
compute current link travel times from cost function c(d, c).
for i ∈ Na do

observe travel time as negative reward R and link congestion le
on current link.

observe next state S ′

compute weighted reward Rw based on link congestion le.
if le = 0 then

Rw = R
else if le = 1 then

Rw = R · 1.25
else if le = 2 then

Rw = R · 1.5
compute TD error: δ = Rw + γmaxaQ(S ′, a)−Q(S,A).
update Q-value:
if δ ≥ 0 then

Q(S,A)← Q(S,A) + α[λ δ σ]
else

Q(S,A)← Q(S,A) + α[(1 + λ) δ σ]

if S’ is terminal state then
Na = Na \ i.
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Chapter 4

Experiment

4.1 Experiment Setup

4.1.1 Road Network

The Sioux Falls Road Network was used as a simulation environment. It is a
well studied network and has been used in many simulation scenarios, including
reinforcement learning for traffic modeling (see for example [4]). The network,
shown in figure 4.1, consists of 24 nodes and 76 links. The network data was
derived from [111], with some changes applied to the original data from the source
to simplify the simulation scenario. As Sioux Falls is a representation of a highway
network, the capacities ce of a link e was set to ce = 1800 cars/h for all links in the
network, following the average capacity values recommended in [70]. As link cost
function, the widely applied BPR cost function from the Bureau of Public Roads
[82] was used, which is defined as:

c(e) = te

(
1 + α

(
de
ce

)β)
, (4.1)

where te is the free flow travel time of an edge e, de is the current demand and ce
the capacity on that edge. The parameters α and β were chosen according to the
’traditional’ values α = 0.15 and β = 4. The same cost function was applied to all
links in the network. To simulate commuter traffic, it was assumed that 80 percent
of all OD flows originate in the city center and arrive at a peripheral node of the
network, and 20 percent of all flows start at a peripheral node and arrive at a central
node. The four nodes with the ids [10, 11, 14, 15] were defined as central nodes,
the five nodes with the ids [1, 2, 7, 13, 20] were considered peripheral, resulting in
a set of 40 possible OD pairs. From these constraints and the given distribution of
flows, the actual amount of flows on those OD pairs was then created randomly.
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Figure 4.1: The Sioux Falls network. Nodes in darkgray are central nodes, while
those in lightgray are peripheral. White nodes are transit nodes that are neither
origins nor destinations of OD pairs in the simulation.

The choice set of each individual agents was defined as the set of k-shortest paths
in the network, with k = 1000. To the authors best knowledge, the size of the
choice set thus exceeds that of most approaches described in the literature in this
domain. The paths were computed using the python networkx library [40] using
Yen’s k-shortest path algorithm [119].

4.1.2 Agent Parameters

The traffic simulation in the experiment was conducted using 50000 individual
reinforcement learning agents, using the risk-sensitive and congestion-averse variant
of the Q-learning algorithm described in section 3.2. As proposed in this section,
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Figure 4.2: Value distributions for agent parameters used in the simulation. τ
was sampled from a Gamma(11,0.3) probability distribution, α from a Beta(30,30)
distribution, γ from a Beta(10,1) distribution and λ from a Beta(16,2) distribution.

Q-learning parameters can be used to model differences in behavior within a
population. Individual values for each agent were thus sampled from different
probability distributions to account for diversity in behavior and learning. The
shapes of the parameter distributions were determined according to the defined
interval of the parameters as well as their suitability for reinforcement learning
and their assumed plausibility. The learning rate α and the discount factor γ
were sampled from a beta distribution, as both parameters are defined in the
interval [0, 1]. The learning rate α was sampled from a Beta distribution using
the shape parameters (30, 30), the values for the discount factor γ were sampled
from a Beta(10, 1) distribution. The initial values of the Boltzmann temperature
τ were sampled from a Gamma(11, 0.3) distribution. Additionally, a temperature
decay rate was applied to reduce exploratory behavior over time. Every agent’s
temperature value was updated each episode by τe = τe−1 · 0.999. Individual
risk-sensitivity was modeled by sampling the risk coefficient λ from a Beta(16, 2)
distribution. For the exponent σ, a fixed value of σ = 0.8 was assumed. In
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Figure 4.3: Simulation results showing mean travel time, mean number of steps and
number of congested links. The results are averaged from 100 individual simulation
runs.

every episode, the departure time tinit was chosen randomly for each agent, with
tinit ∈ [1, 3]. Figure 4.2 shows the distribution of sampled values for each parameter
in the test case, taken from the parameter samples of all simulation runs.

4.2 Results

The duration of one simulation was set to 2000 sequential episodes. In total, 100
simulation runs were performed using the Google Cloud Computation Engine. The
data gained from the individual simulation runs was averaged to generate the final
results presented in this section. The results can be seen in figure 4.3, showing
the mean travel time in the network, the average steps or links needed to reach
the destination from the origin as well as the number of congestions occuring in
the network per episode. The light areas in the mean travel time and mean steps
diagrams show the average standard deviation, which was computed as the square
root of the mean variance in each episode over all simulations. The mean travel
time of all agents in the network decreases from 41.6 minutes in episode 1 to 19.6
minutes in episode 2000. The number of steps needed to reach the destination
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Figure 4.4: OD Matrices showing average patterns of link congestion occurrence.
The color indicates the total count of link congestion states that occur on average
within the given episode interval. Blue indicates links where congestion occurs
more frequently.

decreases from 10.5 steps in episode 1 to 4.7 in episode 2000. The data indicates
a fast learning rate in the initial phase of the simulation. The average number
of link congestions occuring in each episode shows a different pattern. Starting
at an average of 6.7 congested links in episode 1 followed by a peak at around 21
and a quick decline to the initial values, the graph again shows an increase in link
congestions, resulting in 21.3 link congestions on average in episode 2000. Figure
4.4 shows the OD matrix of the Sioux Falls network, visualizing the congestion
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patterns at different stages of the simulation. For every link in the network, the
number of time steps t of each episode was counted where the link is in a state
of congestion. The average values from all simulations were then summed for
intervals of 250 episodes to give a better impression of the congestion patterns,
as the comparison of single episodes is not a meaningful statement due to the
stochastic nature of the route choice process. A state of congestion is given if the
demand on a link e exceeds its capacity, that is where the current congestion level
le > 0 as given in equation 3.1. It can be seen that the link demand patterns in the
network are changing over time, indicating adaptation of the agents to the traffic
conditions.

4.3 Discussion

As seen in the average travel time and mean number of steps per episode in figure
4.3, agents show a steep learning curve in the initial phase of the simulation, with
average travel time in the network decreasing significantly as agents discover more
efficient paths in the network. This is also reflected in the data of average time
steps needed per episode, as the average number of steps or links used to reach
the destination node in an episode decreases simultaneously, indicating the use
of shorter paths with less links. For ever OD pair, the choice set was defined
as the set of k-shortest loopless paths with k = 1000. thus exceeding the choice
set size in most of current literature in this domain. The approach presented
using decision trees as state-action space representations shows promising results,
with a fast learning rate in the initial period of the simulation. It can thus be a
good alternative for current approaches in the domain of multi-agent reinforcement
learning for traffic networks. The performance of this approach indicates that
it is feasible also for simulations of bigger road networks and with more agents
learning simultaneously, something that has to be tested in the future. The number
of links in the network experiencing congestion rapidly decreases after an initial
peak. This can be attributed to the fact that in the first few episodes, agents
have to explore the network to find efficient paths, resulting in low rewards. As
many agents choose similar paths, they experience congestion, learning that it
leads to longer travel times. The initial phase of the learning process thus reflects
adaptation to general network conditions, such as path lengths. The increase of
congested links over time seems surprising and contradictory to the principle of
congestion aversion implemented in the algorithm. However, rising link demands
are also a consequence of the learning process. As agents learn about shorter paths,
congestion starts to occur more often, as efficient routes with shorter travel times
are more frequently used. The maximum link demand in each episode is shown in
figure 4.5 for all links where congestion occurs on average in more than 200 time
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Figure 4.5: Maximum link demands for all links where congestion occurs on average
at least 200 times in an interval of 250 episodes. Thresholds of link demands for
congestion levels 1 and 2 are shown as dashed lines.

steps in an interval of 250 episodes, as seen in figure 4.4. The graph also shows
the defined thresholds of congestion levels as formulated in equation 3.1. It is
apparent that agents try to find a balance between reaching the maximum demand
while keeping the travel cost as low as possible. Since the BPR cost function used
in this experiment is a polynomial function, link travel times show a nonlinear
increase with increasing demand. Figure 4.5 shows that the agents try to solve
this optimization problem, keeping the link demand as close to the maximum
capacity as possible, not exceeding a certain threshold. Congestion aversion was
implemented according to equation 3.5, applying a weighting to the perceived travel
time depending on the congestion level on a link. The influence of this weighting is
also visible in figure 4.5, as maximum link demands never exceed the threshold set
for congestion level 2. This shows the influence of the definition of the parameters
for the behavior of individual agents, making it necessary to invest further research
in how the single parameters could be shaped to represent realistic human behavior
and deviations across populations.

Figure 4.6 shows the mean travel times in more detail, for each of the possible
OD pairs in the test case. The left column shows mean travel times for OD pairs
starting at a central node and ending at a peripheral node, the right column
shows the results for OD pairs starting at a peripheral node. As suspected, agents
traveling from a peripheral node to the center need less time, as they experience
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Figure 4.6: Average travel times for all 40 possible origin-destination pairs in the
experiment. The left column shows travel times for OD pairs from a central node
to a peripheral node, the right column travel times for OD pairs from a peripheral
node to a central node.

less congestion due to the fact that flows with the origin at a peripheral node
account for only 20 percent of all flows. Looking at the OD flows originating at
a central node, after a phase of steady decrease in travel time, a disruption is
visible, with a abrupt increase in travel time. This disruption can be observed in
many individual simulation runs, often occuring around the mark of the 750th
episode. After a steady decrease in travel time follows a sharp increase. This results
in more volatile behavior of the agents and stronger fluctuations of travel times.
One possible explanation is that agents learn about efficient paths, increasing the
probability of choosing such a path. At the same time, exploratory behavior is
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decreasing with ongoing simulation duration, leading to increasing probability of
greedy actions. This leads to higher demand on certain links used by many agents,
resulting in congestion and longer travel times. The fluctuations in mean travel
time for some OD pairs also reveals the non-stationarity of the MDP. While trying
to find efficient routes, agents experience random fluctuations due to the decisions of
all other agents as well as the non-fixed starting time of the commute. Experiencing
a sharp increase in travel time results in a large negative TD-error and thus a
Q-value update towards a lower expectation of return, making agents prefer other
actions. If differences in the Q-values of those actions are small and the policy
followed converges towards the greedy policy because of a decrease in exploration,
the action with the best expected return can thus change frequently due to the
non-stationary environment. This results in volatile behavior of the agents. A
diminishing learning rate over time - as done in many reinforcement learning tasks
- could solve this problem, with the downside of not allowing continuing adaptation
to environmental changes. The network used as an environment also has a big
impact on this behavior. The free flow travel times of the links in the Sioux Falls
network used in this experiment are very similar for all links, thus resulting in less
differentiation between actions and thus to more fluctuation. The results indicate
that agents adapt to the conditions in the network, balancing between congestion
and detours. Fast learning indicates that the decision-tree approach developed
in this work could be applied to larger networks. Volatile behavior is visible in
some scenarios, indicating the influence of the non-stationarity of the MDP. The
definition of the parameters for learning, risk-sensitivity and congestion aversion
are crucial for the performance, and further research is important in this direction.
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Chapter 5

Conclusion

The accurate description and prediction of human behavior still is a difficult problem.
It is a question spanning various scientific backgrounds, with research predominantly
in the fields of economics and psychology. As new technologies emerge, leading
to research with the possibility to simulate and understand systems of increasing
complexity, modeling human behavior is as important as ever. Research in artificial
intelligence also led to continuing interest in the structure human decision-making
and learning to incorporate knowledge about human behavior in the development
of new artificial agents. The question how human beings make decisions plays an
important role in many fields. While huge amounts of data generated daily help
to describe human behavior ex post, correct predictions of individual decisions
still is difficult. This is especially true if the decision-making context is changing
constantly, such as the emergence of new choice opportunities that are not pictured
in the data. Furthermore, in scenarios where this data is not available, research
still has to rely on models of human choice. Many research domains model complex
systems where constant interaction and adaptation of individuals occur as agent-
based models, trying to simulate dynamics in such multi-agent systems by modeling
entities with distinct behavioral characteristics. Such models also enable learning
and adaptation, leading to behavior originating from the agent’s direct interactions
and observations in the environment. This potentially leads to behavioral patterns
that could not be anticipated a priori, and thus can help in understanding such
patterns of interaction. In traffic modeling, human behavior is a major factor for
the accuracy of traffic simulations. Decision-making models are part of almost
every consideration made in traffic models, spanning decisions from the choice
of the destination to the choice of the mode of transportation and the choice of
the actual route taken. Many choice models used in traffic modeling are derived
from classical utility maximization models, while much of research has shown
that those concepts fail to really describe behavioral characteristics of human
beings. Additionally, the majority of traffic models assume traffic equilibria and
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static behavior, where agents are not able to learn from experience and the traffic
conditions in the network. Reinforcement learning is seen as a possible approach
for learning agents in traffic simulations. This thesis proposed such an approach
for simulating route choice behavior of humans in traffic networks, incorporating
multi-agent reinforcement learning based on the Q-learning algorithm [116] and
findings of behavioral and cognitive research to provide an idea how human behavior
in traffic could be approximated with the help of artificial intelligence. A new
method was proposed to model road networks as decision trees to be used as
reinforcement learning environments. This enables individual agents to choose links
in the network en-route, making it possible to adapt to current traffic conditions in
the network. It furthermore facilitates learning, as the tree structure guarantees that
every agent will arrive at its destination in each episode. This work suggests that
reinforcement learning can be used to better reflect human decision-making in traffic
by incorporating behavioral research. Sensitivity to the risk of potentially undesired
outcomes is included in the learning process, as well as the assumption that humans
generally show an aversion towards congestion in commuter traffic. For the test
case, algorithm parameters were sampled from Beta and Gamma distributions to
indicate diverging behavioral characteristics within a population. As shown in the
results, agents achieve a significant reduction in travel time. Learning progress
is fast in the initial period of the simulation, showing the advantage of modeling
networks as decision trees. The changes in congestion patterns indicate that agents
try to avoid congestion, while accepting congested links if a detour leads to long
delays. The choice of parameters is identified as a crucial factor for the simulation
results.

The following aspects were identified as possible lines of further research. First,
while the approach presented introduces aspects of behavioral theories to provide
a more accurate description based on current scientific research, it is still based
on travel time as the major factor of the utility function. While this is a useful
approach to evaluate the performance of the reinforcement learning framework,
more aspects have to be included to model human behavior. In future research, an
extension of the reward function to picture more diversified utility functions is thus
important. This can be achieved in the selection processes of the choice set, as well
as with the use of network data providing additional information that can be used
in the reward function. Furthermore, agents can be modeled with different levels
of knowledge of the network, resulting in more diverse behavior. New agents could
be added during the simulation to analyze disturbances in traffic caused by agents
with a lack of knowledge about the network. Second, applying the framework
for route choice to bigger networks. While the Sioux Falls network is a widely
used test network, it does not represent a realistic road network. Results gained
from simulations in bigger networks can help to develop the presented approach
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further. Third is closely related to the last point and concerns possible approaches
for validation and calibration based on real network flow data. Sampling algorithm
parameters from a probability distribution is used to represent diversity within the
population, but the probability distributions used in the present experiment are
based on assumptions. Using data from real networks could be used to calibrate
and validate the reinforcement learning route choice framework. A fourth line
for further research considers the integration of the RL route choice framework
with existing microscopic traffic simulators. The traffic simulator SUMO [61] as
an example offers a Python API to access the simulation. This could be used to
combine the presented reinforcement learning approach for route choice behavior
with microscopic traffic models to achieve more accurate traffic predictions. This
offers many possibilities, potentially integrating reinforcement learning models also
in other sub-parts of the traffic simulation that rely on the description of human
behavior, such as lane change models. Finally, it is important to further integrate
risk-sensitivity in the learning process of RL agents. Modeling the risk linked with
certain decisions is crucial for modeling realistic behavior. In addition to concepts
reviewed and used in this thesis, ongoing research in reinforcement learning shows
promising advances in this field, with new developments to incorporate reward
distributions in reinforcement learning algorithms. One recent development is
distributional reinforcement learning [9], where the agent learns whole reward
distributions instead of averages. It was shown that distributional reinforcement
learning leads to better results than traditional reinforcement learning algorithms.
Recent research on brain activity furthermore suggest that learning probability
distributions of outcomes for actions is also present in the human brain, encouraging
the potential of this reinforcement learning approach [30]. The applicability of
distributional reinforcement learning in non-stationary multi-agent scenarios is a
question to be answered in the future.
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