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Abstract
Today Lithium-ion battery technology represents one of the most promising technologies
for electric energy storage and has become increasingly important in the automotive
sector. Therefore, the monitoring of battery State of Health is essential for the safe and
efficient operation of electric and hybrid electric vehicles. A quantity, which particularly
reliably describes a cell’s State of Health is its total capacity. However, cell capacity
cannot be directly measured and therefore has to be properly estimated.

This work deals with the investigation of different methods for State of Health estimation
of Lithium-ion cells for the on-board use. After a brief introduction to Lithium-ion
cells and their ageing mechanisms, two methods based on the analysis of charging
characteristics are applied to measurement data gathered from extensive ageing tests
taken on Panasonic NCR18650B cells. In this comparative study Incremental Capacity
Analysis and Analysis of the Constant Voltage charging process are used to describe
the degradation in State of Health for a variety of ageing conditions. Subsequently,
Approximate Weighted Total Least Squares, an optimization method for on-board
capacity estimation, is examined in combination with different methods for State of
Charge estimation. To validate the technique’s applicability regarding on-board use, it
is applied to measurement data gathered from drive cycle ageing tests.

For the majority of ageing conditions within our testing, Incremental Capacity Analysis
is able to describe the cells State of Health within a maximum absolute 2-sigma error
of less than ±3.7 %. However, for radical ageing the maximum absolute error is about
±6 %. Analysis of the Constant Voltage charging process shows an overall weaker
performance with a maximum absolute error up to ±9.0 %.

According to the obtained results, Approximate Weighted Total Least Squares, especially
in combination with Extended Kalman Filter for State of Charge estimation, is able to
estimate total cell capacity within three-sigma error bounds of ±1.6 % and is able to
track the cell’s capacity fade.

The performance of both, Incremental Capacity Analysis and Analysis of the Con-
stant Voltage charging process, is highly dependent on the cells operation conditions.
Therefore, they are only applicable for scenarios where the operation conditions are
well known beforehand and repetitive over the cell’s whole lifespan. From this per-
spective they are not suitable for on-board use in vehicles. Approximate Weighted
Total Least Squares seems to be a suitable candidate for on-board State of Health
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0 Abstract

estimation validated by high accuracy and a recursive computation manner, which
makes it lean in computational requirements. Future research could deal with the
hardware implementation of this method.

Keywords: Lithium-Ion, State of Health estimation, Capacity estimation, Incremental
Capacity Analysis, Constant Voltage, Weighted Total Least Squares
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Kurzfassung

Die Lithium-Ionen Batterietechnologie zählt heute zu den vielversprechendsten Tech-
nologien zur Speicherung elektrischer Energie und hat seit geraumer Zeit im Automo-
bilsektor enorm an Wichtigkeit gewonnen. Die Überwachung des State of Health der
verwendeten Zellen stellt dabei eine wichtige Rolle für den sicheren und zuverlässigen
Betrieb von Batterie-Systemen in elektrischen und hybrid-elektrischen Fahrzeugen
dar. Die Gesamtkapazität einer Lithium-Ionen Zelle gilt als zuverlässiger Indikator
zur Beschreibung des State of Health. Leider kann diese Größe nicht direkt gemessen
werden, weshalb eine adäquate Methode zur Abschätzung der Gesamtkapazität benötigt
wird.

In dieser Arbeit geht es um die Untersuchung unterschiedlicher Methoden zur Abschät-
zung des State of Health von Lithium-Ionen Zellen. Nach einer kurzen Einführung
zu Lithium-Ionen Zellen und deren Alterungsmechanismen werden zunächst zwei Me-
thoden, welche die Charakteristika des Ladevorganges analysieren, untersucht. Die
zugehörigen Messdaten stammen von Alterungsversuchen an kommerziell erhältlichen
Panasonic NCR18650B Zellen. In dieser vergleichenden Untersuchung werden die Me-
thoden Incremental Capacity Analysis und Analysis of the Constant Voltage charging
process verwendet, um den durch Alterung hervorgerufenen Verfall des State of Health
für unterschiedliche Betriebsbedingungen während jener zu beschreiben. Anschließend
wird Approximate Weighted Total Least Squares, ein Optimierungsalgorithmus, als
Methode zur on-board Kapazitätsabschätzung untersucht. Dabei wird dieser mit zwei
unterschiedlichen Verfahren zur Abschätzung des Ladezustandes kombiniert. Um die
Eignung dieser Methode für reale Anwendungen zu überprüfen wird sie an Messdaten
angewandt, welche von einem realitätsnahen Alterungstest durch Fahrzyklen stammen.

Die Resultate zeigen, dass Incremental Capacity Analysis für den Großteil der während
unserer Alterungstests auftretenden Betriebsbedingungen in der Lage ist den State
of Charge mit einer 2-sigma Unsicherheit von ±3.7 % anzugeben. Für sehr starke
Alterung durch Beispielsweise hohe Temperatur weist die Methode eine Unsicherheit
von ±6 % auf. Analysis of the Constant Voltage charging process zeichnet sich durch
eine allgemein etwas schwächere Performance aus. So sind mit dieser Methode für
die gewählten Datensätze Abschätzungen des State of Health mit einer maximalen
Unsicherheit von ±9.0 % möglich.

Die erhaltenen Ergebnisse zeigen, dass Approximate Weighted Total Least Squares in

v



0 Kurzfassung

Kombination mit dem Extended Kalman Filter eine Abschätzung der Gesamtkapazität
mit einer 3-sigma Unsicherheit von ±1.5 % erreicht und dem Verlauf der Kapazität
während der Alterung folgt.

Die Güte der von Incremental Capacity Analysis und Analysis of the Constant Voltage
charging process erhaltenen Ergebnisse ist stark abhängig von den Betriebsbedingungen
während der Alterung der Zellen. Aufgrund dessen sind diese Methoden nur dann
geeignet, wenn genaue Kenntnis über die Betriebsbedingungen im vorherein besteht und
diese konstant über den Lebenszeitraum der Zelle auftreten. Folglich erscheinen Diese zur
on-board Überwachung des State of Health als ungeeignet. Im Gegensatz dazu erscheint
der Approximate Weighted Total Least Squares Algorithmus dafür geeignet. Er liefert
Ergebnisse mit hoher Genauigkeit und berechnet den Schätzer für den State of Health
auf rekursive Weise, wodurch Rechenaufwand und Speicheranforderungen minimiert
werden. Zukünftige Forschungsarbeit ergibt sich durch die mögliche Implementation
auf Hardware und Testung des Algorithmus an realen Zellen in Echtzeit.

Schlagwörter: Lithium-Ionen, State of Health, Kapazitätsabschätzung, Incremental
Capacity Analysis, Constant Voltage, Weighted Total Least Squares

vi



Acknowledgement

This thesis was written at Virtual Vehicle Research GmbH
in Graz, Austria. The author would like to acknowledge the

financial support within the COMET K2 Competence Centers for Excellent Technologies
from the Austrian Federal Ministry for Climate Action (BMK), the Austrian Federal
Ministry for Digital and Economic Affairs (BMDW), the Province of Styria (Dept. 12)
and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion
Agency (FFG) has been authorised for the programme management. They would
furthermore like to express their thanks to their supporting industrial partners as well
as their scientific project partner, namely the Graz University of Technology.

Wirtschaft, Europa und Kultur

Graz University of Technology

I would like to thank my supervisor Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang von
der Linden and my mentor Dipl.-Ing. Dino Hrvanovic for supporting me during the
whole process of creation.

Graz, November 2, 2020

Lukas Hofstädter

vii





Contents
Statutory Declaration i

Abstract iii

Kurzfassung v

Acknowledgement vii

1 Introduction 1
1.1 Related Nomenclature and Quantities . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals 7
2.1 The Electrochemical Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Lithium-Ion Cell . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Battery Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Ageing Effects on the Negative Electrode . . . . . . . . . . . . . 10
2.2.2 Ageing Effects on the Positive Electrode . . . . . . . . . . . . . 13
2.2.3 Ageing Effects on Inactive Cell Components . . . . . . . . . . . 13

2.3 Li-ion Battery State Estimation . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 State of Health (SoH) Estimation . . . . . . . . . . . . . . . . . 15
2.3.2 State of Charge (SoC) Estimation . . . . . . . . . . . . . . . . . 17

3 Ageing Data Analysis 21
3.1 Measurement Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Refrence-Test-Protocol (RTP) . . . . . . . . . . . . . . . . . . . 22
3.1.2 Load-Profile (LP) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Incremental Capacity Analysis of the Constant-Current Charging Phase 26
3.2.1 Data Organization and Selection of Loading curves . . . . . . . 26
3.2.2 Calculation of IC-Curves . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Gaussian Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Localization of Feature Points . . . . . . . . . . . . . . . . . . . 31
3.2.5 Linear Regression of SoH versus FP-location . . . . . . . . . . . 31

3.3 ICA: Implementation and Results . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Drive Cycle Ageing . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Calendric Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Cycle Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Analysis of the Constant-Voltage Charging Phase . . . . . . . . . . . . 45
3.4.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Contents

3.4.2 Characterisation via Exponential Decay Function . . . . . . . . 47
3.4.3 Linear Regression of SoH versus Decay Constant . . . . . . . . . 47

3.5 CV-Analysis: Implementation and Results . . . . . . . . . . . . . . . . 48
3.5.1 Drive Cycle Ageing . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Calendric Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Cycle Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Discussion on Ageing Data Analysis . . . . . . . . . . . . . . . . . . . . 61

4 Total Capacity Estimation via Approximate Total Least Squares 65
4.1 From Weighted Least Squares to Weighted Total Least Squares . . . . 68

4.1.1 Weighted Least Squares . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Derivation of Weighted Total Least Squares . . . . . . . . . . . 71

4.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Goodness of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Derivation of Recursive Approximate Weighted Total Least Squares . . 74
4.5 Algorithm Testing and Results . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Input Data Generation . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion 89

List of Abbreviations 93

List of Figures 95

References 101

x



1
Introduction

Due to global population growth and rapidly improving technology our planet is facing
big environmental challenges. With the permanently growing demand of available
electrical energy, innovative solutions for providing and storing said energy are needed.
Therefore, electrochemical Energy Storage Systems (ESSs) will become increasingly
important in the future, whether for mobile energy supply of more sophisticated and
smaller mobile phones or computers, power tools and electric cars, or even in a larger
dimension for the stationary storage of renewable energies (Korthauer, 2013).

There exists a wide variety in electrochemical ESSs. Nevertheless, the prominence of
lithium-ion Batteries (LIBs) as ESS has grown permanently since the first commer-
cialization in 1990 by Sony Corp (Yoshio et al., 2009). Today, lithium-ion (Li-ion)
technology is the most auspicious battery technology. This can be led back to LIBs
superior technical properties like high volumetric and gravimetric energy storage ca-
pability, high efficiency and good cycle life (Berecibar et al., 2016; Agubra & Fergus,
2013). Figure 1.1 by Beggi et al. (2018) shows the high volumetric and gravimetric
energy storage capability of Li-ion cells compared to other electrochemical ESSs.

Initially, Li-ion technology was used in portable/consumer electronic devices like
notebooks or cellphones, where it achieved great success. During the last decade
the technology has spread to the automotive market where LIBs are used as ESS
in hybrid electric vehicles (HEVs) and electric vehicles (EVs) (Li et al., 2018). In
order to avert the endangerment of nature through global warming, the reduction of
greenhouse gas (GHG) emission will further push the market for the use of LIBs in
vehicles. Despite the advantages of Li-ion technology, the safe application of LIBs
also implies several difficulties. If a LIB is operated under wrong conditions it has the
ability to self-destruct. For example too high currents or overcharging of the battery
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1 Introduction

Figure 1.1: volumetric energy density (Wh/l) and gravimetric energy density(Wh/kg) for
the major small-sealed recharge- able battery technologies (Beggi et al., 2018)

can result in a thermal runaway, which refers to an uncontrolled exothermic feedback
reaction. Thus, the protection of user and battery-powered system is one of the main
topics in applying this technology. In order to guarantee the optimal and safe use of a
battery, a monitoring and controlling Battery Management System (BMS) is needed.
Tasks of the BMS are the execution of real-time measurements of physical quantities
like current, voltage and temperature to evaluate the actual operating conditions and
respond to them in the most suitable way. In order to do so it is crucial to have precise
information regarding the present ageing status of the individual cells. This challenge
will lead us to the objectives of this work.

1.1 Related Nomenclature and Quantities

In this section a general overview of the nomenclature related to battery cells is given.
Herein, important terms and quantities are described which will be used subsequently
in this work. To recall abbreviations used within this thesis easily, they are listed at
the end of this work.

Cell: In reference to battery technology a cell is the smallest electrochemical unit
consisting of negative and positive electrodes, electrolyte and a separator. In this work
only secondary cells are considered. In contrast to primary cells, these are rechargeable.

2



1.1 Related Nomenclature and Quantities

Battery: relates to an electrically connected group of two or more cells.

Terminal voltage: refers to the electric potential difference measured between the
cell terminals. The terminal voltage varies with the operating conditions of the cell.
Its unit is Volt (V).

Open-Circuit-Voltage (OCV): is the difference in electric potential between the
terminals of a cell when the battery is fully rested, i.e. the battery has been subjected
to an open circuit for a substantial period of time. The Open-Circuit-Voltage (OCV)
generally depends on the cell’s State of Charge (SoC) and temperature. The unit of
the OCV is Volt (V).

Internal Resistance: refers to an overall resistance within a battery cell and in
general depends on the cell’s operating conditions. Internal resistance also varies with
the cell’s SoC. With increasing internal resistance, the cell’s efficiency decreases and
thermal stability is reduced because more of the charging energy is converted into heat.
The internal resistance is given in Ohm (Ω).

Capacity Q: In this work the capacity Q describes an amount of charge and has the
unit ampere hours(Ah). It must not be confused with the electric capacitance which
describes a capacitor’s ability to hold charge.

C-rate: refers to the rate of charge- or discharge-current in normalized form. There-
fore, a C-rate of 0.5 C would relate to a current draw at which a completely charged
cell would be entirely discharged within 2 hours. The C-rate’s unit is h−1.

State of Charge (SoC): The SoC is a quantity to describe a cell’s present quantity
of charge it is able to deliver to or receive from a load circuit. It is the ratio of present
remaining capacity to the cell’s present total capacity. SoC can be seen as the electric
equivalent to a value given by a fuel gauge for combustion engines.

Total Capacity Qtot : means the quantity of charge a cell is able to deliver to or
receive from a load circuit as it is brought from a fully charged state to a fully discharged
state or vice versa. In this work the unit chosen for the charge capacity is ampere
hours (Ah). The total capacity of a cell is not constant but depends on the type and
amount of active materials, on the ambient temperature and many more parameters.

Nominal Capacity Qnom : refers to a representative value of an unaged cell’s
total capacity. This value is specified by the cell manufacturer and depends on the
charging/discharging conditions chosen by the manufacturer. The nominal capacity of
the investigated cells was determined at T = 25 ◦C at a current rate of 0.5 C.

3
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End of Life (EoL): refers to the moment when a cell does not meet the prescribed
performance requirements anymore. Within the context of automotive application a
cell’s EoL is usually described as the moment at which the total capacity has degraded
by 20 % or internal resistance has doubled.

State of Health (SoH): The SoH is a quantity to describe the ageing status of a
cell. It gives information about how long the battery will last before it reaches its
EoL. Cells usually slowly degrade both in terms of capacity and power. Therefore, the
two most common definitions of SoH are described either by capacity fade or rise in
internal resistance which is directly related to power fade.

1.2 Problem Statement and Motivation

In general, battery technology will play a major role in the transportation sector in
the upcoming future. As a result sustained research on the subject of rechargeable
batteries occurred in the last decades.
With the introduction of Li-ion battery systems for automotive applications, there
arose various demanding requirements. After all, vehicles should be safe, comfortable,
sustainable and reliable. Thus, the whole vehicle including engine, control units for
accelerating, braking, steering and more has to be reliably supplied with electricity
(Berecibar et al., 2016). In order to assign these claims a battery management system
BMS is needed. The BMS is an electronic monitoring and controling system, which
manages the operational mode of the battery system to guarantee safe operation and to
ensure a prolonging of lifetime. Protection of cells from overcharge and overdischarge,
thermal management, detection of possible failures and analysing the available energy
and power of the battery pack are the key functionalities of a BMS (Berecibar et al.,
2016; Pistoia & Liaw, 2018). As one part of the diagnostics a BMS needs to perform
accurate SoH estimations.
The aim of this thesis is the investigation of SoH estimation methods for the on-board
use in the BMS of EVs and HEVs. After a brief introduction to electrochemical
cells and their ageing behaviour, several methods which aim to describe the SoH of
a battery cell will be treated. The methods of interest in specific are Approximate
Weighted Total Least Squares as well as Incremental Capacity Analysis and Analysis of
the Constant Voltage charging process. For the purpose of this exploration extensive
ageing measurements were taken at the Virtual Vehicle Research GmbH together with
industrial partners. Over a timespan of two years specific load tests were performed
to multiple Panasonic NCR18650B Li-ion cells to simulate the natural ageing process
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under different conditions. Based on this large pool of measurement data, a meaningful
evaluation of the above-mentioned methods regarding hardware-related use should be
achieved.
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2
Fundamentals

2.1 The Electrochemical Cell

A cell refers to the smallest electrochemical energy storage unit. It usually consists of
several fundamental components comprising a negative electrode, a positive electrode,
an electrolyte and a separator. For the purpose of easier explanation we consider a cell
in discharge operation mode. During discharge electrons are expelled from the negative
electrode material and delivered to the load circuit. This process is known as oxidation
of the negative electrode. Common negative electrode materials are pure metals or
alloys. The positive electrode material accepts electrons from the load circuit. This
process is known as reduction. The electrolyte functions as an ionic conductor. During
discharge positive ions move from the negative electrode through the electrolyte to
the positive electrode. The separator physically isolates the positive electrode from
the negative electrode to prevent internal short circuiting. Nevertheless, it is an ionic
conductor and does not hinder the ionic transport (Plett, 2015a).

2.1.1 The Lithium-Ion Cell

Conventional electrochemical cells like Lead-Acid or Nickel-Cadmium cells work differ-
ently from Li-ion cells. In these the electrolyte chemically reacts with the electrode
materials via redox reactions. In the case of Li-ion cells, lithium does not react chemi-
cally with the electrode materials. Instead it enters or departs the crystal structure of
the electrode materials. This procedure is termed as intercalation and deintercalation
respectively. Cells with this operation principle are called insertion cells. To clarify the
working principle of those cells Figure 2.1 displays the basic structure of a Li-ion cell.
During discharge, lithium atoms inside the negative electrode dispense their weakly
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2 Fundamentals

bound valence electrons and become positive charged Li+ ions. Next, the Li+ ions
de-intercalate from the electrode material and move towards the positive electrode.
At the surface of the positive electrode they recombine with the surplus electrons to
afterwards intercalate as neutral Li-ions into the positive electrode. The described
insertion process is highly reversible and very gentle in contrast to a chemical reaction
between the electrolyte and the electrode material. Therefore, an advantage of Li-ion
cells is a high cycle life. Due to the back and forth movement of the ions, Li-ion cells
are often called rocking chair, swing or shuttlecock cells (Plett, 2015a).

Figure 2.1: Basic working principle of a electrochemical cell (Plett, 2015a)

For a gentle intercalation process, the electrode materials must show suitable properties.
They should have open crystal structures with many vacancies, which allow the lithium
to move easily. At the same time the electrodes must be able to conduct the electrons
from the load circuit. During operation the crystal structure of the electrodes is not
altered chemically, but minor structural changes nonetheless may occur due to the
intercalation and deintercalation process. The intercalation and deinctercalation of
lithium ions can lead to a volume change of up to 10 %. If the concentration of lithium
ions in the structure of an electrode material gets too high, structural phase transitions
could occur which may result in non-reversible damaging of the electrode material
(Plett, 2015a).

The single cell description leads us to the term module, which describes an electrically
connected set of an arbitrary number of cells and the corresponding structural parts as
well as measurement- and other simple electric-devices. Within a module, the cells can

8



2.2 Battery Ageing

be connected in parallel or serial. The design of battery modules is mostly defined by
legal voltage limits and ease of handling, as voltages above 60 V DC require special
precautionary measures for further manipulation and processing (Fischer, 2013).

The combination of one or more battery modules, including additional sensors and
control units, constitutes a battery pack. To guarantee safe and optimal operation of
the battery pack a BMS accompanies it and thus makes it a full battery system. The
BMS monitors and processes all information gathered from sensors at module or pack
level to determine the cells terminal voltages, temperatures and currents at important
points during operation. Furthermore, it handles the connection and disconnection of
the battery system (Plett, 2015a).

2.2 Battery Ageing

Li-ion batteries were initially used in portable devices like cellphones, camcorders and
notebooks. In these kinds of application lifetime of the batteries only played a minor
role. With the increasing use of Li-ion technology on the market of EVs and HEVs
the demands regarding lifetime has grown. According to literature battery packs are
supposed to operate for about 10-15 years or a total number of 20-30 thousand cycles
respectively (Barré et al., 2013). As a result there is great interest in understanding
ageing phenomena of Li-ion cells.
From the time of initial charging, the cells in a battery pack undergo ageing and their
performance will degrade. At some time they will reach a point, where they no longer
fulfil the requirements of application. In the automotive industry the EoL is referred
to as the time when the cell lost 20-30 % of its initial capacity. In applications where
the power of the cell is more important, the EoL is often chosen as the time when the
battery cell’s impedance has doubled (Huang et al., 2017; Farmann et al., 2015).
For an adequately working battery system, it is very important to know the present
ageing status of the individual cells. The identification and understanding of ageing
and degradation phenomena is one of most challenging goals in battery technology.
The ageing processes are very complex as they result from interaction of many factors
regarding environment and operation mode. In this section the fundamentals of
LIB ageing as well as primary electrochemical and structural ageing mechanisms are
explained.

Battery ageing can be divided into two types regarding their origination:

9



2 Fundamentals

Calendric ageing describes the degradation of battery performance during storage.
This highly depends on the storage conditions. The main two variables, which define
the intensity of calendric ageing are storage temperature and SoC-level during storage.
With higher storage temperatures side reactions like corrosion and reductive electrolyte
decomposition are more likely leading to enhanced capacity fade. At too low temper-
atures other ageing effects emerge. Moreover, a high SoC-level during storage also
provokes side reactions and therefore enhances calendric ageing (Pistoia & Liaw, 2018).

Cycle ageing refers to the performance loss caused by charge or discharge processes.
It is directly related to the operation conditions of the battery cell. Here, the main
influencing variables are charge/discharge current rate, the range in SoC wherein the
cell was cycled, average SoC and temperature. Cycle ageing is accelerated as any of
these variables is elevated (Pistoia & Liaw, 2018).

2.2.1 Ageing Effects on the Negative Electrode

The predominantly used active material for negative electrodes in Li-ion cells is natural
or synthetic graphite (Barré et al., 2013; Plett, 2015b). Graphite has a high cycle
stability, high lithium storage capability and is nontoxic and inexpensive. Furthermore,
it is characterised by its low electrochemical potential, which is favourable to achieve a
maximum cell voltage1.

Figure 2.2: Open-Circuit-Potential of Graphite vs. another negative electrode material
candidate (LTO) (Plett, 2015b)

On the one hand, the low electrochemical potential of graphite makes it very preferable
for high-voltage Li-ion cells. On the other hand, it provokes the major degradation

1The voltage of an electrochemical cell equals the positive-electrode potential minus the negative-
electrode potential.
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2.2 Battery Ageing

mechanism on the interface between the negative electrode and the electrolyte. The
electric potential of the negative electrode is so low that the organic solvents used
in the electrolyte are not stable anymore. In consequence reductive decomposition
of the electrolyte occurs at the electrode-electrolyte interface. The formed reaction
products form a layer on the electrode surface called Solid Electrolyte Interface (SEI)
(Vetter et al., 2005). The formation of SEI occurs mainly in the onset of cycling,
particularly during initial charge. Thus the first charge process is often called formation
process. The created layer acts as a passivating coating between the electrode and
the electrolyte which protects the electrolyte from further reduction and the electrode
from further corrosion. Lithium is consumed during the SEI forming, which leads to
a decreasing amount of lithium available for intercalation and deintercalation. Once
the lithium is consumed by SEI formation it never returns in a usable form. This
results in a non-reversible loss of cell capacity (Barré et al., 2013; Plett, 2015b). The
loss of cycle-able lithium ions also depends on the specific surface area of the graphite
particles. An increase in area increases the volume of reaction products and therefore
enhances capacity fade (Agubra & Fergus, 2013).
A further consequence of SEI growth constitutes the rise of cell resistance. The built up
layer is quasi permeable to Li-ions, but lessens the conductivity of ion transfer which
leads to power fade of the cell.
As mentioned above SEI formation occurs predominantly during initial charge. Nev-
ertheless, the growth of this layer continues even though less rapidly. While the SEI
is protecting the electrolyte from reaching the electrode, some solvent is still able to
transmigrate which leads to further SEI growth. This process may be augmented due
to high cell temperatures. High temperatures can lead to SEI breakdown which causes
additional exposed graphite sites (Vetter et al., 2005; Plett, 2015b).
Another ageing mechanism on negative electrodes is a process where, besides lithium,
solvent molecules co-intercalate into the graphite electrode. As a result SEI formation
takes place inside the electrode. As the SEI formation process is accompanied by gas
generation this leads to increasing expansive pressure inside the electrode material.
This may cause the graphite to break along internal grain boundries or to exfoliate
which exposes more electrode surface to the solvent making even more SEI formation
possible. The cracking and splitting of active material can also be triggered by volume
changes of the electrodes due to lithiation (Plett, 2015b).
Further ageing mechanisms in the negative electrode are triggered through the presence
of hydrofluoric acid. It is produced via side-reactions between trace water in the
electrolyte and ionized fluorine in the electrolyte salt. The acid attacks the SEI layer
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leading to dissolution. Furthermore, it also is able to dissolve particles of manganese
or cobalt from the positive electrode. These electrical low conductive particles are able
to transmigrate the separator and deposit in the SEI layer of the negative electrode
which leads to higher cell resistance and hence to power fade. Besides that they are
able to obstruct available graphite pores which lessens the availability of lithium to
intercalate/deintercalate. This ageing mechanism is termed anode poisoning (Plett,
2015b).
To complete the catalogue of negative electrode ageing, a last mechanism is presented
called lithium plating. It is referred to unwanted coating of the negative electrode with
metallic lithium particles formed by the combining of Li-ions with electrons from the
external circuit. This mainly appears when charging is forced at low temperatures or
high current rates (Vetter et al., 2005; Barré et al., 2013). As this reaction consumes
lithium and additionally covers the surface of the cell’s negative electrode, lithium
plating leads to capacity fade and power fade. A general view of the aforementioned
ageing mechanisms in the negative electrode can be seen in Figure 2.3.

Figure 2.3: Overview of predominant ageing mechanisms in the negative electrode of
Li-ion cells (Barré et al., 2013)
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2.2.2 Ageing Effects on the Positive Electrode

As on the negative electrode, a surface layer can also grow on the positive electrode,
although to a minor extend. The SEI on the positive electrode side also is formed via
side-reactions between the solvent in the elecrolyte and the positive electrodes active
material (Plett, 2015b).
A bigger impact than SEI growth constitutes the dissolution of metals from the
electrode. Depending on the electrodes material, structural disordering may oc-
cur which eliminates lithiation sites and leads to capacity fade. Furthermore, the
re-deposition of dissolute metal particles on the electrodes surface leads to an
increased cell resistance. Another consequence of positive electrode dissolution
is the aforementioned anode poisoning. The decomposition of positve electrode
material is augmented through operation at very low cell voltages, high temperatures
and the presence of hydrofluoric acid in the electrolyte (Vetter et al., 2005; Plett, 2015b).

In consequence of the intercalation and deintercalation process, stress can cause
structural phase transitions and disordering which may provoke the collapse of lithium
pathways. This rapid effect is mostly seen when a cell gets overcharged. In this
case too many Li-ions are removed resulting in an unstable electrode structure. This
effect reduces the total capacity of the cell and increases the cell’s internal resistance
(Plett, 2015b). An overview of the ongoing ageing effects in the positive electrode is
shown in Figure 2.4. Furthermore, it shows the ageing mechanisms related to inactive
constituents of a cell. These mechanisms are described in the subsequent section.

2.2.3 Ageing Effects on Inactive Cell Components

So far, we described the ageing mechanisms of Li-ion cells only with respect to the
involved active material. In general, the electrodes of Li-ion cells are composites
consisting of active materials, conductive additives and binders. Conductive additives,
for instance carbon, are added to increase the electrical conductivity within the electrode.
Binders like polyvinylidene difluoride PVdF are used to maintain mechanical stability
and contact between the single particles (Plett, 2015b). Figure 2.5 shows the principal
components of an electrode.

The individual constituents add to the ageing in the following ways: Due to the volume
change caused by lithiation the binder may disengages which results in weakening
of mechanical and electrical contact throughout the electrode particles and at the
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Figure 2.4: Overview of predominant ageing mechanisms in the positive electrode of Li-ion
cells and inactive materials (Vetter et al., 2005)

Figure 2.5: layout of composite electrode structure (Plett, 2015b)

interface between electrode particles and the current collector. This leads to increased
cell resistance. Sometimes clusters of particles get completely isolated from the bulk
material which results in additional capacity loss (Plett, 2015b).
Another ageing mechanism occurs at the current collectors, which can corrode. As
a consequence, the conductivity at the electrode/current collector contact decreases,
because corrosion products in general have low conductivity. This results in higher
cell resistance. These ageing effects occur at the positive and negative side of the cell
(Plett, 2015b).
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2.3 Li-ion Battery State Estimation

As we already mentioned in chapter 1, the BMS plays a very important role in operating
a battery system. As a monitoring and controlling system its purpose is to guarantee
for optimal and safe operation over a battery pack’s whole lifetime. To achieve this, the
present status of the individual cells has to be known precisely. Two important values
which describe the present condition of a cell are State of Charge (SoC) and State of
Health (SoH). Since these variables are not directly measurable, suitable estimation
methods are required. This section gives a more detailed definiton of these quantities
and a brief overview of the common techniques used for their estimation.

2.3.1 State of Health (SoH) Estimation

The State of Health (SoH) is a variable for expressing the present ageing status of a
battery cell. There exists no overall definition of SoH. However, the two most common
ones are presented in the following:

Definition 1: In a wide range of studies SoH is defined based on the cell’s capacity
fade. These consider applications as EVs or Plugin HEVs (PHEVs), where available
electical energy is of outstanding importance (Nuhic et al., 2013; Ecker et al., 2012).
Therefore, an accurate method to estimate present total capacity is needed. The
methods for SoH estimation which are investigated within this work also consider SoH
defined as expressed by

(2.1)SoH (t) = Qtot (t)
Qnom

· 100 %,

where Qnom is the cell’s nominal capacity and Qtot refers to the cell’s actual total
capacity. In this definition SoH can theoretically vary between 0 % and 100 %. Here
SoH = 100 % refers to a cell which is completely unaged. In the automotive application
field SoH = 80 % refers to a cell which reached its EoL.

Definition 2: Alternatively, SoH can be defined based on power fade. This refers
to a cell’s decreasing ability to deliver electrical power to an external circuit which
originates from internal resistance growth due to ageing. With increasing internal
resistance the available power of a cell decreases due to higher internal voltage drop.
In literature, a cell’s EoL based on power fade is often described as the date, when
internal resistance doubled (Ecker et al., 2012; Pistoia & Liaw, 2018). The SoH based
on this criteria is defined by:
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(2.2)SoH (t) = 1− R (t)−Rinit

Rinit

, Rinit ≤ R(t) ≤ 2Rinit,

where Rinit is the cell’s initial internal resistance and R(t) the present internal resistance.
According to this definition SoH can vary between 0 and 1. Here SoH = 0 refers to a
cell which reached its EoL by doubling of internal resistance. SoH = 1 refers to a cell
which is completely unaged.

2.3.1.1 On-board Capacity Estimation

In this thesis SoH is considered as being based on capacity fade and is described via
expression 2.1. Therefore, an accurate capacity estimation method is key to adequate
SoH estimations. In this section the general approach and challenges of on-board
capacity estimation are described followed by a brief overview of different methods.

Fully charged: We refer to a cell being fully charged if its OCV reaches an upper
threshold voltage vh (T ), which is specified by the manufacturer and temperature
dependent. The common procedure to fully charge a cell is by applying a constant
current until vh (T ) is reached. This is followed by a Constant-Voltage (CV) charging
phase. During CV-phase the charge current is adjusted to stabilize the terminal voltage
of the cell at vterminal = vh. This phase lasts until the current comes below an arbitrary
small threshold. The state fully charged relates to SoC = 100 %.

Fully discharged: We refer to a cell being fully discharged if its OCV reaches a
lower threshold voltage vl (T ), which is specified by the manufacturer and temperature
dependent. The common procedure to fully discharge a cell is by applying a negative
constant current until vl (T ) is reached. This is followed by a constant voltage (CV)
charging phase which lasts until the current comes below an arbitrary small threshold.
The state fully charged relates to SoC = 0 %.

The most straight forward way to obtain a precise value for Qtot would be to discharge
a cell from its fully charged state to its fully discharged state while summing up the
extracted electric charge. To obtain comparable values this would have to be done
under constant temperature and with a well defined discharge current (Zhang & Lee,
2011). Such a scenario is executable under laboratory conditions. Under real conditions
these criteria are hardly able to be fulfilled. Therefore, other approaches for capacity
estimation are required.

Based on the considerations of Farmann et al. (2015), on-board capacity estimation
methods generally can be compartmentalized as follows:
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1. Voltage-based estimation methods: the relationship between electro motive force
(EMF) and SoC is used for capacity estimation.

2. Electrochemical model-based methods: electrolyte conductivity and electrode’s
porosity are used as indicators for SoH estimation.

3. Methods based on the analysis of charging characteristics: Incremental Capacity
Analysis (ICA), Differential Voltage analysis (DVA), Constant-Voltage CV phase
analysis.

4. Aging prediction methods: ageing models are used to predict capacity fade and
power fade based on the present operation conditions and past history.

The techniques being used for the purpose of this work are voltage-based methods and
methods based on the analyse of charging characteristics. A detailed description of
those is given in Chapter 3 and Chapter 4.

2.3.2 State of Charge (SoC) Estimation

As for any energy storage system the information of the amount of available energy is
of great importance.

Definition: A battery cell’s State of Charge (SoC) is the ratio of its remaining
capacity to its actual total capacity.

(2.3)SoC (t) = Qremaining (t)
Qtot (t) · 100 %

In electric vehicles SoC relates to the ability to predict range precisely. Unlike as for
classic vehicles where the available energy is determined by the amount of fuel inside
the tank, for Li-ion cells the remaining energy cannot be directly measured. Besides
that the capacity of a cell varies with ageing status and temperature. As a result the
SoC estimation for electric vehicles is complex and has to be robust against a wide
range of conditions (Xiong et al., 2017).

As we will see in the next section, proper SoC estimation is closely related to the ability
of accurately estimating total capacity and therefore SoH. Further advantages of a
reliable SoC estimation are:

• Optimal operation without the risk of overcharge or oversdischarge
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• Allowing to exhaust the design limits, so battery packs don’t need to be oversized.
This leads to volumetric and gravimetric savings.

• Economic benefits due to usage of smaller packs and lower warranty-servicing
costs due to higher reliability

2.3.2.1 Coulomb Counting

One of the simplest and most common methods to estimate SoC is coulomb counting.
This method is based on integrating the charge/discharge current over time, which is
equivalent to the electric charge added or removed from the cell. With the information
of initial SoC, its present value can be calculated as

(2.4)SoC (t) = SoC (t0)− 1
Qtot

∫ t

t0
η (t′) I (t′) dt′,

where SoC(t) is the State of Charge at time t, Qtot is the actual total cpacity, I(t) is
the electric current and η(t) is the coulombic efficiency. The coulombic efficiency is a
unitless factor which describes the magnitude of lost charge by side reactions occurring
during charge or discharge.

Because SoC is defined as the ratio of residual capacity to actual total capacity, coulomb
counting is the most direct method for SoC estimation. Nevertheless, the method has
several drawbacks. Firstly, a good estimate for the initial SoC has to be known in
order to prevent biased estimates. Secondly, the measurement of current is related
to unavoidable errors due to limited accuracy of the current sensor. For accurate
estimation the total capacity of the cell has to be known and regularly updated as it
varies due to environmental conditions and ageing (Xiong et al., 2017). Meng et al.
(2017) mentions that the accuracy of the method could be improved through online
estimation of the coulombic efficiency which is also a challenge itself. In summary,
coulomb counting is not suitable as a standalone SoC estimation. Nevertheless, the
shortages of the method can be compensated when combining it with other methods
like OCV-SoC lookup tables or Kalman filter methods.

2.3.2.2 Open-Circuit-Voltage SoC Estimation Method

Another method for SoC estimation is the usage of an OCV-SoC look up table. The
OCV is the cell’s terminal voltage when it is disconnected from the external circuit
and has reached internal equilibrium. For most Li-ion cells, there is a direct monotonic
relation between OCV and SoC which has to be accurately measured beforehand and
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typed to a look up table like one shown in Figure 2.6. Therefore, if we know the present
OCV we can use this table to look up the actual value for SoC. To measure the OCV
the cell has to rest long enough, which means the charge/discharge current has to decay
to a sufficiently small value close to zero (Xiong et al., 2017; Meng et al., 2017).

With this method one can achieve adequate estimation results without needing in-
formation about initial conditions or any long term measurements (Pistoia & Liaw,
2018). Nevertheless, it has several disadvantages. The OCV-SoC relationship varies
with temperature and ageing. Therefore, extensive experiments at different conditions
may be needed. Another disadvantage is the difficulty in measuring present OCV due
to long rest time. Thus, for most online applications the classical OCV method is not
quite suitable. Nevertheless, its application field can be extended when it is used in
combination with OCV estimation methods or to estimate initial value for other SoC
estimation methods like coulomb counting or model-based methods.

Figure 2.6: Example for OCV curve of a LiPB cell (Xiong et al., 2017)

2.3.2.3 Model-based Methods

We showed that the before mentioned methods are very limited in their applications.
Now a more sophisticated group of SoC estimation methods is briefly introduced. In
these methods a mathematical cell model is used to estimate the voltage response of a
cell to a current input. There have been developed a wide variety of cell models: elec-
trochemical models EM, equivalet circuit models ECM and electrochemical impedance
models. A schematic, showcasing the working principle of model-based SoC estimation,
is shown in Figure 2.7.

The response of the real cell to an electrical current input is related to its present state.
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Figure 2.7: Basic structure of model-based SoC estimation methods (Plett, 2015b)

The state of a cell is comprising true SoC, true set of diffusion currents and other
quantities which cannot be measured (Plett, 2015b). The cell models predicted output
signal is a function of estimators of these state variables we call state estimate. If the
difference between measured output of the real cell and the model’s output is small we
have an indicator for adequate cell model and good state estimate. To minimize this
difference, nonliniear state estimation algorithms and adaptive filters can be applied.
Common algorithms are Kalman filter, Sliding-mode obbserver, H∞-observer etc.
(Meng et al., 2017; Zheng et al., 2018).
Model-based SoC estimation is the most common approach for online state estimation
of Li-ion cells. Its advantages are robustness against initial SoC offset and measurement
noise. Nevertheless, the development of a robust model requires deep understanding of
the system and a relative long development time (How et al., 2019).

2.3.2.4 Data-driven Methods

Data-driven estimation methods recently gathered lots of interest. They arose as
a result of increasing computational power and availability of big quantity of data.
These methods don’t require a detailed understanding of the physical and chemical
processes taking place inside a cell. In contrast to model-based methods, data-driven
SoC estimation is possible with limited prior information which leads to shorter
development time. Furthermore, the methods are able to determine their parameters
through self-learning. The unpredictability and requirement of large amount of high
quality training data are the main drawbacks of these techniques. The most popular
data driven SoC estimation approaches are neural network, deep learning, support
vector machine and fuzzy logic (How et al., 2019). The methods just mentioned are
not dealt with in detail in this work, as this would go beyond the scope of it.

20



3
Ageing Data Analysis

3.1 Measurement Data

As a first part of this work, measurement data from ageing investigations was organized
and analysed. All the measurements for this work were taken at the Virtual Vehicle
Research GmbH. For the measurement procedure an Arbin BT-2000 battery testing
system and Memmert incubators were used. All measurements were taken with
commercial Panasonic NCR18650B cells.

The aim of these measurements is to gain knowledge about the cell’s properties,
behaviour and how it changes with increasing age. For this purpose, multiple ageing
tests under different conditions were performed. Each ageing test procedure was
executed over a timespan of about 18 months. As a result, an ageing-dataset is
gathered. An entire ageing test procedure consists of an alternating sequence of
Reference Test Procedures (RTPs) and Load Profiles (LPs). In more detail it is
structured as following:

1. Initial characterisation via execution of multiple RTPs at different temperatures

2. Execution of ≈ 20 ageing repetitions which consist of:

• LP: lasts roughly 3 weeks followed by

• RTP at T = 25 ◦C

This corresponds to a test time span of about 18 months.

3. Final characterisation via execution of multiple RTPs at different temperatures

During the ageing repetitions, a cell’s capacity and SoH decreases based on the
experienced loading conditions. An example for a cell’s degradation in SoH during
the performance of an ageing-dataset is shown in Figure 3.1. Herein, the scatters refer
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to total cell capacities being measured during the corresponding RTP’s at T = 25 ◦C.
Between two consecutive scatters a LP was performed.

Figure 3.1: Example for a cell’s SoH progression during a performance of an ageing test.
The scatters refer to total cell capacities being measured during the corresponding RTP’s at
T = 25 ◦C.

The following sections serve as a detailed description of the terms RTP and LP. After
this, an introduction to the methods used for analysis of the gathered ageing-datasets
is given followed by the description of the obtained results.

3.1.1 Refrence-Test-Protocol (RTP)

At the beginning of an ageing-dataset and between every applied LP a RTP is
performed. This procedure is designed in a way to gather most precise information
about the cell’s present properties. During the execution of a RTP the cell temperature
should stay constant at T = 25 ◦C. To achieve this Peltier cooling (model IPP600)
combined with forced air cooling was applied. By performing a RTP following
information is obtained:

• Capacity information: gives insight into the cell’s present ageing status as the
SoH is defined via capacity fade

• Dynamic information: voltage response to input current pulses picture the
dynamic behaviour of the cell; This is of major importance for the testing of cell
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models which aim to simulate a cell’s voltage response to a current input signal
as accurately as possible.

The course of action during a RTP is now described in more detail and is displayed
schematically in Figure 3.2. Generally it can be split into three test segments:

1. Partial Capacity Determination:
In the first segment of a RTP, the 80%-capacity of the cell is determined. To do so, a
charge/discharge operation between 15% and 95% SoC is executed three times, utilizing
previously acquired OCV points for the initial SoCs. This happens in the following
manner:

1. Constant current charging with C/3 until the terminal voltage reaches 4.113 V

2. Constant voltage charging at 4.113 V until the current decays to 160 mA(≈C/20)

3. Constant current discharging with C/3 rate until until the terminal voltage
reaches 3.498 V

4. Constant voltage discharging at 3.498 V for 40 minutes or until the current
decays to 160 mA, respectively

2. Full Capacity Determination:
The 80%-capacity determination is followed by two full capacity cycles according to
the data-sheet. Each of these cycles is applied as follows:

1. Constant current charging with C/2 until 4.2 V

2. Constant voltage charging at 4.2 V until the current decayed to C/50

3. Discharging with 1C until 2.5 V

3. Dynamic Behaviour Investigation:
At the beginning of this segment the cell is again charged to SoC = 95 %. Afterwards
the following sequence is performed at seven specific SoC-levels (80%, 70%, 60%, 50%,
40%, 30% and 20%) to cover the whole operating window of the cell:

1. Discharging to specific SoC-level

2. Application of current input pulses to exhaust the dynamic behaviour of the cell.

3. Discrete stair profile of 0.2 C, 0.35 C, 0.5 C, 0.75 C, 1.25 C for 10 s per level

4. Charging of the cell to SoC = 95 %.
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Figure 3.2: RTP example measurement. The upper graph (blue) displays measured current
(in A) over time. The lower graph (green) shows an estimate for the SoC (in %) over
time. The dashed lines (orange) and the bottom-most labels depict the individual phases
of the RTP.

3.1.2 Load-Profile (LP)

A LP is a transient current input which is applied to the cell via the battery testing
system. After each RTP a LP is applied to the cell. During these LPs the cell
is subjected to its different ageing mechanisms and therefore degrades. As one
could imagine, the magnitude in capacity loss and the ageing behaviour in general
highly depends on the operating conditions during the performance of a LP. High
temperatures and high current rates for example may lead to more intense ageing
consequences than moderate cell temperatures and low current rates. To cover a variety
of stress scenarios, different sets of LPs were designed for the ageing investigation.
These can be grouped into three main categories:

1. Driving Cycles:
These profiles aim to simulate realistic customer usage behaviour. They can either be
derived theoretically or originate from real measurements during driving.
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2. Calendric LPs:
These are LPs which help to simulate calendric ageing during storage at constant SoC
level. Calendric LPs are defined by three parameters:

• T / ◦C : the target temperature of the cell during storage

• SoC / %: the average State of Charge during storage

• CC / h−1: the average charge current

At this point it has to be clarified why the third parameter is needed to define
the calendric LP where the cell should be in rest: During storage the cell slowly
discharges, its SoC slightly decreases. Therefore the last parameter CC describes
the charge current with which the cell is brought back to the desired SoC before
storing.

3. Cyclic LPs:
These LPs serve for the investigation of cycle ageing where the cell gets continuously
charged and discharged. A cyclic LP is defined by the following parameters.

• T / ◦C : the target temperature of the cell

• PDC / h−1: the peak discharge current rate

• ADC / h−1: the average discharge current rate

• SoC / %: the average State of Charge

• dSoC / %: the median value of the SoC-strokes which represents the dominant
SoC-deflection

• CC / h−1: the average charge current rate
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3.2 Incremental Capacity Analysis of the Constant-Current
Charging Phase

The first method applied to the measured ageing-datasets is based on Incremental
Capacity Analysis (ICA). ICA techniques have been extensively used in the past to
study different degradation mechanisms in Li-ion cells (Dubarry et al., 2011; Berecibar
et al., 2016). Recently they were introduced to the field of capacity estimation and
SoH estimation respectively.
The general approach of ICA based SoH estimation is to analyse the behaviour of
cells during constant-current charging phase. By differentiating the charged capacity
relative to the terminal voltage, a corresponding IC-curve is obtained. Then the curve
is analysed to extract features which are characteristic for the present SoH. Such
features could be peak positions, amplitudes or envelope areas. This procedure is
repetitively executed for a wide range of ageing stages. The final goal is to derive
an analytical relation between the extracted features and the cell’s SoH. So once a
feature is detected in real operation mode, the cell’s SoH can be estimated via use of
the derived relationship.
ICA based methods generally have several advantages as they are computational
inexpensive and can often be applied to a wider range of cell chemistries and cell
designs (Berecibar et al., 2016). Nevertheless, up to now only a minority of research has
been done regarding ICA usage for SoH estimation. For instance, Weng et al. (2013)
proposed a method where Support Vector Regression (SVR) is used to identify IC-peak
heights as signatures for capacity fade of LiFePO4 cells. A recent study by Li et al.
(2018) proposes a method which derives a quantitative correlation between the IC-peak
positions and capacity fade for high energy lithium lithium nickel manganese cobalt
oxide (NMC) LIBs. Their estimation method was able to estimate SoH of several cells
cycled under different depths of discharge within a maximum error of ±2.5 % while
requiring moderate computational effort.

3.2.1 Data Organization and Selection of Loading curves

In the context of our investigation ICA is applied to the loading curves obtained during
Constant-Current (CC) charging process. As mentioned previously, each ageing-dataset
consists of a sequence of RTPs and LPs. For the purpose of the Ageing Data Analysis
only the data originating from RTPs performed at a temperature of T = 25 ◦C was
used. Therefore, the required data sets were extracted from a database using an SQL
query before they were saved in a data-frame.
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Extraction of Loading curves: During execution of a RTP not only physical
quantities are measured. In addition useful meta-data like the stepindex gets recorded.
This index serves for the identification of different test segments within a RTP. For
our purpose the data-points during the second CC charging process within the RTP’s
Full Capacity Determination segment were extracted via this variable. For better
understanding, Figure 3.3 displays an example of the scope for the extraction of a
loading curve from a RTP.

Figure 3.3: Shows partly data collected during execution of a RTP, blue: Terminal Voltage
V , red: Current I, green: Stepindex n; The vertical lines in violet mark the scope for
the extraction of the data during the CC charging process.

Figure 3.4 shows an example set of loading curves extracted for a cell while being cycle
aged. Each loading curve originates from one corresponding RTP. Here, a gradually
evolution in colour of the curves from bright to more dark can be seen where the color
relates to the cycle-age of the cell. Therefore the brightest curve originates from the
completely unaged cell and the darkest curve relates to the last RTP of the ageing
test. It can already be seen that the loading curves gradually change during ageing.
As a result of higher internal resistance and capacity fade, cells of higher age reach the
maximal terminal voltage in less time than unaged cells.

3.2.2 Calculation of IC-Curves

The IC-curve is the backbone of ICA. It graphs the differential capacity dQc
dV

with
respect to the terminal voltage V . The differential capacity is defined as follows and
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Figure 3.4: Example of a set of loading curves extracted from an ageing-dataset. Brighter
curves represent less aged cell status.

can be calculated by numerically differentiating the charged capacity Qc relative to its
terminal voltage V .

(3.1)dQc

dV
= I · dt

dV
≈ ∆Qc

∆V

,where ∆Q we call incremental capacity and ∆V we call incremental voltage. The
terminal voltage V and the current I are quantities which are directly measured. These
signals are sensed with a certain sample frequency fs. So the sample index k relates
to real time t according to t = k/fs. The most straight forward way to calculate the
differential capacity from these measurements would be like:

(3.2)∆Qc

∆V = I · (tk+1 − tk)
Vk+1 − Vk

,where I is the average current during the time interval [tk, tk+1]. Usually the directly
extracted differential capacity is very noisy due to measurement errors originating from
the current sensor. Figure 3.5 shows an example set of noisy IC-curves extracted from
an ageing-dataset. A further problem in calculating equation 3.2 is given due to the
denominator of the right side of the equation. If V does not change within a timestep,
the differential capacity goes to infinity. A small voltage change within a timestep also
leads to a highly erroneous value. As we will show, these problems will vanish later as
we slightly alter the procedure of smoothing extracted IC-curves.
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Figure 3.5: Example of a set of noisy IC-curves extracted from an ageing-dataset. Brighter
curves represent less aged cell status.

3.2.3 Gaussian Smoothing

Due to the noise issue mentioned in Section 3.2.2, the next important step in ICA is
to apply an appropriate smoothing method. According to literature, several different
smoothing methods were already used in ICA. Possible methods are moving average
filter , Gaussian Smoothing (GS), improved center least squares method (L. Wang et al.
(2016)) and Kalman Filter (Tang et al. (2018)). In this thesis GS is used as it sufficiently
reduces the noise of the curve while maintaining important information. Besides that,
GS is computationally relatively inexpensive. By performing GS each data-point is
replaced by a weighted sum of its neighbouring data-points. In a continuous picture
the weights of the neighbouring values are given by a Gaussian distribution function

(3.3)G(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,

where µ is the mean value of the distribution and therefore sets the center position of
the distribution function. The standard deviation σ sets the width of the distribution
function. When the Gaussian distribution is used for the purpose of smoothing, µ is
normally set to zero to put equal emphasis on left and right sided neighbours (Li et al.,
2018). For the smoothing operations within this investigation the standard deviation
is set to σ = 80 which removes noise sufficiently while preserving the core information.
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Mathematically the smoothing of a function f(x) is described via a convolution of the
function with a smoothing function called the kernel g(x).

(3.4)f̂(x) = f ∗ g (x) =
∫ ∞
−∞

f (x− λ) · g (λ) dλ =
∫ ∞
−∞

f (x) · g (x− λ) dλ

When dealing with signal processing mostly discrete convolution is used, which is
described by:

(3.5)f̂(n) = (f ∗ g) (n) =
∑

k

f(k)g(n− k) =
∑

k

f(n− k)g(k)

For the discrete convolution of two functions the following relationship is valid:

(3.6)D̂f = D (f ∗ g) = (Df) ∗ g = f ∗ (Dg)

with D being the difference operator.

In our context the differential capacity dQc
dV

corresponds to Df and the Gaussian
distribution function G(V ) corresponds to the kernel g . Because we are dealing with
discrete convolution in one dimension, the functions f and g are vectors. Under usage of
3.6 we are able to shift the difference operator to the kernel, allowing us to circumvent
the aforementioned problem which arises due to calculating 3.2. We obtain a smoothed
IC-curve by evaluating

(3.7)
ˆdQc

dV
(n) = (Qc ∗Dg) (n) = (Qc ∗ g̃) (n) ,

with the vector g̃ being the differentiated Gaussian kernel. The i-th element of the
differentiated Gaussian kernel is given by

(3.8)g̃i = −2i− l − 1
σ3
√

2π
exp

[
(2i− l − 1)2

(8σ2)

]
, i = 1, 2, ..., l

with l being the length of g̃ and σ specifying the width of the smoothing function.
For our investigations the used kernel is specified by l = 699 and σ = 80. With these
parameters noise is reduced sufficiently while preserving the core information. The
length of the vector Qc was about lQc ≈ 4600. An example for a set of smoothed
IC-curves is shown in Figure 3.6.
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3.2 Incremental Capacity Analysis of the Constant-Current Charging Phase

Figure 3.6: Example of a set of smoothed IC-curves extracted from an ageing-dataset.
Brighter curves represent less aged cell status.

3.2.4 Localization of Feature Points

The next step in ICA is to find a feature in the IC-curve which relates to the present
SoH of the corresponding cell. There are several candidates for features like positions
of local maxima or points of inflection, peak amplitudes or envelope areas. Therefore,
multiple tests with different feature candidates were carried out. Like in the work of Li
et al. (2018), for the investigated cells the position of an IC-peak has shown to be the
most suitable candidate as feature. To be more precise, the second maximum from
the right side which lies in a voltage range of (3.7− 3.8) V delivered the best results.
Thus, we refer to it as Feature Point FP. Figure 3.7 shows an example set of smoothed
IC-curves and the corresponding Feature Points (FPs). It can already be seen that
there is a horizontal drift in position of the FPs with increased ageing and capacity
fade respectively.

3.2.5 Linear Regression of SoH versus FP-location

Now that the FPs have been extracted, a relationship between them and SoH of the
cell should be found. With this, SoH can be easily estimated whenever a FP is detected
during a constant current charging process. To derive such a relation the SoH has
to be calculated according to Equation 2.1. The present total capacity of the cell
was calculated by coulomb counting via current integration over a complete CC-CV
charging process:
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Figure 3.7: Example of a set of smoothed IC-curves with FPs from a ageing-dataset. The
extracted FPs correspond to the second local maxima from the right side. Brighter curves
represent less aged cell status.

(3.9)Qtot =
∫ t1

t0
η (t′) I (t′) dt′,

where t0 corresponds to the starting time of CC charging and t1 to the end time of CV
charging. For the coulombic efficiency, η(t) ≈ 1 ∀ t was assumed. For the evaluation
of the integral, trapezoidal numerical integration was used. Figure 3.8 shows a scatter
plot of the FP-location with respect to present SoH. For the quantitative description
of this relationship, a linear least squares regression was performed using the python
function stats.linregress from the scipy module. Here σ is the Root Mean Square Error
(RMSE) of residuals. For n observations yi and its corresponding estimates ŷi, σ is
calculated by

(3.10)σ =
√√√√ 1
n

n∑
i=1

(yi − ŷ)2.

Furthermore R2 gives the coefficient of determination and is calculated by

(3.11)R2 =
∑n

i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2 .

The defining parameters of the fit function are also shown in the textbox at the bottom
left of the figure. The gradient of the regression line is described by k with its unit
being %

V . The intercept with SoH-axis is given by the parameter d with its unit being
%.
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Figure 3.8: Example scatter plot of the FP-location versus SoH for a single cell. Brighter
dots refer to less aged cell status.

3.3 ICA: Implementation and Results

To revisit, the aim of ICA is to find a relation between features of the IC-curves and
the cell’s SoH in order to be able to easily estimate SoH. To test the ICA method (see
Section 3.2) and gather information about its range of application, it was applied to a
variety of ageing-datasets. These datasets originate from calendric ageing tests, drive
cycle ageing tests and cyclic ageing tests. The ageing-datasets were chosen according
to their corresponding LPs’s defining parameters. The aim of this selection is to cover
a wide range of possible ageing scenarios. For each chosen LP, there are three cells
which were aged under these conditions to take account of fluctuations. For each LP
the method was applied once for all three cells together. The selection of LPs and the
corresponding results are described in the following subsections. An overview of the
obtained results can be seen in Table 3.3.

3.3.1 Drive Cycle Ageing

The scenario of drive cycle ageing gives insight on how applicable the used ICA-method
is for estimating the SoH under real conditions. For the investigation of drive cycle
ageing the cells were aged with a LP specified by an automotive partner of the Virtual
Vehicle Research GmbH. Its duration is about one week and it aims to describe the
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driving behaviour of a full-time employee with daily car use for job arrival and weekend
use for outdoor pursuits. Due to legal reasons, we are not allowed to present any
further information regarding this LP. Nevertheless, the gained results of the ICA from
the drive cycle ageing tests are shown in Figure 3.9.

Figure 3.9: Linear fit of the FP-location versus SoH for three cells. Each of the cells was
aged with the same drive cycle LP.

It can be clearly seen, that there is a linear relationship between FP-location and SoH.
The fit function (black) was obtained by performing a linear regression for all cells
together. With it we are able to estimate a cell’s SoH based on the peak position in the
present Incremental Capacity (IC)-curve. The red lines indicate three-sigma confidence
intervals. Within these over 99.7 % of the data-points can be found. Between the
individual cells there is a noticeable vertical offset in SoH. We assume that this originates
from fluctuations within the cell manufacturing process and storage conditions.

3.3.2 Calendric Ageing

For the investigation of calendric ageing, six LPs were chosen to display the effects of:

• Different SoC during storage

• Different temperature during storage

Table 3.1 lists the chosen LPs for the investigation of calendric aged cells as well as
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their defining parameters:

Table 3.1: LPs for the investigation of calendric ageing

LP T/ ◦C SoC/% CC/ h−1

L201 0 15 0.25
L202 45 15 0.50
L203 0 55 0.25
L204 30 55 0.50
L205 20 95 0.50
L206 45 95 0.50

Variation of SoC: The figures 3.10a and 3.10b display the effect of different SoC-
levels during calendric ageing at a temperature of T = 45 ◦C. In the case of L202
the cells were stored with SoC = 15 %, whereas L206 corresponds to a SoC-level
of SoC = 95 %. As expected, the cells which were stored under a high SoC-level
experienced more capacity fade and loss in SoH respectively. The different values
for σ show that the applied ICA method yields a more accurate result for the gentle
ageing by L202. For both LPs the R2 score is relatively high which validates the linear
regression.

Figure 3.10a: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L202: T = 45 ◦C, SoC = 15 %

The subsequent figures 3.11a and 3.11b aim to illustrate the effect of different SoC-level
during calendric ageing with a storage temperature of T = 0 ◦C. In the case of L201
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Figure 3.10b: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L206: T = 45 ◦C, SoC = 95 %

the cells were stored with SoC = 15 %, whereas L203 corresponds to a SoC-level of
SoC = 55 %. In this case a higher SoC-level during calendric ageing did not lead to
more capacity fade but to a more spread out mapping of the FP-location versus SoH.
This results in a higher σ and a lower R2 score.

Figure 3.11a: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L201: T = 0 ◦C, SoC = 15 %
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Figure 3.11b: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L203: T = 0 ◦C, SoC = 55 %

Variation of Temperature: The following figures display the effect of different
temperature during calendric ageing on the performance of the applied ICA. The
figures 3.12a and 3.12b show the ICA-results of cells being aged by the LPs L201 and
L202. Both of these LPs are characterized by SoC = 15 %. In the case of L201 the cells
were stored with T = 0 ◦C, whereas L202 corresponds to a temperature of T = 45 ◦C.
The results from L202 (higher T) show increased capacity fade and a slightly steeper
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slope. Nevertheless, the accuracy for both regressions is equal with σ = 0.76 %.

Figure 3.12a: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L201: SoC = 15 % , T = 0 ◦C

Figure 3.12b: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L202: SoC = 15 % , T = 45 ◦C

The hereafter figures 3.13a and 3.13b display the effect of different temperature during
calendric ageing with a constant SoC-level of SoC = 55 %. In the case of L203 the cells
were stored with T = 0 ◦C, whereas L204 corresponds to a temperature of T = 30 ◦C.
Like in the previous comparison, the cells stored under higher temperature experienced
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more capacity fade. The accuracy of both linear regressions is very similar but lower
than for the ageing at SoC = 15 % (figures 3.12a and 3.12b ).

Figure 3.13a: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L203: SoC = 55 % , T = 0 ◦C

Figure 3.13b: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L204: SoC = 55 % , T = 30 ◦C
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Figures 3.14a and 3.14b display the effect of different temperature during calendric
ageing with a constant SoC-level of SoC = 95 %. In the case of L205 the cells were
stored with T = 20 ◦C, whereas L206 corresponds to a temperature of T = 45 ◦C. It
can be seen that a difference in storage temperature has a big influence on calendric
cell ageing at a high SoC-level. Like in the comparisons before, the linear regression
for the cells stored under higher temperature shows higher σ, but a flatter slope (lower
|k|).

Figure 3.14a: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L205: SoC = 95 % , T = 20 ◦C
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Figure 3.14b: Scatter plot of the FP-location versus SoH for cells being aged calendric by
L206: SoC = 95 % , T = 45 ◦C

3.3.3 Cycle Ageing

For investigating the performance of the applied ICA on cycle aged cells four LPs were
chosen to display the effects of:

• Different temperature during cycling

• Different dSoC during cycling

Table 3.2 lists the chosen LPs for cyclic aged cells and their defining parameters:

Table 3.2: LPs for the investigation of cyclic ageing

LP T/ ◦C PDC/ h−1 ADC/ h−1 SoC/% dSoC/% CC/ h−1

L208 0 1.5 1.5 55 2.5 0.05
L209 45 1.5 0.9 55 2.5 0.05
L215 0 1.5 0.3 55 80 0.05
L216 45 1.5 0.3 55 80 0.05

Variation of Temperature: The two figures 3.15a and 3.15b aim to illustrate the
effect of different temperature for cyclic ageing with dSoC = 2.5 %. In the case of L208
the cells were stored with T = 0 ◦C, whereas L209 corresponds to a temperature of
T = 45 ◦C. It can be seen that the applied ICA tends to be unstable for low dSoC and
low temperature since the R2 score is close to zero. Nevertheless, for higher temperature
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(shown by 3.15b) the regression derived by the applied ICA has a high R2 score and
low sigma of σ = 0.73 %.

Figure 3.15a: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L208: dSoC = 2.5 % , T = 0 ◦C

Figure 3.15b: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L209: dSoC = 2.5 % , T = 45 ◦C

The subsequent figures 3.16a and 3.16b display the effect of different temperature
during cyclic ageing with a high dSoC = 80 %. In the case of L215 the cells were
stored with T = 0 ◦C, whereas L216 corresponds to a temperature of T = 45 ◦C. Like
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expected, higher temperature during cycling leads to more capacity fade. Besides this
effect, a steeper slope and slightly lower accuracy (higher σ) of the linear regression
can be observed for the higher temperature ageing by L216.

Figure 3.16a: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L215: dSoC = 80 % , T = 0 ◦C

Figure 3.16b: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L216: dSoC = 80 % , T = 45 ◦C

Variation of dSoC: The figures 3.17a and 3.17b display the effect of different dSoC
during cyclic ageing under a temperature of T = 45 ◦C. In the case of L209 the cells
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were cycled with dSoC = 2.5 %, whereas L216 corresponds to dSoC = 80 %. As
expected, the cells which were cycled with high dSoC experienced more capacity fade.
The narrower three-sigma bounds in 3.17a again show that the linear description of a
cell’s SoH vs FP-location, obtained through ICA, is more accurate for gentle ageing.
For both LPs the R2 score is relatively high, which validates the linear regression.

Figure 3.17a: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L209: T = 45 ◦C, dSoC = 2.5 %

Figure 3.17b: Scatter plot of the FP-location versus SoH for cells being aged cyclic by
L216: T = 45 ◦C, dSoC = 80 %
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A more detailed discussion of the presented results obtained via the ICA method as
well as the major outcomes regarding the method’s performance for SoH estimation is
presented in section 3.6.

3.4 Analysis of the Constant-Voltage Charging Phase

In this section the measurement data recorded during constant voltage (CV) charging
is investigated. As for ICA, the aim of this investigation is to derive a relationship
between a certain feature of the measurement data and the cell’s SoH. Figure 3.18
displays the decay of the current signal during CV charging. In contrast to ICA, we now
examine the charging current I with respect to time t instead of differential capacity
dQc
dV

with respect to terminal Voltage V .

Figure 3.18: Typical CC-CV charging process of a lithium-ion cell (Z. Wang et al., 2019)

Up to now only a few studies on evaluating the characteristics of CV charging process
exist. A recent study by Z. Wang et al. (2018) proposes a method which combines
quantum computing theory with a classical machine learning technique and applies it
to a data repository for Li-ion batteries provided by NASA Ames Prognostic Center
of Excellence. In this study the charged capacity during CV charging is expected to
be the ageing feature. Z. Wang et al. (2019) also examines the data respiratory from
NASA. In this study and in the work of Yang et al. (2018), the dynamic behaviour of
CV charging current is investigated and a physical related decay-constant is extracted
as a battery health indicator. The work of Eddahech et al. (2014) deals with the
investigation of calendric ageing of four battery technologies (NCA, NMC, LiFeMg and
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LiFePO4). That study also considers the time dependence of the CV charging current
to be characteristic for ageing and capacity loss respectively.

3.4.1 Data Extraction

As mentioned in Section 3.2.1, only the data originating from RTPs performed at a
temperature of T = 25◦C was used. For the analysis of the CV charging process the
data-points during the second CV charging process within each RTPs Full Capacity
Determination segment were extracted. For better understanding Figure 3.19 displays
an example of the scope for the extraction of the current decay during CV charging
process from a RTP.

Figure 3.19: Shows partly data collected during execution of a RTP, blue: Terminal
Voltage V , red: Current I, green: Stepindex n; The vertical lines in violet mark the scope
for the extraction of the data during the CV charging process.

Figure 3.20 shows an example set of current time series (I− t) extracted for a cell while
being cycle aged. Each current time series (I − t) originates from a corresponding RTP.
Again each colour corresponds to the degree of ageing and capacity fade respectively.
Herein, brighter curves relate to less aged cell status. Therefore, the brightest curve
originates from the completely unaged cell (first RTP) while the darkest curve relates
to the last RTP of the ageing test and highest ageing respectively. It can be already
seen that the shape of the charge current time series clearly varies with battery ageing.

46



3.4 Analysis of the Constant-Voltage Charging Phase

Figure 3.20: I(t) during CV charging extracted from an ageing-dataset. Brighter curves
represent less aged cell status.

3.4.2 Characterisation via Exponential Decay Function

In order to describe the dynamic behaviour of the charging current shown in Figure
3.20 the exponential decaying function,

(3.12)I(t) = A · exp
(
− t
τ

)
,

is used. Here the parameter A is fixed and corresponds to the initial value of the
charge current, which is given by its value during CC charging. The strength of the
decay is described by the time constant τ . This function is fitted to the values of the
data-points from the extracted charge current time series. For the non-linear least
squares fitting, the python function optimize.curve_fit from the scipy module was
used. An example for a result of this procedure can be seen in Figure 3.21. For better
visibility only the data from the first and last RTP is shown.

3.4.3 Linear Regression of SoH versus Decay Constant

After extraction of the decay constants, a relationship between them and SoH of the
cell should be found. With this, SoH can be easily estimated whenever a decay constant
has been extracted. Figure 3.22 shows a scatter plot of the decay constant τ with
respect to present SoH being calculated according to Equation 2.1. The present total
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Figure 3.21: Fit of the charge current time series extracted from the first and last RTP
of an ageing-dataset with exponential decay function. bright green: originates from the
unaged cell (first RTP); dark blue: originates from the aged cell (last RTP); red: data
generated by the obtained fit functions.

capacity of the cell was calculated by coulomb counting via current integration over
a complete CC-CV charging process (Eq.3.9). For the quantitative description of τ
versus SoH a linear least squares regression was performed using the python function
stats.linregress from the scipy module. Here σ is the RMSE of residuals (calculated
by Eq.3.10) and R2 is the corresponding coefficient of determination (calculated by
Eq.3.11 ). The defining parameters of the fit function are also shown in the textbox at
the bottom left of the figure. The gradient of the regression line is described by k with
its unit being ( %

s ). The intercept with SoH-axis is given by the parameter d with its
unit being (%). With the obtained function, the cell’s SoH can be easily estimated
after every CV charging process.

3.5 CV-Analysis: Implementation and Results

To test the CV-Analysis and gather information about its range of application, the
method was applied to a variety of ageing-datasets. As for the ICA, these include
datasets originating from calendric ageing tests, drive cycle ageing tests and cyclic
ageing tests. The ageing-datasets were chosen according to their corresponding LP’s
defining parameters. The aim of this selection is to cover a wide range of possible
ageing scenarios. For each chosen LP there are three cells which were aged under these
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Figure 3.22: Example scatter plot of the decay constant τ versus SoH. Brighter dots refer
to less aged cell status.

conditions. The selection of LPs as well as their defining parameters can be found in
Section 3.3 (Tables 3.1 and Table 3.2). The corresponding results are described in the
following subsections. An overview of the obtained results can be looked up in Table 3.3.

3.5.1 Drive Cycle Ageing

The scenario of drive cycle ageing gives insight on how applicable the used CV-Analysis
is for estimating the SoH under real conditions. For the investigation of drive cycle
ageing the cells were aged with a LP specified by an automotive partner of the Virtual
Vehicle Research GmbH. Its duration is about one week and it aims to approximate the
driving behaviour of a full-time employee with daily car use for job arrival and weekend
use for outdoor pursuits. Due to legal reasons, we are not allowed to present any
further information regarding this LP. Nevertheless, the gained results from investigat-
ing the CV charging processes from the drive cycle ageing tests are shown in Figure 3.23.
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Figure 3.23: Scatter plot and linear regression of the decay constant τ versus SoH for
cells being aged by the drive cycle V208.

3.5.2 Calendric Ageing

For the investigation of calendric ageing, six LPs were chosen to display the effects of:

• Different SoC during storage

• Different temperature during storage

The chosen LPs for calendric aged cells and their defining parameters can be found in
Table 3.1 within Section 3.3.2.

Variation of SoC: The figures 3.24a and 3.24b display the effect of different SoC-
level during calendric ageing under a temperature of T = 45 ◦C. In the case of L202
the cells were stored with SoC = 15 %, whereas L206 corresponds to a SoC-level of
SoC = 95 %. As expected, the cells stored with a high SoC-level experienced more
capacity fade. The values for σ show that the linear description of a cell’s SoH versus
decay constant τ is more accurate for the gentle ageing by L202. However, the data-
points are more non-linearly spread out in the case of L202 leading to a lower R2 score
of 0.657. For the ageing by L206, the R2 score of the linear regression reaches a value
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of 0.952 which validates it as a descriptive model function.

Figure 3.24a: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L202: T = 45 ◦C, SoC = 15 %

Figure 3.24b: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L206: T = 45 ◦C, SoC = 95 %
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The two figures 3.25a and 3.25b display the effect of different SoC-levels during calendric
ageing under a temperature of T = 0 ◦C. In the case of L201 the cells were stored with
SoC = 15 %, whereas L203 corresponds to SoC = 55 %.

Figure 3.25a: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L201: T = 0 ◦C, SoC = 15 %

Figure 3.25b: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L203: T = 0 ◦C, SoC = 55 %

In both cases the cells experienced a decrease in SoH of less than 10 %. In the case of
L201 the linear regressions accuracy is quite high described by σ = 0.90 %. In the case

52



3.5 CV-Analysis: Implementation and Results

of a higher SoC-level during storage (L203) the scatters are more spread out leading to
a lower accuracy of σ = 1.28 % and a lower R2 score.

Variation of Temperature: The hereafter figures 3.26a and 3.26b show the effect
of different temperature during calendric ageing with SoC = 15 %. In the case of L201
the cells were stored with T = 0 ◦C, whereas L202 corresponds to a temperature of
T = 45 ◦C.

Figure 3.26a: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L201: SoC = 15 % , T = 0 ◦C
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Figure 3.26b: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L202: SoC = 15 % , T = 45 ◦C

It can be seen that a higher storage temperature leads to more capacity fade and
lower accuracy. A steeper slope of the linear regression can be seen for the higher
temperature ageing by L202.

The figures 3.27a and 3.27b display the effect of different temperature during calendric
ageing with SoC = 55 %. In the case of L203 the cells were stored with T = 0 ◦C,
whereas L204 corresponds to a temperature of T = 30 ◦C.

Figure 3.27a: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L203: SoC = 55 % , T = 0 ◦C
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Figure 3.27b: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L204: SoC = 55 % , T = 30 ◦C

The scatter plots 3.28a and 3.28b illustrate the effect of different temperature during
calendric ageing with SoC = 95 %. In the case of L205 the cells were stored with
T = 20 ◦C, whereas L206 corresponds to a temperature of T = 45 ◦C. It can be seen
that different storage temperature has a big influence on calendric cell ageing at a high
SoC-level. As in the comparisons before, the linear regression shows higher σ and a
steeper slope for the cells stored under higher temperature.

Figure 3.28a: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L205: SoC = 95 % , T = 20 ◦C
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Figure 3.28b: Scatter plot of the decay constant τ versus SoH for cells being aged calendric
by L206: SoC = 95 % , T = 45 ◦C

3.5.3 Cycle Ageing

For the CV-investigation of cycle ageing, four LPs were chosen to display the effects of:

• Different temperature during cycling

• Different dSoC during cycling

Table 3.2 in section 3.3.3 lists the chosen LPs for cyclic aged cells and their defining
parameters:

Variation of Temperature: The two figures 3.29a and 3.29b display the effect of
different temperature during cyclic ageing with dSoC = 2.5 %. In the case of L208
the cells were cycled under a temperature of T = 0 ◦C, whereas L209 corresponds to
T = 45 ◦C. As for calendric ageing, cells aged under a higher temperature show more
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capacity fade, lower accuracy and a steeper slope.

Figure 3.29a: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L208: dSoC = 2.5 % , T = 0 ◦C

Figure 3.29b: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L209: dSoC = 2.5 % , T = 45 ◦C

The figures 3.30a and 3.30b display the effect of different temperature during cyclic
ageing with dSoC = 80 %. In the case of L215 the cells were cycled under a temperature
of T = 0 ◦C, whereas L216 corresponds to T = 45 ◦C. Both regressions show high R2

scores > 0.91. It can be seen that different temperature has a big influence on cyclic
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cell ageing with high dSoC. Furthermore, higher temperature during cycling leads to
lower accuracy (higher σ) and a steeper slope.

Figure 3.30a: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L215: dSoC = 80 % , T = 0 ◦C

Figure 3.30b: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L216: dSoC = 80 % , T = 45 ◦C

Variation of dSoC: The following figures 3.31a and 3.31b illustrate the effect
of different dSoC during cyclic ageing under a temperature of T = 45 ◦C. In the
case of L209 the cells were cycled with dSoC = 2.5 %, whereas L216 corresponds to
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dSoC = 80 %. As expected, the cells which were cycled with high dSoC experienced
more capacity fade. Nevertheless, the accuracy of both regressions is very similar.

Figure 3.31a: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L209: T = 45 ◦C, dSoC = 2.5 %

Figure 3.31b: Scatter plot of the decay constant τ versus SoH for cells being aged cyclic
by L216: T = 45 ◦C, dSoC = 80 %
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The following table comprehensively lists the results obtained by ICA and CV-Analysis.
Here kICA and kCV describe the slope of the linear regressions obtained through ICA and
CV-Analysis.The quantities dICA and dCV describe the intercept of the corresponding
regression lines with the SoH-axis.

Table 3.3: Results of Ageing Data Analysis
Ageing Type Constant Variable σICA [%] σCV [%] R2

ICA R2
CV kICA [%

V ] kCV [%
s ] dICA [%] dCV [%]

Drive Cycle - - 1.01 2.02 0.837 0.405 −5.07e2 −1.51e−1 1.99e3 2.54e2

Calendaric

T = 45 ◦C SoC = 15 % 0.76 1.32 0.881 0.657 −1.47e2 −1.54e−1 6.49e2 2.61e2
SoC = 95 % 3.02 4.50 0.943 0.952 −3.92e2 −1.33e−1 1.56e3 2.36e2

T = 0 ◦C SoC = 15 % 0.76 0.90 0.481 0.312 −1.23e2 −4.13e−2 5.58e2 1.40e2
SoC = 55 % 1.18 1.28 0.306 0.185 −1.18e2 −3.00e−2 5.39e3 1.28e2

SoC = 15 % T = 0 ◦C 0.76 0.90 0.481 0.312 −1.23e2 −4.13e−2 5.58e2 1.40e2
T = 45 ◦C 0.76 1.32 0.881 0.657 −1.47e2 −1.53e−1 6.49e2 2.61e2

SoC = 55 % T = 0 ◦C 1.18 1.28 0.306 0.185 −1.18e2 −3.00e−2 5.39e2 1.28e2
T = 30 ◦C 1.16 1.34 0.719 0.646 −1.55e2 −9.98e−2 6.76e2 2.01e2

SoC = 95 % T = 20 ◦C 1.04 1.59 0.856 0.670 −4.39e2 −1.12e−1 1.74e3 2.12e2
T = 45 ◦C 3.02 4.50 0.943 0.952 −3.92e2 −1.33e−1 1.56e3 2.36e2

Cyclic

dSoC = 2.5 % T = 0 ◦C 1.84 1.78 0.000 0.343 −4.16e1 −5.31e−2 2.49e2 1.51e2
T = 45 ◦C 0.73 1.86 0.930 0.643 −1.71e2 −1.44e−1 7.38e2 2.50e2

dSoC = 80 % T = 0 ◦C 1.32 1.08 0.869 0.912 −1.29e2 −4.51e−2 5.79e2 1.44e2
T = 45 ◦C 1.67 1.64 0.942 0.975 −1.89e2 −8.03e−2 8.05e2 1.80e2

T = 45 ◦C dSoC = 2.5 % 0.76 1.86 0.923 0.643 −1.65e2 −1.44e−1 7.14e2 2.50e2
dSoC = 80 % 1.67 1.64 0.942 0.975 −1.89e2 −8.03e−2 8.05e2 1.80e2
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3.6 Discussion on Ageing Data Analysis

In this section, the results obtained by the applied methods for Ageing Data Analysis
are summarized and discussed.

Drive Cycle Ageing: The from ICA derived linear regression shown in Figure 3.9
has a coefficient of determination of R2 = 0.837 and is able to describe the cells SoH
with an accuray of σ = 1.01 %. In contrast, the regression derived from analysing the
CV charging process (Figure 3.23) has a coefficient of determination of R2 = 0.405 and
is able to describe the cells SoH only with an accuracy of σ = 2.02 %. As a result, for
the investigated drive cycle ageing a higher performance of the ICA-method is clearly
noticeable. With three-sigma bounds of about ±3.0 % the ICA would be quite useable
as a tool for estimating a Li-ion cell’s SoH. Nevertheless, a dependence of the derived
linear regressions defining parameters on the drive cycle conditions is expected.

Calendric Ageing: As for drive cycle ageing, the ICA-method shows superior per-
formance accounted for by lower σ-values and equal or higher values for the coefficients
of determination R2.
For both methods a high SoC-level during storage leads to lower accuracy or higher
σ-values respectively. This effect is more dominant for higher storage temperature and
is shown by the figures 3.10a & 3.10b or. 3.24a & 3.24b.
The variation of temperature for several SoC-levels shows that ICA is more robust
against varying temperature. This is manifested by the results at SoC = 15 % and
SoC = 55 % (figures 3.12a & 3.12b) which show independence of the accuracy σ on
different storage temperatures. In contrast, the relative CV-results (figures 3.26a &
3.26b) show that higher storage temperature leads to less accurate results. At the
highest investigated SoC-level of SoC = 95 %, increasing temperature leads to lower
accuracy for both the ICA and CV-Analysis.
For the results gained through CV-Analysis, a further temperature dependence is
noticeable. The slope of the linear regressions gets steeper as the temperature rises.
This effect can be seen in the figure pairs 3.26a & 3.26b, 3.27a & 3.27b and 3.28a &
3.28b. Because of the limited amount of ageing-datasets it is hard to derive quantified
generally valid statements regarding the effects of varying temperature or SoC-levels
respectively.

Cycle Ageing: In the case of cycle ageing the ICA-method shows a slightly better
performance accounted for by lower average σ-value and similar or higher values for
the coefficients of determination R2.
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However, at a low dSoC = 2.5 % combined with a low temperature T = 0 ◦C the
ICA-method gets unstable. This can be explained by Figure 3.32 which displays the
smoothed IC-curves corresponding to Figure 3.15a. It is noticeable that due to ageing
at the aforementioned conditions, the second local maxima from the right side, which
lies in a voltage range of (3.7− 3.8)V , tends to vanish while the third local maxima
from the right side tends to grow and gets more dominant.

Figure 3.32: Smoothed IC-curves corresponding to Figure 3.15a. The figure shows the
vanishing of the second local maxima from the right side which lies in a voltage range of
(3.7− 3.8)V , while the third local maxima from the right side tends to get more prominent
with increased ageing.

For the results gained through CV-Analysis the slope of the linear regressions gets
steeper with increasing temperature. This effect is displayed by the figure pairs 3.29a &
3.29b and 3.30a & 3.30b. As in the case of calendric ageing, due to the limited amount
of ageing-datasets it is not possible to derive a quantified description of this effect.

To conclude, ICA is overall more accurate in describing a cell’s SoH. In order to
apply the method, data of the CC charging process is needed. For the investigated
cell-type, the extracted FPs are located within a voltage range of (3.7− 3.8) V, which
corresponds to a SoC of around (40− 60) %. Therefore, the cell needs not to perform
a full charge/discharge cycle in order to extract the wanted FP and its location. An
advantage of the CV-method is that it can be applied to every full CV charging process.
Therefore, it is independent of initial SoC as long as CV charging is executed. As a
result CV-Analysis is less invasive in estimating a cell’s SoH.
From these results it can be deduced that the performance of both methods decreases
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3.6 Discussion on Ageing Data Analysis

with increasingly radical ageing. Since the applied methods seem highly dependent
on the cell’s operation conditions, they are only applicable for scenarios where these
are known exactly beforehand and ageing tests have been carried out to extract the
corresponding linear regression. This discards them as on-board capacity estimation
methods for EVs and HEVs as these have to operate under a wide range of conditions
specified by varying temperatures, current rates and SoC-levels.
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4
Total Capacity Estimation via
Approximate Total Least Squares

In this chapter an optimization method for on-board capacity estimation is investigated.
After a detailed description of the method it is applied to measurement data to validate
its performance. The method being used is based on the work of Plett (2011). Because
of the definition of SoH via capacity fade, the importance of accurate estimates for a
cell’s actual total capacity Qtot is obvious. A majority of capacity estimation methods
is based on the following equation which directly follows from the definition of SoC
and coulomb counting.

(4.1)
∫ t2

t1

ηI (t)
3600 dt︸ ︷︷ ︸

y

= Qtot (SoC (t2)− SoC (t1))︸ ︷︷ ︸
x

.

Here, SoC(t) is the cell’s SoC at time t. Qtot is the actual total cpacity in (Ah), I(t) is
the electric current in (Ah) and η is the coulombic current efficiency, a unitless efficiency
factor which describes the magnitude of lost charge by side reactions occurring during
charge or discharge. For the purpose of this investigation we assume a constant η ≈ 1.
The time t is measured in seconds. To convert the summed current to the right unit, it
is multiplied by the factor 1/3600. Within the framework of this investigation, current
is considered to have a positive sign while charging and to have a negative sign while
discharging. As a further assumption, the total cell capacity Qtot is considered to be
independent of temperature an C-rate. The estimates for the cell’s SoC are needed as
inputs and can originate from any SoC estimation method with the constraint that it
must not depend on the cell’s total capacity to prevent circularity of dependencies. In
this work two SoC estimation methods will be used to generate the x values. Firstly, a
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4 Total Capacity Estimation via Approximate Total Least Squares

simple voltage-based estimation will be made via the OCV-SoC estimation method as
described in 2.3.2. Secondly, a more sophisticated SoC estimation will be made with an
Extended Kalman Filter (EKF) which brings several advantages we will discuss later.
For the generation of the y input coulomb counting via numerical current integration
will be used.

By looking at the horizontal braces of Equation 4.1, which are labelled as "y" and "x",
the linear structure of the capacity estimation problem y = Qtot · x is brought to mind.
The standard approach for solving optimization problems of this kind is to use standard
least square linear regression techniques. These methods consider the optimization
problem in finding a solution to an equation of the form (y ±∆y) = Qtot · x which
assumes that there is no measurement noise on the variable x. Since the variable x
relates to a change in SoC, it should also be considered to have some kind of error
as the values for SoC(t1) and SoC(t2) are estimates. As a result, our optimization
problem is defined by an equation of the form:

(4.2)(y ±∆y) = Qtot · (x±∆x)

The standard approach to circumvent this issue is to minimize the error of x as
much as possible and then apply standard least square linear regression. One way of
achieving this could be putting constraints on how the values for the cell’s SoC are
estimated. A possibility would be to force the charge/discharge current to be zero
until the cell is near equilibrium and therefore terminal voltage has relaxed close to
its OCV-value. Then the SoC could be directly extracted from the OCV-SoC lookup
table. Nevertheless, this approach ignores the residual error in x. Furthermore, it is
highly invasive as it imposes strict constraints on the cell current during estimation.
Therefore, other optimization methods which are non-invasive and consider the noise
in both the x and y variables may be used.

The most rigorous approach for solving a linear regression problem like this would be
to consider it in terms of Bayesian probability theory. Under the assumption of normal
Gaussian errors and an assumed specific prior distribution of the parameter, Bayesian
Straight Line Regression (SLR) yields an exact solution of the posterior probability
for the parameter Qtot. With this information the parameter as well as its uncertainty
can be estimated by the mean posterior probability and its corresponding variance,
respectively. Hereinafter, the method is briefly introduced. A detailed description of
linear regression based on Bayesian probability theory is presented by Von der Linden
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et al. (2014).

Given the data pairs (xi, yi) with errors in both variables (σx,i, σy,i), the posterior
probability for the parameter a of a straight line

y = ax (4.3)

is given by 1

p(a|{xi}, {yi}, {σx,i}, {σy,i}) = ρ(a|{xi}, {yi}, {σx,i}, {σy,i})
Z

(4.4)

ρ(a|{xi}, {yi}, {σx,i}, {σy,i}) = 1
(1 + a2)3/2 exp

(
− 1

2
∑

i

(yi − axi)2

σ2
y,i + a2σ2

x,i

)
, (4.5)

Where Z is the normalization that needs to be determined numerically by

Z =
∫ ∞
−∞

ρ(a|{xi}, {yi}, σx,i, σy,i)da . (4.6)

The parameter a can be estimated by the mean posterior probability

〈a〉 =
∫
a p(a|{xi}, {yi}, σx,i, σy,i)da (4.7)

and the uncertainty from the corresponding variance

〈(∆a)2〉 =
∫

(∆a)2 p(a|{xi}, {yi}, σx,i, σy,i)da . (4.8)

Both expressions need to be computed numerically.

Iterative update: To avoid the storage of all data values, the computation can be
done iteratively. To this end and also for numerical stability, it is expedient to use
the logarithmic representation of the posterior probability density function (PDF). We
define

LN(a) = ln (ρ(a|{xi}, {yi}, {σx,i}, {σy,i})) (4.9)

= −3
2 ln (1 + a2)− 1

2

N∑
i=1

(yi − axi)2

σ2
y,i + a2σ2

x,i

. (4.10)

1Bayesian Probability Theory: Applications in the Physical Sciences, W. von der Linden, V. Dose,
U. von Toussaint, Cambridge University Press, 2014

67



4 Total Capacity Estimation via Approximate Total Least Squares

Every time a new data point (xN+1, yN+1) is added, we obtain

LN+1(a) = LN −
1
2

(yN+1 − axN+1)2

σ2
y,N+1 + a2σ2

x,N+1
.

Hence, LN can be computed iteratively for a set of parameter values {ai}. From those
values the normalization, mean and variance can be numerically evaluated. Because
the idea to consider Bayesian SLR in the context of on-board capacity estimation
arose towards the end of this work, it is not investigated in detail within this thesis.
Nevertheless, it was tested for one dataset to compare it with the investigated methods.
The result of this test can be seen in Figure 4.11.

In contrast to Bayesian SLR, the methods investigated in this thesis are based on linear
least squares optimization. In order to find the solution to the problem described via
Equation 4.2, a sophisticated variation of Total Least Squares (TLS) regression will be
used in this chapter. Firstly the Weighted Least Squares (WLS) and Weighted Total
Least Squares (WTLS) solutions will be derived. Afterwards the computationally more
efficient Approximate Weighted Total Least Squares (AWTLS) regression technique
for the on-board use is presented. Finally, the AWTLS algorithm is applied to real
measurement data for validation.

4.1 From Weighted Least Squares to Weighted Total Least
Squares

4.1.1 Weighted Least Squares

The aim of both the Least Squares (LS) and TLS methods is to find a constant Q̂
which describes ~y ≈ Q̂ · ~x most accurately. The N-dimensional vector ~y contains the
summed current and ~x holds the cell’s SoC-change during each time interval. So the
i-th component of these input vectors correspond to:

(4.11)xi = SoC(ti2)− SoC(ti1),

(4.12)yi =
∫ ti2

ti1

η (t) I (t)
3600 dt,

where the vectors ~x and ~y must be at least one samples long (N ≥ 1). As mentioned
before, the WLS does not consider noisy values for xi and therefore models the
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optimization problem as ~y− ~∆y = Q · ~x. The vector ~∆y is assumed to be of zero-mean
Gaussian random nature. Its elements are considered as cumulated noise errors of the
used current sensor. In practice ~∆y may additionally include gain errors, bias errors
and non-linear errors which would bias all least squares based methods. According to
Plett (2011), it can be assumed that gain errors and non-linear errors are negligible
if the same current sensor is used for total capacity estimation and pack operation
monitoring. Bias errors of the current sensor could be remedied by matching the
discharged ampere hours with the charged ampere hours.
The aim of WLS is to find the best estimate Q̂ which minimizes the sum of squared
errors. In order to achieve that, the WLS cost function 4.13 has to be minimized:

(4.13)χ2
W LS =

N∑
i=1

(yi − Yi)2

σ2
yi

=
N∑

i=1

(yi − Q̂xi)2

σ2
yi

.

where Yi means a point on the line Yi = Q̂ · xi. In order to find the minimum of
Equation 4.13, we set the partial derrivative with respect to Q̂ to zero and solve for Q̂.

(4.14)

∂χ2
W LS

∂Q̂
= −2

N∑
i=1

xi(yi − Q̂xi)2

σ2
yi

!= 0

Q̂
N∑

i=1

x2
i

σ2
yi

=
N∑

i=1

xiyi

σ2
yi

Q̂ =
∑N

i=1 xiyi/σ
2
yi∑N

i=1 x
2
i /σ

2
yi

.

As one can imagine, in real applications the length of the input vectors ~x and ~y

increases every sample-timestep when a new measurement for the charge current and
a new estimator for the cell’s SoC is available. Therefore, we introduce the index n
which describes the present length of the input vectors. With the definition of the two
quantities,

(4.15)c1,n =
n∑

i=1

x2
i

σ2
yi

and c2,n =
n∑

i=1

xiyi

σ2
yi

,

we can express the present estimate for the total capacity as Q̂n = c2,n/c1,n. In order
to achieve recursive calculation of the estimate Q̂, we write c1,n and c1,n as recursively
computing sums:

c1,n = c1,n−1 + x2
n

σ2
yn

c2,n = c2,n−1 + xnyn

σ2
yn
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To be able to calculate Q̂ recursively, initial values c1,n=0 and c2,n=0 are needed. For
this purpose we pretend an artificial initial measurement where we set x0 = 1 and
y0 = Qnom. For the variance σ2

y0 the variance of the nominal capacity given by the
cell manufacturer is used. The following variances σ2

yi
are considered as accumulated

measurement noise from the used current sensor.

As the cell’s total capacity fades with ongoing lifetime, the algorithm has to adapt
to this true change in Qtot. Therefore, fading memory of past measurements via a
forgetting factor γ is easily implemented to obtain the Fading Memory Weighted Least
Squares (FMWLS) cost function as described by Equation 4.16. The forgetting factor
γ modifies the cost function in a way that puts more emphasis on recently gathered
data. This can be seen as an alteration of the variances σ2

yi
which still allows for the

use statistical hypothesis testing subsequently.

(4.16)χ2
F MW LS =

N∑
i=1

γN−i (yi − Q̂xi)2

σ2
yi

., 0� γ ≤ 1

The introduction of the forgetting factor also leads to slightly changed sums c̃1,n and c̃2,n:

(4.17)c̃1,n =
n∑

i=1
γn−i x

2
i

σ2
yi

, and c̃2,n =
n∑

i=1
γn−ixiyi

σ2
yi

,

and therefore:

c̃1,n = γ c̃1,n−1 + x2
n

σ2
yn

c̃2,n = γ c̃2,n−1 + xnyn

σ2
yn

.

Finally, the Fading Memory Least Squares (FMLS) solution for Q̂ can be calculated
recursively according to:

(4.18)Q̂n = c̃2,n

c̃1,n

With WLS and FMWLS we have two regression methods which have some nice proper-
ties. Firstly they give a closed-form solution for the estimate Q̂. No more sophisticated
methods are needed which leads to computational high efficiency. Furthermore, it is
easily possible to calculate Q̂ recursively and to implement fading memory of past
measurements, which additionally makes it lean in performance requirements and
therefore suitable for embedded applications. Nevertheless, the ignoring of the errors
in ~x leads us to the derivation of the WTLS method.
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4.1.2 Derivation of Weighted Total Least Squares

The WTLS-method models the optimization problem as (~y ± ~∆y) = Qtot · (~x± ~∆x).
Here, the components of ~∆y are assumed to be of zero-mean Gaussian random nature
with the related standard deviations of ~σy. Likewise, the components of ~∆x are
assumed to be zero-mean Gaussian random with the standard deviations ~σx. As
previously mentioned, the approach of WTLS is to find the best value for the estimate
Q̂ which minimizes the weighted sum of both, squared errors in x and y, by minimizing
the corresponding WTLS cost funcion:

(4.19)χ2
W T LS =

N∑
i=1

(xi −Xi)2

σ2
xi

+ (yi − Yi)2

σ2
yi

,

where Xi and Yi are the true coordinates of the i-th datapoint laying on the line
Yi = Q̂ ·Xi. These correspond to the noisy measurment data tuple (xi, yi) . To find
the minimum of Equation 4.19, a different approach than in case of the WLS cost
function has to be used. Since this is an optimization problem in two variables we use
the method of Lagrange-multipliers. Hence, we augment the cost function with the
constraint Yi − Q̂ ·Xi

!= 0 to convert it. Then we can apply the derivative test like for
an unconstrained problem. The augmented WTLS cost function is given by:

(4.20)χ2
W T LSaug =

N∑
i=1

(xi −Xi)2

σ2
xi

+ (yi − Yi)2

σ2
yi

− λi · (Yi − Q̂Xi).

To find the local minima of the cost function, the partial derivatives ∂χ2
W T LSaug/∂Xi =

∂χ2
W T LSaug/∂Yi = ∂χ2

W T LSaug/∂λi
!= 0 are set zero which leads us to the following

expressions for Xi and Yi:

(4.21)Xi =
xiσ

2
yi

+ Q̂yiσ
2
xi

σ2
yi

+ Q̂2σ2
xi

and Yi = Q̂Xi.

By setting in these expressions, the cost function can be rewritten in terms of known
quantities:

(4.22)χ2
W T LS =

N∑
i=1

(yi − Q̂Xi)2

Q̂2σ2
xi

+ σ2
yi

.

To put more emphasis on recently gathered data, we introduce the forgetting memory
factor γ which leads us to:
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(4.23)χ2
W T LS =

N∑
i=1

γN−i (yi − Q̂Xi)2

Q̂2σ2
xi

+ σ2
yi

., 0� γ ≤ 1

Now having the cost function in a suitable form we find the minimum by setting its
partial derivative with respect to the estimator Q̂ to zero:

(4.24)∂χ2
W T LS

∂Q̂
= 2

N∑
i=1

γN−i (Q̂xi − yi)(Q̂yiσ
2
xi

+ xiσ
2
yi

)
Q̂2σ2

xi
+ σ2

yi

!= 0.

Unfortunately, the WTLS-solution for Q̂ has some disadvantages: First of all, Equation
4.24 cannot be resolved explicitly to Q̂. Therefore, a root finding algorithm like the
Newton-Raphson search is necessary to find a value for the estimator. This leads
to higher computational effort since the root finding algorithm works in an iterative
manner and has to be performed after every update of the data vectors ~x and ~y.
Another drawback of WTLS is the lack of recursive computation which leads to storage
difficulties because the entire data vectors have to be stored. As the number of
measurements N increases, so does the number of computations which additionally
makes WTLS unsuitable for on-board applications because of limited processing power.
Motivated by these restrictions an elaborate algorithm which gives a closed-form
solution for Q̂ and features a recursive computation manner will be presented in Section
4.4.

4.2 Confidence Intervals

As for any estimation method, it is important to be able to make a statement regarding
its precision. Therefore, we need a method to specify the uncertainty of the estimator
Q̂. One way to describe the dispersion of a variable from its mean value is by its
variance σ2

Q̂
through which confidence intervals can be specified.

To obtain a value for the variance σ2
Q̂
, we consider the problem as a maximum-likelihood

(ML) optimization problem. With the assumption that all the measurement errors held
in ~∆x and ~∆y are uncorrelated and Gaussian, the likelihood function is given by the
multivariate Gaussian distribution function:

(4.25)
LW T LS = 1

(2π)N |∑d|1/2 exp
(
−1

2χ
2
W T LS

)

= 1
(2π)N |∑d|1/2 exp

(
−1

2(~d− ~d′)T
−1∑
d

(~d− ~d′)
)
,
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where ~d is a joint vector built from the input vectors ~y and ~x. The vector ~d′ is a joint
vector built from the corresponding optimized mapping vectors ~Y and ~X. The diagonal
matrix ∑d holds the variances σ2

yi
followed by σ2

xi
. In this picture, minimizing the

cost function 4.23 is equivalent to maximizing the likelihood function 4.25. Because
of the ML-formulation we are able to calculate confidence intervals for Q̂ using the
Cramer-Rao theorem:

At first we built the log-likelihood function to get rid of the exponential term:

(4.26)ln (LW T LS) = − ln
(

(2π)N |
∑

d
|1/2

)
− 1

2χ
2
W T LS(Q̂).

Next, we build the second derivative of 4.26 with respect to Q̂2: According to Cramer-
Rao’s theorem, the lower bound for the variance of the estimator Q̂ is given by the
negative inverse of the second derivative of the log-likelihood function with respect to
Q̂2:

(4.27)∂2 ln (LW T LS)
∂Q̂2

= −1
2
∂2χ2

W T LS

∂Q̂2
≤ − 1

σ2
Q̂

.

Thus, the lower bound for σQ̂ is given by:

(4.28)σ2
Q̂
≥ 2

(
∂2χ2

W T LS

∂Q̂2

)−1

.

Therefore, we need the Hessian of the cost function in order to calculate a lower bound
for σ2

Q̂
. In the case of WTLS approximation the Hessian of the cost function is:

∂2χ2
W T LS

∂Q̂2

= 2
N∑

i=1
γN−i

σ4
yi
x2

i + σ4
xi

(3Q̂2y2
i − 2Q̂3xiyi)− σ2

xi
σ2

yi
(3Q̂2x2

i − 6Q̂xiyi + y2
i )

(Q̂2σ2
xi

+ σ2
yi

)3

 .
(4.29)

4.3 Goodness of Model Fit

In this section we want to verify whether the regression resulting from one of the Least
Square methods is a good approximation for describing the relationship of the input
variables x and y . Under the already made assumption that all measurement errors
are uncorrelated and Gaussian, the cost functions χ2

W LS and χ2
W T LS are distributed
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according the chi-squared distribution. To be more precise in the case of WLS
optimization χ2

W LS is a chi-squared random variable with k = N −1 degrees of freedom.
These origin from N input data points (y1, y2, ..., yN). One degree of freedom gets lost
due to the fitting of Q̂. In the case of WTLS optimization, χ2

W T LS is a chi-squared
random variable with k = 2N − 1 degrees of freedom. These origin from N y-input
data points (y1, y2, ..., yN ) and N x-input data points (x1, x2, ..., xN ). Again, one degree
of freedom gets lost due to the fitting of Q̂.

To check whether the obtained model reasonably fits the input data, or in other words
if we found a good estimate for Q̂, we perform an upper-tailed p-test. In our context we
define the hypothesis H0 as follows: The resulting fit should be a good approximation
for describing the relationship of the input variables x and y.

To calculate the upper-tailed p-value for the values of the chi-squared variable
χ2 = χ2

W LS and χ2 = χ2
W T LS, respectively, we use the Complementary Cumulative

Distribution Function (CCDF) of the chi-squared distribution function of the random
variable χ. The CCDF gives the probability that χ2 will take a value greater than
χ2

W LS bzw. χ2
W T LS.

(4.30)p(χ2|N) = 1− 1
Γ(N/2)

∫ χ2
2

0
e−tt(N/2−1)dt

For our purpose we want the p-value to be as high as possible. A value p ≈ 1 would
verify that the hypothesized model and the estimate Q̂ are close to the true model and
therefore close to the true total cell capacity Qtot. On the other hand, a small value
p� 1 indicates a wrong model or poorly known and maybe non-Gaussian variances
σ2

xi
and σ2

yi
.

4.4 Derivation of Recursive Approximate Weighted Total Least
Squares

As mentioned before, we need a method which allows arbitrary weighting of squared
errors via independent variances σ2

xi
and σ2

yi
and yields a recursive solution to be

suitable for on-board applications. Figure 4.1 shows the geometrical mapping of data
points (xi, yi) and their corresponding optimized coordinate values (Xi, Yi) which lie on
the line Yi = Q̂Xi. As for the standard non-weighted TLS-method, we claim the line
between (xi, yi) and (Xi, Yi) to be perpendicular to the the regression line Yi = Q̂Xi.
With this constraint we may be able to recursively solve for the estimate. Nevertheless,
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we weight the distances δxi = |xiXi| and δyi = |yiYi| individually which improves the
estimation in contrast to standard non-weighted TLS. As a result, the AWTLS cost
function is described via:

(4.31)χ2
AW T LS =

N∑
i=1

δx2
i

σ2
xi

+ δy2
i

σ2
yi

.

As shown in Figure 4.1, the distance between the y-coordinate of the i-th data point
and the regression line we call ∆yi = yi − Q̂xi. With the slope of the regression line,
∆yi/∆xi = Q̂ = tan(θ) and the trigonometric identity, cosθ = 1/

√
1 + tan2θ, we are

able to find an expression for Ri, the shortest distance between the i-th datapoint
(xi, yi) and its optimized mapping (Xi, Yi):

(4.32)

Ri = ∆yi · cosθ
= (yi − Q̂xi) · cosθ

= (yi − Q̂xi) ·
1√

1 + tan2θ

= (yi − Q̂xi) ·
1√

1 + Q̂2

To make it suitable for the estimation of Q̂ we rewrite the AWTLS cost function:

(4.33)
χ2

AW T LS =
N∑

i=1

δx2
i

σ2
xi

+ δy2
i

σ2
yi

=
N∑

i=1

R2
i sin2 θ

σ2
xi

+ R2
i cos2 θ

σ2
yi

.

With the expression 4.32 for Ri we get:

(4.34)χ2
AW T LS =

N∑
i=1

(yi − Q̂xi)2

1 + Q̂2
·
(

sin2 θ

σ2
xi

+ cos2 θ

σ2
yi

)
.

Using sin2 θ = 1− cos2 θ and cos2 θ = 1
1+Q̂2 finally leads to:

(4.35)
χ2

AW T LS =
N∑

i=1

(yi − Q̂xi)2

1 + Q̂2
·
(

Q̂2

1 + Q̂2

1
σ2

xi

+ 1
1 + Q̂2

1
σ2

yi

)

=
N∑

i=1

(yi − Q̂xi)2

(1 + Q̂2)2
·
(
Q̂2

σ2
xi

+ 1
σ2

yi

)
.

At this point it should be emphasized that AWTLS is an approximation to WTLS.
Both cost functions, χ2

W T LS and χ2
AW T LS, are identical in the case of identical variances
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4 Total Capacity Estimation via Approximate Total Least Squares

Figure 4.1: Geometrical mapping of data points (xi, yi) and corresponding (Xi, Yi) for the
Approximate Total Least Square method (Plett, 2011)

in x and y (σ2
xi

= σ2
yi

). For arbitrary variances in x and y they are slightly different.
Nevertheless, both methods yield very akin results which will be shown later.

Again by introducing a fading memory factor γ, we slightly alter the cost function to
put more emphasis on recently gathered input data leading to:

(4.36)χ2
AW T LS =

N∑
i=1

γN−i (yi − Q̂xi)2

(1 + Q̂2)2
·
(
Q̂2

σ2
xi

+ 1
σ2

yi

)
.

To find the local minimum of this function we need its derivative which is:

(4.37)
∂χ2

AW T LS

∂Q̂
= 2

(Q̂2 + 1)3

N∑
i=1

γN−i

[(
xiyi

σ2
xi

)
· Q̂4 +

(
2x2

i

σ2
xi

− x2
i

σ2
yi

− y2
i

σ2
xi

)
· Q̂3

+
(

3xiyi

σ2
yi

− 3xiyi

σ2
xi

)
· Q̂2 +

(
x2

i − 2y2
i

σ2
yi

+ y2
i

σ2
xi

)
· Q̂+

(
−xiyi

σ2
yi

)]
.

As stated before, the estimate Q̂ gets calculated every time new input data is gathered.
To make the algorithm computationally more suitable for embedded systems, we strive
for a recursive formulation. For this purpose we define the recursively computing sums:
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c1,n = γ c1,n−1 + x2
n

σ2
yn

c2,n = γ c2,n−1 + xnyn

σ2
yn

c3,n = γ c3,n−1 + y2
n

σ2
yn

c4,n = γ c4,n−1 + x2
n

σ2
xn

c5,n = γ c5n−1 + xnyn

σ2
xn

c6,n = γ c6,n−1 + y2
n

σ2
xn

,

where n is the present index of the last gathered input data pair (xi, yi) and therefore
the actual length of the input vectors ~x and ~y. For the recursive calculation of these
sums we need to define initial values. We pretend an artificial initial measurement
where we set x0 = 1 and y0 = Qnom. For σ2

y0 the variance of the nominal capacity given
by the cell manufacturer is used. σ2

x0 is set to a reasonable value depending on the
used SoC estimation method. These assumptions lead to the following initial values
for the sums:

c1,0 = 1
σ2

y0

; c2,0 = Qnom

σ2
y0

; c3,0 = Q2
nom

σ2
y0

; c4,0 = 1
σ2

x0

; c5,0 = Qnom

σ2
x0

; c6,0 = Q2
nom

σ2
x0

.

We can re-write the derivative in terms of these recursive sums as:

(4.38)
∂χ2

AW T LS

∂Q̂
= 2

(Q̂2 + 1)3

[
c5,N · Q̂4 + (−c1,N + 2c4,N − c6,N) · Q̂3

+ ( 3c2,N − 3c5,N) · Q̂2 + (c1,N − 2c3,N + c6,N) · Q̂− c2,N

]
.

To find the best value for Q̂, we set the derivative to zero which yields a quartic
equation for which the roots have to be found. These roots are candidate solutions
for the estimate Q̂ . Because a quartic equation has four roots we have to choose the
right one to be Q̂. To do so we firstly can ignore complex or negative roots as the cell’s
capacity can’t be a negative or complex number. The next step is to evaluate the cost
function for all positive real roots. The root candidate which yields the lowest value
for the cost function represents the best value Q̂ for the estimate of the actual total
cell capacity Qtot.
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To evaluate the cost function, it also can be expressed in terms of the recursive sums:

(4.39)χ2
AW T LS = 1

(Q̂2 + 1)2

[
c4,N · Q̂4 +2c5,N · Q̂3 +( c1,N +c6,N) · Q̂2−2c2,N · Q̂+c3,N

]

For the calculation of confidence intervals as described in Section 4.2, we need the
Hessian of the cost function which is given by:

∂2χ2
AW T LS

∂Q̂2
= 2

(Q̂2 + 1)4

[
−2c5,N · Q̂5 + (3c1,N − 6c4,N + 3c6,N) · Q̂4

+ ( −12c2,N + 16c5,N) · Q̂3 + (−8c1,N + 10c3,N + 6c4,N − 8c6,N) · Q̂2

+ (12c2,N − 6c5,N) · Q̂+ (c1,N − 2c3,N + c6,N)
]

(4.40)

With the approach of AWTLS we derived a regression method which has nice properties
for on-board use. Firstly, it gives a closed-form solution for the estimate Q̂. No
more sophisticated methods are needed which leads to high computational efficiency.
Furthermore, it features fading memory of past measurements via the forgetting factor
γ and recursive calculation of Q̂, which additionally makes it lean in performance
requirements and therefore suitable for embedded applications.

4.5 Algorithm Testing and Results

For validation of the described AWTLS algorithm, it is applied to real measurement
data. To test whether the estimation method is suitable for the on-board use in electric
vehicles, the chosen data originates from the drive cycle ageing test of one of the three
tested cells as described in section 3.3.1. All of the computing was achieved with
MATLAB ©2016b.

4.5.1 Input Data Generation

The backbone of the investigated onboard-capacity estimation problem is represented
by the Equation 4.1. In order to test the method, input data vectors ~x and ~y as well
as the corresponding variances ~σ2

x and ~σ2
y are needed.

In order to generate the components of ~y, numerical current integration via the
MATLAB intern function cumtrapz was used. The coulombic efficiency factor η was
set to one. For the acquisition of measurement data the channels with a measurement
range of Imax = ±5 A were used on the Arbin BT-2000 Battery Test System. In this
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measurement range the higher bound for the relative error of the measured values is
∆It = 0.02 · It. As a result of the current integration the corresponding errors also sum
over time. Therefore, unnecessary long sampling intervals lead to higher accumulated
errors σy and should be avoided.

For the generation of the x-input two approaches were used. Firstly, a simple voltage-
based SoC estimation was made via the OCV-SoC method as described in Section
2.3.2.2. The used OCV-SoC lookup table can be seen in Figure 4.2 and was gained
through measurements performed at the Virtual Vehicle Research GmbH. Since the
OCV-SoC relationship varies with temperature and ageing status of the cell, a detailed
declaration of the errors occurring through this method is hardly possible. Therefore,
a generous accuracy of σSoC = 0.05 was assumed.

Figure 4.2: Lookup Table showing the OCV-SoC relationship

As mentioned before, the OCV-SoC method only delivers reliable SoC estimates if
the cell is near electrochemical equilibrium. In other words, the cells terminal voltage
should have relaxed close to the OCV. Therefore, the charge/discharge current has to
be zero for a certain amount of time.

The other method used for SoC estimation is a more sophisticated model-based one. It
combines a second order RC-model with EKF algorithm. A detailed description of this
method would go beyond the scope of this work, but it can be found in the work of
Hrvanovic (2018). Based on literature (Plett (2015b); Hrvanovic (2018)), for the SoC
estimates made by this method the accuracy was set to σSoC = 0.02.
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Sampling Methods: In order to generate the input data-points as stated in the
equations 4.11 and 4.12 a strategy to choose the supporting points (ti1 , ti2) of each
sampling interval is needed. For the purpose of algorithm testing two sampling
approaches were applied:

1. Firstly, a sampling method suitable for the OCV-SoC estimation method was
implemented. This method we call zero-current sampling. When sampling occurs
in zero-current mode, we put constraints on the charge/discharge current. We
force the algorithm to only search for supporting points (ti1 , ti2) where the current
was zero before for a certain zero-current duration Tzero. With this claim we can
be certain that the measured terminal voltage is at least near the OCV.

2. Secondly, a rough sampling to which we refer to as fixed-sampling was realized
where the time interval per data-point is set to a constant value Tfixed. For our
purpose the fixed-sampling duration was set to Tfixed = 3600s. This method is
expected to show the advantages of EKF based SoC estimation since this method
does not rely on a relaxed terminal voltage. Therefore, it is able to estimate the
SoC dynamically and non-invasively.

For sampling intervals chosen by each of these methods, an additional constraint was
made. To be considered in the optimization process we forced the change in SoC within
an interval to be at least 5 %.

4.5.2 Results and Discussion

In this section the results from testing the AWTLS algorithm are presented and
discussed afterwards. For all tests the nominal capacity for AWTLS initialization was
set to the rated capacity value delivered by the manufacturing company Qnom = 3.2 Ah.

Zero-Current Sampling: Figure 4.3 shows the results of estimating the total cell
capacity Qtot with zero-current sampling. The zero-current duration was set to Tzero =
20 min and SoC estimation was executed with the OCV-SoC lookup table. The
forgetting factor was set to γ = 0.985. The corresponding Goodness of Fit is shown in
the subsequent Figure 4.4.
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Figure 4.3: Estimation of Qtot with zero-current sampling with Tzero = 20 min and SoC
estimation via OCV-SoC lookup table. The forgetting factor was set to γ = 0.985. grey:
WTLS estimate; blue: AWTLS estimate; The dashed lines illustrate the corresponding
3σ confidence intervals.

Figure 4.4: Goodness of Model Fit for the Estimation of Qtot with zero-current sampling
with Tzero = 20 min and SoC estimation via OCV-method. The forgetting factor was set to
γ = 0.985. grey: WTLS; blue: AWTLS.

Both WTLS and AWTLS give slightly biased estimates Q̂. This effect originates most
likely from the error of the applied OCV-SoC method used for SoC estimation, since it
is dependent on temperature as well as C-rate and current sign before relaxation of
the terminal voltage. It is also assumed to cause the fringes which can be seen in the
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estimate and its boundaries because of different operation conditions during RTPs and
LPs. AWTLS gives better results because its estimate is closer to the true values for
Qtot and has narrower error bounds. The error bounds on both WTLS and AWTLS
are reasonably wide which leads to a high Goodness of Fit. The mean value of the
estimated standard deviation Q̂ is quite high with σ = 1.90 % of Qtot.

Figure 4.5 shows the results of estimating the total cell capacity Qtot with zero-current
sampling. The zero-current duration was set to Tzero = 20 min and this time SoC
estimation was executed with the more sophisticated EKF. The forgetting factor was
set to γ = 0.985. The corresponding Goodness of Fit is shown in the subsequent Figure
4.6.

Figure 4.5: Estimation of Qtot with zero-current sampling with Tzero = 20 min and SoC
estimation via EKF. The forgetting factor was set to γ = 0.985. grey: WTLS estimate;
blue: AWTLS estimate; The dashed lines illustrate the corresponding 3σ confidence
intervals.
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Figure 4.6: Goodness of Model Fit for the Estimation of Qtot with zero-current sampling
with Tzero = 20 min and SoC estimation via EKF. The forgetting factor was set to γ = 0.985.
grey: WTLS; blue: AWTLS.

Like shown in Figure 4.5, both WTLS and AWTLS track the true capacity Qtot very
well. Until k = 100, AWTLS gives more realistic values for Qtot because of the ability
to initialize the estimate. Furthermore, due to this feature AWTLS gives lower error
bounds. The error bounds on both WTLS and AWTLS are reasonably wide which
leads to a high Goodness of Fit.The mean value of the estimate’s Q̂ standard deviation
is quite low with σ = 0.35 % of Qtot. This leads to an accurate capacity estimation
with three-sigma error bounds of about ±1.1 %.

Fixed Sampling: Figure 4.7 shows the results of estimating the total cell capacity
Qtot with fixed-interval sampling. The fixed-interval duration was set to Tfixed = 3600 s
and SoC estimation was executed with the OCV-SoC method. The forgetting factor
was set to γ = 0.99. The corresponding Goodness of Fit is shown in the subsequent
Figure 4.8.

Both WTLS and AWTLS give very noisy estimates Q̂ which are practically unusable.
This shows the limitations of the used OCV-SoC relationship for SoC estimation. In
fixed sampling mode, there are no further constraints regarding sampling which leads to
non-relaxed terminal voltage values very distant from the actual OCV. This results in
highly erroneous SoC estimates. WTLS and AWTLS give the same results with a very
high value of σ which leads to three-sigma error bounds of about ±10 %. Nevertheless,
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both WTLS and AWTLS show high values for the goodness of fit.

Figure 4.7: Estimation of Qtot with fixed-interval sampling with Tfixed = 3600 s and SoC
estimation via OCV-method. The forgetting factor was set to γ = 0.99. grey: WTLS
estimate; blue: AWTLS estimate; The dashed lines illustrate the corresponding 3σ
confidence intervals.

Figure 4.8: Goodness of Model Fit for the Estimation of Qtot with fixed-interval sampling
with Tfixed = 3600 s and SoC estimation via OCV-method. The forgetting factor was set to
γ = 0.99. grey: WTLS; blue: AWTLS.

Figure 4.9 shows the results of estimating the total cell capacity Qtot with fixed-interval
sampling. The fixed-interval duration was set to Tfixed = 3600 s and SoC estima-
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tion was executed with the more sophisticated EKF. The forgetting factor was set
to γ = 0.99. The corresponding Goodness of Fit is shown in the subsequent Figure 4.10.

Both WTLS and AWTLS track the true capacity Qtot very well, even though we used
fixed sampling. Until k = 200, AWTLS gives more realistic values for Qtot because
of the ability to initialize the estimate. Besides this, WTLS and AWTLS give the
same results. The error bounds on both, WTLS and AWTLS, are reasonable wide
which leads to a high Goodness of Fit.The mean value of the standard deviation of
Q̂ is higher than in the case where zero-current sampling was used (Figure 4.5), but
it is still low with σ = 0.56 %. This leads to an accurate capacity estimation with
three-sigma error bounds of ±1.8 %. Furthermore, the method is highly non-invasive
due to no needed constraints for input data generation.

Figure 4.9: Estimation of Qtot with fixed-interval sampling with Tfixed = 3600 s and SoC
estimation via EKF-method. The forgetting factor was set to γ = 0.99. grey: WTLS
estimate; blue: AWTLS estimate; The dashed lines illustrate the corresponding 3σ
confidence intervals.
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Figure 4.10: Goodness of Model Fit for the Estimation of Qtot with fixed-interval sampling
with Tfixed = 3600 s and SoC estimation via EKF-method. The forgetting factor was set to
γ = 0.99. grey: WTLS; blue: AWTLS.

To conclude, AWTLS seems to be a suitable choice for on-board capacity estimation
in automotive applications. With its ability to consider errors on both, the coulomb
counting and SoC estimation, it is more favorable than standard least square methods.
In contrast to WTLS, AWTLS features recursive formulation and the ability to initialize
the estimate with an arbitrary value which leads to faster convergence. Recursive
formulation and forgetting memory factor make AWTLS well suited especially for
embedded systems implementation.
The results show that AWTLS performs particularly well in conjunction with the more
sophisticated EKF-method for SoC estimation, validated by narrow error bounds even
for simple fixed-sampling. However, EKF is computationally expensive.

As mentioned previously, Bayesian SLR was tested for one dataset to compare it with
the investigated methods. The result of this test can be seen in Figure 4.11. Here, one
can see that Bayesian SLR yields identical results as the WTLS method. Furthermore,
it also features forgetting memory of past measurements and recursive computation
of the estimate. According to this test, the measured runtime of Bayesian SLR was
very similar to the one of AWTLS. Therefore, Bayesian SLR could be another suitable
choice for on-board capacity estimation which has to be further investigated.

86



4.5 Algorithm Testing and Results

0 100 200 300 400 500 600
Update Index k / 1

2.4

2.6

2.8

3.0

3.2

3.4

Q
to

t
/A

h

Qtot Estimation with OCV-method for zero-current sampling
WTLS
AWTLS
Bayesian SLR
True total cell capacity Qtot

Figure 4.11: Estimation of Qtot with zero-current sampling with Tzero = 20 min and SoC
estimation via OCV-SoC lookup table. The forgetting factor was set to γ = 0.985. grey:
WTLS estimate; blue: AWTLS estimate; red: Bayesian SLR estimate; The dashed lines
illustrate the corresponding 3σ confidence intervals.
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5
Conclusion

This work deals with the investigation of methods for SoH estimation of Li-ion cells for
automotive applications. Firstly, a brief introduction to Li-ion cells and their working
principle was given. Afterwards, for a better understanding their ageing behaviour and
main mechanisms of degradation were described.
To verify the performance of the investigated methods they were applied to measure-
ment data originating from extensive ageing tests taken with commercial Panasonic
NCR18650B cells at the Virtual Vehicle Research GmbH. Within these tests the cells
were loaded by drive cycles as well as calendric and cyclic LPs over a timespan of
about two years to simulate the ageing process within a cell’s lifespan.

The first method applied to the measurement data is an ICA-method which is closely
related to the approach described in the work of Li et al. (2018) and analyses the
charge characteristics during the CC charging process. It considers the position of
a local peak in the IC-curve to relate to the cell’s SoH. After the extraction of the
IC-curves from data, collected during the RTPs, they were smoothed via discrete
convolution with a Gaussian filter. Afterwards, the relation between the locations of IC-
peaks from each RTP and the corresponding SoH was approximated by linear regression.

Secondly, a method based on analysing the dynamic behaviour of the cell’s charge
current during CV charging process was applied to the ageing-datasets. In order to
describe the dynamic behaviour of the charge current an exponential decaying function
was used. Following this, the relation between strength of the current decay, described
by the characteristic time constant τ , and the cell’s SoH was investigated by linear
regression analysis.
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5 Conclusion

In contrast to previous publications regarding SoH estimation by methods based on
the analysis of charging characteristics, we applied these to a more complex set of load
conditions to investigate its effect on the method’s performance. These variations of
the load conditions include different temperatures, SoC-levels during storage as well as
varying SoC-deflections during cyclic ageing.

According to the results presented in Section 3.3, ICA was able to describe a cell’s
degradation in SoH evoked by drive cycle ageing with an absolute error (2-sigma
bounds) of ±2.1 % and by calendric ageing with an maximum absolute error of ±6.1 %.
Although, such a high error only occurs at radical ageing evoked through a combination
of high SoC-level and temperature (SoC = 95 % and T = 45 ◦C). For all other calendric
ageing scenarios the method was able to describe the cell’s SoH within a maximum
absolute error of less than ±2.4 %. In the case of cyclic ageing, ICA was capable of
describing the capacity fade within a maximum absolute error of ±3.7 %. But it has to
be mentioned that the method showed instability at cyclic ageing by low temperature
and SoC-deflection (T = 0 ◦C and dSoC = 2.5 %) due to alteration of the IC-curves
(shown in figure 3.32).

In contrast, CV-Analysis showed an overall weaker performance. In the case of drive
cycle ageing, it described SoH within an absolute error of about ±4.1 % and for calendric
ageing within a maximum absolute error of about ±9.0 %. As for ICA, such high error
only occurs at radical ageing caused by high SoC-level paired with elevated temperature
(SoC = 95 % and T = 45 ◦C). For all other calendric ageing scenarios the method was
able to describe the cell’s SoH within a maximum absolute error of less than ±3.2 %.
In the case of cyclic ageing, CV-Analysis was capable of describing the capacity fade
within a maximum absolute error of ±3.8 %. An advantage of the CV-method is that
it can be applied for every full CV charging process. Therefore, it is independent of
initial SoC as long as CV charging is fully executed.

As the results show, both investigated methods are highly dependent on the cell’s
operation conditions during ageing. Therefore, none of the methods were able to find a
single linear function which describes the deterioration of SoH with a passable accuracy.
From this perspective these methods can only be applied when the operation conditions
are well known and repetitive over the cell’s whole lifespan. This discards them as
techniques for on-board SoH estimation.

The third objective of this work was to investigate the performance of AWTLS, an
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optimization method for on-board capacity estimation. The optimization problem is
given by the linear relationship between accumulated charge/discharge current and
change in the cell’s SoC (Equation 4.1). Unlike the regularly used Least Square methods
this method considers both the error originating by current integration as well as the
error due to SoC estimation. Generally, AWTLS is based on WTLS optimization but
features some nice properties which makes it more suitable for embedded hardware
application. These include recursive formulation and forgetting memory which makes
it lean in required storage amount and processing power.

To examine the methods performance under realistic usage conditions, this method
was applied to measurement data originating from a drive cycle ageing-test. For the
generation of input data two sampling methods were implemented. With zero-current
sampling we forced the charge/discharge current to be zero at least for Tzero = 20 min
to guarantee a quasi-relaxed terminal voltage. Secondly, with fixed sampling the input
data intervals were set to a mandatory duration of Tfixed = 3600 s.

The AWTLS algorithm was tested in combination with two SoC estimation methods.
Firstly, the simple OCV-SoC relationship was used to estimate the cell’s SoC. For this
case with zero-current sampling, AWTLS gave better results than the WTLS algorithm
as its estimate Q̂ is closer to the values of true total capacity Qtot. Here AWTLS was
able to estimate the cell’s total capacity with a mean absolute error of σ = 1.90 %. The
results obtained with fixed sampling display the weakness of the OCV-SoC method.
This rough sampling led to non-relaxed terminal voltage values very distant from the
actual OCV which resulted in highly erroneous and practically unusable SoC estimates
for both WTLS and AWTLS. Secondly, AWTLS was used in combination with a more
complex model based SoC estimation method which combines a second order RC-model
with EKF. In combination with this method, AWTLS was able to estimate the cell’s
total capacity with a mean absolute error of less than σ = 0.6 % independent on the
used sampling method.

To conclude, through AWTLS an accurate capacity estimation with 3-sigma error
bounds of about ±1.8 % was accomplished. In combination with EKF, this method
is highly non-invasive because no constraints for input data generation are needed.
Furthermore, due to the method’s features of recursive computation and forgetting
memory implementation it seems to be a suitable choice for on-board SoH estimation.
Further research work could be the hardware implementation of AWTLS for real testing.
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AWTLS Approximate Weighted Total Least Squares

BMS Battery Management System

CC Constant-Current
CCDF Complementary Cumulative Distribution Function
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EKF Extended Kalman Filter
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ESS Energy Storage System
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