
Markus Müller, BSc

Semi-Supervised Learning of Monocular
3D Hand Pose Estimation from

Multi-View Images

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Horst Bischof

Institute of Computer Graphics and Vision

Graz, Austria, Oct. 2020

Abstract

Hand pose estimation enables a vast number of potential applications, for instance,

Human-Computer Interaction (HCI), Virtual Reality (VR), sign language and hand

gesture recognition. Full 3D hand pose estimation using only monocular color images is

complicated, because of many ambiguities, heavy self-occlusion and strong articulation.

Most hand pose estimation methods rely on Convolutional Neural Networks (CNNs) and

have demonstrated good performance. However, in order to train those networks, a

sufficiently large training dataset is required, which generally involves a large annotation

effort. This might be feasible for a manageable amount of poses, but this method is

impractical to cover a wide variety of different hand poses. In order to reduce the

required amount of annotated data samples, semi- or unsupervised methods can be used

to achieve a desired level of performance.

In this thesis, we combine ideas and concepts of multiple scientific works, that have

mainly been used for human pose estimation and apply them on hand pose estimation.

We propose a method, that learns a geometry-aware representation of the human hand

from multi-view images without any 3D annotations. We use an encoder-decoder network

that learns a geometry-aware latent representation to predict an image from one viewpoint

given an image from another viewpoint. We utilize this latent representation to train a

fully connected neural network on 3D hand pose estimation. Our results show, that using

this latent representation is clearly superior to directly mapping an input image to the 3D

joint locations of the hand, if the amount of 3D annotations is limited. Additionally, we

introduce a 3D geometric constraint to regularize the 3D hand pose prediction.

Further, we present a fully semi-supervised approach, that learns to simultaneously

predict novel views given an image from a different viewpoint and estimate the 3D pose of

a hand. We compare the performance of these networks and show how they are affected

by different parameter settings.

iii

Kurzfassung

Die Anwendungsgebiete von Handposenschätzung sind zahlreich und umfassen beispiel-

sweise Mensch-Computer Interaktionen, VR, Zeichensprache und Gestenerkennung.

Das Schätzen von Handposen auf Grundlage einzelner Farbbilder gestaltet sich

als sehr schwierig aufgrund von Mehrdeutigkeiten, starker Selbst-Abschattung und

Gestikulation in den Bildern. Die meisten Methoden zum Schätzen von Handposen

vertrauen daher auf künstliche neuronale Netzwerke und haben bereits vielfach ihre

guten Leistungen demonstriert. Jedoch ist es nötig, genügend Trainingsdaten zur

Verfügung zu stellen, um solche Netzwerke zu trainieren. Dies ist aber häufig mit

einem großen Annotationsaufwand verbunden. Für eine kleinere Anzahl an Posen ist

dieser Aufwand durchaus praktikabel, um aber ein breites Spektrum an verschiedensten

Posen abzudecken, ist diese Methode nicht realisierbar. Um die Anzahl an benötigten

annotierten Daten zu reduzieren, werden semi-überwachte maschinelle Lernmethoden

angewandt, um auf ein gewünschtes Leistungsniveau zu kommen.

Um Handposen zu schätzen, kombinieren wir in dieser Masterarbeit mehrere Konzepte

aus wissenschaftlichen Arbeiten, die hauptsächlich für die Schätzung von menschlichen

Körperposen verwendet wurden. Wir präsentieren eine Methode, die in der Lage ist eine

Repräsentation zu lernen, die bereits die Geometrie der Hand beinhaltet. Hierfür verwen-

den wir nur Bilder von menschlichen Händen aus unterschiedlichen Blickwinkeln, jedoch

ohne jegliche 3D Annotationen. Wir nutzen zu diesem Zweck ein Encoder-Decoder Net-

zwerk, das diese latente Darstellung lernt, um ein Bild einer Hand von einem anderen

Blickwinkel als im gegebenen Bild vorherzusagen. Diese latente Repräsentation verwen-

den wir in weiterer Folge, um ein neuronales Netzwerk für 3D Handposenschätzung zu

trainieren. In dieser Arbeit zeigen wir, dass dieser Ansatz deutlich bessere Ergebnisse

liefert, als die direkte Zuordnung von einem Eingabebild zur 3D Pose, sofern nur eine

beschränkte Anzahl an 3D Annotationen vorhanden ist. Zusätzlich führen wir eine ge-

ometrische Beschränkung ein, um die 3D Handposenschätzung zu regularisieren.

v

vi

Außerdem zeigen wir einen völlig semi-überwachten Ansatz, der das Vorhersagen von

einem anderen Blickwinkel als im Eingabebild der Hand, sowie die Schätzung der 3D

Handpose gleichzeitig lernt. Wir vergleichen die Leistung dieser Netzwerke und zeigen,

wie sich unterschiedliche Parametereinstellung auswirken.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis.

Date Signature

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Bischof for giving me the

opportunity to write this thesis. I am equally grateful for my advisors Georg Poier and

Horst Possegger, who always guided me in the right direction and came up with new ideas

whenever I was stuck on a problem.

Further, I want to thank my friends, especially Eric, who made my leisure time a

pleasure by spending time with me doing sports and always offering a sympathetic ear.

Last and most importantly, I would like to thank my family, especially my parents

Christa and Günther, and my sister Marina, for supporting my studies and decisions, and

motivating me to pursue my goals.

ix

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Applications and Challenges . 2

1.3 Goals and Outline . 3

2 Background 5

2.1 Pose Estimation . 5

2.1.1 Rigid Pose Estimation . 6

2.1.2 2D Human Pose Estimation . 7

2.1.3 3D Human Pose Estimation . 14

2.1.4 Hand Pose Estimation . 16

2.2 Notation and Conventions . 22

2.3 Related Work . 23

2.3.1 Autoencoders . 24

3 Geometry-Aware 3D Hand Pose Estimation 27

3.1 Our Approach . 27

3.2 Dataset . 35

3.3 Cropping, Augmentation and Background Estimation 36

3.4 Clustering . 40

4 Experiments 43

4.1 Overview . 43

4.2 Dataset Splits and Metrics . 43

4.3 Implementation . 45

4.4 Evaluation . 46

4.4.1 Semi-Supervised 3D Hand Pose Estimation 49

xi

xii

4.4.2 Supervised 3D Hand Pose Estimation 58

4.4.3 Fully Semi-Supervised 3D Hand Pose Estimation 66

5 Conclusion 77

5.1 Summary . 77

5.2 Future Work . 78

A List of Acronyms 79

Bibliography 81

List of Figures

1.1 Human hand models with joints . 2

2.1 Overview of a robotic assembly system using a 3D scanner 6

2.2 Keypoint annotation configurations for two example datasets 8

2.3 Schematic illustration of a face with its different components 9

2.4 Limb-based human body model from Pictorial Structures (PSs) 10

2.5 Schematic view of the Deep Neural Network (DNN)-based pose regression . 11

2.6 Schematic view of the Dual-Source Deep Convolutional Neural Network

(DS-CNN) method . 12

2.7 Stacked hourglass network modules . 13

2.8 Illustration of a single hourglass module . 13

2.9 Output of a detection-based algorithm for 3D hand pose estimation 17

2.10 Residual building block . 22

2.11 Example of an autoencoder . 25

3.1 Unsupervised learning for our 3D hand pose estimation pipeline 28

3.2 Geometry-aware 3D representation learning 29

3.3 Appearance representation learning . 30

3.4 Comparison of our three implemented approaches to a common state-of-

the-art pipeline for 3D hand pose estimation 34

3.5 Structure of the Panoptic Studio . 36

3.6 Hand cropping from one of our training samples from different camera views 38

3.7 Background from one of our training samples from different camera viewpoints 39

3.8 Set of hand patches from 20 different camera views captured at the same

time t . 39

xiii

xiv LIST OF FIGURES

3.9 Hierarchical Agglomerative Clustering (HAC) of 3D (left) hand poses visu-

alized as dendrogram . 40

4.1 Performance as function of the number of training samples 47

4.2 Comparison of our network structures by their percentage of correct keypoints 48

4.3 Novel View Synthesis (NVS) of the encoder-decoder with ` = 21 51

4.4 NVS and pose predictions of M with ` = 21 52

4.5 NVS of the encoder-decoder with ` = 50 . 53

4.6 NVS and pose predictions of M with ` = 50 54

4.7 NVS of the encoder-decoder with ` = 21 and augmented unlabeled multi-

view images . 55

4.8 NVS and pose predictions of M with ` = 21 using augmented unlabeled

multi-view images . 56

4.9 NVS and latent visualization of the encoder-decoder network 57

4.10 Network N experiments - two fingers . 60

4.11 Network N experiments - hanging down . 62

4.12 Network N experiments - three fingers . 65

4.13 Network O experiments - two fingers . 69

4.14 Network O experiments - hanging down . 72

4.15 Network O experiments - three fingers . 75

List of Tables

2.1 List of notations used in this thesis . 23

4.1 List of different levels of supervision evaluated in this thesis 44

4.2 Performance as function of the number of different λgeo-settings 47

4.3 Comparison of selected network designs in terms of their Normalized Mean

Per Joint Position Error (N-MPJPE) and Area Under the Curve (AUC) . . 49

xv

1
Introduction

The hand is the tool of tools.

Aristotle

Contents

1.1 Problem Statement . 1

1.2 Applications and Challenges . 2

1.3 Goals and Outline . 3

1.1 Problem Statement

Hand pose estimation is the problem of modeling the human hand as a set of specific parts

and finding their positions in a hand image (2D estimation) or the simulation of hand part

positions in a 3D space. The hand is almost always modeled as a number of joints and

hand pose estimation mostly corresponds to estimating the position of these joints. The

human hand has 27 bones, where 19 are located in the palm and fingers and the remaining

8 constitute the wrist. Hand models with 21 joints are most widely used in hand datasets

(as shown in Fig. 1.1c), however, there are also datasets that use e.g., 14 [83] or 16 [79]

joints [21, 26]. A kinematic model of a hand next to a x-ray image of a human hand and

a hand model with 21 detected keypoints as we use in this thesis is shown in Figure 1.1.

1

2 Chapter 1. Introduction

(a) X-ray image [43]. (b) Kinematic model [67]. (c) 21 keypoints [76].

Figure 1.1: Human hand models with joints: (a) Anteroposterior x-ray image of a human hand
from [43] (b) Kinematic hand model (illustration from [67]): dp - distal phalanx; mp - medial
phalanx; pp - proximal phalanx; mc - metacarpal; DIP - distal interphalangeal; PIP - proximal
interphalangeal; MCP - metacarpophalangeal (joining fingers to the palm); IP - interphalangeal
(joining finger segments); TM - trapeziometacarpal; Carpus - carpometacarpal (connecting the
metacarpal bones to the wrist) [26]. (c) Hand model with 21 keypoints determined by Open-
Pose [11, 76]. The dataset we use in this thesis has the same number of keypoints and the same
structure.

1.2 Applications and Challenges

Hand pose estimation has many different fields of application such as sign language recogni-

tion, digital advertising, sterile computer use in operating theaters or home entertainment.

Direct sensing in Human-Computer Interaction (HCI) allows humans to instantly com-

municate and manipulate machines. Huge investments of big technology companies like

Google, Microsoft and Facebook on Augmented Reality (AR) and Virtual Reality (VR)

have even enlarged the applications of hand pose estimation [21]. Besides the human hand,

the motion of the head, eye gaze, face, arms or even the whole body can serve as input

for these systems. The hand, however, is the most effective, general-purpose interaction

tool, because of its dexterous functionality in communication and manipulation. In object

manipulation interfaces, for example, the hand can be used for navigation, selection and

manipulation in virtual environments. The human hand has many applications to serve

as an efficient, high Degrees of Freedom (DOF) control device [26, 44].

It is very challenging to estimate the pose of a hand based on visual data. According

to [26], major difficulties a hand pose estimation system encounters include the following:

1) High dimensionality: The human hand is an articulated object. Theoretically, it

has more than 20 DOF , however, natural hand motion does not have that many,

because of interdependencies between fingers and joints. There still remains a large

1.3. Goals and Outline 3

number of parameters to be estimated, including the location and orientation of the

hand.

2) Self-occlusion: The projection of a hand comes in a large variety of shapes with

many self-occlusions, which make it difficult to segment different parts and extract

high level features.

3) Processing speed: Depending on the application, this can be a crucial point, since

latency requirements in some applications are quite demanding in terms of compu-

tational power. A real-time computer vision system needs to process a huge amount

of data, even for a single sequence of images. Moreover, some algorithms require ex-

pensive, dedicated hardware and possibly parallel processing capabilities to operate

in real-time.

4) Uncontrolled environments: Locating a rigid object with an arbitrary background

is already a challenging task. It is even more demanding to locate an articulated

hand under these conditions. Many HCI systems are expected to operate under

non-restricted backgrounds and different lighting conditions.

1.3 Goals and Outline

The goal of this thesis is to implement a neural network based on the idea of

Rhodin et al. [64] and adapt and optimize it to estimate the 3D joint locations of a given

RGB hand image. The intention is to find a solution that requires a minimum amount of

annotated images for training and still achieves accurate results.

In Chapter 2, we give an overview of the different kinds of pose estimation in general

and introduce various approaches and techniques for 2D/3D human pose estimation. Fur-

ther, we explain hand pose estimation in more detail and introduce the method used by

Rhodin et al. [64]. We describe our 3D hand pose estimation approach and point out the

differences to the concept used by Rhodin et al. in Chapter 3. Additionally, we present

the dataset we used for our method and explain how we prepared the images. Finally,

we provide detailed evaluations of our experiments in Chapter 4 and draw conclusions

in Chapter 5.

2
Background

Ideas come from everything.

Alfred Hitchcock

Contents

2.1 Pose Estimation . 5

2.2 Notation and Conventions . 22

2.3 Related Work . 23

This thesis mainly focuses on 3D hand pose estimation. However, pose estimation

comes in different varieties and has very distinctive meanings among different research

fields. This chapter tries to give an overview of the different forms and how different

approaches evolved over time.

2.1 Pose Estimation

Pose estimation is the fundamental problem of deriving the pose of a person or object

in an image or video. It can be seen as the recovery of the 3D geometric information

from 2D images, as well as the problem of determining the position and orientation of a

camera relative to a given person or object. Both are often done by identifying, locating,

and tracking a number of keypoints on a given object or person. For objects, these key-

points could be corners or other significant features and for humans, these could represent

principal joints like a shoulder, elbow or knee.

Pose estimation has many different applications including robotics [51], gaming [97],

animation [63] along with augmented reality [49] and so on. There are also different kinds

of pose estimation and some of them are described in the following sections.

5

6 Chapter 2. Background

2.1.1 Rigid Pose Estimation

Rigid pose estimation is mostly found in industrial robotic manufacturing and assembly

tasks. There it is often necessary to place the parts to be manipulated in pre-defined

positions using part feeders or fixtures, because robots are often lacking perception. Such

constraints, however, lead to high production costs and low adaptability to new tasks.

With the evolution of Industry 4.0, where a large variety of products is presumably fabri-

cated in small production volumes, robots need to be equipped with flexible and adaptive

skills, which means to work with arbitrary initial part conditions. One strategy for dealing

with this kind of problems are model-based paradigms. This involves building 3D models

of the objects used in specific tasks and then determining object poses by fitting their

models to new images with the help of detected features [51, 52]. An example of a robotic

bin-picking system using 3D models is shown in Figure 2.1.

(a) Overview of a robotic assembly system using
a 3D scanner [16].

(b) CAD model [16].

Figure 2.1: (a) Shows a setup of a bin-picking system, which uses a 3D sensor attached on a
robot arm to grasp randomly placed objects in a bin. On the right, the algorithm flowchart of the
system is illustrated. The bottom images show the pose estimation results with the five best pose
estimates superimposed on the scanned 3D point cloud. This scenario is challenging due to noise,
missing data, clutter and occlusions. (b) Shows the corresponding 3D CAD model of a circuit
breaker [16].

The system from Choi et al. [16] shown in Figure 2.1 represents a bin-picking system

with a 3D sensor attached on a 6-axis industrial robot arm to estimate the poses of

objects randomly placed in a bin. As shown in the flowchart, the setup first scans a

bin of objects using the 3D sensor. Then a voting-based algorithm tries to detect and

2.1. Pose Estimation 7

estimate the pose of the target object using the scanned 3D point cloud, given a 3D CAD

model of the target. This results in multiple coarse pose hypotheses. A certain number

of best pose hypotheses is then refined using an Iterative Closest Point (ICP) algorithm.

During the refinement process, the CAD model is rendered using the current pose estimate

and 3D points for the model are generated by sampling the surface of the rendered model.

Afterwards, the refinement algorithm finds the nearest 3D point in the scanned point cloud

for each 3D point in the model and updates the pose estimate employing the 3D point

correspondences. After the refinement, the registration error is calculated by the average

distance between the model points and the corresponding scene. The system grasps the

object if the registration error is small and the estimated pose is safely reachable by the

robot arm.

Vision-based object manipulation and grasping requires accurate estimation of the

object’s 6D pose (3D translation and 3D rotation) in an image. 6D object pose estimation

is a very challenging computer vision task and is used in autonomous navigation and

augmented reality as well, besides robotics. Such systems should be able to handle objects

of varying texture and shape, different lighting conditions, sensor noise and be robust

towards heavy occlusion. At the same time, the speed requirements of real-time tasks

have to be met [36, 52, 87].

2.1.2 2D Human Pose Estimation

According to [74], human pose estimation is defined as the process of estimating the

configuration of the body (pose) from a single, typically monocular, image.

Human pose estimation has been a challenge in computer vision for several years.

The importance of it arises from its vast number of applications. In the context of HCI

and activity recognition, for example, it enables higher level reasoning, and in the field

of marker-less Motion Capture (MoCap) it constitutes one of the basic building blocks.

MoCap technology applications range from character animation to clinical analysis of gait

pathologies [74].

Pose Estimation has to deal with troublesome challenges. In [74] the following are

stated:

1) Varying visual appearance of humans in images,

2) variability of lighting conditions,

3) differences in human physique,

4) partial occlusions as a result of self-articulation and layering of objects in the scene,

5) complexity of the human skeletal structure,

6) high dimensionality of the human pose, and

8 Chapter 2. Background

7) the loss of 3D information due to the 2D planar image projections.

Trying to produce satisfying results in general and unconstrained settings while tackling

the previously mentioned challenges can be a very hard endeavor.

The output of a human pose detector can be represented in different ways. The most

common human body models emerged from the Max-Planck Institute for Informatics

(MPII) [2] and the Common Objects in Context (COCO) [50] datasets. The MPII dataset

annotates ankles, knees, hips, shoulders, elbows, wrists, necks, torsos, and head tops, while

COCO also includes some facial keypoints. For these datasets, however, foot annotations

are limited to the ankle position only. Figure 2.2 shows a representation of the COCO and

the BODY 251 keypoint model, which consists of the COCO model including feet [11].

The foot keypoint annotation consists of big toes, small toes and heels.

(a) COCO body model. (b) BODY 25 (COCO+Foot).

Figure 2.2: Keypoint annotation configuration for two example datasets [11].

Common techniques to deal with 2D pose estimation are part-based, detection-based

and regression-based methods [54]. In part-based methods, an object is represented as

a collection of parts in a deformable configuration using the Pictorial Structure (PS)

framework, which is explained in Section 2.1.2. Detection-based methods deal with pose

estimation as a heatmap prediction problem. Each pixel in a heatmap represents the

detection score of a corresponding joint. An example for heatmap prediction is the Stacked

1https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md

2.1. Pose Estimation 9

Hourglass Network which is explained in more detail in Section 2.1.2. Current State-of-the-

Art (SotA) approaches are proposing sophisticated variations of this network architecture.

These methods, however, do not provide joint coordinates directly. To find the pose in

(x, y) coordinates, regression-based techniques are used. They use a non-linear function,

that maps the input directly to the desired output, which can be 2D joint coordinates.

An example for a such a method is described in Section 2.1.2, which employs a holistic

solution using cascade regression for body part recognition.

Pictorial Structures

One of the first techniques to estimate the human pose from a single 2D image is the PS

framework, introduced by Fischler and Elschlager [29] in 1973. As stated before, human

pose estimation is the problem of localizing human joints. However, since the human body

can strike many different poses, it is very difficult to find the location of body parts and

joints from a single image. The authors of [29] used the concept of part-based modeling

for facial structure estimation, utilizing pictorial structures. This is a general method,

which consists of identifying and configuring parts to form a structure by discretizing the

search space using dynamic programming. The representation of objects is done by a set

of parts, that are organized in a deformable structure. Each part is identified separately

and represented with spring-like connections between paired parts to obtain a deformable

structure as shown in Figure 2.3 [41].

Figure 2.3: Schematic illustration of a face, indicating its components and their linkages [29].

The PS framework has been improved and made more tractable by using distance

transforms for object recognition. Distance transform matching, also called Chamfer

matching [7], is a technique to find the best fit of edge points from two different images

by minimizing a generalized distance between them. The idea is to transform the edge

points of one image by a set of parametric transformation equations, to match another

geometrically related representation of the same geometric structure [32].

In this framework, a body is represented as an assembly of parts, which are connected

by constraints imposed by the joints within the skeletal structure. This formulation re-

10 Chapter 2. Background

duces the inference complexity, since the search for probable body part locations can be

done independently, only considering adjacent body parts that constrain them. This sub-

stantially prunes the total search space [74]. Each body element can be transformed to

match its position in the given image. The various complex parameters can be understood

as orientation, foreshortening and so on. Matching the pictorial structures to an image is

determined by the minimization of an energy function [28, 41].

Figure 2.4 shows a limb-based human body model. The crosses indicate the joints

between parts and each part corresponds to a limb. Pictorial structures work well when

dealing with complicated backgrounds and for general object detection in 2D. Furthermore,

they can be extended to 3D human body pose estimation [23].

Figure 2.4: Limb-based human body model from PSs [28].

The PS framework has been a beneficial and important contribution to the field of

human pose estimation. It enabled more flexible part configurations and multi-modal

pairwise terms, color features [22] and mixtures of pictorial structures [92] for more efficient

and accurate human pose estimation.

Another milestone was reached after the introduction of DeepPose [84]. This started

shifting the research on human pose estimation from classical methods to Deep Neural

Networks (DNNs).

Deep Neural Networks

The introduction of DNNs has improved the performance and accuracy of human pose esti-

mation dramatically. Toshev and Szegedy [84] formulated pose estimation as a DNN -based

regression problem to estimate the location of body joints. The introduction of cascading

DNN regressors resulted in high precision pose estimation. This method allowed for rea-

soning about pose in a holistic fashion and had a simple but powerful formulation, which

took advantage of previous advances in deep learning. For example, even if certain joints

were occluded, they could be estimated if the pose was reasoned about holistically [41, 84].

2.1. Pose Estimation 11

Toshev and Szegedy [84] located each body joint by regression using the full image

as an input. This formulation has the advantage of capturing the full context of each

body joint, since the full image is used as an input signal for each regressor. Another

benefit of this approach is, that it is much simpler to formulate than methods based on

graphical models, because there is no need to specifically design feature representations

and detectors for parts. Furthermore, no model topology or interactions between joints

need to be designed. Instead, a generic convolutional DNN is able to learn these implicitly

from data. DeepPose [84] was the first implementation of a DNN which used a holistic

approach for human pose estimation.

Figure 2.5 shows a schematic view of the network layers with their corresponding

dimensions. This generic Deep Convolutional Neural Network (DCNN) consists of seven

layers, where each layer is a linear transformation followed by a non-linear one. The

network takes a color image of predefined size as input and outputs the target values of

the regression. In the case of DeepPose [84], the DCNN gives 2k joint coordinates as

output, where k is the number of joints [41, 84]. The DNN architecture used in DeepPose

has been based on the work of Krizhevsky et al. [45] for image classification, which is

better known as AlexNet.

Figure 2.5: Schematic view of the DNN -based pose regression. Convolutional layers are blue and
fully connected ones are green [84].

A different technique presented in [15] specifies a graphical model for the human pose

which takes advantage of the fact that the local image measurements can not only be used

for part (or joint) detection, but also to predict the spatial relationships between them

(Image Dependent Pairwise Relations (IDPRs)). DCNNs are used to learn conditional

probabilities for the presence of parts and their spatial relationship within image patches.

This approach combines DCNNs with the representational flexibility of graphical models.

This has led to better results compared to the previous methods [41, 84, 92].

Another improvement in 2D human pose estimation has been the combination of a

local part-based approach and a holistic method presented in [27]. This technique is called

Dual-Source Deep Convolutional Neural Network (DS-CNN) (illustrated in Fig. 2.6) and

has achieved more efficient results than the previous methods. The DS-CNN takes a set

of image patches as input and it uses the local part appearance, as well as the holistic

12 Chapter 2. Background

view of each local part to estimate a human pose. This approach has achieved not only

joint detection, which determines whether an image patch contains a body joint, but also

joint localization, which finds the exact location of the joint in the image patch. The

part patches that include local appearance were generated by region proposals with some

restrictions. The regions should neither be too small, nor too large. If the size is too small,

its appearance may not provide sufficient features. If the size is too large, it may cover

multiple body parts and its appearance lacks sufficient resolution for joint detection and

localization [27, 41].

The body patches on the other hand, have to cover the whole body or all joints. For the

DS-CNN each training sample consists of a part patch, a body patch and a binary mask

specifying the location of the part patch within the body patch. Based on the outputs of

the network, the joint detection results from all sliding windows are combined to construct

a heatmap that reflects the joint location likelihood at each pixel. In order to compute

the final estimate for each joint location, a weighted average is computed over the regions

of the heatmap [27, 41]. Figure 2.6 shows an illustration of the described DS-CNN .

Figure 2.6: Schematic view of the DS-CNN method from [27]. (a) Input image including gener-
ated image patches. (b) Input of an image patch for the DS-CNN . (c) Input of a full body patch
and holistic view of the local body part. (d) The DS-CNN itself. (e) DS-CNN output on joint
detection. (f) DS-CNN output on joint localization.

Although the usage of convolutions in DNNs for human pose estimation caused a

dramatic improvement, it does not capture information at every scale. One architecture

that has tackled those challenges amongst others, has been the Stacked Hourglass Network,

introduced by Newell et al. [59].

The Stacked Hourglass architecture allows for repeated bottom-up (from high reso-

lutions to low resolutions), top-down (from low resolutions to high resolutions) inference

across scales in conjunction with intermediate supervision. The hourglass design was in-

centivized by the need to capture information at every scale. While local evidence is crucial

to spot features like hands and faces, a final pose estimation needs a coherent perception

of the full body. Therefore, features in an image are merged at different scales to find

cues like the orientation of the person, the arrangement of the limbs, the relationships

2.1. Pose Estimation 13

of adjacent joints, and so on. The hourglass design is able to capture all these features

and combine them to output pixel-wise predictions. In Figure 2.7 the stacked hourglass

modules of the network are depicted [59].

Figure 2.7: Illustration of the stacked hourglass network modules (image taken from [59]).

The design introduced by Newell et al. [59] consists of eight stacked hourglass modules.

Figure 2.8 represents a single module. Weights are not shared across modules and a loss is

applied to the predictions of all hourglasses utilizing the same ground truth. The network

produces a set of heatmaps where each heatmap represents the likelihood of a specific joint

at every pixel.

Figure 2.8: Schematic image of a single hourglass module. Each box resembles a residual module
and the layers are identical across the whole stacked hourglass network [59].

In the hourglass network, presented in [59], convolutional and max pooling layers are

applied to process features down to a very low resolution. When the lowest resolution

is reached, the network starts with the top-down sequence of upsampling and combining

features across scales. The merging of information between two adjacent resolutions is

done by nearest neighbor upsampling of the lower resolution followed by an element-wise

addition of the two sets of features. Since the hourglass has a symmetric topology, every

down-sampling operation has a corresponding up-sampling operation.

This recursive design of Convolutional Neural Networks (CNNs) has reached SotA

results and became a guideline for researchers. The network handles challenging and di-

verse poses very well with a simple mechanism for reevaluation and assessment of initial

predictions [41, 59]. However, this network still has some deficiencies e.g., relationships

14 Chapter 2. Background

between keypoints are not considered, since each keypoint heatmap is estimated indepen-

dently [39]. Furthermore, the encoder can be replaced with a pretrained Residual Neural

Network (ResNet) to extract features more effectively [71].

Many of the previously mentioned approaches for 2D pose estimation have been ex-

tended and improved to handle the 3D pose estimation task.

2.1.3 3D Human Pose Estimation

3D human pose estimation has recently received significant attention from researchers,

mainly due to an increasing range of applications in scientific and consumer domains,

which are driven by current technological advances. The scopes of application range from

gaming and sports performance analysis to HCI and Human-Robot Interaction (HRI),

where computers or robots can be controlled by human gestures [69].

Recovering the 3D pose from 2D RGB images is generally more challenging than es-

timating the 2D pose. Some reasons are i) more ambiguities, ii) larger 3D pose space,

iii) different 3D poses can be represented by similar image projections (ill-posed), iv) high

non-linearity in human motions, v) variations in pose and appearance. The usage of depth

maps has proven to be more effective for 3D pose estimation than 2D RGB images. How-

ever, depth cameras have a limited operating range, high power consumption and are

often more expensive than ordinary RGB cameras. Moreover, the majority of media on

the internet is still in a 2D RGB format [48, 69].

The task to estimate the position of human joints in 3D is not only challenging for

computers, but for humans as well. Humans are, on average, not better at reproducing

3D poses under laboratory conditions, given visual stimuli than current computer vision

algorithms [69]. For humans, it is significantly tougher and more time-consuming to re-

enact hard poses compared to easier ones. Consequently, hard poses lead to higher errors

compared to easier ones. The categorization between hard and easy poses arose during

the construction of the dataset on which humans were tested [56].

Similar body models, which find use in 2D pose estimation (as shown in Fig. 2.2) are

as well used in 3D pose estimation. Usually constraints are enforced on body models to

constrain the pose parameters. Such kinematic restrictions make sure that limb lengths,

limb-length proportions, and joint angles follow certain rules [69].

Most of the human pose estimation algorithms can be broadly categorized as generative

and discriminative methods [60, 85]. The major difference is, that generative methods

start from a human body model initialized with a pose and project the pose to the image

plane to verify image evidence, while discriminative methods start from the image data

and usually learn a mechanism to model the relations between image projections and

human poses based on training data [33, 69].

2.1. Pose Estimation 15

Discriminative Methods

Discriminative approaches do not assume a particular model, since they start from an

RGB or depth image and estimate 3D poses by a mapping- or search-based algorithm.

The model, which describes the relation between images and human poses can be obtained

by learning a direct mapping from inputs x to class labels y, or by directly modeling the

conditional distribution p(y|x) as a parametric model [60, 69].

Discriminative methods can be further classified into learning-based and example-based

methods. Learning-based approaches learn a mapping function from an image to the pose

space from a training set. This mapping should generalize well for a new image from the

testing set. Examples are [33, 69]

a) deep learning methods, which consist of multiple non-linear transformations. DC-

NNs are one of the most popular models for computer vision problems. Since they

have a reduced number of parameters compared to fully connected networks, which

makes training easier and reduces overfitting.

b) Space-learning based methods [25, 30], which use both topology space and subspace

to learn a mapping, and

c) bag-of-words based methods [61]. The basic idea for this approach is to first extract

the most representative features as a vocabulary and afterwards express each training

sample based on image observations and the vocabulary in a statistical way.

Example-based methods estimate human poses based on a discrete set of specific poses

with their corresponding pose descriptors. The final pose can then be estimated by in-

terpolating the candidates obtained from a similarity search. Randomized trees [1] and

random forests [12] are classification techniques that can handle this type of problem in a

fast and robust manner [33, 69].

Discriminative methods have the advantages, that they are typically very fast at mak-

ing predictions for new data points (at test time) and they usually have better predictive

performance than generative methods [85].

Generative Methods

Generative approaches learn a model of the joint probability p(x, y) from inputs x and

class labels y. This is usually done by learning the conditional probability p(x|y) and

the prior probability p(y) separately. The final posterior probabilities p(y|x) are then

calculated using Bayes’ theorem [85].

One sub-category of generative methods are part-based approaches. In the part-based

approach, the human skeleton is represented as a collection of body parts connected by

constraints imposed by the joints within the skeletal structure. The human pose is esti-

mated by learning body part appearance and position models. First, body part candidates

are detected from image observations, then the detected body parts are assembled to fit

16 Chapter 2. Background

images and a body structure. The PS model is a very good representation for part-based

models. It has mainly been used for 2D human pose estimation (as described in Sec-

tion 2.1.2) but it has been extended for 3D pose estimation [8]. The PS framework is very

powerful and enables an efficient inference of respective body parts, because it represents

the human body as a collection of parts arranged in a deformable configuration [33, 69].

Generative approaches generalize well and are typically better at handling missing or

partially unlabelled data. Therefore, they can easily handle compositionality, e.g., faces

with glasses and/or facial hair [69, 85].

Hybrid Approaches

Hybrid methods take advantage of both discriminative and generative approaches, and

avoid their shortcomings to enable more precise pose predictions [33, 69]. The combi-

nation of these methods is usually implemented by initializing the pose obtained from

the discriminative mapping functions and optimizing the human pose within a local area

through generative methods [75]. One possible combination of model-free (discrimina-

tive) and model-based (generative) approaches is to introduce distance constraints in the

discriminative methods and use generative methods to impose constraints between the

output dimensions [68]. Another way to coalesce these methods is to use the observa-

tion likelihood from a generative model to verify the pose predictions obtained from a

discriminative mapping function [65].

2.1.4 Hand Pose Estimation

Most of the methods and techniques previously mentioned can be applied on hand pose

estimation as well. The problem statement for hand pose estimation is of course different

compared to the human pose estimation problem, however, the basic idea is the same.

Before deep learning solutions became popular, traditional machine learning and com-

puter vision algorithms were used for hand pose estimation. Early approaches were mainly

based on low level visual cues like silhouette [46, 72] or optical flow [53], and used genera-

tive models to resolve the depth ambiguity. Among many traditional approaches, random

forest algorithms and its variations were the most popular ones [40, 47, 78, 80]. Random

forests are a type of ensemble method and have been very successful as a general pur-

pose classification and regression method. They make predictions by averaging over the

predictions of several independent base models, where each model is trained in isolation

from each other [19]. The Microsoft® Kinect™ system [73], for example, uses a random

forest as a classifier for human body pose estimation. Essentially, the first step in their

joint estimation pipeline is a prediction of body part labels of each pixel in the depth

map using a random forest. The second step is to use the labelled pixels to predict joint

locations [21, 86].

2.1. Pose Estimation 17

In what follows, we introduce some approaches, that use deep learning to solve the hand

pose estimation problem. We categorize them as detection-based and regression-based as

well as depth-based and image-based methods.

Detection-based Methods

Detection-based approaches produce a probability density map for each joint. For a hand

model with 21 joints, a neural network would produce 21 different probability density

maps as heatmaps for each input image. To finally find the exact location of each joint, an

argmax function has to be applied on the corresponding heatmap [21, 94, 96]. Figure 2.9

shows a hand model with 21 keypoints next to an image of confidence maps. We use the

same hand annotations from Figure 2.9a for our hand pose estimation approach as well.

(a) Detected keypoints. (b) Confidence maps.

Figure 2.9: Output of a detection-based algorithm (images taken from [76]) (a) Annotated hand
with 21 keypoints determined by OpenPose. (b) Selection of produced confidence maps.

The detection-based methods used in [57, 76] are described in detail below in Depth-

based Methods and Image-based Methods, respectively.

Regression-based Methods

Regression-based approaches directly map an input image to the joint locations or the

joint angles of a hand model. For a hand model with 21 joints, the final layer of a neural

network must have 3 × 21 neurons to predict (x, y, z) coordinates of each joint. Regress-

ing from highly disparate domains like pose and image is a very challenging task for a

neural network. The advantage of these methods is their ability to capture global con-

straints and correlations among different joints, without having to solve for intermediate

representations such as 2D coordinates [21, 86, 94].

18 Chapter 2. Background

Regression-based methods are used in [4, 31, 77] and are explained in more detail below.

The approaches in [58, 100] use detection-based as well as regression based networks and

are also explained in the following.

Depth-based Methods

Many contemporary works rely on depth images for hand and body pose estimation. A

lot of the deep learning-based approaches for 3D hand pose estimation using single depth

maps, directly regress the 3D coordinates of the keypoints from the 2D input depth map.

The authors of DeepHand [77] implemented a regression-based method to find the 3D pose

of a hand based on depth data from commercial 3D sensors. They hierarchically regressed

the hand pose from global to local joint angle parameters. To estimate the pose of a hand,

they separately trained a network for each finger and another network for the global hand

orientation. The global pose orientation and the finger articulations were combined in the

end to robustly estimate the hand pose. To extract the Region of Interest (ROI), they

use a colored wristband as a simple indicator of the hand region, which helped with the

removal of extraneous pixels like those below the wrist, which lead to better performance.

Therefore, they used RGB images as input of their system as well [21, 77].

Other hand pose estimation techniques use Generative Adversarial Networks

(GANs) [4, 13, 99]. A GAN [34] is a framework for estimating generative models through

an adversarial process. Two models are trained simultaneously in this procedure: a

generative model which captures the data distribution, and a discriminative model which

estimates the probability whether a sample came from the training data rather than

the generative model. The goal of training the generative model is to maximize the

probability of the discriminative model making a mistake. In order to achieve good

results, both models must be synchronized well during training which means that the

generative model must not be trained too much without updating the discriminative

network. GANs can improve semi-supervised learning techniques, where it can generate

additional training data when only limited labeled data is available.

In [4] a GAN was used to estimate the 3D pose of a hand by making a one to one

relation between depth disparity maps and 3D hand models. Since collecting a fully

annotated and comprehensive dataset covering diverse camera perspectives, shapes and

pose variations is laborious, the authors used a GAN to generate new data samples. Their

idea was to synthesize data in the skeleton space, instead of doing so in the depth-map

space. The generated hand skeletons were then used to train another generator, which

synthesized the corresponding depth maps. The joint training of a hand pose generator

and a hand pose estimator in a single unified framework made up an algorithm, which was

robust to variations that go beyond the coverage of existing hand databases.

The authors of [31] followed a different approach and created a three dimensional CNN

to capture the spatial structure from a single depth map as input and accurately regress

full 3D hand pose in a single pass. In the first step, they segmented the human hand

2.1. Pose Estimation 19

from the depth image and the 3D point cloud of the hand was encoded as 3D volumes

storing the projective Directional Truncated Signed Distance Function (D-TSDF) values.

Afterwards, these values were fed into a 3D CNN , which contains three 3D convolutional

layers and three fully-connected layers. This network yielded a set of 3D hand joint

locations in the 3D volume. The final joint locations were obtained by applying simple

coordinate transformations. This method is robust to variations in hand sizes and global

orientations, since they performed 3D data augmentation on the training set by directly

applying 3D transformations on the 3D point clouds.

A Truncated Signed Distance Function (TSDF) is a volumetric representation of a

scene for integrating depth images. It is well-suited for data-parallel algorithms, which

are able to achieve real time processing at high frame rates depending on the hardware. In

accurate TSDFs, each voxel stores the signed distance from the voxel center to the closest

surface point. This distance is positive when the voxel is in front of the visible surface

and negative when it is occluded by the the visible area. Projective D-TSDFs only find

the closest point on the line of sight in the camera frame and the Euclidean distance is

replaced with a 3D vector representing the three distances in each direction in the camera

coordinate system [31, 89].

A similar voxel based approach was followed by the authors of [57], who came up with

a voxel-to-voxel prediction network for pose estimation. A 2D depth image is converted

into a 3D voxelized form, which serves as input for the network. From this voxelized

grid, the network estimates the per-voxel likelihood for each keypoint. The position of

the highest likelihood response for each keypoint is then warped to real world coordinates,

which are the final results of the model. Since the input and output of the network are in

3D, it is based on the 3D CNN architecture that treats the Z-axis as an additional spatial

axis. The network architecture they used is based on a slightly modified hourglass model,

which was described in Section 2.1.2. Their network performed very good on almost all

depth-based hand datasets compared to other algorithms and it could easily be applied

on body pose estimation as well. The voxel-to-voxel network has overcome the problem

of perspective distortion in the 2D depth map. Many prior methods have treated depth

maps (which are intrinsically 3D data) as 2D images, which can distort the shape of the

actual object as a consequence of projection from 3D to 2D space [21, 57].

Depth-based methods perform very well on the 3D hand pose estimation problem,

however, depth cameras are not as commonly available as regular cameras and they only

work reliably in indoor environments.

Image-based Methods

Neural networks that use simple RGB images as input for hand pose estimation can be used

across a huge number of devices. However, reducing the input dimension to 2D makes

the task a lot harder. Furthermore, training a network utilizing RGB images requires

20 Chapter 2. Background

considerably more data compared to training a similar network using depth maps. Image-

based methods need to isolate the hand beforehand with cropping and resizing operations,

which are then passed to a pose estimation network. Using a segmentation network similar

to SegNet [3] is one way to achieve this task. SegNet is a deep fully convolutional network

for semantic pixel-wise segmentation, designed to segment general pictures like road or

indoor scenes [3, 21].

The 3D hand pose estimation pipeline from [100] consists of three building blocks. In

the first step, a segmentation network called HandSegNet localizes the hand within an

input image. The mask provided by the segmentation was used to crop and normalize the

inputs in size. The cropped images were then used to localize 2D keypoints as estimation of

2D score maps, where each map contains information about the likelihood that a certain

keypoint is present at a spatial location. The 2D predictions were afterwards utilized

as input for a third network, which derived the 3D hand pose from the 2D keypoints.

This regression-based network predicts the most likely 3D configuration given the 2D

evidence. The network does not predict the absolute 3D coordinates, but rather estimates

the coordinates within a canonical frame and the transformation into the canonical frame.

This explicitly enforces a representation that is invariant to the global orientation of the

hand [21, 100].

The biggest issue for hand pose estimation from RGB images are occlusions, which

happen when an object or the hand itself occludes parts of the hand. To overcome this

problem, the authors of [76] introduced a multi-camera system to boost the performance

of a hand keypoint detector. With the multi-view bootstrapping procedure, they were able

to detect hand keypoints in realtime on RGB images and produce 3D markerless MoCap

of hands by triangulation of multiple 2D detections. Since large datasets of annotated

keypoints do not exist for hands, their approach was based on the assumption that even

if a particular image of a hand has significant occlusions, there often exists an unoccluded

view. At first, they trained a weak detector on a small annotated dataset to localize

keypoints in good views and filter out incorrect detections, using robust 3D triangulation.

Keypoints in images with severely occluded hands were identified by reprojecting the

triangulated 3D hand joints. These newly generated annotations were then added to the

training set and by iterative improvement of the keypoint detector, the detections got more

and more accurate at each iteration. The multi-view constraints allow for geometrically

consistent hand keypoint annotations, even on images that are difficult or impossible to

annotate due to heavy occlusion. The multi-view bootstrapping technique can be used to

generate annotations for any keypoint detector, that is prone to occlusions by improving

the quality and quantity of annotations. The major bottleneck in many machine learning

and computer vision problems is building an annotated dataset, that is large enough.

Multi-view bootstrapping is one way to improve semi-supervised learning [76].

A different approach to overcome the problem with occlusions and especially the lack

of enough annotated data has been proposed by [58]. They used synthetically generated

data, that was created by an image-to-image translation network, producing geometrically

2.1. Pose Estimation 21

consistent synthetic images. The main advantage of synthetic data is that the ground truth

3D joint positions are known. The drawback is, however, that they usually lack realism. A

strong disadvantage of a network solely trained on synthetic images is that it has limited

generalization to real images. To deal with this problem, they used an image-to-image

translation network with the objective to translate synthetic to real images. They trained

a GAN based on CycleGAN [99] that translates synthetic images to real images. A Cycle-

GAN is able to capture special characteristics of one image collection and figure out how

these characteristics can be translated into the other image collection, without any paired

training examples. This problem is described as image-to-image translation, converting

an image from one representation of a given scene to another one. The advantage of this

network architecture is, that it does not require paired images, which means for hand

data generation, that there does not need to exist a real counterpart for a given synthetic

image.

The network, proposed by [58], learned mappings from synthetic to real images and

from real to synthetic images. To both mappings, they incorporated an additional geo-

metric consistency loss to ensure that both produce images, that maintain the hand pose

during image translation. It is important to ensure that the ground truth joint locations

of the synthetic images are also valid for the generated real images. These generated im-

ages were then used to train their RegNet, which is a ResNet derived from the ResNet50

architecture [35] consisting of 10 residual blocks. The 2D joint predictions, represented

as heatmaps and the 3D joint coordinates relative to the root joint were both obtained

from the ResNet . Both were then used to fit a kinematic skeleton model. The hand pose

was then derived from the adjusted kinematic model. Due to the enrichment of synthetic

data, this method generalizes better than others since the training data better resembles

the distribution of real hand images and it is more robust to occlusions [58, 99].

ResNets [35] make the training and optimization of DNNs a lot easier, since the layers

are formulated as residual functions. Instead of hoping that each few stacked layers directly

fit a desired underlying mapping, a deep residual learning framework explicitly allows these

layers to learn a residual mapping. Formally, let the desired underlying mapping to be

H(x) and let the stacked non-linear layers fit another mapping of F(x) := H(x)− x. The

original mapping is recast into F(x) + x and it is easier to optimize the residual mapping

than the original, unreferenced mapping. If an identity mapping were optimal, it would

be easier to push the residual to zero, than to fit an identity mapping by a stack of non-

linear layers. As shown in Figure 2.10, the formulation of F(x) + x can be realized by

feedforward neural networks with shortcut connections. Those are skipping one or more

layers to perform identity mapping and their outputs are added to the outputs of the

stacked layer.

Besides depth-based and image-based methods, there are approaches which use RGBD

images (combination of RGB and its corresponding depth image) during training as well.

Such a technique was used in [20] with the goal of estimating the 3D pose of a hand

from a single monocular RGB image. They trained a CNN on purely synthetic data

22 Chapter 2. Background

Figure 2.10: Residual building block, as illustrated in [35].

consisting of masked-out renderings of hands in different poses, shapes, illuminations and

textures, including the corresponding 3D annotations. This network alone gave good

initial predictions on various real data, however, there still existed a high discrepancy

between the results on synthetic and real data. Therefore, the authors extended this

network with an unsupervised refinement component, that minimized a depth loss, given a

differential rendering of the initial pose estimate. The depth loss is minimized on unlabelled

depth images, that have one-to-one correspondences to the real RGB input images. This

component allowed to fine-tune the network on unseen unlabeled real RGB data, provided

that an analogue unlabeled depth image was present at training time. The performance

of the network has clearly improved after the refinement process [20].

2.2 Notation and Conventions

Before giving a closer review of the related literature, we introduce the mathematical

notations which are used throughout the thesis. Scalar values are represented by italic

fonts, e.g., x or ci. Matrices and vectors are depicted in bold font, e.g., M or v. Vector

spaces are depicted in blackboard bold upper case letters, e.g., R3 or Z3. Functions,

mapping between different spaces are given in upper case calligraphic letters, e.g., P or

H. An overview over the notation is given in Table 2.1.

2.3. Related Work 23

Entity Notation

Scalar a, ci
Vector in 2D v = (x, y)T

Vector in 3D X = (x, y, z)T

Matrix M =

[
a b
c d

]
Vector Space R3

Mapping Function P : R3 → R2

Table 2.1: List of notations used in this thesis.

2.3 Related Work

The previous sections gave an overview of currently existing approaches for 3D hand pose

estimation from monocular images, which achieve SotA performance. In the following,

we focus on the methods and techniques used for this thesis. The goal of this work is

to utilize the approach of Rhodin et al. [64] and adapt it to work with hand data. They

used an unsupervised geometry-aware representation for 3D human pose estimation using

multi-view RGB images for training.

Rhodin et al. [64] implemented a method for 3D human pose estimation using multi-

view images. Since human pose estimation, as well as hand pose estimation solutions

mostly rely on DNNs, they require large amounts of labeled training data to work reliably.

However, gathering a sufficient amount of labeled data for 3D pose estimation is laborious

and costly. Rhodin et al. overcame this problem by learning a geometry-aware body

representation from multi-view images without annotations. They utilized an encoder-

decoder network to predict an image from one viewpoint given an image from another

viewpoint. The idea of their approach was to learn a latent representation that captures

the 3D geometry of the human body using images of the same person taken from multiple

viewpoints. To learn this representation, they did not need any 2D or 3D pose annotations

at all. Instead, they trained an encoder-decoder network to predict an image seen from

one view from an image captured from a different view. Afterwards, they were able to

learn to predict a 3D pose from the latent representation in a supervised way. The major

advantage of this method is that the mapping to the 3D pose is much simpler because the

latent representation already captures 3D geometry. Furthermore, this approach needs

much fewer labeled data for training than existing methods that regress directly from an

image to the 3D pose [64].

The latent representation represents a set of 3D points, which can be retrieved from a

monocular view at test time. The latent 3D points can be used for Novel View Synthesis

(NVS) as well. NVS [14] is the task of creating realistic images from previously unseen

24 Chapter 2. Background

viewpoints [64]. Moreover, NVS is strongly tied to multi-view 3D reconstruction, since it

requires transporting pixels across views through the geometry of scenes [93].

They designed the latent space in a way that it encodes 3D pose along with shape and

appearance information and it can be learned without any 2D or 3D pose annotations. In

order to do so, the authors used sequences of images acquired from multiple synchronized

and calibrated cameras. The setup and acquisition process requires care, however, the

amount of effort necessary is negligible compared to the effort needed to annotate tens

of thousands of 2D or 3D poses. From these image sequences, they learned separate

representations for the 3D pose, the appearance of the body, and of the background [64].

2.3.1 Autoencoders

Autoencoders have become standard tools to learn latent representations in unsupervised

settings for individual images. An autoencoder is a particular neural network with the

ability to encode an input into a compressed and meaningful representation, and then to

decode it back, such that the reconstructed output is as similar as possible to the original

input. The problem [5, 6] is to learn the functions E : Rn → Rp (encoder) and D : Rp → Rn

(decoder) that satisfy

minE(E ,D) = min
E,D

m∑
t=1

E(xt) = min
E,D

m∑
t=1

∆((D ◦ E)(xt),xt) , (2.1)

where:

1. n and p are positive integers (the case where 0 < p < n is primarily considered).

2. ∆ is a dissimilarity or distortion function (e.g., Hamming distance, Lp-norm) defined

over Rn. The loss function measures the distance between the output of the decoder

and the input.

3. X = (x1, . . . ,xm) is a set of m (training) vectors in Rn. When external targets are

present, Y = (y1, . . . ,ym) denotes the corresponding set of target vectors in Rn.

Figure 2.11 shows an example of an autoencoder, where a handwritten digit is encoded to

a latent representation and afterwards decoded.

In the case of a non auto-associative case, when external targets yt are provided, the

minimization problem becomes [5]:

minE(E ,D) = min
E,D

m∑
t=1

E(xt,yt) = min
E,D

m∑
t=1

∆((D ◦ E)(xt),yt) . (2.2)

NVS methods, that rely on training encoder-decoder networks on multiple views of the

same object are applied to leverage multi-view geometry. Images taken at the same time

but from different viewpoints of an object, including their rotation matrix connecting the

2.3. Related Work 25

Figure 2.11: Example of an autoencoder. The input image is encoded to a compressed repre-
sentation and then decoded. The decoded image should look as similar as possible to the input
image [6].

two views can be fed to an encoder-decoder network and train it to encode the input image

from the first view and decode it to depict the image from the second view. To enforce

the latent representation to explicitly encode 3D information, Rhodin et al. [64] modeled

the latent representation as a set of points in the 3D space. By doing so, they were able

to model the view-change as a 3D rotation by matrix multiplication of the encoder output

by the rotation matrix before using it as input to the decoder. This representation was

effective as an intermediate for 3D pose estimation as well as for novel view synthesis.

3
Geometry-Aware 3D Hand Pose Estimation

Data is the new oil.

Clive Humby

Contents

3.1 Our Approach . 27

3.2 Dataset . 35

3.3 Cropping, Augmentation and Background Estimation 36

3.4 Clustering . 40

3.1 Our Approach

In this work, we use the idea of Rhodin et al. [64] and apply it on 3D hand pose estimation.

Therefore, the following description is strongly based on the work of [64], however, adapted

for hand pose estimation.

We use images of the same hand taken from multiple viewpoints to train an encoder-

decoder network, which learns a latent representation, that captures the 3D geometry of

the hand. We train the encoder-decoder to predict an image seen from one view from

an image captured from a different one, without any 2D or 3D pose annotations, as

shown in Fig. 3.1. Afterwards, we use the latent representation to learn a mapping to the

3D pose in a supervised manner. The crux of this method is, that the mapping to the

3D pose is much simpler, since the latent representation already captures 3D geometry.

Furthermore, it requires considerably fewer examples for learning the mapping compared

to many existing methods, that rely on multi-view supervision. Besides the approach of

Rhodin et al., we implement slightly different network configurations and compare their

27

28 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

performance with one another. Figure 3.4 illustrates our realized network configurations

next to an example of a common method, that attempts to regress directly from the image

to the 3D pose (Fig. 3.4d).

(a) Unlabeled multi-view images.

(b) Unsupervised learning for our 3D hand pose estimation.

Figure 3.1: Unsupervised learning to obtain a pre-trained encoder for our 3D hand pose estima-
tion pipeline (illustrations inspired by [64]). (a) We use unlabeled multi-view images to learn a
geometry-aware representation. (b) Our encoder-decoder network is trained in an unsupervised
manner. The colored lines in the rotated 3D latent variables indicate the trajectory of the 3D
points. Due to the pre-training of the encoder, we only need a small amount of target supervision
to learn a mapping from the latent representation to the actual 3D poses.

The latent representation L needs to encode the 3D pose along with shape and appear-

ance, and can be learned without 2D or 3D pose annotations. To achieve this goal, we use

sequences of images, acquired from multiple synchronized and calibrated cameras (details

in Section 3.2). From these images, we learn separate representations of the hand’s 3D

pose and geometry, its appearance, and the background. Those will be referred to as L3D,

Lapp, and B, respectively.

Assuming we are given a set U = (Iit, I
j
t)
Nu

t=1 of Nu image pairs without annotations,

where i and j refer to the cameras used to capture the images, and t to the acquisition

time. Let Ri→j be the rotation matrix from the coordinate system of camera i to that of

camera j. With this basis, we can turn to learning the individual components of L.

To learn latent representations from individual images in unsupervised settings, we

build upon autoencoders, which are a common choice for such tasks [62, 81, 82]. Let

3.1. Our Approach 29

Eθe and Dθd be the encoder and decoder respectively, where θe and θd are the weights

controlling their behaviour. The encoder Eθe is used to encode an image I into a latent

representation L = Eθe(I), which is then decoded into the reconstructed image Î = Dθd(L).

θe and θd are learned by minimizing the reconstruction error over the training set U .

Figure 3.2: Geometry-aware 3D representation learning (illustration based on [64]). In our
approach, we learn a latent representation, that encodes geometry and consequently 3D pose
information in an unsupervised manner. This method extends a conventional autoencoder with a
3D latent space, rotation operation, and a background fusion module. We enforce explicit encoding
of 3D information by rotating the 3D latent space. The background fusion enables applications to
natural images.

Our method of using multi-view geometry is influenced by Novel View Synthesis (NVS)

methods [17, 81, 82, 90], that rely on training encoder-decoder networks on multiple views

of the same object. Similar to Rhodin et al. [64], we let (Iit, I
j
t) ∈ U be two images taken

from different views but at the same time t. Since we know the rotation matrix Ri→j

connecting both viewpoints, we feed this information as an additional input to the encoder

and decoder, and train them to encode Iit and resynthesize Ijt . By doing so, novel views of

the corresponding object can be rendered by manipulating the rotation parameter Ri→j .

In order to enforce an explicit encoding of 3D information within the latent variables, we

model the latent representation L3D ∈ R3×N as a set of N points in 3D space. The encoder

Eθe and decoder Dθd are designed in a way, that they have a three-channel output and

input respectively. With this architecture, we can model the view change as a 3D rotation

through matrix multiplication of the encoder output by the rotation matrix before it is

used as input of the decoder. The resulting autoencoder Aθe,θd can be formally written as

Îjt = Aθe,θd(Iit,R
i→j) = Dθd(Ri→jL3D

i,t) , with L3D
i,t = Eθe(Iit) , (3.1)

where Îjt is the reconstructed image from view j.

The weights θe and θd are optimized to minimize ‖Aθe,θd(Iit,R
i→j) − Ijt‖1 over the

training set U . The decoder D needs to learn how to decode the 3D latent vector L3D

without knowing how to rotate the input to a novel view. Therefore, the encoder E is

forced to map to a proper 3D latent space, which still can be decoded by D after an

arbitrary rotation. At this point, L3D not only encodes the 3D geometry, but also the

30 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

background and the appearance of the hand. We now need to separate this information

from each other and create two new vectors Lapp and B for appearance and background,

so that L3D only describe geometry and pose.

Now, we assume that we have the background Bj of all images from a given viewpoint

j. We describe the details to construct the background for our dataset in Section 3.2. To

factor out the background, we modify the decoder D by adding a direct connection to the

target background Bj , as shown in Fig. 3.2. We concatenate the background image with

the output of the decoder and use an additional 1 × 1 convolutional layer to synthesize

the decoded image. This extension prevents the rest of the network to learn about the

background and it enforces that the L3D vector does not contain information about it

anymore.

In order to split the appearance from geometry in the latent representation, we split

the output of the encoder E into two different vectors L3D and Lapp, that describe pose

and appearance respectively. We enforce this separation by simultaneously training the

encoder-decoder network on two frames It and It′ which depict the same subject but at

different times t and t′, as shown in Fig. 3.3. The decoder D uses L3D
t and L3D

t′ as before,

but it swaps Lapp
t and Lapp

t′ . Consequently, the decoder uses L3D
t and Lapp

t′ to resynthesize

the frame at time t and L3D
t′ and Lapp

t for frame t′. We assume, that the appearance of

the hands does not change drastically between frames t and t′ and that the differences in

the images are caused by 3D pose changes. This enforces L3D encoding the pose and Lapp
t

encoding the appearance.

Figure 3.3: Appearance representation learning (illustration inspired from [64]). We split the
latent space into a 3D geometry part and an appearance part, in order to encode the subject
identity. The appearance part is not rotated, but swapped between two frames t and t′ depicting
the same subject to enforce it not to contain any geometric information.

Thus, the encoder E has two outputs, which is Eθe : Iit → (L3D
i,t , L

app
i,t). The decoder D

accepts those two and the background as input after rotating the geometric representation

and swapping the appearance for two views i and j. The output of the encoder-decoder

can be written as

Aθe,θd(Iit, R
i→j , Lapp

k,t′ , Bj) = Dθd(Ri→jL3D
i,t , L

app
k,t′ , Bj) . (3.2)

3.1. Our Approach 31

Since we want to train A with multiple sequences that feature different people and

backgrounds, we randomly select mini-batches of Z triplets (Iit, I
j
t , I

k
t′) in U with t 6= t′

from individual sequences. The first two views are taken at the same time but from

different viewpoints and the third one is taken at a different time, but from an arbitrary

viewpoint k. The loss function used to train the autoencoder parameters θe, θd is based

on the reconstruction loss:

Eunsuperv. = Eθe,θd + λfeatEfeat , (3.3)

with

Eθe,θd =
1

Z

∑
Iit,I

j
t ,I

k
t′∈U

t6=t′

|Aθe,θd(Iit, R
i→j , Lapp

k,t′ , Bj)− Ijt | , (3.4)

and

Efeat =
1

Z

∑
Iit,I

j
t ,I

k
t′∈U

t6=t′

|R18(Aθe,θd(Iit, R
i→j , Lapp

k,t′ , Bj))−R18(Ijt)| . (3.5)

Lk,t′ = (L3D
k,t′ , L

app
k,t′) is the output of the encoder Eθe applied to the image Ikt′ . Bj is the

background in view j and Ri→j stands for the rotation matrix from view i to view j. The

encoder E is applied twice, in order to get L3D
i,t and Lapp

k,t′ , while ignoring Lapp
i,t and L3D

k,t′

with the swap, as explained before.

During training, we minimize a loss Eunsuperv. that is the sum of the pixel-wise error

Eθe,θd (Eq. (3.4)) and a second term Efeat (Eq. (3.5)), which is obtained by first applying

a Residual Neural Network (ResNet) [35] R18 with 18 layers trained on ImageNet [66] on

the output and target image, and then computing the absolute feature difference after the

second block level. This additional term enhances the decodings and improves the pose

reconstruction. Following [64], we average the individual pixel and feature differences, and

balance their influence by weighting the feature loss by two (λfeat = 2.0).

Up until now, we know how to learn an encoding for the multi-view geometry using

an encoder-decoder network. Our goal, however, is to infer the 3D pose of a human hand

from a monocular image. L3D is a 3×N matrix and we already use it to generate novel

views. L3D can also be understood as a set of N 3D points, but they do not have any

semantic meaning yet. In almost all practical applications, one wants to derive a pre-

defined representation, like a skeleton with K = 21 major hand joints (as depicted in

Fig. 2.9a), encoded as a vector P ∈ R3K .

To accomplish such a representation, we want a mapping F : L3D → R3K . This

mapping function can be interpreted as a different decoder that reconstructs 3D poses

instead of images. Learning a mapping from L3D to the 3D hand joints requires a much

smaller amount of annotated data (as we will see in Chapter 4), than what would be

needed for learning a mapping directly from the images, as in many other approaches to

hand pose estimation.

32 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

Let L = {(It,Pt)}Ns
t=1 be a small set of Ns labeled examples consisting of image pairs

and corresponding ground-truth 3D poses P. F is modeled as a Deep Neural Network

(DNN) with parameters θf , and it is trained by minimizing the sum of the objective

function Fθf (Eq. (3.7)) and a 3D geometric induced loss function Lgeo (Eq. (3.8)):

L3D = λFFθf + λgeoLgeo , (3.6)

where

Fθf =
1

Ns

Ns∑
t=1

‖Fθf (L3D
t)−Pt‖ , (3.7)

with (L3D
t , ·) = Eθe(It), since the encoder outputs both L3D and Lapp.

Since the latent variable L3D already encodes the 3D hand pose and shape, F can be

implemented as a simple fully-connected neural network. The encoder-decoder network

(trained in an unsupervised manner) introduced before and the fully-connected network

(trained in a supervised manner) combined form the semi-supervised setup, as illustrated

in Fig. 3.4a. The unsupervised representation already does a lot of the hard work in

the challenging task of lifting the image to a 3D representation, that simplifies the final

mapping.

Unlike Rhodin et al. [64], we try to further improve the accuracy of the 3D pose

reconstruction, by implementing a 3D geometric constraint induced loss Lgeo and combine

it with Fθf from Eq. (3.7). We calculate the geometric loss in a similar way as it is

described by Zhou et al. [98]. They applied this loss on their 3D human pose estimation

pipeline and it is based on the fact, that ratios between bone lengths remain relatively

fixed in a human skeleton. We implement a similar function, since for the human hand,

there also exists strong evidence of the existence of some constant ratio between finger

segments [10].

Let Ri = {dpi,mpi, ppi,mci} be a set of bones within a skeleton group

i = {Thumb, Index,Middle,Ring,Pinky} (see Fig. 1.1b for reference). Let le be the

length of bone e obtained from the predicted keypoints Fθf (L3D
t), and l̄e denotes the

length of bone e in a canonical hand skeleton. We derive the canonical skeleton by

calculating the average of each finger segment of the hands in the training set. The

length of each bone is calculated using the Euclidean distance between the corresponding

keypoints. The ratio le/̄le for each bone e in each group Ri should be the same and remain

fixed for each individual subject. The geometric loss measures the sum of variance among

{le/̄le}e ∈ Ri of each Ri:

Lgeo =
∑
i

1

|Ri|
∑
e∈Ri

(
le
l̄e
− r̄i)2 , (3.8)

where

r̄i =
1

|Ri|
∑
e∈Ri

le
l̄e

. (3.9)

3.1. Our Approach 33

λF and λgeo in the final loss function L3D from Equation (3.6) are the corresponding

weighting factors.

In contrast to Rhodin et al. [64], we additionally do a joint training of the encoder-

decoder network Aθe,θd and the fully-connected neural network Fθf by minimizing the

joint loss

Lsemi−superv. = Eunsuperv. + L3D . (3.10)

All of our implemented hand pose estimation approaches are illustrated in Figure 3.4.

Hitherto, we explained our approach for 3D hand pose estimation, however, we still

need to collect and prepare our data we use for training and testing our method. This will

be explained in the following sections.

34 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

(a) Pipeline using a pre-trained encoder to recover 3D hand poses, as proposed by
Rhodin et al. [64]

(b) Network, that directly maps an input image to the 3D pose, with an untrained
encoder.

(c) Fully semi-supervised network, where the encoder-decoder network and the pose
network are trained simultaneously.

(d) Illustration of common SotA pipelines for 3D hand pose estimation.

Figure 3.4: Comparison of our three implemented approaches (a)-(c) to a common pipeline, that
SotA methods use for 3D hand pose estimation (illustrations inspired by Rhodin et al. [64]). (a)
To recover the position of the 3D joints of a hand from a monocular image, we compute the latent
representation of the input image and feed it to the shallow network to compute the pose. (b) This
network maps an input image directly to the 3D pose, without the need of a pre-trained encoder.
(c) The fully semi-supervised network trains the encoder-decoder network and the shallow pose
network simultaneously. This network predicts both, the novel view and the 3D pose of the input
image. (d) In contrast, most SotA methods which train a network to regress directly from the
input image to the 3D pose require a much deeper network and therefore a lot more training data.

3.2. Dataset 35

3.2 Dataset

The dataset we use in this thesis comes from the Carnegie Mellon University (CMU)

Panoptic Dataset provided by Joo et al. [38]. Their goal was to capture the 3D motion of

a group of people engaged in natural human interactions. They built a massive multi-view

system with heterogeneous sensors including 480 Video Graphics Array (VGA) cameras,

31 High Definition (HD) cameras and 10 Kinects™ . The vast number of cameras placed

at different viewpoints provide robustness against occlusion and the subjects are not re-

stricted in terms of their viewing direction. The uniform arrangement of the cameras

enabled them to observe scenes from all directions without restricting the motion of the

subjects by a predefined dominant system direction. The HD views provide the details

for the scene, and the Kinects™ produce initial point clouds to generate a dense trajectory

stream.

They designed the physical frame of the Panoptic Studio in the way of a face-transitive

solid, called a truncated pentagonal hexecontahedron. The transitivity of the faces allows

for a modular architecture and ensures that the structure remains easy to upgrade and

customize with different panels. The structure of the dome is shown in Figure 3.5. It

has a diameter of 5.49 m and a total height of 4.15 m. The floor of the dome is 1.40 m

below the center to increase access to the edges. The geodesic dome structure consists of 6

pentagonal panels, 40 hexagonal panels, and 10 trimmed base panels. 20 of the hexagonal

panels house a set of 24 VGA cameras each. The 31 HD cameras are installed at the

center of the corresponding hexagonal panels, 5 projectors are installed at the center of

each pentagonal panel, and 10 Kinect™ sensors are placed to form two rings with 5 evenly

spaced sensors. Each of the VGA cameras has a resolution of 640 × 480 and each HD

camera has a resolution of 1920 × 1080. Both camera types capture at a frame rate of

approximately 30 Frames per Second (FPS). In total, their system consists of 521 cameras,

which are calibrated using Structure from Motion (SfM).

The team made all the data available on the CMU Panoptic Dataset website1, in-

cluding all synchronized camera feeds, calibration, 3D pose reconstruction results, and

3D trajectory streams. The reconstructed 3D hand poses have K = 21 keypoints, as

illustrated in Fig. 2.9a. For our purpose, we use the 31 HD camera feeds (because of

the higher resolution), calibration data, and the 3D hand pose reconstructions as ground

truth. For training our network, we employ the sequences 171026 pose3 and 171204 pose2,

and for testing the sequence 171026 pose2. In total, we have around 24 minutes of video

material for training (48 683 frames per camera) and approximately 9 minutes for testing

(16 366 frames per camera) from 31 different HD views. The video sequences feature 9

different subjects for training and 2 subjects for testing, who separately step into the dome

and perform different body and hand movements.

1http://domedb.perception.cs.cmu.edu/

http://domedb.perception.cs.cmu.edu/

36 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

Figure 3.5: Structure of the Panoptic Studio (image taken from [38]). (Top Row) Shows the
exterior of the geodesic dome with the equipment mounted on the surface. (Middle Row) The
interior of the dome, where the red circles show the VGA cameras, the blue circles mark the HD
cameras, the cyan rectangles indicate the Kinects™ and the green rectangles signify the projectors.
(Bottom Left) The panels are designed to ensure interchangeability. (Bottom Right) The
optimized camera positions ensure uniform angles with respect to the dome center between each
camera and all its neighbors (e.g., Camera i is a neighbor of Camera j).

3.3 Cropping, Augmentation and Background Estimation

For human pose estimation, as well as for hand pose estimation algorithms, it is common

practice to first crop the subject of interest to factor out scale and global position, which

are inherently ambiguous for monocular reconstruction and Novel View Synthesis (NVS).

To approximate hand detection, we derive the crop information by utilizing the predicted

3D joint locations from Joo et al. [38]. For each frame, we project the 3D keypoints into

each 2D camera plane and calculate a bounding box around the 2D keypoints farthest away

from each other and add a border with a width of 10 pixel to every edge, as illustrated

in Fig. 3.6. After cropping, we resize all image patches to the same size of 128 × 128.

Now we have to compute the rotation between two views with respect to the hand center

instead of the image center and shear the cropped image so that it appears as if it was

taken from a virtual camera pointing in the crop direction. To calculate the center of

a hand, we construct a simple 3D bounding box around a hand pose Pt at time t and

3.3. Cropping, Augmentation and Background Estimation 37

calculate the geometric center CPt of this box:

CPt(Pt) = min(Pt) +
max(Pt)−min(Pt)

2
. (3.11)

To calculate the new rotation matrix that points to CPt , we followed the idea of the

gluLookAt2 function from OpenGL® . Let CPt be the target point, U be the up-vector

of the camera and Cc = −RT
c Tc be the camera center, where Rc and Tc are the rotation

matrix and translation vector from the given calibration data. The new rotation matrix

R is given by

R =

 S

U′

L

 , (3.12)

with

L =
CPt −Cc

‖CPt −Cc‖
, (3.13)

S =
U× L

‖U× L‖
, (3.14)

and

U′ =
L× S

‖L× S‖
. (3.15)

The new translation vector is calculated as T = −RCc.

Furthermore, for some experiments we apply random in-plane rotations to increase

the diversity of the training set. Let α be a random angle by which the image should be

rotated around the z-axis of a right-handed Cartesian coordinate system. The rotation

matrix Rz is constructed as

Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

 , 1 ≤ α < 360 . (3.16)

The new extrinsic rotation matrix Raug and the new augmented hand keypoints Paug
t can

be simply calculated as

Raug = RzR (3.17)

and

Paug
t = RaugRTPt . (3.18)

The rotation Ri→j and background crop Bj depend on time t, however, we neglect this

dependency in our notation for readability. We do the cropping and augmentation process

for the left as well as for the right hands. An image from the same hand captured from

20 different camera viewpoints at the same time t can be seen in Figure 3.8.

2https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml

38 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

For background estimation, we compute the median for each pixel over a specific set of

frames. We select the frames in a way, that the full body of the actor, except the hands, is

visible for more than half the time at the same spatial location. For hand pose estimation

it is especially difficult, since e.g., we want the subject’s upper body to be part of the

background if the hand is located between the camera and the upper body. Therefore, we

define different sets of frames from a sequence, where hand movement is present but only

slight movement in the rest of the body. Then we calculate the pixel-wise median over

each set individually. Figure 3.7 shows two background images derived from the same set

of frames but from different views and the corresponding background patches to the hand

crops from Figure 3.6. Because of occasional heavy body movement, we went through the

training data by hand, in order to remove samples where the background patch does not

fit the hand patch at all.

(a) Hand cropping from one of our training
samples.

(b) Hand cropping from one of our training
samples from a different camera.

Figure 3.6: Hand cropping from one of our training samples from different camera views but
at the same time t. The crop with the cyan border shows the input patch for our network. Our
input images are cropped with a fixed pixel size, independent of the distance from the hand to the
camera. Therefore, the size of the hand varies with its distance to the camera. The crop with the
yellow border shows the target patch of our network. These crops are tighter around the hand, so
that the network can generate the predicted hands with roughly the same size, assuming that all
hands have the same size. Note that during training, the target patch is from a different camera
view than the input patch, e.g., the target patch for the input in (a) would be the target image
from (b).

3.3. Cropping, Augmentation and Background Estimation 39

(a) Background image from one of our training
samples.

(b) Background image from one of our training
samples but from a different viewpoint.

Figure 3.7: Background from one of our training samples from different camera viewpoints but at
the same time t. The yellow borders indicates the background crops for the corresponding target
hand crops in Fig. 3.6.

Figure 3.8: Set of hand patches from 20 different camera views captured at the same time t.

40 Chapter 3. Geometry-Aware 3D Hand Pose Estimation

3.4 Clustering

Upon visual inspection, we find out that the majority of images in our training data

depict hands hanging downwards. To prevent a bias of the network towards those poses,

we introduce a clustering method to provide a more balanced training dataset, as well as

to have a balanced amount of left and right hands. We use Hierarchical Agglomerative

Clustering (HAC) [95] which is a bottom-up algorithm, that treats each 3D hand pose

as a singleton cluster at the out-set and successively merges (or agglomerates) pairs of

clusters until all clusters have been merged into a single cluster that contains all hand

poses. A dendrogram is usually used to visualize a HAC result, as shown in Figure 3.9.

Each merge of clusters is represented by a horizontal line and the y-coordinate of this

line is the similarity of the two clusters that were merged. A dendrogram allows us to

reconstruct the history of merges, that resulted in the depicted clustering by moving up

from the bottom layer to the top node [55].

Figure 3.9: HAC of 28 243 3D (left) hand poses visualized as dendrogram. The threshold is set
to 2.0 which results in 260 different clusters.

Hierarchical clustering does not require a predefined number of clusters. In our case,

we cut the dendrogram at a threshold of 2.0, since we want a minimum combination

similarity of 2.0. We tried different numbers for the threshold, but setting it to 2.0 gave us

the best clustering of hand poses. As shown in Figure 3.9, cutting the diagram at y = 2.0

yields to 260 clusters for the 3D hand poses of left hands. For the right hands, we also cut

3.4. Clustering 41

the dendrogram at y = 2.0 and get 255 clusters, which results in a total of 515 different

clusters.

We calculate the initial distances between 3D hand poses P by the mean Euclidean

distance between the corresponding 3D joints. All poses P are centered by their hand

center CPt from Equation (3.11) and normalized by their mean and standard deviation.

The distance calculation can be formulated as

d3D(Pi,Pj) =
1

K

K∑
k=0

‖Ci
k −Cj

k‖ , (3.19)

where Ci
k is the 3D coordinate of the kth joint in pose Pi. The initial distances are stored

in a condensed 1D matrix, which is used to form clusters.

We perform Ward’s [24, 88] linkage method on the condensed distance matrix. The

method is used to measure the distance between the clusters in order to create the tree

structure. The Ward linkage method, also called minimum variance clustering, defines the

distance between two clusters u and v by the increase of the sum of squares if they are

merged. The sum of squares will initially be zero with hierarchical clustering algorithms

and grows as clusters are merged. Ward’s method tries to keep this growth as small as

possible [55, 91].

The distance d(u, v) between two clusters u and v is calculated as [70]

d(u, v) =

√
|v|+ |s|
T

d(v, s)2 +
|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2 , (3.20)

where u is the newly joined cluster consisting of clusters s and t, v is an unused cluster

in the forest, T = |v| + |s| + |t|, and | ∗ | is the cardinality of its argument. This is also

known as the incremental algorithm.

4
Experiments

If you don’t find the time, if

you don’t do the work, you

don’t get the results.

Arnold Schwarzenegger

Contents

4.1 Overview . 43

4.2 Dataset Splits and Metrics . 43

4.3 Implementation . 45

4.4 Evaluation . 46

4.1 Overview

In this chapter, we evaluate our approach on 3D hand pose estimation and show, that

our approach allows us to use far less annotated training data than other State-of-the-Art

(SotA) methods to achieve better accuracy. Since we have ground-truth 3D data for all

of our hand patches, we can easily compare different levels of supervision, unsupervised,

semi-supervised, or fully supervised. Furthermore, we qualitatively evaluate the latent

space itself to investigate how well it encodes geometry and appearance of the hand.

4.2 Dataset Splits and Metrics

To learn our latent representation, we take the unlabeled set U from the Panoptic dataset.

Within the complete dataset, we distinguish between the different actors in the video

43

44 Chapter 4. Experiments

Scenario Number of Annotations

Fully supervised training with the 3D annotations of
all nine training subjects

28 592

S0 + S3 + S4 + S5 + S6 18 624

S0 + S3 + S4 13 136

S0 + S3 9 392

S0 6 512

50% of S0 3 248

10% of S0 640

5% of S0 320

1% of S0 64

Table 4.1: List of scenarios, that provide different levels of supervision evaluated in this thesis.
The numbers of annotation are all multiples of 16, since we use mini-batches of size 16 to train our
pose network F .

streams and refer to them as S0, S3, S4, S5, S6, S7, S8, S9, S10, where SN specifies all

sequences of the Nth subject, however, without the available 3D labels. To provide the

required supervision to train the shallow network F depicted in Figure 3.4a, we define the

scenarios listed in Table 4.1.

Furthermore, we compare the following network configurations:

1) NetworkM is the proposed hand pose estimation network from Figure 3.4a using a

pre-trained encoder.

2) Network N , as illustrated in Figure 3.4b, directly maps an input image to the 3D

pose, without pre-training the encoder with unlabeled multi-view images. The pa-

rameters in the encoder and the pose network are optimized simultaneously.

3) Network O is a semi-supervised approach, where the encoder-decoder network and

the pose network are trained simultaneously, as depicted in Figure 3.4c.

In all cases we use S1 and S2 for testing.

Since we have 515 clusters, with some clusters having more than 500 poses, we ran-

domly pick at most 260 hand poses per cluster for the unsupervised multi-view training

of the encoder-decoder. A threshold of 260 poses per cluster seemed to be very plausible

to create a balanced dataset, without having poses being over- or underrepresented.

We train our pose network F with different λ-settings in the loss function (recall

Eq. (3.6)). We always set λF = 1.0 and λgeo is set to 10.0, 1.0, 0.1, and 0.01.

We evaluate pose predictions in terms of the Mean Per Joint Position Error

(MPJPE) [37], and its normalized variant Normalized Mean Per Joint Position Error

(N-MPJPE). The MPJPE in Equation (4.1) is calculated as the average differences in

the K = 21 3D joint positions P̂, that were reconstructed and the ground truth joint

4.3. Implementation 45

positions Pgt. Before the calculation, P̂ is centered to the point CPgt derived from

Equation (3.11). For the N-MPJPE , the scale of the poses is normalized to the ground

truth before computing the MPJPE .

MPJPE =
1

K

K∑
k=1

‖P̂k −Pgt
k ‖ (4.1)

The N-MPJPE is computed as

N-MPJPE =
1

K

K∑
k=1

‖s · P̂k −Pgt
k ‖ , (4.2)

with the scaling factor

s =
〈P̂,Pgt〉
〈P̂, P̂〉

. (4.3)

Furthermore, we use the Percentage of Correct Keypoints (PCK) score to evaluate our

hand pose estimation accuracy. Before we calculate the PCK , the scale of the poses is

normalized. The PCK defines a certain keypoint to be correct, if it falls within a sphere of

a given radius around the ground truth. The smaller the radius, the stricter the criterion

and the more accurate the estimated hand joints are considered correct. Additionally, we

report the Area Under the Curve (AUC) of the corresponding PCK in a 0 mm to 100 mm

range. To calculate the AUC , we use the trapezoidal rule [18] to approximate the integral.

4.3 Implementation

We implemented our approach in PyTorch and used a Nvidia® GeForce® RTX 2070

graphics card and an Intel® Core™i7 -8700K CPU to train and test our networks. Our

encoder E is an off-the shelf Residual Neural Network (ResNet) with 50 layers [35]. An

input image with the resolution of 128×128 gets mapped to Lapp ∈ R128 and L3D ∈ R`×3,

where we evaluate different settings of `.

The decoder D maps L3D to a feature map of dimension 128 × 16 × 16 with a fully

connected layer followed by a dropout with a probability of 0.3 and a Rectified Linear Unit

(ReLU) layer. Lapp is duplicated to form a spatially uniform map of size 128× 16× 16.

These two maps are concatenated and used to reconstruct the input by applying four

blocks of two convolutions, where the first convolution is preceded by a bilinear interpo-

lation and all other pairs by transposed convolutions. Every convolution is followed by a

batch-normalization and ReLU activation functions. We use mini-batches of size 32 for

the encoder-decoder network.

The pose decoder F is a fully connected network with two hidden layers of dimension

2048. Poses and images are normalized by their mean and standard deviation on the

training set. We use mini-batches of size 64 and the Adam [42] optimizer with a learning

46 Chapter 4. Experiments

rate of 10−3 for 40 epochs to optimize the parameters θe, θd and θf . Moreover, we use a

learning rate scheduler, which reduces the learning rate by a factor of 0.1 if the training

loss does not decrease for more than two epochs.

For our network configurations N and O, we do not make use of a pre-trained encoder.

We use mini-batches of size 64 and the other settings are as described above. For N ,

we optimize the parameters θe and θf simultaneously and the mini-batches only contain

annotated hand images.

Network O, on the other hand, optimizes θd as well, along with θe and θf . For the

majority of our tested scenarios, we have a huge amount of images without 3D annotations

and only a small amount of annotated ones. To compensate for the imbalance in our two

classes, we implemented a random minority oversampling method [9]. We simply replicate

selected samples from our class of annotated images, to achieve a consistent distribution

of classes in our batches during training.

4.4 Evaluation

In Figure 4.1, we show the performance differences in terms of the N-MPJPE for our

previously defined network configurationsM, N and O using various parameter settings.

We see in Figure 4.1, that at a certain number of annotated training samples, the accuracy

does not substantially increase anymore and that the geometric loss λgeo seems to have

an insignificant impact (also shown in Table 4.2), differently from what we expected.

The graphs for networkM are very flat across the whole range of tested numbers of 3D

annotations and the N-MPJPE is much lower for smaller numbers of annotated training

samples compared to networks N and O. As we anticipated, if we pre-train the encoder

E with augmented unlabeled data, we achieve an even better accuracy if the number of

annotated 3D data is low. This performance gain, however, diminishes the larger the

amount of annotated data gets. If the number of annotations is high, all variations of M
achieve similar results independent of their parameter settings. Our tested λgeo values and

setting ` to 21 and 50 do not seem to make much of a difference for network M in terms

of accuracy.

The graphs for the networks N and O are steeper than those for network M, which

results in a higher N-MPJPE for a small number of annotations, whereas N has a much

higher error than O. If the amount of 3D annotations becomes large enough, the accuracy

of N and O is better than of the variations of M.

In Figure 4.2, we compare our networks M, N and O in terms of their PCK and

the corresponding AUC . For network M, we only compare results for the settings ` = 50

with λgeo = 10, ` = 21 with λgeo = 0.1, and ` = 21 with λgeo = 0.1 using augmented

unlabeled images, since the tested configurations have an almost identical performance,

and to increase readability.

We see, that for a low number of annotated images, network M with the pre-trained

encoder estimates hand poses most accurately. We achieve the best results using the

4.4. Evaluation 47

N-MPJPE [mm] MPJPE [mm]
λgeo ` = 21 ` = 50 ` = 21 ` = 50

10.0 21.26 21.58 22.23 22.56

1.0 21.22 21.65 22.18 22.61

0.1 21.17 21.88 22.13 22.85

0.01 21.33 21.65 22.27 22.62

Table 4.2: Performance as function of the number of different λgeo-settings for networkM. The
table compares different settings for the λgeo parameters of Eq. (3.6) in terms of the N-MPJPE
and MPJPE .

Figure 4.1: Performance as function of the number of training samples. The graph compares
different network configurations by their N-MPJPE at different numbers of annotated training
data.

encoder E , that was trained with augmented unlabeled data. The curves for network

M do not change as much for the scenarios we tested, compared to networks N and O.

Especially N shows a bad accuracy, if the number of 3D annotations used for training is

low. However, it becomes more accurate faster, the more 3D annotations are available,

compared to the other networks. Network O outperforms N , if very little annotated data

is available, but N slightly surpasses O as the amount of 3D annotations grows.

48 Chapter 4. Experiments

(a) (b) (c)

(d) (e)

Figure 4.2: Comparison of our network structures by their PCK . The plots show the PCK over
the respective thresholds within 0 mm - 100 mm. The correlations of each graph to our specified
scenarios in Table 4.1 are as follows: i) 1% of S0, ii) 5% of S0, iii) 10% of S0, iv) 50% of S0,
v) S0, vi) S0 + S3, vii) S0 + S3 + S4, viii) S0 + S3 + S4 + S5 + S6 and ix) all subjects.
The graphs correspond to (a)M - ` = 21 - λgeo = 0.1 (b)M - ` = 50 - λgeo = 10 (c)M - ` = 21
- λgeo = 0.1 - augmented (d) N - ` = 21 - λgeo = 0.1 (e) O - ` = 21 - λgeo = 0.1.

Table 4.3 compares the results of the N-MPJPE (Fig. 4.1) and AUC (Fig. 4.2). This

table shows, that as soon as we use S0, S3 and S4 (13 136 annotated images) for training,

N and O outperform network M.

To avoid confusion, Table 4.3 only displays the results of networkM with the settings

` = 21 with λgeo = 0.1, and ` = 21 with λgeo = 0.1 using augmented unlabeled images,

since the versions with different λgeo settings and ` = 50 only exhibit minor differences in

performance.

In the following subsections, we evaluate the quality of our latent representation and

we show examples, that illustrate the quality of the synthesized images, as well as the 3D

hand pose estimations for different amounts of 3D annotations.

4.4. Evaluation 49

N-MPJPE [mm] ↓ AUC ↑
Scenario M Maug N O M Maug N O
All nine subjects 21.17 21.42 16.46 18.13 78.89 78.65 83.60 81.92

S0+S3+S4+S5+S6 21.80 21.62 18.22 19.37 78.25 78.45 81.84 80.73

S0+S3+S4 22.32 21.70 20.46 21.15 77.75 78.36 79.64 78.99

S0+S3 23.81 22.95 24.09 25.10 76.27 77.12 76.09 75.11

S0 25.08 24.02 26.82 26.99 75.05 76.05 73.39 73.30

50% of S0 25.36 24.60 29.22 27.96 74.72 75.46 70.96 72.36

10% of S0 27.40 26.07 34.30 30.62 72.67 73.98 65.87 69.61

5% of S0 28.49 26.89 38.33 32.70 71.60 73.18 61.90 67.70

1% of S0 33.08 30.40 50.97 37.19 67.10 69.71 49.90 63.11

Table 4.3: Comparison of selected network designs in terms of their N-MPJPE and AUC over
our defined scenarios. To increase the readability, we only list the results of network M with the
settings ` = 21 with λgeo = 0.1 (M), and ` = 21 with λgeo = 0.1 using augmented unlabeled
images (Maug). For N-MPJPE lower scores are better (denoted by ↓), whereas for AUC higher
scores are better (denoted by ↑).

4.4.1 Semi-Supervised 3D Hand Pose Estimation

Below, we evaluate the quality of our latent representation and we show examples, that

illustrate the quality of the synthesized images, as well as the 3D hand pose estimates for

different amounts of available 3D annotations. We show the results for our encoder-decoder

network and M using the following parameter settings:

1) ` = 21 - λgeo = 0.1 (Fig. 4.3 and Fig. 4.4),

2) ` = 50 - λgeo = 10.0 (Fig. 4.5 and Fig. 4.6) and

3) ` = 21 - λgeo = 0.1 where the encoder was pre-trained with augmented unlabeled

multi-view images (Fig. 4.7, and Fig. 4.8).

Figure 4.3, Figure 4.5 and Figure 4.7 show Novel View Synthesis (NVS) predictions for five

input images from the test set, that show different hand poses. As described in Chapter 3,

the encoder E encodes an input image into variables L3D and Lapp, which are meant to

represent geometry and appearance, respectively. In order to validate this behaviour, we

multiply L3D by different rotation matrices R and feed the result along with the original

Lapp into the decoder D, which produces novel views. Since the network does not learn

the background, we can, e.g., set the background to white, as shown in aforesaid figures.

We see in the novel views of Figure 4.3, that in some cases especially the fingers are better

reconstructed than in Figure 4.5, however, the encoder-decoder network sometimes fails

to reconstruct them at all with ` = 21. If we use augmented multi-view images to train

our encoder-decoder network, it eagerly tries to separate individual fingers using darker

lines, especially visible in the first two inputs of Figure 4.7.

50 Chapter 4. Experiments

In Figure 4.4, Figure 4.6 and Figure 4.8, we see novel views and pose reconstructions

at different levels of supervision, for an input image from the test set. In all three figures,

we see that using only 64 3D hand pose annotations to trainM, the result looks very bad

(last row in each figure). However, as the number of available annotations for training

increases, the quality of the pose reconstructions becomes much better, as the presented

results in Table 4.3 already suggested.

We further tried to back-project the latent representation L3D into the input image to

find clues, if the 3D points correspond to any visual features of the input. However, the

latent variables do not seem to correlate with any visual characteristics e.g., individual

fingers, joint positions or hand orientation. Figure 4.9 illustrates novel views and the

corresponding visualization of L3D from the same input image for different parameter

settings. However, the 3D latent variables L3D do not seem to have any visible correlations

with the 21 keypoints of the hand in the input image. L3D probably still encodes parts of

the background and appearance, because of impurities in the training set and too different

illuminations of the hands from different viewpoints.

4.4. Evaluation 51

Figure 4.3: NVS predictions of the encoder-decoder with ` = 21. The leftmost image of each
row shows an input image from the test set. We show the synthesized images for previously unseen
viewpoints with and without the background. For more complex poses (e.g., last two samples), the
encoder-decoder network has problems to properly synthesize individual fingers at novel views.

52 Chapter 4. Experiments

Figure 4.4: NVS and pose predictions ofM with ` = 21 and λgeo = 0.1. The first two rows show
a sample input image from the test set on the left and the corresponding synthesized images for
previously unseen viewpoints with and without the background. The pose predictions were made
with networks trained with different levels of supervision, corresponding to the rows of Table 4.1
with the number of annotated 3D data decreasing from top to bottom. The leftmost poses represent
the target 3D hand pose of the input image. As the number of available annotations for training
increases (bottom to top), the quality of the pose reconstructions becomes much better.

4.4. Evaluation 53

Figure 4.5: NVS predictions of the encoder-decoder with ` = 50. The leftmost image of each
row shows an input image from the test set. We show the synthesized images for previously unseen
viewpoints with and without the background. For more complex poses (e.g., first and last input
sample), the encoder-decoder network has problems to properly synthesize individual fingers at
novel views.

54 Chapter 4. Experiments

Figure 4.6: NVS and pose predictions ofM with ` = 50 and λgeo = 10.0. The first two rows show
a sample input image from the test set on the left and the corresponding synthesized images for
previously unseen viewpoints with and without the background. The pose predictions were made
with networks trained with different levels of supervision, corresponding to the rows of Table 4.1
with the number of annotated 3D data decreasing from top to bottom. The leftmost poses represent
the target 3D hand pose of the input image. As the number of available annotations for training
increases (bottom to top), the quality of the pose reconstructions becomes much better.

4.4. Evaluation 55

Figure 4.7: NVS predictions of the encoder-decoder with ` = 21, using augmented unlabeled
multi-view images. The leftmost image of each row shows an input image from the test set. We show
the synthesized images for previously unseen viewpoints with and without the background. The
encoder-decoder network eagerly tries to separate individual fingers using darker lines, especially
visible in the first two inputs and for more complex poses (e.g., last input sample), it has problems
to properly synthesize individual fingers at novel views.

56 Chapter 4. Experiments

Figure 4.8: NVS and pose predictions of M with ` = 21 and λgeo = 0.1, using an encoder
that was pre-trained with augmented unlabeled multi-view images. The first two rows show a
sample input image from the test set on the left and the corresponding synthesized images for
previously unseen viewpoints with and without the background. The pose predictions were made
with networks trained with different levels of supervision, corresponding to the rows of Table 4.1
with the number of annotated 3D data decreasing from top to bottom. The leftmost poses represent
the target 3D hand pose of the input image. As the number of available annotations for training
increases (bottom to top), the quality of the pose reconstructions becomes much better.

4.4. Evaluation 57

(a) ` = 21

(b) ` = 50

(c) ` = 21, using augmented unlabeled multi-view images.

Figure 4.9: NVS predictions of the encoder-decoder network and the corresponding 3D latent
variables. The leftmost image of each row shows an input image from the test set. The 3D latent
variables L3D do not seem to have any visible correlations with the 21 keypoints of the hand in
the input image. L3D probably still encodes parts of the background and appearance, because of
impurities in the training set and too different illuminations of the hands from different viewpoints.

58 Chapter 4. Experiments

4.4.2 Supervised 3D Hand Pose Estimation

In Figure 4.10, Figure 4.11 and Figure 4.12, we show results for network N . This network

directly maps an input image to the 3D pose, without pre-training the encoder with

unlabeled multi-view images. In these figures, we see sample input images from the test set,

and the corresponding 3D latent variables L3D and predicted 3D hand poses at different

viewpoints. The colored lines, that appear in the rotated latent representations, illustrate

the trajectory of the latent 3D points. The figures clearly show, how the 3D hand pose

predictions evolve as more and more annotated images were used for training. The quality

of the predicted poses strongly depends on the complexity of the pose. For more simple

poses (Figure 4.11) only around 3 248 annotations and for more complex poses (Figure 4.10

and Figure 4.12) more than 13 136 annotations during training are needed for decent 3D

hand pose predictions. As discussed before, the 3D latent variables L3D ∈ R21×3 do not

seem to have a visible correlation with the 21 keypoints of the hand in the input image.

(a) All subjects (28 592 annotations)

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

4.4. Evaluation 59

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

(e) 100% of S0 (6 512 annotations)

(f) 50% of S0 (3 248 annotations)

60 Chapter 4. Experiments

(g) 10% of S0 (640 annotations)

(h) 5% of S0 (320 annotations)

(i) 1% of S0 (64 annotations)

Figure 4.10: Network N experiments - two fingers up.

(a) All subjects (28 592 annotations)

4.4. Evaluation 61

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

(e) 100% of S0 (6 512 annotations)

62 Chapter 4. Experiments

(f) 50% of S0 (3 248 annotations)

(g) 10% of S0 (640 annotations)

(h) 5% of S0 (320 annotations)

(i) 1% of S0 (64 annotations)

Figure 4.11: Network N experiments - hand hanging downward.

4.4. Evaluation 63

(a) All subjects (28 592 annotations)

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

64 Chapter 4. Experiments

(e) 100% of S0 (6 512 annotations)

(f) 50% of S0 (3 248 annotations)

(g) 10% of S0 (640 annotations)

(h) 5% of S0 (320 annotations)

4.4. Evaluation 65

(i) 1% of S0 (64 annotations)

Figure 4.12: Network N experiments - three fingers up.

66 Chapter 4. Experiments

4.4.3 Fully Semi-Supervised 3D Hand Pose Estimation

Figure 4.13, Figure 4.14 and Figure 4.15 show results for network O. This network decodes

latent variables into an output image and the 3D hand pose simultaneously. The figures

illustrate the results for sample input images from the test set from different viewpoints.

The first row of each sub-figure shows the NVS predictions from different views for the

given input image. The second row depicts the corresponding latent space, including

their trajectories, as the colored lines indicate. The third row illustrates the target pose

(leftmost) and the predicted 3D hand pose from different viewpoints. The figures clearly

show, how the NVS and 3D hand pose predictions evolve as more and more annotated

images were used for training. The pose predictions for the input images in Figure 4.13

and Figure 4.14 where the pose network was trained with only 320 annotations are already

very close to the target pose. For more complex poses (like the sample from Figure 4.14)

almost all available annotations are needed for an acceptable pose prediction. As we

already showed before, the 3D latent variables L3D ∈ R21×3 do not seem to have a visible

correlation with the 21 keypoints of the hand in the input image.

(a) All subjects (28 592 annotations)

4.4. Evaluation 67

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

68 Chapter 4. Experiments

(e) 100% of S0 (6 512 annotations)

(f) 50% of S0 (3 248 annotations)

(g) 10% of S0 (640 annotations)

4.4. Evaluation 69

(h) 5% of S0 (320 annotations)

(i) 1% of S0 (64 annotations)

Figure 4.13: Network O experiments - two fingers up.

(a) All subjects (28 592 annotations)

70 Chapter 4. Experiments

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

4.4. Evaluation 71

(e) 100% of S0 (6 512 annotations)

(f) 50% of S0 (3 248 annotations)

(g) 10% of S0 (640 annotations)

72 Chapter 4. Experiments

(h) 5% of S0 (320 annotations)

(i) 1% of S0 (64 annotations)

Figure 4.14: Network O experiments - hand hanging downward.

(a) All subjects (28 592 annotations)

4.4. Evaluation 73

(b) S0, S3, S4, S5 and S6 (18 624 annotations)

(c) S0, S3 and S4 (13 136 annotations)

(d) S0 and S3 (9 392 annotations)

74 Chapter 4. Experiments

(e) 100% of S0 (6 512 annotations)

(f) 50% of S0 (3 248 annotations)

(g) 10% of S0 (640 annotations)

4.4. Evaluation 75

(h) 5% of S0 (320 annotations)

(i) 1% of S0 (64 annotations)

Figure 4.15: Network O experiments - three fingers up.

5
Conclusion

Why not stay until the end?

Ainz Ooal Gown (Overlord I)

Contents

5.1 Summary . 77

5.2 Future Work . 78

5.1 Summary

In this thesis, we presented an approach for 3D hand pose estimation, that was previously

used for 3D human pose estimation. We adapted and optimized this idea, to accomplish

the task of 3D hand pose estimation, as described in Chapter 3. More specifically, we

trained an encoder-decoder network with only unlabeled multi-view images in an unsu-

pervised manner to learn a geometry-aware latent representation. This geometry-aware

hand representation is effective as an intermediate representation for Novel View Synthesis

(NVS) and for 3D hand pose estimation. We used this powerful latent representation to

learn a mapping to the 3D pose in a supervised manner. The mapping to the 3D pose

was much simpler, since the latent representation already captured 3D geometry. Further-

more, it required considerably fewer examples for learning the mapping compared to many

existing methods, that rely on multi-view supervision. We call this pose network M.

In Chapter 4, we demonstrated the quality of the geometry-aware hand representation

in the provided NVS predictions. We further compared the results for our pose net-

works M, N and O. Network N directly maps an input image to the 3D pose, without

pre-training the encoder with unlabeled multi-view images. The parameters in the encoder

77

78 Chapter 5. Conclusion

and the pose network were optimized simultaneously. Network O is a semi-supervised

approach, where the encoder-decoder network and the pose network were trained simul-

taneously.

We showed with network M, that using a geometry-aware representation in a semi-

supervised approach for 3D hand pose estimation performs much better than methods,

that do not use this intermediate step, when only little annotated data is available. The

performance even increased, as we used augmented multi-view images to train the encoder-

decoder network. Consequently, we can to a certain extend say, that the more unlabeled

multi-view images with a large variety of poses is available to learn the geometry-aware

representation, the better the 3D hand pose predictions will be, if the number of annota-

tions is limited.

Our experiments further showed, that when the amount of annotated hand images

is small, the accuracy for network O is worse than for network M and we achieved the

worst performance, when we tried to map an input image directly to the 3D pose as in

network N . Surprisingly, however, when we had more than 13 000 annotations available

during training, networks N and O outperformed the tested variations of network M.

In conclusion, we can say that learning a geometry-aware hand representation solely

from unlabeled multi-view images is very effective as an intermediate representation for a

3D hand pose estimation network, when only a limited amount of annotated hand images

is available. An approach, that learns to directly a map an input image to the 3D hand

pose will be recommended, if the amount of annotated images is huge.

5.2 Future Work

There are several directions for future work that naturally arise from the work presented

in this thesis. One improvement to the geometry-aware latent representation would be to

acquire a much larger amount of unlabeled multi-view images. This would also increase

the diversity of hand poses. Our 3D hand pose estimation results already improved, when

we trained the encoder-decoder network with augmented unlabeled multi-view images.

A separate hand segmentation network for the background estimation would definitely

improve the NVS and probably the 3D pose estimation network as well. We used a pixel-

wise median filter, as described in Chapter 3, and some artifacts in a few background

estimations were still left. These impurities prevented our encoder-decoder network to

properly learn a geometry-aware hand representation.

A further improvement could be to increase the number of annotations using synthetic

data and the 3D hand pose estimation pipeline could be extended to estimate the poses

of multiple hands in a scene.

A
List of Acronyms

AR Augmented Reality

AUC Area Under the Curve

CAD Computer-Aided Design

CMU Carnegie Mellon University

CNN Convolutional Neural Network

COCO Common Objects in Context

D-TSDF Directional Truncated Signed Distance Function

DCNN Deep Convolutional Neural Network

DNN Deep Neural Network

DOF Degrees of Freedom

DS-CNN Dual-Source Deep Convolutional Neural Network

FPS Frames per Second

GAN Generative Adversarial Network

HAC Hierarchical Agglomerative Clustering

HCI Human-Computer Interaction

HD High Definition

HRI Human-Robot Interaction

ICP Iterative Closest Point

IDPR Image Dependent Pairwise Relation

MoCap Motion Capture

MPII Max-Planck Institute for Informatics

MPJPE Mean Per Joint Position Error

N-MPJPE Normalized Mean Per Joint Position Error

NVS Novel View Synthesis

PCK Percentage of Correct Keypoints

PS Pictorial Structure

ReLU Rectified Linear Unit

79

80 Chapter A. List of Acronyms

ResNet Residual Neural Network

ROI Region of Interest

SfM Structure from Motion

SotA State-of-the-Art

TSDF Truncated Signed Distance Function

VGA Video Graphics Array

VR Virtual Reality

BIBLIOGRAPHY 81

Bibliography

[1] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees.

Neural Computation, 9(7):1545–1588, 1997. (page 15)

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation:

New benchmark and state of the art analysis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2014. (page 8)

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 39(12):2481–2495, 2017. (page 20)

[4] S. Baek, K. I. Kim, and T. Kim. Augmented skeleton space transfer for depth-based

hand pose estimation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. (page 18)

[5] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceed-

ings of the International Conference on Machine Learning (ICML), 2012. (page 24)

[6] D. Bank, N. Koenigstein, and R. Giryes. Autoencoders. Computing Research

Repository (CoRR), abs/2003.05991, 2020, http://arxiv.org/abs/2003.05991.

(page 24, 25)

[7] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric cor-

respondence and chamfer matching: Two new techniques for image matching. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

1977. (page 9)

[8] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic. 3d pic-

torial structures for multiple human pose estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2014. (page 16)

[9] M. Buda, A. Maki, and M. A. Mazurowski. A systematic study of the class imbalance

problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

(page 46)

[10] A. Buryanov and V. Kotiuk. Proportions of hand segments. International Journal

of Morphology, 28:755 – 758, 2010. (page 32)

[11] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. OpenPose: Real-

time multi-person 2d pose estimation using part affinity fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 2019. (page 2, 8)

[12] J. Y. Chang and S. W. Nam. Fast random-forest-based human pose estimation using

a multi-scale and cascade approach. ETRI Journal, 35(6):949–959, 2013. (page 15)

http://arxiv.org/abs/2003.05991

82

[13] L. Chen, S. Lin, Y. Xie, Y. Lin, W. Fan, and X. Xie. DGGAN: depth-image guided

generative adversarial networks for disentangling RGB and depth images in 3d hand

pose estimation. In Proceedings of the IEEE Winter Conference on Applications of

Computer Vision (WACV), 2020. (page 18)

[14] S. E. Chen and L. Williams. View interpolation for image synthesis. In Proceedings

of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),

1993. (page 23)

[15] X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with

image dependent pairwise relations. In Proceedings of the Conference on Neural

Information Processing Systems (NIPS), 2014. (page 11)

[16] C. Choi, Y. Taguchi, O. Tuzel, M. Liu, and S. Ramalingam. Voting-based pose

estimation for robotic assembly using a 3d sensor. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2012. (page 6)

[17] T. S. Cohen and M. Welling. Transformation properties of learned visual represen-

tations. In Proceedings of the International Conference on Learning Representations

(ICLR), 2015. (page 29)

[18] D. Cruz-Uribe and C. Neugebauer. Sharp error bounds for the trapezoidal rule and

simpson’s rule. Journal of Inequalities in Pure & Applied Mathematics (JIPAM), 3,

2002. (page 45)

[19] M. Denil, D. Matheson, and N. de Freitas. Narrowing the gap: Random forests in

theory and in practice. In Proceedings of the International Conference on Machine

Learning (ICML), 2014. (page 16)

[20] E. Dibra, S. Melchior, A. Balkis, T. Wolf, C. Öztireli, and M. H. Gross. Monoc-

ular RGB hand pose inference from unsupervised refinable nets. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

(page 21, 22)

[21] B. Doosti. Hand pose estimation: A survey. Computing Research Repository

(CoRR), abs/1903.01013, 2019, http://arxiv.org/abs/1903.01013. (page 1, 2,

16, 17, 18, 19, 20)

[22] M. Eichner and V. Ferrari. Better appearance models for pictorial structures. In

Proceedings of the British Machine Vision Conference (BMVC), 2009. (page 10)

[23] Z. Ekhtiyari and H. A. Noughabi. Using the pictorial structures in 3d human body

pose estimation. IOSR Journal of Computer Engineering, 18:88–94, 2016. (page 10)

http://arxiv.org/abs/1903.01013

BIBLIOGRAPHY 83

[24] A. El-Hamdouchi and P. Willett. Hierarchic document clustering using ward’s

method. In Proceedings of the International ACM SIGIR Conference on Research

and Development in Information Retrieval, 1986. (page 41)

[25] A. M. Elgammal and C. Lee. Inferring 3d body pose from silhouettes using activity

manifold learning. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2004. (page 15)

[26] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly. Vision-based hand

pose estimation: A review. Computer Vision and Image Understanding (CVIU),

108(1-2):52–73, 2007. (page 1, 2)

[27] X. Fan, K. Zheng, Y. Lin, and S. Wang. Combining local appearance and holistic

view: Dual-source deep neural networks for human pose estimation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2015. (page 11, 12)

[28] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recogni-

tion. International Journal of Computer Vision (IJCV), 61(1):55–79, 2005. (page 10)

[29] M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial

structures. IEEE Transactions on Computers, 22(1):67–92, 1973. (page 9)

[30] O. Freifeld and M. J. Black. Lie bodies: A manifold representation of 3d human

shape. In Proceedings of the European Conference on Computer Vision (ECCV),

2012. (page 15)

[31] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3d convolutional neural networks for

efficient and robust hand pose estimation from single depth images. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

(page 18, 19)

[32] A. Ghafoor, R. N. Iqbal, and S. Khan. Robust image matching algorithm. In

Proceedings of the IEEE EURASIP Conference focused on Video/Image Processing

and Multimedia Communications (EC-VIP-MC), 2003. (page 9)

[33] W. Gong, X. Zhang, J. Gonzàlez, A. Sobral, T. Bouwmans, C. Tu, and E. Zahzah.

Human pose estimation from monocular images: A comprehensive survey. Sensors,

16(12):1966, 2016. (page 14, 15, 16)

[34] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of the

Conference on Neural Information Processing Systems (NIPS), 2014. (page 18)

84

[35] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. (page 21, 22, 31, 45)

[36] A. Hietanen, J. Latokartano, A. Foi, R. Pieters, V. Kyrki, M. Lanz, and

J. Kämäräinen. Benchmarking 6d object pose estimation for robotics. Comput-

ing Research Repository (CoRR), abs/1906.02783, 2019. (page 7)

[37] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large

scale datasets and predictive methods for 3d human sensing in natural environ-

ments. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

36(7):1325–1339, 2014. (page 44)

[38] H. Joo, T. Simon, X. Li, H. Liu, L. Tan, L. Gui, S. Banerjee, T. Godisart, B. C.

Nabbe, I. A. Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio:

A massively multiview system for social interaction capture. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 41(1):190–204, 2019. (page 35,

36)

[39] L. Ke, M. Chang, H. Qi, and S. Lyu. Multi-scale structure-aware network for human

pose estimation. In Proceedings of the European Conference on Computer Vision

(ECCV), 2018. (page 14)

[40] C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun. Hand pose estimation and hand

shape classification using multi-layered randomized decision forests. In Proceedings

of the European Conference on Computer Vision (ECCV), 2012. (page 16)

[41] N. U. Khan and W. Wan. A review of human pose estimation from single im-

age. In Proceedings of the International Conference on Audio, Language and Image

Processing (ICALIP), 2018. (page 9, 10, 11, 12, 13)

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Pro-

ceedings of the International Conference on Learning Representations (ICLR), 2015.

(page 45)

[43] O. Kose, F. Guler, A. Turan, K. Canbora, and S. Akalin. Prevalence and distri-

bution of sesamoid bones of the hand: A radiographic study in turkish subjects.

International Journal of Morphology, 30:1094 – 1099, 2012. (page 2)

[44] P. Krejov, A. Gilbert, and R. Bowden. Combining discriminative and model based

approaches for hand pose estimation. In Proceedings of the IEEE International

Conference and Workshops on Automatic Face and Gesture Recognition (FG), 2015.

(page 2)

BIBLIOGRAPHY 85

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep

convolutional neural networks. In Proceedings of the Conference on Neural Infor-

mation Processing Systems (NIPS), 2012. (page 11)

[46] J. J. Kuch and T. S. Huang. Vision based hand modeling and tracking for virtual

teleconferencing and telecollaboration. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 1995. (page 16)

[47] P. Li, H. Ling, X. Li, and C. Liao. 3d hand pose estimation using randomized decision

forest with segmentation index points. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2015. (page 16)

[48] S. Li and A. B. Chan. 3d human pose estimation from monocular images with deep

convolutional neural network. In Proceedings of the Asian Conference on Computer

Vision (ACCV), 2014. (page 14)

[49] H. Lin and T. Chen. Augmented reality with human body interaction based on

monocular 3d pose estimation. In Proceedings of the International Conference on

Advanced Concepts for Intelligent Vision Systems (ACIVS), 2010. (page 5)

[50] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: common objects in context. In Proceedings of the

European Conference on Computer Vision (ECCV), 2014. (page 8)

[51] Y. Litvak, A. Biess, and A. Bar-Hillel. Learning pose estimation for high-precision

robotic assembly using simulated depth images. In Proceedings of the International

Conference on Robotics and Automation (ICRA), 2019. (page 5, 6)

[52] M. Lourakis and X. Zabulis. Model-based pose estimation for rigid objects. In

Proceedings of the International Conference on Computer Vision Systems (ICVS),

2013. (page 6, 7)

[53] S. Lu, D. N. Metaxas, D. Samaras, and J. Oliensis. Using multiple cues for hand

tracking and model refinement. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2003. (page 16)

[54] D. C. Luvizon, D. Picard, and H. Tabia. 2d/3d pose estimation and action recog-

nition using multitask deep learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. (page 8)

[55] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.

Cambridge University Press, 1st edition, 2008. (page 40, 41)

[56] E. Marinoiu, D. Papava, and C. Sminchisescu. Pictorial human spaces: How well do

humans perceive a 3d articulated pose? In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2013. (page 14)

86

[57] G. Moon, J. Y. Chang, and K. M. Lee. V2V-PoseNet: Voxel-to-voxel prediction

network for accurate 3d hand and human pose estimation from a single depth map.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018. (page 17, 19)

[58] F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S. Sridhar, D. Casas, and

C. Theobalt. GANerated hands for real-time 3d hand tracking from monocular

RGB. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. (page 18, 20, 21)

[59] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose

estimation. In Proceedings of the European Conference on Computer Vision (ECCV),

2016. (page 12, 13)

[60] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison

of logistic regression and naive bayes. In Proceedings of the Conference on Neural

Information Processing Systems (NIPS), 2001. (page 14, 15)

[61] H. Ning, W. Xu, Y. Gong, and T. S. Huang. Discriminative learning of visual words

for 3d human pose estimation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2008. (page 15)

[62] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg. Transformation-grounded

image generation network for novel 3d view synthesis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. (page 28)

[63] A. Qammaz and A. A. Argyros. MocapNET: Ensemble of SNN encoders for 3d

human pose estimation in RGB images. In Proceedings of the British Machine

Vision Conference (BMVC), 2019. (page 5)

[64] H. Rhodin, M. Salzmann, and P. Fua. Unsupervised geometry-aware representation

learning for 3d human pose estimation. In Proceedings of the European Conference

on Computer Vision (ECCV), 2018. (page 3, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33,

34)

[65] R. Rosales and S. Sclaroff. Combining generative and discriminative models in

a framework for articulated pose estimation. International Journal of Computer

Vision (IJCV), 67(3):251–276, 2006. (page 16)

[66] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. ImageNet large scale

visual recognition challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. (page 31)

BIBLIOGRAPHY 87

[67] G. Salvietti, G. Gioioso, M. Malvezzi, D. Prattichizzo, A. Serio, E. Farnioli,

M. Gabiccini, A. Bicchi, I. Sarakoglou, N. G. Tsagarakis, and D. G. Caldwell.

HANDS.DVI: A device-independent programming and control framework for robotic

hands. In Gearing Up and Accelerating Cross-fertilization between Academic and In-

dustrial Robotics Research in Europe: - Technology Transfer Experiments from the

ECHORD Project, 2014. (page 2)

[68] M. Salzmann and R. Urtasun. Combining discriminative and generative methods

for 3d deformable surface and articulated pose reconstruction. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

(page 16)

[69] N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris. 3D human pose esti-

mation: A review of the literature and analysis of covariates. Computer Vision and

Image Understanding (CVIU), 152:1–20, 2016. (page 14, 15, 16)

[70] SciPy 1.0 Contributors, P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,

T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.

van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson,

E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Van-

derPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.

Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt. SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17(3):261–272, 2020. (page 41)

[71] H. Shi and Z. Wang. Improved stacked hourglass network with offset learning for ro-

bust facial landmark detection. In Proceedings of the IEEE International Conference

on Information Science and Technology (ICIST), 2019. (page 14)

[72] N. Shimada, Y. Shirai, Y. Kuno, and J. Miura. Hand gesture estimation and model

refinement using monocular camera - ambiguity limitation by inequality constraints.

In Proceedings of the IEEE International Conference and Workshops on Automatic

Face and Gesture Recognition (FG), 1998. (page 16)

[73] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake. Real-time human pose recognition in parts from single depth images.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2011. (page 16)

[74] L. Sigal. Human pose estimation. In Computer Vision: A Reference Guide, pages

362–370. Springer, 2014. (page 7, 10)

[75] L. Sigal, A. O. Balan, and M. J. Black. Combined discriminative and generative

articulated pose and non-rigid shape estimation. In Proceedings of the Conference

on Neural Information Processing Systems (NIPS), 2007. (page 16)

88

[76] T. Simon, H. Joo, I. A. Matthews, and Y. Sheikh. Hand keypoint detection in single

images using multiview bootstrapping. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. (page 2, 17, 20)

[77] A. Sinha, C. Choi, and K. Ramani. DeepHand: Robust hand pose estimation by

completing a matrix imputed with deep features. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2016. (page 18)

[78] D. Tang, H. J. Chang, A. Tejani, and T. Kim. Latent regression forest: Structured

estimation of 3d articulated hand posture. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2014. (page 16)

[79] D. Tang, H. J. Chang, A. Tejani, and T. Kim. Latent regression forest: Structured

estimation of 3d hand poses. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 39(7):1374–1387, 2017. (page 1)

[80] D. Tang, T. Yu, and T. Kim. Real-time articulated hand pose estimation using semi-

supervised transductive regression forests. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2013. (page 16)

[81] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Single-view to multi-view: Recon-

structing unseen views with a convolutional network. Computing Research Reposi-

tory (CoRR), abs/1511.06702, 2015. (page 28, 29)

[82] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d models from single

images with a convolutional network. In Proceedings of the European Conference on

Computer Vision (ECCV), 2016. (page 28, 29)

[83] J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time continuous pose recov-

ery of human hands using convolutional networks. ACM Transactions on Graphics

(TOG), 33(5):169:1–169:10, 2014. (page 1)

[84] A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014. (page 10, 11)

[85] I. Ulusoy and C. M. Bishop. Generative versus discriminative methods for object

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2005. (page 14, 15, 16)

[86] C. Wan, T. Probst, L. V. Gool, and A. Yao. Dense 3d regression for hand pose

estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. (page 16, 17)

BIBLIOGRAPHY 89

[87] C. Wang, D. Xu, Y. Zhu, R. M. Martin, C. Lu, L. Fei-Fei, and S. Savarese. DenseFu-

sion: 6d object pose estimation by iterative dense fusion. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2019. (page 7)

[88] J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58(301):236–244, 1963. (page 41)

[89] D. Werner, A. Al-Hamadi, and P. Werner. Truncated signed distance function:

Experiments on voxel size. In Proceedings of the International Conference Image

Analysis and Recognition (ICIAR), 2014. (page 19)

[90] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Interpretable

transformations with encoder-decoder networks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision (ICCV), 2017. (page 29)

[91] G. Xu, Y. Zong, and Z. Yang. Applied data mining. CRC Press, 1st edition, 2013.

(page 41)

[92] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of

parts. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

35(12):2878–2890, 2013. (page 10, 11)

[93] J. S. Yoon, K. Kim, O. Gallo, H. S. Park, and J. Kautz. Novel view synthesis

of dynamic scenes with globally coherent depths from a monocular camera. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. (page 24)

[94] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Y. Chang, K. M. Lee,

P. Molchanov, J. Kautz, S. Honari, L. Ge, J. Yuan, X. Chen, G. Wang, F. Yang,

K. Akiyama, Y. Wu, Q. Wan, M. Madadi, S. Escalera, S. Li, D. Lee, I. Oikonomidis,

A. A. Argyros, and T. Kim. Depth-based 3d hand pose estimation: From current

achievements to future goals. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. (page 17)

[95] M. L. Zepeda-Mendoza and O. Resendis-Antonio. Hierarchical agglomerative clus-

tering. In Encyclopedia of Systems Biology, pages 886–887. Springer, 2013. (page 40)

[96] T. Zhang, H. Lin, Z. Ju, and C. Yang. Hand gesture recognition in complex back-

ground based on convolutional pose machine and fuzzy gaussian mixture models.

International Journal of Fuzzy Systems (IJFS), 22(4):1330–1341, 2020. (page 17)

[97] Z. Zhang. Microsoft kinect sensor and its effect. IEEE MultiMedia, 19(2):4–10, 2012.

(page 5)

90

[98] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei. Towards 3d human pose estimation

in the wild: A weakly-supervised approach. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2017. (page 32)

[99] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation

using cycle-consistent adversarial networks. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2017. (page 18, 21)

[100] C. Zimmermann and T. Brox. Learning to estimate 3d hand pose from single RGB

images. In Proceedings of the IEEE International Conference on Computer Vision

(ICCV), 2017. (page 18, 20)

	Introduction
	Problem Statement
	Applications and Challenges
	Goals and Outline

	Background
	Pose Estimation
	Rigid Pose Estimation
	2D Human Pose Estimation
	3D Human Pose Estimation
	Hand Pose Estimation

	Notation and Conventions
	Related Work
	Autoencoders

	Geometry-Aware 3D Hand Pose Estimation
	Our Approach
	Dataset
	Cropping, Augmentation and Background Estimation
	Clustering

	Experiments
	Overview
	Dataset Splits and Metrics
	Implementation
	Evaluation
	Semi-Supervised 3D Hand Pose Estimation
	Supervised 3D Hand Pose Estimation
	Fully Semi-Supervised 3D Hand Pose Estimation

	Conclusion
	Summary
	Future Work

	List of Acronyms
	Bibliography

