
Markus Mayerwieser

A Generic Simulation Framework for
Next Generation NFC-Transceivers

Master’s Thesis

Graz University of Technology

Signal Processing and Speech Communication Laboratory (SPSC)
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Gernot Kubin

Supervisor: Dr. Klaus Witrisal
Mentors: Dr. Ulrich Mühlmann / Dr. Stefan Mendel

Gratkorn, December 2015

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

Appreciation

The completion of this thesis, and therefore my studies of Telematik at TU
Graz would have never been possible without some very dear persons in
my life. First, i want to thank my parents Irmgard and Wolfgang. Thanks for
giving me the opportunity and support to get my education. Also thanks for
motivating me, always believing in me and challenging me to give my best
(looking at you dad ;)). I also want to thank my brother Thomas who always
had an open ear and some advising words and my grandfather Werner
for passing me his stubbornness. During the time of the thesis, the most
affected person was of course my lovely girlfriend Ramona. She showed a
lot of patience. She is, and always will be my anchor in life.

My time at university would have been way harder without my dear friends
Gabriel Haas, Timotheus Hell and Markus Blauensteiner. Thanks you guys
for being reliable friends and colleagues. It may be odd to thank my bachelor
thesis mentor Berhard Geiger here in the master thesis, but anyway: Thank
you Bernhard for being one of the nicest guys in the world and inspiring
me to get into the field of digital signal processing. An important person
to mention is of course my university mentor Klaus Witrisal, who helped
me bringing all the things into a thesis form. Working on the thesis and
writing it all down are two different things, so thank you Klaus for your
guidance.

Last but not least i want to thank NXP for the great chance of doing my
thesis as a company project. I want to thank Alexander Maili for believing
in me and take me on board, also big thanks to Michael Michelitsch for
recommending me to the right company. I want to thank Ulrich Muehlmann,
who mentored me in a very patient and productive way. I think in this
world exists NO problem where Ulrich does not have an idea about how
to overcome it. My last thanks are for Stefan Mendel who was my mentor
as well. His guidance brought structure to my work and I am pretty sure it
would not be finished yet without him. I am very glad i was able to work
with such brilliant people. Now I look forward to my further work in NXP
with my dear mentors that are now colleagues.

v

Abstract

The market for Near Field Communication (NFC) devices grows rapidly.
Different applications require different features and consequently the NFC
solutions become more complex. Research & development for the devices
therefore is an economically and technologically demanding matter. Pre-
silicon verification & validation is a good way to avoid costs for bug-fixing
and to reduce the time to market and increase the reliability of devices.

This thesis addresses the need for a holistic approach to do pre-silicon
simulations for NFC devices. A framework is introduced which is capable
of performing functional simulations on system level. The system includes
a stimuli generator for different types of stimuli and the flow of this signal
from the transmitter over the air-interface to the receiver. Evaluation func-
tions for the output are supported to provide closed-loop testing. The system
model reflects the behaviour of the real world system in an appropriate
grade of detail.

The crucial part of the framework is the contact-less interface between trans-
mitter and receiver. This interface is modelled as an inductive coupling
of the device antennas. The antennas are loaded with their corresponding
transmitter and receiver circuits. Differential equations describe the induc-
tive coupling and the transmitter and receiver circuits which are described
as LC resonator circuits. The system of differential equations for the cou-
plings and load circuits is represented as a state-space model. State-space
models enable easy and fast time-domain simulation.

The outcome at this thesis is a generic framework to model NFC devices in
different operations modes: Card mode↔ Reader mode, Reader mode↔
Card mode and NFC↔ NFC. The model generation needs just a netlist as
input.

vii

To illustrate the usage of this framework, exemplary simulation results are
provided. Different application scenarios are analyzed and optimised using
the automatically generated models and the framework inherent stimuli
generation.

viii

Contents

1 Introduction 1
1.1 Introduction to Near Field Communication 1

1.2 Applications and Operation Modes 2

1.2.1 Peer-to-Peer Mode: NFC Active 3

1.2.2 Card Mode . 3

1.2.3 Reader Mode . 5

1.3 Motivation . 6

2 Framework 9
2.1 Basic Framework Functions . 9

2.2 Structure . 11

2.3 Showcase Applications . 11

2.3.1 Matching Parameter Optimisation 12

2.3.2 De-Tuning Influence Analysis 12

2.3.3 ISO Wave-Shape Verification 13

2.4 Framework Functions . 13

2.4.1 Envelope Generation . 14

2.4.2 RF-Carrier Modulation 14

2.4.3 Symbol ISO-Shape Mapping 15

2.4.4 Coupling System . 15

2.4.5 Simulation Module . 16

2.4.6 Evaluation . 16

2.5 Core Modelling Problem: Coupling System 16

2.5.1 Systems Description as Differential Equations 17

2.5.2 The Modified Node Analysis Algorithm 17

2.5.3 Discussion of Related Work and Motivation for Pro-
posed Solution . 21

2.5.4 Conclusion of Related Work and Proposed Solution . 23

ix

Contents

3 Coupling System: Model Design 25
3.1 Finding the Dynamic System Equations 25

3.1.1 Circuit Equations . 25

3.1.2 Coupling Equations . 27

3.1.3 Meshes of Capacitors and Nodes of Inductors 30

3.2 General Form State-Space Models 32

3.2.1 State vector . 32

3.2.2 Input vector u(t) . 33

3.2.3 Output vector y(t) . 34

3.2.4 State matrix A . 34

3.2.5 Input matrix B . 35

3.2.6 Output matrix C . 35

3.2.7 Feed-through matrix D 35

3.3 Dynamic Equations to State-Space Model 36

3.4 A Small Example: ISO-Setup Modelling 36

3.4.1 Circuit to Equations . 39

3.4.2 Coupling Equations . 42

3.5 Additional Modelling Steps . 47

3.5.1 Continuous-Time to Discrete-Time Conversion 47

3.5.2 Time-Varying System Modelling 48

4 Coupling System: Automated Model Generation 51
4.1 From Circuit to State-Space Model 51

4.1.1 Inputs . 53

4.2 Circuit Topology Description: Netlists 54

4.3 Kirchoff‘s Laws: Finding Current Nodes 55

4.4 Kirchoff‘s Laws: Finding Voltage Meshes 56

4.4.1 Floyd Warshall‘s Algorithm 57

4.4.2 Modifications for the Algorithm 58

4.4.3 Extensions for the Mesh Algorithm: DFS 60

4.5 Equations for Components & Couplings 61

4.6 Find and Replace Meshes of Capacitors and Nodes of Inductors 61

4.7 Solving Equations for State-Space Model 61

5 Simulation & Evaluation 63
5.1 Simulation . 63

5.1.1 Evaluation . 65

x

Contents

6 Example Applications & Results 67
6.1 Comparison of Spice Model vs. Matlab Model (Framework

generated Model) . 67

6.1.1 Circuit . 67

6.1.2 Frequency Response . 69

6.1.3 Stimulus Generation . 71

6.1.4 Time-Domain Simulation 73

6.1.5 Discussion . 78

6.2 Reader to Card Communication: Coupling Variation 78

6.2.1 Circuit . 79

6.2.2 Stimulus Generation . 79

6.2.3 Sweep over k . 79

6.2.4 Discussion . 81

6.3 Reader to Card Communication: Sweep over Component Value 81

6.3.1 Discussion . 83

7 Concluding/Summary & Outlook 85

Bibliography 87

xi

List of Figures

1.1 ISO 14443: Proximity Card Standard 2

1.2 Peer-to-Peer: NFC active . 4

1.3 NFC Device in Card Mode . 5

1.4 NFC Device in Reader Mode 5

2.1 Framework Toplevel Structure 11

2.2 Matching Parameter Tests . 12

2.3 De-Tuning Influence Analysis 13

2.4 Time-Domain Shape Verification 14

3.1 Kirchoff’s Voltage Law: Mesh 26

3.2 Kirchoff’s Current Law: Node 27

3.3 Inductive Coupling . 29

3.4 Mesh of Capacitors . 30

3.5 Node of Inductors . 31

3.6 ISO-setup . 38

3.7 ISO-setup PCD part . 39

3.8 ISO-setup Calibration Coil part 40

3.9 ISO-setup DUT part . 41

3.10 ISO-setup Sensecoil A/B part 43

3.11 LTV Simulation Approach . 50

4.1 Model Generation Modul on Blocklevel 52

4.2 Example Circuit for Netlist Description 55

4.3 A ’bridge’ component between two meshes 57

5.1 Simulation Modul on Blocklevel 64

6.1 Spice schematic of ISO-setup 68

6.2 Frequency response for ISO-setup, PCD antenna 70

xiii

List of Figures

6.3 Type A Miller envelope for ISO-setup 72

6.4 Antenna current of PICC . 74

6.5 Antenna current of PCD . 75

6.6 RX Voltage PICC . 76

6.7 TX Voltage PCD . 77

6.8 Spice schematic of PCD to PICC for variation of k 79

6.9 Sweep over k = 0.01 to k = 0.8 80

6.10 Sweep over Cdut = 10pF to 100pF 82

xiv

1 Introduction

1.1 Introduction to Near Field Communication

In modern pervasive computing applications, device communication works
mainly wireless. Devices get smaller and capable of more complex func-
tions. Battery capacity and energy consumption are important topics. First
approaches for energy efficient, wireless identification applications go by
the name of Radio Frequency Identification (RFID). A transponder device
(also called tag, proximity integrated circuit card or PICC) is inductively
coupled and passively powered by the electromagnetic field of a reading
device (also called proximity coupling device or PCD). As the name part
’Radio Frequency’ says, the field is generated at the frequency of radio bands.
The reader device provides the radio frequency field, the tag is capable of
sending its identification back to the reader. For most relevant applications
the data transmission is achieved by load modulation. The transponder
changes its load corresponding to the transmit data. A binary ’0’ is repre-
sented by a changed load circuit condition (modulation), a binary ’1’ by the
original circuit condition (unmodulated). The reader senses the change in
the load of the Tag. This modulated signal contains an encoded bit-stream
which can be interpreted by the reader. Inductive coupling and the idea of
load modulation are also the fundamentals of Near Field Communication
(NFC).

In comparison to RFID, NFC-Devices are more advanced in terms of hard-
ware features and communication protocols. Applications are not limited
to identification, where a reader gets the information stored in a tag/card.
In NFC, data can be exchanged in both directions. Bidirectional communi-
cation in different operation modes is supported. The physical parameters
and protocols for the communication are standardized to make devices

1

1 Introduction

Figure 1.1: ISO 14443: Proximity Card Standard

compatible. NFC-Devices operate as communication initiators (masters) and
as communication targets (slaves) and can change the direction of the data
flow. Similar to RFID the devices are inductively coupled and operate at
13.56MHz carrier frequency. The communication range is limited to 20cm
(an operation distance of 10cm is common). Data rates for NFC-Devices
are at 106kbit/s to 848kbit/s using Amplitude Shift Keying (ASK). The load
modulation can work in a passive (circuit change by switching loads) and
an active (source driven) way. The encoding for an NFC device in reader
mode for sending data includes (modified) Miller, Manchester and Non-
Return-To-Zero(NRZ). NFC devices in card mode use Manchester encoding
with subcarrier, Binary Phase Shift Keying (BPSK) and normal Manchester
encoding to send data. For more detailed information about RFID and NFC
basics please refer to (Finkelzeller, 2008), (ISO/IEC, 2008) and (ISO/IEC,
2013).

1.2 Applications and Operation Modes

NFC-Devices offer a wide range of applications. In general NFC is used
for identification and data transmission between terminal points. In the
automotive field, NFC is used for wireless entry solutions. The NFC-Device
in the key authenticates and identifies itself to the car which grants access to
the doors or even engine. In infrastructure applications, NFC-Devices also
operate as authentication and identification devices to gain the right to enter

2

1.2 Applications and Operation Modes

a building. Contactless payment is also driving the NFC market. Payment
information and of course device/user authentication has to be done on both
communication ends. Besides for payment, NFC is used in mobile phones
for data transmission and natural pairing of accessories (headphones, ...) via
tapping. Here NFC acts as an enabler for other wireless standards such as
Bluetooth where pairing is less intuitive. New up-and-coming approaches in
R & D aim to combine more than one application into one device. A mobile
phone can provide payment information, infrastructure access control and
keyless entry for a car. Summarized, the behaviour of an NFC-Device is
dedicated to its supported and used standards and the current operation
mode. As details on the standards are not important to understand the
simulation framework approaches in this thesis, please refer to Finkelzeller,
2008 for further information. NFC devices can operate in different modes.
Peer-to-peer mode, card mode and reader mode are possible options for the
device. The operation modes of NFC devices are essential to understand the
framework structure and applications, therefore the next subsections will
give a short explanation.

1.2.1 Peer-to-Peer Mode: NFC Active

The sending device operates in reader mode, the receiving device operates in
card emulation mode. The initiator starts the communication and generates
the field. After the transmission the initiator switches off its field and the
target takes the role as reader by switching its field on. This ping-pong
game of RF-Field generation continues until the end of the bidirectional
communication (see Fig. 1.2). For further information, see ISO15693

ISO18092 also contains the option of a peer-to-peer passive mode, where
data are bidirectionally exchanged, but the initiator always acts as reader
and therefore provides the RF-field.

1.2.2 Card Mode

In Card mode (see Fig. 1.3) the NFC-Device acts as an RFID tag. No com-
munication initialization is done by the device. It just responds to reader

3

1 Introduction

Figure 1.2: Peer-to-Peer: NFC active

4

1.2 Applications and Operation Modes

Figure 1.3: NFC Device in Card Mode

Figure 1.4: NFC Device in Reader Mode

commands. Reader devices can be NFC-Devices in Reader Mode or RFID
readers.

1.2.3 Reader Mode

In Reader mode (see Fig. 1.4) the NFC-Device initiates communication with
other devices and works as a reader device. The other devices can be passive
cards, or NFC-Devices in card emulation mode.

For further information, please refer to ISO/IEC, 2008 and ISO/IEC, 2013.

5

1 Introduction

1.3 Motivation

NFC includes many different applications and use-cases. The variety of
operation modes, modulation types and encodings bring a big set of fea-
tures that have to be taken into consideration when it comes to research &
development (R&D) as well as verification & validation (V&V). Increasing
requirements for NFC system complexity and time to market demands
create the need for pre-silicon simulation. Concepts have to be tested fast
and easily before producing a physical device. Simulation stimuli have to
be created, simulation models have to be generated, the results have to be
evaluated. There are software tools to perform parts of this procedure, but
only a combination of these tools within a complex and inflexible tool-chain
includes all features.

These requirements imply the need for a holistic framework. A modularly
structured framework allows for rapid concept engineering and concept ver-
ification. Time and frequency domain simulation results yield information
about different aspects of the system. The pre-silicon simulated data can
be used at different stages of the development. For example, test stimuli
for just digital verification can be generated. The framework includes all
parts of the signal-chain and is able to perform a simulation from signal
generation to output evaluation. Still, single modules of the framework can
be used as inputs to other software or even laboratory hardware. Evaluation
modules can be used to evaluate results from external sources. Hence, the
framework can be used for concept engineering, general R & D as well
as for V & V purposes. The applications include the optimization of the
analogue block and the digital block. Antenna designs can be tested and
matching circuits can be optimized. For existing ICs (integrated circuits)
the optimal operation settings can be found. Silicon failure scenarios can
be reproduced by modelling the effects and potential workarounds may be
identified. The framework (or parts of it) can be used throughout all stages
of an NFC development project. Tests can include the whole system or just
parts of it.

This thesis is about setting up an extendible framework that includes:

• Basic stimuli generation functions
• Matching circuit modelling

6

1.3 Motivation

• Matching circuit simulation
• Simulation result evaluation and graphic representation
• Comparison with spice simulations

7

2 Framework

The wide variety of use-cases and applications for NFC raises the need for a
holistic framework which can be used for the simulation and evaluation of
all upcoming use-cases and application. To build a framework that is able to
fulfil all future use-cases and applications, the requirements for the use-cases
and applications have to get more specific. This chapter specifies the use-
cases, applications and structure for the framework. The requirements and
features for the framework are defined due to this use-cases, applications as
well as from structural needs (how to build modular and extendible) and
convenience reasons (how to integrate already existing information).

2.1 Basic Framework Functions

The framework needs to be constructed in a modular way to provide options
for extension. The overall framework connects the sub-blocks, therefore sub-
blocks can be changed to fit to new test scenarios. The stimuli generation,
model generation as well as the simulation and evaluation should be present
just within one dynamic exchangeable signal chain. The sub-blocks are
designed to work as stand-alone modules.

Stimuli generation has to include different types of signal encodings and
data rates as well as different (integer) oversampling rates. These parameters
of the input signal define the communication type and the used operation
mode. For the important use-cases of the ISO-standards different signal
shapings need to be supported to reflect the ISO-scenarios. This block can
also be used to create a stimulus file for spice simulators or similar.

9

2 Framework

The model generation of the coupling system (the air interface including
matching RX/TX) needs to work automatically for different circuit topolo-
gies and different component values within a circuit. Coupling factors are to
be seen as circuit parameters just like the component values. Therefore the
variation in geometric coupling conditions is modelled using these coupling
factors.

The simulation has to support non time-varying and time-varying behaviour
(as it is used for passive load modulation). Multiple Sources need to be
supported for active load modulation, due to the fact that there is one source
to create the RF-Field, another source modulates this RF-field in an active
way. Simulations in time and in frequency domain need to be supported to
cover and analyse all model characteristics.

Evaluation functions provide access to the simulated data and prepare
it for investigations. functions from this block can also be used to read
simulation data from spice simulators and evaluate it or compare it with
other simulation data.

With the summary of the basic framework functions and a set of showcase
applications, we can define the requirements list:

• Modular structure
• Stimuli generation
• Automatized Coupling Model generation
• Simulation in time & frequency domain
• Output evaluation
• Parameter optimization
• Extendibility for different test scenarios
• Blocks individually applicable
• Time and Frequency Domain Simulations
• Multiple Input/Multiple Output System (MIMO)
• Generalization for:

– Topology of the circuits
– Parameter changes of individual components

• Antenna Coupling
• Time-varying behaviour (modulation)

10

2.2 Structure

Figure 2.1: Framework Toplevel Structure

• Transient behaviour (circuit condition should be kept consistent for
transient simulations)

2.2 Structure

Figure 2.1 depicts the top-level structure of the framework. This top-level
description shows the connections between the blocks and the responsibility
of each block. The interfaces of the blocks are defined in terms of their
content. This already shows what the input, the function and the output of
each block has to be.

2.3 Showcase Applications

Now that the modularity of the framework is given, more detailed informa-
tion about its features is needed. To get an idea of what features are needed,
standard applications are taken as a reference. The following showcase
applications help to identify functional needs for the framework. These
real-life applications are yet unsolved (or unsatisfactorily solved) issues in
research & development of NFC systems.

11

2 Framework

Figure 2.2: Matching Parameter Tests

2.3.1 Matching Parameter Optimisation

The matching circuits consist of resistors, capacitors and inductors. The
combination of these components are resonator circuits that define the be-
haviour of the circuits and therefore the behaviour of the inductive coupling
between the antennas. Each component value can be seen as a parameter
that changes this resonance behaviour. Hence, the framework needs to sup-
port configuration files to perform the simulation for different component
parameters. Given a fixed circuit and a fixed coupling (represented by cou-
pling factors k), the optimal component values can be identified (as shown
in Fig. 2.2).

2.3.2 De-Tuning Influence Analysis

In Fig. 2.3 we can see the De-Tuning Impact Analysis use-case. The com-
ponents in the matching circuit define the tuning of the coupling system,
this tuning is done for a certain coupling scenario (and therefore a certain
value k). For this fixed circuit (with parametrization) the coupling factors k
can be varied. The variation in coupling factors represents a variation in the
position of transmitter and receiver antennas and therefore another coupling
scenario. The variation of k leads to a de-tuning of the matching network,
hence a change of the system behaviour. The target of this framework use-
case is to find a correspondence between the voltages and currents in the

12

2.4 Framework Functions

Figure 2.3: De-Tuning Influence Analysis

system and the coupling parameters k. The values for k can be obtained by
antenna simulation tools or measurements in laboratory setups.

2.3.3 ISO Wave-Shape Verification

ISO14443 defines the allowed reader wave-shapes in terms of rise/fall
times, overshoot, ... These shapes are define at the air interface. To be able
to communicate with all ISO compliant readers, the card mode receiver
needs to be able to decode all of these shapes. For a fixed circuit with fixed
coupling the stimulus is modified according to the conditions reflected in the
ISO-shape and then simulated (see Fig. 2.4). This is called the ISO-setup.

If the transmitter sends a not perfectly formed signal (of course within
some limitations) the receiver still has to be able to decode it error free. A
database of standardized envelope shapes is used to determine the card
receiver performance.

2.4 Framework Functions

Given the structure of the framework and a set of showcase applications
which brought up some needed features and functions, the internal block

13

2 Framework

Figure 2.4: Time-Domain Shape Verification

functionality can be identified and mapped to the right blocks. The following
subsections will cover the internal block functionality of the framework.

2.4.1 Envelope Generation

A given data word (given as a hex value) is converted to a bit stream.
This bit stream is an encoded version of the data word. Encoding types
include Non-Return-to-Zero (NRZ) encoding and Manchester encoding. The
baudrate of the signal is considered, as well as some protocol related bits
(CRC, Parity, ...). We call the encoded bit-stream the baseband envelope.

2.4.2 RF-Carrier Modulation

The baseband envelope gets up-sampled by a desired oversampling rate.
Then the up-sampled envelope is modulated with the RF-carrier of 13.56MHz.
The modulation happens by a sample-wise multiplication of the sample
values, where the carrier and the envelope are scaled by a factor that is
related to the modulation depth. A modulation depth of 10% means that
10% of the amplitude of the envelope signal is used and 90% of the RF-
signal’s amplitude. The resulting RF-signal can be used as a stimulus to the
time-domain state-space model.

14

2.4 Framework Functions

2.4.3 Symbol ISO-Shape Mapping

For the application of wave-shape verification, the ISO compliant wave-
shapes get applied here. A database for standardized ISO-shapes is provided
as a Matlab data container. A wave-shaping tool is used to perform the linear
filtering for the envelopes according to the timing definitions of the ISO
compliant wave-shapes. The filtered signals are saved in Matlab container
structures for further use. A perfect data envelope is used to find the general
signal form. The edges in the perfect envelope are replaced by the shaped
patterns from the Matlab container structure. To do this, a specific shape
gets copied to the position in the bit-stream, where the corresponding edge
is found. Therefore the shaped RF-signal is like the original RF-Signal with
parts of it substituted by the shape. This block is optional in the signal chain,
but necessary for ISO-shape verification.

2.4.4 Coupling System

The core of the simulation framework always remains the Air-Interface
model, noting that the topology, circuit parametrizations and coupling
conditions can vary. The main aspect for the framework generalization is
the automated generation of models for different air-interface circuits. All
other features are built around this air-interface model. The given modular
framework structure enables the further implementation of extensions. New
standards (including new modulations/encodings) and new signal shapes
can be added.

The output of the automated model generation is a model with symbolic
variables. Parametrizing this model means that the symbolic variables get
substituted by the numeric values of the circuit components that are in-
cluded in the model. For a maximum in flexibility and a minimum of com-
putation time, generated models are saved as non-parametrized (symbolic)
models for simulations with changing parameters (parametrization has to
be done before simulation) and a fully-parametrized model that includes
the standard component values from the netlist. The non-parametrized
model provides the most flexible way to save a model, hence the values can
be changed without the need of generating the model from scratch. The

15

2 Framework

fully-parametrized model provides the minimum computation time since a
fully simulate-able model can be loaded and used.

2.4.5 Simulation Module

The RF-carrier signal is used as stimulus to the model for time-domain
simulations. As mentioned before, the RF-carrier can be ISO-shaped for
some of the use-cases. The simulation module also supports block processed
simulations. This kind of simulation is needed for passive load modulation
scenarios (time varying behaviour of the system) or simulations where the
feedback of the system is used for dynamic adaptation of the transmitter
wave-shape to be ISO compliant.

Each simulation result gets saved in a container structure. This container
holds not just the simulation results, but also the stimulus signals and
relevant model data. With that approach results can be fully evaluated at a
later time.

2.4.6 Evaluation

Using the container structure from the output of the simulation block, the
signal can be plotted for each state variables and each other component of
the circuit. This is possible due to the fact that all components in the circuit
can be represented as a linear combination of state variable. The equations
for the calculation of the linear combination are available from the model
generation and are present in the result container.

2.5 Core Modelling Problem: Coupling System

The generation of the air-interface model is the core block of the whole
framework, not only in terms of importance but also in terms of implemen-
tation effort. The air-interface is given as a circuit schematic of the matching

16

2.5 Core Modelling Problem: Coupling System

network. This network includes the transmitter and the receiver antennas
and the whole matching circuits on both connection sides.

The following subsections show which approaches are already researched to
model this air-interface. Spice simulators provide a way to simulate circuits
like this, also Matlab tools are available. One thing that all approaches have
in common is to describe the system as a set of differential equations. This
section will show the pros and cons of the available approaches and derive
the used modelling approach from this.

2.5.1 Systems Description as Differential Equations

The circuits include resistors R, inductors L and capacitors C alongside
voltage V and current I sources. Even if the description of current and
voltage values for resistors is easily given by Ohm’s Law VR = R · IR, it
is not so straight forward for inductors and capacitors in an alternating
voltage/current circuit. Both components’ behaviour can be explained with
differential equations: IC = −C · V̇C, VL = L · İL.

The common way of describing electrical circuits is to form a system of
differential equations. This system can be used for simulations where the
transient behaviour of L and C components is taken into account. There
are sophisticated algorithms to form systems of differential equations from
component equations. The system of differential equations forms a ’state-
space model’. Therefore finding the differential equations of the system
is the key to represent the system as a model that can be simulated in
time-domain.

2.5.2 The Modified Node Analysis Algorithm

A widely used algorithm to find the differential equations for a circuit is
called Modified Node Analysis (MNA). A circuit is defined by the connec-
tion points of the included components. These connections are called nodes.
The system of differential equations is formed with respect to all node
voltages, node currents and sources in the circuit. If a system is solved by

17

2 Framework

hand, all the circuit equations are needed (Kirchoff’s Equations). The special
feature of the MNA algorithm is its simple model construction without
the Kirchoff Equations. Instead of using all given component and circuit
equations at once, the system is divided into sub parts. Each sub part can
be determined by the knowledge of the node connections and a set of rules.
These rules define where to put the component variables into the matrix
without the explicit knowledge of Kirchoff’s equations. When looking at
a component, there are some simple things to check that define where to
put it, which sign to use (direction) and if the value has to be inverted.
Kirchoff’s equations are given implicitly by applying these matrix building
rules.

The general form of an MNA system is given by:

A · x = z (2.1)

x = A−1 · z (2.2)

where A is a matrix of (m + n)x(m + n) where m is the number of indepen-
dent sources and n is the number of nodes in the circuit. x is a vector with a
length of (n + m). Its contents are the unknown node voltages and currents
of the circuit. z is a vector of length (n + m) (same as x) and contains the
known parts. Independent voltage and current sources make up the known
parts.

A =

[
G B
C D

]

G is a matrix of nxn and filled with the connections of the circuit elements.
For capacitors and inductors, the complex impedance representation is used:
ZC = 1

sC = 1
jωC and ZL = sL = jωL.

B is a matrix of nxm and contains all connections of the sources. If a voltage
or current source is connected between to nodes, the matrix B has an entry
of ’1’ or ’-1’ (dependent on the direction).

18

2.5 Core Modelling Problem: Coupling System

C is a matrix of mxn and is the transpose of the matrix B: C = BT

D is a matrix of mxm and is filled with all zeros if only independent sources
are present in the circuit.

The matrices G, B, C and D are filled with values and variables according to
a set of rules that determine which variable to put where with which sign.
The rules determine sub-matrices of the matrix A in such a way, that the
differential equations for the system are implicitly defined. No differential
equation has to be written explicitly, just the matrix filling rules have to be
applied. This is a very fast and efficient way to build up the differential
equations for the system.

For a closer look at the rules to fill the Matrices, please refer to
Wing, 2008.

The MNA Algorithm (or a slightly modified version of it) is used by most
spice simulators. There is also a Matlab toolbox available with an MNA
solver. The advantages and disadvantages are discussed in the next two
subsections.

Spice Simulator

Spice simulators use detailed equations for the components that also include
physical behaviour like temperature dependence of components. Spice
simulators give the most accurate results for all kinds of simulation. It is
possible to model inductive antenna coupling. Simulations in time and
frequency domain are possible. Most spice simulators use the discussed
MNA algorithm as a part of their circuit representation. Therefore, they
use the approach of representing the circuit state at each node. This yields
approximated results for the desired component voltages and currents
(at capacitors and inductors), but with a very high numerical accuracy.
Other high-order differential equation models exist as basis for the spice
simulation. Due to their complexity they are not desired and also not
discussed in this thesis.

The representation of the circuit is essential for the effectiveness of the
modelling algorithm. For spice simulators, netlists (or the corresponding

19

2 Framework

schematics) serve as input for the spice simulation. The output evaluation
is limited to plots of currents at components and voltages at nodes. Some
mathematical operations are directly applicable in the tool. The component
and circuit describing equations are hidden in a machine (only) processable
form. Some spice simulators don’t provide equations. This fact makes more
complex or protocol related output evaluation impossible. Outputs can be
written to text files and evaluated in other tools (like Matlab).

Stimuli generation is just possible on a very basic level. Current and voltage
sources with transient functions and frequency sweeps can be generated.
Communication protocol relevant stimuli can’t be created. No data encoding,
ISO-shaping or transmission package organisation can be done within the
spice simulator. To use input with protocol relevant data, it has to be
generated in an external tool (like Matlab) and imported as a source file.

Due to the option of voltage controlled switches, time-varying behaviour
can be simulated. A switch changes the parametrization of the circuit. The
voltage that controls the switch has to be controlled via an input file (just
like other protocol relevant inputs). Simulations with multiple sources are
considered in spice simulators, also inductive antenna coupling can be
modelled and simulated.

An integration into a holistic simulation framework is not reasonable. The
simulator could be started and used via a Matlab framework, the options
and features would still be very limited compared to the manual use of the
spice simulator.

Spice simulator results are sophisticated and can be used to verify the
functionality of other simulators.

MNA Solver Matlab Toolbox: SCAM

The MNA solver SCAM is a Matlab Tool that operates on the same set of
system equations as spice simulators with MNA. A detailed description and
the sourcecode can be found in Cheever, 2014. The system of differential
equations is formed with the MNA algorithm. The resulting system is given
a kind of state-space model in s-domain. Just like the spice simulator, the
results are approximations for the component voltages and currents, but less

20

2.5 Core Modelling Problem: Coupling System

accurate than the results of the spice simulator, because no more physical
behaviour is taken into account. This system can be converted to a transfer
function for simulation purposes.

The input for the MNA solver is also a netlist like for the spice simula-
tor. From the netlist, the model creation is very fast and easy. The circuit
equations are implicitly given by the system due to this approach.

As the MNA solver is a Matlab tool, it is easy to integrate into a framework.
The resulting system is not given in any of Matlab’s standard system
representations, therefore a simulation with integrated Matlab functions
is not directly possible. A conversion of the system to a transfer function
has to be applied. This conversion generally creates an single input system.
For simulation scenarios with active load modulation (card modulates the
load with a source), a single input system is not sufficient. Time-varying
simulations are not considered in a straight forward manner. Inductive
coupling is also not considered in this model creation process, as it would
not be straightforward with this approach.

2.5.3 Discussion of Related Work and Motivation for
Proposed Solution

The lack of any protocol-related stimuli generation and output evaluation
makes it necessary to embed a spice simulator into a tool-chain and not use
it alone. A full integration of the spice simulator into a framework is just not
possible due to the lack of interfaces of the spice software. Data exchange
can just happen via files. Protocol-related stimuli have to be created in an
external tool (Matlab, ...) and loaded as a source control file for the current
and voltage sources in the spice circuit. The results can be plotted directly
in spice but have to be saved and transferred to another external tool for
further evaluation.

The MNA solver can be integrated very easily and supports the need for the
desired stimuli generation. The form in which the system is represented is
not directly suitable for the Matlab simulators, additional effort for system
conversion or advanced solvers are needed. The state variables are given

21

2 Framework

Table 2.1: Comparison: Spice Simulator vs. MNA Solver: SCAM
Spice Simulator MNA Solver: SCAM
+ most generic - not generic
+ straight forward
circuit description - needs a circuit description from Spice

+ simulation in time
and frequency domain

- no efficient way for simulation
without model conversion

+ parameter variation + parameter variation
+ time-varying behaviour - no time-varying behavior
- no protocol level
stimuli generation + stimuli generation in Matlab

- not integrateable
in holistic framework + integrateable in holistic framework

- insufficient output
evaluation + output evaluation in Matlab

+ antenna coupling considered - antenna coupling not considered

for each node of the circuit and not on the energy preserving L and C com-
ponents. For output evaluation, additional effort is needed to calculate the
equations for the desired variables (which are not necessarily the nodes).

The circuit representation as netlist is common and a good option to use. The
desired approach for the modelling needs to have the smooth integrability
of the MNA Matlab toolbox. It is a big advantage for the framework if the
stimuli generation, the model generation, the simulation and the output
evaluation can be done within one piece of software. The desired simulation
approach is oriented towards the accuracy and simulation speed of spice
simulators.

The general idea of using differential equations to describe the circuit
topology and condition is the way to go. As the MNA algorithm based tools
just give approximated values for voltages and currents at components,
they lack accuracy or the simulation speed suffers severely. The solution to
this problem is to form the model with respect to other variables than the
node voltages and node currents. A state-space model formed from node
and mesh equations (Kirchoff’s laws) with respect to the energy storing
variables in the circuit (voltages for capacitors and currents for inductors)

22

2.5 Core Modelling Problem: Coupling System

is a proper solution. The accuracy for this state variables is very good, still
the modelling can be done in Matlab (which makes the integration into a
holistic framework rather easy).

The model generation effort is higher for the Kirchoff’s laws approach than
for the MNA approach. All circuit describing equations and component
equations have to be found and used to define the dynamic system equa-
tions. The additional effort pays off in terms of easier simulation options
due to Matlab integrated and optimized simulator functions. The output
evaluation has to be done with the circuit equations for each of the ap-
proaches. The Kirchoff’s laws approach has a point because the equations
are given explicitly from the model generation and not implicitly in the
model.

2.5.4 Conclusion of Related Work and Proposed Solution

In summary, the chosen approach is a Matlab based framework for stimuli
generation, model generation, simulation and output evaluation. The chosen
approach combines the positive features of spice simulators and the MNA
solver and extends the features where both other options lack the needed
functionality. The model generation is done via Kirchoff’s Laws which
provides equations that are formed to a state-space model. This trades
higher model generation effort for better generalization. Due to the fact that
Matlab does not provide a netlist to state-space model function, this is one
of the main tasks in this thesis. State-space models can be simulated very
efficiently by using Matlab built-in simulation functions (lsim, ...). The lack
of antenna coupling in the MNA solver is a big draw back that can also be
fixed by using the Kirchoff’s laws approach.

23

3 Coupling System: Model Design

The systems of differential equations are organised in a structure called
a state-space model. General state-space models are used to model linear
systems of first order. This chapter shows the fundamental theory for state-
space systems and discusses which equations are used to form the dynamic
system equations and how they are used as a model representation.

3.1 Finding the Dynamic System Equations

The selected way of modelling includes the step of finding the equations for
the dynamic system. Voltage mesh equations and current node equations
represent the basic description of the circuit topology. The dynamic be-
haviour comes into play by using the component equations for the resistors
R, capacitors C and inductors L. For the NFC circuits the inductors are
the device antennas, so the component equations for inductors include the
inductive coupling part for the wireless NFC system.

3.1.1 Circuit Equations

Kirchoff’s voltage law (KVL) states that the sum of voltages in a mesh of
the circuit has to be zero. Meshes are defined as the smallest possible closed
loops (cycles) within a circuit (see Fig.3.1).

0 = −Ux + Uy + Uz (3.1)

25

3 Coupling System: Model Design

Figure 3.1: Kirchoff’s Voltage Law: Mesh

Kirchoff’s current law (KCL) is about nodes of currents. The sum of all
incoming and outgoing currents at each node of the circuit is zero (see Fig.
3.2).

0 = −Ix + Iy − Iz (3.2)

The component equations for resistors are defined by Ohm’s law:

UR = IR · R (3.3)

Capacitors are energy storage elements in the circuit. The current at the
capacitor is proportional to the capacity value multiplied with the change
of voltage at the capacitor. In other words, the capacitor will cause current
flow corresponding to its charging state. The negative sign at the capacity
value changes the direction of the current flow. This is necessary because

26

3.1 Finding the Dynamic System Equations

Figure 3.2: Kirchoff’s Current Law: Node

capacitors drive their current in the opposite direction as the voltage, just
like a voltage source element.

IC = −C · ∂UC

∂t
(3.4)

3.1.2 Coupling Equations

The coupling between the inductors is a major task in the modelling of
an NFC matching circuit. The two parts of the component equations for
inductors are called the self-inductance and the mutual inductance.

Inductors (also called coils) get inducted by electromagnetic fields. This
fields create a current in the coil, the energy is stored in the magnetic field.
The voltage over the inductor is defined by the inductive value times the
change of induced current. This equation represents the self-inductance of
the inductor:

27

3 Coupling System: Model Design

UL = L · ∂IL

∂t
(3.5)

The effect of the magnetic field and the inducted current is not limited to just
one inductor. Figure 3.3 shows the coupling situation for two inductors. The
principle is extendible for a arbitrary number of coupled inductors. Each
inductor has an influence on each other, which depends on the geometric
conditions of the circuit. The influence between two inductors x and y is
called mutual inductance Mxy:

Mxy = kxy ·
√

Lx · Ly (3.6)

The coupling factor kxy represent the geometric conditions of the circuit. Its
value come from measurements and antenna simulations. For the further
work with coupling factors, it is assumed that Mxy = Myx and therefore
just the Mxy factors are needed.

The component equation for inductors has to include the self-inductance
and the mutual inductance. Its parameters are:

M =
(

Lx Mxy
Myx Ly

)
(3.7)

where the main diagonal contains the values for the inductive components.
The Mxy entries of (3.7) correspond to the coupling of inductors Lx and Ly
and can be calculated with equation (3.6).

The relation between the inductor currents and the resulting voltages can
be calculated from this combined self-inductance and mutual inductance
equations in M to get the needed coupling equations:

(
ULx
ULy

)
=
(

Lx Mxy
Mxy Ly

)
︸ ︷︷ ︸

M

·
(

IpLx
IpLy

)
(3.8)

28

3.1 Finding the Dynamic System Equations

Figure 3.3: Inductive Coupling

29

3 Coupling System: Model Design

Figure 3.4: Mesh of Capacitors

3.1.3 Meshes of Capacitors and Nodes of Inductors

The state-space representation requires n linearly independent state vari-
ables. The equations have to be changed due to the fact that loops of
capacitors and nodes of inductors result in linear dependent state variables.
Dependent components have to be expressed via other components, so the
corresponding linearly dependent state variable can be left out of the state
vector.

For loops of capacitors an example is given in (3.4).

The equation for the mesh is:

Mesh: 0 = UC1 −UC2 −UC3 (3.9)

The state variable UC2 is not part of the state vector (it is free to choose
which linearly dependent variable to replace). A combination of the other
state variables is used to express this voltage via the mesh equations in 3.9.

30

3.1 Finding the Dynamic System Equations

Figure 3.5: Node of Inductors

The current for the omitted capacitor is expressed via the equation in (3.10)
instead of its component equation:

IC2 = C2 · ∂UC1

∂t
− C2 · ∂UC3

∂t
(3.10)

For nodes of inductors an example is shown in Fig. 3.5:

Equation 3.11 shows the node equation with just inductors present. iL3 is
the state variable to get rid of. The combination of other state variables leads
to the representation as shown in (3.12).

Mesh: 0 = IL1 + IL2 − IL3 (3.11)

UL3 = L3 · ∂IL1

∂t
+ L3 · ∂IL2

∂t
(3.12)

31

3 Coupling System: Model Design

3.2 General Form State-Space Models

The mesh, node, component and coupling equations are used to form a
system of differential equations to describe the dynamic behaviour of the
air-interface circuit. The system of differential equations is given as a state-
space model. The general form of a linear time invariant (LTI) state-space
model is given by (3.13) and (3.14).

∂x(t)
∂t

= A · x(t) + B · u(t) (3.13)

y(t) = C · x(t) + D · u(t) (3.14)

• x(t) ...State vector: nx1, for n is the number of linearly independent
state variables
• u(t) ... Input vector: nx1
• y(t) ...Output vector: nxo, for o is the number of outputs
• A ...State matrix: nxn
• BInput matrix: nxi, for i is the number of inputs
• C ...Output matrix: oxn
• D ...Feed-through matrix: oxi

For further information on state-space systems, please refer to
N. Dourdoumas, 2003.

3.2.1 State vector

The state vector x(t) consists of state variables. Each state variable describes
the current state of a part of the dynamic circuit. This saved values are used
to determine the trajectory of the change of each state variable. In a software
based system, we could say there is an ’update rule’ for each state variable
that is influenced by the input, the system behaviour and the current value
stored in the state variable.

The chosen state variables are the relevant parameters of the energy stor-
ing elements in the circuit. For inductors, the relevant parameter is the

32

3.2 General Form State-Space Models

corresponding current. For capacitors, the relevant parameter is the cor-
responding voltage. The utilisation of these state variables is one of the
main advantages over the MNA approach. In MNA, there were also state
variables used which do not represent energy storage elements, this is not
the case in our approach.

Some topologies can lead to linearly dependent voltages at capacitors or
linear dependent currents. These constellations have to be determined and
reduced. Linear dependencies would lead to non-minimal order systems.
To have a unique solution, the system has to be of minimal order.

x(t) = (IL1 IL2 ... ILi UC1
UC2 ... UCj)

T (3.15)

where i is the number of linear independent inductors and j is the number
of linear independent capacitors.

The state vector represented with the derivatives of the inductor currents
and the capacitor voltages is:

∂x(t)
∂t

=
(

∂IL1
∂t

∂IL2
∂t ...

∂ILi
∂t

∂UC1
∂t

∂UC2
∂t ...

∂UCj
∂t

)T
(3.16)

3.2.2 Input vector u(t)

u(t) is the Input vector of the system. It contains all the linearly independent
sources that drive the circuit and influence the output. The input vector
contains the known part of the system and influences the state of the
dynamic system according to the input matrix. Another name for the input
vector is control vector which reflects its function. Our test systems will have
less sources than the size of the input vector would allow. The input vector is
filled with ’0’ for the undriven parts. The maximum number of independent
sources is given by the number of state variables. In other words: If there are
more sources than energy storing elements to describe the system state, then
the behaviour will be described with linear combinations and is therefore
linearly dependent.

The input vector is:

33

3 Coupling System: Model Design

u(t) = (... ... USourcei
... ... ISourcej

...)T (3.17)

where i is the number of linear independent voltages sources and j is the
number of linear independent current sources. The position of the entries in
the vector is related to the circuit topology, entries where no source drives
the circuit are ’0’.

3.2.3 Output vector y(t)

In the Output vector y(t) the progression of the output of the system can
be found. For a single output y(t) is a scalar function of time. For multiple
outputs y(t) is a vector with one scalar value per output as a function of
time.

3.2.4 State matrix A

In each time step, the state vector x(t) is updated according to the state-
matrix A and the influence of the driving sources u(t). The state matrix
describes the behaviour of the dynamic system when it gets driven by
sources. The rows of the state matrix correspond to the differential equations
that describe the circuit (with respect to the state vector). Equation 3.18

shows an example for a coupling system with just two inductors and
undefined number of capacitors. The dimensionality is given by the number
of state variables, the entries correspond to the circuit connectivity.

A =


... 1

R1
... C1 ...

...
M12 L2 0 ...
L1 M12 0 ...

 (3.18)

34

3.2 General Form State-Space Models

3.2.5 Input matrix B

The Input-matrix B defines the influence of the Input vector to the state
vector update in each time step. The entries in B describe the contribution of
the sources to the dynamic system. In other words, the input matrix scales
and connects the driving sources to the dynamic system. As the size of this
matrix is related to the number of inputs, it is not a matrix but a vector for
a system with just one input.

3.2.6 Output matrix C

The output matrix C builds the linear combinations of the state trajectories in
x(t). A general approach is to take C as a unity matrix with a size according
to the length of x(t). With this structure, the output contains the trajectories
of all state variables. The output evaluation can happen after the simulation
by building the linear combination of the rows of the output vector. The size
of this matrix is nxn according to the number of state variables. The size
of this matrix is related to the number of outputs in the system, it is not a
matrix but a vector for a system with just one output.

C =


1 0
0 1
...
... 1

 (3.19)

3.2.7 Feed-through matrix D

In general state-space models, there are sources that directly pass to the
output without contributing to the dynamic system behaviour. The feed-
through matrix D connects these sources to the output. The size of the
feed-through matrix is related to the number of inputs and outputs in the
system.

35

3 Coupling System: Model Design

3.3 Dynamic Equations to State-Space Model

The calculation of the general form state-space model has to be done via
an intermediate step. With the state vector determined (3.17 and 3.16) and
the set of coupling equation (3.8), KVL and KCL equations the MATLAB
symbolic extension MuPad can be used to obtain the representation:

0 = H
∂x(t)

∂t
+ K · x(t) + L · u(t) (3.20)

where H (nxn) consists of the components related to ∂x(t)
∂t state vector

(dynamic behaviour), K (nxn) contains the x(t) related the equation parts
(static behaviour), L (nx1) corresponds to the sources in the system and
therefore includes all driving voltages and currents.
This form is related to the general form of an LTI system as presented in
(3.13) and (3.14). Multiplied by the inverse of the matrix H, the general form
can be obtained:

A = H−1 · K (3.21)

B = H−1 · L (3.22)

where the inverse of H exists, if H is a nxn matrix with full rank. This can
be assumed due to the fact that the state vector consists of one independent
state variable per energy saving component and linear dependencies of
capacitors and inductors are already removed. For details on this approach,
see Muehlmann, 2013.

3.4 A Small Example: ISO-Setup Modelling

The ISO-setup (Fig. 3.6) is a simulation and measurement setup to verify the
ISO compliance of the card device. For this purpose, the ISO wave-shapes

36

3.4 A Small Example: ISO-Setup Modelling

are used to shape the ideal RF signal and test the communication quality
with this non-ideal wave-shapes. As an example of the application of this
modelling approach, the so called ISO-setup (as shown in Fig. 3.6 is used.

37

3 Coupling System: Model Design

Fi
gu

re
3

.6
:I

SO
-s

et
up

38

3.4 A Small Example: ISO-Setup Modelling

Figure 3.7: ISO-setup PCD part

3.4.1 Circuit to Equations

For the following calculations, the currents and voltage labels are corre-
sponding to the component names.In a first step we derive the KCL (3.2)
and KVL (3.1) equations:

PCD Circuit Part (Fig. 3.7)

Node 1: 0 = −IC3 + IL2 + IC42

= −C3 · U̇c3 + IL2 + C42 · ˙UC42

(3.23)

Mesh 1: 0 = −UD + URD + UC3 + UC42

= −UD + IC3 · RD + UC3

(3.24)

Mesh 2: 0 = −UC42 + UR1713 + UL2

= −UC42 + IL2 · R1713 + UL2

(3.25)

39

3 Coupling System: Model Design

Figure 3.8: ISO-setup Calibration Coil part

40

3.4 A Small Example: ISO-Setup Modelling

Figure 3.9: ISO-setup DUT part

Calibration Coil Circuit Part (Fig. 3.8)

Mesh 1: 0 = UR18 + UL3 + UC5

= IL3 · R18 + UL3 + UC5

(3.26)

Node 1: 0 = −IL3 + IC5

= −IL3 + C5 · ˙UC5

(3.27)

DUT Circuit Part (Fig. 3.9)

Mesh 1: 0 = ULDUT + ULDUT + URLDUT

= ULDUT + ULDUT + IDUT · RLDUT

(3.28)

Node 1: 0 = −ILDUT + ICDUT + IRDUT

= −ILDUT + CDUT · ˙UCDUT +
UCDUT

RDUT

(3.29)

41

3 Coupling System: Model Design

Sense A/B Coil Circuit Part (Fig. 3.10)

Mesh 1: 0 = UL4 + UC6 + UR19

= UL4 + UC6 + IL4 · R19
(3.30)

Mesh 2: 0 = UL5 + UC7 + UR20

= UL5 + UC7 + IL5 · R20
(3.31)

Mesh 3: 0 = −UC7 −URE1 +−UC6 −URE2 (3.32)

Node 1: 0 = −IRE3 + IRE1 + IRE1

= −IRE3 + IL4 + IC6 + IL5 + IC7

= −IRE3 + IL4 + C6 · ˙UC6 + IL5 + C7 · ˙UC7

(3.33)

3.4.2 Coupling Equations

As there are 5 inductors present in the ISO-setup, the coupling Matrix is 5x5

in dimensions. The general form given in (3.8) becomes:


UDUT
UL2
UL3
UL4
UL5

 =

 L1 M12 M13 M14 M15
M12 L2 M23 M24 M25
M13 M23 L3 M34 M35
M14 M24 M34 L4 M45
M15 M25 M35 M45 L5

 ·


IpDUT
IpL2
IpL3
IpL4
IpL5

 (3.34)

State vector

To bring all the KVL equations, KCL equations and the coupling together in
one system matrix formulation, the state variables have to be determined
first. The currents through inductors and the voltages over capacitors are
the appropriate variables for this. For the ISO-setup the state vector from
(3.17) is:

42

3.4 A Small Example: ISO-Setup Modelling

Figure 3.10: ISO-setup Sensecoil A/B part

43

3 Coupling System: Model Design

x(t) = (IDUT IL2 IL3 IL4 IL5 UCDUT UC3 UC42
UC5 UC6 UC7)

T (3.35)

and according to (3.16) the derivative becomes:

∂x(t)
∂t

= (IpDUT IpL2 IpL3 IpL4 IpL5 UpCDUT UpC3 UpC42
UpC5 UpC6 UpC7)

T (3.36)

State-Space Model

Using the coupling, KVL and KCL equations and the symbolic calculation
Toolbox (MuPad) for MATLAB (used due to convenience reasons), the
system matrices are found to be:

44

3.4 A Small Example: ISO-Setup Modelling

H
=

          M
14

M
24

M
34

L 4
M

45
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

(R
E

2)
∗(

C
6+

(C
6∗
(R

E
1)
)/

(R
E

3)
)+

C
6∗
(R

E
1)

0
M

15
M

25
M

35
M

45
L 5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

C
6−

(C
6∗
(R

E
1)
)/

(R
E

3)
−

C
7

M
13

M
23

L 3
M

34
M

35
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

C
5

0
0

0
0

0
0

0
0

C
3∗

R
D

0
0

0
0

M
12

L 2
M

23
M

24
M

25
0

0
0

0
0

0
0

0
0

0
0

0
C

3
−

C
2−

C
4

0
0

0
0

0
0

0
0

C
D

U
T
∗R

D
U

T
0

0
0

0
0

L 1
M

12
M

13
M

14
M

15
0

0
0

0
0

0

          (3
.3

7
)

45

3 Coupling System: Model Design

K
=

          

0
0

0
−

R
19

0
0

0
0

0
−

1
0

0
0

0
R

E
1+

(R
E

2)
∗(
(R

E
1)

/
(R

E
3)
+

1)
0

0
0

0
0
−
(R

E
2)

/
(R

E
3)
−

1
1

0
0

0
0

−
R

20
0

0
0

0
0

−
1

0
0

0
−
(R

E
1)

/
(R

E
3)
−

1
−

1
0

0
0

0
1/

(R
E

3)
0

0
0

−
R

18
0

0
0

0
0
−

1
0

0
0

0
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1
−

1
0

0
0

0
−

R
13
−

R
17

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

−
R

D
U

T
0

0
0

0
−

1
0

0
0

0
0

−
R

L D
U

T
0

0
0

0
1

0
0

0
0

0)

          
(3

.3
8
)

46

3.5 Additional Modelling Steps

L =



0
0
0
0
0
0
−UD

0
0
0
0

 (3.39)

The operation of inverting H and creating the matrices A and B from the
already calculated H, K and L is performed according to (3.21) and (3.22).

Matrices are not shown here as it is straight forward and brings no further
information here.

3.5 Additional Modelling Steps

The following features represent additional steps in the modelling process,
needed for special circuit topologies and applications.

3.5.1 Continuous-Time to Discrete-Time Conversion

The discussed system is given in continuous-time representation. For some
applications a discrete-time model is sufficient in accuracy and beneficial
in simulation time. In particular for block processing this approach is
beneficial.

The discretization of the system is a reasonable step:

x[n + 1] = Adisc · x[n] + Bdisc · u[n] (3.40)

y[n] = Cdisc · x[n] + Ddisc · u[n] (3.41)

47

3 Coupling System: Model Design

To bring the system in the discrete form a sampling rate has to be defined.
For our NFC systems the sampling rate fs can be defined as multiples of
the carrier frequency 13.56MHz (oversampling).

The discrete state matrix Adisc can be determined as the exponential matrix
of A, sampled at the discrete points defined by the time step τs =

1
fs

.

Adisc = e(A·τs) (3.42)

Bdisc can be calculated as:

Bdisc =

(∫ τs

τ=0
e(A·τ)dτ

)
· B

which is equal to the form:

Bdisc = A−1 · (Adisc − I) · B (3.43)

for the matrix A needs to be invertible.

The output matrix C and the feed-through-matrix D show the same structure
in both continuous and discrete time:

Cdisc = C (3.44)

Ddisc = D (3.45)

3.5.2 Time-Varying System Modelling

For application with a communication from PICC to PCD, the passive load
modulation needs to be modelled. As mentioned before, this is a linear time-
varying function where the PICC circuit switches between two different
circuit conditions.

48

3.5 Additional Modelling Steps

The mathematical definition of a time-varying state-space model is given
in equations (3.46 and 3.47). In comparison to the definition of the time-
invariant state-space system in (3.13 and3.14), the state matrix, the input
matrix, the output matrix and the feed-through matrix are time-varying.

Time-varying behaviour is modelled as one system description per PICC
condition. This means, there is one state-space system model for the PCD
with the ’unmodulated’ PICC circuit and one state-space system model for
the PCD with the ’modulated’ PICC circuit. The terms ’unmodulated’ and
’modulated’ refer to the condition of the envelope for this circuit states.

The basic structure of the state matrices is similar, just some entries have
different values. The state variables are the same. During simulation, the
values of the state vector are preserved, therefore the system matrix can be
changed without the loss of the current and voltage situations in the circuit.
Figure 3.11 shows a sketch of the time-varying simulation approach.

∂x(t)
∂t

= A(t) · x(t) + B(t) · u(t) (3.46)

y(t) = C(t) · x(t) + D(t) · u(t) (3.47)

The transient behaviour of the system at the precise moment of the switching
between the two models is not taken into account. The missing transition
modelling does effect the model accuracy, but only in a neglectable way.
The accuracy of the model is still good enough for all desired applications
of the framework.

49

3 Coupling System: Model Design

Figure 3.11: LTV Simulation Approach

50

4 Coupling System: Automated
Model Generation

4.1 From Circuit to State-Space Model

A major task for the framework is the automated generation of the air-
interface model. The manual generation of a linear system from its circuit
schematic is straightforward, because it is intuitive for hand calculation. A
schematic, however, is not useful when the model is created automatically,
therefore the circuit description is done via netlists. Finding the node and
mesh equations of the circuit is automated and takes special rules for
topologies into account. The calculation of the equations is performed using
the circuit, coupling and component equations. This way, a state-space
representation can be found with just a circuit description in netlist form.
Figure 4.1 shows an overview of the automated model generation on block
level.

51

4 Coupling System: Automated Model Generation

Fi
gu

re
4

.1
:M

od
el

G
en

er
at

io
n

M
od

ul
on

Bl
oc

kl
ev

el

52

4.1 From Circuit to State-Space Model

4.1.1 Inputs

The following inputs are required for the framework:

• Netlist(s)
• Component value configuration files
• Point-of-operation characteristics
• Stimuli Parameters
• ISO-shape database
• Operation mode configuration flags
• Configuration flags

– Linear-time-varying simulation
– Limiter optimisation
– Parameter value configuration file inclusion
– Shaping enable
– Write stimuli to file enable
– Read spice data from file enable

Netlists are a common way to describe circuit topologies. Each component is
listed by name, a value and the two nodes it is connected to. By this minimal
set of informations, a circuit with all the components’ connections can be
described. Coupling informations can also be represented in netlists. The
coupling is treated like a component. The two coupled inductors represent
the nodes of the connection, the value corresponds to the coupling factor
between the inductors.

Configuration files can include different component values and coupling
factors. If a configuration file (or multiple configuration files) is provided,
the component values and coupling factors from the netlist get overwritten
by the values from the configuration file.

To optimize a circuit for a certain point-of-operation, the combination of
resistor and capacitor values is stored in a data container. The optimization
algorithm determines the correct point-of-operation and takes the values
for these components from the data container.

53

4 Coupling System: Automated Model Generation

The stimuli generation is can be parametrized by a set of configuration flags,
data rate, oversampling rate, data word (in hex) and communication type
are included in the flag options.

The ISO-shapes are used while stimuli generation (if the shape enable
configuration flag is set), to generate an input signal with special conditions
and therefore ISO use-case significance. A database contains all the pre-
defined shapes in container form.

4.2 Circuit Topology Description: Netlists

A netlist consists of one entry per component. Additionally, there is one
coupling entry for each coupled pair of inductors. A netlist entry consists of
the name, value and the connection nodes of the component. The name has
to be unique and also defines the type of the component (V, I, R, L, C, k).

Each component comes with a value without unit. The unit is given implic-
itly by the component type. For sources the value field is set to ’1’ in the
parser, hence the sources are driven by the simulation part of the framework.
Therefore the driving input voltage/current is scaled with ’1’, additional
scaling is implemented and can be used for a test scenario where the input
current has to be scaled due to the voltage on a configuration pin in the
circuit.

The connection in the circuit is defined by two node fields per entry. All
nodes in the circuit get a number. The ground node is defined to be ’0’.
The component is connected between the nodes given in the entry. For
coupling entries the two fields don’t contain the connected nodes, but the
two connected inductors which are described by the entry.

The direction of voltages and currents is implicitly given by the order of
the connected nodes. Rotating a component (exchange the two connection
fields in the entry) flips the sign of the variable in the equations, but the
’real’ direction is still given by the circuit behaviour itself. Therefore it is not
important in which direction a component is presented in the netlist, but the
relations of the components to each other and the voltage to current relation
on each component has to be well defined. Voltage sources and capacitors are

54

4.3 Kirchoff‘s Laws: Finding Current Nodes

Figure 4.2: Example Circuit for Netlist Description

defined to have voltage and current into opposite direction. For inductors,
resistors and current sources, the voltage and current directions are the
same.

Figure 4.2 shows an example circuit part, the corresponding netlist is shown
in the following Table 4.1:

4.3 Kirchoff‘s Laws: Finding Current Nodes

With the circuit topology given as a netlist, the investigation of the circuit
equations can start. First of all, the equations for the currents at the circuit
nodes are calculated. A node in the circuit is defined as a uniquely named
port which connects components or sources. The KCL equation for each
node can be found by adding the currents for all components or sources
connected to the particular node. If there are just two components connected
to a node, the KCL equation implies equality of the currents. One equation

55

4 Coupling System: Automated Model Generation

Name Node 1 Node 2 Value
V1 1 0 1

R1 1 2 200

C1 2 0 400e−12

L1 2 0 800e−12

L2 3 0 800e−12

K12 L1 L2 0,05

...

Table 4.1: Example Netlist

per node can be found, the ground node has to be taken into account as
well. Each node is unique in the circuit (if the netlist is not corrupted), no
replications of an equation can occur.

4.4 Kirchoff‘s Laws: Finding Voltage Meshes

For a human it is easy to find the meshes within a circuit. For a machine,
the problem has to be defined first. A mesh is a closed connection from
one node of a circuit to itself. More precisely, it is the shortest cycle in
the circuit that connects a node to itself. The connection of nodes can be
seen as a graph. From graphic theory there are algorithms available to find
shortest paths between nodes. Finding a mesh is a special case of finding
a shortest path. Floyd Warshall’s algorithm is chosen to find the shortest
paths. Shortest paths from one node to itself are omitted in the general
implementation of the algorithm, as it would just give trivial solutions. To
find meshes and not trivial solutions, the algorithm has to be modified.

First, the general implementation has to be explained. An adjacency matrix
has to be created as a description of the circuit graph. The adjacency matrix
is of size (nxn) where n is the number of nodes in the circuit (including the
ground node). For each two nodes that are directly connected, the matrix
has a ’1’ entry. If no direct connection exists, a ’0’ fills the place in the matrix.
The graph is undirected, so the adjacency matrix is symmetrical.

56

4.4 Kirchoff‘s Laws: Finding Voltage Meshes

Figure 4.3: A ’bridge’ component between two meshes

The Floyd Warshall’s algorithm needs to have some restrictions on the length
of the paths, so no meshes with less than three components can be found.
Mesh equations with just two components are found separately by just
comparing the netlist entries. These equations are called ’parallel equations’
since they represent parallel circuit connections only. Two components
which are parallel to each other share the same two connection nodes, no
matter in which order. The order just influences the implicit current/voltage
direction which is still consistent with the other components.

To use the shortest cycles as mesh equations is an efficient way to build up
the mesh equations, but there are special cases which might leave a mesh
equation out of the shortest cycles. If a component is a ’bridge’ between
two close cycles (as shown in Fig. 4.3) there will be no equation for this
component, since its two nodes are both already part of a mesh. For this
case, a deep-first-search (DFS) has to be applied for just that component.
This kind of mesh finding is not very efficient and just practicable for finding
a mesh for this special case.

4.4.1 Floyd Warshall‘s Algorithm

The Algorithm contains two essential parts: The shortest path optimisation
and the path reconstruction. For the path optimisation part, an adjacency
matrix has to be defined. This adjacency matrix is the input for the Floyd
Warshall’s algorithm and represents the initial connections of the distance
matrix. This distance matrix is initialized with the connection weight for
each direct connection, an infinite value for paths to be optimized and ’0’
are used for connections not to be optimized. In the general implementation

57

4 Coupling System: Automated Model Generation

the unoptimized values are the diagonal elements of the matrix, in other
words the connections of a node to itself.

For each step, the algorithm tries to replace the distance between the the
two nodes with a shorter connection, which is a combination of two other
connections. If the connection via the other two nodes is shorter, the value
in the connection matrix gets replaced, otherwise the old value remains.
The algorithm checks all possible connections and all possible replacements
for this connection.

Here the pseudo code for the general implementation of the algorithm is
given. The variables k, i and j iterate over all possible node connections
and connection replacements. The function ’dist’ represents the distance
between the two nodes that are given as parameters.

f o r k from 1 to #Nodes
f o r i from 1 to #Nodes

f o r j from 1 to #Nodes
i f d i s t [i] [j] > d i s t [i] [k] + d i s t [k] [j]

d i s t [i] [j] = d i s t [i] [k] + d i s t [k] [j]
end i f

end f o r
end f o r

end f o r

The runtime of this algorithm is O(n3) for n is the number of nodes. For
the general Floyd Warshall’s algorithm the path reconstruction can be done
after the path optimisation is done. Just the distance matrix is needed to
find the nodes which are included in the shortest paths. As this approach is
not applicable after the modifications, it is not explained any further.

4.4.2 Modifications for the Algorithm

To find the meshes in a circuit, the smallest cycles without repeated paths
have to be found. With some modifications in the initial values of the
connection matrix and some additional constraints, the Floyd Warshall‘s
algorithm provides circuit meshes.

58

4.4 Kirchoff‘s Laws: Finding Voltage Meshes

The initial values for the distance of each note to itself is normally set to ’0’.
For this approach an infinite distance has to be used to tell the algorithm
to find a better path. The additional constrains contain a restriction in the
length of a path to itself. A path from a node to itself has to be longer than
two hops, otherwise it is the trivial solution. A length of two hops is the
result of finding a ’path’ over one component and going back over the same
or a parallel component.

For connections between different nodes, paths of a minimal length of 2 are
sufficient. For connections of a node to itself, paths of a minimal length of 3

is needed to avoid the trivial solution.

The modified pseudo code includes the distinction between a pair of differ-
ent nodes and a ’pair’ that consists of just one node to itself:

f o r k from 1 to #Nodes
f o r i from 1 to #Nodes

f o r j from 1 to #Nodes
i f i == j

f o r l from 1 to #Nodes
i f d i s t [i] [j] > d i s t [i] [k] + d i s t [k] [l] + d i s t [l] [j]

d i s t [i] [j] = d i s t [i] [k] + d i s t [k] [l] + d i s t [l] [j]
end i f

end f o r
e l s e

i f d i s t [i] [j] > d i s t [i] [k] + d i s t [k] [j]
d i s t [i] [j] = d i s t [i] [k] + d i s t [k] [j]

end i f
end i f

end f o r
end f o r

end f o r

Due to the modified update rule for the algorithm, the path reconstruction
has to be done in a different way than for the general implementation.
The connections have to be saved additionally in a connection matrix. In
this matrix all the included nodes are saved explicitly for each connection.
Therefore reconstruction of the path is not needed. The analyzed runtime of

59

4 Coupling System: Automated Model Generation

the algorithm remains the same. The additional check (i == j) will cause
number of node times a loop over all Nodes. Therefore a term n · n is added
to O(n3). O(n3 + n2) = O(n3).

4.4.3 Extensions for the Mesh Algorithm: DFS

If a component is a ’bridge’ between two meshes, its nodes are both part
of shortest cycles and there is no mesh with that component included. The
component equations have to be checked if all components are present in
the mesh equations. If not present, a DFS search for a path through the
connection graph of the circuit is performed, to find a mesh that connects
to the component’s nodes. The path through the connection graph is the
resulting mesh equation. The DFS is implemented as a recursive algorithm
with a start node as current node and an end node:

i f endNode == current Node
add current node to path
return path

e l s e
add current node to path
get neighbors of (current node)
f o r a l l neighbors

r e c u r s i v e funct ion c a l l dfs
s e l e c t s h o r t e s t path of a l l returned dfs c a l l s

To use the DFS algorithm just as a support for the minimum cycles approach
is the best way to go. To find all mesh equations with the DFS approach
would lead to a brute force like algorithm with many redundant equations
and a long runtime.

For more information on DFS or Floyd Warshall’s Algorithm, have a look at
T. Cormen, 1990, Franz Aurenhammer, 1999 and Burfield, 2013.

60

4.5 Equations for Components & Couplings

4.5 Equations for Components & Couplings

Equations for resistors and capacitors are defined as (3.3) and (3.4). The
equations are created directly from the netlist. The name of the component
(which also defines the type) defines the equation that is used.

Inductors are represented with one equation per component. The coupling
of the inductors is modelled into these equations (see (3.8)), so the length
of each equation is related to the overall number of inductors in the circuit.
The coupling factors can be parsed from the netlist and directly converted
to Mxy parameters for the equations as in (3.6).

4.6 Find and Replace Meshes of Capacitors and
Nodes of Inductors

Even if all equations are available at this point, the order of the system is not
necessarily minimal. Certain circuit topologies (meshes of capacitors, nodes
of inductors) lead to linearly dependent equations. The linearly dependent
equations get solved here by replacing the depended state variables accord-
ing to (3.17) and (3.16). To find a mesh of capacitors, all mesh equations
get checked if just capacitors are included in the equation. For nodes of
inductors all node equations get checked if they consist of inductors only.
The old representation of the dependent variables gets deleted from the list
of equations because these equations bring redundancy into the system.

4.7 Solving Equations for State-Space Model

The whole set of equations has to be used to create a state-space model of
order n where n is the number of linearly independent state variables. The
equations that are best for this approach are the component equations for all
capacitors and inductors. These equations still contain variables which are
not expressible in the state-space representation. All these variables have to
be replaced by different equations. Variables that have to be replaced are:

61

4 Coupling System: Automated Model Generation

• Currents of voltage sources
• Voltages of current sources
• Currents of capacitors
• Voltages of inductors
• Currents & Voltages of resistors

The variables can be replaced by reformulated node and mesh equations
until just state variables are used in the equation. This substitution process
takes care that each variable gets replaced properly in all other equations
and is used just once for this purpose.

The state vectors are defined as shown in (3.17) and (3.16). The Matlab
extension MuPad is used to express the n equations as a state-space system
with respect to the state vector. Hence the system is already of minimal
order, the inversion of the matrix H and the calculation of A and B can be
calculated as shown in (3.21) and (3.22).

The state-space model is saved in two ways: A parametrized version where
the component values from the netlist get evaluated to have a pure numerical
system model and a symbolic model where the parameters can be added
later using configuration files or optimisation algorithms.

62

5 Simulation & Evaluation

5.1 Simulation

The simulation module contains all functionality that is needed to per-
form simulations for the state-space model using the created time-domain
stimulus. Figure 5.1 shows the signal flow within the simulation module.

The simulation module includes simulation functions for continuous time
and discrete time state-space system representations. The generation of
the model always is done as continuous time model, the conversion from
continuous time to discrete time model is done in this module.

State-space models can be seen as multiple input, multiple output systems
(MIMO) and therefore the simulation yields the results for all outputs at
once.

63

5 Simulation & Evaluation

Fi
gu

re
5

.1
:S

im
ul

at
io

n
M

od
ul

on
Bl

oc
kl

ev
el

64

5.1 Simulation

5.1.1 Evaluation

All simulation outputs get saved in a container structure. Due to the struc-
ture of the chosen state-space model the whole circuit state is saved in the
state variables which are voltages at capacitors and currents over inductors.
To obtain the voltage or current trajectories for other components, the linear
combinations of the state variables have to be found. Each other compo-
nent’s trajectory can be obtained as a linear combination of state variables.
All equations that are used to create the model are saved with the model.
These equations are used to obtain the linear combinations.

The result of this equation solving is a n dimensional vector that contains
the linear combinations for the desired output variable. By multiplying this
vector with the output vector, the trajectory of the desired output variable is
obtained.

The result of this equation solving is a n dimensional vector that is multiplied
with the output trajectory container to form the linear combination for the
desired output component variable.

65

6 Example Applications & Results

6.1 Comparison of Spice Model vs. Matlab Model
(Framework generated Model)

This example illustrates the comparison between the automatically gen-
erated Matlab model and the spice model. A comparison between the
automatically generated model and the analytic model is not needed due to
the fact that the spice model is the reference for the circuit behaviour.

6.1.1 Circuit

As matching scenario the ISO-setup is used. This circuit represents the ref-
erence for ISO wave-shape verification tests and is an important benchmark
for most NFC systems. The ISO-setup has fixed coupling conditions. The
wave-shapes of the envelope are varied for the purpose of wave-shape veri-
fication and therefore ISO compliance. Reader envelopes with wave-shaping
and card envelopes with wave-shaping can be tested. For this example, the
communication direction is from PCD to PICC.

67

6 Example Applications & Results

Fi
gu

re
6

.1
:S

pi
ce

sc
he

m
at

ic
of

IS
O

-s
et

up

68

6.1 Comparison of Spice Model vs. Matlab Model (Framework generated Model)

The spice schematic is shown in Fig. 6.1. The netlist is directly taken from
the spice simulator and put into the automated model generation part of
the framework.

6.1.2 Frequency Response

As a first comparison, the frequency response of the system is shown. Due to
the fact that the ISO-setup is a matching network with many coupled parts,
the comparison is shown for the PCD antenna to represent the behaviour.

69

6 Example Applications & Results

Fi
gu

re
6

.2
:F

re
qu

en
cy

re
sp

on
se

fo
r

IS
O

-s
et

up
,P

C
D

an
te

nn
a

70

6.1 Comparison of Spice Model vs. Matlab Model (Framework generated Model)

Figure 6.2 shows that the frequency response matches well for the tested
frequency range of 1MHz to 60MHz. The error is calculated as the difference
of the frequency responses of the Matlab and the spice model. The highest
error is reached at around the tuning frequency of 13.56MHz and is below
-80dB. This shows that the frequency behaviour of the two models is very
similar.

6.1.3 Stimulus Generation

A ’Type A’ reader envelope (106k bitrate, Modified-Miller encoding, 32x
oversampling, dataword: ’26’) is used as stimulus for the time-domain sim-
ulation. The spice model gets the same envelope as the Matlab framework.
To achieve this, the envelope is generated in Matlab and saved as a text file
that is then used as a source control file in the spice simulation(also called
’PWL file’).

71

6 Example Applications & Results

Fi
gu

re
6

.3
:T

yp
e

A
M

ill
er

en
ve

lo
pe

fo
r

IS
O

-s
et

up

72

6.1 Comparison of Spice Model vs. Matlab Model (Framework generated Model)

6.1.4 Time-Domain Simulation

When characterising a coupling scenario from PCD to PICC, the relevant
time-domain signals are: The PCD antenna current Iant Reader , the PICC
antenna current Iant Card, the RX voltage at the PICC Vrx Card and the
PCD TX voltage Vtx Reader. The antenna current Iant Reader at the PCD
is directly related to the field-strength and therefore to the power of the
transmission. The antenna current Iant Card at the PICC is purely inducted
over the coupling and is also related to the received field-strength/power.
The voltage Vrx Card at the card shows the signal that is used for reception
in the card. The voltage Vtx Reader shows the signal at the transmission pin
of the PCD circuit. The time-domain results for the given ’Type A’ envelope
is shown in Figures: 6.4, 6.5, 6.6 and 6.7.

73

6 Example Applications & Results

Fi
gu

re
6

.4
:A

nt
en

na
cu

rr
en

t
of

PI
C

C

74

6.1 Comparison of Spice Model vs. Matlab Model (Framework generated Model)

Fi
gu

re
6

.5
:A

nt
en

na
cu

rr
en

t
of

PC
D

75

6 Example Applications & Results

Fi
gu

re
6

.6
:R

X
Vo

lt
ag

e
PI

C
C

76

6.1 Comparison of Spice Model vs. Matlab Model (Framework generated Model)

Fi
gu

re
6

.7
:T

X
Vo

lt
ag

e
PC

D

77

6 Example Applications & Results

The error between Spice and Matlab is calculated in % of the maximum mag-
nitude of the reference signal (Spice signal). In other words, the magnitude
for both signals is calculated, the difference is calculated and normalized to
% of maximum signal amplitude of the Spice signal. This way, the error is
always defined as a relative error between the Spice model and the Matlab
model. Due to the fact that the result vectors in Matlab are equally spaced
in time and the result vectors in Spice are not equally spaced in time, an
additional interpolation error is interfered.

The results show very low errors (<1 %), which is very good given the
additional interpolation errors.

6.1.5 Discussion

Time-domain simulations with a shaped envelope yield very similar results
for the Spice model and the automated Matlab model. Also the frequency
response looks very similar. These results imply that the automated model
fits the spice simulation well enough for further use. The simulation setup
can be used to verify the ISO compliance tests with the Matlab model. An
analog receiver model and a digital receiver model need to be attached to
the output of the air-interface model. A successful decoding of the received
envelope would then show the ISO-compliance.

6.2 Reader to Card Communication: Coupling
Variation

This example shows the influence of the coupling between reader and card.
Due to the fact that the coupling changes with the distance of PCD and PICC,
the variable coupling k could be seen as a variable distance. To show the
influence of the coupling, the circuit behaviour is shown for three different
coupling factors. A simulation is shown where the card is ’moved’ away
from the reader. Finally, the behaviour is compared with the corresponding
spice simulation to show that the coupling influences the spice and the
Matlab model in the same way.

78

6.2 Reader to Card Communication: Coupling Variation

Figure 6.8: Spice schematic of PCD to PICC for variation of k

6.2.1 Circuit

The used matching circuit (see Fig. 6.8) is a ’dummy’ PCD with a ’dummy’
PICC just to illustrate the behaviour of the coupling. The netlist is directly
exported from spice and put into the automated model generation part of
the Matlab framework.

6.2.2 Stimulus Generation

The PCD sends a ’Type A’ reader envelope (106k bitrate, Modified-Miller
encoding, 32x oversampling, dataword: ’AF’). For the sake of comparability,
the spice simulator and the Matlab framework use the same stimulus.

6.2.3 Sweep over k

A sweep of the coupling parameter k12 for a value range of 0.01 to 0.8 is
done in 0.01 steps. Fig. 6.9 shows the result of the sweep.

79

6 Example Applications & Results

Fi
gu

re
6

.9
:S

w
ee

p
ov

er
k

=
0

.0
1

to
k

=
0
.8

80

6.3 Reader to Card Communication: Sweep over Component Value

The result shows that the matching for a certain distance range. When mov-
ing the PICC towards the PCD, the coupling gets better and the matching
network gets in tune. For a certain range around a coupling of k = 0.2 to k =
0.5 the current in the PICC antenna is at a maximum. For a closer distance
where k >0.6 the tuning gets worse again. This comes from the definition of
the use case. The distance (and therefore coupling value k) is optimal for
the range that is average for most application use cases. The PCD current
gets lower for higher coupling factors. This is due to the fact that the PICC
is a higher load for the PCD for higher coupling factors.

6.2.4 Discussion

The ’online’ variation of the coupling parameter is shown. This represents a
model for a card that moves in the reader field. This kind of simulation can
be used to determine the voltage and current values at different nodes in
the PCD and the PICC to analyze the tuning behaviour over coupling.

6.3 Reader to Card Communication: Sweep over
Component Value

A key aim of this framework is to perform tuning optimization tasks. To
show how this optimization works, the coupling system from the previous
task (PCD with dummy PICC, Fig. 6.8) is used. As stimulus the PCD just
sends a plane carrier signal without data.

For a fixed coupling of k = 0.3 the voltage at RX of the card is simulated
over the variation of the capacitor parallel to RX. The value of the capacitor
’Cdut’ is varied from 10pF to 100pF. The tuning of the whole system will be
influenced by this parameter value variation.

The point where the voltage at card RX is at a maximum can be seen as the
point for the optimal tuning for the coupling of k = 0.3. The corresponding
value for Cdut for which the RX voltage reached a maximum is the value
for the optimal tuning.

81

6 Example Applications & Results

Fi
gu

re
6

.1
0
:S

w
ee

p
ov

er
C

du
t

=
1

0
pF

to
1

0
0

pF

82

6.3 Reader to Card Communication: Sweep over Component Value

6.3.1 Discussion

Given a certain circuit topology and coupling parameters, reader receiver/-
transmitters of card receiver/transmitter parts can be optimized according
to given specifications. A variation of more than one component value at
once is not implemented and not necessary. Due to the fact that for most
applications one of the communication partners (PCD or PICC) is already
given and therefore fixed, no optimisation can be done on this circuit part. A
variation of the coupling factors and component values also is not necessary,
because the coupling factor represents the geometric coupling situation and
is part of the use case for which the optimization is done.

83

7 Concluding/Summary &
Outlook

The outcome of this thesis is a Matlab framework that can model the phys-
ical behaviour of an NFC air-interface circuit. The model describes the
behaviour at an appropriate level for R&D and V&V. Due to the holistic
approach of the framework, the stimulus generation, model generation (and
Matlab model vs. spice model comparison), simulation and output evalua-
tion can be done in one tool. The modular construction of the framework
provides the option of functional extensions. The framework is fully usable
as a stand-alone tool for matching network analysis. It is also the basis
for a more sophisticated design and simulation environment for concept
engineering for future NFC products. The framework is already in use. Ad-
ditional features, additional air-interface models, analog models and digital
models are under development. The functions for spice model to Matlab
model comparison are a big help for verifying used models and therefore
integrating the framework in the traditional work flow. Possible extensions
include models of the analog receiver and models of the digital receiver.
These additional models are connected to the air-interface model within the
same framework. In the digital receiver model the data can be decoded and
interpreted. This represents a full NFC signal chain from signal generation
to signal detection. With every extension to the framework, more and more
project stages will include the usage of the framework.

85

7 Concluding/Summary & Outlook

Abbreviations

• RFID← Radio frequency identification
• NFC← Near field communication
• ALM← Active load modulation
• SS← State-space
• SSM← State-space model
• KVL← Kirchoff’s voltage law
• KCL← Kirchoff’s current law
• PCD← Proximity coupling device
• PICC← Proximity card or
• DUT← Device under test
• LTI← Linear time-invariant
• LTV← Linear time-variant
• DFS← Depth-first search
• R & D← Research & Development
• V & V← Verification & Validation

86

Bibliography

Burfield, Chandler (2013). Floyd-Warshall Algorithm. url: http://math.m
it.edu/~rothvoss/18.304.1PM/Presentations/1-Chandler-18.30

4lecture1.pdf (cit. on p. 60).
Cheever, Erik (2014). Scam: Symbolic Circuit Analysis in Matlab. url: http:

//www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA6.html (cit. on
p. 20).

Finkelzeller, Klaus (2008). RFID Handbuch. sixth. Hanser. isbn: 978-3446429925

(cit. on pp. 2, 3).
Franz Aurenhammer, Oswin Aichholzer (1999). Datensstrukturen und Algo-

rithmen. TU Graz Skriptum (cit. on p. 60).
ISO/IEC (2008). Identification cards - Contactless Integrated Circuit Cards -

Proximity Cards, 2nd Edition. url: http://www.iso.org/iso/iso_cat
alogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693

(cit. on pp. 2, 5).
ISO/IEC (2013). Information technology - Telecommunications and Information

Exchange between Systems - Near Field Communication - Interface and Proto-
col. url: http://www.iso.org/iso/home/store/catalogue_tc/catalo
gue_detail.htm?csnumber=56692 (cit. on pp. 2, 5).

Muehlmann, Ulrich (2013). Matlab Modelling of Electrical Networks (Internal
NXP Paper) (cit. on p. 36).

N. Dourdoumas, M. Horn (2003). Regelungstechnik. Pearson. isbn: 978-3-
8273-7059-4 (cit. on p. 32).

T. Cormen Ch. Leiserson, R. Rivest (1990). Introduction to Algorithms. MIT
Press. isbn: 0-262-03141-8 (cit. on p. 60).

Wing, Omar (2008). Classical Circuit Theory. Springer. isbn: 978-0-387-09740-4
(cit. on p. 19).

87

http://math.mit.edu/~rothvoss/18.304.1PM/Presentations/1-Chandler-18.304lecture1.pdf
http://math.mit.edu/~rothvoss/18.304.1PM/Presentations/1-Chandler-18.304lecture1.pdf
http://math.mit.edu/~rothvoss/18.304.1PM/Presentations/1-Chandler-18.304lecture1.pdf
http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA6.html
http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA6.html
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56692
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56692

