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Abstract

Automated speech recognition (ASR) is of major importance as a hands free human-computer
interface. Possible applications are voice controlled systems, dialog systems and documentation
from dictation. Systems for the English language already have very low word error rates (WERs)
due to large corpora being freely available. For the German language there seems to be too
little free data available to train an ASR system with comparable accuracy. We suspect that
German models with superior accuracy can be trained by leveraging English training data. This
hypothesis is evaluated in this work.
Therefore, we use several ASR models: (i) a particular type of hidden Markov model hybrid,

i.e. a HMM with a factorized time delay neural network (HMM/TDNN-F) (ii) a transformer
network, (iii) the Wav2Letter and (iv) DeepSpeech 2 architecture, in a transfer learning ASR
setup. Open source frameworks are used to compare the proposed architectures on the English
speech dataset Librispeech and the German Mozilla Common Voice dataset. In particular,
transfer learning models are initialized with parameters obtained with the English speech corpus
and mapped to the German ASR models. In order to align subword representations we adapt
the network's output layer to the vocabulary size and subword units of the German speech
corpus. We measure the network's accuracy in terms of WER and character error rate (CER).
The transformer architecture trained without a language model (LM) achieves the best WER on
the Librispeech dataset, i.e. a WER of 4.9% on Librispeech test-clean was achieved. The same
model trained on the German Mozilla Common Voice dataset reached a WER of 39.9%. Using
a transfer learning setup including English speech this accuracy could be improved relatively
by 16%. We conclude that the performance of German ASR models is improved signi�cantly
by using an English model as weight initialization in a transfer learning setup. This e�ect is
stronger when little training data is available. ASR models only using connectionist temporal
classi�cation (CTC) reached WERs of 13.43% (Wav2Letter) and 29.39% (DeepSpeech 2) without
a LM on the Librispeech corpus. This indicates that the attention mechanism of the transformer
architecture is increasing accuracy and reducing the need for a LM. This paves the way for edge
implementations, replacing memory demanding LMs.
When analyzing the computational performance of the selected architectures, we compared

network inference time on the CPU of both ESPnet and Kaldi using an Intel Xeon E5-2697v3
@ 2.60GHz CPU. For the evaluation in terms of training and inference performance using GPUs
an NVIDIA Tesla K40c GPU with 12GB VRAM was used. The Wav2Letter model had the
fastest training time with 4.25 hours per training epoch on Librispeech. DeepSpeech2 had the
fastest greedy decoding time on the GPU with 1.33 minutes for 1 hour of audio. Comparably
the HMM/TDNN-F o�ered the fastest greedy decoding time on the CPU with 4.72 minutes
for 1 hour of audio. Inference time highly depends on the choice of the LM size and beam
size for decoding phoneme and character representations obtained by the acoustic models. The
evaluation in terms of inference time exhibits that all evaluated models can decode audio faster
than real time if the beam size of the decoder is su�ciently small. However, the evaluated
models, have to be scaled down signi�cantly in terms of memory and computational complexity
to run on edge devices in realtime.
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1
Introduction

1.1 History of Speech Recognition

This section provides an overview of the developments in the �eld of automated speech recognition
(ASR) in the previous decades. Automated speech recognition has been an active �eld of research
since the 1950s. Figure 1.1 illustrates a summary of the progress in a timeline.

1950

Speaker dependent digit
recognition by Bell Labs.

1990

Development of pure
TDNN and hybrid

HMM/ANN architectures

1970

Harpy system by CMU
recognizes 1011 words in

DARPA SU challenge

Invention of LPC and
MFCC features

Recent

End2End Deep Learning
ASR systems with CTC

and attention mechanism

DNN powered voice
assistants

Speech recognition on
phoneme basis, IBM
shoebox as speech

frontend for a calculator

1960

HMMs and MLPs gain
popularity in ASR systems

Sphinx system by CMU is
the first large vocabulary,

speaker independent
continuous speech
recognition system

1980

Neural feature
transformation

Invention of CTC

2000

Figure 1.1: A timeline of progress in ASR.

1.1.1 1950s

One of the earliest attempts to do automated speech recognition was done by Homer W. Dudley
et. al. [3]. They invented a sound printing mechanism that takes speech as input and analyzes
the power spectrum of di�erent frequency subbands using band-pass �lters to print phonetic
characters. In 1952, Davis et al. [4] from Bell Telephone Laboratories invented a speaker depen-
dent recognizer for spoken digits. Recognition was done by performing pattern matching on the
frequencies of the �rst and second formant of the utterance of a single digit.

1.1.2 1960s

Halle et al. [5] suggested a model for speech recognition in 1962 that makes use of an "analysis
by synthesis" approach. Using a speech synthesizer phones are synthesized using rules and
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1 Introduction

compared to the input. A control component is used to match phoneme combinations using the
best matching phone sequence as a result. The model is only suitable for arbitrary sequences of
phones seperated by silence as no language speci�c constraints are imposed on the output and
no segmentation logic is used. In 1963, Sakai et al. [6] propose a mechanical speech recognition
system with an unconstrained alphabet. By segmenting the data on a phonetic level they avoid
relying on input constraints (e.g. constraining the input to a single word or phones seperated by
silence) and can therefore recognize speech continuously.

1.1.3 1970s

The Hearsay system [7] introduced in 1973 aims to provide continuous speech recognition of
multiple speakers with small delay. The main idea is to leverage knowledge from multiple sources
to improve the recognition accuracy. A source of knowledge is any module that can produce
and rate hypotheses, i.e. an acoustic recognizer, a syntactic recognizer, a semantic recognizer.
Knowledge sources produce possible hypotheses given the input. It is assumed that errors happen
at every analysis stage. Therefore, produced hypotheses can be rejected, accepted or reprioritized
by an ensemble of knowledge sources. The system is modular so that sources of knowledge can be
added and removed without breaking it. In 1975, Itakura [8] successfully used linear prediction
coe�cients (LPCs) as input features for dynamic time warping achieving speaker dependent
recognition rates of 97.3% in a 200 word challenge. The Dragon system was introduced by Baker
in 1975 [9] and was one of the �rst systems to build on hidden Markov models (HMMs) for
recognition. In the 80s HMMs gained traction, were researched increasingly [10] [11] and are
still used in state of the art ASR pipelines [12]. Lowerre developed the Harpy speech recognition
system [13] in 1976 as an improved version of Hearsay I and Dragon. It was the best performing
contribution to the 5 year ARPA SUR challenge [14] and could recognize a vocabulary of over
1000 words. It represents knowledge in a graph structure and performs speech recognition by
doing a graph search. Harpy improves on Hearsay-I's and Dragon's search algorithms by using
a beam search that decreases the search space by pruning hypotheses with a probability below
a certain threshold. In 1976, Paul Mermelstein introduced Mel frequency cepstral coe�cients
(MFCCs) [15], an e�ective feature representation of voice signals that is still used in modern
speech recognition systems [16, 17]. An example of MFCCs is shown in Figure 1.2 and the
corresponding waveform is shown in Figure 1.3. In 1980, Davis et al. [18] showed the superiority
of MFCCs compared to LPCs and linear frequency cepstrum coe�cients in a speech recognition
task leading to a rise in popularity of the technique.

� 12 �
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Figure 1.2: MFCC features of the sentence "The quick brown fox jumps over the lazy dog".

Figure 1.3: Raw waveform of the sentence "The quick brown fox jumps over the lazy dog" sampled at
44100Hz.

1.1.4 1980s

Although HMMs have been used in speech recognition by Baker et al. [9] and Jelinek et al.
[19], HMMs only gained popularity in the early 1980s. HMMs model the variability of speech as
well as pronunciation [20]. In particular, algorithms like the Baum-Welch algorithm (cf. Section
2.2.1) for training the parameters of HMMs and the Viterbi algorithm, an algorithm �nding the
most probable state sequence given a model and an observation sequence [21], are powerful tools
to improve speed and accuracy. In particular, the Baum-Welch algorithm solves the alignment
problem, a central problem in speech recognition described in detail in Section 2.2. Another �eld
of research in the late 80s were arti�cial neural networks (ANNs). Speech recognizers heavily
relied on high level language models (LMs) [22]. Therefore, Lippmann concluded there was need
for improvement of low level feature matching. Neural networks have been compared to conven-
tional approaches in constrained settings like classi�cation of three di�erent phonemes [23] or
classi�cation of 9 similiar letters of the alphabet [24]. Speech recognition systems at the time

� 13 �



1 Introduction

worked because they imposed constraints on one or more of the following factors [25]: (i) Speaker
independence, (ii) vocabulary size, (iii) continuous speech and (iv) grammar perplexity. Gram-
mar perplexity describes the average number of possible word choices at any point by a language
model. With the SPHINX system, Lee et al. [26] introduced the �rst successful large vocabulary,
speaker independent continuous speech recognition system that relaxed all the aforementioned
constraints. At the time it had the best speaker independent results for the DARPA 997 word
resource management task with accuracies of 71%, 94% and 96% at grammar perplexities 997,
60 and 20 [25]. The SPHINX system uses HMMs for phone, word and sentence models, is trained
with the Baum-Welch algorithm and decoded with a Viterbi beam search. In 1986, Bahl et al.
[27] suggest training HMM parameters to maximize mutual information MMI between audio se-
quence and transcription sequence instead of using a maximimum likelihood (ML) criterion and
training parameters that maximize the probability of observing the training audio sequences. In
a speaker-dependent word recognition task the proposed MMI criterion performed 18% better
than the classic ML criterion. The method can only be applied to pretrained models and has a
lot of hyperparameters that need to be tuned [28].

1.1.5 1990s

Typically HMM based systems used GMMs as acoustic model. Seperate GMMs are trained per
phone and can calculate the probability of audio features representing the phone modeled by the
GMM. In ASR GMM-HMMs su�er from several shortcomings [29] such as poor discrimination
between GMMs due to maximum likelihood training, assumption that speech is a �rst order
Markov chain of audio frames and assumptions that phones can be represented by GMMs.
Therefore, researchers tried to use ANNs as ASR framework instead of HMMs. In particular,
the ANNs used were time-delay neural networks (TDNNs) [30] and recurrent neural networks
(RNNs) for their ability to model sequences. Examples of pure ANN architectures are Alpha
nets [31] and Viterbi nets [32] that emulated HMM behaviour, but did not improve on it. Hybrid
HMM/ANN approaches were proposed in the 90s to combine the discrimination capabilities
of ANNs with the solution to the alignment problem the HMM provides [33, 34]. In these
examples ANNs are used as an estimator for emission probabilities of the HMM. In 1997, Juang
et al. propose a substantial improvement to statistic methods for pattern matching in speech
recognition [35]. They argue that the widely used Bayes theorem is not optimal for speech
recognition, because it is required to estimate a distribution from limited data which leads to
suboptimal results. Instead they suggest using classi�cation error rate as a cost function and
minimizing it. The resulting algorithm is called generalized probabilistic descent and produces
30-50% lower error rate (relative) than the commonly used ML classi�er. In 1997 Hochreiter and
Schmidhuber layed the ground work for modern deep learning approaches with the invention of
long short-term memory networks (LSTMs) [36]. Long short-term memory networks are RNNs
that do not su�er from the vanishing gradient problem [37] and can therefore make use of long
term dependencies in sequences necessary for speech recognition.

1.1.6 Recent developments

Hermansky et al. [38] publish an alternative approach to hybrid HMM/ANN systems in 2000
that improves the error rates on the Aurora [39] noisy continuous digits task by 35%. Compared
to common hybrid systems that use a neural network as acoustic models they feed feature vectors
into a neural network and use the resulting vectors as input for a GMM acoustic model. The
invention of connectionist temporal classi�cation (CTC) by Graves et al. [40] in 2006 provided
an alternative to HMMs for solving the alignment problem in ASR. With CTC it is possible to
train an RNN on unsegmented and unaligned data paving the way for end-to-end deep learning
ASR solutions [41�43].
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In 2011, Povey et al. [16] released the Kaldi speech recognition toolkit based on weighted �nite
state transducers (WFSTs) [44] with support for deep neural network (DNN) acoustic models and
prede�ned recipes for ASR datasets. The toolkit is still very popular in the research community
for hybrid HMM/DNN architectures [45�47] and achieves competitive results. However, conven-
tional systems have some drawbacks that researches are trying to avoid by building end-to-end
ASR systems: They need to be trained in multiple steps instead of one streamlined procedure
with a single training objective [48]. When training a new DNN acoustic model a HMM with
GMMs needs to be trained �rst to obtain initial alignments. HMM/DNN systems also need
linguistic information that can introduce errors like hand engineered phonetic dictionaries and
phonetic context decision trees. Another drawback is that conventional systems assume condi-
tional independence of the current frame and its label given the previous input frames, which is
not true for ASR [48]. The di�erent modules in such a system normally do not share the same
objective function that is optimized resulting in modules that do not �t together perfectly.
In 2012, Graves introduced the RNN Transducer [41] that extends CTC by a prediction net-

work, that calculates the probability of an output based on all previous outputs analogous to
a language model (LM) integrated into the model architecture. In 2015, Chorowski et al. [49]
successfully applied an encoder-decoder architecture with attention mechanism to speech recog-
nition as an alternative to CTC. The encoder takes audio frames and generates a sequence of
feature vectors. At each decoding step the attention mechanism generates a weighted sum over
all outputs of the encoder. This sum and the decoder state is then used to generate the tran-
scription. Compared to CTC, the encoder-decoder with attention mechanism does not rely on
the conditional independence assumption [50], but it is unsuitable for realtime decoding because
it needs to see the whole input sequence before decoding [51]. Since then new technologies have
been proposed to apply attention in a streaming online ASR setting [51�53]. The transformer
architecture introduced by Vaswani et al. [54] improves on encoder-decoder with attention by
removing RNNs from the architecture and therefore allowing increased parallelization. It pro-
duces state of the art results in neural machine translation tasks and was successfully applied to
ASR by Zhou et al. [55].

Preprocessing &
feature extraction Acoustic model Decoder

Audio
features

Language model

Character
probabilities

Speech
audio

Result
sentence

LM
probabilities

Figure 1.4: Diagram of a conventional ASR pipeline.

Figure 1.4 shows the modules of a conventional ASR pipeline, that can also be found in many
end-to-end ASR systems. Firstly, the raw audio is preprocessed with noise removal, voice activity
detection and pre-emphasis for higher frequencies [56]. Secondly, it is split into short overlapping
frames (about 20ms) and a window function might be applied to emphasise a speci�c part of the
frame and reduce discontinuity at beginning and end of the frame. Finally, the audio frames are
mapped from the time domain to the time frequency domain using a discrete Fourier transform
[57]. An example of the resulting spectogram can be seen in Figure 1.5.
Features that compress the essential information of the preprocessed audio are extracted with

one of various feature extraction techniques including MFCCs (cf. Section 2.1.1), Mel-scaled �lter-
banks (cf. Section 2.1.1) or perceptual linear prediction (PLPs) [58] features. These features of
audio frames are then fed to the acoustic model to get a probability distribution over a unit of
transcription that can include graphemes, subword units or (context dependent) phonemes. The
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Figure 1.5: Log-Spectogram of the sentence "The quick brown fox jumps over the lazy dog".

acoustic model is responsible to discriminate between the possible outputs regardless of back-
ground noise and interference. Acoustic model architectures include GMMs, RNNs, TDNNs,
long short-term memory networks (LSTMs), sequence-to-sequence models with attention, trans-
formers and convolutional neural networks (CNNs). At training time ASR systems can either use
HMMs with Baum-Welch algorithm (cf. Section 2.2.1), connectionist temporal classi�cation (cf.
Section 2.2.2) or an attention mechanism (cf. Section 2.2.3) for solving the alignment problem
(cf. Section 2.2). At runtime the system produces a probability distribution over the units of
transcription for each frame. These can then be decoded with a suitable algorithm including
greedy decoding or beam search decoding [40]. The decoder can make use of a LM to restrict the
output to prede�ned words and grammar. Popular options are n-gram [59], LSTM [12], gated
CNNs [60] and transformer [12] LMs. Another option for decoding is multi pass decoding where
initial transcription candidates, e.g. word lattices [61], are selected with the acoustic model and
an e�cient LM and rescored with larger LMs in the following pass(es).

1.2 Scope of Thesis

The scope of this thesis consists of the following goals:

1. Performance evaluation of di�erent ASR architectures in terms of WER using two speech
corpora, i.e. Librispeech (cf. Section 4.1.1), an English read speech corpus with 940 hours
and the German Mozilla Common Voice corpus (June 2019) (cf. Section 4.1.2), a German
read speech corpus with 324 hours. Librispeech was selected, because it is commonly used
in recent publications, is freely available and has su�cient clean data to provide good
results [12,62]. The German Mozilla Common Voice corpus was selected, because it is the
largest freely available German speech corpus. In particular, the evaluated architectures
are HMM/TDNN-F, Wav2Letter, DeepSpeech 2 and an ESPnet transformer introduced in
more detail in Chapter 3. They were selected based on their recency, good performance
and existence of an implementation in open source frameworks.

2. Performance evaluation in terms of WER of a transfer learning setup based on transformer
architecture trained on the German Mozilla Common Voice corpus and initialized with the
model trained on the Librispeech corpus.
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3. Performance evaluation in terms of training and inference speed of the open source ASR
frameworks used in (1), i.e. Kaldi, OpenSeq2Seq and ESPnet (cf. Section 3.1).

1.3 Outline of Thesis

This thesis is divided into 5 Chapters.

� In Chapter 2 we provide an overview of the mathematical concepts used in ASR and the
ASR systems discussed in this thesis.

� Chapter 3 describes several ASR system architectures in detail. Furthermore, information
on implementation frameworks of those architectures is provided.

� Chapter 4 is divided into three parts. Firstly, it provides information on the speech corpora
Librispeech and German Mozilla Common Voice. Secondly, it describes the experimental
evaluation in terms of WER of ASR architectures selected in the previous Chapter with
the Librispeech corpus, the German Mozilla Common Voice corpus and a transfer learn-
ing approach. Finally, it compares the inference and training time of each of the ASR
architectures as well as features and usability of the selected frameworks.

� Chapter 5 provides a conclusion and future outlook of the thesis.

1.4 Contributions

We provide a performance evaluation in terms of word error rate (WER) of acoustic models with
architectures HMM/TDNN-F, Wav2Letter, DeepSpeech 2 and ESPnet transformer on the 960h
Librispeech corpus, including a transfer learning setup using an English transformer model as
initialization for a German ASR task. In particular, the best achieved WER for the Librispeech
corpus without LM is 4.9% on test-clean with the transformer architecture. We show that
transfer learning from an English model provides a major accuracy boost when training the
transformer architecture on the German Mozilla Common Voice corpus and report the results.
In particular, WERs of 37.6% and 33.5% are achieved for the o�cial Mozilla Common Voice
split and a larger custom split (cf. Section 4.1.2) which is a relative improvement of 37.5% and
16% over models trained without transfer learning. Finally we provide a comparison of the
frameworks and network architectures that were used based on training and inference speed. In
particular, we report that Wav2Letter has the fastest training time, DeepSpeech 2 provides the
fastest GPU inference and the Kaldi HMM/TDNN-F provides the fastest CPU inference with a
common setup.
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Speech Recognition - A Transfer Learning Approach

2
Mathematical Background

2.1 End-to-End Speech Recognition

Due to recent technological advances and availability of large amounts of data it has become
possible to reduce complexity of earlier ASR systems and learn speech recognition end-to-end in
a single DNN with performance comparable to the state-of-the-art. While HMMs have proven
e�ective for speech recognition an end-to-end system can reduce the complexity of preprocessing,
acoustic modeling, building LMs, special handling of out of vocabulary words and the need for
human expertise for phonetic dictionaries in HMM based systems. ANNs have already improved
HMM performance [29] in hybrid HMM/ANN approaches. In a hybrid HMM/ANN the ANN
is used for classifying audio frames and trained to minimize frame classi�cation error. However,
minimizing frame classi�cation error does not directly translate to minimized labelling error [28]
and is therefore not as e�ective. End-to-end ASR networks improve on the shortcomings of
HMM/ANN hybrids by training acoustic, alignment and language model end to end without
the need for multi step procedures or hand engineered features like phonetic dictionaries. They
optimize the sequence label error instead of frame label error and therefore maximize the proba-
bility of correct sequences. In HMM/ANN hybrids, the HMMs are trained with the Baum-Welch
algorithm to �nd proper alignments for the given data. End-to-end ASR systems replace this
component with one of the following: (i) connectionist temporal classi�cation (CTC), (ii) atten-
tion mechanism or (iii) hybrid attention/CTC. In the following we describe the components used
in a state-of-the-art end-to-end ASR system. In particular, we highlight feature pre-processing,
acoustic model, LM and alignment algorithms for �nding the most probable state-sequence for
speech audio given a set of training examples.

2.1.1 Preprocessing

Feature extraction plays an important role in ASR due to the high dimensionality of raw waveform
data. It is possible for DNNs to learn a feature representation directly from raw waveform
[63�65], but in terms of accuracy and training time they can still pro�t from conventional feature
representations. Popular feature representations are Mel-scaled �lter-bank features and MFCCs
[18] that were originally used in combination with HMM/GMM hybrids.

Log Mel-scaled �lter-bank features

Log Mel-scaled �lter-banks [66] are a common feature representation and the basis for MFCCs
[18]. They are short term features based on the frequency spectrum and scaled by the Mel scale
[67], a scale for measuring pitch perceived by the human ear. The Mel scale is a logarithmic
scale that compresses higher frequencies that cannot be distinguished by humans easily. It is used
to maintain the most information relevant for speech and compress the remaining information
accordingly. To create Mel-scaled �lter-banks the audio is �rst split into short frames that usually
have an overlap. In this example frames of length 25ms with a stride of 10ms are used, which
is a common choice [66, 68]. Then a Hamming window function is applied to each audio frame
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smoothing the signal at the edges. Given a frame with N samples a Hamming window of the
same size is de�ned as

ω(n) = 0.54− 0.46 cos (
2πn

N − 1
) ∀n : 0 ≤ n ≤ N − 1 . (2.1)

An example of a Hamming window function for 100 samples is shown in Figure 2.1. The smoothed

Figure 2.1: Plot of the Hamming window function for a total number of N = 100 samples.

frames are transformed from the time domain to the frequency domain with a fast Fourier
transform (FFT) [69] resulting in a frequency spectrum for each audio frame. To preserve
information important for human speech perception we apply 40 Mel scaled triangular bandpass
�lters to the frequency spectrum. The width of the �lters is evenly spaced in the Mel domain
and then transformed back to the Hz domain. The Mel value m(f) of a Hz value f is calculated
as

m(f) = 2595 log10(1 +
f

700
) . (2.2)

The resulting 40 dimensional vector is our Mel-scaled �lter-bank feature vector of which a log
Mel-scaled �lter-bank vector can be obtained by taking the logarithm. This vector characterizes
the speech audio and can be used for ASR applications. However, its values are correlated,
because the triangular bandpass �lters overlap. Therefore log Mel-scaled �lter-bank features can
be processed further to obtain decorellated MFCC features.

Mel-Frequency Cepstral Coe�cients

Since their introduction by Davis and Mermelstein in 1980 [18], MFCCs have been a dominant
feature representation for speech in ASR tasks [70]. They are decorrelated short term fea-
tures based on log Mel-scaled �lter-banks. MFCCs are calculated by taking the discrete cosine
transform of the log Mel-scaled �lter-bank feature vector. A common choice for the number of
coe�cients N is 13 as is the default in Kaldi [16]. Given a log Mel-scaled �lter-bank vector x
with size K an MFCC ci is calculated by

ci =

K∑
k=1

xkcos

(
i ·
(
k − 1

2

)
π

20

)
, i = 1, ..., N . (2.3)

The �rst coe�cient is usually discarded, because its information is irrelevant to ASR [71]. Co-
e�cients 2-13 are combined in an acoustic vector for each frame as displayed in Figure 2.2 and
can be used for ASR. MFCCs only describe the current speech frame, therefore delta features
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Figure 2.2: Plot of MFCCs of a speech signal.

can be added for each MFCC to describe the change of the coe�cients over time [72,73]. A delta
feature vector dt for a frame at timestep t is given by

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

, (2.4)

where ct is the MFCC vector at timestep t and N is the number of context vectors used to
compute the delta feature. Das et. al. [73] recommend setting N to 2, but it can be tuned in
the range of positive integers. Additionally, the MFCCs' acceleration (delta-delta features) can
be calculated by performing the delta calculation given in Equation 2.4 and replacing the MFCC
vector ct with the delta vector dt. Adding delta and delta-delta features to MFCCs results in
a 36 dimensional feature vector that contains frame and temporal information. Furthermore,
usually the log energy, the delta log energy and the delta-delta log energy is considered. This
results in a total of 39 features for each speech frame.

2.1.2 Acoustic Model

The acoustic model helps with calulating argmaxY P (Y |X), the most likely label sequence Y =
(y1, ..., yN ) for an input sequence X = (x1, ...,xT ) of preprocessed audio features. Elements
of the label sequence can be, but are not limited to context dependent or independent phones,
graphemes and subwords. Using Bayes theorem we can rewrite the problem of �nding the most
likely label sequence Y ∗ as

Y ∗ = argmax
Y

P (Y |X) = argmax
Y

P (X|Y ) · P (Y )

P (X)
. (2.5)

Furthermore, the term P (X) can be dropped, because it only scales the probability label sequence
Y resulting in

Y ∗ = argmax
Y

P (Y |X) = argmax
Y

P (X|Y ) · P (Y ) . (2.6)

For the acoustic model we can di�erentiate between generative and discriminative modeling [74]
of acoustic features. A generative model only models P (X|Y ) and additionally uses a LM P (Y )
in order to calculate P (Y |X) with Bayes theorem as shown in Equation 2.6. A discriminative
model represents P (Y |X) directly as it is usually done in DNN based models. The output of the
acoustic model is used to generate transcription hypotheses that can be rescored by a LM. In
conventional systems the acoustic model consists of GMMs or DNNs combined with HMMs for
alignment. In end-to-end deeplearning models the acoustic model is typically a DNN architecture
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with CTC or attention mechanism as alignment model (cf. Section 2.2).

2.1.3 Language Model

A language model scores the likelihood of a sequence of words occuring in an utterance of a lan-
guage. The goal is to have a system that computes P (Y ) of a word sequence Y = (y1, y2, ..., yn).
Transcription hypotheses generated from the output of the acoustic model can be scored with
the weighted probability given by the LM. In this manner implausible word sequences get a
lower rating. It also helps with disambiguation of similiar sounding word sequences, if one is
more plausible than the other according to the LM. In case of a generative acoustic model, the
score of the LM is used to calculate the probability of a transcription sequence given the input as
described in Section 2.1.2. A popular LM choice is KenLM [75]. It is a time and memory e�cient
implementation of an n-gram language model that is used in multiple recent ASR frameworks
including OpenSeq2Seq [76] and Wav2Letter++ [77].

2.2 Solutions to the Alignment Problem

The goal of the acoustic model is to transcribe a sequence of audio frames to a sequence of labels.
Finding the most probable mapping between input frames and elements of the label sequence
is known as the alignment problem. An alignment of audio segments to characters is shown in
Figure 2.3. For training an ASR system it is necessary to know the alignment of training audio

QT H E U I C K
Figure 2.3: Example of a transcription aligned with the corresponding audio segments on the character level.

with its labels [63]. Manually annotating every letter or phoneme in a dataset is a lot of work
and therefore often not feasible. Therefore, large datasets such as LibriSpeech [2] provide short
audio �les with transcription without alignment. Multiple approaches have been developed to
learn alignments from data and they will be described in more detail in the sequel.

2.2.1 Baum-Welch algorithm

We de�ne a HMM as Θ = (A,B,π) where A is a matrix of transition probabilities between a
set of states S, B is a matrix of emission probabilities of the hidden states and π is a vector of
the initial state distribution [78]. To model an ASR problem with HMMs we assume that the
emissions are feature vectors of the audio frames and the hidden states are their corresponding
labels. Following that scheme a hierarchy of phone, subword, word and sentence HMMs can be
constructed by synthesis of sub-unit HMMs. Finding the correct labels for an utterance is then
a problem of �nding the most probable state sequence Q∗ given an observation sequence, also
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known as decoding. Formally we want to calculate [78]

Q∗ = argmax
Q

P (Q|X,Θ) (2.7)

where Q = (q1, ..., qT ) is a state sequence, X = (x1, ..., xT ) is an observation sequence and Θ are
the parameters of the HMM. The solution to this problem can be calculated using the Viterbi
algorithm [78]. We have previously made the assumption that we already have a HMM that
has the correct parameters to perform speech recognition by decoding a frame sequence. This
leads us to the problem of �nding parameters that maximize the probability of observing given
training sequences also known as training.
Training is de�ned by Rabiner [78] as �nding HMM parameters Θ̂ according to

Θ̂ = argmax
Θ

P (X|Θ) (2.8)

for an observation sequence X for several sequences. For this problem there is no formal solution
for global optimization [78]. However, it is possible to compute a local optimum iteratively with
the Baum-Welch algorithm [79], an algorithm based on the principle of expectation maximization
[80]. The Baum-Welch algorithm consists of two steps: (i) Calculation of forward and backward
probabilities and (ii) parameter update. In the forward step the forward probabilities αn(j) are
calculated

αn(j) = P (x1, ..., xn, qn = sj |Θ), (2.9)

where αn(j) is the probability of observing the �rst n elements of the observation sequence X and
being in state sj at observation step qn given the parameters of the HMM. They are calculated
recursively with a dynamic programming algorithm (known as Forward algorithm):

α1(j) = πj · bj,x1 ∀j = 1, ..., Ns (2.10)

αn(j) =

(
Ns∑
i=1

αn−1(i) · ai,j

)
· bj,xn N ≥ n > 1 ∀j = 1, ..., Ns (2.11)

P (X|Θ) =

Ns∑
j=1

αN (j) (2.12)

For the �rst observation the forward probabilities are initialized in Equation 2.10 where πj is
the initial probability of being in state sj and bj,x1 is the probability of emitting the output x1

in state sj . The rest of the forward probabilities can be calculated recursively as described in
Equation 2.11 where ai,j = P (qn = sj |qn−1 = si) is the transition probability. Figure 2.4 shows
how the forward probability depends on the previous forward probabilities of all states, their
transition probability to the current state and the emission probability in the current state.
In the backward step we calculate the backward probabilities formally expressed as

βn(i) = P (xn+1, ..., xN |qn = si,Θ), (2.13)

where βn(i) is the probability of observing the remaining emission sequence xn+1, ..., xN condi-
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Figure 2.4: The forward probability αn(2) is the product of the previous forward probability αn−1(i) and the
corresponding transition probability ai,2 summed over all states i times the emission probability
b2,xn of xn in state 2.

tioned on being in state si at timestep n and the parameters Θ of the HMM.

βN (i) = 1 ∀i = 1, ..., Ns (2.14)

βn(i) =

Ns∑
j=1

ai,j · bj,xn+1 · βn+1(j) 1 ≤ n < N ∀i = 1, ..., Ns (2.15)

P (X|Θ) =

Ns∑
j=1

πj · bj,x1 · β1(j) (2.16)

In Equation 2.14 the backward probabilities βN (i) for timestep N are initialized with 1 regardless
of state si. This can be explained by the probability of observing nothing when being in the
last state qN being equal to 1 regardless of the state. Then the backward probabilities βn(i) of
observing xn+1, ..., xN |qn = si,Θ are calculated recursively back in time using the previous βn+1

values. Speci�cally the transition probability ai,j of moving from state si to sj is multiplied by
bj,xn+1 , the probability of emitting xn+1 in state sj and the previous backward probability in
state sj βn+1(j). This is done for all possible next states and the resulting sum is the backward
probability βn(i) as illustrated in Figure 2.5. For any timestep n and any state sj

P (X, qn = sj |Θ) = P (x1, ..., xn, qn = sj |Θ) · P (xn+1, ..., xN |qn = sj ,Θ) (2.17)

= αn(j) · βn(j) (2.18)

is the probability of observing X and being in state sj at timestep n. Marginalizing over all
states we get

P (X|Θ) =
N∑
j=1

αn(j) · βn(j) (2.19)

the probability of observing sequence X for any timestep n.
In the update step we use the forward and backward probabilities to calculate new HMM
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Figure 2.5: The backward probability βn(2) is the product of transition probability a2,i, emission probability
bi,xn+1 and backward probability βn+1(i) summed over all possible next states i.

parameters that maximize P (X|Θ). Therefore, we de�ne

γn(i) : = P (qn = si|X,Θ) =
P (qn = si, X|Θ)

P (X|Θ)
=
αn(i)βn(i)

P (X|Θ)
=

Ns∑
j=1

ξn(i, j) (2.20)

ξn(i, j) : = P (qn = si, qn+1 = sj |X,Θ) =
P (qn = si, qn+1 = sj , X|Θ)

P (X|Θ)
=

=
αn(i) · ai,j · bj,xn+1 · βn+1(j)

P (X|Θ)
(2.21)

The probability γn of being in state si at timestep n conditioned on an observation sequence X
and the parameters of the HMM Θ is calculated in Equation 2.20. The function ξn(i, j) de�ned
in Equation 2.21 is the probability of transitioning from state si to sj at timestep n conditioned
on an observation sequence X and the parameters of the HMM Θ. The parameters are updated
according to:

π̄i = γ1(i) (2.22)

āi,j =

∑N−1
n=1 ξn(i, j)∑N−1
n=1 γn(i, j)

(2.23)

b̄j,k =

∑N
n=1 γn(j) · 1[xn=vk]∑N

n=1 γn(j)
(2.24)

The initial state distribution πi is updated with π̄i, the probability of being in state i at timestep
1 (cf. Equation 2.22). Transition probability ai,j is updated with āi,j , the summed transition
probabilities from i to j at each timestep divided by the sum over the probabilities of being
in state si at each timestep (cf. Equation 2.23). Emission probability bj,k is updated with b̄j,k,
the summed probabilites of being in state sj and emitting vk at each timestep n divided by the
summed probabilities of being in state sj at each timestep n (cf. Equation 2.24), where 1[xn=vk]

is the indicator function, i.e. it is 1 if the condition is true, otherwise it is zero. This way
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parameters are updated iteratively to increase the likelihood of the training sequence X towards
a local optimum until an early stopping criterion is met.

2.2.2 Connectionist Temporal Classi�cation

Graves et. al. [40] de�ne connectionist temporal classi�cation (CTC) as an extension of tem-
poral classi�cation to connectionist networks. Temporal classi�cation is the classi�cation of
unsegmented sequences to minimize some error measure. The error measure used by Graves et.
al. is the label error rate (LER), the normalized Levenshtein distance between predicted and true
labels of a test set. Graves et. al. propose an extension to connectionist networks, by showing
how to use a modi�ed forward backward algorithm and backpropagation for training a neural
network and how to decode the network outputs to get the most probable label sequence. The
trained network is time synchronous, meaning that it provides an output at every timestep.

Classi�cation

We want to map an input sequence of m-dimensional audio features X = (x1, ...,xT ) xi ∈ Rm
with arbitrary length T to a label sequence Z ∈ L≤T = (z1, ...,zU ). L is the set of labels
used to represent all valid transcriptions. Therefore, the alphabet and the space character are a
suitable choice so that L = {A,B, ..., Z,< SPACE >}. Assume we have a network trained with
CTC de�ned asDNN : (Rm)T → (R|L|)T that produces a sequence of T probability distributions
Y = (y1, ...,yT ) yi ∈ R|L| over all |L| labels for a sequence of T input frames. When classifying
a frame sequence X with the network it is assumed that the number of labels produced must
be smaller or equal to the number of input frames, but the system produces outputs for every
frame in the input sequence. Therefore we de�ne a mapping function

A : LT → L≤T (2.25)

that reduces a sequence of labels by merging adjacent repeated labels. This mapping function
has the drawback of removing valid repeated letters as in the following example:

A(h, e, e, e, l, l, l, o) = (h, e, l, o) (2.26)

To be able to map repeated characters Graves et al. [40] de�ne the lables that can be assigned to
a frame as L′ = L∪ blank. The blank label is used to classify noisy frames where no other label
is suitable and to seperate repeated labels from each other. We de�ne an extended mapping
function

B : (L′)T → L≤T (2.27)

that merges all repeated labels and then removes all blank elements. Equation 2.28 shows an
example of the application of function B to labels of speech frames displayed in Figure 2.6:

B(h, blank, blank, e, e, e, l, l, blank, l, blank, o, o, o, o, o, o, blank) = (h, e, l, l, o) (2.28)

For classi�cation of input frames we de�ne a network DNN ′ : (Rm)T → (R|L′|)T that maps
a sequence of input features X to a sequence of probability distributions Y over the extended
alphabet L′ conditioned on X. Let ykt be the conditional probability of symbol k at timestep
t given the input. De�ne any symbol sequence of length T as path Π = (π1, ...,πT ) πi ∈ L′
and let πt denote the label of Π at timestep t. We can describe the probability of observing any
symbol sequence Π given the input sequence X by multiplying the probabilities of the labels of
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-------H__EEELL_L_OOOOOO_--------
-      H  E  L  L O      -

Figure 2.6: Repeated characters are collapsed to one character because a single character can be recognized in
multiple adjacent frames. Then blank symbols denoted by _ are removed from the label sequence
resulting in the label sequence "HELLO". Space symbols are denoted by −.

Π at each timestep t.

p(Π|X) =
T∏
t=1

yπtt , ∀Π ∈ L′
T

(2.29)

Figure 2.7 shows all possible paths that correspond to the same label sequence given an input

t=1 t=2

(blank)

(blank)

(B)

(blank)

(E)

(blank)

(E)

t=3 t=4 t=5 t=6 t=7 t=8 t=9

Figure 2.7: Trellis diagram visualizing the possible CTC paths corresponding to the word "bee" for an input
sequence of 9 frames.

sequence X. The conditional probability of a �nal label sequence L ∈ L≤T given X is the sum
of conditional probabilities of all paths that can be mapped to L using the mapping function B
given X.

p(L|X) =
∑

Π∈B−1(L)

p(Π|X) (2.30)

To get the label sequence with the highest probability we want to �nd the label sequence L that
maximizes Equation 2.30 such that

h(X) = argmax
L∈L≤T

p(L|X) . (2.31)

A trivial approach to approximate this complicated calculation is greedy or best path decoding.
We approximate the most probable label with the most probable path, by picking the most
probable symbol at each timestep. However, this does not result in the optimal solution because
the probability of a label does not only depend on the most probable path, but on all paths
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corresponding to it (cf. Equation 2.30). Pre�x search decoding is guaranteed to �nd the most
probable label by calculating the total probability of the label starting with each symbol and then
expanding the most probable pre�x as visualized in Figure 2.8. However, this is not feasible for
long sequences due to exponential growth in the search space. Among other decoding approaches
a commonly used solution that provides a tradeo� between computational complexity and label
quality is a beam search [81,82].

<START>

eK O

0.3 0.4 0.3

eK O

0.3 0.0 0.1

eK O

0.05 0.05 0.2

1.0

Figure 2.8: A pre�x search through the alphabet {O,K} where e represents the end of the sequence. The
numbers above the states represent the total probability of all paths corresponding to the label
starting with the pre�x up to that state. The pre�x with the highest probability is expanded with
all symbols of the alphabet and the end token e. The pre�x is expanded until the most probable
pre�x ends with an e. Then the pre�x, in this case "OK", is the most probable label.

Training

For training Graves et al. derive an objective function that can be trained with gradient descent.
When minimized, the objective function maximizes the log likelihood of the correct label se-
quences in the training set S or of a single correct label sequence Z = (z1, ..., zU ) zi ∈ L, U ≤ T
corresponding to a training sequence X, i.e.

L(S) = −
∑

(X,Z)∈S

ln(p(Z|X)) (2.32)

L(X,Z) = −ln(p(Z|X)) . (2.33)

To train the neural network with backpropagation [83] and gradient descent [84] we need the
partial derivatives of the loss with regard to the network outputs ykt given by

∂L(X,Z)

∂ykt
= −∂ln(p(Z|X))

∂ykt
= − 1

p(Z|X)

∂p(Z|X)

∂ykt
(2.34)

and the partial derivatives of the loss with regard to the unnormalized network activations akt of
neuron k at timestep t before the softmax

∂L(X,Z)

∂akt
= −

∑
k′

∂L(X,Z)

∂yk
′
t

∂yk
′
t

∂akt
. (2.35)

In the following we describe the e�cient calculation of p(Z|X) and use it to calculate the
derivative given by Equation 2.35. As stated in Equation 2.30, the conditional probability p(L|X)
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depends on all paths that can be mapped to L. The amount of possible paths grows rapidly with
the size of the input sequence X. Therefore, we use a modi�ed forward backward algorithm to
e�ciently calculate the probability of any label sequence L conditioned on the input X. First we
de�ne the label sequence L′ = (l′1, ..., l

′
2|L|+1) l′i ∈ L′ as L with a blank in the beginning and

after every element, because blanks could be observed at any point in the label sequence and are
removed with the mapping function B. For each element in L′ at each timestep we calculate the
forward and backward parameter.
Let U1:v of any sequence U denote the �rst v elements of the sequence. The forward param-

eter αt(s) is the total probability of L′1:s at frame t given the input. This corresponds to the
probability of all valid paths up to frame t that end in symbol L′s, i.e.

αt(s) =
∑

Π∈L′T :B(Π1:t)=L1:s

t∏
t′=1

y
πt′
t′ . (2.36)

To calculate the forward parameter recursively we set the initial values to

α1(1) = yl
′
1

1 (2.37)

α1(2) = yl
′
2

1 (2.38)

α1(s) = 0, ∀s > 2 . (2.39)

In Equations 2.37 and 2.38 the forward parameters for the �rst two states are set to their
corresponding symbol probabilities according to the network output at frame 1, i.e. P (y1|X).
The other states described in Equation 2.39 are unreachable at timestep 1 because all paths that
can be mapped to L need to either start at the �rst letter l′2 or at the initial blank symbol l′1.
The recursion is de�ned as

αt(s) =

{
ᾱt(s)y

l′s
t if l′s = blank or l′s−2 = l′s (2.40)

(ᾱt(s) + αt−1(s− 2))yl
′
s

t otherwise (2.41)

ᾱt(s) = αt−1(s) + αt−1(s− 1) (2.42)

The term ᾱt(s) de�ned in Equation 2.42 is the sum of probabilities of the paths at timestep t−1
being equal to L′1:s or L

′
1:(s−1). If l

′
s is a blank or a repeated character the forward parameter

αt(s) is the sum of probabilities of pre�xes L′1:s and L′1:(s−1) conditioned on the input times

the network activation yl
′
s

t of observing l′s at timestep t as described in Equation 2.40. Figures
2.9a and 2.9b illustrate why αt−1(s − 2) is not part of the calculation of αt(s) in these cases.
Otherwise the symbol l′s is a non blank and non repeated character as illustrated in Figure 2.9c.
Therefore, L′1:(s−2) is also a valid pre�x, because the blank symbol l′s−1 can be skipped and the
sequence could still be mapped to L. In this case the total probability of valid pre�xes of αt(s)
given the input is the sum of αt−1(s), αt−1(s− 1) and αt−1(s− 2). This probability multiplied
with the conditional probability of observing l′s at timestep t according to the network activation
yl
′
s

t is the forward parameter described in Equation 2.41.
The backward parameter βt(s) is the conditional probability of all valid paths starting at frame

t+ 1 that are preceded by any path in αt(s). This is formalized as Equation 2.43 [85]:

βt(s) =
∑

Π∈L′T :B(Πt:T )=Ls:|L|

T∏
t′=t+1

y
πt′
t′ . (2.43)
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αt-1(s-1)

αt-1(s)

(a) Valid transitions to a blank symbol l′s either come
from that blank symbol or from the previous sym-
bol l′s−1. A transition from l′s−2 would skip the
symbol A and is therefore invalid.

t-1 t

l's-2

l's-1

l's

(A)

(blank)

(A)

αt-1(s-1)

αt-1(s)

(b) Valid transitions to a repeated symbol l′s (where
l′s = l′s−2) either come from that l′s or from the
previous blank symbol l′s−1. A transition from
l′s−2 would skip the blank symbol that seperates
repeated characters and is therefore invalid.

t-1 t

l's-2

l's-1

l's

(A)

(blank)

(B)
αt-1(s)

αt-1(s-1)

αt-1(s-2)

(c) Valid transitions to a non blank non repeated
symbol l′s can also come from l′s−2 skipping the
blank symbol l′s−1.

Figure 2.9: Calculation of the forward parameter depending on the current symbol l′s.

To calculate the backward parameter recursively we set the initial values to

βT (|L′|) = 1 (2.44)

βT (|L′| − 1) = 1 (2.45)

βT (s) = 0, ∀s < |L′| − 1 . (2.46)

In Equations 2.44 and 2.45 we initialize the backward parameters of the last two symbols (blank
and l|l|) with 1, because they are valid end states for L. Equation 2.46 sets the other symbols to
0 because they cannot be the last symbol of any path that is mappable to L. The recursion is
de�ned as

βt(s) =

{
β̄t(s) + β̄t(s+ 1) if l′s = blank or l′s+2 = l′s (2.47)

β̄t(s) + β̄t(s+ 1) + β̄t(s+ 2) otherwise (2.48)

β̄t(s) = βt+1(s)yl
′
s

t+1 (2.49)

The term β̄t(s) is the sum of probabilities of valid paths at timestep t+ 1 equal to L′s:|L′| scaled
by the network activation of being in state l′s at timestep t + 1. If l′s is a blank or a repeated
character at timestep t the only legal transitions are to l′s and l

′
s+1 and therefore its probability is

calculated with Equation 2.47. Otherwise the transition to l′s+2 is also possible skipping a blank
symbol in the process. The resulting probability is calculated in Equation 2.48. The forward and
backward parameters get increasingly smaller as the algorithm progresses increasing the chance
of under�ows. Graves et. al. [85] therefore recommend working in the log domain in practice.
The total probability of a label given an input sequence can now be calculated as a sum of the
probabilities of paths ending in the �nal blank or �nal character at timestep T . All valid paths
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that can be mapped to L need to end in the �nal blank l′|L′| or the �nal character l
′
|L′|−1:

p(L|X) = αT (|L′|) + αT (|L′| − 1) . (2.50)

When multiplying the forward and backward parameter of the same element s of the label
sequence at timestep t we get the total probability of all paths going through l′s at t.

αt(s)βt(s) =
∑

Π∈B−1(L):πt=ls

p(Π|X) . (2.51)

An example of these paths is shown in Figure 2.10. As all paths go through some symbol at any

t=1 t=2

(blank)

(blank)

(B)

(blank)

(E)

(blank)

(E)

t=3 t=4 t=5 t=6 t=7 t=8 t=9

Forward Backward

Figure 2.10: An example of all paths going through l′4 at timestep t = 3.

timestep of the input, summing the probability of all paths going through all symbols of L′ at
timestep t results in the total probability of L given the input X. So for any timestep t ∈ 1, ..., T

p(L|X) =

|L′|∑
s=1

αt(s)βt(s) . (2.52)

To derive Equation 2.52 with respect to ykt we look at all paths going through the label k at
timestep t. The label sequence L′ might contain zero or more instances of label k that are
reachable at time t, therefore Graves et. al. de�ne a function lab(L, k) = {s : l′s = k} that
returns a set of all positions of k in the label sequence L′. Deriving 2.52 yields

∂p(L|X)

∂ykt
=

1

ykt

∑
s∈lab(L,k)

αt(s)βt(s) . (2.53)

When we set L = Z this can be substituted into the partial derivative of the loss function in
Equation 2.34 resulting in

∂L(X,Z)

∂ykt
= − 1

p(Z|X)ykt

∑
s∈lab(Z,k)

αt(s)βt(s) . (2.54)

Substituting the partial derivative of the softmax and Equation 2.54 into Equation 2.35 yields
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the error that can be used for training the weight matrices of the network with backpropagation:

∂L(X,Z)

∂akt
= ykt −

1

p(Z|X)

∑
s∈lab(Z,k)

αt(s)βt(s) . (2.55)

2.2.3 Attention Models

Attention is a mechanism used to exploit context of the whole input at each decoding step
and can be used in many di�erent model architectures [54, 86]. Initially, attention in ASR
was used with an encoder decoder sequence to sequence model [49]. Therefore, we will shortly
explain encoder decoder sequence to sequence models and then extend them with an attention
mechanism. Encoder decoder models can be used to model sequence to sequence learning tasks
where the input and output sequence do not necessarily have the same length [87]. The encoder
reads the whole input sequence and compresses it into a single vector of �xed size also known as
context vector. Using an LSTM encoder the last hidden state is used as the context vector. To
mark the end of a sequence the last symbol of each trained sequence must be an end of sequence
token (<EOS>). The decoder emits a softmax over the whole alphabet at each emission step
based on its hidden state, its previous output and the context vector. The decoder's hidden state
is conditioned on the context vector, the previous hidden state and its previous emission. When
the decoder emits an <EOS> symbol it has �nished decoding the sequence. Figure 2.11 shows

Decoder

h1 hL...

s4s3s2s1

C A T <EOS>

Encoder

x1 xL

y1 y2 y3 y4

v

<SOS>

hL-1

xL-1

<EOS>

Figure 2.11: Encoder decoder architecture encoding L audio features into a �xed size context vector v. The
decoder then transcribes the input by emitting symbols from a de�ned alphabet.

how L audio feature vectors are encoded to a �xed size context vector v. At each decoding step v,
the previous state si−1 and the previous emission yi−1 are used to calculate the next hidden state
si and the corresponding emission yi. This approach su�ers when the input sequence is large
[88], because it cannot compress variably sized sequences into a �xed size vector without losing
information. To mitigate this problem the encoder decoder model is extended by an attention
mechanism [49,89]. Chorowski et al. [49] argue that Bahdanau attention [89] is not suitable for
ASR due to high noise in the input and very long input sequences. Therefore, they propose an
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extension of Bahdanau attention for speech recognition:

αi = Attend(si−1, αi−1, H) (2.56)

gi =
L∑
j=1

αi,jhj (2.57)

yi = Generate(si−1, gi) (2.58)

si = f(si−1, gi, yi) . (2.59)

Equation 2.56 shows the attention mechanism calculating an alignment αi at decoding step i
from the previous decoder state si−1, the previous alignment αi−1 and the sequence of outputs
of the encoder H = (h1, ...hL). We calculate gi, a glimpse of the encoder output at decoding
step i, as the sum over all elements in the encoder output sequence H weigthed by the alignment
vector αi (cf. Equation 2.57). Intuitively a glimpse is a part of the encoder output that the
decoder attends to at the current decoding step. Then the decoder produces an output yi based
on the previous decoder state si−1 and the glimpse of the encoder output gi. The next decoder
state is then calculated from the previous decoder state si−1, the current glimpse gi and the
current output yi (cf. Equation 2.59). Conditioning on the output sequence H of the encoder
state is known as content based attention and conditioning on the previous alignment αi−1 is
known as location based attention. Chorowski et al. [49] combine the two types of attention to
minimize their respective weaknesses. The hybrid attention mechanism in Equation 2.56 uses
the alignment ai−1 to preselect elements in H, scores them with content based attention, i.e.

ei,j = Score(si−1, hj) (2.60)

and normalizes the score with a softmax.

Decoder

h1 hL...

si+1sisi-1

yi yi+1 yi+2

Encoder

x1 xL

<SOS>

<EOS>

+

gi gi+1 gi+2
gi-1

 αi⋅αi,1 ⋅αi,L... αi-1

Figure 2.12: Visualization of encoder decoder architecture with attention.

Figure 2.12 shows the di�erent steps of the algorithm proposed by Chorowski et al. [49]. The
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attend step that calculates the attention vector in Equation 2.56 is displayed by the dotted lines.
The calculation of the glimpse from the attention vector and all outputs of the encoder described
in Equation 2.57 is plotted as solid lines. The dashed lines represent the generation of an output
yi (cf. Equation 2.58) and the calculation of the next state si (cf. Equation 2.59). Figure 2.13
shows how the attend function produces attention vectors for every encoder output, e�ectively
aligning the input data for transcription.

Figure 2.13: Visualization of attention vectors plotted as lines below each other producing the alignment of
inputs on the x axis with outputs on the y axis.
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Speech Recognition - A Transfer Learning Approach

3
An overview of state-of-the-art Speech

Recognition Frameworks

3.1 An overview of state-of-the-art Speech Recognition

Frameworks

This section introduces modern open source ASR frameworks and describes acoustic model ar-
chitectures that deliver state-of-the-art performance. The frameworks were selected based on
their recency, reported accuracy and availability as open source projects. The described model
architectures are used in the experiments of Chapter 4, where they are evaluated without the
use of a language model.

3.1.1 Kaldi HMM/TDNN-F architecture

In this section we describe the framework Kaldi which provides an implementation of the acoustic
model architecture HMM/factorized time delay neural network (TDNN-F) [90]. Additionally, the
HMM/TDNN-F acoustic model architecture used for evaluation in Chapter 4 is described. Kaldi
is a feature rich modular toolkit for building ASR systems, especially acoustic models based on
HMMs, GMMs, DNNs and weighted �nite state transducers [16]. It is open source software
written in C++ and Bash provided under the Apache 2.0 license. Kaldi runs on Linux and
Windows and its source code is available on Github1.
For preprocessing it has support for many feature extraction methods including Mel-scaled

�lter-banks (cf. Section 2.1.1), MFCCs (cf. Section 2.1.1) and PLPs [91] and includes data aug-
mentation such as time warping and frame shifting. Forced alignment can be done with either
HMM-GMM or HMM-DNN hybrids. Weighted �nite state transducers are used as a common
framework to represent and combine commonly used probabilistic models in speech recognition
like HMMs, word and phone models, LMs and phonetic dictionaries [92]. Mohri et. al. [92] pro-
vide algorithms for e�cient combination and optimization of models that have been translated to
the domain of �nite state transducers. For parallelization Kaldi has multi-GPU and multi-CPU
support and runs on cluster workload managers like Sun GridEngine or Slurm. In particular, an
ASR pipeline (cf. Section 1.1.6) is con�gured with a Bash script calling the necessary tools for
preprocessing, feature extraction, LM training, acoustic model training and evaluation. These
Bash scripts chaining tools together to create a pipeline are called recipes. Kaldi comes with
many recipes de�ning ASR pipelines for popular datasets.
In the following we shortly describe a TDNN [30] and its factorized version TDNN-F. Then we

summarize the TDNN-F architecture implemented in Kaldi used for the experiments in Chapter
4. A TDNN is a neural network that leverages temporal context by performing convolutions
over �xed size time windows [30]. Due to their feed forward nature TDNNs do not su�er of
high training times of RNNs [1]. By stacking multiple TDNN layers on top of each other a
network can use short term context in lower layers and long term context in upper layers as

1 https://github.com/kaldi-asr/kaldi
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seen in Figure 3.1. A TDNN-F is a factorized version of a TDNN that reduces the amount of

Figure 3.1: Visualization of a multi layer TDNN by Peddinti et al. [1].

parameters that need to be trained compared to a TDNN [90]. A TDNN-F makes use of singular
value decomposition (SVD) to decompose the weight matrix W of a TDNN into the product
of two smaller matrices AB. A semiorthogonal constraint is imposed on B and its k lowest
values are set to 0 decreasing the amount of parameters with a minimal e�ect on accuracy. A
and B are then used as the weight matrices of two seperate TDNN-F sub-layers. Therefore,
a single TDNN-F has an input dimension, a dimension after the transformation with the �rst
weight matrix and an output dimension after the transformation with the second weight matrix.
Additionally, there are skip connections connecting TDNN sub-layers for a more direct data�ow.
The HMM/TDNN-F architecture evaluated in Chapter 4 is illustrated in Figure 3.2. The input
features consist of 40-dimensional MFCCs [18] with a window of 3 frames concatenated with a 100
dimensional i-Vector [93] of the current frame. Local context information is gathered by stacking
multiple TDNN-F layers with a small context window of [-1,+1]. These are followed by TDNN-F
layers with a larger context window of [-3,+3]. This way previous and future context can be
leveraged without the overhead of a Bidirectional RNN. Then there is a linear layer followed
by a NaturalGradientA�ne layer which is a feed forward layer with an inverse Fisher matrix
as learning rate matrix [94]. The �nal part of the network consists of a linear layer followed
by another NaturalGradientA�ne layer with a softmax activation function. The outputs are
observation probabilities for the phonetic states of the HMM (cf. Chapter 2). All layers use a
ReLU activation function and employ batch normalization. The objective function optimized in
training is the log likelihood of the correct phone sequence. Decoding is performed with a beam
search algorithm.
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Figure 3.2: Architecture of HMM/TDNN acoustic model used in the experiments.
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3.1.2 ESPnet

ESPnet [17] provides an implementation of an acoustic model architecture based on a transformer
[54] among other neural architectures. ESPnet is an ASR and text-to-speech (TTS) toolkit
focused on end-to-end deeplearning models based on the neural network frameworks PyTorch
and Chainer. It is open source software written in Python and Bash and provided under the
Apache 2.0 license. ESPnet runs on Linux and its source code is available on Github2. The
ESPnet transformer acoustic model architecture is used for evaluation in Chapter 4.
For preprocessing and feature extraction it uses the provided tools from the Kaldi toolkit.

Acoustic modeling is done by DNNs with CTC, attention or hybrid CTC and attention. The
supported DNN architectures are CNN with Bidirectional RNN, subsampling bidirectional RNNs
and transformers. For parallelization ESPnet has multi-GPU and multi-CPU support and runs
on cluster workload managers like Sun GridEngine or Slurm. Comparable to Kaldi, ESPnet
comes with a large set of Bash recipes for popular datasets that chain tools available in ESPnet
to de�ne ASR architectures.
In the following we shortly describe ESPnet's transformer ASR architecture illustrated in

Figure 3.3 used for the experiments in Chapter 4. As input features 80 dimensional Mel-scaled
�lter-bank features are concatenated with pitch information, which are passed into convolutional
layers. The resulting vector is fed to a transformer with 12 encoding layers, 6 decoding layers,
4 attention heads and 2048 feed forward units each. The previous output is also embedded
and passed to the transformer. A self attention layer returns a sum of the inputs weighted by
an attention vector. Multiheaded self attention combines multiple result vectors by calculating
multiple attention vectors and reducing the dimensionality by multiplying the result with a
trained matrix. The add and norm layers sum up the input and output of the previous layer
and apply a normalization technique called layer normalization [95]. Compared to RNNs, the
transformer has no information at which position the current input is. Therefore, all embeddings
are enhanced with positional information by adding a positional encoding [54]. The output
activations of the transformer encoder are fed to a 5002 dimensional feed forward layer with
CTC loss and a softmax activation function. The output activations of the transformer decoder
are fed to a 5002 dimensional linear layer with softmax activation function. Compared to other
models the output vocabulary is more sophisticated than the alphabet: Using SentencePiece
[96] we generate a vocabulary of 5002 subword units from the training data whose probability
is predicted jointly by the CTC output layer and transformer output layer. During training
hybrid CTC/attention is done by optimizing a weighted sum of CTC loss (cf. Section 2.2.2) and
attention cross entropy. Decoding is done with a beam search combining weighted CTC and
attention scores without a LM.

2 https://github.com/espnet/espnet
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Figure 3.3: Architecture of transformer acoustic model used in the experiments.
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3.1.3 DeepSpeech 2

In this section we describe the frameworks Mozilla Deep Speech and OpenSeq2Seq which provide
an implementation of the acoustic model architecture DeepSpeech 2 [97]. The DeepSpeech 2
framework is used for evaluation in Chapter 4. Mozilla Deepspeech is an ASR framework for
end-to-end deep learning models based on Baidu's Deep Speech 2 paper [97], building on the
neural network framework TensorFlow. It is open source software written in C++ and C with
Python and NodeJS bindings and is published under the Mozilla Public License 2.0. DeepSpeech
runs on Linux, Windows and macOS and is available on Github3.
For preprocessing it supports MFCC [18] feature extraction and various audio and spectogram

augmentation algorithms. As training criterion it supports CTC and it is compatible with n-
gram LMs trained with KenLM [75]. It has implemented automatic mixed precision training
which leads to training speedup. Additionally, there is the option to export considerably smaller
TFLite models that can be used for mobile inference. Deep Speech has multi-GPU support that
uses hybrid parallel optimization where gradients for minibatches are averaged.
Another framework that provides an implementaiton of the DeepSpeech 2 architecture is

Nvidia's OpenSeq2Seq [76]. OpenSeq2Seq is an ASR framework for training Seq2Seq models
using TensorFlow as neural network framework. It is open source software written in Python
and C++ provided under the Apache 2.0 license. OpenSeq2Seq runs on Linux and its source code
is available on Github4. OpenSeq2Seq comes with distributed multi GPU and multi node training
with Horovod [98], a distributed training framework for deep learning, as well as mixed precision
training with Tensor Cores for improved training speed. For preprocessing it implements sev-
eral feature extraction methods including spectograms, Mel scaled spectograms or MFCCs [18]
as well as data augmentation with speed perturbation and time/frequency masks. It provides
recipes and pretrained models for multiple domains including ASR, neural machine translation,
speech synthesis, LMs, sentiment analysis and image classi�cation. Supported encoder architec-
tures are (i) DeepSpeech 2 [97], (ii) 1D CNNs like Wav2Letter [63] or Jasper [99], and (iii) 1D
time-channel-seperable CNNs [100].
The architecture used for the experiments in this thesis is based on Baidu's Deep Speech 2

paper [97]. Its implementation in the OpenSeq2Seq framework is illustrated in Figure 3.4. We
use 160 dimensional spectogram features derived from time stretch augmented audio as input for
3 convolution layers over the time and frequency domain. They are followed by 3 unidirectional
GRU layers with 50% dropout and a lookahead convolution layer with batch normalization. The
idea of the lookahead convolution layer is to take limited future context into account without the
overhead of a bidirectional RNN. Next there is a feed forward layer with 2048 units followed by
a 29 dimensional feed forward layer with softmax assigning probabilities to one of the 29 letters
of our alphabet including blank, silence and space. The network is trained with CTC loss (cf.
Section 2.2.2) and decoding is performed with a greedy decoder.

3 https://github.com/mozilla/DeepSpeech
4 https://github.com/NVIDIA/OpenSeq2Seq
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160 spectogram features

Convolution
ReLU, batchnorm,

kernel 11x41, stride 2x2,
input channels 160,
output channels 32

Convolution
ReLU, batchnorm,

kernel 11x21, stride 1x2,
input channels 32,
output channels 64

Convolution
ReLU, batchnorm,

kernel 11x21, stride 1x2,
input channels 64,
output channels 96

Unidirectional GRU Layer
ReLU, dropout 0.5,

dim 1024
x 3

Lookahead conv layer,
ReLU, batchnorm,

input channels 1024,
output channels 8

Feed Forward layer,
ReLU,

dim 2048

Feed Forward with CTC loss,
softmax,
dim 29

Letter probabilities

Figure 3.4: Architecture of DeepSpeech 2 acoustic model used in the experiments.
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3.1.4 Wav2Letter

The framework Wav2Letter++ provides an implementation of the acoustic model architecture
Wav2Letter [63]. Wav2Letter++ is an ASR framework for end-to-end models by Facebook [77]
using Flashlight as underlying machine learning library and ArrayFire as tensor library. It is
open source software written in C++ provided under the BSD 3-clause license. Wav2Letter++
runs on Linux and is available on Github5.
For preprocessing it supports several feature extraction methods including MFCCs [18], log

Mel-scaled �lter-banks and power spectrum features as well as data augmentation with SpecAug-
ment [101]. Acoustic modeling in Wav2Letter++ can be done with 1D CNNs [63], time-depth
separable convolutions [102] and transformers [62]. The available training criterions are CTC,
Seq2Seq and AutoSegmentation Criterion [63]. It provides support for n-gram LMs trained with
KenLM [75]. Wav2Letter++ comes with English pretrained models and recipes for popular ASR
datasets, i.e. WSJ, Librispeech and Timit.
The architecture used for the experiments in this thesis is based on Wav2Letter [63]. Its

implementation in the OpenSeq2Seq framework is illustrated in Figure 3.5. As input it takes 64
log Mel-scaled �lter-bank features per frame, feeds them to several 1D convolution layers. The
kernels of the 1D convolution layers increase in size, therefore the temporal context increases
similiar to TDNNs. At the top is a feed forward layer with softmax activation function for
classi�cation to the alphabet. All convolutional layers employ batch normalization and dropout
of 20-40% and use a ReLU activation function clipped at 20. The training criterion is CTC loss
(cf. Section 2.2.2) and decoding is performed greedily without a LM.

5 https://github.com/facebookresearch/wav2letter
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x 3

x 3

x 3

x 3

1D Convolution,
kernel 11, stride 2,
input channels 64,
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Figure 3.5: Architecture of Wav2Letter model used in the experiments.
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Speech Recognition - A Transfer Learning Approach

4
Experimental Evaluation

4.1 Database

In this Section we describe the databases used for the experiments in Section 4.2. We selected Lib-
rispeech [2] as dataset due to its large amount of clean speech data to evaluate the architectures
described in Chapter 3. For training a German speech recognizer we selected the German Mozilla
Common Voice Corpus (June 2019 release) due to its considerable size compared to other freely
available datasets in German [103,104]. Both corpora are introduced in the following sections.

4.1.1 Librispeech Corpus

The Librispeech corpus [2] is based on English read speech from public domain audiobooks in
the LibriVox project. It is freely available6 under the permissive CC BY 4.0 license. In total the
dataset contains approximately 980 hours of audio. Each entry in the dataset is a sentence in
�ac format sampled at 16kHz with its transcription, speaker id and speaker gender. Panayotov
et al. [2] used an ASR system to align the speech audio on sentence level. Each sentence is
assigned to a speaker and for every speaker the gender is known. This way Panayotov et al.
were able to enforce gender balance on a speaker level over the whole dataset. Chapters read
by multiple speakers and chapters that contained too much noise were �ltered out. With an
acoustic model trained on a part of the WSJ corpus all sentences were transcribed and the WER
scores were measured. Roughly 50% with the lower WER were used as 'clean' datasets, the rest
was classi�ed as 'other'. From the 'clean' data they randomly sampled gender balanced testing
and validation sets. The rest of the clean data was randomly split into training sets with 100
and 360 hours. In order to generate more challenging subsets testing and validation sets were
sampled from the third quartile of the data ranked increasingly by WER. The rest of the other
data was used for a training set with 500 hours. For every set they enforced a limit on minutes
of speech per speaker to avoid bias towards certain speakers. For exact numbers refer to Table
4.1 [2].

subset hours
per-speaker

minutes

female

speakers

male

speakers

total

speakers

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 4.1: Librispeech subsets from Panayotov et al. [2].

6 https://www.openslr.org/12/
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In addition to the speech data they provide text of 14500 books from Project Gutenberg [105]
with 803 million tokens and 900000 unique words for LM creation. These texts are �ltered so
that they do not contain any transcriptions from the validation or test sets.

4.1.2 German Mozilla Common Voice Corpus

The Mozilla Common Voice corpus [106] is based on read speech by volunteers of the Common
Voice Project7. It is freely available under a permissive CC0 license. As of February 2020,
the dataset contains over 4250 recorded hours and over 3400 validated hours of speech audio
in 40 di�erent languages8. Every entry in the dataset is a sentence in MP3 format sampled at
48000Hz with its transcription, speaker id and optional information about speaker age, gender
and dialect. For our experiments we used FFmpeg9 to sample 16000Hz wav �les from the MP3s.
The data for the voice corpus is collected with a multi step crowd sourcing approach. First a
text corpus is initialized with sentences from Wikipedia articles. It can then be extended with
other sentences by community members. Sentences proposed by community members are added
after being approved by two other members. Then users can record sentences of the text corpus
displayed to them by web or iPhone app. The recorded sentences need to be approved by other
members before being added to the train/dev/test split.

set hours
female

speakers

male

speakers

unknown

speakers

total

speakers
utterances

train 10.2 37 331 184 552 8519
dev 7 37 348 625 1010 5634
test 7.7 22 281 1598 1901 5634

total
validated

324.3 173 1555 3124 4852 281208

Table 4.2: Statistics of the German Common Voice corpus released in June 2019.

As can be seen in Table 4.2 the train/dev/test split for German only contains a small amount
of all validated audio. This happens because there is a lot of sentence overlap between speakers
meaning that di�erent speakers often speak the same sentences. This reduces the overall dataset
size if the test and dev set should not have any sentence or speaker overlap with the training
set and with each other. The splits are randomly sampled and generally have a high gender
imbalance biased towards male speakers. The dataset used in the experiments in Section 4.2
is the German Common Voice June 2019 release. Since a lot of data is needed for training
deep learning models, we built a larger training set from all validated utterances by relaxing the
speaker overlap constraint. In the new test set we allowed speaker overlap between the train,
test and dev set, but kept the constraint of no sentence overlap between the sets. This was done
by taking all validated utterances and removing all utterances with sentences from the test and
dev set. We will refer to the o�cial training set with CV_A and to our large constructed dataset
with CV_B. Details of the two sets are displayed in Table 4.3. CV_B contains almost 7 times
the amount of utterances of the o�cial training set. Previous reported results for this dataset
were a CER of 12.8% in the ESPnet repository 10 with a language model and a custom split that
allows sentence overlap, but no speaker overlap and a CER of 43.76% for an older and smaller
version of the corpus [106].

7 https://voice.mozilla.org
8 https://voice.mozilla.org
9 https://www.�mpeg.org
10 https://github.com/espnet/espnet/blob/master/egs/commonvoice/asr1/RESULTS.md

� 46 �



4.2 ASR Accuracy Evaluation

set hours utterances speaker overlap sentence overlap

CV_A 10.2 8519 no no
CV_B 66.7 57817 yes no

Table 4.3: The two subsets of the German Common Voice Corpus we use in the evaluation.

4.2 ASR Accuracy Evaluation

In this section several experiments performed with the ASR architectures presented in Chapter
3 (without LM) are evaluated in terms of accuracy. In particular, the commonly used character
error rate (CER) and word error rate (WER) is used as a metric for accuracy. The CER is
also known as Levenshtein distance [107] between the transcription hypothesis and its reference
normalized by the number of characters in the reference transcription. It is de�ned as

CER =
IC +DC + SC

NCRef

, (4.1)

where IC is the number of characters only present in the hypothesis (insertions), DC is the
number of characters only present in the reference (deletions) and SC is the number of substituted
characters in the hypothesis when compared to the reference (substitutions). NCRef

is the number
of characters in the reference. Like CER, WER is based on Levenshtein distance, but instead
of characters the number of inserted, deleted and substituted words between the sequences is
counted. Therefore, the word error rate of a transcription hypothesis and its reference is de�ned
as [108]

WER =
IW +DW + SW

NWRef

, (4.2)

where IW is the number of words only present in the hypothesis (insertions), DW is the number
of words only present in the reference (deletions) and SW is the number of substituted words in
the hypothesis when compared to the reference (substitutions). NWRef

is the number of words in
the reference. For the evaluation we used untuned and unoptimized framework code as provided
by the corresponding repositories.

4.2.1 Evaluation with the Librispeech Corpus

The training of the acoustic model architectures presented in Chapter 3 is evaluated using the
Librispeech corpus (cf. Section 4.1.1).

Setup In the following, we shortly describe the training and decoding parameters for the
ESPnet transformer architecture (cf. Section 3.1.2) trained on the Librispeech dataset. The
ESPnet transformer was trained on a single Tesla K40 GPU with a batch size of 6 and gradient
accumulation factor [109] of 4. The gradient accumulation factor speci�es the number of batches
for which gradient updates are accumulated to simulate a larger batch size on systems with little
memory. In our case a gradient with accumulation factor 4 and a batch size of 6 results in a
simulated batch size of 24. As optimizer we used a modi�ed Adam [110] described by Vaswani
et al. [54] with a learning rate of 5. The transformer is con�gured to 25000 warmup iterations
with a decreased learning rate to make initial training with a high learning rate more stable.
The objective function is the sum of hybrid attention scaled by 0.7 and CTC scaled by 0.3 with
a label smoothing [111] factor of 0.1. The transformer encoder's dropout rate is set to 0.1. For
decoding we use a joint attention and CTC beam search decoder [82] with a beamsize of 60.
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The DeepSpeech 2 architecture was trained on 4 Tesla K40 GPUs with a batch size of 10 per
GPU. As optimizer we used Adam [110] with an initial learning rate of 0.00002 and a polynomial
decrease learning rate policy [112] setting the learning rate lr to initial_lr×(1− iteration

max_iterations)
0.5

at each iteration. We apply L2 regularization [113] with λ = 0.0005 to all convolutional and feed
forward layers. For decoding we use a greedy GPU based CTC decoder 11 with batch size 1.
The Wav2Letter architecture was trained on 4 Tesla K40 GPUs with a batch size of 8 per

GPU. As optimizer we used Stochastic Gradient Descent with Momentum [114] of 0.9 with an
initial learning rate of 0.05 and a polynomially decreasing learning rate policy [112] setting the
learning rate lr to initial_lr×(1− iteration

max_iterations)
2 at each iteration. We apply L2 regularization

[113] with λ = 0.001. We also employ layer-wise adaptive rate control (LARC12), an approach
for adapting the learning rate separately for each layer based on LARS [115]. For decoding we
use a greedy GPU based CTC decoder 13 with batch size 1.
The TDNN-F/HMM architecture was trained on 1 Tesla K40 GPU with a batch size of 64. As

optimizer we used Stochastic Gradient Descent with an initial learning rate of 0.00015 and an
exponentially decreasing learning rate policy with a minimum of 0.000015. For regularization we
use a leaky HMM coe�cient [116] of 0.1, which enables the HMM to forget context over time. A
leaky HMM coe�cient allows to restart the HMM in any state at any timestep with a probability
of the coe�cient times the initial probability of that state. For decoding we use a beam search
with a beam size of 15.

(a) ESPnet transformer training on Librispeech. (b) DeepSpeech 2 training on Librispeech.

(c) Wav2Letter training on Librispeech.

Figure 4.1: Plots of WER accross training and validation sets over epochs.

11 https://github.com/baidu-research/warp-ctc
12 https://docs.nvidia.com/deeplearning/frameworks/ca�e-user-guide/index.html#larc
13 https://github.com/baidu-research/warp-ctc
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Figure 4.1 plots the Word Error Rate of the di�erent models for the combined training set
train-clean-100, train-clean-360 and train-clean-500 and the combined validation set dev-clean
and dev-other. The validation WER in Figure 4.1 is lower than the training accuracy. This
makes sense because augmented data is part of the training data and batch normalization and
dropout are only disabled for the evaluation of the validation set, but not for the training set.
The ESPnet transformer architecture performed best in terms of WER including fast training
times compared with the other models. Therefore, the ESPnet transformer architecture was
chosen for the experiments in Section 4.2.2 and 4.2.3. Table 4.4 shows the WER scores for

Model
WER [%]

Without LM With LM
dev-clean test-clean dev-clean test-clean

DeepSpeech 2 28.19 29.39 - 6.8514

Wav2Letter 13.57 13.43 - 9.4 [63]

ESPnet transformer 4.7 4.9 3.7 [17] 4.0 [17]

Kaldi HMM/TDNN-F 5.44 5.90 3.58 3.97

Table 4.4: Accuracy of di�erent acoustic models trained on Librispeech decoded without LM-rescoring and
with LM-rescoring (reported by other papers).

the Librispeech test-clean and dev-clean datasets. DeepSpeech 2 has a WER score of 29.39% on
test-clean, but has been reported to achieve 6.85% WER on test-clean15 with an n-gram LM.
The Wav2Letter model trained on Mel-scaled �lter-bank features (cf. Section 2.1.1) achieved
a WER score of 13.43% on test-clean. Collobert et al. [63] report a relative improvement of
30% for their model trained on spectograms by using a 4-gram LM during decoding. The scores
we achieved with ESPnet without LM rescoring are very low. In the ESPnet git repository16 a
relative improvement of 18% for test-clean is reported when rescoring with a transformer LM. The
error rates for Kaldi HMM/TDNN-F with 4-gram LM rescoring improve on the HMM/TDNN-F
without rescoring by relative 79% and are negligibly close to 3.29% WER on dev-clean and 3.80%
WER on test-clean reported in the recipe published in the Kaldi Git repository17.

4.2.2 Evaluation with the Mozilla Common Voice Corpus

In this section we describe and evaluate the training of the acoustic model architecture ESPnet
transformer from Section 3.1.2 on the German Mozilla Common Voice corpus cf. Section 4.1.2.
The experiment was performed on a single NVIDIA Tesla K40 GPU and conducted without LM
rescoring. As described in Section 3.1.2 the model uses subword units generated with Sentence-
Piece [96] for its output layer. Since the German Mozilla Common Voice corpus does not have
enough data to properly train 5000 subword units used in the Librispeech setup, the size of the
subword units were set to 150, similiar to the Common Voice recipe provided by ESPnet. Figure
4.2 shows the accuracy of the transformer architecture on CV_A and on CV_B. The training
set CV_B leads to considerably faster convergence compared to CV_A. This can be attributed
to the fact that the data seen during one epoch of training on the set CV_B is almost seven
times as much as is seen during an epoch of CV_A (cf. Section 4.1.2). The model trained on
the CV_B reaches superior accuracy, but over�ts around 100 epochs.
Table 4.5 reports the WER and CER scores for the ESPnet transformer architecture trained

with the sets CV_A and CV_B (cf. Table 4.3) of the German Mozilla Common Voice corpus
without LM. The CER of 41.3% of CV_A is superior to the CER of 43.76% reported by Ardila

14 https://github.com/PaddlePaddle/DeepSpeech
15 https://github.com/PaddlePaddle/DeepSpeech
16 https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/RESULTS.md
17 https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_TDNN-F_1d.sh
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(a) WER of ESPnet transformer trained on
CV_A.

(b) CER of ESPnet transformer trained on
CV_A.

(c) WER of ESPnet transformer trained on
CV_B.

(d) CER of ESPnet transformer trained on
CV_B.

Figure 4.2: Plots of WER and CER accross training and validation sets of German Common Voice datasets
(cf. Section 4.1.2).

Dataset
WER [%] CER [%]

Validation Test Validation Test

CV_A 56.2 60.2 37.1 41.3
CV_B 36.9 39.9 20.8 23.6

Table 4.5: Accuracy of ESPnet transformer architecture trained on di�erent datasets without LM-rescoring.

et al. [106], due to the use of an updated corpus. In the Common Voice recipe18 a relative
improvement of 38% is reported when decoding with RNN LM rescoring.

4.2.3 Evaluation of Transfer Learning Setups

In this Section we describe and evaluate the training of the acoustic model architecture ESPnet
transformer from Section 3.1.2 on the German Mozilla Common Voice corpus starting with a
model pretrained on the Librispeech corpus (cf. Section 4.2.1). The experiment was performed
on a single NVIDIA Tesla K40 GPU and conducted without LM rescoring. For transfer learning
from a model pretrained on Librispeech we face the problem of special characters in German.
The model trained on Librispeech can only transcribe one of the 5000 subwords in its output
layer and they only contain English characters. Therefore, 150 new subwords are generated from
the German Common Voice training set with SentencePiece [96] that we can use to replace the

18 https://github.com/espnet/espnet/blob/master/egs/commonvoice/asr1/RESULTS.md
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output layer. We use 150 subwords because it worked well in the previous experiment with
the German Common Voice corpus in Section 4.2.2 and better than 5000 subwords used in the
Librispeech recipe. To those subwords we add a blank and an unknown symbol resulting in 152
subword units. When the pretrained model is loaded the transformer's �nal softmax layer and
the CTC softmax layer are randomly initialized and their output dimensions are adjusted to
152. The output embedding layer (used as input for the �rst decoding layer) is also randomly
initialized and its input dimension is adjusted to 152. Then the model is trained without freezing
any of the layers. Figure 4.3 shows the accuracy of the transformer architecture with transfer
learning trained on the datasets CV_A and CV_B.

(a) WER of ESPnet transformer trained on
CV_A dataset with and without TL.

(b) CER of ESPnet transformer trained on
CV_A with and without TL.

(c) WER of ESPnet transformer trained on
CV_B with and without TL.

(d) CER of ESPnet transformer trained on
CV_B with and without TL.

Figure 4.3: WER and CER of transformer trained on German Common Voice datasets (cf. Section 4.1.2)
starting from a model trained on Librispeech (cf. Section 4.2.1).

Dataset
WER [%] CER [%]

Validation Test Validation Test

CV_A 34.3 37.6 19.3 22.1
CV_B 30.6 33.5 16.7 19.3

Table 4.6: Accuracy of ESPnet transformer architecture trained on di�erent datasets without LM-rescoring
starting from a model pretrained on Librispeech.

The best WER and CER values for the two models are reported in Table 4.6. Compared to
the experiment in Section 4.2.2 the transfer learning setup leads to a relative improvement in
WER on test-clean of 37.5% for training set CV_A and 16% for set CV_B. As can be seen in
Figure 4.3 the transfer learning setup has a steeper training curve. Training on CV_B converges
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considerably faster than on CV_A. This can be attributed to the fact that the data seen during
one epoch of training on CV_B is almost seven times as much as is seen during an epoch of
CV_A (cf. Section 4.1.2). After 200 epochs the model trained on CV_B has better accuracy
than the one trained on CV_A, but WER starts increasing around 60 epochs.

4.3 Qualitative Comparison of ASR Frameworks

In this section we qualitatively compare the ASR frameworks Kaldi, ESPnet and OpenSeq2Seq
used for the experiments. Table 4.7 shows the qualitative comparison of ASR frameworks.
OpenSeq2Seq and ESPnet are both used to train and decode end-to-end (E2E) deep learning
models with CTC and attention while Kaldi mainly builds on HMMs combined with DNNs or
GMMs. All three frameworks support data augmentation, but they have di�erent approaches
to preprocessing and feature extraction. ESPnet and Kaldi perform preprocessing and feature
extraction as a separate step in their recipe before training, while OpenSeq2Seq extracts features
on the �y during training. This results in a disadvantage when comparing training time. All three
toolkits can train on multi GPU setups for decreased training time. OpenSeq2Seq supports multi
node training with Horovod [98] or distributed Tensor�ow, while ESPnet does not support multi
node training yet. Kaldi comes with scripts that can run distributed training on parallelization
engines like Sun GridEngine, slurm and Tork. OpenSeq2Seq is the only framework of the three to
support mixed precision training [117] for lower memory footprint and training speedup. Kaldi
and OpenSeq2Seq both implement realtime inference and are therefore suitable for a setup as
cloud service. Out of the box none of the frameworks provide options for inference on mobile
devices, but there have been e�orts by Gaida et al. [118] to run Kaldi model inference on the
Android mobile platform. The Kaldi toolkit has a mixed codebase with binaries written in C++
chained together by Bash and Python scripts. ESPnet's codebase is comparable, with its main
code written in Python chained together by Bash scripts. The code of OpenSeq2Seq is purely
written in Python with the exception of the CTC decoder that is written in C++. Con�guration
for training, evaluation and inference in Kaldi and ESPnet is stored in a con�guration folder,
but additional parameters are adjustable in the recipes and Bash scripts used in the recipe. The
OpenSeq2Seq toolkit keeps the whole con�guration for preprocessing, training, decoding and
evalution in a single con�guration �le per architecture.

Framework OpenSeq2Seq ESPnet Kaldi

Approach E2E Deeplearning E2E Deeplearning
Hybrid HMM/DNN or

HMM/GMM

Data Augmentation Yes Yes Yes

Preprocessing &
Feature Extraction

On the �y Before training Before training

Multi GPU Training Yes Yes Yes

Multi Node Training Yes No Yes

Mixed Precision
Training

Yes No No

Realtime Inference Yes No Yes

Mobile Inference No No No

Codebase Python Python & Bash C++, Bash & Python

Con�guration Single con�g �le
Short recipe and

multiple con�g �les
Long recipe and

multiple con�g �les

Table 4.7: Comparison of the ASR frameworks used in this chapter.
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4.4 Training and Inference Costs of ASR Frameworks

In the following we evaluate the training and inference costs of the model architectures described
in Chapter 3. We measure and compare the time needed for training for one epoch on the
Librispeech corpus and the time needed for inference of the test-clean set of the Librispeech
corpus for each model. For the evaluation we used untuned and unoptimized framework code as
provided by the corresponding repositories. All experiments are performed on a single NVIDIA
Tesla K40c GPU with 12GB VRAM and an Intel Xeon E5-2697 v3 @ 2.60GHz CPU. Training
is performed on the GPU and inference is performed either with or without GPU depending on
what is supported by the framework. Table 4.8 shows the results of the training experiment. The

Model CPUs GPUs
Total epochs

trained

Batch of 50

[sec]

Epoch

[h]

Total

[h]

DeepSpeech 2 1 1 16 7.17 11.2 179.2
Wav2Letter 1 1 90 2.72 4.25 382.5
ESPnet transformer 1 1 106 4.13 6.46 684.76

Kaldi HMM/TDNN-F 1 1 4 89.24 139.43 557.72

Table 4.8: Temporal performance of di�erent acoustic models for training on Librispeech.

number of CPUs and GPUs used for training of the corresponding model and the total number
of epochs trained is shown in each row. The respective training times for a batch of 50 utterances
in seconds, a whole epoch in hours and the total training time in hours are reported. The total
training time does not necessarily align with the epoch training time, because the models were
not trained for the same amount of epochs due to time constraints. For every training experiment
a single CPU and a single GPU were used.

Model GPUs Beam Size
Inference time

for 1h [min]

test-clean

[h]

Realtime
capable

DeepSpeech 2 1 1 1.33 0.12 3

Wav2Letter 1 1 1.78 0.16 3

ESPnet transformer
1

60 527.33 47.46 5

1 3.33 0.3 3

0
60 441.89 39.77 5

1 34.56 3.11 3

Kaldi HMM/TDNN-F
1

15 2.78 0.25 3

1 1.67 0.15 3

0
15 14.03 1.26 3

1 4.72 0.43 3

Table 4.9: Temporal performance of di�erent acoustic models for inference without LM-rescoring.

Table 4.9 shows the results of the inference experiment: The number of GPUs used for inference
of the corresponding model is reported in each row. The respective inference times for an hour
of audio data in minutes and the whole test set Librispeech test-clean in hours are reported. All
models have been measured with a greedy decoder indicated by the beam size of 1. Additionally
the timings of the transformer and the HMM/TDNN-F were measured with the beamsize used in
the evaluation in terms of accuracy. As Kaldi and ESPnet support both GPU and CPU decoding
we report both numbers for comparison. All decoding experiments are run in a single thread
and all GPU based decoding experiments use a batch size of 1. The Kaldi HMM/TDNN-F has a
very high training time per epoch, but compared to the end-to-end systems it only needs a small
number of epochs for respectable WER scores so that its total training time is not considerably
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di�erent than that of its alternatives. The CPU and GPU based inference of the transformer
with a beam size of 60 is very slow with 39.77 and 47.46 hours for 5.4 hours of audio, rendering
it unsuitable for realtime uses. However, with greedy decoding it provides performance faster
than realtime. DeepSpeech2 provides the fastest inference time by decoding 1 hour of audio data
in 1.33 minutes, but its implementation in OpenSeq2Seq does not support CPU decoding which
can be a problem on devices where GPUs are not available. Wav2Letter is a close competitor to
DeepSpeech 2 in terms of speed, but also does not support CPU decoding in the OpenSeq2Seq
framework implementation. When decoded on the GPU the Kaldi HMM/TDNN-F provides
competitive numbers for greedy decoding, taking the second best position in the ranking. The
Kaldi HMM/TDNN-F decoded on the CPU also provides acceptable numbers, especially for
greedy decoding where it takes 358% of the time the fastest model, DeepSpeech 2, takes on the
GPU.
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5
Conclusion

5.1 Conclusion and Future Outlook

In this work modern ASR models based on di�erent technologies including hybrid HMM/TDNN-
F, transformers, convolutional neural networks and RNNs were presented. In particular, the
presented models are HMM/TDNN-F, ESPnet transformer, DeepSpeech 2 and Wav2Letter. For
conducting the evaluations the frameworks Kaldi, ESPnet and OpenSeq2Seq implementing those
models were selected. The frameworks were used to train ASR models on the English Librispeech
corpus containing 980 hours of read speech. The resulting models were then compared in terms
of word error rate. ESPnet transformer, the best performing end-to-end model, was used for
evaluation on the German Mozilla Common Voice corpus with 324 hours of read speech. In
particular, the transformer was trained with the German Common Voice corpus with and without
transfer learning setup. Without the transfer learning setup it was trained from scratch with
randomly initialized weights. For the transfer learning setup the model previously trained on the
Librispeech corpus was used as weight initialization. Additionally, its output layer was replaced
with a layer of a size suitable for classifying frames into German subword units. Following
the training we reported and evaluated the results of the experiment. Furthermore, the used
frameworks OpenSeq2Seq, Kaldi and ESPnet were compared based on their technology, features
and usability. Additionally, the di�erent models were compared in terms of training time and
inference time.
This work provides an evaluation in terms of WER of the ASR architectures HMM/TDNN-

F, transformer, Wav2Letter and DeepSpeech2 using the Librispeech corpus. Additionally, we
veri�ed that ESPnet transformer model accuracy can bene�t from transfer learning. In particular,
training a German model with a model pretrained on English Librispeech as initialization is
superior to training with random initialization for the ESPnet transformer. Furthermore, the
training and inference performance of the trained models as well as the feature sets and usability
of the the frameworks OpenSeq2Seq, Kaldi and ESPnet were compared. The �rst evaluation in
terms of accuracy was performed using the Librispeech dataset. The ESPnet transformer reached
the best accuracy with a WER score of 4.9 on Librispeech test-clean. The second evaluation
in terms of WER was performed using the German Common voice corpus CV_B. The ESPnet
transformer achieved WER scores of 39.9 and 33.5 on the test set for regular training and transfer
learning respectively. In the comparison between regular training and transfer learning using the
German Common Voice corpus CV_A the ESPnet transformer reached WER scores of 60.2
and 37.6 on the test set respectively. This shows that initialization with a model pretrained
on Librispeech improves the accuracy of the ESPnet transformer model trained on the German
Common Voice corpus. The relative improvement due to transfer learning is larger when training
on the small dataset CV_A than with the large dataset CV_B. Therefore it appears that transfer
learning has a higher impact on accuracy when the amount of training data is small.
The performance evaluation in terms of inference time shows that DeepSpeech2 is the most

e�cient of the evaluated architectures in terms of inference speed on the GPU. For CPU infer-
ence the HMM/TDNN-F is the most e�cient. Furthermore, the evaluation shows that the beam
search decoder implemented in ESPnet is very slow and can only be used in realtime scenarios
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with greedy decoding. The performance evaluation of inference time allows the conclusion that
DeepSpeech2, Wav2Letter, ESPnet transformer and Kaldi HMM/TDNN-F are suitable for re-
altime use. However, the beam size of the ESPnet transformer decoder has to be reduced from
60 to 1. Hence, the accuracy su�ers under the realtime constraint. All frameworks could be
deployed in a cloud environment, but none of them support running on mobile devices out of the
box.
This research indicates that pure CTC architectures are in need of LMs to boost classi�cation

accuracy. The transformer architecture reduces the need for a LM and is therefore an interesting
model for future research. Although much progress has been made in end-to-end ASR the quality
of the model is still highly dependent on the amount of training data in the target language.
We have improved a transformer model with transfer learning which is a good candidate for
leveraging data in other languages. Decoding in realtime is an important factor in perceived
latency of an ASR system. To use the ESPnet transformer in realtime an attention mechanism
with limited lookahead needs to be used and a framewise decoder must be implemented. Overall
we observe that all evaluated models are suitable as cloud solutions. However, when it comes
to edge deployment additional research regarding resource e�ciency of acoustic- and language
models needs to be conducted.
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