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Abstract

Automatic localization of anatomical landmarks is an important step for a wide range of

applications in Medical Image Processing (MIP). Many MIP algorithms such as segmen-

tation or registration benefit from the reliable localization of anatomical landmarks as a

preprocessing step. When working with large 3D medical images, current state-of-the-art

methods that are mainly based on Convolutional Neural Networks (CNNs) using heat map

regression suffer from two major limitations. Either they require large amounts of memory

to store the whole image inside the GPU or, using patch-based approaches, depend on an

additional model for global guidance.

This thesis focuses on the automated localization of multiple landmarks using an ar-

tificial Reinforcement Learning (RL) agent, which learns to find the optimal path to the

target landmark by interacting with the environment, in our case 2D X-ray images. RL

agents are able to move through the environment by observing local image patches and

learning a representation of the anatomy. We present an algorithm for single landmark

localization based on Deep Deterministic Policy Gradients (DDPG). With the DDPG

algorithm we are able to save computational resources, compared to existing RL based

algorithms for landmark localization by reducing the number of predictions needed to

reach the target landmark. Building upon this algorithm, we provide two methods for

multi-landmark localization: (1) a multi-task approach with a novel sample efficient train-

ing method and (2) an approach for the simultaneous localization of multiple landmarks

by using multiple agents inside the environment, which are controlled by a single neural

network. The latter, called Simultaneous Acting and Localizing (SAL) furthermore allows

learning spatial relations between landmarks during training.

We compare the proposed methods to an existing Deep Q-Network (DQN) based RL

algorithm and a state-of-the-art CNN approach for landmark localization. We show that

our algorithm is able to reach comparable performance and, at the same time, reduces

computational cost for both single- and multi-landmark localization. Furthermore, we

show that SAL is able to learn spatial configurations, which allows localizing hidden or

occluded landmarks.
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Kurzfassung

Die automatische Lokalisierung anatomischer Strukturen ist ein wichtiger Schritt für eine

Vielzahl von Anwendungen in der medizinischen Bildverarbeitung. Viele Algorithmen

wie Segmentierung oder Bildregistrierung benötigen die zuverlässige Detektierung

anatomischer Strukturen als Vorverarbeitungsschritt. Derzeitige Methoden verwenden

hauptsächlich Heatmap-Regression auf Basis von Convolutional Neural Networks (CNNs)

die zwei bedeutende Nachteile mit sich bringen: Bildbasierte Methoden benötigen große

Mengen an GPU -Speicher und Patch-basierte Methoden erfordern das zusätzliche

Erlernen eines globalen Models.

Diese Arbeit konzentriert sich auf die automatische Lokalisierung anatomischer Struk-

turen mit Hilfe eines künstlichen Reinforcement Learning (RL)-Agenten, welcher durch

Interaktion mit der Umwelt, in unserem Fall 2D-Röntgenbildern, lernt, den optimalen Weg

zur Zielstruktur zu finden. RL-Agenten sind in der Lage, sich durch die Umwelt zu bewe-

gen, indem sie lokale Bildausschnitte beobachten und eine Repräsentation der Anatomie

erlernen. Wir stellen einen Algorithmus für die Lokalisierung einzelner Strukturen auf der

Basis von Deep Deterministic Policy Gradients (DDPG) vor. Mit dem DDPG-Algorithmus

sind wir in der Lage, im Vergleich zu bestehenden RL-basierten Algorithmen Rechenres-

sourcen einzusparen, indem wir die Anzahl der Schritte, die zum Erreichen der Zielstruk-

tur erforderlich sind, reduzieren. Aufbauend auf diesem Algorithmus entwickeln wir zwei

Methoden für die Lokalisierung mehrerer anatomischer Strukturen in einem Röntgenbild.

Wir verwenden einen Multitasking-Ansatz mit einer neuartigen, effizienten Trainingsmeth-

ode, die es dem RL-agenten ermöglicht gleichzeitig die optimalen Pfade zu verschiedenen

Zielstrukturen zu erlernen. Weiters, für die gleichzeitige Lokalisierung mehrerer Struk-

turen verwenden wir mehrere Agenten, die von einem gemeinsamen Neuronalen Netzwerk

gesteuert werden. Diese Methode ermöglicht uns außerdem, eine räumliche Konfiguration

anatomischer Strukturen zu erlernen, was uns in der praktischen Anwendung des erlernten

Algorithmus ermöglicht, verdeckte anatomische Strukturen zu lokalisieren.
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1
Introduction

Contents

1.1 Landmark Localization . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Reinforcement Learning for Landmark Localization . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Medical imaging is a field of research that deals with creating a visual representation

of the interior of the body as well as the visualization of physiological processes to aid

the physician in diagnosis and surgery. Structures of interest are recorded with different

imaging techniques, depending on the desired acquisition time, contrast, spatial resolution

and other criteria. The most common medical imaging methods are Computed Tomography

(CT), Magnetic Resonance Imaging (MRI), Ultrasound Imaging (USI) and radiography.

With the help of these images, the physician is able to detect anomalies and diseases and

is able to plan surgical interventions in a more sophisticated way. However, analyzing

medical images can be tedious and complex. To support medical professionals and to

reduce their workload, the field of Medical Image Processing (MIP) has gained research

interest in the last decades.

MIP has strong parallels to the field of computer vision and deals with similar tasks.

MIP includes basic operations such as denoising and sharpening, but also more advanced

problems such as segmentation or image registration. While the algorithms used in MIP

share a lot of theory with the computer vision domain, the problems in medical image

processing pose additional challenges. Data-driven methods are limited by low availabil-

ity of proper training data, due to privacy concerns and high cost of labeling through

expert annotators. Often datasets include systematic error due to negligence caused by

repetitiveness. While large computer vision datasets usually have sizes in the order of

millions, a large medical image dataset has a size of a few thousand images, depending on

the task. Another challenge arises with the use of volumetric data since medical images

1



2 Chapter 1. Introduction

are often 3-dimensional (3D), which increases computational and algorithmic complexity.

Also, medical images can be acquired with a myriad of different techniques, each coming

with its own characteristics. Finally, algorithms are usually tailored to a specific task and

include a priori knowledge, which needs strong collaboration between medical experts and

engineers.

1.1 Landmark Localization

Landmark localization, especially facial landmark localization is a well-studied problem,

due to its rising importance in commercial applications for mobile devices. Landmark lo-

calization is the fundamental building block of many computer vision applications such as

face recognition, facial expression recognition, eye gaze tracking, and many more. Land-

marks are points of interest that occur at a specific structure within images. Examples

of facial landmarks are the corners of the mouth or the eyes. Landmarks can be further

specialized to medical applications, and consequently are called medical or anatomical

landmarks. Anatomical landmarks are prominent features at structures of interest inside

or on the surface of the human body and include among others, joints, teeth or com-

missures. Medical image analysis algorithms are often based on the reliable detection

of such anatomical landmarks. An example is image registration, where two images are

aligned and transformed, i.e. registered to each other. For landmark-based image registra-

tion algorithms, it is important, that the landmarks are always located at the exact same

anatomical position. Furthermore, many structures of interest contain multiple landmarks,

which can be used for diagnosis. An example is cephalometric image analysis, which deals

with the measurement of the skull or age assessment, where often ossification is used as

an indicator, which is essentially expressed by the relative size between different bones.

Manual landmark localization is time-consuming and suffers from high observer vari-

ability. Therefore, automatic landmark localization deals with developing computer algo-

rithms that are able to localize landmarks without or with minimal human interaction.

Developing such algorithms is challenging for the following reasons. The great variety

in image intensities, contrast, image quality and other properties make it challenging for

algorithms to generalize. Also the structure of interest’s shape, size and orientation can

have a great degree of variability. Data-driven methods suffer from low availability and

expensive annotation of training data. Furthermore, training and inference on 3D im-

ages is computationally expensive, making real-time applications challenging. Finally, if

multiple landmarks are to be localized, spatial configuration between the landmarks and

ambiguity should be considered.

Current state-of-the-art methods are mainly based on Convolutional Neural Networks

(CNNs). CNN based methods can be divided into two categories. The first category

processes the image as a whole, which puts high demands on the hardware, especially

when working with 3D images. The second category uses local image patches as training

samples to reduce inference complexity. These methods however need additional global
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Figure 1.1: Examples of facial landmarks (left) and joint landmarks of the human hand (right).
Left image borrowed from [40].

guidance, which in many cases requires learning an additional model.

1.2 Reinforcement Learning for Landmark Localization

Reinforcement Learning (RL) is a machine learning paradigm that originated from the

psychology of animal learning. In the late 80s, the theory of RL was formulated combining

elements from psychology, control theory and dynamic programming. Although initially

mainly theoretical in nature, RL started to make its way into real-world applications

since the advent of more efficient algorithms in recent years, especially in the field of

robotics, self-driving vehicles and autonomous Unmanned Aerial Vehicles (UAVs). Since

the ground-breaking publication in 2015 [56], where for the first time deep neural networks

and RL have been combined successfully, the research field has gained a lot of attention.

In RL a goal-oriented software agent takes actions in an environment and learns by trial

and error, based on rewards or punishments. These rewards or punishments are controlled

by a task-specific reward function, which is the only supervision an RL algorithm needs.

In this thesis, we adopt an RL strategy to the problem of landmark localization. The

RL agent navigates through the environment, the medical image, and decides at each

time step in which direction to move, by observing a local image patch around its current

position. The RL agent aims to learn the optimal path to the target landmark. To exploit

the representative power of CNNs, we use a CNN to process image patches and map to

the agent’s actions. The combination of CNNs and RL is known as Deep Reinforcement

Learning (DRL).

Using RL has the advantage, that the agent is able to internally keep a representation

of the anatomy, while benefiting in terms of computational requirements from processing

image patches. This internal model of the anatomy allows the RL agent to localize the

landmark from any arbitrary starting position inside the image, without the need of an

additional model for global guidance. By learning from patches RL eliminates the need of
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storing the whole image in GPU memory, which is a challenge for CNN -based methods,

especially when working with large 3D volumes. Furthermore, patch-based methods re-

quire less training images, because by splitting the images into smaller patches artificially

generates a large amount of training data. Moreover, the process of localizing anatomical

landmarks based on the perception of local image information is similar to the way a

physician localizes anatomical structures in a medical image. Indeed, the physician, based

on his learned knowledge, can estimate the position of an anatomical structure relative to

another structure in the image. The closer the initial observation was, the more accurately

the physician is able to estimate the sought landmark.

1.3 Contributions

RL for anatomical landmark localization was first introduced by Ghesu et al. [33], where

a Deep Q-Network (DQN) agent was used as a foundation. Based on this publication, we

implement a baseline approach for single landmark localization and tackle specific prob-

lems that arise with this method. Furthermore, we develop methods for multi-landmark

localization. Our research led to the following contributions:

1. We present a multi-task strategy based on the DQN algorithm, where a single agent

is trained for multiple landmarks, which allows training multiple landmarks simul-

taneously. This method allows training an agent for multiple landmarks in almost

the same time needed for a single landmark.

2. We implement a method for single landmark localization, based on the algorithm

Deep Deterministic Policy Gradients (DDPG). This algorithm allows predicting a

variable step-size, which makes the agent more versatile. This allows reducing the

number of steps the agent needs to localize the target landmark, which leads to

reduced inference time while keeping the same accuracy.

3. We also extend the DDPG method for single-landmark localization to the multi-

landmark case. Similar to the previous item, we use a multi-task strategy and

present a sample-efficient training method for this algorithm.

4. We present an algorithm inspired from Multi-Agent Reinforcement Learning

(MARL), where multiple agents are used to localize multiple landmarks

simultaneously. This method allows learning spatial configurations between

landmarks. We show that we are able to localize missing or occluded landmarks

during inference with this method.
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This chapter provides a literature review of the topics covered in this thesis. The first

part of the chapter will summarize the state-of-the-art in landmark localization, including

general methods from the computer vision domain and more specific methods from the

medical image processing domain. The second part of the chapter will provide an overview

to recent applications of reinforcement learning to the field of medical image processing.

2.1 Landmark Localization in Computer Vision

The earliest methods for landmark localization used handcrafted low-level descriptors of

the landmark to automate the process of feature extraction. These descriptors often

made use of mathematical operators such as image gradients, geometrical descriptions

like curvature, line-crossings or saddle points or used the intensities of the images directly

[65]. Feature matching algorithms could then be applied to match the descriptor with the

image. These methods however were very specific and could not be easily generalized to

other datasets.

Statistical Shape Models (SSMs) were introduced, where the descriptors for the fea-

tures in the dataset were built by automated statistical analysis of the dataset. The first

method to use shape models is called Active Shape Model (ASM) and was introduced by

Cootes and Taylor [18]. ASMs generate a model of the dataset by computing the mean

landmark positions of the labeled data and applying Principal Component Analysis (PCA)

to the data, which is represented by the landmarks. The eigenvectors generated by PCA

5
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are called the modes and are added to the mean landmark positions weighted with a factor

w. To predict landmarks, these weights are altered, by minimizing a certain energy such

that the control points fit the shape in the new image. Cootes et al. [19] further refined

the method by including a multi-resolution framework which increases robustness if the

initial guess was far off the true position of the landmarks.

An improvement of the ASM is the Active Appearance Model (AAM) [15], developed by

the same research group, which includes textural information to the shape model. AAMs

were mainly developed for face modeling which in turn were used for face recognition [27]

or to interpret face images [28]. A comparison including applications for both ASMs and

AAMs is given in [16].

Similar to AAMs, Constrained Local Models (CLMs) [22] use texture information to

match an instance of the shape model to the image. While AAMs generate a texture

model of the complete image by PCA, CLMs only use image patches centered around the

landmarks.

Many modern approaches are based on more advanced machine learning methods

such as Random Forests (RFs) [6, 35] and Convolutional Neural Networks (CNNs) [44].

Random forests are an ensemble method based on multiple decision trees, which are trained

independently on random samples of the data. A decision tree consists of leaf nodes and

split nodes, where each split node contains a weak learner. Random forests can be classified

into classification or regression forests, whereby in landmark localization regression forests

dominate. In a regression forest [20] each leaf node stores a distribution over a continuous

variable. The final prediction is the union over the distributions from the predictions

of the individual trees that build up the regression forest. A common method to use

regression forests for landmark localization is called the voting approach. In the voting

approach a feature vector of an image patch around each pixel in the image is generated

(i.e. using Haar-like features) and evaluated by the regression forest. The regression

forest casts a vote for a displacement relative to it, where the landmark is assumed. These

votes are accumulated and the region with the most votes is chosen as the landmarks

position. Fanelli et al. [30] use the voting approach to localize facial features for head-

pose estimation. Lindner et. al. [49] propose an RF regression-voting model for landmark

localization, where votes are accumulated on a grid.

CNN based approaches for landmark localization have been investigated extensively

since the ImageNet classification breakthrough in 2012 [42], especially for facial landmark

localization and human pose estimation. The authors of [79] were the first, to introduce

CNNs to the field of pose estimation, by regressing the coordinates of joints, a problem

known as coordinate regression. Other methods use CNNs to regress heatmaps with the

same size as the original input [57, 61, 74, 77, 78, 86]. The heatmap approach has been

shown to be more robust and is used in general. Heatmap regressors also have the advan-

tage over coordinate regressors, that through the use of encoder-decoder structures such

as U-Net [67] no densely connected layers are needed, which are prone to overfitting and

usually introduce a lot of additional parameters, which make training more expensive. The



2.2. Landmark Localization in Medical Image Processing 7

authors of [13] use an approach, where they first generate candidate key points and then

refine the prediction iteratively by predicting a correction vector for the key points. The

problem of human pose estimation is even more challenging if the pose of multiple persons

inside a single image has to be estimated. The authors of [11, 12, 37, 62] use a bottom-up

approach, where first the key points of every person inside the image are localized, fol-

lowed by assigning the individual key points to distinct individuals. The authors of [31]

use a top-down approach, where first the bounding boxes of the individuals are detected,

followed by single-person pose estimation using a stacked hourglass network [57]. Simi-

lar to the problem of pose estimation, recent facial landmark localization methods make

heavy use of CNNs. The authors of [51, 63, 75, 90] address the problem using coordinate

regression. Heatmap regression is used in the publications [7, 25, 46].

2.2 Landmark Localization in Medical Image Processing

The authors in [64] describe corner detection methods, based on image gradients and

Hessian matrices to locate landmarks in human brain images from Magnetic Resonance

(MR) and Computed Tomography (CT) volumes. The same differential methods for 3D

corner detection as in [64] are used in [66] for landmark localization as a preliminary step

for registration of medical images. Since these corner detectors are based on gradients i.e.

high variations in the image, these algorithms lead to a lot of false-positive detections. An

advantage of these algorithms is, that they do not involve optimization, which makes them

very fast compared to more advanced algorithms. The authors of [5] use a template-based

approach to detect landmarks for lung- and nodule registration. Štern et al. [73] propose

a edge detection based method for 3D spinal centerline detection, where the centerline is

used in a second step to localize the center of the vertebral bodies by analyzing the image

intensities and gradient magnitudes along the centerline.

Some approaches in Medical Image Processing (MIP) use atlas-based registration meth-

ods [29]. An atlas is a single image or a set of images, which represent a dataset. These

methods use the landmarks of the atlas and apply a transformation to the new image

to match (i.e. register) these landmarks. Due to variation in the images, the registered

image usually needs to undergo a non-rigid transformation, which is not a trivial task.

The opposite problem is the use of deformable models, where a model (e.g. the atlas) is

registered to the image and is used in [32].

The ASM is used by Cootes et al. in [17], where they apply their method from [18] to

medical images, by fitting the ASM to the images of organs. Another application of the

ASM is cephalometric analysis [36], which deals with the measurement of the head, by

localizing cephalometric landmarks. De Bruijne et al. [24] use the ASM for segmentation

of tubular structures in medical images. As the previous examples show, the ASM in

medical applications is used mainly for segmentation, where the landmarks only act as

control points for the segmentation boundary and are often a disregarded byproduct. The

same applies to the AAM , which is used for cardiac segmentation of MR and Ultrasound
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(US) images in [54]. A more detailed overview of AAMs in Medical Image Analysis (MIA)

is given in [4]. The CLM is used in [22] to localize points of interest in MR images of the

brain and in dental panoramic radiographs.

A stronger impact on medical landmark localization had recent developments in RFs

and CNNs. Criminisi et al. [21] use regression forests to estimate location and size of

organs in 3D CT images, where the coordinates describing location and size are predicted

as continuous variables. Cheng et al. [14] use a discriminative random forest approach to

locate the Dent-landmark, which is one of the key landmarks to construct the midsagittal

reference plane. Ebner et al. [26] use a weighted regression voting approach, which com-

prises two random forests. The first forest is used for coarse global landmark localization,

and the second to refine the landmark predictions locally. Urschler et al. [81] extend the

RF regression approach by first generating candidate regions and then iteratively refining

the joint landmark predictions of multiple landmarks using the coordinate descent algo-

rithm [88]. In the refinement stage, they integrate the geometric configuration of multiple

landmarks into the RF optimization problem.

The use of CNNs has seen a lot of attention in recent years, due to its success in

computer vision tasks. Payer et al. [60] propose a regressing heatmap approach, with

a special architecture that takes into account the spatial configuration between multiple

landmarks. The application of CNNs to 3D volumes is particularly challenging due to in-

creased computational complexity. Different approaches have been investigated to tackle

this problem. The method of representing 3D volumes with 2D planes is commonly known

as the 2.5D representation. Roth et al. [68] use such a 2.5D approach, where they sample

n viewing planes of a volume for the detection of lymph nodes. Despite increased effi-

ciency, these representations omit a lot of relevant information. Zheng et al. [91] tackle

the 3D landmark detection problem as a two-stage classification problem, where first a

shallow network generates multiple landmark candidates using a sliding window approach.

A second deep network classifies image patches around the proposed landmark positions.

To increase CNN efficiency, they additionally decompose 3D convolutions into three 1D

convolutions. The authors of [58] propose a patch method where a CNN is used to simul-

taneously regress a displacement vector from each patch to the desired landmark and to

classify if the patch contains the landmark. Yang et al. [89] use CNNs for classification of

the individual slices of a 3D image. The three orthogonal slices with the best classification

result have then been intersected to obtain the location of the landmark.

2.3 Reinforcement Learning in Medical Image Processing

In 2015, with the introduction of Deep Q-Network (DQN) [56] the technology Reinforce-

ment Learning (RL) had a major breakthrough and has since been used successfully in

many areas of computer vision and robotics. While other machine learning methods have

been used extensively in MIP , RL is a fairly unexplored research field. Also, some at-

tempts have successfully introduced RL to the MIP domain, which will be introduced in
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this section. The theory of RL is explained in more detail in Chapter 3.

The problem of landmark localization was first formulated as a reinforcement learning

problem by Ghesu et al. in [33]. In this approach, a DQN agent is used, which observes a

sub-image or a sub-volume for 2D images and 3D volumes respectively. The agent moves

with a fixed step size on the four principal directions through the complete image or on

the six principal directions through the volume to localize the landmark. Based on this

work, Alansary et al. [3] evaluated different improvements over the DQN algorithm, such

as Double DQN (DDQN) [82] or Dueling DQN [84]. In [83] the authors extend the idea

of using DQN for landmark localization to the multi-landmark case. They formulate the

problem as a multi-agent problem, where weight sharing between convolutional layers is

supposed to establish communication between agents. During the work in this thesis, a

further extension to this method has been published, where additional to weight sharing

in the convolution layers, explicit communication signals are learned by sharing commu-

nication channels in the fully connected layers [45].

Besides landmark localization, RL has been investigated for several other problems

in MIP . Maicas et al. [52] use RL for breast lesion detection. They define the agent as

a subvolume in 3D DCE-MRI volumes where additionally to the discrete translational

actions, as they are used in landmark localization, they add actions for scaling and a

trigger action to signalize detection of the desired area. Sahba et al. [69] use an RL agent

for prostate segmentation. They divide the ultrasound images into smaller sub-images

and use thresholding on the sub-images to do the segmentation. The agent’s actions are

to lower or raise the segmentation threshold. The authors of [47] use an artificial agent

for rigid image registration. The agent’s observation is raw image data and its goal is to

find the best sequence of motion actions that lead to image alignment. Following a similar

approach, the authors of [41] apply RL to non-rigid registration. In [2] automated view

planning is performed by applying a DQN agent to cardiac- and brain Magnetic Resonance

Imaging (MRI) images. The algorithm is assessed on the midsagittal and anterior-posterior

commissure planes of the brain images and the 4-chamber long-axis plane in the cardiac

images.
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3.1 Reinforcement Learning

This chapter summarizes the theory of Reinforcement Learning (RL). The first section of

the chapter presents the fundamentals of RL, the second section focuses on Deep Reinforce-

ment Learning (DRL) and the third section provides a short introduction to multi-agent

RL. This whole chapter is based on the well-known book Reinforcement Learning - An

Introduction from Sutton and Barto [76] and on the lecture of David Silver [72], the RL

research group leader of the company DeepMind Technologies.

3.1.1 Elements of Reinforcement Learning

This section describes the basic elements of RL. The terms explained in this section will

appear extensively in upcoming sections and are essential for a profound understanding

of the topic.

• Agent

The agent is the most important element in the RL setup. It is the component that

makes the decision of what action to take. To infer the right actions in certain states,

the agent learns by reward or punishment. An agent can be a physical object like a

self-driving vehicle or a more abstract construct like a software-based controller that

plays Atari games.

11
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Figure 3.1: The agent-environment loop represents the basic idea behind RL. The agent takes an
action, transitions to a new state and receives a reward. With this information, the agent learns
to infer the right actions from states.

• Environment

The environment is the playground of the agent and includes two basic functions.

First, it needs to provide a set of states, which can be visited by the agent. The

second necessary property of the environment is a reward function, which can be

thought of like another entity inside the environment, which observes the agent

and tells him, whether his actions are good or bad. The reward function can be

represented in multiple ways. For example in a robot control problem, the reward

can be defined by a person. In other scenarios, a mathematical function may suit

the problem better.

In abstract words, one could describe the environment as a stochastic finite state

machine with inputs (actions sent from the agent) and outputs (observations and

rewards sent to the agent).

• Action

Actions are the agent’s way of interacting with the environment and thus transfer

between states. The set of actions available to an agent is called the action space,

which can be either discrete or continuous. An example of a discrete action space

is a robot with the possibility to move in its four principal directions: left, right,

forward and backward. A continuous action space on the other hand could be an

agent with a steering gearbox, where the steering angle can be any real-valued angle

inside a certain interval.

• State and Observation

A state is the situation in the environment the agent is in. The way the agent is

able to observe its state in the environment is an important topic in RL and deals

with the correct description of the situation. How a state is represented is called

an observation. Proper state representation is important to uniquely describe the

agent’s position in the environment. A robot for example, additionally to a camera,
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might also require acceleration sensors to describe its situation. For an agent playing

Atari games instead the raw pixel data should be enough.

• Reward

A reward is given to the agent after every action it executes and is usually represented

by a scalar value. The reward can be positive if the agent’s action is considered good

in a particular state, negative otherwise or zero if it has no particular influence. The

agent’s sole objective is to maximize the total reward it receives in the long run. The

reward however does not indicate if the agent is moving towards a more favorable

state since it might be advantageous to sacrifice immediate rewards for larger future

rewards. How favorable a state is, is represented by the value function, which is an

important concept in RL and is described in more detail in Section 3.1.3. The amount

of reward an agent receives for taking an action in a specific state is computed by a

problem-specific reward function.

• Episode

An episode describes one full simulation of the agent-environment loop, at the end

of which the agent ends in a terminal state. A terminal state is reached if the agent

accomplishes its designated goal. A task is called episodic if there exists a terminal

state. Otherwise, it is a continuing task, which is comparable to a control problem,

where the agent keeps making decisions until it is turned off.

• Policy

A policy is the strategy an agent follows and can be described as a probability

distribution over actions given states. That is the likelihood of every action when an

agent is in a particular state. In the simplest case, the policy is a function, that takes

a state as input and returns an action. In this case, the policy π is deterministic and

can be described as a map from a state s ∈ S to an action a ∈ A:

π : S → A (3.1)

In other cases, the policy might be stochastic, which means, the policy can be de-

scribed as a map from a state-action pair to a probability as in the following equation:

π : S ×A → [0, 1] (3.2)

• Model

A model is a representation of the environment’s underlying Markov Decision Process

(MDP). During training, the agent tries to build an explicit model of the MDP , which

can later be used for planning, which is the process of decision-making in advance,

i.e. predicting a set of actions, which should lead to the desired goal. The model is
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optional in RL. In model-free RL the agent only decides based on the current state

and makes a new decision after it transitioned to the next state. The majority of

real-world RL problems, including the landmark localization problem, which will be

explained in the next chapter are solved model-free.

3.1.2 Markov Decision Processes

In general, the RL problem is formulated as an MDP , which can be described completely

as a 4-tuple 〈S,A,Pa,Ra〉, where:

• S is a set of states called the state-space and st ∈ S describes an individual state at

time step t,

• A is a set of actions called the action-spaceand at ∈ A describes an individual action

executed at time step t,

• Pa(s, s′) is the probability, that action a leads to state s′ from state s and

• Ra(s, s′) is the reward for transitioning from state s to s′ after taking action a.

The MDP is an extension to the Markov Reward Process (MRP), which itself is an

extension to the Markov chain. The Markov chain models an environment by assigning

transition probabilities from each possible state to their subsequent states (Figure 3.2).

The MRP adds a reward to the transition (Figure 3.3) and the MDP further adds the

possibility of decision-making to the MRP (Figure 3.4). Decision-making in this context

means, that a policy is introduced to the process, by which an agent decides which action

to take in a certain state. The policy is modeled with a probability distribution over

actions given a state.

π(a|s) = P[At = a|St = s] (3.3)

A deterministic policy is a policy, where the agent would always execute the same

action in the same state, which means, that the probability is always 1 for a single action

and 0 for all others. Additionally to the policy also the environment can be stochastic,

which means, even though the agent takes a specific action does not ensure that the agent

will transition to the desired state. A frequent example of a stochastic environment in

real-world application is a self-driving vehicle, where the properties of the underground

(mainly friction) provide a source of uncertainty. The example MDP in Figure 3.4 includes

both stochastic policy and stochastic environment. The black dot shows a case, where the

action can lead to multiple states.

The MDP satisfies the Markov assumption. The Markov assumption assumes inde-

pendence of past and future states. This means, that the state and the behavior of the

environment at time step t are not influenced by past agent-environment interactions.

This assumption is formulated in Equation 3.4.
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P[St+1|St] = P[St+1|S1, . . . , St] (3.4)

If the agent does not receive all the information required to uniquely describe its state,

then the MDP becomes a Partially Observable Markov Decision Process (POMDP) [38],

which is a special research field in RL.

Figure 3.2: A Markov chain with transition
probabilities.

Figure 3.3: A Markov reward process,
which extends the Markov chain by adding
rewards to the transitions.

Figure 3.4: A Markov decision process. In an MDP the agent has the power over which actions
to take and therefore is able to maximize the reward by taking the optimal sequence of actions.
However, the environment can still be stochastic, as can be seen in state s3. If the agent decides
to take the action to the black dot, it has a 60% chance to land in state s2 and a 40% chance to
land in state s0.

3.1.3 The Value Function

Model-free algorithms can be separated into policy-based and value-based algorithms.

These two classes do not have to be strictly separated, which will be shown in Section

3.2.3.1. In policy-based methods, an explicit representation of the policy is built, which is

a mapping π : S → A from a state s ∈ S to an action a ∈ A. In value-based methods, no
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explicit policy is stored, but a value function (or state-value function). A value function

is a function, that estimates how good it is for an agent to be in a particular state and

is usually denoted as V (s). The policy is here implicit and can be derived from the value

function. The value Vπ(s) is the expected cumulative reward Rt starting from state st = s

at time t, following a policy π:

Vπ(s) = Eπ[Rt|st = s] = Eπ[
∞∑
k=0

rt+k+1|st = s] (3.5)

The immediate reward, i.e. the reward received for a transition between two states

is denoted as r and the cumulative reward, i.e. the sum of all rewards along the agent’s

trajectory is denoted as R.

In non-terminating episodes this series would sum up to infinity, therefore a discount

factor is introduced to stabilize the training process. The discount factor is an important

hyper-parameter and essential for convergence of most RL algorithms. To appreciate the

importance of the discount factor, often the analogy to finance is brought up, where im-

mediate returns to an investment are more important than future returns, due to inflation

and uncertainty in the markets.

Vπ(s) = Eπ[Rt|st = s] = Eπ[
∞∑
k=0

γkrt+k+1|st = s] γ ∈ [0, 1] (3.6)

Equation 3.6 can be written recursively. The recursive form is called the Bellman

equation for Vπ.

Vπ(s) = Eπ[Rt|st = s]

= Eπ[rt+1 + γRt+1|st = s]

=
∑
a

π(a|s)
∑
s′

Pas,s′ [Ras,s′ + γEπ[Rt+1|st+1 = s′]]

=
∑
a

π(a|s)
∑
s′

Pas,s′ [Ras,s′ + γVπ(s′)]

(3.7)

Pas,s′ describes the probability of transitioning to state s′ from state s after taking

action a and Ras,s′ denotes the associated reward.

The optimal value function V ∗ is achieved if it has a higher value than any other

value function for every state s.

V ∗(s) = max
π

V π(s) ∀s ∈ S, (3.8)

where S is the space of all states and π is the policy, i.e. the function that maps a

state to an action.
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3.1.4 The Q-Function

Closely related to the value function is the Q-function or action-value function. The Q-

value can be understood as a quality measure of taking a certain action in a certain state

to gain future rewards, hence the name ”Q”-value and answers the question, which action

gives the most future reward given the current state. Like the value-function, the Q-

function predicts the expected discounted reward for a given state, but for every possible

action. Assume an agent with a set of four actions. The value function would consist of a

single value per state and the Q-function would consist of four values per state.

Q(s, a) = E[Rt|st = s, at = a]

= E[
∞∑
k=0

γkrt+k+1|st = s, at = a]
(3.9)

For finite and small state spaces, the Q-function can be represented by a table, which

can be used as a look-up table during inference. Since the Q-function predicts the expected

reward for taking a certain action given a state, the optimal policy in Q-learning is the

policy that maximizes the Q-function for every state. In other words, the optimal policy

is obtained by choosing the action with the largest Q-value in every state. Table 3.1

shows a very simple example of a Q-table. Although the difference between value-function

and Q-function seems insignificant, the slight modification, which includes the agent’s

action makes it possible to implicitly derive the policy from the Q-function. A model-free

prediction would not be possible from the value function alone.

The Q-table can be computed with dynamic programming methods by arbitrarily

initializing all elements of the table (a Q-table is usually initialized with zeros). During

training, every Q-value is updated sequentially by the methods explained in the next

section. Convergence is achieved if the Q-values do not change anymore. If training

has been successful, the Q-table can be used as a look-up table. Consider the example

in Table 3.1. If the agent is located in state four, the maximum Q-value of Q = 1.0

corresponds to the action ”right”. This action can be considered optimal if the Q-function

is optimal. Taking the action with the largest Q-value results in a deterministic policy,

which means, the agent would always choose the same action in the same state. In this

case, the connection between Q-function and value function is as follows:

Vπ(s) = max
a

Qπ(s, a) (3.10)

Equivalent to Equation 3.7, the Q-function can be written recursively, which is called

the Bellman equation for the Q-function.
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s
a ↑ ↓ → ←

0 0.2 -0.5 -0.21 -0.6
1 0.3 -0.4 0.4 -0.1
2 1.0 -0.2 -0.3 -0.1
3 -0.22 -0.04 0.5 -0.31
4 -0.3 -0.02 1.0 0.0
5 -0.6 0.15 0.21 0.05

Table 3.1: Example of a Q-table. The corresponding environment has six states and four actions
- up, down, right and left. The state is indicated as s and the action as a. Assuming the Q-table to
be optimal, the optimal policy is choosing the action with the largest Q-value for a given action. As
an example consider the agent to be in state 4. The maximum Q-value is 1.0 and the corresponding
action is ”right”.

Qπ(s, a) = Eπ[Rt|st = s, at = a]

= Eπ[rt+1 + γRt+1|st = s, at = a]

=
∑
s′

Pas,s′ [Ras,s′ + γEπ[Rt+1|st+1 = s′]]

=
∑
s′

Pas,s′ [Ras,s′ + γVπ(s′)]

(3.11)

By Equation 3.10, we can rewrite Equation 3.11 as

Qπ(s, a) =
∑
s′

Pas,s′ [Ras,s′ + γmax
a

Qπ(s′, a)] (3.12)

3.1.5 Learning Methods

The goal of RL is to solve an MDP by taking samples from the environment. Solving an

MDP means determining the value function or the Q-function of the MDP that satisfies

the Bellman equation. This section introduces the most important techniques to solve an

RL problem for the value function or the Q-function.

Monte Carlo Learning

Monte Carlo (MC) methods are a broad class of algorithms, which rely on random sampling

to obtain numerical results. They are often used for physical simulations, where analytical

solutions are infeasible. In RL, MC methods sample an entire trajectory and update the

policy only when the agent reaches its terminal state. In other words, the agent has to

play an entire episode before it can update his policy. The update rule for MC methods

is
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V (st)← V (st) + α(Rt − V (st)). (3.13)

As defined in Equation 3.5, Rt denotes the cumulative reward for the entire trajectory

starting at state st.

Temporal Difference (TD) Learning

A disadvantage of MC methods is, that they are not suitable for online training. Also in

many problems, Monte Carlo methods are infeasible, for example in episodic environments,

where the agent does not necessarily terminate. An example is the landmark localization

problem: Assuming the agent is inexperienced and therefore only takes random actions,

the episode only terminates if the agent coincidentally lands on one specific pixel in an

environment of e.g. 512 × 340 = 174.080 pixels, which is rather unlikely. Therefore,

Temporal Difference (TD) methods have been introduced, which determine the value

function by taking only samples from single transitions, consisting of the elements state,

action, reward and next state. These four elements are written as a tuple 〈s, a, r, s′〉,
which is called the experience tuple. TD-methods typically make use of the Bellman

equation (Equation 3.7), since the Bellman equation is only dependent on the reward and

on the state-value of the next state. The training procedure starts by initializing the value

function to arbitrary values (e.g. all zeros) followed by updating each value individually

until the values stop changing. Given enough training time, TD-sampling converges to

the optimal value function. Intuitively one can think, that due to the reward in every

transition, a small piece of information is added to the value function. The process of

sampling only experience tuples is called bootstrapping. The same process can be applied

to determine the Q-function with the Bellman equation for the Q-function (Equation 3.11).

Experiments showed that TD-methods converge more quickly than Monte Carlo methods

because MC methods have to deal with much higher variance in the samples. The most

basic algorithm of the TD class is called SARSA, short for state, action, reward, next

state, next action. SARSA will be explained in Section 3.1.7.

3.1.6 Exploration and Exploitation

The exploration-exploitation dilemma is a problem that arises with learning from trial and

error where an agent has to repeatedly make a decision with uncertain pay-off. The agent’s

goal is to maximize utility. The question the agent faces is, should it choose the best actions

to his current knowledge (exploit) or should it try different actions that might lead to even

greater utility (explore)? There has been extensive research concerning this question that

brought up many strategies. The simple yet effective method ε-greedy is explained in the

next section. Even though other methods such as Upper Confidence Bound or Boltzmann

Exploration have been shown to be slightly more effective, the ε-greedy strategy is the

most widely used one because of its simplicity.
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ε-greedy

The ε-greedy approach introduces some exploration by choosing random actions with

probability ε and exploiting actions with probability 1− ε. Usually during training ε is set

to 1 and is decreased periodically until a minimum threshold (e.g. 0.1) is reached. In RL

the term ε-greedy policy is used, whereby the policy usually is only used for training and in

some rare cases during inference to prevent overfitting. The purely greedy approach would

be to exploit the current knowledge without ever making new decisions and is usually used

during inference.

3.1.7 Algorithms

SARSA

SARSA is an online algorithm to determine the Q-function. SARSA [76] is short for state,

action, reward, next state, next action. Being an online algorithm means, that the agent

during training always selects actions based on his current knowledge, which does not allow

the agent to explore new actions. The SARSA algorithm works as follows. The agent is

located in state s. Following the current policy, it takes action a. The environment

transitions the agent to state s′ and returns reward r. The agent, again based on the

current policy takes action a′. Now enough information is available to perform an update

for Q(s, a). This makes the algorithm on-policy, which means, that the policy used for

bootstrapping is updated continuously. The Q-function is updated in the following way,

where α is the learning rate:

Q(s, a)← (1− α)Q(s, a) + α(r + γQ(s′, a′)) (3.14)

The term

r + γQ(s′, a′) (3.15)

is called the TD-target and the difference between TD-target and the current approx-

imation

r + γQ(s′, a′)−Q(s, a) (3.16)

is called the TD-error.

Q-learning

Q-learning [85] is an important algorithm because it builds the basis for many modern

algorithms. The algorithm is an improvement over SARSA, because it allows off-policy

learning. Instead of directly sampling the action from the next state, Q-learning queries

the Q-function from the next state for all actions and takes the maximum Q-value for the
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TD-target, which is equivalent to the state-value of the next state by Equation 3.10. The

pseudocode for the algorithm is shown in Algorithm 1.

Algorithm 1 Q-learning

Initialize Q(s, a),∀s ∈ S,∀a ∈ A, arbitrarily and Q(terminal-state, ·) = 0
foreach Episode do

Initialize s
foreach step of episode do

Choose a = π(s) using policy π derived from Q
Take action a, observe r, s′

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxa′ Q(s′, a′))
s← s′

end foreach

end foreach

3.2 Deep Reinforcement Learning

Early RL algorithms were almost purely theoretical in nature and a lot of the theory has

been developed with Q-tables. The success of RL algorithms in recent years is owed to

the introduction of neural networks to the field. The field of RL that uses neural networks

is called Deep Reinforcement Learning (DRL). In most cases, neural networks are used to

approximate the Q-function, the value function or the policy.

3.2.1 Value-Based Methods

Previous chapters focused on the theoretical formulation of the RL problem and some

basic algorithms. These algorithms are based on the existence of a value-function or

a Q-function. The exact representation of these functions is a table, where the value-

function has as many entries as there are states in the RL problem and the Q-function

has as many entries as the state-value function multiplied with the number of actions.

This becomes intractable for most RL applications since the state-space grows very large

or even infinitely large in many real-world applications. Table 3.2 shows the state-space

complexity for some board games.

In value-based DRL function approximators are used to estimate the Q-function. There

are several possible basis functions to approximate the Q-function, like linear combination

of features or decision trees. In practice, however, as in many other problems, neural

networks are used to approximate the Q-function, because, according to the Universal

Approximation Theorem [23], a neural network can approximate any function, if it has

enough neurons. The Q-function is parameterized by a weight vector θ and can be rep-

resented in two ways as shown in Figure 3.5. For continuous action-spaces, the function
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Game State-space complexity

Tic-Tac-Toe 103

Backgammon 1020

Chess 1047

Go 10170

Table 3.2: State-space complexity of a number of board games

approximator uses both state and action as an input to predict the Q-value, for discrete

actions the approximator uses only the state as input and predicts a Q-value for every

possible action.

Figure 3.5: In discrete action spaces, the Q-function is approximated as a vector-valued function
with only the state as an argument and the Q-value for every action as function output (right
image). For continuous action spaces the action is used as a function argument and the Q-function
output is a single value (left image).

3.2.1.1 Deep Q-Network (DQN)

Deep Q-Network (DQN) [56] is an algorithm that combines Q-learning with Deep Neural

Networks (DNNs) to allow RL to work in high-dimensional environments. The name of

this algorithm implies, that a DNN is used to approximate the Q-function. The algorithm

was introduced by DeepMind Technologies in 2015 and posed a major breakthrough in

the field of RL. Today, it is one of the most widely used algorithms in the field. While

most previous algorithms used hand-crafted features, the original DQN algorithm used

raw sensory image data. Through the use of convolutional filters inside a Convolutional

Neural Network (CNN), the network is able to extract the relevant features by itself.

Besides using a CNN , the algorithm includes two techniques, that essentially led to the

success of this algorithm, which are experience replay and the introduction of a target

network. These methods are explained in the upcoming paragraphs. The pseudocode of

the algorithm is shown in Algorithm 2.
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Algorithm 2 DQN

Initialize empty experience replay buffer D to capacity N
Initialize Q-function Q with random weights θ
Initialize target Q-function Q̂ with weights θ− = θ
for episode=1,M do

Initialize state s1
for t=1,T do

With probability ε select a random action at,
otherwise select at = arg maxaQ(st, a; θ)
Execute action at and observe reward rt and image st+1

Store transition (st, at, rt, st+1) in D
Sample random mini-batch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj if episode terminates at step j+1

rj + γmaxa′ Q̂(θ−; sj+1, a
′) otherwise

Perform a gradient descent step on (yj −Q(θ; sj , aj))
2 with respect to the network

parameters θ
Every C steps reset Q̂ = Q

end for

end for

Target Network

In (tabular) Q-learning an update only affects the Q-value of a single state-action pair.

In DQN however, caused by the introduction of a function approximator, the update of a

single value also affects all other Q-values and as a consequence also the value of the very

next state. This causes network updates to be very unstable since the targets change with

every update. To tackle this problem, the DQN algorithm uses a target network, which is

a frozen copy of the policy network and is updated every C steps. C is an arbitrary hyper-

parameter and is usually set to 10,000 as in the original publication. The loss function we

are trying to minimize now has the following form:

Loss = Es,a,r,s′∼D[(r + γmax
a′

Q(θ−; s′, a′)−Q(θ; s, a))2] (3.17)

where θ are the parameters of the policy network and the θ− the currently frozen

parameters of the target network. The expectation is used to indicate the use of mini-

batches for stochastic gradient descent, which are sampled from the replay buffer D as

explained in the next section.

Experience Replay

Experience replay is a biologically inspired method, where samples of past experiences are

reused, instead of the most recent ones. The method stems from the idea, that humans
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process the information they collect while they sleep and not directly after the information

is incurred. In the implementation of experience replay, tuples of information are stored

in a so-called replay buffer D of size N in the form 〈s, a, r, s′〉, where s stands for state, a

stands for action, r for reward and s′ for next state.

In DQN a replay buffer is used to ensure independent and identically distributed (i.i.d.)

data. During training, a buffer is filled up to a minimum before the Q-network is updated.

After this minimum is reached, the Q-network is updated via stochastic gradient descent

after every training step by sampling a mini-batch of typically 32 to 64 experience tuples.

This is possible because learning phase and experiencing phase are logically indepen-

dent. However, we interleave the two processes acting and learning by using an ε-greedy

strategy because improving the policy over time leads to a different behavior of the agent,

that should explore actions closer to the optimal actions.

Improvements of DQN

Since the advent of DQN , a lot of research has been done concerning this algorithm.

The most important improvements Double DQN (DDQN), Dueling DQN and Prioritized

Experience Replay (PER) are explained in the following chapters. Alansary et. al. [3]

however showed, that these improvements to the RL problem, did not show particular

improvements to the problem of medical landmark detection. Therefore, we did not include

these methods in our experiments, but due to the importance of these concepts, they are

briefly explained hereinafter.

3.2.1.2 Double DQN

DQN has the problem of overestimating Q-values due to the max function in the TD-

target as shown in Equation 3.17. This introduces strong positive bias, also called the

maximization bias. To tackle this problem, Double DQN (DDQN) [82] was introduced.

This method uses two separate networks to compute the TD-target. As DQN already

uses a target network, there is no need to hold additional networks, as was done in early

implementations of DDQN . Instead, the loss function from Equation 3.17 is modified to

Equation 3.18. The online network is used to predict the action for the next state and the

target network is used to predict the Q-value of the next state.

Loss = Es,a,r,s′∼D[(r + γQ(θ−; s′, arg max
a′

Q(θ; s′, a′))−Q(θ; s, a))2] (3.18)

3.2.1.3 Dueling DQN

Dueling DQN [84] is mainly a change in the network structure. The Dueling network

architecture comprises two separate paths, one of which computes the value function V (s)
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and the other a so-called advantage function A(s, a). At the final layer both value and

advantage are combined to the Q-value, as in the following equation.

Q(s, a) = V (s) +A(s, a) (3.19)

The advantage function is a measure of how much better an action is to the action

chosen by the current policy. Equation 3.19 is unidentifiable, therefore a trick is used,

where instead of simply adding the two functions, the following forward mapping is im-

plemented, which makes the equation identifiable. This allows to uniquely learn V (s) and

A(s, a), without posing special constraints on the loss function.

Q(s, a) = V (s) +A(s, a)−max
a′

A(s, a′) (3.20)

This type of structure allows the network to better differentiate actions and to speed

up training. With this structure, the value function is updated in every time step and

therefore converges much faster. In DQN , only one Q-value is updated at a time, which

leads to slow convergence in large action spaces. The network structure is shown in Figure

3.6.

Figure 3.6: A normal Q-network with a single path (top) and a dueling architecture, where
state-value and advantage-value are computed in separate paths and recombined at the output
layer (bottom). Graphic borrowed from [84].

3.2.1.4 Prioritized Experience Replay

The original DQN algorithm stores experience samples in the replay buffer and samples

uniformly random to update the Q-network. Prioritized experience replay [70] is based on

the idea, that some experience samples include more information than others and should

therefore be prioritized in the sampling procedure to execute more gradient updates on

important samples and fewer updates on less informative samples. The original paper
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used the TD error as a measure of importance. The TD error can be seen as an indicator

of how ”surprised” the agent was with the outcome of a certain action.

3.2.2 Policy Gradient Methods

Value-function based methods solve the MDP by approximating the Q-function, from

which a usually greedy policy is derived. While it is possible to add some randomness to

the policy by e.g. using a ε-greedy policy (Section 3.1.6) for inference, it is not possible

to build a deliberately stochastic policy as it would break the assumptions on which Q-

learning is based, which is Equation 3.10. In some scenarios, however, we want the agent

to act with a stochastic policy. Consider the case where we want to teach an agent how

to play rock-paper-scissors. The optimal policy would be uniformly random. If the agent

is value-based, however, due to the deterministic character of value-based methods, the

agent would always play the same hand, making it very easy for the opponent to figure

out the agent’s strategy. Another, more realistic example would be a robot in a room,

which gets stuck in a certain position by bumping into the wall. A deterministic policy

would enforce the agent to keep on bumping into the wall, whereas a stochastic policy at

some point would execute a different action to escape the locked position.

A second major limitation of value-based methods is their application to continuous

action spaces. Although possible in theory, it is very difficult to implement, because

the Bellmann equation (Equation 3.11), which is part of the loss function, includes the

max operator. This means, for every gradient update, we would have to maximize the

(now continuous) Q-function, which is an optimization problem in itself and requires more

complex methods, which are called actor-critic methods.

To solve these two problems, a class of algorithms called policy gradient methods are

used. Instead of learning the value function, policy gradient methods learn the policy

directly. This means, the policy, represented by some function approximator (usually

a neural network) directly predicts the probability distribution over the actions or the

continuous action instead of learning the underlying value function. A positive side-effect

of learning the policy is, that policy-based algorithms can be more stable during training.

Since value-based methods are deterministic, a small change in the value function during

training can lead to a strongly different policy and can therefore cause oscillations during

training. In policy gradient methods instead, a small update in the parameters only

affects the policy by a small amount. Equation 3.21 shows the parameterized policy as a

probability distribution over the actions.

πθ(s, a) = P[a|s, θ] (3.21)

As in all other RL algorithms, the agent’s objective is to maximize the expected reward.

The expectation of the reward, shown in Equation 3.22 is called the objective function

J(θ), where θ parameterizes the policy and Rt is the cumulative reward starting at state

t.
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J(θ) = Eπ[Rt] (3.22)

We are trying to find the parameters θ that maximize the objective function, which

can be done using gradient ascent, as in Equation 3.23:

θt+1 = θt + α∇θJ(θt). (3.23)

Policy Gradient Theorem

Consider a class of one-step MDPs. The agent starts in state s and terminates after

one-time step with reward r = Rs,a, where R is the reward function. Then the objective

function 3.22 can be written as

J(θ) = Eπθ [r]

=
∑
a∈A

πθ(s, a)Rs,a (3.24)

and the gradient can be computed as

∇θJ(θ) =
∑
a∈A
∇θπθ(s, a)Rs,a

=
∑
a∈A

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
Rs,a

=
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ [∇θ log πθ(s, a)r].

(3.25)

We can generalize this to multi-step MDPs by replacing the single-step reward with

the Q-function, since the Q-function equals the discounted sum of future rewards. The

result is called the policy gradient.

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)] (3.26)

This result is very satisfying because it applies to any probabilistic policy. In practice,

usually, a Softmax policy is used for stochastic action prediction and a Gaussian policy

is used for continuous action spaces. The most basic algorithm in the class of policy

gradients is called the REINFORCE [87] algorithm and is explained in Algorithm 3. In

REINFORCE, the policy gradient is used to updated the policy parameters. Instead of the

real Q-function, the return vt is used as an unbiased sample of Qπθ(s, a). This means, that

instead of keeping track of an approximated (biased) Q-function, a trajectory is sampled
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before an update is performed, which is a sample of the real Q-function for the current

policy. The parameters are updated with

∆θt = α∇θ log πθ(st, at)vt, (3.27)

where α is the learning rate. Another, more sophisticated policy gradient algorithm,

which is used in practice is called Proximal Policy Optimization[71].

Algorithm 3 REINFORCE

Using vt = rt + rt+1 + ...+ rT as an unbiased sample of Qπθ(st, at)
Initialize θ arbitrarily
foreach episode {s1, a1, r2, ..., sT−1, aT−1, rT ∼ πθ} do

for t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(st, at)vt

end for

end foreach

3.2.3 Actor-Critic Methods

Although policy gradient methods eliminate some limitations of value-based methods, they

introduce new problems. One problem is a high variance in the gradients, which comes

from the fact, that during training a number of trajectories are sampled before the network

is updated. Due to the stochastic nature of the policy, these trajectories can deviate

from each other to a great degree, which causes a high variance in the gradients. Some

improvements over the REINFORCE algorithm have been made to tackle its problems,

but most modern algorithms used in practice use actor-critic methods.

Actor-critic methods combine the two concepts of value-based RL and policy-based

RL. A critic, which is another function approximator, is used to estimate the Q-function

QθQ(s, a) and an actor is used to approximate the policy πθπ . Therefore actor-critic

methods maintain two sets of parameters, the critic’s parameters θQ, which approximate

the Q-function and the actor’s parameters θπ which approximate the policy. Actor-critic

algorithms follow an approximate policy gradient.

QθQ(s, a) ≈ Qπθπ (s, a) (3.28)

∇θπJ(θπ) ≈ Eπθπ [∇θ log πθπ(s, a)QθQ(s, a)] (3.29)

The critic is solving the problem of policy evaluation, which makes it possible to train

the agent in TD fashion, as is done in DQN . Policy evaluation means, that the current

policy is evaluated by sampling and accumulating the reward of a trajectory until the
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Figure 3.7: Basic principle of actor-critic methods. A value function is used to estimate the
expected reward for the policy gradient. This allows updating the value function and the policy
network with every transition sample. The Bellman equation is used to update the value function
and the current approximation of the value function is used to compute the policy gradient to
update the policy network.

agent’s terminal state. In actor-critic methods, instead of sampling an entire trajectory,

the Q-function is queried at the current state, to obtain an estimate of the expected

reward. Consequently, the variance problem, which arises from sampling entire trajectories

is reduced by updating the critic with tuples 〈s, a, r, s′〉 from single transitions with the

Bellman loss as in value-based methods (Equation 3.11). The policy network can then

be updated with the approximated Q-function. The Q-Actor-Critic (QAC) algorithm in

Algorithm 4 explains the basic idea behind actor-critic methods.

More advanced algorithms in the class of actor-critic methods are Advantage Actor

Critic (A2C) [76], Asynchronous Advantage Actor Critic (A3C) [55] and Deep Determin-

istic Policy Gradients (DDPG) [48]. The latter will be explained in the next section.

3.2.3.1 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradients (DDPG) [48] is one of the most widely used algo-

rithms from the class of actor-critic methods. The algorithm will be explained in detail

because the methods used in this thesis are based on the DDPG algorithm. As the name

suggests DDPG allows to make deterministic predictions, but in contrast to Q-learning in

a continuous action space. DDPG is an off-policy method that uses the Bellman equation

to learn a Q-function, which then is used to learn the policy.

The algorithm is similar to Q-learning, in a sense that if you know the optimal Q-
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Algorithm 4 QAC algorithm

Initialize state s
Initialize the parameter sets θπ, θQ

Initialize learning rates α, β
Sample action a ∼ πθ from the current policy
for each step do

Sample reward r′ ∼ Ras,s′ and transitions s′ ∼ Pas,s′ from the environment
Sample action a′ ∼ πθπ(a′|s′) from the current policy
Update the policy parameters: θπ ← θπ + α∇θπ log πθπ(a|s)QθQ(s, a)
Compute the TD-error: δ = r + γQθQ(s′, a′)−QθQ(s, a)
Update the parameters of the Q-function with gradient descent on the TD-error:
θQ ← θQ − β∇θQδ
a← a′, s← s′

end for

Figure 3.8: Basic principle of the DDPG algorithm. The actor predicts a deterministic action
and the critic evaluates the action. The critic is updated with the Bellman loss (Equation 3.11)
and the actor is updated by propagating the gradient through the critic network as shown in Figure
3.9.

function Q∗(s, a), you can derive the optimal action a∗ by the following property:

a∗ = arg max
a

Q∗(s, a) (3.30)

To apply Q-learning on a continuous action space, the maximization in Equation 3.30

becomes an optimization problem instead of a simple lookup, which increases the complex-

ity of the problem. To tackle this problem, DDPG uses an actor-critic architecture, where

a second function approximator, the actor makes a deterministic prediction based on the

current state and the critic, representing the Q-function, evaluates the action taken by the

actor. The main difference to other actor-critic methods is, that the actor directly maps

from a state to an action instead of predicting the probability distribution over actions.

Similar to DQN , the agent collects tuples of experience by following the current policy

which are stored in an experience replay buffer. For exploration, noise is added to the
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action predictions. In the original paper [48] an Ornstein-Uhlenbeck noise process [80] was

used, which is a correlated noise process and is necessary for some problems to converge.

For some problems however Gaussian noise is enough. The Q-network Q is parameterized

with θQ and the policy network µ with θµ. To indicate the deterministic policy network,

the letter µ is used instead of the previously used π, which referred to a stochastic policy.

DDPG also uses the concept of a target network, with the difference, that instead of

cloning the networks every fixed number of steps, the algorithm uses soft updates after

every step. The equation for a soft update is shown in Equation 3.31. The target network’s

are indicated with an apostrophe.

θ′ ← τθ + (1− τ)θ′ τ ∈ [0, 1] (3.31)

Intuitively, the target networks weights are approaching the original weights. τ is a

parameter that controls the speed of how fast the weights are approached. The smaller τ ,

the slower the target weights approach the original weights.

The Q-network is updated utilizing the Bellman equation. The TD-target yi for sample

i is computed as

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′). (3.32)

As one can see in Equation 3.32 the next action is computed with the policy network

µ′, which is different to DQN and solves the maximization problem explained in Section

3.2.2. With the TD-target of Equation 3.32, we minimize the mean-squared error loss on

a mini-batch of size N .

Loss =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (3.33)

For the policy function, the objective is to maximize the expected return, which is

given by the Q-network.

J(θ) = E[Q(s, a)|s = st, at = µ(st)] (3.34)

Since we want to maximize the objective function of Equation 3.34, we calculate the

gradient with respect to the actor parameters and use gradient ascend. The objective

function is differentiable with respect to the actor parameters, since the output of the

policy network is fed into the Q-network to predict the Q-value. Therefore we can use the

chain rule to compute the gradient.

∇θµJ(θ) ≈ ∇aQ(s, a)∇θµµ(s|θµ) (3.35)

Since we are updating off-policy, we sample mini-batches and take the mean of the

gradient.
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∇θµJ(θ) ≈ 1

N

∑
i

[
∇a(Q(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s = si

]
(3.36)

The complete algorithm is shown in Algorithm 5.

Figure 3.9: To compute the policy gradient, the gradient is propagated through the critic network
to maximize the output of the critic: the Q-value. The chain rule is used to compute the gradient.

3.3 Multi-Agent Reinforcement Learning (MARL)

The objective of this thesis was, to implement efficient multi-landmark detection algo-

rithms. This objective can be formulated as a multi-agent problem, where each agent is

responsible for one landmark and communication between the agents ensures optimal be-

havior of the individual agents. The topic of Multi-Agent Reinforcement Learning (MARL)

is a broad research field and includes elements of game theory and of social and behavioral

theories. This section explains some basic concepts of MARL and is mostly based on [9],

which provides a much more detailed introduction to the topic.

3.3.1 Multi-Task vs. Multi-Objective vs. Multi-Agent

A distinction has to be made between multi-task, multi-agent and multi-objective RL.

Multi-task RL describes the scenario where an agent is taught multiple objectives. The

agent has to be told which objective to follow. We follow a multi-task approach, which

will be explained in more detail in Section 4.3.2. The objectives in our approach are the
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Algorithm 5 DDPG

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ

Initialize replay buffer R
for episode=1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t=1, T do

Select action at = µ(st|θµ) +Nt according to the current policy and exploration
noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random mini-batch of N transitions (si, ai, ri, si+1 from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµJ(θ) ≈ 1

N

∑
i

[
∇a(Q(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|s = si

]
Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′

end for

end for

individual landmarks, the agent has to be told which landmark to follow. Note that in

multi-task RL a single agent is used, therefore multi-task RL is not part of multi-agent

RL. Multi-Objective Reinforcement Learning (MORL) is similar to multi-task RL and

also does not belong to the field of multi-agent RL. In MORL a single agent is trained

for multiple objectives, however, the objectives are conflicting alternatives. The optimal

policy for an agent in MORL is therefore the policy that achieves the Pareto optimum.

Pareto optimality is achieved if no objective can further be improved without a loss in

another objective. In MORL the scalar reward is replaced by multiple feedback signals,

one for each objective. A tangible example is the production possibilities frontier, which

is the problem of allocating various types of resources to produce various types of goods,

such that the resources are allocated most efficiently. This problem, along with many

other problems in economics and finance are part of multi-objective optimization.

MARL however deals with multiple agents, which are cohabitating in an environment.

These agents either collaborate towards a common goal or compete, such that each agent

wants to maximize its own reward at the expense of the other agents. The third possibility

is that the agents neither collaborate, nor compete which is called a mixed cooperative-

competitive environment. Due to the background of game theory, the environment in

MARL is also called game.
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3.3.2 Stochastic Game

The stochastic game is the generalization of the Markov decision process to the multi-agent

case. The stochastic game is a tuple 〈S,A1, . . . ,An, T ,R1, . . . ,Rn〉, where n is the number

of agents, S is a finite set of states. Ai, i = 1, . . . , n is the finite set of actions available

to agent i, yielding the joint action set A = A1 × . . . × An. T : S ×A × S → [0, 1] are

the transition probabilities and Ri : S ×A×S → R, i = 1, . . . , n are the reward functions

of the individual agents. The stochastic game is visualized in Figure 3.10 as a MARL

problem.

Figure 3.10: Interaction of multiple agents with the environment.

3.3.3 Fully Cooperative Games

The game is called fully cooperative if the reward functions for all agents are the same:

Ri = Rj ∀i, j ∈ 1, ..., n. The learning goal is to maximize the common discounted reward.

If a centralized controller were to be used, the stochastic game would reduce to an MDP ,

where the action space A is the joint action space A and the reward function R is any

linear combination of the individual reward functions of the stochastic game. In MARL,

however, the agents are individual decision-makers, but still, in some cases, it might be

possible to learn a common optimal Q-function and use greedy policies πi(s), such that

πi(s) = arg max
ai

max
a1,...,ai−1,ai+1,...an

Q∗(s,a), (3.37)

with a being the joint action. However, for most problems, this näıve approach is not

applicable. The biggest hurdle in fully cooperative tasks is coordination. If multiple joint

actions result in the same return, the agents may assume wrong actions made by the other
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agents, which makes proper coordination of multiple agents impossible. Consequently,

many coordination-based methods were designed to solve the coordination problem. Al-

gorithms that don’t consider coordination are called coordination-free methods.

3.3.4 Fully Competitive Games

A game is fully competitive if the number of agents n equals 2 and the reward functions

are opposing, such that R1 = −R2. In these games, the minimax principle can be applied:

Maximizing one agent’s action under the worst-case assumption, that the opponent will

always try to minimize it. One important algorithm that solves the MARL problem for a

fully competitive environment is the minimax-Q algorithm [50], which applies the minimax

principle to Q-learning.

3.3.5 Mixed Stochastic Games

Mixed stochastic games distinguish from fully cooperative games and fully competitive

games in that no constraints are imposed on the reward functions. Therefore mixed

games can come in many forms and no universal algorithm exists, that can solve any

mixed problem.
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This chapter explains the methods of the contributions made in this thesis in detail and

is divided into three sections. In the first section, the reference framework from the Deep

Q-Network (DQN) based approach of Ghesu et al. [33] for medical landmark localization is

explained. The reference framework has been rebuilt from scratch, to perfectly match the

workflow of the other experiments for comparable results. The subsequent sections explain

the contributions, starting with a Deep Deterministic Policy Gradients (DDPG) based

framework for landmark localization, which allows continuous prediction and therefore a

variable step size. In the third section, the baseline DQN algorithm and our DDPG based

algorithm will be extended for multiple landmarks. The goal was to use a single neural

network to make the predictions. Previous Reinforcement Learning (RL) based approaches

for multi-landmark localization used a specific neural network for every landmark which

is computationally very demanding, especially with increasing number of landmarks. To

do so, we evaluated two different approaches. The first one is a multi-task approach (see

Section 3.3.1), where a single input to the neural network predicts the actions for multiple

target landmarks. We implement a multi-task DQN algorithm and a multi-task DDPG

algorithm. These multi-task algorithms are trained with novel sample-efficient methods,

described in Section 4.3 of this chapter. The second approach is derived from Multi-

Agent Reinforcement Learning (MARL) and is given the name Simultaneous Acting and

Localizing (SAL). This approach divides the agent into N sub-agents, where N is the

number of landmarks. A single controller is used to update the sub-agents simultaneously.

37
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4.1 Landmark Localization with DQN

The DQN algorithm is explained in Section 3.2.1.1. This section explains how the DQN

algorithm is applied to the problem of landmark localization and is based on the work of

Ghesu et al. [33]. The algorithm from [33] has been rebuilt, to match our work environment

and to obtain comparable results in terms of training time and other measures. The

DQN approach is included in the methods section because it helps to understand the

following sections and because we use our own implementation of this algorithm as a

baseline experiment. To formulate the problem of landmark localization as an RL problem,

we first have to define the terms state and environment in this context. As an environment,

medical images are used. The detailed specifications of the dataset are listed in Section

5.1. An episode takes place in a single image. After an episode was played, the image

is updated. The agent starts an episode by being placed randomly in the image. From

the location we define the observation to be an image patch centered around the agent’s

position. For the understanding of the algorithm, we describe the image patch to be a

simple crop with a fixed size around the agent’s location. In the experiments, we use

more advanced methods to represent the state. These will be explained in Section 4.1.3.

The agent further needs to be equipped with a set of actions, such that the problem can

be formulated as a Markov Decision Process (MDP), which is a necessary condition for

value-based RL methods. As explained in the theory chapter, a MDP is a tuple of the

form 〈S,A, T ,R〉, where S is a set of states, A is a set of actions, T : S × A× S → [0, 1]

is a transition functions and R : S × A× S → R is a reward function. The set of actions

in DQN has to be discrete and is defined as

A = {up, down, left, right}. (4.1)

Since the environment in which the agent is interacting is deterministic, the transition

probabilities are 1 for every possible transition, implying that an action leads to the ex-

pected behavior. Taking action up for example moves the agent exactly one pixel upward.

The missing element for the MDP is the reward function R, which can be simply defined

as the change in euclidean distance from the agent to the landmark.

R = α(ds − d′s) (4.2)

ds = ||s− g||, ds′ = ||s’− g||, (4.3)

with ds being the distance from state s to landmark g, d′s the distance from state s′

i.e. the new state after taking an action to landmark g, and α is a scaling factor. In the

original DQN paper [56] it has been shown, that clipping the reward to the interval [−1, 1]

increases stability during training. Consequently, we set the scaling factor to 1, which

ensures the reward to be in the interval [−1, 1]. We introduce the scaling factor, because
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it will be essential for later algorithms. For RL problems to converge it is important to

include a discount factor into the MDP such that MDP = 〈S,A, T ,R, γ〉 with γ ∈ [0, 1].

The values for parameters like the discount factor will be listed in the experimental setup

section for the experiments individually.

Figure 4.1: An example of the environment with the agent indicated with a black cross-hairs and
the landmark indicated with a black triangle. The yellow square box is the observation, which is
fed into the neural network.

In the DQN algorithm, the agent is parameterized by some function approximator to

approach the optimal action-value function Q(s, a; θ) ≈ Q∗(s, a) with θ being the param-

eters. As a function approximator a Convolutional Neural Network (CNN) is used, which

includes both feature extractor and regressor and can be trained end-to-end. The input to

the CNN is the cropped image as explained above. The architecture is explained in detail

in section 4.1.2. As explained in Algorithm 2 of the theory section, the CNN is trained on

the Bellman loss shown in Equation 3.17. As a target network Q′ with weights θ− a copy

of the CNN is kept, which is updated every C steps. D indicates the replay buffer which

stores the experience tuples and is restricted to a maximum size of 100000. Experience

tuples are collected with an ε-greedy strategy, where the agent starts by taking random

actions and the further the training proceeds, the more actions are chosen according to

the current policy. A decay factor gradually reduces ε until a lower threshold of ε = 0.1 is

reached, which means, that the agent samples random actions with a probability of 10%

and follows the current policy with a probability of 90%.

4.1.1 Multi-Scale Framework

Following [3] we further implement a multi-scale framework, to reduce the number of steps

needed to localize the target landmark. In this multi-scale framework, the agent starts

with large action steps and reduces the step size as he localizes the target landmark. The

final landmark prediction is the result on the lowest level of the multi-scale search, where
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the agent’s step size is one pixel. We choose a multiplier of 3 for our experiments, which

means that the agent starts with a step size of 9 and as soon as it signalizes termination

reduces the step size to 3. At the next termination signal, the agent reduces the step size

to one pixel and finally localizes the target with the highest possible accuracy. The Field

of View (FoV) on each level is coupled to the step size, which means, that the agent starts

with a FoV of 9 times the size at the lowest level. The FoV is increased by sampling

with a fixed spacing around the current location of the agent. The same DQN is shared

between all levels in the hierarchy.

4.1.2 Network Architecture

The network architecture is a standard CNN architecture and consists of a convolution

block and a Fully Connected (FC) block. The convolution block uses the convolution

operation to extract features, while the FC block is used as a regressor to map the features

to Q-values. An overview of the architecture is shown in Figure 4.2. Figure 4.3 further

describes the convolution block in more detail. The network uses convolutional layers,

which are always followed by a Rectified Linear Unit (ReLU) activation function. The

convolutional layers apply the discrete 2D convolution operation with a weight kernel

K ∈ Rm×n, where we use m = n = 3 to define the kernel size for all convolutional layers.

The convolution operation is defined by Equation 4.4, where i, j are the image coordinates

of image I, S is the resulting (convolved) image and ∗ is the convolution operator. The

kernel weights are learned as part of the training process with the Stochastic Gradient

Descent (SGD) based Adam optimizer [39]. Also, we use zero-padding to ensure the

convolved image to be of the same size as the input image.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

K(m,n)I(i−m, j − n) (4.4)

The ReLU function is defined as

f(x) =

{
0 if x < 0

x otherwise
(4.5)

and is used to allow the approximator to fit non-linear functions. Finally, average pool-

ing is used to downsample the latent representations between convolution layers. Average

pooling is a process where pixels of a defined kernel size are combined into a single pixel

by averaging over the pixels. Average pooling has the advantage over the more frequently

used Max-pooling, that the information from every pixel in the kernel contributes to the

final pixel. We use a kernel size of 2 × 2, such that both image dimensions are halved

after every average pooling layer. At the end of the convolution block, the features are

flattened and fed to the FC block. The FC block contains three consecutive FC layers

with 256 units each. Each FC layer is activated with the ReLU function. The output of

the FC block is passed to a final dense output layer with 4 neurons without activation,
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where each neuron predicts the Q-value for one action.

Figure 4.2: A diagram representing the network architectures. This is the general architecture,
used for all experiments. The architecture is adapted to other experiments by exchanging the input-
and output layer. The convolution block comprises several cycles of the operations convolution,
ReLU activation and average pooling.

Figure 4.3: This schematic shows the convolution block in more detail. It consists of multiple
convolution operations, each of which is activated with the ReLU function and average pooling
layers.
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4.1.3 State Representation

We evaluate various state representations, which allows us to tackle specific problems.

The simplest and least accurate method is to crop an image patch centered around the

agent’s position. The FoV is a hyper-parameter that has to be determined. If chosen too

large, computational demand increases drastically and if chosen too small, the FoV is not

large enough to provide enough information to the agent. Therefore we use more advanced

state representations to combine computational efficiency with high accuracy. We conduct

various experiments with different state representations. The type of state representation

used is listed in the experimental setup chapter at the corresponding experiment.

Image Pyramid

Image pyramids are used frequently in computer vision tasks. Image pyramids are multi-

scale representations of images and are distinguished between low-pass pyramids and band-

pass pyramids. A low-pass pyramid is constructed by smoothing the image with a filter

kernel Sσ

Bl = Bl−1 ∗ Sσ for l = 1 . . . L, (4.6)

where Bl denotes the image at level l and ∗ indicates the convolution operator. After

smoothing, the image is sub-sampled by a factor of 2 on each image dimension. The

process is recursive and can be repeated until the desired level is reached or until the

image size is too small to further be divided. A band-pass pyramid on the other hand uses

second-order differential operators such as the Laplace operator to extract edges.

To address the problem of having a too-small FoV we use a low-pass image pyramid

and create image patches of the same size on different pyramid levels. Due to image sub-

sampling on higher levels, the patches cover a larger FoV . Using an image pyramid has

the advantage of covering a larger FoV while saving computation power. To represent the

same FoV as in the single image patch method, we only need to feed an image of half the

size to the neural network. Higher levels of the image pyramid provide global information

to the agent, which is needed for rough orientation in the image and do not need high

resolution. The lowest level provides structural information at the point of interest and is

therefore needed in full resolution. An example of an image pyramid is shown in Figure

4.4.

Embedded Image Pyramid

The use of image pyramids can be further optimized since we are using some information

twice. The central regions from higher pyramid levels have already been represented

by lower levels in higher resolution. These regions are redundant and can be removed.

Therefore we merged individual pyramid levels into a single representation, where the

center region of the resulting image contains the center region of the lowest level i.e. the
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Figure 4.4: A single image patch (a) and an image pyramid with two levels (b). To cover the
same FOV, the image pyramid only needs half the amount of pixels, compared to the full resolution
image, while maintaining the same resolution at the important part of the image (b, top).

level with highest accuracy and outer rings represent higher levels with lower accuracy.

Even though parts of the higher pyramid level (also parts that are not represented by

lower levels) are now occluded, our experiments showed, that this representation yields

best results. We assume the lower levels to be more important, therefore add a higher

percentage of lower levels to the final image. An example of this approach is shown in

Figure 4.5. The contributing percentage of each level is computed by the following formula:

contribution =
1
2l∑L
i=1

1
2i

, (4.7)

with l being the evaluated level and L the total number of levels.

As an example consider an image pyramid with 3 levels. The contribution of the lowest

level is

c1 =
1
21

1
2 + 1

4 + 1
8

= 57.14%. (4.8)
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Figure 4.5: An image pyramid with 3 levels (a) combined into a single image (b).The resulting
image has L times fewer pixels compared to the normal image pyramid with L being the number
of pyramid levels. As one can see, the third pyramid level (a, bottom) already covers nearly the
entire image. The grey rim at the bottom and the right side shows added zero-padding because the
image patch exits the image. Therefore in our experiments, we use a maximum of three pyramid
levels.

4.1.4 Terminal State

A terminal state is reached, if the agent has localized the landmark or if the agent reached

the maximum number of steps, which is a predefined hyper-parameter. During training,

the agent is terminated if it has localized the target landmark within a radius of R pixels

centered around the target landmark. We evaluated different values of R and noticed that

this parameter has a strong impact on the final result.

During inference, we terminate the agent if it oscillates between two pixels. Another

option to terminate the episode during inference is, to use a trigger action which has been

shown in [52] and [10]. This method however increases complexity by increasing the action

space. Therefore we adopt the effective oscillating approach from [3].
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4.2 Continuous Landmark Localization with DDPG

Using the DQN algorithm for landmark localization as explained in Section 4.1 has a

major limitation. Since the DQN algorithm allows only discrete actions, the agent has to

search with a fixed step-size. Alansary et al. [3] tackle this problem with a multi-scale

framework, where initially they sample the image patch with a fixed spacing greater than

one to cover a larger FoV and accordingly take large action steps. When the agent starts

oscillating, they reduce spacing and step size until the original resolution and a step size

of one is reached.

We tried a different approach, where we increase the action space by adding multi-

ple actions for every direction with different step sizes and linear combinations of those,

such that it allows the agent to move to specific locations on a grid around its current

position. However, this results in a very large action space. Training a DQN algorithm

with a large action space is a difficult task because the exploration space of the agent

grows exponentially with the action space size. Consequently, we were not able to achieve

convergence with this training setup. Therefore to be able to predict varying step sizes,

we extended the algorithm to a continuous action space using the DDPG algorithm. The

DDPG algorithm, explained in Section 3.2.3.1 is an algorithm to predict continuous and

deterministic actions given a state, which makes it suitable for the landmark localization

problem. We use the same state representations as in Section 4.1.

4.2.1 Action Representation

The DDPG algorithm allows us to predict continuous actions as explained in Section

3.2.3.1. Therefore, we represent the action a as a vector with two coordinates, which are

restricted to a lower bound Bl = −50 and a higher bound Bh = 50.

at =

[
sx
sy

]
sx, sy ∈ [−50, 50] (4.9)

The predicted action vector is simply added to the agent’s current position p to take

a step.

pt+1 = pt + at =

[
xt
yt

]
+

[
sx
sy

]
(4.10)

Since neural network predictions are in R, we round these values to integer values, to move

on discrete image coordinates. In the Discussion chapter, we explain how the continuous

property of this approach can be used for landmark localization with sub-pixel resolution.
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4.2.2 Terminal State

The Q-network predicts a set of Q-values, where the action is implicit and derived by

maximizing the Q-value. This does not allow to derive a terminal state directly from the

prediction of the Q-network, except in the unusual case, where an additional trigger action

for the terminal state is added. The policy network in the DDPG algorithm however

directly predicts the action. Consequently, we can put a condition on the action and

terminate the agent if this condition is met. We formulate the termination criterion such

that the agent is terminated if the following condition is met.

|x| < 0.5px ∧ |y| < 0.5px (4.11)

This condition is optimal for the landmark localization problem with the reason that

the agent stops moving if the condition is met because of the round operator.

4.2.3 Architectures

As already explained in Section 3.2.3.1, the DDPG algorithm uses four neural networks.

The actor network, the critic network and delayed copies of both networks as target

networks. Our experiments showed, that best results are obtained if both actor and critic

network use the same architecture. The networks only differ at the input- and the output

layer. The actor network’s output layer is reduced to two neurons for the two continuous

actions. The critic network receives an additional input at the first dense layer, namely the

output of the actor and the critic’s output layer is reduced to a single neuron to predict

the Q-value. A conceptual representation of both networks is shown in Figure 4.6 and

Figure 4.7. The basic network structure remains the same as in Section 4.1.2.

4.3 Multi-Landmark Localization

We present three different methods for multiple landmark localization, as briefly intro-

duced in the opening section of this chapter. In the first two algorithms, we formulate the

problem as a multi-task RL problem. The first method extends the DQN approach to a

multi-task agent. The second method extends the DDPG approach to a multi-task agent

and presents a sample-efficient way to train this algorithm. Finally, the third method

provides a way to simultaneously detect multiple landmarks by using a method derived

from MARL.

4.3.1 Sample-Efficient Training with Multi-Task DQN

The simplest method to apply RL to multiple landmarks is, to train an individual agent

for each landmark, which is equivalent to the problem of single landmark localization. The

training of RL algorithms is very time consuming, because additionally to the optimization

of the neural networks, RL algorithms have a lot of overhead due to agent-environment
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Figure 4.6: Conceptual representation of the actor network. The actor directly predicts the
action as a displacement vector from the agent’s current position.

Figure 4.7: The critic belongs to the class of Q-networks and evaluates the actor’s action. The
action is directly fed to the first dense layer, along with the features extracted in the conv-block.

interactions. Therefore, training an individual agent for every landmark is very time con-

suming. In the problem of landmark localization, experience tuples of the form 〈s, a, r, s′〉
are stored in the replay buffer. As state s, we can only store the coordinates of the agent’s

position and additional relevant meta-data but we are not able to store the image patches

themselves due to Random-Access Memory (RAM) limitations. Therefore we have to

crop the image patches on the fly which poses a bottleneck to the training algorithm,

especially, if these patches have to be copied repeatedly to the Graphics Processing Unit

(GPU), which is used to accelerate neural network optimization. One possibility would

be to process the image patches directly on the GPU , but it has been shown to be a very

difficult task due to the limited instructions set of the GPU and the different preprocessing

methods we use.

To reduce training complexity, Vlontzos et al. [83] followed the approach of sharing

the weights in the convolutional layers between multiple agents, to exploit the fact, that

every agent has to process the same structural information. However, since most of the

parameters are located in the transition between convolutional layers and dense layers the

improvement is marginal. Dense layers on the other hand cannot share weights, because

they have to be trained on their specific landmark.

We develop a multi-task DQN agent for landmark localization. Multi-task RL is

explained in Section 3.3.1 and essentially means training a single agent for multiple tasks,

where we define the tasks to be the localization of individual landmarks. This allows

training a single agent for multiple landmarks. During inference, the agent can then
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localize the individual landmarks, one at a time. To implement a multi-task agent, we are

learning a Q-function Qn for every task. We extend the output layer of the Q-network,

such that the prediction does not only consist of four Q-values (one for each action) but

of N times four Q-values, a set of four Q-values for each task. We write the individual

Q-functions in vector form as

Q(s, a) =



Q1(s, a)
...

Qn(s, a)
...

QN (s, a)


, (4.12)

with Qn being the Q-function of the nth task.

For multiple tasks, it is important to define a reward function for each task. Equivalent

to the single-landmark case, we define the reward function as the change in euclidean

distance to the target landmark. For multiple landmarks, we write this reward function

as a vector of the form:

r =



r1
...

rn
...

rN


=



||p− g1|| − ||p′ − g1||
...

||p− gn|| − ||p′ − gn||
...

||p− gN || − ||p′ − gN ||


, (4.13)

where p is the agent’s position before the transition, p′ is the position after the tran-

sition and gn is the position of target landmark n ∈ 1, ..., N . This equation shows, that

the reward for each task is only dependent on the agent’s position before and after the

transition. Since the reward is the element that provides information to the Q-function,

the Bellman equation can be computed after every transition and for every task, regardless

of the policy the agent follows. We use an ε-greedy policy πm during training (Section

3.1.6) of a randomly selected target landmark m ∼ N to follow during an episode. After

every episode, the target landmark is updated. We rewrite the Bellman equation as:

Q(s, a) =



r1 + maxa γQ1(a; s′πm)
...

rn + maxa γQn(a; s′πm)
...

rN + maxa γQN (a; s′πm)


. (4.14)

From the Bellman equation, we derive the Bellman loss, which is minimized to fit the

Q-network to the individual Q-functions. The Bellman loss for multi-task DQN becomes
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the Mean Squared Error (MSE) between the current prediction Qn(s, a) of the state-action

pair for task n and the Bellman equation of task n.

Loss = Es,a,r,s′∼D[
1

N

N∑
n=1

(rn + γmax
â

Qn(â; s′πm)−Qn(sπm , aπm))2], (4.15)

where N is the number of landmarks and 〈sπm , aπm , r, s′πm〉 indicates an experience

tuple sampled from replay buffer D. The subscript πm indicates that the experience tuple

is collected by following the policy of a randomly selected landmark m.

4.3.2 Landmark Localization with Multi-Task DDPG

As a second contribution, we extend the DDPG algorithm to a multi-task algorithm,

similar to the previous chapter. We developed a method to train a single agent for multiple

landmarks, by extending the output layer of the actor network µ to N × 2 neurons, where

N is the number of landmarks and 2 the number of actions (x- and y prediction). The

agent consequently follows a multi-task strategy, such that during inference, the agent is

able to locate all landmarks, one at a time. This agent could be used as a foundation to a

multi-agent problem, where N identical copies of the agent and a communication protocol

are used to solve the Linear Bottleneck Assignment Problem (LBAP) [8]. The action i.e.

the actor’s output is represented as

µt(s) =

[
a1,x a2,x . . . aN,x
a1,y a2,y . . . aN,y

]
an,x, an,y ∈ [−50, 50]. (4.16)

To move the agent in the direction of landmark n, the column vector n is chosen and

added to the agent’s current position pt.

pt+1 = pt + µnt (s) =

[
xt
yt

]
+

[
an,x
an,y

]
(4.17)

4.3.2.1 Training

Training this method differs from training the standard DDPG algorithm. In the DDPG

algorithm, the agent has a single action, or multiple actions, which are executed simulta-

neously. Consider the previous problem of single landmark localization. The agent in this

case is equipped with two continuous actions, which are executed simultaneously. The

movement in the x-direction and the movement in the y-direction. However, these actions

are treated as a single action and are fed directly to the critic network as shown in Figure

4.7. If the agent follows a multi-task strategy, however, only one action is executed at a

time. Therefore, each action has to be treated as an independent actor and consequently

has to be evaluated with a specific critic network, which means, we have to keep track of

N critic networks for N landmarks. Besides using a lot of memory resources, this is also
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very sample inefficient, because, while the actor is updated once every time a transition is

made, only one of the N critic networks is updated. Therefore to achieve the same result,

we would need N times as many training steps, compared to single landmark localization.

These problems can be eliminated by merging all N critic networks to a single one, which

is possible, because of the neural network’s universal approximation ability. The output

of the critic network consequently does not consist of a single Q-value, but of N Q-values,

one for each landmark, as shown in Equation 4.18.

Q(s, a) =



q1
...

qn
...

qN


(4.18)

These Q-values evaluate, how good the agent’s action was for each individual landmark.

Note, that the critic is independent of the actor’s policy. This means, if the agent follows

a certain landmark, the critic always predicts the Q-values for every landmark because

it evaluates the action given the agent’s position. Therefore, we are also able to update

the critic network with each step and for every landmark, which leads to much faster

convergence.

Figure 4.8: The actor receives an image patch and predicts the actions for all landmarks. The
actor chooses a certain landmark and the corresponding action (indicated with the dashed rectan-
gle).

Figure 4.9: The critic evaluates a single action; the predicted Q-values are a measure of how
good the agent’s action was in a certain position for each of the landmarks.
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The following section describes a complete iteration of the proposed algorithm. The

agent starts at a random position, p0 = [x0, y0]
T and chooses a random landmark m

to follow during an episode. We retrieve the actor’s prediction and perform the action

corresponding to the chosen landmark am,t0 = [sm,x, sm,y] + Nt0 with some exploration

noise N . We transition the agent to the state p1 = [x1, y1]
T and obtain a reward for each

possible landmark. We refer to this policy as πm. The reward is again calculated as shown

in Equation 4.13, where gn denotes the position of the nth landmark.

The experience tuples are stored in a replay buffer in the form 〈sπm , r, aπm , s′πm〉. From

these tuples the Bellman loss can be calculated, to update the critic network.

To calculate the Bellman loss, the Q-values of the next state have to be predicted.

Recall, that to predict the Q-value of the next state in DDPG , the actor network has

to be queried with the next state, to obtain the next action (a = µ(s′)). The Bellman

equation for the standard DDPG algorithm is shown in Equation 4.19.

Q(s, a) = rt+1 + γQ(s′, µ(s′)) (4.19)

The policy, i.e. the actor’s prediction is denoted as µ(s). For multiple landmarks, the

Bellman equation becomes a vector, since we do not only have a single Q-value, but a

Q-value for every single landmark.

Q(s, a) =



r1 + γQ1(s
′
πm , µ

1(s′πm))
...

rn + γQn(s′πm , µ
n(s′πm))

...

rN + γQN (s′πm , µ
N (s′πm))


(4.20)

Equation 4.20 is the label for the multi-landmark DDPG critic network, where µn(s)

is the actor’s prediction for the nth landmark, as defined in Equation 4.16. To compute

this label we need to predict the action from the next state, which is a single query. The

Q-values however cannot be retrieved with a single query, since according to Equation

4.20, each Q-value has to be predicted with a different input for the action. This means,

that for a critic network update, we need to make N predictions, with N being the

number of landmarks, while in the normal DDPG algorithm only one prediction per

critic update is needed. This increases the computational effort and RAM requirements,

in practice, however, we observed, that the training time per sample is increased only

marginally, compared to single landmark DDPG , because the bottleneck during training

is the calculation of gradients. Since we are using CNNs with almost the same number

of parameters, also the number of gradient calculations is similar. The critic network is

updated with a gradient descent step on the Bellman loss for multi-task DDPG , which is

the MSE between the Bellman equation for multi-task DDPG (Equation 4.20) and the

prediction of the critic network (Equation 4.18). The loss is calculated as
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Loss = Es,a,r,s′∼D

[
1

N

N∑
n=1

(rn + γQn(s′πm , µ
n(s′πm))− qn)2

]
, (4.21)

where N indicates the number of landmarks and the expectation E again is used to

indicate the use of mini-batches sampled from the replay buffer D. The actor is updated

with gradient ascent by propagating the gradient through the critic network, as in the

standard DDPG algorithm. However, since the critic can only evaluate one action at a

time, each action has to be evaluated separately.

4.3.3 Simultaneous Acting and Localizing (SAL)

While our first method for multiple landmark localization has some significant advantages

over existing approaches, it also has a major limitation. The method was optimized for

sample efficient training, such that we are able to train the agent for all landmarks in

one training run. During inference, however, the agent is only able to perform a single

action and therefore can only detect one landmark at a time. This is not a problem, since

we can use multiple identical copies of the agent and let them work in parallel, where

each agent searches for a particular landmark. In some scenarios, however, we want the

agents to communicate. In our second approach for multiple landmark localization, we

follow an approach similar to a collaborative multi-agent system. However, we only use

a single agent, to perform simultaneous prediction and execution of multiple actions by

keeping track of multiple positions. The agent’s state s in this scenario is described by N

image coordinates sn = [xn, yn], n ∈ N with N being the number of landmarks. We call

the individual sets of image coordinates the sub-agents. The input to the neural network

consists of N · C image patches, with C being a multiplier for the image pyramid, which

in most scenarios equals 1, but in the case of normal image pyramid as shown in Figure

4.4 equals the number of pyramid levels. The network predicts the action in matrix form

as in Equation 4.16, where each column represents the movement in x- and y-direction

for one landmark and is applied to the corresponding sub-agent. The setup is shown in

Figure 4.10.

4.3.3.1 Learning spatial relations between landmarks

This method has one major advantage over the previous approach. Because the method

uses a single agent as a centralized controller, we can incorporate inter-agent communica-

tion between the individual sub-agents by adding relative positions between the sub-agents

to the neural network input. This makes it possible to learn spatial correlations of the

landmarks, which during inference helps to detect occluded or missing landmarks because

the landmark’s position is often determined by the position of other landmarks. The rela-

tive positions are represented in form of two pairwise difference matrices Dx and Dy. The

pairwise difference matrix is created by computing the pairwise difference vector between
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Figure 4.10: Setup of landmark localization with SAL. The observations of N sub-agents are
fed to the actor, which predicts a translation vector an for each sub-agent. The target landmark
is denoted as gn. The predicted matrix is fed to the critic along with the observations from the
sub-agents to predict a single Q-value.

all sub-agents positions, resulting in a 2D vector for every possible combination of two

sub-agents. The x and y component of these vectors are entered in the two matrices Dx

and Dy respectively, such that D =
√

Dx + Dy , where D is the pairwise distance matrix

containing the euclidean distances.

Dx =


0 dx1,x2 . . . dx1,xN

dx2,x1 0
...

. . . dxN−1,xN

dxN ,x1 dxN ,xN−1 0

 dxi,xj = px,i − px,j (4.22)

Equation 4.22 shows matrix Dx with px,i being the x-coordinate of sub-agent i. Matrix

Dy is created equivalently. The entries from the two matrices are flattened and concate-

nated to a single vector and fed to the first dense layer of the neural network as shown in

Figure 4.11.
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Figure 4.11: Architecture of SAL with pairwise difference matrices as input to the first dense
layer to integrate spatial relations between the sub-agents. the individual observations from the
sub-agents are passed to a conv-block and then flattened and concatenated at the first dense layer.
The same architecture is used in the standard SAL algorithm but without the pairwise difference
matrices.
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5.1 Dataset

We evaluate the algorithms on a publicly available dataset of X-ray images from hands

[59]. The dataset consists of 895 images, which have been acquired with multiple differ-

ent scanners and with different settings, which results in image resolution and intensity

variations. The images were annotated by an expert with 37 characteristic landmarks

that include mainly bone joints. Since the images have different resolutions at an average

image size of 1563 × 2169, the resolution has to be converted into the physical resolu-

tion to obtain expressive results. The physical resolution is defined as the actual physical

length of a feature in mm divided by the pixels spanning this feature ( mmpixel ). However,

the images do not contain information about the physical resolution, therefore, following

[60], the physical resolution is calculated by assuming a wrist width of 50mm, which is

defined by two annotated landmarks and dividing by the number of pixels that span this

distance. The two landmarks used for this calculation are shown in Figure 5.1. To ease

computation, the images were preprocessed by downsampling them to a common long-axis

size of 512 pixels. The data set is split in 80:20 fashion such that 716 images are used for

training and 179 images for testing.

55
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Figure 5.1: The two landmarks indicated as red dots are used to calculate the physical resolution
of the image, by assuming a distance of 50mm between these two landmarks.

5.2 Resources

The experiments were conducted on three different workstations with Nvidia R© GPUs.

The code was written in PythonTM 3.7. For neural network optimization, the framework

TensorFlow 2.1 [1] was used. See Table 5.1 for specifications of the individual workstations.

Workstation
1 2 3

CPU Intel Core
i5-4570 3.2 GHz

Intel Core
i7-3770 3.4 GHz

Intel Core
i7-8700 3.2 GHz

GPU Nvidia Geforce
GTX Titan X

Nvidia Titan V Nvidia GeForce
RTX 2080 Ti

RAM 24 GB 32 GB 64 GB
VRAM 12 GB 12 GB 11 GB

Table 5.1: Workstation specifications.

5.3 Training Parameters

The parameter training episodes describes how many passes of the agent-environment

loop are played during training. Since the training dataset contains 716 images, one epoch

would correspond to 716 episodes. Termination of the episode occurs if the agent localizes

the landmark within a certain radius of tolerance or if the maximum number of steps

is reached, which is another training parameter. The radius is set to one pixel for all

experiments, which means, the agent is allowed to have a tolerance of one pixel in the

four principal directions. The parameter total steps is a consequence of training success

since one can not know in advance how many steps are needed for one episode. It is
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bounded however by training episodes × maximum number of steps. A detailed list of all

algorithm specific hyperparameters can be found in the appendix. Please note that all

experiments have been trained until the training curve completely flattened out to ensure

a fair comparison between experiments, except in cases where it is explicitly mentioned.

5.4 Evaluation Metrics

To ensure deterministic results for all experiments, we place the agent in the center of the

image, instead of placing it randomly like during training. We use the euclidean distance

between the agent and the target landmark as a measure of distance and convert it to

the physical distance in mm as explained in Section 5.1. This metric is referred to as

the distance error. In the results tables, we use the abbreviation (Err. ± SD) for the

average distance error, with SD being the standard deviation. We also determine the

average number of steps (Avg. steps) the agent needs to localize the target landmark.

The agent is limited to the same number of steps as during training. Consequently, we

calculate the termination rate as the percentage of images, where the agent terminates

by the termination criterion (e.g. oscillation in DQN) and not by reaching the maximum

number of steps. The success rate is defined as the percentage of images, where the

agent finds the landmark within a radius of 5mm. We also monitored training time with

the average time per training step being the most significant metric. All time metrics

were measured on Workstation 2 from Table 5.1, even if training was executed on another

workstation, to obtain comparable measurements. Complete training time is calculated

as the average time per training step times the number of total steps. We visualize the

results as the cumulative distance error and as a spread image, where we scatter the error

vector of the individual test images on a symbolic image. The error vector is defined as

the vector from the target landmark to the agent’s localization.

5.5 Experiments for Single-Landmark Localization

5.5.1 Baseline Experiment: DQN

This section explains the experimental setup of the Deep Q-Network (DQN) algorithm

for landmark localization [33] as explained in Section 4.1. This experiment is used as

a baseline. We use the carpometacarpal joint of the pinky finger as a landmark, which

is visualized in Figure 5.2. The most important training parameters of the experiment

are listed in Table 5.2. The DQN -agent is terminated if oscillations occur. Oscillations

are detected if the agent oscillates between two pixels or circulates between four pixels.

Furthermore, we implement a multi-scale framework [3] as explained in Section 4.1.1 to

reduce the number of steps needed to reach the target landmark.
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Figure 5.2: The carpometacarpal joint of the pinky finger.

Parameter DQN DQN multi-scale

Episodes 20000 20000
Maximum number of steps 250 250

Total Steps 3,670,000 1,660,100
State representation embedded image pyramid embedded image pyramid

Pyramid levels 2 2
Feature size 96x96 96x96

Network parameters 10,584,900 10,584,900

Average time per training step 75ms 75ms
Complete training time 76h 35h

Table 5.2: Training parameters of the DQN based algorithm for landmark localization.

5.5.2 Single Landmark Localization with DDPG

This section explains the experimental setup of the Deep Deterministic Policy Gradients

(DDPG) algorithm for landmark localization as explained in Section 4.2. Again, we use the

carpometacarpal joint of the pinky finger as a landmark. Training parameters are shown in

Table 5.3. The termination criterion is fulfilled if the agent’s predicted action is lower than

0.5 pixels for both x and y value. In some cases, however, oscillations around the target

landmark occur. In this case, the agent is also terminated and as the agents final location

the interpolated value between the two or three points of oscillation is determined. We

compare the results with the baseline DQN approach and a state-of-the-art U-Net based

approach [60] using heatmap regression in Table 5.4.
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Parameter Value

Episodes 40000
Maximum number of steps 100

Total Steps 2,292,000
State representation embedded image pyramid

Pyramid levels 2

Number of network parameters 10,584,386

Average time per training step 195ms
Complete training time 124h

Table 5.3: Training parameters of the DDPG based algorithm for landmark localization.

5.5.3 Results: DQN and DDPG for Single-Landmark Localization

Figure 5.3 shows the cumulative distance error of the DQN and the DDPG algorithm

for landmark localization. We compare the results to the state-of-the-art supervised U-

Net based approach from [60]. Table 5.4 shows a detailed comparison of the results of

the different algorithms and Figure 5.4, 5.5 and 5.6 show the spread of the individual

experiments.

Figure 5.3: Comparing the cumulative distance error of Reinforcement Learning (RL) methods
with the state-of-the-art U-Net based approach using heatmap regression [60]. The graph shows,
that RL methods are able to yield comparable results for single landmarks.
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Reinforcement learning Supervised
learning

Parameter DQN [33] DQN
multi-scale

[3]

DDPG U-Net [60]

Err. ± SD (mm) 0.827 ± 0.54 0.896 ± 0.75 0.819 ± 0.53 0.62 ± 0.46

Avg. steps 177.5 30.9 5.85 -

Termination rate 100% 100% 100% -

Success rate 100% 99.4% 100% -

Table 5.4: Results of the DDPG algorithm for landmark localization for a single landmark. We
compare the results to the baseline DQN approach with and without multi-scale framework and a
state-of-the-art supervised method based on U-Net [60].

Figure 5.4: Spread of the DQN algorithm
trained on a single landmark.

Figure 5.5: Spread of the DQN algorithm with
multi-scale framework.

5.5.4 Ablation Study 1: Comparison of State Representations

With this experiment, we evaluate different state representations which have been de-

scribed in Section 4.1.3. We use the DDPG algorithm and train on a single landmark.

We chose the distal interphalangeal joint of the ring finger as a landmark, which is the

foremost joint in the finger. The landmark is rather indistinguishable from the same joint

in the other fingers, therefore global information is required. Paired with a feature size

of 64 × 64 it perfectly reproduces the problems explained in Section 4.1.3. Figure 5.11
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Figure 5.6: Spread of the DDPG algorithm for single landmark localization

shows the cumulative distribution for all experiments. All experiments were conducted

with 15000 episodes and with a maximum number of steps of 100.

Image Patch

The image patch is the simplest of all state representations and is the cropped region

of size 64 × 64 pixels centered around the agent’s position. In many cases, this kind of

state representation might result in ambiguous states because the Field of View (FoV)

is not large enough to cover global information. This means, that the agent might have

difficulties to distinguish between certain landmarks.

Image Pyramid as Conv-Paths

Using an image pyramid tackles the aforementioned problem by including a second im-

age patch of the same size, but with twice the FoV . The input to the neural network

consequently doubles. An example of an observation is shown in Figure 5.10. We feed

the individual levels of the image pyramid as different convolution paths to the neural

network. At the first dense layer, the features are then combined as shown in Figure 5.7.

This method increases the number of parameters by a significant amount.

Image Pyramid as Color Channels

In this experiment, we are using the same pyramid as in the previous paragraph, but

instead of feeding the individual pyramid levels to different convolution paths, we stack

the images on top of each other, similar to the channels of an RGB image. This method

allows reducing the number of parameters.
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Figure 5.7: Feeding the image pyramid to individual convolution paths of the Convolutional
Neural Network (CNN).

Figure 5.8: Representing the image pyramid as color channels of a single image results in a single
convolution path and reduces the number of parameters of the CNN .

Embedded Image Pyramid

The embedded image pyramid combines the two observations of the standard image pyra-

mid into a single image to reduce the input size of the neural network. It has to be

considered, that the number of parameters is dependent on the input size, therefore the

network with the image pyramid as conv-paths has approximately twice the number of

parameters, which makes it slower to converge.

Figure 5.9: Merging the pyramid levels into a single image.
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Figure 5.10: An example of an image pyramid with two levels. The two image patches of the
image pyramid are fed into the neural network as a single observation. By adding higher pyramid
levels we can increase the FoV. The yellow square box shows the first pyramid level, which covers
a FoV of 64 × 64 pixels and the red square box the second level with a FoV of 128 × 128 pixels.
the black triangle indicates the target landmark.

Results

This section shows the results of the DDPG algorithm for landmark localization for dif-

ferent state representations as explained in the previous section.

Figure 5.11: Cumulative distribution of the distance error for different state representations.
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Parameter Image Patch Image
Pyramid as
Conv-Paths

Image
Pyramid as
Channels

Embedded
Image

Pyramid

Average distance
error (mm)

2.64 0.66 0.69 0.52

Standard
deviation

7.19 0.39 0.4 0.35

Average number
of steps

12.4 11.6 10.8 8.26

Termination rate 97.8% 98.3% 98.9% 100%

Success rate 94.4% 100% 100% 100%

Network
parameters

5,341,506 10,550,658 5,341,794 5,341,506

Average time per
training step

118ms 206ms 150ms 144ms

Table 5.5: Comparing the influence of different state representations, trained on the same land-
mark, with the same training parameters. We use the DDPG algorithm for this experiment. One
can clearly see, that without global information as in the simple image patch, the agent has dif-
ficulty to distinguish the individual fingers. This can be derived from the fact, that the results
have a high standard deviation and that the success rate is lower than the termination rate, which
indicates, that the agent is terminating at the wrong finger.
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Figure 5.12: Spread around the target
landmark of the DDPG algorithm applied to
a single landmark. The agent’s observation
is an image patch of size 64 × 64. Since the
observation only includes local information,
the agent in some cases cannot distinguish
between the individual fingers. The yellow
square box shows an example of an agent’s
observation.

Figure 5.13: Spread around the target
landmark with an image pyramid of size
64× 64 as input, where the individual pyra-
mid levels are fed to different convolution
paths of the neural network.

Figure 5.14: Spread around the target
landmark with an image pyramid of size
64 × 64 as state representation. The image
pyramid is fed to the neural network as in-
dividual channels of a single image.

Figure 5.15: Spread around the target
landmark. The agent’s observation is an em-
bedded image pyramid with a size of 64×64
pixels.



66 Chapter 5. Experimental Setup and Results

5.5.5 Ablation Study 2: Random Initialization

We further evaluate the stability of the algorithm regarding the agent’s starting position.

We evaluate the DDPG algorithm for landmark localization on the entire test set 10 times

with random starting position of the agent, such that each image in the dataset has been

evaluated 10 times with different starting positions.

Results

Table 5.6 shows the results of Ablation Study 2.

Parameter DDPG DDPG

center initialization random initialization

Err. ± SD 0.819 ± 0.53 0.824 ± 0.53

Avg. steps 5.85 7.22

Termination rate 100% 100%

Success rate 100% 100%

Table 5.6: Evaluating stability of the DDPG algorithm for landmark localization with regard to
the agents starting position. We evaluate the entire test dataset 10 times with random starting
position. As a comparison, the results from the previous section are shown, where the agent has
been initialized in the center of the image.
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5.6 Experiments for Multi-Landmark Localization

5.6.1 Multi-Task DQN

In this experiment, we evaluate the multi-task approach for the DQN algorithm as ex-

plained in Section 4.3.1. Table 5.7 shows the training parameters of this experiment.

We use the multi-scale framework from section 4.1.1 to obtain reasonable performance in

terms of inference and training speed. Different landmarks introduce different problems:

the landmarks in the fingers are ambiguous and the landmarks in the hand-bones have

higher variance. To cover the challenges of different landmarks, we carefully select five

landmarks which are shown in Figure 5.16.

Parameter Value

Episodes 25000
Maximum number of steps 150

Total Steps 3.503.325
State representation embedded image pyramid

Pyramid levels 2

Network parameters 10,589,012

Average time per training step 75ms
Complete training time 73h

Table 5.7: Experiment parameters of the DQN based algorithm for landmark localization.

Figure 5.16: Selected landmarks for multi-landmark localization. The landmarks in the fingers
are ambiguous and the landmarks in the hand-bones have higher variance. We use these landmarks
for all multi-landmark experiments.

Results

Figure 5.17 shows the cumulative distance error of the DQN algorithm for landmark

localization on the individual landmarks. Numeric results are listed in Table 5.8 and the
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spread at the individual landmarks is shown in Figure 5.18.

Figure 5.17: Results of the multi-task DQN algorithms trained on 5 landmarks. The plot shows
the cumulative distribution of the distance error in mm. The landmark index is related to Figure
5.18

Parameter LM 0 LM 1 LM 2 LM 3 LM 4 Total

Err ± SD (mm) 3.1 ± 6.45 1.84 ± 1.76 2.41 ± 1.42 2.64 ± 1.63 2.5 ± 1.63 2.5 ± 3.2

Avg steps 41 26 32.5 41.2 48.5 37.9

Termination rate 99.4% 99.4% 100% 100% 99.4% 99.7%

Success rate 93.9% 97.8% 97.2% 92.2% 93.9% 95%

Table 5.8: Experiment results of the multi-task DQN algorithm for landmark localization.



5.6. Experiments for Multi-Landmark Localization 69

Figure 5.18: Spread of the multi-task DQN algorithm.

5.6.2 Multi-Task DDPG

This section explains the experimental setup of the multi-task framework presented in

Section 4.3.2. The algorithm was trained on the five landmarks of Figure 5.16 with the

parameters of Table 5.9. It is noticeable, that the training time per batch is almost

identical to the single landmark case, shown in Table 5.3.

Parameter Value

Episodes 40000
Maximum number of steps 100

Total Steps 2414000
State representation embedded image pyramid

Pyramid levels 2

Network parameters 10,586,442

Average time per training step 210ms
Complete training time 141h

Table 5.9: Training parameters of the DDPG based algorithm for landmark localization.
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Results

Figure 5.19 shows the cumulative distance error of the DDPG algorithm for landmark

localization on the individual landmarks. Numeric results are listed in Table 5.10 and the

spread at the individual landmarks is shown in Figure 5.20.

Figure 5.19: Results of the multi-task DDPG algorithms trained on 5 landmarks. The plot shows
the cumulative distribution of the distance error in mm. The landmark index is related to Figure
5.20

Parameter LM 0 LM 1 LM 2 LM 3 LM 4 Total

Err. ± SD (mm) 1.39 ± 1.01 0.96 ± 0.53 1.28 ± 0.73 1.95 ± 1.1 1.62 ± 0.99 1.44 ± 0.96

Avg. steps 7.46 5.77 7.07 9.17 9.01 7.69

Termination rate 100% 100% 100% 99.4% 100% 99.9%

Success rate 98.9% 100% 100% 97.2% 98.9% 99%

Table 5.10: Experiment results of the multi-task DDPG algorithm for landmark localization.
Note that the average number of steps depends on the position of the landmark (LM), since the
agent always starts at the center of the image, landmarks further away from the center also require
more steps.

5.6.3 Multi-Landmark Localization with SAL

This section explains the experimental setup of the Simultaneous Acting and Localizing

(SAL) algorithm from Section 4.3.3. The algorithm was evaluated on the same five land-

marks as the multi-task experiments from the previous sections. As one can see in Table
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Figure 5.20: Spread of the multi-task DDPG algorithm.

5.11, the training time is considerably longer than in previous experiments, therefore the

algorithm was only trained on 20000 episodes, even though the learning curve still showed

a potential increase in accuracy. We also evaluate the SAL approach including spatial

configurations from Section 4.3.3.1, with the same training parameters. We refer to this

method as Simultaneous Acting and Localizing with Spatial Configuration (SAL-SC).

Parameter Value

Episodes 20.000
Maximum number of steps 100

Total Steps 2.000.000
State representation embedded image pyramid

Pyramid levels 2

Network parameters 17.005.130

Average time per training step 395ms
Complete training time 219.4h

Table 5.11: Experiment parameters of the SAL/SAL-SC algorithm for landmark localization.
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Results

This section shows the results of the SAL algorithm and the SAL-SC algorithm. The

experimental setup is explained in Section 5.6.5.

Figure 5.21: Results of the SAL algorithm
trained on 5 landmarks. The plot shows the
cumulative distribution of the distance error in
mm. The landmark index is related to Figure
5.23

Figure 5.22: Cumulative error distribution of
the SAL-SC algorithm trained on 5 landmarks.
The landmark index is related to Figure 5.24

Parameter LM 0 LM 1 LM 2 LM 3 LM 4 Total

Err ± SD (mm) 1.41 ± 0.88 1.32 ± 0.71 1.82 ± 1.03 2.02 ± 1.14 1.71 ± 0.97 1.66 ± 0.99

Avg. steps - - - - - 31.8

Termination rate - - - - - 83.8 %

Success rate 99.4% 100% 98.9% 97.7% 99.4% 99.1%

Table 5.12: Experiment results of the SAL algorithm for landmark (LM) localization.

Parameter LM 0 LM 1 LM 2 LM 3 LM 4 Total

Err ± SD (mm) 1.35 ± 1.03 1.22 ± 0.72 1.63 ± 0.94 2.04 ± 1.2 1.78 ± 1.03 1.6 ± 1.04

Avg. steps - - - - - 27.7

Termination rate - - - - - 86.6%

Success rate 99.4% 100% 100% 97.2% 97.8% 98.9%

Table 5.13: Experiment results of the SAL-SC algorithm for landmark (LM) localizationn.
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Figure 5.23: Spread of the SAL algorithm trained on five landmarks.

Figure 5.24: Spread of the SAL-SC algorithm trained on five landmarks.
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5.6.4 Combined Results: Multi-Landmark Localization

This section compares our proposed algorithms for multi-landmark localization with the

state-of-the-art approach SpatialConfiguration-Net (SCN) [60] and a U-Net based ap-

proach for landmark localization [60]. Figure 5.25 and 5.26 show the cumulative distance

error of the multi-landmark algorithms. Numeric results are shown in Table 5.14.

Figure 5.25: Comparing results of methods for single landmark localization to the results of the
same landmark in multi-landmark methods, which corresponds to Landmark 2 of Figure 5.26.



5.6. Experiments for Multi-Landmark Localization 75

(a) All landmarks combined (b) Landmark 0

(c) Landmark 1 (d) Landmark 2

(e) Landmark 3 (f) Landmark 4

Figure 5.26: Landmark-wise results for different algorithms
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Reinforcement learning

Parameter DQN
multi-task

DDPG
multi-task

SAL SAL-SC

Err ± SD (mm) 2.5 ± 3.2 1.44 ± 0.95 1.65 ± 0.99 1.6 ± 1.04

Avg. steps 37.9 7.7 31.1 27.7

Supervised learning

Parameter SCN [60] U-Net[60]

Err ± SD (mm) 0.7 ± 0.73 0.72 ± 0.75

Table 5.14: This table compares the results of our algorithms for multi-landmark localization with
state-of-the-art CNN -based results. The individual results are averaged over all five landmarks.
Per landmark results can be found in the corresponding sections.

5.6.5 Learning Spatial Relations with SAL

The goal of this experiment was to show, how we can use spatial relations between agents

to learn a configuration of the landmarks, such that occluded landmarks can be detected

as explained in Section 4.3.3.1. We evaluate the algorithm by occluding the left half of the

test images. Occluding the left half has the consequence, that one landmark is completely

occluded and another one is partially occluded, as shown in Figure 5.27. The occluded

areas are replaced by uniform noise, which resembles the distribution of the dataset.

Figure 5.27: A test image with the left half occluded i.e. replaced by uniform noise. The landmark
in the middle of the image is considered partially occluded, because the agents observation includes
occluded and visible areas of the X-ray image.
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Results

Table 5.15 shows the results of the SAL-SC algorithm on corrupted images. We compare

the algorithm to our other methods for multi-landmark localization, evaluated on the same

occluded test images. Figure 5.28 shows qualitative results.

Algorithm LM 0
(occluded)

LM 1
(partially
occluded)

LM 2 LM 3 LM 4 Total

Multi-Task DQN Failed Failed 2.34 ± 1.09 2.62 ± 1.5 2.53 ± 1.63 -

Multi-Task DDPG Failed 17.9 ± 12.6 1.57 ± 2.45 1.94 ± 1.68 1.62 ± 0.99 -

SAL 53 ± 10.4 101.9 ± 16.1 20.08 ± 6.24 19.2 ± 6.1 18.25 ± 8.2 42.48 ± 34

SAL-SC 11.44 ± 6.1 6.81 ± 3.94 1.94 ± 1.07 2.69 ± 1.4 2.99 ± 1.23 5.17 ± 4.92

Table 5.15: Results of different multi-landmark algorithms, evaluated on corrupted images. We
replace the left half of the image with noise, such that one landmark is completely occluded and one
is partially occluded as shown in Figure 5.27. This table shows, how different algorithms perform
if the image contains occluded landmarks.

Figure 5.28: Spread of the SAL-SC algorithm trained with spatial relations between the agents.
The darker left half symbolizes the area of the image that has been replaced with uniform noise
during testing.
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6.1 Discussion

In this work, we evaluate the application of Reinforcement Learning (RL) to the problem

of landmark localization. RL being a patch-based method has some promising properties

compared to current state-of-the-art methods, which are mainly based on Convolutional

Neural Networks (CNNs). CNN based methods are able to achieve high accuracy, however,

they suffer from two major limitations. Image-based methods process the image as a whole,

which puts high demands on the hardware, especially when working with 3D images.

Depending on the resolution and the size of the images it might become impossible to

process the data with current hardware, e.g. using whole-body scans with high resolution.

In such cases, the data has to be sub-sampled or divided into smaller partitions. Patch-

based methods are computationally more efficient, but in many cases require learning an

additional model for global guidance. With RL we are able to learn an agent, which

is able to internally keep a representation of the anatomy, while benefiting in terms of

computational requirements from processing image patches. This internal representation

is modeled by a so-called Q-function, which tells the agent in every state, which action

leads to a more favorable state. This has the consequence, that the agent is able to

localize the target landmark from any arbitrary starting position inside the image, which

was proven in the experiment of Section 5.5.5. Furthermore, using patch-based methods

we can artificially increase the dataset, which addresses a great problem in Medical Image

Processing (MIP). Based on the work of Ghesu et al. [33], where for the first time RL
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was introduced to the field of landmark localization, we develop novel methods, to address

specific problems for both single- and multi-landmark localization. The results of our

contributions, which are presented in Chapter 5 are discussed in this section.

6.1.1 Single-Landmark Localization

Baseline Experiment

To compare our algorithms, we implemented the Deep Q-Network (DQN) algorithm for

landmark localization, first introduced by Ghesu et al. [33]. The experimental setup of

the baseline experiments is explained in Section 5.5.1 and the results are shown in Section

5.5.3. This algorithm uses a DQN agent with a discrete set of actions, allowing the agent

to move in it’s four principal directions - up, down, left and right. This limits the actions to

a fixed step size, which makes inference slow because the minimal number of steps needed

to reach the target landmarks is equivalent to the Manhattan distance from the agent’s

starting position to the target landmark in pixels. This does not only slow down inference

but also training because the agent needs more steps to cover the important areas of the

state-space. We know, that it is more important to sample transitions closer to the target

to obtain a high accuracy, which is why we use an ε-greedy strategy to explore actions

closer to the target. With a step size of one, the agent, however, needs more time to reach

these important areas during training which slows down training. Therefore, as a second

baseline, we also experimented with a multi-scale framework [34], using the approach of

Alansary et al. [3], where a single DQN agent is shared on all levels of the multi-scale

framework. With our experiments, we are able to show, that this approach vastly reduces

training time from 76 hours to 35 hours (Table 5.2) and inference time by reducing the

average number of steps from 177.5 to 30.9. However, with this approach also a small loss

in accuracy has been observed (Table 5.4), which probably results from sharing multiple

levels of resolution in a single CNN . With our baseline experiments we were not able to

reach state-of-the-art performance, however, these RL methods benefit from processing

only image patches, which allows reducing inference complexity.

Landmark Localization with DDPG

In this experiment we tackle two specific problems that come with the DQN algorithm.

Since the DQN algorithm belongs to the class of value-based methods, it is not possible

to directly derive a terminal state of the agent from the agent’s prediction, except in

the case where an additional trigger action signalizes a terminal state. This additional

trigger action increases training complexity, therefore most recent methods have used an

oscillating approach, where the agent is terminated as he starts oscillating between two

pixels. Using the oscillating approach introduces a source of error because as a terminal

state one of the two pixels has to be chosen, which can only be guessed. An alternative is to

interpolate between the two final pixels, which automatically introduces error because the
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landmark is always defined on a specific pixel. A further and more troublesome limitation

is, that DQN is very difficult to adapt to large action spaces, which makes the algorithm

difficult to generalize for more complex problems. In the case of landmark localization,

this means, that the agent is limited to a fixed step size. To adapt a varying step size,

we would need to add additional actions, which increases the action space, and makes

training more complex or use the multi-scale framework, which has been shown to reduce

accuracy.

We use the Deep Deterministic Policy Gradients (DDPG) algorithm, which was de-

signed for continuous action spaces and deterministic behavior of the agent to address the

problems of the DQN algorithm. Because the DDPG algorithm is based on an actor-critic

architecture, the actor network directly predicts the action instead of the value function,

which can be used to derive a terminal state. By the nature of the algorithm, the agent

stops moving if the actor’s prediction is below a threshold of 0.5 pixels for both directions,

because the agent can only move on discrete image coordinates. This is an ideal termi-

nation criterion. Furthermore, by using a continuous action space, the agent is able to

move to every coordinate in the cartesian plane with a single step. In our experiments we

restricted the step size to 50 pixels for both x- and y-direction, resulting in a 100 × 100

pixel plane, where the agent can move freely. In cases where efficiency is needed such

as real-time landmark localization in dynamic Magnetic Resonance Imaging (MRI) this

poses a huge advantage because the number of steps needed to reach the target landmark

can be dramatically reduced. Results of this algorithm are shown in Section 5.5.3. In our

experiments, the agent was able to localize the target landmark with an average of 5.81

steps, compared to 177.5 with the DQN algorithm. The bound of 50 pixels was chosen

arbitrarily, which signifies that the number of steps could be further reduced by increasing

the allowed step size. Also in Table 5.4 we show, that we achieve the same accuracy as

with the DQN algorithm. The same results are visualized in Figure 5.3-5.6.

While during inference, the DDPG algorithm clearly shows an advantage over the

DQN algorithm, we encountered some limitations during training. The biggest limitation

of the DDPG algorithm is the slow improvement during learning phase. While reasonable

results are already observed after only a few hundred episodes it takes at least another

30000 episodes for the learning curve to completely flatten out. While RL algorithms, in

general, tend to converge slowly, the DDPG algorithm is even more challenging, because

of it’s actor-critic architecture, where two neural networks are trained in parallel and the

actor network is dependent on the reliable prediction of the critic network. Depending

on the hardware, this can translate to several weeks of training. Therefore, we were not

able to run the experiments for all the landmarks, therefore, we chose a landmark with

intermediate difficulty. As was shown by [60], the landmarks in the wrist are much harder

to localize than the ones in the fingers.

The algorithm clearly shows advantages during inference, therefore we investigated

methods to speed up training. We expect strong improvements in training speed using

mixed-precision training [53]. During our first implementations, however, we did not
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observe any speed-up, which is why we stopped investigating mixed-precision training

for RL. To be able to obtain quick results, inspired by [55] we suggest implementing a

framework for parallelizable training of multiple agents.

Ablation Study 1: Comparing State Representations

Goal of the experiment from Section 5.5.4 was to show, how different state representations

affect the agent. In the theory chapter, we explain, that the state representation needs to

provide enough information to the agent to uniquely describe every state in the Markov

Decision Process (MDP). The problem with patch-based methods is, that some landmarks

might be ambiguous, like the joints in the fingers. Therefore it is necessary to also provide

global information to the agent for disambiguation. We compare the ordinary case of

an image patch around the agent’s position with three different representations of an

image pyramid. These experiments were conducted with a fixed number of episodes of

15000, which means that we did not train until full convergence. We observed that by

using an image patch, the agent is not able to distinguish between the individual fingers

(Figure 5.12). Table 5.5 shows, that an image pyramid with two levels is able to solve

disambiguation, which is also visualized in Figure 5.13-5.15. We compare different ways

to represent the image pyramid, either as input to individual conv-paths of the CNN ,

as color channels of a single image or as a combination of different pyramid levels into

a single image. We observed that the last method yields best performance, even though

some information of the pyramid is thrown away. The method of feeding the images

as individual conv-channels is expected to improve accuracy, however, since this method

almost doubles the number of parameters, it also substantially increases training time,

which is why we did not choose this method. Table 5.5 also shows, that these experiments

yield better accuracy, than the experiments of Table 5.4, which is due to the fact that

we use a landmark in the fingers, instead of the metacarpal bones, which in general yield

better accuracy.

Ablation Study 2: Random Initialization

The experiment of Section 5.5.5 evaluates how stable the DDPG algorithms is regarding

the agent’s starting position. We evaluate stability by running ten episodes per test image

with random placement of the agent in the image. We observe (Table 5.6), that accuracy

is nearly unchanged and termination/success rate remain at 100%, which indicates that

the agent is able to learn a representation of the anatomy to localize the target landmark

from any arbitrary starting position inside the image.
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6.1.2 Multi-Landmark Localization

Multi-Task DQN

In this experiment from Section 5.6.1, we extended the DQN algorithm for landmark

localization [33] to the multi-agent case, by adopting a multi-task strategy. Multi-task

means, that we train a single agent for multiple landmarks. We chose a multi-task strategy,

because of our limited computational resources. With the multi-task strategy, we are able

to substantially reduce training time. This is possible because we can compute the reward

for each landmark with every transition, which allows to update the Q-function for every

landmark with every transition. Table 5.7 shows, that one complete iteration of the agent-

environment loop, including a network update, takes the exact same amount of time, that

would be needed for a single landmark. However, in Table 5.8 and Figure 5.17 one can

see, that we are not able to achieve the same accuracy as in the single-landmark case.

Also, increased variance can be observed in Figure 5.18. We also observed that the agent’s

behavior during training is very unstable, which means after a certain amount of training

steps, the optimization process diverges. We conclude that the DQN algorithm is not

well suited for this task, because it is difficult to adapt the DQN algorithm to large action

spaces. The multi-task problem is different from just increasing the action space, but since

we are using the same neural network, an update of the Q-value of a single state-action-

landmark trio, does also affect the Q-values of all other trios. This has the consequence,

that oscillations occur at training stage.

Multi-Task DDPG

Similar to the previous approach, we are also extending the DDPG algorithm for landmark

localization to the multi-landmark case by adopting a multi-task strategy. This method

uses an actor-critic architecture. The critic is used to approximate the individual Q-

functions for the individual tasks i.e. the landmarks. In our experiments from Section

5.6.2, we are using five landmarks, therefore our critic network has to approximate five

Q-functions, as in the multi-task DQN method. The difference is in the way these two

methods approximate the Q-function. The DQN algorithm uses an output neuron for

every action-landmark pair, whereas the DDPG algorithm only needs one output neuron

per landmark. This is possible by using a second network, the actor-network, which

predicts a continuous action. This action is then fed as an input to the neural network as

shown in Figure 3.5 (right). We observed that this architecture allows much more stable

training, however it also slower during training, because we have to train two neural

networks simultaneously, where the actor network is dependent on the reliable prediction

of the critic network.

With our experiments, we show, that we are able to reliably localize the five chosen

landmarks (Table 5.10, Figure 5.19-5.20). The average distance error is larger than for the

single-landmark case. It has to be noted, however, that the networks use almost the same
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amount of parameters than the networks for single-landmark localization. Consequently

also training time per agent-environment interaction is comparable, which increases from

195ms in single-landmark localization to 210ms in the multi-task case. This means, that

we are able to train the multi-task agent for five landmarks in almost the same time needed

for a single landmark. We assume that similar accuracy is achievable by increasing the

complexity of the network. Obviously, this would slow down training, but from experience,

we know, that training time does not increase linearly with the number of parameters,

which is why we would still expect a decrease in training time with the same accuracy.

Simultaneous Acting and Localizing (SAL)

Inspired from Multi-Agent Reinforcement Learning (MARL), we developed the Simulta-

neous Acting and Localizing (SAL) algorithm. The experimental setup of this algorithm is

explained in Section 5.6.3. The SAL algorithm uses multiple agents inside an environment

to simultaneously localize multiple landmarks. We are using a single neural network as a

controller, therefore, this algorithm does not belong to the class of multi-agent algorithms.

Instead, the five agents we use to localize five distinct landmarks are represented as a sin-

gle agent with joint action-space and joint state-space. As a consequence, our agent has

an exponentially larger state- and action-space, which results in much slower convergence

during training. During inference, however, this algorithm allows predicting all landmarks

simultaneously in the same amount of time needed to localize a single landmark with the

DDPG algorithm. Since training time is considerably longer with this setup, however,

we were not able to train this algorithm to complete convergence, therefore, we were not

able to achieve the same accuracy and also the average number of steps is considerably

larger than in the single-landmark DDPG case. These results are shown in Table 5.12

and Figure 5.21. Figure 5.23 also shows increased variance compared to the multi-task

DDPG algorithm. We assume, that these two problems could be resolved with longer

training. Table 5.14 and Figure 5.25-5.26 compare the results of different multi-landmark

approaches and shows that CNN -based methods clearly outperform multi-landmark RL

methods in terms of accuracy. Of the RL methods the multi-task DDPG approach has

been shown to be most accurate and efficient.

SAL with Spatial Configuration

Including spatial configuration of the agents in the SAL algorithm allows us learning the

spatial configuration of the landmarks during training. During inference, this learned

knowledge can be used to localize hidden or occluded landmarks. This is possible because

landmarks are spatially dependent on other landmarks. The experimental setup of this

algorithm is explained in Section 4.3.3.1. We evaluate the algorithm in two steps. First,

we evaluate, if including spatial relations between agents to the neural network input has

any benefit in the standard case, where all landmarks are visible. We compare the results

with the SAL algorithm without spatial configurations in Section 5.6.5. Table 5.13 and
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Figure 5.22 and 5.24 show, that this modification achieves comparable performance and

therefore does not provide any benefit in the regular case. Furthermore, we evaluate this

method on occluded images. We prepare the test set, by replacing the left half of the

images with uniform noise, such that one landmark is completely occluded, one partially

occluded and three visible. Table 5.15 and Figure 5.28 shows, that this method is able

to localize the occluded and the partially occluded landmark up to a certain accuracy.

However, the accuracy of the visible landmarks is reduced, which is a consequence of

combining the state-space of the individual agents to a joint state-space. Using the SAL

algorithm without spatial configuration, this problem is even more impactful as can be

seen in Table 5.15. The missing information of the occluded landmarks drastically reduces

accuracy of the visible landmarks, even though in these regions the agent’s observation is

given in full detail. The Simultaneous Acting and Localizing with Spatial Configuration

(SAL-SC) algorithm, however, is able to compensate this missing information with the

relative position of other agents. Table 5.15 also shows, that the multi-task approaches

perform well at visible landmarks, but fail if the observation does not provide complete

information of the state.

6.2 Future Work

Sub-pixel resolution

The discrete action-space of the DQN algorithm allows the agent to only move on discrete

image coordinates. The DDPG algorithm on the other hand allows predicting continuous

actions. As a proposal for future work, this property could be used to localize landmarks

with sub-pixel resolution.

Multi-agent reinforcement learning

With the implementation of our multi-task approach, we developed an algorithm, where a

single agent is able to localize multiple landmarks sequentially. During inference, multiple

identical agents of this kind can be used to simultaneously localize multiple landmarks

with reasonable accuracy. With the SAL-SC approach, we showed, that using elements

of MARL it is possible to learn spatial configurations of the landmarks. Both of these

methods however have it’s disadvantages. With the multi-task approach, we are not able

to learn spatial configurations. With the SAL-SC approach, we are not able to achieve the

accuracy of the multi-task approach. Caused by the joint state-space, occluded landmarks

also affect the prediction of visible landmarks, which would not be the case in multi-task

landmark localization.

These two methods build a solid basis for a multi-agent approach, where multiple

identical multi-task agents are used and a communication protocol is used to learn spatial

configurations between the landmarks. Using multi-task agents, we are also able to ensure,

that the individual agents localize a landmark, such that the maximum number of steps
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among the agents is minimized. This problem of minimizing the maximum cost (i.e. the

maximum number of steps) of individual agents is called the Linear Bottleneck Assignment

Problem (LBAP).

Data augmentation

Data augmentation is a method, to increase the amount of training data by applying

random transformation such as scaling, translating or rotating. This is especially helpful in

medical applications where data is costly. While data augmentation is a common method

in deep learning applications, it is fairly unexplored in reinforcement learning. During the

writing of this thesis, the first extensive study of general data augmentation for RL has

been published [43]. The problem with data augmentation in the landmark localization

setup with RL arises from the replay buffer. While in deep learning a training sample can

be augmented on the fly, in RL the augmented image would have to be stored in RAM

until the last sample from this image has disappeared from the replay buffer. Another

possibility is to only store the augmentation parameters, and repeatedly augment the

image before updating the neural networks with experience samples, which would induce

heavy speed losses. Assuming independence of the individual samples from a trajectory,

it should be possible to augment the individual observations instead of the entire images,

which could be a topic for future research.

3D landmark localization

Medical images are often acquired as 3D volumes, like in 3D MRI or Computed Tomogra-

phy (CT). Consequently, landmark localization has to be done in 3D. While [33] already

showed, the DQN algorithm is easily applicable to the 3D case, we did not experiment

with 3D volumes because of already very long training times. In theory, the DDPG al-

gorithm as we proposed in this thesis should be equally applicable to 3D volumes, which

should be confirmed in a future project. The speed advantage during inference should be

much more significant in 3D volumes.
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Conclusion

In this thesis, we evaluate the application of Reinforcement Learning (RL) to the prob-

lem of landmark localization and propose new methods for single- and multi-landmark

localization. RL agents are computationally efficient during inference, because they only

need to process local image patches, which give them enough information to identify their

position in the image and to decide, which action leads to the optimal path to the target

landmark. This process of localizing anatomical landmarks based on the perception of

local image information is similar to the way a physician localizes anatomical structures

in a medical image. The physician, based on his learned knowledge, can estimate the posi-

tion of an anatomical structure relative to another structure in the image. The closer the

initial observation was, the more accurately he is able to estimate the sought landmark.

While previous RL based algorithms for landmark localization used a Deep Q-Network

(DQN) agent with a fixed step size [33], our proposed Deep Deterministic Policy Gradients

(DDPG) agent is even closer to mimic the physician’s way, because it allows a variable

step size, which results in larger action steps if the initial guess was far away from the true

landmark and smaller steps if the agent’s location is close to the target landmark. Also,

using a displacement vector as the agent’s action, we immediately know the direction to

the target landmark.

The DDPG algorithm allows continuous action spaces, which allows the agent to move

freely on any coordinate in the cartesian plane, which makes the agent more versatile

and faster compared to the DQN agent. We were able to show that we achieve slightly

better performance in terms of accuracy with the DDPG algorithm compared to the DQN

algorithm. Furthermore, we compare the algorithms to a state-of-the-art Convolutional

Neural Network (CNN) approach, where we are able to show that single-landmark RL

algorithms achieve comparable performance in terms of accuracy. Furthermore, with the

DDPG approach, we were able to reduce the average number of steps needed to localize

the target landmark from 177.5 with the DQN approach to 5.85 steps.

The second part of the thesis focused on multi-landmark localization. We extend the

algorithms for single-landmark localization to the multi-landmark case by using multi-
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task RL. We implement a DQN multi-task approach and a DDPG multi-task approach.

The discrete DQN approach showed instable training behavior. Therefore the DDPG

algorithm outperformed the DQN algorithm for multi-landmark localization in terms of

accuracy. We train these multi-task algorithms on the same network architecture as in

the single landmark case, with almost the same number of parameters, which results in

similar training time. This means, with these methods we are able to reduce the training

time for five landmarks five-fold, if we compare it to the case, where for each landmark an

individual agent has to be trained. We did not achieve the performance of single landmark

localization in terms of average distance error. However, we assume, that the average

distance error could be reduced by designing more complicated network architectures.

We further provide an algorithm for the simultaneous localization of multiple land-

marks by using a single agent, that controls the position of multiple ”sub-agents” inside

the environment. We use the term sub-agent to not confuse this problem with a Multi-

Agent Reinforcement Learning (MARL) problem, even though this algorithm resulted

from a literature review in MARL. A sub-agent is a local image patch inside the image of

interest, where each sub-agents goal is to localize a certain landmark. The sub-agents are

controlled by a single neural network, which predicts the displacement vector for the sub-

agents to simultaneously update them. We were not able to match the performance of our

multi-task approaches, probably due to the increased state-space and action-space, which

composes of the joint state-space and the joint action-space of the individual sub-agents.

However, this algorithm allowed us to integrate spatial relations between the sub-agents

during training, to learn spatial correlations of the landmarks. Consequently, we were able

to show, that with this approach it is possible to localize hidden or occluded landmarks.

In summary, we evaluate the potential of RL to localize landmarks in medical images

by learning from patches, thus reducing the need for storing the whole image in GPU

memory, which is a challenge for CNN -based methods, especially when working with large

3D volumes. Moreover, RL approaches show more similarity to the way human experts

locate anatomical landmarks and as such is an interesting research direction. While we

are not able to achieve the high accuracy of current state-of-the-art CNN -based methods

which process the images as a whole, we show, that our algorithm for single-landmark

localization is able to outperform current RL methods, while also reducing inference time

to a great degree. We state, that RL algorithms are able to localize landmarks accurately

and efficiently, and should be further evaluated for large 3D volumes, to fully exploit their

benefits. Furthermore, our experiments for multi-landmark localization reveal further

benefits of RL in landmark localization. The multi-task DDPG algorithm can be used as

a method to efficiently learn an agent on multiple landmarks and the Simultaneous Acting

and Localizing with Spatial Configuration (SAL-SC) algorithm showed, that it is possible

to localize occluded landmarks, by incorporating elements of MARL.
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General Parameters of the DQN Algorithm

Parameter Value Description

Learning rate 0.00025 Learning rate used by Adam [39]
optimizer

Batch size 32 Number of samples used for
Stochastic Gradient Descent (SGD)

per training step

Replay buffer size 100,000 Size of the experience replay buffer

Target network update
frequency

10,000 The frequency (number of training
steps) with which the target

network is updated. Corresponds
to number C of Algorithm 2

Discount factor γ 0.95 Discount factor in Bellman
equation (Equation 3.11)

Initial ε 1.0 Initial probability of sampling
random actions for exploration in

ε-greedy exploration

Final ε 1.0 Final probability of sampling
random actions for exploration in

ε-greedy exploration

ε decay 0.999 Decay factor with which ε is
reduced after every episode

Scaling factor α 1 Scaling factor α for the reward
function (Equation 4.2)
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General Parameters of the DDPG Algorithm

Parameter Value Description

Learning rate actor 10−5 Learning rate used by Adam [39]
optimizer for the actor network

Learning rate critic 10−3 Learning rate used by Adam
optimizer for the critic network

Batch size 10−3 Number of experience tuples used
for SGD to update the critic

network

Replay buffer size 100,000 Size of the experience replay buffer

Noise process gaussian Noise process used for action
exploration

σ (noise) 0.15 Variance of the noise process

τ (soft update) 0.125 Controls the speed, by which the
target network’s parameters
approach the online network.

Corresponds to τ of Algorithm 5

Discount factor γ 0.85 Discount factor in Bellman
equation for the critic network

Scaling factor α 100 Scaling factor α for the reward
function (Equation 4.2) //
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List of Acronyms

A2C Advantage Actor Critic

A3C Asynchronous Advantage Actor Critic

AAM Active Appearance Model

ASM Active Shape Model

CLM Constrained Local Model

CNN Convolutional Neural Network

CT Computed Tomography

DDPG Deep Deterministic Policy Gradients

DDQN Double DQN

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FC Fully Connected

FoV Field of View

GPU Graphics Processing Unit

LBAP Linear Bottleneck Assignment Problem

MARL Multi-Agent Reinforcement Learning

MC Monte Carlo

MDP Markov Decision Process

MIA Medical Image Analysis

MIP Medical Image Processing

MORL Multi-Objective Reinforcement Learning

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRP Markov Reward Process

MSE Mean Squared Error

PCA Principal Component Analysis
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PER Prioritized Experience Replay

POMDP Partially Observable Markov Decision Process

RAM Random-Access Memory

ReLU Rectified Linear Unit

RF Random Forest

RL Reinforcement Learning

SAL Simultaneous Acting and Localizing

SAL-SC Simultaneous Acting and Localizing with Spatial Con-

figuration

SCN SpatialConfiguration-Net

SGD Stochastic Gradient Descent

SSM Statistical Shape Model

TD Temporal Difference

UAV Unmanned Aerial Vehicle

US Ultrasound

USI Ultrasound Imaging
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