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Abstract

This thesis outlines a development, implementation and application of diverse
control concepts for a continuous tablet manufacturing plant. The considered
plant consists of the hot-melt-extrusion line, involving feeding, extrusion, cooling,
pelletisation and transport, and the direct-compaction line, involving feeding,
blending and tablet compaction. Proper continuous plant operation is ensured
when the following control objectives are fulfilled. First control objective is to
keep the API concentration in the allowed range continuously along the plant.
This is ensured via application of the concentration controller combining Smith
predictor structure and PID controller with anti-windup. Material exhibiting the
properties outside the allowed API concentration range is discharged by means of
the hysteresis controller. Second control objective is a production of tablets with
technical properties within the pre-specified, valid range. TP MPC copes with
this objective, tending to keep TP fill level constant by adjusting the TP turret
speed and the blender inlet mass flow. Third control objective is an uniform and
reliable transport of material from the HME to the DC line. Mass flow controller is
utilized to prevent the undesired process events, such as exhaustion or exceeding
of material between the two lines. DC line control concept, combining the TP
MPC, concentration and discharge control, is developed and examined both in
the simulation and on the real system. For the development of the complete plant
control concept, three candidates for the master unit are suggested: extruder, TP
and no master unit. Depending on the active master unit manipulated variables
of the individual controllers change, while the control objectives stay the same.
Functionality of the complete plant control concept is examined via same test
scenario in the simulation for each proposed master unit.
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1 Introduction

During the last years, pharmaceutical companies have put a focus on a continuous
manufacturing of the pharmaceutical products. Traditionally, these were produced
via batch based processes.
Fig. 1.1 depicts differences between these two production approaches: A batch
based production is characterized by the time-outs between the individual process
steps. Quality tests of the intermediate/final product take place during these
time-outs. If the quality of test product meets predefined expectations, it can be
proceeded to the next step. Otherwise, it needs to be discharged or reprocessed.
On the other hand, a continuous production implies an uninterrupted process, from
the raw material to the final product. Thereby, a quality of the intermediate/final
product in between the individual process steps needs to be tracked during the
plant operation.
As a consequence of the time-outs between the process steps, batch processes
exhibit low production speed. US Food and Drug Administration (FDA) researches
estimate, that a switch to the continuous production would reduce the production
duration from months to days. In that sense, this switch would potentially lead
to the higher efficiency, higher production speed and decreased production costs.
According to [xtalks, 2016], a time duration between the individual process steps
seems to be directly proportional to the risk of the potential contamination or
human error, which negatively affects the reliability of batch production.
[Lee et al., 2015] suggests that a switch from the batch to the continuous production
has a potential to increase agility, flexibility and robustness in the pharmaceutical
production. Additionally, [Sacher et al., 2019] recognizes a switch to the continuous
production as a natural extension, due to the fact the most common pharmaceutical
unit operations are continuous by its design.

Figure 1.1: Comparison of batch and continuous production: Simplified concept of continuous
(green) and batch (pink) manufacturing process [Lee et al., 2015].
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1 Introduction

[Lee et al., 2015] proposes the following concept of a continuously operated pro-
duction plant: Individual unit operations should be joined to an integrated process.
A real-time data provided by the process analytical technology (PAT) tools should
be used to monitor process performance and detect the potentially dangerous pro-
cess events. In order to avoid a quality degradation of the final product, caused by
the raw material or the process variability, process control should be implemented
during the plant operation. [Rehrl et al., 2016] suggests, that the development of
control strategies is an imperative for maintaining the appropriate continuous
plant operation. Also, [Su et al., 2018] indicates that the robust and reliable con-
trollers are crucial for providing the quality control and risk managements within
a continuous plant.
In the continuous production regime, product flows directly from one to another
process step. Therefore, it is important to ensure that the intermediate product
meets prescribed quality attributes within each step. Any out-of-specification (OOS)
material needs to be detected and discharged immediately. [Rehrl et al., 2018] pro-
poses an approach based on the residence time distribution (RTD) model for the
detection of OOS material. This approach was investigated and utilized within this
work.
Up to this point, several control techniques for continuous plants have been
designed, developed and implemented. Yet, a majority of proposed techniques
involves solely well known, standard control techniques. Therefore, it is compelling
to investigate the application of advanced, and from a control engineering perspec-
tive more interesting control techniques, such as model predictive control (MPC).
An MPC application offers several advantages, like a straightforward consideration
of the constraints, as well as the simple expandability to the multi-input multi-
output (MIMO) systems. Furthermore, MPC is particularly suitable for controlling
the systems of high complexity.
In that sense, [Rehrl et al., 2016] develops and compares standard and advanced
control techniques for the continuously operated feeding-blending-unit (FBU)
in the simulation. [Celikovic et al., 2019] continues this work by developing and
investigating the proposed control concepts on the real system. They report that
MPC shows advantageous behavior compared to the standard proportional in-
tegral (PI) and model-based feed forward control techniques. Due to the incor-
porated optimization problem which is solved in each iteration, MPC requires
higher computational effort in comparison to the standard control techniques.
Yet, [Bhaskar et al., 2017] claims, that despite its complexity it is reasonable to
implement an MPC, as its application leads to the significantly better closed-loop
performance.
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1 Introduction

This master thesis outlines the development of an automated continuous tablet
manufacturing plant, with a focus on the design, implementation and real-system
application of an adequate control concept. The examined production plant con-
sists of two lines: A hot-melt-extrusion (HME) line and a direct-compaction (DC)
line. Pellets based on the active product ingredient (API) and polymer matrix
are produced and quality proofed within the HME line. The produced pellets
are then supplied to the DC line. Within this line, pellets are blended with a
pre-mix material, quality proofed, and finally compressed to the tablets. Fig. 2.1
provides a detailed schematic overview of the continuous tablet manufacturing
plant, including the individual process units and the utilized PAT equipment.
Process modeling represents a starting point for the development of the control
concepts for the investigated continuous plant. For the modeling purposes, a com-
plete plant is decomposed into the individual modeling units, which correspond
to the individual unit operations, i.e. feeding, extrusion and cooling & pelletisation
in the HME-, and feeding, blending and TP in the DC line. Data-driven model
identification is performed by means of the MATLAB System Identification Toolbox
App [SysIdTool, 2020] and MATLAB function ssest [ssest, 2020]. The data required
for the identification procedure is collected via laboratory experiments executed
on the real system. The identified models are compared to the real system. When a
satisfactory conformity between the real-(measured) and model-estimated behavior
is obtained, identified models can be utilized for the development of the control
concepts.
In order to ensure the appropriate continuous plant operation, several control
objectives need to be fulfilled. First control objective is to keep the product API
content within the allowed range. This control objective is addressed via applica-
tion of concentration controller. As the identified transfer functions relating inlet-
and outlet concentration, both in HME and DC line, exhibit a certain time delay,
concentration controller is realized as a combination of Smith predictor structure
involving a standard PID controller. In case of disturbances, which cannot be
attenuated by the application of concentration controller, material with the API
content outside the allowed range needs to be discharged. Discharge is realized by
means of the hysteresis controller.
Second control objective is a production of tablets with constant and satisfactory
properties. Experiments have shown, that if the TP hopper fill level sinks below
a certain value, a quality of the produced tablets is seriously affected. On the
other hand, it is also observed, that a change of TP turret speed can influence the
fill level, without negatively affecting the tablet properties. Therefore, an MPC
for the fill level control is designed and implemented. MPC manipulates blender
inlet mass flow and TP turret speed in order to keep the TP fill level close to its
reference.
Initially, a control concept is developed solely for the DC line. Blender and TP
model are concatenated to a control-oriented state-space-representation and this
representation is utilized for the TP MPC application. DC line control concept in-
volving the concentration, discharge and fill level controller, is designed, simulated
and examined on the real system.
Finally, DC line control concept is extended to a control concept for the complete
continuous plant. This leads to an additional control objective, i.e. uniform and
reliable pellet transport between the two lines. This objective is targeted by the
application of a mass flow controller. Additionally, concentration and discharge
controller are implemented in the HME line. Three different concepts (A, B and C)

3



1 Introduction

for the control of the complete line are suggested. These concepts distinguish in the
active master unit, i.e. extruder, TP or no master unit, respectively. Finally, a control
action of each control concept is examined in the simulation by an artificially
introduced feeder disturbance scenario. Obtained results are compared in regard
to the important process quantities and analyzed in view of the further work on
the complete continuous plant.
The remainder of the thesis is structured as follows:
Chapter 2 provides an overview of the continuous plant structure, process flow
and the utilized PAT equipment. Details of continuous plant modeling can be
found in the Chapter 3. A theoretical background of the employed control con-
cepts, development of the individual controllers, and application of DC line control
concept in the simulation and on the real system are introduced in the Chapter 4.
In the Chapter 5, different control concepts for the complete continuous plant are
proposed, designed and examined in the simulation. Finally, Chapter 6 concludes
the thesis, provides a summary and outlines the potential next steps.

4



2 Continuous Tablet

Manufacturing Plant: Technical

Description

This Chapter provides a technical description of the continuous tablet manufactur-
ing plant. The investigated plant consists of two lines, HME and DC line. Both lines
involve several unit operations, namely, feeding, extrusion, cooling, pelletisation,
discharge and pneumatic conveying in the HME line, and feeding, blending, dis-
charge and tablet compression within the DC line. Section 2.1 provides a detailed
description of the process flow and the utilized device equipment.
An efficiently automated production plant represents a basis for the transition
from the traditional batch- to the continuous pharmaceutical production. Accurate
process monitoring and real-time tracking of essential process quantities are two
crucial requirements for the plant efficiency. These requirements are addressed via
application of the adequate PAT equipment. Section 2.2 provides a brief theoretical
overview, including the FGA definition and PAT framework application procedure.
Furthermore, an overview of within the continuous tablet manufacturing plant
utilized PAT equipment is provided in this Section.
Fig. 2.1 depicts a schematic structure of the continuous tablet manufacturing plant,
including the individual unit operations and the employed PAT equipment.

2.1 Description of Process Flow

2.1.1 HME Line

The HME line involves several individual unit operations:

• Feeding: Two loss-in-weight feeders, namely, Brabender MTS-Hyg (Brabender,
Germany) and K-TRON KT20 (Coperion K-Tron, Switzerland), from now on
referred to as API and polymer feeder. Feeders are equipped with mass scales
and operate in the gravimetric regime, i.e. adjust the screw speed based on
the loss-in-weight measurements in order to reach the desired mass flow.

• Extrusion: Twin screw extruder Coperion ZSK 18 (Coperion, Germany).
• Cooling Track: Conveyor belt and proportional pressure regulator VPPE-

3–1–1 (FESTO, Germany).
• Pelletisation: Pelletisation system PRIMO 60E (Maag, Germany).
• Discharge: Pneumatic discharge valve.
• Pneumatic transport: Vacuum transport device Piovan S50 (Piovan, Italy).

5



2 Technical Description of the Continuous Tablet Manufacturing Plant

API and polymer feeder are placed on the top of the HME line. They are manually
filled with the API and polymer powder, which they supply to to the extruder
inlet. Inside the extrusion unit, polymer powder melts and API is distributed in
the polymer matrix. Fed powder material changes its structure, and the outcome
of the extrusion unit is one strand. Produced strand is transported among the
cooling track via conveyor belt. A pressure regulator is placed above the cooling
track and cools the transported strand by means of the pressurized air. Finally,
the cooled strand enters the pelletisation unit, where it is cut in the cylindrical
pellets. Produced pellets are gathered in a canonical hopper, which is connected to
a pneumatic discharge valve and a vacuum transport device. If the pellets meet
the predefined expectations regarding their API content, they can be transported
to the DC line via vacuum transport device. Otherwise, the hopper is emptied via
discharge valve. Table 2.1 provides an overview of the available process data and
nominal operating points of the individual unit operations in the HME line.

Table 2.1: HME line: Process data and nominal operating points of the individual unit operations.

Process Unit Process Data Nominal operation point

Feeding
Hold-up

Screw speed
Mass flow

Mass flow ≈ 2kg/h

Extrusion
Barrel temperature

Screw speed
Melt pressure

70− 130◦

200rpm

Cooling Air pressure pair ≈ 3bar

Pelletisation Intake speed v ≈ 1.293 m
min

Discharge Activation signal dHME = 1 (active)

Transport Activation signal tHME = 0 (inactive)

2.1.2 DC Line

DC line incorporates several individual unit operations, as well:

• Feeding: Two loss-in-weight K-TRON KT20 (Coperion K-Tron, Switzerland)
feeders, from now on referred to as pellet and pre-mix feeder. Again, feeders
are equipped with mass scales and operate in the gravimetric regime.

• Blending: Hosokawa Modulomix (Hosokawa Micron, Netherlands).
• Discharge: Pneumatic discharge valve.
• Tabletting: Fette 102i (Fette, Germany).

A starting point of the DC line is a feeding-blending-unit (FBU), which consists of
the pellet- and pre-mix feeder, and a blender. This unit is placed on the platform

6



2 Technical Description of the Continuous Tablet Manufacturing Plant

Table 2.2: DC Line: Process data and nominal operation points of the individual unit operations.

Process Unit Process Data Nominal point

Feeding
Weight

Screw speed
Mass flow

Mass flow ≈ 5kg/h

Blending Screw speed nB ≈ 800rpm

Discharge Activation signal dDC = 1 (active)

Tabletting Turret speed
Compaction parameters nTP ≈ 41.67rpm

above the TP, on the top of the DC line. Pellet feeder is supplied with the pellets
produced within the HME line. Pre-mix feeder is manually filled with the pre-mix
powder material. Feeders supply pellets and powder to the blender, which blends
these two materials in the liquidizing regime. Quality of the resulting material
is examined at the blender outlet. If the pellets/powder mixture satisfies the
predefined expectation regarding the API content, material can be proceeded to
the TP and compressed to the tablets. Otherwise, material is redirected to the
waste hopper via discharge flap. Table 2.2 provides an overview of the available
process data and nominal operating points of the individual unit operations in the
DC line.

2.2 Process-Analytical-Technology (PAT)

Process analytical technology (PAT)1:
"The FDA agency considers PAT to be a system for designing, analyzing, and

controlling manufacturing through timely measurements (, i.e. during processing)
of critical quality and performance attributes of raw and in-process materials and

processes, with the goal of ensuring final product quality."

PAT equipment contributes to the improved process understanding and control of
the continuous manufacturing plants. PAT is utilized for the process monitoring
via data acquisition, as well as for the development of the risk-mitigation strategies.
Additionally, PAT supports the effective control of the critical quality attributes
(CQA).
Design and optimization of drug formulations and manufacturing processes within
the PAT framework typically include the following steps:

1. Identification and measurement of the critical material and process quantities
related to the product quality

1Guidance for Industry PAT, A Framework for Innovative Pharmaceutical Development, Manu-
facturing and Quality Assurance
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2 Technical Description of the Continuous Tablet Manufacturing Plant

2. Design of the (near) real-time measurement system for the monitoring of the
critical quantities addressed in the previous point

3. Development of the appropriate concepts to control the critical attributes
4. Determination of mathematical relations between the product quality at-

tributes, and critical material and process quantities

Note: Sequence of these steps can vary from process to process.
Via provided real-time process monitoring and continuous tracking of the product
quality, process quantities of interest are gathered and forwarded to the control
concepts for further action. In such a way, PAT equipment may be perceived as an
important support of the control strategies in the continuous manufacturing.
It is of great importance to recognize and consider the process quantities, which
have a significant influence on the quality of the intermediate and final product.
First of all, API concentration among the continuous plant should be tracked,
as it has the crucial impact on the uniformity of intermediate and final product.
Appropriate PAT equipment for the measurement of the API concentration is em-
ployed and concentration is measured by means of the near infrared spectroscopy
(NIR:Sentronic SentroPAT FO NIR Type 1100/2200/256/4). NIR device can be
placed in the HME or in the DC line, i.e. at the extruder or blender outlet, respec-
tively. The utilized NIR device allows the quality tracking among the continuous
plant. The acquired data can be utilized for modeling and control purposes.
Quality of within the HME line produced pellets is affected by two process quan-
tities, i.e. strand diameter and temperature. 3 axis laser and infrared sensor are
employed for the measurement of these quantities.
Another significant process quantity is a fill level in the TP hopper. Previous
researches have shown, that the large deviations from the nominal points, can
lead to the quality degradation of the produced tablets. Again, the appropriate
PAT equipment for tracking this process quantity needs to be utilized. Fill level
measurement takes place via Ultra Sonic Sensor.
Table 2.3 provides an overview of the utilized PAT equipment within the investi-
gated continuous tablet manufacturing plant.
Process- and PAT equipment are connected to a XAMControl automation software
[evon, 2020] via following data exchange protocols:

1. API, pre-mix and pellet feeder are connected via PBpro ETH remote Profibus
interface (Softing GmbH, 2019).

2. Polymer feeder is connected via Modbus TCP interface.
3. Vacuum transport is connected via Modbus RTU interface.
4. Extruder is connected via OPC UA.
5. TP and NIR spectrometer are connected via UPC DA.
6. 3-axis measurement device is connected via Ethernet TC/TP.
7. Pelletizer, blender, discharge units, IR-sensor, US-sensor and pressure regu-

lator are connected via B&R Bus Controller and analog I/O modules (B&R
Industrial Automation, 2019).

Tasks related to the data acquisition and analysis, and the required user-device
communication, are implemented by means of the XAMControl Automation Soft-
ware platform. XAMControl offers a process visualization and provides a database
for the real time storage of data. For modeling purposes required laboratory ex-
periments are programmed and executed in the XAMControl. The experimental

8



2 Technical Description of the Continuous Tablet Manufacturing Plant

data is collected and stored for the post processing. Control concepts are also
implemented within this software.

PAT Equipment

Nr. Device Position Measurement

1 NIR Spectrometer Extrusion Inlet Concentration

2 3axis Laser Pelletisation Inlet Diameter

3 Infrared Sensor Pelletisation Inlet Temperature

4 NIR Spectrometer Blender Outlet Concentration

5 Ultra Sonic Sensor TP hopper Fill level

Table 2.3: Overview of within the continuous tablet manufacturing plant utilized PAT Equipment,
including the utilized devices, measurement position and measured process quantities.
The introduced numbering corresponds to the numbering depicted in the Fig. 2.1

9



2 Technical Description of the Continuous Tablet Manufacturing Plant

2.3 Schematic Overview of Continuous Tablet

Manufacturing Plant

Figure 2.1: Schematic overview of the continuous tablet manufacturing plant: HME and DC line in-
volve several individual unit operations depicted with the blue letters. Different material
structures are color distinguished, i.e powder→ strand→ pellets→ pellets/powder→
tablets. Via PAT equipment monitored measurements are indicated with the light red
circles.

10



3 Process Modeling

Model Identification1:
"A modeling procedure can be summarized in the following manner: The real

system or process is replaced with a simple, yet adequate model. A model reflects
the functional relations between the essential system quantities, and captures the

behavior of a real system."

Aim of a modeling task is a development of simple, yet adequate description of a
system or process of interest. Starting point of this task is to determine and take into
account the process quantities/variables/signals, which have a significant impact
on the process behavior. Outcome of modeling are the mathematical relations
between the essential system quantities.
A typical modeling approach involves a decomposition of one complicated system
in the simpler, individual subsystems. In such a way, essential system quantities can
be recognized in the simple manner, and the required mathematical relations can
be determined. In that sense, the investigated system of interest, i.e. the continuous
tablet manufacturing plant, is decomposed in the HME and DC line, and the
lines are decomposed in the individual modeling units. DC line involves three
modeling units, namely, blender concentration, blender mass flow and tablet press
modeling unit. HME line involves extrusion concentration, extrusion mass flow
and pelletisation modeling unit. Sections 3.2 and 3.3 provide an overview of the
model identification for the DC and HME line, respectively.
Process quantities of interest can be divided in the two categories, input and
output signals. Input signals can be perceived as the process actuators. These are
the quantities which affect the system and can be externally manipulated. On the
other hand, output signals are the process quantities, which can be captured. These
signals can be perceived as the system reaction to the applied input signals. Input
and output signals of the individual modeling units in the DC and HME line are
presented in the Tables 2.1 and 2.2, respectively.
Within the course of the thesis, a process modeling is carried out via data-driven
model identification, by means of the MATLAB System Identification Toolbox App
and MATLAB function ssest. Subsections 3.1.1 and 3.1.2 provide a brief overview of
these two identification approaches. Additionally, the Subsections 3.2.1 and 3.2.2
provide a step-by-step toolbox application on the example of blender concentration
and blender mass flow modeling unit.

1[Horn and Dourdoumas, 2004], Regelungstechnik: Systeme und deren Beschreibung
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3 Process Modeling

3.1 Data-driven Modeling via System Identi�cation

Toolbox

This Section introduces two data-driven modeling approaches. Data-driven model-
ing implies a strong dependency of the model quality on the provided experimental
data. In that sense, the identification experiments need to be designed carefully. A
complete operating range of interest should be covered, i.e. the designed input- and
collected output signals should precisely reflect the system behavior in this range.
Although the model identification process itself does not include the information
about the physical behavior of the system, this knowledge can be utilized by the
design of identification experiments. Model order is user defined and chosen as
a compromise between the model complexity and accuracy. Fig. 3.1 illustrates
the measurement configuration for collecting the input- and output sequences
required for the identification procedure. The input- and output sequences are uni-
formly sampled with sampling time Ts and imported to the System Identification
Toolbox.

Figure 3.1: Data-driven modeling measurement configuration: Input signals are designed and sent
to the real system via process actuators. Output signals are measured via process sensors.
Input- and output sequences are collected and provided to the System Identification
Toolbox.

3.1.1 System Identi�cation Toolbox App

The System Identification Toolbox App in MATLAB [SysIdTool, 2020] provides an
application for the data-driven modeling of dynamic systems. Among others, it
offers a feature for the identification of time-continuous or time-discrete transfer
functions using the time- or frequency domain data as input- and output signals.
The performed identification procedure can be summarized in the following
manner:

• Data preparation, i.e. carrying out the required experiments and pre-processing
of the collected experimental data

• Data import, i.e. providing the toolbox with input- and output signals col-
lected and prepared in the previous point
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• Structure definition, i.e. specifying the transfer function structure (number of
poles, number of zeros, etc.)

• Parameter identification, i.e. estimating the adjustable parameters of transfer
function (numerator and denominator coefficients, delay time)

• Model validation, i.e. a comparison between the measured- and model-
estimated output signals

The outcome of the identification procedure is a plant transfer function P(s) = Y(s)
U(s)

, with U(s) and Y(s) denoting the Laplace transforms of input and output signal,
respectively. Transfer function representation utilizes Laplace transformation and
maps the relations from time- to the frequency domain. In that sense, P(s) relates
the input- and output signal of the investigated system in the complex variable s
domain. This representation is particularly suitable for the SISO systems, as well
as for the development of standard control concepts, such as algebraic synthesis or
PID control. Therefore, this identification approach is utilized for the concentration
modeling.

3.1.2 System Identi�cation Toolbox: ssest Function

This Section outlines another approach for the data-driven estimation of model
parameters by means of the MATLAB function ssest [ssest, 2020]. As in the previ-
ously introduced identification approach, time- or frequency domain experimental
data should be collected, pre-processed and imported to the toolbox.
One possible outcome of the identification procedure is a system of ordinary differ-
ential equations first order (ODE 1st), from now on referred to as a time-continuous
state-space-model. This model reads as:

dx(t)
dt

= A · x(t) + B · u(t) + Bd · d(t) and y(t) = C · x(t) + D · u(t) + Dd · d(t)

Input-, output- and disturbance signals, symbolized with u(t), y(t) and d(t),
respectively, are provided from the identification experiments. x(t) depicts a state
vector with n states. Constant size matrices A, B, Bd, C, D and Dd are the model
parameters which need to be estimated within the identification procedure.
Alternatively, outcome of the identification procedure can be a system of linear
constant equations relating the state variables in the consecutive time points, from
now on referred to as a time-discrete state-space-model. This model reads as:

xk+1 = AD · xk + BD · uk + BDd · dk and yk = CD · xk + DD · uk + DDd · dk

Notation of the introduced signals, as well as of the system parameters, stays
the same as in the time-continuous representation. Matrices, i.e. to be estimated
model parameters, are symbolized with sub-index D. Signals are evaluated at the
time instance kTs, and therefore denoted with the sub-index k. State-space-model
representation is particularly suitable for modeling the MIMO systems, such as
blender mass flow, TP, etc.
Identification procedure requires several user defined arguments, such as the
sampling time, feedthrough, estimation options, etc. Model order can be specified
by user, or automatically estimated by a solver. Following lines provide a code
example for the implementation of this identification approach in MATLAB. The
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outcome of introduced procedure is a time-discrete state-space model, which can
be utilized for the MPC design in the straightforward manner. On the other hand,
the time-continuous representation would require the additional discretization
effort, and therefore is omitted.

1 % Example of s s e s t Function I d e n t i f i c a t i o n Procedure : System
with 2 input− and 2 output s i g n a l s i s i n v e s t i g a t e d

2

3 % Step 1 : Import the experimental data and s p e c i f y sampling
time

4 model = iddata ( [ y1 , y2 ] , [ u1 , u2 ] , Ts ) ;
5 model . InputName = { ’ Input 1−Name ’ , ’ Input 2−Name ’ } ;
6 model . InputUnit = { ’ Input 1−Unit ’ , ’ Input 2−Unit ’ } ;
7 model . OutputName = { ’ Output 1−Name ’ , ’ Output 2−Name ’ } ;
8 model . OutputUnit = { ’ Output 1−Unit ’ , ’ Output 2−Unit ’ } ;
9 model . ExperimentName = { ’ Experiment−Name ’ } ;

10

11 % Step 2 : Spec i fy model p r o p e r t i e s
12 model_order = n_model ;
13 feedthrough = true ;
14

15 % Step 3 : Spec i fy es t imat ion options :
16 opt = sses tOpt ions ;
17 % Enforce s t a b i l i t y of est imated model
18 opt . E n f o r c e S t a b i l i t y = true/ f a l s e ;
19 % Spec i fy i n i t i a l s t a t e
20 opt . I n i t i a l S t a t e = ’ ’ ;
21 % Numerical search method f o r i t e r a t i v e parameter es t imat ion
22 opt . SearchMethod = ’ ’ ;
23 % Spec i fy e r r o r to be minimized
24 opt . Focus = ’ s imulat ion ’ ;
25 % Spec i fy forward− and backward p r e d i c t i o n horizons
26 opt . N4Horizon = [ r sy su ] ;
27

28 % Step 4 : Est imate model parameters
29 model_est = s s e s t ( model , model_order , ’ Ts ’ , Ts , ’ Feedthrough

’ , feedthrough , ’ DisturbanceModel ’ , ’ none ’ , opt ) ;
30 f i g u r e ; s tep ( model_est ) ; % step response
31

32 % Step 5 : Va l idat ion of est imated model
33 f i g u r e ; compare ( model , model_est ) ;

Note: The introduced MATLAB code can be extended, and further estimation
options can be specified. However, this code represents a sufficient basis for the
identification procedure.
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3.2 Modeling of DC Line

DC Line consists of three individual modeling units, namely, blender concentration-
, blender mass flow- and TP modeling unit.
Subsection 3.2.1 outlines the identification of the transfer function relating the con-
centrations at the blender inlet and the blender outlet. Additionally, this Subsection
provides a step-by-step System Identification Toolbox App application procedure
on this example. The identified transfer function is utilized for the design and
tuning of the concentration control concept.
Subsection 3.2.2 holds the identification of the state-space-model relating the
blender inlet mass flow and blender rotational speed as the input-, and the blender
outlet mass flow and hold-up as the output variables for this modeling unit. A
state-space-model relating the TP inlet mass flow and turret speed as input-, and
tablet press fill level as output variable is identified within the Subsection 3.2.3.
State-space-modeling is performed by means of in the Subsection 3.1.2 introduced
identification approach.
Performed modeling is strongly control-oriented, i.e. the input- and output vari-
ables of the individual modeling units are potential candidates for the manipulated
and controlled variables. Yet, not all input variables of the individual modeling
units, e.g. TP inlet mass flow, can be directly manipulated in the continuous plant
operation. On the other hand, some output variables, e.g. blender outlet mass flow
and hold-up, cannot be measured in the continuous operation, as well. Therefore,
the identified blender and TP state-space-model are joined to an united state-
space-representation with blender inlet mass flow and TP turret speed as input-,
and TP fill level as the output variables. The resulting representation, from now
on referred to as DC line model, is developed within the Subsection 3.2.4. This
combined representation of DC line is particularly suitable for the development of
TP control concept in the further course of the thesis, as the input variables can be
manipulated, and the output variable can be measured in the continuous plant
operation. Table 3.1 provides a compact overview of the individual modeling units
and the associated input- and output variables.

Table 3.1: Overview of the individual modeling units in the DC line

Modeling Unit
Unit

Input
Signals

Output
Signals

Blender:
Concentration inlet concentration cDCin outlet concentration cDCout

Blender:
Mass flow

inlet mass flow ṁBin
turret speed nB

outlet mass flow ṁBout
hold-up mBhu

TP inlet mass flow ṁTPin
turret speed nTP

hopper fill level lTP

DC Line inlet mass flow ṁBin
turret speed nTP

hopper fill level lTP
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3.2.1 Modeling of Blender Concentration

Blender concentration transfer function relates the concentrations at the blender
inlet and blender outlet. According to [Kruisz et al., 2017], blender inlet concentra-
tion corresponds to:

cDCin =
ṁPEL

ṁPEL + ṁMIX

In that sense, the desired inlet concentration can be adjusted by manipulating the
ratio of pellet- and pre-mix feeder mass flows. Blender outlet concentration cDCout
is captured by means of the NIR measurement device placed between the blender
outlet and the discharge flap. These quantities can be manipulated/measured in
the continuous plant operation.
The experimental data required for the identification purposes is collected via
laboratory experiment depicted in the Fig.3.3. Blender inlet concentration is varied
from 10% to 35% in 2.5% and 5% steps. The step duration is adjusted, such that
the blender outlet concentration reaches the steady state after each change. In such
a way, the required dynamic behavior of the investigated system can be captured.
The investigated operating range corresponds to the measurement range of NIR
device, where the linear system behavior is expected.
The input- and output sequences are collected and imported to the System Identi-
fication Toolbox App. The structure of transfer function is specified based on the
structure proposed in [Kruisz et al., 2017], i.e. a transfer function containing one
zero, three poles and a delay-time term. Step-by-step toolbox application procedure
is illustrated in the Fig. 3.2. Outcome of the identification procedure is a proper
transfer function third order, from now on referred to as DC concentration transfer
function:

PC,DC(s) =
CDCout(s)
CDCin(s)

= e−sTd,DC P?
DC(s)

with P?
DC(s) =

0.03s + 2.48 · 10−5

s3 + 1.86s2 + 0.03s + 2.47 · 10−5 and Td,DC = 7s

Laboratory experiments have shown, that the outlet concentration equals the inlet
concentration after a certain time interval. There are two factors, which have an
influence on the duration of this time interval, i.e. a blender speed nB and blender
residence time distribution (RTD), i.e. the time one particle spends passing among
the blender.
Fig. 3.3 illustrates the set inlet concentration cDCin, measured outlet concentration
cDCout and via identified transfer function estimated outlet concentration cDCout,sim.
The obtained results indicate a very good conformity between the measured and
model estimated signals, i.e. between the real system and the identified transfer
function. The identified transfer function is utilized for the design of DC line
concentration controller, as well as for the discharge signal triggering, in the
simulation.
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(a) Step 1: System Identification Toolbox App user interface

(b) Step 2: Import (left) and time-plot (right) of experimentally collected input- and output sequences

(c) Step 3: Specifying the transfer function structure (left) and progress of identification procedure (right)

(d) Step 4: Resulting transfer function (left) and model validation (right)

Figure 3.2: Transfer function identification via System Identification Toolbox App in Matlab
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Figure 3.3: Laboratory Experiment-Identification of blender concentration model: Magenta line
indicates the set inlet concentration, blue line indicates the NIR measured outlet concen-
tration, and dashed red line indicates via identified transfer function estimated outlet
concentration.

3.2.2 Modeling of Blender Mass Flow

This Subsection outlines the identification of a blender state-space-model relating
the blender outlet mass flow and hold up as output-, and blender inlet mass flow
and rotational speed as input signals.
[Rehrl et al., 2016] suggests that, besides the data-driven approach, the investigated
blender unit can be modeled by means of the physical laws describing the blender
hold-up. However, the outcome of this approach is a non-linear model. This would
lead to the additional linearization efforts, as the standard MPC procedure requires
the linear system representation. On the other hand, data-driven approach assumes
a linear system behavior in a certain range around the nominal operating points.
Outcome of this approach is a linear model, which can be utilized by the controller
in a straightforward manner. Due to that, the physical system modeling is omitted.
As the time-discrete state-space representation is particularly suitable for the
intended MPC design, the in the Subsection 3.1.2 introduced modeling approach
is chosen. Yet, for the application of standard control techniques, blending unit can
be modeled via transfer functions, as suggested in the Subsection 3.1.1. Further
details on that kind of modeling procedure can be found in [Celikovic et al., 2019].
Blender inlet mass flow corresponds to the sum of pellet and pre-mix feeder mass
flow, i.e. ṁBin = ṁPEL + ṁMIX. Blender rotational speed is set by an internally
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integrated speed controller. Both of these quantities can be manipulated in the
continuous plant operation.
Blender outlet mass flow is indirectly measured via custom-built catch scale (HBM
PW22C3 single point load cell), placed at the blender outlet. Outlet mass flow
ṁBout is calculated using the scale signal mBout, as:

ṁBout(t) =
dmBout(t)

dt
≈ mBout(t)−mBout(t− ∆t)

∆t
with ∆t = Ts

As a consequence of high sampling rate (Ts = 350ms) and noise-amplifying
characteristics of derivative operator, the resulting signal cannot be employed
for the model identification purposes. In order to attenuate the high-frequency
components, evaluated signal is pre-processed with low-pass zero-phase forward-
backward filter. This class of filter does not shift the signal and invokes no time
delay. Best filtering results are obtained for the cut-off frequency fcut = 0.05Hz
and filter order 32.
Blender hold-up is calculated via simple mass-balance equations, as:

mBin,k = mPEL,k + mMIX,k total mass of material in feeders
∆mBin,k = mBin,0 −mBin,k amount of fed material

∆mBout,k = mBout,k −mBout,0 amount of blended material
mBhu,k = ∆mBin,k − ∆mBout,k blender hold-up

Note: The catch scale is brought into the device setup solely for the modeling
purposes. It cannot be placed at the blender outlet during the continuous plant
operation. In that sense, the blender outlet mass flow and consequently the hold-
up, cannot be measured in the continuous plant operation, as well.
Experimental data required for the identification purposes is collected via in
the Fig. 3.4 depicted laboratory experiment. In the first part of the experiment
(t ≤ 1000s), blender rotational speed is kept constant and the blender inlet mass
flow is varied around the nominal point in the ±2.5kg/h steps. In the second part
of the experiment (t > 1000s), the inlet mass flow is kept constant, and the blender
rotational speed is varied around the nominal point in the ±200rpm steps. In such
a way, impact of the independent system inputs, can be captured.
Blender rotational speed and inlet mass flow, i.e. its deviation from the nominal
operating points, are imported as the input sequences, and blender outlet mass flow
and hold-up, i.e. its deviation from the nominal operating points, are imported as
the output sequences to the System Identification Toolbox. The best identification
results are obtained by utilizing the model specifications and estimation options
introduced in the following MATLAB code.
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1 % Blender Modeling
2 % Step 1

3 blender = iddata ( [ dot_m_Bout , m_Bhu ] , [ n_B , dot_m_Bin ] , Ts ) ;
4 blender . InputName = { ’ r o t a t i o n a l speed ’ , ’ i n l e t mass flow ’ } ;
5 blender . InputUnit = { ’rpm ’ , ’ kg/h ’ } ;
6 blender . OutputName = { ’ o u t l e t massflow ’ , ’ hold−up ’ } ;
7 blender . OutputUnit = { ’ kg/h ’ , ’ g ’ } ;
8 blender . ExperimentName = { ’ I d e n t i f i c a t i o n _ e x p e r i m e n t ’ } ;
9

10 % Step 2

11 model_order = 3 ;
12 feedthrough = true ;
13

14 % Step 3

15 opt = sses tOpt ions ;
16 opt . E n f o r c e S t a b i l i t y = true ;
17 opt . I n i t i a l S t a t e = ’ zero ’ ;
18 % gna − adaptive subspace Gauss−Newton search
19 opt . SearchMethod = ’ gna ’ ;
20 % e r r o r between measured and simulated outputs i s minimized
21 opt . Focus = ’ s imulat ion ’ ;
22 % chosen via t r i a l and e r r o r attempts
23 opt . N4Horizon = [10 3 2 ] ;
24

25 % Step 4

26 blender_es t = s s e s t ( blender , model_order , ’ Ts ’ , Ts , ’
Feedthrough ’ , feedthrough , ’ DisturbanceModel ’ , ’ none ’ ,
opt ) ;

27 f i g u r e ; s tep ( b lender_es t ) ;
28

29 % Step 5

30 f i g u r e ; compare ( blender , b lender_es t ) ;

Iterative parameter identification is performed via adaptive subspace Gauss-
Newton numerical search method. Model parameters, AB, bB1, bB2, CB, dB1 and dB2,
are identified, such that the simulation error between the measured and simulated
outputs is minimized. Model order is chosen as a compromise between the model
accuracy and complexity. Outcome of the identification procedure is a time-discrete
state-space-model third order, from now on referred to as blender model, which
reads as:

xB,k+1 = ABxB,k + bB1∆uB1,k + bB2∆uB2,k

∆yB,k = CBxB,k + dB1∆uB1,k + dB2∆uB2,k
(3.1)

with: uB = [uB1 uB2]
T = [nB ṁBin]

T and ∆uB = uB − uB,nom

yB = [yB1 yB2]
T = [ṁBout mBhu] and ∆yB = yB − yB,nom
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Nominal operating points of blender speed, blender inlet mass flow, blender
outlet mass flow and blender hold-up are nB,nom = 800rpm, ṁBin,nom = 5kg/h,
ṁBout,nom = 5kg/h and mBhu,nom = 58g, respectively.

Fig. 3.4 depicts all signals of interest during the executed laboratory test. The
obtained results indicate a very good conformity between the measured and model
estimated output signals, and verify the quality of the identified blender model.

Figure 3.4: Laboratory Experiment-Identification of blender mass flow model: First and second
subplot depict the set blender inlet mass flow and rotational speed, respectively. Third
subplot depicts the measured- and via identified model estimated outlet mass flow in
blue and red color, respectively. Fourth plot depicts the measured- and via identified
model estimated blender hold-up in blue and red color, respectively.
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3.2.3 Modeling of Tablet Press

This Subsection outlines a development of a simple state-space-model first order,
relating the TP fill level as output-, and TP inlet mass flow and turret speed as the
input signals.
Model follows the mass balance equation describing the TP hopper hold-up
ṁTPhu = ṁTPin − ṁTPout, and the relation between the hopper outlet mass flow
and TP turret speed ṁTPout = γnTP. Furthermore, TP fill level is proportional to
the TP hopper hold-up lTP ∼ mTPhu.
Experimental data required for the identification purposes is collected via labo-
ratory experiment depicted in the Fig. 3.5. The material is fed directly to the TP
hopper, and the desired TP inlet mass flow is set by adjusting the feeder mass
flow. However, in the continuous plant operation, the inlet mass flow cannot be
directly manipulated, as it corresponds to the blender outlet mass flow. TP fill level
is measured via Ultra-Sonic-Sensor placed in the TP hopper. In the first part of the
experiment, inlet mass flow is kept constant and turret speed is varied around the
nominal operating point in ±20rpm steps. Thereafter, turret speed is kept constant
and the inlet mass flow is varied around the nominal operating point. In such a
way, the influence of the independent inputs, can be captured.
TP turret speed and inlet mass flow, i.e. its deviation from the nominal operating
points, are imported as the input sequences, and TP fill level, i.e. its deviation from
the nominal operating point, is imported as the output sequence to the System
Identification Toolbox. Model specifications are set based on the known physical
properties of the system, model order is set to one and feedthrough to false. The
remaining estimation options remain the same, as in the MATLAB code introduced
in the Section 3.2.2. Again, iterative parameter identification is executed and the
error between the measured and simulated outputs minimized. Outcome of the
identification procedure is a time-discrete state-space-model first order, from now
on referred to as TP model, which reads as:

xTP,k+1 = ATPxTP,k + bTP1∆uTP1,k + bTP2∆uTP2,k

∆yTP,k = cT
TPxTP,k

(3.2)

with: uTP = [uTP1 uTP2]
T = [nTP ṁTPin]

T and ∆uTP = uTP − uTP,nom

yTP = lTP and ∆yTP = yTP − yTP,nom

Nominal operating points of TP turret speed, TP inlet mass flow and TP fill
level are nTP,nom = 41.67rpm, ṁTPin,nom = 5kg/h and lTP = 0.15m, respectively.
Fig. 3.5 depicts all signals of interest during the executed laboratory experiment.
The obtained results indicate a very good conformity between the measured and
model estimated TP fill level. In that sense, a quality of the identified TP model is
confirmed, as well.
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Figure 3.5: Laboratory Experiment-Identification of TP model: First and second subplot depict
the set TP inlet mass flow and turret speed, respectively. Third subplot depicts the
measured- and via identified model estimated TP fill level outlet mass flow in blue and
red color, respectively.

3.2.4 DC Line Model

As introduced in the Subsections 3.2.2 and 3.2.3, not all input/output variables of
the individual modeling units can be manipulated/measured in the continuous
plant operation. This Section outlines a development of a DC line model, which
assemblies the previously identified blender and TP model. As it is not possible to
directly manipulate the TP inlet mass flow, but rather to affect it with a change
of the blender inlet mass flow, the resulting DC model utilizes the blender inlet
mass flow as the input signal. The resulting DC line state-space-representation can
be employed for the development of TP fill level controller. It is experimentally
proven that the blender rotational speed has neglectable influence on the TP fill
level, and therefore is set to the nominal operating point. Blender hold-up is not
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considered as well. Blender state-space-representation reduces to:

xB,k+1 = ABxB,k + bB2∆mBin,k (3.3)

∆mBout,k = cT
B,1xB,k + dB2,1∆mBin,k (3.4)

(3.5)

with cT
B,1 denoting the first line of CB, and dB2,1 denoting the first element of

dB2. It should be noted, that in the Eq. 3.1 introduced blender model can be
utilized for a development of an individual FBU control concept, as suggested
in [Celikovic et al., 2019] and [Rehrl et al., 2016]. However, this control concept
would require the blender outlet mass flow as the measured process variable,
which is not possible in the existing device setup.
Tablet press state-space-representation remains the same:

xTP,k+1 = ATPxTP,k + bTP1∆nTP,k + bTP2∆ṁTPin,k

∆lTP,k = cT
TPxTP,k

(3.6)

TP representation introduced in the Eq. 3.6 can be modified according to the
two possible scenarios in the continuous plant operation. A discharge flap placed
between the blender outlet and TP inlet redirects material flow depending on the
API content of the blended material. If the discharge flap is activated, material
is redirected to the waste bucket and no material enters the TP. Otherwise, the
blended material proceeds to the TP hopper and TP inlet mass flow corresponds
to the blender outlet mass flow. In that sense, TP model equations can be modified
as:

dDC = 1
ṁTPin = 0 −→ ∆ṁTPin = −ṁTPin,nom

xTP,k+1 = ATPxTP,k + bTP1∆nTP,k − bTP2ṁTPin,nom

(3.7)

dDC = 0
ṁTPin = ṁBout

xTP,k+1 = ATPxTP,k + bTP1∆nTP,k + bTP2∆ṁBout,k

xTP,k+1 = ATPxTP,k + bTP1∆nTP,k + bTP2cT
B,1xB,k + bTP2dB2,1∆ṁBin,k

(3.8)

In the Eq. 3.3, Eq. 3.7 and Eq. 3.8 introduced relations can be assembled to: xB,k+1

xTP,k+1


︸ ︷︷ ︸

xDC,k+1

=

AB 0

aT
d ATP


︸ ︷︷ ︸

ADC

 xB,k

xTP,k


︸ ︷︷ ︸

xDC,k

+

bB2 0

bd bTP1


︸ ︷︷ ︸

BDC

∆ṁBin,k

∆nTP,k


︸ ︷︷ ︸

uDC,k

+

 0

fd


︸ ︷︷ ︸

fDC

∆lTP,k = [0T cT
TP]xDC,k = cT

DCxDC,k

(3.9)

Sub-index d denotes the coupling terms dependent on the discharge signal dDC. If
discharge is not activated, coupling between the blender and TP model is realized
via terms:

aT
d = bTP2 · cT

B,1 · (1− dDC) and bd = bTP2 · dB2,1 · (1− dDC)
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If discharge signal is activated, the coupling between the models vanishes and
only the term:

fDC = −bTP2ṁTPin,nomdDC

remains active. The resulting DC line model introduced in the Eq. 3.9 employs
the blender inlet mass flow and TP turret speed as input-, and TP fill level as the
output signal. As all input signals can be manipulated, and the output signal can
be measured, this representation can be employed for the development of TP fill
level control concept in the further course of the thesis.

3.3 Modeling of HME Line

HME line consists of three individual modeling units, namely, extrusion concen-
tration, extrusion mass flow, and cooling & pelletisation modeling unit. Table 3.2
provides a compact overview of the individual modeling units and the associated
input- and output variables.

Table 3.2: Overview of the individual modeling units in the HME line

Modeling
Unit

Input
Signals

Output
Signals

Extrusion:
Concentration

inlet concentration
cHMEin

outlet concentration
cHMEout

Extrusion:
Mass flow

inlet mass flow
ṁEin

outlet mass flow
ṁEout

Cooling &
Pelletisation

pelletizer intake speed
air pressure

extrusion die temperature

strand temperature
strand diameter

3.3.1 Modeling of Extrusion Concentration

Transfer function relating the concentrations at the extruder inlet and the extruder
outlet can be identified in the exactly same manner as introduced in the Subsection
3.2.1. Extrusion inlet concentration corresponds to:

cHMEin =
ṁAPI

ṁAPI + ṁPOL

and can be adjusted by manipulating the ratio of API and polymer feeder mass
flows. Extrusion outlet concentration can be measured by means of the NIR
spectrometer placed on the adapter plate at the extruder outlet. The experimental
data required for the identification purposes is collected via laboratory experiment
involving the gradual changes of inlet concentration. The collected input- and
output sequences are imported to the System Identification Toolbox App. Again, a
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transfer function structure proposed in the [Kruisz et al., 2017] is chosen. Outcome
of the identification procedure is a proper transfer function third order, from now
on referred to as HME concentration transfer function:

PC,HME(s) =
CHMEout(s)
CHMEin(s)

= e−sTd,HME P?
HME(s)

with P?
HME(s) =

1.93 · 10−5

s3 + 0.1253s2 + 0.00245s + 1.93 · 10−5 and Td,HME = 62.5s

3.3.2 Modeling of Extrusion Mass Flow

This Subsection outlines the identification of the state-space-model relating the
extrusion inlet- and outlet mass flow. The identification procedure follows in the
Subsection 3.2.2 introduced steps.
Extrusion inlet mass flow corresponds to the sum of API and polymer feeder mass
flows, i.e. ṁEin = ṁAPI + ṁPOL.
Extrusion outlet mass flow is indirectly measured via catch scale, which is brought
into the device setup and placed at the extruder outlet.

ṁEout(t) =
dmEout(t)

dt
≈ mEout(t)−mEout(t− ∆t)

∆t
with ∆t = Ts

Due to the high frequency components, in such a way evaluated outlet mass
flow needs to be filtered with low-pass zero-phase forward-backward filter. The
best filtering results are obtained with the filter order 62 and cut-off frequency
fcut = 0.025Hz. Again, the catch-scale is not a permanent part of the device setup,
and the extrusion outlet mass flow cannot be measured in the continuous plant
operation.
Experimental data required for the identification purposes is collected via in the
Fig. 3.6 depicted laboratory experiment. Extrusion inlet mass flow is varied around
the nominal point in ±0, 25kg/h and ±0, 5kg/h steps. Extrusion inlet mass flow, i.e.
its deviation from the nominal operating point, is imported as the input sequence,
and the extrusion outlet mass flow, i.e. its deviation from the nominal operating
point, as the output sequence to the System Identification Toolbox. Model order is
set to two, and the estimation horizons are appropriately adapted. Remaining spec-
ifications and estimation options correspond to the ones suggested in the MATLAB
code introduced in the Subsection 3.2.2. Outcome of the identification procedure
is a time-discrete state-space-model, from now on referred to as extrusion model,
which reads as:

xE,k+1 = AExE,k + bE∆uE,k

∆yE,k = cT
ExE,k + dE∆uE,k

(3.10)

with: uE = ṁEin and ∆uE = uE − uE,nom and yE = ṁEout and ∆yE = yE − yE,nom
Nominal operating points of extrusion inlet- and outlet mass flow are ṁEin =
ṁEout = 2kg/h. Fig. 3.6 illustrates the process variables of interest during the exe-
cuted laboratory experiment. The model estimated outlet mass flow corresponds to
the measured outlet mass flow, which verifies the quality of the identified extrusion
model.
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Figure 3.6: Laboratory Experiment-Identification of extrusion mass flow model: First subplot de-
picts the set extrusion inlet mass flow. Second subplot depicts the measured- and via
identified model estimated extrusion outlet mass flow in blue and red color, respectively.

3.3.3 Modeling of Cooling & Pelletisation Unit

Model identification of cooling & pelletisation unit tends to be more complicated
compared to other modeling units. This unit exhibits the nonlinear characteristics
and cannot be modeled via previously introduced linear data-driven identification
approaches. Therefore, a local-linear-model-tree (LoLiMoT) algorithm for data-
driven identification of nonlinear systems, suggested in [Nelles et al., 2000], is
utilized. Again, the experimental data is collected via appropriate laboratory
experiments, pre-processed and provided to the LoLiMoT algorithm. Outcome
of the LoLiMoT identification procedure are two Neuro-Fuzzy-Models (NFM),
one NMF for each model output. Obtained NFMs relate the strand temperature
and strand diameter as output- and pelletizer intake speed, air pressure and
extrusion die temperature as the input variables. [Rehrl et al., 2019] develops a
control strategy combining LoLiMoT and MPC for improving the pellet quality.
However, the developed model and control concept do not have an impact on the
process quantities of interest within the scope of the thesis. Therefore, this model
is replaced with simple time-delay element e−sTd,PC . Time duration of cooling &
pelletisation unit is measured via stopwatch Td,PC = 9s and can be utilized for the
simulation purposes.
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3.3.4 Modeling of Feeding

Transfer function relating the feeder mass flow set point as the input-, and the real
feeder mass flow as the output variable, reads as:

PFEED(s) =
100

s + 100

This transfer function describes the dynamic of all introduced feeders, i.e. API,
polymer, pellet and pre-mix feeder. As this dynamic is very fast compared to
the dynamics of other modeling units, it is employed for plant modeling in the
simulation, yet neglected by the controller design.
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4 Control Design &
Implementation

This Chapter contains a detailed description of a control design and its implemen-
tation.
A theoretical background of the standard PID controller is introduced in the Section
4.1. Furthermore, the relevant topics, such as the discretization of time-continuous
control laws and anti-windup strategy are addressed within the Subsections 4.1.1
and 4.1.2, respectively. Section 4.2 provides a theoretical background on the control
of time-delay systems, i.e. Smith predictor structure. MPC functionality and imple-
mentation, as well the observer design for the systems with no- or only partially
measurable states, are addressed within the Section 4.5.
Sections 4.3, 4.4 and 4.6 employ the introduced control techniques for a devel-
opment of the individual control concepts, i.e. HME & DC line concentration
controller, HME & DC line discharge controller and TP fill level controller, respec-
tively.
Individually developed control concepts are joined to a DC line controller in the
Section 4.7. DC line controller is investigated, not only in the simulation, but on
the real system, as well. In order examine the controller on the real system, the
proposed control laws need to be adapted for the execution on a XAMControl Au-
tomation software platform. Matlab Compiler is utilized to create a dynamic-link
library (dll) from the Matlab code, i.e. provided .m functions are joined to a library
by means of the code generation. In order to employ the created dll, a Matlab

Runtime needs to be installed on a target system with XAMControl Automation
Software platform. Via this approach, the exactly same control algorithms are
applied in the simulation, and on the real plant. The control laws are executed
with a sampling time of Ts = 0.35s. The required control inputs are gathered from
the process equipment/sensors, and the calculated control outputs are fed to the
process equipment/actuators, both via XAMControl software. A final controller
tuning is performed on the real system.
A following tree structure allows to distinguish between the introduced control
techniques and their application domains in the continuous production plant.
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CONTROL TECHNIQUES

Standard CT

PID Control &
Smith Predictor

Concentration
HME&DC Line

Hysteresis
Control

Discharge
HME&DC Line

Advanced CT

MPC

TP fill level
DC Line

4.1 Proportional-Integral-Derivative (PID) Control:

Theoretical Background

Figure 4.1: Standard unity-feedback loop: R(s) denotes controller- and P(s) denotes plant/system
transfer function. Signal notation: r reference signal, e control error, u actuating (plant
input) signal, y controlled (plant output) signal

Figure 4.2: Implementation of PID controller within the standard unity-feedback loop: RPID(s)
consists of proportional (P), integral (I) and derivative (D) term.

A proportional-integral-derivative (PID) control is a well established, standard
control technique, widely used in the different industry domains. Due to its
effectiveness and straightforward and simple design, it is an intuitive first choice of
control algorithm for diverse applications. Using in the Eq. 4.1 introduced control
law, PID controller manipulates the plant input u, and drives the plant output y to
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the reference signal r and keeps it there. A difference between the system output
and reference signal, denoted as a control error e = r− y, is utilized as the input
signal for the PID controller.
A time-domain equation, relating the control error e(t) and the plant input u(t) is
given in a following form:

u(t) = KPe(t)︸ ︷︷ ︸
P-term

+KI

∫ t

0
e(τ)dτ︸ ︷︷ ︸

I-term

+KD
de(t)
d(t)︸ ︷︷ ︸

D-Term︸ ︷︷ ︸
PID control law

(4.1)

In such a way calculated signal u(t) consists of following three terms:

1. proportional (P-) term weighting the current value of control error.
2. integral (I-) term weighting the integral over the control error. Integral com-

putation is executed over all previous values of the control error.
3. derivative (D-) term weighting the control error time-derivative, i.e. the

current rate of the control error.

Note: The parameters KP, KI and KD are real and constant terms weighting the
control error, integral over it, and its derivative, respectively. Incorporation of
KI := KP

TI
and KD := KPTD in the Eq. 4.1 leads to an alternative PID formulation:

u(t) = KP[e(t) +
1
TI

∫ t

0
e(τ)dτ + TD

de(t)
d(t)

] (4.2)

This representation is beneficial, as the parameters TI and TD have a physical
meaning, denoting the real integration- and derivative time. Proportional gain KP
can be denoted as the gain of the system.
Laplace transformation of a time-domain representation introduced in the Eq. 4.1
leads to a formulation of the PID transfer function in the s-domain.
Note: This relation holds under the assumption, that the initial value of control
error equals zero.

ū(s) = KP ē(s) +
KI

s
ē(s) + sKD ē(s) = KP[ē(s) + ē(s)

1
sTI

+ sTD ē(s)]

The resulting transfer function RPID(s) relates the Laplace transforms ū(s) and
ē(s) of PID output and input signal, respectively.

RPID(s) =
ū(s)
ē(s)

= KP +
KI

s
+ KDs = KP(1 +

1
sTI

+ sTD)

The last introduced term sTD indicates the improperness of the derived transfer
function (a nominator degree is higher than a denominator degree). This is a consequence
of the incorporated derivative term, which makes this transfer function unsuitable
for any practical implementation. Therefore, in the practical approaches, this term
is substituted by the shifted derivative term s

1+sT , which leads to a proper transfer
function:

RPID(s) = KP +
KI

s
+ KD

s
1 + sT

RPID(s) = RPI(s) + RD(s)
(4.3)

From this point on, this transfer function is going to be referred to as a time-
continuous PID controller transfer function.
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4.1.1 Discretization of Time-Continuous Control Law

In order to implement the PID controller on the real system with the specified
sampling time Ts, the time-continuous control laws introduced in Eq. 4.1 and 4.3
need to be discretized.

Discretization of the Proportional-Integral Part

PI controller in time-domain

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ

PI controller transfer function

RPI(s) = KP +
KI

s
Control law is rewritten in the discrete time points, with index k denoting a signal
value at the discrete time instant (iteration) k, i.e. uk = u(kTs) and ek = e(kTs):

uk = KPek + KI

∫ kTs

0
e(τ)dτ

uk = KPek + KI

∫ (k−1)Ts

0
e(τ)dτ +

∫ kTs

(k−1)Ts
e(τ)dτ + KPek−1 − KPek−1

with uk−1 = KPek−1 + KI

∫ (k−1)Ts

0
e(τ)dτ

uk = KPek + KPek−1 + KI

∫ (k−1)Ts

0
e(τ)dτ︸ ︷︷ ︸

uk−1

−KPek−1 + KI

∫ kTd

(k−1)Ts
e(τ)dτ

uk = uk−1 + KPek − KPek−1 + KI

∫ kTs

(k−1)Ts
e(τ)dτ︸ ︷︷ ︸

Approximation term - A

The last integral term A, i.e. the surface which control error function e(t) closes
with the time axis t, can be approximated by means of the different discretization
methods:

Inward Euler:

A = ek−1Ts

Backward Euler:

A = ekTs

Tustin:

A =
1
2
(ek + ek−1)Ts

Inward Euler discretization method leads to the following formulation of the final
difference equation as:

uk = uk−1 + KPek + (KITs − KP)ek−1 (4.4)

ũ(z)− ũ(z)
1
z
= KP ẽ(z) +

1
z
(−KP + KITs)ẽ(z) (4.5)

Z-transformation of the difference equation introduced in the Eq. 4.4 leads to a
formulation of the time-discrete PI controller transfer function.
Note: This relation holds under the assumption, that the initial value of control
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error equals zero.

RPI(z) =
ũ(z)
ẽ(z)

=
KP(z− 1) + KITs

z− 1

= KP +
KITs

z− 1
= R(s)|s= z−1

Ts

(4.6)

Resulting time-discrete transfer function indicates that only the integral term un-
dergoes the discretization, while the proportional term stays unaffected.

Discretization of the Derivative Component

In the Eq. 4.6 derived s to z-domain mapping relation is employed for the dis-
cretization of the derivative component as:

RD(s) = KD
s

1 + sTs

RD(z) = RD(s)|s= z−1
Ts

=
KD

Ts

z− 1
z

This leads to the final formulation of the time-discrete PID controller transfer
function:

RPID(z) =
ũ(z)
ẽ(z)

=
(KP + KD

Ts
) + (KITs − KP − 2 KD

Ts
)z−1 + KD

Ts

1− z−1 (4.7)

This formulation allows the straightforward development of the difference equa-
tions for the application of the PID algorithm on the real system:

uk = uk−1 + (P + D) · ek + (I − P− 2D) · ek−1 + D · ek−2

with the coefficients: P = Kp, I = KITs and D =
Kd
Ts
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4.1.2 Integrator Windup & Anti-Windup Strategy

Figure 4.3: Integrator Windup: Standard unity-feedback loop involving an integral controller and
saturation element

Figure 4.4: Implementation of anti-windup strategy for a PID controller

Although very effective in many applications, implementation of the standard PID
controller can lead to the undesired process events, such as the integrator windup
effect. Integrator windup occurs in the systems, which involve a combination of an
integral controller and a saturation element, as depicted in the Fig. 4.3. Saturation
element realizes the following relation:

usat(t) =


umin, ∀ u(t) < umin

umax, ∀ u(t) > umax

u(t), otherwise

The windup effect occurs, as the actuating variable u(t) goes into saturation.
Although the actuating variable reaches the allowed peak value umin or umax,
implemented controller continues to integrate. Due to this permanent integration,
controller continues to increase or decrease the actuating variable, leading to
the integrator windup effect. In order to prevent this undesired behavior, one
needs to find a way to ’stop’ the integration if the actuating variable enters
the saturation. An effective anti-windup strategy implies a modification of the
controller structure, as suggested in the Fig. 4.4. The difference between the
calculated- and applied controller output u− usat is weighted with the anti-windup
gain KAW and integrated.
PID control s-domain relation can be extended in the following manner:

ũ(s) = KP ẽ(s) +
KI

s
ẽ(s) + KD

s
1 + sTs

ẽ(s) +
KAW

s
ẽu(s)

ū(z) = KP ē(z) +
KITs

z− 1
ē(z) +

KD

Ts

z− 1
z

ē(z) +
KAW Ts

z− 1
ēu(z)

with ẽu(s) = ũsat(s)− ũ(s) and ēu(z) = ūsat(z)− ū(z)

(4.8)

The time-discrete relation introduced in the Eq. 4.8 can be transformed to a
difference equation and utilized for the application of the controller algorithm on
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the real system in the straightforward manner. Implementation of an anti-windup
strategy significantly increases the performance of PID controller.

4.2 Smith Predictor: Theoretical Background

Figure 4.5: Closed feedback loop with delay-time transfer function

In order to control the systems with a non neglectable time-delay, standard control
techniques are usually combined with the Smith predictor structure.
Plant transfer function is given as:

P(s) = P?(s)e−sTd

with the time delay free transfer function P?(s) and time delay element e−sTd .
Controller transfer function Rs should be developed in such a way, that in the
Fig. 4.5 depicted feedback loop results in the same overall transfer function Td(s),
as the standard unity feedback loop whose structure is depicted in the Fig. 4.1.
Overall transfer functions are defined as:

T(s) =
P(s)R(s)

1 + P(s)R(s)
Fig. 4.1

Td(s) =
P?(s)R?(s)e−sTd

1 + P?(s)R?(s)
Fig. 4.5

In that sense, Smith predictor controller transfer function computes as:

R(s) =
R?(s)

1 + R?(s)P?(s)(1− e−sTd)
(4.9)

Fig. 4.6 depicts a standard unity feedback loop structure, which involves in the Eq.
4.9 introduced controller transfer function.

Figure 4.6: Initial Smith predictor structure
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In the Fig. 4.7 depicted feedback loop structure is equivalent to the structure
presented in the Fig. 4.6. Introduced modifications are solely structural, the func-
tionality remains unaffected. Real system application would require a transition
of the developed Smith predictor structure from the time-continuous to the time-
discrete domain. Continuous transfer functions, i.e. R?(s), P?(s) and P(s), should
be substituted with the corresponding discrete transfer functions, i.e. R?(z), P?(z)
and P(z). Time-delay element can be substituted via following relation:

e−sTd −→ z−nd

with nd =
Td
Ts

Figure 4.7: Final Smith predictor structure
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Table 4.1: Overview of concentration controller parameters.

Controller P I D KAW nd

HME 1.5 0.01 0.7 1 186

DC 3.5 0.1 0.175 1 20

4.3 Concentration Controller

First control objective in the continuous production plant is to keep the API concen-
tration within the specified range around the reference concentration. Therefore, a
concentration controller needs to be designed and implemented.
This controller can be employed for the feedback control of extrusion- or blender
outlet concentration in the HME or DC line, respectively. Concentration controller
employs by means of the NIR measured concentration as the measured process
variable.
Both, HME and DC concentration transfer functions (see Chapter 2) exhibit a
certain time delay. Therefore, a Smith predictor structure depicted in the Fig. 4.7 is
utilized. Control of the time delay free dynamic takes places via in the Section 4.1
introduced PID controller. Inlet concentration is always bounded between 0 and 1.
Therefore, in the Subsection 4.1.2 introduced anti-windup strategy is utilized.
Concentration controller adjusts the blender or extrusion inlet concentration. As
this quantity cannot be directly manipulated, this is realized via manipulation
of API and polymer feeder mass flow ratio in the HME, or of the pellet and
pre-mix feeder mass flow ratio in the DC line. Concentration controller ensures
the capability of the plant to react and compensate brief feeder disturbances or
material impurities. Fig. 4.8 depicts a final structure of the concentration controller.
Control parameters are tuned in the simulation. Tab. 4.1 provides an overview of
final control parameter, for DC and HME concentration controller.

Figure 4.8: Schematic representation of concentration controller
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4.4 Discharge Controller

If the concentration controller does not accomplish to keep the API concentration
within the allowed range, material needs to be discharged. Both, HME and DC
line involve one discharge unit. In the Fig. 4.9 depicted controller is employed for
the discharge (de)activation in the both lines. Discharge controller utilizes the NIR
measured blender- and extrusion outlet concentration in the DC and HME line, as
the measured process variable. Concentration error ce = cout − cth is evaluated and
employed as the function argument for the hysteresis controller depicted in the
Fig. 4.10. Allowed concentration range changes depending on the discharge signal.
If discharge is not activated, the controller follows the red line with the bounds
[−cth, cth]. Otherwise, controller follows the blue line with the tighter bounds, i.e.
[−cth + h, cth − h]. Control parameters cth = 0.02 and h = 0.01 stay the same in the
both lines.
Discharge flap in the DC line is placed at the blender outlet and discharge is
triggered by the current NIR measurement. On the other hand, NIR measurement
in the HME line takes place at the extruder outlet, while the discharge takes place
at the pellet hopper. Therefore, a time-delay of cooling & pelletisation unit needs
to be considered. If the measured concentration does not lie in the allowed range,
discharge signal is activated after six seconds. On the other hand, if discharge is
activated, and measured concentration returns to the allowed range, discharge is
deactivated after nine seconds.

Figure 4.9: Schematic representation of discharge controller: Controller with two adjustable param-
eters cth and h is triggered by the measured outlet concentration.

Figure 4.10: Characteristic curve of discharge controller
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4.5 Model Predictive Control: Theoretical

Background

Basic idea1:
An MPC operates like a good chess player: It plans a certain number of future

moves in an optimal sense, according to the current conditions and the predicted
future developments. Than, it executes first one of them, waits on the opponents

next move (system response), and repeats the same procedure.

MPC application yields many benefits compared to the standard control tech-
niques. One of the most significant features is a relatively simple consideration of
input-, input rate-, output- and state constraints, i.e. the possibility of its reduction
to the input rate constraints solely. Another important feature is a straightforward
transfer between SISO and MIMO systems. In addition to these, MPC implemen-
tation does not invoke integrator windup, typical for the previously introduced
PID controller. Furthermore, it is particularly suitable for controlling the systems
of high complexity.

Requirements for MPC design:

• Identified time-discrete model of a system given in following form:

xk+1 = f (xk, uk)

yk = g(xk, uk)

Note 1: Index k denotes a signal value at the discrete time instant (iteration) k,
e.g. xk = x(kTs).
Note 2: Model is given in the general notation, as the MPC can be designed
for both, linear and nonlinear systems.

• Input signal from the last time instant: uk−1
• State vector at the current time instant: xk
• Reference value for the output signal yk at the current time instant: rk

The MPC procedure can be summarized in a following manner: Dependent on the system
of interest, a current state vector xk is either directly measured, or estimated by an
observer. Using the known signals xk and uk−1, as well as the system describing
quantities (parameters of the functions f and g), MPC predicts future evolution
of the signals of interest over the prediction horizon np. The control objectives
are defined by means of an objective function J. A suitable objective function is
formulated and rewritten as the function of the known quantities via recursive
development of system equations. Input signal- or input signal rate sequence over
the control horizon nc is introduced as the optimization variable. MPC solves an
optimization problem using the state-of-the-art numerical algorithm and forwards
the calculated input signal to a system. Finally, the next state vector xk+1 is ob-
tained and the introduced procedure reiterated.

Despite the fact, that the optimal input sequence is calculated over the complete
control horizon (ûk, ûk+1, . . . , ûk+nc−1), only the first element of this sequence (ûk)

1Automatisierung mechatronischer Systeme, Lecture transcript
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is applied as the actuating signal to the system. Optimization is than re-executed
and optimization interval shifted by one time step (receding horizon). A number
of optimization variables in each iteration corresponds to the control horizon nc.
Therefore, nc needs to be kept as low as possible, yet without degradation of con-
trol the controller functionality, i.e. this value should be chosen as a compromise
between the control efficiency and complexity.

Figure 4.11: MPC agenda: MPC plans nc future moves and executes the first one of them. Opti-
mization interval (red) is than shifted by one time step (receding horizon).

4.5.1 Recursive Development of System Equations:

In general, it can be distinguished between the linear and nonlinear MPC. Within
the scope of this thesis, a focus is put on the linear MPC design. From this point on,
following linear, time invariant, discrete system is considered as the MPC starting
point:

xk+1 = Axk + Buk + Bddk

yk = Cxk
(4.10)

with: x ∈ Rn, u ∈ Rm, d ∈ Rg, y ∈ Rp, i.e. MIMO system with m in-
puts, g disturbances, n states and p outputs, and system describing parameters
A ∈ Rnxn, B ∈ Rnxm, Bd ∈ Rnxg, C ∈ Rpxn.
In the Section 3 performed process modeling provides the information, that the
system of interest is strictly proper. Therefore, uk and dk terms are omitted within
the Eq. 4.10. Yet, the presented approach can be extended to a bi-proper case in
simple and straightforward manner.
A disturbance dk is assumed to be known and constant over a prediction horizon.

Idea: One can present the input signal in the relation to the step before, i.e.
uk = uk−1 + ∆uk. By inserting this relation to Eq. 4.10, one obtains a recursive
formulation of difference equations.

40



4 Control Design & Implementation

Prediction of the state x over the prediction horizon np:

x̂k+1 = Axk + Buk−1 + B∆uk + Bddk

x̂k+2 = A2xk + (AB + B)uk−1 + (AB + B)∆uk + B∆uk+1 + (ABd + Bd) dk+1︸︷︷︸
=dk

...

x̂k+nc = Anc xk + (Anc−1 + . . . + A + E)(Buk−1 + Bddk) +
nc

∑
j=1

(Anc−j + . . . + A + E)B∆ûk+j−1

The input signal u stays constant after the control horizon: ∆ûk+j = 0 ∀j ≥ nc.

x̂k+nc+1 = Anc+1xk + (Anc + . . . + A + E)(Buk−1 + Bddk) +
nc

∑
j=1

(Anc+1−j + . . . + A + E)B∆ûk+j−1

...

x̂k+np = Anp xk + (Anp−1 + . . . + A + E)(Buk−1 + Bddk) +
nc

∑
j=1

(Anp−j + . . . + A + E)B∆ûk+j−1

Prediction of the output y over the prediction horizon np:

ŷk+1 = Cx̂k+1

ŷk+2 = Cx̂k+2
...

ŷk+np = Cx̂k+np

Compact representation of the introduced quantities via vector notation

Algebraic vectors x̄k+1 and ȳk+1 hold the predicted state- and output signals
over the prediction horizon, respectively:

x̄k+1 =



x̂k+1

x̂k+2

...

x̂k+np


, x̄k+1 ∈ Rn·npx1 ȳk+1 =



ŷk+1

ŷk+2

...

ŷk+np


=



Cx̂k+1

Cx̂k+2

...

Cx̂k+np


, ȳk+1 ∈ Rp·npx1

(4.11)

Algebraic vectors ūk and ∆ūk hold the calculated input- and input rate signals over
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the control horizon, respectively:

ūk =



ûk

ûk+1

...

ûk+nc−1


, ūk ∈ Rm·ncx1 ∆ūk =



∆ûk

∆ûk+1

...

∆ûk+nc−1


, ∆ūk ∈ Rm·ncx1 (4.12)

ūk = L uk−1︸︷︷︸
known quantity

+M

optimization variable︷︸︸︷
∆ūk

, with L =



I

I

...

I


, L ∈ Rm·ncxm, M =



I 0 . . . . . . 0

I I 0 . . . 0

...
... . . . . . .

I . . . . . . . . . I


, M ∈ Rm·ncxm·nc

and the identity matrix I ∈ Rmxm

Final prediction formulation

ȳk+1 = Fxk + Guk−1 + Gddk︸ ︷︷ ︸
known quantites

+H

optimization variable︷︸︸︷
∆ūk (4.13)

with:

F =



CA

CA2

...

CAnp


, G =



CB

C(A + E)B

...

C(Anp−1 + . . . + A + E)B


, Gd =



CBd

C(A + E)Bd

...

C(Anp−1 + . . . + A + E)Bd


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H =



CB 0 . . . 0

C(A + E)B CB . . . 0

...
... . . . ...

C(Anc−1 + . . . + A + E)B C(Anc−2 + . . . + A + E)B . . . CB

C(Anc + . . . + A + E)B C(Anc−1 + . . . + A + E)B . . . C(A + E)B

...
... . . . ...

C(Anp−1 + . . . + A + E)B C(Anp−2 + . . . + A + E)B . . . C(Anp−nc + . . . + A + E)B


, with F ∈ Rp·npxn, G ∈ Rp·npxm, Gd ∈ Rp·npxg and H ∈ Rp·npxm·nc

4.5.2 Formulation of Objective Function

A choice of the objective function J is an essential step by the MPC design. The
parameters and structure of implemented objective function have a direct influence
on the effectiveness of the proposed control strategy.
In the Eq. 4.14 introduced objective function can be interpreted as follows: First
term penalizes the difference between the predicted output and the reference
signal, i.e. the predicted control error êk+i, over the prediction horizon. The second
and third term penalize the magnitude and the rate of the input signal, respectively.

J =
np

∑
i=1

(ŷk+i − rk+i)
T︸ ︷︷ ︸

êT
k+i

Qi(ŷk+i − rk+i)

︸ ︷︷ ︸
I

+
nc

∑
i=1

(ûT
k+i−1Riûk+i−1)︸ ︷︷ ︸

II

+
nc

∑
i=1

(∆ûT
k+i−1R∆i∆ûk+i−1)︸ ︷︷ ︸

III

(4.14)

Or via in the Eq. 4.11 and 4.12 introduced algebraic vector notation:

J = (ȳk+1 − r̄k+1)
TQ(ȳk+1 − r̄k+1)︸ ︷︷ ︸

I

+ ūT
k Rūk︸ ︷︷ ︸

II

+∆ūT
k R∆∆ūk︸ ︷︷ ︸

III

(4.15)

, with Q ∈ Rp·npxp·np , R ∈ Rm·ncxm·nc and R∆
m·ncxm·nc

Control error-, input-, and input rate signal are weighted with the matrices Q,
R and R∆, respectively. Making an appropriate choice of these matrices is a
significant segment of the MPC design. Input weighting terms R and R∆ prevent
the undesired, eruptive changes and magnitudes of the input signal. MPC tuning
(choice of weighting terms) is initially performed in the simulation and than
finalized on a real plant. For that matter, positive-definite, diagonal matrices are
considered as reasonable choice.
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Note: The objective function presented in Eq. 4.15 is not a unique choice. Beside
quadratic, objective function can take a linear form as well. Other signals, e.g.
system states x or output y, instead of control error e and input u, can be introduced
as the penalizing terms. Furthermore, input signal vector u can be considered
as the optimization variable instead of the input signal rate ∆u. Eq. 4.13 can be
rewritten to a following form:

ȳk+1 − r̄k+1 =

ḡk︷ ︸︸ ︷
Fxk + Guk−1 + Gddk−r̄k+1︸ ︷︷ ︸

ēk

+H∆ūk

J(I) = (ēk + H∆ūk)
TQ(ēk + H∆ūk)

= . . .

= 2ēT
k QH∆ūk + ∆ūT

k HTQH∆ūk

J(II) + J(III) = (Luk−1 + M∆ūk)
TR(Luk−1 + M∆ūk) + ∆ūT

k R∆∆ūk

= . . .

= 2uT
k−1LTRM∆ūk + ∆ūT

k MTRM∆ūk + ∆ūT
k R∆∆ūk

J = ∆ūT
k (HTQH + R∆ + MTRM)∆ūk + 2(ēT

k QH + uT
k−1LTRM)T∆ūk (4.16)

4.5.3 Consideration of Constraints

As already declared in the MPC introduction, a real strength of this controller is a
simple and straightforward consideration of constraints. In Eq. 4.17 introduced
input-, input rate-, state- and output constraints can be reduced to the input rate
constraints.

umin ≤ ûk+i ≤ umax ∀ 0 ≤ i ≤ nc − 1 ûk ∈ Rm (4.17a)
∆umin ≤ ∆ûk+i ≤ ∆umax ∀ 0 ≤ i ≤ nc − 1 ∆ûk ∈ Rm (4.17b)

xmin ≤ x̂k+i ≤ xmax ∀ 1 ≤ i ≤ np x̂k ∈ Rn (4.17c)
ymin ≤ ŷk+i ≤ ymax ∀ 1 ≤ i ≤ np ŷk ∈ Rp (4.17d)

In the Eq. 4.17 introduced relations can be rewritten in the algebraic vector notation
and expressed as a function of the optimization variable ∆ūk.

1) Input Constraints (Eq. 4.17a)

ūmin ≤ūk ≤ ūmax

ūmin ≤ Luk−1 + M∆ūk ≤ ūmax

Left side:

ūmin − Luk−1 ≤ M∆ūk

−M∆ūk ≤ Luk−1 − ūmin

Right side:

M∆ūk ≤ ūmax − Luk−1
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Final formulation:

Au∆ūk ≤ bu

Au =

−M

M

 bu =

−ūmin + Luk−1

ūmax − Luk−1



2) Input Rate Constraints (Eq. 4.17b)

∆ūmin ≤ ∆ūk ≤ ∆ūmax

Left side:

I∆ūk ≤ ∆ūmax

Right side:

−I∆ūk ≤ −∆ūmin

Final formulation:

A∆u∆ūk ≤ b∆u

A∆u =

−I

I

 b∆u =

−∆ūmin

∆ūmax



3) Output Constraints (Eq. 4.17c)

ȳmin ≤ȳk+1 ≤ ȳmax

ȳmin ≤ Fxk + Guk−1 + Gddk + H∆ūk ≤ ȳmax

Left side:

−H∆ūk ≤ −ȳmin + Fxk + Guk−1 + Gddk

Right side:

H∆ūk ≤ ȳmax − Fxk − Guk−1 − Gddk

Final formulation:

Ay∆ūk ≤ by

Ay =

−H

H

 by =

−ȳmin + Fxk + Guk−1 + Gddk

ȳmax − Fxk − Guk−1 − Gddk



4) State Constraints (Eq. 4.17d)

x̄min ≤x̄k+1 ≤ x̄max

x̄min ≤ Fxxk + Gxuk−1 + Gd,xdk + Hx∆ūk ≤ ȳmax
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Left side:

−Hx∆ūk ≤ −x̄min + Fxxk

+Gxuk−1 + Gd,xdk

Right side:

Hx∆ūk ≤ x̄max − Fxxk

−Gxuk−1 − Gd,xdk

Final formulation:

Ax∆ūk ≤ bx

Ax =

−Hx

Hx

 bx =

−x̄min + Fxxk + Gxuk−1 + Gd,xdk

x̄max − Fxxk − Gxuk−1 − Gd,xdk


Finally, individually formulated constraints can be assembled to:

A∆ūk ≤ b

A =



Au

A∆u

Ay

Ax


and b =



bu

b∆u

by

bx


(4.18)

4.5.4 MPC Implementation

The objective function- and constraints formulations introduced in the Eq. 4.16 and
4.18 correspond to the quadratic programming problem.

Quadratic Programming Problem

min
x

1
2

xTQx + cTx

s.t. Ax ≤ b
(4.19)

Eq. 4.19 reads as: Find the optimal solution x?, minimizing the quadratic function
1
2 xTQx + cTx, in the feasible region of x where the linear equality constraints
Ax ≤ b are fulfilled. Algebraic vector ∆ūk corresponds to the optimization variable
x, and the matrices can be evaluated as follows:

Q = 2(HTQH + R∆ + MTRM) and cT = (ēT
k QH + uT

k−1LTRM)T

Inequality matrices A and b correspond to the in the Eq. 4.18 introduced matrices.
Optimization problem is solved by means of the numerical optimization solver
qpOASES [Hans Joachim Ferreau, 2014]. Outcome of the optimization is the input
signal rate sequence ∆ūk.
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4.5.5 Luenberger Observer

One of the requirements for the MPC design is the current system state xk. In that
sense, when the system state has no physical meaning or cannot be measured, one
needs to design and implement an observer.
Trivial observer represents a simple a copy of the system of interest. In that case, the
dynamics of estimation error cannot be affected. Therefore, a Luenberger observer
is implemented. Luenberger observer employs the identified state-space-model of
the system, and adds a correction term weighting the output estimation error to it.

Plant model:

ẋ = Ax + bu

y = cTx

Trivial Observer:

˙̂x = Ax̂ + bu

ŷ = cT x̂
ė = Ae

Luenberger Observer:

˙̂x = Ax̂ + bu + L(y− ŷ)

ŷ = cT x̂

ė = (A− LcT)e

Error dynamic can be influenced by the choice of the weighting term L. L is chosen
so that the eigenvalues of estimation error system matrix (A− LcT) lie in the left
half plane.
Luenberger observer can be discretized in a straightforward manner. In the time-
discrete domain, L is chosen so that the eigenvalues of error system matrix lie
inside of the unit circle.

Plant model:

xk+1 = Axk + buk

yk = cTxk

Luenberger Observer:

x̂k+1 = Ax̂k + buk + L(yk − ŷk)

ŷk = cT x̂k

ek+1 = (A− LcT)ek
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Table 4.2: Overview of control parameters of TP MPC

np nc Qi Ri R∆i

80 80 10000
[

0.3 0
0 0.01

] [
0.5 0
0 0.1

]

4.6 TP Fill Level Controller

The second control objective is the production of tablets with constant properties.
Empirical results have shown, that if the TP fill level sinks below a certain value,
it has a significant impact on the quality of the produced tablets, i.e. it invokes a
non neglectable quality degradation. On the other hand, variations of TP turret
speed within a certain range are welcomed, as they do no affect the quality of final
product.
TP MPC is utilized to ensure that the TP fill level stays possibly close to its reference
value. A starting point for the MPC is in the Section 3.2.4 determined model of the
DC line. This model joins the identified blender and TP model, and depends on
the DC discharge signal. If discharge is activated, coupling between the models
vanishes, and only the TP turret speed can be considered as the manipulated
variable. Otherwise, TP MPC operates with two manipulated variables, blender
inlet mass flow and TP turret speed. Although, the change of blender inlet mass
flow could affect the blend uniformity, this effect can be neglected by the nominal
API concentration.
MPC objective function is formulated as suggested introduced in the Eq. 4.16.
Initial controller tuning, i.e. the choice of parameters Q, R, R∆, np and nc, is
performed in the simulation, and further improved on the real system. Another
requirement for the MPC application is a current state vector xk. As a state vector
of DC model has no physical meaning, a Luenberger observer is employed for the
state estimation. Fig. 4.12 provides a schematic representation of the TP fill level
controller.

Figure 4.12: Schematic overview of TP fill level controller
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4.7 DC-Line Controller

Figure 4.13: Schematic representation of DC line controller: Red and blue color depict measured/-
controlled and manipulated system variables, respectively. Individual unit operations
are indicated with gray background and the control blocks with dash-dot lines.

This Section outlines a development of a DC Line control concept. This concept
combines the concentration-, discharge- and TP fill level controller. First control
objective, i.e. keeping the API concentration in the allowed range, is addressed
via application of the concentration controller. If the material exhibits unsuitable
API properties, it is discharged by means of the discharge controller. TP MPC
ensures, that the TP fill level stays close to the nominal point. Concentration con-
troller adjusts the blender inlet concentration cDCin,re f . At the same time, TP MPC
manipulates the blender inlet mass flow. These two quantities are consigned to the
Control Equations block, which reads as:
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ṁPEL,re f + ṁMIX,re f = ṁBin,re f
ṁPEL,re f

ṁPEL,re f + ṁMIX,re f
= cDCin,re f

−→
ṁPEL,re f = cDCin,re f · ṁBin,re f ṁMIX,re f = ṁBin,re f · (1− cDCin,re f )

Additionally, TP MPC manipulates the TP turret speed. Magnitude of MPC input
signal is constrained with umin = [−1 − 20] and umax = [5 20], i.e. TP turret
speed may be varied ±20rpm around the nominal point and blender inlet mass
flow must stay in the range between [4kg/h 9kg/h]. Additionally, TP turret speed
rate is bounded by ±1rpm/s. Fig. 4.13 provides a schematic overview of DC line
controller.

Figure 4.14: Investigation of DC line controller by pellet feeder failure on the real system.

The functionality of the DC line controller is examined via two test scenarios.
First test scenario involves an artificially introduced 125 seconds long pellet feeder
failure. This implies, that independent from the set point, pellet feeder mass
flow equals zero. Consequently, concentration at the blender outlet rapidly de-
creases and discharge signal is activated. Concentration controller increases the
pellet feeder set point, however this leads to no improvement, as the pellet feeder
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mass flow equals zero. After approximately 100 seconds, the NIR measured con-
centration stays constant, which implies that the concentration sinks below the
measurement range of the NIR device. At the same time, due to the discharge
activation, no material enters the TP hopper. Consequently, TP fill level decreases.
MPC copes with this deviation by decreasing the TP turret speed and increasing
the blender inlet mass flow, as soon as the discharge is deactivated. Blender outlet
concentration exhibits a large overshoot, due to the discrepancy between the real
plant and Smith predictor input. As the API concentration decreases, concentration
controller increases the blender inlet concentration. Smith predictor utilizes the
inlet concentration set by the controller as the input signal. Yet, this value does
not correspond to the real blender inlet concentration. This inconsistency can be
improved by modification of the Smith predictor input to zero or one by the detec-
tion of pre-mix or pellet feeder failure. The introduced test scenario is examined
both, in the simulation and on the real system. Both implementations lead to the
similar results. The obtained results once more verify the quality of the identified
models and confirm the correct implementation of control algorithms on the real
system.

Figure 4.15: Investigation of DC line controller by pellet feeder failure in the simulation.
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Second test scenario involves an intentional API contamination. At approximately
40. second of the test scenario, pellet feeder is contaminated with the pre-mix mate-
rial. Consequently, the concentration at the blender outlet decreases and discharge
signal is activated. Concentration controller tends to keep the concentration within
the allowed boundaries by increasing the mass flow of the pellet feeder. Due to
the discharge activation, no material enters the TP, and the TP fill level decreases.
TP MPC decreases the turret speed and increases the blender inlet mass flow, as
soon as discharge is deactivated. It takes approximately 180 seconds until the plant
is back to the nominal operating points. In this test scenario, input signal rate
constraint is discarded.

Figure 4.16: Investigation of DC line controller by API contamination on the real system.
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Production Plant

This Chapter outlines a development of a control law for the complete continuous
tablet manufacturing plant. Three different candidates for the master unit of the
complete plant are suggested: Extruder (as a master unit of Concept A), tablet
press (as a master unit of Concept B) and no master unit (Concept C). Depending
on the active master unit, choice of manipulated variables of individual controllers
change, while the control objectives stay the same.
First control objective is to keep the API concentration within the allowed range
around the reference during the production. As there was only one NIR device for
the concentration measurement available at the time, it was decided to utilize it
within the HME line. In that sense, it is not possible to implement the feedback
control of blender outlet concentration in the DC line. Mass flow rates of pellet
and pre-mix feeder are adjusted so, that the resulting blender inlet concentration
corresponds to the reference value. Discharge signal is triggered using the blender
outlet concentration predicted via identified DC concentration transfer function.
Concentration controller in the HME line manipulates the extruder inlet concen-
tration by adjusting the mass flow rates of API and polymer feeder via control
equations. Discharge signal is triggered by the NIR concentration measurement.
However, when two NIR sensors for the concentration measurement would be
available, both developed concentration controllers could be implemented simulta-
neously in the continuous plant operation. Concentration control is realized in the
same manner independently from the active master unit.
TP MPC copes with the second control objective, i.e. keeping the TP fill level close
to the reference value. Depending on the active master unit, MPC manipulates TP
turret speed and/or blender inlet mass flow.
Within the HME line produced pellets are gathered in the pellet hopper and
proceeded to the pellet feeder via pneumatic transport unit. This leads to the third
control objective, i.e. prevention of the undesired process events, such as feeder or
hopper exhaustion/overflow. In that sense, total mass flow rates of HME or DC
line are manipulated via mass flow controller. Additionally, mass flow controller
manipulates the transport activation signal based on the current hold-up in the
pellet feeder. If the pellet feeder runs below a certain threshold, transport is acti-
vated. However, even if the pellet hold-up permanently stays below the specified
threshold, transport cannot be activated more than once every two minutes, or if
the HME discharge signal is activated. Transport activation condition stays the
same in each designed control concepts.
Control concepts A, B and C differ on the choice of manipulated variables for TP
MPC and mass flow controller. Detailed explanation of each of these concepts is
provided in the Sections 5.1, 5.2 and 5.3.
In order to examine the developed control concepts, a complete continuous plant
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is built up in the simulation. Formerly identified models of feeding, extrusion,
cooling&pelletisation, blending and TP, are utilized for that purpose. Additionally,
simple mass balance relations for the simulation of pellet hopper and pellet feeder
are developed in the Section 5.4. Finally, control concepts A, B and C are designed
and examined via same test scenario in the simulation. Simulation results are pre-
sented in the Fig. 5.3, 5.4 and 5.5, and the designed control concepts are compared
regarding the essential process properties.
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5.1 Control Concept A: Extruder

Control concept A, with the extruder as a master unit, tends to keep the total mass
flow in the HME line constant. This is ensured by setting the extrusion inlet mass
flow to its nominal value ṁEin = 2kg/h. At the same time, concentration controller
manipulates the extrusion inlet concentration cHMEin. These two quantities are
consigned to the Control Equations 1 block, leading to the explicit set points for
the pellet and polymer feeder mass flow rates. The Control Equations 1 block reads
as:

ṁAPI,re f + ṁP0L,re f = ṁEin
ṁAPI,re f

ṁAPI,re f + ṁP0L,re f
= cHMEin

−→
ṁAPI,re f = cHMEin · ṁEin ṁP0L,re f = ṁEin · (1− cHMEin)

Mass flow controller is utilized to attain the uniform material transport between
the two lines. It tends to keep the constant time intervals between the pellet
transport activations by manipulating the pellet feeder mass flow. Transportation
time interval needs to be chosen carefully, as each discharge activation in the HME
line leads to the emptying of the pellet hopper. In that sense, an excessively long
time interval could lead to the losses of valuable material. Therefore, transportation
time interval is set to tT = 240s.
Change of the pellet feeder internal hold-up ∆mPEL is measured by each pellet
transport activation, and mass flow set point is calculated as:
ṁPEL,re f =

3600
tT

∆mPEL
Pellet feeder set point stays constant between the pellet transport activations.
Pre-mix feeder mass flow is adjusted via Control Equations 2 block so that the
resulting blender inlet concentration corresponds to the reference value. The
Control Equations 2 block reads as:

ṁPEL,re f

ṁPEL,re f + ṁMIX,re f
= cDCin

ṁMIX,re f = ṁPEL,re f · (
1

cDCin
− 1)

In that sense, blender inlet mass flow, which corresponds to the sum of single
feeder flow rates, is already fix, and TP MPC can manipulate solely the TP turret
speed. In this case, TP inlet mass flow is considered as the known disturbance,
which is predicted via blender model identified in the Chapter 2, Subsection 3.2.2.
A schematic representation of the concept A control structure is depicted in the
Fig. 5.1.
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Figure 5.1: Schematic representation of control concept A: Red and green color depict measured/-
controlled and manipulated system variables, respectively. Yellow line indicates the
pellets transported from the pellet hopper to the pellet feeder. Individual unit operations
are indicated with gray background and the control blocks with dash-dot lines.
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5.2 Control Concept B: Tablet Press

Control concept B, with the TP as a master unit, tends to keep the TP turret speed
constant. This is achieved via definition of an additional equality constraint in the
MPC optimization problem. Again, TP MPC has only one degree of freedom, in
the present case the blender inlet mass flow ṁBin. Blender inlet concentration is
set to the reference value. Again, these two quantities are consigned to the Control
Equations 2 block, which now reads as:

ṁPEL,re f + ṁMIX,re f = ṁBin
ṁPEL,re f

ṁPEL,re f + ṁMIX,re f
= cDCin

−→
ṁPEL,re f = cDCinṁBin ṁMIX,re f = ṁBin(1− cDCin)

Blender inlet mass flow, which corresponds to the total mass flow in the DC line, is
manipulated via TP MPC. Therefore, in order to guarantee reliable feeding, i.e. no
exceeding or running out of the material in the pellet feeder, total mass flow in the
HME line needs to be adjusted by means of the mass flow controller. Time interval
between the consecutive pellet transport activations tT, as well as during this time
interval in the HME line produced and from the DC line consumed amount of the
material, ∆mHME and ∆mDC, can be measured. Total mass flow in the HME line,
i.e. extrusion inlet mass flow, is adjusted to compensate the difference between the
produced and consumed material:

mcomp = ∆mDC +
1
2
(∆mDC − ∆mHME)

ṁEin =
3600

tT
mcomp

The HME line total mass flow set point stays constant between the single transport
activations. Mass flow rates of API and polymer feeder are evaluated via Control
Equations 1, which employs the extruder inlet mass flow set by the mass flow
controller and extrusion inlet concentration set by the concentration controller.

5.3 Control Concept C: No master unit

Control concept C operates with no master unit and provides an additional degree
of freedom for the TP MPC. In this control concept, TP MPC manipulates both,
the blender inlet mass flow and the TP turret speed. Mass flow- and concentration
controller are implemented in the exactly same manner as in the control concept
B. In that sense, the only difference between the control concepts B and C is an
additional manipulated variable for the TP MPC. A schematic representation of
the control concepts B and C is depicted in the Fig. 5.2.

57



5 Control Concept for Complete Production Plant

Figure 5.2: Schematic representation of control concept B & C: Red and green color depict mea-
sured/controlled and manipulated signals, respectively. Yellow line indicates the pellets
transported from the pellet hopper to the pellet feeder. Single unit operations are indi-
cated with gray background and individual control blocks with dash-dot lines. Blue
dash line is valid only in the control concept B and indicates the only difference between
the control concepts B and C.
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5.4 Examination of Control Concepts in the

Simulation

In order to examine the control action of the introduced control concepts in
the simulation, the individual unit operations are substituted by the according
modeling units. In addition to the in the Chapter 3 identified modeling units, pellet
hopper- and pellet feeder hold-up need to be modeled for the simulation purposes.
Pellet hopper hold-up mHME can be described via simple mass balance equations.
This computation employs the 9s delayed extrusion outlet mass flow ṁHME, i.e.
the resulting mass flow after the pelletisation unit. If HME discharge- or pellet
transport signal is activated, pellet hopper is emptied.

mHME,k=0 = 0kg

mHME,k = (mHME,k−1 +
Ts

3600
ṁHME,k) · (1− dHME,k) · (1− tHME,k)

Pneumatic conveying is triggered via pellet transport activation signal. Pellet feeder
hold-up mPEL computes as:

mPEL,k=0 = 1.3kg

mPEL,k = mPEL,k−1 −
Ts

3600
ṁPEL,k + tHME,kmHME,k−1

Finally, a complete production plant can be built in the simulation. Functionality of
the proposed control concepts is examined via same test scenario involving diverse
feeder disturbances. In the first part, two API feeder failures are introduced. At the
20. minute of the simulation, real mass flow of the API feeder is set to be +0.5kg/h
more than the desired set point. At the 40. min, a complete API feeder failure
occurs, i.e. the real mass flow is set to 0kg/h. Both introduced disturbances last 1.5
minutes. Second part of the experiment involves the equivalent disturbances of the
pellet feeder, occurring in the 75. and 95. minute of the simulation. The introduced
disturbances lead to the deviations of API concentration, material discharge, and
TP fill level deviations. In such a way, a control action of concentration, discharge,
fill level and mass flow control concepts can be examined simultaneously. Fig. 5.3,
5.4 and 5.5 illustrate the process quantities of interest during the introduced test
scenario.
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Figure 5.3: Investigation of control concept A in the simulation

Fig. 5.3 depicts the signals of interest during the introduced test scenario. API
feeder disturbance, which manifests at the 20. simulation minute, results in the
deviation of the extrusion outlet concentration. HME concentration controller
copes with the disturbance by adjusting the ratio between the API and polymer
feeder. Yet, as it does not accomplish to keep the concentration within the allowed
range, HME discharge signal is activated and pellet hopper is emptied. After the
deactivation of HME discharge, transport signal is activated. As there is no material
in the pellet-hopper, no material enters the pellet feeder and hold-up decreases
below 1kg. In order to omit the material exhaustion, mass flow controller decreases
the pellet feeder mass flow to the minimal value. As the mass flow ratio between
pellet and pre-mix feeder stays constant, this leads to the decreased blender inlet
mass flow, which then results in the decreased TP fill level. TP MPC copes with
this deviation by decreasing the TP turret speed. After approximately 17 minutes,
plant is back to the nominal operating points. A total API feeder failure occurring
at the 40. simulation minute causes similar, only longer lasting deviations from
the nominal operating points. It takes approximately 23 minutes, for the control
concept to bring the plant back to the nominal operation. At the 75. minute of
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simulation, a pellet feeder failure occurs, causing the deviation of concentration
and discharge in the DC line. As no material enters the TP hopper, TP fill level
decreases, and MPC reacts by adjusting the TP turret-speed. Introduced mass
flow deviation leads to the increased consumption of the material in the pellet
feeder. Due to that, mass flow controller decreases the pellet feeder mass flow by
the next transport activation. It takes approximately 10 minutes until the plant is
back to the nominal operating points. Finally, at the 95. minute of simulation, a
complete failure of pellet feeder occurs. As there is no concentration controller
active in DC line, concentration sinks almost to the half of its reference value.
Discharge is activated, TP fill level decreases, and TP MPC adjusts the TP turret
speed. This time, mass flow controller increases the pellet feeder mass flow in
order to prevent the material overflow. Extrusion inlet mass flow, i.e. total mass
flow in the HME line, stays constant during the test scenario and pellet transport
takes place uniformly every four minutes in the nominal plant operation.

Figure 5.4: Investigation of control concept B in the simulation
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Figure 5.5: Investigation of control concept C in the simulation

Fig. 5.4 depicts the signals of interest during the introduced test scenario. API
feeder disturbance occurs at the 20. minute of the simulation and results in the
deviation of the HME line concentration. HME concentration controller adjusts
the ratio between API and polymer feeder, yet does not accomplish to keep
the concentration within the allowed range. Therefore, HME discharge signal is
activated and pellet hopper is emptied. After the discharge deactivation, transport
signal is activated, but as the pellet hopper is empty, no material enters the
pellet feeder. Consequently, pellet feeder hold-up decreases below 1kg. Mass flow
controller increases the total mass flow in the HME line in order to prevent the
material exhaustion. In contrast to the control concept A, blender inlet mass flow
stays constant during the API disturbance, and no deviation of TP fill level occurs.
After approximately 15 minutes, plant is back to the nominal operating points.
At the 40. minute of simulation a total feeder failure occurs, again invoking the
similar deviations. Total mass flow in the HME line is set to the maximal value
and kept there, until the pellet hold-up returns above 1kg. It takes approximately
25 minutes until the plant is brought back to the nominal operation. At the 75.
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minute of simulation, a pellet feeder disturbance occurs, causes the deviation of
concentration, and leads to the discharge in the DC line. As no material enters the
TP hopper, TP fill-level decreases, and MPC reacts by adjusting the blender inlet
mass flow, as soon as the discharge signal is deactivated. It takes approximately
5 minutes until the plant operates with the nominal values again. Finally, at the
95. minute of simulation, a complete failure of pellet feeder occurs. As there is no
concentration controller active in DC line, concentration sinks far from the reference
value. Discharge is activated, TP fill-level decreases, and TP MPC increases the
blender inlet mass flow. In either case, an increased material consumption in the
pellet feeder is compensated via mass flow controller increasing the total mass
flow of the HME line. TP turret speed stays constant during the simulation.

Fig. 5.5 represents the signals of interest during the introduced test scenario. Pro-
cess flow is very similar to the control concept B. Only difference between these
two control concepts can be recognized is an additional degree of freedom for
the TP MPC, i.e. TP turret speed. This leads to an improvement of the control
action, and shorter deviations of TP fill level from the nominal value. In such a way,
blender inlet mass flow exhibits less changes, leading to the more stable operation
of the mass flow controller and the more uniform pellet transport between the lines.

The obtained simulation results are compared with regard to the critical process
properties, i.e. total amount of the discharged material, and the duration of the fill
level, concentration and mass flow deviations from the nominal operating points.
As the implementation of the concentration controller is independent from the
individual control concepts, each concept results in the same total deviation dura-
tion of 1.37 minutes. This duration could be furtherly reduced by the application
of the concentration controller in the DC line.
Control concepts B and C exhibit the same amount of discharged material, i.e.
0.73kg. Control concept A shows slightly better results with 0.65kg of discharged
material.
When it comes to the TP fill level, control concept C shows superiority over the
other control concepts with only 0.16 minutes long deviations from the nominal
values. This result is expected, as only in this concept TP MPC manipulates both
blender inlet mass flow and TP turret speed. Concepts A and B result in the similar
duration of 0.51 and 0.46 minutes, respectively.
Regarding the mass flow deviations, control concept exhibits the least advanta-
geous behavior with 80.42 minutes long deviations. Control concepts A and C
are relative similar to one another, with total duration of 46.12 and 55.6 minutes,
respectively.
In addition to these, a time until the continuous plant must stop by the complete
pellet feeder failure is determined for each control concept. A TP fill level below
50mm is chosen as a condition for stopping the plant. Again, control concepts A
and C result in almost same time of 10.9 and 10.7 minutes, respectively. Control
concept B is inferior with only 6 minutes, until the production plant must stop. In
that sense, the control concepts A and C would definitely be the candidates for the
application on the real system.

63



6 Conclusion and Outlook

This master thesis provides a detailed description of the design, implementation
and application of diverse control concepts for the continuous tablet manufacturing
plant. Controller application results in the improved plant performance, keeping
the API concentration in the wise range continuously along the plant, discharg-
ing the material of poor quality and producing the tablets with valid technical
properties. These objectives are achieved by combining the standard and advanced
control techniques, such as Smith predictor structure with PID and anti-windup
for the concentration control, and MPC for the TP fill level control.
Individual plant unit operations, i.e. extrusion, cooling&pelletisation, blending and
tablet compaction, are modeled separately. In that sense, the required laboratory
experiments are executed on the real system and the collected data is utilized
for the model identification purposes. Comparison of the estimated model and
the real system leads to a conclusion, that the performed data-driven modeling
provides satisfactory results and that the identified models can be employed for
the controller development.
First developed control concept is a DC line controller, involving a TP MPC fill
level control, discharge control via hysteresis controller, and a concentration control
combining the Smith predictor structure and PID controller. This control concept
is examined via different test scenarios, not only in the simulation, but on the
real system, as well. Obtained results show a satisfactory compliance between the
simulated and measured signals, confirming the accuracy of the identified mod-
els and successful application of control laws. Additionally, the obtained results
provide the information regarding the potential improvement of the concentration
controller, i.e. adjustment of Smith predictor input signal in case of the complete
feeder failure. In summary, DC line control concept shows a very good disturbance
rejection: TP fill level is successfully kept close to the reference by adjusting TP
turret speed and blender inlet mass flow. Furthermore, API concentration stays in
the wise range around the reference via manipulation of the blender inlet concen-
tration. Tablet probes were taken during the artificially introduced test scenarios,
i.e. feeder fault and API contamination. Results of the performed tablets analysis
show very satisfactory results regarding the tablet properties. Potential next steps
in the DC line would involve the utilization of other control techniques for the
concentration control, such as algebraic synthesis or MPC.
In the final stage, a control concept for the complete continuous plant is developed.
Additionally to the in the DC line introduced controllers, this control concept
involves a concentration and discharge controller in the HME line, and a mass
flow controller ensuring the reliable transport of material between the HME and
the DC line. This control concept can be carried on with different master units, i.e.
extruder (Control concept A), TP (Control concept B) or no master unit (Control
concept C). Depending on the activated master unit, manipulated variables of
single controllers change, while the control objectives stay the same. Control action
of A, B and C is examined via same test scenario in the simulation. In summary, all
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concepts show satisfactory behavior during the introduced API and pellet feeder
disturbances. Yet, when considering the deviations from nominal plant operation,
concept B shows less advantageous behavior compared to the A and C. Therefore,
the control concepts A and C definitely are the reasonable candidates for the
application on the real system. Anyway, due to the unreliable measurement of the
concentration, the application on the real system is omitted. As soon as this issue
is solved, developed control concepts can be implemented on the real system in
the straightforward manner and examined via same test scenario as in the simu-
lation. Thereby, the tablet probes should be taken and analyzed. Analysis results
would show if the developed control concepts are suitable for further industrial
application.
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