
 Manuel Peter Kainz, BSc

Indexing of Grazing-Incidence X-Ray

Diffraction Patterns

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master's degree programme:

Technical Physics

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Roland Resel

Institute of Solid State Physics

Graz, October 2020

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used. The text document up-

loaded to TUGRAZonline is identical to the present master’s thesis.

Date, Signature

i

Acknowledgement

I would first like to thank my thesis supervisor Roland Resel from the Institute of Solid

State Physics at the University of Technology in Graz. The door to the office was always

open whenever I ran into a trouble spot or had a question about my research or writing.

He consistently allowed this thesis to be my own work, but steered me in the right the

direction whenever he thought I needed it.

Special thanks to Josef Simbrunner from Medical University Graz. This thesis relies cru-

cially on his previous work and many applications would not have been possible or at

least much more time-consuming without his considerable expertise regarding the index-

ing of grazing-incidence X-ray diffraction patterns.

I also want to thank all my former and current colleagues at the institute and the work

group. I am grateful for the team I was a member of and special thanks go to the people

from k-Raum as well as k’-Raum. I had a great time being there.

Finally, I want to express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study. This ac-

complishment would not have been possible without them. Thank you.

ii

Abstract

Grazing-incidence X-ray diffraction (GIXD) is a widely used technique for the crystal-

lographic characterization of thin films. The identification of a specific phase or the dis-

covery of an unknown polymorph requires indexing of the associated diffraction pattern.

Indexing describes the assignment of Laue indices to the individual diffraction peaks with

simultaneous determination of the lattice constants. However, despite the importance of

this procedure, only few approaches have been developed so far. Recently, a mathemati-

cal framework for indexing of this specific diffraction pattern has been developed. This

work introduces a successfully implemented indexing routine. The algorithm is based

on the assumption of a triclinic unit cell with six lattice constants. Two approaches are

chosen: i) using only diffraction peaks of the GIXD pattern and ii) combining the GIXD

pattern with a specular diffraction peak. In the first approach the six unknown lattice

parameters have to be determined by a single fitting procedure, while in the second ap-

proach two successive fitting procedures are used with three unknown parameters each.

The latter case is elaborated in detail throughout this thesis. The computational toolkit

is compiled in the form of a MATLAB application and presented within a user-friendly

graphical user interface. The program is tested by application to four independent exam-

ples of organic thin films.

iii

Kurzfassung

Röntgenbeugung unter streifendem Einfall (engl. GIXD) ist eine weit verbreitete Tech-

nik zur kristallographischen Charakterisierung dünner Filme. Die Identifizierung bes-

timmter Phasen sowie die Untersuchung von unbekannten polymorhpen Materialien er-

fordert die Indizierung des zugehörigen Beugungsmusters. Indizierung beschreibt die

Zuordnung von Laue-Indizes zu den einzelnen Beugungspeaks bei gleichzeitiger Bes-

timmung der Gitterkonstanten. Trotz der Bedeutung dieses Verfahrens wurden bisher

nur wenige Ansätze entwickelt. Kürzlich wurde ein mathematischer Rahmen für die

Indizierung dieses spezifischen Beugungsmusters entwickelt. Die hier gezeigte Arbeit

stellt eine erfolgreich implementierte Indizierungs-Routine vor. Der Algorithmus basiert

auf der Annahme einer triklinen Einheitszelle mit sechs Gitterkonstanten. Es werden

zwei Ansätze gewählt, wobei bei Ersterem nur die Beugungspeaks der GIXD-Messung

verwendet werden. Bei der zweiten Methode wird zusätzlich ein spekularer Beugungs-

peak aufgenommen. Beim ersten Ansatz müssen die sechs unbekannten Gitterparame-

ter durch ein einziges Verfahren bestimmt werden, während beim zweiten Ansatz zwei

aufeinanderfolgende Routinen mit jeweils drei unbekannten Parametern verwendet wer-

den. Der zweite Ansatz stellt das zentrale Thema dieser Arbeit dar. Das Toolkit wird in

Form einer MATLAB-Anwendung kompiliert und in einer benutzerfreundlichen grafis-

chen Benutzeroberfläche dargestellt. Das Programm wird durch Anwendung auf vier

unabhängige Beispiele für organische Dünnfilme getestet und demonstriert.

iv

Contents

1 Introduction 1

1.1 Indexing: Definition and Use . 1

2 Review 5

2.1 Indexing of Single-Crystal Diffraction Data 5

2.2 Indexing of Powder Diffraction Data . 7

2.3 Indexing of GIXD Data . 10

3 Fundamentals 14

3.1 Crystal Lattice and the Unit Cell . 14

3.2 The Reduced Cell . 18

3.2.1 Notation of Planes and Directions 20

3.3 X-ray Diffraction . 22

4 Methods 25

4.1 Grazing Incidence X-Ray Diffraction (GIXD) 25

4.2 The Role of the Specular Scan . 27

5 Indexing Formalism and Mathematical Preparation 28

5.1 Special Case: Contact Plane (001) . 30

5.2 General Case: Contact Plane (uvw) . 32

5.3 Numerical Optimization . 38

6 Indexing Routine 40

6.1 Parallel Computing . 42

6.2 Initialization . 43

6.3 Indexing Routine Part I . 47

6.4 Indexing Routine Part II . 50

6.5 Postprocessing . 54

v

7 Instruction Manual and Tutorial 58

7.1 Add Crystal Panel . 59

7.2 Data Points and Representation Panel 61

7.3 Indexing Panel . 62

7.4 Error Panel . 67

7.5 Result Panel . 67

7.6 Tutorial . 68

8 Indexed Samples 73

8.1 Diindenoperylene (DIP) . 73

8.2 Pentacenequinone (PQ) . 75

8.3 Naproxen . 76

9 Summary 80

Appendices 86

A Diffraction data for indexing 87

A.1 fIna-04 . 88

A.2 Diindenoperylene . 89

A.3 Pentacenequinone . 90

A.4 Naproxen . 91

B MATLAB® Source Code 92

B.1 Main program . 92

B.2 Functions . 94

B.2.1 function INITIALIZE GUI.m 94

B.2.2 function LPermutation.m . 96

B.2.3 function PART ONE PARALLEL

GUI RESTRICTIONS.m . 96

B.2.4 function PERMVEC NEW . 99

B.2.5 function ABG RESTRICTED.m 99

B.2.6 function NEWMATRIXFILLER.m 100

B.2.7 function XYZ.m . 102

B.2.8 function CALC ABGfromXYZ RESTRICTED v7.m 102

B.2.9 function SUB2 CONDITION.m 105

B.2.10 function ABGNIGGLI.m . 105

vi

B.2.11 function PART TWO v12.m . 106

B.2.12 function CALCSUBSIS.m . 119

B.2.13 function NEWPACKING.m . 120

B.2.14 function NEWCELLPARAMETER RESTRICTED.m 121

B.2.15 function REDUCED CELL MY 001.m 122

B.2.16 function CALC A001 STAR.m 129

B.2.17 function REAL TO RECIPROCAL v9.m 130

B.2.18 function EPSILON UVW.m . 131

B.2.19 function GZ GXYZ UVW.m 135

B.2.20 function REDUCED CELL MY UVW.m 135

vii

Chapter 1

Introduction

1.1 Indexing: Definition and Use

The inner structure of a crystalline material is of central interest in solid state research.

The structural order is used to understand and predict the properties of these materials.

However, such crystal structures are not necessarily unique and one and the same ma-

terial can crystallize in two or more forms with distinct structures. These polymorphs

exhibit different unit cells and distinct arrangements of atoms within them. Knowledge

about these polymorphs serves as a powerful tool to fabricate tailor-made applications

in a variety of possible fields, such as pharmaceutical science [1]. Of great interest are

also the changing characteristics upon tapering the size of organic semiconductor struc-

tures from bulk to thin films or even monolayers. Applied in microelectronics industry,

promising results have been reported for example in organic thin-film devices [2, 3].

For characterization of the properties and especially for the search for potentially differ-

ent polymorphs, the materials can be synthesized in a crystalline form. Besides composi-

tion, the inherent structure is responsible for the chemical and physical properties among

these different crystal forms [4]. Crystallization of molecular materials on a solid surface

and production of thin films proved particularly suitable for these structural investigations

[5]. Because of the periodic arrangement of atoms or molecules within an ideal crystal,

the region of interest can be reduced to the smallest repetitive building block, the unit

cell. The unit cell describes the smallest portion of a crystal lattice, which is replicated

in three dimensions to form the entire crystal. It is therefore sufficient to describe the

properties of and within the unit cell, to describe the buildup of a crystalline solid. As an

ideal crystal lattice can be seen as a grid with periodically arranged lattice points, diffrac-

tion experiments can help to learn about the inherent structure. X-rays with associated

1

wavelengths of 10´11 m to 10´10 m are particularly suitable to resolve the inter-atomic

or net-plane distances in the range of 1 Å [6, 7, 8].

Depending on the appearance of the sample, different measurement methods are estab-

lished. Powder and single-crystal X-ray diffraction are the two main techniques for so-

lution of the crystal structures [9]. When it comes to surface-sensitive methods to in-

vestigate organic thin films, grazing-incidence X-ray diffraction (GIXD) experiments are

used for structure determination [10, 11, 12].

What all of these methods have in common is that the information is expressed as a

diffraction pattern. These diffraction patterns are the accumulation of the reflections due

to constructively interfering scattered waves (Figure 1.1). Interfering waves lead to a

diffraction peak if the scattering vector q matches a vector of a reciprocal lattice ghkl .

This is expressed in the Laue condition of diffraction as

q “ ghkl, (1.1)

where the reciprocal lattice vector is the linear combination of the reciprocal basis vectors

of the form ghkl “ ha˚ `kb˚ ` lc˚. The integer values h,k and l of this linear combination

are the Laue indices. To extract structural information about the sample, the reflections

need to be indexed. Indexing is the assignment of Laue indices to the diffraction peaks

(or reflections) by simultaneous calculation of the crystal lattice parameters.

Figure 1.1: Principle of indexing: Assignment of Laue indices to diffraction peaks in reciprocal

space map and unit cell determination [13, 14].

The results after indexing are the assigned triplets of Laue indices h, k and l for every

reflection and an estimation of the unit cell dimensions (Figure 1.1). Not only the size of

the unit cell is of interest, but also the intensity of every diffraction peak together with its

2

Laue triplets (h,k,l). We see a diffraction peak with the intensity Ihkl , where the scattering

vector q images a reciprocal lattice vector ghkl:

Ihkl “ |Fhkl|
2 δ pghkl ´ qq (1.2)

The amplitude of a reflection intensity is determined by the absolute square of the struc-

ture factor |Fhkl|
2. Analytically, the structure factor Fhkl itself is a complex quantity with

amplitude and phase. Using the structure factors, the spatial electron distribution ρprq

within the unit cell volume V can be computed through Fourier transformation. This

assertion is expressed in the electron density equation:

ρprq “
1

V

ÿ

hkl

|Fhkl|
2 eipghklr`Φhklq (1.3)

With this information obtained from indexing it is therefore possible to estimate the loca-

tions of atoms within the unit cell. This should show the importance and the central role

of the indexing process. Clearly, the situation is more complex in reality as the absolute

square of the structure factor |Fhkl|
2 reveals no information about the phase Φhkl . This

phase problem remains to be solved and simulation of the packing of the molecules is an

ambitious computational task. Techniques to solve the phase problem are so called direct

methods, Patterson analysis for heavy atoms and approaches using test structures as well

as applications of theoretical concepts such as density function theory and molecular dy-

namics simulations [15, 16].

All the information combined, the unit cell, the lattice type and the packing of the atoms

in the space of the unit cell is then referred to as the full crystal structure solution. Figure

1.2 should summarize the above explained steps and point out once more the central role

on the indexing process on the way to a crystal structure solution;

Starting with a sample which is suspected to be crystalline, the first step is to choose a

proper measurement technique. Here, a schematic drawing of a GIXD setup is shown.

In a further step, the detector data have to be converted from pixel space to reciprocal

space to identify the peak positions. Indexing and determination of the unit cell follows

and marks a central point of the process. If the packing of the atoms (or stacking of

molecules) within the unit cell can be identified, a crystal structure solution is obtained.

3

Figure 1.2: Workflow from left to right for determination of a crystal structure solution [13, 14,

17].

Depending on the measurement technique used, there are different approached for index-

ing established. On the following pages, a brief summary of the methods and the possible

indexing processes are given for single-crystal X-ray diffraction, powder diffraction and

GIXD.

4

Chapter 2

Review

2.1 Indexing of Single-Crystal Diffraction Data

Single-crystal analysis is the most commonly technique used for determining the electron

density within the unit cell of crystals [9]. Monochromatic X-rays are collimated and

directed onto the sample. The samples are usually mounted on thin glass fibers which are

attached to glass pins and mounted onto goniometer heads. A schematic setup is shown

in Figure 2.1 a) and b).

Constructive interference occurs when the geometry of the incident and the scattered X-

rays satisfies the Bragg equation. The scattered X-ray signal is recorded by a detector

which converts the signal into a count rate and provides the information about the in-

dividual intensity. While the sample is gradually rotated, different orientations of the

crystal are probed and able to contribute to the diffraction pattern, if the conditions for

constructive interference are met. Measuring single-crystal structures usually provides

several hundred or thousand unique diffraction peaks (see Figure 2.1 c). This makes this

technique very accurate when determining the structure upon indexing [18]. After the

data is collected, corrections for instrumentation, polarization effects and X-ray absorp-

tion must be applied to the entire data set.

Different approaches for indexing and structure solving of single-crystal diffraction data

are available [9]. One possibility to determine a crystal structure solution uses compar-

ison and adjustment of structure factors. As mentioned earlier, the structure factor is a

complex quantity and connected to the electron density through a Fourier relationship

containing the phase information. During diffraction experiments, only intensities can

be measured by the detector and information about the phase of the scattered wave is

lost. For determination of the structure factors however, intensity and phase are needed.

5

Figure 2.1: a) Example of a setup for single-crystal XRD with detector, sample holder and X-ray

source (f.l.t.r). b) Schematic drawing of a setup to visualize the angles as degrees of freedom.

The Φ-rotation of the sample is indicated on top side [19]. c) Example of a diffraction pattern of

a single-crystal XRD measurement.

The drastically enhanced computational power allows solutions of the “phase problem”

by the use of direct methods. This means, that the phase estimation is done statistically

and only the intensities and a random starting set of phases are used. These methods are

very successful for small molecule structures with up to 100 (non-H) atoms [9, 20, 21].

Patterson analysis is based on the squared structure factors and does therefore not need

any phase information.

Indexing is one part of the crystal structure solution. In a possible indexing procedure,

unit cell test volumes are built by the use of Laue index triplets. These test volumes

consist of three linearly independent reciprocal lattice vectors. During this subsequent

indexing, the triplets are assigned to the diffraction peaks in the form of (hkl) values,

which have different intensities or scattering amplitudes. What follows is the conversion

into structure factors due to their Fourier transform relationship. A preliminary structure

solution is carried out. This solution serves to determine a preliminary electron density

distribution in the unit cell. The electron density maxima are assigned which exhibit

atoms with a suitable number of electrons. Bonds that lead to a molecular model are

formed, when atoms are closer together than the sum of their Van der Waals radii [20].

The process of single-crystal refinement is a subsequent step. Slight changes of

atomic positions within the cell are used to refine and optimize the crystal structure from

the beginning [22, 23]. In that way, the models found are improved step by step with this

structural refinement. The end of the refinement is reached when the difference of the

observed intensities and the calculated structure factors is no longer reduced by changing

the parameters (and their associated test volumes) and when the solution is chemically

appropriate. In that way, a continuous adjustment of cell parameters and Laue indices

lead to the best fitting solution through comparison of measured and calculated struc-

6

tures.

In principle, the software set SHELX with its derived packages works as described above.

It brings packages for holistic crystal structure determination where the indexing routines

are already included. It is the most widely used tool for solving single-crystal structures

[21, 22, 23]. Although many information is given about the history and development of

the powerful software package, a conclusive and detailed explanation about the indexing

process itself is not available.

Another available software for indexing single-crystal diffraction data is an application

called IND X [24]. The working principle of this software is the generation of test vol-

umes out of the unit cell in reciprocal lattice representation. An initial guess is either

generated randomly by the software or provided by the user. However, this choice usually

requires experience in the processing of single-crystal XRD data. The first derivation of

a solution is based on a period-detection algorithm, which is a known algorithmic prob-

lem in computer science. The initial cell solution is used to derive a subset of vectors

and compared with the observed vectors (diffraction data). The vectors are ranked, and

the best fit constitute as input for calculation of the next test volume. In that way, the

indexing problem is reduced to check all lattice bases of small-index super-lattices and

their fit on the diffraction data. The output of this indexing algorithm are sets of proposed

solutions for. They are provided in the form of direct lattice vectors and fulfill criteria

for a Buerger-reduced cell [25]. We will see later, why this plays an important role when

limiting possible solutions. The final choice for a unit cell solution is handed to the user

[24].

2.2 Indexing of Powder Diffraction Data

X-ray powder diffraction (XRPD) is another commonly used technique using scattering

of X-rays for structural investigation. As the name implies, the sample should consist of a

powder containing randomly oriented crystalline particles. Usually, the ground material

is packed in a cavity-type sample holder to avoid preferred orientations. Crystallites

(small crystals) resolved in coatings, as well as sintered powders are another possible

sample form to investigate.

XRPD is used for various investigations. In a straightforward manner, it is possible to

distinguish quickly if a solid material is crystalline or amorphous. This basic capability

can be applied to all kind of solid materials. Another general application is to test if

the material or sample consists of one or more crystalline phases. The powder diffraction

7

pattern is characteristic for a crystalline structure and it is a fingerprint of the phase, when

compared with experimental data from diffraction data bases [26]. Besides phase compo-

sition and quantitative phase analysis, the diffraction method provides data to determine

the unit cell parameters of the present crystalline phase.

A widely used configuration in powder diffractometers (as well as in standard XRD ex-

periments) is the Bragg-Brentano geometry. A schematic drawing of this setup and an

example instrument are shown in Figure 2.2 b) and Figure 2.2 a), respectively. ω is here

the incident angle and defined between the X-ray source and the sample. The diffrac-

tion angle 2θ is defined between the incident beam and the scattered beam. The incident

angle ω is always one half of the detector angle 2θ .

Figure 2.2: a) Powder X-ray diffraction instrumentation. b) Schematic image of Bragg-Brentano

geometry with incident angle ω and diffraction angle 2θ . c) Diffraction pattern of a LaB6 refer-

ence powder specimen with scattering intensity versus diffraction angle. [27, 28]

The scattering vector q is the vector that bisects the angle between the incident and scat-

tered beam. In this specific geometry, it points always perpendicular to the sample surface

(Figure 2.2 b). Ideally, the powder sample consists of thousands of randomly orientated

crystallites. In that way, the Bragg condition can be fulfilled for various diffraction an-

gles, depending on the orientation of the crystallites. For every set of planes within the

powder, there will be a certain percentage of crystallites that are properly oriented to ful-

fill the condition for diffraction. The basic assumption for this behaviour is that there is a

statistically relevant number of crystallites present in the powder. Only a fraction of the

crystallites actually contribute to the measured diffraction pattern, making the technique

vulnerable and somewhat inefficient. To enhance the efficiency, irradiation of larger vol-

umes of the material and spinning can help ensure that a statistically relevant number of

grains contribute to the diffraction pattern.

The data from X-ray powder diffraction experiments are detected intensities over the

diffraction angle of 2θ (Figure 2.2 c). This information must be sufficient to determine

unit cell parameters from the experimental data. Various approaches for indexing powder

8

patterns have been reported. A comprehensive list of software packages and tools can be

found here [29]. Well-known powder indexing tools are the applications DICVOL04 and

X-Cell. As both share the same principle idea, this algorithm should serve as an example

on indexing a powder pattern. The algorithms both use the length of the scattering vector

q and its relation with the reciprocal lattice. The length can be derived using Bragg’s law

and the wavelength of the used X-rays:

q “ |q| “
4π

λ
sin

2θ

2
. (2.1)

Every scattering vector which leads to a diffraction peak in the powder pattern can be

equivalently expressed through a lattice vector of the reciprocal space. Assuming a*, b*

and c* are the cell edges of the reciprocal cell with their including angles α˚, β ˚ and γ˚,

the reciprocal lattice vector for the i-th reflection reads as

qiphklq “ h2
i a˚2

` k2
i b˚2

` l2
i c˚2

` 2hiki a˚ b˚ cosγ˚ ` 2hili a˚ c˚ cosβ ˚ ` 2kili b˚ c˚ cosα˚
.

(2.2)

This equation is not solvable by ordinary algebra since the number of equations is always

smaller than the number of unknown parameters. This is even true for the most symmetric

case, the cubic lattice. In this case, one equation still contains four unknown parameters

with one cell edge, and a set of Laue indices phi,ki, liq.

A solution to equation 2.2 can be obtained by a successive dichotomy procedure [30, 31].

A set of possible indices is chosen in the beginning of every peak cycle. As the set of

possible Laue index permutations is sufficiently small for the powder pattern indexing

problem, low-index permutations can be scanned within a reasonable computing time

[30]. In a next step a set of starting parameter is chosen. This is either done by the user

(cell restrictions as input) or pre-defined by the algorithm. The cell edges and angles

of this parameter set are equally divided into test volumes, so called volume domains.

For a given set of phklq, an upper bound qi`phklq and a lower bound qi´phklq serve

as selection criteria. If the calculated pattern qi with the current volume is in range of

these boundaries, the volume is divided (bisected) in a volume sub-domain and evaluated

again. If the pattern does not fit in the specified range, the domain is eliminated and a

new domain is generated. At the implementation of DICVOL04, the bisection procedure

is limited to a repetition number of six. After six repetitions, the domains define the

cell parameters. In that way, the smallest cell volume is obtained and the reduced cell

based on the shortest three non-coplanar lattice parameters is determined. In this tool,

the successive dichotomy or bisection algorithm is applied successively to each crystal

system. For reasons of efficiency, the algorithm starts with highest symmetry (cubic

9

system) and increases then the number of unknowns. A comprehensive elaboration of

the procedure as well as the criteria for the boundaries are summarized in [31].

Although the algorithmic principle of using the dichotomy method is the same in DICVOL04

and X-Cell, the programmatic implementation is different [32]. The number of possible

sub-domain volumes as well as the maximum recursion number is regulated differently.

This leads to different execution times and performances among the compared tools.

The point here is not to find a better or worse approach. Purpose of this and the previous

chapter is, to show which possibilities are there for indexing X-ray diffraction patterns

and in that way introduce the actual topic of this work, the indexing of GIXD patterns.

2.3 Indexing of GIXD Data

Grazing-incidence X-ray diffraction has become an intensively elaborated technique for

structural characterization of thin films. The formation of potentially new polymorphs

due to transition from bulk to thin films is a well know phenomenon and reported in

various works [33, 5]. The surface sensitivity in a GIXD setup is highly increased, what

makes it particularly well-suited for investigations of such crystalline samples. A more

detailed setup description is discussed in chapter 4.

Thin films grown on isotropic substrates can exhibit fibre-texturing and thereby showing

a defined crystalline plane oriented parallel to the substrates surface. For determination

of a unit cell and subsequently a crystal structure solution, identification of this parallel

plane (hereafter referred to as contact plane) is of central interest [34].

Just as in single-crystal XRD and powder diffraction, the crystallographic unit cell is ob-

tained by indexing of the diffraction data. The consideration of the contact plane needs

an innovative mathematical treatment for the index procedure of GIXD data. The influ-

ence results in an increased set of unknown parameters. A comprehensive formalism,

which addresses exactly this problem, is proposed in recent works [10, 11, 12]. A few

approaches for processing experimental GIXD data have yet been developed [35, 36,

37, 38, 39, 40]. Not all of them address the task of indexing with regard of unit cell

determination and even less consider the contact plane as separate parameter necessary

to determinate. All of the here reported approaches try to solve the same problem; An

experimental GIXD pattern is compared with calculated reciprocal lattice vectors of the

form

ghkl “ ha˚
r ` kb˚

r ` lc˚
r . (2.3)

10

This can be done for both, the in-plane component and the out-of-plane component of

the scattering vector and the lattice vector, respectively. Having regard to whether or not

the contact plane is considered, the vectors a˚
r , b˚

r and c˚
r are the known reciprocal basis

vectors or the rotated ones where the rotation is recognised using a˚
r “ Ra˚. The rotation

matrix R acts on the lattice vectors as rotation around the zone axis of the p001q contact

plane.

One of the earliest reported algorithms to address the problem of indexing GIXD data in

that way was published in 2007 [40]. The reciprocal lattice vectors can be calculated in

a straightforward manner, as knowledge of the unit cell parameters is a prerequisite here.

The rotation around the zone axis is applied by using the known orientation of the planes

parallel to the substrate surface. The indexing is based on calculation and comparison of

the vectors and assignment of the best fitting diffraction indices. The unit cell parameters

are not explicitly calculated, making it a tool for assignment of Laue indices only.

In 2008, a computer program for simulating GIXD experiments explicitly from thin films

has been reported [35]. Particular attention has been given to the modelling of the peak

intensities for fibre-textured films. Indexing is a subitem of this program called SimD-

iffraction. In the algorithm proposed, only a fibre axis perpendicular to the substrate is

considered, what makes it a p001q-approach only 1. Just as the former approach, knowl-

edge of the direct lattice cell parameters is necessary for indexing of the experimental

peak positions.

1In the context of this work, the term ’fibre axis’ is used to describe the direction perpendicular to the

contact plane. It is the same direction as the surface normal of the contact plane.

11

A significant improvement of this issue is the computational tool Diffraction Pattern Cal-

culator (DPC), published in 2014 [36]. It was the first toolkit that contained the deter-

mination of the unit cell parameters by simultaneous assignment of the Laue indices. A

deviation from the special case with a p001q contact plane is also recognised and realised

as additional input variable. The working principle is again based on checking the Laue

condition by evaluating equation 2.3. The peak positions for numerical comparison are

derived automatically from a GIXD pattern through a image processing routine. From

this, the program extracts the q-data, separated in the in-plane components qxy and the

out-of-plane components qz. Prior to the unit cell analysis, several operation parameter

have to be defined by the user.

The analysis requires an initial guess for the contact plane, the range of the Laue indices

h, k and l and the values of the direct lattice parameters. An initial guess of the unit cell

is therefore needed. A further needed input is the choice of the space group. The routine

then computes all the possible permutations of Laue indices in the specified range and

removes forbidden reflections due to the reflection conditions. This is an efficient method

to reduce computational effort. Additional boundary conditions in the automatic mode

are here applied by the use of a specular scan (qxy = 0). Although the toolkit integrates

many features, the high amount of necessary input and previous knowledge for indexing

could be a limitation of the DPC.

The software package GIXSGUI shares similarities with most of the former described

programs. However, the focus is more on geometric corrections, two-dimensional inten-

sity reshaping and visualization in general [37]. Another powerful GIXD processing tool

is the MATLAB-based application GIDVis [39]. Some functionalities of GIDVis will be

elaborated in detail in later chapters.

The latest published work addressing the indexing problem of GIXD patterns is the soft-

ware package GIWAXS-SIIRkit [38]2. The tool contains an indexing routine specifically

designed for processing of small-molecule thin films (which corresponds to roughly 1-30

Å). The routine starts by processing diffraction patterns and returning data sets of qxy and

qz. If the peak positions are available, it is convenient to simply upload the numerical

values instead of using the image processing tool.This algorithm is of special interest,

as the basic principle is also applied in the here presented thesis, namely dividing the

indexing process in two parts. In the first part, the qxy-data are preliminarily indexed by

tuples of phkq. This is achieved by evaluation of the in-plane component of the scattering

2Even though the denotation is different, the physical description of grazing-incidence wide-angle X-ray

scattering (GIWAXS) and GIXD is equivalent [41]

12

vector. It is convenient to use the form of a linear system of equation for three linearly

independent peaks:

¨

˚

˚

˝

q2
xy1

q2
xy2

q2
xy3

˛

‹

‹

‚

“

¨

˚

˚

˝

h2
1 k2

1 h1k1

h2
2 k2

2 h2k2

h2
3 k2

3 h3k3

˛

‹

‹

‚

¨

˚

˚

˝

a˚2

||

b˚2

||

2a˚2

|| b˚2

|| cospγ˚
||q

˛

‹

‹

‚

. (2.4)

The so obtained solution is used to assign indices to the remaining peaks. The program

cycles through the index permutations within a range of ´8 and 8, forms the difference

for every case and thereby searches for a minimum in ∆qxy.

In the second indexing step, the equation which is valid for the out-of-plane components

is solved:

qz “ ha˚
K ` kb˚

K ` lc˚
K. (2.5)

The parameters a˚
K and b˚

K are the components of a˚ and b˚ perpendicular to the substrate.

The out-of-plane reciprocal lattice vector is denoted by c˚. To solve the second problem,

an initial guess of c˚ as well as two linearly independent peaks in qz must be provided by

the user. The unit cell solution with the lowest total error expressed in Cartesian distances

is the result of this algorithm. Clearly, this routine is limited to problems where the p001q

plane is the plane parallel to the substrate surface. The use of a specular scan can help,

but the initial guess required for c˚ could limit the usability of this indexing routine.

This chapter should demonstrate the approaches which have yet been proposed and the

according principle on which they work. It is noticeable that assumptions and estimates

have to be made in various cases in order to determine solutions for unit cell parameters.

In many numerical calculations and simulations of that kind, this is simply necessary

to keep the computational effort in reasonable limits. Interestingly, none of the here

reported programs or algorithms refer to crystallographic conventions such as the criteria

originally imposed by Niggli or the test for a reduced cell defined by Buerger [25, 42].

The program presented in this thesis is intended to be a useful addition and a further

development to what has already been achieved in this field. In order to better understand

the connections and, above all, the later explained formalism, some basic fundamentals

will be repeated in the next chapter.

13

Chapter 3

Fundamentals

3.1 Crystal Lattice and the Unit Cell

A crystal is formed through repetitive translation of the unit cell content in three dimen-

sions. This mathematical description is used to represent the structure as well as the

translational symmetry of the crystal1. A lattice is a translationally periodic collection of

discrete points. The atoms associated with each of these lattice points are introduced by

the basis. For a crystal lattice, the allocation to one of the seven lattice types is required.

Figure 3.1: The shape of the unit cells of the seven crystal systems (left) and their characteristic

symmetry and restrictions on the geometry (right) [43].

1It should be noted that this is an ideal, mathematical and therefore simplified image of a real crystal.

In reality, lattice mismatch, dislocations, crystal defects and impurities are crucially important for the

description of crystals and their properties.

14

These seven types are called the seven crystal systems and can be classified in terms of

their symmetry and divided in cubic, hexagonal, rhombohedral, tetrahedral, orthorhom-

bic, monoclinic and trigonal systems. A summary of their characteristic shape and re-

strictions on the cell geometry is given in Figure 3.1. Once a representative lattice ap-

propriate to the symmetry of the structure is chosen, any lattice node (or net point) can

be described by a vector consisting of a linear combination of the lattice vectors. Such a

real space vector can be written as

r “ ua ` vb ` wc (3.1)

where a, b and c represent the lattice vectors spanning the parallelepiped of the unit cell

(Figure 3.2) and u,v,w are any integer values. An alternative definition of the structure

using the basis and one of the above introduced lattice types can be formulated as crystal

structure = basis + lattice.

Figure 3.2: Schematic representation of a parallelepiped with edge lengths a, b and c. The angle

γ is the enclosed angle between the edges a and b. β is defined as the angle between a and c and

the third angle, α , is the enclosed one between b and c.

The direct lattice is convenient for describing the arrangement of atoms and molecules

within the crystal. To explain the interaction with electromagnetic waves however, it is

helpful to use another mathematical description for the crystalline structure. This arises

from the fact that ”...if a structure is arranged on a given lattice, then its diffraction

pattern is necessarily arranged on the lattice that is reciprocal to the first” [6]. The

representation in reciprocal space is a method which helps to explain the physical effects

such as scattering and diffraction. This representation method describes the structure in

terms of the reciprocal lattice. Direct and reciprocal lattice are connected by a Fourier

relationship. The relation can be expressed in terms of the known expression of the

electron density. With R, a vector from the origin indicating any point of the lattice, this

15

relationship reads as

ρpRq “
1

V

ÿ

hkl

Fhkl eighklR (3.2)

As the electron density must follow the condition of periodicity within the crystal lattice,

a translation by any direct lattice vector r must return the same functional value

ρpR ` rq “ ρpRq. (3.3)

Using fhkl “ Fhkl

V
, equation 3.2 expressed in terms of a Fourier series reads as

ÿ

hkl

fhkl eighklR “
ÿ

hkl

fhkl eighklpR`rq “ eighklr
ÿ

hkl

fhkl eighklR, (3.4)

what restricts the reciprocal lattice vector ghkl to values which satisfy the relation

ghklr “ 2πn (3.5)

as with the integer numbers n ε Z the term

eighklr “ 1 (3.6)

needs to be fulfilled. In that way, the reciprocal lattice is a mathematical description

constructed on the direct lattice where equation 3.6 can be seen as a definition. In the

case that the fundamental translations (the basis vectors) are all perpendicular to each

other, the relation between the direct lattice and the reciprocal one is particularly simple.

In this case the fundamental translations of the reciprocal lattice are parallel to those of

the direct lattice. The edge lengths of the translations are then inversely proportional to

the edge lengths of the associated translations of the direct crystal lattice. For the non-

orthogonal case, the relations between the two representations are best shown in terms of

the vector relations

a˚ “ 2π
b ˆ c

a ¨ pb ˆ cq
b˚ “ 2π

c ˆ a

a ¨ pb ˆ cq
c˚ “ 2π

a ˆ b

a ¨ pb ˆ cq
, (3.7)

what explains the orientation of the reciprocal lattice in terms of the direct one; Every

fundamental translation of one lattice is oriented perpendicularly to the remaining two

16

fundamental translations of the second one. This is expressed particularly by

a˚
i ¨ a j “ δi j

#

“ 1, for i “ j

“ 0, for i ‰ j
(3.8)

The volume V of the real space unit cell is given by the scalar triple product of the vectors

with V “ a ¨ pb ˆ cq ” a ¨ b ˆ c.

In the same way as shown in the equations 3.7, expressions for the direct lattice in terms

of reciprocal vectors are defined. Using the volume of the reciprocal cell V ˚ “ a˚ ¨ pb˚ ˆ

c˚q, the direct lattice vectors are

a “ 2π
b˚ ˆ c˚

V ˚
b “ 2π

c˚ ˆ a˚

V ˚
c “ 2π

a˚ ˆ b˚

V ˚
(3.9)

In the same manner as a real space lattice vector is defined in equation 3.1, the reciprocal

counterpart with its above defined vectors can be written as

ghkl “ ha˚ ` kb˚ ` lc˚ (3.10)

where the integer values h, k and l of the linear combination are the Laue indices of the

crystal lattice plane. This is of particular interest when describing the scattering of X-rays

from such a phklq-plane. There are two equivalent representations, which are discussed

later on in Chapter 3.3.

17

3.2 The Reduced Cell

In the last chapter, a description of an ideal crystal structure has been introduced in terms

of translational repetition of the unit cell in three dimensions. The vectors of the direct

lattice are three-dimensional vectors and they can be explicitly written as

a “

¨

˚

˚

˝

a

0

0

˛

‹

‹

‚

, b “

¨

˚

˚

˝

b cosγ

b sinγ

0

˛

‹

‹

‚

and c “

¨

˚

˚

˝

c cosβ
c

sinγ pcosα ´ cosβ cosγq
V

ab sinγ

˛

‹

‹

‚

, (3.11)

with the volume of the parallelepiped

V “ abc

b

1 ´ cos2 α ´ cos2 β ´ cos2 γ ` 2 cosα cosβ cosγ. (3.12)

The representation of the vectors in equation 3.11 is only one possible representation.

The defined vectors follow a right-handed coordinate system based on Figure 3.2. The

choice of this unit cell is not unique. It is therefore possible to describe one and the

same crystal with different sets of lattice vectors. Casually formulated, two conditions

are usually advised when searching for a unit cell: i) if there is more than one choice,

the lattice with highest symmetry should be preferred and ii) the unit cell based on the

three shortest lattice vectors should be chosen. A unit cell which meets these conditions

is called a reduced cell.

There are different conditions formulated in crystallography, which allow systematic de-

termination of the reduced unit cell. The first is based on formulations published 1928

by P. Niggli [42]. A unit cell which fulfills the proposed conditions is called a Niggli’s

reduced cell or a unit cell which fulfills Niggli’s criteria for a reduced cell. A so ob-

tained cell provides an unambiguous choice of the unit cell and is defined independently

of lattice symmetry. The procedure requires a classification of the cell and a distinction

between two cases. The first case includes cells where all angles are acute (α , β and

γ ă 90°). These cells are referred to as type I cells. In the second case (type II cells), all

angles are equal to or greater than 90° and therefore obtuse-angled. The type of the cell

can be found by evaluating the sign of T where

T “ pa ¨ bqpb ¨ cqpc ¨ aq “

#

typeI, ifT ą 0

typeII, ifT ď 0.
(3.13)

18

A general formulation of the criteria for a reduced cell can be found in the International

Tables for Crystallography [44]. If the unit cell is present in the form of its (scalar)

parameters, the use of the scalar-product criteria is convenient. These formulations of the

criteria express the crystallographic restrictions in terms of the three lattice-edge lengths

a, b and c with their enclosed angles α , β and γ . An extract of the general criteria for

type-I and type-II cells is given in Table 3.1 below.

Table 3.1: General criteria for a reduced cell according to the International Tables for Crystal-

lography [44]

Cell Type I Type II

Angles α , β and γ ă 90° α , β and γ ě 90°

T is ą 0 ď 0

Condition (i) a2 ď b2 ď c2 a2 ď b2 ď c2

Condition (ii) c cosα ď b
2 c |cosα | ď b

2

Condition (iii) c cosβ ď a
2 c |cosβ | ď a

2

Condition (iv) b cosγ ď a
2 b |cosγ | ď a

2

Condition (v) ´ (bc |cosα | ` ac |cosβ | ` ab |cosγ |q ď a2`b2

2

One special characteristic resulting from the type II conditions should be emphasized

here; The conditions not only uniquely defines the lengths a, b and c, but also limit the

angles to the range 60° ď α,β ,γ ď 120° [44, 45].

Another form of reduced cells has been proposed by M. J. Buerger in 1957 [25]. The

method transforms any unit cell into one based on the shortest three non-coplanar vec-

tors. A cell which is reduced according to this is called a Buerger cell [46]. However, the

cell is not necessarily unique if determined only by this algorithm.

A possible approach for this algorithm includes a set of three independent reciprocal lat-

tice vectors (cf. equation 3.10) with the corresponding Laue indices expressed in matrix

form. This can be written as

G “

¨

˚

˚

˝

gx1
gy1

gz1

gx2
gy2

gz2

gx3
gy3

gz3

˛

‹

‹

‚

and H “

¨

˚

˚

˝

h1 h2 h3

k1 k2 k3

l1 l2 l3

˛

‹

‹

‚

. (3.14)

19

As the direct vectors must be a solution to all reciprocal lattice vectors, the relation

AT “ 2πG´1HT (3.15)

needs to be fulfilled. Here, A is the matrix which contains the real space vectors with

A “ pa,b,cqT . Equation 3.15 connects the direct and the reciprocal lattice and if the

triplets formed for G belong to the same system, its inverse G´1 multiplied with the

corresponding Laue indices will lead to the according real space vectors. The algorithm

can therefore be performed by multiplying G´1 with vectors of the form

m “

¨

˚

˚

˝

m1

m2

m3

˛

‹

‹

‚

. (3.16)

The vector entries mi are integer values imaging the Laue indices in a reasonable range.

As an example, this range can be chosen in an interval of mi ε (-3,3) [10]. Vectors of the

reduced cell can be obtained, if the m matches ph1,h2,h3qT , pk1,k2,k3qT or pl1, l2, l3qT .

The unit cell parameters can then be obtained by sorting the lengths of the products

2πG´1 ¨ m in ascending order. The three shortest entries with non-coplanar vectors are

the new parameters of the unit cell. Furthermore, these vectors describe the reduced basis

of this new unit cell.

3.2.1 Notation of Planes and Directions

In crystallography, there is a set of notations which is used to indicate different geo-

metrical information such as points, directions and planes. To avoid any possibility of

confusion, the nomenclature present in crystallography is briefly introduced.

As discussed earlier, any lattice node (point) of the direct lattice can be described by

the linear combination of the lattice vectors by p “ ua ` vb ` wc where u, v and w are

any integer values. Any other point of the lattice can be reached by adding the offset r0

relative to the origin of the basis with p “ r0 ` ua ` vb ` wc.

Due to the symmetry properties of the crystal, the lattice can also be described in terms

of infinitely extended, equidistant sets of planes. Such planes are usually described using

Miller indices. The Miller indices are a set of three integer numbers, relatively prime and

indicated by (hkl) [47]. Each such a triplet describes a specific plane of the lattice.

20

If the description relates to all symmetrically equivalent planes, the notation {hkl} is

used2. Vectors (or directions) are denoted differently within the crystal lattice. The no-

tation [uvw] is used to describe a specific direction. All symmetry equivalent directions

and vectors are then denoted by xuvwy.

A slightly different notation is used in the later described formalism. Instead of (hkl),

the notation (uvw) is used to describe a plane. More precisely, to describe the crystal-

lographic plane parallel to the substrate. This is simply to avoid any possible confusion

with the Laue indices of diffraction hkl. In this way, the Laue indices are always used

without brackets or parentheses, unless noted. The notations are summarized in the table

below.

Table 3.2: Description of crystallographic notations

Notation Describes

(hkl) a crystallographic plane

{hkl} symmetrically equivalent planes

ruvws a direction in the lattice

xuvwy symmetry equivalent directions in the lattice

hkl the Laue indices of diffraction

(uvw) the contact plane

2For example the plane {100} of a cubic crystal system indicates at the same time the planes (100), (1̄00),

(010), (01̄0), (001) and (001̄). The bar is used for negative indices. This corresponds to the six surface

areas of a cube.

21

3.3 X-ray Diffraction

Diffraction experiments are used to expose the inner structure of crystalline materials. A

necessary (but not sufficient) requirement to resolve such a structure needs radiation with

a wavelength comparable to, or smaller than the investigated dimensions of the repeated

unit [6]. As distances of atomic and molecular structures are typically in the range of 1 Å,

X-rays with a wavelength region between 10´12 m to 10´10 m are particularly suitable.

Several conditions need to be fulfilled in order to observe diffraction. The basic condi-

tions of diffraction were first formulated by Max von Laue3 as well as by the father-and-

son team Lawrence and William Henry Bragg4. In a diffraction experiment, the sample

is irradiated by a monochromatic X-ray beam and the intensity of the scattered beam is

recorded with a detector. A schematic drawing of the beam geometry is shown in Figure

3.3a. The incident beam impinges the sample surface under the angle αi and is described

in terms of the wave vector ki. The scattered beam is represented by its wave vector k f

and encloses the angle α f with the lattice plane. The length of the incident wave vector

|ki| is 2π{λ . Scattering of the X-rays from the electron cloud is an elastic scattering

process (Thomson scattering), thus the length of the scattered wave vector is written as

|k f | “ |ki| “ k “
2π

λ
. (3.17)

The momentum transfer due to the scattering process is the quantity which is probed

during a diffraction experiments. It is represented by the scattering vector

q “ k f ´ ki. (3.18)

In the previous chapter, the definition of reciprocal lattice vector ghkl was given. Accord-

ing to the Laue condition, a diffraction peak is observed only if the length as well as the

direction of the scattering vector is equal to a reciprocal lattice vector. This is expressed

as

q “ ghkl. (3.19)

3Awarded the Nobel Prize in Physics 1914 ”for his discovery of the diffraction of X-rays by crystals.”
4Jointly awarded the Nobel Prize in Physics 1915 ”for their services in the analysis of crystal structure by

means of X-rays.”

22

The indices h, k, and l are the indices of the probed plane in the direct lattice, where the

net plane distance between parallel planes is dhkl (Figure 3.3). In terms of the reciprocal

lattice, the indices describe reciprocal lattice points.

Figure 3.3: Schematic drawing of a diffraction geometry to a) show the scattering vector q formed

through the difference in scattered and incident wave vectors and b) indicate the path difference

∆ with the setup in specular condition.

Due to the geometric relation between direct and reciprocal lattice, an equivalent formu-

lation for diffraction is possible: ”Diffraction occurs only if the scattering vector q is

perpendicular to a net plane indicated by (hkl). In this simplified image, the distance of

the parallel direct lattice planes dhkl can thus be calculated with

dhkl “
2π

|ghkl|
“

2π

q
. (3.20)

The wave vectors and the reciprocal space vectors are in general three-dimensional vec-

tors. Depending on the experiment, different components of the scattering vector are

accessible. As we will see later, the Laue condition needs to be fulfilled also for individ-

ual components of q. It is therefore possible to derive three-dimensional periodicities of

a crystal such as the edge lengths of the unit cell and their enclosed angles. The Laue

condition gives an expression for diffraction in terms of a reciprocal lattice vector. An

analogous description for using real space components only is expressed by Bragg’s law.

It can be seen as a real space equivalent and is divided in two sub-conditions. Again, a

monochromatic primary beam (ki) is considered, which is elastically scattered leading to

a scattered beam k f . From geometric considerations using Figure 3.3 b) it can be derived

that the path difference is

∆ “ dhkl sin θ . (3.21)

Ideally, scattered waves interfere completely constructively when they are in phase, and

destructively when they are half a cycle out of phase. The path difference needs therefore

to be an integer multiple of the used wavelength with ∆ “ nλ .

23

The angle θ “ 2θ{2 can be expressed as half of the scattering angle 2θ . This leads to the

first condition, the known Bragg equation

nλ “ 2dhkl sin

ˆ

2θ

2

˙

. (3.22)

The second condition to be fulfilled restricts the angles of incident and scattered beam.

The primary and the scattered beam have to enclose the same angle θ to the (hkl)-plane.

With regard to Figure 3.3 this means αi “ α f “ θ . This is called a specular condition and

results in a scattering vector q which is always perpendicular to the net plane. The two

consequences from these conditions are therefore that diffraction occurs only at discrete

scattering angles of 2θ when the geometry fulfills the specular condition. To compare

diffraction patterns independently from the used wavelength, an expression for the length

of the scattering vector depending from the scattering angle can be derived. Combina-

tion of equation 3.20 and 3.22 allows to derive this expression where the length of the

scattering vector

q “
4π

λ
sin

ˆ

2θ

2

˙

(3.23)

is usually given in units of Å´1 or nm´1. Equation 3.23 is especially interesting in this

work as it allows a reciprocal space representation of the diffraction pattern measured

in real space (2θ). If the sample is probed in specular condition, only the out-of-plane

component qz of the scattering vector is probed which is here referred to as specular scan

or specular peak. The importance if this peak will we discussed in the following.

24

Chapter 4

Methods

4.1 Grazing Incidence X-Ray Diffraction (GIXD)

For crystallographic investigations, grazing-incidence X-ray diffraction is a widely used

technique. The surface sensibility makes is attractive for probing (organic) thin films. The

important characteristics of this method (as it is used for this work) are the small inci-

dence angle of the primary X-ray beam combined with a larger two-dimensional detector

to measure large areas of reciprocal space. Detailed information about the experimental

method and corresponding data processing can be found, among others, in [39, 45, 48].

In GIXD, the incidence angle αi is close to or below the critical angle αc of the sample

material. For any angle of incidence smaller than the critical angle, X-rays will undergo

total external reflection. An evanescent wave-field is formed parallel to the surface which

decays exponentially into the sample surface. Intensity enhancement of the transmitted

wave and a penetration depth in the region of a few nm are the consequences of this

phenomenon [48]. As the signal from the crystalline substrate is weakened, potential

diffraction peaks from the sample are easier to detect. In an ideal GIXD experiment, the

substrate signal is significantly lowered compared to experiments with higher incident

angles. As the penetration depth is in the of range 5 nm, it is not possible to avoid the

substrate signal.

The geometry of a GIXD experiment is shown in Figure 4.1a. The primary X-ray beam

with wave vector ki encloses the incident angle αi with the sample surface. Just as it

was used to introduce the fundamentals of Bragg diffraction, the scattered beam is de-

scribed in terms of its wave vector k f . The geometry of the two wave vectors determine

the scattering vector with q “ k f ´ ki. Diffraction peaks are obtained, where the Laue

condition q “ ghkl is fulfilled (cf. equation 3.18). The measured peaks on the detector

25

Figure 4.1: (a) Schematic drawing of the beam geometry of a grazing-incidence X-ray diffraction

(GIXD) experiment [10]. (b) Concentric rings representing the lattice points of a fibre-textured

sample in reciprocal space. A cut through the rings shows a reciprocal space map with a colour

code for the measured intensities [10]. (c) Typical reciprocal space map of a GIXD experiment

after data processing [13].

plane are defined intensities with associated two-dimensional coordinates. This is the

actual diffraction pattern in real (or pixel) space. A so-called reciprocal space map is

then a result of the data processing1. This map contains the intensities as a function of

the in-plane components qxy and the out-of-plane components qz of the scattering vector

(Figure 4.1c).

On the pattern shown, two features such as a Debye-Scherrer ring as well as the substrate

peaks are indicated with white arrows [10]. Another ”feature” is clearly visible in this

image; Along the vertical axis of qz, a wedge with no diffraction information appears.

Due to the beam geometry, this region in reciprocal space is not accessible with GIXD

experiments. As stated later, specular XRD measurements can help to provide additional

data where qxy “ 0.

The in-plane component of the scattering vector is the projection of the two surface-

parallel components qx and qy with qxy “
b

q2
x ` q2

y and a result from a static GIXD

measurement. For samples, where the crystallites exhibit a preferred orientation along

the out-of-plane direction (fibre-textured samples), the points in reciprocal space appear

as concentric rings around that axis. The reciprocal space map is nothing else than a cut

through these rings which reduce to points in a two-dimensional image (Figure 4.1b). If

the crystalline thin film shows both, preferred in- and out-of-plane orientation, the re-

ciprocal lattice points appear in the form of distinct points in reciprocal space. In this

case, the sample has to be rotated around its surface normal. The integration over a full

rotation provides then a reciprocal space map containing all diffraction information of

the sample. The combination of several patterns (each measured at different rotational

1Which can be conveniently done using the comprehensive software tool GIDVis [39].

26

angles) allows three-dimensional representation of the the scattering vector [45].

For this work however, the two-dimensional diffraction data with their components qxy

and qz are used for indexing. The underlying formalism for this procedure will be intro-

duced in the following chapter.

4.2 The Role of the Specular Scan

In general, the determination of a unit cell solution through indexing of a GIXD pattern

does not necessarily require the presence of a specular peak. The indexing formalism

which is used in this work, however, considers the contact plane of the sample with re-

spect to the substrate surface via a separate set of parameters. This makes the algebraic

solution for the unit cell a more challenging task. A specular scan provides an additional

peak position, which makes the computational determination of the unit cell solution sig-

nificantly more efficient.

The fundamentals to measure such a specular peak were already discussed in the last

chapter; The incident angle of the primary beam and the angle of the scattered beam are

equal with the value of θ . The scattering vector q always points perpendicular to the plane

parallel to the substrate surface. That means, with z direction defined as out-of-plane di-

rection, only the z component qz is probed with this method. In-plane periodicities cannot

be measured this way.

As discussed previously, the scattering vector is split in two components for the in-

dexing procedure. The in-plane components qxy and the out-of-plane components qz.

The measurement in specular condition provides one additional peak where qxy “ 0 and

qz “ qspecular. This contribution is of special interest as this peak (series) is located in

an inaccessible region of reciprocal space map in GIXD measurements. This additional

information is treated as an additional input parameter, which reduces complexity of the

algorithm and the associated computational effort.

When a specular scan is performed with an X-ray diffractometer, out-of-plane period-

icities are accessible in θ{2θ operation mode. The so obtained diffraction pattern is

expressed as intensity of the scattered beam over scattering angle 2θ . After identification

of the substrate diffraction peak(s), the out-of-plane component of the scattering vector

qz can be deduced with equation 3.23.

27

Chapter 5

Indexing Formalism and Mathematical

Preparation

The following chapter provides a summary of the mathematical toolkit necessary for this

work. The theoretical treatment and the formulae are adopted from publications of J.

Simbrunner et al., unless denoted [10, 11, 12]. For the sake of a better overview, the two

cases with different contact plane descriptions are discussed separately. In each case, a

numerical optimization algorithm is applied on the derived unit cell solutions. As the

algorithm is the same for both, the special case and the general case, it is summarized

in one sub-section of this chapter. The same mathematical notation is retained where

the unit cell parameters of the direct cell are denoted as a, b, c, α , β and γ . The cell

parameters in reciprocal space are a˚, b˚, c˚, α˚, β ˚ and γ˚. The equations for conversion

from reciprocal space to real space and vice versa are summarized in the Table 5.1 at the

end of this introduction.

The analytical derivation is based on a laboratory coordinate system where the xy plane

is oriented parallel to the substrate surface. This plane parallel to the substrate surface

(contact plane) is described by the means of the three Miller indices puvwq. Two cases can

be distinguished for derivation of the unit cell constants: (i) The non-rotated case where

the p001q lattice plane is parallel to the surface and (ii) the rotated case with a general

contact plane denoted by puvwq. The terms ’special case’, ’p001q-case’ and ’non-rotated

case’ are all synonyms for the configuration with the p001q net plane being parallel to

the xy plane. The analytical description starts with the matrix A˚
001 describing a general

crystallographic cell in terms if its lattice constants. In a general case, this cell has to be

rotated around the zone axis (cf. Figure 5.1). This axis is defined by the surface normal

vector σ1 of the p001q plane and the new normal vector σ2 of the puvwq plane.

28

Figure 5.1: Schematic drawing of a triclinic cell to demonstrate the parameters of rotation. For

description using a general contact plane, all vectors and planes have to be rotated around the

zone axis defined by the vector n. It can be constructed using the surface normal vectors σ1 and

σ2, as indicated with the image in the center.

For example, for transformation from the p001q plane to the (-1-10) plane, all planes

and vectors have to be rotated around the zone axis [1-10] by the rotation angle Φ. The

transformation of the lattice planes and of the crystallographic directions is illustrated in

Figure 5.1 from left to right.

Table 5.1: Summary of relations to convert real space parameters a, b, c, α , β and γ to reciprocal

space parameters a˚, b˚, c˚, α˚, β ˚ and γ˚ and vice versa. The volume is denoted by V .

a˚ “
2πbcsinα

V
cosα˚ “

cosβ cosγ´ cosα

sinβ sinγ
sinα˚ “

V

abcsinβ sinγ

b˚ “
2πacsinβ

V
cosβ ˚ “

cosα cosγ´ cosβ

sinα sinγ
sinβ ˚ “

V

abcsinα sinγ

c˚ “
2πabsinγ

V
cosγ˚ “

cosα cosβ ´ cosγ

sinα sinβ
sinγ˚ “

V

abcsinα sinβ

cosα “
cosβ ˚ cosγ˚´ cosα˚

sinβ ˚ sinγ˚
cosβ “

cosα˚ cosγ˚´ cosβ ˚

sinα˚ sinγ˚
cosγ “

cosα˚ cosβ ˚´ cosγ˚

sinα˚ sinβ ˚

V “ abc
a

1´ cos2 α´ cos2 β ´ cos2 γ`2 cosα cosβ cosγ “ abc sinα˚ sinβ sinγ

29

5.1 Special Case: Contact Plane (001)

Throughout indexing of GIXD patterns, sets of Laue indices h, k and l are assigned

to individual Bragg peaks. As emphasized, these peaks are visible only if a scattering

vector q images a vector of the reciprocal lattice g. This key relation allows to describe

diffraction peaks in terms of reciprocal lattice vectors. For a contact plane with indices

p001q, such a vector can be expressed as

g “

¨

˚

˚

˝

gx

gy

gz

˛

‹

‹

‚

“ A˚
001

¨

˚

˚

˝

h

k

l

˛

‹

‹

‚

. (5.1)

The quadratic matrix A˚
001 includes the crystallographic cell constants and can be explic-

itly written as

A˚
001 “

¨

˚

˚

˝

a˚ sinβ ˚ sinγ 0 0

´a sinβ ˚ cosγ b sinα˚ 0

a˚ cosβ ˚ b˚ cosα˚ c˚

˛

‹

‹

‚

. (5.2)

Using the inverse relationship

A001 “ 2πA˚´1

001 , (5.3)

the matrix is convertible and can be stated through the real space lattice vectors a0, b0

and c0 by

A001 “

¨

˚

˚

˝

a0

b0

c0

˛

‹

‹

‚

“

¨

˚

˚

˝

a 0 0

b cosγ bsinγ 0

c cos β ´csinβ cosα˚ csinβ sinα˚

˛

‹

‹

‚

. (5.4)

The determinant of this matrix yields the volume V of the crystallographic unit cell by

V “ detpA001q “ abcsinα˚ sinβ sinγ. (5.5)

The reciprocal lattice vector stated in equation (6.14) can be summarized and expressed

in two components where gxy comprises the in-plane part and gz the out-of-plane part of

the vector. With the geometrical relations stated in Table 5.1 above, the components can

be explicitly written as

g2
xy “ g2

x ` g2
y “ h2

ˆ

2π

asinγ

˙2

` k2

ˆ

2π

bsinγ

˙2

´ 2hk
2π

asinγ

2π

bsinγ
cosγ (5.6)

and

gz “ ha˚cosβ ˚ ` kb˚ cosα˚ ` lc˚
. (5.7)

30

With this separation, step-wise determination of the unit cell parameters becomes fea-

sible. The cell parameters a, b and γ are accessible by evaluation of the in-plane part

(equation (5.6)) under systematic variation of the Laue indices h and k. The out-of-plane

part stated in equation (5.7) can be used in a subsequent step to derive the remaining three

parameters α , β and c. The implementation of the here stated formalism is summarized

in Chapter 6. Prior to implementation, some mathematical adaption and preparation is

necessary.

The unit cell constants can be derived by making use of the above-mentioned equations

(5.6) and equation (5.7). Upon evaluation of the equation for the in-plane component,

sets of partial solutions in the form of pa,b,γq can be derived. In this form, the equa-

tion is not solvable as (i) the desired parameters appear in quadratic form and (ii) one

equation is not analytically solvable for five unknown parameters. For the assumption of

fixed values for the Laue indices h and k, the number of unknowns is reduced to three.

To evaluate equation (5.6), it is linearized using the following substitutions:

ˆ

2π

asinγ

˙2

:“ X ,

ˆ

2π

bsinγ

˙2

:“ Y and
2π

asinγ

2π

bsinγ
cosγ :“ Z (5.8)

If the index i is considered to describe the qxy components of the i-th reflection, the Laue

condition can be written as

g2
xyi

“ h2
i X ` k2

i Y ´ 2hikiZ “ q2
xyi

(5.9)

For a set of three data points and their in-plane components, respectively, equation (5.9)

can be expressed in terms of a matrix

¨

˚

˚

˝

h2
1 k2

1 ´2h1k1

h2
2 k2

2 ´2h2k2

h2
3 k2

3 ´2h3k3

˛

‹

‹

‚

¨

˚

˚

˝

X

Y

Z

˛

‹

‹

‚

“

¨

˚

˚

˝

q2
xy1

q2
xy2

q2
xy3

˛

‹

‹

‚

(5.10)

where solutions for the pX ,Y,ZqT vectors are derivable by inserting permutations of

phi,kiq tuples and evaluating the relation for linearly-independent sets of qxyi
. One task of

the Indexing Routine described in the following chapter is the generation of all the possi-

ble permutations with subsequent evaluation of each matrix. By use of the substitutions

(5.8), solutions for pa,b,γq are thereby derived. For the remaining unit cell constants,

equation (5.7) is rewritten using the following substitutions:

a˚cosβ ˚ :“ κ, b˚ cosα˚ :“ λ and c˚ :“ ρ. (5.11)

31

With the three Laue indices h, k and l, the Laue condition for the out-of-plane component

is hereafter given as

gzi
“ hiκ ` kiλ ` liρ “ qzi

(5.12)

and the according linear system of equations is expressed as

¨

˚

˚

˝

h1 k1 l1

h2 k2 l2

h3 k3 l3

˛

‹

‹

‚

¨

˚

˚

˝

κ

λ

ρ

˛

‹

‹

‚

“

¨

˚

˚

˝

qz1

qz2

qz3

˛

‹

‹

‚

(5.13)

where the qzi
are the out-of-plane components of an independent Bragg peak series. With

the calculated terms of pκ,λ ,ρqT, the reciprocal lattice constants are determined (cf. sub-

stitutions (5.11)). From that, the unit cell parameters of the direct lattice can be derived

with the relations given in Table 5.1.

The two systems, namely the one for qxy and the one for qz, are evaluated one after

another and yield sets of solutions of the form pa,b,c,α,β ,γq for a p001q contact plane.

5.2 General Case: Contact Plane (uvw)

The above-stated special case is no longer sufficient for the indexing procedure, if the

crystallographic plane parallel to the substrate surface can not be described by a p00wq-

set of Miller indices. In the general case, the matrix A˚
001 (cf. equation (5.2)) needs

to be rotated around the zone axis as schematically shown in Figure 5.1. The rotation is

achieved by applying a rotation matrix R on A˚
001, which follows the condition R´1 “ RT .

It can be shown that the application of a general rotation on the real space lattice vectors

leads to identical rotation in reciprocal space. With equation (5.3), this can be formulated

by

R

¨

˚

˚

˝

a0

b0

c0

˛

‹

‹

‚

T

“ RAT
001 “ rA001RTsT “ 2πrA˚´1

001 RTsT “ 2πrpRA˚
001q´1sT

. (5.14)

The rotation R applied on real space lattice vectors yields the rotated lattice vectors of

the form a “ Ra0, b “ Rb0 and c “ Rc0. This allows to state a general expression of the

inverse relation (5.3) where

A “

¨

˚

˚

˝

a

b

c

˛

‹

‹

‚

“ 2πA˚´1

(5.15)

32

and A˚ “ RA˚
001.

The axis of rotation is defined by the unit vector n which can be derived by the vector

product

n “

¨

˚

˚

˝

n1

n2

n3

˛

‹

‹

‚

“
σ1 ˆ σ2

|σ1 ˆ σ2|
, (5.16)

where the surface normal vector of the p001q plane σ1 and the surface normal vector of

the puvwq plane σ2 are defined by

σ1 “ A˚
001

¨

˚

˚

˝

0

0

1

˛

‹

‹

‚

and σ2 “ A˚
001

¨

˚

˚

˝

u

v

w

˛

‹

‹

‚

. (5.17)

The angle of rotation Φ is the angle between the two normal vectors (cf. Figure (5.1),

center). It can be derived by the scalar product

cosΦ “
σ1 ¨ σ2

|σ1| |σ2|
. (5.18)

With this, the rotation matrix R can be explicitly written as

R “

¨

˚

˚

˝

n2
1p1 ´ cosΦq ` cosΦ n1n2p1 ´ cosΦq ` n3 sinΦ n1n3p1 ´ cosΦq ´ n2 sinΦ

n1n2p1 ´ cosΦq ´ n3 sinΦ n2
2p1 ´ cosΦq ` cosΦ n2n3p1 ´ cosΦq ´ n1 sinΦ

n1n3p1 ´ cosΦq ` n2 sinΦ n2n3p1 ´ cosΦq ´ n1 sinΦ n2
3p1 ´ cosΦq ` cosΦ

˛

‹

‹

‚

(5.19)

Using this notation, R describes a rotation of the lattice vectors and planes by the angle

of Φ around the zone axis n. With the substitutions

za “
2π

asinγ
and zb “

2π

bsinγ
, (5.20)

the components of the unit vector n are

n1 “
uza cosγ ´ vzb

pu2z2
a ` v2z2

b ´ 2uvzazb cosγq1{2
(5.21)

and

n2 “
uza sinγ

pu2z2
a ` v2z2

b ´ 2uvzazb cosγq1{2
. (5.22)

The combination of equation (5.17) and equation (5.18) allows to state a different expres-

sion for the angle of rotation where

cosΦ “
ua˚cosβ ˚ ` vb˚ cosα˚ ` wc˚

ru2z2
a ` v2z2

b ´ 2uvzazb cosγ ` pua˚cosβ ˚ ` vb˚ cosα˚ ` wc˚q2s1{2
. (5.23)

33

In conformity with the expression of a reciprocal lattice vector for a p001q plane (equation

(6.14)), a general formulation can now be given by

g “ RA˚
001

¨

˚

˚

˝

h

k

l

˛

‹

‹

‚

“ A˚
uvw

¨

˚

˚

˝

h

k

l

˛

‹

‹

‚

(5.24)

It is herewith possible to derive explicit expressions for the length gxyz “
b

g2
x ` g2

y ` g2
z

and for the out-of plane part gz of the reciprocal space vector:

g2
xyz “ h2z2

a ` k2z2
b ´ 2hkzazb cosγ ` pha˚cosβ ˚ ` kb˚ cosα˚ ` lc˚q2

, (5.25)

gz “ rhuz2
a ` kvz2

b ´ phv ` kuqzazb cosγ

` pua˚cosβ ˚ ` vb˚ cosα˚ ` wc˚q

ˆ pha˚cosβ ˚ ` kb˚ cosα˚ ` lc˚qs

{ru2z2
a ` v2z2

b ´ 2uvzazb cosγq

` pua˚cosβ ˚ ` vb˚ cosα˚ ` wc˚q2s1{2
.

(5.26)

In specular condition, the in-plane contribution is zero and there is only an out-of-plane

part represented by qz. This component of the reciprocal lattice vector can be explicitly

written as

gspec “ ru2z2
a ` v2z2

b ´ 2uvzazb cosγ ` pua˚cosβ ˚ ` vb˚ cosα˚ ` wc˚q2s1{2 (5.27)

By the use of equation (5.25) and equation (5.27), the in-plane component gxy can be

described by

g2
xyg2

specV
2 1

p2πq4
“ pkw ´ lvq2a2 ` phw ´ luq2b2 ` phv ´ kuq2c2

` 2pku ´ hvqphw ´ luqbccosα

` 2phv ´ kuqpkw ´ lvqaccosβ

` 2phw ´ luqplv ´ kwqabcosγ

(5.28)

With this, the length of the reciprocal lattice vector can be rewritten as

g2
xyz “ h2z2

a ` k2z2
b ´ 2hkzazb cosγ

`
tgzgspec ´ rhuz2

a ` kvz2
b ´ phv ` kuqzazb cosγsu2

g2
spec ´ pu2z2

a ` v2z2
b ´ 2uvzazb cosγq

(5.29)

34

and a general expression for the in-plane component gxy can be achieved:

g2
xyg2

spec “ z2
aru2g2

xy ` phgspec ´ ugzq
2s ` z2

brv2g2
xy ` pkgspec ´ vgzq

2s

´ 2zazb cosγruvg2
xy ` phgspec ´ ugzqpkgspec ´ vgzqs

´ phv ´ kuq2z2
az2

b sin2 γ.

(5.30)

This general formula includes not only unit cell constants and Laue indices, but also two

out of the three Miller indices as well as the contribution of the specular scan. For a set of

Miller indices with p00wq, the equation reduces to the relation formulated for the special

case (cf. equation (5.6)).

Relation (5.30) is used for the following Indexing Routine to derive the parameters a,

b and γ while the Laue indices h and k as well as the two Miller indices u and v are

systematically varied. By evaluation of

ha˚ cosβ ˚ ` kb˚ cosα˚ ` lc˚ “
gzgspec ´ huz2

a ´ kvz2
b ´ phv ` kuqzazb cosγ

pg2
spec ´ u2z2

a ` v2z2
b ` 2uvzazb cosγq1{2

(5.31)

the three remaining parameters α , β and c are derivable upon variation of the third Miller

index w. The indexing procedure here is again a gradual process where only sub-sets of

unit cell solutions can be determined. In a first part, the set denoted as pu,v,a,b,γq can be

obtained. However, the appearance of the linearized system of equations is different as

the information of the contact plane is included. The Miller indices u and v are treated as

integer numbers and u ‰ v ‰ 0. To achieve again a solvable linear system of equations,

equation (5.30) can be written in a slightly different way as

X

„

1

g2
xy

ˆ

h ´ u
gz

gspec

˙2

`
u2

g2
spec

`Y

„

1

g2
xy

ˆ

k ´ v
gz

gspec

˙2

`
v2

g2
spec

´Z

„

1

g2
xy

ˆ

h ´ u
gz

gspec

˙2

`
u2

g2
spec

“ 1

(5.32)

where the following substitutions are used:

X “ z2
a

ˆ

1 ´ v2z2
b

sin2 γ

g2
spec

˙

, (5.33)

Y “ z2
b

ˆ

1 ´ v2z2
a

sin2 γ

g2
spec

˙

(5.34)

and

Z “ zazb

ˆ

cosγ ´ uvzazb

sin2 γ

g2
spec

˙

. (5.35)

35

The matrix entries are now coupled terms using the specular peak(s) and both, the in-

plane part and the out-of-plane part of a series of three linearly independent Bragg peaks.

With

fi1phiq “
1

g2
xyi

ˆ

hi ´ u
gzi

gspec

˙2

`
u2

g2
spec

, (5.36)

fi2pkiq “
1

g2
xyi

ˆ

ki ´ v
gzi

gspec

˙2

`
v2

g2
spec

(5.37)

and

fi3phi,kiq “ ´
2

g2
xyi

ˆ

hi ´ u
gzi

gspec

˙ˆ

ki ´ v
gzi

gspec

˙

´
2uv

g2
spec

(5.38)

the set of equations necessary for the first set of unit cell parameters is expressed in matrix

form as
¨

˚

˚

˝

f11ph1q f12pk1q f13ph1,k1q

f21ph2q f22pk2q f23ph2,k2q

f31ph3q f32pk3q f33ph3,k3q

˛

‹

‹

‚

¨

˚

˚

˝

X

Y

Z

˛

‹

‹

‚

“

¨

˚

˚

˝

1

1

1

˛

‹

‹

‚

. (5.39)

The partial solutions pu,v,a,b,γq can subsequently be computed using the substitutions

(5.20) as well as the relation

z2
az2

b

sin2 γ

g2
spec

“
XY ´ Z2

g2
spec ´ pu2X ` v2Y ´ 2uvZq

. (5.40)

In a subsequent part, the sets referred to as partial solutions pw,α,β ,cq can be determined

by evaluation of equation (5.31). The calculation is based on the same matrix system

as defined in equation (5.13) for the special case. However, an overdetermined LSE

(incorporating the specular scan by qspec,T from equation (5.27)) is used to derive w, α ,

β and c. The same substitutions as stated in (5.11) are applied for κ , λ and ρ . With the

additional abbreviation for the right-hand side terms of equation (5.31)

gzi
gspec ´ hiuz2

a ´ kivz2
b ´ phiv ` kiuqzazb cosγ

pg2
spec ´ u2z2

a ` v2z2
b ` 2uvzazb cosγq1{2

:“ qz,Ti
(5.41)

the set of equations can be explicitly written as

¨

˚

˚

˚

˚

˝

u v w

h1 k1 l1

h2 k2 l2

h3 k3 l3

˛

‹

‹

‹

‹

‚

¨

˚

˚

˝

κ

λ

ρ

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

qspec,T

qz,T1

qz,T2

qz,T3

˛

‹

‹

‹

‹

‚

. (5.42)

36

With this, the mathematical description of the indexing procedure is complete and ready

for programmatic implementation. It should be noted that this order and use of the equa-

tions is only one possibility out of symmetry-equivalent sets of equations. By using the

symmetry relations defined in Table 5.2, the algorithm is applicable also in different or-

ders and step-wise derivation of pu,v,a,b,γq+pw,α,β ,cq, pu,w,a,c,β q+pv,α,γ,bq as well

as pv,w,b,c,αq+pu,β ,γ,aq is possible.

Table 5.2: Summary of relations for the length gxyz, the in-plane part gxy and the out-of-plane part

gz of reciprocal space vectors.

g2
xyz “ g2

x`g2
y`g2

z “ h2a˚2` k2b˚2` l2c˚2`2hka˚b˚ cosγ˚`2hla˚c˚ cosβ ˚`2klb˚c˚ cosα˚

gzgspec “ hua˚2` kvb˚2` lwc˚2`phv` kuqa˚b˚ cosγ˚

`phw` luqa˚c˚ cosβ ˚`pkw` lvqb˚c˚ cosβ ˚

gspec “ pu
2a˚2` v2b˚2`w2c˚2`2uva˚b˚ cosγ`2uwa˚c˚ cosβ ˚`2vwb˚c˚ cosα˚q1{2

g2
xy “

ˆ

2π

asinγ

˙2 „ˆ

h´u
gz

gspec

˙2

`

ˆ

u
gxy

gspec

˙2

+

ˆ

2π

bsinγ

˙2 „ˆ

k´ v
gz

gspec

˙2

`

ˆ

v
gxy

gspec

˙2

´2
2π

asinγ

2π

bsinγ
cosγ

„ˆ

h´u
gz

gspec

˙

`

ˆ

k´ v
gz

gspec

˙

`

˙

uv
gxy

gspec

˙2

´
phv´ kuq2

q2
spec

ˆ

2π

asinγ

˙2 ˆ

2π

asinγ

˙2

sin2 γ

g2
xy “

ˆ

2π

asinβ

˙2 „ˆ

h´u
gz

gspec

˙2

`

ˆ

u
gxy

gspec

˙2

+

ˆ

2π

csinβ

˙2 „ˆ

l´w
gz

gspec

˙2

`

ˆ

w
gxy

gspec

˙2

´2
2π

asinβ

2π

csinβ
cosβ

„ˆ

h´u
gz

gspec

˙

`

ˆ

l´w
gz

gspec

˙

`

ˆ

uw
gxy

gspec

˙2

´
phw´ luq2

q2
spec

ˆ

2π

asinβ

˙2 ˆ

2π

csinβ

˙2

sin2 β

g2
xy “

ˆ

2π

bsinα

˙2 „ˆ

k´ v
gz

gspec

˙2

`

ˆ

v
gxy

gspec

˙2

+

ˆ

2π

csinα

˙2 „ˆ

l´w
gz

gspec

˙2

`

ˆ

w
gxy

gspec

˙2

´2
2π

bsinα

2π

csinα
cosα

„ˆ

k´ v
gz

gspec

˙

`

ˆ

l´w
gz

gspec

˙

`

ˆ

vw
gxy

gspec

˙2

´
pkw´ lvq2

q2
spec

ˆ

2π

bsinα

˙2 ˆ

2π

csinα

˙2

sin2 α

37

5.3 Numerical Optimization

One part of the postprocessing sub-routine is the numerical optimization of the unit cell

parameters. The numerical error with respect to the total length qxyz and the out-of-

plane component qz can be reduced if the Laue indices as well as the (reciprocal) lattice

constants are known. The algorithm is valid for small deviations and based on first-order

correction [12]. The numerical optimization can be achieved by minimizing the quadratic

error function

Enpa˚
,b˚

,c˚
,α˚

,β ˚
,γ˚q “

„ˆ

En
xyzpa˚

,b˚
,c˚

,α˚
,β ˚

,γ˚q

˙2

`

ˆ

En
z pa˚

,b˚
,c˚

,α˚
,β ˚

,γ˚q

˙21{2

.

(5.43)

For a total number of n diffraction peaks, the individual terms can be explicitly written

as

En
xyz “

„

1

n

n
ÿ

i“1

ˆ

gxyzi
`

δgxyzi

δa˚
εa˚ `

δgxyzi

δb˚
εb˚ `

δgxyzi

δc˚
εc˚

`
δgxyzi

δα˚
εα˚ `

δgxyzi

δβ ˚
εβ ˚ `

δgxyzi

δγ˚
εγ˚ ´ qxyzi

˙21{2
(5.44)

and

En
z “

„

1

n

n
ÿ

i“1

ˆ

gzi
`

δgzi

δa˚
εa˚ `

δgzi

δb˚
εb˚ `

δgzi

δc˚
εc˚

`
δgzi

δα˚
εα˚ `

δgzi

δβ ˚
εβ ˚ `

δgzi

δγ˚
εγ˚ ´ qzi

˙21{2

.

(5.45)

The i-th experimental peak position is considered by pqxyzi
,qzi

q together with the accord-

ing calculated peak position pgxyzi
,gzi

q. The correction terms with respect to the recipro-

cal lattice constants are denoted by εa˚ , εb˚ , εc˚ , εα˚ , εβ ˚ and εγ˚ . The quadratic error

function Enpa˚,b˚,c˚,α˚,β ˚,γ˚q is minimized if the partial derivative vanishes for every

component:

δEn

δa˚
“

δEn

δb˚
“

δEn

δc˚
“

δEn

δα˚
“

δEn

δβ ˚
“

δEn

δγ˚
“ 0. (5.46)

38

This condition leads to the following relation:

N
ÿ

i“1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f2
a˚,i fa˚,ifb˚,i fa˚,i fc˚,i fa˚,ifα˚,i fa˚,ifβ ˚,i fa˚,ifγ˚,i

fa˚,ifb˚,i f2
b˚,i fb˚,ifc˚,i fb˚,ifα˚,i fb˚,ifβ ˚,i fa˚,ifγ˚,i

fa˚,ifc˚,i fb˚,ifc˚,i f2
c˚,i fα˚,ifγ˚,i fc˚,ifβ ˚,i fc˚,ifγ˚,i

fa˚,ifα˚,i fb˚,ifα˚,i fc˚,ifα˚,i f2
α˚,i fα˚,ifβ ˚,i fα˚,i fγ˚,i

fa˚,ifβ ˚,i fb˚,ifβ ˚,i fc˚,if
2
β ˚,i fα˚,ifβ ˚,i f2

β ˚,i fβ ˚,ifγ˚,i

fa˚,ifγ˚,i fb˚,ifγ˚,i fc˚,ifγ˚,i fα˚,ifγ˚,i fβ ˚,ifγ˚,i f2
γ˚,i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ε˚
a

ε˚
b

ε˚
c

ε˚
α

ε˚
β

ε˚
γ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
N

ÿ

i“1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

fa˚,i

fb˚,i

fc˚,i

fα˚,i

fβ ˚,i

fγ˚,i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

˜

qxyzi
´ gxyzi

qzi
´ gzi

¸

(5.47)

where the individual matrix entries are the inner products of the vectors with partial

derivatives with respect to the edge lengths written as

fa˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δa˚

δgz,i

δa˚

˛

‹

‹

‹

‚

T

, fb˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δb˚

δgz,i

δb˚

˛

‹

‹

‹

‚

T

, fc˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δc˚

δgz,i

δc˚

˛

‹

‹

‹

‚

T

(5.48)

and with respect to the three angles described by

fα˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δα˚

δgz,i

δα˚

˛

‹

‹

‹

‚

T

, fβ ˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δβ ˚

δgz,i

δβ ˚

˛

‹

‹

‹

‚

T

, fγ˚,i “

¨

˚

˚

˚

˝

δgxyz,i

δγ˚

δgz,i

δγ˚

˛

‹

‹

‹

‚

T

. (5.49)

After successful assignment of the Laue indices and determination of the unit cell con-

stants, the matrix stated in (5.47) can be built with the computed derivatives. It is possible

to derive analytical expressions for the partial derivatives stated in (5.48) and (5.49). For

this work however, a numerical solution is implemented. The evaluation of the matrix

yields the numerical corrections in pa˚,b˚,c˚,α˚,β ˚,γ˚q and the real space lattice pa-

rameters can subsequently be derived by the relations stated in Table 5.1.

39

Chapter 6

Indexing Routine

The formalism for indexing two-dimensional GIXD data is given in the previous chapter.

Here, the programmatic implementation of this formalism is discussed. The Indexing

Routine is visualized in terms of flow charts (or flow diagrams). Subsequently, the indi-

vidual building blocks of the charts are explained in more detail using the accompanying

balloons. The routine is written in MATLAB, but for the sake of clarity no code is explic-

itly printed is this chapter. A copy of the total program source code as well as a collection

of the functions written for this routine can be found in the appendices. If necessary, used

build-in functions are discussed separately on the basis of the MathWorks R© MATLAB

Documentation [49, 50].

The icons and shapes used for the flow diagrams follow certain guidelines. Box titles and

statements within the icons used in the flow charts are written in italic font. Different

shapes and colours are used to describe distinct tasks. Pale blue shading is used to mark

Start and End of the overall program. The same colour in combination with rhombus-

shaped icons is used to define decisions. Data input is necessary only once in the whole

routine and it is marked with a grey parallelogram. In Figure 6.1, the data input icon is

located at position 1 . From a programmatic point of view, it is a part of the sub-process

Initialization, marked with 2 . Processes or sub-programs (sub-routines) as this one are

indicated by green boxes where vertical lines on the outer edges refer to a parallel process

(cf. sub-chapter 6.1). If the input data as well as the settings are checked and released, the

indexing sub-routines are accessed. The test is indicated by the decision box at location

3 .

Every of the four sub-routines is described within an individual flow chart. Results ob-

tained from the program parts Routine Part 1 at position 4 and from Routine Part 2 at

position 7 are marked with frames shaped like reels. The first set is obtained by running

40

Figure 6.1: Flow diagram describing the overall workflow of the Indexing Routine.

through Routine Part 1 with the results stated at position 5 . In a next step, the partial

unit cell results are sorted. The graphical user interface (which is introduced in Chapter

7) allows to apply two ways of sorting before continuing to the Routine Part 2 in 7 .

One button applies sorting of the preliminary sets of pu,v,a,b,γ,∆qxyq by the total error

41

in the components qxy. The other button allows sorting by the area of the associated

parallelogram. This corresponds to sorting by the smallest cell lengths. The area is

computed with

A|| “ ab sinγ (6.1)

and the parameters are subsequently arranged in ascending order beginning with the

smallest. The process Sorting is indicated by a funnel-like icon and marked with 6 .

Within the parallel computation of Routine Part 2, sets of

pu,v,w,a,b,c,α,β ,γ,∆qxy,∆qz,∆qxyzq are determined. The resulting sets are collected in

8 before being evaluated with the last sub-routine marked as Postprocessing at position

9 . The output of the routine after the postprocessing are sets of unit cell solutions and

associated indexed diffraction peaks. Figure 6.1 shows an overview of the workflow con-

taining the four sub-processes. These processes are implemented in a parallel way and

described separately.

6.1 Parallel Computing

Processing time and memory management are two important characteristics of an imple-

mented routine. Data-intensive problems can slow down the overall process and unnec-

essarily occupy the random access memory. To some extent, this problem can be avoided

by implementing parallel programming methods or parallel computing. The methods al-

low to divide tasks by outsourcing calculations to so-called workers. In the easiest case,

these workers are the cores of a multi-core central processing unit (CPU). Depending on

the system features, the numerical problems are separated and allocated to the individ-

ual cores. This is demonstrated in Figure 6.2. For mathematically unsophisticated tasks

in combination with a low number of loop iterations (e.g. adding numbers from 1 to

1000), the advantages of the parallel computation are insignificant. However, for more

elaborated processes such as the determination of matrix eigenvalues, parallel loops can

considerably enhance the performance in terms of computation time. Another example

for this is the here used application of the symbolic matrix left division for solving linear

systems of equations. Many different sub-programs are necessary for such a calculation

and parallel structures can be superior to a serial procedure, especially if the number of

loop iterations increases.

A common application in this work is the usage of a so-called parfor-loop. The loop

executes general for-loop iterations in parallel on workers specified in a parallel pool.

The parallel pool is the maximum number of workers to outsource the tasks. A pool is

42

started automatically if a parallel language feature such as parfor is used in the code.

Manual startup of a parallel pool can be done by entering parpool(m) into the com-

mand window. The input m specifies the number of workers. Such a pool has a certain

lifetime. After this time, a new one has to be initiated either manually or automatically

by starting the program. By default, the cluster of the pool is the local computer and the

lifetime is 30 min. The number of workers can be specified explicitly, if needed. In the

code here, the maximum number of workers is always adapted to the number of physical

cores and therefore not further specified in the code. Note that the startup of a parallel

pool takes some time as the code has to be shifted to the different workers. The second

and every further run of the loop (and therefore the overall routine) should then show

reduced runtime.

Figure 6.2: Working principle of (a) serial computation and (b) parallel computation of a random

for-loop with loop variable m. The loop is finished as soon as n“ N.

MATLAB provides application of parallel methods with the Parallel Computing Tool-

box™. The here proposed algorithm relies on such methods and the toolbox is therefore

a prerequisite to run the Indexing Routine. Especially the parallel execution of for-loops

reduces the computation time of the sub-programs and with this, the overall processing

time. As mentioned above, green boxes with parallel lines at the outer edges are imple-

mented in a parallel way. The first sub-routine is the Initialization.

6.2 Initialization

The aim of the Initialization building block is to verify the uploaded data for further

processing and to create general program variables and arrays. An overview of the tasks

and the according workflow is shown in Figure 6.3.

43

Figure 6.3: Flow diagram to visualize the building block Initialization. Data formatting and

specular peaks are verified and general variables such as the numeric matrices containing the

Laue index permutations are generated in this block.

44

The data have to be provided in a formatted .xls (or .xlsx) file. The first column contains

the numerical values of qxy and the second column the corresponding values for qz. Only

the first and the second column are considered from the routine. The specular scan has to

be included in the uploaded file. This is the entry with qxyi
“ 0 in the first column. The

uploaded file should only contain numeric floating-point numbers with a dot as decimal

separation. Any other data formatting will lead to an internal error in the routine, as in-

dicated by 11 in 6.3. The data are sorted and counted to create corresponding numeric

arrays with appropriate sizes for further processing. If the formatting is accepted and at

least one specular peak is contained, the first variables are generated. This is indicated by

10 and 12 . The balloon 13 marks a decision point. If no specular peak is available,

the program can be restarted with an altered data file. The second possibility, marked

by 14 , includes an indexing algorithm without the need of a specular peak. The exter-

nal MATLAB code can be called with a separated button at the graphical user interface.

The determination of the unit cell parameters upon indexing with qspec requires less it-

erative steps and is therefore less time-consuming. It is advised to include the specular

information when working with this app. In a next step, indicated by 15 , the numeric

arrays containing the permutations of the Laue indices h and k are generated. This is

realized with the function LPermutation(hkvalues,n). The source code of the main

program as well as for all written MATLAB-functions is included in Appendix B. The

function to create the matrices K takes two input parameters. The first, hkvalues, is

a vector defining the v elements available for permutation. The digits are specified by

the input variable n. For tuples, n is set to the value of 2 and for triplets it is set to 3.

The generation of these permutation matrices is done by iterative filling of empty default

matrices of the size pvn ˆnq, what corresponds to application of the known combinatorial

problem ’permutations with repetition’. For example, all permutations for h and k in a

range of ´1 and 1 can be explicitly read out with

K “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´1 ´1

0 ´1

1 ´1

´1 0

0 0

1 0

´1 1

0 1

1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.2)

45

where every row of the permutation matrix represents one tuple phkq. In general, vn com-

binations have to be considered. The regularly mentioned term ’systematic variation of

Laue indices’ corresponds effectively to scanning through the vn rows of the permutation

matrices with subsequent evaluation and comparison of the associated gxyphkq. The fur-

ther process requires the same permutation for the Miller indices puvq if a general contact

plane is chosen at the node 16 . If only the special case is considered, the permutation

matrix reduces to a vector of the form uv “ p0,0q.

To generate potential solutions for pu,v,a,b,γq, linearly independent combinations of

Bragg peaks have to be considered for the LSEs stated in the expressions (5.10) and

(5.39), respectively. A possible approach to check this (in)dependency could be imple-

mented as follows: The quotient of two different points qxy1
and qxy2

is computed where

qxy1
ą qxy2

. If the absolute difference between the quotient and its rounded integer neigh-

bour is below a certain numerical limit (e.g. εc “ 0.1 Å´1), the two values are considered

as linearly dependent. A pair of qxy1
and qxy2

where

d

ˆ

qxy1

qxy2

´

ˇ

ˇ

ˇ

ˇ

qxy1

qxy2

ˇ

ˇ

ˇ

ˇ

˙2

ą εc (6.3)

is considered to be numerically independent and a triplet of such independent values is

here referred to as start set. This has to be tested for every possible combination out of a

pick of pqxy1
,qxy2

,qxy3
q.

Such an algorithm was implemented in an early stage for the special case with a p001q

contact plane and should be considered if memory occupation is a problem and/or parallel

computation is not possible at the used machine. In reality, the routine switches through

a specified number of qxyi
-values (with the variable lines to permute), permutes the

lines in every possible way and thus creates a series of different start sets. These sets are

chosen independently from any user-defined numerical limit. If there is at least one pos-

sible combination of three qxyi
-values within the lowest and the lines to permute-th

entry, it can be found with this algorithm. This is especially true, as numerically simi-

lar values are traced and combined with the MATLAB build-in function uniquetol().

This function allows to summarize numerical values within a specified range. The intro-

duced algorithm has been tested by creation of ideal diffraction patterns and successive

parameter control and adjustment. The lowest values of qxyi
should be considered first,

as the range of possible Laue indices is narrowed. The according MATLAB function can

be found in the Appendix B under the name of function INITIALIZE GUI.m. The

outputs of the Initialization building block are the generated permutation matrices and

sets of start values. If the formatting is correct, the input data as well as the specular scan

46

are submitted to the next program block.

6.3 Indexing Routine Part I

In this part of the program, potential solutions of pu,v,a,b,γq are generated. Subse-

quently, the diffraction data are indexed via assignment of two Laue indices to each in-

plane component qxyi
of the scattering vectors and evaluated by their mean deviation. The

outcome reduces to pa,b,γq for the p001q case. To obtain the partial unit cell solutions,

linear systems of equations have to be formed and solved. These staps are marked with

20 to 22 in Figure 6.4 as part of the overall work flow of Routine Part 1. The systems

have the form of equation (5.10) for the special case. The right-hand side containing the

input data is derived within the Initialization process. For the special case, the matrices

can be formed by using again the permutation function LPermutation(hkvalues,n).

To generate every possible solution in pX ,Y,ZqT and pa,b,γq, respectively, every possible

form of the coefficient matrix has to be generated and solved. This can be achieved by

creating every possible permutation for six digits (h1,k1, ...h3,k3) out of a set with a lower

and upper limit for the Laue indices. This limit is specified by the program input Max.

hk for LSE on the GUI. As the start sets are usually generated from the lowest qxy-values,

an upper limit for the Laue indices of 3 to 5 has shown to be sufficient. Upon running

the routine, lower values (e.g. Max. hk for LSE = 3) should be considered first, as the

number of matrix equations to be solved grows again with the power of the digits.

Every homogeneous system of linear equations with a determinant unequal to zero has

a unique solution. The system contains at least two equations that are not linearly in-

dependent if the determinant is zero. For every matrix with a non-zero determinant, the

solution is determined by the MATLAB build-in function mldivide(A,b) which solves

the system Ax “ b for x. By using the substitutions defined in (5.8), the sets of pX ,Y,ZqT

can be converted to sets of pa,b,γq. The situation becomes more complex for the gen-

eral case, as the matrix entries do not only depend on the Laue indices h and k. Thus,

mere permutation of integer numbers is no more sufficient. The matrix stated in equa-

tion (5.39) has to be constructed in this case whereby the individual entries are defined

by the equations (5.36), (5.37) and (5.38). The generation of the matrices is realized by

the function function NEWMATRIXFILLER.m. The calculation of pX ,Y,ZqT and sub-

sequently the lattice constants is done using the function function XYZ.m within the

script of function ABG RESTRICTED.m. These steps are indicated by 22 and 23 .

47

Figure 6.4: Flow chart demonstrating the programmatic approach for the Indexing Routine 1.

The start sets pqxyi
,qzi

q are taken from the Initialization part, whereby the lowest values

in qxyz “ pq2
xy ` q2

z q1{2 are considered at first. The overall Routine Part 1 is contained in

48

the attached MATLAB function with the name

function PART ONE PARALLEL GUI RESTRICTIONS.m. The ensuing sorting step of

the sets is indicated by 24 in the flow chart 6.4 above. Non-real or negative numerical

values and values which do not lie within the restrictions are not further considered. As

demonstrated later in Chapter 7, restrictions can be applied to the lattice constants. Such

boundaries can help thereby to limit the number of possible results. Niggli’s criteria

for a reduced cell (cf., Chapter 3, Table 3.1) can be applied at this stage as a further

filtering tool. Condition (iv) and the general consequence for the angles where 60° ď

α,β ,γ ď 120° restrict the numerical output and only the partial solutions according to

recognised crystallographic criteria remain. The Sorting block is realized in the functions

function CALC ABGfromXYZ RESTRICTED v7 and function ABGNIGGLI.m. After

that sequence, the potential sets of pu,v,a,b,γq are ready to be indexed. The procedure

is applied iteratively to the sets, as indicated with 25 and 26 . Using the graphical

user interface, the maximal number for the Laue index permutation can be specified with

the program parameter Max. hk for indexing qxy. This value should be distinguished

from the maximum number for solving the LSEs, as not only the lowest values in qxy are

considered now, but all the diffraction peaks. For the higher values qxy, the maximum

number should increase. Testing the routine has shown that Max. hk for indexing qxy = 6

is a good starting point.

For every row ν out of the permutation matrix, the value of the component gxyphν ,kνq is

calculated according to equation (5.9). Subsequently, the squared differences

∆qxy,n
phν ,kνq “ rgxyphν ,kνq ´ qxy,ns2 (6.4)

are calculated and the Laue index tuple phν ,kνq is assigned to the qxy-value where the

difference ∆qxy,n
phν ,kνq is lowest. In reality, not only the tuple with the lowest deviation

is stored, but a set of four possibilities is shifted to further processing in Routine Part

2. This is because different combinations can lead to the same numerical values in gxy.

Only the determination of all three Laue indices allows to derive an unambiguous value.

After all the minimal differences p∆qxy1
,∆qxy2

, ...∆qxyN
q are found for each of the N data

points, the root mean square deviation for one set of pa,b,γq can be computed by

RMSDqxy
pa,b,γq “

g

f

f

e

1

N

N
ÿ

n“1

∆qxyn
“

g

f

f

e

1

N

N
ÿ

n“1

pgxyn
´ qxyn

q2. (6.5)

This is the quantity used to rate the ’quality’ of the solution. The assignment of the Laue

indices takes place in function NEWINDEXING 26.m and the calculation of the root

mean square deviations is done with function NEWRMSD GXY.m.

49

The indexing approach for the general case is the same as for a p001q contact plane. For

calculation of the scattering vector components, however, equation (5.30) as well as the

one from Table 5.2 have to be considered. An additional loop is also required to take the

variation of the Miller indices u and v into account. The routine is applied to all possible

sets of pu,v,a,b,γq and results in two outputs: (i) a list of diffraction peaks with assigned

sets of Laue tuples and (ii) an associated list of partial unit cell solutions. This output,

indicated by 27 in Figure 6.4, is the input for the Routine Part 2.

6.4 Indexing Routine Part II

The determination of the three remaining lattice constants α,β and c takes plane within

the block Routine Part 2. The individual sub-processes are demonstrated in Figure 6.5.

The programmatic approach is similar to the first part and the special case is treated in

the same way and in the same code as the general way in function PART TWO v12.m.

Solutions to linear systems of equations are generated what results in potential sets of

pu,v,w,a,b,c,α,β ,γq. The sets are rated numerically as well as in accordance with Nig-

gli’s criteria for a reduced cell. Only sets which pass these sorting steps are considered

for the subsequent indexing procedure. The mean deviations in qz and, in particular, in

qxyz are evaluated and used to sort and rate the output.

In this sub-routine, the overdetermined systems stated in equation (5.42) are evaluated.

For the general case, the systems can be explicitly written as

¨

˚

˚

˚

˚

˝

u v w

h1 k1 l1

h2 k2 l2

h3 k3 l3

˛

‹

‹

‹

‹

‚

¨

˚

˚

˝

κ

λ

ρ

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

qspec,T

qz,T1

qz,T2

qz,T3

˛

‹

‹

‹

‹

‚

. (6.6)

where the vector pκ , λ , ρqT contains the remaining unit cell parameters. In a first step,

labelled as 28 , start values for qz have to be determined just as for Routine Part 1.The

numerical values are summarized using the build-in function uniquetol(). In the gen-

eral case, the vectors on the right hand side of equation (6.6) contain not only the input

qz, but more complex terms. The information from the first indexing part for every of

the determined pu,v,a,b,γq-sets as well as the specular peak is needed to form the qz,Ti

terms stated in equation (5.41). Same applies for the expressions qspec,T from equation

(5.27). This is done prior to the generation of the matrices using the vectorized operations

in function CALCSUBSIS.m and function NEWPACKING.m. The terms and substitu-

tions for every partial solution are stored in matrices as part of three-dimensional numeric

50

arrays. This is based on the idea of real register cards, where a single page contains only

information for one specific solution of pu,v,a,b,γq. The information corresponding to

every set can be accessed by calling the index of the according page within a for-loop.

Figure 6.5: Work flow diagram for the indexing Routine Part 2 with the input from the preceding

blocks. The output contains whole unit cell solutions and indexed data points.

51

The following procedure is done for every loop iteration. In the first part of the routine in

sub-chapter 6.3, every value of qxy got tuples of Laue indices assigned. For every value

qxy, the corresponding qz,Ti
and qspec,T terms are retrieved and the matrices are filled with

the pairs ph1k1q, ph2k2q and ph3k3q together with the two Miller indices u and v of one

set. This step is marked by 30 . The third Laue index, l, is varied in a range specified by

the program parameter limit fuer l. The according parameter on the GUI is Max. Laue

index l and the default limit is set to l “ ˘6. All the permutations are generated in this

specified range with the known function LPermutation(), where the number of digits

is 3 as the positions l1, l2 and l3 have to be filled in the expression (6.6) above. The third

Miller index, w, is varied in the range between -Max. Miller index-1 and Max. Miller

index+1.

The generation in the special case simplifies to matrices of the form

¨

˚

˚

˚

˚

˝

0 0 w

h1 k1 l1

h2 k2 l2

h3 k3 l3

˛

‹

‹

‹

‹

‚

¨

˚

˚

˝

κ

λ

ρ

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

qspec

q1

q2

q3

˛

‹

‹

‹

‹

‚

. (6.7)

The values of qz as well as qspec can be used directly from the sorted data and no further

computation of substitutions is necessary. The variation of indices is identical for both

cases and indicated in Figure 6.5 with number 29 .

The systems are solved using again the backslash-operator for linear systems of equa-

tions. This is the same functions as mldivide(A,b) for a matrix equation Ax “ b. As

the linear systems are overdetermined (i.e. more rows than columns), the function returns

no exact solutions, but the least-squares solutions in pκ , λ , ρqT. These are found by inter-

nally minimizing norm(A*x − b,2). At this stage of the algorithm, the least-squares

solutions are sufficient, as the parameters are optimized in a later sub-routine. The norm

of the residual (b−A*x) can be evaluated and used as a sorting quantity. The norm of

the residual is zero if an exact solution is obtained.

With the solutions obtained from the linear systems, the sets of pu,v,w,a,b,c,α,β ,γq can

be computed using the earlier stated relations in (5.11). This conversion is marked with

31 in the flow chart. The sets are sorted and filtered according to Niggli’s criteria in

32 . A summary of the scalar-product criteria which include all six lattice constants can

be found in Table 3.1. The numerical restrictions are also applied at this point. Again,

only sets of solutions which pass the applied rules will be considered for the last indexing

step. The sets are indicated by the symbol shaped like register cards in 33 .

52

The general relation stated in (5.31) is considered for the second indexing procedure.

Note that the relation reduces to equation (5.12) if u “ v “ 0. As all variables are de-

rived at this point, the numerical values of the third Laue index l1 can be computed by

rearranging the equation to

l1 “
1

c˚

ˆ

qz,Ti
´ ha˚ cosβ ˚ ´ kb˚ cosα˚

˙

. (6.8)

The apostrophe should emphasize that these are real floating-point numbers. Four possi-

ble tuples phkq where assigned to every data point is the first part. To obtain the four ac-

cording Laue indices l for each diffraction peak tuple pqxy,qzq, the numbers are rounded

to the next integer numbers. With that, the according values for gz (equation 5.26) as

well as the values of gxyz (equation 5.25) can be calculated with the substitutions and

compared with the sorted experimental data by evaluating the errors of the form

∆qz
ph,k, lq “ rgzph,k, lq ´ qzph,k, lqs2 (6.9)

and

∆qxyz
ph,k, lq “ rgxyzph,k, lq ´ qxyzph,k, lqs2

. (6.10)

The Laue triplet hkl with the lowest value ∆qxyz
is assigned to the peak position pqxy,qzq.

In this way, one pick out of four possibilities is made by searching the minimum error

individually for every of the N peak positions. This procedure is applied within loops to

every peak position what allows again the comparison by the means of an overall error.

The comparison is done by deriving the root mean square deviations

RMSDqz
pa,b,c,α,β ,γq “

g

f

f

e

1

N

N
ÿ

n“1

∆qzn
“

g

f

f

e

1

N

N
ÿ

n“1

pgzn
´ qzn

q2 (6.11)

and

RMSDqxyz
pa,b,c,α,β ,γq “

g

f

f

e

1

N

N
ÿ

n“1

∆qxyzn
“

g

f

f

e

1

N

N
ÿ

n“1

pgxyzn
´ qxyzn

q2. (6.12)

These errors are stored together with the associated unit cell solutions and provide a quan-

tity to sort and rate the obtained sets. Beside the numerical solutions for pu,v,w,a,b,c,α,

β ,γ,∆qxy
,∆qz

,∆qxyz
q, three-dimensional arrays containg the indexed data are submitted to

the last block.

53

6.5 Postprocessing

Within the last block, the unit cell solutions containing all six lattice constants as well

as the deviations regarding the scattering vectors are obtained. Only those solutions are

released and indexed, which follow the user-defined numerical restrictions as well as the

crystallographic conventions according to Niggli (cf. [42]). The formalism stated earlier

does not allow to determine a unique mathematical unit cell solution. For this reason, an

additional sub-routine is implemented to check if the obtained solution corresponds to a

reduced unit cell. The reduced cell based on the three shortest lattice vectors is referred

to as Buerger cell. This solution of the cell is used for the next and final sub-routine, the

numerical optimization.

The derivation of the Buerger cell is based in the algorithm stated in Chapter 3.2. The

work flow is a part of the function function PART TWO v12.m and outlined in Figure

6.6. The program is set up to generate and compute vectors of the form

v “ 2πG´1m (6.13)

where G´1 contains a triple of linearly independent reciprocal lattice vectors (cf. equation

3.14) and m is a vector containing integer numbers imitating the Laue indices. In a first

step, indicated by 36 , the unit cell parameters are converted to reciprocal constants to

build the matrices A˚
001 and subsequently the lattice vectors g. The Laue indices obtained

from indexing are iteratively stacked to matrices as stated in the right equation in (3.14).

The determinant of every possible matrix is computed and sorted in ascending order. The

vectors ph1,k1, l1qT,ph2,k2, l2qT and ph3,k3, l3qT of the matrices where the value of the

determinant equals to 1 are used to compute three reciprocal lattice vectors of the form

g “

¨

˚

˚

˝

gx

gy

gz

˛

‹

‹

‚

“ A˚
001

¨

˚

˚

˝

h

k

l

˛

‹

‹

‚

(6.14)

for the case of a contact plane with Miller indices p00wq and

g “

¨

˚

˚

˝

gx

gy

gz

˛

‹

‹

‚

“ RA˚
001

¨

˚

˚

˝

h

k

l

˛

‹

‹

‚

(6.15)

for the case of a general contact plane puvwq.

54

Figure 6.6: Flow chart containing the determination of the reduced cell as well as the numerical

optimization with respect to the deviation in qz and qxyz.

55

The distinction between these two cases is indicated by the decision box 37 and the

corresponding functions within the attached MATLAB code are

function REDUCED CELL MY 001.m and function REDUCED CELL MY UVW.m for

the special case and for the general case, respectively. For the general case, the rotation

around the zone axis has to be considered by including the rotation matrix R. The de-

termination of the contact plane parameters (σ1, σ2, n, Φ) and the subsequent rotation

matrix is outlined by 38 and 39 in the flow diagram 6.6. The equations to determine

the contact plane parameters are stated in Chapter 3. For the generation of potential vec-

tors of the reduced cell v (equation 6.13), integer numbers in the range of p´6,6q are

varied to build vectors of the form m “ pm1,m2,m3qT. This is done with the known

function LPermutation(([−6:6],3)) for the three numbers m1, m2 and m3. In 40 ,

the matrices G are formed by using the three reciprocal lattice vectors from above. For

every combination of m1, m2 and m3, the vector v is evaluated in a loop with equation

(6.13), as marked by 40 . The norm of each of these resulting vectors is sorted in an as-

cending order and the three shortest and non-coplanar vectors are stored as new unit cell

vectors. Three vectors are considered coplanar if their scalar triple product is zero (i.e. a

vanishing volume). In this routine indicated by 42 , the coplanarity is tested by evalu-

ating the determinant of pa,b,cq. Any combination which yields a non-zero determinant

is considered to be non-coplanar and the resulting vectors of the reduced cell are obtained.

In this way, every unit cell solution is tested if it follows the algorithm of the reduced

cell. The resulting sets of unit cell solutions are numerically optimized with respect to

the deviation in qz and qxyz. The corresponding sub-routine in indicated by 44 and is a

part of the two codes for the reduced cell. The algorithm is the same for both, the general

case and the special case as the general formulae reduce to the one stated in special case

for puvwq “ p001q. Using the reciprocal lattice constants, the partial derivatives according

to the relations (5.48) and (5.49) have to be derived. These numerical differentiations are

computed by subtracting a backward expansion from a forward expansion and dividing

the interval by the total interval size 2δ “ 2 ¨ 10´5. This is known as central difference

method. For general function f pχq, this can be written as

d f pχq

dχ
“

f pχ ` δ q ´ f pχ ´ δ q

2δ
. (6.16)

The computation of the derivatives and the construction of the corresponding matrix

stated in relation (5.47) is done using a for-loop. This, and the sum over the N data

points, is embedded in the function function EPSILON UVW.m. The evaluated matrix

yields the so-called ε-vector. Every entry of this vector represents a correction term for a

56

reciprocal lattice constant. The correction terms are added in a vectorized form to the lat-

tice constants and the real space parameters are computed subsequently by the use of the

relations stated in the Table 5.1. With the new unit cell parameters, new numerical values

for gxy, gz and gxyz can be determined. This allows to evaluate the new numerical errors

in the form of the root mean square deviations defined earlier. This algorithm, containing

the generation of the derivatives, generation of the matrices, conversion of the parameters

and the conclusive determination of the deviations in summarized in 44 . In a last step,

the solutions are sorted with regard to the RMSD in the total length qxyz of the scattering

vectors. This parameter has shown to be most reliable when estimating the ’quality’ of an

obtained result. This result is released in the form of output files containing the unit cell

solution with corresponding errors as well as a list of the diffraction peaks with assigned

Laue indices.

With this last building block, the description of the Indexing Routine is complete. Starting

with formatting in the Initialization block, the experimental diffraction data are partially

indexed in qxy upon derivation of sets of pu,v,a,b,γq in the Routine Part 1. The sets

and the indexed data serve as input for the Routine Part 2. Within this sub-routine, the

remaining cell constants are determined and the diffraction data are assigned by three

Laue indices hkl. All determined solutions are evaluated with regard to crystallographic

conventions stated by Niggli and the reduces Buerger cells are derived. The output con-

tains the numerically optimized unit cell parameters and the the indexed peak positions

in formatted text files. The whole routine is embedded within a graphical user interface

(cf. Chapter 7) and its functionality is demonstrated on four independent examples in

Chapter 8.

57

Chapter 7

Instruction Manual and Tutorial

With the following chapter, the graphical user interface (GUI) of the indexing routine is

introduced. The main window consists of five different sub-windows, hereinafter referred

to as panels. Figure 7.1 shows a screenshot of the main window with the five panels

marked in different colours.

Figure 7.1: Screenshot of the indexing routine’s main window right after start and prior to any

input.

Below, the possible settings and features of every panel are explained individually. The

panels are indicated and described in the following order:

58

(i) Add Crystal Panel in magenta, (ii) Data Points and Representation Panel in red, (iii)

Indexing Panel in green, (iv) Error Panel in blue and (v) the Result Panel indicated in yel-

low. For demonstration purposes, an organic thin film sample with the name ”Cu INA”-

MOF is used. The peak positions are derived and provided by Lukas Legenstein using

the software tool GIDVis [39].

The program is provided in the form of a MATLAB application (.mlapp-file), written and

tested in MATLAB version R2019b, Update 5. One important prerequisite to operate the

indexing routing is the MATLAB Parallel Computing Toolbox™. As previously men-

tioned, the toolbox helps to reduce computation time through dividing program blocks

in smaller units. After successful download, the app should appear in the tab ’APPS’ in

your MATLAB interface. Beside the toolbox for parallel computing, no further installa-

tion is required and the app can be used right away. To access the program, please contact

manuel.kainz@student.tugraz.at.

7.1 Add Crystal Panel

The Add Crystal Panel is based on the formulas stated in the Chapter Indexing Formalism.

A screenshot is shown in Figure 7.2a. The panel serves two purposes. The first is to

check whether or not a cell fulfills Niggli’s criteria and the criteria for a reduced cell

according to Buerger. The second purpose is to compare generated (ideal) diffraction

peaks with data from GIXD experiments. It allows to quick-check unit cell configurations

and contact plane indices. Every unit cell input is tested for Niggli’s criteria and the

reduced cell according to Buerger is determined. If the criteria are met, the icon on the

left-hand side (’Niggli’s criteria’) is switched to green. The type of the cell is indicated

in the ’Information box’ (cf. Figure 7.2d). If a cell does not meet the criteria, a warning

message pops up: ’Warning: Entered cell does not meet Niggli criteria for a reduced

cell.’. When confirmed by pressing ’OK’, the peak positions are calculated with the

provided unit cell data and added to the graph in the Data Points and Representation

Panel (cf. Figure 7.2b). The icon remains red in this case.

The lattice constants of the reduced cell are printed in the table on the right-hand side

(cf. Figure 7.2c). If the input leads to a unit cell which can be reduced by the earlier

introduced Buerger-algorithm, the newly derived parameters are printed. Otherwise, the

input parameters are displayed at this location. As soon as the button ’Add crystal’ is

pressed and the input is reviewed, the icon with the label ’Buerger cell’ turns green. The

59

button with the label ’Clear crystal’ can be used to remove the input from the panel. All

data points from the Data representation graph will be removed in this case.

Figure 7.2: (a) Screenshot of the indexing routine’s Add Crystal Panel. (b) Image of the Data

representation graph with loaded diffraction peaks (black circles) and generated peak positions

(red crosses). (c) Table with parameters of the reduced cell. The table is cut out from (a) and

scaled up to show all six lattice constants. (d) Icon with information box indicating the type of

the cell according to Niggli’s criteria.

The Add Crystal Panel is an additional feature and does not include any indexing of

data points. A diffraction peak can be calculated in a straightforward manner, if all six

lattice constants as well as the Miller and the Laue indices are known. With these input

parameters, the ideal diffraction patterns are generated. The generated peak positions are

added to the Data Points and Representation Panel. If data points (diffraction peaks) are

loaded, they can be easily compared with each other (cf. Figure 7.2b). The input ’Max.

hk’ limits the maximal number of the two Laue indices h and k. It is separated from the

input variable ’Max. l’ to allow more variability when testing generated patterns. Peak

positions are calculated for permutations of Laue indices in the range from p´Max.hkq

60

to p`Max.hkq. The same applies for the maximal value of l. Plotting the generated

diffraction points can help to confine the range of potential unit cell solutions. This

trial and error approach is sometimes useful to figure out constraints in lengths and

angles. These constraints can be applied in the subsequent indexing procedure, as the

panel introduced in sub-chapter 7.3 allows to set restrictions to unit cell parameters and

contact plane indices.

7.2 Data Points and Representation Panel

The first part of the indexing workflow includes upload of the diffraction data. The

buttons to upload (and remove) peak positions are located within the Data Points and

Representation Panel and labelled ”Load data’ and ”Clear data’, respectively. If the

properties of the input data are fulfilled, peaks can be uploaded using the button ’Load

data’. The data are printed in the table on the left-hand side (see Figure 7.3). Here, ’data

point’, ’peak’ or ’peak position’ always refers to a pqxy,qzq–tuple. Successfully uploaded

peak positions are plotted directly in the Data representation graph. The requirements

for the input data are discussed in detail in Chapter 6. Most important, however, is that

the file with the diffraction data should not contain any other data type than numeric

floating-point numbers. A dot is used for decimal separation. When pressing the button

to load data, a Windows dialog box appears and allows to select files of the type .xls or

.xlsx. The data have to be provided as row vectors. The first column includes the qxy–

data, the second one the qz–data. As this routine is designed to make use of the specular

information, at least one entry in the first column has to be zero. An initialization program

in the background searches for this data point. If at least one specular peak is detected,

the icon labelled ’Specular scan’ toggles to green. If no such peak is contained in the

uploaded file, a message pops up printing ’No specular peak detected. Please reload

data!’. The user should add the specular information to the file or consider to use the

button ’Indexing without specular scan’. In this case, a sub-routine is started which

does the indexing of the diffraction peaks without any specular information. Hitherto,

this is a rather time-consuming procedure. The inclusion of a specular scan is highly

recommended.

61

Figure 7.3: Screenshot of the indexing routine’s Data Points and Representation Panel. An

arbitrary set of peaks (black circles) is used to demonstrate the functionality.

The data set is not only checked for specular information, but also for the formatting.

This includes the above mentioned representation as row vectors and the size of the data

set (i.e. the number of data points). The icon labelled ’Data formatting’ is switched to

green if at least four (linearly independent) peaks are provided. This is the minimum

number required to start this indexing routine. For data files with less than four peaks,

the following message appears: ’Not enough peak positions for indexing. Please reload

data!’. If the number of data points exceeds the value of 50, another message appears:

’The number of peak positions is above 50. Consider reducing the input’. To keep the

computational effort in a reasonable range, this limit should not be exceeded in the begin-

ning. If, however, enough restrictions (cf. Chapter 7.3) can be applied to the variables, the

number of data points can be expanded without any constraint. After successful upload

of the data points, the settings for the indexing algorithm have to be checked or adjusted.

7.3 Indexing Panel

The routine for indexing the uploaded GIXD data is controlled via the Indexing Panel.

The region is marked with a green frame in Figure 7.1. Three tabs are used to control

the routine and to provide maximal manual adjustability. The first tab, labelled Indexing,

is used to review the input and to start, stop and reset the calculations. A screenshot is

shown in 7.4. The button ’Check status of Part 1’ triggers a subprogram to request certain

parameters necessary for the routine. Such parameters are for instance the number of

62

data points, contact plane settings (Miller indices), restrictions of lattice constants and

presence of a specular peak. The panel interface right after start is shown in Figure 7.4a.

Red icons indicate that no checks are requested. The buttons to control the routine are

disabled in this case. If all conditions of the subprogram are fulfilled and ’answered’,

the upper icon turns green and further buttons are enabled, as shown in Figure 7.4b.

Incomplete requests are indicated by popup messages of the kind ’Declined. Please load

data and check formatting and specular scan!’.

Figure 7.4: Screenshot of the routine’s Indexing Panel. The image shows the tab ’Indexing’ for

two different states: (a) Right after start and (b) while the indexing routine is running

The indexing routine can be started by pressing the button ’Start indexing Part 1’. After

indexing the data in qxy, the results for the pa,b,γq-sets are shown in the Result Panel.

The status for the second part has to be checked by pressing ’Check status Part 2’. If both

icons are set to green, the second part of the indexing routine can be started by pressing

the button ’Start indexing Part 2’. The buttons ’Reset Part 1’ and ’Reset’ part 2’ allow to

set the routine to initial state (cf. Figure 7.4a).

Before starting the indexing procedure, certain adjustments can be done using the tabs

Indexing settings and Advanced setting. In any case, the settings should be reviewed

after successful upload of the peak positions. As mentioned earlier, applying constraints

to the unit cell parameters can help to reduce computational effort. This can be done in

the tab labelled as Indexing settings. The range for every of the six lattice constants as

well as the corresponding cell volume can be limited by tick off the according checkbox

placed on the left-hand side of the panel (cf. Figure 7.5). The ’Contact plane settings’

63

are located at the bottom of the panel. Three modes are provided. If the first checkbox

is enabled, the Miller indices are set to the values u “ 0, v “ 0. The indexing program

for the special case is applied in this case. The third index, w, is varied in the range

from p´Max.Miller indexq to p`Max.Miller indexq. This setting can be changed in the

Advanced settings tab, row 5. Only one checkbox can be chosen at a time. The second

checkbox allows to define one specific set of indices, without any permutations. The

indices have to be separated by using a comma in the form u,v,w. The input has to

be confirmed by pressing the ENTER key and is included to the algorithm by pressing

’Apply changed settings’. Changes are only accepted after this button is pressed. The

messages in the ’Information box’ inform about the current state of the settings. All input

can be set to default settings by pressing the button ’Reset settings’.

Figure 7.5: Screenshot of the routine’s Indexing Panel. The image shows the tab labelled as

Indexing settings. For demonstration purposes, three unit cell parameters are restricted and the

’Contact plane settings’ are adjusted for the special case.

The last checkbox allows to define a permutation range for the three Miller indices of

the contact plane. In Figure 7.5, the input is set to a value of 2. In this case, every

possible permutation of pu,v,wq in the range from ´2 to `2 is generated and tested by

the indexing program. The limit for the permutations can be set in the tab labelled as

Advanced settings via the variable ’Max. Miller index’. After the variables are reviewed

and/or adjusted in the Indexing settings tab, the routine is ready to use. Further tuning

of certain variables is possible in the tab labelled as Advanced settings, however, not

64

necessarily required. This tab requires some understanding of the algorithm proposed in

Chapter 6. It may occur that no unit cell solutions can be obtained by use of the default

settings or that only solutions with unsatisfying errors in the components of q are derived.

In this case, re-adjusting of the program parameters in the Advanced settings tab can be

useful. Even if solutions are obtained, the sets can be refined by the use of these settings

(i.e. by change of maximum order of the Laue indices). The tab contains eight parameters

(cf. Figure 7.6). As explained in Chapter 6, determination of potential unit cell solutions

requires solutions to linear systems of equations (LSEs).

Figure 7.6: Screenshot of the routine’s Indexing Panel. The image shows the Advanced settings

tab. The settings should not be changed, unless enough restrictions to the unit cell parameters can

be applied.

The start set needs three linearly independent pairs of pqxy,qzq. If the parameter ’Lines

to permute’ is set to the value of 3, a subprogram checks for linear dependence and

sets up LSEs for these three values with every permutation in the Laue indices between

p´Max.hk f or LSEq to p`Max.hk f or LSEq. With increase of the parameter ’Lines to

permute’ more combinations are considered what makes it more likely to determine so-

lutions. After possible solutions are provided through solving the LSEs, the in-plane

components of q are indexed. This occurs by assignment of the Laue indices and sub-

sequent evaluation of the RMSD. The program parameter ’Max. hk for indexing qxy’

allows to specify the upper limit for this indexing. In a refinement run (i.e. after the

range of the lattice constants can be restricted), this value can be increased to a value of 8

65

or more. It is advised not to change this parameter in the beginning. The parameter ’Max.

Laue index l’ defines the limit for the second set of the LSEs. As discussed earlier for

the Indexing settings, the maximal range for the Miller index permutations is defined by

the parameter ’Max. Miller index’. The last three program parameters of the Advanced

settings tab relate to the output of the determined solutions. The table where the results

are shown (marked in yellow in Figure 7.1) contains only solutions where the error in qxy

is lower or equal to ’dqxy-cutoff’. Furthermore, no solutions are indexed if the error in

the specular peak is greater than ’dqspec’. If the routine is started and not stopped man-

ually by the user, the algorithm will stop automatically as soon as the value ’Maximum

number of solutions’ is reached. All changes have to be confirmed by pressing ’Apply

changed settings’. The status is then indicated in the ’Information box’.

66

7.4 Error Panel

During the indexing procedure, the root mean square deviation (RMSD) is calculated for

the components qxy and qz as well as for the length qxyz of the scattering vector. The length

can be obtained from the experimental data by qxyz “
b

q2
xy ` q2

z . The error in the length

turned out to be a promising indicator for the choice of a possible unit cell solution and it

is therefore used as a sorting quantity. For this reason, the error is displayed throughout

the indexing procedure over the number of sweeps (cf. Figure 7.7).

Figure 7.7: Screenshot of the indexing routine’s Error Panel. In (a) the image shows the panel as

embedded in the graphical user interface. The image in (b) shows a cutout from the main window

while the routine is running. The error decreases with every sweep and the routine is stopped after

the error is below 0.6 %.

One sweep contains the obtained solutions from one set of pa,b,γq. The minimal error of

these solutions is printed in the graph labelled as ’Error map in qxyz’. The indication can

be used to monitor the error and to stop the algorithm if a proper value is met.

7.5 Result Panel

The unit cell solutions obtained from the indexing routine are presented in the form of

two tables. These tables are located in the Result Panel and marked with a yellow frame

in Figure 7.1. To give a better overview, the panel is divided in two and shown separately

in Figure 7.8. Every row corresponds to one possible solution. The solutions obtained

from the first part are stored in the left table (cf. Figure 7.8a) and labelled with a number

(#). The output is sortable by every quantity shown in the table by pressing the Ö-icon,

right beside to the variable names. In addition, the sets can be sorted by smallest area by

pressing ’Sort by parallelogram area’. The default sorting can be restored with the button

’Sort by dqxy’. As the first part of the algorithm is based on parallel-executed loops, it

67

can be stopped only during the initialisation phase. Usually this takes up to 20 seconds

after start up. To this point, the program can be stopped by pressing ’Stop Part 1’.

Figure 7.8: Screenshots of the indexing routine’s Result Panel. (a) shows the table containing the

results from the first indexing part. The complete unit cell solutions obtained from the indexing

routine are presented in the table shown in (b). The image in (c) shows a cutout from the Data

Points ans Representation Panel. The peak positions calculated from one solution (blue) are

printed together with the experimental data points (black).

The final results after the second indexing part are presented in the table located at the

right-hand side. It is shown as cutout in Figure 7.8b. The solutions are labelled with

numbers and sorted by the RMSD in qxyz. Again, all solutions can be sorted with the

Ö-icon. For demonstration purposes, the solution with row number 58 is selected and

added to the Data representation graph (cf. Figure 7.8c).

7.6 Tutorial

The application of the program is presented in terms of a short tutorial on a organic

thin film sample (”Cu INA”- MOF). A set of 26 peak positions is extracted from GIXD

68

patterns using the software tool GIDVis [39]. Two additional data points are obtained

from XRD experiments measured in specular condition. This leads to a total of 28 peaks

for the indexing procedure and for subsequent determination of a unit cell solution.

Having MATLAB installed, the app can be started with a double-click on the app-icon in

the tab ’APPS’. The graphical user interface starts, expands to full-screen size and is then

compressed to a default size. The icons may occur compressed or distorted, depending

on the screen size. The GIXD data are uploaded by pressing the ’Load data’ button and

selecting the according file. The file has to be of the format .xls or .xlsx. It is possible that

the main window is minimized during the selection. The window expands again as soon

as a file is selected. The uploaded data points are added directly to the graph in the form

of black circles. As all formatting requirements are fulfilled and two specular peaks are

contained in the data, both icons are set to green. Next, the indexing settings are checked.

As there’s no prior information, the routine is operated in general mode to estimate the

range of potential unit cell constants. The program parameter ’Max. Miller index’ is

set to 1. The Miller indices are therefore of the kind p11wq, p10wq, p00wq and so on.

By pressing the button labelled as ’Apply changed settings’, the changes are accepted.

The indexing procedure is initiated by checking the settings one more time by pressing

’Check status of Part 1’. A green lamp and enabled buttons indicate that the program

is ready. The routine is started by pressing ’Start indexing Part 1’ and ’Proceed’ in the

subsequently opened dialog box. After start up, a window containing status messages

opens. This window informs the user about the current state of the algorithm. The very

first run of the routine may takes more time due to startup of the MATLAB parallel pool.

69

The first part of the indexing routine is finished as soon as results appear in the left table

of the Result Panel. To continue indexing, the settings have to be checked by pressing

’Check status of Part 2’. Two options are enabled for the further process: (i) start indexing

the sets of pa,b,γq in ascending order or (ii) ticking the checkbox and define specific

lines to consider for the second indexing part. The checkbox is located below the button

’Reset Part 2’. The rows have to be specified using MATLAB syntax. The screenshot in

Figure 7.9 shows the indexing routine in use. The checkbox is enabled and two rows are

specified for the further indexing procedure. These rows are chosen as the corresponding

sets in the Results Panel exhibit comparably low errors (highlighted in gray).

Figure 7.9: Screenshot of the indexing routine’s Main Window in use. The indexing procedure is

finished and the peak positions obtained from the solution highlighted in blue is added to the data

representation graph.

By pressing the button ’Start indexing Part 2’, the routine assigns the remaining indices

and calculates the lattice constants α , β and c. In this example the routine is stopped after

two sweeps as the error in qxyz is in a range of below 1 %. With an error in this range, the

solution can be ’tested’ by adding the calculated diffraction pattern to the graph. The line

number has to be entered in the field beside the ’Add to chart’ button. After confirming

by pressing the ENTER key and pressing the button ’Add to chart’, the generated peak

positions are added to the graph. The peak positions generated with this unit cell solution

70

show good agreement with the experimental data. For further comparison, the solution

can be used as input for GIDVis. By use of the according Laue indices, the diffraction

peaks can be plotted directly on top of a reciprocal space map (cf. Figure 7.10). The Laue

indices are provided by the indexing routine in the form of a .xls-file. The file can be

generated by input of the row number in the corresponding field and pressing the button

’Export solution file’. An example of such a file is shown in Figure 7.11. It is advised to

use the software GIDVis together with the graphical comparison of the indexing routine

to achieve the best results.

Figure 7.10: Screenshot of a reciprocal space map generated in GIDVis. The white squares

represent the calculated peak positions using the derived unit cell solution and the Laue indices

provided by the indexing routine. Five data points are presented with the according Laue indices.

The errors in length qxyz and in the two components of the scattering vector are helpful

criteria for the search of a unit cell solution. However, the final choice of such a solution

depends also on other factors (e.g. highest symmetry of the cell and shortest lattice edge-

lengths). The here shown unit cell solution is not the only possible solution. For the

sake of a compact tutorial however, the discussion of other possibilities is postponed to

Chapter 8.

71

Figure 7.11: Screenshot of the output file generated by the routine. For the sake of brevity, the

file is cut after six peak positions. The locations of the different output information are marked

separately with braces.

The mathematically optimized solution chosen for this short tutorial is a cell of type I

with the following unit cell parameters:

u “ 0, v “ 0, w “ 2, a “ 14.52 Å, b “ 14.71 Å, c “ 17.67 Å, α “ 89.9°, β “ 89.9° and γ “

74.9°. The volume of the reduced Buerger cell is V “ 3642.1 Å3 and the mean deviation

in qxyz is 0.6 %. An additional check using the Add Crystal Panel of the indexing routine

confirms that the solution obeys the scalar-product criteria according to Niggli.

72

Chapter 8

Indexed Samples

The Indexing Routine is used for indexing and determination of the unit cell solution of

four different thin film samples. One example, namely the Cu INA - MOF fIna-04, was

shown earlier in sub-chapter 7.6. In this final chapter, the program is demonstrated on

three further samples. The input data were derived using GIDVis and provided as .xls-

files. The used data are explicitly printed in the Appendix A. Results are compared with

published values from literature if available.

8.1 Diindenoperylene (DIP)

Grazing incidence X-ray diffraction data of a DIP thin film on highly oriented pyrolytic

graphite (HOPG) are evaluated in this sub-chapter. Diindenoperylene is an organic semi-

conductor molecule with the chemical formula C32H16. A specular peak is provided at

qz “ qspec “ 1.776 Å´1 and used together with 11 other diffraction peaks for the subse-

quent indexing process. The routine is started with default contact plane settings where

the Miller indices are varied in a range between ´2 and `2. A total number of 52 “ 25

different combinations result which are tested in parallel manner. The partial solutions

from the first indexing part are sorted by the RMSD in qxy is ascending order. The second

indexing part is cancelled after 30 sweeps as the error in qxyz does not decrease with in-

creasing number of possible sets. The routine is re-started with readjusted settings where

the number of start sets is increased by setting ’Lines to permute = 5’ and ’Max. hk for

LSE = 4’. The contact plane settings are unchanged and the program runs again through

25 different pairs of Miller indices. The second indexing block yields first promising

results after approximately 20 sweeps and 10 minutes. The errors are in the range of 1

% and below, from this point on. A screenshot from this state of indexing is shown in

73

Figure 8.1. The solution with unit cell parameters a “ 8.49 Å, b “ 14.27 Å, c “ 16.64

Å, α “ 87.1°, β “ 89.2° and γ “ 89.9° is plotted in the Data representation graph. The

corresponding derived contact plane is indicated by puvwq “(-2-21). The errors can be

explicitly given with ∆qxy
“ 0.006 Å´1, ∆qz

“ 0.001 Å´1 and ∆qxyz
“ 0.004 Å´1. The

numerical deviations are in a low region and as the calculated pattern does practically

not depart from the experimental data, this solution is chosen for a further investigation.

In a next step, the program is used to test specific contact plane variations based on the

numbers derived above. Moreover, numerical restriction are made to concentrate the

calculation on solutions close to the above determined solution range.

Figure 8.1: Screenshot of the main window of the Indexing Routine upon indexing of the pro-

vided DIP data. The solution from the Result Panel, marked in blue, is used to generate a sim-

ulated diffraction pattern. The pattern is added to the Data Points and Representation Panel for

graphical comparison with the experimental data points.

After cycling through different permutations of the Miller indices consisting of combi-

nations like p221q, (2-12) or p121q, a concluding mathematical solution can be recom-

mended. The Miller indices can be stated as puvwq “(-121) and the corresponding lattice

constants are a “ 7.13 Å, b “ 8.48 Å, c “ 16.67 Å, α “ 89.4°, β “ 87.8° and γ “ 89.7°.

The cell volume is derived with V “ 1070.1 Å3 and the mean deviations for this solution

are ∆qxy
“ 0.002 Å´1, ∆qz

“ 0.005 Å´1 and ∆qxyz
“ 0.002 Å´1. Note that a very similar

74

solution is contained two rows below the highlighted solution in Figure 8.1 above. Index-

ing and the resulting solutions of the DIP sample can be used as a vivid example for the

interchangeability of the Miller indices and the determined unit cell parameters. From a

mathematical point of view, every symmetric solution should be contained and provide

an equivalent description of the crystallographic unit cell. This effect was observed for

the defined Miller and Laue indices at the here shown example and is reported in litera-

ture [10]. The indexing procedure of this particular sample shows a different approach,

compared to the example of Naproxen. Here, a promising solution is derived and inves-

tigated further by gradually limiting the cell parameters under testing of different Miller

indices. Upon gradual application of the routine and its features, a reduced form of the

preliminarily derived cell can be determined. A similar unit cell solution was reported

earlier in literature [11, 51].

8.2 Pentacenequinone (PQ)

A total number of 30 diffraction peaks is used for indexing the GIXD pattern of a PQ

thin film sample. 6,13-pentacenequinone is another example of an organic semiconductor

material with the chemical formula C22H12O2. The specular peak is derived from XRD

and located at qz “ 1.946 Å´1. For indexing of this sample, no changes at all are made

in the first approach. The data set is uploaded and the indexing procedure is started right

away with the default settings. The obtained sets of pu,v,a,b,γq are processed without

any further sorting. The routine is stopped manually after sweep 31. A screenshot of

this state is shown in Figure 8.2 and the best ranked result (#1) can be explicitly stated

as u “ 1, v “ 0, w “ 2, a “ 5.06 Å, b “ 8.08 Å, c “ 8.87 Å, α “ 91.5°, β “ 93.2°

and γ “ 94.2°. This is the reduced solution of the unit cell. The volume of this cell is

V “ 360.8 Å3 and the mean deviation in qxyz is 0.003 Å´1. The RMSDs with regard to

the components of the scattering vector are ∆qxy
“ 0.003 Å´1 and ∆qz

“ 0.01 Å´1. As

mentioned already for the DIP sample, mathematically symmetric solutions appear for

every of the stated sets.

75

Figure 8.2: Screenshot of the Indexing Routine upon indexing of the provided PQ data. The two

obtained solutions are shown within the Result Panel: The first one is ranked nr. 1 and the other

solution is highlighted in blue. The experimental peak positions are printed as black circles and

the the red crosses represent the generated diffraction pattern by applying the Add Crystal Panel

for the first solution. Note that there are more data points generated as provided for indexing. For

reasons of overview, generated peaks beyond qxy “ 2.5 Å´1 are deleted.

The second unit cell solution is explicitly given by the edge lengths a “ 5.05 Å, b “ 11.83

Å, c “ 12.18 Å and the three angles are Å , α “ 95.3°, β “ 90.5° and γ “ 95.2°. With

a volume of V “ 720.8 Å3, the cell is approximately twice as large as the reduced cell

stated above. The contact plane is derived with puvwq “(-1-22) The deviations are in

the same range with ∆qxy
“ 0.003 Å´1, ∆qz

“ 0.01 Å´1 and ∆qxyz
“ 0.003 Å´1. Both

unit cell solutions were found in literature [10]. Anyhow, a final comparison using the

original GIXD data and GIDVis is recommended.

8.3 Naproxen

Diffraction data from a thin film sample of the organic molecule Naproxen are provided

for indexing to investigate the crystalline phase. Naproxen is a pharmaceutical active

ingredient and used for nonsteroidal anti-inflammatory drugs. A total of 30 peak posi-

tions are used for determination of a unit cell solution. The specular peak is obtained

76

from XRD measurements and is already included in the data set. In the first approach,

the Indexing Routine is operated with contact plane settings puvwq “ p001q. No changes

are done in the ’Advanced settings’ and for the time being, no restrictions are applied to

the unit cell constants. The first indexing part takes less than five minutes and approx-

imately 130 partial solutions can be determined with an error smaller than 1 % in qxy.

With sorting the results according to the error in qxy, the second part of the indexing pro-

cedure is pursued. The obtained unit cell solutions from the Results Panel are plotted and

compared with the experimental peak positions using the Data Points and Representation

Panel.

As the graphical comparison did not yield any comprehensive solution with the chosen

settings, the routine is restarted. This time, the initial partial results are sorted regarding

the smallest area of the parallelogram. Additionally, the program parameter ’Lines to

permute’ as well as the parameter ’Max. hk for LSE’ are increased to a value of 4. The

routine is stopped after 50 sweeps as the root mean square error, which is printed in the

Error Panel, fell below 1 % in qxyz a number of times. The unit cell constants a, b and

c accumulate in regions around 10 Å, 20 Å and 25 Å, respectively. Similar patterns and

repetitive behaviour is observed for the angles α , β and γ . The obtained solutions were

added to the Data representation graph one after another for graphical comparison (cf.

Figure 8.3). In addition, similar unit cell solutions were tested using the Add Crystal

Panel. Indexing of the data set using general contact plane settings yields symmetric

solutions with regard to the ones stated above.

77

Figure 8.3: Screenshot of the main window of the Indexing Routine upon indexing of the pro-

vided data. The emphasized solution from the Result Panel is used to generate a simulated diffrac-

tion pattern. The pattern is added to the Data Points and Representation Panel for graphical

comparison.

The best graphical agreement is recorded for a unit cell solution with the following pa-

rameters u “ 0, v “ 0, w “ 2, a “ 10.24 Å, b “ 20.01 Å, c “ 26.09 Å, α “ 73.4°,

β “ 81.1° and γ “ 76.1°. The volume of the reduced cell is V “ 4950.3 Å3 and the mean

deviation in qxyz is 0.01 Å´1. A screenshot with the Indexing Routine’s main window

containing the as discussed solution is printed Figure 8.3 above. The overall time from

loading the diffraction data down to a unit cell solution amounts to approximately one

hour in this particular case. It has to be emphasized that this solution is not the only

possible solution. No other solution than puvwq “ p002q is observed for the contact plane

with these settings. Sets with lattice constants similar to the one obtained appear fre-

quently with only small differences in the numerical values. These differences, however,

could lead to differently assigned Laue indices what makes the diffraction patterns over-

all different. Indexing and the task of searching a unit cell solution with this program is

therefore an iterative exercise where the obtained possible solutions have to be verified

eventually by the user. The routine does provide different numerically fitting solutions. A

unique or indisputable solution for the provided GIXD data, however, can not be derived

by application of this algorithm. In general, it is advised to compare the diffraction data

78

with the reciprocal space map in GIDVis, as demonstrated for one sample from the tuto-

rial. For the sample of a Naproxen thin film and the two following samples, however, no

data are available for a comprehensive comparison with the associated reciprocal space

maps.

With this fourth example, this chapter is complete. Application of the Indexing Routine

and the accompanying memory usage did not lead to any overflow or computational re-

strictions whatsoever. If the program parameter are kept in the ranges as demonstrated,

the program should not face any programmatic problems. Nevertheless, no claim is made

to completeness. Neither should the impression arise that the program has no limitations

or bottlenecks, nor that the obtained solutions are unambiguous.

79

Chapter 9

Summary

For indexing of grazing-incidence X-ray diffraction patterns, a semi-automated MAT-

LAB routine is presented in this master thesis. A review of the available indexing meth-

ods and algorithms is elaborated and the fundamentals of X-ray diffraction are summa-

rized in the beginning. Crystallographic conventions and basic terms are outlined for a

comprehensive image. The methods necessary to obtain the GIXD data as well as the

specular peak were introduced. A published formalism, based on the Laue condition

for diffraction and its relation to reciprocal lattice vectors, is embedded in an algorithm

to derive the six lattice constants a, b, c, α , β and γ from diffraction peak positions.

This is achieved by dividing the process in smaller blocks, thereby gradually assigning

Laue indices hkl to the experimentally derived data. The derived unit cell solutions are

sorted and rated by deviation in the components of the scattering vector q as well as by

crystallographic conventions. A special case, with the p001q lattice plane parallel to the

substrate surface, as well as the general case puvwq are considered and distinguished in

the parallely implemented algorithm. The reduced form of the unit cell is derived and a

numerical optimization process completes the routine. The indexing algorithm is com-

plemented by a ready-to-use graphical user interface based on MATLAB source code.

The applicability of the Indexing Routine is demonstrated by the means of a tutorial as

well as on three different organic thin film samples.

80

References

[1] A. E. Watts et al. “Combining the Advantages of Powder X-ray Diffraction and

NMR Crystallography in Structure Determination of the Pharmaceutical Material

Cimetidine Hydrochloride”. In: Crystal Growth and Design 16.4 (2016), pp. 1798–

1804. ISSN: 1528-7483.

[2] G.-C. Yuan et al. “Microstructure transformations induced by modified-layers on

pentacene polymorphic films and their effect on performance of organic thin-film

transistor”. eng. In: Organic Electronics 10.7 (2009), pp. 1388–1395. ISSN: 1566-

1199.

[3] Y. Nakahara et al. “Ultra-thin films of polysilsesquioxanes possessing 3-metha-

cryloxypropyl groups as gate insulator for organic field-effect transistors”. eng. In:

Thin Solid Films 520.24 (2012), pp. 7195–7199. ISSN: 0040-6090.

[4] D. Braga et al. “Crystal Polymorphism and Multiple Crystal Forms”. In: Structure

and Bonding 132 (2009), pp. 25–50.

[5] A. O. F. Jones et al. “Substrate-Induced and Thin-Film Phases: Polymorphism of

Organic Materials on Surfaces”. In: Advanced Functional Materials 26.14 (2016),

pp. 2233–2255. ISSN: 1616-301X.

[6] J. P. Glusker and K. N. Trueblood. “Crystal Structure Analysis: A Primer (Iucr

Texts on Crystallography), Third Edition”. In: Oxford University Press (2010).

ISSN: 978-0-19-957635-7.

[7] W. Demtröder. Experimentalphysik 3. Springer-Spektrum, 2015. ISBN: 978-3-662-

49094-5. DOI: 10.1007/978-3-662-49094-5.

[8] D. W. Bennett. Understanding single-crystal X-ray crystallography. eng. Wiley-

VCH, 2010. ISBN: 9783527326778.

81

[9] Q. Pan et al. “Comparative crystal structure determination of griseofulvin: Pow-

der X-ray diffraction versus single-crystal X-ray diffraction”. In: Chinese Science

Bulletin 57.30 (2012), pp. 3867–3871. ISSN: 1861-9541. DOI: 10.1007/s11434-

012-5245-5.

[10] J. Simbrunner et al. “Indexing of grazing-incidence X-ray diffraction patterns:

the case of fibre-textured thin films”. In: Acta Crystallographica Section A 74.4

(2018), pp. 373–387.

[11] J. Simbrunner et al. “Indexing grazing-incidence X-ray diffraction patterns of thin

films: lattices of higher symmetry”. In: Journal of Applied Crystallography 52.2

(2019), pp. 428–439.

[12] J. Simbrunner et al. “An efficient method for indexing grazing-incidence X-ray

diffraction data of epitaxially grown thin films”. In: Acta Crystallographica Sec-

tion A 76.3 (2020), pp. 345–357.

[13] A. Pichler. “Master Thesis: Crystal Structure Solutions from Thin Films - Exam-

ples of Conjugated Molecules”. In: Graz University of Technology (2013).

[14] Wikipedia contributors. Crystal structure — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Crystal_structure&

oldid=964868454. [Online; accessed 11-June-2020]. 2020.

[15] S. Dag and L.-W. Wang. “Packing Structure of Poly(3-hexylthiophene) Crystal:

Ab Initio and Molecular Dynamics Studies”. In: The Journal of Physical Chem-

istry B 114.18 (2010), pp. 5997–6000. ISSN: 1520-6106. DOI: 10.1021/jp1008219.

[16] Ch. Lercher et al. “Polymorphism of dioctyl-terthiophene within thin films: The

role of the first monolayer”. In: Chemical Physics Letters 630 (2015), pp. 12–17.

ISSN: 0009-2614.

[17] N. E. Widjonarko. “Introduction to Advanced X-ray Diffraction Techniques for

Polymeric Thin Films”. In: Coatings 6.4 (2016). ISSN: 2079-6412. DOI: 10.3390/

coatings6040054.

[18] H. R. Powell. “X-ray data processing”. eng. In: Bioscience reports 37.5 (2017),

BSR20170227. ISSN: 1573-4935.

[19] Unknown Publisher. Single-crystal XRD setup. https://serc.carleton.edu/

download/images/8399/BrukerK3_for_web.jpg. [Online; accessed 11-June-

2020]. 2020.

82

[20] T. Oeser. Methoden der Röntgenanalytik. In: Kristallstrukturanalyse durch Röntgen-

beugung. essentials. Springer Spektrum, Wiesbaden, 2019. ISBN: 978-3-658-25439-

1.

[21] G. M. Sheldrick. “A short history of SHELX”. In: Acta Crystallographica Section

A 64.1 (2008), pp. 112–122.

[22] G. M. Sheldrick. “Crystal structure refinement with SHELXL”. In: Acta Crystal-

lographica Section C 71.1 (2015), pp. 3–8.

[23] George Sheldrick. The SHELX homepage. http://shelx.uni-goettingen.

de/. [Online; accessed 19-July-2020]. 2019.

[24] A. Morawiec. “Ind X: program for indexing single-crystal diffraction patterns”.

In: Journal of Applied Crystallography 50.2 (2017), pp. 647–650.

[25] M. J. Buerger. “Reduced Cells”. In: Zeitschrift fuer Kristallographie, Kristallge-

ometrie, Kristallphysik, Kristallchemie 109 (1957), pp. 42–60.

[26] International Centre for Diffraction Data. PDF-4. https://www.icdd.com/.

[Online; accessed 11-June-2020]. 2020.

[27] Speakman S. A. Training to Become an Independent User of the X-Ray SEF at the

Center for Materials Science and Engineering at MIT. http://prism.mit.edu/

xray. [Online; accessed 15-June-2020]. 2020.

[28] Unknown Publisher. Diffraction pattern of a LaB6 reference powder specimen.

https://www.helmholtz- berlin.de/pubbin/igama_output?modus=

einzel&sprache=en&gid=1972&typoid=68892. [Online; accessed 16-June-

2020]. 2020.

[29] CCP14. Available Software for Powder Diffraction Indexing including a Literature

Search List. http : / / www . ccp14 . ac . uk / solution / indexing/. [Online;

accessed 11-July-2020]. 2020.

[30] A. Boultif and D. Louër. “Powder pattern indexing with the dichotomy method”.

In: Journal of Applied Crystallography 37.5 (2004), pp. 724–731.

[31] A. A. Coelho. “Indexing of powder diffraction patterns by iterative use of singular

value decomposition”. In: Journal of Applied Crystallography 36.1 (2003), pp. 86–

95.

[32] M.A. Neumann. “X-CELL: a novel indexing algorithm for routine tasks and diffi-

cult cases”. In: Journal of Applied Crystallography 36.2 (2003), pp. 356–365.

83

[33] N. Bedoya-Martı́nez et al. “DFT-Assisted Polymorph Identification from Lattice

Raman Fingerprinting”. In: The Journal of Physical Chemistry Letters 8.15 (2017),

pp. 3690–3695.

[34] U. Shmueli (Editor). International Tables for Crystallography, Vol. B: Reciprocal

Space, 2nd ed. Dordrecht: Springer, 2006.

[35] D. W. Breiby et al. “Simulating X-ray diffraction of textured films”. In: Journal of

Applied Crystallography 41.2 (2008), pp. 262–271.

[36] A. K. Hailey et al. “The Diffraction Pattern Calculator (DPC) toolkit: a user-

friendly approach to unit-cell lattice parameter identification of two-dimensional

grazing-incidence wide-angle X-ray scattering data”. In: Journal of Applied Crys-

tallography 47.6 (2014), pp. 2090–2099.

[37] Z. Jiang. “GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering

data visualization and reduction, and indexing of buried three-dimensional peri-

odic nanostructured films”. In: Journal of Applied Crystallography 48.3 (2015),

pp. 917–926.

[38] V. Savikhin. “GIWAXS-SIIRkit: scattering intensity, indexing and refraction calcu-

lation toolkit for grazing-incidence wide-angle X-ray scattering of organic materi-

als”. In: Journal of Applied Crystallography 53.4 (2020), pp. 1108–1129.

[39] B. Schrode et al. “GIDVis: a comprehensive software tool for geometry-independent

grazing-incidence X-ray diffraction data analysis and pole-figure calculations”. In:

Journal of Applied Crystallography 52.3 (2019), pp. 683–689.

[40] D. M. Smilgies and D. R. Blasini. “Indexation scheme for oriented molecular thin

films studied with grazing-incidence reciprocal-space mapping”. In: Journal of

Applied Crystallography 40.4 (2007), pp. 716–718.

[41] J. Perlich et al. “Grazing incidence wide angle x-ray scattering at the wiggler

beamline BW4 of HASYLAB”. In: Review of Scientific Instruments 81.10 (2010),

pp. 1798–1804.

[42] P. Niggli. Handbuch der Experimentalphysik. Leipzig: Akademische Verlagsge-

sellschaft, 1928.

[43] Z. Dauter and M. Jaskolski. “How to read (and understand) Volume A of Interna-

tional Tables for Crystallography: an introduction for nonspecialists”. In: JAC 43

(2010), pp. 1150–1171.

84

[44] T. Hahn Editor. International Tables for Crystallography, Vol. A. Springer, 2005.

Chap. 9.2, pp. 750–755.

[45] B. Schrode. Doctoral Thesis: Mapping Large Reciprocal-Space Volumes by Ro-

tating Grazing Incidence X-ray Diffraction. Graz University of Technology, 2020.

Chap. 2, pp. 24–27.

[46] A. Santoro and A. D. Mighell. “Determination of reduced cells”. In: Acta Cryst.

26 (1970), pp. 124–127.

[47] W. H. Miller. A Treatise on Crystallography. Cambridge, 1839.

[48] M. Birkholz. Thin Film Analysis by X-Ray Scattering. WILEY-VCH, 2006. Chap. 4,

pp. 161–165.

[49] MATLAB. version 9.7.0.1319299 (R2019b) Update 5. Natick, Massachusetts: The

MathWorks Inc., 2019.

[50] Inc. The MathWorks. MATLAB Documentation - MathWorks Deutschland. https:

//de.mathworks.com/help/index.html. [Online; accessed 21-September-

2020]. 2020.

[51] Stefan Kowarik et al. “Dewetting of an Organic Semiconductor Thin Film Ob-

served in Real-time”. In: Advanced Engineering Materials 11.4 (2009), pp. 291–

294. DOI: 10.1002/adem.200800289.

85

Appendices

86

Appendix A

Diffraction data for indexing

87

A.1 fIna-04

Table A.1: Used peak positions for indexing fIna-04

qxy [Å´1] qz [Å´1]

0.00000000 0.71115071

0.00000000 1.42145995

0.43687415 1.77769534

0.44482484 1.06574358

0.54148678 2.13065968

0.54226213 0.71026371

0.54250230 1.42057630

0.70075570 1.42372840

0.70843278 0.71058747

0.86269051 2.86649740

0.88529146 1.77676139

0.89009197 2.13067395

0.89216683 0.70901601

0.89374256 1.06110155

0.89555585 1.41849222

1.08173690 1.42493430

1.29845207 0.71006017

1.40855533 1.06057100

1.41827354 0.71226618

1.42377737 1.75819980

1.47928481 2.46386187

1.51842944 1.42000181

1.52069691 0.70863122

1.63072165 0.70999558

1.77333930 0.72669570

1.77896341 1.42525922

2.16200556 0.71334928

2.28577544 0.71354625

88

A.2 Diindenoperylene

Table A.2: Used peak positions for indexing DIP

qxy [Å´1] qz [Å´1]

0.000 1.776

0.368 0.091

0.396 1.160

0.428 1.069

0.689 0.984

0.734 0.182

0.806 1.232

1.140 0.171

1.223 0.083

1.529 0.790

1.625 0.697

2.274 0.953

89

A.3 Pentacenequinone

Table A.3: Used peak positions for indexing PQ

qxy [Å´1] qz [Å´1]

0.0000 1.9460

0.4520 1.3982

0.4550 0.5461

0.7740 1.9962

0.7810 0.0559

0.8850 1.3422

0.9090 0.8521

0.9090 1.0892

0.9120 1.4512

0.9140 0.4901

1.1750 1.1432

1.1790 0.7981

1.2160 1.0342

1.2170 0.9081

1.3640 1.6322

1.3670 0.3090

1.5460 1.6862

1.5580 0.1096

1.5980 0.3620

1.6050 1.2872

1.6080 0.6521

1.6340 1.5062

1.6380 0.4361

1.7750 1.1972

1.7760 0.7441

1.8230 0.2359

1.9560 0.2920

2.0100 0.1818

2.1080 0.4201

90

A.4 Naproxen

Table A.4: Used peak positions for indexing Naproxen

qxy [Å´1] qz [Å´1]

0.000 0.503

0.630 0.670

0.638 0.174

0.640 0.340

0.640 0.851

0.764 0.981

0.770 1.066

0.772 0.485

0.775 1.555

0.780 0.552

0.968 1.248

1.013 1.381

1.016 1.878

1.018 0.881

1.018 1.667

1.024 0.659

1.026 0.137

1.240 0.559

1.269 0.333

1.275 0.177

1.280 1.318

1.307 0.403

1.312 0.107

1.563 1.070

1.563 0.444

1.568 0.577

1.846 0.311

1.894 0.444

1.899 0.107

91

Appendix B

MATLAB® Source Code

B.1 Main program

1 %%% START %%%

2 %%% INITIALIZATION START

3 disp('>>>start')

4 redundanzhk=4;

5 lindep limit = 0.01;

6 limit fuer hk 1=6;

7 limit fuer hk 2=8;

8 limit fuer l=8;

9 dqspec=0.01;

10 limit fuer uv=2;

11 wmax=limit fuer uv+1;

12 dqxy cutoff=0.05;

13

14 filename='example file';

15 warning off

16

17 UV permutations=LPermutation(−limit fuer uv:limit fuer uv,2);

18 UV permutations=[0 0]; % for case (001)

19

20 lines to permute=5;

21

22 [raw data]=readmatrix(filename,'OutputType','double');

23

24 restriction trigger=true;

25 a lower limit=5;

92

26 a upper limit=30;

27 b lower limit=5;

28 b upper limit=30;

29 gamma lower limit=60;

30 gamma upper limit=120;

31

32 [qspecs,datapoints,qxym,line indices] = ...

33 function INITIALIZE GUI(raw data,lines to permute);

34 %%% INITIALIZATION END

35 %%% INDEXING PART I START

36 stop trigger=false;

37 [names w rows,indexed] = ...

38 function PART ONE PARALLEL GUI RESTRICTIONS(stop trigger,...

39 restriction trigger,redundanzhk,limit fuer hk 1,...

40 limit fuer hk 2,UV permutations,qspecs,...

41 datapoints,qxym,dqxy cutoff,...

42 a lower limit,a upper limit,b lower limit,b upper limit,...

43 gamma lower limit,gamma upper limit);

44 %%% INDEXING PART I END

45 area parallelogram=names w rows(:,5).*names w rows(:,6)...

46 .*sind(names w rows(:,7));

47 [,ind area]=sort(area parallelogram,1);

48 names ascending area=names w rows(ind area,:);

49 indices ascending area=indexed(:,:,ind area);

50 c lower limit=10;

51 c upper limit=20;

52 alpha lower limit=60;

53 alpha upper limit=120;

54 beta lower limit=60;

55 beta upper limit=120;

56 volume lower limit=50;

57 volume upper limit=100000;

58 niggli on=true;

59 qspecc=qspecs(1,2);

60 parameters output=[];

61 indices output=[];

62 max solutions=20000;

63

64 %%% INDEXING PART II START

65 %%% POSTPROCESSING START

66 for possible abg=[1:1000]

67

68 aV7bg fields to evaluate=...

93

69 indices ascending area(:,:,possible abg);

70

71 [cell parameters output,indices abg KLR NEW] = ...

72 function PART TWO v12(qspecc,niggli on,...

73 datapoints,redundanzhk,limit fuer l,wmax,...

74 aV7bg fields to evaluate,dqspec,...

75 c lower limit,c upper limit,...

76 alpha lower limit,alpha upper limit,...

77 beta lower limit,beta upper limit,...

78 volume lower limit,volume upper limit);

79

80

81 parameters output=[parameters output;cell parameters output];

82 indices output=cat(3,indices output,indices abg KLR NEW);

83

84 min error=min(parameters output(:,11))

85

86

87 [,ind sort sol]=sort(parameters output(:,11));

88

89 parameters output=parameters output(ind sort sol,:);

90 indices output=indices output(:,:,ind sort sol);

91

92

93

94 if size(parameters output,1)>max solutions;

95 break

96 end

97

98 end

99 %%% INDEXING PART II END

100 %%% POSTPROCESSING END

101 %%% END %%%

B.2 Functions

B.2.1 function INITIALIZE GUI.m

1 function [qspecs,datapoints,qxym matrix,uniqued line indices] = ...

2 function INITIALIZE GUI(raw data,lines to permute)

94

3

4

5 disp('>>>load data file')

6 disp('>>>prepare initial values')

7 raw data(all(raw data,2),:)=[];

8 Messwerte choice=raw data(:,1:2);

9 [,idxmw] = sort(Messwerte choice(:,1));

10 datapoints=Messwerte choice(idxmw,:);

11 nzero=1;

12 qspecs=Messwerte choice(sum(Messwerte choice==0,2)...

13 ==nzero,:);

14 if isempty(qspecs)==1

15 error('INTERNAL ERROR: No specular data detected. Please ...

provide specular data and restart script.')

16 else

17 disp('>>>specular data detected')

18 end

19

20 qcalc=(Messwerte choice(:,1).ˆ2+Messwerte choice(:,2).ˆ2).ˆ(1/2);

21 MWundQ=horzcat(Messwerte choice,qcalc);

22

23 tol diff qxym=0.0005;

24 tolconverted=tol diff qxym/max(abs(MWundQ(:,3)));

25 [,ia,ic]=uniquetol(MWundQ(:,3),tolconverted);

26 q values uniqued=MWundQ(ia,:);

27

28 [,iq]=sort(q values uniqued(:,3));

29 q in asc order=q values uniqued(iq,:);

30

31 permi=1:lines to permute;

32 m vec=LPermutation(permi,3);

33 m vec(all(m vec,2),:)=[];

34 m1=m vec((m vec(:,1)‰m vec(:,2)),:);

35 m2=m1(m1(:,2)‰m1(:,3),:);

36 m3=m2(m2(:,1)‰m2(:,3),:);

37 msumsum=m3(:,1).ˆ2+m3(:,2).ˆ2+m3(:,3).ˆ2;

38

39 new arranged m3=zeros(size(m3));

40

41 for msi=1:size(m3,1)

42 currentm3=m3(msi,:);

43 [,indm]=sort(currentm3,2);

44 new arranged m3(msi,:)=m3(msi,indm);

95

45 end

46 [uniqued line indices, ,]=unique(new arranged m3,'rows','first');

47 mconc=horzcat(m3,msumsum);

48 [,ia,]=unique(mconc(:,4),'stable');

49 mn index qxym=mconc(ia,1:end−1);

50 q in asc order(any(q in asc order,2),:)=[];

51 m poss starter=q in asc order(permi,1:2);

52 qxym matrix=zeros(3,2*size(mn index qxym,1));

53 mn index qxym=uniqued line indices;

54 for m=1:size(mn index qxym,1)

55 indexline=mn index qxym(m,:);

56 kmu=2*m−1;

57 kmo=2*m;

58 qxym matrix(:,kmu:kmo)=[m poss starter(indexline(3),:);...

59 m poss starter(indexline(2),:);...

60 m poss starter(indexline(1),:)];

61 end

62 disp('start generation of matrices')

63 end

B.2.2 function LPermutation.m

1 function L = LPermutation(hkvalues,n)

2 ns = hkvalues(:);

3 n numel = numel(hkvalues);

4 idx = (1:n numel).';

5 rows = n numel ˆ n;

6 M = reshape((1:rows * n).', rows, n);

7 for i = 1 : n

8 hl lines = ones(1, n numelˆ(i − 1))

9 cols = repmat(idx(:,hl lines).', 1, n numel ˆ (n − i));

10 M(:, i) = fliplr(cols(:));

11 end

12 L = single(ns(M));

13 end

B.2.3 function PART ONE PARALLEL

GUI RESTRICTIONS.m

96

1 function [names,indexed] = ...

2 function PART ONE PARALLEL GUI RESTRICTIONS(stop trigger,...

3 restriction trigger,redundanzhk,limit fuer hk 1,...

4 limit fuer hk 2,UV permutations,qspecs,datapoints,...

5 qxym,dqxy cutoff,a lower limit,a upper limit,...

6 b lower limit,b upper limit,...

7 gamma lower limit,gamma upper limit)

8

9 f = uifigure;

10 d = uiprogressdlg(f,'Title','Status Part I',...

11 'Message','Opening the application');

12 HK permutations 6er=LPermutation(−limit fuer hk 1...

13 :limit fuer hk 1,6);

14

15 [HK] = function PERMVEC NEW(limit fuer hk 2);

16

17

18 ABG out=zeros(size(HK permutations 6er,1),6,...

19 size(UV permutations,1),'single');

20

21 size of ABG 12=size(ABG out);

22 d.Value=.1;

23 d.Message = 'Initialize data points';

24 pause(2)

25

26 d.Value=.30;

27 d.Message='Create and solve possible matrices for a, b and ...

gamma. Request parallel pool.'

28 pause(3)

29

30 if stop trigger==true

31 names=[];indexed=[];

32 close(d)

33 close(f)

34 return

35 end

36 d.Value=.50;

37 d.Message='Calculate possible sets of [a,b,gamma]. Depending on ...

your setting, this part could take longer. '

38 pause(2)

39 parfor uv index=1:size(UV permutations,1)

40

97

41 uv=UV permutations(uv index,:);

42 ABG out(:,:,uv index) = ...

function ABG RESTRICTED(restriction trigger,...

43 HK permutations 6er,...

44 qspecs,uv,qxym,size of ABG 12,...

45 a lower limit,a upper limit,b lower limit,b upper limit,...

46 gamma lower limit,gamma upper limit);

47

48 end

49

50 valset=1;

51

52 if valset==1

53 d.Value=.80;

54 d.Message='ABG solutions obtained. Indexing qxy data.';

55 pause(2)

56 d.Message='ABG solutions obtained. Indexing qxy data..';

57 pause(2)

58 d.Message='ABG solutions obtained. Indexing qxy data...';

59 end

60

61 if stop trigger==true

62 names=[];indexed=[];

63 close(d)

64 close(f)

65 return

66 end

67

68 names w zeros=reshape(permute(ABG out,[1 3 2]),[],...

69 size(ABG out,2),1);

70

71 idefix=find(all(names w zeros==0,2));

72 ABG for indexing=names w zeros(idefix,:);

73

74 [indexed datapoints red,label of indexed datapoints red] =...

75 function NEWINDEXING 26(HK,ABG for indexing,...

76 datapoints,redundanzhk);

77 if stop trigger==true

78 names=[];indexed=[];

79 close(d)

80 close(f)

81 return

82 end

98

83

84 d.Value=.95;

85 d.Message = 'Indexing part 1 finished. Calculate RMSD for qxy';

86 pause(2)

87

88 [names,indexed] = function NEWRMSD GXY(...

89 indexed datapoints red,label of indexed datapoints red,...

90 redundanzhk,dqxy cutoff);

91

92 if stop trigger==true

93 names=[];indexed=[];

94 close(d)

95 close(f)

96 return

97 end

98 d.Value=1;

99 d.Message = 'Indexing Part 1 finished. Solutions shown in ...

Result Panel below';

100 close(d)

101 close(f)

102 end

B.2.4 function PERMVEC NEW

1 function [HK] = function PERMVEC NEW(limit fuer hk)

2 hklim=limit fuer hk;

3 hk=(−hklim:hklim).';

4 M=zeros(length(hk),2*length(hk));

5 M(:,2:2:end)=repmat(hk,1,length(hk));

6 M(:,1:2:end)=repmat(hk,1,length(hk)).';

7 Mtrans=M.';

8 P=zeros(2,length(hk)ˆ2);

9 P(1,:)=Mtrans(1:2:end);

10 P(2,:)=Mtrans(2:2:end);

11 end

B.2.5 function ABG RESTRICTED.m

99

1 function [ABG out] = ...

function ABG RESTRICTED(restriction trigger,...

2 HK permutations 6er,...

3 qspecs,uv,qxym,size of ABG 12,...

4 a lower limit,a upper limit,b lower limit,...

5 b upper limit,gamma lower limit,gamma upper limit)

6

7 disp('current uv=')

8 display(uv)

9 u=uv(1,1);

10 v=uv(1,2);

11

12 qspec=qspecs(1,2);

13

14 [XYZ]=function XYZ(function NEWMATRIXFILLER(HK permutations 6er,...

15 u,v,qxym,qspec));

16

17

18 [C, ,]=unique(XYZ,'rows','first');

19

20 C(C(:,1)<0,:)=[];

21 C(C(:,2)<0,:)=[];

22 C(all(C,2),:)=[];

23

24 disp('compute ABG out of XYZ sets for')

25 display(uv)

26

27 if isempty(C)==true

28 C=zeros(1,3);

29 end

30

31 [ABG out] = ...

function CALC ABGfromXYZ RESTRICTED v7(restriction trigger,...

32 C(:,1),C(:,2),C(:,3)...

33 ,u,v,qspec,size of ABG 12,...

34 a lower limit,a upper limit,b lower limit,...

35 b upper limit,gamma lower limit,gamma upper limit);

36

37 end

B.2.6 function NEWMATRIXFILLER.m

100

1 function [FMATRICES] = ...

function NEWMATRIXFILLER(hk matrix permutions,...

2 u,v,qxym,qspec)

3

4 FMpart1=zeros(3,3,size(hk matrix permutions,1));

5 FMpart2=zeros(size(FMpart1,1),size(FMpart1,2),...

6 size(FMpart1,3),size(qxym,2)/2);

7 numer=1;

8

9 for indcol=1:2:size(qxym,2)

10 qxy1=qxym(1,indcol); qz1=qxym(1,indcol+1);

11 qxy2=qxym(2,indcol); qz2=qxym(2,indcol+1);

12 qxy3=qxym(3,indcol); qz3=qxym(3,indcol+1);

13

14 for nrp=1:size(hk matrix permutions,1)

15 h1=hk matrix permutions(nrp,1);

16 k1=hk matrix permutions(nrp,2);

17 h2=hk matrix permutions(nrp,3);

18 k2=hk matrix permutions(nrp,4);

19 h3=hk matrix permutions(nrp,5);

20 k3=hk matrix permutions(nrp,6);

21

22 position1=(qxy1.ˆ−2).*(h1−((u.*qz1)./qspec)).ˆ2+...

23 u.ˆ2/qspec.ˆ2;

24 position2=(qxy2.ˆ−2).*(h2−((u.*qz2)./qspec)).ˆ2+...

25 u.ˆ2/qspec.ˆ2;

26 position3=(qxy3.ˆ−2).*(h3−((u.*qz3)./qspec)).ˆ2+...

27 u.ˆ2/qspec.ˆ2;

28

29 position4=(qxy1.ˆ−2).*(k1−((v.*qz1)./qspec)).ˆ2+...

30 v.ˆ2/qspec.ˆ2;

31 position5=(qxy2.ˆ−2).*(k2−((v.*qz2)./qspec)).ˆ2+...

32 v.ˆ2/qspec.ˆ2;

33 position6=(qxy3.ˆ−2).*(k3−((v.*qz3)./qspec)).ˆ2+...

34 v.ˆ2/qspec.ˆ2;

35

36 position7=−2.*((qxy1.ˆ−2).*(h1−((u.*qz1)./qspec)).*(k1...

37 −(v.*qz1./qspec))...

38 +(u.*v)./qspec.ˆ2);

39

40 position8=−2.*((qxy2.ˆ−2).*(h2−((u.*qz2)./qspec)).*(k2...

41 −(v.*qz2./qspec))...

101

42 +(u.*v)./qspec.ˆ2);

43

44 position9=−2.*((qxy3.ˆ−2).*(h3−((u.*qz3)./qspec)).*(k3...

45 −(v.*qz3./qspec))...

46 +(u.*v)./qspec.ˆ2);

47

48 FMpart1(:,:,nrp)=[position1,position4,position7;...

49 position2,position5,position8;...

50 position3,position6,position9];

51 end

52

53 FMpart2(:,:,:,numer)=FMpart1;

54 FMATRICES=reshape(permute(FMpart2,[1 2 3 4]),...

55 [3,3,size(FMpart2,3)*size(FMpart2,4)]);

56

57 numer=numer+1;

58 end

59

60 end

B.2.7 function XYZ.m

1 function [XYZ] = function XYZ(FMATRICES)

2 XYZ = zeros(size(FMATRICES,3),3,'single');

3 for i=1:size(FMATRICES,3)

4 det test=det(FMATRICES(:,:,i));

5 if abs(det test)ě1e−9

6 XYZ(i,:) = FMATRICES(:,:,i)\ones(3,1);

7 end

8 end

9 end

B.2.8 function CALC ABGfromXYZ RESTRICTED v7.m

1 function [standard ABG out] = ...

function CALC ABGfromXYZ RESTRICTED v7(restriction trigger,...

2 A,B,C,u,v,qspec,size of ABG 12,...

3 a lower limit,a upper limit,b lower limit,...

102

4 b upper limit,gamma lower limit,gamma upper limit)

5

6 standard ABG out=zeros(size of ABG 12(1),...

7 size of ABG 12(2),'single');

8

9 LAMBDA=(A.*B−C.ˆ2)./(qspec.ˆ2−u.ˆ2.*A−v.ˆ2.*B+2.*u.*v.*C);

10

11 za=real(sqrt(A+v.ˆ2.*LAMBDA));

12 zb=real(sqrt(B+u.ˆ2.*LAMBDA));

13

14 cosg=(C+u.*v.*LAMBDA)./(za.*zb);

15 gamma=acosd(cosg);

16

17 a=(2.*pi)./(za.*sind(gamma));

18 b=(2.*pi)./(zb.*sind(gamma));

19

20 u v qspec a b gamma=real([ones(size(A,1),...

21 1).*u,ones(size(A,1),1).*v,

22 ones(size(A,1),1).*qspec,a,b,gamma]);

23

24 u v qspec a b gamma(any(isnan(u v qspec a b gamma), 2), :) = [];

25

26 u v qspec a b gamma(u v qspec a b gamma(:,4)ď0,:)=[];

27 u v qspec a b gamma(u v qspec a b gamma(:,5)ď0,:)=[];

28

29 u v qspec a b gamma(all(u v qspec a b gamma,2),:)=[];

30 u v qspec a b gamma(any(isinf(u v qspec a b gamma),2),:) = [];

31

32 ind unten=u v qspec a b gamma(:,end)ě60;

33 sotti1=u v qspec a b gamma(ind unten,:);

34 ind oben=sotti1(:,end)ď120;

35 ABG before restrictions=sotti1(ind oben,:);

36

37 switch(restriction trigger)

38

39 case true

40 aind=ABG before restrictions(:,end−2)ěa lower limit & ...

41 ABG before restrictions(:,end−2)ďa upper limit;

42 abg after a=ABG before restrictions(aind,:);

43

44 bind=abg after a(:,end−1)ěb lower limit & ...

45 abg after a(:,end−1)ďb upper limit;

46 abg after b=abg after a(bind,:);

103

47

48 gammaind=abg after b(:,end)ěgamma lower limit & ...

49 abg after b(:,end)ďgamma upper limit;

50 ABG=abg after b(gammaind,:);

51

52 case false

53 ABG=ABG before restrictions;

54 end

55

56 [ABG1, ,]=unique(ABG,'rows','first');

57

58 [ABG out checkpoint 1] = function SUB2 CONDITION(ABG1,qspec);

59

60 [ABG out] = function ABGNIGGLI(ABG out checkpoint 1);

61

62 if isempty(ABG out)==true

63 standard ABG out=zeros(size of ABG 12(1),...

64 size of ABG 12(2),'single');

65 disp("ABG out empty")

66 else

67

68

69 tol diff a=0.15;

70 tol diff b=0.15;

71 tol diff gamma=0.3;

72

73 tolconverteda=tol diff a/max(abs(ABG out(:,4)));

74 [, ,ia3]=uniquetol(ABG out(:,4),tolconverteda);

75

76 tolconvertedb=tol diff b/max(abs(ABG out(:,5)));

77 [, ,ib3]=uniquetol(ABG out(:,5),tolconvertedb);

78

79 tolconvertedg=tol diff gamma/max(abs(ABG out(:,6)));

80 [, ,ig3]=uniquetol(ABG out(:,6),tolconvertedg);

81

82 inditest=horzcat(ia3,ib3,ig3);

83 [,ia]=unique(inditest,'rows','first');

84 abglistuniqued=ABG out(ia,:);

85

86

87 standard ABG out(1:size(abglistuniqued,1),:)=abglistuniqued;

88 end

89 end

104

B.2.9 function SUB2 CONDITION.m

1 function [ABG out checkpoint 1] = ...

function SUB2 CONDITION(ABG,qspec)

2

3 limit for zero=1e−5;

4 za=(2*pi)./(ABG(:,end−2).*sind(ABG(:,end)));

5 zb=(2*pi)./(ABG(:,end−1).*sind(ABG(:,end)));

6 u=ABG(:,1);

7 v=ABG(:,2);

8 cosg=cosd(ABG(:,end));

9 argum=qspec.ˆ2−u.ˆ2.*za.ˆ2−v.ˆ2.*zb.ˆ2+2.*u.*v.*za.*zb.*cosg;

10 condi=argum>limit for zero;

11 ABG out checkpoint 1=ABG(condi,:);

12

13 end

B.2.10 function ABGNIGGLI.m

1 function [ABG out] = function ABGNIGGLI(ABG in)

2

3 epsilon=1e−1;

4 indexabg=ABG in(:,end−2).ˆ2ď(ABG in(:,end−1)+epsilon).ˆ2;

5 abg agreaterb=ABG in(indexabg,:);

6

7 ind gamma kl 90=abg agreaterb(:,end)<90;

8 abg gamma kl 90=abg agreaterb(ind gamma kl 90,:);

9

10 bcosgamma=abg gamma kl 90(:,end−1).*cosd(abg gamma kl 90(:,end));

11 ahalbe=abg gamma kl 90(:,end−2)./2;

12 index true kl 90=bcosgamma(:)ďahalbe(:);

13 rest nach niggli1=abg gamma kl 90(index true kl 90,:);

14

15 ind gamma gr 90=abg agreaterb(:,end)ě90;

16 abg gamma gr 90=abg agreaterb(ind gamma gr 90,:);

17

105

18 bcosgamma2=abg gamma gr 90(:,end−1).*...

19 abs(cosd(abg gamma gr 90(:,end)));

20 ahalbe2=abg gamma gr 90(:,end−2)./2;

21 index true gr 902=bcosgamma2(:)ďahalbe2(:);

22 rest nach niggli2=abg gamma gr 90(index true gr 902,:);

23

24 ABG out=vertcat(rest nach niggli1,rest nach niggli2);

25

26 end

B.2.11 function PART TWO v12.m

1 function [final parameters output,final indices output] = ...

2 function PART TWO v12(qspecc,niggli on,datapoints,redundanzhk,...

3 limit fuer l,wmax,best abg indexed,dqspec,...

4 c lower limit,c upper limit,...

5 alpha lower limit,alpha upper limit,beta lower limit,...

6 beta upper limit,...

7 volume lower limit,volume upper limit)

8

9 f = uifigure;

10 d = uiprogressdlg(f,'Title','Status Part 2',...

11 'Message','Opening the application');

12

13 qxyz datapoints=(best abg indexed(2:end,1,1).ˆ2+...

14 best abg indexed(2:end,2,1).ˆ2).ˆ(1/2);

15

16 lvec=−limit fuer l:limit fuer l;

17 ML=LPermutation(lvec,3);

18

19 warning off

20

21 [INDEXED with subs]=function CALCSUBSIS(best abg indexed);

22

23 [INDEXED with subs NEW] = ...

24 function NEWPACKING(INDEXED with subs,redundanzhk);

25 clear INDEXED with subs

26

27 hk aus qz=LPermutation(1:redundanzhk,3);

28

106

29 selection hohe=size(INDEXED with subs NEW(2:redundanzhk:end,1,1),1);

30

31 n l=numel(lvec);

32 w vec=single(−wmax:wmax);

33 n w=size(w vec,2);

34 nr of initial matrices=single(redundanzhk.ˆ3.*n l.ˆ3.*n w);

35 initial matrices=zeros(4,4,nr of initial matrices,'single');

36

37 output matrices for solve=repmat(initial matrices,[1 1 1 ...

38 size(INDEXED with subs NEW,3)]);

39

40 d.Value=.2;

41 d.Message = 'Assemble matrices for linear system of equations';

42 pause(1)

43 for ind abgpage=1:size(INDEXED with subs NEW,3)

44

45 abg page=INDEXED with subs NEW(:,:,ind abgpage);

46

47 output matrices for solve(1,1,:,ind abgpage)=...

48 ones(1,1,size(initial matrices,3),'single').*abg page(1,1);

49

50 output matrices for solve(1,2,:,ind abgpage)=...

51 ones(1,1,size(initial matrices,3),'single').*abg page(1,2);

52

53 output matrices for solve(1,4,:,ind abgpage)=...

54 ones(1,1,size(initial matrices,3),'single').*abg page(1,8);

55

56 select ausgabe mw=abg page(1:selection hohe,11:end);

57 qzi values unsorted=select ausgabe mw(:,2);

58 [,idx qzi]=sort(qzi values unsorted,1);

59 qzi sorted=select ausgabe mw(idx qzi,:);

60

61 tol diff qz=0.01;

62 tolconverted=tol diff qz/max(abs(qzi sorted(:,2)));

63 [,ia,]=uniquetol(qzi sorted(:,2),tolconverted);

64 qz for KLR matrix=qzi sorted(ia,:);

65

66 welches qz=[1;2;3];

67

68 qz123 cell ges loop=cell(size(welches qz,1),redundanzhk);

69 qz sortiert nur indi=qz for KLR matrix(1:3,3:end);

70 qzi sel=qz for KLR matrix(1:3,2);

71 qzi abglwich=abg page(1:end,2);

107

72

73 qz1 index=qzi abglwich==qzi sel(1,:);

74 lineqz1=abg page(qz1 index,6);

75 qz2 index=qzi abglwich==qzi sel(2,:);

76 lineqz2=abg page(qz2 index,6);

77 qz3 index=qzi abglwich==qzi sel(3,:);

78 lineqz3=abg page(qz3 index,6);

79

80 qziterme rowvec=vertcat(lineqz1,lineqz2,lineqz3);

81 placeholder qzihki=zeros(size(qz sortiert nur indi));

82

83 takeval=1;

84 for hkrow=1:3

85 st=1;

86 for hkcol=1:redundanzhk

87 placeholder qzihki(hkrow,st:st+2)=...

88 qziterme rowvec(takeval,:);

89 st=st+3;

90 takeval=takeval+1;

91 end

92 end

93

94 qzis choice=placeholder qzihki(:,1:3:end);

95

96 for lnz=1:3

97 lenzhk=1;

98 for rhks=1:redundanzhk

99 qz123 cell ges loop(lnz,rhks)=...

100 {qz sortiert nur indi(lnz,lenzhk:lenzhk+1)};

101 lenzhk=lenzhk+3;

102 end

103 end

104

105 hk cell matrices=zeros(3,4,size(hk aus qz,1),'single');

106

107 for poss hk=1:size(hk aus qz,1)

108

109

110 ind hk=hk aus qz(poss hk,:);

111

112 hk cell matrices(1,1:2,poss hk)=...

113 qz123 cell ges loop{1,ind hk(1)};

114 hk cell matrices(1,4,poss hk)=...

108

115 qzis choice(1,ind hk(1));

116 hk cell matrices(2,1:2,poss hk)=...

117 qz123 cell ges loop{2,ind hk(2)};

118 hk cell matrices(2,4,poss hk)=...

119 qzis choice(2,ind hk(2));

120 hk cell matrices(3,1:2,poss hk)=...

121 qz123 cell ges loop{3,ind hk(3)};

122 hk cell matrices(3,4,poss hk)=...

123 qzis choice(3,ind hk(3));

124

125 end

126

127 output matrices for solve(2:end,:,:,ind abgpage)=...

128 repmat(repmat(hk cell matrices,[1 1 n l.ˆ3]),[1 1 n w]);

129 end

130

131 size same w=redundanzhk.ˆ3.*n l.ˆ3;

132 w arrow=reshape(repmat(w vec,[size same w 1 ...

1]),nr of initial matrices,1);

133 w arrow kloo=repmat(w arrow,[1 1 ...

size(output matrices for solve,4)]);

134 output matrices for solve(1,3,:,:)=w arrow kloo;

135

136 ml=ML';

137 ml expanded=repmat(ml,[redundanzhkˆ3 1]);

138 l series same w=reshape(ml expanded,[3 1 size same w]);

139 l series expanded for w=repmat(l series same w, [1 1 n w]);

140

141 l series expanded for w kloo=repmat(l series expanded for w,...

142 [1 1 size(output matrices for solve,4)]);

143 output matrices for solve(2:end,3,:)=l series expanded for w kloo;

144 disp('KLR Matrices preparated. Calculate Matrice divisions')

145

146 d.Value=.4;

147 d.Message = 'Compute overdeterminded systems. Depending on your ...

setting, this part could take longer.';

148 pause(2)

149 d.Value=.5;

150 d.Message = 'Compute overdeterminded systems. Depending on your ...

setting, this part could take longer.';

151 pause(2)

152 d.Value=.6;

109

153 d.Message = 'Compute overdeterminded systems. Depending on your ...

setting, this part could take longer.';

154 pause(2)

155

156 klr for all abg=zeros(7,size(output matrices for solve,3),...

157 size(output matrices for solve,4),'single');

158

159 switch niggli on

160 case false

161

162 for all abg=1:size(klr for all abg,3)

163 disp('Niggli criteria switched off')

164 klr=zeros(7,size(output matrices for solve,3),'single');

165 abg aktuell=INDEXED with subs NEW(1,4:6,all abg);

166 for i=1:size(output matrices for solve,3)

167

168 working mat=output matrices for solve(:,:,i,all abg);

169

170 if working mat(1,1:3)==zeros(1,3)

171 klr(1:end,i)=zeros(size(klr,1),1);

172

173 else

174

175 KLR2check=working mat(:,1:3)\...

176 working mat(:,end);

177

178 deld=−1./(2.*pi).*KLR2check(1)...

179 .*abg aktuell(1).*sind(abg aktuell(3));

180 mu=−1./(2.*pi).*KLR2check(2).*...

181 abg aktuell(2).*sind(abg aktuell(3));

182 sin eps=sind(abg aktuell(3))...

183 ./sqrt(sind(abg aktuell(3)).ˆ2...

184 +deld.ˆ2+mu.ˆ2+...

185 2.*deld.*mu.*..

186 cosd(abg aktuell(3)));

187

188 alpha2check=acosd((sin eps...

189 .*mu+sin eps.*deld.*...

190 cosd(abg aktuell(3)))...

191 ./sind(abg aktuell(3)));

192 beta2check=acosd(...

193 (sin eps.*deld+sin eps...

194 .*mu.*cosd(abg aktuell(3)))...

110

195 ./sind(abg aktuell(3)));

196 c2check=(2.*pi)./...

197 (sin eps.*KLR2check(3));

198

199 test c = c2check < c lower limit | | c2check > ...

c upper limit;

200

201 if test c == true

202 continue

203 else

204 test alpha = alpha2check(1) > ...

alpha upper limit | | alpha2check < ...

alpha lower limit;

205 if test alpha==true

206 continue

207 else

208 test beta = beta2check > ...

beta upper limit | | beta2check < ...

beta lower limit;

209 if test beta==true

210 continue

211 else

212 volume2check = abg aktuell(1).*...

213 abg aktuell(2).*c2check.*...

214 (1−cosd(alpha2check).*...

215 cosd(alpha2check)−...

216 cosd(beta2check)...

217 .*cosd(beta2check)−...

218 cosd(abg aktuell(3)).*...

219 cosd(abg aktuell(3))...

220 +2.*cosd(alpha2check).*...

221 cosd(beta2check).*...

222 cosd(abg aktuell(3))).ˆ(1/2);

223 test vol = volume2check > ...

volume upper limit ...

224 | | volume2check < ...

volume lower limit;

225 if test vol == true

226 continue

227 else

228 klr(1:3,i) = KLR2check;

229 klr(4:6,i) = working mat(1,1:3)';

230 klr(7,i)=...

111

231 (working mat(1,1)*klr(1,i)+...

232 working mat(1,2)*klr(2,i)+...

233 working mat(1,3)*klr(3,i))ˆ2;

234 end

235 end

236 end

237 end

238 end

239 end

240 klr for all abg(:,:,all abg)=klr;

241

242 end

243

244 case true

245 disp('Niggli criteria switched on')

246 % ALIGNMENT RULES CANCELLED

247 for all abg=1:size(klr for all abg,3)

248 klr=zeros(7,size(output matrices for solve,3),'single');

249 abg aktuell=INDEXED with subs NEW(1,4:6,all abg);

250 for i=1:size(output matrices for solve,3)

251 working mat=...

252 output matrices for solve(:,:,i,all abg);

253 if working mat(1,1:3)==zeros(1,3)

254 klr(1:end,i)=zeros(size(klr,1),1);

255 else

256 KLR2check=working mat(:,1:3)\...

257 working mat(:,end);

258 deld=−1./(2.*pi).*KLR2check(1).*...

259 abg aktuell(1).*sind(abg aktuell(3));

260 mu=−1./(2.*pi).*KLR2check(2).*...

261 abg aktuell(2)...

262 .*sind(abg aktuell(3));

263 sin eps=sind(abg aktuell(3))./sqrt(...

264 sind(abg aktuell(3)).ˆ2+deld.ˆ2+mu.ˆ2+...

265 2.*deld.*mu.*cosd(abg aktuell(3)));

266

267 alpha2check=acosd((sin eps.*mu+sin eps.*...

268 deld.*cosd(abg aktuell(3)))./...

269 sind(abg aktuell(3)));

270 beta2check=acosd((sin eps.*deld+sin eps.*...

271 mu.*cosd(abg aktuell(3)))./...

272 sind(abg aktuell(3)));

273 c2check=(2.*pi)./(sin eps.*KLR2check(3));

112

274

275 test c = c2check < c lower limit | | c2check > c upper limit;

276 if test c == true

277 continue

278 else

279 test alpha = alpha2check > alpha upper limit | | alpha2check < ...

alpha lower limit;

280 if test alpha==true

281 continue

282 else

283 test beta = beta2check > beta upper limit | | beta2check < ...

beta lower limit;

284 if test beta==true

285 continue

286 else

287 test b gt c = abg aktuell(2)ˆ2 ď c2checkˆ2;

288 if test b gt c == false

289 continue

290 else

291 volume2check = abg aktuell(1).*abg aktuell(2).*c2check.*...

292 (1−cosd(alpha2check).*cosd(alpha2check)−cosd(beta2check)...

293 .*cosd(beta2check)−cosd(abg aktuell(3)).*...

294 cosd(abg aktuell(3))+2.*cosd(alpha2check).*cosd(beta2check).*...

295 cosd(abg aktuell(3))).ˆ(1/2);

296 test vol = volume2check > volume upper limit | | volume2check < ...

volume lower limit;

297 if test vol == true

298 continue

299 else

300 test type 1= lt(alpha2check,91) && lt(beta2check,91) && ...

lt(abg aktuell(3),91);

301 if test type 1 == true

302 type1 1 = c2check*cosd(alpha2check) ď abg aktuell(2)/2;

303 if type1 1==false

304 continue

305 else

306 type1 2 = c2check*cosd(beta2check) ď abg aktuell(1)/2;

307 if type1 2==false

308 continue

309 else

310 klr(1:3,i) = KLR2check;

311 klr(4:6,i) = working mat(1,1:3)';

312 klr(7,i)=(working mat(1,1)*klr(1,i)+...

113

313 working mat(1,2)*klr(2,i)+...

314 working mat(1,3)*klr(3,i))ˆ2;

315 end

316 end

317 else

318 test type 2= gt(alpha2check,89) && gt(beta2check,89) && ...

gt(abg aktuell(3),89);

319 if test type 2 == false

320 continue

321 else

322 type2 1 = c2check*abs(cosd(alpha2check)) ď abg aktuell(2)/2;

323 if type2 1 == false

324 continue

325 else

326 type2 2 = c2check*abs(cosd(beta2check)) ď abg aktuell(1)/2;

327 if type2 2==false

328 continue

329 else

330 type2 3=abg aktuell(2)*c2check*...

331 abs(cosd(alpha2check))+...

332 abg aktuell(1)*c2check*...

333 abs(cosd(beta2check))+...

334 abg aktuell(1)*abg aktuell(1)*...

335 abs(cosd(abg aktuell(3))) ď...

336 (abg aktuell(1)ˆ2+abg aktuell(2)ˆ2)/2;

337 if type2 3 == false

338 continue

339 else

340 klr(1:3,i) = KLR2check;

341 klr(4:6,i) = working mat(1,1:3)';

342 klr(7,i)=(working mat(1,1)*klr(1,i)+...

343 working mat(1,2)*klr(2,i)+...

344 working mat(1,3)*klr(3,i))ˆ2;

345 end

346 end

347 end

348 end

349 end

350 end

351 end

352 end

353 end

354 end

114

355 end

356 end

357 klr for all abg(:,:,all abg)=klr;

358 end

359 end

360

361 clear output matrices for solve

362 OUTPUT COLLECTION parameter=...

363 zeros(round(size(klr for all abg,2)/10,0),13,...

364 size(klr for all abg,3),'single');

365 OUTPUT COLLECTION indexed data NEW=...

366 zeros(size(datapoints,1),5,...

367 round(size(klr for all abg,2)/10,0),...

368 size(klr for all abg,3),'single');

369

370 disp('Start indxing part 2')

371 d.Value=.7;

372 d.Message = 'Busy with indexing part 2';

373 pause(2)

374 d.Message = 'Busy with indexing part 2 .';

375 pause(2)

376 d.Message = 'Busy with indexing part 2 . .';

377 pause(2)

378 d.Message = 'Busy with indexing part 2 . . .';

379

380 for abg i=1:size(klr for all abg,3)

381

382 choose abg=INDEXED with subs NEW(:,:,abg i);

383 sub2=choose abg(1,9);

384 sub3=choose abg(2:end,7);

385

386 za i=(2*pi)./(choose abg(1,4).*sind(choose abg(1,6)));

387 zb i=(2*pi)./(choose abg(1,5).*sind(choose abg(1,6)));

388 cosg i=cosd(choose abg(1,6));

389

390 qspec=choose abg(1,3);

391 eins d qspec=1/choose abg(1,3);

392

393 qzi list=choose abg(2:end,1:6);

394

395 KLR raw us=klr for all abg(:,:,abg i)';

396 KLR raw us(all(KLR raw us,2),:)=[];

397

115

398 KLR raw us(abs(KLR raw us(:,3))<1e−4,:)=[];

399

400 gspeccalc=sqrt(choose abg(1,10)+KLR raw us(:,7));

401 ind qspec=abs(gspeccalc−qspec)ďdqspec;

402 KLR raw=KLR raw us(ind qspec,:);

403 KLR raw(:,8)=abs(gspeccalc(ind qspec,:)−qspec);

404

405 colwid=size(qzi list,2)+size(KLR raw,2)+2;

406 field=zeros(size(qzi list,1),colwid,size(KLR raw,1),'single');

407

408 for klr line=1:size(KLR raw,1)

409 expanded klr=repmat(KLR raw(klr line,:),...

410 [size(qzi list,1) 1]);

411 field(:,1:colwid−3,klr line)=...

412 horzcat(qzi list,expanded klr(:,1:7));

413 field(:,17,klr line)=expanded klr(:,8);

414 end

415

416 l calculated=(field(:,6,:)−field(:,3,:).*...

417 field(:,7,:)−field(:,4,:).*field(:,8,:)).*...

418 field(:,9,:).ˆ−1;

419 l tolzero=1e−4;

420 l calculated(abs(l calculated)ďl tolzero)=0;

421 l calculated round=round(l calculated,0);

422 field(1:end,14,:)=l calculated round;

423 klr hkl term=field(:,3,:).*field(:,7,:)+field(:,4,:)...

424 .*field(:,8,:)+...

425 field(:,14,:).*field(:,9,:);

426 gzi=(klr hkl term.*sub2+sub3).*eins d qspec;

427 qz diff=(field(:,2,:)−gzi).ˆ2;

428 field(:,15,:)=qz diff;

429

430 pt1=field(:,3,:).ˆ2.*za i.ˆ2+field(:,4,:).ˆ2.*zb i.ˆ2−2...

431 .*field(:,3,:).*...

432 field(:,4,:).*za i.*zb i.*cosg i;

433

434 gxyzi=sqrt(pt1+((gzi.*qspec−sub3).ˆ2)./(sub2.ˆ2));

435 ∆ qxyz=(gxyzi−qxyz datapoints).ˆ2;

436 field(:,16,:)= ∆ qxyz;

437

438 nsize4=size(field,1)/redundanzhk;

439 output abg KLR all=zeros(nsize4,size(field,2),...

440 size(field,3),'single');

116

441 indzaehler=1;

442

443 for indvierer=1:redundanzhk:size(field,1)−redundanzhk+1

444

445 qz 4er mit indizes=...

446 field(indvierer:indvierer+redundanzhk−1,:,:);

447 qz 4er nur diff qxyz=qz 4er mit indizes(:,16,:);

448 [,ind qmin]=mink(qz 4er nur diff qxyz,1);

449 d1=reshape(ind qmin,[size(ind qmin,3) 1]);

450

451 for klo=1:size(ind qmin,3)

452 output abg KLR all(indzaehler,:,klo)=...

453 qz 4er mit indizes(d1(klo),:,klo);

454 end

455 indzaehler=indzaehler+1;

456

457 end

458

459 clear INDEXED with subs NEW

460 summieren qxy=sum(output abg KLR all(:,5,:));

461 summieren qz=sum(output abg KLR all(:,15,:));

462 summieren qxyz=sum(output abg KLR all(:,16,:));

463 N anzahl=size(output abg KLR all,1);

464 RMSD qxy=(summieren qxy./N anzahl).ˆ(1/2);

465 RMSD qz=(summieren qz./N anzahl).ˆ(1/2);

466 RMSD qxyz=(summieren qxyz./N anzahl).ˆ(1/2);

467 size(output abg KLR all);

468 RMSD qspec=output abg KLR all(1,end,:);

469 outputformat abg i=...

470 zeros(1,13,size(output abg KLR all,3),'single');

471 outputformat abg i(:,1:3,:)=repmat(choose abg(1,4:6),[1 1 ...

size(output abg KLR all,3)]);

472 outputformat abg i(:,4:9,:)=output abg KLR all(1,[7 8 9 10 ...

11 12],:);

473 outputformat abg i(:,10,:)=RMSD qxy;

474 outputformat abg i(:,11,:)=RMSD qz;

475 outputformat abg i(:,12,:)=RMSD qxyz;

476 outputformat abg i(:,13,:)=RMSD qspec;

477 output abg i with errors par=...

478 reshape(permute(outputformat abg i,[3 2 1]),...

479 [size(outputformat abg i,3),size(outputformat abg i,2)]);

480

481

117

482 OUTPUT COLLECTION parameter(1:size(KLR raw,1),:,abg i)=...

483 output abg i with errors par;

484 OUTPUT COLLECTION indexed data NEW...

485 (:,:,1:size(KLR raw,1),abg i)=...

486 output abg KLR all(:,[1 2 3 4 14],:,:);

487

488 end

489 disp('indxing part 2 finished')

490 clear klr for all abg

491 parameter abg KLR=reshape(permute(OUTPUT COLLECTION parameter,[1 ...

3 2]),[],...

492 size(OUTPUT COLLECTION parameter,2),1);

493 clear OUTPUT COLLECTION parameter

494 indices abg KLR NEW unsorted=...

495 reshape(OUTPUT COLLECTION indexed data NEW...

496 ,[size(OUTPUT COLLECTION indexed data NEW,1),...

497 size(OUTPUT COLLECTION indexed data NEW,2),...

498 size(OUTPUT COLLECTION indexed data NEW,3)*...

499 size(OUTPUT COLLECTION indexed data NEW,4)]);

500 clear OUTPUT COLLECTION indexed data NEW

501 index empty=all(parameter abg KLR,2);

502 parameter abg KLR(index empty,:)=[];

503 indices abg KLR NEW unsorted(:,:,index empty)=[];

504 disp('Calculate real space parameter, unsorted')

505 [cell parameters output unsorted] = ...

506 function NEWCELLPARAMETER RESTRICTED(parameter abg KLR);

507 [,indsmallest q]=sort(cell parameters output unsorted(:,11));

508 rownumber=1:size(cell parameters output unsorted,1);

509 cell parameters output noline=...

510 cell parameters output unsorted(indsmallest q,:);

511 cell parameters output=horzcat(rownumber',...

512 cell parameters output noline);

513 indices abg KLR NEW=...

514 indices abg KLR NEW unsorted(:,:,indsmallest q);

515 clear indices abg KLR NEW unsorted

516 clear cell parameters output noline

517 d.Value=.9;

518 d.Message = 'Indexing Part II finished..';

519 pause(2)

520

521 d.Value=.95;

522 d.Message = 'Parameter optimization and search for reduced cell.';

523 pause(2)

118

524 A1 parameter redu and opti=zeros(size(cell parameters output,1),14);

525

526 for solution number=1:size(cell parameters output,1)

527 par test=cell parameters output(solution number,:);

528 ind test=indices abg KLR NEW(:,:,solution number);

529 if par test(2)==0 && par test(3)==0

530 A1 parameter redu and opti(solution number,:)=...

531 function REDUCED CELL MY 001(par test,ind test,qspecc);

532 else

533 A1 parameter redu and opti(solution number,:)=...

534 function REDUCED CELL MY UVW(par test,ind test,qspecc);

535 end

536 end

537 [,final sort]=sort(A1 parameter redu and opti(:,11));

538 final parameters=A1 parameter redu and opti(final sort,:);

539 final indices=indices abg KLR NEW(:,:,final sort);

540 if size(final parameters,1)>50

541 final parameters output=final parameters(1:50,:);

542 final indices output=final indices(:,:,1:50);

543 else

544 final parameters output=final parameters;

545 final indices output=final indices;

546 end

547 d.Value=1;

548 d.Message = 'Indexing sweep finished.';

549 close(d)

550 close(f)

551 end

B.2.12 function CALCSUBSIS.m

1 function [INDEXED with subs out]=function CALCSUBSIS(INDEXED try)

2 INDEXED with subs=INDEXED try;

3 u=INDEXED try(1,1,:);

4 v=INDEXED try(1,2,:);

5 za=INDEXED try(1,8,:);

6 zb=INDEXED try(1,9,:);

7 cosg=cosd(INDEXED try(1,6,:));

8 qspecc=INDEXED try(1,3,:);

9

119

10 guv=u.ˆ2.*za.ˆ2+v.ˆ2.*zb.ˆ2−2.*u.*v.*za.*zb.*cosg;

11 sub1=real((qspecc.ˆ2−guv).ˆ(0.5));

12 sub2=(qspecc.ˆ2−u.ˆ2.*za.ˆ2−v...

13 .ˆ2.*zb.ˆ2+2.*u.*v.*za.*zb.*cosg).ˆ(0.5);

14

15 INDEXED with subs(1,8,:)=sub1;

16 INDEXED with subs(1,9,:)=sub2;

17 INDEXED with subs(1,10,:)=guv;

18

19 gzi=INDEXED with subs(2:end,2,:);

20 h=INDEXED with subs(2:end,3,:);

21 k=INDEXED with subs(2:end,4,:);

22

23 gziqspec=gzi.*INDEXED with subs(1,3,:);

24 zaehler=gziqspec−h.*u.*za.ˆ2−k.*v.*zb.ˆ2+(h.*v+k.*u).*za.*zb.*cosg;

25 sub3=h.*u.*za.ˆ2+k.*v.*zb.ˆ2−(h.*v+k.*u).*za.*zb.*cosg;

26 gziterme=zaehler./sub2;

27 INDEXED with subs(2:end,6,:)=gziterme;

28 INDEXED with subs(2:end,7,:)=sub3;

29 INDEXED with subs out=INDEXED with subs;

30 end

B.2.13 function NEWPACKING.m

1 function [INDEXED with subs NEW] = ...

2 function NEWPACKING(INDEXED with subs,redundanzhk)

3

4 rlength=2+3*redundanzhk;

5 number of solutions=size(INDEXED with subs,3);

6 INDEXED with subs NEW=zeros(size(INDEXED with subs,1),...

7 size(INDEXED with subs,2)+rlength,'single');

8

9 Messwerte qz=INDEXED with subs(2:redundanzhk:end,1:2,1);

10 package height=size(zeros(size(Messwerte qz,1),rlength),1);

11

12 for ind lsg=1:number of solutions

13 current page abg=INDEXED with subs(:,:,ind lsg);

14 lsg abg ar=current page abg(2:end,1:5);

15 ausgabe mw=zeros(size(Messwerte qz,1),rlength,'single');

16 ind fuer paket=1;

120

17 for ind mw=1:redundanzhk:size(lsg abg ar,1)−redundanzhk+1

18 paket redhk er=lsg abg ar(ind mw:ind mw+redundanzhk−1,:);

19 macht zeile pro qz redhk ohne MW= zeros(1,rlength−2);

20 irhk=1;

21 for rhk=1:redundanzhk

22 macht zeile pro qz redhk ohne MW...

23 (:,irhk:irhk+2)=paket redhk er(rhk,3:end);

24 irhk=irhk+3;

25 end

26 macht zeile pro qz mit redhk=...

27 horzcat(paket redhk er(1,1:2),...

28 macht zeile pro qz redhk ohne MW);

29 ausgabe mw(ind fuer paket,:)=macht zeile pro qz mit redhk;

30 ind fuer paket=ind fuer paket+1;

31 end

32

33 INDEXED with subs NEW(1:size(INDEXED with subs,1),...

34 1:size(INDEXED with subs,2),ind lsg)=...

35 INDEXED with subs(:,:,ind lsg);

36

37 INDEXED with subs NEW(1:package height,...

38 size(INDEXED with subs,2)+...

39 1:size(INDEXED with subs NEW,2),ind lsg)=ausgabe mw;

40

41 end

42 end

B.2.14 function NEWCELLPARAMETER RESTRICTED.m

1

2 function [output] = function NEWCELLPARAMETER RESTRICTED(...

3 parameter abg KLR)

4

5 u=parameter abg KLR(:,7);

6 v=parameter abg KLR(:,8);

7 w=parameter abg KLR(:,9);

8

9 a in=parameter abg KLR(:,1);

10 b in=parameter abg KLR(:,2);

11 gamma in=parameter abg KLR(:,3);

121

12

13 kappa=parameter abg KLR(:,4);

14 lambda=parameter abg KLR(:,5);

15 rho=parameter abg KLR(:,6);

16

17 RMSD qxy in=parameter abg KLR(:,10);

18 RMSD qz in=parameter abg KLR(:,11);

19 RMSD q in=parameter abg KLR(:,12);

20 RMSD qspec in=parameter abg KLR(:,13);

21

22 ∆=−1./(2.*pi).*kappa.*a in.*sind(gamma in);

23 mu=−1./(2.*pi).*lambda.*b in.*sind(gamma in);

24

25 sin eps=sind(gamma in)./sqrt(sind(gamma in).ˆ2+ ∆.ˆ2+mu.ˆ2+...

26 2.* ∆.*mu.*cosd(gamma in));

27

28 cos alpha=(sin eps.*mu+sin eps.* ∆.*cosd(gamma in))./sind(gamma in);

29 alpha out=acosd(cos alpha);

30

31 cos beta=(sin eps.* ∆+sin eps.*mu.*cosd(gamma in))./sind(gamma in);

32 beta out=acosd(cos beta);

33 gamma out=gamma in;

34

35 a out=a in;

36 b out=b in;

37 c out=(2.*pi)./(sin eps.*rho);

38

39 vol sq=a out.*b out.*c out.*(1−cosd(alpha out).*cosd(alpha out)−...

40 cosd(beta out).*cosd(beta out)−cosd(gamma out).*cosd(gamma out)...

41 +2.*cosd(alpha out).*cosd(beta out).*cosd(gamma out)).ˆ(1/2);

42

43 output=horzcat(u,v,w,a out,b out,c out,alpha out,beta out,gamma out,...

44 vol sq,RMSD q in,RMSD qz in,RMSD qxy in,RMSD qspec in);

45 end

B.2.15 function REDUCED CELL MY 001.m

1 function [A1 parameter OPTIMIERT] = ...

function REDUCED CELL MY 001(par test,ind test,qspec)

2

122

3 u=par test(1,2);

4 v=par test(1,3);

5 w=par test(1,4);

6 a= par test(1,5);

7 b= par test(1,6);

8 c= par test(1,7);

9 alpha=par test(1,8);

10 beta=par test(1,9);

11 gamma=par test(1,10);

12

13 [A001 star,GSPEC] = ...

14 function CALC A001 STAR(a,b,c,alpha,beta,gamma,u,v,w);

15

16 if size(ind test,1)>50

17 N=50;

18 else

19 N=size(ind test,1);

20 end

21

22 hkl=ind test(:,[3 4 5]);

23 row variations indices=nchoosek(1:N,3);

24

25 HKL=zeros(3,3,size(row variations indices,1));

26 hkl det=zeros(size(row variations indices,1),1);

27

28 for i=1:size(row variations indices,1)

29 linen=row variations indices(i,:);

30 testmat=horzcat(hkl(linen(1),:)',...

31 hkl(linen(2),:)',hkl(linen(3),:)');

32 detcalc=det(testmat);

33 if abs(detcalc)ď1e−6

34 detcalc=0;

35 end

36 hkl det(i,:)=round(detcalc,0);

37 HKL(:,:,i)=testmat;

38 end

39

40 hkl det double=zeros(size(hkl det,1),2);

41 hkl det double(:,1)=hkl det;

42 hkl det double(:,2)=abs(hkl det);

43

44

45 [,shkl]=sort(hkl det double(:,2));

123

46 hkl double sorted=hkl det double(shkl,:);

47 HKL=HKL(:,:,shkl);

48

49 indzerodet=hkl double sorted(:,1)‰0;

50

51 hkl determinant ascending=hkl double sorted(indzerodet,:);

52 HKL as columns=HKL(:,:,indzerodet);

53

54 hk dets pos 1er test=hkl determinant ascending(:,1)==1;

55 hkl dets pos 1er=HKL as columns(:,:,hk dets pos 1er test);

56

57 hk dets neg 1er test=hkl determinant ascending(:,1)==−1;

58 hkl dets neg 1er=HKL as columns(:,:,hk dets neg 1er test);

59

60 HKL vec mit 1er determinante=...

61 cat(3,hkl dets pos 1er,hkl dets neg 1er);

62

63 if size(HKL vec mit 1er determinante,3)>0

64 hkl matti1=HKL vec mit 1er determinante(:,:,1);

65 g1t=A001 star*hkl matti1(:,1);

66 g2t=A001 star*hkl matti1(:,2);

67 g3t=A001 star*hkl matti1(:,3);

68

69

70 G=[g1t';g2t';g3t'];

71 G inv=inv(G);

72 m vec=LPermutation(−8:8,3);

73 m vec(all(m vec,2),:)=[];

74

75 v stored=zeros(3,1,size(m vec,1));

76 v length stored=zeros(size(v stored,1),2);

77 for dope=1:size(m vec)

78 vveco=2.*pi.*G inv*m vec(dope,:)';

79 v stored(:,:,dope)=vveco;

80 v length stored(dope,1)=norm(vveco);

81 v length stored(dope,2)=round(vveco(3).*GSPEC./(2.*pi));

82 end

83

84 [,ski]=sort(v length stored(:,1));

85

86 lengths sorted=v length stored(ski,:);

87 vectors sorted=v stored(:,:,ski);

88

124

89 [V,ial,]=unique(lengths sorted(:,1));

90 Vv=vectors sorted(:,:,ial);

91

92 for coline=1:size(row variations indices,1)

93 combine=row variations indices(coline,:);

94 det test=det([Vv(:,:,combine(1)),...

95 Vv(:,:,combine(2)),Vv(:,:,combine(3))]);

96 if abs(det test)>0.0001

97 par test(1,5)=V(combine(1));

98 par test(1,6)=V(combine(2));

99 par test(1,7)=V(combine(3));

100 break

101 end

102

103 end

104

105 qxyz=sqrt(ind test(:,1).ˆ2+ind test(:,2).ˆ2);

106

107 [astern,bstern,cstern,alphastern,betastern,gammastern] = ...

108 function REAL TO RECIPROCAL v9(par test(:,5),...

109 par test(:,6), par test(:,7),...

110 par test(:,8), par test(:,9),par test(:,10));

111

112 [gz uvw,gxyz uvw] = ...

function GZ GXYZ UVW(GSPEC,u,v,w,astern,bstern,...

113 cstern,alphastern,betastern,gammastern,ind test(:,3),...

114 ind test(:,4),ind test(:,5));

115

116 qg feld mit hkl uvw=...

117 horzcat(qxyz−gxyz uvw,ind test(:,2)−gz uvw,...

118 ind test(:,3),ind test(:,4),ind test(:,5));

119

120 [epsilon vector uvw] = ...

121 function EPSILON UVW(GSPEC,par test(2),par test(3),...

122 par test(4),qg feld mit hkl uvw,astern,bstern,...

123 cstern,alphastern,betastern,gammastern);

124

125 rec par optimized=[astern;bstern;cstern;alphastern;...

126 betastern;gammastern]+epsilon vector uvw;

127

128 alpha neu=acosd((cosd(rec par optimized(5))*...

129 cosd(rec par optimized(6))...

130 −cosd(rec par optimized(4)))/(sind(rec par optimized(5))...

125

131 *sind(rec par optimized(6))));

132

133 beta neu=acosd((cosd(rec par optimized(4))*...

134 cosd(rec par optimized(6))−cosd(rec par optimized(5)))...

135 /(sind(rec par optimized(4))*sind(rec par optimized(6))));

136

137 gamma neu=acosd((cosd(rec par optimized(4))*...

138 cosd(rec par optimized(5))−cosd(rec par optimized(6)))/...

139 (sind(rec par optimized(4))*sind(rec par optimized(5))));

140

141 astarn=rec par optimized(1);

142 bstarn=rec par optimized(2);

143 cstarn=rec par optimized(3);

144

145 alpstarn=rec par optimized(4);

146 betstarn=rec par optimized(5);

147 gamstarn=rec par optimized(6);

148

149 Volstarn=astarn*bstarn*cstarn*...

150 sqrt(1−cosd(alpstarn)ˆ2−cosd(betstarn)ˆ2−...

151 cosd(gamstarn)ˆ2+2*cosd(alpstarn)*...

152 cosd(betstarn)*cosd(gamstarn));

153

154 a neu=2*pi*bstarn*cstarn*sind(alpstarn)/Volstarn;

155 b neu=2*pi*astarn*cstarn*sind(betstarn)/Volstarn;

156 c neu=2*pi*astarn*bstarn*sind(gamstarn)/Volstarn;

157

158 V neu=a neu*b neu*c neu*sind(alpstarn)*...

159 sind(beta neu)*sind(gamma neu);

160

161 [gz new,gxyz new] = ...

function GZ GXYZ UVW(GSPEC,par test(:,2),...

162 par test(:,3),par test(1,4),...

163 rec par optimized(1,:),rec par optimized(2,:),...

164 rec par optimized(3,:),rec par optimized(4,:),...

165 rec par optimized(5,:),rec par optimized(6,:),...

166 ind test(:,3),ind test(:,4),ind test(:,5));

167

168 gxy new=sqrt(((2.*pi)./(a neu.*sind(gamma neu))).ˆ2.*...

169 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).ˆ2+...

170 (par test(:,2).*ind test(:,1)./GSPEC).ˆ2)+ ...

171 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*((ind test(:,4)...

172 −par test(:,3).*ind test(:,2)./GSPEC).ˆ2+(par test(:,3).*...

126

173 ind test(:,1)./GSPEC).ˆ2)−...

174 2.*(2.*pi./(a neu.*sind(gamma neu))).*(2.*pi./...

175 (b neu.*sind(gamma neu))).*cosd(gamma neu).*...

176 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).*...

177 (ind test(:,4)−par test(:,3).*ind test(:,2)./GSPEC)+...

178 par test(:,2).*par test(:,3).*(ind test(:,1)./GSPEC).ˆ2)...

179 −((ind test(:,3).*par test(:,3)−ind test(:,4).*...

180 par test(:,2)).ˆ2./GSPEC.ˆ2).*(2.*pi./(a neu.*...

181 sind(gamma neu))).ˆ2.*...

182 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*sind(gamma neu).ˆ2);

183

184 num=size(qxyz,1);

185

186 RMSD qxy new=(sum((gxy new−ind test(:,1)).ˆ2)/num).ˆ(1/2);

187 RMSD qz new=(sum((gz new−ind test(:,2)).ˆ2)/num).ˆ(1/2);

188 RMSD qxyz new=(sum((gxyz new−qxyz).ˆ2)/num).ˆ(1/2);

189

190

191 A1 parameter OPTIMIERT=[u,v,w,a neu,b neu,c neu,...

192 alpha neu,beta neu,gamma neu,...

193 V neu,RMSD qxyz new,RMSD qz new,...

194 RMSD qxy new,abs(GSPEC−qspec)];

195

196 else

197 qxyz=sqrt(ind test(:,1).ˆ2+ind test(:,2).ˆ2);

198

199 [astern,bstern,cstern,alphastern,betastern,gammastern] = ...

200 function REAL TO RECIPROCAL v9(par test(:,5),...

201 par test(:,6), par test(:,7),...

202 par test(:,8), par test(:,9),par test(:,10));

203

204 [gz uvw,gxyz uvw] = ...

function GZ GXYZ UVW(GSPEC,u,v,w,astern,bstern,...

205 cstern,alphastern,betastern,gammastern,ind test(:,3),...

206 ind test(:,4),ind test(:,5));

207

208 qg feld mit hkl uvw=horzcat(qxyz−gxyz uvw,...

209 ind test(:,2)−gz uvw,...

210 ind test(:,3),ind test(:,4),ind test(:,5));

211

212 [epsilon vector uvw] = ...

213 function EPSILON UVW(GSPEC,par test(2),par test(3),...

214 par test(4),qg feld mit hkl uvw,astern,bstern,...

127

215 cstern,alphastern,betastern,gammastern);

216

217 rec par optimized=[astern;bstern;cstern;alphastern;...

218 betastern;gammastern]+epsilon vector uvw;

219

220 alpha neu=acosd((cosd(rec par optimized(5))*...

221 cosd(rec par optimized(6))...

222 −cosd(rec par optimized(4)))/(sind(rec par optimized(5))...

223 *sind(rec par optimized(6))));

224

225 beta neu=acosd((cosd(rec par optimized(4))*...

226 cosd(rec par optimized(6))−cosd(rec par optimized(5)))...

227 /(sind(rec par optimized(4))*sind(rec par optimized(6))));

228

229 gamma neu=acosd((cosd(rec par optimized(4))*...

230 cosd(rec par optimized(5))−cosd(rec par optimized(6)))/...

231 (sind(rec par optimized(4))*sind(rec par optimized(5))));

232

233 astarn=rec par optimized(1);

234 bstarn=rec par optimized(2);

235 cstarn=rec par optimized(3);

236

237 alpstarn=rec par optimized(4);

238 betstarn=rec par optimized(5);

239 gamstarn=rec par optimized(6);

240

241 Volstarn=astarn*bstarn*cstarn*...

242 sqrt(1−cosd(alpstarn)ˆ2−cosd(betstarn)ˆ2−...

243 cosd(gamstarn)ˆ2+2*cosd(alpstarn)*...

244 cosd(betstarn)*cosd(gamstarn));

245

246 a neu=2*pi*bstarn*cstarn*sind(alpstarn)/Volstarn;

247 b neu=2*pi*astarn*cstarn*sind(betstarn)/Volstarn;

248 c neu=2*pi*astarn*bstarn*sind(gamstarn)/Volstarn;

249

250 V neu=a neu*b neu*c neu*sind(alpstarn)*...

251 sind(beta neu)*sind(gamma neu);

252

253 [gz new,gxyz new] = ...

function GZ GXYZ UVW(GSPEC,par test(:,2),...

254 par test(:,3),par test(1,4),...

255 rec par optimized(1,:),rec par optimized(2,:),...

256 rec par optimized(3,:),rec par optimized(4,:),...

128

257 rec par optimized(5,:),rec par optimized(6,:),...

258 ind test(:,3),ind test(:,4),ind test(:,5));

259

260 gxy new=sqrt(((2.*pi)./(a neu.*sind(gamma neu))).ˆ2.*...

261 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).ˆ2+...

262 (par test(:,2).*ind test(:,1)./GSPEC).ˆ2)+ ...

263 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*((ind test(:,4)...

264 −par test(:,3).*ind test(:,2)./GSPEC).ˆ2+(par test(:,3).*...

265 ind test(:,1)./GSPEC).ˆ2)−...

266 2.*(2.*pi./(a neu.*sind(gamma neu))).*(2.*pi./...

267 (b neu.*sind(gamma neu))).*cosd(gamma neu).*...

268 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).*...

269 (ind test(:,4)−par test(:,3).*ind test(:,2)./GSPEC)+...

270 par test(:,2).*par test(:,3).*(ind test(:,1)./GSPEC).ˆ2)...

271 −((ind test(:,3).*par test(:,3)−ind test(:,4).*...

272 par test(:,2)).ˆ2./GSPEC.ˆ2).*(2.*pi./(a neu.*...

273 sind(gamma neu))).ˆ2.*...

274 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*sind(gamma neu).ˆ2);

275

276 num=size(qxyz,1);

277

278 RMSD qxy new=(sum((gxy new−ind test(:,1)).ˆ2)/num).ˆ(1/2);

279 RMSD qz new=(sum((gz new−ind test(:,2)).ˆ2)/num).ˆ(1/2);

280 RMSD qxyz new=(sum((gxyz new−qxyz).ˆ2)/num).ˆ(1/2);

281

282 A1 parameter OPTIMIERT=[u,v,w,a neu,b neu,c neu,...

283 alpha neu,beta neu,gamma neu,...

284 V neu,RMSD qxyz new,RMSD qz new,...

285 RMSD qxy new,abs(GSPEC−qspec)];

286 end

287 end

B.2.16 function CALC A001 STAR.m

1 function [A 001 star,GSPEC2] = ...

function CALC A001 STAR(a,b,c,alpha,beta,gamma,u,v,w)

2 volume=a*b*c*(1−cosd(alpha)ˆ2−cosd(beta)ˆ2−...

3 cosd(gamma)ˆ2+2*cosd(alpha)*...

4 cosd(beta)*cosd(gamma))ˆ(1/2);

5

129

6 astern=(2*pi*b*c*sind(alpha))/volume;

7 bstern=(2*pi*a*c*sind(beta))/volume;

8 cstern=(2*pi*a*b*sind(gamma))/volume;

9

10 sin alpha stern=volume/(a*b*c*sind(beta)*sind(gamma));

11 cos alpha stern=...

12 (cosd(beta)*cosd(gamma)−cosd(alpha))/(sind(beta)*sind(gamma));

13 cos beta stern=...

14 (cosd(alpha)*cosd(gamma)−cosd(beta))/(sind(alpha)*sind(gamma));

15 sin beta stern=...

16 volume/(a*b*c*sind(alpha)*sind(gamma));

17 cos gamma stern=...

18 (cosd(alpha)*cosd(beta)−cosd(gamma))/(sind(alpha)*sind(beta));

19 A 001 star=zeros(3,3);

20 A 001 star(1,1)=astern*sin beta stern*sind(gamma);

21 A 001 star(2,1)=−astern*sin beta stern*cosd(gamma);

22 A 001 star(3,1)=astern*cos beta stern;

23 A 001 star(2,2)=bstern*sin alpha stern;

24 A 001 star(3,2)=bstern*cos alpha stern;

25 A 001 star(3,3)=cstern;

26

27 GSPEC2=sqrt(uˆ2*asternˆ2+vˆ2*bsternˆ2+wˆ2*csternˆ2+...

28 2*u*v*astern*bstern*cos gamma stern+...

29 2*u*w*astern*cstern*cos beta stern+...

30 2*v*w*bstern*cstern*cos alpha stern);

31

32 end

B.2.17 function REAL TO RECIPROCAL v9.m

1 function [astern,bstern,cstern,alphastern,betastern,gammastern] ...

= ...

2 function REAL TO RECIPROCAL v9(a,b,c,alpha,beta,gamma)

3 V=a.*b.*c.*(1−cosd(alpha).*cosd(alpha)−...

4 cosd(beta).*cosd(beta)−cosd(gamma).*cosd(gamma)...

5 +2.*cosd(alpha).*cosd(beta).*cosd(gamma)).ˆ(1/2);

6 astern=(2*pi).*(b.*c.*sind(alpha))./V;

7 bstern=(2*pi).*(a.*c.*sind(beta))./V;

8 cstern=(2*pi).*(a.*b.*sind(gamma))./V;

9 alphastern=acosd((cosd(beta).*cosd(gamma)−cosd(alpha))./...

130

10 (sind(beta).*sind(gamma)));

11 betastern=acosd((cosd(alpha).*cosd(gamma)−cosd(beta))./...

12 (sind(alpha).*sind(gamma)));

13 gammastern=acosd((cosd(alpha).*cosd(beta)−cosd(gamma))./...

14 (sind(alpha).*sind(beta)));

15 end

B.2.18 function EPSILON UVW.m

1 function [epsilon vektor,f matrix,f right] = ...

function EPSILON UVW(qspec,...

2 u,v,w,qg feld mit hkl,astern,bstern,...

3 cstern,alphastern,betastern,gammastern)

4

5 dx=1e−5;

6 f para kartei=zeros(6,1,size(qg feld mit hkl,1));

7 f matrix kartei=zeros(6,6,size(qg feld mit hkl,1));

8

9 for mwi=1:size(qg feld mit hkl,1)

10

11 h=qg feld mit hkl(mwi,3);

12 k=qg feld mit hkl(mwi,4);

13 l=qg feld mit hkl(mwi,5);

14 ∆ q i=[qg feld mit hkl(mwi,1);...

15 qg feld mit hkl(mwi,2)];

16

17 func gxyz = @(h,k,l,astern,bstern,cstern,alphastern,...

18 betastern,gammastern) ...

((h.ˆ2.*astern.ˆ2+k.ˆ2.*bstern.ˆ2+l.ˆ2.*...

19 cstern.ˆ2+2.*h.*k.*astern.*bstern...

20 .*cosd(gammastern)+2.*h.*l.*...

21 astern.*cstern.*cosd(betastern)+...

22 2.*k.*l.*bstern.*cstern.*cosd(alphastern)).ˆ(1/2));

23

24 func gz = ...

@(u,v,w,qspec,h,k,l,astern,bstern,cstern,alphastern,...

25 betastern,gammastern) ((h.*u.*astern.ˆ2+k.*v.*bstern.ˆ2+...

26 l.*w.*cstern.ˆ2+...

27 (h.*v+k.*u).*astern.*bstern.*cosd(gammastern)+...

28 (h.*w+l.*u).*astern.*cstern.*cosd(betastern)+...

131

29 (k.*w+l.*v).*bstern.*cstern.*cosd(alphastern))./qspec);

30

31 fa gxyz=((func gxyz(h,k,l,astern+dx,bstern,cstern,...

32 alphastern,betastern,gammastern)−func gxyz(h,k,l,...

33 astern−dx,bstern,cstern,...

34 alphastern,betastern,gammastern))./(2*dx));

35

36 fa gz=(func gz(u,v,w,qspec,h,k,l,astern+dx,bstern,...

37 cstern,alphastern,betastern,...

38 gammastern)−func gz(u,v,w,qspec,h,k,l,...

39 astern−dx,bstern,cstern,alphastern,betastern,...

40 gammastern))./(2*dx);

41

42 fa i=[fa gxyz,fa gz];

43

44 fb gxyz=((func gxyz(h,k,l,astern,bstern+dx,cstern,...

45 alphastern,betastern,gammastern)−func gxyz(h,k,l,...

46 astern,bstern−dx,cstern,...

47 alphastern,betastern,gammastern))./(2*dx));

48

49 fb gz=(func gz(u,v,w,qspec,h,k,l,astern,...

50 bstern+dx,cstern,alphastern,betastern,...

51 gammastern)−func gz(u,v,w,qspec,h,k,l,astern,...

52 bstern−dx,cstern,alphastern,betastern,...

53 gammastern))./(2*dx);

54

55 fb i=[fb gxyz,fb gz];

56

57 fc gxyz=((func gxyz(h,k,l,astern,bstern,cstern+dx,...

58 alphastern,betastern,gammastern)−func gxyz(h,k,l,...

59 astern,bstern,cstern−dx,...

60 alphastern,betastern,gammastern))./(2*dx));

61

62 fc gz=(func gz(u,v,w,qspec,h,k,l,astern,...

63 bstern,cstern+dx,alphastern,betastern,...

64 gammastern)−func gz(u,v,w,qspec,h,k,l,astern,...

65 bstern,cstern−dx,alphastern,betastern,...

66 gammastern))./(2*dx);

67

68 fc i=[fc gxyz,fc gz];

69

70 falpha gxyz=((func gxyz(h,k,l,astern,bstern,cstern,...

71 alphastern+dx,betastern,gammastern)−func gxyz(h,k,l,...

132

72 astern,bstern,cstern,...

73 alphastern−dx,betastern,gammastern))./(2*dx));

74

75 falpha gz=(func gz(u,v,w,qspec,h,k,l,astern,bstern,...

76 cstern,alphastern+dx,betastern,...

77 gammastern)−func gz(u,v,w,qspec,h,k,l,...

78 astern,bstern,cstern,alphastern−dx,betastern,...

79 gammastern))./(2*dx);

80

81 falpha i=[falpha gxyz,falpha gz];

82

83 fbeta gxyz=((func gxyz(h,k,l,astern,bstern,cstern,...

84 alphastern,betastern+dx,gammastern)−func gxyz(h,k,l,...

85 astern,bstern,cstern,...

86 alphastern,betastern−dx,gammastern))./(2*dx));

87

88 fbeta gz=(func gz(u,v,w,qspec,h,k,l,astern,bstern,...

89 cstern,alphastern,betastern+dx,...

90 gammastern)−func gz(u,v,w,qspec,h,k,l,astern,...

91 bstern,cstern,alphastern,betastern−dx,...

92 gammastern))./(2*dx);

93

94 fbeta i=[fbeta gxyz,fbeta gz];

95

96 fgamma gxyz=((func gxyz(h,k,l,astern,bstern,cstern,...

97 alphastern,betastern,gammastern+dx)−func gxyz(h,k,l,...

98 astern,bstern,cstern,...

99 alphastern,betastern,gammastern−dx))./(2*dx));

100

101 fgamma gz=(func gz(u,v,w,qspec,h,k,l,astern,...

102 bstern,cstern,alphastern,betastern,...

103 gammastern+dx)−func gz(u,v,w,qspec,h,k,l,...

104 astern,bstern,cstern,alphastern,betastern,...

105 gammastern−dx))./(2*dx);

106

107 fgamma i=[fgamma gxyz,fgamma gz];

108

109 f para pro messwert=[fa i;fb i;fc i;falpha i;fbeta i;fgamma i];

110

111 f para kartei(:,:,mwi)=f para pro messwert* ∆ q i;

112

113 f matrix kartei(1,1,mwi)=dot(fa i,fa i);

114 f matrix kartei(2,1,mwi)=dot(fa i,fb i);

133

115 f matrix kartei(3,1,mwi)=dot(fa i,fc i);

116 f matrix kartei(4,1,mwi)=dot(fa i,falpha i);

117 f matrix kartei(5,1,mwi)=dot(fa i,fbeta i);

118 f matrix kartei(6,1,mwi)=dot(fa i,fgamma i);

119

120 f matrix kartei(1,2,mwi)=dot(fa i,fb i);

121 f matrix kartei(2,2,mwi)=dot(fb i,fb i);

122 f matrix kartei(3,2,mwi)=dot(fb i,fc i);

123 f matrix kartei(4,2,mwi)=dot(fb i,falpha i);

124 f matrix kartei(5,2,mwi)=dot(fb i,fbeta i);

125 f matrix kartei(6,2,mwi)=dot(fb i,fgamma i);

126

127 f matrix kartei(1,3,mwi)=dot(fa i,fc i);

128 f matrix kartei(2,3,mwi)=dot(fb i,fc i);

129 f matrix kartei(3,3,mwi)=dot(fc i,fc i);

130 f matrix kartei(4,3,mwi)=dot(fc i,falpha i);

131 f matrix kartei(5,3,mwi)=dot(fc i,fbeta i);

132 f matrix kartei(6,3,mwi)=dot(fc i,fgamma i);

133

134 f matrix kartei(1,4,mwi)=dot(fa i,falpha i);

135 f matrix kartei(2,4,mwi)=dot(fb i,falpha i);

136 f matrix kartei(3,4,mwi)=dot(fc i,falpha i);

137 f matrix kartei(4,4,mwi)=dot(falpha i,falpha i);

138 f matrix kartei(5,4,mwi)=dot(falpha i,fbeta i);

139 f matrix kartei(6,4,mwi)=dot(falpha i,fgamma i);

140

141 f matrix kartei(1,5,mwi)=dot(fa i,fbeta i);

142 f matrix kartei(2,5,mwi)=dot(fb i,fbeta i);

143 f matrix kartei(3,5,mwi)=dot(fc i,fbeta i);

144 f matrix kartei(4,5,mwi)=dot(falpha i,fbeta i);

145 f matrix kartei(5,5,mwi)=dot(fbeta i,fbeta i);

146 f matrix kartei(6,5,mwi)=dot(fbeta i,fgamma i);

147

148 f matrix kartei(1,6,mwi)=dot(fa i,fgamma i);

149 f matrix kartei(2,6,mwi)=dot(fb i,fgamma i);

150 f matrix kartei(3,6,mwi)=dot(fc i,fgamma i);

151 f matrix kartei(4,6,mwi)=dot(falpha i,fgamma i);

152 f matrix kartei(5,6,mwi)=dot(fbeta i,fgamma i);

153 f matrix kartei(6,6,mwi)=dot(fgamma i,fgamma i);

154

155 end

156

157 f right=sum(f para kartei,3);

134

158 f matrix=sum(f matrix kartei,3);

159 epsilon vektor=f matrix\f right;

160

161 if all(isnan(epsilon vektor))==true

162 epsilon vektor=zeros(6,1,'single')

163 elseif any(isinf(epsilon vektor))==true

164 epsilon vektor=zeros(6,1,'single')

165 end

166 end

B.2.19 function GZ GXYZ UVW.m

1 function [gz calculated,gxyz calculated] = ...

function GZ GXYZ UVW(qspec,u,v,w,astern,bstern,cstern,...

2 alphastern,betastern,gammastern,H vec,K vec,L vec)

3

4 gz calculated=(H vec.*u.*astern.ˆ2+K vec.*v.*bstern.ˆ2+...

5 L vec.*w.*cstern.ˆ2+...

6 (H vec.*v+K vec.*u).*astern.*bstern.*cosd(gammastern)+...

7 (H vec.*w+L vec.*u).*astern.*cstern.*cosd(betastern)+...

8 (K vec.*w+L vec.*v).*bstern.*cstern.*cosd(alphastern))./qspec;

9

10 gxyz calculated=sqrt(H vec.ˆ2.*astern.ˆ2+K vec.ˆ2.*bstern.ˆ2+...

11 L vec.ˆ2.*cstern.ˆ2+...

12 2.*H vec.*K vec.*astern.*bstern.*cosd(gammastern)+...

13 2.*H vec.*L vec.*astern.*cstern.*cosd(betastern)+...

14 2.*K vec.*L vec.*bstern.*cstern.*cosd(alphastern));

15 end

B.2.20 function REDUCED CELL MY UVW.m

1 function [A1 parameter OPTIMIERT] = ...

function REDUCED CELL MY UVW(par test,ind test,qspec)

2

3 u=par test(1,2);

4 v=par test(1,3);

5 w=par test(1,4);

6 a= par test(1,5);

135

7 b= par test(1,6);

8 c= par test(1,7);

9 alpha=par test(1,8);

10 beta=par test(1,9);

11 gamma=par test(1,10);

12

13 [A001 star,GSPEC] = ...

function CALC A001 STAR(a,b,c,alpha,beta,gamma,u,v,w);

14

15 if size(ind test,1)>50

16 N=50;

17 else

18 N=size(ind test,1);

19 end

20

21 hkl=ind test(:,[3 4 5]);

22 row variations indices=nchoosek(1:N,3);

23

24 HKL=zeros(3,3,size(row variations indices,1));

25 hkl det=zeros(size(row variations indices,1),1);

26

27 for i=1:size(row variations indices,1)

28 linen=row variations indices(i,:);

29 testmat=horzcat(hkl(linen(1),:)',...

30 hkl(linen(2),:)',hkl(linen(3),:)');

31 detcalc=det(testmat);

32 if abs(detcalc)ď1e−6

33 detcalc=0;

34 end

35 hkl det(i,:)=round(detcalc,0);

36 HKL(:,:,i)=testmat;

37 end

38

39 hkl det double=zeros(size(hkl det,1),2);

40 hkl det double(:,1)=hkl det;

41 hkl det double(:,2)=abs(hkl det);

42

43 [,shkl]=sort(hkl det double(:,2));

44 hkl double sorted=hkl det double(shkl,:);

45 HKL=HKL(:,:,shkl);

46

47 indzerodet=hkl double sorted(:,1)‰0;

48 hkl determinant ascending=hkl double sorted(indzerodet,:);

136

49 HKL as columns=HKL(:,:,indzerodet);

50

51 hk dets pos 1er test=hkl determinant ascending(:,1)==1;

52 hkl dets pos 1er=HKL as columns(:,:,hk dets pos 1er test);

53 hk dets neg 1er test=hkl determinant ascending(:,1)==−1;

54 hkl dets neg 1er=HKL as columns(:,:,hk dets neg 1er test);

55 HKL vec mit 1er determinante=...

56 cat(3,hkl dets pos 1er,hkl dets neg 1er);

57

58 if size(HKL vec mit 1er determinante,3)>0

59 hkl matti1=HKL vec mit 1er determinante(:,:,1);

60

61 sigma1=A001 star*[0;0;1];

62 sigma2=A001 star*[u;v;w];

63 s1s2=cross(sigma1,sigma2);

64

65 n=s1s2./norm(s1s2);

66 n1=n(1);

67 n2=n(2);

68 n3=n(3);

69

70 PHI=acosd(dot(sigma1,sigma2)./(norm(sigma1)*norm(sigma2)));

71

72 R=zeros(3,3);

73 R(1,1)=n1.ˆ2.*(1−cosd(PHI))+cosd(PHI);

74 R(2,2)=n2.ˆ2.*(1−cosd(PHI))+cosd(PHI);

75 R(3,3)=n3.ˆ2.*(1−cosd(PHI))+cosd(PHI);

76 R(2,1)=n1.*n2.*(1−cosd(PHI))−n3.*sind(PHI);

77 R(3,1)=n1.*n3.*(1−cosd(PHI))+n2.*sind(PHI);

78 R(1,2)=n1.*n2.*(1−cosd(PHI))+n3.*sind(PHI);

79 R(3,2)=n2.*n3.*(1−cosd(PHI))−n1.*sind(PHI);

80 R(1,3)=n1.*n3.*(1−cosd(PHI))−n2.*sind(PHI);

81 R(2,3)=n2.*n3.*(1−cosd(PHI))+n1.*sind(PHI);

82

83 g1t=R*A001 star*hkl matti1(:,1);

84 g2t=R*A001 star*hkl matti1(:,2);

85 g3t=R*A001 star*hkl matti1(:,3);

86

87 G=[g1t';g2t';g3t'];

88 G inv=inv(G);

89 m vec=LPermutation(−8:8,3);

90 m vec(all(m vec,2),:)=[];

91

137

92 v stored=zeros(3,1,size(m vec,1));

93 v length stored=zeros(size(v stored,1),2);

94 for dope=1:size(m vec)

95 vveco=2.*pi.*G inv*m vec(dope,:)';

96 v stored(:,:,dope)=vveco;

97 v length stored(dope,1)=norm(vveco);

98 v length stored(dope,2)=round(vveco(3).*GSPEC./(2.*pi));

99 end

100 [,ski]=sort(v length stored(:,1));

101

102 lengths sorted=v length stored(ski,:);

103 vectors sorted=v stored(:,:,ski);

104

105 [V,ial,]=unique(lengths sorted(:,1));

106 Vv=vectors sorted(:,:,ial);

107

108 for coline=1:size(row variations indices,1)

109 combine=row variations indices(coline,:);

110 det test=det([Vv(:,:,combine(1)),...

111 Vv(:,:,combine(2)),Vv(:,:,combine(3))]);

112 if abs(det test)>0.0001

113 par test(1,5)=V(combine(1));

114 par test(1,6)=V(combine(2));

115 par test(1,7)=V(combine(3));

116 break

117 end

118

119 end

120

121 qxyz=sqrt(ind test(:,1).ˆ2+ind test(:,2).ˆ2);

122 [astern,bstern,cstern,alphastern,betastern,gammastern] = ...

123 function REAL TO RECIPROCAL v9(par test(:,5),...

124 par test(:,6), par test(:,7),...

125 par test(:,8), par test(:,9),par test(:,10));

126

127 [gz uvw,gxyz uvw] = ...

function GZ GXYZ UVW(GSPEC,u,v,w,astern,bstern,...

128 cstern,alphastern,betastern,gammastern,ind test(:,3),...

129 ind test(:,4),ind test(:,5));

130

131 qg feld mit hkl uvw=...

132 horzcat(qxyz−gxyz uvw,ind test(:,2)−gz uvw,...

133 ind test(:,3),ind test(:,4),ind test(:,5));

138

134

135 [epsilon vector uvw] = ...

136 function EPSILON UVW(GSPEC,par test(2),par test(3),...

137 par test(4),qg feld mit hkl uvw,astern,bstern,...

138 cstern,alphastern,betastern,gammastern);

139

140 rec par optimized=[astern;bstern;cstern;alphastern;...

141 betastern;gammastern]+epsilon vector uvw;

142

143

144 alpha neu=acosd((cosd(rec par optimized(5))*...

145 cosd(rec par optimized(6))...

146 −cosd(rec par optimized(4)))/(sind(rec par optimized(5))...

147 *sind(rec par optimized(6))));

148

149 beta neu=acosd((cosd(rec par optimized(4))*...

150 cosd(rec par optimized(6))−cosd(rec par optimized(5)))...

151 /(sind(rec par optimized(4))*sind(rec par optimized(6))));

152

153 gamma neu=acosd((cosd(rec par optimized(4))*...

154 cosd(rec par optimized(5))−cosd(rec par optimized(6)))/...

155 (sind(rec par optimized(4))*sind(rec par optimized(5))));

156

157 astarn=rec par optimized(1);

158 bstarn=rec par optimized(2);

159 cstarn=rec par optimized(3);

160

161 alpstarn=rec par optimized(4);

162 betstarn=rec par optimized(5);

163 gamstarn=rec par optimized(6);

164

165 Volstarn=astarn*bstarn*cstarn*...

166 sqrt(1−cosd(alpstarn)ˆ2−cosd(betstarn)ˆ2−...

167 cosd(gamstarn)ˆ2+2*cosd(alpstarn)*...

168 cosd(betstarn)*cosd(gamstarn));

169

170 a neu=2*pi*bstarn*cstarn*sind(alpstarn)/Volstarn;

171 b neu=2*pi*astarn*cstarn*sind(betstarn)/Volstarn;

172 c neu=2*pi*astarn*bstarn*sind(gamstarn)/Volstarn;

173

174 V neu=a neu*b neu*c neu*sind(alpstarn)*...

175 sind(beta neu)*sind(gamma neu);

176

139

177 [gz new,gxyz new] = ...

function GZ GXYZ UVW(GSPEC,par test(:,2),...

178 par test(:,3),par test(1,4),...

179 rec par optimized(1,:),rec par optimized(2,:),...

180 rec par optimized(3,:),rec par optimized(4,:),...

181 rec par optimized(5,:),rec par optimized(6,:),...

182 ind test(:,3),ind test(:,4),ind test(:,5));

183

184 gxy new=sqrt(((2.*pi)./(a neu.*sind(gamma neu))).ˆ2.*...

185 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).ˆ2+...

186 (par test(:,2).*ind test(:,1)./GSPEC).ˆ2)+ ...

187 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*((ind test(:,4)...

188 −par test(:,3).*ind test(:,2)./GSPEC).ˆ2+(par test(:,3).*...

189 ind test(:,1)./GSPEC).ˆ2)−...

190 2.*(2.*pi./(a neu.*sind(gamma neu))).*(2.*pi./...

191 (b neu.*sind(gamma neu))).*cosd(gamma neu).*...

192 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).*...

193 (ind test(:,4)−par test(:,3).*ind test(:,2)./GSPEC)+...

194 par test(:,2).*par test(:,3).*(ind test(:,1)./GSPEC).ˆ2)...

195 −((ind test(:,3).*par test(:,3)−ind test(:,4).*...

196 par test(:,2)).ˆ2./GSPEC.ˆ2).*(2.*pi./(a neu.*...

197 sind(gamma neu))).ˆ2.*...

198 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*sind(gamma neu).ˆ2);

199

200 num=size(qxyz,1);

201

202 RMSD qxy new=(sum((gxy new−ind test(:,1)).ˆ2)/num).ˆ(1/2);

203 RMSD qz new=(sum((gz new−ind test(:,2)).ˆ2)/num).ˆ(1/2);

204 RMSD qxyz new=(sum((gxyz new−qxyz).ˆ2)/num).ˆ(1/2);

205

206 A1 parameter OPTIMIERT=[u,v,w,a neu,b neu,c neu,...

207 alpha neu,beta neu,gamma neu,...

208 V neu,RMSD qxyz new,RMSD qz new,...

209 RMSD qxy new,abs(GSPEC−qspec)];

210 else

211 qxyz=sqrt(ind test(:,1).ˆ2+ind test(:,2).ˆ2);

212

213 [astern,bstern,cstern,alphastern,betastern,gammastern] = ...

214 function REAL TO RECIPROCAL v9(par test(:,5),...

215 par test(:,6), par test(:,7),...

216 par test(:,8), par test(:,9),par test(:,10));

217

140

218 [gz uvw,gxyz uvw] = ...

function GZ GXYZ UVW(GSPEC,u,v,w,astern,bstern,...

219 cstern,alphastern,betastern,gammastern,ind test(:,3),...

220 ind test(:,4),ind test(:,5));

221

222 qg feld mit hkl uvw=horzcat(qxyz−gxyz uvw,...

223 ind test(:,2)−gz uvw,...

224 ind test(:,3),ind test(:,4),ind test(:,5));

225

226 [epsilon vector uvw] = ...

227 function EPSILON UVW(GSPEC,par test(2),par test(3),...

228 par test(4),qg feld mit hkl uvw,astern,bstern,...

229 cstern,alphastern,betastern,gammastern);

230

231 rec par optimized=[astern;bstern;cstern;alphastern;...

232 betastern;gammastern]+epsilon vector uvw;

233

234 alpha neu=acosd((cosd(rec par optimized(5))*...

235 cosd(rec par optimized(6))...

236 −cosd(rec par optimized(4)))/(sind(rec par optimized(5))...

237 *sind(rec par optimized(6))));

238

239 beta neu=acosd((cosd(rec par optimized(4))*...

240 cosd(rec par optimized(6))−cosd(rec par optimized(5)))...

241 /(sind(rec par optimized(4))*sind(rec par optimized(6))));

242

243 gamma neu=acosd((cosd(rec par optimized(4))*...

244 cosd(rec par optimized(5))−cosd(rec par optimized(6)))/...

245 (sind(rec par optimized(4))*sind(rec par optimized(5))));

246

247 astarn=rec par optimized(1);

248 bstarn=rec par optimized(2);

249 cstarn=rec par optimized(3);

250

251 alpstarn=rec par optimized(4);

252 betstarn=rec par optimized(5);

253 gamstarn=rec par optimized(6);

254

255 Volstarn=astarn*bstarn*cstarn...

256 *sqrt(1−cosd(alpstarn)ˆ2−cosd(betstarn)ˆ2−...

257 cosd(gamstarn)ˆ2+...

258 2*cosd(alpstarn)*cosd(betstarn)*cosd(gamstarn));

259

141

260 a neu=2*pi*bstarn*cstarn*sind(alpstarn)/Volstarn;

261 b neu=2*pi*astarn*cstarn*sind(betstarn)/Volstarn;

262 c neu=2*pi*astarn*bstarn*sind(gamstarn)/Volstarn;

263

264 V neu=a neu*b neu*c neu*sind(alpstarn)*...

265 sind(beta neu)*sind(gamma neu);

266

267 [gz new,gxyz new] = ...

function GZ GXYZ UVW(GSPEC,par test(:,2),...

268 par test(:,3),par test(1,4),...

269 rec par optimized(1,:),rec par optimized(2,:),...

270 rec par optimized(3,:),rec par optimized(4,:),...

271 rec par optimized(5,:),rec par optimized(6,:),...

272 ind test(:,3),ind test(:,4),ind test(:,5));

273

274 gxy new=sqrt(((2.*pi)./(a neu.*sind(gamma neu))).ˆ2.*...

275 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).ˆ2+...

276 (par test(:,2).*ind test(:,1)./GSPEC).ˆ2)+ ...

277 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*((ind test(:,4)...

278 −par test(:,3).*ind test(:,2)./GSPEC).ˆ2+(par test(:,3).*...

279 ind test(:,1)./GSPEC).ˆ2)−...

280 2.*(2.*pi./(a neu.*sind(gamma neu))).*(2.*pi./...

281 (b neu.*sind(gamma neu))).*cosd(gamma neu).*...

282 ((ind test(:,3)−par test(:,2).*ind test(:,2)./GSPEC).*...

283 (ind test(:,4)−par test(:,3).*ind test(:,2)./GSPEC)+...

284 par test(:,2).*par test(:,3).*(ind test(:,1)./GSPEC).ˆ2)...

285 −((ind test(:,3).*par test(:,3)−ind test(:,4).*...

286 par test(:,2)).ˆ2./GSPEC.ˆ2).*(2.*pi./(a neu.*...

287 sind(gamma neu))).ˆ2.*...

288 (2.*pi./(b neu.*sind(gamma neu))).ˆ2.*sind(gamma neu).ˆ2);

289

290 num=size(qxyz,1);

291

292 RMSD qxy new=(sum((gxy new−ind test(:,1)).ˆ2)/num).ˆ(1/2);

293 RMSD qz new=(sum((gz new−ind test(:,2)).ˆ2)/num).ˆ(1/2);

294 RMSD qxyz new=(sum((gxyz new−qxyz).ˆ2)/num).ˆ(1/2);

295 A1 parameter OPTIMIERT=[u,v,w,a neu,b neu,c neu,...

296 alpha neu,beta neu,gamma neu,...

297 V neu,RMSD qxyz new,RMSD qz new,...

298 RMSD qxy new,abs(GSPEC−qspec)];

299 end

300 end

142

	Introduction
	Indexing: Definition and Use

	Review
	Indexing of Single-Crystal Diffraction Data
	Indexing of Powder Diffraction Data
	Indexing of GIXD Data

	Fundamentals
	Crystal Lattice and the Unit Cell
	The Reduced Cell
	Notation of Planes and Directions

	X-ray Diffraction

	Methods
	Grazing Incidence X-Ray Diffraction (GIXD)
	The Role of the Specular Scan

	Indexing Formalism and Mathematical Preparation
	Special Case: Contact Plane (001)
	General Case: Contact Plane (uvw)
	Numerical Optimization

	Indexing Routine
	Parallel Computing
	Initialization
	Indexing Routine Part I
	Indexing Routine Part II
	Postprocessing

	Instruction Manual and Tutorial
	Add Crystal Panel
	Data Points and Representation Panel
	Indexing Panel
	Error Panel
	Result Panel
	Tutorial

	Indexed Samples
	Diindenoperylene (DIP)
	Pentacenequinone (PQ)
	Naproxen

	Summary
	Appendices
	Diffraction data for indexing
	fIna-04
	Diindenoperylene
	Pentacenequinone
	Naproxen

	MATLAB® Source Code
	Main program
	Functions
	function_INITIALIZE_GUI.m
	function_LPermutation.m
	function_PART_ONE_PARALLEL _GUI_RESTRICTIONS.m
	function_PERMVEC_NEW
	function_ABG_RESTRICTED.m
	function_NEWMATRIXFILLER.m
	function_XYZ.m
	function_CALC_ABGfromXYZ_RESTRICTED_v7.m
	function_SUB2_CONDITION.m
	function_ABGNIGGLI.m
	function_PART_TWO_v12.m
	function_CALCSUBSIS.m
	function_NEWPACKING.m
	function_NEWCELLPARAMETER_RESTRICTED.m
	function_REDUCED_CELL_MY_001.m
	function_CALC_A001_STAR.m
	function_REAL_TO_RECIPROCAL_v9.m
	function_EPSILON_UVW.m
	 function_GZ_GXYZ_UVW.m
	function_REDUCED_CELL_MY_UVW.m

