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Abstract

Nowadays, high performance and scalability demands on the internet
lead to a massive deployment of Content Delivery Networks (CDNs).
Positioned between client and server, they bear a man-in-the-middle na-
ture. That opposes the end-to-end philosophy of Transport Layer Secu-
rity (TLS), indispensable for modern internet security. “Full Delegation”
practices are therefore utilized to bring these opposing sides together,
i.e., the CDN can authenticate itself as server by receiving direct access
to a server’s private key. Research showed that Full Delegation had been
a common practice of CDN providers for years (Liang et al., S&P’14).
Some CDNs offer workarounds. However, these suffer from several dis-
advantages. Thus, we propose to use a modified identity-based signature
scheme that enables the server to delegate short-lived privileges to the
CDN without introducing significant changes to TLS. We implemented
a signature provider library and integrated it into a TLS stack to perform
benchmarks and evaluate the approach. Further, we show that it features
reasonable performance and overcomes several disadvantages of its com-
peting approaches.

Keywords: Full Delegation, TLS, CDN, identity-based signatures
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Kurzzusammenfassung

Heutzutage führen hohe Geschwindigkeits- und Kapazitätsanforderun-
gen im Internet zu einem massiven Einsatz von Content Delivery Net-
works (CDNs). Zwischen Client und Server sitzend entsteht so eine Man-
in-the-middle-Situation. Dies steht im absoluten Gegensatz zur End-to-
End-Philosophie von Transport Layer Security (TLS), die für moderne
Internet-Sicherheit unverzichtbar ist. Um diese gegensätzlichen Aspekte
zu vereinen wird die Praktik der sogenannten “Full Delegation” ange-
wandt, d.h. der CDN kann sich als Server authentifizieren da ihm Zugriff
auf den privaten Schlüssel des Servers gewährt wird. Studien haben ge-
zeigt, dass Full Delegation bereits seit Jahren gängige Praxis bei CDN-
Anbieter ist (Liang et al., S&P’14). Einige CDNs bieten Alternativen, die
aber mehrere Nachteile haben. Darum schlagen wir vor, ein Identitäts-
basiertes Signaturschema zu nutzen. Dieses ermöglicht dem Server ei-
ne kurzlebige Erlaubnis an den CDN zu übergeben, ohne wesentliche
Änderungen an TLS vorzunehmen. Dazu implementierten wir eine Si-
gnatur Provider Bibliothek und integrieren sie in eine TLS Plattform,
um Geschwindingkeitsmessungen und weitere Evaluierungen durchzu-
führen. Wir zeigen eine Lösung mit vernünftiger Geschwindigkeit, die
mehrere Nachteile konkurrierender Ansätze zu überwinden weiß.

Schlüsselwörter: Full Delegation, TLS, CDN, identity-based signatures
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1 Introduction

The demand for security on the internet has been growing steadily in the
past decades [Cis18]. An essential part of it is end-to-end secure communi-
cation between interacting parties. On untrusted networks, like the internet,
the prevailing standard introduced by the Internet Engineering Task Force
(IETF) is Transport Layer Security (TLS). It ensures confidential and authenti-
cated communication between two endpoints [Res18]. TLS uses a Public Key
Infrastructure (PKI) that comprises certificate chains for authenticating both
endpoints (especially the server). In the handshake, one of the endpoints
signs the handshake data, and the counterpart can subsequently verify the
handshakes authenticity by using the former’s certificate.

On the other hand, modern internet applications demand improved
throughput, latency, scalability, and availability [Joh+01; VP03]. As a re-
sult, we can see an increasing popularity of Content Delivery Networks
(CDNs) [KWZ01]. Cisco Systems [Sys19] recently released a survey on CDN
traffic estimating a five-year increase of over 500% until 2022, reaching global
traffic of 252 exabytes per month. Originally intended to reduce latencies
by delivering cached content from a surrogate server network-wise near
the client (see Figure 1.1) [Bae+97; Dil+02], CDN providers soon offered a
variety of deployment benefits such as mitigation against various attacks
like the Distributed Denial of Service attack (DDoS) [Can+16; Clob].

We can see that both factors play a vital role in today’s internet. However,
they reveal an opposing nature: While a CDN positions itself between client
and server to broker content, TLS was meant to mitigate man-in-the-middle
practices since it supports an end-to-end philosophy. This contradiction
makes it hard to deploy both at the same time. Nonetheless, providers
found questionable ways to do so.

If the server-side (origin server) decides to deploy a Content Delivery
Network (CDN) service, the CDN has to serve content on behalf of the

1



1 Introduction

TCP

TLS

HTTP

Origin
Server

Client

(a) Without a CDN.

TCP

TLS
HTTP

Origin
Server

Client
CDN

(b) With a CDN.

Figure 1.1: Two Figures showing round trips with and without CDN. Without a CDN three
trans-Atlantic instead of three continental round trips are needed in TLS 1.3.

server over a TLS connection to the client. To authenticate the connection,
the CDN needs to identify as the origin server to fulfill the certificate’s claim
bound to the origin server’s domain. The straightforward way is to use the
origin server’s secret key to sign the TLS handshake. Thus, the CDN needs
access to the secret key. Such bad practices, i.e., giving a third party access
to its secret key, is called “Full Delegation” in literature (see Section 3.1 for
further explanations) [BPW12; MUO96].

1.1 Bad Practices

Full Delegation can take various forms in the TLS context. In the literature
we observed two separate forms, Custom and Shared Certificates [Lia+14].
The first and simpler one describes a practice letting the origin server
upload its private key to CDN provider (see Figure 1.2), who distributes it
to its Point of Presences (PoPs)1, violating the fundamentals of public key
cryptography. Quoting from the X.509 RFC [Coo+08]:

“The protection afforded private keys is a critical security factor.
On a small scale, failure of users to protect their private keys

1A PoP in the context of CDN consists of multiple strategically positioned caching
servers responsible for serving content for all network-wise near clients [imp].
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1 Introduction

will permit an attacker to masquerade as them or decrypt their
personal information. On a larger scale, compromise of a CA’s
private signing key may have a catastrophic effect.”

Thus, this practice is also known as Private Key Sharing [Can+16]. Besides,
scattered over different nodes across the entire web, the private key is more
exposed than ever. Further, the origin server has no means to revoke the
delegation to the CDN except revoking the certificate as a whole.

In the second form, the CDN provider manages directly the certificate
bound to the origin server’s domain. CDNs often list several different
customers on the same certificate using the Subject Alternative Name (SAN)
extension. Cangialosi et al. [Can+16] referred to these certificates as “cruise-
liner certificates” and raised a number of questions:

“Who on a cruise-liner certificate deserves access to the certifi-
cate’s corresponding private key, given that who-ever has it can
impersonate all others on the certificate? Who among them has
the right to revoke the certificate, if so doing potentially renders
invalid a certificate the others rely on? Cruise-liner certificates
are not covered explicitly by X.509, but we can infer that, in all
likelihood, only the hosting provider has the private keys and
right to revoke.”

Further, the usage of such a cruise-liner Certificate leads to an inaccurate
communication of HTTPS’s security indicators to the end-users. Also, it
impedes the use of Extended Validation certificates2 [Can+16] .

1.2 Requirements

In situations of Full Delegation, a considerable amount of trust is needed,
since the peril of impersonation and misconduct is imminent. However, a

2Extended Validation certificates are issued by Certificate Authoritys (CAs), who also
check the entity’s legal identity [For]. However, since recent, Extended Validation certificates
have been seen as obsolete [Fis19]
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loop

CDN Server

generate

CA

sign CSR

generate CSR

CSR

certserver

skserver , certserver

skserver
pkserver

pk: pkserver
CN: iaik.at

Client

σ = sign (skserver, handshake)

ServerHello

ClientHello

EncryptedExtensions

Certificate (certserver)

CertificateVerify (σ)

Finished

verify (pkserver, handshake, σ)

verify PKI & certificate

Finished

Figure 1.2: A sequence diagram of the Full Delegation scenario in TLS (private key sharing).
The private (secret) key (sk) is highlighted in red.
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1 Introduction

CDN service is usually a third party that does not necessarily have to be
trustworthy. Besides, the breach of trust can not only happen deliberately
maliciously but also in negligence, e.g., when the service unpreparedly falls
victim to an external hacking attack. As that is all quite hard to prove, we
encourage the policy of relying on trust as little as possible.

Therefore, we postulate the following requirements that we regard necessary
for the ideal delegation solution in the context of CDN internet solutions:

R1 The private key must be kept secure and solely in the hand of the
owner.

R2 A delegation must be unforgeable and non-repudiable.
R3 The origin server is aware of the CDNs actions and approves them.
R4 Issuance and revocation must be efficient and independent.
R5 The delegation should identify the domain owner and the proxy

(CDN).
R6 Delegating privileges in a fine-grained way, and enabling domain-

based policies should be possible.
R7 The domain owner needs control over the validity period of the dele-

gation.

1.3 Contribution

For the thesis, we explored relevant work conducted by other researchers
regarding Full Delegation with the focus on solutions in the field of internet
protocols, especially TLS. We found methods eliminating symptoms but
not the fundamental problem, approaches solving the issue but being im-
practical, and yet to be standardized solutions. We evaluated all of them
to understand their advantages and downsides. We give a summary in
Chapter 2 (Related Work).

To better introduce our approach, we collected additional background on
the internet standards and entities involved in the CDN context. Further, we
explained the basics of signature cryptography, elliptic curves, and pairing-
based schemes such as the Time-Bound Identity-Based Signature (TBIBΣ).
We present those in detail in Chapter 3 (Preliminaries).

With the latter mentioned TBIBΣ, our solution tries to solve the Full

5



1 Introduction

Delegation issue in TLS by switching to that signature algorithm. Instead of
letting the CDN sign with the origin server’s private key, we push a derived
secret key containing the delegation to the CDN. While the signature cre-
ated with the derived key still validates with the origin server’s public key,
additional delegation restrictions must hold at verification time to fulfill the
validation. Like subdomain and time, these restrictions are easily accessible
to the client and require no further changes to the TLS protocol. Further,
since an origin server can not afford a traditional revocation system for the
delegations it distributes, we propose short-lived delegated keys to curb the
issue. We present our solution in more detail and discuss multiple design
decisions in Chapter 4 (Integration). Further, we provide an implementation
of the scheme and a modified TLS stack for evaluation. They are available
on GitHub [AMR].

Subsequently, we evaluated the proposed solution. We measured the cryp-
tographic scheme and TLS performance by evaluating various indicators.
Further, we carried out an extensive analysis of its qualitative aspects com-
paring to related solutions introduced in related work. We also classified our
approach into the 19-criteria framework of Chuat et al. [Chu+20], offering
a systematization of knowledge regarding delegation and revocation. We
report these outcomes in Chapter 5 (Evaluation).

We end with Chapter 6 (Conclusion) recapitulating what our solution
managed to achieve and what we could not fulfill pursuing this approach.
Further, we give an outlook on future research topics regarding Full Delega-
tion and delegation in the TLS protocol.

The paper by Alber et al. [AMR20] was written during the elaboration of
this thesis and appears at the CCSW 2020. The paper was a collaboration
between the author and his advisors. Consequently, the thesis influenced
the paper and vice versa. The paper adopted the benchmark results of the
author’s signature implementation and TLS integration, as well as most
of the related work research, integration description, and evaluation. On
the other hand, the thesis cites the cryptographic preliminaries on identity-
based signatures, as well as the definition and construction of Time-Bound
Identity-Based Signature (TBIBΣ). Further, it also cites the benchmark results
from the Relic implementation of the TBIBΣ algorithm.

6
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2 Related Work

In this chapter, we are going to explore different existing literature that
has been released in recent years on the matter of Full Delegation and its
security implications. For a recent Systematization of Knowledge paper on
delegation (and revocation) for the internet, see Chuat et al. [Chu+20].

2.1 Measurements

In 2014 Liang et al. [Lia+14] conducted a systematic investigation on the
diffusion of bad practices in the TLS context. They surveyed 20 of the most
popular CDN providers and 10.721 websites maintained by them. Besides
Full Delegation, which they found most concerning, they also observed
invalid certificates, neglected revocation of stale certificates, insecure back-
end communication. These concerns were not only from operational nature,
but also included the design of the CDNs mechanisms back then.

Two years later, in 2016, Cangialosi et al. [Can+16] performed a large-scale
measurement study unveiling how remarkably common Full Delegation
practices are. Subsequently, they analyzed the impact of Full Delegation
on responsible key management practices like revocation. They found that
third parties managing the client’s private key act more thoroughly but
slower. With great concern, they also noticed that a small number of CDN,
respectively, hosting providers have access to the majority of the popular
websites’ keys. More specifically, 76.5% of the organizations they identified,
share one or more keys with a third party. Further, the ten biggest CDNs
have access to 45.3% of the observed domains’ private keys. Therefore, they
called for a way that would reconcile management centralization and offer
less trust aggregation at the same time.

7



2 Related Work

2.2 Workaround Attempts

Since the Full Delegation was recognized by the internet community as a
pressing issue, several workarounds have been proposed, using common
Public Key Infrastructure (PKI) standards (Section 2.2.1), extending upcom-
ing internet standards such as DNS-Based Authentication of Named Entities
(DANE)1 (Section 2.2.2), or even interfering with the TLS handshake itself
(Section 2.2.3 and Section 2.2.4). In the following section, we take a closer
look at these approaches.

2.2.1 Name Constraints

A straightforward technique to curb Full Delegation can be employed
using a feature from X.509 certificates called the Name Constraints Exten-
sion [Coo+08]. It offers CAs the possibility to constraint their subordinate
CAs to specific namespaces. In the CDN scenario, the origin server would
apply for a subordinate CA-certificate, i.e., the certificate it receives has
the “CA flag” set to true, and a Name Constraint set to its domain. Con-
sequently, the origin server can issue certificates for the namespace of its
domain, and process incoming Certificate Signing Requests from its CDN(s).
This approach would allow to create delegations and revoke them again
with existing standards of traditional PKI.

However, Liang et al. [Lia+14] showed its infeasibility. Besides, showing
improper enforcement by end-user software, which could be fixed, they
highlight the unaffordability and the lack of technical capabilities for an
origin server to perform CA tasks. Further, CAs would not tolerate the
massive issuance of intermediate certificates. High operational costs for
vetting and other audits would not pay off. Indeed, Liang et al. [Lia+14]
found in their survey that from their 1.5 million collected certificates, none
contained a Name Constraint extension [Lia+14].

1It uses the DNSSEC (signed DNS-zone data) infrastructure to store certificates of DNS
names used for TLS authentication [HS12].
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2.2.2 DANE Extension

Liang et al. [Lia+14]’s solution, after unveiling Full Delegation issues in the
CDN context in 2014, concentrates on making a delegation through the name
resolution process using DANE [HS12]. They achieve that by extending the
origin server’s DNSSEC records with a special TLSA record, including its
and the CDN’s certificate. When establishing a connection to the domain,
the CDN participates in the handshake and sends its certificate. The client
can then recognize this delegation by consulting the origin server’s TLSA
record [Lia+14].

Although this promising solution was described several years ago, it
did not establish itself. It has several disadvantages: Changes on DNS, re-
spectively DANE side are unavertable. Also, the client needs changes to
its certificate validation process. Further, the usage of DANE introduces
an additional round trip between the client and the DNS server, which
results in an increased page-load time [Lia+14] (However, implementations
can support the lookup of the TLSA-record before initiating the TLS hand-
shake [HS12, Chapter 4.1.], i.e., parallel with the A-record lookup). However,
on the advantage side, it offers full transparency about any delegation and
introduces no significant changes to the server or the CDN [Lia+14].

TCP

TLS
HTTP

Origin & Key
Server

Client
CDN

KeylessSSL

Figure 2.1: Graphic of the round-trips necessary for KeylessSSL. A key server is distant to
the destination and introduces additional latency.
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2.2.3 SSL Splitting

In 2005 Lesniewski-Laas et al. [LK05] presented a novel technique for guar-
anteeing the authenticity and data integrity of content cached and served by
a proxy such as a CDN. As the name Socket Security Layer (SSL) splitting
implies, this technique was designed for the predecessor of modern TLS
and can be seen as a forerunner to KeylessSSL used on modern TLS. Origi-
nally the idea behind SSL splitting is to simulate a regular SSL connection
between client and proxy by using authentication records form the server
and data records from the proxies cache [LK05].

In more detail, SSL records are organized in data and an authentication
component. The loose coupling of these offers the possibility to cache the
data component at the proxy instead of resending it in full. However, it
implies changes at the server and proxy side. Consequently, a proxy-server
protocol extension is described. It features two new message types: one
with a short unique payload identifier and a Message Authentication Code
(MAC) authenticator, the other containing a session encryption key for the
server. In practice, a cache hit results in a payload lookup. Then, the data is
spliced together with the MAC received from the server-side [LK05].

Further, they conducted measurements with an experimental setup using
this technique. They found a reduced bandwidth consumption of 25% to
90% depending on redundancy amount and cache warmth. On the other
hand, uncached requests having to pass through the proxy encounter a 5%
latency gain [LK05].

2.2.4 KeylessSSL

Based on SSL splitting (cf. Section 2.2.3), Cloudflare deployed their adaption
called KeylessSSL [SN14] in 2014 for the first time to curb the issues of Full
Delegation. Originally developed for TLS 1.2, Cloudflare’s KeylessSSL (cf.
Figure 2.2) tries to solve the issue by splitting the TLS handshake so that the
CDN handles connection establishment and only authenticating operations
are outsourced to a key server in control of the domain owner. Initially, both
RSA- and Diffie-Hellman-handshakes were supported.

Stebila et al. [SS15] conducted an informal security analysis, including a
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discussion on timing side-channel resistance and its effects on TLS session
resumption. Later, a formal analysis by Bhargavan et al. [Bha+17] revealed
insecurities of the approach. However, using a novel 3-party security def-
inition dubbed 3(S)ACCE2-security (since conventional TLS analyses are
2-party), they proposed fixes but argued for an upgrade of KeylessSSL im-
plementations to TLS 1.3. Further, they urged to forbid session resumption
except for selected cases.

In more detail, the RSA mode, which TLS 1.3 no longer supports, works
the following: the key server decrypts a pre-master secret encrypted by the
client using the domain owner’s public key and sends it back to the CDN
over a secure channel allowing the handshake to continue [Bha+17; SN14]

The Diffie-Hellman handshake (cf. Figure 2.2), on the other hand, works
a little different: the key server receives a hash which he uses for signing
and sends the signature back to the CDN. Until TLS 1.2, the hash consisted
of the nonces from CDN and client plus the DH-parameters. Since TLS 1.3,
the whole transcript is hashed (handshake’s hash). Consequently, the CDN
can incorporate the signature in the Certi f icateVeri f y message so that the
handshake can continue as usual [Bha+17; SN14].

While KeylessSSL has operationally proven itself for years in Cloudflare’s
CDN infrastructure, it suffers from some downsides. Firstly, the additional
connection to the key server during the handshake introduces additional
latency. Secondly, the domain owner must maintain a key server, which
has to be reachable at all times. That is why Cloudfare pushes Delegated
Credentials to replace KeylessSSL in this matter [SL19].

23 stands for three parties. (S) indicates that only the server is authenticated. ACCE
(authenticated and confidential channel establishment) is an extension of AKE (authenticated
key-exchange), adding full length-hiding authenticated encryption. It makes part of the
terminology used in cryptography to classify a channel or state its characteristics [Jag+12].
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Origin server

Acknowledgement

Order Signature

CSR Signature

ACME CA

No identity 
validation

Order' Signature

Required Authorizations

Responses Signature

validation

CSR signature

Await issuanceAwait issuance

Acknowledgement

CDN

Get STAR certificate

Certificate #n

loop

Figure 2.3: The diagram shows how Automated Certificate Management Environment
(ACME) can be setup together with Short-Term Automatically Renewed (STAR)
certificates to delegate to a CDN without sharing the private key [She+20a].

2.2.5 Delegated STAR Certificates

For Automated Certificate Management Environment (ACME) supporting
CAs Sheffer et al. [She+20a] propose a modification of the standard proce-
dure [She+20b] (see Figure 2.3). Short-Term, Automatically Renewed (STAR)
certificates should be provided periodically from the CA for a subdomain
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used by the CDN. In more detail, the latter asks the origin server for a
delegation, which on approval authenticates at the CA and ask for STAR cer-
tificates in the name of the CDN. The ACME CA then begins the periodical
issuance on approval [She+20a].

2.3 Proxy Scheme Paradigm

While we have seen approaches using lookup techniques, traditional PKI, or
a modified TLS handshake, we now want to concentrate on approaches that
directly pass the delegation proof to the CDN (proxy). The proxy then uses
this proof to demonstrate that it rightfully acts in the name of the origin
server. We summarize these approaches under the term Proxy Scheme
Paradigms and describe them in the following section.

2.3.1 Proxy Certificates

Proxy certificates have been around since the early 2000s. At the begin-
ning they were mainly used in grid computing [Tue+04; Wel+04]. Mostly
present in middleware, they were not envisioned for the web. Generally (cf.
Figure 2.4), a proxy certificate can be issued by entities (e.g. origin server)
holding a regular non-CA certificate (cf. Section 2.2.1 (Name Constraints),
which needs the origin server to be a subordinate CA). It contains the public
key bound to the target entity (CDN) and is signed by the origin server
using its private key. The origin server may grant a fine-grained subset of
privileges to the targeted entity specified within the certificate allowing the
CDN to serve certain content [Chu+19].

The question of revocation is troubling since the issuer of a certificate is
the origin server, and therefore the latter would have to maintain an own
certificate revocation mechanism. Thus, for revocation causes such as key
compromise, the proxy certificate’s lifetime can be short-lived to curb the
lack of a traditional revocation mechanism [Chu+19].

Incorporating proxy certificates into the current PKI would require small
changes on the browser side, but introduces bigger ones on the server-
and CDN-side. Further, CAs will not easily grant subordinate CA rights
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Figure 2.4: A comparison between traditional PKI, Name Constrains, Short-Lived Certificates, and Proxy Certifi-
cates [Chu+19].



2 Related Work

or introduce a proxy certificate flag for end-entity certificates. Besides, the
introduction of proxy certificates would put heavy pressure on Certificate
Transparency (Chuat et al. [Chu+19] propose to not log proxy certificates at
all).

2.3.2 Delegated Credentials

Another approach similar to short-lived proxy certificates is Delegated
Credentials (DeC) [Bar+20] that has been proposed recently as an IETF
standard. It is meant to replace established workaround such as KeylessSSL.
Technically (cf. Figure 2.5), a delegated credential is a data blob persisting of
a validity period and the proxy’s public key. It is then signed by the origin
server on the request of the CDN and therefore constitutes a delegation. On
communication between the client and the CDN, the ClientHello message
contains an extension indicating support. The CDN then signs the TLS hand-
shake with its private key and sends the Credential blob with an extension
of the Certi f icate message. The client can now verify the handshake with
the delegated blob and the delegation with the origin server’s certificate.

DeC is designed for the modern TLS 1.3 standard and has no tradi-
tional mechanism for revocation. It uses the validity period for short-lived
longevity and lets the CDN renew its delegated credentials frequently.
Further, DeC enjoys excellent support from big internet companies and is
currently evaluated by Cisco, Facebook, Cloudflare, and Mozilla, while the
latter three already announced support in their products [GNI19; JJM19;
SL19]. From all potential solutions we discuss, this one is the most promising
and constitutes the biggest competitor.
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Figure 2.5: Concept of Delegated Credentials [GNI19].

2.3.3 Proxy Signature Schemes

Proxy signatures, introduced in 1996 by Mambo et al. [MUO96], produce
an aggregated signature [BPW12], i.e., a single signature formed by the
contribution of both, CDN (proxy) and origin server (original signer). In
other words, it allows the delegation of signing rights to a proxy. The verifier
can check whether the proxy signed the signature, and if it had the right to
do so. We note a paring based version by Boneh et al. [Bon+03] known as
BGLS and a Schnorr signature [Sch91] based version by Kim et al. [KPW97]
named KPW. Generally, they have not seen much adoption in internet
technologies such as TLS, although they are featuring useful properties.

17



2 Related Work

2.3.4 Hierarchical Identity-Based Signatures

Similarly, hierarchical identity-based signatures (cf. Section 3.3.7) are also
used for delegation purposes. In such signatures, an arbitrary number of
identities can be included in the signature. Subsequently, the signature is
verified by recalling the identities present in the signature and the public
key. Boneh et al. [BF01] in 2001 sketch a transformation from identity-based
encryption schemes to signatures attributing it to Moni Naor. Therefore this
transformation is called Naor Transform in the literature (cf. Section 3.3.7).
In this thesis, we chose such an identity-based signature approach to present
a fully operational alternative to Full Delegation practices.

2.4 Nineteen Criteria Framework

In a second version of their paper, Chuat et al. [Chu+20] concentrated on the
systematization of knowledge present in the literature, explaining different
approaches solving pressing problems in web PKI, with particular focus on
Full Delegation. They discuss the impact of resumption and revocation on
alternatives and further analyzed combinations of different techniques from
the delegation and revocation field. To do so, they introduce a nineteen-
criteria framework characterizing the examined schemes. The combination
they recommend is short-lived delegated credentials or proxy certificates
with functional revocation (in particular PKISN [SCP16]). We will use the
criteria framework to characterize our approach and use it for further
discussion and comparison (see Section 5.3.2). Please find a description of
every single criterion in [Chu+20, Chapter 8, A-F].

2.5 Delegation in Similar Contexts

Full Delegation is not a problem limited to the authentication of CDNs.
Other similar contexts share the same issue. In the following section, we
present some of these cases we encountered during literature research and
are worth mentioning in the setting of the thesis.
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Figure 2.6: Sequence diagram of the D2TLS scheme when setting up a session [Cho+19].

2.5.1 D2TLS

Cho et al. [Cho+19] denounce in their work Full Delegation practices in the
field of Internet of Things. As a remedy, they propose a technique similar to
KeylessSSL (cf. Section 2.2.4 for datagram TLS (DTLS), they call D2TLS. A
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secure agent functioning as a proxy is used to set up a secure connection to
the corresponding cloud service for a low-power IoT device, which fits the
key server’s role (see Figure 2.6). Like in KeylessSSL, the proxy (agent) does
not own the private key of the device (since that would be Full Delegation).
Instead, the agent asks the IoT device to sign the handshake’s hash to
establish the connection successfully. However, compared to KeylessSSL, in
the aftermath, the agent sends the session key and id to the IoT device. The
latter can then use session resumption for all further communication with
its IoT-cloud service.

D2TLS requires changes to the Internet of Things (IoT) device software
and a compatible agent. On the other hand, Cho et al. [Cho+19] showed in
their paper that resource-limited devices could profit from the introduced
encryption security-wise while incurring little computational overhead and
evade Full Delegation practices.

2.5.2 STYX and Other SGX Approaches

We are also aware of approaches that require the presence of a trusted
execution environment such as Intel SGX. Examples of such are Conclaves
by Herwig et al. [HGL20] and STYX by Wei et al. [Wei+17]. However, since
such trusted execution environments exceed the scope of the thesis, trying
only to tackle Full Delegation in the context of TLS, and have a history full
of serious attacks [Bul+18; Bul+20; Sch+19], we do not consider them further
in this thesis.

2.5.3 Multi-Context TLS

Naylor et al. [Nay+15] try to solve confidentiality issues in TLS in the context
of in-network middleboxes. Such middleboxes offer benefits like intrusion
detection, caching, parental filters, content compression or transcoding, or
compliance with corporate practices in enterprise environments. Naylor
et al. [Nay+15] argue that the handshake should be modified so that the
client and server can grant in-network middleboxes explicit read/write
permissions. Contrary to CDNs, such proxying actors do not open two
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separate TLS connections but try to work on an existing TLS secured end-
to-end-connection.

Prior approaches by Ericsson together with AT&T [Lor+14] and by Goog-
le [PR12] could not fulfill the requirements Naylor et al. [Nay+15] postulated.
Therefore, they suggest Multi-Context TLS (mcTLS). It includes socalled
Encryption Contexts which enable endpoints to limit a middlebox’s read-
/write access to a fine-grained portion.

An Encryption Context gets associated with a particular purpose. It con-
sists of a set of symmetric keys. One for encryption (read access) and one
for updating the message authentication code (write access). Naylor et al.
[Nay+15] present a method, where both endpoints generate half of a key and
send their half to the middlebox. Putting both halfs together, the middlebox
obtains the full symmetric secret. Consequently, both parties have to agree
and send their part of the key to allow access [Nay+15].

Some years later, Bhargavan et al. [Bha+18] conducted a formal analysis
and suggested that the approach should be revised. According to them the
original approach is susceptible to a group of attacks called “Middlebox
Confusion”. Further, they presented a formally provable alternative to
mcTLS.

2.5.4 LIGHTest

Wagner et al. [WOM17] discuss delegations in the context of e-government
and electronic transaction. In more detail, when a proxy signer wants
to finalize an electronic transaction in the name of an other entity, we
need the means to verify such a claim of delegated signing rights in the
corresponding trust management system. Unfortunately, they did not find
any generic solutions in their field for solving the issue. Therefore, they
suggested a delegation scheme similar to DeC to provide a generic approach
easily applicable to different domains. Based on XML, it further offers the
possibility to define generic constraints open to any application area.
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This chapter provides an overview of secure internet communication and
cryptographic concepts useful to understand our approach in the thesis. In
the first part (see Section 3.1), we discuss Full Delegation in general and
describe a simplified example case. In the second part (see Section 3.2),
we discuss traditional security measures on the internet, continue by gen-
eralizing different short-lived approaches, and finally explain CDNs. In
the third part (see Section 3.3), we start explaining the basics of pairing-
based cryptography. Then continue with identity-based encryption and
path a way to understand the Time-Bound Identity-Based Signature (TBIBΣ)
construction.

3.1 Full Delegation in General

Full Delegation is a bad practice not only present in the TLS context but
generally in the authentication context. We define Full Delegation as follows:
An entity E forwards a personal secret to another party P so that it can
authenticate as E.

A trivial example can be stated in the context of keycard locking systems:
Full Delegation would mean lending out one’s keycard or even allowing
copying it. Then, Entity E is at the mercy of a third party P. If the latter
abuses the access privileges granted, deliberately or in negligence, E has
no proper means to stop an impersonation. In fact, Full Delegation lets
the owner lose sole control of the associated secret key. Consequently, the
danger of key leakage increases, and the risk of malicious proxy behavior,
without an easy chance to repudiate, is all-time present. The owner’s certifi-
cate or credential itself needs to be revoked to counter such risks.

Good delegation practices, on the other hand, would mean giving an
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identifiable party well-restricted privileges. In the exemplary keycard con-
text, it would mean that instead of lending the keycard, we would distribute
an electronic delegation that somebody may gain access to a specific door
(with the possibility to restrict this privilege further, e.g., temporally).

3.2 Network

This section describes and discusses aspects of networks such as the internet,
that are essential for the comprehension of our approach described in this
master thesis.

3.2.1 Public Key Infrastructure

Public Key Infrastructure (PKI) describes a system on a computer network
that facilitates secure transfer of information. It uses public key cryptography
to authenticate users and devices on this network. It does so by binding a
public key to a certain entity using a certificate. The public key (or digital)
certificate is an electronic document containing the subject’s and the issuer’s
name, as well as the subject’s public key. It is signed by the issuer’s private
key. In traditional (centralized) PKI (see Figure 3.1), there exist trusted
parties that form a trust root. They are called Certificate Authoritys (CAs).
Root certificates (or CA certificates) are self-signed (signed with their own
private key), and software vendors distribute them to the clients. CAs then
sign certificates that associate a public key to an entity. Besides, the CA
can delegate some of its tasks to a Registration Authority (RA) validating
registration requests or to a CRL issuer (or OCSP responder) distributing
revocation status information in the name of the CA [Coo+08; Ken93].
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Webserver

CRL IssuerCA

RA

ClientSignature

CSR

CSR

CRL

Figure 3.1: Setup of a traditional Public Key Infrastructure (PKI).

A CA can delegate to subordinate CAs and therefore constitute a hierarchy.
On top of the hierarchy, there is the root CA, which is publicly accepted,
while its children (subordinate CAs) are only trusted because they have a
delegated mandate by the root CA to act as a CA themselves. This mandate
is represented by a certificate with CA privileges enabled and gets called an
intermediate certificate.

Thus, if a root CA has a subordinate CA and the subordinate CA certifies
an entity’s identity, the construction constitutes a certificate chain. If a client
wants to verify a specific entity’s authenticity, it can use chain traversal to
validate the certificates along the chain until it reaches a root CA.
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• Version Number
• Serial Number
• Signature Algorithm ID
• Issuer Name
• Validity period

– Not Before
– Not After

• Subject name
• Subject Public Key Info

– Public Key Algorithm
– Subject Public Key

• Issuer Unique Identifier (optional)
• Subject Unique Identifier (optional)
• Extensions

– ...

• Certificate Signature Algorithm
• Certificate Signature

Figure 3.2: Full structure of an X.509 certificate. The most important parts for the thesis are
marked in bold [Coo+08].

The approved standard for certificates serving internet protocols is the
so-called X.509 standard. Besides the public key, it contains information
about the representing identity, its issuer and its validity (see Listing 3.2 for
the whole structure) [Coo+08].

An X.509 certificate can have several well-defined certificate extensions.
Extensions extend the certificate’s functionality. A specific extension is iden-
tified by an Object Identifier (OID) and can be marked “critical” (if extension
is unknown, the verification must fail) or “non-critical” (if the extension
is unknown, it gets ignored). In Section 1.1, we already encountered an
extension used for “cruise-liner certificates”:
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Subject Alternative Name The X.509 extension Subject Alternative Name
(SAN) allows a list of additional identities (e.g. a DNS name) besides the
subject to be bound to the certificate. The certificate will validate for all of
the identities present in the SAN list [Coo+08, p. 4.2.1.6.].

Besides, the X.509 standard defines not only a certificate structure, but also
certificate revocation, i.e., revocation management and revocation informa-
tion distribution [Coo+08].

3.2.2 Certificate Transparency

Certificate Transparency (CT) is a standard promoted by Google for moni-
toring and auditing web certificates. It is based on a system of public logs
that record web certificates. CT was a response to CA compromises and
illegitimate certificate issuance, even for high-profile domains [Hoo+12].
With CT, maliciously or mistakenly issued certificates can easily be discov-
ered [LLK13]. In fact, everybody can submit a certificate or consult the log
servers of CT. For efficient presence and consistency proofs, CT organizes
certificates in Merkle hash trees. On submission of a certificate, the CT end-
point returns a Signed Certificate Timestamp. When a CT supporting client
requests the certificate, the server also delivers the timestamp. The Signed
Certificate Timestamp proofs to the client that CT approves the certificate.

There exist two actors: Monitors periodically check for suspicious cer-
tificates on the log servers. They are meant to be run by companies and
organizations. Auditors (mostly browser clients) check if the log is consistent
and query for certificates.

CT has become an integral part of the internet’s ecosystem, and therefore
it needs to be accounted for as we introduce our delegation approach for
TLS [cer; Chu+20].
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Client Server

ClientHello

key_share*
signature_algorithms*
psk_key_exchange_modes*
pre_shared_key*

ServerHello

key_share*
pre_shared_key*

EncryptedExtensions

CertificateRequest *

Certificate *

CertificateVerify *

Finished

Certificate *

CertificateVerify *

Finished

Figure 3.3: Handshake of a Transport Layer Security (TLS) 1.3 connection. Messages marked
with * are optional or situation-dependent messages/extensions. Messages in
green are encrypted by the secret resulting from key exchange.

3.2.3 Transport Layer Security

Transport Layer Security (TLS) is an internet protocol providing end-to-
end security for connections on a public computer network. It ensures
confidentiality, authentication, integrity, and non-repudiation of the data
transmitted.

A great variety of applications use TLS, e.g., web browsing (HTTPS),
email (SMTP), as well as voice, video, and messaging applications (SIP).
It has been revised several times and is specified in its current version 1.3
since August 2018 (see Figure 3.3) [Res18].
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TLS can be regarded as a two-layered protocol, consisting of the record
and the handshake. While the former defines the structure of payloads
transported by TLS, we concentrate more on the latter, which negotiates the
setup, establishes the connection, and controls the transfer.

Further, TLS allows extensions to augment the protocol with additional
functionality without modifying the protocol [Bla+03]. To mention some
important: Server Name Indication (SNI), Supported Elliptic Curves Exten-
sion (for Elliptic Curve Cryptography for TLS 1.2 and earlier) [NJP18], and
Session Tickets (discussed in Section 3.2.3). The first is vital to comprehend
this thesis:

Server Name Indication Server Name Indication (SNI) is an extension for
the TLS standard. It offers the possibility that TLS secured connections
with different domains share the same port (i.e., 443) on the same server,
even though it is only reachable by a single IP address. In other words,
the client sends the virtual domain name as part of the TLS negotiation to
the server, enabling the latter to select the right virtual domain, and thus
presenting the client with the correct certificate [Bla+03].

A variation of the standard is ESNI, where the “E” stands for encrypted
and which encrypts the hostname to be less vulnerable to domain eaves-
dropping (standard SNI reveals which site is requested). [GA18; Shb+15]

In the handshake, a key exchange using public key cryptography is used
to establish symmetric keys. These keys are then used to encrypt the TLS
connection. Since RSA does not offer forward secrecy (explained in Sec-
tion 3.3.1) and for simplification of available scheme choices, in TLS 1.3, it
was decided to exclusively use multiple ephemeral Diffie-Hellman options
known to be secure (multiple to evade in future potentially discovered
vulnerabilities) [Res18; Sul18].

Also in TLS 1.3, only AEAD1 supporting cipher suites are allowed. Encryp-
tion does not prevent data tampering. Therefore, encryption and integrity
are provided by a single operation in AEAD [Res18; Sul18].

1AEAD is an extension of AE (authenticated encryption) and stands for authenticated
encryption with associated data. The idea is to provide confidentiality and message
authentication with one single cryptoalgorithm [McG08].
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In TLS 1.2 and prior, only part of the handshake was signed for authenti-
cation. That made it vulnerable since the negotiation of symmetric ciphers
was authenticated by a symmetric Message Authentication Code (MAC)
(CurveSwap [Val+18], LogJam [Adr+15], FREAK [Beu+15],etc.). It was fixed
in version 1.3, as the whole transcript gets signed now [Res18; Sul18].

Session Resumption

A TLS connection uses shared key material, yielded by a key-exchange
protocol between two parties, to secure the data transfer. Such a connection
can stay alive as long as needed and times out after remaining unused for
one to five minutes. On the other hand, a session is a collection of chained
connections, where each can provide a session resumption mechanism.
Therefore, if a connection has ended, the session can still be resumed without
redoing the key-exchange and certificate retrieval. That helps to curb the
extra latency and computational costs of a full TLS handshake [Sul17].
Different forms of session resumption exist: Session Identifiers, Session
Tickets, and pre-shared keys (pre-shared key (PSK)) since TLS 1.3.

The first option works with a session ID assigned by the server on the first
handshake. Both, client and server, store the ID with the negotiated session
data, including the session’s secret key. A client in possession of such an
ID sends it on ClientHello to the server. Is the server willing to resume the
session, it returns the same ID to the client, and they resume the session
using the session data they stored. The requirement for this approach is a
well-operated session cache on the server-side [Sy+18].

The second approach mentioned tries to address the limitations of Session
Identifiers. On indication of support by the client, the server returns the
negotiated session data encrypted with a security key as a Session Ticket
record. Subsequently, the client sends the ticket as part of the handshake,
when a new session needs to be established. Referred to as a stateless
resumption mechanism, it removes the server’s session cache simplifying
deployment [Sal+08].

With TLS 1.3, both options got replaced by a concept of session resumption
called pre-shared key (PSK). After the handshake, both derive a shared
“resumption master secret”. The client stores an opaque blob. It may either
be a lookup key (ID) or an encrypted ticket (sent back on resumption).
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Depending on ID or ticket option, both or only the client stores the PSK. On
reconnection, both parties share a single-use resumption secret, and TLS
1.3’s 0-RRT is possible [Sul18; Tau17].

It is recommended, but not binding for the relying party to cache the
certificate chain along with the PSK material to lookup if it expired. A PSK
material intended to stay valid for up to seven days. When a resumption is
effected, a new PSK is provisioned, which again can be valid for seven days.
Such chaining is allowed indefinite times [Res18].

Handshakes

In TLS 1.3, that we use for the implementation of our approach, we have
two different handshakes:

Full Handshake Compared to its predecessor TLS 1.3 has a much simpler
cryptographic negotiation. TLS 1.3 sends various key-share material al-
ready in the ClientHello. The server then can decide which key agreement
material it prefers and calculates the shared secret accordingly. In return,
it sends its shared key material together with shared secret encrypted data
to the client, all happening already in the first round trip [Res18].

That is possible since the key-agreement options are few. All of them are
Diffie-Hellman based (most likely ECDHE with X25519 or P-256). There-
fore it is not too much overhead for the client to send several key material
options at once [Res18].

That leaves us with only one round trip per TCP, TLS and HTTP hand-
shake, plus one DNS request (which could be cached). Compared to
its predecessor that is one round less, which directly affects the latency
positively [Sul17].

Session Resumption When resuming a session TLS 1.3 eliminates the ex-
tra round trip for the handshake. Cloudflare argues that the round-trip
elimination presents a big advantage to previous TLS versions since they
observed a resumption rate of 40% for HTTPS connections, and measured
an improvement of more than 30% on connection time [Sul17].

Branded 0-RRT (zero round trip time), it allows for sending session
key encrypted data on the first trip. That is possible since the PSK blob
is also sent on the first trip. The blob consists either of a database key
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for the server or the server encrypted PSK key (see Section 3.2.3) [Res18].
However, there is also a catch to this: it is vulnerable to replay attacks.
Nonetheless, Cloudflare calls this slightly weaker security assumption
“managable”. They curb the problem with a nonce in an extra header and
claim that one should “use application-layer mechanisms to prevent replay
requests” [Sul17].

3.2.4 Revocation

Part of the Public Key Infrastructure (PKI) ecosystem is revocation. After a
TLS certificate is signed and distributed by the CA, the verifier authenticates
a subject using the certificate and a signature that has been created with
the corresponding private key before the certificate’s expiration. However,
sometimes the certificate needs to be invalidated before expiration, often
because of key material compromise. So, revocation names the process of
invalidating a certificate before its natural expiration.

When a certificate is revoked, end-user internet software, such as browsers,
should be notified about the invalidation. The approaches to do so are
manifold. We listed the most important ones for this thesis:

CRL The Certificate Revocation List is defined in RFC 5280 [Coo+08] to-
gether with the X.509 certificate. It is a list of certificates revoked before
they expire at the end of their validity period.

Such a list is signed by the CRL issuer (often the CA itself). Further, it
has specific longevity, such as 24 hours, after which the client updates
to the actual list. However, CRLs can get pretty big (delta CRLs help if
supported), give no assurance that certificates are signed by a legitimate
CA, and have a timeliness issue (client only updates periodically to actual
list) [Coo+08; Lia+14].

OCSP Online Certificate Status Protocol is a lightweight alternative to CRL.
A responder provides real-time status checks even on facing plentiful
requests while reducing bandwidth burdens (fewer data transported). On
the other hand, Online Certificate Status Protocol (OCSP) discloses the
requested domain to responders and requires no encryption (other parties
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can intercept the data, if not OCSP over HTTPS is supported) [Lia+14;
San+13].

OCSP stapling Both endpoints need to implement OCSP stapling, and the
server-side sends the OCSP response as part of the protocol, instead of
having the clients to retrieve the response at a responder. Parties relying
on OCSP can avoid opening another connection to a responder that would
slow them down. Further, it improves privacy, since the domain is no
longer disclosed to the responder or any other third party [III11; Pet13].

3.2.5 The Short-Lived Paradigm

The term short-lived in the literature on authentication mechanisms often
gets used to describe a mandate for privileges granted only for a short
period. That has many advantages, such as eliminating revocation leading
to improved privacy (visited websites stay undisclosed), and fewer mainte-
nance efforts. Concepts on which this paradigm gets applied are certificates,
credentials, and delegated keys:

Short-lived certificate These are certificates with a short validity period and
prominently represented by Short-Term Automatically Renewed (STAR)
certificates, which are further described in the subsection below [She+20b].
In comparison to other short-lived concepts, short-lived certificates are
highly versatile thanks to possible extensions. Therefore, they can specify
granted privileges in a fine-grained way.

Short-lived credential Delegated Credentials (DeC) (see Section 2.3.2) ma-
kes part of this category. It is a data blob specifying explicit competences
and other properties singed with the issuer’s private key [Bar+20].

Short-lived delegated key A delegated key is a private key derived by one
or multiple identities. Those identities are part of the delegated key and are
also inherited by a resulting signature. The identities can be used to specify
properties that need to be fulfilled at verification time (cf. Section 3.3.4).
We use those properties in our approach for restricting validity to a short
period.
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STAR and ACME

Short-Term Automatically Renewed (STAR) certificates make part of the
Automated Certificate Management Environment (ACME). The latter is a
protocol meant to automate verification, certificate issuance, and other certifi-
cate management duties of CAs. Prominently used by Let’s Encrypt [Encb],
a nonprofit CA, it is a widely used standard on the internet (alone Let’s
Encrypt provides TLS certificates for 225 million websites [Enca]). As a re-
sponse to the unreliable revocation process, Sheffer et al. [She+20b] propose
an alternative to revocation compatible to ACME. Their approach issues
periodically new short-lived certificates. Therefore, the certificate forms a
sequence that can be terminated at any point. To ensure the reoccurring
task of renewing the certificates is done without human effort and flaws,
it is meant to be integrated into the Automated Certificate Management
Environment (ACME) [Bar+19]. Advantages of STAR are: No records of
issued certificates are needed resulting in a simpler CA. Attack surface
and complexity is minimized by not using always-on response points for
revocation data distribution.

Timeliness Issue

The short-lived paradigm renounces to a security feature which prior was
important to Public Key Infrastructure (PKI), certificate revocation. On
compromise of the private key, revocation is meant to limit the damage a
rogue node or similar adversary can inflict. In short-lived paradigm based
concepts, the lack of revocation is curbed by expiration. A significant amount
of time can pass from compromise over detection to the endpoints awareness
of an issued revocation. This time-gap constitutes the timeliness issue. On
the other hand, short-lived concepts have a timeliness issue too: They use
expiration instead of revocation. Thus, the certificate can not be invalidated
before expiration. However, we can argue that with a short enough validity
period, the timeliness issue is smaller with short-lived concepts than with
revocation [Nir+18].
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3.2.6 Content Delivery Network

With the evergrowing popularity of web applications over the last decades,
performance, scalability, and security demands increased exponentially. So-
called CDNs try to answer those by placing surrogate servers on convenient
internet spots to be closer to clients. Their main task is the mirroring of con-
tent from the origin server. However, over time different providers started to
offer a variety of services overlapping with cloud services. Such additional
services can be hosting expensive computing tasks, enhanced analytics,
or improved web security (e.g., DDoS mitigation), besides the by default
improved load times, reduced bandwidth costs, and enhanced availability
and redundancy [Clob; KWZ01; VP03].

When performance-critical data needs to be transferred (e.g., streaming
movies), CDNs are present in many subnetworks of the internet to de-
liver increased performance in terms of throughput and latency. E.g., is
the content owner situated network-based distant from the client, it may
negatively impact the data throughput because it involves significant rerout-
ing effort. To speed up transfer rates, content owners may contract CDNs,
which cache highly requested content at each operated Point of Presence
(PoP)2all around the world. A Content Delivery Network (CDN) provider
then mostly uses the DNS operating principle to direct the request to the
PoP in network-based proximity to the requesting client [Bae+97; BC95;
Cloa].

In more details, deploying a CDN for a web application works the following:
Often, when data is deemed worthy of being cached by a CDN, domain
owners outsource it to a specific subdomain (e.g., cdn.iaik.at). The latter is
especially true for static data because it can be cached easily. More advanced
CDN providers such as Cloudflare offer optional computing services for
dynamic content and customizations on how specific content is cached
(depending also on factors such as region, and more) [Cloc; Dil+02].

When a client requests content, the CDN tries to find the cached content
in its storage. If a cache miss happens (i.e., the data is not present at the
PoP), the CDN fetches the data from an origin server and fills its cache for

2Network-wise location where the provider is present with a datacenter.
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future requests. When the origin server sends the content to the server for
caching, it attaches information (e.g., to the HTTP Header) on the caching’s
longevity, known as Time-To-Live (TTL). If no client requests the content
within this period, it gets dropped. On the other hand, the origin server can
also request a manual purge of the content [Bae+97; Cloc; Dil+02].

Further, CDNs make sure that requests resolve to the network-based nearest
(available) PoP. Unaware of establishing its connection to another than the
origin server, the client sees a significant improvement in overall perfor-
mance [Dil+02].

There exist several possibilities to redirect HTTP requests to the CDN’s
PoPs [Chu+20]:

Authoritative The CDN can take full control over the DNS resolution if
its name server is declared authoritative. In such a case, the client will
resolve to an IP of a certain PoP, which needs access to the private key
to establish a connection authenticated by certificate of the corresponding
domain name [Chu+20; Dil+02].

CNAME The DNS Canonical Name record allows a specific (sub-)domain
redirection. So, e.g., for the subdomain cdn.iaik.at, a CNAME could redirect
the resolution to cdn.iaik.cdn.net. Still, the client expects an authentication
with a valid certificate for cdn.iaik.at. Nevertheless, it allows for fine-grained
mapping [Chu+20].

URL rewriting Here, URLs for specific resources are modified to point to the
CDN servers. The by-resource fine-grained approach can be advantageous
since the CDN’s certificate is accepted. However, other features such as
a web application firewall and DDoS protection is not possible [Chu+20;
KWZ01].

We concentrate on the authoritative redirection approach using DNS in this
thesis. Further, we differentiate CDNs from terms used synonymously in
literature:

Edge Server It is a similar concept and, consequently, profits strongly from
the commitment of CDN service providers. It involves getting closer
to the edge of the internet with computing and content resources. The
internet’s edge stands for proximity to devices and information sources.
Like in CDNs, an increase of bandwidth and a reduction of latency are
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pursued. Since the Internet of Things (IoT) communication traffic demands
grow [SM19], high pressure is posed on existing infrastructure. Edge
computing should relieve some of the pressure by moving computation
closer to the sensors and control loops. E.g., driverless vehicles, coping
with lots of sensor data, can send data to low latency 5G base-stations
representing the edge of the internet. Therefore, in such a case, Edge
Computing would imply the processing of sensor data directly at the base
stations, relieving network load [Woo+17].

Middleboxes Sometimes it is not possible placing all functionality at the
endpoints, but the need to augment the session along its communication
path arises. Such functionality can include intrusion detection, parental
filtering, content optimization (e.g., compression, transcoding), or compli-
ance with corporate practices. Generally, middleboxes are bad news for
privacy since they allow third parties to peek into data or even modify it
during transport. However, with TLS end-to-end secured connections be-
coming standard, sustaining middlebox functionality has become difficult.
[Nay+15].

Of course, one can argue that the mentioned services should be im-
plemented at corresponding endpoints rather than in between. However,
that often leads to a suboptimal solution. E.g., an ISP cache for thousands
of users is much more effective at the proxy-side than at each endpoint.
Another example is intrusion detection or content-based routing that fun-
damentally needs network-wide visibility [Nay+15].

In Section 2.5.3 (Multi-Context TLS), we summarize an approach by
Naylor et al. [Nay+15] trying to solve the problem of incorporating middle-
boxes into networks despite TLS connections yet respecting fine-grained
permissions.

Note that CDN caching servers in literature are often referred to as edge
servers, or proxy servers but should not be confused with terms outside
of the CDN’s literature field. In this thesis, we will always call them CDN
server or Point of Presence (PoP).
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3.3 Cryptography

In this section, we discuss cryptographic primitives and constructions es-
sential to the thesis.

3.3.1 Forward and Backward Security

We distinguish between forward and backward: The former indicates that
secured data in the past will not be compromised in the future by the
compromise of key material. On the other hand, the latter indicates the
vice versa security assumption: Data secured in the future, will not be
compromised by any compromise of key material of the past [BH05; BM99;
Gün89].

3.3.2 Basic Complexity Assumptions

Given a multiplicative, finite cyclic group G of order q and a generator
1 6= g ∈ G, we assume following problems to be hard in a cryptographic
scheme:

The Discrete Logarithm Assumption It is computationally hard to find x
given the generator g and a value gx. That is why lots of algorithms
in cryptography base their complexity assumptions of the discrete-log
problem [Kat10, Section 2.2.3].

The Computational Diffie-Hellman Assumption Given the generator g
and group elements gx, gy, Computational Diffie-Hellman (CDH) states
that it is hard to calculate gxy [Kat10, Section 5.3]:

g, gx, gy ⇒ gxy (3.1)

The Decisional Diffie-Hellman Assumption Given the generator g and
some group elements gx and gy (whereas x, y are some randomly cho-
sen integers), Decisional Diffie-Hellman (DDH) states that it is hard to
distinguish gxy from the other group elements [Kat10, Section 5.3]:

37



3 Preliminaries

g, gx, gy, gz ⇒
{

0 if z = xy
1 otherwise (3.2)

Note: In some groups, there is no efficient way to verify a valid solution to CDH.
Distinguishing between a correct and an incorrect solution boils down to DDH.
However, efficiently computable bilinear maps (like we will use) cannot hold DDH,
since a solution is efficiently verifiable [Kat10, Section 5.3].

G2

G1

GT

g2y

g1x

e(g1,g2)xy

Figure 3.4: Pairing scheme visualized: shows mapping e : G1 ×G2 → GT [Bon].

3.3.3 Bilinear Pairing

Let G1 and G2 represent two multiplicative, finite cyclic groups of prime
order p. Furthermore let GT be a multiplicative, finite cyclic group of order
p. Then a bilinear map e : G1 × G2 → GT (see Figure 3.4) for pairing is
defined by 3 properties [BF01; GPS08; Kat10]:

Bilinearity It needs to hold [BF01, Sec. 2]:

∀x, y ∈ Z, ∀g1 ∈ G1, ∀g2 ∈ G2 : e(gx
1 , gy

2) = e(g1, g2)
xy = e(gy

1, gx
2) (3.3)
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Non-degeneracy If g1 6= 1 and g2 6= 1, then also e(g1, g2) 6= 1.
In other words, if one pairs a generator g with itself, it should yield a valid
element e(g, g) in the target group GT; otherwise, it is not a useful bilinear
mapping [Bon].

Computability It has to exist an algorithm that efficiently computes the
mapping e in polynomial time.

As a consequence of the pairing’s properties, we observe an easy Decisional
Diffie-Hellman problem in G. Given g, gx, gy, gz ∈ G, we can easily test if
z = x · y [Bon]:

e(g, gz)
?
= e(gx, gy) (3.4)

Therefore, we have to consider a Bilinear Decision Diffie-Hellman complexity
assumption. Given h, g, gx, gy, gz, e(h, g)z ∈ G, it is computationally hard
again to find out if z = x · y[Bon].

Different bilinear pairing froms can be classified into different basic types
of pairings [Bon; GPS08]:

Type 1 G1 = G2, symmetric using supersingular curves.
Type 2 G1 6= G2, but a computable trace map exists (φ : G2 → G1).
Type 3 G1 6= G2, with no efficient way to compute a homomorphism

between G1 and G2. It also gets called asymmetric pairing.

For all three types, there exists a non-trivial homomorphism between G1
and G2, since they are all cyclic groups of the same order. However, the
non-trivial homomorphism can be computation-wise as hard as the dis-
crete logarithm. Type 2 is defined to have only a computable, non-trivial
homomorphism G2 to G1. In general, homomorphisms are useful to prove
the security of many pairing-based primitives. Since type 3 does not have
trivial homomorphisms, primitives have been hard to prove. However, in
2016, Abe et al. [AHO16] presented an efficient conversion method into the
asymmetric setting, making security proving easier [GPS08].

Pairing Elliptic Curves was introduced by Weil [Wei40] in 1940 and was
formative for Elliptic Curve theory [Sil86]. In a second paper, Miller et al.
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[Mil+86] presented an efficient algorithm for pairing calculations. Subse-
quently, an approach was discovered that reduced the elliptic curve discrete
logarithm problem to the multiplicative group discrete logarithm problem
in finite fields [MVO91].

When using Weil pairings in elliptic curve cryptography, the basic idea
is to solve a problem, impossible in an elliptic curve group, by equating
in the target group, making use of the unique bilinear mapping proper-
ties [BF01].

3.3.4 Identity-Based Encryption and Signature

Identity-based cryptography compared to traditional public-key cryptog-
raphy has the apparent difference to use an arbitrary string as its public
key. While traditional public-key cryptography generates a key-pair for
the following operations, identity-based cryptography uses a Private Key
Generator to extract a private key from a given public-key identity and a
previously setup master secret.

Identity The identity consists of a string or a byte array and serves as a
public identifier for a specific subject.

Shamir [Sha84] introduced first notions for Identity-Based encryption (IBE)
and Identity-Based signature (IBS) in 1984. While for IBS researchers found
satisfactory solutions in the same century [FS86; SP88], IBE received several
proposals all having major downsides [CS98; MY91; Tan87; TI89]. However,
in 2001 Boneh et al. [BF01] introduced a first fully functional version of IBE
derived from Weil Pairings. In 2004 a construction without Random Oracles
was presented [BB04].

We note that we use multi-instance identity-based cryptography in this
thesis, i.e., we assume multiple possible setups of identity-based public
parameters instead of a single, global instance as often presumed in identity-
based schemes. Therefore, we reintroduce a Key Pair Generator instead of a
Private Key Generator. Consequently, a public key exists separately from the
public parameters. Two distinct algorithms yield the public parameters and
the public key, Setup respectively Gen. That allows us to equip the server’s
certificate with a typical public key.
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3.3.5 Hierarchical Identity-Based Encryption

HIBE generalizes IBE enabling to delegate multiple, fine-grained rights for
decryption by generating specific private keys corresponding to the rights
represented as identities. The encryption rights belong to different identity
groups residing in several hierarchical levels. In other words, a master secret
key gets derived several times by different identities (rights) depending
on the number of levels present. A private key derived for multiple levels
by specific identities can not decrypt a message encrypted on the same
level using different identities. A different level of delegations also impedes
decryption. Data encrypted with two levels of IDs can not be decrypted by
private key with three levels, although the first two IDs would match.

In 2002 Gentry et al. [GS02] presented a first hierarchical identity-based
scheme with random oracle. In 2005 Boneh et al. [BBG05] presented a
Hierarchical Identity-Based Encryption (HIBE) scheme without random
oracles but with constant ciphertext and depth-independent decryption
costs. They based the security of their system on the BDH Inversion assump-
tion [BBG05, p. 2.3]. Generally, HIBE implies forward secure encryption as
shown by Canetti et al. [CHK03].

To show a HIBE, we assume the following pairing setup: Let BGen be
an algorithm that, on input of a security parameter 1κ, outputs BG =
(p, e, G1, G2, GT, g, ĝ) ← BGen(1κ), where G1, G2, GT are groups of prime
order p with bilinear map e : G1 ×G2 → GT and generators g, ĝ of G1 and
G2, respectively.

Below (Definition 3.1) we show a HIBE following Boneh et al. [BBG05]:

Definition 3.1 (Hierarchical Identity-Based Encryption). An Hierarchical
Identity-Based Encryption (HIBE) scheme with message space M and
identity space ID≤`, for some ` ∈ N, consists of the probabilistic, poly-
nomial-time (PPT) algorithms (Setup,Gen,Del,Enc,Dec):

Setup(1κ, `) : On input of security parameter κ and hierarchy parameter `,
outputs public parameters pp.

Gen(pp) : On input of public parameters pp, outputs a keypair (pk, skε).
Del(skid′ , id) : On input secret key skid′ and id ∈ ID≤`, outputs a secret key
skid for id iff id′ is a prefix of id, otherwise skid′ .
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Enc(pk, id, m) : On input of a public key pk, a message m ∈ M and an
identity id ∈ ID≤`, outputs a ciphertext cid for id.

Dec(skid′ , cid) : On input of a secret key skid′ and a ciphertext cid, outputs
m ∈ M∪ {⊥}.

For the scheme to be correct, it is required that every derived secret key
delegated for specific identities enables to decrypt a ciphertext encrypted
with precisely the same identities.

More formally, we require for all κ, ` ∈ N, all pp ← Setup(1κ, `), all
(pk, skε) ← Gen(pp), all m ∈ M, all id, id′ ∈ ID≤` where id′ is a prefix
of id, all skid ← Del(skid′ , id), all cid ← Enc(pk, id, m), Dec(skid, cid) = m
holds [BBG05].

We provide the experiment with following oracles:

Del1(skε, id) : Stores id in Q and returns Del(skε, id).
Del2(skε, id) : This oracle checks whether id is a prefix of id∗ and returns ⊥

if so. Otherwise it returns Del(skε, id).

Experiment Exphibe-ind-cpa
HIBE,A (κ, `)

pp← Setup(1κ, `), (pk, skε)← Gen(pp)
b←$ {0, 1}
(id∗, m0, m1, st)← ADel1(skε,·)(pk)
if ∃id ∈ Q such that id is a prefix of id∗, return 0
if m0, m1 /∈ M or |M0| 6= |M1|, return 0
c∗ ← Enc(pk, id∗, mb)

b∗ ← ADel2(skε,·)(st, c∗)
if b = b∗ return then 1, else return 0

Experiment 3.1: The HIBE-IND-CPA experiment for a HIBE scheme [BBG05].

Definition 3.2. For any PPT adversary A, we define the advantage in the
HIBE-IND-CPA experiment Exphibe-ind-cpa

HIBE,A (cf. Experiment 3.1) as

Advhibe-ind-cpa
HIBE,A (κ, `) :=

∣∣∣∣Pr
[
Exphibe-ind-cpa

HIBE,A (κ, `) = 1
]
− 1

2

∣∣∣∣ (3.5)
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for an integer ` ∈N. A HIBE is HIBE-IND-CPA-secure, if Advhibe-ind-cpa
HIBE,A (κ, `)

is a negligible function in κ for all PPT adversaries A [BBG05].

Subsequently, we recall Boneh-Boyen-Goh (BBG) [BBG05]. It explicitly uses
a Setup algorithm to generate the public parameters (see Scheme 3.1) to
separate it from Gen to support multiple instances. Further, we selected
asymmetric bilinear groups (type 3).

Setup(1κ, `) : Generate a bilinear group (p, e, G1, G2, GT, g, ĝ) ← BGen(1κ)

and g2, g3, h1, . . . , h`←$ G1, fix a hash function H : {0, 1}∗ → Z∗p and return
pp← (H, p, e, G1, G2, GT, g, ĝ, g2, g3, h1, . . . , h`).

Gen(pp) : Choose α←$ Zp and return (pk, sk)← (ĝα, gα
2).

Del(skid, id) : Parse id as (I1, . . . , Ik) with k < `,

- If skid is the master secret gα
2 , sample v←$ Zp and return (gα

2 ·
(hH(I1)

1 · · · hH(Ik)
k · g3)

v, ĝv, hv
k+1, . . . , hv

`),

- else assume that skid is (gα
2 · (h

H(I1)
1 · · · hH(Ik−1)

k−1 · g3)
v′ , ĝv′ , hv′

k , . . . , hv′
` ) =

(a0, a1, bk, . . . , b`), sample w←$ Zp and output (a0 · bH(Ik)
k ·

(hH(I1)
1 · · · hH(Ik)

k · g3)
w, a1 · ĝw, bk+1 · hw

k+1, . . . , b` · hw
` ).

Enc(pk, id, m) : Parse id as (I1, . . . , Ik) ∈ (Z∗p)
k with k < `, compute id′ ←

(H(I1), . . . , H(Ik) ∈ (Z∗p)
k, and:

- Sample s←$ Zp and compute (C1, C2, C3)← (e(g2, pk)s ·m, ĝs, (hid′[1]
1 ·

. . . · hid′[k]
k · g3)

s).
- Return (C1, C2, C3).

Dec(skid, cid) : Consider id = (I1, . . . , Ik) with k < `, parse skid as
(a0, a1, bk+1, . . . , b`), cid as (C1, C2, C3). Return m ← C1 · e(C3, a1) ·
e(a0, C2)

−1.

Scheme 3.1: HIBE-IND-CPA-secure version of the BBG HIBE [BBG05].
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3.3.6 Signature Schemes

Since in this thesis, we require a signature scheme for our goal, we swiftly
recall the definition of traditional signature schemes [Kat10].

Definition 3.3. A signature scheme Σ consists of the probabilistic, poly-
nomial-time (PPT) algorithms (Setup,Gen, Sign,Verify), which are defined as
follows [Kat10]:

Setup(1κ) : On input security parameter κ, outputs public parameters pp.
Gen(pp) : On input public parameters pp, outputs a signing key sk and a

verification key pk with associated message spaceM.
Sign(sk, m) : On input, a secret key sk and a message m ∈ M, outputs a

signature σ.
Verify(pk, m, σ) : On input a public key pk, a message m ∈ M and a signa-

ture σ, outputs a bit b ∈ {0, 1}.

At this point we remark that it is common to generate multiple, independent
public keys with the same public parameters pp. In our case we reuse pa-
rameters. We need to separate the key-pair generation from the generation
of the public parameters. Therefore, we define an algorithm pp← Setup(1κ),
whose output is then passed to Gen.

It is assumed that a signature scheme satisfies the usual (perfect) cor-
rectness notion [Kat10], i.e., for all security parameters κ ∈ N, for all
(pk, sk)← Gen(1κ), for all m ∈ M, we have that

Pr[Verify(pk, m, Sign(sk, m)) = 1] = 1.

The standard existential unforgeability under adaptively chosen message attacks
(EUF-CMA security) notion is recalled beneath. It states that an adversary
who has access to a signing oracle is still unable to forge signatures on
unqueried messages [Kat10].

Definition 3.4 (EUF-CMA). For any PPT adversary A, we define the advan-
tage in the EUF-CMA experiment Expeuf-cma

Σ,A (cf. Experiment 3.2) as

Adveuf-cma
Σ,A (κ) := Pr

[
Expeuf-cma

Σ,A (κ) = 1
]

. (3.6)

A signature scheme Σ is EUF-CMA-secure, if Adveuf-cma
Σ,A (κ) is a negligible

function in κ for all PPT adversaries A [Kat10].
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We provide the experiment with the following oracle:

Sign′(sk, m) : This oracle computes σ← Sign(sk, m), adds m to Q, and
returns σ.

Experiment Expeuf-cma
Σ,A (κ)

(pk, sk)← Gen(1κ)

(m∗, σ∗)← ASign′(sk,·)(pk)
if Verify(pk, m∗, σ∗) = 0, return 0
if m∗ ∈ Q, return 0
return 1

Experiment 3.2: The EUF-CMA experiment for a signature scheme Σ [Kat10].

3.3.7 Hierarchical Identity-Based Signature

Similarly to HIBE (cf. Section 3.3.5), we consider the (hierarchical) identity-
based signature scheme by Gentry et al. [GS02]. It is based on a standard
notion of signature schemes (cf. Section 3.3.6). However, an additional key
delegation algorithm Del similar to HIBE (cf. Scheme 3.1) will be added.
The Verify algorithm takes the identities as additional arguments. It only
succeeds if the key used for the signature has been delegated for those
particular identities. We briefly recall the formal definition by Gentry et al.
[GS02] adapted to a multi-instance setting.

Definition 3.5. A hierarchical identity-based signature scheme (HIBS) con-
sists of PPT algorithms (Setup,Gen,Del, Sign,Verify) such that [GS02]:

Setup(1κ, `) : On input of security parameter κ and hierarchy parameter `,
outputs public parameters pp.

Gen(pp) : On input of public parameters pp, outputs a master signing key
skε and a verification key pk with message spaceM.

Del(skid′ , id) : On input of secret key skid′ and id ∈ ID≤`, outputs a secret
key skid for id iff id′ is a prefix of id, otherwise skid′ .

Sign(skid, m) : On input of a secret key skid and a message m ∈ M, outputs
a signature σ.

Verify(pk, id, m, σ) : On input of a public key pk, an identity id ∈ ID≤`, a
message m ∈ M and a signature σ, outputs a bit b ∈ {0, 1}.
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The corresponding standard existential unforgeability under adaptively chosen
message attacks (EUF-CMA security) notion we recall beneath:

We provide the experiment with following oracles:

Del′(skε, id) : Stores id in QID and returns Del(skε, id).
Sign′(sk, id, m) : This oracle computes skid ← Del(skε, id), σ← Sign(skid, m),

adds m to Q, and returns σ.

Experiment Expeuf-cma
HIBS,A (κ, `)

pp← Setup(1κ, `), (pk, sk)← Gen(pp)

(m∗, id∗, σ∗)← ADel′(skε,·),Sign′(skε,·,·)(pk)
if Verify(pk, id∗, m∗, σ∗) = 0, return 0
if m∗ ∈ Q, return 0
if ∃id ∈ QID such that id is a prefix of id∗, return 0
return 1

Experiment 3.3: The EUF-CMA experiment for a hierarchical identity-base signature scheme
HIBS [GS02].

Definition 3.6 (EUF-CMA). For any PPT adversary A, we define the advan-
tage in the EUF-CMA experiment Expeuf-cma

HIBS,A (cf. Experiment 3.3) as

Adveuf-cma
HIBS,A (κ) := Pr

[
Expeuf-cma

HIBS,A (κ) = 1
]

. (3.7)

A signature scheme Σ is EUF-CMA-secure, if Adveuf-cma
Σ,A (κ) is a negligible

function in κ for all PPT adversaries A [GS02].

Naor Transform

To convert the previously discussed Hierarchical Identity-Based Encryption
(HIBE) (cf. Section 3.3.5) to a signature, we map it to the HIBS definition (cf.
Section 3.3.7). That can be done using the IBE-to-signature transformation
from Naor [BF01]. It converts any IND-CPA secure IBE scheme into an EUF-
CMA secure signature scheme. More specifically, it converts any level `+ 1
HIBE to a level ` HIBS (cf. [KN09]) as shown in Scheme 3.2. The resulting
signature of this special case would look much like a traditional signature,
since no level for delegation is available.

46



3 Preliminaries

Setup(1κ, `) : Let pp← HIBE.Setup(1κ, `+ 1) and return pp.
Gen(pp) : Run (pk, sk)← HIBE.Gen(pp) and return (pk, sk).
Del(skid′ , id) : Return skid ← HIBE.Del(skid′ , id).
Sign(skid, m) : Parse id as id1, . . . , idl and

return σ← HIBE.Del(sk, (id1, . . . , id`, m)).
Verify(pk, (idi)

`
i=1, m, σ) : Choose m′←$ HIBE.M and

compute c← HIBE.Enc(pk, (id1, . . . , id`, m), m′).
Return 1 if HIBE.Dec(σ, c) = m′, otherwise return 0.

Scheme 3.2: (Hierarchical identity-based) Signature scheme obtained by applying Naor-
transform to HIBE [GS02].

Theorem 3.1. If the HIBE scheme provides HIBE-IND-CPA-security and has
a message space that is exponentially large in the security parameter, then
the HIBS scheme from Scheme 3.2 provides EUF-CMA-security [Cui+07].

3.3.8 Time-Bound Identity-Based Signature

Alber et al. [AMR20] introduce a special case of HIBS: Time-Bound Identity-
Based Signature (TBIBΣ). The novel scheme augments the identity-based
delegation mechanism by a time-bound component called epoch. This epoch
is designed to bind the signature to a specific time period. Consequently,
Alber et al. [AMR20] introduce this time-boundness by delegating the secret
key additionally by the corresponding epoch. Thus, a resulting delegated
key is not usable before or after the specified epoch.

Epoch With TBIBΣ, every level of the identity-based hierarchy gets a time-
boundness added. The underlying idea ensures that the delegated key
subsequent to this level is not valid before and after the specified validity.
Practically, the epoch is defined by an integer, low-resolution timestamp of
choice, represented by an identity pointing to the validity time-span on a
time-grid of predefined cell lengths (see Figure 3.5).
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t0 t1 t2 t3 t4 t5

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Figure 3.5: Graphical representation of the epochs and its corresponding time grid.

TBIBΣ Definition

Alber et al. [AMR20] also define the syntax of time-bound identity-based
signatures. The algorithms Sign, Verify and Del from our previous HIBS
definition (cf. Section 3.3.7) are extended by the epoch variable.

Definition 3.7 (Time-bound identity-Based Signatures). A Time-Bound
Identity-Based Signature (TBIBΣ) scheme with identity-space ID con-
sists of the PPT algorithms (Gen, Sign,Verify,Del), which are defined as
follows [AMR20]:

Setup(1κ, n) : On input of security parameter κ and the maximal number
of epochs n, outputs public parameters pp.3

Gen(pp) : On input of the public parameters pp, outputs a master signing
key sko,ε and a verification key pk with associated message spaceM.

Del(ski−1,id′ , i, id) : On input of a secret key ski−1,id′ , an identity id ∈ ID≤n

and an epoch i ∈ [n], outputs a secret key ski,id for id iff id′ is a prefix of id,
otherwise skid′ .

Sign(ski,id, m) : On input of a secret key ski,id for an identity id ∈ ID≤n and
an epoch i ∈ [n] and a message m ∈ M, outputs a signature σ.

Verify(pk, i, id, m, σ) : On input of a public key pk, an identity id ∈ ID≤n,
an epoch i ∈ [n], a message m ∈ M and a signature σ, outputs a bit
b ∈ {0, 1}.

3We allow n = ∞ to denote an unbounded number of epochs.
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Alber et al. [AMR20] regard the scheme to be correct if for all security
parameters κ ∈ N and n = n(κ) ∈ N, for all (sk, pk) ← Gen(1κ, n), for all
id ∈ ID, for all i ∈ [n], for all extracted keys ski,id ← Del(sk, i, id), for all
m ∈ M, we have that

Pr[Verify(pk, i, id, m, Sign(ski,id, m)) = 1] = 1.

TBIBΣ Security Considerations

Alber et al. [AMR20] further want to extend the unforgeability security
notion EUF-CMA to cover epochs for TBIBΣ delegation keys. They aim
to make the adversary select not only the target identity but also some
target epoch. Consequently, the notion states that a scheme is considered
unforgeable as long as the adversary can not forge a signature for both,
a selected target epoch and identity. Thus, it must hold even though an
adversary gains access to a delegated key derived from the same master key
using the same identity, but a different epoch. Vice versa, it must also hold
for a delegated key derived from the same master key for the same epoch
but using a different identity.

We provide the experiment with access to following oracles:

Sign′(sk, i, id, m) : This oracle computes ski,id ← Del(sk, i, id),
σ← Sign(skid,i, m), adds m to Q, and returns σ.

Del′(sk, i, id) : Stores (i, id) in QID and returns Del(sk, i, id).

Experiment Expeuf-cma
TBIBΣ,A(κ, n)

pp← Setup(1κ, n), (pk, sk)← Gen(pp)

(m∗, i∗, id∗, σ∗)← ADel′(sk,·),Sign′(sk,·,·,·)(pk)
if Verify(pk, i∗, id∗, m∗, σ∗) = 0, return 0
if m∗ ∈ Q, return 0
if (i∗, id∗) ∈ QID, return 0
return 1

Experiment 3.4: The EUF-CMA experiment for a Time-Bound Identity-Based Signature
(TBIBΣ).
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Definition 3.8 (EUF-CMA). For any PPT adversary A, we define the advan-
tage in the EUF-CMA experiment Expeuf-cma

TBIBΣ,A (cf. Experiment 3.4) as

Adveuf-cma
TBIBΣ,A(κ, n) := Pr

[
Expeuf-cma

TBIBΣ,A(κ, n) = 1
]

, (3.8)

for an integer n ∈N. A time-bound identity-based signature scheme TBIBΣ
is EUF-CMA-secure, if Adveuf-cma

TBIBΣ,A(κ, n) is a negligible function in κ for all
PPT adversaries A.

3.3.9 TBIBΣ Construction

In this section, we recapitulate the direct construction of TBIBΣ from a HIBS
by Alber et al. [AMR20]. The underlying idea is a mapping from TBIBΣ’s
time and identity components to identities of an underlying identity-based
signature scheme of choice (cf. Section 3.3.7). We note that we can use the
epoch as a separate identity (instead of concatenating it with the actual
identity) and introduce it with an additional call to Del. However, in our
context, we want every delegation to be time-bound by an epoch, and thus
we use the following compact construction by Alber et al. [AMR20] (see
Scheme 3.3).

Setup(1κ, n) : : Let pp ← IBS.Setup(1κ) with IBS.ID = {0, 1}dlog2(n)e × ID
and return pp.

Gen(pp) : Return (pk, sk)← IBS.Gen(pp).
Del(sk, i, id) : Return ski,id ← HIBE.Del(sk, i‖id)
Sign(ski,id, m) : Return σ← IBS.Sign(ski,id, m).
Verify(pk, i, id, m, σ) : Return IBS.Verify(pk, i‖id, m, σ).

Scheme 3.3: TBIBΣ scheme from any IBS.

From the security of the underlying IBS scheme (cf. Definition 3.6), Alber
et al. [AMR20] show that the TBIBΣ scheme is secure with the following
Theorem 3.2.
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Theorem 3.2. If IBS is EUF-CMA-secure, then TBIBΣ from Scheme 3.3 is
EUF-CMA-secure, i.e. if there is an EUF-CMA-adversary A against TBIBΣ,
then there exists an EUF-CMA-adversary against IBS with

Adveuf-cma
TBIBΣ,A(1

κ, n) = Adveuf-cma
IBS,B (1κ).

3.3.10 Practical Considerations

Alber et al. [AMR20] discuss some optimizations for efficient signing
and verification. They apply when implementing the TBIBΣ scheme from
Scheme 3.3 based on the BBG HIBE from Scheme 3.1. We summarize them
in the following subsections.

Deterministic Verification

Alber et al. [AMR20] mention that verification of the Naor Transform (testing
encryption and decryption to ensure the signature is correctly derived
from corresponding identities) is probabilistic. However, standard signature
schemes, such as EdDSA and ECDSA, are deterministic. Therefore the
latter have better performance since they do not need access to a secure
randomness source, which consequently adds computational complexity to
the TBIBΣ verification approach. On prudent selection of the underlying
HIBS scheme, Alber et al. [AMR20] show that it is possible to check the
correctness of the signature using a deterministic method based on Boneh
et al. [BLS01] and Waters [Wat05].

On the one hand, they attach a non-interactive zero-knowledge proof that
will be verified instead of testing the decryption. On the other hand, is
the chosen HIBE BBG-like, it allows to check for correct key derivation by
equating the following: Assuming a derived key for the last level, skid1,...,id` =
(sk1, sk2) we have that

e
(

hH(id1)
1 · · · hH(id`)

` · g3, sk2

)
· e(g2, pk) = e(sk1, ĝ).

In other words, a key satisfying the equation above can also decrypt any
ciphertext. Therefore, it is a valid deterministic and faster verification alter-
native.
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Faster Signing with Precomputation

In parts of the signature lifecycle id1 to id`−1 stay constant. Therefore, it
can be advantageous to precompute all hH(idi)

i , so that every time they are
needed, we can fetch them from a cache. That can be useful when verifying,
delegating, or respectively, signing multiple times using a similar sequence
of identities. Alber et al. [AMR20] describe the signing case the following:

Indeed, given the secret key ski,id = (a0, a1, b`), the signature can be
computed as (

a0 · bH(m)
` ·

(
t · hH(m)

k

)w
, a1 · ĝw

)
where t← hH(id1)

1 · · · hH(id2)
`−1 · g3. This t can be either computed when

deserializing the secret key or directly be stored in the serialized key.
It can be reused for all subsequent signing operations, thus saving
O(`) group operations and rendering signing runtime complexity
independent of `.
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The Time-Bound Identity-Based Signature (TBIBΣ) Scheme introduced by
Alber et al. [AMR20] has been described in detail in the last section (see
Section 3.3.8). Now, we present an integration of the TBIBΣ scheme into
Transport Layer Security (TLS).

We note that our approach is meant for protocol version 1.3, but TBIBΣ can also
be integrated into older versions of the protocol since the approach does not require
any changes to the TLS handshake itself.

Further, as TBIBΣ is just a variation of HIBS, we wrote a HIBS provider for
TBIBΣ signature operations in the TLS stack.

Client CDNTLS TLS

skserver

iaik.at
Origin Server

skserver
pk: pkserver
CN: iaik.at

Figure 4.1: Shows a typical Full Delegation scenario on the internet involving Content
Delivery Network (CDN) services.

Scenario When we talk about a typical CDN setup, we suppose an interplay
between a client, a CDN, and an origin server. We present such a setup
graphically in Figure 4.1. A typical client is usually a web browser. It
would like to start a connection to an origin server to retrieve some content.
As the origin server often is not in the network-wise vicinity, in terms

53



4 Integration

of distances on the internet, latency can be quite high or throughput
quite low. Furthermore, the origin server may not have the power to offer
computational demanding services to all users, and therefore seeks to
offload demanding tasks. Thus, the origin server can contract a CDN
service to delegate some or all content or work-load. This measure would
improve the connection’s performance and enhance the scalability of a
service.

The actual application of such a CDN service may vary depending on
the needs of the origin server. One way is to upload static data to the
CDN service via an uplink. Then the CDN distributes all data to its nodes.
Another way is a cache like behavior buffering often requested data from
the origin server. Consequently, the CDN node only retrieves data on
demand and keeps it in storage for some time, depending on the eviction
strategy in use, and serves similar data requests from the storage.

The latter practices show that CDNs, while serving data, act in the
origin server’s name. Therefore it constitutes what is formally known as a
delegation. Further, to make a client connect to the CDN, we need to take
control of the name resolution (see Section 3.2.6 for more details). In short,
we use the authoritative approach, for which we edit the DNS entry for
the origin server’s domain name to point to the CDN node in proximity to
the client.

Furthermore, TLS secures all connections between client and CDN, and
between CDN and origin server. To serve data in an authenticated way, one
party signs the TLS handshake, and the other verifies using the internet’s
Public Key Infrastructure (PKI) (in a server-to-server scenario also vice
versa). Full Delegation practices shown in Section 1.1 are widely in use
and need to be replaced. We will present a promising replacement option
(cf. Chapter 2 for other options).

4.1 Concept

To eliminate Full Delegation practices in TLS, we propose to apply the
TBIBΣ scheme introduced in Section 3.3.8. As shown in Figure 4.2, an origin
server may decide to delegate the right to deliver content by sending a
short-lived, derived version of the private key (also known as delegated
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key) to a CDN service. Such a provider does not have to be highly trusted
as it only receives a key valid for a short time. In case it acts deliberately
malicious or in negligence, the harm that it may cause is limited.

The CDN distributes the delegated key to all its nodes enabling temporary
delivery of correctly authenticated content over TLS to the requesting clients.
A CDN node does so by signing the TLS handshake using the delegated
key received from the origin server. Consequently, thanks to the properties
of TBIBΣ, the client can verify the authenticity of a connection and its
corresponding delegation by using the TBIBΣ public key belonging to the
origin server’s certificate (see Figure 4.2). Since this implies only changes to
the signature algorithm, no modification of the TLS protocol is needed, and
therefore implementation effort remains minimal.

Like in TLS with conventional signatures, the server’s public key pkserver and
secret skserver key get generated (see Section 3.3.8). Then a Certificate Signing
Requests (CSR) is sent to the CA for signing. Since the CSR is self-signed
the CA needs to deal with a TBIBΣ signature. If the CA approves the CSR
and verifies the signature, it signs the requested certificate and sends it back
to the server.

The server now begins to derive multiple delegated keys skdeleg, one for
each upcoming epoch (and each subdomain if needed). Those delegated
keys are then sent to the corresponding CDN over a mutually authenticated
channel (e.g., a standard TLS connection). If needed, the server’s certificate
is communicated too.

Coming back to the delegated key, we note that we derive it by the origin
server’s domain name and a validity epoch (see Section 3.3.8). Including
the domain name into the delegation can restrict its validity to a specific
subdomain. Furthermore, including the epoch limits the validity in terms of
time. Generally, a delegation can be arbitrary short-lived (cf. Section 4.1.3).
Then the delegate algorithm converts both (domain name and epoch) to
identities and concatenates them so that they may serve as a single identity.
Next, the secret key gets derived by the concatenated identities yielding the
delegated key skdeleg. For further details, please revisit Section 3.3.8.
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loop

loop

CDN Server

TBIBS.Gen(pp) = 

TBIBS.Del(skserver,
epoch, iaik.at) = skdel

CA

sign CSR

generate CSR

CSR

certserver

skdel , certserver

skserver
pkserver

pk: pkserver
CN: iaik.at

Mutual Authen.

Client

σ = Sign(skdel, handshake)

ServerHello

ClientHello

EncryptedExtensions

Certificate (certserver)

CertificateVerify (sig)

Finished

Verify(pkserver, epoch, iaik.at,
handshake, σ)

Verify PKI & certificate

Finished

Figure 4.2: The communications of the TBIBΣ TLS solution as a Sequence Diagram.
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On a new connection of a client to the CDN, the handshake proceeds as
usual. However, when negotiating the signature scheme, the client and
the server will compromise on the newly introduced TBIBΣ. For signing
the handshake’s hash, the server’s TLS stack will then utilize the TBIBΣ
signature scheme and apply the currently valid delegated key skdeleg.

After the client has received the server’s certificate and the signature over
the handshake’s hash, it uses the TBIBΣ’s verify algorithm to prove the
subdomain, the current epoch, and the handshake’s hash valid. To do so,
the client gathers its own values for the identities (subdomain from the
SNI extension, the current epoch derived from the client’s clock, and the
hash from its TLS stack’s handshake recordings) and submits them to the
verification process. If the algorithm finds that those input parameters will
produce the same signature as given and the remaining PKI verification
passes, the authentication’s correctness is confirmed.

The approach has the following advantages:

Control over private key The CDN services only obtain a derived key,
while the secret key never leaves the origin server. Thus, the origin server
stays in control of the private key at all times.

Limited validity A derived key is only valid for a limited amount of time.
In other words, this limitation in terms of time provided via an epoch
offers a cheap alternative to standard revocation mechanisms, since an
additional classical revocation checking is redundant. We discuss further
details in the upcoming Section 4.1.2.

Epoch-wise forward security According to HIBE’s EUF-CMA, knowing del-
egated keys of some identities does not help the adversary find a specific
identity’s delegated key. Since epochs are nothing else than identities (see
Section 3.3.8), TBIBΣ delegated keys are forward- and backward-secure.
In the case of TBIBΣ in TLS, assuming a delegated key of a future epoch
is compromised, there will be no effect on the validity of the signatures
issued with the current epoch’s delegated key.

No protocol changes Often, TLS libraries support the integration of addi-
tional signature algorithms. If this is the case, an implementation of our
approach is straight forward, since no changes to the TLS stack itself are
necessary.
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TBIBΣ enables the implementation of additional protection mechanisms.
The secret key can be moved to a dedicated key server handling only the key
delegation. That reduces potential attack vectors. Such a server would keep
key material separate from directly exposed content servers. Therefore, we
can achieve tighter network protection since the key server does not need to
handle any incoming connections. It only pushes a delegated private key to
the CDN periodically. The push takes place before the key enters its validity
period. So no delay due to delegation or transport is induced.

Besides, a separate key server can enhance local security too. Content servers
may periodically receive a delegated private key, just like CDNs. If one of
the more exposed content servers is compromised, a new delegated key will
help solve the problem with the beginning of the upcoming epoch.

Furthermore, when operating a key server, it might make sense to deploy a
Hardware Security Module (HSM) or similar measures. It allows us to store
the key material sandboxed outside of the execution environment. Having
only to maintain the key server highly secure, while content servers work
with the delegated key supplied by the former, may reduce administration
costs aside from reducing surface for attacks.

On the performance side, one should make use of the deterministic
verify algorithm (see Section 3.3.10) as it performs noticeably faster than
normal probabilistic verify directly obtained by the Naor-Transform. Fur-
ther, precomputations (see Section 3.3.10) can become pretty useful in the
application of TLS. A CDN node might need to sign lots of handshakes in
one epoch to deliver a domain content to several clients. Thus, it will only
have to recompute the precomputations once per epoch but will benefit the
rest of the time.

4.1.1 Epochs Limit a Delegation

We defined the term epoch in Section 3.3.8. However, there are different
ways to apply an epoch as an identifier in TBIBΣ. An integer counter
called timestamp represents the number of seconds since some start time
T0 module the epoch length. However, it could also represent the number
of epochs since T0. T0 might be defined by, e.g., a NotBe f ore field from
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a certificate or the Unix start time (January 1st in 1970). Another way
can be to use a UTC date-time and flatten it to hours or days. Then one
can encode the string representation as identifier. Alternatively, one could
use more sophisticated other popular time cycle approaches. That can,
for example, be a standardized algorithm from the Time-based One-time
Password algorithm (TOTP) protocol [MRa+11]. Looking at TOPT (see
Equation (4.1)), we can observe the similarity to the first possibility we
described.

epoch =

⌊
timestampUTC

epochlength

⌋
(4.1)

The length of an epoch is a parameter that needs to be agreed on before any
communication can occur. One way is to standardize it in a corresponding
document. Neither the TLS handshake nor the delegation cryptography
offers the possibility to negotiate a certain epoch length without introducing
changes to the protocol. However, we can use the public key structure to
transport it as one of the public parameters. Since the origin server generates
the key pair, the origin server could decide on the epoch length. On the
other hand, we could introduce a TLS extension for negotiation or X.509

certificate extension for specification, but we do not consider this an option
since it would introduce implementation changes that we aim to avoid.

However, the length of an epoch should be well-grounded. Different applica-
tions may need different epoch lengths. Possible lengths may range from a
few minutes up to a week, similar to validity periods of an Online Certificate
Status Protocol (OCSP) response (see Figure 4.3). Nevertheless, one should
keep in mind to set neither too long epochs nor too short epochs for one’s
specific use case. Setting it to a long epoch can put one out of control on a
key material’s compromise since no classical revocation on a delegation is
possible. That may force one to revoke the certificate itself. Consequently,
the delegation would lose its trust since the basis of trust represented by
the certificate loses its validity. However, revoking the certificate comes with
operational costs [Chu+18; Sta+12; ZAH16], which may not be desirable.
Therefore we suggest limiting the epoch length to a relatively low value.
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Figure 4.3: Shows the cumulative distribution of validity periods of web certificates. Note
that x is represented in seconds [Chu+18, Figure 8].

On the other hand, setting an epoch too short is also counterproductive and
may cause operational problems, as discussed in Nir et al. [Nir+18, pp. 4.2,
4.3, 5.2]. Generally, one must consider how long the recovery of the origin
server’s delegation mechanism takes since its failure is an entirely possible
occurrence. On that basis, one determines the epoch’s minimal length so that
failures may not lead to expiration and outage. Before discussing revocation
(see Section 4.1.2) and proposing an epoch length (see Section 4.1.3), we will
talk about clock skew and its implications on short-lived solutions.

Often clients lack precise clock systems, despite of NTP (Newtork Time
Protocol) being a standard for over thirty years [Ace+17; Mil+10]. So-called
clock skew can lead to different problems [Nir+18]:

1. The skewed system time is earlier than the beginning of the epoch. A
valid signed target would be seen invalid. We can also mitigate that by
checking with the previous epoch as long as the maximal time skew
threshold is fulfilled (skewed time plus maximally allowed time skew
falls into the current epoch).

2. The skewed system time is later than the end of the epoch. Again, a
valid signed target would be seen invalid. We can mitigate that by
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also checking with the next epoch, as long as the maximal time skew
threshold is fulfilled (skewed time subtracted maximally allowed time
skew falls into the current epoch). A sensible renewal policy can also
solve it (see the paragraph after the next).

3. The skewed system time is inside the old epoch, and the target is
signed with the old epoch. A target is seen valid, although it should
not. This is a security-relevant issue and is discussed in Section 4.1.3.

To summarize the measures, we consider the epoch before and after the
actual one as long as they are inside the maximal skew threshold. Validation
would, therefore, be performed worst case for all three possible epochs.
As soon as one of the three validations passes, the verification process can
move on. The two additional signature verifications we need are, however,
an expensive trade-off.

Alternatively, we propose an approach that can save the effort of at least one
verify call. However, it does not come without other extra costs. In short,
we operate two epoch cycles in parallel, which implies the transmission
of an additional signature. Assume an epoch length of a day. Now, one
cycle begins and ends at midnight, the other at noon. Both epochs yield
corresponding delegated keys, which get pushed to the CDN. The CDN will
now sign for both cycles and send both signatures to the client. Latter, will
first try to verify the signature of the primary cycle. If it fails, it will check
the secondary signature. That means, if the signature is signed by the past
epoch of the primary cycle, while the client tries to verify with the actual
epoch, verification will not immediately fail. However, it will switch to the
second cycle for further verification. It only fails when the second one fails
too. That helps to mitigate failures provoked by such epoch-discontinuities
and imprecise clocks.

4.1.2 Revocation

While a delegated private key allows the signing in the certificate owner’s
name, it does not remove any PKI mechanisms currently standardized. A
client, verifying the validity, does not only make the usual certificate checks
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but implicitly also the delegation manifested in the signature. Consequently,
we can still use revocation mechanisms such as CRL and OCSP, since
certificates are still standard X.509s.

However, to revoke a delegation, there is no such method. The standard
revocation mechanism would revoke the whole certificate. Therefore we use
the time-bound feature. It ensures that delegations can be rendered rapidly
unusable for attackers. Hence it offers an equal benefit as conventional
revocation. In other words, delegation in TBIBΣ for TLS works similarly to
Short-Term Automatically Renewed (STAR) [Nir+18], but instead of using
short-lived certificates, we use hierarchical identity-based cryptography. In
fact, both approaches can be used for delegation in TLS, but TBIBΣ offers
minimal changes to existing TLS stacks. On the other hand, both share the
same idea of superseding the traditional revocation practice. The latter needs
the CA to sign the CRL or OCSP data to inform the relying party that the
certificate is still valid. Further, issuing a certificate used to require human
intervention. Revocation checks, on the other hand, are issued frequently
and automatically. So, while certificates were a human burden, they would
have long-lasting validity, while revocation data was renewed frequently.
However, this scenario changed, since automated renewal protocols exist
(Automated Certificate Management Environment (ACME), e.g., Let’s En-
crypt), just like automated revocation data renewal existed. Now it is easy
to see that the extra revocation layer is no longer needed, and a reduction of
complexity is at hand. To go more into detail, let us imagine a relying party
caching revocation. For that party, it makes sense to only update on every
nextUpdate time window specified by the current revocation response. So, if
epochs have the same length as revocation data updates, TBIBΣ delegations
offer a similar security level. Besides, we have to mention that although
an epoch provides a way to limit the validity period further, an epoch can
never expand the validity period of the certificate itself.

A potentially subverting factor for short-lived delegations is session resump-
tion because a session may outlive the delegation’s validity. Interestingly,
TLS in version 1.3 proposes to limit session longevity by the certificate’s
validity period; however, it does not require it [Res18, p. 4.6.1]. Therefore,
Chuat et al. [Chu+20] argue that few browser implementations will limit
session lifetimes to the certificate’s validity period. That reflects the situation
for short-lived delegations, also not limiting the session’s validity. Conse-
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quently, a rogue CDN node could chain sessions using pre-shared key (PSK)
resumption without being noticed by the client. Allowing such practice
could weaken TBIBΣ’s security. We recommend limiting the session lifetime
to the epoch length to ensure that a discontinuation of the delegation by the
origin server is apprehended. Such checks involve modifications of the TLS
stack, but are necessary if one plans to use session resumption.

Alternatively, Chuat et al. [Chu+20] propose to disallow session resump-
tion. This naive approach, though, would have a harsh impact on TLS
performance. Nevertheless, to protect users from user tracking, browsers
such as Tor Browser or JonDoBrowser turn session resumption entirely off
by default [Sy+18].

Again, we can observe an analogy to short-lived certificates [Chu+20]. Nir
et al. [Nir+18] and Topalovic et al. [Top+12] had previously neglected to dis-
cuss session resumption, although it has a significant impact on approaches
based on the short-lived paradigm. In the context of proxy certificates,
Chuat et al. [Chu+20] also propose a domain-based on-off session resump-
tion policy, which they plan to achieve through a certificate extension. It
would allow a fine-grained differentiation between security-critical and
performance-dependent subdomains.

Barnes et al. [Bar+20] discuss session resumption for DeC and recommend
caching the credential for re-validation if the client also caches the certificate
chain for the same purpose. We described TLS’s session resumption in
Section 3.2.3.

4.1.3 Security Consideration on Epoch Lengths

Nir et al. [Nir+18] have a similar discussion in their IETF draft, i.e longevity
for STAR using ACME. They argue that the validity of such a short-term
certificate should equal the period of CRL or OCSP updates. With modern
hardware, powerful and reliable enough to renew certificates for tens of
thousands of relying parties, the longevity of 1-2 days should be possible.
Further taking into account clock skew, they argue that reasonable security
can be ensured by reducing the certificate longevity by twice the upper
bound for skew [Nir+18]. Twice because CA, as well as the relying party, can
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suffer clock skew. If we consider a clock skew caused by a time zone problem
(maximal 24 hours), a planed validity of four days should be reduced by
two days and, therefore last two days. We can apply these arguments to the
longevity of epochs. As discussed in Section 4.1.1, regarding clock skew, we
can take into consideration the previous and the next epoch, as long as a
threshold of 24 hours of clock skew is not passed.

Now, we want to propose an epoch length by example. Suppose a Let’s
Encrypt certificate, which is valid for three months. It gets renewed automat-
ically with the mechanisms Let’s Encrypt provides. Further, Let’s Encrypt’s
OCSP nextUpdate amounts to seven days. Therefore, we recommend a re-
newal of the TBIBΣ’s delegated key every seven days; supposing a clock
skew of maximal 24 hours was also already included in the OCSP update
period. However, since TBIBΣ resides one level beneath typical PKI, we
propose a more fine-grained epoch of one day so that the delegated key is
renewed, e.g., every midnight.

4.2 Implementation

In the following section, we will look at changes applied to the TLS library
and how the HIBS signature provider (for TBIBΣ) is written and plugged
into the TLS stack. The discussion will include library-specific aspects as
well as general indications useful for the integration into other libraries than
the IAIKs TLS stack (iSaSiLk).
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Cryptography logic
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Figure 4.4: An overview of the library layers and how they interact.

We wrote the implementation exclusively in Java because of considerations
regarding existing in-house libraries. As shown in Figure 4.4, it consists of
multiple parts. The IAIK’s ECCelerate library offers the basis for Elliptic
Curve Pairing operations used for our HIBS framework. The latter we wrap
into a Java Cryptography Architecture (JCA) compatible signature provider.
We then plug it into a modified TLS stack (iSaSiLk), also owned by IAIK,
and use all for the TBIBΣ’s integration showcase.

4.2.1 HIBS Signature Provider Library

The HIBS signature provider is written in Java and wraps the HIBS frame-
work, based on the IAIK’s ECCelerate. Since TBIBΣ is just a variation of
HIBS we can use the HIBS provider for TBIBΣ signature operations in the
TLS stack.
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We followed the JCA guidelines when creating the security provider.
Therefore it possesses several standardized classes. The HIBSPublicKey, the
HIBSPrivateKey, and the HIBSDelPrivKey classes hold key material infor-
mation and provide de- and encoding functionality. The HIBSKeyFactory

class en- and decodes X.509 and PKCS8, and exposes a key factory inter-
face according to JCA. The HIBSKeyPairGenerator class creates the master
key pair consisting of private and public key. It also exposes an interface,
according to JCA standards. The HIBSWithSHA256Signature class exposes
the signature interface offering HIBS in the JCA’s standardized form. In
addition, the HIBSProvider class registers those interfaces and further offers
information about the signature algorithms and abilities the provider library
provides.

Recalling the TBIBΣ and HIBS explanation from Sections 3.3.7 and 3.3.8,
we can see that the work-flow of the scheme differs fundamentally from
standard signature schemes operating with gen, sign and verify calls. We
note that signing and delegating in HIBS-based signatures are the same
thing. So, if we want to delegate in the HIBS library, we call sign (see List-
ing 4.1). Further, to specify which curve should be used, we set, on creation
of HIBSKeyPairParamSpec, the SecurityParameters accordingly. Besides,
for setting the identity list, we can call setParameter on the Signature

instance before calling initSign respectively initVerify (see Listing 4.1).

Listing 4.1: Java Code showing the usage of the HIBS Signature library for key generation,
delegating, signing and verifying.

1 // Key Generation
KeyPairGenerator kg = KeyPairGenerator . g e t I n s t a n c e ( ”HIBS” ) ;

3 HIBSKeyPairParamSpec params = HIBSKeyPairParamSpec
. c r e a t e ( 2 , new SecurityParams ( HIBScurve . BN P461 ) ) ;

5 kg . i n i t i a l i z e ( params ) ;
KeyPair kp = kg . generateKeyPair ( ) ;

7

// I n i t i a l i z i n g
9 Signature s i g = Signature . g e t I n s t a n c e ( ”HIBS” ) ;

11 // Delegat ing
s i g . i n i t S i g n ( kp . g e t P r i v a t e ( ) ) ;
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13 s i g . update ( delData ) ;
byte [ ] s ignature = s i g . s ign ( ) ;

15 HIBSDelPrivKey delPrivKey = new HIBSDelPrivKey ( s ignature ) ;

17 // Signing
s i g . setParameter (new HIBSAlgorithmParameterSpec ( )

19 . addDelegateIDs ( delData ) ) ;
s i g . i n i t S i g n ( delPrivKey ) ;

21 s i g . update ( signData ) ;
byte [ ] s ignature2 = s i g . s ign ( ) ;

23

// Ver i fy ing
25 s i g . setParameter (new HIBSAlgorithmParameterSpec ( )

. addDelegateIDs ( delData ) ) ;
27 s i g . i n i t V e r i f y ( kp . ge tPu bl i c ( ) ) ;

s i g . update ( signData ) ;
29 boolean i s V a l i d = s i g . v e r i f y ( s ignature2 ) ;

4.2.2 TLS Stack

To plugin our JCA conform provider into IAIK’s iSaSiLk, we had to subclass
a wrapper (class using the wrapper pattern). In more detail, we derived the
ECCelerateProvider class and overrode only necessary methods, with a
fallback to the ECCelerate functionality to keep the remaining elliptic curve
algorithms operational. However, the major changes are the additions to the
sign and verify code of the handshake. As seen in Section 4.2.1, we need
to set additional parameters. These parameters are the identities: epoch and
domain name. Both have to be provided by TLS stack, introducing some
minor changes: The epoch can be retrieved by consulting the client’s clock,
and the domain name can be obtained by checking the SNI-extension of TLS.
Further, also an option for TBIBΣ needs to be added in the handshake’s
signature algorithms extension, but that remains a minor addition.

Let us now go through the main components of the system and discuss the
impacts of our approach on them:
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Certificate In general, the X.509 structure is compatible with our TBIBΣ
approach, and we do not need any fundamental changes to the certificate.
Practically speaking, the certificate’s public key is replaced by a TBIBΣ
one, which we explained in detail in Section 3.3.8. Like any other public
key, the TBIBΣ’s one will be serialized using ASN.1 encoding and stored
as bytes in the X.509 certificate. Nevertheless, we have to make sure that
all parties involved in the communication (i.e., client, CDN, origin server,
and Certificate Authority (CA)) will understand how to decode and verify
a certificate containing this public key.

Therefore, for our demo implementation, we used the IAIK’s JCE security
library to simulate a CA and the Certificate Signing Requests (CSR) process.

Certificate Authority The PKI based system used on the web requires a
certificate issued by a trusted CA for a specific domain to be valid. For
using our scheme in this system, the certificate’s signature does not need to
be a TBIBΣ signature. On the other hand, the CA needs to allow the scheme
and consequently a TBIBΣ public key in the certificate. Consequently, it
needs to validate the incoming CSR and therefore requires the ability to
check a TBIBΣ self-signature on the CSR. The CAs acceptance of new
schemes is discussed in Section 5.3.

Origin Server The origin server requests a certificate from the CA using a
CSR and periodically renews it. Therefore the origin server self-signs its
CSR with its TBIBΣ private key. In return, it receives a certificate contain-
ing its TBIBΣ public key.

Further, it uses its secret key to derive a delegated key using the
delegate algorithm periodically from the TBIBΣ’s scheme implementa-
tion. For delegation in the demo implementation, we used a domain name
and a flattened timestamp as an identity to derive the delegated key. In
more detail, flattened timestamp means UTC date-time modulo the epoch
(which is a simplified version of what we discussed in Section 4.1.1).

Next, it pushes the delegated key to the CDN, who distributes it to its
nodes (the first push also includes the certificate). That happens already
before the key’s epoch starts. Besides, pushing the delegated key to the
CDN can be conducted over an arbitrary, end-to-end secure channel, e.g.,
using standard HTTPS. The push is a simple transfer of data and can be
pretty high-level.
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To summarize, the origin server needs the HIBS signature provider for
TBIBΣ key generation and delegation, the IAIK’s JCE for the CSR, and the
means for “out-of-band” communication with the CDN.

Content Delivery Network The CDN service receives a delegated key from
the origin server before every start of a new epoch using an end-to-end
secure push. Furthermore, the CDN service receives the origin server’s
certificate on the first push, and whenever the certificate is updated. The
CDN service then updates all its nodes with the new authentication infor-
mation.

As soon as a client is connecting to the CDN, the corresponding node
signs the handshake with the delegated key. The signature is sent within
the context of the CertificateVerify message back to the requesting
client. The latter can now verify the authenticity of the handshake and
consequently endorse the connection.

To pave the way for the described modification, we extended our CDN’s
TLS stack by the HIBS signature provider as described in the beginning
of this section. Note that we did not change the TLS stack’s fundamental
workings.

Client The client (e.g., a web browser) needs the HIBS signature library to
be added to its TLS stack. Further, similar to the additional parameters
for signing, there is also the need for additional ones for the verification
(see the first paragraph of this section). Consequently, the client has to
provide not only the certificate’s public key, signature, and handshake’s
hash but also the requested domain and the current epoch. Again, the
epoch is a flattened timestamp, as described for the origin server above.
The domain is retrieved from the SNI-extension. Is the validation using
the additional parameters successful, the TLS stack can continue with the
remaining validation process.

Standard PKI checks are performed as usual: certificate chain validation,
revocation check, hostname validation, time validation, and other possible
checks from extensions. In other words, the rest of the TLS protocol remains
the same also for the client.
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4.3 Integration into Major TLS-Libraries and
Browsers

Cryptographic libraries supporting pairing operations are widely available
nowadays. In this thesis, we used IAIK’s ECCelerate library written in
Java. Alber et al. [AMR20] used Relic [AG] for C and languages supporting
C bindings. Both libraries are well equipped and suite well for TBIBΣ
implementations. Since a C implementation exist, integrations into OpenSSL
and its forks are easily possible. The same applies to GnuTLS and major
browsers like Chrome and Edge.

Further, besides C pairing libraries, there exists also one for Rust [zkc], Java
Script [jor], Haskell [ary], and many more. One can find a full list of available
libraries on Github [art]. Thus, even for Firefox, slowly transitioning to Rust,
an integration is possible. Further, there are ongoing standardization efforts
for pairing-friendly curves [Sak+20]. It will ensure compatibility between
implementations in the future.

4.4 Other Applications

In this section, we present ideas to use or extend TBIBΣ or HIBS in applica-
tions in- or out-side of the classic TLS, respectively, CDN context.

4.4.1 TBIBΣ in TLS Restricting Connection and Content
Types

In Section 3.3.8, we described the TBIBΣ scheme, which is a time-based
variation of Hierarchical Identity-Based Signature (HIBS) to limit longevity.
Alternatively, it is also possible to use other information than time as
an identity. Therefore, derivations of delegated keys respective signatures
requiring other constraints are possible. As an example, we want to discuss
the connection and content types a TLS session is encapsulating.
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Connection types mean to limit the use of a delegation to specific applica-
tion layer protocols such as HTTPS, SPYD, or HTTP/2. ALPN1 is used to
negotiate the protocol. Further, some servers associate different certificates
with a specific protocol [Key18]. We propose that in a CDN setup, the origin
server may derive a delegated key for each specific protocol. So, instead
of different certificates, the origin server only needs one; however, it can
ensure that the CDN only operates with the protocols it specified (i.e., it
sent the CDN the specific delegated key). On the other hand, this would not
easily be possible without significant changes to the client’s TLS stack, since
it would have to retrieve the specific application layer protocol identifier for
signature verification.

Further, also restrictions on content types are possible. We could, e.g., restrict
content the CDN might be allowed to serve. Imagine, if a web service should
cache only pictures, it might push only delegated keys to the CDN, which
restrict the content allowed to deliver to JPEGs.

Other identity types are imaginable for constraining a delegated key, similar
to constrain possibilities specified in the Extended Key Usage extension of
X.509 [Coo+08, Section 4.2.1.12]. All these additional constrains would need
similar modifications, as we presented in Section 3.3.8 for time constraints.
We would need to add an identity with standardized type specifiers.

4.4.2 HIBS and TBIBΣ in Other CDN Constellations

In this section, we discuss several ideas for TBIBΣ helping with CDN
Interconnections (CDNI) [PDB14] similar to the discussions held by Sheffer
et al. [She+20a, Section 4.1] regarding STAR for delegations in CDNI.

1Since Google introduced SPYD, an alternative to HTTPS, clients used a TLS extension
called Next Protocol Negotiation (NPN) to discover the availability of the application
protocol. With RFC 7301 [Fri+14] a successor for NPN was specified: Application-Layer
Protocol Negotiation (ALPN). In contrast to NPN, ALPN includes a list of supported
protocols already in the ClientHello message. Thus the negotiation takes only a single
round. Further, the server can associate a specific certificate to a specific protocol.
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Parallel Sometimes, the origin owner has multiple agreements with CDN
providers in place. That can have various reasons: On the one hand, the
owner prefers different CDNs for different geographical regions. On the
other hand, the owner wants to keep a “backup” CDN to manage tempo-
rary traffic peaks. TBIBΣ can facilitate such practices, as the origin server
can distribute arbitrarily many short-lived delegated keys for specific
subdomains to different parties.

Chained Larger CDNs can have regional contractors for certain regions.
Those regional subcontractor-CDNs usually do not have a contractual
relationship with the origin owner. Latter might not even be aware of them.
Thus, it makes sense for the primary CDN to restrict namespaces further
or introduce additional restrictions when delegating to a subcontractor.
TBIBΣ can support arbitrary many delegation levels with the possibility
of introducing restrictions on each level via identities.

4.4.3 HIBS and TBIBΣ in Other Applications

The potential of Hierarchical Identity-Based Signature (HIBS) is much big-
ger than its application presented for TLS. Numerous other areas require
verification of multiple delegations or hierarchical signature structures. Here
we shortly discuss potential applications for future work:

Smart Contracts Smart contracts [Rös+98; Sza97] are immutable contracts
that automatically execute on a distributed ledger. Imagine an arbitrary
scenario where a smart contract needs to redirect money. It receives input
from one wallet and distributes it according to its contract logic to other
private wallets or smart contracts. Transferring the money first to the smart
contracts wallet before processing incurs extra effort and consequently
extra fees. With TBIBΣ one could delegate the smart contract privileges to
directly gain short-lived access to the source wallet and therefore extend
the contracts capabilities, while lowering execution costs.

IoT alternative to D2TLS We shall repeat the scenario of D2TLS [Cho+19]
mentioned in Section 2.5.1: A security agent sets up a session for a low-
power Internet of Things (IoT) device, so that it may communicate securely
on demand evading relatively high computational efforts. While the D2TLS
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approach lets the device sign every handshake’s hash for the security agent,
we propose to push a time-bound identity-constraint delegated TBIBΣ key
in an “out-of-bound” manner to the agent. The latter can then use it once
or multiple times to set up a connection to a cloud domain specified by an
identity. The remaining steps take place the same as in D2TLS.

In other words, instead of splitting the TLS connection, we would only
exchange the signature algorithm and perform an out-of-bound com-
munication to push a delegated key. Besides, delegating in TBIBΣ has
comparable computational costs as signing in other elliptic curve based
algorithms (EdDSA, ECDSA). However, when establishing connection, no
additional latency is introduced since splitting is avoided.

Further, we could introduce an efficient revocation mechanism by letting
the IoT device send a nonce to the cloud server in plain. This nonce is
then used to derive the delegated key. The cloud server knowledgable of
the nonce identity can use it to verify the security agent’s signature. On
needing to revoke the delegated key, the device pushes a new nonce to the
cloud. Nevertheless, the epoch should remain a second revocation factor to
limit damage when a compromise is not detected or an attacker prevents
the smart device from accessing the network to issue the revocation.

Delegation in STIR Delegations in STIR [PST14] ecosystem were already
proposed by Sheffer et al. [She+20a, p. 4.2] using STAR certificates. How-
ever, also TBIBΣ is suitable to delegate telephone numbers from one
service provider to another, supporting restrictions of TNAuthList as an
additional identity on deriving the delegated key. Similar to Section 4.4.2
(subcontracting service providers seen as CDNs), CDNI practices are also
supported.
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In this chapter, we will evaluate the implementation’s performance of the
scheme and the TLS integration. Further, we discuss the resulting impli-
cations. Next, we evaluate the benefits and downsides of the approach
and compare it to other proven or promising solutions (see Section 5.3).
Finally, we will pursue a characterization of our approach into the 19-criteria-
framework of Chuat et al. [Chu+20] (see Section 5.3.2).

5.1 Measurements

In this first section, we will take a look at the performance of the Time-Bound
Identity-Based Signature (TBIBΣ) scheme’s implemenation. We discuss
performance differences compared to other typical signature algorithms and
give a theoretical explaination for performance and key sizes. Subsequently,
we will evaluate the performance of the TBIBΣ integrated into a TLS stack
and discuss its implications for operational use.

5.1.1 TBIBΣ Setup

As mentioned in Section 4.2.2 our implementation of the TBIBΣ scheme is
based on cryptographic primitive from the IAIK’s JAVA Security libraries.
Further, the implemented scheme is then integrated into the IAIK’s TLS
library to evaluate our claims concerning modest modifications to TLS
stacks. Besides, Alber et al. [AMR20] implemented a second version of the
TBIBΣ scheme based on Relic [AG] and written in C. We will use those
result for comparing to our Java implementation and discuss implications
for performance sensitive applications.
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Generally, our TBIBΣ implementation offers Barreto-Naehring curves
and we target a security of 128 bits. Using recent security estimations
by Barbulescu et al. [BD19] and Menezes et al. [MSS16], we chose curves
with 256 and 461 bits. The former certainly only offering 100 bits, not 128

bits of security, should also suffice for key material renewed every three
months [Aas+19].

Alber et al. [AMR20], on the other hand, chose a pairing-friendly Barreto-
Lynn-Scott curve [BLS02] with 381 bits (BLS-381). It also corresponds to 128

bits of security.

5.1.2 TBIBΣ Evaluation

Algorithm Sign Verify pk σ

EdDSA EG 2 EG G 2 Zp
ECDSA EG 2 EG G 2 Zp
TBIBΣ 2 EG1 , EG2 3 P G2 G1, G2

Table 5.1: Operations of sign and verify, sizes of public keys (pk) and signatures (σ) for
EdDSA, ECDSA and TBIBΣ. EG denotes an exponentiation in group G and P a
pairing operation. Further, G symbolizes the size of a group element, while Zp
represents an integer (cf. Scott [Sco20]).

We present an estimation of performance and payload sizes in Table 5.1. We
base these on the most expensive element performed, respectively contained.
We found that TBIBΣ needs two exponentiations in G1 and one in G2 for
signing, which is relatively cheap compared to verify needing three pairing
operations. The latter, we found the most expensive. We can observe that
the competing signature algorithms have much cheaper verify and sign
calculations. Even a TBIBΣ sign is more expensive than a verify of the
competition. On the other hand, these latter do not offer identity-based
features.

Regarding the size of the payload, we estimated for the public key an
element in G2 and for the signature an element of each group, G1 and G2.
Compared to the competitors, we can see that the public key is of a similar
size, and only the signature is predicted to be much bigger for TBIBΣ.
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Algorithm Sign Verify

ECDSA (secp256r1) 0.80 1.63

Ed25519 0.11 1.13

TBIBΣ (BN-461) 15.86 79.29

TBIBΣ (BN-512) 19.72 96.67

TBIBΣ (BN-638) 33.53 157.80

Table 5.2: Runtime benchmarks of the Java implementation of TBIBΣ (see Section 3.3.8)
compared with the optimized standard signatures from the ECCelerate library
in milliseconds (ms).

In Table 5.2 and Figure 5.1, we compare the performance of our TBIBΣ
implementation in Java to its competitor signing algorithms ECDSA and
EdDSA, also implemented in the IAIK’s ECCelerate. We can observe a
significant difference between our TBIBΣ prototype implementation and the
well-optimized competitors. BN-461 is 20 times slower than ECDSA when
singing and nearly 50 times slower when verifying.

Figure 5.1: Plot of the Java runtime benchmarks of TBIBΣ from Section 3.3.8 compared with
the optimized standard signatures from the ECCelerate library in milliseconds
per operation (ms/op). Note the logarithmic scale.
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In Table 5.3 by Alber et al. [AMR20], we can see similar differences. They
also note that ECDSA and EdDSA implementations (OpenSSL) are highly
optimized for the specific architecture. Alber et al. [AMR20] attest that
disabling optimizations brings the performance of ECDSA verification close
to the signing of TBIBΣ. We expected that since we saw the same number
of group operations for those prior in this chapter.

Both benchmarks were run on a Thinkpad T450s with an Intel Core i7-
5600U CPU. While OpenSSL results were obtained by running the command
openssl speed on Linux, numbers of TBIBΣ and Java implementations were
gathered by averaging over 1000 runs.

Algorithm Sign Verify

EdDSA (Ed25519) 0.05 0.14

ECDSA (sepc256r1) 0.02 0.08

TBIBΣ (BLS-381) 0.58 1.94

Table 5.3: Runtime benchmarks in ms of ECDSA, EdDSA, and TBIBΣ (see Section 3.3.8).
The numbers for Ed25519 and ECDSA are from OpenSSL 1.1.1 with enabled
optimizations, while TBIBΣ is from the Relic implementation of Alber et al.
[AMR20]

5.2 Scheme Performance

5.2.1 TLS Setup

As mentioned in Section 4.2.2, we use the IAIK’s iSaSiLk TLS library
to integrate our TBIBΣ implementation. Subsequently, we implemented
a client-server demo. We use this setup, together with Linux’s Queueing

Disciplines, to simulate a client-CDN context. We performed the TLS
benchmarks using OpenJDK’s Java Microbenchmark Harness (JMH) library
for ten iterations each of 20 seconds, including a warmup of five iterations
each of ten seconds. Besides, we used the kernel extension haveged as an
unpredictable random generator to prevent drainage of the secure random-
ness pool, slowing down the benchmark. It harvests the indirect effects of
hardware events [die].
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Further, we used the standard Linux command ping to find a round
trip time representing a standard home with a wireless router and glass
fiber connection connecting to google.com. It resulted in a round trip time
of circa 20ms. To simulate such a typical delay, we introduced a network
latency of 10ms, including a normal-distributed variance of one ms. Again,
the benchmarks were all performed on an office notebook (Thinkpad T450s
with i7-5600U), and thus absolute numbers might not be comparable with
server performances.

Signature Full Handshakes Server time
Algorithm ops/s s/ops ms

RSA (2048 bit) 8.942 0.112 7.314

ECDSA (secp256r1) 9.254 0.108 4.106

EdDSA (ed25519) 9.198 0.109 4.013

TBIBΣ (BN-256) 7.703 0.130 11.324

TBIBΣ (BN-461) 4.598 0.217 26.504

TBIBΣ (BN-638) 3.275 0.305 51.338

Table 5.4: Benchmarks of the TLS 1.3’s handshake for ECDSA, EdDSA, and TBIBΣ (one op
is a full handshake).

5.2.2 TLS Evaluation

Observing Table 5.4 and Figure 5.2, showing results of the TLS handshake
benchmarks for ECDSA, EdDSA, and TBIBΣ, we can see that the crypto-
graphic performance plays a much smaller role, although TLS 1.3 reduced
the round trips to one. The 20ms latency introduced by that single round
trip lead to a slowdown for BN-461 compared to ECDSA around factor 2. On
the other hand, BN-256, with 100 bits of security, has only a trade-off of 20%,
which we find sound compared to the benefits the solution brings. Further,
we assumed reasonable, continental latency. For latencies higher than 10ms,
the performance gap would close even further. Besides, an assembler opti-
mization, like OpenSSL offers, and some precomputation (cf. Section 3.3.10)
may further curb performance drawbacks. As the Relic implementation of
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Alber et al. [AMR20] showed, verification pace can be far beneath typical
network latencies. Also, further handshakes can use session resumption.
Therefore, signature verification can be avoided by session resumption until
a new epoch starts.

Figure 5.2: Plot of TLS 1.3 benchmarks in iSaSiLk. Shows the duration of a handshake for
ECDSA, EdDSA, and TBIBΣ (one op is a full handshake).

In terms of CPU server time (also see Table 5.4), we can see that TBIBΣ is
more than double as expensive as the standard elliptic curve algorithms,
whereas the server’s CPU time of RSA (2048 bit) comes near BN-256. An-
other observation is how short computation time is, compared to a full
handshake operation (even though the Java implementation is far slower
than the Relic one).

In Table 5.1, we saw that a TBIBΣ public key approximates to an element’s
size in G2, which equals 64, 96, or 116 bytes for BN-256, BLS-381, or BN-461

(without point compression: 128, 191, 230 bytes). On the other hand, an
EdDSA or ECDSA public key only uses 32 bytes, respectively 64 bytes
without point compression. Likewise, signatures only take 64 bytes with
the latter signature algorithms (two scalars in Zp), while TBIBΣ signatures
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even take one element of each group, G1 and G2. That leads to 96, 143,
or 173 bytes for BN-256, BLS-381, or BN-461 (without point compression
even 192 bytes, 286 bytes, or 345 bytes). Comparing with the number of
bytes recorded during a transaction mentioned in Table 5.5, we can see clear
effects of the huge sized public key and signature of TBIBΣ: the records sent
by the server are much bigger for TBIBΣ than for ECDSA. Not even RSA,
suffering from big key sizes, has similar record sizes. The difference is only
noticeably on the bytes sent by the server since the Certificate message
contains the public key and the CertificateVerify message the signature.

In contrast to KeylessSSL, we do not need to establish a connection
from the CDN to the key server, which introduces additional latency. An
additional round trip needs to be made. While between client and CDN, the
network-wise distance typically is rather low, it is not between CDN and
key (origin) server. Consequently, it results in a higher latency for the latter.
Our approach avoids that by pushing the delegated key a priori to the CDN
over an “out-of-band” communication channel.

Compared to Delegated Credentials, our approach does not have any
performance-wise advantage, but also no significant drawback. We showed
that the computational delay is neglectable compared to the network’s one.
Besides, DeC needs to validate the blob’s signature, which also costs an
additional signature check.

Sent by Client Server

TLS 1.3 with bytes records bytes records

RSA (2048 bit) 643 3 1773 5

ECDSA (secp256r1) 643 3 1385 5

EdDSA (ed25519) 643 3 1330 5

TBIBΣ (BN-256) 645 3 2769 5

TBIBΣ (BN-461) 645 3 3915 5

Table 5.5: Bytes and record number sent by the endpoints during a TLS 1.3’s handshake
for RSA, ECDSA, EdDSA, and TBIBΣ.
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5.3 Qualitative Evaluation

In this section, we will discuss the qualitative properties of our TBIBΣ
solution for TLS. In contrast to the previous section, we will focus less on
numbers and measurements, but more on the advantages and disadvantages
of our approach when in use.

5.3.1 Discussion

TBIBΣ A striking advantage of our Time-Bound Identity-Based Signature
scheme is already prominently mentioned in the signature scheme’s name,
time-bound. It refers to the delegated key’s restriction to a specific time-
span, we described as an epoch in 3.3.8. To recognize the benefit, we
have to imagine a key compromise regarding the delegated private key.
Such a compromise would in TBIBΣ only affect security (authenticity, non-
repudiation, and integrity) in a specific epoch. For all subsequent epochs,
new and unrelated delegated keys are securely distributed, and thus un-
forgeability guarantees are restored. We can see that proper authenticity,
non-repudiation, and integrity are made possible without revoking the
origin server’s original key material.

Besides using identities to restrict the delegated key to a specific time-
span, the origin server can also restrict it by a specific subdomain. That
enables the origin server to make fine-grained restrictions on what content
is outsourced to the CDN. E.g., the subdomain images.iaik.at only can
be for images used by a website. Thus, the origin server delegates only
that address to the CDN to let only the image content being served. That
can help to reduce the attack surface in the event of a CDN going rogue.

To add on top, Alber et al. [AMR20] showed that we could equip TBIBΣ
with forward security features, i.e., we can make the master private key
held by the origin server forward secure. Consequently, even on a master
secret compromise, we can offer mitigation measures. The master secret
itself gets updated for each epoch. In fact, if the key for the next epoch is
compromised, that has no negative consequences for delegation, respec-
tively, signature validity in the current epoch. For more details about the
forward security feature, see Alber et al. [AMR20].
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TLS integration A beneficial aspect of the TBIBΣ’s TLS integration is that
it works with very few modifications to the TLS stack. The short-lived
delegation structure TBIBΣ features exclusively takes place in the cryp-
tographic part of the signature scheme. Therefore, we need to plug the
TBIBΣ scheme into the TLS stack, like any other cryptography library.
Only calls like sign and verify require additional arguments such as all
delegated identities. However, that is nothing exceptional since several sig-
nature algorithms need special parameters, too (e.g., RSASSA-PSS’s mask
generation algorithm [IAI]). Further, consolidated mechanisms like Public
Key Infrastructure (PKI) and consequently, revocation are not touched in
any manner by our TBIBΣ integration. They still coexist and retain their
original function. While solutions like KeylessSSL open an additional chan-
nel to the keyserver and, consequently, constitute a multi-party connection,
our approach does not need any multi-party security assumptions. In
fact, our scheme still works within the boundaries of the same two-party
connection as regular TLS does. Thus, proofs of (S)ACCE in TLS [Jag+12]
are still valid and do not need any further inspection.

For TBIBΣ to find broad adoption on the internet, we would need the
CA/Browser Forum’s approval of our signature scheme. Only then, major
browsers and certificate authorities would consider an implementation
for their product. Browsers like Chrome, Safari, and Firefox would add
the scheme to the supported algorithms for their TLS stack, and Certifi-
cate Authorities would accept TBIBΣ’s public key-based certificates for
signing. However, getting new schemes approved by the forum is very
hard since they are known for being very conservative. That might be
one of the significant downsides of our approach. While for TBIBΣ and
DeC standard PKI mechanisms remain unchanged, both require Certificate
Authorities involvement. While TBIBΣ needs the CA to accept its algo-
rithm, DeC needs the CA to issue end-entity certificates with its special
DelegationUsage extension.

A further aspect of TBIBΣ in TLS is the anonymity of the CDN. The
client can verify the signature and the delegation but can not identify the
Content Delivery Network (CDN) the delegation was warranted. However,
that can be a desired feature not only in other applications (discussed in
Section 4.4.3), but also for TLS. We can evade this property of TBIBΣ by in-
cluding the CDN’s identity in the delegation process. Similar to restricting
content types, like discussed in 4.4.1, the origin server also derives by the
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identifier to whom it delegates. The identifier is then added to the identity
list, including epoch and domain. The client then verifies the CDN’s sup-
posed identity using the signature to be sure about the correctness. Like
DeC, anonymity is given, but revealing the identity (i.e., mentioning it in
the blob) is also possible [Bar+20].

Besides, compared to proxy certificates, TBIBΣ (and other solutions
such as DeC) does not exercise any additional pressure on Certificate
Transparency logs (see Section 3.2.2). Delegations do not produce extra cer-
tificates that would be logged for Certificate Transparency needs. Also the
Short-Term Automatically Renewed (STAR) (see Section 2.2.5) delegation
solution puts pressure on the logs. However, that is because of its short-
lived approach, which applies to all Automated Certificate Management
Environment (ACME) systems.

Our approach offers another advantage: the CDN can directly perform
key management actions if necessary. Cangialosi et al. [Can+16] found
that third parties’ key management is more thorough. As CDN providers
might detect key material compromises early, with TBIBΣ they can quickly
revoke a certificate by signing the revocation request with their delegated
key. The CA can verify the signature with the origin’s private key.

“If you did not originally issue the certificate, but you have a
copy of the corresponding private key, you can revoke by using
that private key to sign the revocation request [Enc20].”

Last but not least, TBIBΣ and HIBS, in general, can verify a steep hierar-
chy of delegations without a linear increase of effort. In most standardized
delegation solutions such as certificate chains in the PKI of the internet,
every delegation-level is represented by a certificate, respectively, one sig-
nature verification. For a chain of h levels, this results in h verifications.
HIBS, on the other hand, would execute delegate operation for each level
and verify once at the cost of an additional group operation per level
(base cost is three pairings, see 5.1). So, when it comes to scenarios with
steep delegation hierarchies (e.g., CDNI, see Section 4.4.2) –steeper than a
standard PKI certificate chain–, HIBS schemes are advantageous.
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5.3.2 Systematic Characterization

In the following section, we will characterize our approach according to
the 19-criteria framework of Chuat et al. [Chu+20]. Please see Table 5.6 for
a summary of the benefits supported by different competing approaches.
Further, we extend the table by an analysis of our solution presented in this
thesis. Note that we reduced the table’s criteria to 16 since (damage-free)
CA revocation is not relevant for delegation approaches, and all of them
support delegation by definition. For a detailed description of each benefit,
see Chuat et al. [Chu+20].

Supports leaf revocation Delegated Credentials and TBIBΣ technically do
not offer the benefit of revoking a credential or certificate at the chain
of trust’s end. However, thanks to their short-lived characteristic domain
owners, they allow invalidating a delegation on key compromise or similar
eventualities. Chuat et al. [Chu+20] give partial points to proxy certificates
since they can be short-lived too.

Supports autonomous revocation With both, Delegated Credentials and
TBIBΣ it is possible to perform revocation autonomously (i.e., independent
from a CA, browser vendor, or log). With both, the domain owner can
decide independently to stop the short-lived delegation by ending the
distribution of credentials, respectively delegated keys. Again, partial
points are given for proxy certificates, since they can be short-lived. This
benefit corresponds partially to requirements R4 and R7 (cf. Section 1.2).

Avoids Full Delegation The benefit is basic for all approaches mentioned
in related work since it distinguishes it from bad practice, Full Delegation
approaches. This corresponds to requirement R1 (cf. Section 1.2).

Support domain-based policies While name constraint and proxy certifi-
cates can specify policies per domain in the certificate, Delegated Creden-
tials and TBIBΣ only get partial points because their semantics are limited
(only a time component is supported in its standard versions). The benefit
corresponds to requirement R6 (cf. Section 1.2).

No trust-on-first-use required None of the approaches requires trust-on-
first-use.

Preserves user privacy All of the delegation approaches do not give any
domain-related data to a third party.
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Priv. key shar. [Chu+20]
Cruise-liner c. [Chu+20]
Name const. c. [Lia+14]
DANE-based [Lia+14]
SSL splitting [LK05]
KeylessSSL [SN14]
STAR Del. [She+20a]
Proxy cert. [Chu+19]
DeC [Bar+20]
TBIBΣ

Table 5.6: The table presents 16 of the 19 criteria by Chuat et al. [Chu+20] relevant for delegation schemes. While the
assessment of the approaches discussed in Chapter 2 is adopted from Chuat et al. [Chu+20], we added a
characterization of TBIBΣ.

offers the benefit; partially offers benefit; does not offer the benefit.
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No increased page-load delay Chuat et al. [Chu+20] give full points for
this benefit if none or small processing delays arise. Approaches with
additional network latencies get no points. SSL splitting, KeylessSSL, and
the DANE-based approach all need an additional round-trip leading to
zero points.

Low burden on CAs Only one of the approaches imposes additional opera-
tional effort for the Certificate Authority. A CA hardly adopts approaches
limiting financial benefits. Only STAR delegations get no points because
the CA has to support the ACME protocol and make sure the CDN is
trustworthy.

Reasonable logging overhead The approaches putting heavy pressure on
certificate logs are name constraint certificates and STAR delegations. For
name constraint certificates, every domain owner may issue an arbitrary
number of certificates. STAR delegations produce a growing number of
short-lived certificates for each delegation. Neither Delegated Credentials
nor TBIBΣ is in doubt since they delegate by credential, respectively
delegated key.

Non-proprietary All of the approaches are open and neither restricted nor
controlled by a third party.

No special hardware is required Although pairing operations (TBIBΣ) may
benefit from specialized hardware, it is unnecessary. None of the ap-
proaches necessarily needs specialized hardware.

No extra CA involvement Chuat et al. [Chu+20] give partial points to Del-
egated Credentials since the CA needs to include an extension in the
end-entity certificate. We give TBIBΣ partial points too since the CA needs
to accept the TBIBΣ signature scheme. No points are given to name con-
straint, Cruise-liner and STAR delegation certificates, as a significant part
of the delegation process is managed by the CA.

No browser-vendor involvement None of the approaches needs active
browser-vendor participation.

Server compatibility We give partial points to TBIBΣ since the signature
scheme must be added to supported schemes of the TLS stack (mostly
a matter of plugging in the signature library). Other approaches like
Delegated Credentials and KeylessSSL need changes in the TLS stack logic
to be supported. STAR delegations get no points since it requires the origin
server to approve and pass CSR to the ACME CA while authenticating as
the domain owner.
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Browser compatibility Again, we give partial points to TBIBΣ since the
signature scheme must be added to the TLS stack to ensure support for
the approach.

No out-of-band communication None of the approaches uses a separate
channel or communicates with a third party server. Neither Delegated
Credentials nor TBIBΣ gets the point deduction for pushing the credential,
respectively, the delegated key to the CDN, since this channel needs to be
established for the content anyways.
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Finally, we want to conclude with a summary of the thesis and give an
outlook on future work.

6.1 Summary

Full Delegation is an open issue for ecosystems not conceptualized for
supporting a delegation system such as TLS. Nevertheless, we showed
that proper authentication of delegated parties in TLS is possible using
an identity-based signing algorithm. By only exchanging the signature
algorithm, we showed how we solve this problem without introducing
fundamental changes to TLS.

From the requirements we set at the beginning of this paper (cf. Sec-
tion 1.2, we could fulfill the most: The master secret is kept secure, and a
delegation is unforgeable and non-repudiable. On the other hand, the origin
server is only aware of the delegations given out for a particular epoch, but
not of CDN’s actions or further sharing of the delegated key. Also, offering
transparency on the CDN’s identity needs extra modifications. Nonetheless,
the issuance and revocation can be conducted independently and efficiently,
and the origin server has control over the validity period. Also, privileges
delegated to the Content Delivery Network (CDN) can be fine-grained by
introducing additional identities.

Further, our approach offers additional advantages like limited key man-
agement, little pressure on Certificate Transparency logs, and optionally
forward-security. However, Delegated Credentials (DeC) is backed by several
major internet companies, which makes its push through easier.
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6.2 Future Work

The next step would be to put the approach into practice. After receiving
the support of the CA/Browser Forum, clients and CAs would need to
add the Time-Bound Identity-Based Signature (TBIBΣ) algorithm to their
libraries and ensure the verify algorithm has access to the correct domain
name (SNI) and epoch. One would need to write standards for the origin
server and CDN specifications. The origin server would benefit from an
automated management environment for delegating keys similar to Auto-
mated Certificate Management Environment (ACME). Also, the delegated
key distribution and the epoch length would need standardization.

However, Full Delegation not only exists in the context of TLS. In Sec-
tion 4.4, we explained multiple other ideas that might be interesting to
explore in the future. Further, a combined solution of DeC and TBIBΣ could
be interesting for CDN Interconnections (CDNI) (see Section 4.4.2) since
DeC offers the possibility of custom signature schemes. Therefore, we hope
to see TBIBΣ in productive use in various applications in the future.
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“On the Security of TLS-DHE in the Standard Model.” In:
CRYPTO. Vol. 7417. LNCS. Springer, 2012, pp. 273–293 (cit.
on pp. 12, 82).

[Joh+01] Kirk L. Johnson, John F. Carr, Mark S. Day, and M. Frans
Kaashoek. “The measured performance of content distribution
networks.” In: Comput. Commun. 24.2 (2001), pp. 202–206 (cit. on
p. 1).

[Kat10] Jonathan Katz. Digital Signatures. Springer, 2010 (cit. on pp. 37,
38, 44, 45).

[Ken93] Steve Kent. “Privacy Enhancement for Internet Electronic Mail:
Part II: Certificate-Based Key Management.” In: RFC 1422 (1993),
pp. 1–32 (cit. on p. 23).

[KN09] Eike Kiltz and Gregory Neven. “Identity-Based Signatures.” In:
Identity-Based Cryptography. Vol. 2. Cryptology and Information
Security Series. IOS Press, 2009, pp. 31–44 (cit. on p. 46).

[KPW97] Seungjoo Kim, Sangjoon Park, and Dongho Won. “Proxy sig-
natures, Revisited.” In: ICICS. Vol. 1334. LNCS. Springer, 1997,
pp. 223–232 (cit. on p. 17).

95



7 Bibliography

[KWZ01] Balachander Krishnamurthy, Craig E. Wills, and Yin Zhang.
“On the use and performance of content distribution networks.”
In: Internet Measurement Workshop. ACM, 2001, pp. 169–182 (cit.
on pp. 1, 34, 35).

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. “Certificate
Transparency.” In: RFC 6962 (2013), pp. 1–27 (cit. on p. 26).

[LK05] Chris Lesniewski-Laas and M. Frans Kaashoek. “SSL splitting:
Securely serving data from untrusted caches.” In: Comput. Net-
works 48.5 (2005), pp. 763–779 (cit. on pp. 10, 85).

[Lia+14] Jinjin Liang, Jian Jiang, Hai-Xin Duan, Kang Li, Tao Wan, and
Jianping Wu. “When HTTPS Meets CDN: A Case of Authen-
tication in Delegated Service.” In: IEEE S&P. IEEE Computer
Society, 2014, pp. 67–82 (cit. on pp. 2, 7–9, 31, 32, 85).

[MRa+11] David M’Raı̈hi, Salah Machani, Mingliang Pei, and Johan Rydell.
“TOTP: Time-Based One-Time Password Algorithm.” In: RFC
6238 (2011), pp. 1–16 (cit. on p. 59).

[MUO96] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. “Proxy
Signatures for Delegating Signing Operation.” In: ACM CCS.
ACM, 1996, pp. 48–57 (cit. on pp. 2, 17).

[MY91] Ueli M. Maurer and Yacov Yacobi. “Non-interactive Public-Key
Cryptography.” In: EUROCRYPT. Vol. 547. LNCS. Springer,
1991, pp. 498–507 (cit. on p. 40).

[McG08] David A. McGrew. “An Interface and Algorithms for Authenti-
cated Encryption.” In: RFC 5116 (2008), pp. 1–22 (cit. on p. 28).

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. “Chal-
lenges with Assessing the Impact of NFS Advances on the Se-
curity of Pairing-Based Cryptography.” In: Mycrypt. Vol. 10311.
LNCS. Springer, 2016, pp. 83–108 (cit. on p. 75).

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto.
“Reducing Elliptic Curve Logarithms to Logarithms in a Finite
Field.” In: STOC. ACM, 1991, pp. 80–89 (cit. on p. 40).

[Mil+86] Victor Miller et al. “Short programs for functions on curves.”
In: Unpublished manuscript 97.101-102 (1986), p. 44 (cit. on p. 39).

96



7 Bibliography

[Mil+10] David L. Mills, Jim Martin, Jack L. Burbank, and William T.
Kasch. “Network Time Protocol Version 4: Protocol and Algo-
rithms Specification.” In: RFC 5905 (2010), pp. 1–110 (cit. on
p. 60).

[Nay+15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis,
Jeremy Blackburn, Diego R. López, Konstantina Papagian-
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fini.” In: CR Acad. Sci. Paris 210.592-594 (1940), p. 149 (cit. on
p. 39).

[Wel+04] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura
Pearlman, Steven Tuecke, Jarek Gawor, Sam Meder, and Frank
Siebenlist. “X. 509 proxy certificates for dynamic delegation.”
In: 3rd annual PKI R&D workshop. Vol. 14. 2004 (cit. on p. 14).

[Woo+17] Paul Wood, Heng Zhang, Muhammad-Bilal Siddiqui, and
Saurabh Bagchi. “Dependability in Edge Computing.” In: CoRR
abs/1710.11222 (2017) (cit. on p. 36).

[ZAH16] Liang Zhu, Johanna Amann, and John S. Heidemann. “Mea-
suring the Latency and Pervasiveness of TLS Certificate Revo-
cation.” In: PAM. Vol. 9631. LNCS. Springer, 2016, pp. 16–29

(cit. on p. 59).

100



7 Bibliography

Online Resources

[AMR] Lukas Alber, Stefan More, and Sebastian Ramacher. TBIBS. url:
https://github.com/IAIK/TBIBS (visited on 09/11/2020) (cit.
on p. 6).

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for
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