


’...dass ich erkenne, was die Welt
im Innersten zusammenhält...’
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Abstract

This thesis reviews different approaches to the extended Hubbard Hamil-
tonian with mean-field and finite-size cluster approximations. The phase
diagrams including spin-density and charge-density waves in the one-
dimensional, square and honeycomb lattices are investigated. The inclusion
of the next-nearest neighbour hopping results in a change of the Fermi
surface. As a consequence, the systems do not exhibit perfect nesting any
more for the one-dimensional and square lattice. The honeycomb lattice
has no perfect nesting in two-dimensions. We highlight the importance of
perfect nesting for a finite critical interaction value. The one-dimensional
lattice gets further analysed with a combination of mean-field approxima-
tion and a cluster extension, which is treated numerically by means of exact
diagonalization.
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1 Introduction

The Hubbard model [1] is essential in the theoretical condensed matter
physics. Especially the understanding of strongly correlated electrons is
an important goal, as discussed in [2]. A good example of this correlation
effects is magnetism, where electrons reduce the energy cost of the Coulomb
interaction by ordering.

Initially the model was applied to the behaviour of transition-metal monox-
ides in the early 1960’s [3], but it has a much broader application range. It
gives insight into insulating, magnetic and novel superconducting effects in
a solid.

The objective of this work is to show different quantum phase transitions
through different routes. The extended Hubbard Hamiltonian for the one-
dimensional, square and honeycomb lattice is discussed with and without
next-nearest neighbour hopping. The inclusion of the next-nearest neighbour
hopping results in a change of the Fermi surface. This change destroys the
so called perfect nesting property of the systems, which has an important
effect on the critical interaction values of the phase transitions.

The Hubbard Hamiltonian has been studied in the whole area of analytic
techniques common in the condensed matter physics community. In this
work the static mean-field approach is used. In the last chapter it is extended
to include short-range fluctuations in finite size clusters, which are treated
by the numerical method of exact diagonalization.
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2 Models and Methods

The first part of this chapter is based on literature [4]. The non-relativistic
time-independent full Schrödinger equation can be written as

Ĥ |φ〉 = ε |φ〉 (2.1)

where Ĥ is the Hamiltonian operator that describes a system of nuclei and
electrons. |φ〉 are the eigenstates and ε are the eigenenergies of the system.
For N electrons and M nuclei the Hamiltonian is

Ĥ = −
N

∑
i=1

1
2
∇2

i −
M

∑
A=1

1
2MA

∇2
A −

N

∑
i=1

M

∑
A=1

ZA

riA

+
N

∑
i=1

N

∑
j>i

1
rij

+
M

∑
A=1

M

∑
B>A

ZAZB

RAB
.

(2.2)

ZA is the atomic number of the nucleus A and MA is the ratio of the mass of
the nucleus A to the mass of an electron. The kinetic energy of the electrons
is described by the first term in equation 2.2 and the second term describes
the kinetic energy of the nuclei. The coulomb interaction between electrons
and nuclei is represented in the third term. The fourth term is the repulsion
between electrons and the fifth term is the repulsion between nuclei.

The Schrödinger equation 2.1 is mostly solved with the Born-Oppenheimer
approximation. This approximation considers that nuclei are much heavier
than electrons. The nuclei move more slowly than the electrons. This leads
to the approximation that the electrons in a molecule or solid move in
the field of fixed nuclei. The kinetic energy of the nuclei can be neglected
without movement and the second term of equation 2.2 vanishes. The
repulsion between nuclei, last term in equation 2.2, is a constant in the Born-
Oppenheimer approximation. The addition of any constant to an operator
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2 Models and Methods

only adds to its eigenvalues and has no effect on its eigenfunctions. The
remaining three terms of equation 2.2 are called the electronic Hamiltonian.
It describes the motion of N electrons in the field of M point charges and
can be written as

Ĥelec = −
N

∑
i=1

1
2
∇2

i −
N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
rij

, (2.3)

where the first term is the electron kinetic energy, the second term is the
lattice potential and the third term is the interaction of the electrons. The
electron-electron interaction in the electronic Hamiltonian leaves a complex
many-body problem and needs further adaptation. One available way to
solve the equation is the free-electron approximation. It simply neglects
the interaction part, which is sometimes reasonable for good metals, but
fails for insulators and semiconductors. The Hubbard model is one way to
further simplify the interaction term and find approximations to make it
tractable.

2.1 Second Quantization

The Hamiltonian described in equation 2.3 depends only on the spatial
coordinates of the electrons. For the complete description of an electron also
the spin of the electron has to be taken into account. In the context of the
nonrelativistic theory there are two spin eigenfunctions, spin up and spin
down. The Hamiltonian does not reference to the spin and simply making
the wavefunction dependent on the spin is not enough. The requirement
for the electronic wavefunction is that the function must be antisymmetric
with respect to the interchange of any two electrons’ coordinates. The coor-
dinate is both, space and spin. This requirement is called the antisymmetry
principle and is a general statement of the Pauli exclusion principle. The
exact wavefunction has to satisfy the Schrödinger equation and must be
antisymmetric in the spatial and the spin coordinate.

3



2 Models and Methods

The antisymmetry is easily established by the usage of Slater determinants.
For an N-electron system the generalised determinant is

∣∣∣φN
〉
=

1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣φ(1)
1

〉 ∣∣∣φ(2)
1

〉
. . .

∣∣∣φ(N)
1

〉∣∣∣φ(1)
2

〉 ∣∣∣φ(2)
2

〉
. . .

∣∣∣φ(N)
2

〉
...

...
...∣∣∣φ(1)

N

〉 ∣∣∣φ(2)
N

〉
. . .

∣∣∣φ(N)
N

〉

∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)

with the normalization factor 1√
N!

. The Slater determinant has N fermions
occupying N states without specifying which electron is in which state.
Interchanging the coordinates of two fermions corresponds to interchanging
two rows of the Slater determinant. This changes the sign of the determinant.
Therefore the requirement of the antisymmetry principle is fulfilled. Two
fermions occupying the same state leads to two equal columns of the
determinant. This would make the determinant equal to zero and no more
than one fermion can occupy one state. The Pauli exclusion principle is
fulfilled.

The short hand notation, of the Slater determinant, shows only the diagonal
elements of it ∣∣∣φN

〉
= |φ1φ2...φN〉 , (2.5)

which includes the normalization constant implicitly.

A convenient description for many-body problems is the second quan-
tization. It uses certain algebraic properties of operators to realize the
antisymmetry property of the wave function.

The properties of the determinants are shifted to the algebraic properties of
operators. One of this operators is the so called creation operator c†

jσ. The
definition of c†

jσ is

c†
jσ
∣∣n1σ...njσ...

〉
=
√

njσ + 1
∣∣n1σ... (njσ + 1) ...

〉
. (2.6)

It creates a fermion of spin σ on site j. njσ is the occupation number.
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2 Models and Methods

The adjoint of the creation operator is the annihilation operator ciσ′ . In
analogy to equation 2.6 ciσ′ is defined as

ciσ′ |n1σ′ ...niσ′ ...〉 =
√

niσ′ |n1σ′ ... (niσ′ − 1) ...〉 . (2.7)

It annihilates or destroys a fermion of spin σ′ on site i. The direct relation
between the two operators is (c†

jσ)
† = cjσ. Besides that, there are three

important anticommutation relations between a creation and an annihilation
operator. The first one is

{ciσ, c†
jσ′} = ciσ, c†

jσ′ + c†
jσ′ , ciσ = δi,jδσ,σ′ . (2.8)

This expression shows that the interchange of a creation and an annihilation
operator, which refer to same spin and spatial coordinates, is different to
the interchange, if they have the same coordinates. The other two anticom-
mutaion relations are

{c†
iσ, c†

jσ′} = 0 (2.9)

{ciσ, cjσ′} = 0. (2.10)

These relations imply that it is not possible to create or destroy two fermions
with the same coordinates.

A Slater determinant represented in the second quantization is

c†
1σc†

2σ |0〉 = |φ1φ2〉 , (2.11)

with the vacuum state |0〉.

The occupation number is defined as njσ = c†
jσcjσ. For fermions it can be

zero or one, the site can be occupied or empty. The occupation number
representation of the basis state is

|n〉 = |n1,σ, n2,σ, n3,σ, ...〉 . (2.12)

The number operator is defined as the sum over the occupation numbers

N = ∑
iσ

niσ = ∑
iσ

c†
iσciσ. (2.13)
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2 Models and Methods

The operator counts the number of the particles in the system. It can be
written as

N |n〉 = n |n〉 , (2.14)

where |n〉 is the eigenvector and n is the eigenvalue.

2.1.1 Bloch’s theorem

Bloch’s theorem states that the eigenstates φk of a one-electron Hamiltonian
can be chosen to be a plain wave multiplied with a function that has the
periodicity of the Bravaise lattice. It has the form

φk(r + T) = e2πir·Tφk(r), (2.15)

where the vector T is the lattice vector between the unit cells. The Bloch
theorem gives for each k-point in the Brillouin zone a Bloch basis orbital

φ(k) =
1√
N

∑
T

e2πir·Tφ(T), (2.16)

with the sum over T for every unit cell in the lattice.

2.2 Strongly correlated Electrons

In materials with strongly correlated electrons, the metallic character of the
material is suppressed in favour of an insulating state. This is discussed in
detail in literature [5]. The following section shortly reviews some important
features of strongly correlated electrons.

An important aspect of electron correlations is the partial suppression of
electronic charge fluctuations on an atomic site. Those are called inter-
atomic correlations because the fluctuations are caused by the overlap of
wavefunctions from different atoms. The electronic delocalization causes a
kinetic energy gain which favours the inter-atomic correlations.

For electrons on the same atom intra-atomic correlations must be considered.
Hund’s rules and in-out correlations are responsible for the optimization

6



2 Models and Methods

of the on-site Coulomb repulsions of those electrons. In-out correlations
describe the behaviour of a system, when one electron sits close to the nu-
cleus and the other electrons consequently stay further away from it. Hund’s
rules are regulating the optimal angular distribution of the atom segments
to minimize their repulsions. The radial distribution of the electrons is
managed by the in-out correlations.

Intra-atomic correlations can still be strong with weak inter-atomic correla-
tions. Intra-atomic correlations are important for 4f electrons and transition-
metal ions. Transition metals are in the middle between the limits of uncor-
related and strongly correlated electrons.

Charge order appearance is an additional aspect of strongly correlated
electrons. There is a minimization of the repulsive energy between electrons
for a charge order state. This happens at the expense of the kinetic energy.
In comparison to the homogeneous systems, the inhomogeneous systems
have a larger probability of charge ordering. An inhomogeneous system
is for example a lattice. The delocalization in inhomogeneous electron
systems reduces the kinetic energy gain compared to homogeneous electron
systems.

Charge order does not occur in the standard Hubbard Model. It needs
the presence of inter-site interaction. The extended Hubbard model gives
the mandatory surroundings to study the desired orders, as shown in the
following sections.

2.3 The extended Hubbard Hamiltonian

The extended Hubbard model is a very simple and yet successful model
for the description of electron interactions in solids. It takes inter-electronic
interactions as well as their kinetic energy into account. The nuclear posi-
tions are considered fixed and there is a lattice of atoms or sites on which
the fermions are able to move. The Hubbard model simplifies the atoms in
a solid to a collection of sites, each with a single orbital. If a solid has just
one energy band at the Fermi surface, it has only one relevant orbital and
the Hubbard Hamiltonian is a good picture for it.

7



2 Models and Methods

There are four different possible configurations for the sites of the Hubbard
Hamiltonian. It can be empty, a single down fermion, a single up fermion or
it is occupied by a pair of up and down fermions. Electrons in a solid, which
are able to move around, interact over a screened Coulomb interaction. The
biggest interactions is for electrons on the same site, as it is discussed in [3].
The on-site interactions are defined by a term which is zero for an empty
or single occupied site and has the value U for an double occupied site.
The Coulomb interaction between fermions on close-by sites is given by the
value V. The kinetic energy is explained by an expression which destroys a
fermion on one site and creates it on a another site. The hopping between
the sites is governed by the energy scale t. It is determined by the overlap of
two wavefunctions on the atoms, which die off exponentially. For the model
in this work only a hopping between the nearest neighbours (NN) and the
next nearest neighbours (NNN) is included.

The extended Hubbard Hamiltonian can be written as

H = −∑
ij,σ

ti,j(c†
iσcjσ + h.c.) +

U
2 ∑

iσ
niσniσ′ + V ∑

i>j
ninj − µ ∑

i
ni. (2.17)

The first term in equation 2.17 is the hopping term. It describes the kinetic
energy. On its own it is the single particle solution of the Hubbard Model
for non-interaction fermions. c†

i is the creation operator, see equation 2.6,
and cj is the annihilation operator, see equation 2.7.

In general the coefficients tij characterize the single particle matrix elements
defined by the overlap integral derived in [6]

tij = −
∫

drΦ∗i (r)(−
h̄2∇2

2m
+ V(r))Φj(r− R), (2.18)

where R = ri − rj describes the hopping distance, V(r) represents the

periodic crystal potential energy and − h̄2∇2

2m is the kinetic energy of the one
particle term. The hopping amplitude does not depend on the spin σ, but it
is sensitive to the band structure. The restriction of the hopping term t is

tij =


t if i, j are nearest neighbour,
−t′ if i, j are next nearest neighbours,
0 otherwise.

(2.19)

8



2 Models and Methods

Figure 2.1: Hopping on square lattice, representing the kinetic energy of the Hubbard
Hamiltonian (altered from [3]).

In the following equations, the NN hopping constant is t = 1 and the NNN
hopping constant t′ alters in the region 0.0 < t′/t < 1.0. The neighbouring
sites have the largest overlap and therefore a greater probability of hopping.
Figure 2.1 depicts a schematic representation of the two different ways the
hopping can occur for a square lattice.

The t-Hamiltonian is mathematically identical to the ”tight-binding” ap-
proach to electron bands, but it has a different intent. Every independent-
electron model will yield similar qualitative behaviour, this model adopts
the simplest one, similar to the free-electron model in the theory of metals.

The second term in the Hubbard Hamiltonian equation 2.17 describes the
on-site interaction. The term adds the energy U at doubly occupied sites
each of which being occupied by one the spin up and one spin down
fermion. If the fermions belong to two separate sites they do not feel this
repulsion. On its own, the on-site term describes a purely atomic picture.
The on-site Coulomb repulsion is

U =
e2

4πε0

∫
drdr′|Φiσ(r)|2

1
|r− r′|

∣∣Φiσ̃(r′)
∣∣2. (2.20)

The on-site term does not depend on the site label i, if the system is homo-
geneous.

9



2 Models and Methods

Figure 2.2: On-site interaction on a square lattice (altered from [3]).

The third term in the Hubbard Hamiltonian equation 2.17 is the interaction
term between nearest neighbour fermions. It includes the inter-site electron-
electron interaction V. The inter-site Coulomb repulsion is

V =
e2

4πε0

∫
drdr′|Φiσ(r)|2

1
|r− r′|

∣∣∣Φjσ′(r
′)
∣∣∣2. (2.21)

This term depends on the spin σ and on the site labels i and j. In this model,
we only take into account the terms, where i and j are nearest neighbours.
Figure 2.3 shows an interaction between nearest neighbours.

The interaction parameters U and V are repulsive U, V > 0 and U > V
if they arise from Coulomb interactions. There are additional effects from
e.g. electron-photon interactions that can broaden this range of the param-
eters, but those are not considered for these calculations. The interaction
parameters U and V are expressed in the energy units of t.

The last term in the extended Hubbard Hamiltonian equation 2.17 is a
chemical potential µ which controls the filling. The Hubbard Hamiltonian
has an implied parameter, the band filling ρ. The band filling is defined as

ρ =
Ne

Nc
(2.22)

with the number of electrons Ne and the total number of sites Nc in the
system. If there is one fermion per site the situation is called half-filling, the
lattice contains half as many fermions as the maximum number, which is
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2 Models and Methods

Figure 2.3: Inter-site interaction on a square lattice (altered from [3]).

two per site. This work only deals with half filling and the band filling is
always ρ = 1.

2.3.1 Particle-hole Symmetry

The extended Hubbard Hamiltonian has a particle-hole symmetry without
the next nearest neighbour hopping (t′/t = 0). For the description of the
particle-hole symmetry, it is important to define a bipartite lattice. A bipartite
lattice is a lattice where the set of sites are divided into two sublattices, A and
B. The sublattices are ordered in a way that the site A only has B neighbours
and vice versa. The one dimensional, square and honeycomb lattices are
bipartite. A triangular lattice, for example, is not bipartite. The bipartite
lattice supports the antiferromagnetic order. The spin up electrons can
occupy a separated sublattice from the spin down electrons. In a triangular
lattice the antiferromagnetic order is frustrated.

The particle-hole transformation is introduced with the definition of new
operators. Those operators exchange the role of creation and destruction

d†
iσ = (−1)iciσ. (2.23)

The sign factor (−1)i becomes -1 on sublattice A and +1 at sublattice B. The
particle-hole transformation immediately leads to

d†
iσdiσ = 1− c†

iσciσ. (2.24)
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The eigenstates of the number operators are interchanged. In other words,
the occupations exchange. The kinetic energy of the Hubbard Hamiltonian
between neighbouring sites under the particle-hole transformation can be
seen as

c†
iσcjσ → −diσd†

jσ = d†
jσdiσ (2.25)

where one minus sign arises from the anticommutation of the operators
and the second minus sign arises from the bipartite nature of the lattice.
The minus sign annihilate each other and kinetic energy is particle-hole
symmetric

t→ t. (2.26)

The Coulomb interaction terms of the Hubbard Hamiltonian can be rewrit-
ten as

U(ni↑ −
1
2
)(ni↓ −

1
2
) + V(ni − 1)(nj − 1) (2.27)

which is unchanged under particle-hole transformation at µ = 0. This new
form of the Coulomb interaction gives an additive constant to the energy.
With the knowledge of the equations 2.26 and 2.27 the Hamiltonian, under
the particle-hole transformation, is

H = −t ∑
〈i,j〉σ

(
c†

iσcjσ + c†
jσciσ

)
+ U ∑

i
ni↑ni↓ + V ∑

ij
ninj − µ ∑

i
ni. (2.28)

Equation 2.28 is equivalent to the original Hubbard Hamiltonian, with the
exception of the chemical potential and the additive energy constant. The
chemical potential has a shift of

µ =
U
2
+ zV. (2.29)

This shift ensures half filling, ρ = 1, under the particle-hole symmetry. The
symmetry shows, that the whole phase diagram of the bipartite lattice is
symmetric about half-filling. This means that there are as many excited
holes as there are excited electrons. For a temperature shift there is no shift
in the Fermi level and there are no thermoelectric effects. This is only valid
for nearest neighbour hopping.
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If next nearest neighbour hopping t′ is included, t′/t 6= 0, the particle-hole
symmetry breaks and the properties of the Hubbard Hamiltonian are not
the same above and below half-filling. The kinetic energy between the next
nearest neighbouring sites under the particle-hole transformation looks
like

c†
iσcjσ → diσd†

jσ = −d†
jσdiσ (2.30)

where the minus sign doesn’t vanish, because i and j are second neighbours
and the kinetic energy for the next nearest neighbour hopping is not particle-
hole symmetric

t′ → −t′. (2.31)

It shows that electron- and hole-doped solids have different properties and
in realistic bands there is usually no particle-hole symmetry as well as in
the free electron dispersion.

Perfect Nesting

The Fermi Surface of the Hubbard Hamiltonian is calculated from the energy
dispersion relation and separates filled and empty states at the absence of
interactions. Perfect nesting describes a reciprocal lattice vector that maps
an entire section of the Fermi surface onto another one. The square lattice
has this unique feature at half filling, as described in [7]. The reciprocal
vector in the square lattice model is for example (−π/a, π/a). The nesting
occurs due to the fact, that it is a bipartite lattice and the kinetic energy
only connects one sublattice to another. In other words, there is no perfect
nesting if next nearest neighbour hopping is included. Figure 2.4 shows the
perfect nesting of a square lattice at the absence of next nearest neighbour
hopping and on the right side the loss of perfect nesting with the hopping
constant t′ = 0.2 with different chemical potential. Lowering the chemical
potential corresponds to a hole doping.

The one dimensional lattice has of course also the feature of perfect nesting.
The reciprocal lattice vector that maps the one dimensional Fermi surface
onto another is (π/2a)
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Figure 2.4: Fermi surface for the square lattice shows the perfect nesting for t′/t = 0.0 on
the left and the loss of perfect nesting for t′/t = 0.2 on the right at different
chemical potential µ.

2.4 Phases and Phase transitions

A phase transition is happening when we see a change in the properties
of a system at a certain point in phase space. It can precisely be defined
through an order parameter, which is zero on one side of the transition, and
non-zero on the other side.

If there is an absence of the interactions U and V, the ground state is
that of uncorrelated electrons and has the form of a Slater determinant.
A lattice site can have four different configurations, as mentioned before.
Each configuration has relative weights dependent on the form of the Slater
determinant. At half filling and with t′/t = 0 all four states have the same
probability. There is no preferred ordering. The kinetic energy delocalizes
the electrons by putting individual electrons in Bloch states. This t-model
limit, also known as band limit, always describes a metal.

With increasing on-site interaction term U there is an additional energy per
site and the weight of the doubly occupied sites must reduce. The hopping
term t and interaction term U compete with each other, as discussed in [8].
In the limit U � t the doubly occupied configurations of a single site in the
Hamiltonian costs a large energy. That means that at half filling the ground
state charge distribution adjusts itself to avoid doubly occupied states for
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large U and there is a spin-density wave (SDW). The charge fluctuations
around the occupation number njσ = 1 configuration are very expensive.
The costs of charge fluctuations increase with U. There is a critical value
UMIT of the order of band width beyond the material is an insulator. The
band width W is defined as

W = 2zt, (2.32)

with the coordination number z and without the second neighbour hopping
t′/t = 0. The charge fluctuations are frozen and this first order phase transi-
tion is known as Mott metal-insulator transition. An additional feature of
the increasing U is that the antiferromagnetic correlations between neigh-
bouring sites become more important. A reduction of doubly occupied sites
results in antiferromagnetic correlations. In case of half filling a spin-density
wave ground state reduces to an antiferromagnetic state.

The energy difference in insulators and semiconductors between the bottom
of the conduction band and the top of the valence band is called band
gap. In the mean-field approximation, which is explained in the following
chapter, the band gap can be described with the gap equation. The gap
equation for the antiferromagnetic ordering, shown in [7], is

1 =
U
N ∑

k

1√
E2

k + G2

= U
∫ 0

µ
dε

ρ(ε)√
ε2 + G2

(2.33)

with the size of the gap G ∼ Um and the density of states ρ(ε), see equation
2.34. If there is perfect nesting, there is a special solution with G 6= 0 for
arbitrarily small U. If there is a t′/t 6= 0 there is G = 0 for small U expected,
because the perfect nesting is destroyed.

The one-band models prefer the formation of an antiferromagnetic ordering
[8], but under certain conditions there is the possibility of ferromagnetic
states [9].

With the inclusion of the inter-site interactions V the study of inhomoge-
neous phases, such as charge-density waves (CDW), is possible. The phase
has broken discrete symmetry which is characterized by alternating doubly
occupied sites and empty sites. It exhibits long-range order.
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The spin fluctuations are dominant when the electron-electron interaction is
short ranged, there are spin-density waves. The standard Hubbard model is
an example for this phenomena. With an increasing range of the electron-
electron interactions, the charge fluctuations get more intense and there can
be charge-density waves. In some cases coexistence of both fluctuations is
possible and spin-density waves as well as charge-density waves can be
found. Figure 2.5 shows the behaviour of the electrons for spin-density and
charge-density waves. A good guideline for charge and spin-density waves
is the rule for positive interaction strengths given in [10]. If U < zV, the
ground state is a charge-density wave and if U > zV, the ground state is a
spin-density wave.

Figure 2.5: Spin-density wave on the left with U/t � 1, V = 0 and charge-density wave
on the right with U = 0, V/t� 1 as preferred ordering.

The density of states ρ(ε) per unit cell is defined as

ρ(ε) =
1
N ∑

kiσ
δ(ε− εiσ(k)). (2.34)

The chemical potential µ is given by the implicit equation∫ ∞

−∞
dερ(ε)

1
eβ(ε−µ)

= Ne (2.35)

where β = 1/kBT is the Boltzmann factor and Ne is the total number of elec-
trons per unit cell. The average number of particles per site at temperature
T are given by

〈niσ〉 =
1

Nk
∑
k,m
|umk|2

1
eβ(ε(k−µ))

. (2.36)
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The variable umk represents the occupied eigenstates in the system.

In this work, we study the ground-state phase diagram of the extended
Hubbard model. This means, that we do calculations at zero temperature
T = 0, and the only state that contributes to the expectation value is the
ground state.

2.4.1 Quantum Phase transitions

A phase transition can occur through different routes. In the case that the
transition is not driven by temperature and happens at zero temperature,
it is called quantum phase transition. Different routes for quantum phase
transitions were investigated in [11].In the extended Hubbard Hamiltonian
they can be controlled by the following points

• Bandwidth control
The relative strength of the electron interaction and the relative transfer
t’/t in the Hamiltonian are controlling the bandwidth.
• Band filling control

The band model is half filled for the following calculations ρ = 1.
• Lattice structure control

In the Hubbard Hamiltonian the lattice structure information is in the
hopping constant tij.

This control parameters can be realized by doping, pressure and chemical
composition and magnetic fields for example. In case of perfect nesting the
phase transition is happening at an interaction value of zero [12]. The phase
transition is happening at non-zero interaction with the destruction of the
perfect nesting.
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3 Mean-Field Approximation

One important method to deal with many body systems is the mean-field
theory. It is a method for systems with interactions, where the full system
is replaced by an effective one-body problem with a chosen external field.
The interaction of all particles to an arbitrary particle is replaced by this
external field which has to be determined self-consistently. The mean-field
approximation is not sufficient for the description of electronic correlations,
because the fluctuations are not respected. However, it can be applied to
many different physical systems to study phenomena such as the phase
transition. It ignores quantum fluctuations and therefore is less accurate
in lower spatial dimensions. Mean-field ignores both spatial and temporal
fluctuations.

The fluctuations around the mean density are defined as

δniσ = niσ − 〈niσ〉, (3.1)

where the fluctuations δn are the difference between the exact number
operator niσ and the mean occupation number 〈niσ〉.

Using definition 3.1, we can rewrite the on-site interaction part as

∑
i

ni↑ni↓ = ∑
i
[δni↑ + 〈ni↑〉][δni↓ + 〈ni↓〉]

= ∑
i
[δni↑δni↓ + δni↓〈ni↑〉+ δni↑〈ni↓〉+ 〈ni↑〉〈ni↓〉].

(3.2)

The fluctuations δni↑ and δni↓ are supposed to be so small that the quadratic
term in the second line is negligible. The term ∑i ni↑ni↓ becomes finally in
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the mean-field approximation

∑
i

ni↑ni↓ ≈∑
i
[δni↓〈ni↑〉+ δni↑〈ni↓〉+ 〈ni↑〉〈ni↓〉]

= ∑
i
[(ni↓ − 〈ni↓〉)〈ni↑〉+ (ni↑ − 〈ni↑〉)〈ni↓〉+ 〈ni↑〉〈ni↓〉]

= ∑
i
[ni↓〈ni↑〉+ ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉]

(3.3)

The on-site term of the extended Hubbard Hamiltonian shown in equation
2.17 becomes therefore

HMF
U = U ∑

i
[ni↓〈ni↑〉+ ni↑〈ni↓〉]−U ∑

i
〈ni↑〉〈ni↓〉 = HU + HU0 (3.4)

where HU0 is a constant for given magnetic configuration and number of
particles. It only depends on the average density and does not depend on
creation or annihilation operators.

The inter-site interaction term of the extended Hubbard Hamiltonian 2.17

under the mean-field approximation becomes

HMF
V = zV ∑

i>j
[ni〈nj〉+ nj〈ni〉]− zV ∑

i>j
〈ni〉〈nj〉 = HV + HV0 (3.5)

where HV0 is only dependent on the average density as explained above
and z is the coordination number. The occupation number operators are
ni = ni↑ + ni↓ and nj = nj↑ + nj↓. The densities of those occupation number
operators are 〈ni〉 = 〈ni↑〉+ 〈ni↓〉 and 〈nj〉 = 〈nj↑〉+ 〈nj↓〉.

The constant energy of the Coulomb interactions is

H0 = HU0 + HV0 = −U ∑
i
〈ni↑〉〈ni↓〉 − zV ∑

i>j
〈ni〉〈nj〉. (3.6)

The hopping part of the extended Hubbard Hamiltonian 2.17 gives the
tight-binding band structure. For the nearest neighbour and the next-nearest

19



3 Mean-Field Approximation

neighbour hopping a Fourier transform to the k-space is transformed, fol-
lowing [6]. The Fourier transform of the annihilation and creation operators
are described in the equations 5.2 and 5.1. The k-transformed operators are
inserted into the extended Hubbard Hamiltonian, and the tight-binding
structure is

Ht =
1
N ∑

ij
∑

kk′σ
tij e−ikRi c†

kσ eik′Rj ck′σ

=
1
N ∑

kk′σ
c†

kσck′σ ∑
ij

tije−ikRi eik′Rj

= ∑
kk′σ

c†
kσck′σ ∑

j
tδij e

−ik′δij δ(k− k′)

= ∑
kσ

gkc†
kσckσ,

(3.7)

here the term gk = ∑j tδij e
−ikδij is dependent on the lattice and δij = Rj−Ri

connects the sites where the hopping occurs. Moreover the definition of the
Kronecker delta is δ(k− k′) = 1

N ∑i e−i(k−k′)Ri .

The matrix representation of the hopping Hamiltonian can be written as

Ht =


g′k g∗k 0 0
gk g′k 0 0
0 0 g′k g∗k
0 0 gk g′k

 (3.8)

where the non-diagonal terms correspond to the nearest neighbour hopping
and the diagonal terms correspond to the next-nearest neighbour hopping.
The basis state of matrix 3.8 is

φ†
k = [c†

k,a↑, c†
k,b↑, c†

k,a↓, c†
k,b↓]. (3.9)

The lattice is divided into the two sublattices A and B. The introduced
indices a and b represent the decoupled sublattices. This basis state results
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in an artificial enlargement of the unit cell. The energy bands for the tight
binding solution are

Et,t′
k = g′k ± gk. (3.10)

One can easily see from equation 3.4 that HMF
U is of one-particle type, with

terms such as U〈ni↑〉 acting as spin-dependent on-site energies. The matrix
form of the on-site interaction of the Hamiltonian is

HU = U


〈na↓〉 0 0 0

0 〈nb↓〉 0 0
0 0 〈na↑〉 0
0 0 0 〈nb↑〉,

 . (3.11)

with the basis vector from equation 3.9. In the matrix representation the
inter-site interaction in the mean-field approximation can be written as

HV = z V


〈na〉 0 0 0

0 〈nb〉 0 0
0 0 〈na〉 0
0 0 0 〈nb〉

 , (3.12)

with the basis vector shown in equation 3.9.

The Bloch Hamiltonian summed over the Brillouine zone gives the total
energy and has the form

EMF =
1

Nk
∑
k

φ†
k(Ht + HU + HV)φk − E0 (3.13)

where Nk is the number of k points, the eigenvector φ†
k from equation

3.9 and the constant energy E0 is determined in equation 3.6. E0 is only
relevant for the calculation of the total energy and not for the following
self-consistent calculations.
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3.1 Band-Structures

The following band-structures are the tight-binding solutions for different
lattices with no interactions. The lattices are divided into two sublattices A
and B.

3.1.1 One-dimensional Lattice

The one-dimensional lattice is a bipartite lattice and divided into sublattices
A and B as shown in 3.1, with a two-atom unit cell. The translation vector T

Figure 3.1: Schematic representation of the one-dimensional lattice with the primitive lattice
vector a1, hopping constant t and second hopping constant t′ and two atoms in
the basis.

is composed of one primitive lattice vector

T = na1, (3.14)

with the integer n and the primitive lattice vector

a1 = ax̂, (3.15)

with the lattice parameter a. The reciprocal lattice vector is

b =
2π

a
x̂. (3.16)

A site in the one dimensional lattice has two nearest neighbours, the coor-
dination number is z = 2. The vectors for those nearest neighbours in real
space can be written as

δ1 = a1, δ2 = −a1. (3.17)
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And there are two next nearest neighbours at the one dimensional lattice.
The vectors for the next nearest neighbours are

δ′
1 = 2a1, δ′

2 = −2a1. (3.18)

The hopping part for the one-dimensional Hamiltonian with the nearest
neighbours in equation 3.17 and the next-nearest neighbours in equation
3.18 inserted into equation 3.7 gives the matrix

Ht′ =

(
g′k g∗k
gk g′k

)
, (3.19)

with the neighbour term

gk = −t(1 + ei2akx) (3.20)

and the second neighbour term

g′k = 2t′ cos(2akx). (3.21)

Figure 3.2: Energy dispersion of the one-dimensional lattice with a two-atom unit cell
and different next neighbour hopping constants t′. The dashed lines mark the
chemical potential for the different hopping constants.

The diagonalized Matrix 3.19 gives two energy bands

ε′±k = 2t′ cos(2akx)± 2t cos(akx). (3.22)

Figure 3.2 shows the energy bands for different next nearest neighbour
transfers t′/t and the according chemical potential µ. The particle-hole
symmetry breaks with the increase of the second hopping t′/t and the
density of states becomes progressively asymmetric.
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3.1.2 Cubic Lattice

The cubic lattice is represented in figure 3.3, where the lattice constant a
between the sites and the hopping constants t and t′ can be seen. The lattice
is a bipartite lattice and divided into sublattices A and B, with two-atoms in
the unit cell. The translation vector T is composed of two primitive vectors

Figure 3.3: Two-Dimensional square lattice with the primitive lattice vectors a1 and a2, the
hopping constants t and t′ and two atoms in the basis.

T = na1 + ma2 (3.23)

where n and m are integers and the primitive lattice vectors are

a1 = ax̂
a2 = aŷ.

(3.24)

a is the lattice constant for the distance between the basis atoms. The
reciprocal lattice vectors are

b1 =
2π

a
x̂

b2 =
2π

a
ŷ.

(3.25)
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In the square lattice are four nearest neighbours and the coordination
number is z = 4. The vectors in real space for the nearest neighbours are

δ1 = a1, δ2 = −a1

δ3 = a2, δ4 = −a2.
(3.26)

The vectors for the four next nearest neighbours can be written as

δ′
1 = a1 + a2, δ′

2 = −a1 − a2

δ′
3 = a2 − a2, δ′

4 = −a1 + a2.
(3.27)

The hopping part of the Hubbard Hamiltonian on the square lattice with
nearest and next nearest neighbours is

Ht′ =

(
g′k g∗k
gk g′k

)
(3.28)

with the neighbour hopping term

gk = −t[1 + e−i2akx + e−ia(kx+ky) + e−ia(kx−ky)]. (3.29)

and the next-neighbour hopping term

g′k = 4t′ cos(akx) cos
(
aky
)
. (3.30)

With the diagonalization of the Matrix 3.28 two energy bands can be found

ε±k = 4t′ cos(akx) cos
(
aky
)
± 2t(cos(akx) + cos

(
aky
)
). (3.31)

Figure 3.4 and 3.5 show the energy bands E±k for the square lattice. In
figure 3.4 only direct hopping is taken into account and the second hop-
ping constant is zero t′/t = 0. The particle-hole symmetry is valid and
perfect nesting can be found. In figure 3.5 the second hopping is included
with t′/t = 0.2. The particle-hole symmetry is broken and bands become
asymmetric. There is a loss of perfect nesting.
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Figure 3.4: The energy dispersion of the square lattice with t′/t = 0 and a particle-hole
symmetry.

Figure 3.5: The energy dispersion of the square lattice with t′/t = 0.2 and a broken particle-
hole symmetry.

The density of states of the square lattice can be seen in figure 3.6, on the
left side for t′/t = 0 and on the right side for t′/t = 0.2. The two colours,
blue and orange, represent the two partially filled bands. The density of
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Figure 3.6: Density of states for a square lattice symmetric for t′/t = 0 with µ = 0.0t on the
left and asymmetric for t′/t = 0.2 with µ = −0.5t on the right. The blue and
the orange colours represent the two partially filled band.

states displays a logarithmic singularity for small energies. From topological
arguments, as discussed in [7], the singularity will always occur in a two-
dimensional system. For the nearest neighbour hopping model, it is a special
case that the singularity occurs at the Fermi energy. This is only valid for
the energy where perfect nesting occurs.

3.1.3 Honeycomb Lattice

The honeycomb lattice itself is not a Bravais lattice. The Bravais lattice of the
honeycomb lattice is the hexagonal lattice with a basis of two atoms per unit
cell, as shown in figure 3.7. The bipartite lattice is again divided into the
sublattices A and B. The translation vector T of the hexagonal lattice is

T = na1 + ma2, (3.32)

with the integers n and m. The primitive lattice vectors can be written as

a1 =
a
2

x̂ +

√
3a
2

ŷ

a2 = − a
2

x̂ +

√
3a
2

ŷ,

(3.33)
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Figure 3.7: Two Dimensional honeycomb lattice with the primitive lattice vectors a1 and a2,
the hopping constants t and t′ and two atoms in the basis.

with the lattice constant a. The reciprocal lattice vectors are given by

b1 = −2π

a
x̂ +

2π√
3a

ŷ

b2 =
2π

a
x̂ +

2π√
3a

ŷ.
(3.34)

The coordination number of the honeycomb lattice is z = 3. The three
nearest neighbours in real space are given by the vectors

δ1 =
a
2

x̂ +
a

2
√

3
ŷ

δ2 = − a
2

x̂ +
a

2
√

3
ŷ

δ3 = − a√
3

ŷ,

(3.35)

and the six next nearest neighbours are located at

δ′
1,2 = ±a1, δ′

3,4 = ±a2

δ′
4,5 = ±(a2 − a1).

(3.36)

With the same method as above for the other two lattices, but with the
according Brillouin zone, the hopping term is

Ht′ =

(
g′k g∗k
gk g′k

)
, (3.37)
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with the nearest neighbour hopping term

gk = −t[ei
aky√

3 + 2cos(
akx

2
)e−i

aky
2
√

3 ] (3.38)

and the next-nearest neighbour hopping term

g′k = t′[4cos(
akx

2
)cos(

√
3aky

2
) + 4cos2(

akx

2
)− 2]. (3.39)

The energy bands derived from the Hubbard Hamiltonian of the honeycomb
lattice have the form [13,14]

ε±k =t′[4cos(
akx

2
)cos(

√
3aky

2
) + 4cos2(

akx

2
)− 2]

± t

√
1 + 4cos(

akx

2
)cos(

√
3aky

2
) + 4cos2(

akx

2
).

(3.40)

Figure 3.8: The energy dispersion of the honeycomb lattice for t′/t = 0.0. The dispersion
has particle-hole symmetry.

The honeycomb lattice has two important points at the corners of the
Brillouin zone, K and K′, as explained in [14]. These points are named Dirac
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points and are of particular importance for the physics of the honeycomb
lattice. Their positions given in momentum space are

K =
(
− 2π

3a
,

2π

3
√

3a

)
, K′ =

(2π

3a
,

2π

3
√

3a

)
. (3.41)

The Fermi surface reduces to points at the Dirac points. The density of states
is negligible and the material is a semimetal, as shown in [15].

Figure 3.9: The energy dispersion of the honeycomb lattice for t′/t = 0.2. The figure shows
a broken particle-hole symmetry.

Figure 3.8 shows the energy dispersion of the honeycomb lattice without
next-nearest neighbour hopping t′/t = 0.0. The dispersion has a particle-
hole symmetry. Figure 3.9 shows the energy dispersion with included
next-nearest neighbour hopping with the hopping constant t′/t = 0.2. For
finite values of t′ the particle-hole symmetry is broken and the π and π∗

bands become asymmetric. The presence of next-neighbour hopping t′ shifts
the position of the Dirac points in energy and breaks the symmetry.

The density of states of the honeycomb lattice has the form shown in figure
3.10. For t′/t = 0 the Van Hoove singularities are at the energies ±t = ±1.
The density of states decreases to zero at the Fermi level. With the inclusion
of the next-nearest neighbour hopping t′/t = 0.2, the density of states loses
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Figure 3.10: Density of states per unit cell calculated from the energy dispersion, t′/t = 0.0
with µ/t = 0.0 on the left and t′/t = 0.2 with µ/t = −0.6 on the right.
The dashed line mark the chemical potential and the orange and blue colors
represent the two bands.

its symmetry. The figure shows the two bands in the colors blue and orange
and the chemical potential is marked with a dashed line.

3.2 Self-consistent Calculation

In the self-consistent calculations, the tight-binding solution for the different
lattices, shown in the previous section, is combined with the Coulomb
interactions in the Hubbard Hamiltonian. The density parameters 〈nA↓〉,
〈nA↑〉, 〈nB↓〉 and 〈nB↑〉 can be found in this process and the ground state of
the system can be determined.

The start is a guess of the initial values of the density parameters, where

∑
i
〈niσ〉 = Ne, (3.42)

with Ne the number of electrons. In this work the number of electrons is
Ne = 2. This initial guess is important for the result, because for example
an initial paramagnetic state will stay paramagnetic during the calculation.
The next step is the calculation of the Hamiltonian with the density parame-
ters to find the energies of the bands. The ground state of the system can be
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3 Mean-Field Approximation

found and the chemical potential can be determined. The density values of
the ground state are calculated with equation 2.36 at the limit T → 0, which
gives

〈niσ〉 =
1

Nk
∑
k,m

Θ(µ− Emk)|umk|2, (3.43)

with the chemical potential µ, the energy Emk and the occupied eigenstates
umk. The notation i stands for the different atom types A and B. The Theta
function, or step function, is in this case defined as

Θ(µ− εmk) =

{
0 if µ < εmkthe energy is above the chemical potential,
1 if µ ≥ εmk the energy is below the chemical potential.

(3.44)
The step function is important, because of the broken particle-hole symmetry
and the shifted chemical potential. The new density values serve in the
calculation of the next Hamiltonian for the next determination of the ground
state. This procedure is iterated until convergence of the electron densities
is achieved.

Oscillation or numerical instabilities can delay or destroy the convergence.
The easiest solution for this problem is simple mixing

mi = kmi + (1− k)mi−1, (3.45)

where the self-consistent parameter mi of the iteration i gets mixed with the
parameter mi−1 of the iteration i− 1 and the mixing parameter k is in the
range [0, 1]. The typical value for k is around 0.7.

Another self-consistency relation for systems in the absence of inter-site
interactions, V = 0, holds for the antiferromagnetic magnetization mAF

mAF =
2

Nk
∑
k

mAFU√
(Ek − Ek+Q)2 + m2

AFU2
, (3.46)

with Nk the number of sites. The deviation of this formula can be found in
[7]. At half filling the perfect nesting condition is Ek = −Ek+Q for a square
lattice. Equation 3.46 shows that all mAF 6= 0 for all values of U > 0 at
perfect nesting. The system becomes unstable with respect to the formation
of antiferromagnetic ordering.
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3 Mean-Field Approximation

3.3 Energy

The mean-field matrix decouples into two 2x2 matrices. The analytical
solution for the calculation of the energy bands is

E±σk =
U(〈niσ〉+ 〈njσ〉)

2
+ zV + gk′

±
√

g2
k +

1
4
[U(〈niσ〉 − 〈njσ〉) + zV(−〈ni〉+ 〈nj〉)]2.

(3.47)

The total energy derived from equation 3.13 at half filling is

Etot =
1

Nk
∑
k
(E±σkΘ(µ− E±σk)

−U(〈ni↑〉〈ni↓〉) + 〈nj↑〉〈nj↓〉)− zV(〈ni〉〈nj〉),
(3.48)

where the Θ-function Θ(µ − E±kσ) ensures that only the filled states are
taken into account for the energy. This measure is necessary because of the
broken particle-hole symmetry.

The orderings described in section 2.4 are related to order parameters and
can be expressed as a function of the densities.

i) paramagnetic ordering The densities in paramagnetic ordering take the
form

〈ni↑〉 = 〈ni↓〉 =
1
2

ρ, (3.49)

with the filling ρ = 1 at the half filled case. The band energies simplify to

E±,(para)
k =

U
2
+ zV + gk′ ± gk. (3.50)

where the spin σ of the band does not influence the solution.
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ii) SDW ordering The antiferromagnetic state, which is a special form of the
spin-density wave at half filling, is described by densities in the form of

〈na↑〉 = 〈nb↓〉
〈na↑〉 6= 〈na↓〉.

(3.51)

The SDW energy bands simplify to

E±,(SDW)
σk =

U
2
+ zV + gk′ ±

√
g2

k +
U2

4
(〈naσ〉 − 〈nbσ〉)2. (3.52)

To describe the level of antiferromagnetic ordering, the parameter mAF is
introduced

mAF = 〈na↑〉 − 〈na↓〉 − 〈nb↑〉+ 〈nb↓〉, (3.53)

where at half filling mAF can take the values −2 ≤ mAF ≤ 2. If the lattice
points A and B are exchanged, the parameter changes its sign. Accordingly
the future findings are presented as the absolute value |mAF|.

iii) CDW ordering The densities of the charge-density wave behave like

〈na↑〉 = 〈na↓〉
〈na↑〉 6= 〈nb↑〉.

(3.54)

The CDW energy bands are

E±,(CDW)
σk =

U(〈naσ〉+ 〈nbσ〉)
2

+ zV + gk′

±
√

g2
k +

1
4
[U(〈naσ〉 − 〈nbσ〉) + zV(−〈na〉+ 〈nb〉)]2

(3.55)

of the charge-density waves is made by the sublattice difference parameter
∆AB

∆AB = −〈na↑〉 − 〈na↓〉+ 〈nb↑〉+ 〈nb↓〉, (3.56)

where the solution gives the occupation of the sublattices. For the same
reason as above the future findings are presented as an absolute value |∆AB|.
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3 Mean-Field Approximation

iv) ferromagnetic ordering The densities of the ferromagnetic ordering have
the form

〈na↑〉 = 〈nb↑〉
〈na↑〉 6= 〈na↓〉

(3.57)

The energy band calculation of the ferromagnetic ordering can be simplified
to

E±,( f erro)
σk =

U(〈naσ〉+ 〈nbσ〉)
2

+ zV + gk′ ± gk. (3.58)

The level of ferromagnetic ordering can be described by the parameter mF

mF = 〈na↑〉 − 〈na↓〉+ 〈nb↑〉 − 〈nb↓〉 (3.59)

where this magnetisation does not occur for half-filling. Ferromagnetism
can be found for very high interaction parameter and close to the half filling
as shown in [9]. Ferromagnetism is not under consideration for this work
and is only listed for completeness.

The following phase diagrams and transitions are obtained by choosing the
solution that gives the lowest energy, if more than one solution exists.

3.4 Results for ordered Phases and Phase
diagrams

The following sections show the results with only nearest neighbour hop-
ping t′/t = 0 and with the inclusion of next-nearest neighbour hopping
t′/t 6= 0.

3.4.1 NN hopping t′/t = 0

Antiferromagnetic bands are characterized by an opening of a gap G, which
leads to the insulation phase. This gap is not related to the metal-insulator
transition of the Mutt-Hubbard kind, as it is not related to the electronic
correlations, but to magnetism.
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3 Mean-Field Approximation

There is a clear symmetry at half filling, with no next-neighbour hopping.
The ground state of non-interacting electrons (U, V = 0) is in a paramagnetic
state. The minimum energy constraint in combination with the Pauli princi-
ple forces to fill all the energy levels from the lowest to the highest with an
equal number of spin up and spin down electrons. For large interactions U
the electrons take advantage of hopping by hopping back and forth between
neighbouring sites. The Pauli principle demands that this process can only
take place, if the neighbouring electrons have opposite spins. This results
in antiferromagnetic correlations between sites, as explained in [8]. The so
called t-J model demonstrates this correlations well.

Figure 3.11: Suppression of the doubly occupied sites as a function of U, with V = 0, for
three different lattices.

Figure 3.11 shows how the configurations with doubly occupied states get
reduced with rising on-site interaction U for the different lattices.

It can be seen, that the one dimensional and square lattice have a stronger
tendency to antiferromagnetic ordering in comparison to the honeycomb
lattice. The reason for this behaviour is in the nesting condition, which is
fulfilled for the two lattices, as explained in section 2.3.1.

36



3 Mean-Field Approximation

One-dimensional Lattice

The one dimensional lattice shows a spin-density wave ordering with increas-
ing on-site interaction and a charge-density wave ordering with increasing
inter-site interaction. This behaviour is expected and can be seen in figure
3.12. The critical value for the phase transition between the metallic phase
and spin-density wave phase is Uc = 0.58t for V = 0. This value can also be
found it other literature [16]. The perfect nesting condition would expect
this value to be zero, but since we use a small but finite epsilon, below which
we interpret the order parameter and the gap to be zero, this finite value
was found. The charge-density wave ordering shows a phase transition at
the critical value zVc = 0.29t for U = 0. It can be seen that zVc ≈ Uc

2 . Figure
3.12 additionally shows the according gap size of the two transitions on the
right scale of the plots.

Figure 3.12: Magnetism mAF for the one dimensional lattice with a critical on-site interac-
tion U and the according gap size with V = 0 on the left and the sublattice
difference ∆AB as a function of the inter-site interaction V and the according
gap size with U = 0 on the right.

Square Lattice

The square lattice also shows charge-density wave and spin-density wave
ordering for the increasing interactions. The phase transition from the
paramagnetic to the SDW and CDW orders is a second order transition. The
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3 Mean-Field Approximation

critical value of Uc = 0.38 for V = 0 is similar to the one obtained in other
literature [7].The theoretical value for this transition is zero, because of the
nesting. The nesting of the Fermi surface and the Van Hove singularity in
the density of states occur at the same energy, the Fermi energy for the half
filled case. The gap in the square lattice for the antiferromagnetic ordering
has a special form because of the singularity at the Fermi energy. Equation
2.33 simplifies according to [7] to

GSQ ∼ te−2π
√

t/U (3.60)

and because of the relation G ∼ mAFU, the magnetization can be written
as

mAF ∼
t
U

e−2π
√

t/U. (3.61)

Figure 3.13 shows that the magnetization has identical behaviour as theo-
retically shown in equation 3.61. The equations imply that Uc should be
zero. This exponential growth of the gap is almost impossible to resolve
in numerical calculations, that is why we infer a critical value Uc which is
greater than zero from the numerics.

Figure 3.14 shows identical behaviour as theoretically shown in equation
3.60.

The charge-density wave ordering shows a transition at the critical value
zVc = 0.19t for U = 0. The critical values have the relation zVc =

Uc
2 . Figure

3.15 shows the sublattice difference ∆AB for the charge-density wave on the
left and a plot of the energy bands for the interaction values U = 3t and
zV = 1 on the right.

Honeycomb Lattice

The honeycomb lattice has no nesting at the Fermi surface and the phase
transitions have a different behaviour compared to the one dimensional and
square lattice transitions. The transition between the paramagnetic and the
antiferromagnetic phase is very sharp.
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Figure 3.13: Magnetism mAF for the square lattice as a function of the on-site interaction U
with V = 0. The function is compared to the theoretical values from equation
3.61.

Figure 3.14: Gap size for the square lattice as a function of the on-site interaction U with
V = 0. The function is compared to the theoretical values from equation 3.60.

For the honeycomb lattice, the critical value for the transition of the on-
site interaction is Uc = 2.25t with V = 0. This value can also be found in
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Figure 3.15: Sublattice difference ∆AB for the square lattice as a function of the inter-side
interaction zV with U = 0 on the left and on the right the dispersion relation
at the values U = 3t and zV = 1t.

Figure 3.16: The transition between paramagnetic and spin-density wave ordering for the
honeycomb lattice can be seen on the right. The transition occurs on a critical
on-site interaction Uc = 2.30t. The left side shows the dispersion relation at
the value U = 2.5t. The inter-site value is zero V = 0 for both plots.

other literature [14]. Figure 3.16 shows the transition in the form of the
antiferromagnetic magnetisation mAF as a function of the on-site interaction
U on the left. The right figure is the dispersion relation for a interaction of
U = 2.5t at V = 0.

The critical value for the charge-density wave transition is zVc = 1.12t with
U = 0. The critical values have again the relation zVc = Uc

2 . Figure 3.17
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Figure 3.17: Charge-density wave for the honeycomb lattice with a critical inter-site inter-
action zVc = 1.12t on the left and on the right the dispersion relation at the
value zV = 1.5t, with U = 0 for both plots.

shows the transition of the charge-density wave to the paramagnetic phase
in form of the sublattice difference as a function to the inter-site interaction
V on the left and the energy distribution at an interaction of zV = 1.5t, with
U = 0 for both plots.

3.4.2 NN and NNN hopping t′/t 6= 0

Only the on-site interaction U was taken into account for the following
calculations. The inter-site interaction was taken to be zero V = 0.

One-dimensional Lattice

The tight-binding energy in the one dimensional case is

Ek = E0 + 2t′cos(2akx)− 2tcos(akx) (3.62)

with the constant E0 = 0. The surface in the first Brillouin zone where
Ek = 0 is the Fermi Surface. For the t′/t = 0 case, the reciprocal vector for
perfect nesting is π/2a, as explained in section 2.3.1. For the case t′/t 6= 0
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there is still perfect nesting, if the chemical potential has the value µ = 2t′/t,
because

E π
2a
= −2t′. (3.63)

The chemical potential of the one dimensional lattice for half filling has the
value µ = 2t′/t. This is valid for values between 0.0 ≤ t′/t ≤ 0.5, as shown
in figure 3.18. Therefore there is perfect nesting in the one dimensional
lattice at half filling and the gap size for all values of U > 0 is the same for
the different hopping values t′/t < 0.5.

Figure 3.18: Band structure for the hopping constants t′/t = [0.2, 0.5, 0.7] of the one-
dimensional lattice. There is a change in the Fermi surface for t′ ≥ 0.5 and a
loss of perfect nesting occurs.

For a values t′/t > 0.5 the chemical potential differs from 2t′/t. There are
more than one Fermi points, shown in figure 3.18, because of the changing
band structure topology, and a loss of perfect nesting occurs.

Figure 3.19 shows the antiferromagnetic parameter and figure 3.20 shows
the gap sizes for the one-dimensional lattice at different values t′/t.

The gap size jumps to zero discontinuously with the reduction of the
Coulomb interaction U below the critical value Uc(t′). This indicates a first
order transition. For an interaction U > Uc the gap behaves like the gap for
t′ = 0. The critical transition values Uc(t′) of the transition as a function
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Figure 3.19: One-dimensional lattice antiferromagnetic parameter mAF as a function of the
on-site interaction U for different values t′/t ≥ 0.5.

Figure 3.20: One dimensional lattice gap size for different values t′/t ≥ 0.5. The dashed
lines indicate the phase transitions.

of the hopping constant t′ is shown in figure 3.21. The values up to the
threshold t′s/t = 0.5 are Uc(t′) = 0.58.

The values beyond t′ > t′s have an asymptotic behaviour. Uc decreases very
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Figure 3.21: Critical value Uc as a function of the hopping t′/t with an asymptotic behaviour
for t′/t→ 0.5.

fast for t′ → t′s. A fitted description of the asymptotic behaviour is

[Uc(t′)]−1 =
c1

2
ln
(
t′
)2

+ c2 ln
(
t′
)
+ c3 (3.64)

with the values c1 = 0.01, c2 = −0.14 and c3 = 0.16 an t′/t > 0.5.

The critical transition values Uc(t′) can be found in table 3.1.

Table 3.1: Critical transition values Uc(t′) for the different next-nearest neighbour hopping
constants t′ for the one-dimensional lattice.

t′/t Uc(t′)/t
0.5 0.6
0.6 2.0
0.7 2.6
0.8 3.1
0.9 3.5
1.0 3.9
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Square Lattice

The square lattice has no perfect nesting for any t′ ∈ (0, 5t] at half filling
and consequently t′s = 0. Figure 3.22 shows the antiferromagnetic parameter
mAF as a function of U for different hopping constants on the left. On the
right hand side, the size of the band gap is shown for different t′ with
the critical transition values Uc(t′). This solutions can also be found in
other literature [11][12].The gap size jumps discontinuously to zero, if the
Coulomb interaction U is reduced below the critical value Uc(t′). This is
again a first order transition. Table 3.2 shows the critical transition values
Uc(t′) for the different t′ constants.

Table 3.2: Critical transition values Uc(t′) for the different next-nearest neighbour hopping
constants t′ for the square lattice.

t′/t Uc(t′)/t
0.0 0.4
0.1 1.5
0.2 2.0
0.3 2.5
0.4 2.9
0.5 3.2

Figure 3.23 shows the gap size of the lattice as a function of the interaction
U. The dashed lines indicate the phase transitions and in the legend are the
corresponding values.

The square lattice shows asymptotic behaviour for t′ → 0. The data can be
fitted with the curve

[Uc(t′)]−1 =
c1

2
ln
(
t′
)2

+ c2 ln
(
t′
)
+ c3 (3.65)

with the values c1 = 0.10, c2 = −0.7 and c3 = 0.24 an t′ > 0. Figure 3.24

includes the critical data points and the according fit.

For small t′ the asymptotic function reduces, according to [17], to

[Uc(t′)]−1 =
1

4π2 ln
(
t′
)2 − 0.15 ln

(
t′
)
. (3.66)
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Figure 3.22: The antiferromagnetic parameter mAF for the square lattice as a function of
the on-site interaction U with the hopping parameters 0.0 ≤ t′/t ≤ 0.5.

Figure 3.23: The gap size for the square lattice as a function of the on-site interaction U
with the hopping parameters 0.0 ≤ t′/t ≤ 0.5.

The comparison of asymptotic equations 3.65 and 3.66 shows that the
additive constant is missing in the fitting function. The constant results
from the finite critical interaction value Uc at perfect nesting conditions.
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Figure 3.24: Critical value Uc as a function of the hopping t′/t.

Theoretically it should be zero, but because of the finite epsilon, there is a
finite gap size and the critical Uc is greater than zero.

Honeycomb Lattice

With the inclusion of the next-nearest neighbour hopping the honeycomb
lattice starts to change it’s behaviour for a hopping constant of t′s/t ≈ 0.33.
Figure 3.25 shows the dispersion relation of the lattice for a hopping constant
of t′/t = 0.33. The red plane marks the chemical potential µ and the
structure shows a change of the Fermi surface, where for t′/t > 0.33
additional Fermi points appear.
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Figure 3.25: Dispersion relation for the hopping constant t′/t = 0.33 of the hexagonal
lattice. The red plane marks the chemical potential to mark the change of the
Fermi surface.

Figure 3.26: Antiferromagnetic parameter mAF as a function of the on-site interaction U on
the honeycomb lattice for three different hopping values t′/t = [0.0, 0.4, 0.5].

Figure 3.26 shows the antiferromagnetic parameter mAF as a function of the
interaction parameter U. Figure 3.27 shows the gap size of the lattice as a
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function of U. The gap size shows a continuous behaviour across the phase
transition for any t′ > t′s.

Figure 3.27: Gap size as a function of U for three different hopping values t′/t =
[0.0, 0.4, 0.5] on the honeycomb lattice. The dashed lines indicate the phase
transitions.

Figure 3.28: Critical value Uc as a function of the hopping t′/t.

For t′/t > 0.33, the behaviour of the critical transition value Uc(t′) as a
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function of the second hopping t′ is linear. The fitted function and the
critical data points can be seen in figure 3.28. The fitted function has the
form

Uc(t′) = c1t′ + c2 (3.67)

with the parameters c1 = 6.57 and c2 = 0.07.

Table 3.3 shows the critical transition values Uc(t′) to the according t′.

Table 3.3: Critical transition values Uc(t′) for the different next-nearest neighbour hopping
constants t′ for the hexagonal lattice.

t′/t Uc(t′)/t
0.0 2.3
0.4 2.7
0.5 3.4
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4 Beyond Mean-Field

The one-dimensional extended Hubbard model is a useful model for quasi
one-dimensional materials. This includes for example conducting polymers
and organic charge-transfer [18]. There are three different phases at the

Figure 4.1: Phase diagram for the one-dimensional extended Hubbard model at half filling
with three different phases (from [18]).

ground state phase diagram which can be seen in figure 4.1. It shows the
already known CDW and SDW phases, and there is a bond-order-wave
(BOW) phase in a narrow strip between the CDW and SDW phases. It
appears for small to intermediate values for U and V. The characterization
of the BOW phase is the alternating strengths of the expectation value for
the kinetic energy operator at the bonds. The discrete symmetry is broken
and it exhibits a true long-range order. The transition between CDW and
SDW phases is separated in two different transitions. There is a continuous
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transition from CDW to BOW and a Kosterlitz-Thouless spin-gap transition
from BOW to SDW. The BOW phase vanishes at the multi-critical point
and the remaining SDW and CDW phases have a direct and discontinuous
transition.

The phase boundary between BOW and CDW phases involves a standard
second order phase transition and can be well determined. The phase
boundary between BOW and SDW phases involves a Kosterlitz-Thouless
transition and is more difficult to locate. The transition is marked by the
opening of a spin-gap in the electronic energy spectrum and the gap opens
up exponentially slowly. The transition is only locatable for very big clusters
and the Kosterlitz-Thouless transition is not studied in this work.

The presented method then performs a self-consistent mapping of the lattice
problem onto an effective cluster model with Nc > 1 correlated sites. It
reduces to the standard mean-field theory for Nc = 1. Because of the self-
consistent procedure it is possible to study the symmetry broken phases, as
explained in [19].

4.1 Beyond Mean-Field Hubbard Model

A system of interacting fermions on a lattice with a Hamiltonian H, con-
sisting of a non-interacting term H0 and an interaction term H1, is given.
Starting from the extended Hubbard Model, explained in chapter ’Models
and Methods’ section 2.3 ’The extended Hubbard Model’, the lattice is decoupled
into small clusters with the size Nc. This gives the equation, as shown in
[20],

H = ∑
R

H(c)(R) + ∑
R,R’

H(i)(R, R’), (4.1)

where R denotes the individual clusters. The term H(c)(R) is the part that
acts only inside a single cluster and the second term H(i)(R, R’) includes
the coupling of different clusters, which is the only interaction between the
clusters.
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The two terms include

H(c)(R) = H(c)
0 (R) + H(c)

U (R) + H(c)
V (R) (4.2)

H(i)(R, R’) = H(i)
V (R, R’), (4.3)

where the first line is the extended Hubbard Model. H(c)
0 (R) is the single-

particle hopping term, H(c)
U (R) and H(c)

V (R) are the Coulomb interaction
parts on the cluster. The second line is the inter-cluster coupling, with
H(i)

V (R, R’), the interaction part between the cluster. There is no inter-cluster

hopping term, H(i)
0 (R, R’), because the hopping is reduced to intra-cluster

hopping.
The intra-cluster part equation 4.2 is solved exactly and there is a non-zero
fluctuation δn in the cluster. The inter-cluster part equation 4.3 is solved
via the mean-field approximation and the fluctuation with the neighbour
cluster is δn = 0.

The inter-cluster two-particle interaction term is

H(i)
V (R, R’) = V ∑

[ij]
nRinR’j (4.4)

where the symbol [ij] stands for bonds that are connecting nearest neigh-
bours in different clusters. In the case of nearest-neighbour interactions [ij]
belongs to the cluster boundaries of two side-by-side clusters.

To reduce the coupling term from a two-particle interaction to a single-
particle type a mean-field decoupling is applied. The inter-cluster term
becomes

H(i)
V,MF(R, R’) = V ∑

[ij]
[nRi〈nR’j〉+ 〈nRi〉nR’j − 〈nRi〉〈nR’j〉]. (4.5)

〈nRi〉 and 〈nR’j〉 are the mean-field parameters. Those are independent of R
and R’ and can be replaced by λi and λj. The calculation reduces to
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∑
R,R’

H(i)
V,MF(R, R’) = V ∑

R,R’
∑
[ij]
[nRiλj + λinR’j − λiλj] =

= V ∑
R

∑
[ij]
[nRiλj + λinRj − λiλj] = ∑

R
H(i)

V,MF(R).
(4.6)

In equation 4.6 the two-site interactions couple at most two different clusters
and the double sum reduces to a single sum.
A one-dimensional cluster of length Nc reduces to

H(i)
V,MF(R) = V ∑

R
[nR1λB + nRNc λA + λAλB], (4.7)

where the only decoupled bond connects sites 1 and Nc of different clusters,
with λA at site 1 and λB at site Nc. The two values λA and λB are the
expectation values of the electron densities on sites A and B. The two
different mean-field parameters in an half-filled system can be written as
λA = 1− δ and λB = 1 + δ on sublattices A and B. The parameter δ has the
range [0, 1]. With this solution there is only one mean-field parameter δ,
which simplifies equation 4.7 to

H(i)
V,MF(R) = V ∑

R
[nR1(1 + δ) + nRNc(1− δ)− (1− δ2)]. (4.8)

The problem is solved with and without periodic boundary conditions for
the hopping part of the Hamiltonian. The periodic solution of the problem
sees the cluster as a ring. The appropriate hopping terms are added within
the cluster and the Hubbard-Model extends with the terms

H(c)
P (R) = −t(c†

Nc+1,σcNc,σ + c.c.) = −t(c†
1,σcNc,σ + c.c.), (4.9)

where the fact that c†
Nc+1,σ = c†

1,σ is used.

The total Hamiltonian for the beyond-mean-field problem is given by
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H = −t ∑
i,σ
(c†

i,σci+1,σ + c.c.) + U ∑
i

ni↑ni↓ + V ∑
i

nini+1 − µ ∑
i

ni+

+V ∑
R
[nR1(1 + δ) + nRNc(1− δ)− (1− δ2)]− t(c†

1,σcNc,σ + c.c.).
(4.10)

The chemical potential is µ = U
2 + 2V due to particle-hole symmetry at half

filling and the coordination number in one-dimension is z = 2.

From the decoupling of the clusters there are additional parameters λA and
λB which are the expectation values of the electron densities on sites A and
B. The two parameters have to be determined in a proper way.

4.1.1 Self-consistent Calculation

It is possible to calculate the density parameters from a self-consistent
calculation of the isolated cluster, as explained in chapter ’Mean-field ap-
proximation’ section 3.2 ’Self-consistent calculation’. The expectation values
are

〈niσ〉 = 〈φ0| niσ |φ0〉 = 〈φ0| c†
iσciσ |φ0〉 , (4.11)

where φ0 is the ground state.

For a first-order phase transition, where there is a transition between an
ordered and a disordered phase, this method works very well. The transition
point is almost independent of the cluster size due to avoided level crossing.
For a second-order phase transition this method will not give satisfying
results. There is a discrepancy between the parameters calculated on the
isolated cluster and the parameters that would give the optimal result in
the thermodynamic limit.
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4 Beyond Mean-Field

4.1.2 Minimization of the free energy

The self-consistent calculation of mean-field parameters is equivalent to the
minimization of the free energy F. The minimization of F can be used to
find the expectation value of the density operators. The free energy of a
system is given by

F = − 1
β

ln Z, (4.12)

where
Z = tr

(
e−βH(R,δ)

)
. (4.13)

The derivative with respect to δ is

∂F
∂δ

= V ∑
R
〈∑
[ij]
[nRi − nRj + 2δ]〉, (4.14)

where the index R can be suppressed, because all clusters are equivalent.
The derivative of equation 4.14 is set zero, which leads to a self-consistency
condition

∑
[ij]
[〈ni〉 − 〈nj〉+ 2δ] = 0. (4.15)

In the case of one dimension this is

〈nN〉 − 〈n1〉 = 2δ, (4.16)

with only one decoupled bond [1N]. On site 1, it belongs to sublattice
A and on site N to sublattice B. The free energy has a minimum with
respect to the mean-field parameter δ by thermodynamic stability arguments.
Figure 4.2 shows the free energy as a function of δ for a fixed value U =
12t and variable values 12.5t ≤ zV ≤ 13.0t. The plot shows first-order
phase transitions, the minima have a level-crossing. A second-order phase
transition would have a continuous decreasing of the minimum from a finite
value to zero.
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4 Beyond Mean-Field

Figure 4.2: First order phase transitions for the interaction U = 12t and different values
for zV. The legend shows the value zV and the corresponding δ position of the
minimum energy.

4.1.3 Calculation for Nc = 2

The easiest way to describe this method is by a cluster of size Nc = 2. This
model consists of two sites labelled 1 and 2. The Hubbard model written
explicitly looks like

HNc=2 = −t(c†
1c2 + c†

2c1) + Un1↑n1↓ + Un2↑n2↓+

+Vn1n2 + Vn1〈nB〉+ Vn2〈nA〉,
(4.17)

where the next-neighbour hopping constant is zero t′/t = 0. Due to the
half-filling condition we consider the number of electrons N = 2, with the
number operator N = ∑jσ njσ. The total spin quantum number is Sz = 0,
with Sz =

1
2 ∑j(nj↑− nj↓). Both quantum numbers commute with the Hamil-

tonian and are conserved quantities, as explained in [21]. The Hilbert space
is four dimensional with four possible basis states

∣∣φJ
〉

that are shown in
table 4.1. The fourth column in the table, the binary representation, shows
the states as direct product of the spin states.

57



4 Beyond Mean-Field

Table 4.1: Four dimensional Hilbert space with N = 2 and Sz = 0 at half filling.
basis state algebraic picture binary
|φ1〉 c†

1↓c
†
1↑ |0〉 ↑↓ ◦ |10〉↓ |10〉↑

|φ2〉 c†
1↓c

†
2↑ |0〉 ↓ ↑ |10〉↓ |01〉↑

|φ3〉 c†
2↓c

†
1↑ |0〉 ↑ ↓ |01〉↓ |10〉↑

|φ4〉 c†
2↓c

†
2↑ |0〉 ◦ ↑↓ |01〉↓ |01〉↑

The ground state in the Hilbert space is

|φ0〉 = u′1 |φ1〉+ u′2 |φ2〉+ u′3 |φ3〉+ u′4 |φ4〉 . (4.18)

The matrix representation of the Hubbard model, equation 4.17, in the
Hilbert space can be written as

H =


U + 2V〈nB〉 −t −t 0
−t 3V 0 −t
−t 0 3V −t
0 −t −t U + 2V〈nA〉

 (4.19)

The next step is the exact diagonalization (ED) of the matrix, where the
eigenvalues and eigenstates are determined. The minimization of the free
energy leads to new expectation values of the densities 〈nA〉 and 〈nB〉. A
new matrix of the Hubbard model is set up and the calculation starts all
over again. This procedure is repeated until convergence is achieved.

4.2 Phase transition and Phase diagram

The control parameter for the approximation is the size of the cluster.
Clusters with two, four, six and eight sites are calculated. The next-nearest
neighbour hopping constant is zero for the following solutions t′/t = 0.
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4 Beyond Mean-Field

Figure 4.3: Phase transition in a one-dimensional lattice of the half filled extended Hubbard
model with a cluster of the size Nc = 2.

Figure 4.3 shows the phase transition for cluster with size Nc = 2. The
periodic ring mentioned in the legend defines the form of the cluster. If the
condition is periodic, the form is a ring. If the condition is non-periodic, the
cluster has the form of a bridge.

In the atomic limit, where t = 0, the phase boundary becomes a linear
function U = zV. With finite t, there is energy gain of the order of t near the
BOW-CDW instability, due to the competition between on-site and nearest
neighbour Coulomb interaction, as explained in [10]. The ring usually
overestimates the influence of the kinetic energy on the cluster and the
open cluster, in form of a bridge, underestimates the kinetic energy. For the
shown transition, the open cluster gives a function closer to the one of the
atomic limit.

Figure 4.4 shows the phase transition in the one-dimensional lattice for a
cluster of size Nc = 4.
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Figure 4.4: Phase transition in a one-dimensional lattice of the half filled extended Hubbard
model with a cluster of the size Nc = 4.

Figure 4.5: Phase transition in a one-dimensional lattice of the half filled extended Hubbard
model with a cluster of the size Nc = 6.
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4 Beyond Mean-Field

Figure 4.5 shows the phase transition in the one-dimensional lattice for a
cluster of size Nc = 6 and figure 4.6 shows the phase transition for a cluster
of size Nc = 8.

Figure 4.6: Phase transition in a one-dimensional lattice of the half filled extended Hubbard
model with a cluster of the size Nc = 8.
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Figure 4.7 shows the critical points zVc for the on-site interaction U = 5t at
the different cluster sizes Nc. The cluster of size Nc = 2 is not taken into
account for the scaling. The data is extrapolated by 1/L. For 1/L→ 0 the
values become zV(p)

c = 5.21t for the periodic cluster and zV(np)
c = 5.38t

for the non-periodic cluster. This values should have a scaling regime to
the same point. The difference of the points can be explained by the small
cluster sizes. In other literature [10] similar values can be found for a first
order phase transition.

Figure 4.7: Periodic ring on the left and non-periodic open cluster on the right finite-size
scaling at the interaction U = 5t. In the limit 1/L→ 0 the critical values become
zV(p)

c = 5.21t for periodic cluster and zV(np)
c = 5.38t for open cluster.
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5 Conclusion

The one-dimensional and square lattices have strong tendency to the anti-
ferromagnetic ordering in the case of perfect nesting without next-nearest
neighbour hopping. For the phase transition of the spin-density wave, a
critical value Uc of zero would be expected. For the one-dimensional and
the square lattice, finite critical values were found. This is the consequence
of a finite ε leading to a finite gap size.

The one-dimensional lattice has a critical value U(1D)
c = 0.58t (V = 0) and

the square lattice has a critical value U(SQ)
c = 0.38t (V = 0). The SDW

transition of the honeycomb lattice is at U(HC)
c = 2.25t (V = 0). The charge-

density wave transition is at a critical value of zVc. The critical values
have a linear relationship zVc = Uc

2 . For the one-dimensional lattice the

value is zV(1D)
c = 0.58t (U = 0). The square lattice has a CDW transition

at zV(SQ)
c = 0.29t (U = 0) and the honeycomb lattice has the transition

at zV(SQ)
c = 1.12t (U = 0). The honeycomb lattice does not have perfect

nesting, because of the topology of the bands. The phase transitions are
therefore very sharp.

To describe the effects of the loss of perfect nesting a next-nearest neighbour
hopping t′ was introduced. In the one-dimensional lattice the Fermi surface
has a significant change at t′(1D)

s /t = 0.5 and the perfect nesting gets
destroyed. The values beyond t′(1D)

s has an asymptotic behaviour for t′ →
t′(1D)
s . The same is valid for the square lattice, with the value t′(SQ)

s /t = 0. It
has an asymptotic behaviour for t′ → t′(SQ)

s . The honeycomb lattice has a
change of the Fermi surface at the hopping constant t′(HC)

s /t = 0.33. The t′

values beyond t′(HC)
s have a linear behaviour for t′ → t′(HC)

s .
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5 Conclusion

The last method described in this work uses exact diagonalization combined
with mean-field approximation to find a solution for the one-dimensional
lattice. The cluster sizes are Nc ∈ [2, 4, 6, 8]. The critical interaction values
depend on whether one takes open or periodic boundary conditions inside
a cluster. Nevertheless, the results from open and periodic boundary condi-
tions converge nicely towards each other for increasing cluster size. Also, a
finite-size scaling has given extrapolated values for the critical interaction
Vc that is in good accordance with literature.
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Appendix A

Fourier Transformation

Hamiltonians have a locality in direct space, which means they connect sites
in some defined distance. The locality in direct space is directly linked to a
non-locality in Fourier space. This duality can be seen in the fact, that the
kinetic energy of the Hamiltonian is intrinsic diagonal in Fourier space. The
potential Energy of the Hamiltonian on the other hand is diagonal in direct
space.

The non-diagonal Hamiltonian in real space can be diagonalized by the
Fourier transform. The Fourier transform of the creation operator, described
in equation 2.6, is

c†
kσ =

1√
N

∑
i

e−ikRi c†
iσ (5.1)

where N is the number of unit cells. This operator c†
kσ applied to the vacuum

state creates a Bloch state. The Fourier transform in the annihilation operator,
described in 2.7, is

ckσ =
1√
N

∑
k

eikRi ciσ. (5.2)
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