

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either
literally or by content from the sources used. The text document uploaded to TUGRAZonline is
identical to the present doctoral thesis.

Date Signature

– iii –

Acknowledgements

During my Ph.D. studies, I met people who inspired me and with whom I was able to discuss
interesting ideas. I was fortunate to work on various topics with some of those. I am grateful to
all of them. I do not think that it is even possible to adequately thank all of them, but I want to
express my gratitude to the most important ones here.

This thesis has been carried out at the Institute of Technical Informatics at the Graz University of
Technology in close cooperation with our industrial partner NXP Semiconductors Austria GmbH.
I want to thank Dr. Ulrich Neffe, my industrial partner’s advisor, for integrating me into the project
at NXP. I want to thank my supervisor, Professor Kay Römer, for guiding me through my Ph.D.
studies by raising critical questions, giving detailed feedback, and not losing the big picture. A
big shout-out goes to my advisor and mentor, Dr. Christian Steger, who always supported me in
topics such as publications and conferences. He challenged me with research topics and always
had an open ear for everyday issues. Additionally, I want to sincerely thank Professor Damian
Dalton for serving as a second adviser on my thesis. Furthermore, I want to thank the Austrian
Research Promotion Agency (FFG) for facilitating my Ph.D. studies.

I also want to say a big ”thank you” to all my colleagues. I was lucky enough to be a member of,
in my opinion, the best office at the institute during my Ph.D. studies. Thank you, Michael Spörk,
Rainer Hofmann, Alexander Rech, and Martin Erb. You always cheered me up and made me laugh
when there was no reason to. Thank you also for the well-spent time at the many ”workshop”
sessions throughout the last years. But my thanks do not end at our office’s doorstep. Another big
shout-out goes to my colleagues Michael Krisper, with whom I had many inspirational sessions
and the pleasure to work on two joint publications, and Jürgen Dobaj, with whom I had many
interesting technical discussions.

Eventually, I want to thank the most important persons in my life. First of all, my gratitude goes
to my parents Franz and Bettina. Without them, I would not have been able to study at all. They
always supported and motivated me throughout my whole life, before, during, and after my Ph.D.
studies. I’m also thankful for my grandparents Dorothea and Ferdinand. Thank you for always
inspiring me and pointing me in the right direction. My greatest thanks, however, go to my wife,
Lisa. Thank you for always getting my back, supporting me, motivating me, listening to all my
doubts and worries, and making my life so much better!

Graz, October 2020
Lukas Alexander Gressl

– v –

Abstract

The advent of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) enabled a new class
of connected, smart, and interactive devices. IoT devices and CPS are used in various contexts
and often have access to critical information in both the digital and physical worlds. Due to
their continuous connectivity to more extensive networks, such as the Internet, and their access
to valuable and often private information, security attackers are likely to attack them. Engineers
integrate these systems into both the industry and daily used consumer devices. Hence, CPS
and IoT devices add yet another attack surface to their respective field of application, posing
additional potential threats. These threats make a further consideration of security vulnerabilities
necessary. Designers best perform this consideration during the initial design of IoT devices and
CPS. Due to their resource-constrained nature, designing secure IoT devices and CPS poses a
complex task, as various selectable hardware components and task implementation alternatives
must be considered. Researchers proposed a range of automatic design tools to support system
designers to find the optimal hardware selection and task implementations. However, these tools
usually consider performance and power constraints but do not examine the designed systems’
security. Hence, they offer a limited way of modeling attack scenarios targeting the system under
design.

In this thesis, we propose a new approach to integrating security constraints into the design
space exploration (DSE) of IoT devices, CPS, and embedded systems in general. With our Se-
curity aware DSE (SaDSE) framework, we aim to close the gap of missing DSE tools capable of
modeling attack scenarios during the early phase of system design. Our framework offers the de-
signer the possibility to model security constraints from the perspective of the potential attackers.
It allows the designer to model the probability of successful security attack steps and their impact,
resulting in the likelihood of successfully executed security attacks and the security risk they im-
pose. By integrating security mechanisms, the SaDSE framework allows the designer to model
mitigation techniques, counteracting them. Furthermore, we integrated the consideration of secret
keys used by the chosen cryptographic algorithms into the design process. With these additional
inputs and definable security constraints, the framework presents system solutions, meeting per-
formance, power, and security requirements. These system solutions are then used by the SaDSE
framework to generate system simulations, offering the designer additional metrics on the system
behavior in different environments. We demonstrate the SaDSE framework’s capability using two
use cases developed in close cooperation with our industry partner.

– vii –

Kurzfassung

Das Internet der Dinge (IoT) und Cyber-Physische Systeme (CPS) ermöglichen eine neue Art von
Geräten miteinander zu verbinden, diese intelligenter und interaktiver zu gestalten. IoT-Geräte
und CPS werden in verschiedenen Kontexten verwendet und haben häufig Zugriff auf wichtige
Informationen, sowohl in der digitalen, als auch in der physischen Welt. Aufgrund ihrer konti-
nuierlichen Verbindung zu umfangreichen Netzwerken, wie dem Internet, und ihres Zugriffs auf
wertvolle und private Informationen sind sie oft die Zielscheibe für Sicherheitsangriffe. Diese
Systeme sind sowohl in die Industrie als auch in die täglich verwendeten Verbrauchsgegenständen
integriert. Daher eröffnen IoT-Geräte und CPS in ihrem jeweiligen Anwendungsbereich eine wei-
tere Sicherheitslücke, und stellen somit ein zusätzliches Risiko dar. Diese Sicherheitslücken sollen
von den Designern beim ersten Entwurf der IoT-Geräte und CPS berücksichtigt werden. Aufgrund
ihrer ressourcenbeschränkten Natur stellt das Entwerfen sicherer IoT-Geräte und CPS eine kom-
plexe Aufgabe dar, da eine Vielzahl an Hardwarekomponenten und verschiedene Möglichkeiten
zur Aufgabenimplementierung betrachtet werden müssen. Zur Unterstützung bei der Auswahl der
optimalen Hardware und Aufgabenimplementierung gibt es schon eine Reihe automatischer Ent-
wurfswerkzeuge. Diese Tools berücksichtigen normalerweise nur die Laufzeit und den Energie-
verbrauch der entworfenen Systeme, untersuchen jedoch nicht deren Sicherheit. Somit werden
Angriffsszenarien, die auf das entworfene System abzielen, nur in eingeschränkter Form model-
liert.

In dieser Arbeit wird ein neuartiger Ansatz zur Integration von Sicherheitsbeschränkungen in
die Design Space Exploration (DSE) von IoT-Geräten, CPS und eingebetteten Systemen im All-
gemeinen vorgeschlagen. Mit dem entwickelten SaDSE-Framework (Security Aware DSE) wird
die Lücke fehlender DSE-Tools, mit denen Angriffsszenarien in der frühen Phase des Systemde-
signs modelliert werden können, geschlossen. Das SaDSE-Framework erlaubt dem Designer, Si-
cherheitsbeschränkungen aus der Sicht potenzieller Angreifer zu modellieren. Der Designer kann
die Wahrscheinlichkeit einzelner Schritte erfolgreicher Sicherheitsangriffe modellieren. Daraus
können deren Auswirkungen sowie ihr Sicherheitsrisiko berechnet werden. Durch die Integrati-
on von Sicherheitsmechanismen ermöglicht das SaDSE-Framework dem Designer, Techniken zur
Abschwächung der Bedrohungen zu modellieren die diesen Attacken entgegenwirken. Darüber
hinaus wurde die Berücksichtigung geheimer Schlüssel, die von den ausgewählten kryptografi-
schen Algorithmen verwendet werden, in den Entwurfsprozess integriert. Mit diesen zusätzlichen
Eingaben und definierbaren Sicherheitsbeschränkungen bietet das Framework Systemlösungen
an, die die Anforderungen an Laufzeit, Energieverbrauch und Sicherheit erfüllen. Diese Sys-
temlösungen werden dann vom SaDSE-Framework verwendet, um Systemsimulationen zu ge-
nerieren, die dem Designer zusätzliche Metriken zum Systemverhalten in verschiedenen Umge-
bungen bieten. Die Leistungsfähigkeit des SaDSE-Frameworks wird in der Arbeit anhand von
zwei Anwendungsfällen, die in enger Zusammenarbeit mit unserem Industriepartner entwickelt
wurden, demonstriert.

– ix –

Contents

List of Figures xii

List of Tables xvii

Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4

1.2.1 Hypothesis and Research Questions . 5
1.2.2 Contributions . 5

1.3 Thesis Structure . 8

2 Background 11
2.1 Design Space Exploration . 11

2.1.1 Analytical Design Space Exploration 11
2.1.2 Simulation-based Design Space Exploration 12
2.1.3 Combined Design Space Exploration 13

2.2 Cyber-securty . 13
2.2.1 Security Properties . 14
2.2.2 Security Threats and Attacks . 14
2.2.3 Security Mechanisms . 15

2.3 Security Assessment Methods . 16

3 Related Work 19
3.1 DSE Tools considering Cyber-Security . 19

3.1.1 Abstract Approaches . 20
3.1.2 Detailed Approaches . 21
3.1.3 Network Design Approaches . 23

3.2 Security Attack Analysis Tools . 23
3.3 Analytical and Simulation-based DSE . 25
3.4 Differentiation . 26

3.4.1 Security-driven DSE . 26
3.4.2 Security Attack Analysis Tools . 27
3.4.3 Analytical and Simulation-based DSE 27

4 The Security-Aware Design Space Exploration Framework 29
4.1 Overview . 29
4.2 Analytical DSE Approach . 30

4.2.1 Design Perspectives . 30
4.2.2 System Mapping . 36
4.2.3 Constraint and Optimization Goal Definition 45

4.3 Analytical DSE Implementation . 47
4.3.1 Realizing SaDSE in DeSyDe . 49
4.3.2 Resulting Solutions . 52

4.4 Simulation-based DSE Approach . 53
4.4.1 Solution Transformation to System Simulation 53

4.5 Simulation-based DSE Implementation . 57
4.5.1 Environment Simulation Implementation 58
4.5.2 Connection to Physical Channel Simulation 59

5 Evaluation 61
5.1 Use Case Evaluations . 61

5.1.1 Security Rating . 61
5.1.2 Secure Sensor System . 64
5.1.3 Secure Indoor Localization System . 72

5.2 Performance Measurements . 80
5.3 Simulation-based DSE . 81

5.3.1 System Simulation Evaluation . 82
5.3.2 Simulation-based Improvements . 84
5.3.3 Usability of the Framework . 86

6 Summary and Conclusion 89
6.1 Conclusion . 89
6.2 Limitations . 90
6.3 Future Work . 90

7 Publications 93

Bibliography 194

List of Figures

1.1 Embedded system engineering phases [1]. 3
1.2 Traditional design flow for embedded systems and the phases where the contribu-

tions described in this thesis are located. 7

2.1 Y-chart based DSE . 12

4.1 Overview on the SaDSE approach. 30
4.2 Example task graph consisting of multiple tasks (T) operating (OP) and sharing

different data entities (D). The data entities are characterized with security prop-
erties (SP). T1 is Ts (start-task) and Te (end-task). 31

4.3 Example system architecture description depicting hardware components (HWC)
connected with physical channels (e.g. communication buses (Comm. Bus) and
wireless communication channels (Wireless Comm.)). 32

4.4 Example attack graph represented as a BAG with the attack steps aiming at distinct
tasks. 33

4.5 Example usage of security functions (SF) with and without the usage of secret
keys (e.g., session key (SK) and master key (MK)). In addition, the figure depicts
the linkage of their attacks to the original BAG and the extension of the attacks’
conditional probability tables (CPTs). 35

4.6 Reachable task-to-hardware-component mapping based on the simple sensor sys-
tem example. The data entity dsensor is depicted as D. 37

4.7 Simple sensor system example showing the secure channels between spanned tacc
and tsda, and tsda and tstore. It also shows the usage of soenc and the information
disclosure attacks targeting the distinct tasks and the used security mechanisms.
The data entity dsensor is shown as D. 41

4.8 Simple sensor system example showing the secure channels spanned between tacc
and tsda, and tsda and tstore. It also shows the usage of sf crypt and information
disclosure attacks aiming at the distinct tasks and the used security mechanisms
based on their direction. Furthermore, it shows how the system uses the key k256
to realize the cryptographic functions. 42

4.9 Attack mitigation of security mechanisms (Sec-Mech.), with and without the def-
inition of security functions. The depicted example refers to the simplified sensor
system example. 44

4.10 Simulation-based DSE part of the SaDSE tool. 54
4.11 Example of an architectural simulation mode generated by the component factory.

What HWCs are generated is defined by the solution found by the analytical DSE . 55
4.12 Example architectural simulation model with the tasks mapped to the distinct

HWCs, generated by the component factory as defined by the solution found by
the analytical DSE. 56

4.13 Example system simulation model consisting of multiple devices, connected to
one another via an external communication channel. The devices are characterized
as mobile or stationary devices. This information is used by the environmental
simulation. 57

– xv –

4.14 SystemC components generated from the component factory for the system simu-
lation. 58

5.1 Secure sensor system task graph. 65
5.2 Attack graph describing the attack scenarios aimed at the secure sensor system. . 68
5.3 Solution space of variant I ordered according to normalized power consumption

and performance . 70
5.4 Solution space of variant II ordered according to normalized power consumption

and performance . 70
5.5 Solution space of variant I ordered according to average attack success probability

and normalized performance . 70
5.6 Solution space of variant II ordered according to average attack success probability

and normalized performance . 70
5.7 Secure localization system task graph. 74
5.8 Attack graph describing the attack scenarios aimed at the secure indoor localiza-

tion system. 77
5.9 Solution space with security calculated using BAGs. 79
5.10 Solution space with security calculated using risk trees. 79
5.11 Solution space with combined BAG and risk tree based security calculation. . . . 79
5.12 SaDSE framework’s performance without task mapping limitation [2]. 81
5.13 SaDSE framework’s performance with task mapping limitation. 81
5.14 Channel throughput of the single scenarios running the devices generated from the

respective solutions found during the analytical DSE. 83
5.15 Number of distance estimations performed by the anchors in the single scenarios.

For each scenario, the devices were generated from the respective solutions found
during the analytical DSE. The threshold of 1 distance estimation per second is
marked. 84

5.16 Diagram showing the basic blocks for implementing the peer-to-peer APDU ap-
proach implemented in the system simulation model [3]. 85

List of Tables

5.1 Ratings of AV , AC, PR, UI and SR based on the CVSS. 63
5.2 Data entities used by the secure sensor system and their security properties: con-

fidentiality (conf.), integrity (int.), authenticity (auth.). 64
5.3 Hardware components selectable for the secure sensor use case. Each compo-

nent comprises the implementation vulnerability risk (IVR), and the performance
/ power consumption of the security mechanisms. 66

5.4 Possible task to hardware component mappings for the secure sensor usecase, with
additional WCETs given in ms. 66

5.5 Security rules used in the secure sensor use case study 69
5.6 Most secure, the fastest, the fastest secure, and the most power efficient secure

(MPE) solutions found based on average attack probability (APavg), the execution
time and the power consumption. 71

5.7 Data entities used by the secure localization system and their security properties:
confidentiality (conf.), integrity (int.) and authenticity (auth.). 73

5.8 Hardware components with security features (Sec. feat.). Implementation vul-
nerability risk (IVR), performance (Perf.) given in µs, and power consumption
(PWC) in mW . 75

5.9 Possible task to hardware component mappings for the secure localization system,
with additional WCETs given in µs. The hardware components are characterized
with their security descriptions (Sec. Descr.) . 75

5.10 Security rules used in the secure localization use case study 78
5.11 Most secure, fastest, and fastest secure solution found based on APavg, and

MRVavg, with the delay normalized to system with lowest delay. Solutions are
given for node (N) and anchor (A). 78

– xvii –

Acronyms

AES Advanced Encryption Standard.

BAG Bayesian Attack Graph.
BLE Bluetooth Low Energy.

CAN Controller Area Network.
CC Common Criteria.
CP Constraint Programming.
CPS Cyber-Physical System.
CPT Conditional Probability Table.
CVSS Common Vulnerability Scoring System.

DES Data Encryption Standard.
DeSyDe Design space exploration for System Design tool.
DSE Design Space Exploration.

EAL Evaluation Assurance Level.
ECC Elliptic-Curve Cryptography.
ECDSA Elliptic Curve Digital Signature Algorithm.

HSM Hardware Secure Module.

I2C Inter-Integrated Circuit - communication bus.
IoT Internet of Things.

JDT Joint Distribution Table.

KDF Key Derivation Function.

LOS Line of sight.

MAC Message Authentication Code.
MCU Microcontroller Unit.
MSAG Mapping- and scheduling-aware graph.

PP Protection Profile.

– xix –

RSA Rivest-Shamir-Adleman.

SaDSE Security aware Design Space Exploration.
SDFG Synchronous data flow graph.
SE Secure Element.
SPI Serial Peripheral Interface - communication bus.
ST Security Target.

TDMA Time divions multiple access.
TLM Transaction Layer Modeling.
ToE Target of Evaluation.

UWB Ultra Wideband.

W-LAN Wireless Local Area Network.
WCCT Worst Case Communication Time.
WCET Worst Case Execution Time.
WiFi Wireless Fidelity.

xls File extension of Excel files.
XML Extensible Markup Language.

1
Introduction

This chapter motivates why cyber-security must be considered already in the early phase of the
design of Internet of Things (IoT) devices and Cyber-Physical Systems (CPS) and embedded sys-
tems in general. It describes the investigated research questions and summarizes the contributions
of this thesis. Furthermore, it outlines the structure of the thesis.

1.1 Motivation

The number of IoT devices and CPS has been rapidly increasing in the last decade. Depending on
the source of information, the number of IoT devices used by the year 2020 ranges from 26 billion
to 50 billion devices [4,5]. For the year 2025, researchers estimate their number to reach 75 billion
devices [6]. These IoT devices are a subclass of embedded systems and are usually equipped with
sensors and connect to a backend system, such as cloud services. Regarding the term IoT, a clear
definition is difficult to grasp, as researchers either describe them from the Internet- or the Thing-
based perspective, depending on what attributes they want to emphasize [7]. In this thesis we stick
with the definition coined by the Information Society (INFSO), who defines the IoT to be a

... a world-wide network of interconnected objects uniquely addressable, based on
standard communication protocols [8]

This definition emphasizes on the Internet-based perspective with its continuous connection of
IoT devices. With their equipped sensors, they are capable of collecting data, which they can then
transmit via their connection interfaces. Depending on the nature of the IoT device, the collected
data might contain private information, such as human heartbeat, body temperature, and others
[9]. Considering their vast number and their field of application, one can argue that IoT devices
infiltrated our daily lives on a huge scale. The introduction of CPS into the industry heralded
the next industrial revolution, called Industry 4.0 [10]. Similar to IoT devices, CPS consist of
microcontrollers, integrated sensors, and actuators that allow interaction with the physical world.
Edward Lee defined them to be

... integrations of computation and physical processes. Embedded computers and
networks monitor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa. [11, p. 1]

CPS process the sensed data and send it to other CPS or larger systems via communication
interfaces [12]. In their field of application, CPS sense and process critical data, often not intended
to be shared publicly. Their respective definitions show that the term IoT emphasizes the devices’
connections to the Internet, whereas the term CPS highlights the systems’ impact on physical
parameters. From a security perspective, one must notice the large attack surface of IoT devices

– 1 –

Towards Security-Aware Design Space Exploration for Embedded Systems

due to their permanent connection to the Internet, and the security risk induced by CPS, due to
their influence on their physical surrounding.

With their advances into the customer market and the industry, IoT devices and CPS play an
increasingly important role. Both the vast area of their application and their access to critical
data make them attractive targets for security attackers. Numerous security incidents affecting IoT
devices have been reported in recent years [13, 14]. Considering the more prominent incidents
on critical infrastructure, one must mention the notorious Stuxnet attack, in which cyber-security
criminals successfully attacked an Iranian atomic power plant in 2010 [15], but also the Maroochy
water breach reported in the year 2007 [16]. A. Humayed et al. list various other security incidents
considering CPS used in the context of industrial control systems, smart grids, medical devices,
and others [17]. Depending on the application domain in which one uses IoT devices or CPS,
successfully conducted cyber-security attacks can have a financial impact, or even cost human
lives. Hence, the security of such systems is of utmost importance.

However, as described by A. Humayed et al., especially CPS suffer from several security vul-
nerabilities that originate from different sources. A dominant ”security by obscurity” approach
taken by the initial designs of CPS, their increasing connectivity among each other and with the
Internet, and the heterogeneity of their used components are the most prominent sources of vul-
nerabilities [17]. Considering IoT devices, the lack of security considerations stems from a short
time to market, cost reduction during the design and development phase, or from the emphasis on
the device’s functionality in favor of its security.

The previous paragraphs highlight how embedded systems in the form of IoT devices and CPS
have infiltrated various application areas and how they operate on critical data. Hence, their lack
of security has a significant impact on the applications that employ them. Considering the security
of embedded systems in general, most of their vulnerabilities stem from bad design choices and
architectural decisions. Furthermore, the later mitigation of such fundamental shortcomings be-
comes increasingly difficult, as many of them only cover up such vulnerabilities but cannot fix the
underlying causes [18]. Hence, the integration of cyber-security aspects during the initial design
phase is vital to develop secure embedded systems. Security is not the only requirement to which
embedded systems must adhere. Considering their integration into more complex systems, they
often must conform to timing and power constraints [19]. These constraints are especially crucial
for IoT devices and CPS. The various constraints challenge the designers of such systems to find
the best possible selection of system components and the optimal task allocation. Besides satis-
fying all constraints, the system’s design must also optimize distinct metrics in many cases. Such
optimization goals might concern the system’s performance, power consumption, costs, or other
metrics. Before describing the design process of embedded systems, some basic terms should be
introduced.

Requirements: specify conditions or capabilities a product must meet. Thereby, it repre-
sents a contract between the stakeholders and the designers. A requirement can be func-
tional or non-functional. Functional requirements describe a system’s anticipated behavior.
Non-functional requirements do not concern a system’s behavior but describe other metrics
obligate to the system [20].

Constraints: are assertions representing a restriction on a distinct metric of the system
under design, such as timing, power consumption, or others. These constraints derive from
the requirements formulated by the system designers and the stakeholders [21].

– 2 –

1 Introduction

Security mechanisms: describe technical tools and methods implementing security ser-
vices. These mechanisms might operate in cooperation with other security mechanisms or
on their own. A system uses these mechanisms to secure certain attributes, such as confiden-
tiality, authenticity, or others. Examples for such mechanisms are cryptographic algorithms,
digital certificates, hardware protected areas within the microcontroller to execute secure
code, secured memory areas, and many more [22].

The life cycle of embedded systems, in general, spans several phases, ranging from the early
concept definition of functional and non-functional requirements, over the development of the
approved design, to the final system integration and product support. Figure 1.1 shows these
development phases with a focus on the cost-effectiveness of decisions and the commitment costs
during the distinct phases. Commitment costs are costs that project managers commit to spending
in the future. During the first phase of the system design, designers only spend 20% of the overall
project costs. However, in this phase, 80% of the overall costs are committed. This early decision
also has the impact that design modifications in later project stages have a significant impact
on the overall product costs and its time-to-market. This insight shows that the more decisions
designers take in the early design phases, the faster a product can be developed, and the cheaper
the overall development becomes. Hence, designers must perform a rigorous analysis of all system
requirements [1, 23].

Figure 1.1: Embedded system engineering phases [1].

Based on the overall development of embedded systems, one can argue that the designer must
perform these considerations of cyber-security aspects early on, due to several reasons. First, be-
cause a later integration increases the overall development costs. Second, because the additional
usage of security mechanisms impacts other non-functional requirements, such as performance,
power consumption, costs, chip area, and others [24, 25]. This effect is essential when consid-
ering time-critical systems as a later integration of these security mechanisms might impact the
overall system design, and, hence, lead to unforeseen costs. Third, security mechanisms cannot be

– 3 –

Towards Security-Aware Design Space Exploration for Embedded Systems

simply added to an existing product to increase its security. Instead, one must integrate security
mechanisms right at the beginning of the system design [26].

The overall system design demands that the designers consider a multitude of requirements that
often interfere with each other. Balancing these requirements poses a task too complex to be
performed manually. Design Space Exploration (DSE) tools have been developed to aid system
designers in this task. These DSE tools are capable of finding the optimal task allocation and
system partitioning based on multiple system constraints [27]. Considering security requirements,
however, they cannot model security requirements holistically. Hence, we saw a gap in this area,
which we aim at closing in this thesis. We developed a security-aware DSE framework which
allows system designers to describe security requirements from the perspective of a potential at-
tacker, and, based on these and other requirements, computes secure system design solutions using
both an analytical and a simulation-based approach.

1.2 Problem Statement

As discussed in the previous section, the consideration of security requirements at the early system
design phase benefits the whole product development by decreasing costs and development time
while improving functionality. Existing DSE tools usually used during this initial phase show a
lack of support for considering security requirements and their influence on the system partition-
ing and task allocation. These tools take a binary approach regarding the security of embedded
systems. They do not allow the modeling of security requirements from the attacker’s view on the
system under design. The analysis of potential attack scenarios gives additional information about
what types of attacks the system under design must be able to defend itself against. The attack sce-
nario’s description from the attacker’s perspective contains valuable information. Its integration
into the overall system design benefits the overall system’s security. Hence, the attacker’s perspec-
tive allows for better judgment on the criticality of distinct assets in the system [28]. Furthermore,
existing tools either focus on specific details of the system or abstract and thereby disregard im-
portant information, such as secret key placement (e.g., the works of Stierand et al. [29] and Xie et
al. [30]). Chapter 3 gives a detailed description of these tools. When considering the vast amount
of possibilities of how one can increase the security of a system and its impact on system costs,
performance, power consumption, and others, a holistic approach is necessary.

Introducing security constraints into automated DSE of embedded systems in a holistic way
faces several challenges. First (i), the representation of the security requirements must be cho-
sen in a way that is straight forward to model for system designers. This representation and the
description of the security requirements must build on well-defined and widely used methods.

Second (ii), the security requirements must be represented in a way that one can integrate them
into an automatic DSE approach for designing secure embedded systems. The DSE tool must
reflect the influence of these security requirements on the other system constraints, such as perfor-
mance, power consumption, and others.

Third (iii), the narrow consideration of single devices is often not enough when designing com-
plex systems. Especially when considering the networking behavior of multiple devices in dy-
namic environments, such as localization systems, a simulation-based DSE approach is better
suited. With these simulations, designers can investigate different environments, including their
physical properties and communication channel attributes. Designers can use these simulations

– 4 –

1 Introduction

to analyze further metrics, such as network throughput, packet reception rate, and others, to de-
termine how the designed systems perform in different, dynamically changing scenarios. Based
on the simulated devices’ performances, the designers can reassess the overall system design and
either approve or reconsider their choices. Also, in a simulation-based DSE, the designers must
consider security constraints and model the chosen security countermeasures. The countermea-
sures’ impact on the devices’ internal timings is essential, as these might influence network-related
metrics.

1.2.1 Hypothesis and Research Questions

Based on the above challenges, we derive the following hypothesis and three related research
questions. The contributions described in this thesis aim at answering these questions and solving
the problems stated above.

Hypothesis: The consideration of security constraints based on automated DSE for embedded
systems allows us to find secure solutions at an early system design stage without neglecting other
non-functional system requirements. These solutions can be used during simulation to assess their
network-behavior in dynamic environments.

Based on this hypothesis, the following research questions arose:

RQ1: How to model security requirements in a holistic way to use them in DSE?

RQ2: How to derive and integrate security constraints usable during automatic DSE of
embedded systems?

RQ3: How to use the design solutions proposed by the analytical DSE and assess their
network-behavior in dynamic environments?

1.2.2 Contributions

The thesis aims at answering these research questions by introducing the following contributions:

Contribution I: In this thesis, we investigate how to model security requirements for de-
signing embedded systems from the perspective of potential attackers. Thereby, we use
different modeling techniques to describe the attacker’s options on compromising the sys-
tem under design, including the risks of the distinct attack scenarios. Furthermore, we
describe the security mechanisms mitigating these attacks, reflecting their impacts induced
on costs, performance, power consumption, and other metrics, on the overall system. Al-
though we developed this approach to design embedded systems, one can also leverage it
to design secure computer systems in general. Within this thesis, we present how to use
our approach for designing a secure sensor system, considering security attacks on multiple
abstraction layers, including the design of the embedded sensors, but also the high-level
design of the server platform hosting the analysis application. This contribution builds on
papers [2, 31–33].

Contribution II: We show how to integrate these security requirements into the design
space exploration for secure embedded systems based on the Security-aware Design Space
Exploration SaDSE tool. The SaDSE tool is based on a classic DSE framework and models

– 5 –

Towards Security-Aware Design Space Exploration for Embedded Systems

the constraints using a constraint-based programming approach. We show how the SaDSE
tool reflects the security requirements by calculating additional constraints for the solver.
Thereby, we show how to use these constraints to formalize objective functions towards
which the solver optimizes. We describe how the selection of the various security mecha-
nisms influences system metrics, such as performance, power consumption, and costs. We
introduce optimization approaches on how to speed up the calculation of secure solutions.
In addition to modeling security requirements from the attacker’s view, this thesis introduces
the automatic consideration of secret key placement during the DSE. This integration aims
to support system designers with their decision on what hardware components to use to store
the secret keys used by the system. This contribution builds on papers [32, 34–37]. With
the SaDSE tool, we present a proof-of-concept implementation. However, the approach
presented here can also be integrated into other frameworks.

Contribution III: We use the solutions found during the analytical DSE to generate a sys-
tem simulation model from them automatically. Thereby, the framework represents each
found solution of the analytical phase as a device model within the simulation. Each de-
vice model consists of simulation models for the hardware components and tasks mapped
to them. The framework generates the tasks as skeletons, offering the designers a structure
to implement the task’s functionality for the simulation. The generated device models re-
flect the characteristics of the represented solution, including the influences caused by the
selected security mechanisms. The framework connects multiple devices using a network
simulation. In this thesis, we use a network simulation developed with our project partner
and use the generated simulation for analyzing network metrics, such as channel through-
put, packet reception rate, and others. The tool offers the designers the possibility to assess
the influence of the security mechanisms on these overall system metrics for each solution
based on the simulation results. The designers can use these insights to approve or adapt the
found solution. The framework generates the simulation in such a way that it is integrable
into further network simulations. Furthermore, based on the simulation generated by the
SaDSE tool, we show the further potential of optimizing distinct parts of the designed sys-
tem. In this thesis, we use the generated simulation to optimize the communication between
a secure element and a micro-controller adapting the underlying protocol. This contribution
is described in papers [3, 38]. With this generation of a system simulation based on the
analytical DSE, the presented framework introduces a novel approach to consider security
requirements in the early design of embedded systems.

Figure 1.2 shows the traditional design flow for embedded systems. It shows the levels of the
design flow on which the thesis’ contributions are located. The system design starts on a high
abstraction layer and adds additional details to the design while further proceeding in the design
process. At the System Level, the designers capture the design of the product as an informal
specification, describing the system requirements, the functional behavior, and the architectural
components. Based on these descriptions, the next step in the system design flow is to add char-
acteristics describing the implementation of single behavioral elements on distinct hardware com-
ponents. The main goal at this Architectural Level is to find a selection of hardware components
and a mapping of the behavioral elements on these components, which satisfies the system re-
quirements described at the System Level. Based on the system partitioning and the functional
mapping, system designers can investigate different scheduling schemes. Based on the solutions
found on the Architectural Level, designers can set up co-simulations, which allow the integra-

– 6 –

1 Introduction

System Requirements System Description

System Partitioning / Scheduling

Functional view Architectural view

Co-Simulation

Implementation

security requ.

System Simulation

HW Simulation SW Simulation

A
bstraction Level

high

low

I

S
ystem

 Level
A

rchitectural Level
Transaction Level

performance requ.

security description

mapping component
selection

cost calculation

automatic simulation generation
III

power cons. requ.

II

calculation of task scheduling

cost requ.
sec. assets
task descr.

sec. characteristics
hardware descr.

Attack view security functionsI

Figure 1.2: Traditional design flow for embedded systems and the phases where the contributions described in
this thesis are located.

tion of both software and hardware simulations. System designers then use these simulations to
enhance the accuracy of the system model further. At all these different abstraction levels, the
designers can take a step back, alter the models of the preceding level, thereby refining the system
design. The circular arrows indicate these refinements and the back-tracing arrows at distinct lev-
els. Hence, the overall system design flow is an iterative process [19]. The contributions to this
traditional design flow are numerically marked in Figure 1.2 with Roman numerals (I-III). The
resulting modifications to this traditional design flow are highlighted in the gray boxes.

In contribution I, we introduced several security-related metrics into the system description and
the system requirements. The system description was extended with a security description. We
added a model of potential attack scenarios described from the attacker’s perspective and security
functions describing attack mitigation techniques available to the system under design. Further-
more, we introduced security assets into the functional view, which traditionally describes the
system’s functionality as a task graph. The architectural view was extended with security charac-
teristics, expanding the traditional description of hardware components with security mechanisms
available to them. The system requirements were extended with security requirements. The secu-
rity requirements describe what security attacks the calculated solutions must be able to withstand.

Contribution II highlights the changes introduced to the calculation of the tasks’ mapping to
the hardware components. It also describes the selection of the hardware components, and the

– 7 –

Towards Security-Aware Design Space Exploration for Embedded Systems

calculation of the costs. It describes the derivation of the security constraints from the security
requirements and how the security mechanisms are selected and influence a solution’s security,
performance, power consumption, and other metrics.

Contribution III contains the automatic generation of the simulation based on the solutions
found in the analytical DSE, thereby supporting the designers with an automatic transition to a
simulation-based DSE. It shows how the security mechanisms that were chosen by the analytical
DSE influence the overall system behavior in different settings.

1.3 Thesis Structure

In this first chapter, we argued why the integration of security requirements into the DSE of embed-
ded systems is of importance. We discussed the problems occurring when modeling and integrat-
ing these requirements into an automatic DSE approach and gave an overview of the contributions
with which we aim to solve them. The remainder of this thesis is structured into the following
chapters:

Chapter 2 describes the thesis’ foundations, introducing the basics of DSE for embedded
systems and cyber-security, including their analysis methods.

Chapter 3 gives a detailed discussion of related research in the area of DSE with an empha-
sis on cyber-security. In this chapter, we describe how the framework presented here differs
from state of the art DSE tools.

Chapter 4 presents the overall design of the SaDSE framework, showing how we describe
the security requirements on the overall system design and how we derive the constraints
from them. It describes the basic concepts with which the SaDSE framework was imple-
mented. It focuses on the security constraints and their effect on the system partitioning, the
mapping, and how the framework integrates other system constraints into the DSE.

Chapter 5 describes two use-cases with which the functionality of the SaDSE framework
is evaluated. Based on the solutions found for these use-cases and their real-world imple-
mentations conducted with our project partner, we review our approach’s soundness.

Chapter 6 concludes this thesis, discussing its limitations and giving an outlook on future
work.

– 8 –

2
Background

This chapter introduces and describes the fundamental terms used in this thesis. It covers necessary
information about DSE, covering its goals and methods. Furthermore, the chapter explains the
basic concepts of cyber-security, discussing its basics, and prominent assessment methods.

2.1 Design Space Exploration

Design Space Exploration (DSE) describes the evaluation of possible design alternatives for a sys-
tem under design. These system designs involve multiple metrics, such as performance, power,
component costs, and many more. With the increasing complexity of systems, especially in em-
bedded systems, a designers’ task evaluating design alternatives has become increasingly complex.
To support system designers in their evaluation, tools for an automatic DSE are used in both in-
dustry and scientific research. DSE tools usually follow the popular Y-chart approach. It builds on
the co-design of application and platform. It also includes the mapping of the application to the
platform [39]. Figure 2.1 shows this Y-chart approach. These tools allow for fast exploration of
design alternatives in the initial system design phase [40]. DSE tools can generally be categorized
into analytical and simulation-based approaches [41].

2.1.1 Analytical Design Space Exploration

The analytical DSE approach models the design problem abstractly and specifies it as a formal
problem. This approach enables the application of analysis methods to search the design space
for valuable solutions. The analytical DSE approach allows a first and fast filtering. However,
the limitations of the analytical approach largely come from this abstraction, as the modeling of
complex systems is a complex task. Especially when considering the dynamics of the environment
in which the system under design is deployed, the analytical approach lacks the capability of
reflecting this dynamism. An additional drawback of analytical DSE tools is the general worst-
case estimation of system metrics such as execution times during the initial design phase. This
estimation leads to an overall pessimistic system model [41, 42].

There exist numerous frameworks supporting this analytical DSE approach [43–46]. The an-
alytical DSE must solve the system partitioning, the mapping problem, and the task scheduling.
System partitioning describes the selection of the hardware components for the platform. These
hardware components represent processing elements and physical communication channels, such
as bus systems or connection-less channels [19]. Processing elements come in the form of general-
purpose processors, application-specific instruction-set processors, application-specific integrated

– 11 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Application Platform

T1

T3

T2
T4

P1 P2

P3

P4 P5

Mapping

P1 P2

P3

P4 P5

T1 T2

T3

T4

Analysis

Figure 2.1: Y-chart based DSE

circuits, and many others. Bus systems come in the form of Inter-Integrated Circuits (I2C), Serial
Peripheral Interface (SPI), etc. Common contact-less channels for embedded systems are Near
Field Communication (NFC), Wireless Local Area Networks (W-LAN), Bluetooth Low Energy
(BLE) and others [47].

The mapping problem describes the allocation of the tasks to the selected hardware components.
The system partitioning, the task mapping, and the scheduling affect various system parameters,
such as power consumption, timing behavior, and others. These influences must be modeled as
functions within the DSE tool. Based on defined requirements considering the system’s perfor-
mance, power consumption, and other attributes, the DSE tool finds the valid solutions among the
system design alternatives. Most DSE tools also find the solution(s) with one or multiple opti-
mal attributes. This approach turns the DSE problem into a single-/multi-objective optimization
problem. There exist various approaches on how to solve these problems. The most prominent
methods use heuristic algorithms, or special constraint programming approaches [19, 48–51].

2.1.2 Simulation-based Design Space Exploration

In contrast to the analytical DSE approach, the simulation-based DSE is capable of reflecting
the dynamic changes of the environment in which the system under design is deployed. System
designers use the simulation-based approach to understand how the designed system behaves in
various use cases, coming with different environments [41,42]. There exists a range of simulation-
based DSE frameworks [52–54]. Simulation-based DSE generally also follows the Y-chart model,
similar to the analytical DSE. However, instead of modeling the DSE problem as an abstract
model, simulation-based DSE implements the system’s behavior and its platform components
within a simulation environment. Strictly separating the behavior from the platform implemen-

– 12 –

2 Background

tation allows an independent mapping between tasks and platform components. This mapping
defines the tasks’ attributes, such as timing behavior, power consumption, and others. Simulation-
based DSE allows the iterative refinement of the system model. Compared to the analytical DSE,
the simulation-based approach comes with a more complex implementation. However, it allows
an evaluation of the system in dynamically changing environments and a steady refinement of the
overall model [52]. Such implementations build on simulation environments, such as SystemC,
SystemVerilog, and others [55, 56].

2.1.2.1 SystemC Simulation Engine

SystemC is a well-established simulation engine both within research and the industry. Its sim-
ulation engine is completely implemented in C++, which makes it usable in different execution
environments. The key feature of SystemC is its capability of modeling systems on various ab-
straction levels. They range from capturing the system requirements (highest abstraction), over the
partitioning of the system into hardware and software components, down to the register transfer
level (lowest abstraction) [55]. SystemC uses a transaction layer modeling (TLM) approach for
defining the interfaces between distinct models in the system simulation. This modeling approach
allows the designers to independently refine single modules without changing their communica-
tion interfaces to other modules. This approach helps in tackling the problem imminent to all
simulation engines: execution time versus simulation accuracy. The TLM approach lets the de-
signers choose in what modules to increase the accuracy without changing the abstraction level of
other modules. Therefore, feasible execution times of the system simulation can be maintained.

Its extendability and ability to model the system on multiple abstraction layers make SystemC a
popular choice for the implementation of hardware/software co-design for embedded systems. The
easy integration of additional C++ libraries and the usage of C modules allows a straight-forward
implementation of hardware/software partitionings [57].

2.1.3 Combined Design Space Exploration

Multiple research teams have been driving the idea of combining both analytical and simulation-
based DSE to integrate the benefits of both approaches [41, 58, 59]. Several approaches use the
output of the simulation-based DSE to feed different configurations to an analytical approach. This
second step then finds the optimal configurations using analytical DSE [58,59]. Other approaches,
such as the framework of Fernando Herrera et al. [41], perform an analytical DSE as a first step,
filtering valuable solutions from which their framework creates simulation models. These models
are then tested within various environments.

2.2 Cyber-securty

The terms cyber-security and information security are used interchangeably in the literature. The
International Telecommunications Union defines cyber-security as a collection of various security
tools, policies, concepts, but also guidelines, to protect the assets of both organizations and users
against relevant security risks [60]. The security assets that need protection and the mechanisms
how to protect them are defined in various standards [61].

– 13 –

Towards Security-Aware Design Space Exploration for Embedded Systems

2.2.1 Security Properties

The main purpose of cyber-security is the protection of user and company assets against imminent
security threats. To determine the necessity of this protection, these assets must be made tangible,
and their value must be determined. An asset’s security properties determine against what threats
it must be secured [60, 62–65]. The most common security properties are:

Confidentiality: The protected asset is only readable by intended recipients. It is not read-
able by any unauthorized entities. The protection of the asset must be considered during
transmission, but also when it is stored.

Integrity: The protected asset reaches the intended recipient with the same content as sent
by the sender. Any modification performed by an unauthorized entity must be noticeable.
Modifications mainly come in the form of alteration or corruption of the asset. Unauthorized
participants must not alter the asset’s content during transmission and storage.

Authenticity: The protected asset is proven to originate from the sender it claims to be
its originator. The recipient checks the asset’s authenticity, and thereby also its integrity.
Depending on what standard, authentication is a part of data integrity [64].

Availability: The protected asset must be reachable by the intended participants whenever
they need it. Any prevention of this reachability is considered a successful attack.

2.2.2 Security Threats and Attacks

The terms of security threats and attacks are often used ambiguously when considering various
publications that discuss information security in general. Researchers often use these terms inter-
changeably. This section introduces the most prominent definitions of security threats and attacks.
Threats, in general, are actions that take advantage of vulnerabilities within a system [66]. Security
threats aim at breaking the security properties of an asset. There exist various models for describ-
ing security threats and how they are categorized [67]. In this thesis, we use the most prominent
and widest used threat model: The STRIDE model [68]. This model categorizes security threats
into the following classes:

Spoofing identity: The successful identification as some other entity by falsifying informa-
tion. This threat aims at breaking an asset’s authenticity.

Tampering with data: Intentional and malicious data modification during storage or trans-
mission. Tampering aims at breaking the asset’s integrity.

Repudiation: The break of the association between actions/changes and a unique individ-
ual. Thereby, repudiation breaks or circumvents the proof of the asset’s integrity and its
origin.

Information disclosure: The reading of information one is not authorized to read. Infor-
mation disclosure aims at breaking an asset’s confidentiality [69].

Denial of service: The denial of a service to a valid user. This threat breaks an asset’s
availability.

Elevation of privilege: The unauthorized gain of privileges, such as reading and writing of
assets which are normally protected from these operations being performed.

– 14 –

2 Background

These terms listed in the STRIDE model are also referred to in various other information security
standards [70–73]. The threats described here result from potential security attacks. Security at-
tacks focus on harming a system and disrupting its intended operation. Attackers use special tools
and techniques to find and exploit vulnerabilities in the system to achieve their intended goals.
Each security attack comes with certain costs, expressing the attacker’s expertise and available
resources. Security attacks can come in many forms, ranging from access attacks, over attacks on
privacy, to physical attacks [74].

Papp et al. describe a range of documented attacks, vulnerabilities, and threats in the area of
embedded system security. The authors build their description on the Common Vulnerability and
Exposures database, which provides a comprehensive list of known vulnerabilities with additional
standardized identifiers. Attacks on embedded systems come in the form of hijacking the control
flow, eavesdropping, packet injection, infection of the software with malicious code, and many
more. These attacks lead to integrity violations, information leakage, unauthorized access, mali-
cious code execution, and other unintended effects [75].

2.2.3 Security Mechanisms

Security attacks imply threats to a system by exploiting its vulnerabilities. These vulnerabilities
allow an attacker to intrude a system which allows for conducting harmful actions to valuable as-
sets, breaking their security properties [62]. Security mechanisms are methods used by the system
to prevent these exploits and, thereby, to mitigate security attacks. Thereby, these mechanisms
prevent the breaking of the asset’s properties. There exists a vast number of security mechanisms.
This section only lists mechanisms which are used throughout the thesis:

Cryptographic primitives: Cryptographic algorithms are, in general, put into two cate-
gories, symmetric and asymmetric cryptography. The key difference between these two
primitives is the used secret keys [76]. Both primitives build on the secrecy of the used
private key. Symmetric cryptography requires both sender and receiver to use the same
private (secret) key. Prominent and widely used symmetric cryptography algorithms are
the Advanced Encryption Standard (AES) and its predecessor, the Data Encryption Stan-
dard (DES) [77, 78]. Said algorithms are either used for encryption, protecting an asset’s
confidentiality or for authentication, protecting is integrity/authenticity. Authentication is
performed by Message Authentication Codes (MACs) [79] which rely on cryptographic
hash functions (involving a secret key) [80], or symmetric cryptographic algorithms [81].

Asymmetric cryptography relies on key pairs for the sender and receiver. A key pair consists
of a public key and a private key. Depending on the used algorithm, the private key is used
for decryption and signing; the public key is used for encryption and verification of a given
plain text. As its name suggests, the public key can be shared with everyone; the private key
must be kept secret to guarantee the protection provided by the algorithm. Prominent exam-
ples for asymmetric cryptographic algorithms are the Rivest-Shamir-Adleman [82] (RSA)
and the Elliptic-Curve Cryptography [83] (ECC). Asymmetric cryptography is also used
providing authenticity in the form of digital signatures, such as RSA signatures [84] or the
Elliptic Curve Digital Signature Algorithm [85] (ECDSA).

The implementation of these algorithms is either performed in software or hardware. Both
implementations come with distinct advantages and disadvantages, considering perfor-

– 15 –

Towards Security-Aware Design Space Exploration for Embedded Systems

mance, power consumption, chip area size, and others [86]. Furthermore, implementations
of cryptographic primitives might be susceptible to various side-channel attacks. These side
channels unintentionally reveal information regarding the cryptographic process. This rev-
elation can lead to the disclosure of the used secret keys, rendering the whole cryptographic
process insecure [87].

Cryptographic hash functions form another frequently used method in cryptography. Many
security functions, such as signatures, rely on the usage of hash values. Hash functions
are mathematical functions mapping a value (m) of arbitrary length to a fixed-length value
h(m) = m′. Hash functions must fulfill several properties: Collision resistance, pre-image
resistance, and second pre-image resistance. Collision resistance means the infeasibility of
two values having the same hash value (h(m1) = h(m2)). Pre-image resistance refers to the
infeasibility of finding m when given h(m). Second pre-image resistance means that given
a value m1 it must be infeasible to find a second value m2 where h(m1) = h(m2) [88].
Hash functions are, e.g., used for cryptographic signatures, such as hash-based message
authentication codes which calculate the hash value of the message and then sign the hash
value instead of the whole message. This approach saves computation time, and because of
the hash’s second pre-image resistance, it can be assumed the signed hash originates from
the received message [89].

Secure hardware: Many cryptographic primitives are fully or partially implemented in
hardware [90,91]. In addition to potential side-channel attacks, security-relevant hardware is
also susceptible to physical attacks. Tamper-resistant hardware components provide certain
mechanisms to mitigate these attacks [92]. They support secure code execution and physical
separation of security-relevant tasks [93], for example the TrustZone design established by
Arm [94]. Additionally, tamper-resistant hardware often supports tamper-proof storage that
can be used for storing cryptographic keys. These secure memory regions are protected
against unauthorized access using firewalls controlling the data transfer over the bus-system
[95].

Key derivation: Key derivation functions (KDF) are hash-based methods that allow the
derivation of secret keys from a secret value, e.g., password, master key, etc. They are usu-
ally used to generate ephemeral keys from a secret master key. A common attack to disclose
secret keys used for encryption and authentication builds on differential cryptanalysis [96].
By periodically changing the used encryption keys, this attack can be mitigated. Using a
KDF allows renewing the session key when only possessing a single shared secret key. The
fundamental requirement of a KDF is to build on a strong cryptographic hash function. This
ensures that even the disclosure of the session key does not reveal any information on the
secret master key, it has been derived from [97, 98].

2.3 Security Assessment Methods

The assessment of security assets and threats is far developed in both industry and academia. This
section lists the most important security assessment methods relevant to this thesis.

Common Vulnerability Scoring System: The NIST Common Vulnerability Scoring Sys-
tem (CVSS) is a method to capture principal characteristics of security vulnerabilities. It

– 16 –

2 Background

uses a numerical representation to reflect a vulnerability’s severity, which helps organiza-
tions to prioritize their vulnerability management. The CVSS calculations consist of three
metrics: the base, temporal, and environmental metrics. The base metric rates the qual-
ity, which is intrinsic to a vulnerability. The temporal metric describes characteristics that
evolve over the lifetime of a given vulnerability. The environmental metric characterizes
vulnerabilities due to the distinct implementation environment. The National Vulnerability
Database which stores standardized vulnerabilities uses the CVSS [99, 100].

Attack graphs: Attack graphs model attack scenarios and are a valuable method to assess
security threats of systems. They are widely used in both science and industry and have
been rapidly adopted for various application areas, such as network security analysis [101].
These models describe attack steps as distinct nodes within the graph. The nodes are con-
nected with edges representing the dependencies between the single steps. The attack graph
represents different attack paths a potential attacker can take to harm the system’s assets.
As these graphs are represented as Bayesian networks, they must be acyclic. Using these
attack graphs, designers estimate the probability of certain attack scenarios to be success-
fully performed by a potential attacker [102–104]. Attack graphs are also used in security
risk management [105].

Risk assessment: Risk assessment and management are central parts of the security eval-
uation for systems and organizations. The main purpose of security risk assessment is the
reduction of uncertainty induced by potential threats. Risk is the product of the probability
with which an event might occur and its impact. In most cases, the impact constitutes a
financial loss. In certain systems, the occurring event’s impact can also lead to the loss of
lives [106]. Novel approaches in risk assessment consider the usage of risk trees. These
trees model the security risks induced by potential attack scenarios. Thereby, they allow the
system designers to assess the severity of individual attack paths based on their risks on the
overall system [107].

Common Criteria: The Common Criteria (CC) is a standardized method in the industry to
evaluate the security measures of secure products. These products are named Target(s) of
Evaluation (ToE). The main purpose of the CC is to support the evaluation facilities with
guidelines on how to assess the security functions implemented by the ToE. This assessment
covers what security functions have been implemented, as well as the soundness of the
implementation. What security function must be implemented by the ToE is determined by
its Security Target (ST). The soundness of the security measures implementing the security
functions is stated by the Evaluation Assurance Level (EAL). These levels scale from EAL
1 (lowest) to EAL 7 (highest). The higher the EAL, the more thorough the facility must
evaluate the ToE. The Protection Profile (PP) allows distinct groups and communities to
capture their security requirements. These PP are used to group multiple STs. Each ST in a
PP inherits the PP’s security requirements [108].

– 17 –

3
Related Work

The research community has been studying the integration of security requirements into analytical
DSE and the combination of analytical and simulation-based DSE approaches for several years.
This chapter gives an overview of various projects in these research fields and gives a detailed
explanation of their differences to the research presented in this thesis.

The DSE of safety-critical systems considers a problem very similar to security-driven DSE
approaches. Similar to security constraints, safety constraints restrict the mapping of critical tasks
to especially enhanced components or enforce a redundant implementation of specific compo-
nents. Thereby, safety-related constraints often contradict performance and power requirements
to which the designed system must adhere. DSE frameworks in this realm are in high demand for
the industry and especially in the automotive area. Functional safety aspects generally consider
the reliability of certain system components. A system’s reliability can be improved by adding
redundancy and variation to system components, posing a risk to the user’s safety. Safety con-
straints are usually expressed by certain levels to which the selected components must adhere
to. These levels are usually defined by large manufacturers, leaving a small scope for decision-
making. Therefore, projects integrating safety into the DSE of systems are considered as examples
of related approaches integrating other non-traditional requirements into the DSE of embedded
systems. These projects solve constraints on traditional characteristics, such as performance and
power consumption, but only integrate the safety aspects based on safety levels. Compared to the
integration of safety aspects into the DSE, the integration of security spans a wider design space
to select solutions from [109–112].

3.1 DSE Tools considering Cyber-Security

The DSE of embedded systems is a well-studied field in both industry and academia. Various re-
search projects have described classical DSE tools for embedded systems that consider the power
and performance of the individual implementation alternatives of the system’s behavior on dis-
tinct components. Based on these two characteristics, they select the optimal system components,
functional implementations, and scheduling strategy. Considering DSE tools integrating security
requirements into the design space of embedded systems, various research publications have been
presented in the last years. Research projects in this area can be generally categorized into ap-
proaches focusing on a single aspect of the system design, approaches abstractly considering the
design space, and approaches focusing on the security aspects of network systems. The follow-
ing sections describe related projects within these categories and their approaches to integrating
security aspects into the DSE of embedded systems.

– 19 –

Towards Security-Aware Design Space Exploration for Embedded Systems

3.1.1 Abstract Approaches

Abstract approaches on the security constraint integration into the DSE of embedded systems focus
on high-level descriptions of the design space. Research projects in this area focus on abstracting
the security aspects of the embedded system design.

Stierand et al. presented their approach to integrating security requirements into the DSE of
embedded systems in [29]. Their approach considers the characterization of security assets used by
the system under design and the attackers’ capabilities. In their model, the attacker’s capabilities
and the assets’ properties match (e.g., an attacker capable of reading messages compromises the
confidentiality of the message). The approach also considers hardware components with different
security capabilities used to secure the assets. Their approach focuses on the channels used to
transfer the security assets and to what architecture modules they are connected to. To satisfy the
security of the defined assets, the DSE approach only allows the transmission of the assets between
architecture modules capable of protecting them. Hence, the system partitioning is limited by the
compulsory protection of security assets.

In [113], the authors present a DSE approach on designing secure processor architectures. The
authors use a high-level analytical model to find practical designs considering the processor’s se-
curity requirements and different trade-offs regarding the integrated security modules and their
performance. The high-level model approach allows the early discovery of performance bottle-
necks in the design. The authors’ approach only considers the design of the security processors
themselves, without any integration of potential attacks.

The approach proposed by Zheng et al. [114] focuses on the control performance and the
schedulability of CPS under the consideration of security requirements. In their approach, the
authors assume an attack model aiming at learning the states of the internal control tasks of a
CPS. To learn a task’s state, the attacker eavesdrops on the exchanged sensor messages within
the CPS. Depending on the amount of successfully disclosed sensor messages, the attacker has a
certain probability of guessing the control task’s state. The more sensor messages the attacker is
able to eavesdrop, the higher the possibility of learning the correct state. Encrypting the sensor
messages mitigates the eavesdropping and, hence, decreases the learning possibility. This learning
possibility is captured as a security level. The encryption lowers the overall control performance.
The approach presented in [114] captures this problem and allows its optimization by altering the
number of encrypted sensor messages. Thus, the approach allows the designers to find solutions
adhering to a predefined minimum security level and control performance.

Lin et al. [115] describe a methodology on how to formalize security constraints for embedded
systems and integrate them into DSE. Their methodology allows the mapping of distinct system
functions to architecture components based on their security properties and the security services
and mechanisms protecting them. The authors’ approach also considers performance metrics of
the chosen security services and mechanisms and specific risk values defined by the users. How
their methodology is used in practice is described in two different security design use cases, both
coming from the automotive industry. In [116], the authors show the usability of their design
approach on the security enhancement of a controller area network (CAN). In [117], the authors
show their approach applied to the design of a Time Division Multiple Access (TDMA) based
real-time distributed systems.

Zhang et al. [118] consider the DSE of security-sensitive mixed-criticality real-time embedded

– 20 –

3 Related Work

systems. They consider the design of embedded systems given their functional and architectural
description. The functionality is described as a task graph. Each task comes with a different
execution time, depending on the processor it is implemented on. The system’s security is captured
as security criticality levels (SCL), ranging from SCL1 to SCL4. Depending on the SCL needed
by the task and the SCL provided by the processor it is implemented on, both execution time
and power consumption alter. The higher the SCL, the higher the execution time and power
consumption. Using a DSE approach, the authors find an optimal system partitioning and task
mapping considering the system’s SCL, performance, and power consumption.

Information security modeling and threat analysis have attracted much interest in both research
and industry in the last decades. To consider security measures in the design phase of products,
various modeling tools, and languages, such as the Unified Modeling Language, integrate exten-
sions allowing the modeling of security [119]. Such tools support the designers in reflecting, e.g.,
security protocols within the system’s behavior. However, they do not consider the system’s hard-
ware architecture, nor the security’s performance overhead, nor the attacker’s view on the system
under design. The framework described in this paper integrates security attacks and the architec-
ture’s security capabilities into the design flow, automatically proposing security operations.

The SysML-sec project [120] integrates cryptographic mechanisms during hardware/software
partitioning based on predefined attack scenarios. Their project builds on the SysML-based de-
scription of embedded systems. In addition to SysML’s design approach, SysML-sec allows the
integration of security aspects to the overall system design in the form of attack scenarios and
cryptographic mechanisms. The attack scenarios come in the form of textually described attack
vectors, characterized by the security properties they aim to break. The cryptographic mecha-
nisms are described with their performance and power costs, and what security properties they
protect. Using these characterization approaches, the designers can capture the necessary security
mechanisms and integrate them into the general system design.

Compared to the works described in this section, the approach taken by the SaDSE tool allows
a more detailed description of the design space. Thereby, the framework still maintains a holistic
view of the overall system under design. This balance is achieved by supporting the use of rule
sets to describe the impact of the security requirements on the solutions produced by the tool.

3.1.2 Detailed Approaches

The detailed approaches focus on specific parts of the overall system design. Research projects
in this area mainly focus on the security protocols and the design of secure communication of
embedded systems.

Xie et al. consider the security for the signal packing problem of a CAN-based embedded sen-
sor network. In their work, the authors describe the signal packing problem as an optimization
problem in which the optimum between message payload sizes and MAC sizes. The MAC sizes
chosen by the system influence the communication’s security and affect the payload sizes chosen
for the exchanged packets. The bigger the exchanged messages, the worse the communication per-
formance becomes. These contradicting influences on security and performance make the optimal
selection of MAC and payload sizes complex. The authors resolve this problem by employing a
DSE of the available options [30, 121].

Lukasiewycz et al. [122] also consider the security-aware DSE of a CAN-based embedded

– 21 –

Towards Security-Aware Design Space Exploration for Embedded Systems

system. In their work, the authors focus on the scaling effects of attacks on vehicle fleets shar-
ing the same vehicle platform. The attacks build on compromising the headers of the messages
transmitted via the CAN bus systems. Although the transmitted messages’ payload is generally
encrypted, the message’s identifier must be exchanged unencrypted due to the used arbitration
method. As the mapping between the payload and the identifier is fixed, compromising the iden-
tifier and, hence, its payload mapping can enable the attacker to reverse engineer the used vehicle
platform. As these platforms are reused in many different vehicles, the attack can spread among
whole vehicle fleets. To counteract this threat, the authors propose the obfuscation of these iden-
tifiers. As this obfuscation also influences the communication performance, the authors apply a
DSE of different approaches to find the optimal obfuscation technique, which still satisfies the
system’s performance constraints.

In their work, Jiang et al. [123] focused on finding the optimum between the quality of service
(QoS), quality of confidentiality (QoC), and the intrusion detection accuracy (IDA) of embedded
systems. In their approach, the QoC depends on the number of rounds used by the encryption
algorithms. The more rounds, the higher the confidentiality. The QoS depends on the execution
time available to the general tasks. The intrusion detection is performed by dedicated tasks sched-
uled during the normal execution of the system’s functionality. The higher the frequency of their
scheduling, the higher the IDA. However, both the intrusion detection and the confidentiality’s
quality decreases the execution time available for the general tasks and, hence, decreases the QoS.
The authors solve this problem by applying a DSE approach to find the optimal solution given the
constraints on QoS, QoC, and IDA.

Hasan et al. [124] deal with the integration of security-surveillance tasks into an already existing
task schedule on a multicore-system. These security-aware tasks are used to check the system for
the intrusion of potential adversaries. As such, checks are time-consuming; the integration of
those tasks can break the overall task schedule. As the system comprises real-time tasks, the
system must guarantee their timely execution. Hence, the integration of the security-surveillance
tasks must be performed so that the other tasks’ timelines are not broken. To solve this problem,
Hasan et al. use a DSE-based approach, solving the general schedulability of both real-time and
security-surveillance tasks.

Kang [125] published a tool that supports system designers in their decisions regarding the se-
curity mitigation techniques used for a network system. The mitigation techniques get described
by the designers in the form of security policies. Their approach supports both the evaluation of
design candidates against a predefined system description and security policies and the enumer-
ation of potential design candidates satisfying both policies and system descriptions. The design
candidates are captured in the form of domain models stored in a library, extendable by the de-
signers. Their approach allows both the verification of design candidates as well as finding valid
candidates.

Compared to the works presented in this section, the SaDSE framework focuses on the design
space spanned by the design of the entire system. Thereby, the SaDSE tool is capable of modeling
certain aspects of the internal information exchange using communication buses but does not put
its whole focus on the communication part of the system design.

– 22 –

3 Related Work

3.1.3 Network Design Approaches

The works presented in this section focus on the security aspects of networked systems. Thereby,
they consider security requirements both during design- and run-time.

In their work, Anderson et al. [126] present the NetKAT tool. This tool offers a network
programming language that describes network topologies from both an architectural and imple-
mentational level. Thereby, the tool offers a semantical and mathematical description approach.
The tool allows the designers to evaluate their networks under design against the mathematical
model, including security requirements on the used protocols and performance metrics. Designers
can check if their modeled networks fulfill these requirements using the NetKat tool.

Nelson et al. [127] present a network firewall analysis tool called Margrave. With their tool, the
authors support designers in the firewall configuration of security blocking rules, security goals,
the accuracy of security blocking rules, and others. The Margrave tool offers the designers to
formalize specific security goals and checks whether a proposed configuration adheres to these
goals. Furthermore, it also provides the designers with valid configurations given predefined secu-
rity goals. Thus, the tool supports the designers in exploring the valid configurations with which a
firewall can be configured.

With VeriFlow, Khurshid et al. [128] present a network verification tool usable during design
and run time. This tool allows the users to verify performance and security requirements for
dynamically changing networks. Furthermore, the VeriFlow tool supports the designers in finding
optimal network setups to fulfill given requirements.

Compared to the works presented in this section, the SaDSE framework focuses on ensuring
the confidentiality and authenticity of messages passed via potentially insecure channels. How-
ever, it does not consider the configuration of distinct access rights or securing a system against
unauthorized access.

3.2 Security Attack Analysis Tools

The security attack analysis is a vast research area in which the modeling of possible attack sce-
narios is widely used. The frameworks presented in this area are mainly used to provide designers
the possibility to consider potential attacks on newly designed systems.

Poolsappasit et al. [129] present a framework that is capable of solving the administrator’s
dilemma. The administrator’s dilemma describes the cost-optimal selection of security services
to mitigate distinct attack scenarios on a network system. To describe the attack scenarios, the
framework offers the designers a model of them as Bayesian Network Attack Graphs. These
graphs allow the capturing of the distinct attack steps the potential attacker can take. Also, the
probabilities of successfully reaching these steps can be modeled. The security services lower
these probabilities but induce implementation costs. Hence, the framework supports the designers
to find the optimal selection of security services to mitigate potential attack scenarios.

In their work, Feng et al. [130] propose a novel security risk assessment model building on
Bayesian Network-based Attack Graphs. They introduce a three-phase approach, consisting of a
Bayesian Network development, a security risk assessment, and a vulnerability propagation anal-
ysis. The Bayesian Network-based Attack Graph structure is learned from a historical database

– 23 –

Towards Security-Aware Design Space Exploration for Embedded Systems

in such a way that it optimally fits past security incidents. The graphs are then used to perform
a security risk analysis fed by a real-time database that is concurrently updated with new inci-
dents. Based on this analysis, the model allows performing a vulnerability propagation analysis
and supports the designers in the creation of risk treatment plans.

Frigault and Wang [131] investigate the usability of Bayesian networks for modeling attack
scenarios of potential attackers. In their work, the authors provide a fundamental explanation about
the attack representation. They bind their modeling approach tightly to the CVSS, which supports
the designers to fill the probabilities of the distinct attack steps within the Bayesian network.

Sun et al. [132] investigate the usability of attack graphs for modeling potential zero-day at-
tacks. Zero-day attacks are generally attacks enabled by yet unknown vulnerabilities in a system.
These attacks are modeled as distinct attack paths in an attack graph. The authors argue that a
successful attack on a system is composed of both zero-day attacks and known vulnerabilities.
The approach of Sun et al. allows the complete capturing of attack scenarios. The attack graphs
build on a probabilistic representation provided by Bayesian networks. This representation allows
the extension of the attack paths with evidence assigned to nodes where a vulnerability exploit
was detected. Using this evidence, zero-day attacks can be learned, helping the security analysts
to find the vulnerabilities in the system.

Ammann et al. [133] presented a straight-forward approach to the modeling of network attacks.
In their work, the authors aim at simplifying the attack graph representation by omitting unnec-
essary information produced by classic representations. Their representation is based on the use
of effective compression algorithms, which allows a more compact model of the attack scenarios.
This representation, however, can be bloated to the traditional representation if needed. Hence, the
approach of Ammann et al. supports designers with a concise model of potential attack scenarios.

Ray et al. [134] propose a novel intrusion detection system that builds on risk calculation per-
formed during run time. Their approach builds on the reasonable assumption that attacks on a
given system can be enumerated by assessing past attacks. Considering the potential attacker’s
session scope, probable attack sequences can be limited. Based on these sequences, the authors
implemented an estimator to assess the overall attack probability. The estimator allows the in-
trusion detection to warn the system administrator on an imminent attack and, hence, allows its
mitigation before the breach occurred. The authors showed that their approach, in addition to
traditional intrusion detection mechanisms, has a great benefit for the overall system’s security.

In [135], Phillips et al. present their approach to supporting the security of networks using at-
tack graphs. Their approach uses attack graphs to model security risks on networks. These attack
graphs are generated from three inputs: attack templates, configuration files, and profiles describ-
ing the potential attackers. The templates provide a generic representation of the attacks and their
preconditions. These templates are configured with network characteristics. The attacker profile
describes the attacker’s capabilities. Based on these inputs, the attack graph with attack success
probabilities is generated. The proposed approach supports network administrators evaluate the
costs of attack paths and model potential future attack scenarios.

Similar to [135], also Sheyner et al. [136] propose the generation of attack graphs based on
the description of attack scenarios and attacker properties. Based on the attack graphs produced
by their approach, networks can be checked for stealthy intrusion attacks. Already implemented
mechanisms do not detect these stealthy intrusion attacks. This consideration of stealthy attacks
allows the network administrators to find the optimal locations where additional mechanisms are

– 24 –

3 Related Work

placed. Their approach allows the determination of a minimal set of attack steps whose mitigation
would guarantee the intruder’s failure.

Compared to the presented security attack analysis tools, the SaDSE integrates the security
modeling techniques presented here into the automatic DSE of systems. Thus, while these tools do
not consider security aspects in combination with other system constraints, such as performance,
they provided us with an inspiration to integrate security constraints into DSE.

3.3 Analytical and Simulation-based DSE

The tools presented in this section focus on the integration of analytical and simulation-based
DSE. Most of these tools perform an initial simulation of the system design and use the retrieved
simulation results for an analytical optimization of the system parameters. Other tools start with
an analytical DSE and use the resulting solutions for a simulation-based feasibility check.

In [41], Fernando Herrera and Ingo Sander describe an approach combining analytical- and
simulation-based DSE. Their approach contains a first analytical DSE and a second simulation-
based DSE for finding suitable design candidates for embedded systems. The design candidates
proposed by the analytical part are considered to meet safety-relevant timing constraints. These
candidates are then used in executable performance models that are stimulated by likely environ-
ment scenarios. Using the executable performance models, the most efficient design candidate is
evaluated by the designers.

Fornaciari et al. [137] present a framework allowing the simulation-based exploration of po-
tential memory architectures on a system level. The authors show how their approach can be
used to find a near-optimal cache architecture configuration, varying the parameters on cache size,
block size, and associativity. Their approach aims to prohibit the exhaustive exploration of all
design variants by applying heuristic approaches known from the analytical DSE. Their approach
builds on the dynamic profiling of memory references. These traces are obtained by capturing the
software execution focusing on the transition activity on system-level buses.

Künzli et al. [58] present a new method that allows designers to mix simulation-based and ana-
lytical DSE. With their approach, they reduce the execution time of simulation-based approaches.
These long run-times are the major drawback of simulation-based approaches. To realize this
hybrid approach, the authors propose a component-based design. This design allows the integra-
tion of simulation-based and formal models and allows the reuse of the components. Thus, the
mixed approach can be utilized to improve the performance of the simulation-based exploration
by gradually exchanging simulation with formal components.

In their work, Lahiri et al. [59] present a combined DSE approach used for the performance
analysis of communication architecture designs. The approach focuses on system-level perfor-
mance analysis. The authors’ approach fills a gap in existing frameworks. Existing tools are either
too slow because they simulate the complete system or are not accurate enough because they only
perform static analysis. The approach of Lahiri et al. widely applicable, as it uses a very general
communication architecture that allows the designers to model their customized protocols. Fur-
thermore, the approach allows the modeling of various dynamic effects on communication. Based
on the modeled communication architecture, the designers trace the communication. These traces
are then used to analyze the performance of the communication architecture.

– 25 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Kempf et al. [138] present a combined analytical and simulation-based DSE approach for mod-
eling software-defined radios. Thereby, the authors present a solution for solving the very complex
task of designing these radios. Their key contribution is the pre-simulation of the mathematical
analysis based on synchronous data flow graphs. Their approach seamlessly integrates into an
electronic system level based simulation framework. Hence, the approach enables the transition
of the pure mathematical analysis to the overall system simulation.

The main difference between the tools presented in this section and the SaDSE framework is the
transfer of the security constraints’ influence on the resulting solutions into the system simulation.
Thus, the designers can evaluate the impact of the security aspects on the overall system’s behavior.

3.4 Differentiation

Considering the related projects regarding the security-driven DSE, the security attack modeling,
and the combined DSE approaches, the SaDSE framework presented here differs in various as-
pects. This differentiation towards the related approaches is described in the following sections.

3.4.1 Security-driven DSE

The SaDSE approach differs from other security-driven DSE tools by integrating the attacker’s
perspective directly into the model describing the designed embedded system. This integration
allows a direct representation of the attacks’ implications on the system’s security and its risk.
The integration of the attacker’s perspective in the form of the attack graphs and the risk trees
allows a more detailed investigation of the security impacts on the overall system. The other
approaches in this research domain only offer a scale-based approach describing security levels,
often leading to unclear interpretations.

Regarding the abstract approaches for the integration of security requirements into the DSE, the
SaDSE approach offers a much more detailed description model without losing the holistic view
on the overall system design. Abstract approaches on the integration of security requirements into
the DSE of embedded systems can lead to ambiguous definitions of system designs (e.g., [29]).
By explicitly modeling the security assets and mechanisms, and linking them via a rule set, the
SaDSE omits this inaccuracy.

The detailed DSE approaches considering security requirements focus on specific parts of em-
bedded systems. Thus, these approaches are not capable of depicting the design of the overall
embedded system. Furthermore, the view on the security aspects of these approaches is mostly
narrowed towards encryption and authentication mechanisms. The SaDSE is, in contrast, capable
of depicting the overall design of embedded systems. The used ruleset allows the definition of
various security aspects considering the assets, attacks, and mechanisms. Thus it allows a holistic
view of the designed system and allows a detailed consideration of distinct aspects.

Considering the design approaches for secure networks, the main difference regarding the
SaDSE framework is the ability to regard the influence of security mechanisms on other system
characteristics during design time. The SaDSE, however, does not offer any means of verifying
the correct implementation of them.

– 26 –

3 Related Work

3.4.2 Security Attack Analysis Tools

The SaDSE framework differs from the projects described in the research area of the attack analy-
sis tools in several aspects. First, the SaDSE framework allows the consideration of the influences
of security mechanisms on the overall system’s power consumption and performance overhead.
Furthermore, our tool allows the evaluation of the key placements’ influence on the overall sys-
tem’s security. Lastly, the SaDSE tool supports the evaluation of found solutions regarding their
behavior and network characteristics in dynamic environments. The related projects in this re-
search area inspired the SaDSE framework’s description of the attack scenarios as attack graphs.
We extended this representation by also adding risk trees to the potential threat descriptions [107].

3.4.3 Analytical and Simulation-based DSE

Regarding the related works published in the research area of combined analytical and simulation-
based DSE frameworks, the SaDSE framework is best comparable to the work of Fernando Herrera
and Ingo Sander [41]. Other works in this research area mostly use traces accumulated during an
exhaustive simulation-based DSE and analytically evaluate them regarding their performance and
power consumption. Similar to [41], the SaDSE framework uses a first analytical DSE followed
by a simulation-based DSE. However, in contrast to the work published by Fernando Herrera and
Ingo Sander, the SaDSE framework also models the influence of the security mechanisms on the
simulated system’s execution time and power consumption. Furthermore, the SaDSE framework
automatically generates an executable simulation of the designed system, offering the designers a
simulation framework in which they can add further details of the system.

– 27 –

4
The Security-Aware Design Space

Exploration Framework

This chapter describes our approach to the introduction of security requirements into the DSE of
embedded systems. It gives the big picture of the approach described in this thesis. It explains the
distinct design perspectives, from which the system under design can be seen, the computation of
the system’s characteristics, and the formulation of the constraints the solutions must adhere to.
The chapter furthermore describes the transition from the analytical to the simulation-based DSE,
as well as the framework’s implementation.

4.1 Overview

Figure 4.1 shows the design of the overall security-aware DSE (SaDSE). SaDSE consists of two
main parts, the analytical and the simulation-based DSE. During the analytical DSE, the de-
signers describe the system under design from several distinct perspectives: the functional-, the
architectural-, and the attack-perspective, as well as the description of the selectable security fea-
tures. Furthermore, the designers describe the requirements the system under design must fulfill.
These descriptions are fed as inputs to the analytical part of the DSE. Based on these inputs, the
analytical DSE finds solutions satisfying the given requirements. The designers can define certain
goals, which the analytical DSE optimizes. These solutions conclude the analytical DSE step and
serve as input to the simulation-based DSE step.

The simulation-based DSE generates simulation models from the solutions found by the ana-
lytical DSE. The simulation-based DSE uses these models within a simulation environment. The
simulation environment can be configured with different use cases and contains a network sim-
ulation. The simulation models communicate with each other using interfaces to this network
simulation. The simulation environment is configurable by the system designers. Thus, the sim-
ulation models generated from the solutions can be used in different environment setups. Our
SaDSE approach allows designers to analyze the solutions found during the analytical DSE and
the overall system during the simulation-based DSE.

The analysis of the solutions calculated by the analytical DSE focuses on the hardware compo-
nent selection, and what tasks map to them. It also focuses on the chosen security mechanisms
and how their selection affects the attack scenarios. It also considers the security mechanisms’
influence on the solution’s timing behavior, power consumption, and costs. The simulation-based
DSE provides metrics on the overall system, focusing on its networking behavior. These metrics
depend on the used network simulation environment. The system designers can use the results
of both the analytical and the simulation-based DSE to adapt the input descriptions, leading to

– 29 –

Towards Security-Aware Design Space Exploration for Embedded Systems

different solutions.

Simulation-based DSEAnalytical DSE

Security aware DSE

Architectural
description

Functional
description

Simulation
analysis

Requirements
& Goals

Security
description

Solutions

Designers

Simulation Environment

Simulation Component
Factory

Simulation Models

Network
Simulation

U
se

 C
as

e

Attack
description

Solution
analysis

Figure 4.1: Overview on the SaDSE approach.

The following sections describe the details of the analytical and the simulation-based DSE part
of the SaDSE framework. Section 4.2 explains the analytical DSE approach, including its system
description models.

4.2 Analytical DSE Approach

This section discusses the analytical part of the SaDSE framework. It describes the models the
framework offers designers to describe the different perspectives of the system under design. Fur-
thermore, it discusses how the SaDSE framework describes the system partitioning and the task
mapping problem from these perspectives and how it calculates the influence of the security con-
straints on the system’s performance, power consumption, and others.

4.2.1 Design Perspectives

The inputs to the SaDSE consist of several perspectives that describe the system under design.
These perspectives consist of description models that are interlinked with each other, spanning
multiple perspectives. These perspectives include the description of the system’s functionality, its
architecture, potential security attacks on the system, and the security functions the system can
use to mitigate the threats induced by the possible attacks.

– 30 –

4 The Security-Aware Design Space Exploration Framework

4.2.1.1 Functional Perspective

The SaDSE framework supports the description of the system’s behavior in the form of a task
graph. The nodes within this graph represent the tasks encapsulating the system’s functionality.
The edges represent the data transfers between the tasks and generally describe the schedule of
the tasks. The task graph is a directed graph, consisting of multiple nodes (T) and edges (εTx,Ty),
where each εTx,Ty connects two nodes Tx and Ty. A task graph contains a starting node (Ts) and
an end node (Te). A node can be both Ts and Te. A path η through the graph is a set of nodes
N = (Ts, Tx, ..., Ty, Te) and a set of edges ε = (εTs,Tx , ..., εTy ,Te) [39].

Figure 4.2 shows an example task graph. Each task in the graph might operate on a set of
data entities (Dx). These entities are characterized by their size and optional security properties,
denoting the data entity as a security asset. The designer additionally describes what operations
a task performs on a data entity. The SaDSE framework offers the designer to formalize the
operations and the security properties. The operations and security properties are then used to
formalize security mapping constraints according to a rule set, also described by the designer.
A base set of task operations is denoted OP = (oprx, optx, opr, opw, ops, ...), consisting of the
operations: Receive (oprx), transmit (optx), read (opr), write (opw) and store (ops). The base set of
security properties is described as SP = (spconf , spint, spauth, ...), consisting of the properties:
Information disclosure (spconf), integrity (spint), and authenticity (spauth).

Functional Perspective

SP

OP
D1

SP

OP
D1

SP

OP
D2

T 4

SP

OP
D2

SP

OP
D1

T 6
SP

OP
D1

T 7

SP

OP
D2

T 8

T 5

T 1 T 2

T 9

T 3

Figure 4.2: Example task graph consisting of multiple tasks (T) operating (OP) and sharing different data entities
(D). The data entities are characterized with security properties (SP). T1 is Ts (start-task) and Te
(end-task).

The tool calculates what security mechanisms the system must provide to the task to protect the
data entities it operates on based on the operations of a task on a data entity and a data entity’s
security properties. This calculation is described in Section 4.2.2.2.

4.2.1.2 Architectural Perspective

The SaDSE framework lets the designers describe the system architecture as hardware compo-
nents connected via distinct physical channels. These channels can represent wired connections,

– 31 –

Towards Security-Aware Design Space Exploration for Embedded Systems

such as communication buses (e.g., I2C, SPI, Ethernet etc.), but also wireless communication
channels (e.g., BLE, W-LAN, WiFi etc.). Both hardware components and physical channels are
described by multiple classical and security-based characteristics. The traditional characteristics
of the hardware components comprise monetary costs, chip-area size, and dynamic and static
power consumption. The security characteristics of a hardware component comprise its security
mechanisms and its vulnerability assessment factor.

The physical channels are characterized by transmission speed, power dissipation, and, if ap-
plicable, chip-area size. Figure 4.3 shows an example system architecture description. It con-
sists of multiple hardware components connected via physical channels. The physical channels
represent communication buses or wireless communication channels. The hardware components
are described with their traditional characteristics (trad. char.) and their security mechanisms
(SM). Traditional characteristics describe power consumption, execution delay, chip area, costs,
and other characteristics crucial for resource-constrained systems. Traditional characteristics also
describe physical communication channels.

Architectural Perspective

HWC 1 Comm.
Bus

HWC 3HWC 2

 C
om

m
.

B
us

trad. char.

HWC 4

HWC 5

Comm.
Bus

C
om

m
.

B
us

Wireless
Comm.

Sec-Mech.

trad. char.

Sec-Mech.

trad. char.

Sec-Mech.

trad. char.

Sec-Mech.

trad. char.

Sec-Mech.

trad. char.

trad. char.

trad. char.

trad. char.

trad. char.

Figure 4.3: Example system architecture description depicting hardware components (HWC) connected with
physical channels (e.g. communication buses (Comm. Bus) and wireless communication channels
(Wireless Comm.)).

The SaDSE framework offers the designers to freely declare the set of security mechanisms. A
base set of security mechanisms is denoted as SM = (smenc, smdecr, smsign, smver), compris-
ing encryption (smenc), decryption (smdecr), sign (smsign), and verification (smver). In addition
to these basic descriptions, the designers can add information about the used key type (symmetric
or asymmetric) and the key length to the security mechanisms. Furthermore, the framework of-
fers the designers to determine the link between what security mechanisms protect what security
properties using a dedicated rule set. This mapping is explained in detail in Section 4.2.2.2.

4.2.1.3 Attack Perspective

The SaDSE framework offers the designers to describe the potential attackers using two different
perspectives, either as a Bayesian Attack Graph (BAG) or as a risk tree.

– 32 –

4 The Security-Aware Design Space Exploration Framework

Bayesian Attack Graphs
The most important perspective for modeling the security requirements is the attack perspective.
This perspective builds on modeling potential attack scenarios based on BAG representation. The
BAG represents the attacker’s opportunities to attack the system as a Bayesian graph, where each
node represents a distinct attack step. The conditional probability table (CPT) of a node states
with what probability the attacker is capable of successfully performing the attack step. The
probabilities stated by the CPT express the estimated possibility that an attacker can successfully
conduct the attack step. If an attack step depends on one or more preceding attack steps, the CPT
states the attack success possibilities (asp ∈ R : asp ∈ [0, 1]) of the current step based on the state
of its predecessors. The BAG only knows two states for an attack step, successfully performed
(1), or not successfully performed (0). The attack’s probability of being unsuccessful is simply
computed as the complementary probability of its asp, which is, again, computed depending on
the outcome of the attack’s predecessors. An example BAG is illustrated in Figure 4.4. This
example attack graph shows the link between the attacks and the tasks they are aiming at and the
attacks’ dependencies reflected in their CPTs. Each attack path aims at least at one attack goal.
Attack goals do not have to aim at a task. The description of attacks aiming at distinct tasks also
allows the modeling of attacks on the communication between multiple tasks.

Attack Perspective

Security Attack

Task A

attack 1

Task B

attack 2

Task C

attack 3

Task D

attack 40.6

1 0.7

0 0.3

0.85 1|1 1

1|0 0.5

0|1 0.6

0|0 0

CPT

CPT

CPT

CPT

Attack
Goal

Value

Data
entity

SP

Data
entity

Task

Attack type

Success
probability

Attack

P(AG)=0,7341

CPT

CPT

Figure 4.4: Example attack graph represented as a BAG with the attack steps aiming at distinct tasks.

The valuable information of the BAG are the unconditional probabilities of the attacker suc-
cessfully reaching the attack goals (P (AG)). The unconditional probabilities of a node can be
obtained by merging the marginal cases of the joint distribution table (JDT) for this node. The
framework calculates the JDT applying the Bayesian chain rule (4.1), where Pa[ani] denotes the
conditional probability of the parent of attack node i [32, 139].

P (an1, ..., ann) =

n∏

i=1

P (ani|Pa[ani]) (4.1)

Additionally to the CPT of an attack step, each step is linked to a distinct task in the task graph
of the functional perspective and is further characterized by a distinct attack type. This attack-
type describes what security property of the task’s data entities the attack aims at breaking. The
designers describe the attack types. A base set of these attack types AT = (atid, ats,) contains
information disclosure (atid) and spoofing (ats). What attack type aims at what security property

– 33 –

Towards Security-Aware Design Space Exploration for Embedded Systems

is described by the designer using an extendable rule set. This mapping and the influence of task
allocation is further described in Section 4.2.2.2.

Risk Trees
The second approach for describing the attacks on the system under design uses risk trees. This
approach builds on the RISKEE method presented by Krisper et al. [107]. The RISKEE approach
builds on a graph representation of potential security attack scenarios, similar to BAGs. The main
differences between the RISKEE and the BAG based approaches are:

Attack success probability: The RISKEE approach uses probability distributions to model
the asp (referred to as vulnerability), instead of the discrete probabilities used by BAGs.
This probability distribution used in RISKEE allows a better representation of the uncer-
tainty of the experts rating the system’s susceptibility to a distinct attack.

Impact: Each attack node in the RISKEE approach can also be rated with an impact. This
impact denotes the monetary loss inflicted by the successful performance of the attack de-
scribed by the node. The BAG does not allow the direct representation of the attack’s mon-
etary impact.

Frequency: The frequency determines how often the attack is attempted in a predefined
time. Only the initial attack nodes of a path within the risk tree are further described with
the frequency. Also, this aspect is not supported by the BAG method.

Based on the vulnerability, the impact, and the frequency, the RISKEE method calculates the
monetary risk induced by each successfully performed attack.

At the time of writing this thesis, the RISKEE method does not allow the description of a node
being dependent on the successful exploit of more than one child node. This limitation stems
from the assumption of RISKEE that a potential attacker only chooses one route through a path.
Hence, a one-to-one translation of a BAG to a RISKEE-based risk tree is not possible. This prob-
lem is solved using a graph-unrolling algorithm that splits each path in the BAG for each node
having more than one predecessor. Thereby, the path is duplicated, with the newly created paths
representing all possible routes described by the BAG.

4.2.1.4 Security Functionality Perspective

The security functionality perspective allows the designers to describe security functions usable
by the system under design to protect its security assets against potential attacks. This perspective
is optional. A security functionality represents a primitive with which to protect a security asset.
Thus, before the attacker is capable of attacking the asset itself, he must first break the security
functionality. This precondition is modeled by adding an attack to the security function itself. The
SaDSE framework describes the protection of the security functionality by adding its attack as a
parent to the attack it aims to mitigate. This extension is reflected in the CPT of the original attack.
This extension reflects that the execution of the original attack is only executable if the security
functionality’s attack has been successfully performed.

Depending on the nature of the security functionality, it may depend on the usage of secret
keys. The designers must also take into consideration attacks aiming at disclosing the used secret
keys. Hence, also secret keys are linked with disclosure attacks. Disclosing the secret key used

– 34 –

4 The Security-Aware Design Space Exploration Framework

by a security function automatically renders the security function insecure. For example, the
encryption of a security asset to protect its confidentiality is only secure as long as the encryption
itself is not broken, or the secret key used in the encryption process is not revealed to the attacker.
To model this dependency, the framework links the attack on the secret key as a parent to the
security function’s attack using the said key. The framework extends the CPT of the attack aiming
at the security function in such a way that disclosing the used secret key automatically renders the
attack on the security function a success.

The secret keys are characterized by their lifetime, denoted as klt. This characteristic determines
how long the secret key is in usage until it is renewed. This information allows the designer to
distinguish between, e.g., session keys and master keys. Furthermore, the SaDSE framework
allows the modeling of key derivation chains. A session key used by a system is usually derived
from the previously shared master key using a key derivation function (KDF) [97]. The disclosure
of a secret key also renders its derived keys insecure. This effect is modeled by adding the key’s
disclosure attack as a parent to the attack on the keys derived from it. This extension is performed
so that the successful disclosure of the parent key automatically renders the attack on the derived
keys a success. Figure 4.5 shows the possible extensions of the security functionality on the attack
graph modeled in the attack perspective.

Security Functionality Perspective

SF-a Task A

attack 1

Task B

attack 2

attack a

Attack Goal

1 0.7

0 0

CPT

0.1
CPT

CDT

1|1 1

1|0 0.5

0|1 0.5

0|0 0

CPT

SF-b attack b

1 0.8

0 0 SK

MK

attack
SK

attack
MK 0.1

1 1

0 0.2

1 1

0 0.2

CPT

CPT

CPT

Figure 4.5: Example usage of security functions (SF) with and without the usage of secret keys (e.g., session key
(SK) and master key (MK)). In addition, the figure depicts the linkage of their attacks to the original
BAG and the extension of the attacks’ conditional probability tables (CPTs).

The designer determines what security functions the system under design can choose from to
secure its assets. This set of security functions is freely describable by the designer. The frame-
work supports a base set of security functions SF = (sf crypt, sf auth, ...), with sf crypt denoting
cryptographic functionality and sf auth denoting authentication functionality. The link between the
security functions and the security mechanisms offered by the component is further discussed in
Section 4.2.2.2.

– 35 –

Towards Security-Aware Design Space Exploration for Embedded Systems

4.2.2 System Mapping

The selection of the hardware components and the mapping of the tasks to these components
influence the system’s performance and power consumption. Such a selection is represented as
a solution S = (P,M), with P = (hwc1, ..., hwcP) representing the selected hardware compo-
nents (hwc) andM = (m(t1), ...,m(tM)) denoting the mappings of tasks (t) to hwc. The security
description given to the framework calculates a set of restrictions for the task to component map-
pings. The following sections explain these security constraints the system under design must
fulfill and the influence of the system partitioning and the task mapping on performance, power
consumption, and the system’s security. In this work, we focus on these system characteristics.
However, other characteristics, such as overall system costs or chip area size, can be calculated
similarly to the presented ones. The general purpose of the SaDSE framework is to find feasible
system partitioning and task mappings that satisfy all constraints imposed by the designers.

To better describe the system partitioning and task mapping and their influence the system’s se-
curity, performance, and power consumption, we consider the following example of a very simple
sensor system, consisting of a sensor node and a gateway. The sensor node accumulates data and
sends it to the gateway. The gateway receives the data, analyzes it and stores it for later statistical
operations. The system’s functionality is described by the tasks: sensor data accumulation (tacc);
sending of sensor data (ttx); receiving of the sensor data (trx); sensor data analysis (tsda); store
sensor data (tstore). We denote the sensor data accumulated by the sensor node and stored by the
gateway dsensor. The task tacc writes (opw) and transmits (optx) dsensor. The tasks ttx and trx only
transmit and receive dsensor. The task tsda receives, reads (opr), and sends dsensor. The task tstore
receives, reads, and stores (ops) dsensor. The task tacc sends dsensor to ttx which further transmits
dsensor to trx. The task trx transmits dsensor to tsda which finally sends it to tstore. The sen-
sor node and the gateway are connected via a wireless communication channel. Both the sensor
node and the gateway can be realized using various hardware components (hwc), e.g., compo-
nents supporting encryption (smenc), decryption (smdecr), and other security mechanisms. What
components and task mappings the SaDSE chooses is based on mapping rules described by the
designer. The different mappings are defined by distinct WCETs. We use this simple example to
give a more descriptive explanation of the system mapping performed by the SaDSE framework.
The SaDSE’s mapping mechanism is explained in the following sections.

4.2.2.1 Task Mapping and Calculation of Performance and Power Consumption

The mapping of the tasks to the selected hardware components influences the system’s execution
time and power consumption. This section explains how the SaDSE calculates the performance
and power consumption of a distinct system partitioning and task mapping. The mapping of
tasks to hardware components must fulfill basic task reachability. Task reachability means that
communicating tasks can only be mapped to the same hardware component or different hardware
components that are directly linked to one another via a physical channel. The SaDSE framework
automatically ensures this property, discarding all solutions, not meeting this basic requirement.
When considering the example defined in the section above, all five tasks must be mapped to
hardware components directly connected.

Lets assume the that the overall system’s architecture consists of three hardware components,
one for the sensor node (hwcsensor) and two for the gateway (hwcgw1 and hwcgw2). The com-

– 36 –

4 The Security-Aware Design Space Exploration Framework

ponents hwcsensor and hwcgw1 represent BLE radios, hwcgw2 represents an extended storage
system. The BLE radios hwcsensor and hwcgw1 are connected via a BLE communication channel,
hwcgw1 and hwcgw2 are connected with an I2C communication bus. If the SaDSE framework
decides to map tacc and ttx to hwcsensor, the basic task reachability only allows the mapping of
trx to hwcgw1, hence, prohibiting its mapping to hwcgw2. This limitation is caused by hwcsensor
and hwcgw1 not being directly connected. Figure 4.6 shows a valid task mapping based of the
simple sensor system example. The data entity dsensor is depicted as D.

Gateway

HWC GW1 HWC GW2

 I2C Bustsda tstore
D D

trx
D

Sensor

HWC Sensor

ttxtacc
D D

BLE

 Channel

Figure 4.6: Reachable task-to-hardware-component mapping based on the simple sensor system example. The
data entity dsensor is depicted as D.

The potential mapping of a task to a hardware component is characterized by the estimated
worst-case execution time (WCET) of the task implementation on the said component. This
WCET must be estimated by domain experts. A task-to-hardware-component mapping is only
possible if a WCET has been previously estimated for this mapping. The calculation of the sys-
tem’s performance and power consumption is based on [48]. To calculate the solution’s delay λS ,
the delays of all possible paths through the process graph (λH = (λη1 , ..., ληH)) must be calcu-
lated. The most time-consuming path dictates the system’s overall delay, which is calculated as
λS = max(λH).

The delay of a path in the process graph is calculated as λη = λproc + λcomm, which is the
sum of the path’s processing time λproc and the its communication time λcomm. This calculation
is performed for each path in each found solution given its system partitioning and task mapping.
The mapping of a task (tx) to a hardware component (hwcy) in a given solution is determined by
the function hwcy = mtx . The delay of the task execution is calculated according to definition
4.2.1.

Definition 4.2.1. A path’s processing time λproc is calculated as λproc =
∑nη

i δ(ti,mti), where
the function δ(tx, hwcy) returns the WCET of task tx being mapped to the hardware component
hwcy and nη denotes the number of all tasks on the path.

The communication delay λcomm =
∑k

i=1 λpcci is calculated based on the data entities transmit-
ted via the physical communication channels (Pcc = (pcc1, ..., pcck)), with k being the number
of all pcc used on the path. What data is transferred on what pcc and how time consuming the
transmission is defined in 4.2.2.

Definition 4.2.2. The transmission time λpccx is calculated as λpccx =
vpccx

S(Dpccx)
where vpccx de-

termines the transmission speed of pccx, Dpccx represents all data entities transmitted via pccx,
and the function S(D) =

∑D
i=1 sdi determines the size sd of all data entities d in the set

D = (d1, ..., dD). To determine what data entities are being transmitted via a physical chan-
nel, the framework finds all tasks (N) directly connected by the path and allocated on different

– 37 –

Towards Security-Aware Design Space Exploration for Embedded Systems

hardware components connected to pccx. The framework then checks for all tasks in N the set of
commonly used data entities D. This set D must be transferred between the tasks, and, hence via
pccx.

The task mapping influences not only the system’s performance but also its power consumption.
The power consumption of a hardware component consists of a static and a dynamic part. The
static power consumption is independent of the task mapping. The dynamic part of the power
consumption scales with the tasks being mapped to the hardware component, as it influences its
active execution time. The power consumption of the process execution (ρproc), the system’s static
power consumption (ρstatic) and of the communication (ρcomm) are defined in 4.2.3.

Definition 4.2.3. The static power consumption is calculated as ρstatic =
∑m

i=1 ρhwci , where
ρhwci denotes the static power consumption of hardware component i and m is the number of
all hardware components chosen by the solution. The power consumption caused by the process
execution is described as ρproc =

∑n
i=1 δ(ti,mti) ∗ pwr(mti), where pwr(hwcx) returns the

dynamic power consumption of hwcx. The power consumption of the communication depends
on the amount of data transferred via the physical communication channels of the system. Each
physical communication channel is characterized with its power dissipated during data transmis-
sion (pwrpcc). The overall power consumption ρpccx = λpccx ∗ pwrpcc of a channel pccx depends
on its data transmission time λpccx . The system’s communication power consumption is calculated
as ρcomm =

∑k
i=1 ρpcci

The solution’s power consumption ρS = ρproc + ρstatic + ρcomm is the sum of the static power
consumption of the selected hardware components, the dynamic processing power dissipation and
the power consumption of the communication system.

This section shows how the SaDSE framework calculates the system’s performance and its
power consumption regarding the traditional system characteristics. This calculation does not
consider integrating the security mechanisms used by the system to meet the security requirements.
The following section describes how these mechanisms affect the overall system’s performance
and power consumption.

Lets exemplify this with our sensor-gateway example. Lets assume the tasks tacc and ttx are
mapped to hwcsensor, trx and tsda mapped to hwcgw1, and tstore is mapped to hwcgw2. The
implementations of tacc and tstore come with an WCET of 5ms, the implementations of ttx and trx
come with an WCET of 2ms, and the implementation of tsda comes with an WCET of 3sms. All
WCET describe the execution times of the tasks mapped to their respective hardware components.
The data entity dsensor contains 1kB of information. The BLE channel connecting the radios
of hwcsensor and hwcgw1 transmits data with 2MB/s. The I2C communication bus connecting
hwcgw1 and hwcgw2 supports a transmission speed of 1MB/s. All hardware components come
with a static power consumption of 1µW/s and a dynamic power consumption of 3µW/s. The
I2C communication bus comes with a power consumption of 1µW/s and the communication via
the BLE channel consumes 3µW/s. This setup would lead to an overall system latency of λS =
λproc + λcomm = 17ms + 1.5ms = 18.5ms and a power consumption of ρS = ρproc + ρstatic +
ρcomm = 51nW + 18.5nW + 2.5nW = 72nW.

– 38 –

4 The Security-Aware Design Space Exploration Framework

4.2.2.2 Security Mapping

The approach presented in this thesis builds on the formulation of specific security constraints,
a task mapping, and system partitioning must adhere to in order to be considered secure. This
formulation includes the generation of security operations, the mapping of attacks to security as-
sets, the automatic assessment of secure channels within the solution, the selection of appropriate
security functions, and the utilization of the provided security mechanisms.

The general idea is that data entities comprising security properties define security assets. These
security assets are target to specific attack types, and, hence, must be protected. Each task operat-
ing on the security assets must perform certain security operations to protect the used asset. These
operations must be supported by the security mechanisms of the hardware components the task
is mapped to. The security mechanisms mitigate the attacks aimed at the tasks using the security
assets, thus, influencing the probability of the attacker successfully reaching the attack goal. Fur-
thermore, the designers can define functions which realize the security operations, thus, adding
additional flavor to the security selection performed by the framework. These aspects are detailed
in the following sections.

Security Operations
The framework calculates the security operations (SecOp) for each task based on its operations
OP performed on the data entities and the entities’ security properties SP . This dependency
is determined by the designers of the system using a rule set offered by the SaDSE framework.
This rule set, denoted SOR, combines operations op ∈ OP and security properties sp ∈ SP using
Boolean expressions. This set of rules is mapped on the set of security operations SOR 7→ SecOp.
The relation between op and sp are described with Boolean operators. An example mapping of
SOR 7→ SecOp could be f((opw ∨ opr) ∧ spconf) = soenc, where soenc denotes the security
operation of encryption. To assess the usage of the SecOp in the establishment of secure channels,
they must be further characterized with information considering their counterpart operation. For
example, soenc is intended to protect an asset’s spconf when transmitted from a sending task to a
receiving task. Therefore, soenc of the sender has a counterpart on the receiver side. In contrast, a
security operation that checks an asset’s integrity might only be used by a task itself. The designer
must define a set of counterpart operations CP = (so1, ..., soCP) that contains all SecOp having
a counterpart operation. This characteristic is used during the DSE to determine secure channels
and, further, the utilization of the right security mechanisms.

Lets consider the data entity dsensor from our simple example. If the designer decides that
dsensor must be confidential (spconf) and adds the rule f((opw ∨ opr) ∧ spconf) = soenc, then all
tasks performing (opw ∨ opr) on dsensor must perform an encryption operation soenc to protect
dsensor. In our example this includes the tasks tacc, tsda and tstore. How this encryption operation
can be realized is stated by the security mechanism mapping, described below.

Security Asset and Attack Mapping
The designer defines the relationship between the security assets used by the designed system and
the potential attack scenarios. The designer describes this relation by a rule set associating an
attack node’s attack type (AT) to an asset’s security property AT 7→ SP . For example, the rule
f(atid) = spc maps an information disclosure (atid) attack to an asset which needs its confiden-
tiality spc protected.

– 39 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Lets consider an attack aiming at our simplified sensor system. This attack targets the confiden-
tiality of the exchanged sensor data and, hence, is determined by the rule f(atid) = spc. Such
an attack aiming at a system’s task compromises all data entities coming with the security prop-
erty confidentiality spc said task operates on. Lets assume that an information disclosure attack
aims at the data accumulation task tacc. This compromises the confidentiality of dsensor. Hence,
the SaDSE framework enforces tacc to perform an encryption of dsensor (performed by soenc) to
protect the confidentiality of dsensor.

Secure Channel Determination
Selecting the appropriate security mechanisms to secure the system’s assets requires the determi-
nation of secure channels. The assessment of secure channels builds on the SecOp a task performs
and the security asset (sa) the operation is performed on. Lets denote a function χ(t, sa) that tells
us what security operations the task t performs on the security asset sa. A secure channel scts,td
spans between a source task ts and destination task td, where χ(td, sa) ∩ χ(ts, sa) 6= ∅. To find
these secure channels, all paths in the process graph must be traversed for each task performing a
security operation listed in the set CP . For example, a task tx performing an encryption operation
soenc ∈ CP on an asset sax spans a secure channel to a succeeding task ty performing soenc on
the same asset sax. If the same tasks performed another so′ /∈ CP on the same asset, no secure
channel would spanned between them.

In our simple example, secure channels would be spanned between tacc and tsda (sctacc,tsda),
and tsda and tstore (sctsda,tstore). These channels are spanned as all these tasks perform encryption
operations soenc as defined by the designer. One can notice, that the tasks ttx and trx are enclosed
by the channel sctacc,tsda . Therefore, the communication via the BLE channel is encrypted as well.

Security Function Selection
As already mentioned earlier, the description of potential security functions that can be used by
the designed system is optional. What security functions are selected for a task to protect its assets
is determined by the task’s SecOp. The system designers define this mapping as SecOp 7→ SF .

In our small example, the designer could add the rule f(soenc) = sf crypt, with sf crypt denoting a
cryptographic function. Hence, the designer adds another detail to the system description, stating
that all tasks using an encryption operation soenc perform this operation using a cryptographic
function sf crypt. This rule would enforce for the tasks tacc, tsda, and tstore to use sf crypt to protect
dsensor.

Security Mechanism Mapping
The security mechanisms mapping describes what security mechanisms implement the security
operations and security functions. Depending on the chosen representation of the security fea-
tures used in the system design, the security mechanisms of the system’s architecture map to
the SecOp or the selected security functions SF . The mapping rules κSecOp 7→ κSM and
κSF 7→ κSM determine these mappings, where κSecOp denotes a set of Boolean expressions
combining environmental attributes and security operations, and κSF denotes a set of Boolean
expressions combining environmental attributes and security functionalities. κSM denotes a set
of expressions combining security mechanisms using Boolean operators. For example, the rule
f(soenc ∧ ext) = smenc,envext states that an encryption operation must be implemented by an en-
cryption mechanism. They are, again, definable by the system designer. The system partitioning

– 40 –

4 The Security-Aware Design Space Exploration Framework

and the task mapping, hence, influence what security mechanisms each task can select from. Both
the mappings of security options and the security functions to their respective mechanisms are
further defined by two fixed attributes coming with our approach: the directional and the environ-
mental attributes. Figure 4.7 shows the simple sensor system with the selected security operations,
the spanned secure channels, the used security mechanisms and the attacks aiming at the sensor
data, shown as D in the depiction..

Gateway

HWC GW1 HWC GW2

 I2C Bustsda tstore
D D

trx
D

Sensor

HWC Sensor

ttxtacc
D D

BLE

 Channel

enc enc enc

attack
id1

attack
id2

attack
id3

secure channel secure channel

smenc smenc smenc

Figure 4.7: Simple sensor system example showing the secure channels between spanned tacc and tsda, and tsda
and tstore. It also shows the usage of soenc and the information disclosure attacks targeting the
distinct tasks and the used security mechanisms. The data entity dsensor is shown as D.

The environmental attributes define in what circumstances the framework should select what
security mechanisms. These attributes categorize security mechanisms into internally (smenvint)
and externally (smenvext) used mechanisms. These attributes refer to the allocation of the se-
cure channel scts,td between the tasks ts and td. If both ts and td are allocated to the same
hardware component, the framework selects internal mechanisms. If these tasks are allocated to
different components, external mechanisms are used. Lets consider two mechanisms, encryption
(smenc) and trusted memory management (smtmm), with their respective attributes smenc,envext

and smtmm,envint . For a secure channel with mts = mtd the framework would select smtmm,
whereas for a secure channel with mts 6= mtd , it would select smenc.

Considering our simple example, the SaDSE framework has different choices for selecting ap-
propriate security mechanisms considering the secure channels spanned between tacc and tsda,
as well as between tsda and tstore. When mapping tacc on hwcsensor and tsda on hwcgw1, the
SaDSE framework would select the encryption mechanism smenc due to its external attribute. For
the secure channel between tsda and tstore, the SaDSE framework would select smtmm if both
tasks would be mapped to hwcgw1, and smenc if tsda would be mapped to hwcgw1 and tstore
to hwcgw2. This selection also enforces that all hardware components must be able to offer the
respective security mechanisms. Otherwise, such a mapping would be infeasible.

The directional attributes defined by the SaDSE framework characterize when the security
mechanisms are utilized. These directions define if a mechanism is used on a security asset
before or after the task operates on it. It distinguishes between input (dirin), output (dirout)
and bi-directional (dirbi) mechanisms. Lets consider a system with a secure channel scts,td with
mts 6= mtd , where both the tasks perform soenc. If the hardware components on which ts and td
are allocated, provided smcrypt with dirbi, the framework would select this mechanism for both
ts and td. If the components, however, provided smenc with dirout and smdec with dirin, the
framework would select smenc for ts and smdec for td. The definition of a mechanisms direction
lets the designers differentiate between, e.g., a component’s encryption versus decryption delay

– 41 –

Towards Security-Aware Design Space Exploration for Embedded Systems

and power consumption.

Lets consider the directional attribute in the simple example. Lets assume the encryption mech-
anism defined as smcrypt with dirbi for hwcgw1 and hwcgw1, and tsda mapped to hwcgw1, and
tstore mapped to hwcgw2. In this configuration, both tsda and tstore would use smcrypt to secure
the confidentiality of dsensor. If the encryption mechanism of hwcgw1 were to be defined as smenc

with dirout and smdec with dirin, tsda would use smenc to protect dsensor before transmitting it to
tstore. In the other direction tsda would use smdec to decrypt dsensor when receiving it from trx.

The directional and environmental attributes apply to both the mapping of security options
and security functions to mechanisms. The latter mapping further depends on keys used by the
functions. If a selected security function uses secret keys, their types also dictate what security
mechanisms can be used. The type mapping is again definable by the designers. The attributes
of a secret key can, for example, characterize it as a symmetric or asymmetric key. Also, the
length of a key can be described by the designers. This mapping is defined with the rule set
SFkeyattrib 7→ SMattrib. For example, an AES encryption algorithm can only be mapped to an
encryption security function using a symmetric key with key sizes of 128, 192, or 256 bit.

When considering our simple sensor system example, the mapping of f(soenc) = sfAES,k256
(sfAES,k256 denotes AES encryption using a 256 bit key) would lead to the usage of sfAES,k256
by the tasks tacc, tsda, and tstore. The rule f(sfAES,k256) = smAES,k256 would force tacc, tsda,
and tstore to be mapped to hardware components supporting smAES,k256 . Hence, if one of the
components hwcsensor, hwcgw1, and hwcgw2 would not support smAES,k256 , a mapping to it
would be infeasible. Furthermore, if any hardware component would also offer another encryption
mechanism, e.g., smAES,k128 , the framework would enforce smAES,k256 to be used by the mapped
task. Figure 4.8 shows the simple sensor use case with the used security functions and the selected
security mechanisms based on their direction. It also shows the keys used by the security functions.

Gateway

HWC GW1 HWC GW2

 I2C Bustsda tstore
D D

trx
D

Sensor

HWC Sensor

ttxtacc
D D

BLE

 Channel

attack
id1

attack
id2

attack
id3

secure channel secure channel
smenc smdec

256256

smdecsmenc

SF crypt SF cryptSF crypt

256

Figure 4.8: Simple sensor system example showing the secure channels spanned between tacc and tsda, and tsda
and tstore. It also shows the usage of sf crypt and information disclosure attacks aiming at the distinct
tasks and the used security mechanisms based on their direction. Furthermore, it shows how the
system uses the key k256 to realize the cryptographic functions.

A task can utilize different security functions to protect its assets, which might not be im-
plementable on each hardware component. This selection of the security functions adds an-
other flavor to the found solutions by the SaDSE tool, extending the solution’s representation
(S = (P,M, SFsel)) by the set of selected functions SFsel. The mapping of SecOp and SF to
SM influences the system’s security, performance, and power consumption. These influences are
described in the following section.

– 42 –

4 The Security-Aware Design Space Exploration Framework

4.2.2.3 Security Influence on Performance, Power Consumption, and Attack
Mitigation

The mapping of the tasks to the hardware components and the resulting selection of the security
mechanisms influence, additionally, the system’s security, its performance, power consumption,
and other characteristics.

Influence on Attack Mitigation
The mapping of the tasks to the hardware components and the selection of what security mecha-
nisms to perform the SecOp and functions, respectively, influence the probability of successful at-
tacks. The selected security mechanisms mitigate each attack aiming at a task’s assets. To quantify
this mitigation, the designers must assess the vulnerability of the security mechanisms implemen-
tation provided by the hardware component. This vulnerability is captured as iv ∈ R : iv ∈ [0, 1]
and assessed for each hardware component selectable for the system partitioning. The influence
of the security mechanism’s iv on the mitigated attacks is reflected in both the attack scenarios
modeled as BAGs and as risk trees. If modeled as a BAG, the iv reduces the asp in the attacks’
CPTs. For each attack mitigated by a mechanism, the framework computes asp ∗ iv for all entries
in the attack’s CPT. If modeled as a risk tree, the same reduction of the asp is calculated for the
mitigated attacks.

The security mechanisms are only capable of mitigating attacks if the mechanism’s type matches
the attack’s type. This matching between mechanisms and attacks is defined by the designer using
rules that describe SM 7→ AT . Furthermore, the definition of security functions influences what
attacks get mitigated. If no security functions have been defined, the security mechanisms mitigate
the attacks aiming at the tasks using them. If security functions have been defined, the mechanism’
mitigation does not apply to the attack aiming at the task using the function, but on the attack
aiming at the security function itself. Hence, the iv states the vulnerability of the mechanisms
implementing the used security function. The task’s assets are already protected by using the
security function.

The keys used by the security functions also influence the system’s security. Their placement
on the different components and the components’ provided security mechanisms with their iv
reduce the disclosure attacks aiming at them. However, not all security mechanisms are capable of
protecting the stored secret keys. What secret key can be protected by what mechanism depends
on the key’s lifetime (klt ∈ Klt). This mapping is defined by the system designers using the rule
set Klt 7→ SM .

Lets exemplify the attack mitigation and the key storage using our simple example. Lets assume
that an information disclosure attack atid aims at tacc and has an asp of 0.7. The task tacc is
mapped to hwcsensor, which offers smenc and comes with an iv of 0.1. This mapping would
reduce the asp of atid to 0.07, making the attack much less likely to be successful. However, this
reduction is only performed if the designer defines the security mechanism smenc to counteract
atid. Considering the key usage in our example, lets assume that the designer defines that the
security operation soenc uses sfAES,k256 and hwcsensor supports smAES,k256 . In this case, the
attack on sfAES,k256 would be defined as a parent to atid and mitigated by iv of hwcsensor. As
sfAES,k256 uses a 256-bit key, the attack aiming at the disclosure of the key is defined as the parent
of the attack aiming at the security function sfAES,k256. This key disclosure attack can also be
mitigated by hwcsensor. If the designer, e.g., defines the 256-bit AES key to be a long-term key

– 43 –

Towards Security-Aware Design Space Exploration for Embedded Systems

that can be secured by secure storage (smtss), hwcsensor can protect the key if it supports smtss.
Otherwise, the key disclosure attack is not mitigated. Figure 4.9 shows the different approaches
for modeling the mitigation of potential attacks based on the simple sensor example.

Attack mitigation provided by secure hardware mapping

Attack mitigation without security functions

HWC GW1 HWC GW2

 I2C Bus

asp

0.06

CPT

tacc tstore
D D

attack
id1

a1 asp

1 0.14

0 0.06

Attack mitigation with security functions

HWC GW1 HWC GW2

 I2C Bustsda tstore
D D

a1,a-b asp

1,1 0.7

1,0 0.0

0,1 0.3

0,0 0.0

SF crypt

attack
id2

tsda tstore

D D

asp

0.6

CPT

attack
id1

attack
id2

a1 asp

1 0.7

0 0.3

Sec-Mech.

iv=0.1

Sec-Mech.

iv=0.2
Sec-Mech.

iv=0.1

Sec-Mech.

iv=0.2

CPT

CPT

CPT

asp

0.02

attack sk

a-sk asp

1 1.0

0 0.04

a-a asp

1 0.6

0 0.0

attack
id1

attack
crypt

a-sk asp

1 1.0

0 0.08

asp

0.04

attack
crypt

attack sk

CPT

CPT

CPTCPT

CPT
attack
id2

SF crypt

Figure 4.9: Attack mitigation of security mechanisms (Sec-Mech.), with and without the definition of security
functions. The depicted example refers to the simplified sensor system example.

Influence on System Performance and Power Consumption
The usage of security mechanisms to protect viable assets of systems always comes at the ex-
penses of the overall system’s delay. This additional delay caused by the usage of the securiy
mechanisms is added to the delay of the tasks utilizing them. Hence, the overall performance of
the system is influenced. This security delay is calculated for each solution found by the tool. For
any task ti we consider its used security assets SAti = (sa1,ti , ..., san,ti) on which ti performs
the SecOp. Lets denote a function SMti,saj,ti

= sm(ti,mti , saj,ti) which returns the set of se-
curity mechanisms (SMti,saj,ti

) used by task ti being mapped to mti , and protecting saj,ti . If
the designers also specify security functions to be used by the found solutions, the set of security
mechanisms SMti,saj,ti ,sf ti

= sm(ti,mti , saj,ti , sf ti) is additionally dependent on the security
functions sf ti used by ti. Hence, a security mechanism smk is either defined as smk ∈ SMti,saj,ti
or smk ∈ SMti,saj,ti ,sf ti

. The delay induced by a smk depends on whether its delay (γsmk) is
given as an absolute measure or in relation to the data size. Eq. 4.2 defines the overall computation
delay of smk in relation to the asset’s size ssa (λsmk(γsmk , saj,ti)).

λsmk(γsmk , saj,ti) =

{
γsmk ∗ ssaj,ti , if γsmk given in relation to the data unit.
γsmk otherwise.

(4.2)

The overall security computation of a task is determined as λsec(ti) =∑|SM |
k=1

∑|SA|
j=1 λsmk(γsmk , saj,ti), where SM denotes the set of all security mechanisms

used by ti and SA denotes the set of all assets of ti.

The power consumption induced by the usage of security mechanisms is computed similarly to

– 44 –

4 The Security-Aware Design Space Exploration Framework

their performance overhead. Similar to the delay, also, the overall power consumption of a security
mechanism ρsmk(ωsmk , saj,ti) depends on the determination of its power consumption ωsmk in
relation to the size of the secured asset, as defined in Eq. 4.3.

ρsmk(ωsmk , saj,ti) =

{
ωsmk ∗ ssaj,ti , if ωsmk given in relation to the data unit.
ωsmk otherwise.

(4.3)

The overall power consumption induced by the used security mechanisms is then computed as
ρsec(ti) =

∑|SM |
k=1

∑|SA|
j=1 ρsmk(ωsmk , saj,ti), where SM denotes the set of all security mech-

anisms used by ti and SA denotes the set of all assets of ti. The performance delay and
the power consumption of the security mechanisms is added to the performance characteris-
tics of the distinct tasks as defined in Section 4.2.2.1. Hence, the calculation of the processing
time of each path within a found solution is extended to λproc =

∑nη
i δ(ti,mti) + λsec(ti),

with nη denoting all tasks within the path. The solution’s power consumption is calculated as
ρproc =

∑n
i=1(δ(ti,mti) ∗ pwr(mti)) + ρsec(ti), with n being the number of all tasks in the

system.

Lets take the simple example again and consider that the tasks tacc, tsda and tstore perform soenc
that is implemented by smenc by all hardware components with γsmenc = 2ms and ωsmenc =
1nW. This would increase λS from λS = 18.5ms to λS = 18.5ms + 3 ∗ γsmenc = 24.5ms and
ρS from ρS = 72nW to ρS = 72nW + 3 ∗ ωsmenc = 75nW.

4.2.3 Constraint and Optimization Goal Definition

The designers can formalize constraints with regards to the system’s performance, power con-
sumption, and overall security, additionally to the system’s description from distinct perspectives.
Additionally, they can determine characteristics to be optimized for. Based on these constraints
and optimization goals, the SaDSE tool finds system solutions fulfilling the defined constraints
and optimization goals.

4.2.3.1 Traditional Constraints and Optimization Goals

In this thesis, we focus on the two traditional constraints on the system’s power consumption
and performance, as for our work, those are the most important ones. Further constraints can be
defined similarly. The prerequisite for applying these constraints is to obtain feasible solutions.
Any solution S = (P,M) can be considered feasible if it fulfills two basic requirements. First,
the solutions can only consist of task mappings M that are realizable, meaning that for each task
mapping mtx a WCET must be defined (δ(ti,mti) > 0). Second, the task mappings of S must
be reachable. Neighboring tasks in the task graph are only allowed to be mapped to either the
same hwc or different hwc connected by a pcc. This feasibility check results in finding the set of
feasible solutions Sf ⊆ S among all solutions S [19].

The goal of the design space exploration is to find valid solutions among the set of feasible solu-
tions. To determine what solutions are valid, we focus on two constraints that a solution must ful-
fill: a performance (cλ) and a power consumption constraint (cρ). To determine if a solution’s per-
formance and power consumption fulfill these constraints, we represent these characteristics as ob-

– 45 –

Towards Security-Aware Design Space Exploration for Embedded Systems

jective functions fλ(S) = λS and fρ(S) = ρS , respectively. For a valid solution the following two
assumptions must be true: fλ(S) ≤ cλ and fρ(S) ≤ cρ. When aiming at a performance or power
consumption optimal solution, Soptλ = argminS∈S{fλ(S)} and Soptρ = argminS∈S{fρ(S)},
respectively. As both fλ(S) and fρ(S) depend on the various combinations between system par-
titioning and the task mapping, finding an optimal solution becomes a complex problem to solve.
This problem can be tackled using heuristic approaches [19] or constraint programming [48]. The
SaDSE framework takes a constraint programming approach.

4.2.3.2 Security Constraints

In addition to the traditional constraints, we define security-related constraints that must be ful-
filled by the solutions. Only solutions that fulfill these constraints are considered to be secure
solutions. Considering the process flow of the SaDSE framework, the calculation of secure solu-
tions is performed before the computation of the solutions that are valid regarding the traditional
constraints. Hence, security constraints are considered for the set of feasible solutions only. For
selecting secure solutions, we introduced two constraints, the first one regarding the feasibility of
the task mapping, the second one regarding the solutions attack susceptibility.

Security Mapping Constraint
Applying the security mapping constraint to the set of all solutions S results in obtaining its sub-
set of security-wise feasible solutions Ssf ⊆ S. These security mapping constraints are formal-
ized based on the rule sets for κSecOp 7→ κSM and κSF 7→ κSM , respectively. In these map-
pings κSecOp describes the combination of security operations and environmental attributes using
Boolean operators, κSM describes the combination of security mechanisms using Boolean opera-
tors, and κSF describes the combination of security functions using Boolean operators. Naturally,
these combinations can also contain only one single element, respectively.

Considering the mapping of security operations to security mechanisms, SecOp 7→ SM must
be checked for each solution S(P,M) ∈ S. For each solution S(P,M), the task mappings M =
(mt1 , ...,mtM) must be checked for compliance to the defined rules. For example, lets assume we
have a rule f(soenc) = smcrypt within the rule set, any security feasible solution S(P,M) ∈ Ssf
must not contain a mapping hwcy = mtx , where soenc is not performed by tx and smcrypt is not
supported by hwcy. The same approach goes for the mapping of security functions to mechanisms
defined by the rule set SF 7→ SM . The framework determines, based on the rules in SF 7→ SM ,
what solutions are allowed in Ssf .

Attack Potential Constraint
The attack susceptibility is calculated for the solutions found to be feasible regarding their se-
curity mapping. This prerequisite reduces the number of solutions for which the attack success
probability must be calculated. To find the set of secure solutions Ssec ⊆ Ssf the attack scenar-
ios, represented as BAGs or risk trees, must be calculated for each S(P,M) ∈ Ssf . For both
approaches, the designers must define certain thresholds the attack goals must not exceed, further
characterizing each attack goal. For the BAG-based attack scenario description, this threshold
would limit the unconditional probabilities of the attacker successfully reaching the attack goal.
The thresholds used in the risk-tree-based approach have a different meaning. For the risk-tree-
based approach, these thresholds limit the mean risk value (e.g., given as $ amount) of the attacker

– 46 –

4 The Security-Aware Design Space Exploration Framework

exploiting the whole attack path resulting in the final attack goal. Hence, the threshold applied
to the attack scenarios modeled with the risk-tree-based approach includes the risk induced by all
attacks within the attack path, not only the risk of reaching the attack goal.

For the BAG-based attack description the attack potential constraints are defined as follows: For
each solution S(P,M) ∈ Ssf the unconditional attack success probabilities uaspag of the attack
goals are checked against their thresholds tuasp,ag. Only if the unconditional success probability
of each attack goal is below its respective threshold (uaspag1 < tuasp,ag1 , · · · , uaspag|AG| <
tuasp,ag|AG| , with AG being the set of all attack goals), the attack potential constraint for the
solution is met and hence S(P,M) ∈ Ssec.

For the risk-tree-based approach, the constraints are similar to the BAG-based approach, with
the difference that the thresholds of the distinct attack goals limit the risk of the whole attack path.
Therefore, a solution is only secure if mrvag1 < tmrv,ag1 , · · · ,mrvag|AG| < tmrv,ag|AG| , where
mrvagi denotes the mean risk value of the attack path resulting into agi and tmrv,agi its respective
threshold.

4.3 Analytical DSE Implementation

For the implementation of the SaDSE framework we used the DeSyDe tool as a basis. The DeSyDe
tool is open source1 and has been described in various publications [48–51]. The DeSyDe tool it-
self builds on the description of the DSE problem using a constraint programming (CP) approach.
It captures the input descriptions of the system’s functionality and architecture within XML docu-
ments.

Finding a valid or optimal task mapping and system partitioning constitutes a typical combina-
torial problem. CP is a well-proven technique to solve such problems. It can be applied for both
checking a combination of predefined constraints or finding an optimal combination regarding
the defined requirements. CP approaches model the problem’s components as decision variables
characterized by a domain of possible values. The decision variables are put into relationship with
each other. This relationship is described in the form of constraints. For example, lets denote two
variables x ∈ Z : [1, 10] and y ∈ Z : [1, 10], then the statement x > y defines the constraint
the values of the two variables must satisfy. Based on the problem described by the decision vari-
ables, the constraints, and the optional optimization goals, a constraint solver finds satisfactory
and optimal solutions using intertwined steps of propagation, branching and searching [140]:

• Propagation: The propagation step removes all infeasible values within the domain of the
decision variables regarding their constraints.

• Branching: The branching step builds up a search tree for the remaining possible value
combinations of the decision variables’ domains.

• Search: The search tree built up by the branching step is used for searching for new possi-
ble solutions again, satisfying all constraints. CP solvers employ various search algorithms,
such as a depth-first search for finding valid solutions or branch-and-bound search for find-
ing an optimal solution.

Heuristic algorithms are a great tool to solve complex problems for satisfactory and optimal so-

1 https://github.com/forsyde/DeSyDe

– 47 –

Towards Security-Aware Design Space Exploration for Embedded Systems

lutions. However, the application of the CP approach comes with several advantages compared to
heuristic approaches. In contrast to the heuristic approach, describing the problem space using CP
does not split it into sub-problems, but captures it as a whole. This approach makes a formulation
of interdependencies between the sub-problems unnecessary [49].

The representation of the traditional characteristics of the DSE problem is presented in [48,
49]. The DeSyDe tool represents the designed system’s functionality as Synchronous Data Flow
Graphs (SDFGs). Based on its convertibility into a single activation graph, an SDFG can be used
to denote a task graph, as described in Section 4.2.1.1 [141]. According to [49], the DeSyDe tool’s
functional system description is based on SDFGs, denoted as G(A,C). They consist of actors a ∈
A (task nodes) and channels c ∈ C (edges). As the DeSyDe tool allows the definition of multiple
SDFGs mapped to the same system, the set A comprises the actors of all graphs, and the set C
comprises the channels of all graphs. This SDFG representation gets mapped on a set of processing
nodes P . The processing nodes p ∈ P represent the system platform on which the actors are
allocated. Each p ∈ P is characterized by a set of modesMp. Each mode M ∈ Mp comes with
distinct characteristics describing the processing node’s power consumption, etc. The DeSyDe
framework represents the communication system of the platform using a time division multiple
access (TDMA) bus. The decision variables used by the CP model of the DSE problem capture
the mapping and schedulability problem in the form of a mapping- and scheduling-aware graph
(MSAG). This MSAG is used to calculate the delay (period) of an SDFG, which is performed using
throughput (the inverse of the period) propagators [142]. The main decision variables capturing
the problem are:

proca: captures the processor assignment of actor a and is defined for ∀a ∈ A. This
decision variable effectively represents the mapping a 7→ p.

proc modep: captures the mode assignment of processor p and is defined for ∀p ∈ P . The
domain of this variable is {0...|Mp| − 1}.
wceta(proca,proc modeproca): captures the WCET of an actor a mapped to a proces-
sor proca running in a specific mode proc modeproca . This variable is again defined for
∀a ∈ A.

wcct sc: Captures the worst case communication time (WCCT) for each channel c ∈ C.

periodg: The iteration period expresses the overall delay of an SDFG represented as
G(A,C). The period is calculated as the inverse of an SDFG’s throughput, obtained by the
throughput propagator operated on the MSAG.

dynPowerp: represents the dynamic power consumption of a processor p ∈ P . It depends
on the WCET, and, hence, on the mapping of actors to processors. dynPowerp =∑

a∈A(wceta(proca,proc modeproca)) ∗ dynPow(proc modeproca), with
dynPow(proc modeproca) returning the processor mode’s dynamic power of the
processor on which actor a is mapped.

statPowerp: represents the static power consumption induced by a processor p ∈ P .

system power: is calculated as
∑

p∈P dynPowerp + statPowerp and represents the
overall power consumption of a system solution.

The following sections describe what changes we implemented for the analytical part of the
SaDSE framework, how we formalize the security constraints using the constraint programming

– 48 –

4 The Security-Aware Design Space Exploration Framework

approach, and the structure of the resulting solutions.

4.3.1 Realizing SaDSE in DeSyDe

We used the DeSyDe tool’s representation of a system’s functionality and architecture to map it
with the SaDSE’s approach to the functional and architectural perspective. The SDFG with its
actors and channels represents the tasks graph of the functional perspective. The processors with
their processing modes represent the hardware components of the architectural perspective. We
extended the actor’s representation with the data entities (including their SR) and the operations
the actors perform. To reflect the security mechanisms, we adapted the processing modes accord-
ingly. These adaptations were included in the XML representation and further used for calculating
the security mapping constraints.

A range of adaptations were performed to reflect the security overhead affecting a solution’s
processing and communication delay and their power consumption. These adaptations affect the
model of the communication system used in the architectural representation and the performance
and power overhead that the used security mechanisms induce. These overheads change the cal-
culation of the periodg and the system power.

4.3.1.1 Communication System

The DeSyDe tool uses a TDMA bus as a base representation of the communication model for the
system’s platform. This representation is not feasible for capturing the physical communication
channels used in our design (see Section 4.2.1.2). Hence, we extended this representation by
introducing the physical communication channel system of the architectural representation, with
its description added to the XML document describing the system’s architecture. To introduce the
physical channels into the CP model, we add the following set of decision variables pccpx,py ∈
PCC, with px, py ∈ P denoting the hardware components the physical channel connects. The
inclusion of the communication system has three effects on the solutions found by the framework,
namely the task mapping and the calculation of the WCCT.

The mapping of tasks to hardware components represented in the CP model with the variable
proca is constrained by the physical communication system linking the processors. To reflect
this constraint, we introduced the decision variable connproca into the CP model. This variable
is defined for all processors connected to proca, including proca itself. Hence, the constraint
procnexta 6= ¬connproca restricts the mapping of a task nexta to a hardware component
connected to proca, where nexta is the successor task of a.

The communication delay induced by the transmission via these channels is added to the cal-
culation of the WCCT by introducing further decision variables of the CP model. The decision
variable ts(pccproca,procnexta) captures the transmission speed of the pcc connecting the hard-
ware components on to which a and nexta are mapped. It is 0 if proca = procnexta . The
decision variable ds(ca,nexta) captures the overall data size exchanged between on the chan-
nel c connecting a and nexta. The overall communication delay is, therefore, computed as∑

a∈A(ds(ca,nexta) ∗ ts(pccproca,procnexta)). This delay is added to the WCCT in the CP
model, and, hence added to the calculation of periodg.

Furthermore, the power consumption induced by the communication system is added to the

– 49 –

Towards Security-Aware Design Space Exploration for Embedded Systems

calculation of system power. The communication system’s power consumption is calculated
as
∑

a∈A(ds(ca,nexta) ∗ pc(pccproca,procnexta)), where pc(pccproca,procnexta) gives the dy-
namic power consumption of the physical channel connecting the hardware components to which
a and nexta are mapped. Similar to ts, it is 0 if a and nexta are mapped to the same compo-
nent. With this computation approach the power consumption of the communication bus systems
is based on the time it is actively used, which depends on the transmission speed and the amount
of data being transmitted. This fits general observations on the power consumption of communi-
cation bus systems, such as presented in [143].

4.3.1.2 Integration of Security Aspects

To integrate the security characteristics of our approach into the exploration performed by the
SaDSE framework, we extended the CP model with the security mechanisms sm ∈ SM , the
security assets sa ∈ SA, and the security functions sf ∈ SF , describable for the system under
design. These extensions are used to select the security mechanisms used for protecting the sys-
tem against potential attackers. The CP model performs the calculation of the overhead on the
performance and the power consumption induced by the selected mechanisms.

The following paragraphs explain how the security aspects defined in Section 4.2.2.2 were inte-
grated into the CP model, and how they influence the calculation of the system’s performance and
power consumption. These aspects comprise the security assets, the security operations SecOp,
security functions SF , and the security mechanisms SM . These aspects were integrated into the
CP model using decision variables.

Security Mechanism Selection
The calculation of the performance and power overhead induced by the security mechanisms de-
pends on the security mechanisms the solution uses to protect security assets. The selection de-
pends on whether the system under design defines the usage of possible security functions. If
the system defines no security functions, the selection solely depends on the security assets that
need protection. What security mechanisms protect which assets are defined by the used security
operations. If the system defines a range of security functions to be selected from, the selection of
the mechanisms depends on the selected security functions.

This selection is described in the CP model using the decision variable sma,sa =
sec mech(soa(sa),proca,proc modeproca , sa), where soa(sa) defines what security op-
erations are used by a to protect sa, and sec mech returns the security mechanism to realize soa.
The variable sma,sa is defined for ∀a ∈ A,∀sa ∈ SAa, with SAa denoting the set of security
assets a interacts with. In case that the system under design defines a set of security functions
SF to be selected by the framework, the selection of the security mechanisms is redefined by the
decision variable sma,sa,sf = sec mech(sf(soa(sa)),proca,proc modeproca , sa), where
sf(soa(sa)) denotes the security function realizing the mapping of soa and sa. The decision
variable sma,sa,sf is calculated for ∀a ∈ A,∀sa ∈ SAa, ∀sf ∈ SF . These decision variables are
used to calculated the performance overhead.

Security Performance and Power Overhead Calculation
The security overhead on performance and power depends on the selected security mech-
anisms and what data entities they secure. A security mechanism’s overhead further de-

– 50 –

4 The Security-Aware Design Space Exploration Framework

pends on whether its performance is characterized in relation to the data size or as an ab-
solute value (see Section 4.2.2.3). The selection of the security mechanisms is described
with the decision variables sma,sa and sma,sa,sf, depending on whether or not the sys-
tem selects from a predefined set of security functions. Based on these decision variables,
the security performance overhead is calculated as

∑
a∈A,sa∈SAa sm perfa(sma,sa, sizesa)

or
∑

a∈A,sa∈SAa,sfa∈SFa sm perfa(sma,sa,sfa , sizesa), respectively, where sizesa defines
the size of the security asset. Similar to the calculation of the performance over-
head, the power overhead is calculated as

∑
a∈A,sa∈SAa sm pwra(sma,sa, sasize) or∑

a∈A,sa∈SAa,sfa∈SFa sm pwra(sma,sa,sfa , sizesa), respectively. The performance overhead
is added to the calculation of the overall system’s delay periodg, the power overhead to
system power.

4.3.1.3 Security Constraints

The calculation of the security constraints builds on two separate steps. First, the calculation of
the security mappings’ validity. Second, the calculation of the system’s attack success probability
or security risk. The first step yields the security-wise feasible solutions, on which the second
step calculates the secure solutions. The first step is based on security mapping constraints, the
second step is based on attack potential constraints. The implementation of the security constraints
ensures that all selected security operations and security functions used by the tasks are supported
by the hardware components they are mapped to and that no attack goal exceeds its threshold on
attack success probability and mean risk.

Security Mapping Constraints
The security mapping constraints prohibit the mapping of tasks to hardware components which
do not support their operations on security assets. This mapping is modeled in the CP model
with the decision variable smapa = sec map(a,proca,proc modeproca), where sec map
performs the rule-based check of the mapping SecOp 7→ SM . When considering the selec-
tion of security functions, the mapping is represented by the decision variable smapa,sm =
sec map(a, sm,proca,proc modeproca), checking the mapping against the rules described
by SF 7→ SM . Both smapa and smapa,sm are set to 1 if the mapping adheres to the defined
rules, and 0 if not. The constraints smapa > 0,∀a ∈ A and smapa,sm > 0,∀a ∈ A,∀sm ∈ SM
restricts all task mappings considering the hardware component’s security mechanisms.

Attack Potential Constraints
The attack potential constraints are calculated based on the attack models captured as BAGs or risk
trees. For implementing the BAG we used the Dlib library2 for the realization of the underlying
Bayesian networks. The risk trees were integrated using the implementation of RISKEE, provided
by Krisper et al. [107]. The BAGs and risk trees are provided to the framework in the form of
XML files.

The BAG-based approach supports the calculation of the attack success probability with and
without the definition of the security functions. Without the definition of these functions, the
framework changes the asp values of the BAGs’ attack nodes with the iv values depending on
the mappings proca,proc modeproca : ∀a ∈ A. With the definition of the security functions,

2 http://dlib.net/

– 51 –

http://dlib.net/

Towards Security-Aware Design Space Exploration for Embedded Systems

the framework adds the corresponding attack nodes to the BAGs and changes the asps of the
added attack nodes according to the ivs based on the task mappings. Hence, the changes for the
BAG creation depends on proca,proc modeproca , sf : ∀a ∈ A,∀sf ∈ SF . Furthermore, the
framework performs a mapping of the keys used by the sf to the hardware components. For this
allocation, the framework checks proc modeproca : ∀a ∈ A.

To integrate the attack potential constraint based on the asp of the BAG’s attack goals, we added
the decision variable aspag = calcBAG(ag) to the CP model, where calcBAG returns the
unconditional attack success probability of ag. This variable is constrained by aspag < t aspag,
where t aspag defines the threshold of the attack goal ag. Both aspag and t aspag are defined
∀ag ∈ AG, where AG defines the set of all ag of all BAGs.

The security risk constraint was integrated into the CP model in a similar way. The influence
of the iv on an attack node’s asp is calculated for all attack nodes of all risk trees based on
the task mappings. The risk-based attack potential constraint is modeled in the CP model as
mrvag = calcRISK(ag), with mrvag denoting the mean risk value of ag, and calcRISK
calculating this mean risk. This variable is constrained by mrvag < t mrvag, where t mrvag
defines the mean risk value threshold of the attack goal ag. Again the variables are defined for
∀ag ∈ AG.

We optimized both the aspag and the mrvag computation of the attack potential constraints
by introducing a task mapping limitation based on the resulting asp or mrv values of the attack
scenarios. This optimization performs an ordering of proc modeproca , ascending according to
their iv. For each mapping proca, the framework only calculates the aspag or mrvag, permuting
proc modeproca , until the constraint on aspag or mrvag is not met for at least one ag. Any fur-
ther calculation based on consecutive proc modeproca can be automatically rendered insecure.

4.3.2 Resulting Solutions

The solutions found by the SaDSE framework are provided to the designers in the form of an xls
file. Each solution comprises the following information:

Task mapping: task to processor mapping, given in the form denoted by proca.

System partitioning: hardware component selection, given in the form denoted by
proc modeproca .

Period: Overall system delay of the solution, given as periodg.

Power consumption: Overall power consumption of the solution, given as
system power.

Security mechanism selection: The output contains the used sm for each solution.

Security function selection: If the system under design defines sf to select from, the frame-
work adds the selected sf and the used keys, including their component allocation to the
output.

Based on the output solutions, the designers can reevaluate the suitability of the selectable hard-
ware components, their security mechanisms, the selectable security functions, and the key place-
ment, etc., for the overall system design. Furthermore, they can evaluate the suitability of the
hardware component’s security mechanisms on the attack mitigation, considering the attacker’s

– 52 –

4 The Security-Aware Design Space Exploration Framework

probability to bypass all security measures, and the risk induced by a successful attack.

4.4 Simulation-based DSE Approach

The solutions found by the analytical part of the DSE are used to generate a system simulation from
them, as depicted in Figure 4.1. Figure 4.10 gives a more detailed overview on the simulation-
based part of the SaDSE framework. The simulation-based part includes the solutions found by
the analytical part of the SaDSE, the architectural description, the functional description, and a
configuration file that describes the use case for the simulation. The solutions, the architectural
and functional descriptions are used by the component factory to generate the device components,
as well as synthesize and instantiate the devices. These devices are used in the simulation environ-
ment, simulating the devices’ communication via external channels and according to a predefined
networking behavior. This network simulation is analyzed regarding the network’s packet loss,
its throughput, etc. Furthermore, the simulation can be used to show the device’s internal tim-
ings, which can be further analyzed to identify performance bottlenecks. This analysis allows the
evaluation and the further optimization of the device’s internal behavior, e.g., usage of alternative
protocol designs.

The following sections explain the transformation of the solutions found in the analytical part of
the DSE to the system simulation. Furthermore, they explain the implementation of the simulation-
based part of the SaDSE.

4.4.1 Solution Transformation to System Simulation

The SaDSE framework integrates the analytical part and the simulation-based part by generating
system simulation models from the solutions found by the analytical DSE. The basic idea is to
use the different views of the system design combined with the solutions found by the analytical
part of the DSE to generate simulation models of the devices they represent. Based on the tool’s
configuration, a number of these devices are instantiated. Their interactions are simulated within
an environment defined by the designer.

The focus here lies on the evaluation of the interaction of the devices in different environments.
The internal communication within the devices themselves can already be assessed using the an-
alytical part of the SaDSE framework. The interesting part of the evaluation is how the selection
of the security mechanisms to counter the attacks, influences the behavior of the overall system,
consisting of the multitude of devices. The following sections give an overview of the simulation
models generated by the simulation-based part of the SaDSE framework, how they are composed
to form the device models, and how they are connected. The SaDSE tool focuses on a high-level
system simulation. It shows the influence of the task mappings, the selected security mechanisms,
and the chosen communication channels on the system’s performance and power consumption.
Thereby, the simulation model reflects the task mappings WCETs, the hardware components’
power consumption, and the communication channels’ transmission speed and energy dissipation.
Furthermore, the simulation models allow the designer to integrate function blocks, extending the
behavioral model of the designed system. The simulation-based DSE was realized using SystemC.

– 53 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Simulation-based DSE

Analytical DSE

Solutions ConfigurationArchitectural
description

Functional
description

Component
Factory

Usecase

Network Behaviour

Device Components

Devices

Simulation Environment

Results:
Packet loss
Throughput
Internal timing traces
Channel Capacity

External Channels

Figure 4.10: Simulation-based DSE part of the SaDSE tool.

4.4.1.1 Device Architecture

A device’s architecture is composed of the hardware components. The analytical part of the SaDSE
tool selects the appropriate components for the system design. To inform the component factory
about the affiliation between the device type and the hardware components, the designers must add
this information to the component’s description. Also, the physical communication system used
for the device’s internal communication must be affiliated with the corresponding devices. The
component factory generates the simulation models of the devices, their hardware components,
and their internal communication system based on this description. Furthermore, it connects the
device’s internal components to the communication system according to the architectural descrip-
tion. The communication system consists of physical communication channels (PCCs). Each PCC
is characterized by its transmission speed, as defined in the architectural perspective, and offers
an interface (PCC IF), to which other components can connect. Figure 4.11 shows an example
system model. It consists of one device containing three hardware components (HWCs), linked
with two physical communication channels. Furthermore, the device contains one external port

– 54 –

4 The Security-Aware Design Space Exploration Framework

used to connect it to an external channel.

<<component>>
Device

<<component>>
PCC 1

<<component>>
HWC 1

<<component>>
HWC 2

PCC_1_IFPCC_1_IF

<<component>>
HWC 3

<<component>>
PCC 2

PCC_2_IF PCC_2_IF

Figure 4.11: Example of an architectural simulation mode generated by the component factory. What HWCs are
generated is defined by the solution found by the analytical DSE

The component factory also integrates the security mechanisms supported by the different hard-
ware components. Depending on what tasks use which security mechanisms, this usage is also
represented in the simulation. This information is taken from the solutions found by the analytical
part of the SaDSE framework.

4.4.1.2 Functional Blocks

Similar to the generation of the architectural simulation components, the component factory also
generates simulation components representing the system’s behavior. The component factory uses
the functional view on the system to generate the functional blocks representing the tasks of the
task graph. It connects them according to the task graph’s edges using communication channels.
These communication channels are used to transport the data entities the tasks operate on. The
simulation system further identifies what data entities are generated by what tasks inspecting the
functional view’s data flow.

Based on the solutions found by the analytical part, the SaDSE framework represents the task of
hardware component mapping in the generated system simulation. The component factory must
reconnect each task’s ports depending on the mapping of the tasks it is connected with. Figure
4.12 shows the generated system simulation with the tasks being mapped to the HWC.

The mapping decides if a communicating task passes data entities internally within the same
component, or via the PCC connecting the HWCs, the tasks are allocated on. The mapping further
defines the worst-case execution time (WCET) of the tasks. This execution time must be reflected
in the system simulation. Furthermore, the PCC calculates the transmission delay based on its
transmission speed, and the size of the data entities exchanged via the distinct PCC. In addition
to the WCET and the communication transmission delay, the simulation model also integrates the
execution delays caused by the chosen security mechanisms. This overhead is added to the WCET
of each task. The overhead depends on the task’s usage of security mechanisms, as described in
the solution found by the analytical part.

The simulation-based DSE also allows the definition of recurring task execution. For example,
Task 1 in Figure 4.12 could be triggered every 15ms for ten consecutive times. This repetition

– 55 –

Towards Security-Aware Design Space Exploration for Embedded Systems

<<component>>
Device

<<component>>
PCC 1

<<component>>
HWC 1

<<component>>
Task 3

<<component>>
HWC 2

<<component>>
Task 2

<<component>>
Task 1

PCC_1_IFPCC_1_IF

<<component>>
HWC 3

<<component>>
Task 4

<<component>>
PCC 2

PCC_2_IF PCC_2_IF

Figure 4.12: Example architectural simulation model with the tasks mapped to the distinct HWCs, generated by
the component factory as defined by the solution found by the analytical DSE.

would lead to the execution of the whole system behavior described by tasks Task 1 to Task
4, ten times in a row. This recurring execution can be defined by the designers in the system’s
task graph. These recurring executions might lead to concurrency issues considering multiple
tasks being executed on the same hardware component. This concurreny mismatch can lead to a
simulation behavior not reflecting the actual solution found in the analytical DSE, as tasks sharing
the same hardware component could trigger their parallel execution. As each hardware component
represents a single core, this behavior is prevented. The SaDSE framework’s simulation part
guarantees the subsequent execution by using an additional execution queue for each hardware
component. This execution queue is used to check if the component already executes a task, and,
if so, to queue up future task executions. Before a task is executed, it checks the execution queue
of its host and adds itself to it. If no task is running on the component, the task is executed right
away. Otherwise, the task waits until the component signals its execution. After a task has been
successfully executed, its entry is removed from its host’s execution queue.

4.4.1.3 Device Simulation

The component factory generates the devices with their selected hardware components and the
mapped tasks and integrates them into the overall system simulation. Using this device simulation,
their communication behavior can be evaluated.

Device Communication
To simulate the communication behavior of the overall system, its devices are connected using
one or multiple external communication channel models. Depending on the system under design,
an external communication channel could be, e.g., a BLE or an Ultra Wideband (UWB) channel.
Figure 4.13 shows multiple devices connected to an external communication channel. The devices
use the channel by interacting with the interface (Ext Chan IF) it provides. The external com-

– 56 –

4 The Security-Aware Design Space Exploration Framework

munication channel contains a routing table that stores information about the connection between
the single devices and what messages are currently being transmitted via the channel. What device
communicates with what device is configurable by the designer.

<<component>>
Device_A

<<component>>
Device_B

<<component>>
Device_C

<<component>>
Device_D

<<component>>
Device_E

<<component>>
Device_F

<<component>>
External Communication

Channel

Routing Table
Ext_Chan_IF

Ext_Chan_IF

Ext_Chan_IF

Ext_Chan_IF

Ext_Chan_IF

Ext_Chan_IF

Figure 4.13: Example system simulation model consisting of multiple devices, connected to one another via an
external communication channel. The devices are characterized as mobile or stationary devices.
This information is used by the environmental simulation.

The internal logic of the channel handles the message exchange between the single devices,
considering potential collisions, packet errors, etc. To simulate these effects, the external channel’s
implementation relies on simulation of the physical channel, as well as the system’s environment.

Environment Simulation
The simulation of the physical environment consists of two parts which interact with each other:
The simulation of the physical properties of the external communication channel and the dynamic
changes of the environment. The simulation of the environment provides input to the external
channel. This input consists of the device placement (stationary or mobile), the distance between
them, and the obstacles in between. The external channel uses these inputs from the environment
simulation for the calculation of the physical communication properties. The physical channel
simulation output is then used to determine whether or not the receiving device correctly received
a sent message. Considering the overall system simulation, this information allows the determina-
tion of channel throughput, information update rates, etc.

4.5 Simulation-based DSE Implementation

We realized the system-based DSE approach using the SystemC simulation environment. SystemC
is a system simulation framework which comes as a C++ library. With SystemC, designers can
describe a system from an abstract system level down to the register-transfer level. Especially
the TLM-based system description is optimally suited for the generation of the simulation models
for the simulation-based DSE part of the SaDSE framework. This modeling approach allows the
integration of the performance characteristics taken from the provided solutions, denoting them as
execution delays. Furthermore, the usage of the TLM models also allowed us to add certain details
to distinct PCCs within the devices by modeling the used protocol stack and security protocols.

– 57 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Based on the TLM model, we designed an improved protocol for the integration of an embedded
system and a secure element [3].

Figure 4.14 gives a detailed view on the SystemC models generated by the component factory
for the system simulation. It shows the composition of Device, the HWC, and the Task class.
Furthermore, it shows that all these classes contain ports connecting them to different kinds of
communication channels. These channels all derive from the same interface CC If. The CC If
interface provides the routing table holding the information entries (RT Entry) about the device
connections. Based on the mapping of the Tasks to the HWCs and the association of the HWCs to
the Devices, the component factory uses either an instance of the Log Channel, the PCC or
the Ext Chan class to realize CC If.

The Task class is simply generated as a skeleton container. To simulate its behavior, the de-
signers must add a corresponding implementation to it. Supporting a generic approach, each task
contains a function pointer with which the function implementing the behavior can be called. Fur-
thermore, the system simulation provides a global lookup table that links the task name provided
by the functional description and address of a function in the SystemC model. The DataEntity
class serves as a container class for passing the information between the tasks and their behavioral
implementation.

Furthermore, the Task class contains all used security mechanisms (SM), provided by the HWC
to which it is mapped. The SM class contains the information of the DataEntity it is used on,
and its performance overhead. Its overhead is calculated based on the entity’s size. The generation
of the SM instances and their assignment to the individual Task instances is performed based on
the input solutions.

DataEntity
+src : String
+dst : String
+content : vector<uint8_t>

Task
-name : String
-WCET: sc_time
+sc_port<CC_If>: port
-funct_pt: void (*funct_pt)(DataEntity d)
+sm: vector<SM>
+transmit(d : DataEntity)
+receive() : DataEntity

HWC
-name : String
+ports : vector<sc_port<CC_If>>
-tasks : vector<Task>

+setSM(t : Task)

SM
+d : DataEntity
+oh : sc_time
+pB : boolean

CC_If
-msg : DataEntity
-RT : vector<RT_Entry>
+transmit(d: DataEntity)
+receive() : DataEntity

RT_Entry
+srcDev : String
+dstDev : String

PCC
-tx_speed : double
+transmit(d: DataEntity)
+receive() : DataEntity
-calcTxDelay(size: int) : sc_time

Ext_Chan
-tx_speed : double
-phyChanLink : Link
+transmit(d: DataEntity)
+receive() : DataEntity
-calcTxDelay(size: int) : sc_time
-lookUpPhyChar(pc: phyChar) : double

Log_Channel

+transmit(d: DataEntity)
+receive() : DataEntity

phyChar
+d : DataEntity
+chan_info: ChanInfo

Device
-name : String
+ports : vector<sc_port<CC_If>>
+hwcs : vector<HWC>
+envObj : EnvObj

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 4.14: SystemC components generated from the component factory for the system simulation.

The components generated for the system simulation are linked with the environmental simula-
tion and the physical channel model.

4.5.1 Environment Simulation Implementation

The environmental simulation focuses on indoor localization use cases. Its main purpose is to
simulate indoor environments in which numerous different devices need to be localized. This
environmental simulation is realized by a SystemC-based simulation in which mobile nodes are
represented as moving objects, and anchor devices are represented as stationary objects. Each
device in the system simulation is linked to either a mobile or a stationary object. This link

– 58 –

4 The Security-Aware Design Space Exploration Framework

depends on the given configuration. The localization is performed using UWB technology, passing
ranging packets between the anchor devices and the mobile nodes and taking time stamps when
transmitting and receiving them. The reception of these packets and the time stamp accuracy
heavily depends on the line of sight (LOS) between the stationary anchor and the mobile device.
This LOS is determined by performing a ray-tracing analysis from the transmitting to the receiving
device. The LOS condition (LOS or no-LOS (NLOS)) is used as input for retrieving the packet bit
errors from the physical channel simulation. A detailed explanation of the movement simulation
is given in [144].

4.5.2 Connection to Physical Channel Simulation

The channel model for simulating the physical parameters of the UWB-based communication was
provided by our partnering Institute of Microwave and Photonic Engineering and implemented
by David Veit et al. [145]. Using their model, we precalculated channel models for numerous
situations with different distances between the communicating devices, packet interference, LOS
conditions, etc. Each simulation returned important information about the received packet’s bit
error rate. This information was stored in a database. During the system simulation, the SaDSE
framework performs a lookup in this database for each UWB packet exchange, searching for the
physical channel attributes, providing the characteristics on the LOS condition, the distance, and
the message occupancy within the channel. The environment simulation provides the LOS condi-
tion and the distance between the communicating devices. The channel usage is provided by the
SystemC model of the UWB channel, which tracks the ongoing packet transmission. The channel
occupancy provides information about transmitted packets interfering with each other. The sys-
tem simulation uses the information returned by the physical channel simulation to check whether
the transmitted packet could have been received or not. Based on this information, the SaDSE
framework calculates the channel throughput and the distance estimation rate of the designed lo-
calization system. To get the information from the physical channel simulation, a lookup into the
database, storing the precalculated physical channel transmission must be performed. To speed
up this process, the SaDSE framework stores already retrieved bit error rates according to the
distance information, LOS condition, and packet interference into a lookup-table. All subsequent
lookups with the same input parameters can retrieve the physical channel information from the
lookup-table, thus, saving simulation execution time. The BLE channel’s implementation in the
SaDSE framework focuses on the transmission delay. This delay is calculated according to the
average packet reception delay presented in the channel model by Spörk et al. [146].

– 59 –

5
Evaluation

We evaluated the SaDSE framework using two use cases. These use cases stem from our project
partners NXP Semiconductors Austria GmbH and CISC Semiconductor. For both use cases, we
modeled the systems’ behavior and potential architectural realization with the SaDSE tool. The
evaluation of the SaDSE framework checks the accuracy of its found solutions. Thereby we com-
pare the solutions found by the SaDSE tool with the system designs independently chosen by the
system experts. We extended this qualitative evaluation with the evaluation of the SaDSE frame-
work’s performance. The performance of the framework is compared to the original DeSyDe
framework’s performance, showing the overhead produced by the security constraint considera-
tion during the DSE. We evaluated the framework’s simulation-based capabilities by extending
one of the use cases towards a system simulation with dynamic environments. Furthermore, we
show how the system simulation can be used to design new communication protocols used within
the found system designs.

The following sections describe the use cases from both the behavioral and architectural de-
scriptions. We outline the security rating of both the potential attack scenarios and the security
mechanisms’ protection. The last section describes the performance overhead evaluation.

5.1 Use Case Evaluations

We used the SaDSE framework to model two use cases from their behavioral and architectural
perspective. This description includes the modeling of potential attack scenarios and the sys-
tems’ security protection mechanisms. The possible implementations and their performance and
power consumption were estimated with the support of the project partners’ system architects.
The security mechanisms overheads were estimated using performance and power consumption
measurements published in related research projects.

5.1.1 Security Rating

To evaluate the security of the possible solutions found by the SaDSE framework, the potential
attack scenarios, and the protection capability of the security mechanisms must be rated. The
rating of the attacks’ potential to threaten distinct security assets within the system builds on the
widely used CVSS. The rating of the security mechanisms’ protection capabilities is based on the
CC certifications and system expert knowledge.

– 61 –

Towards Security-Aware Design Space Exploration for Embedded Systems

5.1.1.1 Attack Rating

The attack rating for assessing the potential threat of the attack scenarios builds on the CVSS
version 3.1 [99]. The CVSS score is composed of three subscores: the base, temporal, and the
environmental subscore. These subscores are calculated using various metrics. The base metrics
contain exploitability and impact metrics. Rating the probability of the attacker successfully con-
ducting an attack step is based on a likelihood estimation. To obtain this estimation, we rely on the
exploitability metric of the CVSS. These base metrics consist of the attack vector AV , the attack
complexity AC, the privilege required PR, and the user interaction UI metrics. These metrics
describe the difficulty of a performed attack.

In addition to the exploitability metrics, the probability of an attack step also captures the at-
tacker’s motivation for performing the attack. This motivation is largely determined by the impact
of the successful attack execution on the targeted system. This impact is captured in the CVSS
using the security requirement SR metric.

The probability of an attack step being successfully executed is captured in its attack success
probability asp. This value is calculated according to Equation (5.1). The exploitability metrics
are rated with values ranging from 0 to 1. The SR value ranges from 0 to 2.1. With 2.1 being the
maximum, the asp cannot exceed 1.0, which is the allowed maximum value.

asp = AV ∗AC ∗ PR ∗ UI ∗ SR (5.1)

The CVSS supports security analysts by a textual description of the levels selectable for each
metric. This description provides the analysts with a reference point for their rating. Each level
is assigned a distinct rating value. Table 5.1 gives a short description of these levels and their
rating values. To support the analysts with a more detailed rating of these metrics, the CVSS was
extended with custom levels. These additional levels are described in [99].

5.1.1.2 Protection Rating

The protection rating offered by the hardware components is based on the description of the used
security mechanisms. These descriptions are, e.g., based on existing CC certifications. Indepen-
dent of the protection rating’s basis, the security mechanisms increase the complexity of all attacks
aiming at tasks mapped to the component providing this mechanism. This increase of the com-
plexity is reflected in Equation (5.1) by exchanging AC with ACiv. ACiv is the attack complexity
increased by the implementation vulnerability iv of the allocating hardware component. TheACiv
is calculated as ACiv = AC ∗ iv, with 0 < iv ≤ 1 and ACiv ≤ 0.01. Hence, the modified attack
complexity cannot become less than infeasible. The range of iv andACiv represents the fact that a
system is only secure as long as no security incident was reported. Hence, there is always a small
possibility that an attacker can breach a system’s security.

The CC defines, additionally to ToEs, STs, and PPs (see Section 2.3), categories of attack po-
tential. Experts determine the attack potential during the vulnerability assessment of a ToE. The
attack potentials are categorized as basic, enhanced-basic, moderate, high, and beyond-high attack
potentials. The attack potentials result from the attacker’s expertise, the knowledge of the ToE,
used equipment, elapsed time until a vulnerability was identified, and the timeframe during which
the attack is executable. The attack potential is used by the CC certification further to describe

– 62 –

5 Evaluation

Table 5.1: Ratings of AV , AC, PR, UI and SR based on the CVSS.

Level Description Rating

Attack Vector

Network (N) Attack victim is remotely exploitable via the network stack - can be multiple hops away. 0.85
Adjacent (A) Attack victim is bound to network stack. Attack is limited on protocol level. Attacker has access

to same physical / logical network.
0.62

Local (L) Victim is not bound to network stack. Attacker must access system locally. 0.55
Physical (P) Attacker needs physical access to victim. 0.2

Attack Complexity

Low (L) No special access conditions. Attack has repeatable success. 0.77
Medium (M) Attacker needs domain knowledge of the attacked system. 0.5
High (H) Attack needs measurable effort in preparation. Attacker gathers knowledge about system, prepares

target environment, injects attack.
0.44

Very High (H+) Attacker needs expert domain knowledge to launch an attack. Additionally, the attacker needs to
scan the environment to as the attack is timing based.

0.2

Secured (S) The attacker must bypass the system’s protective mechanisms. A considerable effort must be spent
to find security backdoors. Vulnerabilities are not improbable.

0.05

Infeasible (I) A succesfull attack on the system would need vast computational effort for breaking the system’s
security. No vulnerability known for circumventing the system’s protection.

0.01

Privileges Required

None (N) No prior authentication needed by the attacker. 0.85
Low (L) Privileges for basic user capabilities needed. Only access to non-sensitive resources needed. 0.62
High (H) Attacker needs privilege to access significant control over victim. 0.27

User Interaction

None (N) Exploit does not need any interaction from the user 0.85
Required (R) Prior user actions are required for successfully performing the attack 0.62

Security Requirements

Not Defined (X) Insufficient information about the impact of the successful attack 1
Very High (H+) Successful attack is likely to have a catastrophic effect on the attacked system and its users 2.1
High (H) Successful attack is likely to have a high impact on the attacked system and its users 1.5
Medium (M) Successful attack is likely to have a serious effect on the attacked system and its users 1
Low (L) Successful attack is likely to have only a limited effect on the attacked system and its users 0.5

the EALs of the certified ToEs. Each EAL (except EAL1) assures that the evaluated ToE is ca-
pable of protecting its security assets against the distinct categories of attack potentials. EAL2
and EAL3 is secure against basic attacks, EAL4 against enhanced basic attacks, EAL5 against
moderate attacks, EAL6 and EAL7 against high potential attacks [147].

Based on these attack potential descriptions and the EALs’ protection, the iv was chosen for
the distinct hardware components: for EAL6 and EAL7 the iv is 0.01; for EAL5 the iv is 0.1;
for EAL4 the iv is 0.2; for EAL3 and EAL2 the iv is 0.4; for EAL1 the iv is 0.6. For none
CC certified hardware components we performed an assessment of their security mechanisms and
estimated how likely it is for the potential attacker to find vulnerabilities.

– 63 –

Towards Security-Aware Design Space Exploration for Embedded Systems

5.1.2 Secure Sensor System

The secure sensor system use case was a result of the STIP project which was performed together
with NXP Semiconductors Austria GmbH and CISC Semiconductor. The purpose of the secure
sensor system is the continuous collection of sensor data using multiple embedded sensors. These
sensors send the sensed data to a central gateway that accumulates it. This central gateway then
sends the accumulated data to the analysis server. The server checks the data and, depending on
the sensed data, takes control actions. The use case described here mainly builds on our work
described in [36].

The secure sensor system design was used as a use case to show the usability of the SaDSE
framework. Thereby, we used the SaDSE framework to model the system’s functionality and
describe the possible hardware components with which to realize the system’s implementation.
Furthermore, we described potential attack scenarios, as well as the system’s security assets and
security mechanisms. We were also interested in the influence of using different secret keys and
placing them on different hardware components. The following sections give a detailed explana-
tion of the modeling approach and the solutions found by our tool.

5.1.2.1 System Description

The system design’s behavior and architecture are described using the SaDSE framework’s func-
tional and architectural perspective. To show the influence of the overall system’s design on its
security, two different functional perspectives were used as inputs for the SaDSE framework. This
difference in the functional perspective results in two variants. In variant I, the gateway performs
a prefiltering of the sensor data. In variant II, the gateway only forwards the accumulated sensor
data directly to the analysis server.

Functional Perspective
We described the system’s behavior using the functional perspective of the SaDSE framework.
This description comprises the task graph and the data entities by the sensor system. Figure 5.1
shows the task graph, including the two variants for the use case. The task graph describes the
sensor node getting configured by the gateway module. After the successful configuration, the
gateway activates the sensor node, upon which the sensor starts collecting environment informa-
tion. The sensor sends the sensed information to the gateways. At the gateway, the sensor data is
either filtered or merely forwarded and sent to the analysis server. These different scenarios are
described in Figure 5.1, marked as variant I and variant II. The analysis server receives the sensor
data and stores and analyses it. Based on the analysis, the server takes suitable actions.

Table 5.2: Data entities used by the secure sensor system and their security properties: confidentiality (conf.),
integrity (int.), authenticity (auth.).

config status activation sensor msg sensor data action cmd

conf. x x x x
int. x x x
auth. x x x x x x

Table 5.2 lists the data entities used by the designed system, including their security properties.

– 64 –

5 Evaluation

Gateway

rx config forward
config

rx status
msg

forward
status

config config

rx, tx rx, tx

rx, txrx, tx

4 5 6

1314

Sensor Node

tx config

rx, tx

config

7

rx config

rx, tx

chall

8
check
config

rx, r, tx

configconfig

9
store
config

rx, st, tx

config

10

apply
config

rx, w, tx

config

chall

11
create
status

w, tx

status
chall

12
tx status

msg

rx, tx

statusstatusstatus

tx status

15

rx
activaton

cmd

rx, tx21

activation

forward
activation

rx, tx22

activation

tx
activation

cmd

rx, tx23

activation

rx
activation

cmd

rx, tx24

activation

check
activation

cmd

rx, r25

activation

activate
sensor

26

sense

w, tx

27

sensed
data

create
sensor
msg

rx, r, w, tx
28

sensor
msg

tx
sensor
msg

rx, tx
29

sensor
msg

rx
sensor
msg

rx, tx
30

sensor
msg

filter
sensor
msg

rx, w, tx
31

pass
sensor
msg

rx, tx32

sensor
msg

Analysis Server

forward
sensor
msg

rx, tx31

tx
sensor
msg

rx, tx

sensor
msg

sensor
msg

sensor
msg

variant I variant II

33

rx
sensor
msg

rx, tx

sensor
msg

34
analyse
sensor
msg

rx, r, tx

sensor
msg

35

store
sensor
data

rx, st, tx

sensor
data

36
monitor
sensor
data

rx, r, w, tx

sensor
data

37
take

action
action
cmd

38 rx, r

action
cmd

sensed
data

rx, tx

status

pack
config

config

rx, r, w, tx

tx config

rx, tx

config

create
config

config

w, tx1 2 3

rx status
msg

check
status

rx, txrx, r 1617

statusstatus

create
activation

cmd

18

activation

wrap
activation

cmd

rx, r, w, tx

activation

tx
activation

cmd

rx, tx

activation

19 20

w, tx

Figure 5.1: Secure sensor system task graph.

The operations comprise: transmit (tx), receive (rx), write (w), read (r), store (st). The security
operations are deduced from the security properties and the operations performed on the data
entities according to the rules described in Table 5.5. Figure 5.1 shows how the functionality of
the overall system is deliberately split between the sensor node, the gateway, and the analysis
server. Thus, the tasks are restricted to the devices. The SaDSE framework still must optimize the
task mapping on the different hardware components within the distinct devices. These restrictions
are described by the possible mappings of the tasks to the hardware components. This limitation
is represented in the mappings described in table 5.4.

Architectural Perspective
The architectural perspective describes the hardware components potentially used by the system
design. Table 5.3 lists the components and their different options regarding the security mecha-
nisms. The performance and the power consumption was estimated for each security mechanism
based on [148–150]. Both the gateway and the sensor device can consist of a microcontroller
MCU and can use a secure element (SE) for performing security-relevant functions. The MCU
and the SE are connected with an I2C bus. The sensor device is additionally equipped with a BLE
radio. The gateway is equipped with a BLE and a WiFi radio. These radios are connected to the
MCU of the sensor device and the gateway using an SPI bus. The sensor device additionally hosts
a sensor module for accumulating data. This module is connected to the MCU of the sensor node
via an SPI bus. The server is equipped with a WiFi radio. It is realized on a server platform with or
without the support Hardware Secure Module (HSM), or directly on a HSM. The server platform
can be connected to the HSM using an Ethernet connection. Both the BLE and the WiFi radio do
not support any means of security mechanisms. Hence, they are not listed in Table 5.3.

The SE supports tamper-safe-storage (tss), task encapsulation (te) supporting a hardware fire-
wall, symmetric (sym) cryptography, and asymmetric (asym) cryptography provided by a cryp-
tographic co-processor. For the SE, the cryptographic algorithms are side-channel secured. The
MCU supports in the security-enhanced variant te with a hardware firewall, hardware-based sym-
metric, and asymmetric cryptography. In its limited security variant, the MCU only provides

– 65 –

Towards Security-Aware Design Space Exploration for Embedded Systems

software-based symmetric cryptography, which is not side-channel proof, and task encapsulation
which is only software-based. The HSM provides tamper-safe-storage, firewall secured task en-
capsulation, and hardware-based secure symmetric and asymmetric cryptography. Without the
HSM realization, the server only offers limited security. This variant only supports symmetric
cryptography realized in software and without side-channel security, and task encapsulation only
implemented in software without hardware firewall support.

Table 5.3: Hardware components selectable for the secure sensor use case. Each component comprises the im-
plementation vulnerability risk (IVR), and the performance / power consumption of the security mech-
anisms.

HWC Security Description IVR Security Performance Security Power Consumption

SE EAL 5+ 0.1 tss(40Mb/s), te(10us) tss(30mW), te(5mW)
sym(500Mb/s), asym(120ms) sym(60mW), asym(300mW)

EAL 6+ 0.01 tss(20Mb/s), te(10us) tss(30mW), te(5mW)
sym(400Mb/s), asym(150ms) sym(70mW), asym(400mW)

MCU security enhanced 0.25 te(10us), sym(600Mb/s) te(5mW), sym(50mW)
asym(150ms) asym(250mW)

limited security 0.6 sym(1.2Gb/s), te(5us) te(5mW), sym(35mW)

Server

HSM 0.1 tss(20Mb/s), te(10us) tss(50mW), te(20mW)
sym(800Mb/s), asym(150ms) sym(120mW), asym(600mW)

limited security 0.6 sym(1.2Gb/s), te(5us) te(5mW), sym(80mW)

Table 5.4 describes the possible mappings of the tasks depicted in Figure 5.1 to the hardware
components described in Table 5.3. The tasks are abbreviated using their respective numbers. The
WCET of a task executed on a distinct hardware component is added in brackets next to the task
number. These WCETs are given in ms.

Table 5.4: Possible task to hardware component mappings for the secure sensor usecase, with additional WCETs
given in ms.

HWC Platform Security Description Task WCETs (in ms)

SE Sensor Node EAL 5+ t8(50), t9(40), t25(50), t28(60)
EAL 6+ t8(50), t9(40), t25(50), t28(60)

SE Gateway EAL 5+ t31-v1(30), t31-v2(70)
EAL 6+ t31-v1(30), t31-v2(70)

MCU Sensor Node security enhanced t8(20), t10(30), t11(40), t26(10), t28(30)
limited security t8(20), t10(30), t11(40), t26(10), t28(30)

MCU Gateway security enhanced t5(20), t14(20), t22(20), t31-v1(20), t31-v2(50), t32(20)
limited security t5(20), t14(20), t22(20), t31-v1(20), t31-v2(50), t32(20)

Server Analysis server
HSM t1(40), t2(20), t17(30), t18(50), t19(40)

t35(60), t36(50), t37(60), t38(40)

limited security t1(20), t2(10), t17(10), t18(30), t19(20)
t35(40), t36(20), t37(30), t38(30)

BLE Radio Sensor Node no security t7(10), t12(10), t24(10), t29(10)
Gateway no security t6(10), t13(10), t23(10), t30(10)

WiFi Radio Gateway no security t4(10), t15(10), t21(10), t33(10)
Analysis server no security t3(10), t16(10), t20(10), t34(10)

Sensor Module Sensor Node no security t27(100)

– 66 –

5 Evaluation

5.1.2.2 Potential Attacker

To enforce the security constraints upon the system under design, we modeled, together with our
project partners, potential security attack scenarios. To make reasonable assumptions about the
security attacks aimed at the sensor system, an analysis of the potential attacker was performed.
The assumed attacker is capable of sniffing the communication both between sensor nodes and
gateway (BLE), and gateway and analysis server (WiFi). Furthermore, the attacker can physically
access the sensor nodes and the gateway and tamper with its memory. The attacker can also inject
malicious software code to the sensor nodes, the gateway, and the analysis server to retrieve data
via externally accessible interfaces. With physical access to the gateway and the sensor nodes, the
attacker can perform side-channel analysis to get information about the secret keys used during
the cryptographic processes.

Based on this description of the potential attacker, we identified the following attack scenarios
on the secure sensor system. The attack scenarios were modeled as BAGs, as depicted in Fig-
ure 5.2. The attacker aims at manipulating the sensor’s configuration, trying to misconfigure the
sensor and, hence, lead the overall system to unintended behavior. The attacker also aims at dis-
closing and manipulating the status of the sensor device. These attacks can also lead the sensor
to malfunction. The attacker might also aim at faking the activation message and, hence, activate
the sensor before being correctly configured. The attacker also aims to disclose and manipulate
the sensor data, faking the sensor data message received by the analysis server. This attack can
lead the analysis server to trigger wrong actions. Furthermore, the attacker aims at disclosing and
faking the action command received by the sensor gateway. The disclosure of the action command
can give the attacker unintended information about safety-critical measurement thresholds. Its
faking can lead the system into unintended behavior.

The disclosure of the sensor data and its manipulation causing the analysis server to trigger un-
intended commands was rated as a severe incident. A misconfiguration or a faked status message
was rated as a minor incident. This rating is represented in the thresholds assigned to the distinct
attack goals in the BAG (Figure 5.2).

Figure 5.2 represents the overall BAG in a more concise form. Each attack in which more than
one task is represented describes multiple attacks aiming at distinct tasks. Hence, also the CPTs
of these concise representations are split into their respective sub-parts in the real BAG.

5.1.2.3 Security Mappings

The secure sensor system’s potential designs can use various security functions and mechanisms
to secure the used assets. These functions and mechanisms usable by the system are described by
the security mapping provided to the SaDSE framework.

Rule Set
The relation between the operations (OP) and security operations (SecOp) performed by the
tasks on the data entities, the chosen security functions (SF) and their realization by the designed
system (SM), and what security properties (SP) are victim to what attacks (AT) are defined using
specific rules. These rules are described by a rule set listed in Table 5.5.

The system performs the OP of writing (w), reading (r), storing (st), transmitting (tx), and re-

– 67 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Attack configuration

manipulate
configuration

t24

intrude
Node

t27

sniff
config
exch

t25

manip.
config

t28

extract
config

t29

inject
faked

 config

P=0.9
P=0.8

P=0.74
P=0.82

P=0.64

P=0.58
T=0.01

Attack configuration

manipulate
configuration

t6

sniff
config
msg

t5

intrude
gateway

t7

capture
config msg

t5

manipulate
config

t5

inject
faked

 config

T=0.05

t7

fake
config msg

Attack configuration

manipulate
configuration

t24

intrude
Node

t27

sniff
config
exch

t25

manip.
config

t28

extract
config

t29

inject
faked

 config

P=0.9
P=0.8

P=0.74
P=0.82

P=0.64

P=0.58
T=0.01

Attack Status

manipulate
status

t12

sniff
status msg

t11

intrude
sensor

t13

capture
status msg

t11

manipulate
status

T=0.05

t14

fake
status msg

Attack Sensor Data

t29

sniff
sensor msg

BLE

t33

sniff
sensor msg

WiFi

P=0.8

P=0.74

P=0.58

Attack Activation Message

activate sensor
no config

t23

sniff
BLE

t24

fake
activation

msg

T=0.05

t25

inject
msg

t8

inject
fake config

msg

t34/t30

capture
sensor msg

t35/t30

fake sensor
msg

t28

t31vII

t35

disclose
sensor data

t27/t22

disclose
sensor data

intrude
sensor

intrude
gateway

intrude
servert36/t31vII

/t28

tamper
sensor data

P=0.8

P=0.74

P=0.58

Attack Action Cmd

manipulate
action cmd

t30

intrude
server

t30

manipulate
action cmd

T=0.05

manipulate
sensor data

t35/t31vII

inject
fake sensor

msg

T=0.01
T=0.01

0.47
CPT

1 0,31

0 0

CPT

1 0,34

0 0

CPT

1 0,22

0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

0.25
CPT

0.47
CPT

1 0,19

0 0

CPT

1 0,22

0 0

CPT

 0.25
CPT

0.47
CPT

0.25
CPT

0.47
CPT

0.47
CPT

1|1 0,31

1|0 0,31

0|1 0,31

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

0.25
CPT

0.25
CPT

0.25
CPT

1 0,27

0 0

CPT

1 0,47

0 0

CPT
1 0,3

0 0

CPT

1|1|10,27

1|1|00,27

1|0|10,27

1|0|00,27

0|1|10,27

0|1|00,27

0|0|10,27

0|0|0 0

CPT

1|1|10,12

1|1|00,12

1|0|10,12

1|0|00,12

0|1|10,12

0|1|00,12

0|0|10,12

0|0|0 0

CPT

1 0,31

0 0

CPT

1 0,34

0 0

CPT

1 0,19

0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1 0,34

0 0

CPT

1 0,22

0 0

CPT

1 1

0 0

CPT

1 1

0 0

CPT

1 0,19

0 0

CPT

t24

capture
activation

msg
1 0,31

0 0

CPT

t11

inject
faked

 config
1 0,22

0 0

CPT

t31

inject
faked

 config
1 0,22

0 0

CPT

t35/t31vII
/t20

disclose
sensor data

Figure 5.2: Attack graph describing the attack scenarios aimed at the secure sensor system.

ceiving (rx). The data entities need their confidentiality (spc), integrity (spi), or authenticity (spa)
protected. Based on the OP and the SP , the system performs distinct SecOp to protect the data
entities’ SP . The SecOp comprise encryption soe, authentication soa, and tamper-proof storing
sot. The SP are aimed at by certain AT . The AT comprise information disclosure (ati), spoofing
(ats), and tampering (att). The SecOP use distinct SF , comprising cryptographic algorithms
for encryption (sfcrypte) and authentication (sfcrypta), task encapsulation (sfte), and tamper-safe
storage (sftss). The SF are implemented by distinct SMC. These SM comprise symmetric en-
cryption (smencsym) and authentication algorithms (smauthsym), and asymmetric ones (smencasym

and smauthasym). If a symmetric or asymmetric encryption or authentication is used depends on
the chosen secret keys.

Security Functionality and Secret Keys
To secure the sensor system’s assets, the framework was provided with a set of security functions
to protect them. Certain security functions are only usable when provided with the correct se-

– 68 –

5 Evaluation

cret keys. These security functions are cryptographic algorithms used for encryption (sfcrypte)
and authentication (sfcrypta). These algorithms either use symmetric or asymmetric secret keys.
Thereby, the algorithms can use the following secret keys. The symmetric master key (mk) and
the asymmetric certificate (cert) are used to derive a symmetric session key (sk). This session key
is used to secure the sensor nodes’ communication to the gateway and the gateway to the analysis
server. The session key is periodically updated using the master key/certificate. Furthermore, the
gateway, sensor nodes, and the analysis gateway use a symmetric binding key (bk) used for the
encryption and authentication of the internal communication.

Table 5.5: Security rules used in the secure sensor use case study

SOR 7→ SecOp AT 7→ SP κSecOp 7→ κSF

f((r ∨ w) ∧ spc) = soe f(ati) = spc f(soe ∧ ext) = sfcrypte
f((r ∨ w) ∧ spa) = soa f(ats) = spa f(soa ∧ ext) = sfcrypta

f(st ∧ (spc ∨ spa ∨ spi)) = sot f(att) = spi
f((soe ∨ soa) ∧ int) = sfte
f(sot) = sfss

κSF 7→ κSM

f(sfcrypte) = (smencasym ∨ smencsym)

f(sfcrypta) = (smauthasym ∨ smauthsym)

f(sfte) = smte

f(sftss) = smtsm

Based on the lifetime of the used secret keys, the attack success probability was rated accord-
ingly. Hence, the master key and the certificate are more interesting targets for the potential at-
tacker than, e.g., the session key. The master key and certificate were rated with an attack success
probability of 0.37, the binding key with 0.17, and the session key with 0.09. These attack success
probabilities were calculated based on the CVSS. Based on their lifetime, the master key and the
certificate is must be secured using sftss. The other security functions provided to the system were
rated with 0.3 for sfte and 0.2 for sftss.

5.1.2.4 Solution Space

The functional and architectural description, the attack scenarios, and the description of the secu-
rity functionality and ruleset were fed to the SaDSE framework. We configured the framework to
find the solutions with the optimal performance, the least power consumption, the most secure so-
lution, the fastest yet secure solution, and the most power-efficient yet secure solution. The SaDSE
provided us with the desired outputs. To put the overall solution space considered by the SaDSE
framework into perspective, Figures 5.3 and 5.4 show the overall solution space as scatter plots
for system variant I (forwarding of sensor data) and system variant II (prefiltering of sensor data
at the gateway), respectively. Each point in the plots shows one solution calculated by the SaDSE.
These solutions are ordered according to their performance and power consumption, normalized
to the solution with the fastest performance and lowest power consumption, respectively.

Figures 5.5 and 5.6 show the solutions ordered according to their performance normalized to the
fastest solution and the average attack success probability (APavg) of all attack goals, calculated

as APavg =
∑G
i=0 aspi
G , where aspi is the attack success probability of goal i and G denotes the

numbers of all attack goals. Considering the number of solutions found to be secure for both

– 69 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Figure 5.3: Solution space of variant I ordered ac-
cording to normalized power consump-
tion and performance

Figure 5.4: Solution space of variant II ordered ac-
cording to normalized power consump-
tion and performance

variants I and II, one can notice a significant difference. An additional attack vector is opened
based on a gateway intrusion performed by the attacker due to the additional filtering process
performed on the gateway. Hence, the gateway in variant II must provide a more thorough security
hardening than the gateway used in variant I. In both variants, the overall solution space is vastly
reduced by integrating the security constraints. For variant I, only 9, 400 solutions (7.5%) out
of 125, 304 solutions were rated secure. For variant II, only 4, 060 solutions (3.24%) out of the
125, 304 solutions are considered secure.

Figure 5.5: Solution space of variant I ordered ac-
cording to average attack success proba-
bility and normalized performance

Figure 5.6: Solution space of variant II ordered ac-
cording to average attack success proba-
bility and normalized performance

Considering the overall solution space, we were interested in the most secure, the fastest, the
fastest secure, and the most power-efficient secure (MPE) solution. These solutions are described
in Table 5.6. The table describes the system partitioning of the named solutions, their overall
delay in seconds, their power consumption in mW, and their key placement. One can notice the

– 70 –

5 Evaluation

Table 5.6: Most secure, the fastest, the fastest secure, and the most power efficient secure (MPE) solutions found
based on average attack probability (APavg), the execution time and the power consumption.

Device HWC Most secure Fastest (var. I) Fastest secure (var. I) Fastest secure (var. II) MPE secure (var. I)

Sensor MCU / lim.-sec. sec.enh. sec.enh. sec.enh.
SE EAL 6 EAL 5 EAL 6 EAL 6 EAL 6

Gateway MCU sec.enh. lim.-sec. sec.enh. sec.enh. sec.enh.
SE EAL 6 / / EAL 6 EAL 6

AS Server HSM lim.-sec. lim.-sec. + HSM lim.-sec. + HSM lim.-sec. + HSM
APavg = 0.012 0.13 0.015 0.016 0.014
delay (s) 2.98 1.95 2.54 2.8 2.93

power cons. ((mW) 940 430 465 490 375
Key Placement

Sensor MCU / ssk, sbk ssk, sbk ssk, sbk ssk, sbk
SE ssk, smk, cert sbk, smk, cert sbk, smk sbk, smk sbk, smk

Gateway MCU ssk, sbk / / ssk, sbk /
SE sbk, smk, cert / / sbk, smk /

AS Server ssk, smk, cert ssk, smk, cert ssk, smk, cert ssk, smk, cert ssk, smk, cert

difference in the SE selection for the use case variants I and II. This difference fits the variation
seen in the overall solution space found for the two variants. The SaDSE framework is able to find
the real optimal solutions given the optimization criteria due to the used constraint programming
approach.

Based on the found solutions, a prototype implementation was performed by the project part-
ners. This prototype was based on the fastest secure solution found by the SaDSE framework for
variant I.

System Realization
The solutions found by the SaDSE were used by our project partners to design and implement
a prototype sensor system, consisting of one secure sensor node, a secure gateway, and a pro-
totype server application. The secure sensor nodes were realized using a Raspberry Pi 3 Model
B, integrating a BLE 4.2 chip. The node was equipped with an HTS221 temperature sensor and
extended with an SE050 SE utilizing the chip’s I2C interface. The gateway was realized using
a Raspberry Pi 4 Model B controller, which offers both BLE and WiFi interfaces. The analysis
server was realized as a cloud solution instantiated on Amazon EC2. The Amazon Web Services
(AWS) CloudHSM is a cloud-based HSM. The AWS CloudHSM supports the creation and man-
ages confidential information, such as cryptographic keys, and other information. The secure data
exchange between the sensor node and the analysis server via the gateway is secured using an
AES-based encryption scheme. The authentication between gateway and analysis server is based
on an RSA-based authentication process. The prototype’s performance was evaluated by calculat-
ing the average over 50 measurement cycles. When featuring the security mechanisms, the overall
execution time of the prototype is 2, 338ms. Without any security mechanisms, the prototype’s
execution time is 1, 852ms [151]. This execution time was measured from the accumulation of
the sensor data until its reception on the analysis server. When comparing the execution times of
the prototype with the fastest secure solution (2, 540ms) and fastest solution (1, 950ms) found for
variant I, one can notice that the found solutions match the real execution times quite well.

– 71 –

Towards Security-Aware Design Space Exploration for Embedded Systems

5.1.3 Secure Indoor Localization System

The secure indoor localization system use case was performed in the UB-Smart project together
with NXP Semiconductors Austria. We used the secure indoor localization system use case to
verify the functionality of the SaDSE framework by revisiting the system’s design. In this use case,
we used the risk tree approach combined with the BAG-based attack description. Furthermore, we
used the secure indoor localization system use case to show the SaDSE framework’s capability
of generating a system simulation based on the solutions found by the analytical DSE part. This
integration between the simulation-based and analytical DSE is explained in Section 5.3. The use
case described here largely builds on our work described in [2].

5.1.3.1 System Description

Again, the system is described using the SaDSE framework’s functional and architectural descrip-
tion. Assessing the system’s security, we described the potential attacker targeting the indoor
localization system. The potential attack scenarios are depicted within a BAG, extended with
risk information. Thus we compared the BAG-based and the risk-based approach. The security
mapping describes the rules mapping the security properties to security mechanisms and other
mappings.

Functional Perspective
The secure localization use case describes an indoor localization system capable of performing
secure ranging consisting of node and anchor devices. The anchors are stationary placed in a
room at known and fixed locations. The node devices’ location is unknown to the localization
system. The anchors and nodes exchange ranging packets via an Ultra Wideband (UWB) channel.
The UWB technology allows the devices to measure the timestamps of incoming and outgoing
packets precisely. Knowing the timestamps of both anchor and node allows the calculation of the
time of flight. Thus, the distance between the two devices can be estimated. With the distance
estimations between a node and three or more anchors, the node’s location can be calculated using
trilateration, with respect to the anchors’ positions. In this use case, the anchor is connected to a
keyless entry system. The node can be used as a key, and the anchor controls the lock.

The system representation fed to the SaDSE framework is a simplified representation of the
overall system. The functionality of the use case is described by the task graph depicted in Figure
5.7. The system’s functionality is split into three phases.

Authentication Phase: In the authentication phase, the node and the anchor device authen-
ticate each other by exchanging challenges. These challenges are signed by the devices
using their symmetric master keys. This authentication is only performed once and valid as
long as the system localizes the node.

Session & Configuration Phase: In the session and configuration phase, the node and the
anchor derive their session keys from the master key. This session key is used within a
time-limited session to encrypt and authenticate the configuration sent from the anchor to
the node, authenticate the status message passed from the node to the anchor, and derive the
ranging key.

Ranging Phase: The ranging phase consists of the ranging packet exchange. These packets

– 72 –

5 Evaluation

contain the node’s timestamp information sent from the node to the anchor. The ranging
packets are secured using the ranging key. A new ranging key is derived from the session
key for each ranging cycle. A ranging cycle starts with the poll ranging packet sent by the
node and ends with the final ranging packet. The anchor uses its timestamps and the node’s
timestamps to calculate the distance between the two devices. If the distance is below a
configured threshold, the anchor opens the lock and sends the information about the unlock
process to the node.

The secure localization system designed in this system can be used in diverse scenarios. In the
scenario at hand, the system is designed to control access to a valuable facility. However, the de-
signed anchor and node devices can also be used in general for a secure localization system. Using
the solutions found for the device designs, we evaluated such a localization system in Section 5.3.

The data entities and their security properties are listed in Table 5.7. The data entities com-
prise the challenge exchanged between anchor and node, the session request (requ.) and response
(resp.), the configuration (config.) of the node, the status message, the open command (cmd), and
the ranging (rng.) packets (poll message, response message, final message.

Table 5.7: Data entities used by the secure localization system and their security properties: confidentiality
(conf.), integrity (int.) and authenticity (auth.).

config challenge session requ. & resp. config. status rng packet open cmd mk sk rk

conf. x x x x x x x x
int. x x x x
auth. x x x x x x x x x x

Architectural Perspective
Both the anchor and the node device are composed of the same hardware components. They
consist of an application processor (AP), an optional secure element (SE), an UWB radio (UR),
and a BLE radio. The BLE radio does not offer any security mechanisms.

The hardware components come in different versions providing various security mechanisms.
These are listed in Table 5.8. The AP, SE, and UR come with different security variants. The
AP features hardware-based (HWC) or software-based cryptography (SWC). The SWC comes
either with side-channel protection (scp) or only as a functional (f) implementation. Furthermore,
the AP can feature a trusted execution environment (TEE). The SE comes with various EAL
levels. The UR variants feature HWC, functional SWC, and either support firewall (FW) based
task encapsulation, a TrustZone (TZ), or a microcontroller separation (MS).

The variants of the hardware components support different security mechanisms. These mech-
anisms feature encryption smenc, authentication smauth, tamper-safe storage smtss, and task en-
capsulation smte. The mapping of these mechanisms to the security operations performed by the
tasks of the functional description is defined by the rule set given in Table 5.10.

The possible mappings of the tasks to the hardware component variants of both devices are
described in Table 5.9. These mappings include their WCETs. The estimated WCET of each
task is written in brackets next to the task’s identifier. The performance values for the different
implementation options of the tasks were taken from an initial system design, and are given in ms.

– 73 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Node

create
chall

forward
chall

rx chall
resp

check
chall
resp

chall chall

w, tx rx, tx

rx, txrx, r

1 2 3

1112

Anchor

tx chall

rx, tx

chall

4

rx chall

rx, tx

chall

5
forward

chall

rx, tx

challchall

6
check
chall

rx, tx

chall

8 create
chall

anchor

w, tx

chall
anchor

9create
chall
resp

rx, w, tx

chall-rsp

10
tx chall

resp

rx, w, tx

chall-rspchall-rspchall-rsp

derive
session

key

13

create
start

session

r, w, tx14

session

create
session

requ

rx, r, w, tx15

session
requ

tx
session

requ

rx, tx16

session
requ

rx
session

requ

rx, tx17

session
requ

check
session

rx, w, tx18

session
requ

create
session

resp

rx, w, tx
19

session
resp

forward
session

resp

rx, tx

20

session
resp

create
resp
msg

rx, w, tx
21

session
rsp-msg

tx resp
msg

rx, tx
22

session
rsp-msg

rx resp
msg

rx, tx
23

session
rsp-msg

check
resp
msg

rx, r
24

session
rsp-msg

create
config

w, tx
25

config

pack
config

rx, w, tx
26

config
msg

forward
config
msg

rx, tx
27

config
msg

tx config
msg

rx, tx
28

config
msg

rx config
msg

rx, tx
29

config
msg

unpack
config

rx, r, tx
30

config
msg

check
config

rx, r
31

config

derive
rng key

37
create

poll msg

r, w, tx38

poll msg

pack
poll msg

rx, r, w, tx39

poll msg

tx poll
msg

rx, tx
40

poll msg

rx poll
msg

rx, tx
41

poll msg

unpack
poll msg

rx, tx42

poll msg

get poll
info

rx, r, w, tx43

poll msg

create
rng resp

r, w, tx44

rsp msg

pack
rng resp

rx, r, w, tx45

rsp msg

tx rng
resp

rx, tx46

rsp msg

rx rng
resp

rx, tx47

rsp msg

get resp
info

rx, w, tx
48

rsp msg

pack ts

rx, r, w, tx49

time-
stamps

create
fin msg

rx, r, w, tx50

fin msg

pack fin
msg

rx, w, tx51

fin msg

tx fin
msg

rx, tx52

fin msg

rx fin
msg

rx, tx53

fin msg

get fin
info

rx, r, tx54

fin msg

get ts

rx, r, w, tx55

ts

calc dist

rx, r, w, tx

56

dist

check
dist

rx, r, w, tx57

dist

open

58

au
th

en
tic

at
io

n
ph

as
e

se
ss

io
n

&
 c

on
fig

ur
at

io
n

ph
as

e
ra

ng
in

g
ph

as
e

tx open
msg

open
msg

rx, r, w, tx59

rx open
msg

open
msg

rx, tx60
display
open
info

61

open
msg

rx, r, tx

create
status
msg

33

status
msg

w, tx
tx status

msg

34

status
msg

rx, tx

rx status
msg

35

status
msg

rx, tx

check
status
msg

36

status
msg

rx, r

mk
anchor

mk
node

mk
node sk node

r, w, s

sk node

7
create

session
key

r, w, s

mk
anchor

sk
anchor

sk
anchor

sk node

sk
anchor

sk
anchorsk node

sk noderk node

r, w, s

derive
rng key

rx, r

rk
anchor

sk
anchor

rk node
rk

anchor

rk
anchor

rk node

rk node
rk

anchor

rk
anchor

32

mk
anchor

Figure 5.7: Secure localization system task graph.

5.1.3.2 Potential Attacker

Indoor localization systems pose a juicy target for security attacks, especially when utilized in
a way described by this use case, in which they actively control the access to a restricted area.
However, in other use cases, e.g., indoor navigation or indoor equipment tracking, the system
poses the threat of security attackers obtaining private localization data of users and equipment,
and even manipulating it. When controlling the access to restricted areas, a successful attack has
a direct impact on the secured valuable objects.

– 74 –

5 Evaluation

Table 5.8: Hardware components with security features (Sec. feat.). Implementation vulnerability risk (IVR),
performance (Perf.) given in µs, and power consumption (PWC) in mW

HWC Sec. feat. IVR Perf. (µs) PWC (mW)
smenc smauth smtss smte smenc smauth smtss smte

AP

HWC, TEE 0.25 40 30 - 10 20 20 - 10
SWC scp, TEE 0.4 70 50 - 10 60 40 - 10
SWC scp 0.5 70 50 - - 60 40 - -
SWC f 0.8 45 30 - - 40 30 - -

SE
EAL 6+ 0.01 110 80 50 20 70 50 20 15
EAL 5+ 0.1 100 80 30 15 60 50 10 10
EAL 4+ 0.2 100 80 20 10 50 40 10 10

UR

HWC, FW 0.4 50 40 - 15 30 20 - 10
HWC, TZ 0.5 50 40 - 10 30 20 - 10
HWC, MS 0.3 60 45 - 20 40 30 - 20
SWC f, TZ 0.6 80 60 - 10 40 30 - 10
SWC f 0.8 50 40 - - 35 20 - -

Table 5.9: Possible task to hardware component mappings for the secure localization system, with additional
WCETs given in µs. The hardware components are characterized with their security descriptions (Sec.
Descr.)

HWC Platform Sec. Descr. Task WCETs (in µs)

SE

Node
EAL 6+ t1(20), t12(10), t13(20), t14(10), t25(15), t26(20), t36(15), t37(25), t38(10), t49(10), t50(15)
EAL 5+ t1(20), t12(10), t13(20), t14(10), t25(15), t26(20), t36(15), t37(25), t38(10), t49(10), t50(15)
EAL 4+ t1(20), t12(10), t13(20), t14(10), t25(15), t26(20), t36(15), t37(25), t38(10), t49(10), t50(15)

Anchor
EAL 6+ t6(15)t7(15),t8(10), t19(20), t20(15), t31(15), t32(20), t43(10), t44(15), t55(10), t56(15), t57(10)
EAL 5+ t6(15)t7(15),t8(10), t19(20), t20(15), t31(15), t32(20), t43(10), t44(15), t55(10), t56(15), t57(10)
EAL 4+ t6(15)t7(15),t8(10), t19(20), t20(15), t31(15), t32(20), t43(10), t44(15), t55(10), t56(15), t57(10)

UR

Node

HWC, TEE t37(15), t38(5), t39(5), t40(2), t47(2), t48(5), t49(5), t50(5), t51(5), t52(2)
SWC scp, TEE t37(15), t38(5), t39(5), t40(2), t47(2), t48(5), t49(5), t50(5), t51(5), t52(2)
SWC scp t37(15), t38(5), t39(5), t40(2), t47(2), t48(5), t49(5), t50(5), t51(5), t52(2)
SWC t37(15), t38(5), t39(5), t40(2), t47(2), t48(5), t49(5), t50(5), t51(5), t52(2)

Anchor

HWC, TEE t41(2), t42(5), t43(5), t44(5), t45(5), t46(2), t53(2), t54(5), t55(5), t56(5), t57(5)
SWC scp, TEE t41(2), t42(5), t43(5), t44(5), t45(5), t46(2), t53(2), t54(5), t55(5), t56(5), t57(5)
SWC scp t41(2), t42(5), t43(5), t44(5), t45(5), t46(2), t53(2), t54(5), t55(5), t56(5), t57(5)
SWC t41(2), t42(5), t43(5), t44(5), t45(5), t46(2), t53(2), t54(5), t55(5), t56(5), t57(5)

AP

Node

HWC, FW t2(5), t12(5), t13(15), t14(10), t15(5), t24(10), t25(10), t26(10), t27(5), t35(10), t36(10), t61(5)
HWC, TZ t2(5), t12(5), t13(15), t14(10), t15(5), t24(10), t25(10), t26(10), t27(5), t35(10), t36(10), t61(5)
HWC, MS t2(5), t12(5), t13(15), t14(10), t15(5), t24(10), t25(10), t26(10), t27(5), t35(10), t36(10), t61(5)
SWC f, TZ t2(5), t12(5), t13(15), t14(10), t15(5), t24(10), t25(10), t26(10), t27(5), t35(10), t36(10), t61(5)
SWC f t2(5), t12(5), t13(15), t14(10), t15(5), t24(10), t25(10), t26(10), t27(5), t35(10), t36(10), t61(5)

Anchor

HWC, FW t5(5),t6(10),t7(10),t8(5),t9(5), t18(5), t19(10), t20(5), t21(5), t30(5), t31(10), t32(10), t33(10), t58(5)
HWC, TZ t5(5),t6(10),t7(10),t8(5),t9(5), t18(5), t19(10), t20(5), t21(5), t30(5), t31(10), t32(10), t33(10), t58(5)
HWC, MS t5(5),t6(10),t7(10),t8(5),t9(5), t18(5), t19(10), t20(5), t21(5), t30(5), t31(10), t32(10), t33(10), t58(5)
SWC f, TZ t5(5),t6(10),t7(10),t8(5),t9(5), t18(5), t19(10), t20(5), t21(5), t30(5), t31(10), t32(10), t33(10), t58(5)
SWC f t5(5),t6(10),t7(10),t8(5),t9(5), t18(5), t19(10), t20(5), t21(5), t30(5), t31(10), t32(10), t33(10), t58(5)

BLE Node no security t3(5),t11(5), t16(5), t23(5), t28(5), t35(5), t60(5)
Anchor no security t4(5),t10(5), t17(5), t22(5), t29(5), t34(5), t59(5)

To assess the attack vectors on the indoor localization system, we first assessed the potential
attackers. We assumed that the attacker aiming at the system can sniff both the BLE and UWB
traffic. Furthermore, the attacker can fake messages and inject them into both wireless channels.
The attacker can intrude on the software stack of both the anchor and the node device and disclose
valuable security assets. The attacker can physically tamper and disclose the memory of the de-
vices. The attacker can also mount side-channel attacks aiming at the cryptographic keys used to
encrypt and authenticate the security assets.

– 75 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Based on the attacker’s capability, we derived the attack scenarios depicted in Figure 5.8. The
attack graph describes the attack scenarios directed towards the three phases of the secure indoor
localization system. The attacks aimed at the authentication phase comprise the disclosure and
the manipulation of the challenge exchange between anchor and node device. The attacks are
either launched by intruding the devices’ software stacks or sniffing the BLE communication and
injecting a faked challenge. Furthermore, after accessing a device’s software, the attacker can
attempt to disclose or even tamper the master key used at the challenge creation. We rated the
tampering/disclosure of the master key as the attack with the highest impact that must be mitigated
as much as possible.

The attacks on the session establishment and configuration phase consist of manipulating the
session information and the configuration data. In this phase, also the session key constitutes
a high-value target for the attacker. The session information and the configuration data can be
attacked either by sniffing, faking, and injecting manipulated messages into the BLE communica-
tion, or by the intrusion into the devices’ software. For disclosing and manipulating the session
key, the attacker needs logical access to the devices. Because of the timely restriction, the session
key’s disclosure and manipulation were rated less sever than the attack on the master key.

The attacks on the ranging phase comprise the faking of timestamps, the manipulation of the
distance calculation, and the ranging keys’ disclosure and manipulation. The faking of the times-
tamps leads to manipulating the ranging process and to inaccurate distance measurements. The
attacks on the timestamps can be mounted by interfering the UWB communication or by logically
intruding the devices. The manipulation of the distance calculation and the ranging key’s manipu-
lation and disclosure require a prior intrusion of the devices’ logic. As the ranging key is renewed
after each ranging cycle, its disclosure is less severe than the disclosure of the session or master
key.

We assessed the security of the secure indoor localization use case using both the BAG-based
representation of the attack scenarios and the risk tree-based description. In contrast to the BAG-
based security calculation, which uses single point estimations, the risk tree-based approach relies
on probability distributions. These probability distributions are provided to the risk tree as vul-
nerabilities. Furthermore, the risk tree supports the integration of monetary impact values (imp),
and frequency (frequ) values. The frequency values describe how often an attack is attempted per
year. The vulnerabilities of the risk tree map the conditional probabilities of the CPTs of the BAG.
The risk tree does not allow the dependency of an attack from multiple preceding attacks. There-
fore, the SaDSE framework supports an automatic unrolling of the BAG into the corresponding
risk trees. This transformation from the BAG to the risk tree must only be performed once, before
starting the risk-based security constraint calculation. The frequencies and impacts of successfully
reaching the distinct attack goals are also described in Figure 5.8. The attack goals leading to the
system’s malfunction and the tampering of the ranging key are rated with an impact of 10, 000$.
The tampering of the master key was rated with an impact of 1, 000, 000$, the tampering of the
session key with 200, 000$. These impact values account for the potential damage the successful
attack can have on the overall system. The impact values were chosen arbitrarily and in such a
way that a heavy effect on the risk-based calculation can be seen.

– 76 –

5 Evaluation

Attack configuration

Attack authentication process

t4

extract
challenge

t9

inject
discl.
chall

t10

replay
challenge

fake challenge manipulate
challenge

t6

intrude
anchor

t1

t7 t1

discl.
chall
node

t2

tamp
chall
node

t8

tamp
chall

 anchor

t3

sniff
chall.
 exch.

discl.
chall

 anchor t14

discl
session
node

t18

discl
session
 anchor

t14

change
session
node

change session
params

t13

intrude
node

t17

intrude
anchor

t15

sniff
session
exch

t16

extract
session

t20

change
session
anchor

t16

change
session

t22

inject
manip.
session

Attack ranging process and dist. measurement

t6

manip.
 chall. check

anchor

t11

manip.
 chall. check

node

disturb
challenge check

manipulate
distance calc

manipulate
ranging process

t38,
t44, t52

sniff
rng packet

exch

t42

intrude
Anchor

t36, t48

intrude
Node

t38

interfere
rng poll

t39, t45,
t51

extract
rng pack.

info.

t44

interfere
rng resp

t52

interfere
rng final

t40

inject
rng poll

t46

inject
rng resp

t52

inject
rng final

t53

manip.
final ts

t43

manip.
ts gen.
Anchor

t49

change
final ts

t37,
t49

manip.
ts gen.
Node

t51

change ts
 data

t54

tamp
distance

calc.

manipulate
configuration

t24

intrude
Node

t27

sniff
config
exch

t25

manip.
config

t28

extract
config

t29

inject
faked

 config

P=0.9
P=0.8 P=0.8

P=0.8 P=0.8 P=0.9

P=0.7

P=0.9

P=0.6 P=0.6

P=0.8

P=0.57 P=0.44

P=0.34

P=0.28

P=0.67 P=0.63
P=0.54 P=0.54

P=0.37

P=0.42 P=0.38

P=0.33

P=0.72 P=0.72 P=0.83

P=0.57
P=0.57

P=0.41

P=0.69

P=0.56

P=0.74
P=0.82

P=0.64

P=0.58

P=0.61

P=0.61 P=0.61

P=0.54

P=0.42
P=0.42 P=0.36

P=0.23

P=0.53 P=0.53 P=0.53

P=0.42
P=0.37

P=0.43

P=0.29

T=0.005 T=0.005 T=0.0075 T=0.005

T=0.005 T=0.005

T=0.01

intrude
node

Attack configuration

Attack authentication process

t4

extract
challenge

t9

inject
discl.
chall

t10

replay
challenge

fake challenge manipulate
challenge

t6

intrude
anchor

t1

t8 t1

discl.
chall
node

t2

fake
chall
node

t9

fake
chall

 anchor

t3

sniff
chall.
 exch.

discl.
chall

 anchor

Attack session establishment process

t15

discl
session
node

t15

change
session
node

change session
params

t14

intrude
node

t16

sniff
session
exch

t17

extract
session

t17

change
session

t23

inject
manip.
session

Attack ranging process and dist. measurement

t6

manip.
 chall. check

anchor

t12

manip.
 chall. check

node

disturb
challenge check

manipulate
distance calc

manipulate
ranging process

t40,
t46, t52

sniff
rng packet

exch

t44

intrude
Anchor

t38, t49

intrude
Node

t41

interfere
rng poll

t41, t47
t53

extract
rng pack.

info.

t47

interfere
rng resp

t53

interfere
rng final

t41

inject
rng poll

t47

inject
rng resp

t53

inject
rng final

t52

manip.
final ts

t45

manip.
ts gen.
Anchor

t50

change
final ts

t39,
t50

manip.
ts gen.
Node

t51

change ts
 data

t56

tamp
distance

calc.

manipulate
configuration

t24

intrude
Node

t28

sniff
config
exch

t25

manip.
config

t29

extract
config

t30

inject
faked

 config

T=0.005 / 100$ T=0.005 / 100$ T=0.0075/250$ T=0.005 / 100$

intrude
node

Attack cryptographic keys

t6, t24,
t36

intrude
node

t12, t30

intrude
anchor

t7

tamper
mk node

t13

tamper
mk anchor

t25

disclose
sk node

t31

disclose
sk anchor

t37

disclose
rk node

tamper
mk

discl.
sk

discl. rk

t32

disclose
rk anchor

1|1 1

1|0 1

0|1 1

0|0 0

CPT

0.25
CPT

1 0,27

0 0

CPT

0.47
CPT

0.25
CPT

0.25
CPT

0.47
CPT

0.47
CPT

0.47
CPT

0.25
CPT

0.25
CPT

0.25
CPT

0.25
CPT

0.25
CPT

1 0,27

0 0

CPT

1 0,27

0 0

CPT

1 0,27

0 0

CPT
1 0,12

0 0

CPT

1 0,12

0 0

CPT

T=0.001 /
100$

T=0.002
/ 100$

T=0.005 /
100$

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1 0,31

0 0

CPT

1 0,19

0 0

CPT

1 0,34

0 0

CPT

1 0,34

0 0

CPT

1 0,22

0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT
1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT

1|1 1

1|0 1

0|1 1

0|0 0

CPT
1|1|1 1

1|1|0 1

1|0|1 1

1|0|0 1

0|1|1 1

0|1|0 1

0|0|1 1

0|0|0 0

CPT

1|1|10,34

1|1|00,34

1|0|10,34

1|0|00,34

0|1|10,34

0|1|00,34

0|0|10,34

0|0|0 0

CPT

1 0,19

0 0

CPT

1 0,31

0 0

CPT

1 0,22

0 0

CPT

1 0,22

0 0

CPT

1 0,31

0 0

CPT

1 0,22

0 0

CPT

1 0,34

0 0

CPT

1 0,19

0 0

CPT

1 0,19

0 0

CPT

1 0,34

0 0

CPT

1 0,19

0 0

CPT

1 0,19

0 0

CPT

1 0,31

0 0

CPT

1 0,31

0 0

CPT

1 0,31

0 0

CPT

1 0,34

0 0

CPT

1 0,19

0 0

CPT

1 0,19

0 0

CPT

1 0,34

0 0

CPT

1 0,34

0 0

CPT

1 0,19

0 0

CPT

1 0,22

0 0

CPT

1 0,22

0 0

CPT

1|10,22

1|00,22

0|10,22

0|0 0

CPT

Imp: 10,000$ Imp: 10,000$ Imp: 10,000$

Frequ: 1,000Frequ: 1,000

Frequ: 1,000

Frequ: 1,000

Frequ: 100 Frequ: 100 Frequ: 100
Frequ: 100

Frequ: 100

Frequ: 100

Frequ: 100
Frequ: 100

Imp: 10,000$

Imp: 10,000$

T=0.005 / 100$

T=0.005 / 100$

T=0.005 / 100$
Im

p:
 1

00
0,

00
0$

Imp: 10,000$

Im
p:

 1
0,

00
0$

Im
p:

 2
00

,0
00

$

Figure 5.8: Attack graph describing the attack scenarios aimed at the secure indoor localization system.

5.1.3.3 Security Mappings

Similar to the secure sensor use case (Section 5.1.2), the system design knows the operations of
writing w, reading r, and storing st, the attack type of information disclosure ati, spoofing ats,
and tampering att. It knows the security properties of confidentiality spc, authenticity spa, and
integrity spi, and the security operations / mechanisms of encryption soenc / smenc, authentication
soauth / smauth, secure storage soss / mtss, and the mechanism of task encapsulation smte. Con-
trasting the secure sensor use case, in this use case we did not define security functions the SaDSE
framework has to choose from for protecting the system’s assets. Without the declaration of secu-
rity functions, the security operations SecOp are directly linked to the security mechanisms SM
provided by the system’s hardware components. The mappings of operations OP and security
properties SP to SecOp, the mappings of attack types AT to SP , and the mappings of SecOp
to SM are given in Table 5.10. The attributes int and ext denote, if the corresponding SecOp is
performed internally (within the same hardware component) or externally.

– 77 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Table 5.10: Security rules used in the secure localization use case study

SOR 7→ SecOp AT 7→ SP κSecOp 7→ κSM

f((r ∨ w) ∧ spc) = soe f(ati) = spc f(soenc ∧ ext) = smenc

f((r ∨ w) ∧ spa) = soa f(ats) 7→ spa f(soauth ∧ ext) = smauth

f(st ∧ (spc ∨ spa ∨ spi)) = sot f(att) = spi
f((soenc ∨ soauth) ∧ int) = smte
f(soss) = smtss

Table 5.11: Most secure, fastest, and fastest secure solution found based on APavg , and MRVavg , with the delay
normalized to system with lowest delay. Solutions are given for node (N) and anchor (A).

HWC Most secure Fastest Fastest sec. (BAG) Fastest sec. (RISKEE)
AP (N & A) HWC, TEE SWC f. HWC, TEE HWC, TEE
SE (N & A) EAL 6+ EAL 4+ EAL 4+ EAL 6+
UR (N & A) HWC, MS SWC f. HWC, TZ HWC, FW
APavg / MRVavg 0.0007 / 117.45$ 0.005 / 3905.37$ 0.0017 126.74$
norm delay ~1.73 1.0 ~1.074 ~1.16

5.1.3.4 Solution Space

The functional description, the description of the potential architectural system realizations, the
potential attack scenarios, and the mapping rules were fed to the SaDSE framework. We config-
ured the framework to find secure solutions, using the BAG-based and risk tree-based approach.
We configured the SaDSE framework to find the most secure, the fastest, and the fastest secure
solution. The framework calculated the solutions’ security as average attack success probability

APavg =
∑G
i=0 aspi
G and as average mean risk value MRVavg =

∑G
i=0mrvi
G , with G being the

number of all attack goals, and aspi and mrvi being the attack success probability and the mean
risk value of goal i, respectively. The system partitioning for the desired solutions are described
in Table 5.11. The selected hardware components are described for both the anchor (A) and the
node (N) device. For each solution, the normalized (norm) delay is noted.

In addition to the described solutions, we configured the SaDSE framework to present the whole
explored solution space. Figures 5.9 - 5.11 depict the overall solution space [2]. In these figures,
each solution is depicted as a distinct point in the scatter plot. Figure 5.9 shows all BAG-based
solutions, Figure 5.10 shows all risk-based solutions, and Figure 5.11 shows all solutions for which
the security was calculated using a combined BAG- and risk-based approach. One can notice, that
the BAG-based calculation approach considered more solutions to be secure (green points), than
the risk-based calculation approach.

This difference is caused by the additional impact and frequency attributes provided by the risk
trees. Especially, the additional information on the monetary loss induced by a successful secu-
rity attack tightens the constraints the solutions must fulfill. Thus the number of secure solutions
found for the risk-based security constraints is further reduced. This is also reflected in the fastest
secure solution found for the BAG-based and risk-based calculation (Table 5.11). The solution
found for the BAG-based solution only uses SEs with an EAL of 4+ and uses TrustZone-based
separation for the task encapsulation on the UR. The solution found by the risk-based calculation
enforces SEs with EAL 6+ to be used for both anchor and node devices. Furthermore, the solu-
tion utilizes a hardware-based task encapsulation, based on a firewall integrated into the UR. The

– 78 –

5 Evaluation

Figure 5.9: Solution space with security calculated
using BAGs.

Figure 5.10: Solution space with security calculated
using risk trees.

Figure 5.11: Solution space with combined BAG and risk tree based security calculation.

usage of the higher-rated SE is due to the risk induced by disclosing the master key and session
key. The hardware-based firewall mitigates the risks of manipulating the distance calculation and
timestamps stored by the devices. The performance of the fastest secure solution was compared
to the prototype implementation, measured from creating the challenge (task 1) to creating the
polling message (task 38). The found solution performance was 12.8% slower than the proto-
type’s performance. One must notice that these values heavily depend on the estimation accuracy
of the WCETs provided as input to the SaDSE framework.

The combined BAG- and risk-based calculation approach performs in a first step the calculation
of the asp of the attack goal using the BAG-based approach. Only if the asp of the goal does not
exceed its threshold, the SaDSE framework also calculates the mrv for the goal. Thus, the more
time-consuming calculation of the goal’s risk is only performed if the faster BAG-based computa-
tion yields the attack goal not reached. With the combined approach, the SaDSE framework finds
the same secure solutions as when using the risk-based approach, but with better performance.
This can be seen when comparing Figures 5.10 and 5.11. However, comparing the insecure solu-
tions, one can notice that the combined approach might find solutions that have even more reached

– 79 –

Towards Security-Aware Design Space Exploration for Embedded Systems

attack goals than their risk-based pendants. This difference can occur for potential system designs
where the asp of a goal does not exceed its threshold, but the risk-based calculation renders the
goal reached. The performance comparison between the single approaches is shown in Section
5.2.

The analysis of the secure indoor localization use case produced us with some key insights to-
wards the usability of the analytical part of the SaDSE framework. When comparing the solutions
found for the BAG-based and risk-based approach to the system design produced by our project
partner, we noticed that the BAG-based solution for the fastest secure system design would lack
two essential security features. First, a high-secure SE, and second a hardware-based security con-
text protection. Contrasting the solution found by BAG-based approach, the risk-based approach
was capable of providing the fastest secure solution, which was in line with the system design
chosen by the project partner’s security experts. Considering this outcome, we can see that the
SaDSE framework is capable of providing meaningful and reasonable solutions for secure system
designs. However, the accuracy of the found solutions depends on the provided inputs’ accuracy.
Therefore, the solutions produced by the SaDSE framework depend on the experience and the
knowledge of the domain experts.

5.2 Performance Measurements

The DSE performed by the SaDSE framework comes with considerable computational overhead.
Depending on the modes used for the SaDSE framework, this performance overhead varies. This
section describes the performance measurements for the secure sensor system and secure indoor
localization use cases and shows the additional overhead caused by the security constraint calcu-
lation. For both use cases, the SaDSE framework was run on a system providing 16GB of RAM
and an Intel® Core™ i7-4600U CPU running at 2.10GHz.

Secure sensor system use case
The performance of the SaDSE framework for calculating the solution space for the secure sensor
use case was measured with and without the task mapping limitation described in Section 4.3.1.3.
Without the task mapping limitation, the overall DSE took ~2h56min for the use case variant II.
This calculation time was reduced by using the task mapping limitation to ~1h32min. Hence,
the task mapping limitation reduced the computation time by ~47%. For use case variant I, the
computation time without the task mapping limitation took ~2h43min. With the task mapping
limitation, the DSE took ~1h40min. The task mapping limitation reduced the computation time by
~35%. Without considering the security constraints, the calculation of the overall solution space
took ~56min. Thus, the integration of the security constraints leads to a performance overhead of
~68% when not using the task mapping limitation.

Secure Indoor Localization System Use Case
For the secure indoor localization system use case, we measured the framework’s performance us-
ing the three different security constraint calculation approaches: the BAG-based, the risk-based,
and the combined approach. The performance of these approaches was measured using different
variants of the use case. Each variant describes a subset of the overall design space. Variant 1
describes the whole use case. Variant 2 describes only the authentication phase, and the session

– 80 –

5 Evaluation

establishment and configuration phase. Variant 3 describes only the authentication phase. Variant
3 only produces 580 possible solutions, variant 2 produces 19, 728 solutions, and variant 1 comes
with the full 947, 072 possible solutions. Figures 5.12 and 5.13 show the performance measure-
ments given in seconds for the three variants.

Figure 5.12: SaDSE framework’s performance with-
out task mapping limitation [2].

Figure 5.13: SaDSE framework’s performance with
task mapping limitation.

Figure 5.12 shows the computation time without task mapping limitation, Figure 5.13 with the
task mapping limitation. One can see that the increasing number of possible solutions vastly
increases the computational overhead of the SaDSE framework. The task mapping limitation’s
impact on the performance increases with the design space’s size. Considering variant 1, the
risk tree-based calculation is 1.82 times more time consuming than the BAG-based calculation
without task mapping limitation. With task mapping limitation, the increase of the computation
time between BAG and risk tree-based is 2.36 times. Considering the risk tree-based computations
with and without task mapping limitation for the individual variants, the task mapping limitation
reduces the computation time by 54.57%.

Assessing the additional computation time caused by the introduction of the security constraints,
we compared both BAG and risk tree-based variant 1 without task mapping limitation to the DSE
without using security constraints. Without the introduction of the security constraints, the DSE of
variant 1 takes 10min34s. Hence, the BAG-based calculation comes with an overhead of 43.53%,
the risk tree-based calculation with an overhead of 163.35%.

5.3 Simulation-based DSE

The simulation-based DSE part of the SaDSE framework was evaluated using the secure indoor
localization use case. We selected certain solutions from this use case and let the framework gen-
erate a simulation model from those solutions according to preset configurations. The following
sections describe the simulation setups chosen for further assessing the usability of the solutions
found by the analytical part of the SaDSE framework, and how the generated system simulation
can be further used to improve distinct parts of the system under design.

– 81 –

Towards Security-Aware Design Space Exploration for Embedded Systems

5.3.1 System Simulation Evaluation

The solutions found for the secure indoor localization use case were used to perform a simulation
of multiple anchors and nodes within an indoor environment. The indoor environment is repre-
sented as a room that bounds the single nodes’ movement and the placement of the anchors, and
as a distinct channel model in the physical channel simulation provided by Veit et al. [145]. To
show the impact of the task mapping and system partitioning performed by the analytical part
of the SaDSE on the overall system behavior, we selected a range of solutions to be used in the
simulation-based DSE part. The fastest, the most secure, the least secure, and the three fastest and
secure solutions were used in the simulation scenario. Each solution was used for generating the
device models in each distinct scenario.

The SaDSE framework generated the components for the system simulation using the devices
described in the secure indoor localization use case. The anchor and node devices are connected
via the BLE and the UWB communication channels. The environment of the simulation was
configured to represent a room of 20m length, 15m width and 4m height. We placed 5 anchor
devices in this simulated room in all four corners ([5m/3m], [5m/12m], [16m/12m], [16m/3m]),
and in the center ([10m/7m]) of the room. We simulated several different scenarios. Each scenario
differs in the number of nodes to be localized in the room. The simulation was run with 5, 10, 20,
50, 70, and 100 nodes. The nodes are placed at random locations within the room and move into
different directions. Whenever they hit an obstacle, a wall, or another node, they randomly change
direction and proceed. The anchor and node devices are generated using the system partitioning
and task mapping according to the selected solution.

The devices perform the functionality given by the task graph. Each scenario is run with the
selected solutions given by the analytical DSE part. Figures 5.14 and 5.15 show the UWB channel
throughput and localization update rate for each solution in every scenario. Each scenario was run
with the node and anchor devices generated from the different solutions found by the analytical
DSE. In the figures, Sol1 describes the fastest solution, Sol2 describes the most secure solution,
Sol3 describes the least secure solution, Sol4 the fastest secure solution, Sol5 the second fastest
secure solution, and Sol6 the third fastest secure solution. The solutions were run in every scenario.
These scenarios are abbreviated with S1 - S6. S1 simulates 5 node devices, S2 10 nodes, S3 20
nodes, S4 50 nodes, S5 70 nodes, and S6 100 nodes.

The channel throughput was calculated as the ratio between transmitted and received packets.
The localization update rate describes how often the anchors can estimate the distance to the node,
therefore, tracking how often the end task of the task graph is reached. To trigger multiple ranging
rounds, the task create poll message (t38) was configured as recurring task with an offset between
5ms and 10ms, and 500 iterations. Each scenario was simulated for one minute.

The physical channel simulation calculated bit errors for packet transmissions with various dis-
tances (from 1m up to 60m), with LOS and NLOS, and packet overlap of 100%, 80%, and 50%.
We do not assume that any error-correcting codes are transmitted with the exchanged packets.
Hence, a single bit error renders a packet unusable [152].

One can notice that for both the channel throughput and the distance estimations, the fastest so-
lution outperforms all other solutions. Especially the most secure solution comes with a noticeably
lower channel throughput and less distance estimation per minute than the other solutions. When
considering the three fastest solutions, one can notice that their channel throughput and distance

– 82 –

5 Evaluation

Figure 5.14: Channel throughput of the single scenarios running the devices generated from the respective solu-
tions found during the analytical DSE.

estimations per minute are close to the fastest solution’s performance. This behavior is similar in
all scenarios, except the channel throughput in S1. Furthermore, the impact of the different solu-
tions on the channel throughput and the distance estimations per minute becomes less noticeable
the more the system is tracking nodes.

With an increasing number of tracked nodes, the influence of the chosen networking and ranging
protocol increases, as was shown in [144]. The ranging protocol described by the secure indoor
localization use case and the randomly chosen starting offset leads to collisions on the wireless
communication channel that increase with the number of communication participants. For scenar-
ios with many communication participants, a supervised networking protocol, such as the slotted
ALOHA system, would yield a much better channel throughput. The influence of the chosen solu-
tions on the number of distance estimations is best seen in S4, in which the selection of a solution
other than the fastest or fastest secure solution would yield less than one distance estimation per
second. Based on the use case, this could influence the use of experience with the localization
service.

With the simulations performed using the secure indoor localization use case, we show how
the simulation system generated by the SaDSE framework can be used to assess the system’s
performance under design in various scenarios. Especially at the early stage of the system design,
this approach can give a valuable insight into the overall system and help designers to understand
the impact of the chosen system components on its performance.

The accuracy of the simulation is hard to assess, as we were not able to realize the usecase using
a real setup. However, the used physical channel model [145] was qualitatively compared to real
measurements presented in [153]. Hence, we argue that the physical channel model is accurate.

– 83 –

Towards Security-Aware Design Space Exploration for Embedded Systems

Figure 5.15: Number of distance estimations performed by the anchors in the single scenarios. For each sce-
nario, the devices were generated from the respective solutions found during the analytical DSE.
The threshold of 1 distance estimation per second is marked.

The device simulations are generated from the solution found in the analytical DSE part of the
SaDSE framework. Hence, they come with the same performance accuracy (12.8% slower) as the
solution they were generated from.

5.3.2 Simulation-based Improvements

In addition to the environment simulation, the system simulation generated from the solutions
found by the analytical DSE can be used to extend and detail specific parts of the system design,
such as used network protocols, communication bus systems, algorithmic behavior, or additional
hardware components. Based on the system generated by the SaDSE framework, we performed
such an extension on the protocol level. We extended the protocol used for the communication
between the SE and the microcontroller (MCU) connected to it. SEs are usually connected to
other system components using an I2C or SPI communication bus where the SE usually acts as a
slave.

Considering the communication logic implemented between the SE and the connected MCU, the
used protocol stack comprises a transport layer protocol and an application layer protocol. On the
transport layer, the T=1 protocol is widely used [154]. On the application layer, the Application
Protocol Data Unit (APDU-protocol) is a standardized protocol used for communicating with
smart cards. [155]. The APDU-protocol is based on a master-slave concept, where the master
sends commands to the slave, and the slave responds to them. In this scheme, the SE only acts
as a slave to the connected MCU, processing the received commands and responding to them.

– 84 –

5 Evaluation

However, in certain situations, it can be beneficial that the SE is also capable of sending messages
to the MCU out of its initiative. Examples for such situations could be passing information to the
MCU about possible secret key compromise, or passing a new session key after session expiring.

MCU A MCU B

P2PChan

P2PChanHci

Protocol Stack
APDU

T=1

Protocol Stack

Hardware Bus

Protocol Stack Protocol Stack

Hardware Bus

APDU

T=1

APDU

HCP

APDU

HCP

T=1 T=1

Figure 5.16: Diagram showing the basic blocks for implementing the peer-to-peer APDU approach implemented
in the system simulation model [3].

To accomplish this change in the communication direction, a change in the protocol stack is
necessary. We used the system model generated by the SaDSE framework to design a peer-to-peer
protocol stack and simulated it. We designed two approaches. The first approach only uses the
APDU protocol and wraps commands from the SE into responses, and responses from the MCU
into commands. Thereby, we introduce a new command demanding a message from the SE and
a command wrapping the MCU’s response. The second approach integrates the Host-Controller
Protocol (HCP) as an additional layer into the protocol stack [156]. The HCP allows the passing
of APDU commands and responses as event messages. These HCP events are used in the second
approach to wrap the APDU messages. Additionally, a logic for changing the communication
direction was proposed. Both approaches were integrated into the system simulation, as depicted
in Figure 5.16. MCU A and MCU B represent the hardware components generated from the SE
and the UWB radio (UR). The P2PChan and the P2PChanHci implement the physical commu-
nication channel (PCC) connecting SE and UR in the system simulation. For both approaches, the
hardware must support an additional signal triggering the UR to activate the bus communication.

The performance overhead of the proposed approaches was evaluated. We used the standard
communication with the SE acting as a slave and the UR acting as master as a performance ref-
erence. Using the HCP based peer-to-peer solution, the communication overhead was increased
5% in both directions. This increase is caused by the additional header information induced by the
HCP. The APDU wrapping approach only induces an additional overhead of 98% when sending
commands from the SE to the UR. The original command-response direction from the UR to the
SE stays untouched and, hence, comes without any performance overhead. The purpose of this
design study was to show the feasibility of using the generated system simulation to further detail

– 85 –

Towards Security-Aware Design Space Exploration for Embedded Systems

distinct aspects of the designed system, including potential optimizations.

5.3.3 Usability of the Framework

The usability of the framework was assessed by measuring the time it took to describe the two
usecases presented here. Based on time-writing and time stamps from the versioning control sys-
tem, it took us 9h30min to model the secure indoor localization use case and 12h to model the
secure sensor system. This does not take into account the modeling of the usecases themselves,
but only measures the time it took us to provide them as inputs to the SaDSE framework. This
long modeling times were mostly caused by the input format (XML) supported by the SaDSE
framework. A graphical interface would improve the modeling. Furthermore, we argue that the
used specification language is very flexible, as it allows the designer to formalize additional secu-
rity operations, mechanisms, and many other attributes due to the extendable rule set. The SaDSE
framework also allows the splitting of use cases into sub-modules to better support modeling large
and complex systems. With this option, each sub-module is optimized on its own, limiting the
possible optimization of the overall usecase. The optimized sub-modules can, however, be reinte-
grated into solutions covering the overall usecase with a merge-program provided by the SaDSE
framework.

– 86 –

6
Summary and Conclusion

In this chapter, we conclude the thesis by summarizing its contributions, outlining the limitations,
and discussing future work.

6.1 Conclusion

In this thesis, we presented the SaDSE framework. This framework considers security aspects
during an automatic DSE for the early phase of designing secure embedded systems. Contrasting
other works focusing on security constraints during early system design, the framework offers
the designers the direct integration of attack scenarios from the attacker’s perspective modeled
as either BAGs or risk trees. Additionally, the framework integrates the security aspect of the
secret keys used for the cryptographic operation. Thus, it takes into account the risks induced by a
potential leakage of the keys used to secure the system’s assets. These aspects are integrated into
the analytical DSE part of the SaDSE framework. Based on the inputs, the framework derives a
set of security constraints to which the feasible solutions must adhere. This derivation is defined
by a rule set extendable by the designers. With the SaDSE framework’s additional capability of
generating a system simulation from the solutions found by the analytical DSE, it also allows
the simulation of the found solutions within dynamically changing environments. The generated
simulation model allows the designers to ensure the usability of the proposed solution further. The
generated simulations can further be used to optimize distinct parts of the system under design.
With the integration of the BAG and risk tree-based attack scenario descriptions into the analytical
DSE in combination with the consideration of the secret keys’ security, the rule-based security
constraint calculation, and the combination with the system simulation, the SaDSE framework
offers a holistic approach for the automated DSE of secure systems.

We showed the applicability of the SaDSE framework by integrating it into the design process
of a secure sensor system and revisiting the early system design phase of a secure indoor localiza-
tion system. These use cases, provided by our project partners, gave us valuable insight into our
system’s usability. In both use cases, the SaDSE framework was capable of yielding design pro-
posals similar to the actually implemented designs. As security experts from our project partners
supported these designs, we argue that the solutions found by the SaDSE framework can cope with
attack scenarios anticipated for the use cases. Hence, when provided the realistic estimation for
the input parameters, the SaDSE framework can support the design of secure embedded systems
early on. Based on the secure indoor localization system, we further showed the influence of the
selected solutions found in the analytical DSE on the overall system behavior. The generated sys-
tem simulation was further used to design a protocol stack allowing bi-directional communication
between a SE and a MCU.

– 89 –

Towards Security-Aware Design Space Exploration for Embedded Systems

6.2 Limitations

The here presented approach comes with some limitations. The results with the SaDSE frame-
work are heavily dependent on the quality of its inputs. The better the estimation of the power
consumption, worst-case execution times, attack potential, and security of the components, the
more accurate the found solutions. Especially the estimation of the security aspects of systems
poses a major challenge, which has been investigated by various researchers. Considering these
aspects, the impact of successful attacks is the easiest aspect to quantify. The probability of a
security attack and the capability of a system to mitigate them are measures whose quality heavily
depends on the security experts. In general, this estimation is a challenge in security risk assess-
ment [106].

In addition to the constraints covered by the SaDSE framework, the design and especially the
successful implementation of a new system or product depends on further aspects not yet covered.
One such aspect is the anticipated time to market and the implementation risk induced by the
pressure applied by the various internal and external stakeholders. The integration of these aspects
could massively benefit the early design of systems and products.

6.3 Future Work

The SaDSE framework offers multiple directions in which the security-aware DSE of embedded
systems can be further extended. The usage of the BAGs and the risk trees for modeling the attack
scenarios offer the designer a means to describe potential attacks from the attacker’s perspective.
Currently, these scenarios are described by security experts. However, BAGs can also be auto-
matically built from historical data as proposed by Feng et al. [157]. Therefore, the SaDSE’s
attack perspective could be extended with the option to have the attack scenarios generated from
documented attacks.

As explained in Section 6.2, the SaDSE framework should be extended by further constraints,
such as implementation risk and time to market. These constraints would add a distinct benefit
to the early system design phase. In addition to these constraints, also the system simulation can
be extended in future work. As the SaDSE framework generates a system simulation in SystemC,
external network simulators can be integrated, such as Omnet++ as described by Zhao et al. [158].

– 90 –

7
Publications

In the course of the author’s Ph. D. studies the following publications were published in various
conferences. These publications constitute the basis of this thesis.

A) Lukas Gressl, Ulrich Neffe, Christian Steger, ”Design and Implementation of an HCI based
Peer to Peer APDU Protocol”, in Proceedings of the 21st Euromicro Conference on Digital
System Design (DSD 2018).

B) Lukas Gressl, Christian Steger, Ulrich Neffe, ”Message Encapsulation Pattern”, in Proceed-
ings of the 23rd European Conference on Pattern Languages of Programs.

C) Lukas Gressl, Christian Steger, Ulrich Neffe, ”A Security Aware Design Space Explo-
ration Framework”, in Proceedings of the Fourteenth International Conference on Systems
(ICONS 2019).

D) Lukas Gressl, Christian Steger, Ulrich Neffe, ”Consideration of Security Attacks in the
Design Space Exploration of Embedded Systems”, in Proceedings of the 22nd Euromicro
Conference on Digital System Design (DSD 2019).

E) Lukas Gressl, Christian Steger, Ulrich Neffe, ”Security Driven Design Space Exploration for
Embedded Systems”, in Proceedings of the Forum for Specification and Design Languages
(FDL 2019).

F) Lukas Gressl, Alexander Rech, Christian Steger, Andreas Sinnhofer, Ralph Weissnegger,
”Security Based Design Space Exploration for CPS”, in Proceedings of the 35th Annual
ACM Symposium on Applied Computing.

G) Lukas Gressl, Michael Krisper, Christian Steger, Ulrich Neffe, ”Towards an Automated
Exploration of Secure IoT/CPS Design-Variants”, in Proceedings of the International Con-
ference on Computer Safety, Reliability, and Security.

H) Lukas Gressl, Alexander Rech, Christian Steger, Andreas Sinnhofer, Ralph Weissnegger,
”A Design Exploration Framework for Secure IoT-Systems”, in Proceedings of the Inter-
national Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cy-
berSA 2020)

I) Lukas Gressl, Michael Krisper, Christian Steger, Ulrich Neffe, ”Towards an Automated
Exploration of Secure IoT/CPS Design-Variants”, in Proceedings of the International Con-
ference on Cyber Security and Protection of Digital Services (Cyber Security 2020).

J) Lukas Gressl, Christian Steger, Ulrich Neffe, ”Design Space Exploration for Secure IoT
Devices and Cyber-Physical Systems”, accepted for publication in the ACM Transactions
on Embedded Computing Systems.

– 93 –

Publication A - EuroMicro DSD 2018

K) Alexander Rech, Lukas Gressl, Fikret Basic, Christian Seifert, Christian Steger, ”Multi-
Layered IoT System Design Towards Secure End-to-End Communication”, presented at the
46th Annual Conference of the IEEE Industrial Electronics Society (IES).

– 94 –

7 Publications

Design and Implementation of an HCI based Peer to Peer APDU Protocol

Lukas Gressl
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

gressl@tugraz.at

Ulrich Neffe
NXP Semiconductors Austria GmbH

Gratkorn, Austria
ulrich.neffe@nxp.com

Christian Steger
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

steger@tugraz.at

Abstract—An ever increasing number of System on Chips
need secure storage of key material or confidential data,
therefore relying on the usage of Secure Elements (SEs). In tra-
ditional systems, the SE is a passive device, communicating with
the other system’s components via a master-slave topology. As
applications running on SEs tend to become more involved in
the interaction with other components by actively sending out
data, the present communication setup poses a hindrance. In
this paper we propose a method, which allows the bidirectional
exchange of command-response messages of the Application
Protocol Data Unit (APDU) protocol, by encapsulating the
APDU messages in packets defined by the Host Controller
Interface (HCI). Thus, the master-slave based APDU protocol
can be used in a peer to peer communication, without changing
the APDU protocol, and minimally extending the HCI. In this
paper, the HCI extensions of the new approach are explained.
The HCI based approach is compared to a method, which
only uses the APDU protocol, by evaluating a simulation based
implementation, and comparing the expected performance of
both approaches.

Keywords-Embedded Secure Elements, System on Chip, Net-
work Protocol, P2P Communication, Embedded Applications

I. INTRODUCTION

In today’s System on Chips (SoCs), an increasing number
of applications rely on secure storage of important data,
such as key material, or confidential data. Secure Elements
(SE), which offer such a secure storage, play an increasingly
important role in SoCs. The SE usually is a passive entity
within the system, which responds to commands sent by
other components. Therefore, the communication system,
on which the SE communicates with other communication
partners, is based on a master-slave topology, restricting
the SE’s actions within an SoC. With systems becoming
more complex, the SEs future role might not only be to
handle secure information and make it available to other
components. They could also handle secure applications,
which actively send commands to other system components.
To enable this future behavior, a future communication
protocol must grant all communication participants the same
privileges. One such architecture, in which the usage of a
bidirectional communication protocol would be beneficial,
is depicted in Figure 1. In this architecture, the SE is
connected to both the radio and the micro-controller (MCU),
acting as a slave. In a setup, in which the radio sends

confidential data to the SE and the MCU interacts with
the user, the SE might host an application, which actively
transmits data via the radio, based on the information it prior
got from it. Furthermore, the SE’s application might send
some information to the MCU, which is used to instruct the
user. In such a system, a SE, which only acts as a slave,
could not fulfill the required functionality.

The paper is split into the following sections: Section II
outlines other fields of application for peer to peer (P2P)
protocols; Section III describes the approach for creating a
bidirectional communication protocol; Section IV outlines
the communication model, and gives an evaluation of the
model-based timing results. Section V gives our conclusion
and an outline on future extensions.

eSE

RadioMCU
Master

Slave Slave

Master

Master Slave

Figure 1: Abstract SoC consisting of an SE (acting as slave),
connected to an MCU and a Radio.

II. RELATED WORK

P2P communication systems are well known for forming
the basis of distributed computing systems, allowing the
sharing of computer resources without the need of an inter-
mediary centralized server. They can be used for resource
sharing [1], instant messaging [2], or secure storage systems
[3]. The usage of P2P systems is not restricted to web-based
applications, such as described in the preceding paragraph,
but is increasingly used in the context of Internet of Things
[4], even in the field of vehicle to vehicle communication
[5]. Further applications relying on P2P communication can
be found in the field of machine to machine communication
[6]. Looking at a smaller granularity, P2P communication
is also used for the interaction of devices as small as
smart cards. The physical link is usually established by
Near Field Communication (NFC) [7], via which data is
transfered using the NFC Logical Link Control Protocol
(LLCP) [8]. Although the LLCP knows a P2P protocol, it
was not considered in the proposed design, as the goal was

159

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00039

– 97 –

Publication A - EuroMicro DSD 2018

to achieve an P2P communication with as little changes to
the already existing protocol stack, as possible.

III. DESIGNING AN HCI BASED P2P APDU PROTOCOL

The goal of the P2P APDU protocol is to break up
the master-slave topology between two components of an
SoC without changing the application layer protocol. By
sticking to the already well established APDU protocol, a
high acceptance of the proposed design should be achieved.
As already existing applications, running on the individual
components, would not need to change the message pars-
ing at the Application Layer. Therefore, the Application
Layer Protocol should stay unchanged and the bidirectional
communication should come with minimal overhead. Con-
sidering the defined requirements, two different approaches
were evaluated, which allow a bidirectional APDU based
command-response exchange. The first approach is straight
forward. The SE is the slave, the MCU the master in the
communication. Case A shows the usual command-response
exchange between the two communication parties. Case B
shows a method to allow the MCU to send a command to
the SE. The MCU starts with sending an empty command-
APDU (C-APDU). Depending on the underlying hardware
bus, the SE might need to trigger the communication with
an external interrupt signal. In response to this C-APDU, the
MCU responds by sending an response-APDU (R-APDU),
which holds the actual command in its data field. The SE
receives the R-APDU, interprets the enclosed command, and
sends back its response, encoded into the data field of a C-
APDU. The MCU extracts the response and sends back an
empty R-APDU, thus completing the command response
exchange. With this method, a P2P APDU exchange can
be accomplished. The drawback of this method is, that each
command-response exchange from the SE to the MCU needs
four messages, causing additional delay.

To overcome this empty message exchange, the second
approach uses a bidirectional message type of an underlying
protocol to encapsulate the command and the response
APDU. For this purpose, the Host Controller Interface (HCI)
standard is used [9]. The HCI standard defines the Host
Controller Protocol (HCP), which is situated in the network
layer of the protocol stack. Its main purposes are to allow
the setup of a network, consisting of multiple logical hosts.
The HCP knows command and response pairs, but also
uses an asynchronous message type, called event. This event
type is used to allow the C-APDU - R-APDU exchange in
a bidirectional way. Figure 2 shows the difference in the
message exchange between the two design approaches.

It can be noticed that the second design approach en-
capsulates the command and the response APDU using the
event message type of the HCP. Two different types of
events, called EVT_C-APDU and EVT_R-APDU, are used.
The event types are explained in more detail in Section
III-A. The drawback of the second design approach is that by

MCU (Peer) eSE (Peer)

EVT_C-APDU(C-APDU)

EVT_R-APDU(R-APDU)

EVT_C-APDU(C-APDU)

EVT_R-APDU(R-APDU)

MCU (Master) eSE (Slave)

C-APDU

R-APDU

C-APDU(empty)

R-APDU(C-APDU)

C-APDU(R-APDU)

RSP-APDU(empty)

Case A
Case B

Case A
Case B

Figure 2: Bidirectional APDU protocol approaches.

encapsulating each message, additional header information
is transmitted, increasing the communication delay. For Case
A, this means that the overall exchange time is expected to
increase. Using the HCP, an additional communication setup
is necessary, prior to exchanging the HCP packets, which
adds to the overall communication time. For Case B, it can
be seen that by using the asynchronous bidirectional event
message type of the HCI standard for encapsulation, the
empty messages of the first design approach can be omitted.
However, the transmission and processing overhead must be
taken into consideration for Case B as well.

A. Extension to the HCI standard and Adaptation of the
Protocol Stack

The latest HCI/HCP Protocol standard contains a clause
defining a mechanism enabling the exchange of APDU
messages [9]. Two different types of hosts, the server APDU
host (slave) and the client APDU host (master) are defined.
The client host provides a so-called APDU application gate,
which accepts the reception of EVT_R-APDU messages.
The server host provides the APDU gate, which accepts the
reception of EVT_C-APDU messages. As this setup does not
allow the exchange of EVT_C-APDU and EVT_R-APDU
messages in both directions, the interface is extended with
an additional P2P APDU gate, which allows the reception
of both event message type. Thus, a bidirectional APDU
command-response exchange can be achieved. Additionally
to the EVT_C-APDU and the EVT_R-APDU message, the
P2P APDU gate must also support the other events of
the APDU application and the APDU gate, as defined in
the HCI/HCP Protocol standard, respectively [9]. Offering
both peers the same set of events supports the APDU
message exchange from both directions. The type encodings
of the EVT_C-APDU and the EVT_R-APDU message must
be adapted for the P2P APDU gate, as both the APDU
application gate and the APDU gate use the same instruction
code for both events.

As the P2P APDU gate is able to send and receive
both EVT_C-APDU and EVT_R-APDU messages, its state
diagram needs additional states to differentiate between
sending and receiving mode. As shown in Figure 3, the P2P
APDU gate goes into the INIT state after network setup.
From this state, it can either go into the IDLE or the WAIT
CMD, depending on the reception of EVT_ATR, which is

160

– 98 –

7 Publications

used by the sender to indicate its availability for processing
APDU commands. If the gate transits into the WAIT CMD
state, it receives commands and transmits responses, until
reception of a EVT_END_TRANS, which sends it back to
the IDLE state. If the gate gets into the IDLE state, it may
either send or request a command. If it requests a command,
it sends a EVT_REQ_CMD message and goes into the WAIT
CMD state. From this state it might only return to IDLE upon
reception of a EVT_REQ_CMD message. If the gate transmits
a command while residing in the IDLE state, it transits into
WAIT RSP. From this state, the gate may send commands
and receive responses, until a change in the direction of the
command-response exchange is requested. To initiate this
change, it sends a EVT_END_TRANS message and goes
into the state WAIT CMD. Using the state diagram shown in
Figure 3, changing the direction of communication between
two P2P APDU gates is only possible, if the P2P APDU
gate in charge indicates an end to the APDU exchange.
Upon this event, both P2P APDU gates can agree upon
the direction of the following command-response exchange.
Next to the P2P APDU gate, the host must also provide other

INIT IDLE

PROCESS
CMD

WAIT
CMD

PROCESS
RSP

rx/tx
ANY_OPEN

rx
EVT_ATR

rx
EVT_WTX

rx/tx
EVT_ABORT

tx EVT_ATR

WAIT
RSP

Figure 3: State diagram of P2P APDU gate with transmitted
(tx) and received (rx) event messages.

necessary gates, as described in [9]. For using the HCP to
exchange APDU messages, an additional driver is needed
in the communicating devices’ firmware, thus extending
the protocol stack by one layer. The driver’s purpose is to
check the HCP packet’s source and destination. It hands over
the packet’s data (received APDU message), together with
the information about the data’s size, and the information,
whether an command or response APDU was received, to
the Application Layer. The HCP expects that the packets are
transmitted via a Data Link Layer (DLL). The DLL must
support an error free transmission, respect the order of sent
and received packets, provide its own data flow control,
and specify a maximum packet size. Furthermore, it must
report the size of each received packet, transmitted via the
physical layer. With this data, the HCP driver is provided
all the necessary information to support the upper layer,

which further processes the received APDU message. The
HCP driver also encapsulates a given message into an HCP
Packet before handing it over to the underlying DLL. For
this purpose, the driver needs, next to the APDU message
to encapsulate, information regarding the type of the APDU
and the address of the pipe. Concluding, the proposed design
offers bidirectional communication with minimal overhead,
without changing the Application Layer Protocol, and the
additional possibility to address non physically connected
components. Therefore, the design needs an additional driver
to construct and parse the HCP packets and messages, and
the network must be setup.

IV. MODEL IMPLEMENTATION AND EVALUATION

To evaluate the effect of the P2P APDU based approach
on the communication performance, both approaches in-
troduced in Section III were implemented in a system
model and compared to each other. The system implements
a communication model, describing the delay caused by
the exchange of an arbitrary number of APDU messages
between two MCUs. The communication is implemented in
a SystemC Transaction Layer Model (TLM) [10]. In this
model, two MCUs are communicating with each other via a
hierarchical channel. This channel is declared as an interface,
offering the connected modules to send and receive both C-
APDUs and R-APDUs. Two channels implement this inter-
face, P2PChan and P2PChanHci. P2PChan implements
the first approach presented in Section III, P2PChanHci
the second one, utilizing the HCI. For communication, the
MCU module contains a port connecting it to the interface.
Figure 4 shows the TLM’s structure, as well as the layouts
of P2PChan and P2PChanHci.

MCU A MCU B

P2PChan

P2PChanHci

Protocol Stack
APDU

T=1

Protocol Stack

Hardware Bus

Protocol Stack Protocol Stack

Hardware Bus

APDU

T=1

APDU

HCP

APDU

HCP

T=1 T=1

Figure 4: TLM based system implementation.

It can be noticed in Figure 4 that the protocol stack is the
main difference between the two implementations. Consid-
ering the protocol stack, P2PChanHci adds an additional
HCP layer. To make both approaches comparable, the used
protocols in the single layers of the communication stack
stay unchanged. Both approaches exchange the message
packets via the same underlying hardware bus system.

161

– 99 –

Publication A - EuroMicro DSD 2018

For correct transmission, HCP builds on an underlying
DLL, according to the requirements defined in [9]. As T=1
protocol [11] fulfills these requirements, it is used to trans-
port the HCP packets. By using the T=1 protocol as DLL
in both channel implementations, it has no influence on the
difference in the communication delay. To evaluate the per-
formance difference between P2PChan and P2PChanHci,
the model was extended with timing annotation. The timing
delay of the hardware bus was modeled by dividing the
transmitted bytes through the configured data rate. The
processing time of the messages parsed through the single
layers of the protocol stack was measured on a real SE
implementing the APDU and T=1 protocol. This measure-
ment starts at receiving a C-APDU and ends with sending
the R-APDU via the connected bus. The additional parsing
delay of the HCP layer was estimated by a domain expert.
Thus, a parsing delay for both P2PChan and P2PChanHci
was arrived at, which was used for annotating the model
implementations respectively. The setup delay for creating
the HCI network was estimated considering the necessary
HCP messages, the parsing delay of the HCP and T=1
protocol layers, and the data rate of the hardware bus model.

The implementations of the two approaches were evalu-
ated by investigating their overall communication delay. To
make both designs comparable to each other, the configu-
ration for both approaches were kept unchanged. Thus, the
difference in the overall communication time only depends
on the additional header information per packet, the number
of exchanged messages, and the processing time of the added
HCP layer in the protocol stack. The communication delays
were put into relation using the standard APDU command-
response exchange as reference value. For P2PChan MCU
A acts as the original master, MCU B as the original slave.
As it can be seen in Table I, sending APDU commands
from MCU B to A takes approximately twice as long as
sending them the other way around, when using P2PChan.
This is caused by the additional time spent for sending and
parsing the empty APDU command and response in the
beginning and at the end of each transaction. Exchanging
APDU command-response pairs using the HCI based P2P
approach, implemented in P2PChanHci, both directions
need roughly the same amount of time.

Table I: Normalized performance estimation

P2P[A to B] P2P[B to A] P2P-HCI[A to B] P2P-HCI[B to A]

100% 194% 105% 105%

V. CONCLUSION AND FUTURE WORK

In this paper, a new method for achieving a P2P APDU
exchange based on HCI is presented, allowing a bidirectional
APDU command-response exchange. Neither the Applica-
tion Layer protocol, nor the underlying DLL protocol is
changed in our approach. Merely, the HCI architecture
is extended by an additional gate definition. Comparing

the presented protocol with an APDU only approach, a
P2P APDU command-response exchange is performed with
almost the same communication delay in both directions.
The method proposed in this paper can be extended to other
command-response based protocols. Interesting aspects for
future works would be to design and evaluate a security
extension for the HCI based P2P APDU protocol. The
standard APDU message exchange is usually secured by
using the Secure Channel Protocol ’03’ (SCP03) [12]. The
cryptographic key exchange is either managed by using the
SCP03 or the Secure Channel Protocol ’11’ (SCP11) speci-
fication [13]. The SCP03 was not developed for supporting
a P2P APDU exchange. Therefore, the usage of them must
be evaluated, next to other possible solutions, as described
in [14] and [15].

ACKNOWLEDGMENT

Project partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. This work was sup-
ported by the Austrian Research Promotion Agency (FFG)
within the project UBSmart (project number: 859475).

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-
to-peer content distribution technologies. ACM Computing
Surveys, (4), 2004.

[2] R. Smith. Instant Messaging as a Scale-Free Network. 2002.
[3] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A

robust, tamper-evident, censorship-resistant web publishing
system. In Proc. 9th USENIX Security Symposium, (August),
2000.

[4] D. Bandyopadhyay and J. Sen. Internet of things: Appli-
cations and challenges in technology and standardization.
Wireless Personal Communications, 58, 2011.

[5] W. Chen and S. Cai. Ad hoc peer-to-peer network architecture
for vehicle safety communications. IEEE Communications
Magazine, (4), 2005.

[6] M. J. Booysen, J. S. Gilmore, S. Zeadally, and G. J. van
Rooyen. Machine-to-machine (M2M) communications in
vehicular networks. KSII Transactions on Internet and In-
formation Systems, 6(2):529–546, 2012.

[7] C. Vedat, O. Kerem, and B. Ozdenizci. Near Field Commu-
nication: From Theory to Practice. Wiley Publishing, 2012.

[8] NFC Forum. Logical Link Control Protocol Technical Spec-
ification NFC Forum. (LLCP 1.0), 2014.

[9] ETSI. TS 102 622 - V12.1.0 - Smart Cards; UICC - Con-
tactless Front-end (CLF) Interface; Host Controller Interface
(HCI), 2014.

[10] D. C. Black and J. Donovan. SystemC: From the Ground up.
Kluwer Academic Publishers, 2004.

[11] ISO IEC. ISOIEC 7816-3. (4):27, 2006.
[12] GlobalPlatform. GlobalPlatform Card Technology Secure

Channel Protocol ’ 03 ’. 2014.
[13] GlobalPlatform. Secure Channel Protocol ’ 11 ’. 2014.
[14] P. Urien. LLCPS: A new secure model for Internet of Things

services based on the NFC P2P model. IEEE 9th International
Conference on Intelligent Sensors, Sensor Networks and In-
formation Processing, Conference Proceedings, (April), 2014.

[15] S. Turner. Transport layer security. IEEE Internet Computing,
18, 2014.

162

– 100 –

7 Publications

– 101 –

Publication B - EuroPloP 2018

Message Encapsulation Pattern
Lukas Gressl

Graz University of Technology -
Institute for Technical Informatics

Graz, Austria
gressl@tugraz.at

Christian Steger
Graz University of Technology -
Institute for Technical Informatics

Graz, Austria
steger@tugraz.at

Ulrich Neffe
NXP Semiconductors Austria

Gratkorn, Austria
ulrich.neffe@nxp.com

ABSTRACT
How to change the communication behavior of devices participating
in a network with an already defined topology? This question de-
scribes the fundamental problem, which the Message Encapsulation
Pattern aims to solve. Network participants usually follow a client -
server, or peer to peer based communicationmodel. This model uses
a dedicated application layer protocol, which defines the message
types exchanged by the communicating devices. In client - server
based models, the client sends requests to and receives responses
from the server, thus constituting a one - way message exchange.
This setup can be changed by using a different application layer
protocol, or by tunneling the messages of the application layer
protocol through an underlying bidirectional protocol layer. With
both approaches, a peer to peer communication can be achieved.
However, tunneling the existing application layer protocol has the
advantage that the application does not need to change its message
parsing. This tunneling approach can be found in various domains.
It is not only used in the context of Internet services, but can also
be found in the communication between the single components
of System on Chips (SoCs), or the smart card to terminal interac-
tion. This paper describes, how the Message Encapsulation Pattern
works, its advantages and disadvantages, and how it can be used.

CCS CONCEPTS
• Networks→ Peer-to-peer protocols; Routing protocols; Trans-
port protocols; • Computer systems organization → System on
a chip; Embedded software;

KEYWORDS
Bidirectional Communication Protocols, System onChip, Embedded
S oftware

ACM Reference Format:
Lukas Gressl, Christian Steger, and Ulrich Neffe. 2018. Message Encapsula-
tion Pattern. In 23rd European Conference on Pattern Languages of Programs
(EuroPLoP ’18), July 4–8, 2018, Irsee, Germany. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3282308.3282326

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’18, July 4–8, 2018, Irsee, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282326

1 INTRODUCTION
The way in which devices within a network communicate with
each other is defined by their respective roles. Usually the direc-
tion in which the information flows from one device to another
depends on whether it is a peer, a client, or a server. Clients and
servers communicate with a certain network model, in which the
client demands some data from the server by sending a request,
on which the server sends back the requested data via a response.
Contrasting this type of one way communication, peer devices are
not restricted to one message type. Rather than sending only re-
quests or responses, they communicate with each other on an equal
level, sending and accepting both message types. Figure 1 depicts a
system consisting of three separated devices, which are configured
using both peer to peer (P2P) and client - server network model.

Device #3

Device #2Device #1

Client

Server Server

Client

Peer Peer

Figure 1: System architecture, in which the MEP can be used
to allow a bidirectional communication between Device#1
and Device#3, as well as between Device#2 and Device#3

In this setup, the role of Device#3 is restricted on responding to
requests coming from Device#1 or Device#2. If the role of Device#3
should be changed from a passive communication participant to
an active one, the restrictions of the client - server configuration
must be faced. Such a situation might occur, if e.g. the behavior
of Device#3 is altered in a way that it receives a request from De-
vice#1 and, based on this request, sends a message to Device#2. With
the current communication setup, this would not be possible. As
the application layer protocol used by the single devices defines,
whether the device acts as a client or a server, a valid solution for
the problem of Device#3 would be to change this protocol. Such a
protocol change has a severe impact on the overall system, which
might be infeasible. In such a systems, a P2P communication should
be enabled, without changing the used application layer protocol.
This would allow existing applications to stay unchanged and new
ones to take advantage of the bidirectional message exchange, still
using the well known request - response messages.

– 102 –

7 Publications

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Lukas Gressl, Christian Steger, and Ulrich Neffe

To overcome the protocol’s restrictions on the communication
direction without altering the application layer protocol, the pattern
described in this work can be used. It describes a method to allow
the transition of an application layer protocol used in a client -
server to a P2P model, without changing the top layer protocol
itself.

The paper uses the canonical way of pattern description. There-
fore, the following sections explain the context of the proposed
pattern (Section 2.1), the problem and its forces (Section 2.3), the
solution and its accompanying consequences (Section 2.4), as well
as known uses of the MEP, and other patterns related to it (Section
2.5).

2 MESSAGE ENCAPSULATION PATTERN
2.1 Context
Changing the direction of communication between two devices
is of special interest for allowing more flexible usability of Secure
Elements (SEs). SEs are usually used for storing confidential and
sensitive data and, therefore, predestined for hosting banking or
ticketing applications [14]. Usually, SEs are integrated in larger
systems, which often comprise some kind of radio, as well as an
additional application processor (AP) [1]. In such setups, the SE is
usually a passive communication party, receiving requests from the
AP or radio.

Considering the MEP, three patterns, which are used by the
MEP and can be seen as prerequisites, must be mentioned. The
communication participants are either clients, servers or peers.
These roles are described by the Peer-to-peer Architectural Pattern
and the Client-Server Pattern respectively [17] [18]. How data is
encapsulated by the single layers of the network stack is described
the Protocol Layer Design Pattern [4]. These patterns can be seen as
prerequisites for the pattern presented in this paper.

2.2 Motivating Example
Consider an SE, connected to a radio and an AP. The AP interacts
with some output device, allowing user interaction. The SE runs
an application at a time, which, based on the information it gets
from the radio, commits a secure transaction with a wireless reader.
To enhance the user experience, the SE’s application wants to send
some state information to the AP, which it can process and present
to the user. In a traditional setup, in which the SE acts as a server to
both AP and radio, such a behavior could not be implemented, as
the SE lacks a mechanism to actively inform the AP about its state
because of its limitation due to the used application layer protocol.
Figure 2 depicts such a system.

A possible solution would be changing to some other applica-
tion layer protocol. The SE can host several applications, which
can be selected and deselected. These applications parse incoming
commands according to the specific message format of the used
application layer protocol. Therefore, they are tightly coupled with
the used application layer protocol and a change to the top layer
protocol would constitute a severe impact, which might be infea-
sible. Furthermore, the overall communication speed between the
two components should be fast. This is especially important for
systems interacting with a user. Additional overhead, either by un-
necessary message exchange, or by excessive header information

SE

Application
Processor

Display
Request

Response
Request

Response

Request
Response

Figure 2: System consisting of a SE connected to a radio and
an AP. The SE acts as server to both radio and AP. Requests
can only be sent from the client to the server, which hinders
the SE to actively inform the AP on a new state.

should therefore be avoided. The request - response pairs must
not be broken, thus, the change of the communication direction
should be performed in an organized way. This is especially im-
portant, as many applications communicating via such a message
exchange expect receiving a response after sending a request to the
communication partner.

One prerequisite of the pattern is, that the components are con-
nected to each other via a physical link, which allows bidirectional
communication. The main users of this pattern are designers, which
are faced with a system already communicating in a client - server
network model and want to change it to a P2P one, without chang-
ing the application layer protocol.

Considering the example with a system comprising an SE, the
used application layer protocol comes with the additional restric-
tion of not informing the receiver about the type of the message.
The protocol lacks the message type information because for the
server - client model it is simply unnecessary, as the server only
expects responses, the client only requests. Thus, without sending
information about the message type, neither client nor server would
be able to distinguish a request from a response.

A possible method for enabling a bidirectional communication
is depicted in Figure 3. SE encapsulates its request to the AP within
the data field of its response. The AP encapsulates its response to
the SE in the data field of a request. To initiate the protocol, the
server must have some physical connection to the client trigger the
sending of the first request, which is used to initiate the message
exchange. In case both components are placed on an SoC, this phys-
ical connection can be a simple wire, used for triggering interrupts.
To end the communication, the client needs to send a final response
to the server. This response is needed to satisfy the protocol’s rules.
This method enables a bidirectional request - response exchange,
but comes with major overhead on the overall transaction. TheMEP
shows an approach, which mitigates the additional communication
cost.

This approach comes with several drawbacks. The initializing re-
quest and ending response adds to the overall communication delay.
It influences not only the transmission delay, needed for exchang-
ing the messages via a physical channel, but also the processing
delay, needed for parsing and interpreting the message at both the
sender and receiver. This communication initialization and closure
induces additional latency when sending a request from the server

– 103 –

Publication B - EuroPloP 2018

Message Encapsulation Pattern EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

to the client device. Therefore, this approach makes the request -
response exchange from the server to the client less performant
than the exchange in the other direction. As one communication
direction should not be preferred over the other because of perfor-
mance measures, this approach is not preferable. The dependency
of the server to wait for the empty packet of the client to start its
own request exchange, shows another problem with this approach.
As it does not handle the switch in the communication direction,
the server cannot be sure if it sending a request will be possible.

AP
(Client)

SE
(Server)

Request(init)

Response(Request)

Request(Response)

Response(end)

Figure 3: Message flow between Server and Client. Sending
a request from the client to the server and a response in
the other direction (as intended) is no problem. Using the
sameprotocol for exchanging the request - response pair the
other way around needs additional messages.

2.3 Problem
The problem, which must be solved, can be phrased as: "How to
change the communication behavior within an existing network model
between two participants, without changing the application layer
protocol and keeping the communication overhead as low as possible?"

Typically, devices communicating with each other are configured
either in a client - server or P2P model, defining the message types
and the direction of the communication. The message types are
defined in the application layer of the used protocol. Once the appli-
cation layer protocol is defined, it is difficult to switch the network
model without changing the this top layer protocol. Especially in
a client - server network the direction of the message exchange is
inflexible, because the direction, in which certain message types are
transmitted, is limited. This limitation comes from the used applica-
tion layer protocol, which defines two types of messages: requests
and responses. The client asks for information from the server by
sending a request, and the server answers this request by sending
back a response. If a designer wishes to allow a bidirectional com-
munication between the client and the server, a change towards a
P2P networking model must be performed. Such a change can be
performed by using a different application layer protocol, which
might cause major changes for already existing applications, and
might therefore not be desired by the designer. Considering also

the solution approach from the Motivating Example, the problem
comes with the following forces.

• F1 The message encoding in the application layer protocol
must not change. Completely changing the top layer protocol
would mean that all applications hosted by the device must
change their message parser implementation.

• F2 The performance of the overall communication must
not be increased drastically. This is especially relevant for
scenarios in which user experience is important, or which
have to react to real time events.

• F3 No unnecessary messages shall be sent only for comply-
ing with the protocol rules. Thus, no additional transmission
or processing delay is produced.

• F4 Both server and client should be able to switch the com-
munication’s direction, either by requesting the active part,
or by indicating that no more requests will be sent. Prefer-
ably, switching the direction should not break up an already
ongoing request - response pair exchange, and should offer
both participants to equally negotiate the new direction.

2.4 Solution
The MEP solves the problem by adding some additional informa-
tion to the transmitted messages, wrapping the actual requests and
responses. Figure 4 shows this approach. The MEP encodes the
actual request and response using some message type of an under-
lying protocol. This underlying protocol must offer bidirectional
communication. To ensure standard compatibility, the encoding
message types should be taken from an already well established
protocol. Wrapping the request and response by using a message
format of some other protocol, additional header information of
the encapsulating message type must be transmitted, causing com-
munication overhead. Therefore, this method is only feasible, if
the additional header information causes less communication de-
lay than the exchange of an extra request - response pair. From
a protocol stack perspective, the MEP adds another layer to the
communication stack.

With this message encapsulation, the MEP enables the trans-
formation of a client - server model to a P2P one by decorating
the exchanged requests and responses with some additional infor-
mation. Thus, the exchanged packets become bigger, as additional
information must be transmitted per packet. It also means, that
a further layer is added to the communication stack and that ad-
ditional parsing of the meta data, surrounding the request and
response, must be performed by a new driver. The benefit is, that
the channel traffic caused by the additional exchange of the empty
messages is evaded. The new parts in the protocol stack are shown
in Figure 5.

The parser, which decorates the messages with additional infor-
mation, implemented the Decorator design pattern [12]. By adding
to and parsing the type information from the messages, the appli-
cation can be informed, if the received message is a request or a
response.

Considering the approach presented in the context of the SE
to AP communication, Figure 6 shows a comparison between the
MEP’s solution and the request - response encapsulation approach
described in the context and depicted by Figure 3. It can be seen that,

– 104 –

7 Publications

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Lukas Gressl, Christian Steger, and Ulrich Neffe

Device A
(Client)

Device B
(Server)

MSG(Request)

MSG(Response)

MSG(Request)

MSG(Response)

C
ase

 B
C

ase A

Figure 4: Solution to the problem stated in Section 2.3. The
request - response exchange is encapsulated by a bidirec-
tional message format of an underlying protocol in the com-
munication stack. This allows a bidirectional message ex-
change.

Application Layer

... Layers Layers ...

Physical Layer

Application Layer

Encapsulating Layer

Physical Layer

[request/response]
[dec_type[request/response]]

[request/response]

R
eq

u R
esp

M
SG

R
eq

u

M
SG

New

Figure 5: The protocol stack is extended by an additional
layer marked with the "‘New"’ bracket. The request / re-
sponse messages are decorated with additional meta infor-
mation visualized by the change from request / response to
MSG in the right hand protocol stack representation

by using the bidirectional message type of the underlying protocol
for wrapping the request - response messages, the MEP approach
saves the initializing request and the ending response in Case B.
This results in halving the amount of exchanged messages in this
Case. However, the additional header information of the wrapping
message type must be taken into consideration, when looking at
the additional transmission delay in Case A. The consequences of
the MEP’s solution approach are explained in more detail in Section
2.4.1

2.4.1 Consequences. Considering the solution and the forces they
must meet, one may notice that the MEP’s solution meets first three
forces (F1, F2 and F3) by encapsulating the request and response

messages by using a message type of an underlying bidirectional
protocol. As can be noticed in Figure 4, the encapsulation is per-
formed in both Cases A and B. Force F4 must be complied to by
using a mechanism, which enables the active communication party
to inform the passive one that no more requests remain outstanding.
Thereafter, the passive party might inform the active one about a
change in the communication direction, or remain in its passive
role, waiting for further requests. Such a mechanism should be pro-
vided by the protocol the requests and responses of the application
layer are decorated with. Concluding, the benefits and liabilities of
the MEP are listed below.

The benefits of the Message Encapsulation Pattern are:
• No empty requests or responses are needed to fulfill the
application layer protocol of the server - client topology.
This solves force F3.

• By evading the unnecessary transmission of empty packets,
the overall performance is increased. This solves force F2.

• No change in the application protocol layer is necessary,
as the on top application still works with requests and re-
sponses. The encapsulation is abstracted by the intermediate
parser. This solves force F1.

• Using the bidirectional message type of the encapsulating
protocol, designing a special notification for switching the
communication direction is can be achieved using the new
intermediary layered protocol. This solves force F4

The liabilities of the Message Encapsulation Pattern are:
• Additional meta information is needed to allow the bidi-
rectional exchange of the request - response pairs. This in-
creases the packet size transmitted on the physical layer and
mitigates the performance increase. This affects force F2.

• For parsing the additional meta information, with which the
request and response pairs are decorated, and unpacking the
encapsulated request or response, a driver, situated below
the application layer, is necessary. This also affects force F3.

• In general, adding an additional layer in the protocol stack
needs a parser to be implemented for constructing and pars-
ing the new header information. New code is always a further
source for software bugs. Adding this protocol layer to al-
ready existing devices means that unit and system testing
must be extended to ensure proper functionality.

2.5 Known Uses
The following sections describe known uses of the MEP. Section
2.5.1 describes the use of the MEP within the communication be-
tween multiple components of an SoC. Section 2.5.2 describes the
usage of the connection less User Datagram Protocol (UDP) to dec-
orate all other transmission protocols, such as the Transmission
Control Protocol, to allow P2P communication. Section 2.5.3 shows
another way of implementing the MEP by combining the function-
ality of an NFC Push Protocol server and client into one device and
using the P2P mode of the Logical Link Control Protocol, tunneling
the respective request and response messages.

2.5.1 P2P APDU exchange. In the smart card domain, a terminal
communicates with a corresponding chip card by exchanging Ap-
plication Protocol Data Units (APDUs) via an either contact based

– 105 –

Publication B - EuroPloP 2018

Message Encapsulation Pattern EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

Device A
(Client)

Device B
(Server)

Request(init)

Response(Request)

Request(Response)

Response(end)

Device A
(Client)

Device B
(Server)

MSG(Request)

MSG(Response)

MSG(Request)Request

C
ase B

C
ase A

Figure 6: The MEP’s solution in comparison with the approach described in the context. The request - response exchange
initialization, which is crossed out in red, can be replaced by encapsulating the actual request - response pair using themessage
format of an underlying protocol in the communication stack, which allows a bidirectional message exchange.

or contact-less physical connection. This APDU format, which is
defined by ISO/IEC, only knows commands (C-APDUs) and re-
sponses (R-APDUs). Furthermore, the APDU protocol divides the
communicating parties into a master and a slave. The master only
sends C-APDUs and interprets R-APDUs, the slave only interprets
C-APDUs and responds with corresponding R-APDUs. In between
the APDUs, which are located at the application layer, and the
physical link, either the T=0 or T=1 data link layer protocol is used
to guarantee correct transmission of the exchanged command -
response pairs. Both T=0 and the T=1 protocols are by ISO/IEC as
well [7] [8].

The Message Encapsulation Pattern can be used to transform
the master - slave topology, predetermined by the used APDU ap-
plication layer protocol into a P2P network. The C-APDUs and
R-APDUs are decorated by using a bidirectional asynchronous mes-
sage type of a communication layer in between the APDU and the
T=1 or T=0 protocol. The used message type is taken from the Host
Controller Interface (HCI) standard. The HCI standard defines a
protocol, which can be localized in the network layer of the pro-
tocol stack. Its main purpose is to allow the setup of a network,
consisting of multiple embedded devices, and allow the routing
of packets through a network of so called logical pipes. The HCI
protocol knows command and response pairs, but also uses an asyn-
chronous message type, called event. This event type is used to
allow a the C-APDU - R-APDU exchange via the logical pipes of
the network by decorating the commands and responses with the
event type message [3].

The HCI standard furthermore introduces gates, which are used
to encapsulate the access to certain services. For exchanging APDU

command - response pairs, the latest HCI standard defines the
APDU gate, used by the server, and the APDU application gate,
used by the client. The gate controls, which kind of events, either
C-APDU event or R-APDU event, is allowed to pass the respective
gate. The APDU gate only interprets C-APDU events, the APDU
application gate only R-APDU events. With a small modification of
the HCI standard, a bidirectional exchange of the C-APDU and R-
APDU events is possible, thereby modifying the client - server to a
P2P topology. This modification consists of the additional definition
of a dedicated P2P-APDU gate, allowing the interpretation of both
the C-APDU and the R-APDU event. This approach is described in
[6]. Figure 7 shows this setup.

2.5.2 OverUDP. In [9], Janbeglou and Brownlee present a method
for tunneling transport layer protocols in the UDP [2] for P2P Ap-
plications. The authors describe their method, called OverUDP, in
which they use UDP to tunnel all transport layer protocols, such
as the Transmission Control Protocol, to be used in P2P commu-
nication. The UDP was chosen by the authors, because it is an
connection less protocol, and, therefore, suitable for allowing home
Internet users to communicate with each other directly. Further-
more, UDP is very common in P2P communications. Using the
OverUDP each participant in the P2P communication encapsulates
all network packets, regardless of the transport layer protocol, into
UDP datagrams and sends them via the network. The receiving
party receives the UDP datagrams, decapsulates the network pack-
ets from the datagrams’ payload and injects them into the device’s
network data flow.

To setup the UDP connection, OverUDP uses the Session Traver-
sal Utilities for Network Address Translation (STUN), as, according

– 106 –

7 Publications

EuroPLoP ’18, July 4–8, 2018, Irsee, Germany Lukas Gressl, Christian Steger, and Ulrich Neffe

APDU Master APDU Slave

APDU Peer

APDU P2P
Gate

APDU Peer

APDU P2P
Gate

C-APDU

R-APDU

EVT(C-APDU)
EVT(R-APDU)

Figure 7: Block diagram showing the difference before and
after applying the Message Encapsulation Pattern to the
APDU communication. The master - slave topology is trans-
fered to a P2P one. The C-APDUs and R-APDUs are deco-
rated using the events of the HCI protocol

to [16], works best for UDP, because it is a pure P2P solution. STUN,
which is not only used by OverUDP, but also with Transmission
Control Protocol (TCP) [5], or Web Real-Time-Communication (We-
bRTC) [13], offers the establishment to a server connection. This
STUN server is used by both communicating devices to get their re-
spective endpoint information, containing the public IP address and
the port. This information is exchanged between the two parties. In
the following communication, the port and IP address information
is used to transmit the messages via the UDP channel, established
between the two endpoints. Figure 8 depicts this method.

Device A

Device B

IP packets

IP packets Encapsulation/
Decapsulation

Encapsulation/
Decapsulation

UDP Channel

Figure 8: OverUDP used to tunnel messages between two
communication partner (Device A and B), thereby achieving
P2P communication, adapted from [9]

2.5.3 NFC Push Protocol P2P Communication. The NFC Push Pro-
tocol (NPP), which is specified by Android, is used for pushing
NFC Data Exchange Format (NDEF) messages from one device to
another. This communication is a one way transmission of NDEF

messages from an NPP client to an NPP server. The NDEF messages
are transmitted via the Logical Link Control Protocol (LLCP), which
itself offers an P2P mode [15]. Any device which uses the NPP must
run an NPP server, to which another device using an NPP client
can connect [10]. In this setup the roles of the devices are fixed
to an active or passive part, depending on whether they utilize an
NPP server or client. To allow a bidirectional message exchange
between two NFC devices, each device must run an NPP server,
as well as an NPP client. Thus an bidirectional message exchange
between the two devices can be achieved [11].

LLCP

NFC Phy Layer

Application

NPP Layer

NPP client
NPP

client
NPP

server

R
eq

u

R
es

p

R
es

p

R
eq

u

Figure 9: P2P communication enabled by switching between
an NPP client and server running on the same device,
adapted from [11]

As the two communicating devices switch between the active
and passive role within the communication, the top layer applica-
tion uses the NPP server and client to encapsulate the exchanged
messages. This utilization of the NPP layer follows the principal of
the MEP. Figure 9 visualizes the protocol architecture.

ACKNOWLEDGMENTS
I would like to thank my shepherd Victor Sauermann, who did an
excellent job in helping me get my paper ready for the workshop.
I also want to thank my workshop group, especially Christopher
Preschern, who gave me feedback and advice not only during, but
also after the conference. They both greatly helped improving the
overall paper.

REFERENCES
[1] Vincent Alimi, Marc Pasquet, and Laboratoire Greyc. 2009. Post-distribution

provisioning and personalization of a payment application on a UICC-based
Secure Element. (2009), 701–705. https://doi.org/10.1109/ARES.2009.98

[2] Lars Eggert and Gorry Fairhurst. 2008. Unicast UDP Usage Guidelines for Appli-
cation Designers. RFC 5405. https://doi.org/10.17487/RFC5405

[3] ETSI. 2014. TS 102 622 - V12.1.0 - Smart Cards; UICC - Contactless Front-end
(CLF) Interface; Host Controller Interface (HCI).

– 107 –

Publication B - EuroPloP 2018

Message Encapsulation Pattern EuroPLoP ’18, July 4–8, 2018, Irsee, Germany

[4] Eventhelix. 2018. Protocol Layer Design Pattern. https://www.eventhelix.com/
RealtimeMantra/PatternCatalog/protocol{_}layer.htm{#}.W0dQIMKxVEY

[5] B. Ford, P. Srisuresh, and D. Kegel. 2005. Peer-to-peer communication across
network address translators. Usenix.Org (2005), 1–31. https://doi.org/10.1109/
CEC.2007.4424785 arXiv:cs/0603074

[6] Lukas Gressl, Ulrich Neffe, and Christian Steger. 2018. Design and Implementation
of an HCI based Peer to Peer APDU Protocol. Proceedings - 21st Euromicro
Conference on Digital System Design DSD 2018 (2018).

[7] ISO IEC. 2006. ISOIEC 7816-3. 4 (2006), 27.
[8] ISO IEC. 2014. ISOIEC FDIS 7816-4. (2014), 162. www.iso.org
[9] Maziar Janbeglou and Nevil Brownlee. 2016. OverUDP: Tunneling transport

layer protocols in UDP for P2P application of IPv4. Proceedings - IEEE 30th
International Conference on Advanced Information Networking and Applications
Workshops, WAINA 2016 (2016), 325–330. https://doi.org/10.1109/WAINA.2016.41

[10] A. Lotito and D. Mazzocchi. 2012. OPEN-NPP: An open source library to enable
P2P over NFC. Proceedings - 4th International Workshop on Near Field Communi-
cation, NFC 2012 (2012), 57–62. https://doi.org/10.1109/NFC.2012.16

[11] R. Mainetti, L. and Patrono, L. and Vergallo. 2012. IDA-Pay: An innovative micro-
payment system based on NFC technology for Android mobile devices. Software,
Telecommunications and Computer Networks (SoftCOM), 2012 20th International
Conference on 8, 4 (2012), 1–6.

[12] James E McDonough. 2017. Decorator Design Pattern. Apress, Berkeley, CA,
207–224. https://doi.org/10.1007/978-1-4842-2838-8_16

[13] Dr. David A. McGrew and Eric Rescorla. 2010. Datagram Transport Layer Security
(DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol
(SRTP). RFC 5764. https://doi.org/10.17487/RFC5764

[14] David M Monteiro, Joel J P C Rodrigues, and Jaime Lloret. 2012. A Secure NFC
Application for Credit Transfer Among Mobile Phones. (2012).

[15] NFC Forum. 2014. Logical Link Control Protocol Technical Specification NFC
Forum. LLCP 1.0 (2014).

[16] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. 2003. STUN - Simple Tra-
versal of User Datagram Protocol (UDP) Through Network Address Translators
(NATs).

[17] Unified-am. 2018. Reusable Asset: Client-Server Pattern.
http://www.unified-am.com/uam/UAM/guidances/reusableassets/
uam{_}pattern{_}client-server{_}2E388191.html

[18] Unified-am. 2018. Reusable Asset: Peer-to-peer Architectural Pat-
tern. http://www.unified-am.com/uam/UAM/guidances/reusableassets/
uam{_}pattern{_}p2p{_}144410EC.html

– 108 –

7 Publications

– 109 –

Publication C - ICONS 2019

A Security Aware Design Space Exploration Framework

Lukas Gressl

Institute of Technical Informatics
Graz University of Technology

Graz, Austria 8010
Email: gressl@tugraz.at

Christian Steger

Institute of Technical Informatics
Graz University of Technology

Graz, Austria 8010
Email: steger@tugraz.at

Ulrich Neffe

NXP Semiconductors Austria GmbH
Graz University of Technology

Email: ulrich.neffe@nxp.com

Abstract—System designers are often faced with a huge variety of
alternative hardware platforms and architectures, when designing
new products. Especially the various options for allocating a
set of tasks to processing units greatly influences the overall
system performance and power consumption. As the possible
design space is too complex for manual evaluation, automatic
Design Space Exploration (DSE) tools are used for selecting first
system designs. These tools assess the various mappings between
tasks and processing units. They target the best allocation,
optimizing the system’s performance and power consumption,
while considering other predefined design constraints. Tradition-
ally, security requirements do not belong to the set of design
constraints these tools deal with. Thus, security requirements
must be introduced manually, which might induce additional costs
to the overall project. To enable security-by-design using DSE, the
Security Aware Design Space Exploration (SADSE) Framework
was developed. This framework allows the integration of attack
scenarios and security requirements, as well as platform security
features into the DSE, at a level of detail not yet considered
by other tools. SADSE allows an optimal allocation of tasks
onto hardware platforms, while satisfying predefined security
constraints. This paper shows how security requirements and
attack vectors are modeled in SADSE, followed by the evaluation
of a keyless entry system use case, where the tool finds a secure
mapping of tasks to processing units.

Keywords–Security; Design Space Exploration; Embedded Sys-
tems.

I. INTRODUCTION

Designing a new product means making a lot of decisions,
ranging from which hardware components to take to what
system functionality and on which component to place them
on. This variety opens up a huge space of alternative designs
which must be considered by designers, system architects and
product owners. The resulting design influences the power
and performance characteristic. This design choice is an issue,
especially in the domain of embedded systems and stretches
from selecting hardware components to mapping of system
functionality. The optimal allocation of system functionality
to dedicated hardware blocks, such as special hardware or
general purpose processors, poses a complex problem. This
allocation cannot be solved manually regarding more than one
characteristic. To tackle this problem and to shorten the design
process, automatic Design Space Exploration (DSE) tools are
used. These tools scan a space of alternative designs and
allocation options, and compute an optimized solution.

Especially for devices in the domain of the Internet of
Things and Cyber Physical Systems (CPS), the information se-
curity plays a vital role. CPS sense data and handle confidential

or even personal information, which imposes security require-
ments to these devices. The security requirements are usually
defined by an expert, and depend on the project setup. These
requirements are considered right at the beginning or integrated
later. Later on integration of security requirements increases
the project’s costs significantly more than introducing security
at the beginning of the design flow. Therefore, most companies,
producing secure products, introduce security requirements
initially at the design phase. In this phase, DSE tools can be
used to support designers in their choices. As traditional DSE
tools lack the ability of considering information security, their
usability for designing secure products is limited.

System Architecture

Design Space Exploration

Processing
Element Hardware Bus

Processing
Element

Application Graph

T1

T2 T3

Processor-specific
Application Properties Mapping

Performance Data
Schedules

Design Constraints and
Optimization Goals

Security Capability
Attack Vectors

Security Requirements

Figure 1. DSE process, based on [1] extended by security requirements,
security capabilities, and attack vectors.

To bridge this gap in the design flow, we present a Security
Aware Design Space Exploration framework (SADSE). The
SADSE framework allows an automatic DSE under consid-
eration of security requirements and threat scenarios. The
framework offers the designer to define security requirements
for single data entities the system tasks operate on, and
attack scenarios for the individual function blocks. Given these
security requirements and attack scenarios together with the
defined hardware platform, the framework performs an opti-
mized allocation of functionality to hardware blocks. Thereby,
it considers the security requirements and the hardware compo-
nents’ security capabilities. Figure 1 shows an overview of the
traditional DSE process extended with the additional security
assets introduced in this paper.

The basis of the SADSE framework implementation is the

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 110 –

7 Publications

Constraint Programming (CP) based Design Space Exploration
for System Design tool, as described in [2]. The extension of
considering security constraints in the DSE is presented in this
paper and the SADSE framework’s functionality is evaluated
using an embedded access control device as a use case. The rest
of the paper is structured into the following sections: in Section
II previous work considering DSE and security requirements
is presented; in Section III the methodology introduced by
this paper is explained in detail; in Section IV the SADSE
framework is used to evaluate a secure task mapping of a
keyless entry system and the framework’s performance is
evaluated; in Section V a conclusion is drawn and future work
is discussed.

II. RELATED WORK

The optimal allocation of tasks to hardware components
considering the overall system execution time, power con-
sumption, scheduling, etc. is a well described problem for
embedded devices, multiprocessor- and multicore-systems.

Other works already proposed frameworks performing
automatic DSE for embedded systems under consideration
of hardware software codesign. The optimal allocation of
streaming applications onto a heterogeneous multi-processor
system is investigated in the works of Khalilzad et al. [3],
and Rosvall et al. [1] [2]. In the framework proposed by
these authors, streaming applications are represented as syn-
chronous data flow graphs, and their tasks are mapped to
distinct heterogeneous processors. The framework describes
the problem of the optimal mapping of tasks to processors
as a constraint satisfaction problem, which is solved by using
CP. Finding the optimal hardware-software split for embedded
devices using heuristic algorithms in DSE was investigated by
Knerr [4]. In his work, Knerr considers the problem of finding
the best partitioning of functionality implemented in software
and hardware components, considering a predefined hardware
platform. His approach considers various optimization criteria,
such as chip area size, power consumption or performance.

Security requirements in DSE are described in a range of
modeling and analysis techniques. In this area, the work of
Kang [5], Stierand et al. [6], and Hasan et al. [7] are prominent.
In their work, Hasan et al. consider an already existing task
schedule of an real time operating system on a predefined
multicore-system. The authors present a framework allowing
to insert security tasks into this schedule without changing
it and without breaking the system’s real time constraints.
Kang describes a tool which supports system designers in their
decisions considering the correct use of security features.

Stierand et al. [6] present a framework in which security
parameters are introduced into automatic DSE, putting it
into the context of the automotive domain. They focus on
the communication part between tasks, assessing the attack
vulnerability of the channels connecting them. This vulnera-
bility is determined by the capability of the attacker. Thus,
they add security requirements to the exploration. To mitigate
these attacks, Stierand et al. propose to map these vulnerable
tasks onto architecture modules providing hardware security
extensions, ensuring that such attacks cannot be performed. As
the task model of their approach combines functionality and
data as one, the correct mapping of the single tasks to hardware
secured electronic control units depends on the definition of
what operations a task executes on some piece of information.

From the described DSE tools, only Stierand’s framework
focuses on the correct allocation of security vulnerable tasks
on dedicated hardware components during an automatic DSE.
In comparison to their work, the framework presented in
this paper regards data and control flow separately. With this
separation, multiple interpretation variants of a task function-
ality are overcome. This allows a more detailed attribution
of security requirements to the respective information blocks.
Furthermore, we do not regard these security requirements
exclusive to the communication channels between tasks. Our
approach pursues a more holistic way of introducing security
into automatic DSE. We consider the attack scenarios not
only on the communication but also on the tasks, and the
architectural blocks and assign security attributes to the data
used by the tasks. Furthermore, by assigning security levels
to the distinct hardware elements, we do not simply solve a
mapping problem, but are also able to find a suitable platform
configuration. Section III discusses the proposed approach in
detail.

III. PROPOSED METHODOLOGY

Performing an optimal allocation of functionality to a
predefined system architecture under consideration of security
constraints needs a way of accurately defining tasks, architec-
tural blocks, and security constraints. This section introduces
the necessary components and describes the underlying con-
straint solving problem of the SADSE framework.

A. Representation of the System Functionality
According to [4], the functionality of a system is defined by

a directed process or task graph in which the nodes represent
functional elements, and the edges represent data transfers
between those elements. This combined representation of data
and functionality in one task leads to ambiguous results when
attempting to define security requirements on it. Therefore,
we split task functionality and data in our approach. The
SADSE framework allows the definition of distinct security
requirements on data entity without mingling it with the task’s
functionality. Each task is linked to a data entity by a set
of operations. This more precise modeling of the control and
data flow of the system enables the framework to perform a
more comprehensive mapping. This explicits control and data
modeling leaving less space for interpretation what a task is
actually doing with its associated data. This is important when
it comes to the decision of where to map tasks that handle
secure data.

By splitting functionality and data each single data block
can be attributed with security requirements, determining
how the data must be secured. This assignment must be
performed by a security expert based on a Confidentiality-
Integrity-Availability (CIA) triad [8].Our approach focuses on
the confidentiality, the integrity and the authenticity of the data
entity. Therefore, the security requirement for a data unit is
denoted as the tuple sr = (conf, int, auth), where conf , int,
and auth can either be 0 or 1. Combining the definition of the
security requirements (sr) with the operations, a data entity
basically defines a set of operations and security requirements.
For better readability, a task performing a set of operations
on a set of data entities is defined as a process. The security
requirements for each data entity must be determined by the
designer and serves as an input to the SADSE framework.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 111 –

Publication C - ICONS 2019

Figure 2 shows the separation of task functionality and
security attributed data connected by a range of operations.
The system’s functionality is represented as a directed process
graph. The data flow in this graph consists of the set of all tasks
operating on the same data entity. As each process operating
on the same data entity is connected via an edge to its parent
process, the data flow can be found by traversing all parent
processes with the same data entity attribution.

Task Data

Confidentiality (C)
Integrity (I)
Authenticity (A)

read (r)
write (w)
transmit (tx)
receive (rx)
store (st)

Operation

Security
Requirements

Security

Level

Figure 2. Representation of a process, consisting of a task, its associated
data attributed with security requirements, and the task’s operation

performed on the data.

Considering the set of operations, the basic operations on
the data entities, such as read (r), write (w), transmit (tx),
receive (rx), and persistently store (st) are directly defined by
the designer. This set of operations is represented by the tuple
op = (r, w, tx, rx, st), where each element can either be 0 or
1. The security related operations are derived from the basic
operations and the data entity’s security requirement. Addition-
ally to the security requirement, each data entity is assigned a
security assurance level, which must be evaluated by a domain
expert. For simplification, these assurance levels are abstracted
as an integer ranging from 0 to 3, with 3 representing the
highest security level and 0 no security. Any task reading
or writing confidential data must decrypt the data before
processing it and encrypt it before passing it to another task.
The same principle applies to the authenticity of data, which
must be ensured by applying a signature or authentication
code after writing and verified before reading. Transmitting
and receiving of secured data does not enforce any security
operation. These security operations opsec = (enc, sign, stsec)
are derived according to (1). These operations and security
assurance levels must be mapped to the security capabilities of
the individual Processing Elements (PEs) which are explained
in detail in the next section.

opsec(op, sr) =

(
(r ∨ w) ∧ conf
(r ∨ w) ∧ auth

st ∧ (auth ∨ conf ∨ int)

)
(1)

B. Representation of the System Architecture
The hardware platform is represented by PEs, which are

connected to each other via Hardware Bus Systems (HWBs).
PEs can represent general purpose processors or application
specific integrated circuits. PEs and HWBs are assigned dis-
tinct characteristics and attributes. The set of attributes for
PEs are chip area, memory size and power consumption,
whereas the attributes for HWBs are power consumption
and transmission speed. PEs are further characterized by
their security capabilities. They describe the PEs capabil-
ity on cryptography (crypt), verification (verify), and tam-
per resistant storage (trs), which is described by the tuple
seccap = (crypt, verify, trs), where crypt, verify, and trs

are abstracted by a security capability level ranging from 0 to
3, 3 being the highest security capability level and 0 meaning
no security capability. These capabilities are implemented by
additional hardware or software modules. The distinction of
a software or a hardware implementation is performed by the
attribution of the PE. A hardware implementation may increase
the chip area, whereas a software implementation might shrink
the available size of memory. Thus, a PE can be formalized as
a set of modes, in which each mode defines seccaps and the
corresponding attributes. An HWB can be defined as a set of
characteristics and modes. Furthermore, not all PEs are directly
connected to one another. Any two PEs are connected via a
hardware bus. With these definitions, an architectural platform
can be described. Figure 3 depicts two PEs connected to one
another by a hardware bus with their respective attributions.

Processing
Element Hardware Bus

Chip Area
Memory
Power Cons.
Encryption
Authentication
Secure Storage

Mode

Power Cons.
Tansmission speed

Attributes

Attributes

Processing
Element

Mode

Chip area size

Characteristic

Security Capability

Figure 3. Hardware platform representation, consisting of PEs, connected by
a hardware bus.

C. Attack Vectors

For determining the attack vectors on the system entities,
we use the STRIDE analysis [9]. We focus on the attacker
capabilities of spoofing (S), tampering (T), and information
disclosure (ID), which can be either 0 or 1. These attack
vectors, described by the tuple av = (ID, S, T) can be directly
mapped to sr, as spoofing affects the authenticity, tampering
the integrity, and information disclosure compromises the
confidentiality of the data. From the assets that can be attacked,
we focus on processes, data stores, and data flows. In our
approach, processes from the STRIDE analysis are simply
processes p, data stores are represented by PEs, and data flows
are the set of processes operating on the same entity of the
data. Therefore, the av on a data flow is the combination
of av of the involved processes. The susceptibility of the
physical connections between the PEs is integrated into the
attack vectors of the respective PEs. The attack vectors are
defined by the designer.

The combination of the security requirements of the single
data entities, the operations performed on the data entities by
the processes, and the attack vectors form the basis on which
the SADSE framework performs the mapping of the processes
to PEs. Thereby, the SADSE framework considers the PEs’
security capabilities. The mapping, and its influences on the
overall system performance is explained in the next section.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 112 –

7 Publications

D. Mapping Functionality to Architecture: A Constraint Sat-
isfaction and Optimization Problem

Mapping the functionality of the system described by the
process graph to the system architecture and selecting the
optimal PE-modes is a typical application of combinatorial
optimization. These classes of problems can be solved using
CP. At the core of the CP method, a set of decision variables
describes the problem at hand. Each of these decision variables
has a certain domain of possible values. The variables depend
on one another, described by the constraints. These constraints
determine which combinations of values within the domain of
the single variables are allowed. A constraint solver is used for
finding an optimal mapping of the processes on PEs, satisfying
all constraints [10]. The framework basically distinguishes
between two types of design constraints - constraints to satisfy
and to optimize.

Constraints to be satisfied are the security requirements and
communication feasibility cf . The communication between
two processes is only realizable, if either both processes are
allocated on the same PE, or, if allocated on two different PEs,
there is an HWB connecting them. The security constraints are
a combination of av, sr, and opsec. For each process mapped
to a PE, the security constraints sc = (scenc, scauth, scstore)
are calculated according to (3). The attack vectors of the
process and of the PE, on which the process is mapped, are
denoted avp and avPE , respectively. OPsec, defined in (2)
is the result of all security operations performed by process
p, and n is the number of all data entities p operates on.
Furthermore, asslvlsec = (enclvl, signlvl, stlvl) stores the
maximum security assurance level of the data entities these
security operations are performed on.

OPsec =

(
enc1 ∨ · · · ∨ encn

auth1 ∨ · · · ∨ authn

stsec1 ∨ · · · ∨ stsecn

)
(2)

sc(avPE , avp, OPsec) =

(
(IDPE ∨ IDp) ∧ enc
(SPE ∨ Sp) ∧ auth
(TPE ∨ Tp) ∧ stsec

)
(3)

sclvl(asslvlsec, sc) =

{
enclvl scenc > 0,
signlvl scauth > 0,
stlvl scstore > 0

(4)

Equation (4) is use to calculate the security constraint levels
for each process. For each level, there exists a seccap provided
by the PE, which ensures the data’s security requirement and
mitigates the attack vector, satisfying the data’s security levels.
This mapping function mappPE is denoted by (5), and must be
performed for all possible mappings of processes to PEs. Only
if all mappings return 1, the security constraints are satisfied.

mappPE(seccap, sclvl) = (crypt ≥ enclvl)∧
(verify ≥ signlvl) ∧ (trs ≥ stlvl) (5)

Constraints to be optimized can be the power consumption
of the overall system, the chip area size, as well as the system’s
performance. The performance is calculated considering the
tasks’ Worst Case Execution Times (WCETs). The WCETs
reflect the processing delays of a process executed on a PE,
for which an implementation exists or which can be estimated
by the designer. More specifically, a process’ WCET must be
estimated or known for a PE’s mode to be considered for the

mapping by the SADSE framework. The security capabilities
induce additionally computational overhead, which influences
the overall execution time, depending on the process mapping
the SADSE framework performs. Furthermore, the designer
can specify different modes for each PE, which is also explored
by the tool. Additionally to an optimal mapping of processes
to PEs an optimal selection of the PE modes is done.

Depending on the situation and its requirements on ex-
ecution time, power consumption, etc., one implementation
would be preferred over the other. The framework performs an
automatic and optimal mapping of the required functionality
to the respective implementation alternatives, considering their
performance, power consumption, needed memory, and gate
size, and ensuring that the security hardness characterization
fulfills the needed attack mitigation as defined by the designer.

E. SADSE Framework Implementation
As basis of the DSE tool, we used the work of Rosvall et

al. [1]. The data blocks, operations, attack vectors, security
requirements, security capabilities, and security levels were
added to the platform and function graph representations.
The network system was extended by a configurable bus
system. The restrictions imposed by the bus system, and the
security features were implemented as additional constraints
and included into the CP model. The additional delay caused
by the individual security features is added to the calculation
of the overall execution time.

IV. USE-CASE EVALUATION AND RESULTS

The SADSE framework was evaluated by performing a
performance optimized mapping of a keyless entry system. The
system’s functionality was derived from the systems described
in [11] and [12]. The system consists of a lock and a device.
The device’s functionality and architecture is described in here.
The device builds up a connection with the lock by receiving a
request requlock

chall from the lock. The device creates a challenge
respdevchall using its master key keymaster and sends it to the
lock. The lock sends its own challenge resplockchall which is
checked by the device, again using keymaster. The device
derives a long time key keylt from keymaster and sends an
ready request requdev

ready to the lock. It receives a response from
the lock resplockready stating that it is ready to open a session.
The device informs the user, requesting an action actionuser.
It then derives a session key keysession from keylt and creates
an open request requdev

open using keysession.
The hardware platform considered for the analysis is rep-

resented by a device, consisting of an application processor,
a secure element, a micro controller, and a Bluetooth Low
Energy (BLE) radio. All components are connected with each
other by a bus system. The functionality mapped to the device
establishes an authenticated and secure connection between
itself and an external lock. Therefore, it uses keylt and
keysession. The keylt is negotiated between lock and device. It
is used as long as lock and device are paired. The keysession,
which is derived from keylt, is used for the authentication
between lock and device and is updated frequently. Hence,
disclosure of the keysession poses a less severe security impact
to the access system. Figure 4 shows the system’s task graph
and hardware architecture. The mapping is performed based on
the task’s WCETs when running on the individual PEs, and
their security constraints. The goal of the SADSE framework

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 113 –

Publication C - ICONS 2019

is now to find the optimal mapping of the tasks to the PEs,
running in a specific mode, as well as an optimal selection
of the PEs. This selection is optimal if the overall system’s
execution time is minimal and the security constraints are
satisfied.

Sy
st

em
 A

rc
h

it
ec

tu
re

Sy
st

em
 F

u
n

ct
io

n
al

it
y

Get
message

Secure
Element

MCU

Application
Processor

I2C

SPI SPI

BLE Radio

I2
C

Check
message

Send
message

Get user
actionCheck

challenge

Create
challenge

Derive LT
key

Create
ready

request

Create
session key

create
open

request

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SR

O D
SRO D

SR

Mode

Crypt;Verify;

Mode

Mode

Crypt;
Verify;TRS

Mode

Crypt;Verify;

Verify;

Figure 4. Evaluation example. Keyless entry system’s simplified
functionality which is to be mapped to a hardware platform. The PEs are

connected via bus systems

The tasks of the system’s functionality were attributed with
the data blocks they are operating on. The attack vectors
were attributed to the PEs of the system architecture. The
SADSE framework was configured in such a way that the
security constraints should be satisfied and the overall system’
execution time should be minimized. Two runs with changing
data operations on the session key, and a third run without any
security constraints were performed. The security capabilities,
the attack vectors, and the capability levels of the single
hardware blocks are listed in Table I. The security capabilities
of the components are based on existing hardware components.
The Application Processor’s (AP’s) capabilities are derived
from a Snapdragon 410E [13], the Secure Element’s (SE’s) ca-
pabilities from an P6021 [14], the Micro Controller’s (MCU’s)
capabilities from an ARM A57 [15], and the BLE Radio’s
capabilitie’s from an HZX-51822-16N03 [16]. The components
security capabilities define the security levels in each mode.
E.g. the SE’s encryption mechanism AES-256 is assigned a

security level of 3, whereas an AES-128 gets a security level
2. A DES-112 is only assigned a security level of 1. For
authentication functions, such as MAC and HMAC a similar
classification is performed. Table II shows the attributions of
the single data entities with security requirements, and their
security assurance levels. Table III shows the attributions of
the single tasks with data entities and operations.

TABLE I. ATTACK VECTORS AND SECURITY CAPABILITIES

HW av Seccap m0 m1

AP (S, T, ID) (enc, verify) (1,1) (2,2)
MCU (T, ID) (enc, verify) (2,2) (3,3)
SE (S, T, ID) (enc, verify, secstore) (2,2,3) (3,3,3)
BLE (S, T, ID) (verify) (1) -

TABLE II. DATA BLOCK SECURITY REQUIREMENTS AND
ASSURANCE LEVELS

Data Block sr asslvlsec

requlock
chall, actionuser - -

keylt, keymaster, keysession (Conf, Int) (3, 3, 2)

respdev
chall, requdev

open, requdev
ready (Conf,Auth) (2, 2, 2)

resplock
chall, resplock

ready (Conf,Auth) (2, 2, 2)

TABLE III. TASKS AND USED DATA BLOCKS

Task Name Data Block Operations

Get message resplock
chall, requ

lock
chall, resp

lock
ready rx, tx

Check message resplock
chall, requ

lock
chall, resp

lock
open rx, r

Create challenge respdev
chall w, tx

keymaster r

Check challenge resplock
chall rx, r

keymaster r
Derive LT key keylt w, st

keymaster r
Create ready request keylt r

requdev
ready w, tx

Send message requdev
open, requ

dev
ready, resp

dev
chall rx, tx

Get User Action actionuser r
Create session key keysession w, st

keylt r
Create open request keysession r

requopen w

The system’s functionality and the hardware platform are
presented in Figure 4. Table IV shows the full mappings of
tasks to hardware components for the distinct runs. The tasks
Get message and Send message have a fixed mapping to BLE
Radio. As shown in Table IV, the framework was able to
correctly map the security critical tasks to the respective hard-
ware components and select the optimal modes regarding the
overall performance of the system. To introduce the overhead
of the respective security mechanisms of each mode, their
computational overhead was derived using the work of [17].
For simplification, the WCETs of each process to PE mapping
stays unchanged for the single PE’s modes. Thus, the change
in the system’s performance is only induced by the selection
of the security mechanisms.

To demonstrate the effect of the security requirements on
the mapping, two runs. In the first execution, the configuration
as described in the tables was chosen. In the second run, no

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 114 –

7 Publications

security requirements were used. Table IV shows the optimal
mappings of tasks to PEs in the respective runs. The PEs are
numbered from 0 to 3: AP (0), MCU (1), SE (2), and BLE
Radio (3). Each PE offers to possible modes, 0 or 1. The PE
and mode mapping is abbreviated with [PE](mode). It can be
seen, that the tool was able to correctly allocate Derive LT
key and Create session key to the secure element in run #1.
In run #2, the allocation changes completely, as no security
constraints are to be solved. In run #1, 45 solutions were found
in less than 400ms. In run #2, the SADSE framework found
5576 solutions in 27 seconds.

TABLE IV. MAPPING TASKS TO PROCESSING ELEMENTS

Task Name mapping #1 mapping #2

Get message [3](0) [3](0)
Check message [1](0) [1](0)
Create challenge [1](0) [1](0)
Check challenge [1](0) [1](0)
Derive LT key [2](1) [1](0)
Create ready request [1](0) 0
Get User Action [0](1) 0
Create session key [2](1) [2](0)
Create open request [1](0) [3](0)
Send message [3](0) [3](0)

The keyless entry system example shows the correct func-
tionality of the SADSE framework. It is able to find a valid
solution which satisfies both the security constraints and has
the fastest execution time. Considering the security constraints
leads to a reduced number of found solution, which also speeds
up the finding of the optimal solution for the keyless entry
example.

V. CONCLUSION AND FUTURE WORK

The SADSE framework allows to define security attack
vectors and security requirements for system functionalities
defined by designers. These security requirements and attack
vectors are defined by security experts, following widely used
approaches, such as STRIDE analysis or the CIA triad. Based
on these requirements and the information about the assumed
performance, the security levels, and power consumption of
the single tasks executed on distinct hardware platforms, the
SADSE framework finds an optimal mapping, under consid-
eration of the security constraints. With this tool, security
requirements can be regarded right at the beginning of the
design phase. Thus, a greater awareness of security constraints
is introduced into the early stages of product design.

Currently, the SADSE framework only regards abstract
security levels, considering the capability of the components
and the needed security levels of the data entities. These levels
are mere placeholders and are to be replaced by real cost
factors. To acquire these security costs, a novel method will
be developed, helping designers to assess the right level of
protection. Furthermore, we want to include distinct security
communication protocols, as well as add key distribution
mechanisms to the SADSE framework.

ACKNOWLEDGMENT

Project partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. This work was supported
by the Austrian Research Promotion Agency (FFG) within the
project UBSmart (project number: 859475).

REFERENCES
[1] K. Rosvall and I. Sander, “A constraint-based design space exploration

framework for real-time applications on mpsocs,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE ’14.
3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2014, pp. 1–6.

[2] K. Rosvall, N. Khalilzad, G. Ungureanu, and I. Sander, “Throughput
Propagation in Constraint-Based Design Space Exploration for Mixed-
Criticality Systems,” Proceedings of the 9th Workshop on Rapid Simu-
lation and Performance Evaluation: Methods and Tools - RAPIDO ’17,
2017, pp. 1–8.

[3] N. Khalilzad, K. Rosvall, and I. Sander, “A Modular Design Space
Exploration Framework for Embedded Systems,” IEEE Proc. Computers
& Digital Techniques, vol. 152, 2005, pp. 183–192.

[4] B. Knerr, “Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design,” Ph.D. dissertation, Vienna University of
Technology, 2008.

[5] E. Kang, “Design Space Exploration for Security,” no. April 2008, 2016,
pp. 1–4.

[6] I. Stierand, S. Malipatlolla, S. Froschle, A. Stuhring, and S. Henkler,
“Integrating the security aspect into design space exploration of em-
bedded systems,” Proceedings - IEEE 25th International Symposium
on Software Reliability Engineering Workshops, ISSREW 2014, 2014,
pp. 371–376.

[7] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-
space exploration for allocating security tasks in multicore real-Time
systems,” Proceedings of the 2018 Design, Automation and Test in
Europe Conference and Exhibition, DATE 2018, vol. 2018-Janua, 2018,
pp. 225–230.

[8] M. Farooq, M. Waseem, A. Khairi, and S. Mazhar, “A Critical Analysis
on the Security Concerns of Internet of Things (IoT),” International
Journal of Computer Applications, vol. 111, no. 7, 2015, pp. 1–6.

[9] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Threat modeling-
uncover security design flaws using the stride approach,” MSDN
Magazine-Louisville, 2006, pp. 68–75.

[10] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems. Springer
Science & Business Media, 2012, vol. 39.

[11] J. Xu and et al., “Pairing and authentication security technologies in
low-power bluetooth,” Proceedings - 2013 IEEE International Confer-
ence on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing, GreenCom-
iThings-CPSCom 2013, 2013, pp. 1081–1085.

[12] H. Oguma, N. Nobata, K. Nawa, T. Mizota, and M. Shinagawa, “Passive
keyless entry system for long term operation,” 2011 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
WoWMoM 2011 - Digital Proceedings, 2011, pp. 1–3.

[13] “ARM Cortex®-A57 MPCore ProcessorCryptography Extension Tech-
nical Reference Manual,” ARM Limited, Tech. Rep.

[14] “BSI-DSZ-CC-1072-2018 for NXP Secure Smart Card Controller
P6021y VB *,” 2018.

[15] “Qualcomm Snapdragon 410E Processor(APQ8016E) Technical Refer-
ence Manual,” Qualcomm Technologies, Inc., Tech. Rep.

[16] Shen Zhen Huazhixin Technology Ltd, “HZX-51822-16N03 Bluetooth
4.0 Low Energy Module Datasheet,” Tech. Rep., 2017.

[17] A.-K. Al Tamimi, “Performance Analysis of Data Encryption Algo-
rithms.”

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-696-5

ICONS 2019 : The Fourteenth International Conference on Systems

– 115 –

7 Publications

Consideration of Security Attacks in the Design
Space Exploration of Embedded Systems
Lukas Gressl

Institute of Technical Informatics
Graz University of Technology

Graz, Austria
email: gressl@tugraz.at

Christian Steger
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

email: steger@tugraz.at

Ulrich Neffe
NXP Semiconductors Austria GmbH

Gratkorn, Austria
email: ulrich.neffe@nxp.com

Abstract—Designing secure systems is a complex task, partic-
ularly for designers who are no security experts. Cyber security
plays a key role in embedded systems, especially for the domain
of the Internet of Things (IoT). IoT systems of this kind are
becoming increasingly important in daily life as they simplify
various tasks. They are usually small, either embedded into
bigger systems or battery driven, and perform monitoring or
one shot tasks. Thus, they are subject to manifold constraints
in terms of performance, power consumption, chip area, etc.
As they are continuously connected to the internet and utilize
our private data to perform their tasks, they are interesting
for potential attackers. Cyber security thus plays an important
role for the design of an IoT system. As the usage of security
measures usually increases both computation time, as well as
power consumption, a conflict between these constraints must
be solved. For the designers of such systems, balancing these
constraints constitutes a highly complex task. In this paper
we propose a novel approach for considering possible security
attacks on embedded systems, simplifying the consideration of
security requirements immediately at the start of the design
process. We introduce a security aware design space exploration
framework which based on an architectural, behavioral and
security attack description, finds the optimal design for IoT
systems. We also demonstrate the feasibility and the benefits of
our framework based on a door access system use case.

Index Terms—Cyber Security; Embedded System Design;
Secure IoT Systems; Mixed Criticality Design Space Exploration;

I. INTRODUCTION

Information security for networked systems has been an
important issue for both industry and research throughout the
last decades. In recent years, large scale security attacks on
governmental, military, and industrial targets were reported to
have been successfully carried out [1]. These publicly reported
incidents can be assumed to form the tip of the iceberg.
Internet of Things (IoT) systems in the private sector are

attack targets on a much more frequent basis. Their require-
ments of high performance, low power consumption and a
small form factor make the integration of security features a
challenging problem for system designers [2]. Recent incidents
with the access system built into cars emphasize the need for
security aware system design 1. Finding an optimal solution
for this design problem is a task too complex for manual

1https://www.esat.kuleuven.be/cosic/fast-furious-and-insecure-passive-
keyless-entry-and-start-in-modern-supercars/

solution, when considering all possible system components
and security features. Design space exploration (DSE) tools are
a suitable way to support the designers in finding an optimal
design solution. These tools take as input a description of the
system’s behavior, the system’s architecture, and application
and architectural characteristics to find an optimal solution for
task mapping and architecture selection. State-of-the-art DSE
tools support the formulation of constraints on performance
and power consumption [3]. Other DSE tools integrate security
or safety requirements on an abstract basis [4].
To the best of our knowledge, we are presenting a novel

approach for the integration of security requirements into
the DSE. We introduce the Security Attack aware Design
Space Exploration (SAaDSE) framework. With the SAaDSE
framework we offer a system designer a way to describe the
system from three distinct perspectives: the functional, the
architectural, and the security attack view. Based on these
descriptions, the framework finds the optimal process mapping
and component selection for cyber security, performance or
power consumption. Figure 1 shows the basic overview of the
SAaDSE framework.

Fig. 1: System design space exploration framework overview.

We are making the following contributions with the ap-
proach described in this paper:

• To the best of our knowledge, we are the first to combine
security attack graphs and the DSE approach. Thus, we

530

2019 22nd Euromicro Conference on Digital System Design (DSD)

978-1-7281-2862-7/19/$31.00 ©2019 IEEE
DOI 10.1109/DSD.2019.00082

– 117 –

Publication D - DSD 2019

offer a framework, in which the impact of security attacks
on the system changes the system’s requirements.

• We show that the computational overhead of the process
to component mapping regarding the security attack prob-
ability is feasible and can be optimized.

• We describe the system’s functionality using processes,
operations, and data entities, offering a finer grained
model, avoiding ambiguous task descriptions.

The paper is structured as follows: in Section II, contri-
butions on DSE and security attack modeling are described;
in Section III our proposed method is shown; in Section IV
the implementation details are outlined; Section V describes
a use case, showing our framework’s feasibility; Section VI
concludes this paper and gives an outlook on future work.

II. RELATED WORK

Cyber-security risk assessment and management is a field
of research which has attracted much attention in the past
decade. Its application ranges from supporting network system
administrators to choose optimal measures for securing their
networks to helping business managers to take appropriate
actions for reducing the security risk affecting their infrastruc-
ture. Karabacak et al. [5] describe a method to calculate the
risk of specific security problems in a company’s information
system based on surveys. They focus on simplifying the survey
process to enable non security experts to participate.
Feng et al. [6] and Poolsappasit et al. [7] presented work

which not only considers survey based cyber security risk
analysis, but also uses attack trees to represent possible
security exploits. Poolsappasit et al. [7] consider dynamic
cyber-security risk of network systems by analyzing possible
attacks using attack trees. By assigning each node of the
attack tree with a respective probability of success, the overall
security risk at the root of the attack tree can be computed
by representing the attack tree as a Bayesian network. The
authors also consider the impact of cyber security mitigation
techniques on the overall security risk to the system. Feng et
al. [6] propose a technique, which is also based on Bayesian
networks for calculating cyber security risk. In their work, the
authors describe a security risk management tool which takes
into account historical security incidents as well as security
expert judgment. Based on these inputs they formulate a risk
analysis method. The authors do not consider techniques to
mitigate security vulnerabilities, or decrease the security risk.
DSE for embedded devices is a well described problem in

the literature. Classical DSE tools consider the power and
performance characteristics of feasible mappings of tasks to
software or hardware solutions, always aiming at optimizing
the overall system performance, costs, or power consumption
[3], [8]–[10]. In addition to these classical optimization goals,
extended work introduced aspects such as functional safety
[11], or cyber security [4], [12]–[14] as further constraints to
be fulfilled by the system that is being designed.
Xie et al. [12] optimize the data throughput of a Controller

Area Network bus taking possible attacks on the commu-
nication into consideration. They secure the communication

by adding message authentication codes (MACs) to messages
vulnerable to manipulation. The additional overhead induced
by these MACs influences the communication delay and
system performance. The authors consider the influence of
MACs on the performance constraint and describe a method
to simultaneously optimize the system’s timing behavior and
secure the communication. Hasan et al. [13] deal with the
integration of security aware tasks into an already existing
task schedule on a multicore-system. They describe a solution
with which tasks performing security checks can be added to
a predefined schedule without breaking real-time constraints.
Kang [14] published a tool which supports system designers
on their decision-making concerning, what security mitigation
techniques should be used for a network system. Stierand
et al. [4] introduce security parameters into automatic DSE
for mapping tasks to processors with and without a hardware
security extension. Their focus lies on the communication be-
tween the different types of processors and assessing the attack
vulnerability of the channels connecting them. In their method,
the attacker’s capability determines the system’s vulnerability.
Mitigating these attacks, the authors propose to assign such
vulnerable tasks to processor types which provide hardware
security extensions only.
The cyber security aware DSE solutions presented so far

either concentrate on very specific parts of the overall system,
providing solutions for detailed problems at hand [12]–[14],
or abstract the system in a way that allows an holistic view
on the system design, but strongly simplifies the security
requirements [4]. The SAaDSE framework presented in this
paper adds security relevant details, without losing the holistic
view on the overall system under design, unlike [12]–[14], and
without abstracting security details as in [4]. The methodology
builds on the framework presented in [15], introducing security
attacks aiming at system components. Therefore, we propose a
framework offering an integration of security attack graphs and
mitigation techniques into the early stages of system design.
By considering not only the security vulnerabilities of the
individual tasks, but also the attack mitigation techniques of
system components, the framework supports designers with
the possibility of constructing secure systems at an early stage.

III. SYSTEM AND SECURITY ATTACK REPRESENTATION

The system representation is split into three distinct views:
the system functionality view, the system architecture view
and the system security attack view. The distinct views allow
the system designer to consider the system under design
from different perspectives and they serve as inputs to the
design space exploration framework described in this paper.
The single views and their components are described in this
section.

A. System Representation

Describing cyber security as an additional constraint for the
design space exploration of a device in the course of design
makes a more detailed description of the system’s behavior and
architecture necessary. Before considering security features

531

– 118 –

7 Publications

within an automated task allocation and system partitioning,
the representation of the system’s behavior and the system’s
architecture, building on [15], is introduced.

1) System Behavior View: The functionality of the system is
described by a process graph, as described in [9]. To achieve a
more distinct description of the behavior of the individual tasks
and to avoid ambiguous interpretations of a task’s security
constraints, we propose to extend the task’s description using
data entities and connecting them with a range of operations.
An example process graph and the partitioning of the process
into tasks, operations, and data entities is depicted in Figure 2.
The task’s operations comprise: reading, writing, transmitting,
receiving and storing the data entity. For better distinction we
denote a process p as a task connected to a set of data entities
using a set of operations. This split can be seen in Figure 2.

Fig. 2: Process graph represented by three processes. Each
process is consists of a task linked to a data entity using a
set of operations. Each data entity is attributed with security
requirements.

2) System Architecture View: The system architecture is
described by a set of processing elements (PEs) and commu-
nication bus systems connecting them. Each PE is described
with a set of characteristics (chip area, memory size, etc.)
and a set of modes. Each mode is described with its static
and dynamic power consumption, a set of security capabilities
and the corresponding security mitigation factors. The secu-
rity capabilities describe the PE’s capabilities on encryption,
authentication, secure storage, etc., and may induce additional
power consumption and performance overhead. The security
mitigation factor describes the PE’s susceptibility to cyber-
security attacks. The performance of a process mapped onto
a PE running in a distinct mode is described by its worst case
execution time (WCET). The WCETs of the mapped processes
also define the PE’s dynamic power consumption. Figure 3
shows the representation model of two PEs. The details of the
mapping process are described in Section III-B.

3) Security Attack View: For modeling the security threats
a combination of security attack graphs [16] and Bayesian
networks [17] is used, commonly known under the term
Bayesian network based attack graphs (BNAGs). BNAGs are
a widely used approach to model attack scenarios on network
systems [7], [18]–[20]. An attack A is represented by a distinct
node in the BNAG. Furthermore, this attack A is described by
a state Astate which can either be success (Ssuccess) or no-
success (Sno−success). The successful execution of an attack,
denoted by the Bernoulli random variable at, is described

Fig. 3: Two PEs connected by a communication bus. The
system components are characterized by mode dependent and
independent parameters.

by the state transition Sno−success → Ssuccess. This suc-
cessful execution can be accomplished by the attacker with
the probability P (at). These probabilities reflect the security
risk of successfully executing said attack and can be assessed
following techniques described in [21]. Within the BNAG
the P (at) of a certain attack might depend on the states of
the preceding attacks. This dependence is encoded into the
attack’s conditional distribution table (CDT) and is depicted in
Figure 6. The joint probability of the variables in the BNAG
is calculated using the chain rule 1, where Pa[ati] denotes
the conditional probability of the parent of attack node i. The
unconditional success probabilities of each attack are obtained
by merging the marginal cases of each attack node.

P (at1, ..., atn) =
n∏

i=1

P (ati|Pa[ati]) (1)

The SAaDSE framework integrates the security attacks
represented by the BNAGs into the system behavior and
architecture view. This integration assigns each security attack
to a distinct process in the process graph of the functional view.
This attribution between attacks and processes is depicted in
Figure 4.

Fig. 4: Security attack on a specific task. The task operates on
a set of data entities.

The single attacks are organized in BNAGs to describe
system security attacks, which are described by using distinct
attack scenarios. Figure 5 depicts such a system security attack
consisting of two separate attack scenarios. Each scenario
consists of one or more security attacks, forming a Bayesian
network. Each scenario aims at successfully reaching the at-
tack goal situated at the end of the network. The security attack
goals can further be used to identify the security vulnerability
of the overall system. The system’s vulnerability can be limited
by assigning thresholds to the individual security goals. The
scenarios are used to cluster the security attacks for easier
evaluation by security experts. Attacks are not limited to

532

– 119 –

Publication D - DSD 2019

being only dependent on attacks in the same scenario. This is
depicted by the dependency of attack 6 on attack 1 of Scenario
1. Figure 6 shows the CDTs of the single security attacks
in Scenario 1. To show how the security attack probability
propagates through the network, the unconditional success
probabilities of each security attack are depicted as P (Ai)
in Figure 6.

Fig. 5: Example of activity threads describing attack scenarios
with two distinct attack goals. Activity dependency is not
limited by scenario boundaries.

Fig. 6: Detailed view on attack scenario 1 of 5. The CDT’s
of the individual attacks, as well as their unconditional prob-
abilities are shown.

The success probabilities of the single attacks in the BNAG
are evaluated based on expert judgments. Although these
expert judgments are not in the focus of this paper, two

assumptions have to be made. First, each attack success
probability considers the attacker’s capability and motivation
to perform the distinct attack. The motivation must take into
account the values of the data entities the process operates
on. Second, the expert must judge the success probability on
the distinct processes as if they are executed on a hardware
platforms not offering any security mitigation techniques.
To support the system designers in the process of design-

ing the product, the SAaDSE framework uses the provided
descriptions on system functionality, architecture and security
attacks to find the optimal choice on PE’s, their modes, and
process allocation. Thereby, it considers the overall system’s
performance, power consumption and information security.
The details on the design space exploration with focus on the
security constraints are given in III-B.

B. Integration of the BNAG into Design Space Exploration

The SAaDSE framework’s goal is to find an optimal solu-
tion for a system in the course of design, investigating different
options for architectural blocks and process allocation. To find
this solution, it is given the system’s functionality, architecture,
and security attack scenarios. The framework finds the optimal
solution for either the performance, power, or security, or all
feasible solutions. This section explains the basic mapping
process of processes to PE’s and its influence on the system’s
performance. Furthermore, the calculation of the feasibility for
the security attack scenarios is explained in detail.

1) Mapping process: The mappings of the processes to
the PEs are performed by using the WCETs of each process
executed on a PE which runs in a distinct mode. These
WCETs are measured or estimated by the system designers.
Additionally, the mapping of a process to a PE is limited by
the mapping of its parent processes. A process can only be
mapped to the same PE as its parent processes, or on a PE
which is connected to the PE running its parent processes.
This connection can be provided by a communication bus,
or some other means of physical connection. Furthermore,
the number of processes executed on a PE(s) is limited by
its memory capacity, which must not be exceeded. These
basic physical constraints on the process allocation is further
limited by the security attacks, aiming at the process and the
security capability the PE offers. These security constraints
are explained in Section III-B2.

2) Security constraints calculation: The security con-
straints on the overall system are calculated using the secu-
rity attack goals of the single attack scenarios, the security
requirements of the data entities handled by the processes,
and the security capabilities of the PEs. For each process
operating on a set of data entities, the security operations
the process must be able to perform on the data entity are
calculated. The set of operations which can be executed
on a data entity by a process are reading (r), writing (w),
transmitting (tx), receiving (rx) and storing (st) the data
entity. This set is denoted by the tuple o = (r, w, rx, tx, st).
From this set and the security requirements (confidentiality
(conf), authenticity (auth), integrity (int)), represented by

533

– 120 –

7 Publications

the tuple sr = (conf, auth, int), the set of secure operations
(encryption (enc), signature (sign), secure storage (stsec))
osec = (enc, sign, stsec)

T is calculated according to (2). The
values of both operations and security requirements can either
be 0 or 1.

osec(o, sr) =

⎛
⎝

(r ∨ w) ∧ conf
(r ∨ w) ∧ auth

st ∧ (auth ∨ conf ∨ int)

⎞
⎠ (2)

Using the secure operations of the individual processes,
the mapping of processes to PEs is constrained in a security
supportive way. This means that a process is only feasible
to be mapped to a PE which runs in a mode supporting
the secure operations. This secure operation support depends
on the security capabilities (sc) offered by the PE’s mode,
denoted as the tuple seccap = (scenc, scauth, sctss), standing
for encryption (enc), authentication (auth) and tamper-safe
storage (tss). This security operation to capability mapping is
defined in (3). The mapping operation must be performed for
all possible mappings.
Furthermore, the possible processes mappings are limited

by the security goals of the attack scenarios. The calculation
of the security goals is performed by applying the Bayesian
chain rule (1) on the the attack nodes of the BNAG and
merging the marginals for each attack goal. However, the
mapping of the processes to the PEs influences the success
probability of the attack nodes, aiming at the specific processes
and, thus, changes the success probability of the security
goals. More specifically, for each process to PE mapping the
conditional success probabilities (anp) of the attacks aiming at
this process are reduced by the mitigation factor of the mode in
which said PE is running. The mitigation factor is expressed
by mfact ∈ Q : mfact ∈ [0, 1]. As the mitigation factor
reduces the security attack success probability, the reduction
factor by which this success probability is reduced is the
complementary probability of mfact. This reduction of the
attack node’s conditional success probability is only applicable
if the node’s attack type (anat) can be mitigated by the
PE’s mode. The reduction of the attack node’s conditional
probabilities (redanp

) based on PE’s mitigation factors is
performed according to (4).

map(osec, seccap) =
n⋂

i=1

osec[i] ∧ seccap[i] (3)

redanp
=

{
anp ∗ (1−mfact), if anat ∧ seccap

anp, otherwise
(4)

Using map(osec, seccap) and the security goal calculation,
feasible and infeasible process to PE mappings are defined.
Process mappings not supporting all necessary security op-
erations, or by which at least one security goal exceeds the
defined threshold are rendered infeasible.
As mentioned earlier, the assignment of the security capa-

bilities’ mitigation factors must be performed by the security
experts. An accredited reference point for this rating can be

found in the Common Criteria (CC) certification process. The
CC certification provides a standardized way of assessing the
security features of security products. The CC certification
defines evaluation assurance levels (EALs), which state to
what extent the security capabilities of the specific target of
evaluation have been tested. Seven EALs are specified, ranging
from simple functional testing (EAL1) to a formal verification
and testing (EAL7). Additionally, each product must match a
defined protection profile ensuring that it provides all expected
security features [22]. A method on how to derive mitigation
factors from said EALs is to be described in future work. A list
of CC certified products and their certification documentations
can be publicly found at the CC’s official web page 2.
The implementation of the security mapping constraints is
explained in more detail in Section IV.

IV. IMPLEMENTATION

The implementation of the SAaDSE framework is based on
the DeSyDe framework which is publicly available at Github3.
The DeSyDe framework finds an optimal mapping from pro-
cesses to PEs and selection of process modes considering
power consumption and performance. Rosvall et al. published
two of papers discussing in detail how the scheduling, perfor-
mance, and power consumption was calculated [3], [8]. The
following extensions were introduced for the implementation
of the SAaDSE framework.
Task data handling: The task representation was changed
by adding the definition of data entities and operations to the
tasks, forming the models of processes. As several processes
can work on the same instance of a data entity by passing
them to one another, the communication channels between
the processes were adapted with the information of the passed
data entities as well. The message size is further used for
calculating the communication overhead.
Communication bus connections: In contrast to the DeSyDe
framework the SAaDSE framework models the communica-
tion between PEs using communication bus connections. The
usage of these physical connections induces two changes.
First, the mapping of processes is limited in a way that only
PEs physically connected with each other are allowed to run
processes, having a direct communication channel. Second,
the communication via the communication bus affects the
overall performance of the system. The transmission delay
(delaytx = connef ∗ connspeed ∗ datasize) of the commu-
nication between two processes over a communication bus
is calculated by using the bus’ encoding factor (connef),
transmission speed (connspeed), and the exchanged data size
(datasize). What data entity is exchanged between two pro-
cesses is determined by the processes’ operations (rx, tx). This
additional transmission delay is used for calculating the worst
case communication time, which propagates into the overall
system performance, as described in [3].

2https://www.commoncriteriaportal.org/
3https://github.com/forsyde/DeSyDe

534

– 121 –

Publication D - DSD 2019

Security constraints: As discussed in section III-B2, the cal-
culation of the security constraints builds upon the knowledge
of the security capabilities, the security requirements, and the
security goals success probabilities. The mapping between the
security capabilities and process’ security operations (3) is
realized in a straight forward check, what security operations
are satisfied by a PE’s security capability. This check induces
a computational overhead of O(N

NPEM

P), with NP being the
number of processes in the application graph, and NPEM

being the number of all modes of all PEs. However, as the
calculation of the security goals is based on the BNAG, the
calculation of these goals is a computationally hard prob-
lem. Already in 1990, G. F. Cooper showed that the exact
probabilistic inference in Bayesian network is an NP hard
problem [23]. This problem is further aggravated by the fact
that each process (p) to PE (pe) mapping influences the attack
nodes’ CDTs. Thereby, the recalculation of the security goals
is necessary for each mapping. The NP hardness of the exact
probabilistic inference can be reduced by using approxima-
tions instead. Such approximate inferences can be calculated
using samplers, e.g. the likelihood weighting sampler [24].
For reducing the recalculation of the security goals induced

by the different mapping possibilities, the SAaDSE framework
first finds all processes, which attacks influence the security
goals. All other processes are disregarded. Then, the SAaDSE
framework orders all PEs according to the mitigation fac-
tors of their respective modes. The PE mode’s mitigation
factors are denoted by the function θ(pe(m)). This ordered
set of PE mode mitigation factors Θ = (θ1(pex(my)) ≥
, ...,≥ θn(pex′(my′)) is then used for calculating the security
goals for each possible mapping of p to pe(m), denoted
m(p, pe(m)). It must be noticed that not all permutations are
feasible, as a system mapping m(px, pea(mb)) cannot map
m(py, pea(mc)). These infeasible combinations are eliminated
up front. After this elimination, the framework permutes all
feasible m using Θ and calculates the security goals for
each permutation. Each permutation is described as P =
(m1(p1, pea(mb)), ...,mNP

(pNP
, peNPE

(mNm
))), with NPE

being the number of all pe and Nm the number of modes
of the current pe. As Θ is ordered descending, the security
goal calculation can be halted when a Pinsec, which does
not satisfy at least one security goal threshold, is found.
All following P can be rendered insecure without further
security goal calculation, until a P ′ is reached, in which at
least one m′(px, pea′(mb′)) has a θ′(pea′(mb′)) greater than
θ(pea(mb)) of m(px, pea(mb)) in Pinsec. After finding P ′

the algorithm continues calculating the security goals for all
following P until reaching the next Pinsec.The algorithm’s
computational worst case is not finding any mapping dis-
satisfying the security goals’ thresholds. In all other cases
the algorithm will reduce the number of necessary inference
calculations in the BNAG.

V. EXPERIMENTS AND RESULTS

The functionality of the SAaDSE framework is shown by
designing a keyless entry system which consists of a lock and

a key fob. For the evaluation of the framework only the design
of the lock is presented. This design takes into consideration
following simplified security attack scenarios: spoofing the
authentication of the key fob, breaking the lock’s cryptography
by leaking the used key material, and hijacking the session
between lock and key fob.
The authentication between lock and key fob is based on a

challenge (chall) response (resp) - request (requ) exchange.
This authentication is performed by using a pre-shared secret
in form of a master key (mk). After authenticating the key fob
against the log, both devices are bound to each other by using a
binding key, denoted as long term key (ltk). Reducing the time
frame in which an attack can compromise the lock’s access
control, the final open request is based on the session key (sk),
which is derived from ltk and renewed periodically. Figure 7
depicts a simplified representation of the lock’s behavior using
an application graph, comprising the authentication, binding,
and access process.

Fig. 7: Task graph depicting the key fob’s functionality, split
into authentication, binding, and session steps.

In table I the security relevant tasks, the data blocks they are
using and the operations they perform on these data entities are
listed. Security relevant means, that a possible attacker could
aim the attacks on the process’ functionality or the used data.

TABLE I: SECURITY RELEVANT TASK AND DATA

Task Name Data Entities Operations

Check Chall Requ requfob(chall) rx, r

Create challenge resplock(chall) w, tx
mk r

Check challenge respfob(chall) rx, r
mk r

Derive LT key ltk w, st
mk r

Create ready request ltk r
requlock(ready) w, tx

Create session key sk w
ltk r

Check open request sk r
requfob(open) w

535

– 122 –

7 Publications

The following abstract components were considered for
the hardware platform of the lock: for communication to the
key fob the lock is equipped with a BLE radio; for storing
the cryptographic key material the lock uses an integrated
secure element (SE); additionally, the lock might use a mi-
crocontroller (MCU) which offers cryptographic functionality
using an integrated co-processor (CryptCP) or software based
cryptography (SWCrypt), but lacking the capability to store
data in a tamper safe manner. The cryptographic co-processor
for the mcu is assumed to use a tripple DES algorithm with
bit security of 168 bits. The components are connected to
each other using dedicated communication bus systems. Table
II lists the possible components, which can be selected by
the SAaDSE framework for the hardware platform of the
lock, their mitigation factors, their security capabilities, and
the estimated WCETs (in ms) of the security relevant tasks
running on these components. The WCETs also consider the
cryptographic overheads for encryption and authentication.
These timings are abstracted and serve the purpose of showing
the framework’s correct mapping and component selection.
The mitigation factors were judged by security experts based
on the EALs assigned by CC certifications. A methodology
on how to derive these mitigation factors must be described
in future work. The security capabilities (SC) are abbreviated
with e (encryption/decryption), s (signing/verifying), and t
(tamper safe storing).

TABLE II: PROCESSING ELEMENTS AND WCETS

PE MF SC p2 p3 p6 p8 p11 p13
SE 1 0.75 (EAL4+) e, s, t 100 130 120 180 180 100
SE 2 0.85 (EAL5+) e, s, t 120 150 140 200 200 120
SE 3 0.95 (EAL6+) e, s, t 150 180 160 220 220 150
MCU 1 0.7 (CryptCP) e, s 80 100 110 200 200 80
MCU 2 0.2 (SWCrypt) e, s 200 220 200 300 300 200

Three attack scenarios demonstrate the security aware map-
ping process represented by Figure 8. The Figure shows
both unconditional probabilities, as well as the security goal
thresholds. The attacker is assumed to be a technically expe-
rienced person, who is able to sniff the BLE channel and to
install malicious firmware into the lock using update processes.
However, the attacker has no physical access to the lock’s
hardware. The first attack aims at spoofing the key fob’s
identity, tricking the lock into a binding with a malicious
device. The attacker might spy the challenge request-response
exchange, tamper (tamp) or manipulate (man) the request
when received by the lock or even try to disclose (discl) the
master key. The second attack aims at breaking the lock’s
cryptography by reading out or even manipulating both the
long term and master key. The third attack aims at hijacking
the session and, thus, gaining a one time access to the lock, by
intercepting and forging the open request, or by reading out
or even manipulating the session key via the lock’s firmware.

Using the described system’s functionality, architectural
possibilities and the security attack scenarios, the SAaDSE
framework identified 798 solutions to be secure. By compar-

Fig. 8: Excerpt of security attack scenarios aiming at the key
fob’s functionality.

ison, without the security constraints, 3830 solutions were
found. Hence, the solution space was already reduced by
79% in this simple example. The usecase was executed on a
computer with 16GiB of RAM and an Intel® Core™ i7-4600U
CPU with 2.10GHz. When using the full calculation of all
possible mappings without sorting the PEs’ modes according
to the mitigation factors, the first solution was found after
1252 seconds, with the termination criterion after 561 seconds.
Hence, a speed up of 44.8% could be achieved. Figure 9 shows
the most secure system hardware architecture and process
mapping, as well as the solution with the highest performance,
which is still able to mitigate the security attack scenarios such
that no security thresholds are exceeded. It can be noticed
that the most secure solution only makes use of SE 3 directly
connected to the BLE radio, without using the MCU at all.
The best performing solution utilizes MCU 1 in combination
with SE 3. MCU 2 is not considered in any solution found
by the SAaDSE framework.

Fig. 9: Proposed system architecture and process allocation
for optimal security and optimal performance.

This usecase describes how the framework is used in a
design process to find the most secure product and the product
with the best performance, which still fulfills the security
constraints defined by the designers.

536

– 123 –

Publication D - DSD 2019

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel approach for introducing
security attack scenarios into the system design process of
embedded systems. The SAaDSE framework that we introduce
allows a designer to specify the system’s functionality, the
possible hardware architecture components running the defined
functionality, and to model attack scenarios used for breaking
the designed system. The framework uses these descriptions
to suggest an optimal hardware component selection and task
to component mapping. Section V shows the framework’s
feasibility for finding not only the most secure, but also the
e.g. best performing and still secure solution was shown.
The framework presented in this work can be seen as a first

important step for introducing detailed security requirements
into the design space exploration of embedded systems. Taking
related work into consideration, it can be seen here that
security constraints can be formalized more accurately. Using
the SAaDSE framework will simplify the design process of
secure embedded systems and emphasize the importance of
cyber security in the system design process. In this sense,
the framework is not meant to replace the work of security
experts in designing secure system, but rather utilizes their
knowledge. Thus, the framework supports system designers
not experienced in cyber security during the initial phases of
system design. However, this security expert knowledge must
also be seen as a limiting factor, as the mitigation factors of the
distinct hardware components must be rated a priori. The CC
certification provides guidance concerning the security level of
secure devices. However, this guidance is not of direct utility
for judging to what extent security attacks can be mitigated.
Hence, a central repository storing this mitigation information
for secure devices would be a major step for supporting the
design process of secure embedded systems.
For future work, the SAaDSE framework will be extended

to also suggest appropriate security protocols, including the
automatic suggestion of key material and the keys’ placement
on the system. Furthermore, the derivation for security con-
straints can be extended from using security attack graphs to
full security risk estimation methods. Such an extension would
add critical and important information to the DSE and allow
the framework to consider additional constraints, such as the
financial losses caused by potential security attacks.

ACKNOWLEDGMENT

Project partners are NXP Semiconductors Austria GmbH
and the Technical University of Graz. This work was supported
by the Austrian Research Promotion Agency (FFG) within the
project UBSmart (project number: 859475).

REFERENCES

[1] Mohammed Nasser, Rabiah Ahmad, Warusia Yassin, Aslinda Hassan,
Zaheera Zainal, Nabeel Salih, and Karrar Hameed. Cyber-Security
Incidents: A Review Cases in Cyber-Physical Systems. International
Journal of Advanced Computer Science and Applications, 9(1), 2018.

[2] Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, and Xiang Zhang.
Deploying robust security in internet of things. 2018 IEEE Conference
on Communications and Network Security, CNS 2018, 2018.

[3] Kathrin Rosvall, Nima Khalilzad, George Ungureanu, and Ingo Sander.
Throughput Propagation in Constraint-Based Design Space Exploration
for Mixed-Criticality Systems. Proceedings of the 9th Workshop on
Rapid Simulation and Performance Evaluation: Methods and Tools -
RAPIDO ’17, 2017.

[4] Ingo Stierand, Sunil Malipatlolla, Sibylle Froschle, Alexander Stuhring,
and Stefan Henkler. Integrating the security aspect into design space ex-
ploration of embedded systems. Proceedings - IEEE 25th International
Symposium on Software Reliability Engineering Workshops, ISSREW
2014, 2014.

[5] Bilge Karabacak and Ibrahim Sogukpinar. ISRAM: Information security
risk analysis method. Computers and Security, 24(2), 2005.

[6] Nan Feng, Harry Jiannan Wang, and Minqiang Li. A security risk
analysis model for information systems: Causal relationships of risk
factors and vulnerability propagation analysis. Information Sciences,
256, 2014.

[7] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic Security
Risk Management Using Bayesian Attack Graphs. IEEE Transactions
on Dependable and Secure Computing, 9(1), jan 2012.

[8] Kathrin Rosvall and Ingo Sander. A Constraint-based Design Space
Exploration Framework for Real-time Applications on MPSoCs. Pro-
ceedings of the Conference on Design, Automation & Test in Europe,
2014.

[9] Bastian Knerr. Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design. PhD thesis, Vienna University of Technology,
2008.

[10] Kathrin Rosvall, Tage Mohammadat, George Ungureanu, Johnny Oberg,
and Ingo Sander. Exploring power and throughput for dataflow applica-
tions on predictable NoC multiprocessors. Proceedings - 21st Euromicro
Conference on Digital System Design, DSD 2018, 2018.

[11] Domiian Tma-Selicean and Paul Pop. Design Optimization of Mixed-
Criticality Real-Time Embedded Systems. ACM Transactions on Em-
bedded Computing Systems, 14(3), 2015.

[12] Yong Xie, Gang Zeng, Ryo Kurachi, Hiroaki Takada, and Guoqi
Xie. Security/Timing-aware Design Space Exploration of CAN FD for
Automotive Cyber-Physical Systems. IEEE Transactions on Industrial
Informatics, PP(8), 2018.

[13] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B.
Bobba. A design-space exploration for allocating security tasks in mul-
ticore real-Time systems. Proceedings of the 2018 Design, Automation
and Test in Europe Conference and Exhibition, DATE 2018, 2018-Janua,
2018.

[14] Eunusk Kang. Design Space Exploration for Security. IEEE Cyberse-
curity Development Design, 2016.

[15] Lukas Gressl, Christian Steger, and Ulrich Neffe. A Security Aware
Design Space Exploration Framework. In Proceedings of the Fourteenth
International Conference on Systems ICONS 2019, Valencia, Spain,
2019. ThinkMind(TM) Digital Library.

[16] Vivek Shandilya, Chris B. Simmons, and Sajjan Shiva. Use of attack
graphs in security systems. Journal of Computer Networks and Com-
munications, 2014, 2014.

[17] David Heckerman and John S. Breese. Causal independence for
probability assessment and inference using Bayesian networks. IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems and
Humans., 26(6), 1996.

[18] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. Op-
timal defense policies for partially observable spreading processes on
bayesian attack graphs. In Proceedings of the Second ACM Workshop
on Moving Target Defense, MTD ’15, 2015.

[19] Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen. Using
Bayesian Networks for Probabilistic Identification of Zero-Day Attack
Paths. IEEE Transactions on Information Forensics and Security, 13(10),
2018.

[20] Marcel Frigault and Lingyu Wang. Measuring Network Security Using
Bayesian Network-Based Attack Graphs. 2008.

[21] D.W. Hubbard, R. Seiersen, D.E. Geer, and S. McClure. How to Measure
Anything in Cybersecurity Risk. Wiley, 2016.

[22] ISO/IEC. Common Criteria for Information Technology Security Eval-
uation Part 2. Security, (September), 2012.

[23] G Cooper. Computational Complexity of probabilistic inference using
Bayesian belief networks (research note). Machine Learning, 42, 1990.

[24] Haipeng Guo and William Hsu. A Survey of Algorithms for Real-Time
Bayesian Network Inference. Papers from the Workshop on Real-Time
Decision Support and Diagnosis Systems, (1), 2002.

537

– 124 –

7 Publications

– 125 –

Publication E - FDL 2019

Security Driven Design Space Exploration for
Embedded Systems

Lukas Gressl
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

email: gressl@tugraz.at

Christian Steger
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

email: steger@tugraz.at

Ulrich Neffe
NXP Semiconductors Austria GmbH

Gratkorn, Austria
email: ulrich.neffe@nxp.com

Abstract—With the advent of the Internet of Things (IoT)
and Cyber Physical Systems (CPS), embedded devices have been
gaining importance in our daily lives, as well as industrial
processes. Independent of their usage, be it within an IoT system
or a CPS, embedded devices are always an attractive target
for security attacks, largely due to their continuous network
availability and the importance of the data they handle. Thus,
the design of such systems requires a thorough consideration of
the various security constraints they are liable to. Introducing
these security constraints, next to other requirements (e.g. power
consumption, performance, etc.), increases the number of design
choices that must be taken. As the various constraints are often
conflicting each other, designers are faced with the complex
task of balancing them. To support a system designer in this
job, Design Space Exploration (DSE) tools can be facilitated.
However, available DSE tools only offer a limited way of
considering security constraints during the design process. In
this paper we introduce a novel DSE framework, which allows
the consideration of security constraints, in the form of attack
scenarios, and attack mitigations, in the form of security tasks.
Based on the descriptions of the system’s functionality and
architecture, possible attacks, and known mitigation techniques,
the framework finds the optimal design for an secure IoT device
or CPS. Our framework’s functionality and its benefits are shown
based on the design of a secure sensor system.

Index Terms—Cyber Security; Embedded System Design;
IoT Systems; industrial CPS; Mixed Criticality Design Space
Exploration;

I. INTRODUCTION

Cyber security has become an increasingly important factor
when considering the utilization of Internet of Things (IoT)
devices and Cyber Physical Systems (CPSs) for industries.
Numerous large scale attacks on power plants, steel factories,
and other industrial facilities have been reported in recent years
[1], [2]. Especially the utilization of CPSs in the form of smart
sensors, constantly connected to control systems, opened new
ways of attacking these facilities. Therefore, the design of IoT
devices and CPSs, planned to be used in the industry must
consider all possible security attacks targeted on them. As
the industrial environment demands fast reaction times and
low maintenance costs, the used CPSs must guarantee high
performance and low power consumption at the same time
[3]. The consideration of the various constraints during the

design process is a challenging problem for system designers,
who must decide which functionality is implemented on what
device. Finding the best solution among all the alternatives
means solving a multi objective optimization problem, a task
too complex to be performed manually.

To support the designer in this task, Design Space Ex-
ploration (DSE) frameworks are commonly utilized. These
frameworks take as an input the functional description of the
system, the descriptions of possible system architectures, and
application and architecture characteristics. Based on these
inputs such frameworks find the optimal architecture selection
and function mapping. Classical DSE frameworks optimize
for power or performance [4]. Other frameworks additionally
consider security constraints either on an abstract or detailed
level [5].

Fig. 1: System design exploration framework overview.

In this paper we present a novel method for the integration
of security constraints and security capabilities into the DSE.
We present a new framework, which supports designers in
finding the optimal solution for a device under design using
four distinct views: (i) the functional view lets the designer
describe the system’s behavior in form of a task graph; (ii)
the architectural view describes the platform options of the
device under design; (iii) the security attack view describes978-1-7281-4113-8/19/$31.00 ©2019 IEEE

– 126 –

7 Publications

the view of a potential attacker on the system; (iv) the security
options describe the various mitigation techniques offered by
the system to counter potential attacks. These views serve as
inputs to the framework. Based on these inputs, the framework
finds the optimal selection of the system components, mapping
of tasks to the selected components, and choice on the security
mitigation techniques fulfilling the security constraints and
optimizing the overall system’s performance or power con-
sumption. Figure 1 shows the basic overview of the tool, its
distinct views and the solution produced by the framework.

With the approach described in this paper we make the
following contributions: (i) to the best of our knowledge we
are the first to introduce security constraints based on attack
scenarios into the DSE, automatically considering security
mitigation techniques; (ii) the presented approach is the first to
explicitly select security operations based on the probability of
security attacks; (iii) we show that a calculation of the attack
probabilities based on the task mappings is feasible and can
be optimized.

The paper is structured as follows: in Section II, various
contributions in DSE, security modeling and attack description
are discussed; Section III describes the modeling approach for
designing secure systems; Section IV explains the framework’s
implementation; Section V shows the framework solving an
example use case; Section VI concludes this paper and gives
an outlook on future work.

II. RELATED WORK

Information security modeling and threat analysis has at-
tracted much interest in both research and industry in the last
decades. To consider security measures in design phase of
products, various modeling tools, and languages, such as the
Unified Modeling Language, integrate extensions allowing the
modeling of security [6]. Such tools support the designers in
reflecting e.g. security protocols within the system’s behavior,
but do not consider the system’s hardware architecture, nor
the security’s performance overhead, nor the attacker’s view
on the system under design. The framework described in this
paper integrates security attacks and the architecture’s secu-
rity capabilities into the design flow, automatically proposing
security operations.

Integration of the attacker’s view is used for assessing the
security of networks. Feng et al. [7] and Poolsappasit et al. [8]
describe the representation of possible attackers using attack
trees. Both authors use Bayesian Networks to assess the way
security attacks propagate through the systems under design.
These so called Bayesian Network Attack Graphs (BNAGs)
can be used to localize security vulnerabilities in the overall
system and assess the efficiency of security measures to reduce
the system’s information security risk [7]. These BNAGs are
described by security experts, or can be built from historical
security incidents [8]. The framework presented in here adds
to these BNAGs, the functional, as well as the architectural
description of the overall system. These additional views allow
the selection of hardware components fulfilling the security
constraints, and the selection of feasible security operations.

Classical DSE tools for embedded systems are well de-
scribed in literature. These tools consider the power and
performance of the individual implementation alternatives of
the system’s behavior on distinct components. Based on these
power and performance characteristics the tools select the
optimal system components, functionality implementations
and scheduling [4], [9]–[11]. These classical optimization
goals have been extended by functional safety [12] and cyber
security [5], [13]–[16] in several works.

Related projects focusing on the integration of cyber secu-
rity into DSE can be put into two categories: (i) works putting
a detailed focus on one distinct problem at hand [13]–[15]
and (ii) works introducing security aspects into the design
space on an abstract level [5], [16]. The works in the first
category optimize the throughput of special bus systems [13],
seamlessly integrate security surveillance tasks into an already
existing task schedule [14], or consider specific network
security schemes for system integration [15]. As they deal
with very specific problems, they do not consider the system’s
whole design space. The projects in the second category
perform a mapping of tasks to hardware platform based on
security requirements and security hardware extensions [5],
or integrate security mechanisms into industrial control loops
[16]. The SysML-sec project [17] integrates cryptographic
mechanisms during hardware/software partitioning based on
predefined attack scenarios. Unlike the framework presented
in here, the contributions in (ii) do not consider the placement
of the key material on the target platform, or the probability
of successfully executing attacks. These projects consider
security requirements and capabilities on an abstract level
and do not go into detail of the security vulnerabilities or
mitigation techniques. The framework presented in this paper
introduces security attacks and mitigation techniques on a
detailed level, without losing the overall view on the whole
system design space. Thereby, it focuses on information secu-
rity. The framework supports designers in their decisions on
what functionality to implement on which architectural com-
ponent, considering performance, power consumption, security
attacks, and security capabilities.

III. DESIGN VIEWS

The system is represented by four distinct views: (i) the
functional view, (ii) the architectural view, (iii) the security
options view, and (iv) the security attack view. These views
are used by designers to describe the distinct design options
for the system, considering the different perspectives. With
these perspectives, a design space is spanned, serving as an
input to the framework, in which it searches for the optimal
solution considering the system’s security, performance, and
power consumption.

A. Functional and Architectural View

The functionality of the system is described using task
graphs [10], [11]. As attackers aim at compromising data
handled by the system, we extend the common task graph
model by adding a set of operations a task performs on a set

– 127 –

Publication E - FDL 2019

of data entities. Each data entity is characterized with a set of
security requirements (sr), defining its confidentiality (conf),
authenticity (auth) or integrity (int) [18].

The architectural view comprises a set of processing ele-
ments (PEs) connected by bus systems. Both PEs and bus sys-
tems are described by a set of characteristics (chip area, costs,
etc.) and distinct modes (power consumption, performance,
etc.). Each PE mode defines a set of security capabilities,
describing the PE’s capability on encryption, authentication,
and tamper safe storage. Additionally, the PE modes’ are
annotated with implementation vulnerability risks, defining
the probability of a potential attacker to find a vulnerability
to lever out the security capability. Figure 2 depicts the
components of the functionality and architecture view.

Fig. 2: Functional and platform architecture view.

The execution time of a task implemented on a PE running
in a specific mode is described by its worst case execution
time (WCET). This WCET must be defined for each mapping
the designer wants to be explored by the framework.

B. Security Option and Attack View

Modeling security threats on systems is widely used for
describing the security of network [8], [19]–[21]. These mod-
els build on the combination of attack graphs and Bayesian
networks, forming so called Bayesian network based at-
tack graphs (BNAGs) [22], [23]. Each node in the BNAG
represents a distinct security attack and knows two states
(stateno−success and statesuccess), defining if the attack
has been executed successfully or not. The state transition
stateno−success → statesuccess describes the successful ex-
ecution of an attack (at) with probability P (at). The depen-
dencies of the security attacks are represented by the directed
edges between the nodes and the conditional distribution
tables (CDTs). The CDT of each node represents its P (at)
considering the states of its parent nodes. The leaves of
the BNAG describe attack goals on the overall system. The
success probabilities of the attack goals are calculated using
the BNAG’s joint distribution table, calculated by the Bayesian
chain rule. The system designers assign each attack goal a
success probability threshold stating the maximal probability
with which the attacker might reach his goal. The attack types
used by the framework are derived from the STRIDE threat
model [24], focusing on spoofing, tampering and information
disclosure.

Integrating the attack view into the system design, attack
nodes in the BNAG are assigned distinct tasks of the functional
view as their victims. Each attack is furthermore described
with an attack type (ant) defining what security requirement
(conf , auth, or int) of the handled data it aims to break.
Figure 3 shows an example BNAG.

Fig. 3: BNAG example with detailed model of an attack node.

In the security operation view the system designers describe
the available security operations, feasible to counter security
attacks. Each security operation (secOp) is described by its
security type and the probability of an attacker breaking it.
This security break is modeled as an attack whose victim is the
secOp itself, and is assigned a P (at). Modeling cryptographic
functions (encryption, authentication, etc.) as secOps also
includes the declaration of the used key material. This key
material is further categorized by defining its validity time.
The validity time allows the designer to add the information if
a secOp uses e.g. a session key, master key, etc. The validty
time influences the attacker’s motivation to compromise the
secOp, as e.g. compromising a master key valid over the
whole product lifetime has a much greater impact on the
overall system’s security than merely compromising a session
key. The probabilities of the attacks aiming both on victims
and security operations must be estimated by experts. The
experts must consider the attacker’s capabilities and motivation
for each attack. Judging the motivation of the attacker, the
experts must take into account the value of the data entities
the attacked tasks operate on. Additionally to the attack graph,
the used secOp also influence the system’s performance, as
each secOp comes with an specific computational overhead.

C. Integration of Distinct Views

Based on the inputs from the functional, architectural, attack
and security operations view and the optimization goal, the

– 128 –

7 Publications

framework selects the architecture blocks, chooses the security
operations including the used key material and maps the tasks
to architecture blocks. Thereby, it produces the solution with
the lowest success probability goals (security optimal), the
solution with the best performance still satisfying all security
thresholds (security/performance optimal), or the solution with
the best performance, neglecting security.

1) General Task Mapping: The general mapping of tasks to
PEs is performed using the task’s WCETs. The WCETs reflect
a task’s execution time running on a PE in a specific mode
(denoted by pe(m)) and must be defined to allow a successful
task to PE mapping (denoted by m(t, pe(m))). The task to
PE mapping is further restricted by the physical connections
of the architecture platform. Given two connected tasks (t1
and t2) the mappings t1(pex(my)) and t2(pe′x(m′y)) are only
valid if pex and pe′x are physically connected. The mapping
of t1 and t2 on the same PE is always valid.

2) Security Constraints Calculation: Additionally to the the
general task mapping constraints all task PE mappings must
fulfill the system security constraints. Fulfilling these security
constraints, two requirements must be satisfied by the task
PE mapping. First, each task must be mapped to a pe(m)
supporting the task’s security functions. Second, no attack
goal’s success probability is allowed to exceed its threshold.

The security functions are determined by the operations
said task performs on it’s data entities [18]. The frame-
work describes a basic set of operations (read (r), write
(w), receive(rx), transmit (tx) and store(st)), denoted o =
(r, w, rx, tx, st, ...). Using this basic set of security require-
ments sr = (conf, auth, int, ...) the set of security functions,
comprising encryption (enc), signature (sign), secure storage
(stsec), denoted secfunc = (enc, sign, stsec, ...) is calculated
using (1). Values for o and sr must be 0 or 1. Based on the
information of a PE mode’s security capabilities seccap =
(scenc, scauth, sctss, ...) (comprising encryption (scenc), au-
thentication (scauth) and tamper-safe storage (sctss)), it is
determined if the mapping m(t, pe(m)) supports all secfunc
using the map(secfunc, seccap) function as described in (2),
with n being the number of all secfunc defined by the designer.
Hence, it is checked whether m(t, pe(m)) fulfills the security
mapping constraint. The sets o, sr, secfunc, and seccap are
extendable by the user. The feasibility of their mappings must
be added to said functions.

secfunc(o, sr) =

(r ∨ w) ∧ conf
(r ∨ w) ∧ auth

st ∧ (auth ∨ conf ∨ int)
...

 (1)

map(secfunc, seccap) =
n⋂

i=1

secfunc[i] ∧ seccap[i] (2)

The task’s secfunc and PE mode’s seccap are further used
to determine what secOp are used to secure the data entities
handled by the task. For each secfunc the framework is
given a set secOp representing cryptographic operations, or

other security operations, such as secure storage, etc. The
type of the operation (which can either be scenc, scauth,
or sctss, etc.) must be present in the PE mode’s seccap.
Cryptographic operations are further described by the used
key material (secOp(km)). What secOp(km) can be used
on which pe(m) is further restricted by seccap. Key material
with a validity time covering the whole product’s lifetime
(e.g. master key, root certificate, etc.) is only allowed to
be used on a pe(m) supporting sctss. Furthermore, a task’s
secOp(km) is restricted by the secure connection secconn =
(tx(pey(mz)), ..., tx′(pey′(mz′))) of which it is a part of.
Considering the task graph, the starting task of secconn is
the last task performing a secOp(km) mapped to a pey(mz).
The end task of secconn is the last task performing the same
secOp(km) mapped to a neighboring pey′(mz′). The used
secOp(km) of all tasks in the secconn is determined by the
starting task. Figure 4 depicts an example secure connection.

Fig. 4: Example of a connection secured by encryption span-
ning over multiple tasks mapped to two PEs.

Using the calculation of the secure connections, the influ-
ence of the used secOp on the BNAG is determined. For
each t(pe(m) in secconn the attack nodes of the BNAG are
determined. These attacks are mitigated by the secOp if the
attack’s type ant equals secOpt. Each tasks securing its data
using a secOp forces the attacker to break the secOp enabling
the original attack targeting said task. Attacks aiming at the
mitigating secOp are, thus, added as parents to the node
attacking t. The parent attacks’ states are added to the node’s
conditional distribution table as an OR function. Thus, the
breaking of at least one secOp would enable the attacker to
perform the original attack on the victim task. Figure 5 depicts
an example integration of a security operation’s attack into an
existing BNAG.

Additionally to the inclusion of the secOp attack nodes into
the BNAG, each pe(m) comes with a distinct implementation
vulnerability risk implvuln ∈ Q : implvuln ∈ [0, 1]. This risk
reduces the attack success probabilities anp of secOp attack
nodes used by the tasks mapped to said PE. This reduction is
performed by multiplying implvuln with anp.

The assignment of the security operations’ implementation
vulnerability risks must be performed by the security experts.
An accredited reference point for this rating can be found
in the Common Criteria (CC) certification process. The CC
certification provides a standardized way of assessing the
security features of security products. The CC certification
defines evaluation assurance levels (EALs), stating in what
extend the security operations have been tested for possible

– 129 –

Publication E - FDL 2019

vulnerabilities. These EALs range from simple functional
testing (EAL1) to a formal verification including tests (EAL7).
Additionally, each product must match a defined protection
profile ensuring that all expected security features are provided
[25]. The CC’s official web page1 provides a list of CC
certified products and their certification documentations.

Fig. 5: Integration of attack on secOp into a predefined attack
scenario described as a BNAG.

Based on the BNAG adapted with the security operations,
the attack goals’ success probabilities are calculated. The
calculation of the attack goals is performed by applying the
Bayesian chain rule on the BNAG, merging the marginals for
each attack goal. Only if each attack goal’s attack probability
is below its defined threshold, the overall system functionality
mapping to the architecture satisfies the security constraint.
The implementation of the security mapping constraints is
explained in more detail in Section IV.

IV. FRAMEWORK IMPLEMENTATION

The framework is implemented based on the DeSyDe frame-
work publicly available at Github2. The DeSyDe framework
finds an optimal selection of PE modes and mapping of
tasks to PEs considering power consumption and performance.
The details on how the scheduling, performance, and power
consumption was calculated can be found in the papers of
Rosvall et al. [4], [9]. The following extensions and changes
to the DeSyDe framework were implemented to achieve the
before described calculation of an optimal and secure solution.
Task and hardware bus representation: The task represen-
tation was extended by adding the definition of data entities
and operations to the tasks. Also the communication channels
connecting the tasks were added the information of the passed
data entities. The passed data entity’s size is further used for
calculating the communication overhead. The communication
between PEs is changed using distinct physical connections.
The usage of these connections changes the mapping of
tasks to PEs as explained in Section III-C1. Furthermore,
the communication via the physical connections affects the
overall system performance. The transmission delay of the

1https://www.commoncriteriaportal.org/
2https://github.com/forsyde/DeSyDe

communication between two tasks over a physical link is
calculated by multiplying the link’s encoding factor with the
transmission speed, times the exchanged data size. The data
entity exchanged via the physical connection is determined
by the communication channel between the tasks mapped to
the linked PEs. This additional transmission delay is used
for calculating the worst case communication time propa-
gating into the overall system performance, as described in
[4]. Considering the system’s performance, the computational
overhead induced by the security operations is integrated by
the framework by adding it to the WCET of the respective
tasks.

Security constraints: The calculation of the security con-
straints builds upon the knowledge of the security capabilities,
security requirements, attack goals, and available security
operations. The mapping between the security capabilities
and tasks’ security functions (2) is realized in a straight
forward check, coming with an computational overhead of
O(N

NPEM
T), with NT being the number of tasks in the

application graph, and NPEM being the number of all modes
of all PEs. The framework determines the set of all secconn,
denoted SECconn = (secconn1 , ..., secconnφ), with φ being
the maximum number of all found secconn. The calculation
of the attack goals is based on the BNAG and, thus, is a
computationally hard problem. It was shown by G. F. Cooper
that the exact probabilistic inference in a Bayesian network
is an NP hard problem [26]. This computational overhead is
further aggravated by the fact that each m(t, pe(m)) changes
the BNAG by adding the respective secOp(km) attacks with
the supported key material. Hence, the recalculation of the
attack goals is necessary for each task to PE mapping. The NP
hardness of the exact probabilistic inference can be reduced
using approximate inferences through sampling [27].

Reducing the number of necessary attack goal calculations
induced by the different mapping possibilities, the BNAG is
searched for all attacks influencing the attack goals, disregard-
ing all other attacks. All PEs are ordered according to the
implementation vulnerabilities of their respective modes. The
PE modes’ implementation vulnerabilities are denoted by the
function δ(pe(m)). The ordered set ∆ = (δ1(pex(my)) ≤
, ...,≤ δn(pex′(my′)) is then used for calculating the attack
goals for each possible mapping m(t, pe(m)). The framework
permutes all feasible m(t, pe(m)) using ∆ and calculates
the attack goals for each permutation described as P =
(m1(p1, pea(mb)), ...,mNP (pNP , peNPE (mNm))), with NPE

being the number of all pe and Nm the number of modes
of the current pe. Considering the permutations, not all of
them represent feasible task mappings, as a system mapping
m(px, pea(mb)) cannot map m(py, pea(mc)). These infeasi-
ble combinations are eliminated before starting the attack goal
calculation. For each P the possible key sets of the used secOp
are determined by traversing all secconn in SECconn and
checking the seccap of each m(p, pe(m)) of secconn. Based
on seccap the set of possible keys KM for all involved secOp
is determined (secOp(KM)). In each P the combinations of

– 130 –

7 Publications

all secOp(KM) are iterated. In each iteration the respective
BNAG is formed to calculate the attack goals (ag) of said
iteration (ag(i)). At the end of each iteration, ag(i) is added to
the set ag(P) which is checked upon at the end of said permu-
tation P . As ∆ is ordered descending, the calculation of ag(P)
can be halted when a Pinsec is found, not containing any ag(i)
satisfying the defined attack thresholds. All following P can be
rendered insecure without further attack goal calculation, until
a P is reached, in which at least one m′(px, pea′(mb′)) has
a δ′(pea′(mb′)) smaller than δ(pea(mb)) of m(px, pea(mb))
in Pinsec. Thereafter, the algorithm continues calculating the
security goals for all following P until reaching the next
Pinsec.The algorithm’s computational worst case is not finding
any mapping dissatisfying the security goals’ thresholds. In all
other cases the algorithm will reduce the number of necessary
inference calculations in the BNAG.

V. EVALUATION AND RESULTS

The functionality of the framework is shown by designing
a sensor system consisting of a mobile control device and
a system of sensor devices. In this example the design of
the control device and one sensor is shown. The use case
is inspired by the system presented in [28]. The simplified
system’s functionality is presented in Figure 6. It consists of
the control device configuring the sensor, the configured sen-
sor accumulating environmental data, and the control device
retrieving this data. Both control and sensor device operate
on the data entities config and sensor data. Both data entities
come with security requirements: conf , auth, and int.

Fig. 6: Functionality of the sensor usecase showing tasks for
the control device and the sensor.

Securing the data elements used by the control device
and sensor, the system is given a set of security operations
(encryption, decryption, sign, verify) which can either be used
with a long time master key, or a short time session key.
As breaking a security system using a long time master key
potentially leads to a higher impact than breaking a short time
session key, the attack probability on the master key was rated
with 0.3, on the session key with 0.1. This rating reflects the
attackers motivation. For the hardware platforms of the control
device and the sensor, the following abstract components
were considered: for communication between control device
and sensor, both devices are equipped with a BLE radio.
The sensor also contains a sensing instrument. Both devices
can be equipped with an integrated secure element (SE),
and a microcontroller (MCU). The MCU offers cryptographic

functionality using a co-processor (CryptCP) or software based
cryptography (SWCrypt), but lacks the ability for storing data
in a tamper safe way. The components are internally connected
to each other using bus systems. Table I lists the possible
components, which can be selected for the hardware platform
of the control- and sensor-device, and the WCETs of the secu-
rity relevant tasks running on these components. The WCETs
serve the purpose of showing the performance differences
of the secure vs. non-secure mappings. The components are
applicable for both the control, as well as the sensor device.

TABLE I: Tasks and WCETs on respective PEs

PE t1 t4 t5 t6 t9 t10 t11 t14 t15
MCU 1 70 60 80 100 100 110 150 130 80
MCU 2 75 65 90 120 120 140 200 180 85
SE 1 80 90 100 130 150 120 180 180 100
SE 2 120 130 150 180 170 160 220 220 150

Additionally to the estimated tasks’ WCETs, table II lists
the components security operation implementation vulnerabil-
ities, their security capabilities, as well as the computational
overheads of the security operations performed on the distinct
components. The implementation vulnerability risks (IV) are
estimated based on the EALs assigned by CC certifications,
which can be found at their webpage3. The security capabil-
ities (SC) are abbreviated with e (encryption/decryption), s
(signing/verifying), and t (tamper safe storing). The timings
and the IVs are abstracted and serve the purpose of showing
the framework’s correct mapping and component selection.

TABLE II: PEs’ characteristics (IV, SC) and security operation
WCETs

PE IV SC enc dec sign ver
SE 1 0.2 (EAL4+) e, s, t 8 8 12 12
SE 2 0.05 (EAL6+) e, s, t 12 12 18 18
MCU 1 0.35 (CryptCP) e, s 8 8 10 10
MCU 2 0.5 (SWCrypt) e, s 30 30 40 40

To show security aware mapping process an attack scenario,
a BNAG as depicted in Figure 7 was used. To estimate the
probabilities of the individual attack nodes, we considered the
system to be attacked by technically experienced persons, who
are able to sniff and intercept the wireless communication and
have access to the internal bus systems of the sensor and
configuration device. The attacks’ aims are categorized into
three scenarios. In the first scenario, the sensed data is attacked
on the sensor device. In the second scenario, the sensed data
is attacked on the control device. In the last scenario the
configuration data is attacked. The unconditional probability
of each attack node is shown in Figure 7.

To discard insecure PE selection and task mapping, the
security goals were assigned thresholds. All attack scenarios
were rated with a threshold of 5% each. The thresholds were
chosen in such a way that a maximal difference for non-secure
and secure mappings are visible.

3https://www.commoncriteriaportal.org/products/#AC

– 131 –

Publication E - FDL 2019

Fig. 7: Security attack scenarios described as BNAGs.

Using the described system’s functionality, architectural
possibilities, security attack scenarios, and possible security
operations with respective key material, 40 solutions were
found to be secure. In comparison, without the security
constraints, 6096 solutions were found. Hence, only around
0.6% of the overall solution space was found to be secure.
Calculating all possible mappings without sorting the PEs’
modes according to the implementation vulnerabilities, the first
solution was found after 5 hours 26 min. Using the breaking
condition of the implementation vulnerabilities, the calculation
took 1 hours 28 minutes. Hence, the break condition increased
the performance 73%. Figure 8 shows the most secure system
platform composition and task mapping, the solution with the
highest performance, still satisfying all security constraints,
and the solution with the highest performance but without
considering security constraints at all. It can be seen that
the most secure solution only makes use of SE 3 directly
connected to the radio. The secure solution with optimal per-
formance utilizes MCU 1 in combination with SE 1 for both
the control device, as well as the sensor. Without considering
the security of the system, the framework would not include
any SE into the platform’s architecture at all, but map all
tasks to MCU 1. For the most secure, as well as the secure
but performance optimal solution, the framework only chooses
the usage of session keys. For the most secure solution, the
framework places all tasks on the SE with the highest EAL
rating, without utilizing any other components at all which

might not be feasible for the system’s implementation. This
must still be considered by the designer using the framework.

Fig. 8: Proposed system architecture and process allocation
for optimal performance, optimal performance still satisfying
all security goals and highest security, including performance
values and accumulated security goals.

This industrial sensor usecase shows how the framework is
used in a design process to find the best suited platform and
task mapping when considering optimal performance with or
without fulfilling security constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper we describe a novel approach for introducing
security attack scenarios and security functionality selection
into a system design process of embedded systems. The in-
troduced framework allows a designer to specify the system’s
functionality, the possible hardware architecture components
running the defined functionality, model based attack scenar-
ios, and a range of security operations usable by the system.
The framework uses these descriptions to suggest an optimal
hardware component selection, task to component mapping,
and an optimal usage of security operations with respective
key material. Based on an embedded sensor system use case,
the functionality of the framework during design time was
described and its feasibility for finding not only the most
secure, but also the e.g. best performing and still secure
solution was shown.

This work can be seen as a first important step for intro-
ducing detailed security requirements into the design space
exploration of embedded systems based on attack probabilities.
Looking into related work security constraints and usable
security operations can be formalized more specifically. The
framework is meant as a tool to simplify the design process
of secure embedded systems and emphasize the importance
of information security at an early stage of the system design
process. In this sense, the framework is meant to introduce the
experience and knowledge of security experts in the design

– 132 –

7 Publications

flow in an easier way. Thus, the framework supports system
designers not experienced in information security during the
first phases of system design. The security expert knowledge
is, however, also the limiting factor in this process. The
information about the assurance level of a security operation’s
implementation must be provided by the security experts a
priori. The CC certification can only give a guidance about the
security level of certain secure devices. However, this guidance
is not directly usable for judging what vulnerability can be
found by attackers considering the security operations. As
these security operations are meant to secure the tasks running
on the platform, this information is critical to the overall
system design. Hence, a standardized method for judging these
security level of such security operations would be needed.
Based on this method, the information could be stored in a
repository, which could be used to support the design process
of secure embedded systems.

For future work, this work will be extended to support not
only security attack scenarios but a complete security risk
estimation. This extension would add critical and important
information to the DSE process and allow the framework
to consider additional constraints, such as expected financial
loss caused by successfully executed security attacks, etc.
Furthermore, we want to show how the framework can also
be used on a large scale system, covering not only the
embedded world, but also higher layers, such as web servers
and applications, etc.

ACKNOWLEDGMENT

Project partners are NXP Semiconductors Austria GmbH
and the Technical University of Graz. This work was supported
by the Austrian Research Promotion Agency (FFG) within the
project UBSmart (project number: 859475).

REFERENCES

[1] Mohammed Nasser Al-mhiqani, Rabiah Ahmad, Warusia Yassin,
Aslinda Hassan, Zaheera Zainal Abidin, Nabeel Salih Ali, and Kar-
rar Hameed Abdulkareem. Cyber-Security Incidents : A Review Cases
in Cyber-Physical Systems. 2018.

[2] Chih Ta Lin, Sung Lin Wu, and Mei Lin Lee. Cyber attack and defense
on industry control systems. 2017 IEEE Conference on Dependable and
Secure Computing, 2017.

[3] Lorenzo Pagliari, Raffaela Mirandola, and Catia Trubiani. Multi-
modeling Approach to Performance Engineering of Cyber-Physical
Systems Design. Proceedings of the IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS, 2018.

[4] Kathrin Rosvall, Nima Khalilzad, George Ungureanu, and Ingo Sander.
Throughput Propagation in Constraint-Based Design Space Exploration
for Mixed-Criticality Systems. Proceedings of the 9th Workshop on
Rapid Simulation and Performance Evaluation: Methods and Tools -
RAPIDO ’17, 2017.

[5] Ingo Stierand, Sunil Malipatlolla, Sibylle Froschle, Alexander Stuhring,
and Stefan Henkler. Integrating the security aspect into design space ex-
ploration of embedded systems. Proceedings - IEEE 25th International
Symposium on Software Reliability Engineering Workshops, ISSREW
2014, 2014.

[6] Jan Jürjens. Sound methods and effective tools for model-based security
engineering with UML. Proceedings. 27th International Conference on
Software Engineering, ICSE, 2005.

[7] Nan Feng, Harry Jiannan Wang, and Minqiang Li. A security risk
analysis model for information systems: Causal relationships of risk
factors and vulnerability propagation analysis. Information Sciences,
2014.

[8] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic Security
Risk Management Using Bayesian Attack Graphs. IEEE Transactions
on Dependable and Secure Computing, 9(1), 2012.

[9] Kathrin Rosvall and Ingo Sander. A Constraint-based Design Space
Exploration Framework for Real-time Applications on MPSoCs. Pro-
ceedings of the Conference on Design, Automation & Test in Europe,
2014.

[10] Bastian Knerr. Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design. PhD thesis, Vienna University of Technology,
2008.

[11] Kathrin Rosvall, Tage Mohammadat, George Ungureanu, Johnny Oberg,
and Ingo Sander. Exploring power and throughput for dataflow applica-
tions on predictable NoC multiprocessors. Proceedings - 21st Euromicro
Conference on Digital System Design, DSD 2018, 2018.

[12] Domiian Tma-Selicean and Paul Pop. Design Optimization of Mixed-
Criticality Real-Time Embedded Systems. ACM Transactions on Em-
bedded Computing Systems, 14(3), 2015.

[13] Yong Xie, Gang Zeng, Ryo Kurachi, Hiroaki Takada, and Guoqi
Xie. Security/Timing-aware Design Space Exploration of CAN FD for
Automotive Cyber-Physical Systems. IEEE Transactions on Industrial
Informatics, 2018.

[14] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B.
Bobba. A design-space exploration for allocating security tasks in mul-
ticore real-Time systems. Proceedings of the 2018 Design, Automation
and Test in Europe Conference and Exhibition, DATE 2018, 2018.

[15] Eunusk Kang. Design Space Exploration for Security. IEEE Cyberse-
curity Development Design, 2016.

[16] Bowen Zheng, Peng Deng, Rajasekhar Anguluri, Qi Zhu, and Fabio
Pasqualetti. Cross-Layer Codesign for Secure Cyber-Physical Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(5), 2016.

[17] Letitia W. Li, Florian Lugou, and Ludovic Apvrille. Security-aware
Modeling and Analysis for HW/SW Partitioning. Proceedings of the 5th
International Conference on Model-Driven Engineering and Software
Development, 2017.

[18] Lukas Gressl, Christian Steger, and Ulrich Neffe. A Security Aware
Design Space Exploration Framework. In Proceedings of the Fourteenth
International Conference on Systems ICONS 2019, Valencia, Spain,
2019. ThinkMind(TM) Digital Library.

[19] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. Op-
timal defense policies for partially observable spreading processes on
bayesian attack graphs. In Proceedings of the Second ACM Workshop
on Moving Target Defense, MTD ’15, 2015.

[20] Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen. Using
Bayesian Networks for Probabilistic Identification of Zero-Day Attack
Paths. IEEE Transactions on Information Forensics and Security, 13(10),
2018.

[21] Marcel Frigault and Lingyu Wang. Measuring Network Security Using
Bayesian Network-Based Attack Graphs. 2008.

[22] Vivek Shandilya, Chris B. Simmons, and Sajjan Shiva. Use of attack
graphs in security systems. Journal of Computer Networks and Com-
munications, 2014, 2014.

[23] David Heckerman and John S. Breese. Causal independence for
probability assessment and inference using Bayesian networks. IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems and
Humans., 26(6), 1996.

[24] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack.
Threat modeling-uncover security design flaws using the stride approach.
MSDN Magazine-Louisville, 2006.

[25] Common Criteria for Information Technology Security Evaluation Part
2. 2012.

[26] G Cooper. Computational Complexity of probabilistic inference using
Bayesian belief networks (research note). Machine Learning, 42, 1990.

[27] Haipeng Guo and William Hsu. A Survey of Algorithms for Real-Time
Bayesian Network Inference. Papers from the Workshop on Real-Time
Decision Support and Diagnosis Systems, (1), 2002.

[28] Thomas Ulz, Thomas Pieber, Christian Steger, Sarah Haas, Rainer
Matischek, and Holger Bock. Hardware-Secured Configuration and
Two-Layer Attestation Architecture for Smart Sensors. Proceedings -
20th Euromicro Conference on Digital System Design, DSD 2017, 2017.

– 133 –

7 Publications

Security Based Design Space Exploration for CPS

Lukas Gressl
Institute of Technical Informatics,
Graz University of Technology

gressl@tugraz.at

Alexander Rech
Institute of Technical Informatics,
Graz University of Technology

rech@tugraz.at

Christian Steger
Institute of Technical Informatics,
Graz University of Technology

steger@tugraz.at

Andreas Sinnhofer
NXP Semiconductors Austria

GmbH
andreas.daniel.sinnhofer@nxp.com

Ralph Weissnegger
CISC Semiconductor GmbH

r.weissnegger@cisc.at

ABSTRACT

Security is vital for Cyber-Physical Systems (CPS). CPS have
become important in the industry, as they are often used
to process sensitive data. Hence, they are valuable targets
for attackers. As they are subject to manifold constraints,
such as performance, power dissipation, etc., and security
measures always induce additional delay, energy consump-
tion, etc., designing secure CPS is a complex task. To find
an optimal solution considering these various constraints,
a design space exploration (DSE) must be performed. In
this paper, we present a framework, capable of consider-
ing security constraints described as attack scenarios and
automatically selecting appropriate security measures and
secure key placement. We show the framework’s feasibility
by designing a secure sensor system.

CCS CONCEPTS

� Security and privacy � Formal security models;
Security requirements; Logic and verification; � Computer
systems organization � Embedded systems;

KEYWORDS

Cyber Security; Embedded System Design; Industrial CPS;
Design Space Exploration

ACM Reference Format:

Lukas Gressl, Alexander Rech, Christian Steger, Andreas Sinnhofer,
and Ralph Weissnegger. 2020. Security Based Design Space Ex-

ploration for CPS. In The 35th ACM/SIGAPP Symposium on
Applied Computing (SAC ’20), March 30-April 3, 2020, Brno,

Czech Republic. ACM, New York, NY, USA, Article 4, 3 pages.

https://doi.org/10.1145/3341105.3374058

1 INTRODUCTION

The utilization of Cyber-Physical Systems (CPS) in the in-
dustry opened a new attack surface for potential attackers.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374058

In the last decade, numerous attacks were reported [1], which
used CPS as a weak point. This trend emphasizes the need
for considering cybersecurity attacks when designing CPS.
Additionally to the security constraints, CPS must often ad-
here to requirements considering their energy consumption
and performance. As security measures induce additional de-
lay and power dissipation, their selection must be performed
in conformity with all other system constraints. With these
opposing constraints, finding an optimal task allocation and
system partitioning poses a complex task, usually solved with
the help of design space exploration (DSE) tools [6, 9]. In this
paper, we present a framework capable of finding an optimal
system partitioning and task scheduling, based on security
constraints modeled as Bayesian attack graphs (BAGs). The
presented framework automatically selects the optimal se-
curity measures and key placement under consideration of
potential security attacks and overall system performance.
The framework’s feasibility is shown in an industrial use case
considering multiple layers.

2 RELATED WORK

Modeling security attack scenarios has been well studied in
the field of secure network systems, in which the attacker’s
perspective is used to formalize attack paths modeled as
BAGs. These BAGs are either taken from historic data or
formalized by security experts [2]. Considering DSE for secure
embedded systems, related projects either take an abstract or
focused approach. Works taking a focused approach lack the
consideration of the overall system design space [9], whereas
works abstractly introducing security constraints cannot for-
malize system attack scenarios unambiguously [8, 10]. In
contrast, the framework presented here aims at providing sys-
tem designers with an approach to model security constraints
in a detailed way without losing the ability to consider the
whole system design space.

3 FRAMEWORK DESIGN

The framework’s design builds on [4]. Its design consists of
four perspectives, with which the designer can describe the
system under design.

Task Graph (I) and System Architecture (II): The
system’s functionality is described as a task graph, in which
each task performs a set of operations on a range of data

593

– 135 –

Publication F - SAC 2020

entities. The data entities come with a distinct set of security
requirements (𝑠𝑟). The system’s architecture is described by
hardware components connected with communication buses.
Both hardware components and communication buses are
characterized with costs, power consumption, etc. Each hard-
ware component is described by a set of security capabilities
(𝑠𝑒𝑐𝐶𝑎𝑝), defining the components’ ability to support crypto-
graphic algorithms, task encapsulation, tamper safe storage,
etc. The vulnerability risk (𝑉 𝑅), given for each component,
defines the probability of an attacker finding a weakspot in
the implementation of the 𝑠𝑒𝑐𝐶𝑎𝑝. The performance of a task
implemented on a distinct hardware component is described
by its worst case execution time (WCET). Each hardware
component is further assigned to a predefined device, which
is used for determining the placement of the key material.

Attack Graph (III) and Security Functions (IV): The
attack scenarios are modeled using BAGs. Each node in the
BAG represents a distinct attack step aiming at a specific task
and is assigned a success probability. Each BAG node has a
distinct attack type, specifying what 𝑠𝑟 of the victim task’s
data entities it aims to break. The BAG’s leafs represent the
goals an attacker aims to reach. Using the Bayesian chain rule,
the goals’ success probability is calculated. Furthermore, the
DSE framework is given a set of security functions capable
of mitigating potential attacks, based on their attack types.
Certain security functions, such as cryptographic algorithms,
rely on specific key material. These security functions and the
used key material (including keys derived from other keys)
might also be subject to attacks.

BAG and attack goal calculation: Using the inputs of
the four perspectives, the framework selects the platform
components, allocates the tasks, and selects the security
functions to secure the data entities from potential attackers.
Thereby, the framework ensures the general reachability of
the task allocation. For each task, the framework calculates a
set of security operations (𝑠𝑒𝑐𝑂𝑝) based on the data entities’
𝑠𝑟 it operates on. Based on these 𝑠𝑒𝑐𝑂𝑝, the framework
calculates the security functions (𝑠𝑒𝑐𝑓𝑢𝑛𝑐) with which to
ensure the data entities’ 𝑠𝑟. The framework only considers a
task allocation to be secure if all security functions of the task
are executable by the 𝑠𝑒𝑐𝐶𝑎𝑝 of the hardware component it
is allocated on. Only solutions fulfilling these constraints are
further regarded by the framework.

From each mapping fulfilling the security allocation con-
straints, the framework builds the BAG graph, considering
the additional attacks on a single 𝑠𝑒𝑐𝑓𝑢𝑛𝑐 and the used key
material. The key placement is further restricted by the valid-
ity time of the key and the 𝑠𝑒𝑐𝐶𝑎𝑝 provided to the 𝑠𝑒𝑐𝑓𝑢𝑛𝑐

using this key. The framework adds the attacks of each used
𝑠𝑒𝑐𝑓𝑢𝑛𝑐 to the attacks aiming at said task as parents, includ-
ing the key disclosure attacks aiming at the used key material.
The success probabilities of the added attacks are further
adapted by multiplying them with the 𝑉 𝑅 of the hardware
components, the victim tasks are mapped on. Hence, the
distinct mappings influence the BAG, resulting in different
attack goal probabilities for each solution.

Table 1: Options for SE, the MCU, and the SP. VR
and security overhead were estimated [3, 5, 7].

HWC Security Options VR Security Overhead

SE
EAL 5+ 0.1

tss(30µs), te (10µs)
sym(8µs), asym(150ms)

EAL 6+ 0.05
tss(30µs), te (2µs)
sym(8µs), asym(150ms)

MCU
HWC, FW, TZ 0.15

te (2µs)
sym(16µs), asym(100ms)

SWC, TZ 0.35 sym(8µs), te(2µs)

SP

HWC, TZ, tss 0.05
tss (30µs), te (2µs)
sym(7µs), asym(150ms)

HWC, TZ, HSM supp. 0.1
tss (30µs), te (2µs)
sym(8µs), asym(170ms)

SWC tested, SZ 0.55 sym(12µs), te (2µs)
SWC 0.7 sym(6µs)

4 EXPERIMENTS

Using the framework, an industrial sensor system was de-
signed considering different possibilities for the system re-
alization. The system comprises a sensor device, a gateway,
and an analysis server. The sensor and the gateway are
equipped with a sensing module, a microcontroller (MCU),
a Bluetooth Low Energy (BLE) radio and an optional secure
element (SE). The gateway comes with and additional WiFi
radio. The data analysis is either implemented on a security-
enhanced server, a commonly used server with Hardware
Secure Module support (HSM supp), or a server with limited
security capabilities. The security extensions come in form of
symmetric (sym) and asymmetric (asym) hardware (HWC)
or software-based cryptography (SWC), task encapsulation
(te) with Firewall (FW) and TrustZone (TZ), and tamper
safe storage (tss). These architecture options, comprising
the 𝑉 𝑅 and their performance overheads, are listed in Table
1. The 𝑉 𝑅 were estimated by security experts, using the
Common Criteria1 certifications as a basis, where possible.

The functionality of the overall system setup consists of
three phases: during the configuration phase, the sensor is
configured and activated via the gateway; in the data accu-
mulation phase, the sensor gathers information and sends
it to the gateway, which filters the received sensor informa-
tion; in the data analysis phase, the filtered data is sent to
the analysis server, which processes and monitors the data.
Possible attacks on the system encompass compromising of
the sensor configuration, the faking of the sensor activation
message, manipulating the accumulated sensor data, faking
the filtered data, and disclosing the analyzed data.

Table 2 lists the available security functions and their prob-
abilities of being successfully attacked (AP). Furthermore,
the table lists the key material and their risks of being ex-
posed by potential attackers. The key material comprises (i)
a symmetric master key (𝑠𝑚𝑘), (ii) a binding key (𝑠𝑏𝑘), (iii)
a session key (𝑠𝑠𝑘) that is derived from the 𝑠𝑚𝑘, and (iv)
a asymmetric certificate (𝑐𝑒𝑟𝑡). The AP for both security
functionality and the key material in Table 2 were estimated
based on assuming that neither the security function nor

1https://www.commoncriteriaportal.org/

594

– 136 –

7 Publications

Table 2: Used security functions and key material.

Security Function Key AP

Cryptography

Master Key 0.1
Binding Key 0.05
Session Key 0.01
Certificate 0.1

Task Encapsulation / 0.05

Secure Storage / 0.05

Key (Type) Lifetime AP Derivation

Master Key (sym) long 0.05 /

Binding Key (sym) long 0.02 /

Session Key (sym) short 0.01 Master Key

Certificate (asym) long 0.05 /

Figure 1: Solutions found for system under design.

the key material was mapped to a component offering at-
tack mitigation. Said mitigation is based on the capability
of the hosting hardware component. Furthermore, the AP is
influenced by the used key material and what the attacker
gains by the attack. The same assumptions were made when
estimating the APs on the disclosure of the key material
itself.

Figure 1 shows the solutions found by the framework based
on the average attack probability (avg ap) and performance
normalized to the solution with the highest performance.
Table 3 shows the most secure, the fastest, and the fastest
secure solution. These solutions use the 𝑠𝑠𝑘 for securing the
exchanged data. Furthermore, the most secure system relies
on using the 𝑠𝑏𝑘 for securing the communication within the
single devices (sensor, sensor controller gateway, server plat-
form). The system configuration with optimal performance
puts as many tasks on the same hardware component as
possible. Hence, task encapsulation is used to secure the
intra-component-communication, saving security overhead
for cryptography.

5 CONCLUSION AND FUTURE WORK

In this paper, a security-based DSE framework, considering
security attacks and key material placement is presented. The

Table 3: Solutions found by the framework

HWC Most secure Fastest Fastest secure

MCU HWC, FW, TZ SWC, TZ HWC, FW, TZ

SE EAL 6+ EAL 5+ EAL 6+

SP HWC, TZ, tss SWC HWC, TZ, HSM

avg ap 0.01 0.039 0.019

norm perf. ∼ 2.57 1.0 ∼ 1.014

Key Placement

MCU 𝑠𝑠𝑘, 𝑠𝑏𝑘 𝑠𝑠𝑘 𝑠𝑠𝑘, 𝑠𝑏𝑘

SE 𝑠𝑏𝑘, 𝑠𝑚𝑘, 𝑐𝑒𝑟𝑡 𝑠𝑠𝑘, 𝑠𝑚𝑘, 𝑐𝑒𝑟𝑡 𝑠𝑏𝑘, 𝑠𝑚𝑘

SP 𝑠𝑠𝑘, 𝑠𝑚𝑘, 𝑐𝑒𝑟𝑡 𝑠𝑠𝑘, 𝑠𝑚𝑘, 𝑐𝑒𝑟𝑡 𝑠𝑠𝑘, 𝑠𝑚𝑘

paper shows the framework’s capability of finding the most
secure or performance optimal, yet secure solution, consid-
ering a secure system partitioning, task allocation, security
functionality selection, and key material placement for a com-
plex system comprising multiple abstraction layers. A known
limitation to the framework is its reliance on security expert
knowledge for assessing the attack scenarios and security vul-
nerability risk of the utilized components. Future work will
focus on integrating other security assessment techniques.

ACKNOWLEDGMENTS

Project partners are NXP Semiconductors Austria GmbH,
CISC Semiconductor and Graz University of Technology. This
work was supported by the Austrian Research Promotion
Agency (FFG) within the project STIP (project number:
867914).

REFERENCES
[1] M. N. Al-mhiqani et al. 2018. Cyber-Security Incidents : A Review

Cases in Cyber-Physical Systems. Int. Journal of Advanced
Computer Science and Applications (2018).

[2] N. Feng et al. 2014. A security risk analysis model for information
systems: Causal relationships of risk factors and vulnerability
propagation analysis. Information Sciences 256 (2014).

[3] Sharon Levy. 2015. Performance and Security of ECDSA. Com-
puter Science (2015).

[4] L. Gressl others. 2019. Consideration of Security Attacks in the
Design Space Exploration of Embedded Systems. In 2019 22nd
Euromicro Conf. on Digital System Design (DSD).

[5] L. Raju and M. Sumathi. 2015. Secured High Throughput of
128-bit AES Algorithm based on Interleaving Technique. (2015).

[6] K. Rosvall et al. 2018. Exploring power and throughput for
dataflow applications on predictable NoC multiprocessors. Proc.
of 21st Euromicro Conf. on Digital System Design, DSD 2018
(2018).

[7] T. Schläpfer and A. Rüst. 2019. Security on IoT Devices with
Secure Elements. Embedded World Exhibition and Conf. (2019).

[8] I. Stierand et al. 2014. Integrating the security aspect into design
space exploration of embedded systems. Proceedings - IEEE
25th International Symp. on Software Reliability Engineering
Workshops, ISSREW 2014 (2014).

[9] Y. Xie et al. 2018. Security/Timing-aware Design Space Explo-
ration of CAN FD for Automotive Cyber-Physical Systems. IEEE
Trans. on Industrial Informatics (2018).

[10] B. Zheng et al. 2016. Cross-Layer Codesign for Secure Cyber-
Physical Systems. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (2016).

595

– 137 –

7 Publications

Towards an Automated Exploration of Secure
IoT/CPS Design-Variants

Lukas Gressl1, Michael Krisper1, Christian Steger1, and Ulrich Neffe2

1 Graz University of Technology (TU Graz), Austria
(gressl, michael.kripser, steger)@tugraz.at
2 NXP Semiconductors Austria GmbH, Austria

ulrich.neffe@nxp.com

Abstract. The advent of the Internet of Things (IoT) and Cyber-Physical
Systems (CPS) enabled a new class of connected, smart, and interactive
devices. With their continuous connectivity and their access to valu-
able information in both the digital and physical world, they are highly
attractive targets for security attackers. Integrating them into the indus-
try and our daily used devices adds new attack surfaces. These potential
threats call for special care of security vulnerabilities during the design
of IoT devices and CPS. Due to their resource-constrained nature, de-
signing secure IoT devices and CPS poses a complex task, considering
the selectable hardware components and task implementation alterna-
tives. Researchers proposed a range of automatic design tools to support
system designers in their task of finding the optimal hardware selection
and task implementations. Said tools offer a limited way of modeling
attack scenarios for a system under design. The framework proposed in
this paper aims at closing this gap, offering system designers a way to
consider security attacks and security risks during the early phase of
system design. It offers designers the possibility to model security con-
straints from the view of potential attackers, assessing the probability
of successful security attacks and the resulting security risk, alike. We
demonstrate the framework’s feasibility and performance by revisiting
an industry partner’s potential system design of a future IoT device.

Keywords: Cyber Security · Embedded System Design · Secure IoT
Systems · Secure CPS · Secure Embedded Consumer Devices

1 Introduction

The increasing utilization of the Internet of Things (IoT) in the commercial
market and cyber-physical systems (CPS) in the industry, opened a new at-
tack surface. In the last decades, numerous cybersecurity exploits have been
documented [1, 11]. The ongoing integration of such systems demands the con-
sideration of cybersecurity exploits throughout the whole system design process.
Introducing security measures causes additional performance delay and power
consumption, contradicting the systems’ requirements for fast response times and
high energy efficiency [19]. Considering the hardware and task implementation

– 139 –

Publication G - SAFECOMP 2020

2 L. Gressl et al.

alternatives, finding the optimal solution satisfying performance and security
poses a multi-objective optimization problem. Designers rely on automatic de-
sign space exploration (DSE) tools are used. There exist both classical DSE tools
focusing on performance and power consumption [8,13], and DSE frameworks of-
fering the consideration of security constraints in a limited way [6,7,10,16,18,20].

The framework presented in this paper introduces a new approach to in-
troducing security constraints in early IoT/CPS design, based on both attack
graphs and risk trees. Among a set of possible hardware components and task im-
plementation alternatives, the framework finds the optimal selection of hardware
components and task placements considering the system’s power consumption,
performance, security attack mitigation capability, and security risk exposure.
In this paper, we make the following contributions: (i) To the best of our knowl-
edge, the framework presented here is the first to allow the consideration of
security constraints modeled as Bayesian attack graphs (BAGs) and risk trees
during early IoT/CPS design. (ii) We integrate both approaches and show their
advantages and disadvantages. (iii) We show the framework’s feasibility based
on a secure consumer device use case and the scalability of our approach.

The paper is structured as follows: Section 2 discusses related projects in
DSE, security attack and risk modeling; Section 3 describes the security mod-
eling approach, the framework’s design and implementation; Section 4 shows
the impact of both security modeling approaches on the secure consumer device
use-case; Section 5 gives a conclusion and discusses future work.

2 Related Work

Network administrators commonly use attack graphs when modeling attack sce-
narios on networks. They model attacks as consecutive steps, represented as
nodes within the graph. Modeling them as BAGs adds information about the
dependency of the distinct steps and the probability of their successful execu-
tion [3,12]. Attack tree analysis (ATA) and fault tree analysis (FTA), generally
used in safety analysis, use a similar modeling approach. Both scientists and
engineers commonly use ATA and FTA [2]. RISKEE describes risk propagation
within a system, and assesses said risk based on a tree representation [9].

A range of DSE tools considering functional safety or security constraints, in
addition to the classical optimization goals, e.g., performance, power consump-
tion, and others, have been presented in recent years [6,7,14,16–18,20]. A range
of these tools focus on the abstract representation of security constraints in the
design space, such as restricting the mapping of security vulnerable tasks to pro-
cessor types with security extensions [16], integration of security functions into
system design [20], or securing control loops [10]. In [5], security constraints and
mitigation capabilities are introduced based on distinct security levels. Other
works consider distinct security problems, e.g., integration of intrusion detection
tasks [6], consideration of network security [7], or optimization of communication
protocols regarding message authentication [18]. These works cannot directly in-

– 140 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 3

tegrate the attacker’s perspective on the system into the DSE. Hence, they do not
reflect the effect of security mechanism integration on distinct attack scenarios.

Contrasting, the framework presented in this paper allows the direct repre-
sentation of security constraints in the form of BAGs and risk trees, allowing the
representation of the overall system’s attack vulnerability and monetary security
risk. Depending on the used modeling approach, the designer directly sees the
effect of the system partitioning and task allocation on both security risk and
security attack vulnerability. The framework allows the seamless interchange
between the risk tree and the BAG representation for describing the security
constraints posed on the IoT device / CPS under design. Considering the secu-
rity performance and power overhead of the distinct solutions allows a detailed
assessment of the costs and benefits of particular system designs, including their
security attack mitigation capabilities.

3 Proposed Methodology

The framework allows the designer to model the system’s functionality, available
architecture components, and security attack scenarios using four perspectives,
as shown in Figure 1. The work presented in [4] describes a preliminary approach
to introducing security attack vulnerability into DSE. In this paper, we present
a more elaborate approach, allowing the designers to describe the dependencies
of the distinct security assets using rule sets. Furthermore, this paper introduces
the usage of risk trees in addition to the BAG based approach. This usage of risk
trees allows the framework to perform more detailed modeling of the impacts
caused by successfully performed security attacks, shown in Section 4. However,
the usage of risk trees induces additional computation time, also described in
Section 4. The following paragraphs shortly describe the models behind the
distinct perspectives serving as an input to the framework.

System Architecture and Task Representation
A task graph describes the system’s functionality with its nodes representing
the tasks and the edges modeling the task’s dependencies (logical channels).
Each task performs operations (OP) on a set of data entities coming with a set
of security requirements (SR). High-level hardware components represent the
system architecture, including communication buses that connect these compo-
nents. Each hardware component has security mechanisms (SM) and mitigation
capabilities. Each SM comes with a distinct performance overhead and power
consumption. For each possible implementation of a task on a hardware com-
ponent, the designers estimate the implementation’s worst-case execution time
(WCET).

Security Constraint Representation
The sets for OP , SR, SM , security operations (SecOp), and attack types (AT)
are defined by the designer. The designer also defines a set of rules stating
the relations between: OP , SR and SecOp; SR and AT ; SecOp and SM . The
rules are described by input sets (in), connected with boolean operators, and a
resulting output set (out), e.g. (ina∨inb)∧inc 7→ outx. Given the tasks and their

– 141 –

Publication G - SAFECOMP 2020

4 L. Gressl et al.

R
es

ul
tin

g
A

tta
ck

 G
ra

ph

/ R
is

k
Tr

ee

Ta
sk

al

lo
ca

tio
n

Risk Tree (IV)Attack Graph (III)System Architecture (II)

T 3

T 2

Task Graph(I)

HWC 1 Bus

SR

T 1
OP

D
SR

T 2
OP
D

SR

T 3
OP

D
HWC 2

HWC 3 Bus

T 1

A 1 A 2 0.85

1|1 1

1|0 0.5

0|1 0.6

0|0 0

P(A3)=0,7341

AGP(AG)=0,7341

A 3

0.7

Bus

Bus

Bus

BusT 1 T 3 T 2

A 3 A 2A 1

AG

SM

SMSM

T 2
A1

f:5, v:0.7 T 1
A2

f:3, v:0.85

AG
v:1, i:100$

AG
v:1, i:100$

Risk=206,25$

T 3
A3

f:3, v:0.5 T 3

A3
f:3, v:0.6

A1

AG

A2

AG

A3 A3

Risk=54,5$ P(AG)=0,00376

Fig. 1: Framework overview. Inputs consist of: tasks (T) operating (OP) on data
entities (D) with security requirements (SR); Hardware components (HWC) con-
nected via communication buses; Attacks modeled as BAGs or risk trees. Out-
puts consist of: HWC selection and T allocation; security vulnerability (P(AG))
and security risk.

SecOp, the framework calculates the set of secure communications (secCom).
A secCom is spanned between two tasks (a source (tsrc) and a destination task
(tdst)) performing the same communication securing operations (secOpComm ∈
SecOp) on a particular data entity.

Security Attack View: The framework allows the designer to model cyberse-
curity threats as BAGs or risk trees. In both methods, each attack (excluding
goals) aims at a certain task and comes with a distinct attack type taken from
AT . Based on the defined ruleset, each attack type aims at a specific security
requirement (defined in SR) of the data handled by the attacked task. Within
the BAG, each node represents a distinct attack step, with its leafs describing
attack goals. The edges define paths an attacker must traverse to reach an attack
goal. Each attack has a distinct success probability provided using a conditional
probability table. The attack goals’ success probabilities are defined by their
marginals in the joint distribution table, calculated by the Bayesian chain rule.
Each goal has a maximum allowed success probability defined by the designer.

Risk based Attack Trees: The risk-based method uses RISKEE [9], which is
a methodology for risk assessment based on attack trees with the enhancement
of also modeling the consequences (impacts) of an attack, and accounting for
multiple attacks over time (in the form of attack frequencies) instead of just
simulating single events. The key feature of RISKEE is the usage of probability
distributions for the estimation of uncertain values (which are inherent in risk
assessment), providing a benefit compared to classical single-point estimates,
which neglect uncertainties. The mean risk value, which is one of the results

– 142 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 5

returned by RISKEE, is used as a metric for each defined attack goal. Attack
goals come with a maximum allowed mean risks defined by the designer. By inte-
grating RISKEE into the framework, we are the first to allow the consideration
of risk-based security constraints during the automatic DSE for IoT/CPS.

Security Attack Mitigation: Additionally to the SM , each hardware compo-
nent defines to what extend said mechanisms are capable of mitigating attacks.
This attack mitigation (m ∈ R : m ∈ [0, 1]) states the component’s defen-
sive capabilities. Assessing the attack mitigation is based on the judgment of
the attacker’s expertise and available time for breaking said defensive capabili-
ties. Designers can deduce this mitigation capability from security assessments
such as Common Criteria (CC)3, from historical data recording known secu-
rity incidents, or by expert judgments if no other information is available. The
estimated mitigation factor reduces the attack probabilities (BAG) or vulnera-
bilities (RISKEE) λ, λm ∈ R of all attacks on tasks allocated on this particular
hardware component, giving the mitigated probability λm (λm = λ ∗ (1−m)).

Secure Task Allocation and Partitioning: Based on the system’s architec-
ture, functionality, and the given attack scenarios, the framework finds a system
partitioning and task allocations which meet the defined security constraints
and optimizes either for performance or power consumption. Figure 1 depicts
the BAG and RISKEE based approach and the influence of the partitioning and
task allocation on the attack success probability and risk value. Hence, the task
allocation must comply with a set of restrictions. (I) All tasks directly commu-
nicating with each other must be allocated on the same component or different
components connected via a communication bus. (II) Each task must map to
a hardware component capable of executing its SecOp, according to the rules
defining the mapping of SecOp to SM . (III) Any task allocation and platform
partitioning must fulfill the security attack constraints (in both the BAG- or
RISKEE-based security attack modeling approach), meaning that for all attack
goals, the defined thresholds on attack success probability or mean risk value
must lie within the defined bounds.

Performance and Power Consumption Calculation: The execution times
of the individual tasks depend on their component allocations, as each possible
implementation of a task on a given component comes with a distinct WCET.
Hence, the overall system performance depends on the selected components and
the task allocations. The system power consumption consists of the component’s
static power dissipation and their dynamic power consumption, induced by the
task implemented on them. Additionally, each component comes with a distinct
security performance and power overhead for each SM . For each secComm, the
framework adds the performance and power overhead of the SM used by the
secOpComm of tsrc and tdst to the tasks’ overall execution times and the com-
ponent’s power consumption, alike. For all tasks performing SecOp not included
in any secComm, the framework considers the performance and power consump-
tion overheads as well. The secComm must be considered separately, as a task
can be both tsrc and tdst in different secComm. Without this consideration, the

3 https://www.commoncriteriaportal.org/

– 143 –

Publication G - SAFECOMP 2020

6 L. Gressl et al.

number of SM executions would not be integrated into the security overhead
calculation correctly.o

Optimization of security calculation: The implementation of the frame-
work is based on the open-source DeSyDe framework4. The framework spends
its main computational effort calculating the attack probabilities (ap)/risks for
each partitioning and task allocation, as for every new allocation or component
selection, the BAG/RISKEE must be recalculated based on the altering attack
mitigation. The framework orders the components in descending order according
to their mitigation capabilities. In each calculation of the ap/risks, the frame-
work checks if any of the said ap/risks do not fulfill the predefined limits. Upon
reaching this break condition, the framework renders all further allocations on
components with lesser mitigation capabilities to be insecure. Both the RISKEE
and BAG based methods use the same graph structure. Hence, it is feasible to
make a comparison between both methods. Opposed to BAGs, in which attack
nodes can have multiple parents, the current design of RISKEE only considers
single path attack scenarios. Hence, to guarantee a similar structure of the at-
tack scenarios, the framework implements a graph-unwrapping method, turning
a BAG into a set of RISKEE trees representing said BAG.

4 Experiments and Results

Using the framework, an use case based on a secure ranging system targeted for
the consumer market was revisited. Table 1 describes the security rules defined
by the designer to model the security aspects of the use case. The set of OP
defines reading (r), writing (w) and storing (s) of data. The set of SecOp defines
encryption (soenc), authentication (soauth) and secure storage (sosst). The set of
SR defines confidentiality (conf), authenticity (auth) and integrity (int). The
set of security mechanisms (SM) defines cryptographic functionalities (smcrypt),
task encapsulation (smte) and tamper safe storage (smtss). The restriction of
internal holds if both tsrc and tdst of secComm are placed on the same hardware
component.

Table 1: Security rules defined to model security aspects of the use case
SecOp derived from OP and SR AT attacking SR SecOp using SM

OP, SR 7→ SecOp AT 7→ SR SecOp 7→ SM

(r ∨ w) ∧ conf 7→ soenc atinf 7→ conf soenc ∨ soauth 7→ smcrypt

(r ∨ w) ∧ auth 7→ soauth atspoof 7→ auth (soenc ∨ soauth) ∧ internal 7→ smte

s ∧ (auth ∨ conf ∨ int) 7→ sosst attamp 7→ int sosst 7→ smtss

The system consists of a ranging node and a ranging anchor. The node au-
thenticates to the anchor using a shared secret (master key) and setting up
a secure session (session key). Within this session, node and anchor perform
a two way ranging secured by a continually updated ranging key. The node
determines its distance to the anchor in a secure way, without comprising its

4 https://github.com/forsyde/DeSyDe

– 144 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 7

distance to potentially spying devices, or receiving faked ranging messages from
attackers. The functionality consists of two phases, the authentication and the
ranging phase, which is described by a task graph comprising 46 nodes. The
authentication phase uses an external radio (e.g., Bluetooth Low Energy), the
ranging phase uses ultra-wideband. Table 2 lists the security-relevant options
for the hardware components available for both the anchor and the node de-
vice, giving their estimated performance (Perf) and power consumption (PWC)
for their distinct SM . The devices consist of an application processor (AP), a
secure element (SE), and a UWB Radio (UR). The security options comprise
hardware supported cryptography (HW crypto), side-channel (sc) secured soft-
ware cryptography library (SW crypto-lib sc sec.), software-based but not tested
cryptography (SW crypto functional), Trusted Execution Environment (TEE)
and Trust Zone (TZ), secure storage (sec. store), and hardware firewall (HW
firewall). Only the SE offers secure storage.

Table 2: Hardware components with security options. Mitigation factor (MF),
performance (Perf) given in µs, and power consumption (PWC) in mW

HWC Security Feature Description MF
Perf PWC
smcrypt smtss smte smcrypt smtss smte

AP

HW crypto; TEE 0.8 50 / 5 60 / 5
SW crypto-lib sc sec., TEE 0.7 60 / 5 50 / 5
SW crypto-lib sc sec. 0.5 40 / / 50 / /
SW crypto functional 0.3 30 / / 30 / /

SE
HW crypto, sec store, (EAL 6+) 0.99 500 50 15 60 20 10
HW crypto, sec store, (EAL 5+) 0.95 500 50 15 60 20 10
HW crypto, sec store, (EAL 4+) 0.9 500 50 15 60 20 10

UR

HW crypto, TZ, HW firewall 0.8 80 / 15 50 / 10
HW crypto, TZ 0.7 80 / 5 45 / 5
HW crypto, 2 separate MCUs 0.85 80 / 20 50 / 10
SW crypto-lib sc sec., TZ 0.5 160 / 5 90 / 5
SW crypto functional 0.3 60 / / 30 / /

The attacks on the overall system comprise the disclosure of the key material,
faking the secure authentication, which builds on a challenge request-response
exchange, hijacking the ranging session, and compromising the exchanged rang-
ing frames. Security analysts modeled these attacks using 56 nodes, both for the
BAG and the RISK tree. Table 3 lists all security-relevant tasks as identified by
modeling the attack scenarios, including their SR and WCETs on the hardware
components on which system designers considered their implementations. Con-
fidentiality (c), authenticity (a) and integrity (i) were considered as SR. The
assessment of the attack success probabilities of the distinct attack steps for the
BAG and the vulnerabilities for the RISKEE based approach were estimated
using the Common Vulnerability Scoring System [15], using its Base Metrics

We used the described use case as input to the framework and configured it to
find the fastest, the most secure, the fastest secure, and most power-efficient and
secure solution, both using the BAG and RISKEE based method. The overall
system power consumption and performance was normalized. We assume that

– 145 –

Publication G - SAFECOMP 2020

8 L. Gressl et al.

Table 3: WCETs of security relevant tasks given in µs.

Device Task Name SR AP SE UR

Key create challenge c,a 100 150 -

Lock check challenge c,a 100 170 120

Key & Lock derive session key c,a,i 100 110

Key & Lock derive ranging key c,a - 190 140

Lock start session c,a 80 170 120

Key & Lock create secure nonce c,a - 120 200

Key & Lock create ranging message c,a 120 - -

Lock calculate distance c,a - 350 230

the described system performs distance-based access control. Hence, an attacker
breaking the session key temporarily gains access to the secured location and
might acquire the authorization to perform further criminal actions. Depending
on the secured location, a successful attack might enable the disclosure of secret
information, the theft of valuable items, or other critical actions. An attacker
who can also disclose the keyless entry system’s master key could perform such
an attack on multiple locations, depending on the key distribution policy.

Table 4: Most secure and fastest solution.
HWC Options (most secure) Options (fastest)

AP (node & anchor) HW crypto; TEE SW crypto functional

SE (node & anchor) EAL 6+ EAL 4+

UR (node & anchor) HW crypto; 2 separate MCUs SW crypto functional

avg ap / avg rv 0.0005 / 114.4$ 0.016 / 4911$

norm perf. ~2.57 1.0

Based on these considerations and a documented real-life incident5, risk ex-
perts set the impact of disclosing the system’s session key to 100.000$, the impact
of disclosing the master key to 10.000.000$. This estimation bases on the assump-
tion that with the session key, the attacker can only access one car temporarily.
However, with the master key, the attacker might gain access to multiple cars.
In this latter case, also the experts considered the reputational damage. They
set the frequency for disclosing the session key to 10, and the frequency for the
master key disclosure to 5 per year. We modeled these estimated impacts and
frequencies in the RISKEE based approach. One must note that the attacks’
vulnerabilities and the attack success probabilities are equal for the RISKEE
and BAG based approach. We set the maximum allowed risk value of 1.000$ for
all attack goals. For the BAG based method, we configured the framework to
regard all solutions, in which at least one attack goal’s attack success probabil-
ity exceeds the threshold of 0.002, as insecure. Table 4 describes the fastest, and
the most secure system architecture found by the framework. The table shows
that the framework can correctly identify optimal solutions based on distinct
optimization criteria.

5 https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/

– 146 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 9

Fig. 2: Solution space identified by the framework using the BAG based method.

Figures 2 and 3 show all solutions found by the framework based on their nor-
malized system performance, power consumption and the number of exceeded se-
curity goals for BAG and RISKEE based security constraint calculation, respec-
tively. Both the BAG and the RISKEE based method only consider a small num-
ber of solutions to meet their respective security constraints. Both approaches
found the same solution space. Out of 5.898.240, the RISKEE based method
only considered 320, the BAG 1.643 solutions to be secure. In comparison, the
RISKEE method reduced the solution space of a secure solution by another
80.52%. Considering the solutions found using the BAG and the RISKEE based
method, one must notice the difference in the selection of options for the distinct
hardware components. This difference only comes from the frequency and the
impact with which the risk experts considered the attacks on the key material
in the RISKEE based approach. The BAG based method does not reflect these
two attributes.

Figures 5 and 4 show the numbers of found solutions ordered by their average
attack success probability and average mean risk, respectively. One can see that
for the BAG based calculation, the majority of the found solutions (41.67%)
has an average attack success probability of less than a fourth (~0.0005) of the
solution with the highest attack success probability. Considering the RISKEE
based calculation, the majority of solutions (64%) identified by the framework
lies between 1406$ and 2700$ of the average mean risk value. For both calculation

– 147 –

Publication G - SAFECOMP 2020

10 L. Gressl et al.

Fig. 3: Solution space identified by the framework using the RISKEE based
method.

approaches, the framework found the least number of solutions (1.58% and 0.4%
respectively for BAG and RISKEE based approach) in the most insecure fourth
considering their average attack success probability/average mean risk.

Table 5 describes the fastest secure solution found by the BAG and RISKEE
method. Table 6 the most power-efficient secure solutions, given their average
attack probability and average mean risk. One must notice that for both the
secure solutions with optimal performance and power consumption, the RISKEE
based solution chooses options with higher security attack mitigation capabilities
than the BAG based approach, for both the SE and the AP of the anchor and
node device. The increased level of security chosen for the SE is due to the
high impact, with which the disclosure of the session key and the master key
comes. Said impact increases the influence of a successful key disclosure on the
average mean risk of the overall system dramatically. A similar result can be
seen when considering the most power-efficient and secure solutions, regarding
their average attack success probability and mean risk value, respectively. Also,
for this optimization criteria, the BAG based method chose less secure options
for the SE, but also for the node’s AP, compared to the RISKEE based method.

Based on these results, we observed that a risk-based analysis, such as pro-
vided by RISKEE, improves the level of detail with which one can model attack
scenarios. This higher granularity in the security constraints comes with addi-

– 148 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 11

Fig. 4: BAG based solutions found by the framework categorized according to
their average attack success probability. Stepsize of 9.95 ∗ 10−5

Table 5: Fastest secure solutions found based on average attack probability (avg
ap), average risk value (avg rv) and performance

HWC fastest secure (BAG) fastest secure (RISKEE)

AP (node & anchor) HW crypto; TEE HW crypto; TEE

SE (node) EAL 4+ EAL 6+

SE (anchor) EAL 4+ EAL 5+

UR HW Crypto, TZ, HW firewall HW Crypto, TZ, HW firewall

avg ap / avg rv 0.00069 199.5$

norm. perf. ~1.13 ~1.35

tional computational overhead. The use case scenarios were executed on a system
comprising 16 GB of RAM and a Intel® Core� i7-4600U CPU with 2.10 GHz.

Table 7 shows the results of assessing the framework’s scalability and the
computational overhead of calculating the security constraints using the BAG
and RISKEE based methods. We executed both methods with attack graphs
comprising 18, 37, and 56 attack nodes (AN), both with and without using the
break criteria for the calculation of secure solutions, as described in Section 3.
It includes the ratio between the execution times of the full security constraint
calculation and the optimized approach, both for the BAG and RISKEE based
calculation. For the BAG based method, one must notice that the break criteria
can speed up the calculation by ∼ 5% to ∼ 9%. For the RISKEE based method,
the calculation time is reduced by ∼ 50% to ∼ 70%. In general, one can see that
the RISKEE based method can capture more details for calculating security
constraints. However, its calculation takes ∼ 2.5 to ∼ 6.3 times longer, when

– 149 –

Publication G - SAFECOMP 2020

12 L. Gressl et al.

Fig. 5: RISKEE based solutions found by the framework categorized according
to their average mean risk. Stepsize of 31

compared to the BAG based method. The higher reduction of the computational
overhead for the RISKEE based method comes from the relatively higher risk
calculation delay induced by this method. Hence, the more risk calculation the
framework can skip, the higher the speedup of the overall calculation becomes.
This speedup also shows that the attack probability calculation using the BAGs
is much more efficient.

With the consumer device based use case presented in this section, we showed
the difference in the BAG and RISKEE based calculation of secure system solu-
tions. We showed that the additional information regarding an attack’s impact
and frequency, used in the RISKEE based approach, can lead to vastly different
results regarding the security constraints. This additional information leads to
more time-consuming computation. Considering the maximal calculation time
of the RISKEE based method (∼ 6h30min), a more efficient approach must be
found. For future work, we will develop a combination of BAG and RISKEE
based attack graphs.

5 Conclusion and Future Work

In this paper, we presented a DSE framework, which offers the designers to
model cybersecurity threats as BAGs or risk trees. Thereby, the DSE framework
automatically calculates a set of security constraints from these modeled security

– 150 –

7 Publications

Towards an Automated Exploration of Secure IoT/CPS Design-Variants 13

Table 6: Most power efficient and secure solutions found based on average attack
probability (avg ap), average risk value (avg rv) and power consumption (power
cons)

HWC most power eff. secure (BAG) most power eff. secure (RISKEE)

AP (node) SW crypto-lib sc sec.; TEE HW crypto; TEE

AP (anchor) SW crypto-lib sc sec.; TEE SW crypto-lib sc sec. TEE

SE (node) EAL 4+ EAL 6+

SE (anchor) EAL 4+ EAL 4+

UR (node) HW Crypto, TZ, HW firewall HW Crypto, TZ, HW firewall

UR (anchor) HW Crypto, TZ, HW firewall HW Crypto, TZ, HW firewall

avg ap / rv 0.00074 198.67$

power cons ~1.014 ~1.025

Table 7: Computational overhead for BAG and RISKEE based security con-
straint calculation for attack graphs with different number of attack nodes(AN)

of AN BAG (break) BAG RISKEE (break) RISKEE

18 502s 551s/1.09 2021s 3509s/1.74

37 1943s 2052s/1.05 3315s 5597s/1.69

56 8556s 9337s/1.09 15826s 23670s/1.5

attack scenarios and finds an optimal and secure system partitioning and task
allocation, with additional consideration of performance, power consumption,
and other constraints. Based on a commercial consumer device use case, we
showed the framework’s feasibility and the distinct methods’ scalabilities.

The approach’s main limitation is the source from which to draw the in-
formation about the attack success probabilities and the attack frequencies for
both BAG and RISKEE based calculation. At the moment, only security expert
knowledge serves as input. One must also consider the same limitation for the
assessment of the mitigation capabilities of hardware components. No method
has yet been published on how to rate a system’s ability to withstand security
attacks. Hence our assumptions for the component’s mitigation capabilities are
based on CC certifications. In future work, we will focus on proposing such a
method and on a combined calculation utilizing both the BAG and the RISKEE
approach within the DSE framework.

Acknowledgment

Project partners are NXP Semiconductors Austria GmbH and the Technical Uni-
versity of Graz. This work was supported by the Austrian Research Promotion
Agency (FFG) within the project UBSmart (project number: 859475).

References

1. Al-mhiqani, M.N., et al.: Cyber-Security Incidents : A Review Cases in Cyber-
Physical Systems. International Journal of Advanced Computer Science and Ap-
plications 9(1) (2018)

– 151 –

Publication G - SAFECOMP 2020

14 L. Gressl et al.

2. Ammann, P., et al.: Scalable, graph-based network vulnerability analysis. In: Proc.
of the 9th ACM Conf. on Computer and Communications Security (2002)

3. Feng, N., et al.: A security risk analysis model for information systems: Causal
relationships of risk factors and vulnerability propagation analysis. Information
Sciences (2014)

4. Gressl, L., et al.: Consideration of Security Attacks in the Design Space Exploration
of Embedded Systems. In: 2019 22nd Euromicro Conf. on Digital System Design
(DSD) (2019)

5. Gressl, L., et al.: A Security Aware Design Space Exploration Framework. In: Proc.
of the 14th Intern. Conf. on Systems ICONS 2019. ThinkMind(TM) Digital Library
(2019)

6. Hasan, M., et al.: A design-space exploration for allocating security tasks in multi-
core real-Time systems. Proc. of the 2018 Design, Automation and Test in Europe
Conference and Exhibition, DATE 2018 (2018)

7. Kang, E.: Design Space Exploration for Security. IEEE Cybersecurity Development
Design (2016)

8. Knerr, B.: Heuristic Optimisation Methods for System Partitioning in HW / SW
Co-Design. Ph.D. thesis, Vienna University of Technology (2008)

9. Krisper, M., et al.: RISKEE : A Risk-Tree Based Method for Assessing Risk in
Cyber Security. In: Proc. of EuroSPI 2019: European System, Software & Service
Process Improvement & Innovation (2019)

10. Li, L.W., et al.: Security-aware Modeling and Analysis for HW/SW Partitioning.
Proc. of the 5th Int. Conf. on Model-Driven Engineering and Software Development
(2017)

11. Nasser, M., et al.: Cyber-Security Incidents: A Review Cases in Cyber-Physical
Systems. Int. Journal of Advanced Computer Science and Applications 9 (2018)

12. Poolsappasit, N., et al.: Dynamic Security Risk Management Using Bayesian At-
tack Graphs. IEEE Transactions on Dependable and Secure Computing (2012)

13. Rosvall, K., et al.: Exploring power and throughput for dataflow applications on
predictable NoC multiprocessors. Proc. - 21st Euromicro Conf. on Digital System
Design, DSD 2018 (2018). https://doi.org/10.1109/DSD.2018.00011

14. Roudier, Y., Apvrille, L.: SysML-Sec - A Model Driven Approach for Designing
Safe and Secure Systems. Proc. of the 3rd Int. Conf. on Model-Driven Engineering
and Software Development (2015)

15. Schiffman, M.: Common Vulnerability Scoring System (CVSS). URL
https://www.first.org/cvss/v3.1/specification-document (2019)

16. Stierand, I., et al.: Integrating the security aspect into design space exploration of
embedded systems. Proc. of IEEE 25th Int. Symp. on Software Reliability Engi-
neering Workshops, ISSREW 2014 (2014)

17. Tamas-Selicean, D., Pop, P.: Design Optimization of Mixed-Criticality Real-Time
Embedded Systems. ACM Transactions on Embedded Computing Systems 14(3)
(2015)

18. Xie, Y., et al.: Security/Timing-aware Design Space Exploration of CAN FD for
Automotive Cyber-Physical Systems. IEEE Transactions on Industrial Informatics
(2018)

19. Yu, R., et al.: Deploying robust security in internet of things. 2018 IEEE Conf. on
Communications and Network Security, CNS 2018 (2018)

20. Zheng, B., et al.: Cross-Layer Codesign for Secure Cyber-Physical Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2016)

– 152 –

7 Publications

– 153 –

Publication H - CyberSA 2020

A Design Exploration Framework for Secure
IoT-Systems

Lukas Gressl∗, Alexander Rech∗, Christian Steger∗, Andreas Sinnhofer† and Ralph Weissnegger‡
∗Graz University of Technology

Institute of Technical Informatics, Inffeldgasse 16, A-8010 Graz
Email: {gressl}{rech}{steger}@tugraz.at
†NXP Semiconductors Austria GmbH

Mikron-Weg 1, A-8101 Gratkorn
Email: andreas.daniel.sinnhofer@nxp.com

‡CISC Semiconductor GmbH
Burgring 18, A-8010 Graz

Email: r.weissnegger@cisc.at

Abstract—Cybersecurity is vital for embedded systems, espe-
cially for Internet of Things (IoT) systems. IoT systems have
become essential in our daily lives, as they are usable for
various application areas. They are usually small, connected
with other systems, and perform a wide range of tasks. They
are subject to multiple constraints in terms of performance,
power consumption, chip area, etc. Attackers often target such
devices as they are in constant interaction with each other
or connected to the internet during private data processing.
Cybersecurity, thus, plays a vital role in the design of IoT
systems. Hence, designing secure IoT systems is a complex
task, particularly for designers with limited security know-how.
Security measures increase both computation time and power
consumption, creating a conflict between these constraints, which
must be solved by the designers. Balancing these constraints is a
highly complex task. In this paper, we propose a new approach
for considering security constraints in design space exploration,
including possible security attacks on embedded systems. The
method simplifies the consideration of security requirements at
the start of the system design. We introduce a security attack
based design space exploration framework, capable of finding
the optimal design for an IoT system, based on its architectural,
behavioral, and security attack description. The paper shows the
feasibility and benefits of the framework, employing a secure
sensor use case.

Index Terms—Cyber Security; Embedded System Design; IoT
Systems; Early System Design;

I. INTRODUCTION

The advent of Cyber-Physical Systems (CPS) and the In-
ternet of Things (IoT) with their utilization in the industry
opened a new attack surface for cybersecurity attacks. In
the last decade, scientists reported numerous cybersecurity
attacks on industrial facilities [1], [2]. This trend emphasizes
the need for considering cybersecurity attacks for CPS and
IoT systems. Security mechanisms, such as cryptographic
algorithms, cause additional performance overhead and power
consumption on the overall system. As industrial use cases
demand fast response times, and high energy efficiency on
the used CPS [3], system designers must consider the optimal
selection of security mechanisms throughout the whole design
phase. With these various and often opposing constraints,

finding an optimal system design becomes a complex task.
Classic Design Space Exploration (DSE) tools help designers
to find the optimal system partitioning and task scheduling
while considering power consumption and performance [4]–
[6]. Advanced DSE frameworks also offer the consideration
of security or safety constraints to a limited extent [7]–[12].

In this paper, we present a new approach for considering
security constraints in DSE. The framework we present in this
paper finds an optimal system partitioning and task scheduling
based on four inputs. (I) A graph-based description of the
system functionality. (II) A description of suitable architectural
components with their performance, power, security charac-
teristics, etc. (III) The security attack view contains various
possible attack scenarios described as Bayesian Attack Graphs
(BAGs). (IV) Security options available to the system to
counter the potential attacks. With these inputs, the framework
finds the solution with the lowest probability of successful
attacks, or the most power-efficient or fastest solution not
exceeding a predefined attack success probability. With our
approach, we make the following contributions. (I) The frame-
work presented here is the first to consider security constraints
based on BAGs during DSE, automatically suggesting security
mitigation techniques and key placement. (II) We show the
feasibility of the framework based on an industrial use case
on multiple layers, considering the design of a secure sensor
module, a control gateway, and an analysis platform. (III)
based on the results of the industrial use case, we suggest
components for a real-world implementation of the system.

The paper is structured as follows: Section II discusses
related work; Section III describes the modeling approach and
the framework’s implementation; Section IV discusses the use
case; Section V concludes this paper and gives an outlook on
future work.

II. RELATED WORK

Considering security attack scenarios in the design phase of
systems has been well studied in the field of network secu-
rity solutions. These modeling approaches use the attacker’s

– 154 –

7 Publications

view and formalize security attacks as graphs. The nodes in
such attack graphs represent distinct attack steps. The edges
represent the attack steps’ sequences and dependencies. By
attaching a success probability to each attack step in the graph,
a BAG can be formalized. The framework uses these BAGs to
calculate the success probability of the overall attack scenario.
Such BAGs build on expert knowledge or on historical data
describing security incidents [13], [14].

In addition to the standard DSE tools which focus on
performance, power consumption, system area, costs, etc.,
a range of industrial and scientific projects have been con-
sidering functional safety [15] and security constraints [7]–
[11], [16] during first stage system design. The DSE tools
focusing on security requirements either abstractly introduce
them or solve a particular problem at hand. DSE approaches,
which consider one distinct problem, such as the integration
of security surveillance tasks [8], throughput optimization for
authenticated messages on distinct bus systems [7], or the
integration of network security schemes [9], do not take into
account the whole design space of the overall system, as
opposed to the framework presented in here. Tools introducing
abstract security considerations during DSE put their focus
on the overall system design. These frameworks introduce
security constraints by preventing the mapping of security de-
manding tasks to insecure hardware [10], introducing security
mechanisms into industrial control loops [11], or mitigating
security attacks by including security functions at specific
points of the system design [12].

In contrast to the related projects described in this section,
the framework presented in this paper introduces security
constraints into automatic DSE based on attack scenarios
formulated as BAGs. Based on these attack scenarios, the
framework selects security functions capable of mitigating the
attacks, chooses the hardware components supporting these
security functions, and selects the right security keys for the
cryptographic algorithms. Thereby, the framework considers
the secure placement of used keys and the additional com-
putational overhead, power consumption, and costs induced
by the security functions. The framework introduces security
attacks and mitigation techniques on a detailed level, without
losing the overall view on the overall design space. It supports
designers in their decisions on what functionality to implement
on which architectural component and calculates its impact on
the security attack success probability based on the BAGs.

III. FRAMEWORK DESIGN AND IMPLEMENTATION

The framework’s design consists of several perspectives,
with which the designer can describe the system under design.
These perspectives and their integration are visualized in
Figure 1. The framework’s design builds on the work presented
in [17]. However, the design proposed here introduces more
modeling flexibility using security rules and spanning secure
channels between tasks, thus, making the framework usable on
multiple design layers for IoT systems. This section explains
the concept after which the framework was implemented,

providing details on the computationally exhaustive problem
the framework aims to solve, as well as its implementation.

Task Graph (I) and System Architecture (II): The de-
signers describe the system’s functionality as a task graph,
representing the tasks as graph nodes and their interactions
by the graph’s edges. Each task performs a set of operations
on a range of data entities, which come with distinct security
requirements (SR). This description allows a more accurate
modeling of the functionality. The system’s architecture is
described by hardware components connected by communi-
cation buses. Both hardware components and communication
buses are characterized by needed chip-area, costs, power
consumption, etc. Each hardware component is described by a
set of security capabilities (secCap) defining the components’
ability to support, for example, cryptographic algorithms,
task encapsulation, etc. The components’ vulnerability risk
(V R) describes the level with which the implementations of
these secCap have been verified. It defines the probability
of an attacker finding a weak spot in the security function’s
implementation, enabling him to bypass it. The worst-case
execution time (WCET) describes the performance of a task
implemented on a distinct hardware component [4]. Further-
more, each hardware component maps to a predefined device.
This device association determines the key placement.

Attack Graph (III) and Security Functions (IV): Network
security analysis widely employs security attack graphs. Each
node in the attack graph describes a distinct security attack
step, which might result from a preceding step and on which a
succeeding attack might follow. Adding the success probability
to each attack step allows the formulation of the attack graph
as a BAG. The BAG calculates the probability of an attacker
reaching its leaves using the Bayesian chain rule. These BAG
leaves are defined as attack goals and assigned a threshold that
determines the maximum probability with which the attacker
might reach it. Each attack node in the BAG aims at a victim
task in the task graph. An attack-type (at) further characterizes
each attack node. Attack goals may have a victim task and an
at. The at defines which SR of the victim task the attack aims
at, considering the data entities the task operates on [14], [18]–
[20]. The victim’s SR stem from a STRIDE analysis [21].

The security functions (secFunc) describe the set of secu-
rity options available to the DSE framework. Each secFunc
is described by its security type. This type maps the secFunc
to the at it can mitigate. For example, encryption mitigates
attacks aiming at the data’s confidentiality; authentication
prevents attacks compromising the data’s authenticity, etc.
Designers must also take into consideration that secFunc
themselves are targets for potential attackers. secFunc us-
ing cryptographic algorithms use secret keys. A key might
derive another key. Key disclosure attacks potentially expose
these keys. The framework reflects the key derivation in the
hierarchy of the key disclosure attacks, as breaking a key’s
parent key renders the derived key insecure. Adding the key’s
disclosure attack as a parent to the security function’s attack
reflects the dependency of a security function’s soundness

– 155 –

Publication H - CyberSA 2020

Fig. 1: The four perspectives from which the system under design is described. From these perspectives the framework tries
to find a secure platform partitioning and task allocation with optimal performance or power, depending on the designer’s
optimization goal. Tasks (t) operate (op) on data entities (D). Attacks (A) lead to an attack goal (AG). Security functions
(secFunc) use keys (KM), both targets to attacks.

on its used key. Cryptography is such a security function.
Depending on the key’s validity time and its utilization, the
designer defines the probability of a key disclosure attack. A
master key valid over the whole product’s lifetime (long term)
is a higher valued attack goal than a session key only valid for
a short period (short term). We use the Common Vulnerability
Scoring System (CVSS) to assess the success probabilities of
all the attacks aiming at tasks, security functions, and keys.
Thereby we rely on Base Metrics of the CVSS [22].
Task allocation and selection of security functions: The
framework uses the inputs of the four perspectives to select
the platform components, allocates the tasks, and selects the
secFunc to secure the data entities from potential attackers.
Depending on the configuration, the framework finds the solu-
tion with the best performance, the lowest power consumption,
with or without security consideration. The general allocation
of a task (t) on a hardware component (hwc) uses the WCETs
characterizing the execution time of said t allocated on the
hwc. The framework also ensures the general reachability of
the task allocations. The framework calculates the security
constraints of the system under design based on the data
entities’ SR, the tasks’ operations (op) on said data entities,
and the attack scenarios modeled by the BAGs.

In a first step, the framework calculates the security al-
location constraints by determining the security operations
(secOp) a task must execute to ensure its data entities’ SR,
depending on its op. Based on these secOp, the framework de-
fines what communication channels (secChan = (tsrc, tdst))

between tasks need to be secured. A secChan is spanned
between a source task (tsrc) and a destination task (tdst),
where both tasks perform the same secOp on a distinct
data entity. Such a secChan can be internal (int), if both
tasks are mapped to the same hwc, or external (ext), if they
are mapped to different hwc. The dependencies between op,
SR, secOp, etc. are defined by the system designers and
provided to the framework in form of rules. These rules
consist of inputs combined with Boolean operators, mapping
to outputs (for example ina ∧ inb 7→ outc). Table I lists the
rules applied for the case study presented in here. The op
comprise writing (w), reading (r) and storing (s); SR comprise
confidentiality (src), authenticity (sra) and integrity (sri);
secOp comprise encryption (soe), authentication (soa) and
tamper safe storage (sot); attack types comprise information
disclosure (ati), spoofing (ats) and tampering (att); secFunc
comprise the usage of cryptographic algorithms (sfcrypt), task
encapsulation (sfte) and secure storage (sfss); secCap com-
prise the support of cryptography (sccrypt), task encapsulation
(scte) and the tamper safe storage of data (sctss).

Resulting attack graph: From each resulting mapping (hwc
selection and task allocation) rendered to fulfill the security
allocation constraints, the framework builds the BAG graph,
considering the additional attacks on single secFunc and the
used keys. For each mapping, the framework determines the
possible keys used for securing the distinct secChan. The
hwc selection, as well as the key’s validity time and device

– 156 –

7 Publications

TABLE I: Security rules used in the use case study

op, sr 7→ secOp at 7→ sr

(r ∨ w) ∧ src 7→ soe ati 7→ src
(r ∨ w) ∧ sra 7→ soa ats 7→ sra
s ∧ (src ∨ sra ∨ sri) 7→ sot att 7→ sri

secOp 7→ secFunc secFunc 7→ secCap
(soe ∨ soa) ∧ ext 7→ sfcrypt sfcrypt 7→ sccrypt
(soe ∨ soa) ∧ int 7→ sfte sfte 7→ scte
sot 7→ sfss sftss 7→ sctss

restriction, determine the utilization of the keys. The device
restriction makes said keys usable only for secChan with
their tsrc and tdst allocated on a hwc belonging to the same
device. The validity time further restricts the utilization of
the keys. Only secChan of which both tsrc and tdst map
to hwc supporting sctss can use long term keys. The same
restriction holds for short term keys derived from long term
keys. If derived from long term keys, both devices allocating
tsrc and tdst must contain an hwc supporting sctss and a
secure connection must be possible between this hwc and the
hwc allocating tsrc and tdst, respectively.

The framework uses the selected keys and secFunc com-
binations to add the respective attack nodes to the original
BAG. Thereby, the framework adds the attacks aiming at the
secFunc as parents to the attacks targeting the tasks using
them. It extends the original attack’s conditional distribution
table in such a way that the potential attacker can perform
this original attack only after successfully attacking the added
secFunc attacks. The framework only adds security function
attacks as parents, if the security function is capable of
mitigating the initial attack. It adds the attack aiming at the
key used by the security function as a parent to the attacks
on said secFunc. This extension modifies the conditional
distribution table of the security function’s attack node in such
a way that a successful attack on the used key also breaks
the security function itself. The framework adds the attack
on the parent key to the attack of the derived key in the
same way. Depending on the task mapping, the V R of the
allocating hwc reduces the attack success probabilities of both
attacks on the secFunc and keys, multiplying the conditional
probabilities with V R. The resulting BAG is used to calculate
the unconditional success probabilities of the attack goals.
The framework marks the mapping as secure if the success
probabilities of all attack goals are below their respective
thresholds. Otherwise, it marks it as insecure.
Framework implementation: The framework is implemented
based on the DeSyDe framework publicly available at Github1.
The DeSyDe framework finds the performance or power
optimal solution for a platform selection and task allocation.
It uses a constraint programming approach, delivering exact
solutions. The extensions described in this paper introduce
security constraints, which reduce the design space for finding
the performance/power optimal solution upfront. The calcula-
tion of the security constraints is computationally expensive as

1https://github.com/forsyde/DeSyDe

the framework must perform a recalculation for every possible
mapping of an attacked task to hwc. Hence, the framework
must perform O(n(m∗k)) recalculations, with n being the
number of attacked tasks, m being the number of hwc, and k
being the number of keys usable to the supported secFunc.

The framework aims at reducing the number of recalcula-
tions. It orders the hwc according to their V R and the available
keys considering their unconditional attack probability, in
an ascending way. Using these ordered sets, the framework
checks, after each permutation of task mapping and key usage,
if all attack goal thresholds hold. If all goals exceed their
thresholds, the framework skips the attack goal calculation for
all succeeding mappings and key usages, respectively, as no
further secure solutions are to be expected. Section IV shows
the impact of using these break criteria.

The performance calculation for a solution is based on
the WCETs of the tasks allocated on the selected hardware
components (wcetthwc). To these WCETs, the framework
adds the bus delay caused by the data entities sent over
the communication buses. The data entity’s size (lend) is
multiplied with the transmission delay (delaytx) of the used
bus (delaycomm = lend∗delaytx). The security overheads are
either given as overall execution time, or as a delay per bit of
secured data. These security overheads (delaysec) of the used
hardware components are added to the overall performance
delay, based on the used secFunc. The overall system delay
is the sum of the communication delay, the security delay, and
the tasks’ WCETs (delaysys =

∑
delaycomm+

∑
delaysec+∑

wcetthwc). The power consumption is calculated using
static pwrstat and dynamic power (pwrdyn) consumption. The
pwrdyn depends on the WCETs of the tasks executed on
the distinct hwc. Furthermore, the framework adds the power
needed by the secFunc (pwrsec), and consumed power for
each bus transmission (pwrsys =

∑
pwrdyn ∗ wcetthwc +∑

pwrstat +
∑

pwrsec). The influence of the delay and
additional power consumption induced by the various secCap
is shown in Section IV.

IV. USECASE STUDY

In the use-case study, an industrial sensor system was
designed considering different possibilities for the system
realization. The system comprises a sensor device, a sensor
controller gateway, and an analysis server (AS). The sensor
comes with a sensing module, an optional microcontroller
(MCU), a Bluetooth Low Energy (BLE) radio, and a secure
element (SE). The sensor’s functionality implemented on the
MCU can also be entirely realized on the SE. The sensor
controller gateway consists of an MCU, a BLE chip, a WiFi
radio, and an optional SE. The data analysis is performed on
a server, either implemented on a Hardware Secure Module
(HSM), a commonly used server with HSM support (HSM
supp.), or a server with limited security extension (lim.-sec.),
only offering software-based cryptography (SWC). The HSM
offers hardware-based cryptography (HWC), a task encapsu-
lation (te) in the form of a trust-zone (TZ), and a tamper safe
storage (tss). The SE offers HWC, TZ, and tss, either with the

– 157 –

Publication H - CyberSA 2020

TABLE II: The different options to use for the SE, the MCU,
and the server with their security overhead.

HWC Sec. Op. VR Security Overhead

SE
EAL5+ 0.2 tss(40Mb/s), te (10µs)

sym(500Mb/s), asym(120ms)

EAL6+ 0.1 tss(20Mb/s), te (10µs)
sym(400Mb/s), asym(150ms)

MCU sec.-enh. 0.25 te (10µs)
sym(600Mb/s), asym(150ms)

lim.-sec. 0.4 sym(1.2Gb/s), te(5µs)

Server

HSM 0.1 tss (20Mb/s), te (10µs)
sym(800Mb/s), asym(150ms)

HSM supp. 0.2 tss (20Mb/s), te (5µs)
sym(1Gb/s), asym(120ms)

lim.-sec. 0.75 sym(1.2Gb/s), te(5µs)

TABLE III: The different options to use for the SE and the
MCU with their power consumption.

HWC Sec. Op. Power Consumption

SE EAL5+ tss(30mW), te(5mW), sym(60mW), asym(300mw)
EAL6+ tss(30mW), te(5mW), sym(70mW), asym(400mw)

MCU sec.-enh. te(5mW), sym(50mW) asym(250mW)
lim.-sec. sym(35mW), te(5mW)

Server
HSM tss(50mW), te(20mW), sym(120mW), asym(600mw)
HSM supp. tss(50mW), te(10mW), sym(100mW), asym(600mw)
lim.-sec. te(5mW), sym(80mW)

Common Criteria2 evaluation assurance level (EAL) 5+ or 6+.
The sensor’s MCU comes with a security enhancement (sec.-
enh.) in the form of an HWC and a TZ or with lim.-sec. The
lim.-sec. comprises cryptography realized as SWC and HWC
(both realizations come without side-channel protection) and
a TZ. All other variants of HWC are side-channel protected.
The different variants are listen in table II and table III. In
both tables, the security overheads and power consumption
were estimated based on [23]–[25].

The functionality of the overall system setup consists of
different phases executed consequently:

1) Configuration phase: During the configuration phase,
the sensor is configured and activated via the sensor
controller gateway.

2) Sensor data accumulation phase: In the data accumula-
tion phase, the sensor gathers information and sends it to
the sensor controller gateway, which filters the received
sensor information and executes application-dependent
operations.

3) Data analysis and monitoring phase: In the data analysis
phase, the gateway sends the filtered data to the analysis
server, which processes and monitors the data.

A task graph consisting of 27 tasks describes these phases.
Attacks on the system encompass the compromising of the
sensor configuration, the faking of the sensor activation mes-
sage, the manipulation of the accumulated sensor data, the
faking of the filtered data, and the disclosure of the analyzed
data.

The framework selects from a range of secFunc and secret
keys to mitigate these attack scenarios. Table IV lists the

2https://www.commoncriteriaportal.org/

TABLE IV: Security functions and key material used by the
system. The attack success probability reflects the attacker’s
motivation.

Security Function Key Attack Success Probability

Cryptography

Master Key 0.4
Binding Key 0.25
Session Key 0.1
Certificate 0.4

Task Encapsulation / 0.25
Secure Storage / 0.25

available secFunc, including the probability of them being
successfully attacked (AP), based on the secret keys they use.
The keys comprise (i) a symmetric master key (smk) with
AP of 0.25, (ii) a binding key (sbk) with AP of 0.15, (iii)
a session key (ssk) with AP of 0.1, derived from the smk,
and (iv) a certificate (cert) used for asymmetric cryptography
with an AP of 0.25. The AP for both security functionality
(Table IV) and the secret keys were estimated based on
assuming that neither the security function nor the keys reside
on a component offering any means of attack mitigation.
Said mitigation depends on the capability of the hardware
component implementing the security functionality. The used
keys and the information about what the attacker gains by the
attack further influence the AP, and, hence, the attacker’s mo-
tivation. Naturally, the more impact a key’s disclosure has, the
greater the attacker’s motivation, and, hence, the disclosure’s
attack success probability. For example, successfully breaking
encryption based on a long term key has a greater impact than
breaking a short term key-based encryption, simply caused by
the keys temporal validity. The same assumptions were made
when estimating the APs on the disclosure of the secret keys
themselves.

To better show the influence of the secure data handling
on the found solutions, an alternate use case, in which the
sensor controller gateway forwards the unfiltered sensor data,
was evaluated. This alternative use case is based on the
same platform components, secFunc and key material as the
base use case. Its only difference is, that the sensor gateway
forwards the received sensor data, instead of filtering it. Hence,
the sensor gateway does not perform any means of security
mechanisms on the received data. The impact caused by this
additional security handling is explained in the next paragraph.

Figures 2a shows the solutions found by the framework
for the use case in which the gateway filters the sensor data
before being sent to the analysis server (use case I). Figure
2b shows the solutions for the use case in which the sensor
data is simply forwarded (use case II). For use case I, the
framework identifies more insecure solutions regarding the
number of broken goals. Additionally, the solutions found
to be secure have slower overall performance than compared
to the solutions found for use case II. The filtering of the
sensor data necessitates the secure handling of the sensor
data by the sensor controller gateway in use case I, inducing
additional security overhead. Figure 3 shows the influence
of the additional security handling induced by filtering the
sensor data on the controller gateway on the number of

– 158 –

7 Publications

(a) All solutions found for use case I according to their normalized
performance and their average attack success probability, colored
according to the number of exceeded attack goal thresholds.

(b) All solutions found for use case II according to their normalized
performance and their average attack success probability, colored
according to the number of exceeded attack goal thresholds.

Fig. 2: Solutions found for the two variants of the secure sensor
use case.

found solutions and their average attack success probabilities.
For use case II, the framework finds solutions with a lower
average attack success probability. This effect is caused by
the additional attack surface when filtering the sensor data on
the sensor controller gateway in use case I, which requires the
decryption of the sensor data and the encryption of the filtered
sensor data. This additional step opens another attack surface
that needs to be mitigated by the system. The smaller number
of found solutions in use case II is caused by the missing tasks
describing the sensor data filtering process, which reduces the
number of possible task mappings.

Table V shows the most secure system configuration, and
the system configuration with the highest performance for use
case I. For the most secure system realization, the framework
places all security-relevant tasks of the sensor on the SE, none

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Avg. attack success probability

101

102

103

104

105

Nr
. o

f s
ol

ut
io

ns

Use case I
Use case II

Fig. 3: Number of solutions categorized by average attack
success probability for use case I and II. Stepsize of 8.1∗10−6

TABLE V: Fastest and most secure solutions found based
on average attack probability (avg ap) and execution time
normalized to the system with the fastest execution for use
case I.

Device HWC Most secure Fastest

Sensor MCU / lim.-sec.
SE EAL 6+ EAL 5+

Gateway MCU sec.enh. lim.-sec.
SE EAL 6+ EAL 5+

AS Server HSM lim.-sec.
avg ap 0.011 0.066
norm delay ~1.4 1.0
norm pwr. ~1.4 ~1.31

Key Placement

Sensor MCU / ssk, sbk
SE ssk, smk, cert sbk, smk, cert

Gateway MCU ssk, sbk ssk, sbk
SE sbk, smk, cert sbk, smk, cert

AS Server ssk, smk, cert ssk, smk, cert

are implemented on the MCU. The fastest solution uses the
components with the fastest (but most vulnerable) security
mechanisms. Both solutions use the ssk for securing the
exchanged data. Furthermore, the fastest solution relies on
using the sbk for securing the communication within the single
devices (sensor, sensor controller gateway, server platform).
The system configuration with optimal performance puts as
many tasks on the same hardware component as possible.
Hence, this solution uses task encapsulation to secure the
intra-component-communication, saving security overhead for
cryptographic algorithms.

Table VI lists the options selected for the hardware compo-
nents to get a performance optimal and secure solution for use
cases I and II. The main difference lies in the selection of the
SE for both sensor and sensor controller gateway. In use case
II, the controller gateway does not filter the sensor data. Hence,
the framework selects a SE with higher vulnerability risk (but
faster security mechanisms) than for use case I. Both solutions

– 159 –

Publication H - CyberSA 2020

TABLE VI: Fastest secure solutions found based on average
attack probability (avg ap) and performance normalized to the
system with the highest performance for the use case I and II.

Device HWC Use Case I Use Case II

Sensor MCU sec.-enh. sec.-enh.
SE EAL 6+ EAL 6+

Gateway MCU sec.-enh. sec.-enh.
SE EAL 6+ EAL 5+

AS Server HSM supp. HSM supp.
avg ap 0.015 0.014
norm delay ~1.26 ~1.22
norm pwr. ~1.39 ~1.28

Key Placement

Sensor MCU ssk, sbk ssk, sbk
SE sbk, smk, cert sbk, smk, cert

Gateway MCU ssk, sbk ssk, sbk
SE sbk, smk, cert sbk, smk, cert

AS Server ssk, smk, cert ssk, smk, cert

for use cases I and II rely on the usage of ssk for securing
the communication between sensor, gateway, and server. The
framework was executed on a system comprising 16 GB of
RAM and a Intel® Core™ i7-4600U CPU with 2.10GHz. The
computational overhead for finding all secure solutions was
reduced from ~2h56min to ~1h32min for use case I, when
using the break criteria based optimization. Hence, using the
break criteria saved ~47% of execution time. For use case II
the break criteria saved ~35% of execution time, reducing the
calculation from ~2h34min to ~1h40min.
Potential System Realization:

A possible system solution, including the description of its
components, the hardware, and the communication protocols,
is discussed based on the three system setup phases presented
before. The system realization further extends the application
setup to meet the requirements of a typical secure sensor use
case implemented within a climate control system. The use
case includes the measurement of temperature values, the task
of controlling actuators (heating and cooling system), and the
analysis of the data collected on the cloud level. Fig. 4 gives
an overview of the overall setup.

In our scenario, one or several sensor devices monitor a
certain area. They constantly measure the temperature, en-
crypt the data, and forward it wirelessly to a nearby sensor
control gateway. Bluetooth Low Energy (BLE) could be used
as a short-range wireless protocol to enable communication
between sensor devices and the gateway. BLE benefits IoT
applications, especially due to its power-saving design and
robustness against obstacles. Additionally, BLE features dif-
ferent security options on the link layer. Examples are the
Elliptic Curve Diffie-Hellmann P-256 (ECDH) key exchange
algorithm and AES-CCM 128-bit encryption utilized during
the pairing procedure of two devices. After the gateway re-
ceived the data packages, they are processed and interpreted by
it. Depending on the actual value of the temperature readings,
corresponding actuators can be triggered, if the temperature
falls/rises below/above a certain threshold, the heating/cooling
system is turned on or off. Eventually, the data is uploaded
to the analysis server by the gateway. HTTPs offers a secure

Fig. 4: Possible system setup consisting of one or multiple
sensor devices, a sensor controller gateway, and an analysis
server.

way for this upload. The connection remains private due to
the transport layer security (TLS) protocol. In this sense, the
protocol provides data integrity and confidentiality via sym-
metric encryption (DES, AES, etc.) and ensures authenticity
through asymmetric cryptography (RSA, ECC in combination
with PKI). A possible hardware setup that is compatible with
the described distributed application, as well as the mentioned
wireless protocols are listed in the following:
Sensor Controller Gateway: The gateway utilizes a Rasp-
berry Pi 3 (Model B) as the host controller for the gateway
device. The Raspberry Pi offers BLE 4.2 functionality as
well as an integrated WiFi module and the possibility to be
extended with a GSM module for online access. To match
our use case, the host board connects to a SE. We propose
the A71CH plug and trust chip from NXP Semiconductors,
specifically designed for IoT devices. It provides a root of trust
at the IC level and delivers different chip-to-cloud security
features. This SE is useful for provisioning embedded devices,
for instance. In order to facilitate the integration procedure of
the A71CH chip, a potential setup could foresee the usage of
the A71CH Mini PCB board (OM3710/A71CHPCB). An I2C
interface connects the host controller (Raspberry Pi) and the
SE (A71CH Mini PCB board).
Sensor Device: The sensor devices also integrate the A71CH
secure element. Different host controller options are possible
since the A71CH chip is compliant to any NXP MCU/MPU
development board with Arduino compatible header, including
i.MX, Kinetis, and LPC boards. In order to guarantee full BLE
compatibility with the sensor controller gateway, the sensor
devices use BLE chips of version 4.2 or higher.We further
propose the usage of the temperature sensor DS18B20.
Analysis Server: The analysis server utilizes an Amazon
EC2 instance. For the functionality requiring an HSM, the

– 160 –

7 Publications

TABLE VII: Overview on what and how devices use the
symmetric keys and asymmetric certificates.

Key Usage Example Components
Master Key Root of trust SE
Binding Key Secure SPI channel SE � MCU

Session Key Encrypt BLE channel sensor � gateway
Encrypt HTTP channel gateway � server

Certificate BLE key exchange sensor � gateway
TLS Authentication gateway � server

server uses the AWS CloudHSM. It is a cloud-based hardware
security module that enables the creation and management of
cryptographic keys on the AWS cloud. The application on
the server connects to the HSM using mutually authenticated
SSL channels that are established by the client software of the
HSM.

Last but not least, Table VII extends Table IV by showing
all key types and mapping them to a specific usage example
including all active components. The master key is our long
term key and acts as the root of trust. Furthermore, while the
binding key may secure the local SPI channel of a device,
the session keys could be used to encrypt either a BLE or
an HTTP channel. Additionally, the asymmetric key inside
the certificate enables the key exchange mechanisms and
authentication/authorization procedures.

V. CONCLUSION AND FUTURE WORK

This paper presents a security-based DSE framework, which
considers security attacks, security requirements, and key
material placement. The paper shows that the framework is ca-
pable of finding the security optimal, secure and performance-
optimal or secure and power-optimal solution, considering a
secure system partitioning, task allocation, security function-
ality selection, and key material placement. The evaluation
shows that the framework is capable of finding optimal so-
lutions in a large and complex system design space. Within
the use case evaluation, a possible system realization, based on
the solutions found by the framework, was designed. A known
limitation to the framework is its reliance on security expert
knowledge for assessing the attack scenarios and security
vulnerability risk of the utilized hardware components. The
security assessment performed for the use case presented
here used a Common Criteria based approach as a basis for
security estimations. In future work, a special focus will lie
on an integrated security assessment method considering said
vulnerability risks and attack probabilities. Future work will
extend the framework to also consider the usage of different
secure channel protocols and their distinct message overheads.
Last but not least, based on blinded for review, the set of
possible use cases will be extended by involving different
communication participants, paying special focus to end-to-
end security methodologies, and integrating different authen-
tication and authorization schemes in a distributed context.

ACKNOWLEDGMENT

Project partners are NXP Semiconductors Austria GmbH,
CISC Semiconductor and Graz University of Technology.

This work was supported by the Austrian Research Promo-
tion Agency (FFG) within the project STIP (project number:
867914).

REFERENCES

[1] M. N. et al. Al-mhiqani. Cyber-Security Incidents : A Review Cases in
Cyber-Physical Systems. 9(1), 2018.

[2] Chih Ta Lin et al. Cyber attack and defense on industry control systems.
2017 IEEE Conf. on Dependable and Secure Computing, 2017.

[3] Lorenzo Pagliari et al. Multi-modeling Approach to Performance
Engineering of Cyber-Physical Systems Design. Proc. of the IEEE Int.
Con. on Engineering of Complex Computer Systems, ICECCS, 2018.

[4] Kathrin Rosvall et al. Throughput Propagation in Constraint-Based
Design Space Exploration for Mixed-Criticality Systems. Proc. of
the 9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools - RAPIDO ’17, 2017.

[5] Bastian Knerr. Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design. PhD thesis, Vienna University of Technology,
2008.

[6] Kathrin Rosvall et al. Exploring power and throughput for dataflow
applications on predictable NoC multiprocessors. Proc. - 21st Euromicro
Conf. on Digital System Design, DSD 2018, 2018.

[7] Yong Xie et al. Security/Timing-aware Design Space Exploration of
CAN FD for Automotive Cyber-Physical Systems. IEEE Trans. on
Industrial Informatics, 2018.

[8] Monowar Hasan et al. A design-space exploration for allocating security
tasks in multicore real-Time systems. Proc. of the 2018 Design,
Automation and Test in Europe Conf. and Exhibition, DATE 2018, 2018.

[9] Eunusk Kang. Design Space Exploration for Security. IEEE Cyberse-
curity Development Design, 2016.

[10] Ingo Stierand et al. Integrating the security aspect into design space
exploration of embedded systems. Proc. - IEEE 25th Int. Symposium
on Software Reliability Engineering Workshops, ISSREW 2014, 2014.

[11] Bowen Zheng et al. Cross-Layer Codesign for Secure Cyber-Physical
Systems. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 2016.

[12] Letitia W. Li et al. Security-aware Modeling and Analysis for HW/SW
Partitioning. Proc. of the 5th Int. Conf. on Model-Driven Engineering
and Software Development, 2017.

[13] Nan Feng et al. A security risk analysis model for information sys-
tems: Causal relationships of risk factors and vulnerability propagation
analysis. Information Sciences, 2014.

[14] Nayot Poolsappasit et al. Dynamic Security Risk Management Using
Bayesian Attack Graphs. IEEE Transactions on Dependable and Secure
Computing, 2012.

[15] Tma-Selicean, Domiian and Pop, Paul. Design Optimization of Mixed-
Criticality Real-Time Embedded Systems. ACM Trans. on Embedded
Computing Systems, 2015.

[16] Yves Roudier and Ludovic Apvrille. SysML-Sec - A Model Driven
Approach for Designing Safe and Secure Systems. Proc. of the 3rd Int.
Conf. on Model-Driven Engineering and Software Development, 2015.

[17] L. Gressl et al. Consideration of Security Attacks in the Design Space
Exploration of Embedded Systems. In 2019 22nd Euromicro Conf. on
Digital System Design (DSD), 2019.

[18] Erik Miehling et al. Optimal defense policies for partially observable
spreading processes on bayesian attack graphs. In Proc. of the 2nd ACM
Workshop on Moving Target Defense, 2015.

[19] Xiaoyan Sun et al. Using Bayesian Networks for Probabilistic Identifi-
cation of Zero-Day Attack Paths. IEEE Trans. on Information Forensics
and Security, 2018.

[20] Vivek Shandilya et al. Use of attack graphs in security systems. Journal
of Computer Networks and Communications, 2014.

[21] Shawn Hernan et al. Uncover security design flaws using the
stride approach (2006). URL http://msdn. microsoft. com/en-
gb/magazine/cc163519. aspx, 15.

[22] M. Schiffman. Common Vulnerability Scoring System (CVSS). URL
https://www.first.org/cvss/v3.1/specification-document, 2019.

[23] Tobias Schläpfer and Andreas Rüst. Security on IoT Devices with Secure
Elements.

[24] Sharon Levy. Performance and Security of ECDSA. pages 1–4.
[25] Litty Raju and Manickam Sumathi. Secured High Throughput of 128-bit

AES Algorithm based on Interleaving Technique. (January), 2015.

– 161 –

7 Publications

Towards Security Attack and Risk Assessment
during Early System Design

Lukas Gressl∗, Michael Krisper∗, Christian Steger∗ and Ulrich Neffe†
∗Graz University of Technology

Institute of Technical Informatics, Inffeldgasse 16, A-8010 Graz
Email: {gressl}{michael.krisper}{steger}@tugraz.at

†NXP Semiconductors Austria GmbH
Mikron-Weg 1, A-8101 Gratkorn

Email: ulrich.neffe@nxp.com

Abstract—The advent of the Internet of Things (IoT) and
Cyber-Physical Systems (CPS) enabled a new class of smart
and interactive devices. With their continuous connectivity and
their access to valuable information in both the digital and
physical world, they are attractive targets for security attackers.
Hence, with their integration into both the industry and consumer
devices, they added a new surface for cybersecurity attacks. These
potential threats call for special care of security vulnerabilities
during the design of IoT devices and CPS. The design of secure
systems is a complex task, especially if they must adhere to
other constraints, such as performance, power consumption, and
others. A range of design space exploration tools have been
proposed in academics, which aim to support system designers
in their task of finding the optimal selection of hardware
components and task mappings. Said tools offer a limited way
of modeling attack scenarios as constraints for a system under
design. The framework proposed in this paper aims at closing
this gap, offering system designers a way to consider security
attacks and security risks during the early design phase. It offers
designers to model security constraints from the view of potential
attackers, assessing the probability of successful security attacks
and security risk. The framework’s feasibility and performance
is demonstrated by revisiting a potential system design of an
industry partner.

Index Terms—Cyber Security; Embedded System Design; Se-
cure IoT Systems; Design Space Exploration; Secure Embedded
Consumer Devices

I. INTRODUCTION

The Internet of Things (IoT) is continuously revolutionizing
both industry and commercial products. It offers the interaction
of various devices, making them accessible to the Internet.
However, the great benefits offered by the IoT make its devices
susceptible to cyber-security attacks. Since its advent, reports
have described numerous exploits caused by IoT devices
[1], [2]. Designing secure IoT devices has, hence, become
a necessity. IoT devices, embedded into larger systems, usu-
ally come with a multitude of non-functional requirements,
such as timing constraints, limited power dissipation, etc.
Security hardening of IoT devices generally conflicts with
these requirements [3]. Finding an optimal design satisfying
all requirements means solving a multi-objective optimization
problem. Design space exploration (DSE) tools aid designers
in this complex task during the early system design [4]–[6].

This paper describes a tool capable of finding secure sys-
tem solutions considering constraints such as performance,
power consumption, etc. It performs a selection of hardware
components and task allocation, satisfying the non-functional
requirements posed by the designer. Thereby, it allows the
designer to model the security constraints as an attack tree,
a risk tree, or a combined attack and risk tree. The main
contributions are: (i) It describes the first DSE tool to offer the
modeling of security constraints as Bayesian Attack Graphs
(BAGs), risk trees (RISKEE), and a combination of both
representations. (ii) It shows the costs and benefits of these
approaches using the design of a secure access system.

The paper contains the following sections: Section II de-
scribes related work. Section III describes the tool’s design
and implementation. Section IV discusses the use case and
shows the impact of the distinct security modeling approaches,
considering the found solutions and the execution times.
Section VI concludes the paper.

II. RELATED WORK

Classic DSE tools support system designers by performing
task allocations and hardware component selections to satisfy
constraints, such as system delay, power consumption, etc. [7],
[8]. There exists a range of works in the context of DSE,
putting their focus on cybersecurity requirements. Several
works in this category focus on distinct problems. Xie et
al. consider message authentication codes (MACs) transferred
via a Controller Area Network. They optimize the packet
sizes transferring the messages and their MACs to meet a
global communication delay optimum [5]. Hasan et al. solve
the problem of integrating security surveillance tasks into
an existing task schedule without breaking existing timing
constraints. Other works abstractly consider the integration of
cybersecurity requirements. Roudier and Apvrille presented
a framework that allows designers to integrate security and
safety functions into early system design. The framework
considers these functions during its DSE, optimizing its so-
lutions to satisfy security and safety constraints in addition
to timing- and power-consumption-constraints, etc. [9]. Zheng
et al. integrate security constraints into the design of cyber-
physical systems performing control-theoretic operations [10].

– 163 –

Publication I - Cyber Security 2020

The frameworks discussed in this section either lack the
holistic view on the system or loose too many details for
considering security constraints during the early design phase.
Furthermore, none of the frameworks considers the attacker’s
view of the system under design. The tool presented here
aims at closing this gap. It allows the designers to model
security requirements as Bayesian attack graphs (BAGs), risk
trees, or a combination of both representations. Latter two
descriptions allow the further weighing of security risks and
their mitigation costs. Furthermore, it supports designers to
model security mechanisms used to mitigate the modeled at-
tacks. These mechanisms induce additional timing- and power-
consumption-overheads, etc. This additional overhead is con-
sidered by the tool when calculating the system performance,
power consumption, etc., allowing the designer to perform an
assessment of the costs and benefits of each solution.

A range of works has been studying BAGs, mostly in the
domain of security analysis for networks. These BAGs split
attack scenarios into distinct steps, represented as nodes in
the graph. Each node contains the likelihood of successfully
performing its represented attack step [11], [12]. The recently
presented RISKEE approach models cyber-security in the form
of a risk tree [13].

III. MODELING APPROACH AND CONSTRAINT
CALCULATION

The framework spans a design space based on the
functional-, architectural-, and attack-descriptions. System de-
signers provide these descriptions. Based on these inputs, the
framework derives the security constraints, performs different
task mappings and hardware component selections, and calcu-
lates the distinct system design solutions. This section gives
details about the input modeling and the solution calculations.
The tool is based on [14] but allows for a more open represen-
tation of the relationship between tasks, hardware-components,
and attacks. The main differences include the freely adaptable
rule set defining the dependencies among the distinct input
descriptions and its integration of a risk-based calculation of
security constraints, introducing a combined approach using
both BAGs and risk trees.
Functional description: The tool supports the description of
the system’s functionality in the form of a task graph. In this
graph, every node represents a distinct task, its edges the
sequence of their execution. Each task in the graph might
perform operations on a set of data entities. These data
operations (O) comprise the transmission (tx), reception (rx),
writing (w), reading (r) and storing (st) of the data entities.
The data entities come with distinct sizes.
Architecture description: The architectural description com-
prises hardware components connected via communication
buses. The system designers describe the hardware compo-
nents and communication buses with classic characteristics,
such as static and dynamic power consumption, etc. The
communication also comprises the transmission speed.
Attack views: For the calculation of the security constraints,
the framework takes as additional inputs the potential attack

Fig. 1: Framework overview. Attacks (A) aim at tasks (T),
allocated to hardware components (HW. Comp.), operating
(O) on data entities (D) with security assets (SA).

scenarios described as BAGs or risk trees. Both representations
come in a graph form and are, therefore, exchangeable and
combinable. The BAG based method describes attack scenar-
ios as distinct attack steps in a graph format. Each step has
a distinct probability of being successfully performed, stored
within the step’s conditional distribution table. The attacker’s
goal is to reach the leaves of the BAG. The framework
calculates the likelihood with which the attacker can reach
a distinct goal using the Bayesian chain rule [15].

The second method uses RISKEE [13], which is a graph-
based approach for risk assessment. RISKEE allows the
modeling of the consequences (or impacts) of a successfully
performed attack step. It enables the designer to add attack
frequencies, thus accounting for multiple attacks over time.
Furthermore, it uses probability distributions to add uncer-
tainty when assessing an attack success probability. Hence, it
provides a more detailed description compared to single-point
estimates, which do not consider uncertainties. The framework
uses the mean risk value (one metric returned by RISKEE) to
express the risk induced by reaching an attack goal.

Each attack step in both methods aims at a distinct task
of the functional description. Both the RISKEE and the BAG
method are graph-based, making them combinable with each
other. The only limitation is that for each attack goal, the
system designers must model all nodes in the path to this goal
consistently using the RISKEE or BAG approach (or both).
The framework’s configuration defines with what method

– 164 –

7 Publications

it calculates the security constraints. The combined process
comes with the advantage of the detailed modeling approach of
the RISKEE method and faster execution time. As can be seen
in Section IV, the combined approach calculates the attack
success probability (asp) for each security goal using the BAG
first. In a second step, it recalculates the goal using RISKEE, if
the BAG based calculation did not exceed the goal’s threshold,
and its attack path allows it. The timing advantage of this
approach is described in Section V.

Security characteristics: Additional characteristics are nec-
essary for the functional and architectural description, as well
as in the attack views, to calculate the security constraints. In
the functional description, the designer adds a set of security
assets (SA) to each data entity. These assets define what needs
to be secured by the task, based on its interaction with the data
entity (e.g., confidentiality). The assets are freely definable by
the designer. The hardware components in the architectural
description additionally contain a set of security mechanisms
(SM) determining the capabilities with which they secure the
SA of their allocated data entities. The SM further define, if
they are usable for inter-task security within the same hardware
component (internal (int)) or between tasks allocated on
different components (external (ext)). Each component has
a distinct attack mitigation factor (amf ∈ R : m ∈ [0, 1]).
This amf describes the degree to which attacks on the SA
are mitigated by the component’s SM . Hence, it describes
the thoroughness with which the components implement their
SM . In the attack view, each attack contains an attack-
type (at). This attack-type defines what SA of the targeted
data entity it aims at. The framework allows the unrestricted
definition of SM and at by the designer.

Estimation of attack success probability and mitigation:
To estimate the attack asp of an attack, the security experts
use the Common Vulnerability Scoring System (CVSS) [16].
Our approach relies on the usage of the Base Metrics from
the CVSS. These metrics cover an attack’s complexity and its
impacts, and, hence, can be used to describe the attacker’s
motivation on performing the attack. For the BAG based
approach, the these metrics are combined in the asp. For the
RISKEE based approach the impact is separately modeled. The
estimation of the amf can be based on Common Criteria (CC)
certifications, where available. The CC certifications describe
the attacker’s strength against whom the certified component
should be able to withstand [17]. If no CC certification is
available, the security experts must judge a component’s attack
vulnerability based on historic data or other documents.

Secure task allocation and partitioning: Based on the
functional description, the architecture description, and the at-
tack models, the framework calculates the security constraints
posed on the system design. The security constraint calculation
starts with determining the set of security actions (SAct) a task
must perform to secure its data entities. These actions depend
on the operations a task performs on its data entities and the
data entities’ SA. The framework then calculates the set of
SM each component must offer to allow its mapped tasks to

perform their SAct. The framework defines the secure data
exchanges (SDE), spanned between the distinct tasks, using
the SAct. An SDE consist of a source and a destination task,
where both source and destination task perform the same SAct
on a shared data entity. The framework determines for each
SDE if the source and destination tasks map to the same or
different hardware components. Thus, it checks if tasks’ SAct
must be supported by internal or external SM . Each mapping
between O, SA and SAct, SAct and SM , and at to SA is
definable by the designer through Boolean expressions. Table
I describes the security rules applied in the example use case.

The framework finds a secure task allocation and system
partitioning. First, it restricts the task to map only to compo-
nents capable of performing their SAct. Second, it calculates
the asp or risk (depending on the used method) for each
component selection and task allocation. Thereby, the amf of
a hardware component reduces the asp of all attacks aiming at
tasks allocated on it (aspm = asp∗(1−amf)). The framework
performs this calculation of all solutions and marks them as
either secure or insecure (if any goal exceeds its threshold).
Figure 1 shows the task allocation, as well as the assignment
of the attack nodes to distinct tasks.
Performance and power consumption: The performance
and power consumption calculation builds on the estimation
of the worst case execution time (wcet) of each task and
the communication delay of each communication bus. This
wcet reflects the execution time of a task when implemented
on a distinct hardware component. This task implementa-
tion is denoted with impl(ta) defining on what hardware
component task ta is implemented. Hence, wcet(impl(ta))
denotes the wcet of task ta on the hardware component it is
implemented on. The system performance also depends on
the delays induced by the distinct SM used by each task
implemented on a hardware component. This delay is denoted
as δ(SMT (impl(ta))), with SMT (impl(ta)) being the used
security measures of the hardware component allocating ta.
The communication overhead depends on the data entities
(d) sent over the communication buses (by(d)) and the bus’
transmission speed (λ(by)). The overall system performance
(sysperf =

∑n
i=1(wcet(impl(ti)) + δ(SMT (impl(ti)))) +∑m

j=1(bj(d) ∗ λ(bj))) is the sum of the wcet of all task
mappings, the delays of the used SM , and the communication
delays, where n denotes the number of all tasks, and m denotes
all used communication buses used in the solution.

The power consumption of the system depends on the static,
the dynamic power consumption, and the power consumption
induced by the used SM , and the power consumed by the
bus communication. The static power consumption ρs =∑m

j=1 pwrs(cj) is the sum of the static power consumption
of all hardware components, with m being the number of all
components used on the distinct solution. The dynamic power
consumption ρd =

∑n
i=1(wcet(impl(ti))∗pwrd(impl(ti))) is

the sum of the tasks’wcet multiplied with the dynamic power
consumption of the hardware components they are mapped
to. The power consumed by the used security mechanisms
(φ(SMT (impl(ta)))) depends on the SMT used by the tasks

– 165 –

Publication I - Cyber Security 2020

allocated on the hardware components. The overall security
power consumption is ρsec =

∑n
i=1 φ(SMT (impl(ti))). The

power dissipated by the communication bus depends on the
by(d) and the bus’ power consumption (ε(by)). The system’s
communication power consumption is ρcomm =

∑k
j=1(bj(d)∗

ε(bj)), with k being the number of all communication buses
used by the solution. The system power consumption (syspwr)
is the sum of static, dynamic, SM induced, and communica-
tion caused power consumption syspwr = ρs + ρd + ρsec +
ρcomm. This influence can be seen in Section IV.
Implementation: The framework’s implementation is based
on the DeSyDe framework1. The DeSyDe framework is a
DSE tool using a constraint programming approach. It is
capable of finding exact solutions, adding break criteria such
as maximum delay or power consumption. For the security
constraint calculate, the framework performs a limited permu-
tation approach to reduce the number of tasks to component
mappings. This approach uses the attack goals’ asp, or the
risk exceedance, as break criteria. The approach optimizes
the security constraint calculation by sorting the hardware
components according to their amf . The second optimization
comes with the combination of the BAG and the RISKEE
method. The RISKEE method has a higher computation time
for calculating the security constraints than the BAG approach.
In the combined approach, the framework calculates each
attack goal using the BAG method, and if the goal yields a
asp below its threshold, it uses RISKEE to refine the result of
the goal even further. This combined approach achieves highly
informative results from RISKEE while still maintaining the
performance of the BAG method. This combined approach’s
speedup is shown in Section V.

IV. EXPERIMENT

We used the framework for the early design of a key-
less entry system. This system consists of a mobile node
and a stationary system comprising several anchors. Both
nodes and anchors use an application processor (AP), a secure
element (SE), a Bluetooth Low Energy radio, and an ultra-
wideband (UWB) radio (UR). The anchor system measures
its distance to the node applying a double-sided two-way
ranging algorithm using the UR. The devices use a set of SM
offered by the hardware components. These SM secure the
SA of the data entities and the communication and the overall
ranging process between the node and the anchors. We derived
these security characteristics conducting a STRIDE and CIA
analysis [18], [19]. The rules listed in Table I describe the
mappings between the SA, O, SAct, SM , and at.

Table II lists the hardware components that are usable
for both anchor and the node device. This table lists the
components’ security features, their amf , and the performance
and power consumption of their single security mechanisms
(sm). The framework can choose between different options
for the AP, the SE, and UR. They comprise the usage
of hardware-based (HWC) and software-based cryptography

1https://github.com/forsyde/DeSyDe

TABLE I: Security rules of the use case. The at comprise
information disclosure (ati), spoofing (ats), and tampering
(att). The SAct comprise encryption (ae), authentication (aa),
and secure storage (as). The SA comprise confidentiality
(c), authenticity (a), and integrity (i). The SM comprise
cryptography (smc), task encapsulation (sme), and tamper
safe storage (sms)

SAct from SA, O AT to SA SAct to SM
ae = (r ∨ w) ∧ c ati 7→ c smc = (ae ∨ aa) ∧ ext
aa = (r ∨ w) ∧ a ats 7→ a sme = (ae ∨ aa) ∧ int
as = st ∧ (a ∨ c ∨ i) att 7→ i sms = as

TABLE II: Hardware components with security options. At-
tack mitigation factor (amf), performance (Perf) given in µs,
and power consumption (PWC) in mW

HWC Sec. Feat. amf
Perf/PWC
smc sms smt

AP

HWC, TEE 0.75 40/50 -/- 10/10
SWC scp, TEE 0.6 70/60 -/- 10/10
SWC scp 0.5 70/60 -/- -/-
SWC f 0.2 45/40 -/- -/-

SE
EAL 6+ 0.95 110/70 50/20 20/15
EAL 5+ 0.9 100/60 30/10 15/10
EAL 4+ 0.8 100/50 20/10 10/10

UR

HWC, FW 0.6 50/30 -/- 15/10
HWC, TZ 0.5 50/30 -/- 10/10
HWC, MS 0.7 60/40 -/- 20/20
SWC, TZ 0.4 80/40 -/- 10/10
SWC, f. 0.2 50/35 -/- -/-

(SWC), trusted execution environment (TEE), trust zone (TZ),
hardware firewall (FW), and microcontroller separation (MS).
The SWC comes with side-channel protection (scp) or is
purely functional (f). The HWC and SWC only characterize
the security mechanisms offered by the hardware components
and do not concern the implementation of the tasks mapped
on the hardware component.

The functionality of the use-case described in here com-
prises a task graph with 57 nodes, resembling an authenti-
cation, session exchange, and ranging phase. The potential
attacker who attacks the system is thought to be capable
of sniffing and intercepting the communication between the
devices, sniffing the communication within the single devices,
tampering with the devices’ memory, and intruding the soft-
ware stack of the devices to a certain degree. The attacker
has computational resources to brute-force weak cryptographic
algorithms using small secret keys. The attacks comprise the
secret key disclosure, faking secure authentication, hijacking
the session, and compromising the ranging messages. The
overall attack scenario consists of 64 attack nodes. Both the
BAG and the risk tree have the same attack nodes. Table III
lists the security relevant tasks with their SA and WCETs.

The purpose of the use case is to show the framework’s
feasibility and capability of finding solutions based on the
given constraints and the optimization goal. Hence, we con-
figured the framework to find the most secure solution, the
solution with the best overall performance, the fastest yet
secure solution, and the secure solution with the least power
consumption. The attack goals’ thresholds were uniformly set

– 166 –

7 Publications

TABLE III: WCETs of security relevant tasks given in µs.

Device Task Name SA AP SE UR
Node create challenge c,a 80 100 -
Anchor check challenge c,a 70 90 100
Node & Anchor derive session key c,a,i - 140 80
Node & Anchor derive rng key c,a - 120 60
Anchor start rng session c,a - 150 100
Node & Anchor create sec. nonce c,a - 150 80
Node & Anchor create ranging message c,a - 90 50
Anchor calculate distance c,a - 250 140
Node & Anchor create chall. open c,a 30 80 50
Node & Anchor check chall. open c,a 20 90 50

Fig. 2: Solution space identified by the framework using the
BAG based method.

to 0.005 for the BAG based security constraint calculation, and
to 2, 000$ for the RISKEE based one. The combined BAG and
RISKEE method uses the same thresholds.

The system presented in the use case targets secure access to
a vehicle, supporting a secure keyless entry system. It allows
access to the car only to authorized persons who are nearby.
The distance between the vehicle hosting the anchor system,
and the authorized person holding the tracked node, is acquired
by executing a ranging protocol based on the exchanging of
UWB packets. The system generates a timely limited session
key to secure the ranging process. This session key is derived
from a master key stored at each device and exchanged after
every ranging session. Disclosing the session key enables the
attacker to gain access to the car for a short period, whereas
revealing the master key means timely unlimited access to one
or many cars, depending on the key distribution strategy.

The impact of disclosing the session key was set to
250, 000$ and for the master key to 30, 000, 000$. We set these
values to evaluate the risk induced by the value of the session
and master keys. We assumed that the master key is less prone
to disclosure, as, naturally, it should be more challenging to
access. Hence, we set the frequency with which a potential
attacker attempts to discover the master key to 10 times per
year, for the session key to 50 times per year. The risk tree used
for the use case resembles these impact and frequency values.
The vulnerabilities of all attacks in the risk tree equal the asp

Fig. 3: Solution space identified by the framework using the
RISKEE based method.

Fig. 4: Solution space identified by the framework using the
combined method of RISKEE and BAG.

of the identical attack steps in the BAG. Hence, the differences
between the RISKEE and BAG based methods stem from the
characterization of the attack impact and frequency.

The framework calculates, additionally to the security con-
straints (how many attack goals are reached), the average
attack probability (APavg =

∑G
i=0 aspi

G) and the average

mean risk value (MRVavg =
∑G

i=0 mrvi

G), where G is the
number of all attack goals, and mrv is the goal’s mean risk
value. The mean risk value is one parameter returned by the
RISKEE. The framework uses this parameter to assess the
risk of the attacker reaching the attack goal. The framework
calculates these values to characterize the security soundness
of a solution. Table IV shows the solution with the lowest
security vulnerability (considering the APavg and MRVavg)
and the system setup with the best performance. It shows that
the framework can identify the optimal solutions.

Figures 2, 3, and 4 depict the solution space identified
using the BAG based, the RISKEE based, and the com-

– 167 –

Publication I - Cyber Security 2020

bined approach. All three approaches found overall 947.072
solutions that fulfill the basic security functionalities. Each
solution represents a valid mapping of tasks to hardware
components regarding the SAct and SM . The BAG based
computation resulted in 576.000 solutions found to meet all
attack goal thresholds. The RISKEE based method found 384
solutions that do not exceed any attack goal threshold. The
BAG- and RISKEE-based calculation approach largely differ
in the number of secure solutions. The BAG-based approach
reduces the number of solutions by 39.18%, the RISKEE-
based approach by 99.96%. The additional attributes of the
RISKEE method allow a narrowing of the solution space. The
vulnerabilities in RISKEE and the ap in the BAG are identical.
Hence, the reduction of secure solutions only stems from the
frequency and the impact of the attacks. The master key’s
disclosure mainly influences the number of secure solutions.

The impact of a successful key disclosure also influences
the fastest and least power consuming secure solutions, as
described in Table V and VI. Due to the high impact of
the secret key disclosure, the RISKEE based method selects
hardware components with a higher amf than the BAG based
approach. Especially the selection of the SE with the highest
EAL (EAL6+) is of importance, as it stores the master key, and
hosts the task deriving the session key. Thus, the framework
must select SEs with high-security levels. Otherwise, the high
impact of the key disclosure attacks would cause their attached
security goals to exceed their thresholds.

The combined approach, which uses the BAG based cal-
culation together with RISKEE, produced the same amount
of secure solutions as the RISKEE based approach. The
combined approach first calculates the asp of each goal using
the BAG method. Only if this calculation produces an asp
not exceeding the goal’s threshold, the combined approach
recalculates the goal’s mean risk using the RISKEE method.
Hence, by delivering the same amount of secure solutions
as the RISKEE based approach, it shows that all solutions
found by the RISKEE method are also contained in the secure
solutions found by the BAG approach. The combined method
is capable of producing the same set of secure solutions.
However, for the insecure solutions, it can occur that the
combined approach yields more broken goals than the BAG
or RISKEE based method alone, as some goals may exceed
their thresholds in the BAG but not in the RISKEE based
calculation, and vice versa.

Table IV shows the fastest and most secure solutions found
by the framework. The thresholds of the attack goals do
not constrain the fastest solution. However, the solution still
considers the feasibility of the SAct when mapping the tasks
to the hardware components. The most secure solution selects
the task mapping and system partitioning with the lowest
APavg and MRVavg , respectively.

Table V describes the fastest secure solution found by the
BAG and RISKEE method. Table VI the most power-efficient
secure solutions, given their average attack probability and
average mean risk. One can see that for both the secure solu-
tions with optimal performance and power consumption, the

TABLE IV: Most secure and fastest solution found based on
APavg , and MRVavg , with the delay normalized to system
with lowest delay.

HWC Options (most secure) Options (fastest)
AP (node & anchor) HWC, TEE SWC f.
SE (node & anchor) EAL 6+ EAL 4+
UR (node & anchor) HWC, MS SWC f.
APavg / MRVavg 0.0007 / 117.45$ 0.005 / 3905.37$
norm delay ~1.73 1.0

TABLE V: Fastest secure solutions found based on APavg,
MRVavg , and the delay normalized to system with lowest
delay.

HWC fastest secure (BAG) fastest secure (RISKEE)
AP (node & anchor) HWC, TEE HWC, TEE
SE (node) EAL 4+ EAL 6+
SE (anchor) EAL 4+ EAL 6+
UR HWC, TZ HWC, FW
APavg / MRVavg 0.0017 126.74$
norm. delay ~1.074 ~1.16

RISKEE based solution chooses options with higher security
attack mitigation capabilities than the BAG based approach,
for both the SE and the AP of the anchor and node device. The
more secure SE is chosen because of the high impact a possible
disclosure of the session key or the master key causes. Said
impact increases the influence of a successful key exposure on
the average mean risk of the overall system dramatically. A
similar result can be seen when considering the most power-
efficient and secure solutions, regarding their average APavg

and MRVavg , respectively. Also, for this optimization criteria,
the BAG based method chose less secure options for the SE
and the node’s AP, compared to the RISKEE based method.

Figures 5b and 5a show the numbers of found solutions
ordered by their APavg and MRVavg , respectively. One
should notice that the BAG based method produced more
secure solutions, considering their number. The majority of the
found solutions (43.08%) have an APavg between 0.0007 and
0.0026. Only 0.38% are found to have an APavg exceeding
0.006. Considering the RISKEE based approach, the histogram
shows four peaks (placed at the MRVavg of 656$, 1845$,
3444$, and 4223$). These peaks show how the RISKEE based
approach delivers more pointedly results compared to the
BAG based method. The RISKEE based method also delivers
fewer secure solutions. Only 28% of the solutions induce an
MRVavg of less than 1658$, whereas 39.48% come with
an MRVavg higher than 1658$ and lower than 3196$. Only
4.58% of the found solutions are regarded as highly risky,
coming with an MRVavg of more than 4735$. The combined
approach mixes both risk values in $ and attack probabilities
in %. Hence, a histogram over the solutions found by the
combined approach gives no further insight.

We show how we use the framework for designing secure
systems. We model the security constraints both with the BAG
based and the RISKEE based approach. With the modeled use
case, we show how the impact and frequency added by the
RISKEE method influences the calculation of the security con-
straints, defining the attack consequences more precisely. This

– 168 –

7 Publications

(a) BAG based solutions found by the framework categorized
according to their average attack success probability. Stepsize of
4.99 ∗ 10−5

(b) RISKEE based solutions found by the framework categorized
according to their average mean risk. Stepsize of 41$

Fig. 5: Solutions found for the secure ranging use case
modeled using BAGs or RISKEE.
TABLE VI: Most power efficient and secure solutions found
based on APavg , MRVavg , and power consumption (power
cons) normalized to solution with lowest syspwr

HWC most power eff. secure (BAG) most power eff. secure (RISKEE)
AP (node) HWC, TEE HWC TEE
AP (anchor) HWC, TEE HWC TEE
SE (node) EAL 4+ EAL 6+
SE (anchor) EAL 4+ EAL 6+
UR (node) HWC, TZ HWC, MS
UR (anchor) HWC, TZ HWC, MS
avg ap / rv 0.0013 126.17$
power cons ~1.0415 ~1.068

more accurate definition comes, however, with the drawback
of higher computation time. Hence, the framework introduces
the combined approach of BAG and RISKEE. Section V shows
the performance of the different methods.

V. TIMING EVALUATION

The framework was executed on a system providing 16 GB
of RAM and an Intel® Core™ i7-4600U CPU with 2.10GHz.

TABLE VII: Computational overhead for BAG, RISKEE and
combined approach for the different variants.

Variants BAG RISKEE Combo
Var. I 910.253s 1656.605s 1218.024s
Var. II 27.241s 297.445s 262.56s
Var. III 15.357s 112.092s 80.649s

We executed the use case using the BAG, the RISKEE, and
the combined approach of BAG and RISKEE (Combo). We
compared the execution time with and without using the
permutation limitation (pl), as explained in Section III. Table
VII and VIII list the execution times (with and without pl)
for the use case presented in here. We split the use case into
three variants. The first variant (Var. I) is the full execution of
the whole use case. The second variant (Var. II) consists of
the authentication and session establishing phase, leaving out
the ranging phase. The third variant (Var. III) consists only of
the authentication phase. As the variants use different phases,
they also come with different numbers of found solutions.
These solutions also include insecure mappings, as those
also influence the computation time of the framework. Var.
I consists of 947072 solutions, Var. II of 19728 solutions, and
Var. III of 580 solutions. The timings presented in the tables
reflect the actual CPU times (spent in user mode and kernel).

TABLE VIII: Computational overhead for BAG, RISKEE and
combined approach for the different variants. With permuta-
tion limitation (pl)

Variants BAG (pl) RISKEE (pl) Combo (pl)
Var. I 453.326s 1072.002s 744.09s
Var. II 26.165s 214.594s 179.992s
Var. III 13.824s 51.529s 45.966s

The timings listed in Table VII and VIII show how the
different approaches scale. The framework’s execution time
contains a dynamic part which only depends on the compu-
tation time of finding the solutions. It further also contains
a static performance overhead consisting of a ramp-up and
clean up phase. Hence, the execution time spent per solution
decreases with the increase in calculated solutions.The frame-
work comes with an worst-case execution time of 27min37s
considering the complete use case solutions.

As can be seen in Table VII, the chosen approach for
calculating the security constraints has a great impact on the
overall execution time needed for finding the task mappings
and system partitioning. The greatest difference between the
execution time lies between the BAG and RISKEE based ap-
proach. The additional execution time needed for the RISKEE
method compared to the BAG approach comes with ~82%
for Var. I. For this variant, the combined BAG and RISKEE
approach comes with a speedup of 26.47%, compared to the
RISKEE based approach. Figure 6 depicts the calculation
times. The usage of the break criteria also increases the
execution speed of the security constraint calculation. The
permutation limitation speeds up the calculation using the

– 169 –

Publication I - Cyber Security 2020

Fig. 6: Execution times for the different methods calculating
the use case variants.

BAG method by 50.2%, the RISKEE method by 35.29%,
and the combined method by 38.91%, when calculating the
security constraints for Var. I. The execution time greatly
depends on the attack scenarios modeled for the use case.

VI. LIMITATIONS AND CONCLUSION

The main limitation of the approach presented here is its
dependency on accurate estimations of potential attacks and
the effectiveness of their countermeasures. To estimate attacks
accurately, one should follow state-of-the-art estimation tech-
niques, such as [16], [18], [19]. These methods are usable
when capturing the attack success probabilities of known
systems. Especially the CVSS presents a good base as it covers
attack complexity and impact metrics from which one can
draw an estimation of the attacker’s motivation. Attacks on
known systems can be used to estimate the potential of new
attacks, as many of them share the same base. However, for
completely new attacks the approach presented here is not
applicable. Furthermore, considering the estimation for the
countermeasures, no method has yet been published on how
to rate a system’s ability to withstand security attacks. Our
assumptions made for the use case stem from CC certifica-
tions. Here, we linked the attack’s complexity from the CVSS
to the mitigation capability of the CC regarding an attacker’s
strength. Methods on how to estimate a system’s vulnerability
to completely new attacks is out of this paper’s scope.

The main purpose of our approach is to provide a design
framework for integrating a system’s attack susceptibility
with its traditional requirements on performance, power con-
sumption, etc. The framework offers the system designers to
model security constraints as BAGS or risk trees, in an early
design phase. It automatically calculates the task mappings
and system partitioning to arrive at secure system solutions,
given its inputs. It is capable of providing the designer with
secure solutions adhering to various other system constraints,
such as performance, power consumption, etc. Using a secure
access system use case, we showed the feasibility and the

scalability of our approach. By introducing a combined cal-
culation method, which first calculates attack goals using the
BAG approach and then verifies them using the risk trees, we
were able to speed up the overall calculation time.

ACKNOWLEDGMENT

Project partners are NXP Semiconductors Austria GmbH
and the Technical University of Graz. This work was supported
by the Austrian Research Promotion Agency (FFG) within the
project UBSmart (project number: 859475).

REFERENCES

[1] Seokung Yoon et al. Security issues on smarthome in iot environment.
In Computer Science and its Applications. Springer Berlin Heidelberg,
2015.

[2] Mohammed Nasser et al. Cyber-Security Incidents: A Review Cases in
Cyber-Physical Systems. Int. Journal of Advanced Computer Science
and Applications, 9, 2018.

[3] Ruozhou Yu et al. Deploying robust security in internet of things. 2018
IEEE Conf. on Communications and Network Security, CNS 2018, 2018.

[4] Kathrin Rosvall et al. Exploring power and throughput for dataflow
applications on predictable NoC multiprocessors. Proc. - 21st Euromicro
Conf. on Digital System Design, DSD 2018, 2018.

[5] Yong Xie et al. Security/Timing-aware Design Space Exploration of
CAN FD for Automotive Cyber-Physical Systems. IEEE Transactions
on Industrial Informatics, 2018.

[6] Ingo Stierand et al. Integrating the security aspect into design space
exploration of embedded systems. Proc. of IEEE 25th Int. Symp. on
Software Reliability Engineering Workshops, ISSREW 2014, 2014.

[7] Bastian Knerr. Heuristic Optimisation Methods for System Partitioning
in HW / SW Co-Design. PhD thesis, Vienna University of Technology,
2008.

[8] Kathrin Rosvall et al. Throughput Propagation in Constraint-Based
Design Space Exploration for Mixed-Criticality Systems. Proc. of
the 9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools - RAPIDO ’17, 2017.

[9] Yves Roudier and Ludovic Apvrille. SysML-Sec - A Model Driven
Approach for Designing Safe and Secure Systems. Proc. of the 3rd Int.
Conf. on Model-Driven Engineering and Software Development, 2015.

[10] Bowen Zheng et al. Cross-Layer Codesign for Secure Cyber-Physical
Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2016.

[11] Nan Feng et al. A security risk analysis model for information sys-
tems: Causal relationships of risk factors and vulnerability propagation
analysis. Information Sciences, 2014.

[12] Nayot Poolsappasit et al. Dynamic Security Risk Management Using
Bayesian Attack Graphs. IEEE Transactions on Dependable and Secure
Computing, 2012.

[13] Michael Krisper et al. RISKEE : A Risk-Tree Based Method for
Assessing Risk in Cyber Security. In Proc. of EuroSPI 2019: European
System, Software & Service Process Improvement & Innovation, 2019.

[14] L. Gressl et al. Consideration of Security Attacks in the Design Space
Exploration of Embedded Systems. In 2019 22nd Euromicro Conf. on
Digital System Design (DSD), 2019.

[15] David Heckerman and John S. Breese. Causal independence for
probability assessment and inference using Bayesian networks. IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems and
Humans., 1996.

[16] M. Schiffman. Common Vulnerability Scoring System (CVSS). URL
https://www.first.org/cvss/v3.1/specification-document, 2019.

[17] ISO/IEC. Common Criteria for Information Technology Security Eval-
uation Part 2. Security, (September), 2012.

[18] Kim Fenrich. Securing your control system: the” cia triad” is a
widely used benchmark for evaluating information system security
effectiveness. Power Engineering, 112(2):44–49, 2008.

[19] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack.
Uncover security design flaws using the stride approach (2006). URL
http://msdn. microsoft. com/en-gb/magazine/cc163519. aspx, 15.

– 170 –

7 Publications

111

Design Space Exploration for Secure IoT Devices and
Cyber-Physical Systems

LUKAS GRESSL, Institute of Technical Informatics, Graz University of Technology
CHRISTIAN STEGER, Institute of Technical Informatics, Graz University of Technology
ULRICH NEFFE, NXP Semiconductors Austria GmbH

With the advent of the Internet of Things (IoT) and Cyber-Physical Systems (CPS), embedded devices have been
gaining importance in our daily lives, as well as industrial processes. Independent of their usage, be it within
an IoT system or a CPS, embedded devices are always an attractive target for security attacks, mainly due to
their continuous network availability and the importance of the data they handle. Thus, the design of such
systems requires a thorough consideration of the various security constraints they are liable to. Introducing
these security constraints, next to other requirements, such as power consumption, and performance increases
the number of design choices a system designer must consider. As the various constraints are often conflicting
with each other, designers face the complex task of balancing them. System designers facilitate Design Space
Exploration (DSE) tools to support a system designer in this job. However, available DSE tools only offer a
limited way of considering security constraints during the design process. In this paper, we introduce a novel
DSE framework, which allows the consideration of security constraints, in the form of attack scenarios, and
attack mitigations in the form of security tasks. Based on the descriptions of the system’s functionality and
architecture, possible attacks, and known mitigation techniques, the framework finds the optimal design for a
secure IoT device or CPS. Our framework’s functionality and its benefits are shown based on the design of a
secure sensor system.

CCS Concepts: •Computer systems organization� Embedded systems; Redundancy; Robotics;
• Networks� Network reliability.
Additional Key Words and Phrases: datasets, neural networks, gaze detection, text tagging
ACM Reference Format:
Lukas Gressl, Christian Steger, and Ulrich Neffe. 2018. Design Space Exploration for Secure IoT Devices and
Cyber-Physical Systems. J. ACM 37, 4, Article 111 (August 2018), 24 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
Cybersecurity has become an increasingly important factor when considering the utilization of
Internet of Things (IoT) devices and Cyber-Physical Systems (CPS) for industries. Numerous large
scale attacks on power plants, steel factories, and other industrial facilities have been reported
in recent years [2, 18]. Especially the utilization of CPS in the form of smart sensors, connected
continuously to control systems, opened newways of attacking these facilities. Therefore, the design
of IoT devices and CPS must consider all possible security attacks targeted on them, especially

Authors’ addresses: Lukas Gressl, Institute of Technical Informatics, Graz University of Technology, gressl@tugraz.at;
Christian Steger, Institute of Technical Informatics, Graz University of Technology, steger@tugraz.at; Ulrich Neffe, NXP
Semiconductors Austria GmbH, ulrich.neffe@nxp.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0004-5411/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 171 –

Publication J - ACM Transactions on Embedded Computing Systems

111:2 Lukas Gressl, et al.

Fig. 1. System design exploration framework overview.

when operating in the industrial environment. As the industrial environment demands fast reaction
times and low maintenance costs, the used CPS must guarantee high performance and low power
consumption at the same time [25]. The consideration of the various constraints during the design
process is a challenging problem for system designers, who must decide which functionality they
implement on what device. Finding the best solution among all the alternatives means solving a
multi-objective optimization problem, a task too complex to be performed manually.
System designers commonly use Design Space Exploration (DSE) frameworks to support the

designer in this task. These frameworks take as an input the functional description of the system, the
descriptions of possible system architectures, and application and architecture characteristics. Based
on these inputs, such frameworks find the optimal architecture selection and function mapping.
Classical DSE frameworks optimize for power or performance [27]. Other frameworks additionally
consider security constraints either on an abstract or detailed level [32].

In this paper, we present a novel method for the integration of security constraints and security
capabilities into the DSE. We present a framework extending the classical DSE by integrating
security constraints described as Bayesian Network Attack Graphs. It is based on the DeSyDe
framework [27–29], and supports designers in finding the optimal solution for a device under design
using four distinct views. The functional view lets the designer describe the system’s behavior in the
form of a task graph (i). The architectural view describes the platform options of the device under
design (ii). The security attack view describes the view of a potential attacker on the system (iii).
The security options describe the various mitigation techniques offered by the system to counter
potential attacks (iv). These views serve as inputs to the framework. Based on these inputs, the
framework finds the optimal selection of the system components, mapping of tasks to the selected
components, and choice on the security mitigation techniques fulfilling the security constraints
and optimizing the overall system’s performance or power consumption. Figure 1 shows the basic
overview of the tool, its distinct views, and the solution produced by the framework.

With the approach described in this paper, we make the following contributions. To the best of
our knowledge, we are the first to introduce security constraints based on attack scenarios into
the DSE, automatically considering security mitigation techniques (i). The presented approach is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 172 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:3

the first to explicitly select security operations based on the probability of security attacks (ii). We
show that a calculation of the attack probabilities based on the task mappings is feasible and can
be optimized (iii).

This work is an extension of the framework presented in [8]. Compared to the already presented
work, we completely reworked the use case in Section 5, using a more sophisticated and expanded
example to present the functionality and feasibility of our framework. Furthermore, we changed
the description of the mapping between the different modeling perspectives to a more generic
rule set representation. We emphasize the depiction of the solution space, showing the number of
secure solutions as opposed to the number of insecure ones. Finally, we discuss the framework’s
scalability using the extended use case.

The rest of the paper is structured as follows: in Section 2, various contributions in DSE, security
modeling and attack description are discussed; Section 3 describes the modeling approach for
designing secure systems; Section 4 explains the framework’s implementation; Section 5 shows the
framework solving an example use case; Section 6 concludes this paper and gives an outlook on
future work.

2 RELATEDWORK
Information security modeling and threat analysis have attracted much interest in research and
industry in the last decades. To consider security measures in the design phase of products, various
modeling tools and languages, such as the UnifiedModeling Language, integrate extensions allowing
the modeling of security [14]. Such tools support the designers in reflecting, e.g., security protocols
within the system’s behavior. However, they do not consider the system’s hardware architecture,
nor the security’s performance overhead, nor the attacker’s view on the system under design.
The framework described in this paper integrates security attacks and the architecture’s security
capabilities into the design flow, automatically proposing security operations.
Network security analytics use the integration of the attacker’s view to assessing the security

of networks. Feng et al. [4] and Poolsappasit et al. [26] describe the representation of possible
attackers using attack trees. Both authors use Bayesian Networks to assess the way security
attacks propagate through the systems under design. These so-called Bayesian Network Attack
Graphs (BNAGs) can be used to localize security vulnerabilities in the overall system and assess
the efficiency of security measures to reduce the system’s information security risk [4]. These
BNAGs are described by security experts or can be built from historical security incidents [26]. The
framework presented here combines these BNAGs with the functional and architectural description
of the overall system. These additional views allow the selection of hardware components fulfilling
the security constraints and the selection of feasible security operations. Safety and risk assessment
use similar graph-based approaches. Among these methods, especially the attack tree analysis and
the fault tree analysis are well established in both the industry and science [3].
Numerous works in literature have described classical DSE tools for embedded systems. These

tools consider the power and performance of the individual implementation alternatives of the
system’s behavior on distinct components. The tools select the optimal system components, func-
tionality implementations, and scheduling based on these power and performance characteristics
[16, 27–29].
Knerr [16] investigate different approaches to using heuristic algorithms for solving the multi-

objective optimization problem of finding the performance and power optimal system partitioning
and task mapping for embedded system designs. Rosvall et al. [16, 27–29] solve this optimiza-
tion problem using a constraint programming approach. With this approach, they can find the
performance- and power-optimal solution in a deterministic way instead of the heuristic approach
investigated by Knerr [16].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 173 –

Publication J - ACM Transactions on Embedded Computing Systems

111:4 Lukas Gressl, et al.

Several works extended these classical optimization goals by functional safety and cybersecurity.
Related projects focusing on the integration of cybersecurity into DSE divide into two categories:
(i) works putting a clear focus on one specific problem at hand [10, 13, 15, 23, 35, 36] and (ii) works
introducing security aspects into the design space on an abstract level [14, 17, 19–22, 32, 37].
The works in category (i) optimize the throughput of special bus systems [36], seamlessly

integrate security surveillance tasks into an already existing task schedule [10], or consider specific
network security schemes for system integration [15]. They consider the secure design of CAN bus
systems [23] and optimizing the quality of service (QoS), quality of confidentiality (QoC), and the
intrusion detection accuracy (IDA) of embedded systems [13].
Xie et al. describe the signal packing problem of CAN-based embedded sensor networks as an

optimization problem in their work. Their goal is to find the optimum between message payload
size and the size of the message authentication code (MAC). This MAC size heavily influences the
communication’s security and the packet size, thus decreasing its performance. The authors solve
this problem by employing DSE techniques to the available options[35, 36].
Kang [15] describes a framework to support designers regarding the security mitigation tech-

niques used for networked systems. These techniques come in the form of security policies. The
framework allows the evaluation of design candidates against a given system description and
filtering valid design candidates satisfying the policies. Their work focuses on the validation of
design candidates rather than optimizing the system design.

Hasan et al. [10] consider the integration of security surveillance tasks into an already existing
task schedule on multicore-systems. These tasks detect the attacker’s intrusion into the system.
As the intrusion detection is time-consuming, the integration of such tasks can break the overall
task schedule and break real-time constraints of distinct real-time tasks. Hence, the integration
of security surveillance tasks must be performed so that no timing constraints are broken. The
authors perform this integration using a DSE-based approach.

Lukasiewycz et al. [23] consider the security-aware DSE of a CAN-based embedded system. The
authors focus on secure embedded systems used as vehicle platforms shared within the whole
vehicle fleets. Thereby, they aim at securing the message headers transmitted via the CAN bus
system. The header of CAN messages is usually transmitted in plain, as the arbitration method
cannot be performed on encrypted headers. The plain headers can be used by attackers to assume
the system’s internal state. To mitigate such attacks, the authors propose the obfuscation of the
identifiers. As this obfuscation decreases the communication performance, the authors apply a DSE
of different approaches to find the optimal obfuscation technique.
Jiang et al. [13] focus on finding an optimum considering QoS, QoC, and IDA in embedded

systems. The QoC increases with the number of encryption rounds. The QoS increases with the
time available for executing general-purpose tasks, and the IDA increases with the number of
executions of intrusion detection tasks. Naturally, the increase of the QoC and the IDA decreases
the QoS. The authors use DSE to find the optimal solution considering constraints on QoS, QoC,
and IDA.
The second category’s projects perform a mapping of tasks to hardware platforms based on

security requirements and security hardware extensions [32] or integrate security mechanisms into
industrial control loops [37]. Other projects focus on the design of secure processor architectures
[22], formalize security constraints for the design of embedded systems [19–21], or offer security
extension to widespread design tools [14, 17].
Stierand et al. [32] present an approach to integrating security constraints into the DSE of

embedded systems. Their approach allows integrating security assets used by the system under
design and exchanged between the system’s tasks. Each task is exchanging security assets that
must be mapped to hardware components offering security mechanisms.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 174 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:5

Zheng et al. [37] focus on the control performance and the schedulability of embedded systems
while considering security requirements. They assume the attacker learns the states of the internal
control tasks of the system under design. The attacker learns the state by eavesdropping on
exchanged messages. The more messages the attacker can eavesdrop, the higher the probability
that the internal state is disclosed. Encrypting the exchanged messages prohibits their disclosure
but decreases the system’s performance. The authors propose an approach to find the optimal
solution considering the system’s performance and the attacker’s ability to guess the system’s state.
In [22], the authors use a high-level analytical model to design secure processor architectures.

They use the model to investigate practical designs considering security requirements and evaluate
the trade-offs of different security modules and their performance.
Lin et al. [19] present a DSE method to formalize security constraints for embedded systems

and use them during DSE. Their method supports the mapping of system functions to architecture
components regarding their security properties and supported security mechanisms. Furthermore,
the presented approach considers the system’s performance risk values defined by the designers.
The usability of the approach is shown based on the security enhancement of a controller are
network [21] and the design of a Time Division Multiple Access-based real-time system [20].

Jurjens [14] present a security extension to the well-know Unified Modeling Language, heavily
used for designing systems. With this extension, Jurjens supports designers in modeling security
protocols and general system security behavior. Furthermore, the framework developed by the
author considers the system’s architecture and the security’s performance.
The SysML-sec project [17] integrates cryptographic mechanisms during hardware/software

partitioning based on predefined attack scenarios. Compared to our framework, the SysML-sec
project does not allow the integration of the attacker’s perspective into the system design, which
improves the level of detail with which a system under design can be modeled. Furthermore, our
framework also considers the secret keys’ placement, which is not supported by SysML-sec.
The works of category (i) deal with particular problems. They do not consider the system’s

whole design space. In contrast, the framework presented here delivers a holistic approach to
considering the system’s performance, power consumption, and security under design. Unlike the
framework presented here, the contributions in (ii) do not consider the secret keys’ placement on
the target platform or the probability of successfully executing attacks. These projects consider
security requirements and capabilities on an abstract level and do not detail security vulnerabilities
or mitigation techniques.
The DSE of safety-critical systems considers a similar problem space when introducing safety-

relevant aspects [6, 24, 30, 34]. Like security constraints, safety constraints restrict critical tasks’
mapping to especially enhanced components or enforce a redundant implementation of specific
components. DSE frameworks in this realm are in high demand for the industry and especially for
automotive companies. As security and safety risk mitigation is implemented in different ways,
related projects considering systems’ safety are not discussed in detail.
The framework presented in this paper introduces security attacks and mitigation techniques

on a detailed level, without losing the overall view on the whole system design space. Thereby,
it focuses on information security. We see the framework between the related projects focusing
on detailed problems and the abstract approaches, attempting to close this gap in the research on
security-aware DSE. The framework supports designers in deciding what functionality to implement
on which architectural component, considering performance, power consumption, security attacks,
and security capabilities.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 175 –

Publication J - ACM Transactions on Embedded Computing Systems

111:6 Lukas Gressl, et al.

3 DESIGN VIEWS
The system representation consists of four distinct views: (i) the functional view, (ii) the architec-
tural view, (iii) the security options view, and (iv) the security attack view. These views are used by
designers to describe the distinct design options for the system, considering the different perspec-
tives. With these perspectives, a design space is spanned, serving as an input to the framework. In
this design space, the framework searches for optimal solutions considering the system’s security,
performance, and power consumption.

3.1 Functional and Architectural View
Task graphs describe the functionality of the system. A task graph represents the system’s tasks as
nodes (𝑡 ∈ 𝑇) and their communication as edges (𝜖𝑡𝑠𝑟𝑐 ,𝑡𝑑𝑠𝑡 ∈ 𝐸), connecting two tasks. The task graph
is a directed graph, where each edge describes the communication from 𝑡𝑠𝑟𝑐 to 𝑡𝑑𝑠𝑡 . This type of
functional representation is commonly used for DSE tools [16], as they are also capable of expressing
synchronous data flows [28]. The approach presented here demands the task graph to be acyclic.
To integrate the security constraints into the DSE, the framework presented here enriches the task
graph with data entities (𝑑 ∈ 𝐷), and operations performed on them by the tasks. These operations
(𝑜) can comprise receiving, transmitting, reading, and writing the data or other operations. Each data
entity is characterized by its size and a set of security requirements (𝑠𝑟), defining its confidentiality,
authenticity, or other security properties. These security properties classify the data entities as
security assets that need protection as potential attackers aim at compromising them [7]. Multiple
tasks might work on the same piece of data. Hence, this data entity must be passed from task to task,
using the edges connecting them. If a data entity 𝑑𝑧 is used by both 𝑡𝑠𝑟𝑐 and 𝑡𝑑𝑠𝑡 , it is exchanged via
the edge 𝜖𝑡𝑠𝑟𝑐 ,𝑡𝑑𝑠𝑡 .

The architectural view comprises a set of processing elements (PEs) connected by bus systems. A
communication bus physically connects two or more PEs. Both PEs and bus systems contain certain
modes comingwith distinct characteristics. These characteristics describe the chip area, costs, power
consumption, and performance. A PE’s mode’s performance depends on the worst-case execution
time (WCET) of the tasks it allocates. TheWCET describes the execution time of a task implemented
on a PE running in a specific mode. The system designers estimate the WCET for each mapping
they want to be explored by the framework. The performance of a communication bus’ mode is
described by its data rate and the data entities it transports. The framework uses the combination
of PEs and their modes to describe distinct hardware components (𝑝𝑒 (𝑚)). Therefore, the PE in the
architectural description can be seen as a placeholder in which hardware components, described
by the PE’s modes, can be placed. Each PE mode defines a set of security capabilities (𝑠𝑒𝑐𝐶𝑎𝑝),
describing the PE’s capability to encrypt, authenticate, and tamper safe storage. Additionally, the
PE modes are annotated with implementation vulnerability risks, defining a potential attacker’s
probability to find a vulnerability to bypass the security capability. Furthermore, the communication
delay depends on the task graph’s edges’ mapping to the platform’s communication buses. What
edges map to what buses depends on the mapping of the tasks to the hardware components
connected by the distinct communication buses. The buses’ communication delay is then calculated
by its communication speed and the data entities exchanged by its mapped edges. Figure 2 depicts
the components of the functional and architectural view. The task graph and the platform model
build on the DeSyDe framework. We extended the task graph with the operations and the data
entities, the platform model with the security capabilities.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 176 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:7

Architectural ViewFunctional View

PE

Task Operation
Data
entity

Security
Requirement

Hardware
Bus

-power consumption
-implementation vulnerability
-security capabilities
-costs
-chip area

Mode

Mode
Task Task

Task

-power consumption
-transmission delay

PE

Fig. 2. Functional and platform architecture view.

3.2 Security Option and Attack View
Modeling security threats on systems is widely used for describing the security of network [5, 26, 33].
These models build on the combination of attack graphs and Bayesian networks, forming so-called
Bayesian network-based attack graphs (BNAGs) [11, 31]. Each node in the BNAG represents a
distinct security attack and knows two states (𝑠𝑡𝑎𝑡𝑒𝑛𝑜−𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑠𝑡𝑎𝑡𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠), defining if the attack
has been executed successfully or not. The state transition 𝑠𝑡𝑎𝑡𝑒𝑛𝑜−𝑠𝑢𝑐𝑐𝑒𝑠𝑠 → 𝑠𝑡𝑎𝑡𝑒𝑠𝑢𝑐𝑐𝑒𝑠𝑠 describes
the successful execution of an attack (represented as attack node (𝑎𝑛)) with a distinct probability.
The BNAG models the dependencies of the security attacks by the directed edges between the
nodes and the conditional distribution tables (CDTs). The CDT of each node represents its attack
success probabilities considering the states of its parent nodes. The leaves of the BNAG describe
attack goals on the overall system. The success probabilities of any attack in the BNAG, including
the attack goals, are calculated using the Bayesian chain rule (1). This attack success probability is
denoted 𝑃 (𝑎𝑛).

𝑃 (𝑎𝑛1, ..., 𝑎𝑛𝑛) =
𝑛∏
𝑖=1

𝑃 (𝑎𝑛𝑖 |𝑃𝑎[𝑎𝑛𝑖]) (1)

Considering the example BNAG depicted in Figure 3, the attack success probability of attack 2
can be calculated as 𝑃 (𝑎𝑛2) = 𝑃 (𝑎𝑛21 |𝑃 (𝑎𝑛11)) + 𝑃 (𝑎𝑛21 |𝑃 (𝑎𝑛10)), with 𝑎𝑛1 and 𝑎𝑛2 naming the
attacks and the subcaptions 1 and 0 representing success and no-success states. Hence, 𝑃 (𝑎𝑛2) =
0.7 ∗ 0.6 + 0.3 ∗ 0.4. The system designers assign each attack goal a success probability threshold
stating the maximal probability with which the attacker might reach his goal. The attack types used
by the framework are derived from the STRIDE threat model [12], focusing on spoofing, tampering,
and information disclosure.

We integrate the attack view into the system design by assigning attacks to tasks represented in
the task graph. Each attack node in the BNAG attacks the data entities used by the task it aims at.
Each attack furthermore has a distinct attack-type (𝑎𝑡) defining what security requirement of the
handled data it aims to break. The task’s data entities being victims of a potential attack is also
depicted in Figure 3.
In the security options view, the system designers describe the available security functions,

feasible to counter security attacks. If the task uses security functions to protect its data handling,
the attacker must first break the security function before being able to attack the data entity itself.
For each security function (𝑠𝑒𝑐𝐹𝑢𝑛𝑐), the designer describes what 𝑠𝑟 it can protect and the probability
of an attacker breaking the protection. This security break is modeled as an attack whose victim is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 177 –

Publication J - ACM Transactions on Embedded Computing Systems

111:8 Lukas Gressl, et al.

Fig. 3. BNAG example with detailed model of an attack node.

the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 itself. Modeling a cryptographic function (encryption, authentication, etc.) as a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
also includes the declaration of the used secret keys. The designer further categorizes these keys by
defining their validity time. The validity time allows the designer to add the information if a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
uses, e.g., a session key, master key, etc. The validity time influences the attacker’s motivation to
compromise the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , as, e.g., compromising a master key valid over the whole product lifetime
has a much greater impact on the overall system’s security than merely compromising a session
key.
Additionally to the attacks on the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , each secret key comes with an attack aiming at its

disclosure. Also, for those attacks, the key’s validity time determines the motivation of the attacker
disclosing it. Any key used in the system under design might derive from another key. Experts
must estimate the probabilities of the attacks aiming at victim tasks, 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , and keys. The experts
must consider the attacker’s capabilities and motivation for each attack. Judging the motivation of
the attacker, the experts must take into account the value of the data entities. Additionally, to the
attack graph, the used 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 also influence the system’s performance, as each 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 comes
with additional computational overhead.

3.3 Integration of Distinct Views
Based on the inputs from the functional, architectural, attack, and security options view and the
optimization goal, the framework selects the architecture blocks, chooses the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 including
the used key, and maps the tasks to architecture blocks. Thereby, it produces the solution with
the lowest success probability goals (security optimal), the solution with the best performance
still satisfying all security thresholds (security/performance optimal), or the solution with the best
performance, neglecting security.

3.3.1 General Task Mapping. The general mapping of tasks to PEs is performed using the task’s
WCETs. The WCETs reflect a task’s execution time running on a PE in a specific mode (denoted by

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 178 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:9

𝑝𝑒 (𝑚)) and must be defined to allow a successful task to PE mapping (denoted by 𝜌 (𝑡, 𝑝𝑒 (𝑚))). The
task to PE mapping is further restricted by the physical connections of the architecture platform.
Given two connected tasks (𝑡1 and 𝑡2) the mappings 𝜌 (𝑡1 (𝑝𝑒𝑥 (𝑚𝑦))) and 𝜌 (𝑡2 (𝑝𝑒 ′𝑥 (𝑚′

𝑦))) are only
valid if 𝑝𝑒𝑥 and 𝑝𝑒 ′𝑥 are physically connected. The mapping of 𝑡1 and 𝑡2 on the same PE is always
valid.

3.3.2 Security Constraints Calculation. Additionally, to the general task mapping constraints, all
task PE mappings must fulfill the system security constraints. Two requirements must be satisfied
by the task-to-PE-mapping to fulfill these security constraints. First, the framework maps each
task only to those 𝑝𝑒 (𝑚), which support the task’s security functions. This mapping restriction
ensures the feasibility of the needed security functions. Second, no attack goal’s success probability
is allowed to exceed its threshold.
The mapping between security functions (𝑠𝑒𝑐𝐹𝑢𝑛𝑐), security capabilities (𝑠𝑒𝑐𝐶𝑎𝑝), operations

(𝑜), security requirements (𝑠𝑟), and attack-types (𝑎𝑡𝑡) is described by a rule set. This rule set can be
adapted and extended by the designers. Table 1 describes the framework’s basic rule set.

Table 1. Rule set describing the relations between security functions (𝑠𝑒𝑐𝐹𝑢𝑛𝑐), security capabilities (𝑠𝑒𝑐𝐶𝑎𝑝),
operations (𝑜), security requirements (𝑠𝑟), and attack-types (𝑎𝑡𝑡).

𝑠𝑒𝑐𝐹𝑢𝑛𝑐 from 𝑜 and 𝑠𝑟 𝑎𝑡 to 𝑠𝑟 𝑠𝑒𝑐𝐶𝑎𝑝 supports 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
𝑠 𝑓𝑒𝑛𝑐 = (𝑟 ∨𝑤) ∧ 𝑠𝑟𝑐𝑜𝑛𝑓 𝑎𝑡𝑖 ↦→ 𝑠𝑟𝑐𝑜𝑛𝑓 𝑠𝑐𝑒𝑛𝑐 = 𝑠 𝑓𝑒𝑛𝑐 ∧ 𝑒𝑥𝑡
𝑠 𝑓𝑎𝑢𝑡ℎ = (𝑟 ∨𝑤) ∧ 𝑠𝑟𝑎𝑢𝑡ℎ 𝑎𝑡𝑠 ↦→ 𝑠𝑟𝑎𝑢𝑡ℎ 𝑠𝑐𝑠𝑖𝑔𝑛 = 𝑠 𝑓𝑎𝑢𝑡ℎ ∧ 𝑒𝑥𝑡
𝑠 𝑓𝑠𝑠 = 𝑠𝑡 ∧ (𝑠𝑟𝑎𝑢𝑡ℎ ∨ 𝑠𝑟𝑐𝑜𝑛𝑓 ∨ 𝑠𝑟𝑖𝑛𝑡) 𝑎𝑡𝑡 ↦→ 𝑠𝑟𝑖𝑛𝑡

𝑠𝑐𝑡𝑒 = (𝑠 𝑓𝑒𝑛𝑐 ∨ 𝑠 𝑓𝑎𝑢𝑡ℎ) ∧ 𝑖𝑛𝑡
𝑠𝑐𝑡𝑠𝑠 = 𝑠 𝑓𝑠𝑠

The 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 are determined by the operations said task performs on it’s data entities and their
𝑠𝑟 [7]. The framework’s basic set of operations 𝑜 comprises reading (𝑟), writing (𝑤), receiving (𝑟𝑥),
transmitting (𝑡𝑥) and storing (𝑠𝑡). The basic set of 𝑠𝑟 consists of confidentiality (𝑠𝑟𝑐𝑜𝑛𝑓), authenticity
(𝑠𝑟𝑎𝑢𝑡ℎ), and integrity (𝑠𝑟𝑖𝑛𝑡). The basic set of security functions comprises encryption (𝑠 𝑓𝑒𝑛𝑐),
authentication (𝑠 𝑓𝑎𝑢𝑡ℎ), and secure storage (𝑠 𝑓𝑠𝑠).

Each PE mode can support a set of 𝑠𝑒𝑐𝐶𝑎𝑝 , consisting of encryption (𝑠𝑐𝑒𝑛𝑐), signing (𝑠𝑐𝑠𝑖𝑔𝑛), task
encapsulation (𝑠𝑐𝑡𝑒), and tamper-safe storage (𝑠𝑐𝑡𝑠𝑠)). Based on the 𝑠𝑒𝑐𝐶𝑎𝑝 and the provided rule
set, it is determined if the mapping 𝜌 (𝑡, 𝑝𝑒 (𝑚)) supports all 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 using the rules determining
what 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 needs what 𝑠𝑒𝑐𝐶𝑎𝑝 . The attributes 𝑖𝑛𝑡 and 𝑒𝑥𝑡 describe if the data entity’s 𝑠𝑟 need to
be protected for the internal usage only, or also for exchange between tasks mapped to different
PEs. It is checked whether 𝜌 (𝑡, 𝑝𝑒 (𝑚)) fulfills the security mapping constraint. Additionally to
the mapping of 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 to 𝑠𝑒𝑐𝐶𝑎𝑝 and the deriving of 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 from 𝑜 and 𝑠𝑟 , the rule set also
describes what attack types (𝑎𝑡) are capable of compromising what 𝑠𝑟 . The basic set of 𝑎𝑡 consists
of information disclosure (𝑎𝑡𝑖), spoofing (𝑎𝑡𝑠), and tampering (𝑎𝑡𝑡). The sets 𝑜 , 𝑠𝑟 , 𝑎𝑡 , 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , and
𝑠𝑒𝑐𝐶𝑎𝑝 , as well as the rules shown in table 1 are extendable by the designers.

The mapping between 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 and a PE mode’s 𝑠𝑒𝑐𝐶𝑎𝑝 further determines what kind of 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
should be used by the task to protect its data entities. A 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 must be supported by a 𝑠𝑒𝑐𝐶𝑎𝑝 being
integrated into the hardware component represented by the PE’s mode (𝑝𝑒 (𝑚)). Cryptographic
functions (e.g. 𝑠 𝑓𝑒𝑛𝑐 and 𝑠 𝑓𝑎𝑢𝑡ℎ) are further described by the used keys (𝑠 𝑓𝑘). What 𝑠 𝑓𝑘 can be used
on which 𝑝𝑒 (𝑚) is further restricted by the 𝑠𝑒𝑐𝐶𝑎𝑝 it supports. Secret keys with a validity time
covering the whole product’s lifetime (e.g. master key, root certificate, etc.) are only allowed to
be used on a 𝑝𝑒 (𝑚) supporting 𝑠𝑐𝑡𝑠𝑠 . Keys that are derived from such long term keys are only
allowed to be used if the 𝑝𝑒 (𝑚)’s hosting device contains a 𝑝𝑒 supporting 𝑠𝑐𝑡𝑠𝑠 . Furthermore, a task’s

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 179 –

Publication J - ACM Transactions on Embedded Computing Systems

111:10 Lukas Gressl, et al.

Fig. 4. Example of a connection secured by encryption spanning over multiple tasks mapped to two PEs.

𝑠𝑒𝑐𝐹𝑢𝑛𝑐 is restricted by the secure connection 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 = (𝜌 (𝑡𝑥 (𝑝𝑒𝑦 (𝑚𝑧))), ..., 𝜌 (𝑡𝑥 ′ (𝑝𝑒𝑦′ (𝑚𝑧′))))
of which it is a part of. Considering the task graph, the starting task of 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 is the first task
performing a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 mapped to a 𝑝𝑒𝑦 (𝑚𝑧). The end task of 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 is the last task performing
the same 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 . The framework determines for each 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 if all tasks are mapped on the same
PE. If so, the 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 is marked as internal (𝑖𝑛𝑡), otherwise as external (𝑒𝑥𝑡). All 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 marked as
𝑒𝑥𝑡 must perform cryptographic functions using the supported secret keys 𝑠 𝑓𝑘 to secure the 𝑠𝑟 of
the used data. All 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 marked as 𝑖𝑛𝑡 may also use 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 internally usable (e.g. 𝑠𝑐𝑡𝑒) . Special
keys, denoted as internal keys, are only usable within the same device. Figure 4 depicts an example
secure connection. The Figure shows how the tasks mapped to different 𝑝𝑒 (𝑚) use cryptographic
security functions to secure the 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 leading over a communication bus.
The framework determines secure connections to calculate the influence of the used 𝑠𝑒𝑐𝐹𝑢𝑛𝑐

on the BNAG. For each 𝜌 (𝑡 (𝑝𝑒 (𝑚))) in 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 the attack nodes of the BNAG are determined.
These attacks are mitigated by the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 if the attack’s type 𝑎𝑡 maps the 𝑠𝑟 of the victim task’s
data entities. Each task securing its data using a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 forces the attacker to break the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
enabling the original attack targeting said task. Attacks aiming at the mitigating 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 are, thus,
added as parents to the node attacking the task. The framework adds the parent attacks’ states
to the node’s conditional distribution table as an OR function. Thus, the breaking of at least one
𝑠𝑒𝑐𝐹𝑢𝑛𝑐 would enable the attacker to perform the original attack on the victim task. Additionally,
to the integration of the attacks aiming at the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 into the BNAG, the framework adds the
disclosure attacks on the keys used by the cryptographic operations 𝑠 𝑓𝑘 . The framework adds the
disclosure attack on a key 𝑘𝑥 as parent to the attack on each security operation using 𝑘𝑥 (𝑠 𝑓𝑦 (𝑘𝑥)).
The conditional distribution table of the attack aiming at 𝑠 𝑓𝑦 (𝑘𝑥) is extended as an OR function, as
disclosing the 𝑘𝑥 renders 𝑠 𝑓𝑦 insecure. If 𝑘𝑥 derives from a parent key 𝑘𝑥 ′ , the framework adds the
disclosure attack on 𝑘𝑥 ′ as a parent to the disclosure attack on 𝑘𝑥 , again extending its conditional
distribution table as an OR function. Hence, the framework represents the key derivation hierarchy
using the disclosure attacks on the secret keys.

Figure 5 depicts an example integration of an attack aiming at a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 into an existing BNAG.
The original BNAG consists of the two attacks attack 1 and attack 2, and the attack goal. To protect
its data entity, task A selects a 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 . With this selection, the attack aiming at the selected
𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , attack a, is added as a parent to attack 1. This is represented by the additional entry into
the CDT of attack 1. With this integration, the unconditional attack success probability of the attack
goal 𝑃 (𝐴𝐺) is lowered from 0.75 to 0.435.
Additionally to the inclusion of the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 attack nodes into the BNAG, each 𝑝𝑒 (𝑚) comes

with a distinct implementation vulnerability risk 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 ∈ Q : 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 ∈ [0, 1]. This risk reduces
the attack success probabilities of 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 attack nodes used by the tasks mapped to said PE. This
reduction is performed by multiplying the attack success probability with 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 .
The assignment of the security functions’ 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 risks must be performed by the security

experts. The Common Criteria (CC) certification process constitutes an accredited reference point
for this rating. The CC certification provides a standardized way of assessing the security features

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 180 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:11

sec
Func

Task A

attack 1

Task B

attack 2

attack a

Attack Goal

1 0.7

0 0

CDT

0.1

CDT 0.8

CDT

1|1 1

1|0 0.5

0|1 0.5

0|0 0

CDT

P(A2)=0.8P(Aa)=0.1

P(A1)=0.7

P(AG)=0.75

P(A1)=0.07

P(AG)=0,435

Fig. 5. Integration of attack on 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 into a predefined attack scenario described as a BNAG.

of security products. The CC certification defines evaluation assurance levels (EALs), stating in
what extend security experts have tested the security functions for possible vulnerabilities. These
EALs range from simple, functional testing (EAL1) to formal verification, including tests (EAL7).
Additionally, each product must match a defined protection profile, ensuring that it provides all
expected security features [1]. The CC’s official web page1 provides a list of CC certified products
and their certification documentation.
Based on the BNAG adapted with the security functions, the framework calculates the attack

goals’ success probabilities. It calculates the attack goals applying the Bayesian chain rule on the
BNAG and merging the marginals for each attack goal. Only if each attack goal’s attack probability
is below its defined threshold, the overall system functionality mapping to the architecture satisfies
the security constraint. The implementation of the security mapping constraints is explained in
more detail in Section 4.
Considering Figure 1, one can notice how the task graph, the BNAG-based attack description,

the available security options, and the architectural platform description serve as input to the
framework. Based on the security-, performance-, and power-consumption-constraints, the attacks,
and the security mechanisms provided by the hardware components, the framework performs
a selection of the hardware components, the task mapping, and the security function selection
to find suitable solutions. These solutions are then searched for the security-, performance-, or
power-optimal solution, based on the designer’s selected optimization goal.

3.3.3 System Performance and Power Consumption. The framework calculates a solution’s delay
based on the WCETs of the tasks 𝑡 mapped on the selected 𝑝𝑒 (𝑚) (𝑤𝑐𝑒𝑡 (𝜌 (𝑡, 𝑝𝑒 (𝑚)))). To these
WCETs, the framework adds the communication delay caused by the data entities sent over the
communication buses. The data entity’s size (𝑑𝑙𝑒𝑛) is multiplied with the transmission delay (𝛿𝑡𝑥)
of the used bus (𝛿𝑐𝑜𝑚𝑚 = 𝑑𝑙𝑒𝑛 ∗ 𝛿𝑡𝑥). The solution’s security overhead is calculated based on
the delays induced by the security capabilities used for securing the data entities. These delays
are either given as overall execution time, or as a delay per bit of secured data 𝛿𝑠𝑒𝑐𝐶𝑎𝑝,𝑑𝑙𝑒𝑛 . The
hardware component’s security overhead is the sum of the delays of all used security capabilities
(𝛿𝑠𝑒𝑐 =

∑
𝛿𝑠𝑒𝑐𝐶𝑎𝑝,𝑑𝑙𝑒𝑛). These security overheads (𝛿𝑠𝑒𝑐) are added to the overall performance delay

(𝛿𝑠𝑦𝑠 =
∑
𝛿𝑐𝑜𝑚𝑚 +∑𝛿𝑠𝑒𝑐 +

∑
𝑤𝑐𝑒𝑡 (𝜌 (𝑡, 𝑝𝑒 (𝑚)))). The power consumption is calculated using static

1https://www.commoncriteriaportal.org/

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 181 –

Publication J - ACM Transactions on Embedded Computing Systems

111:12 Lukas Gressl, et al.

(𝜔𝑠𝑡𝑎𝑡) and dynamic power consumption (𝜔𝑑𝑦𝑛). The 𝜔𝑑𝑦𝑛 depends on𝑤𝑐𝑒𝑡 (𝜌 (𝑝𝑒 (𝑚), 𝑡)). Again,
the power needed by the security capabilities are given as an overall power consumption or per bit
of secured data 𝜔𝑠𝑒𝑐𝐶𝑎𝑝,𝑑𝑙𝑒𝑛 . The hardware component’s power consumption needed by the used
security capabilities is calculated as (𝜔𝑠𝑒𝑐 =

∑
𝜔𝑠𝑒𝑐𝐶𝑎𝑝,𝑑𝑙𝑒𝑛). Furthermore, the framework adds the

power needed by the 𝑠𝑒𝑐𝐶𝑎𝑝 (𝜔𝑠𝑒𝑐), and consumed power for each bus transmission to calculate
the overall solution’s power consumption (𝜔𝑠𝑦𝑠 =

∑
𝜔𝑑𝑦𝑛 ∗𝑤𝑐𝑒𝑡 (𝜌 (𝑡, 𝑝𝑒 (𝑚))) +∑

𝜔𝑠𝑡𝑎𝑡 +
∑
𝜔𝑠𝑒𝑐).

As each chosen hardware component comes with a distinct 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 stating its mitigation capabil-
ity against attacks and comes with distinct security capabilities securing the attacked data entities,
the increase of the attack mitigation comes with an increase in the system’s performance and power
consumption. Based on the given constraints formalized by the designers, the framework’s main
task is to find solutions satisfying all given constraints. Furthermore, by formalizing optimization
goals on one of these constraints makes the framework find the optimal solution, considering the
goal and all other given constraints.

4 FRAMEWORK IMPLEMENTATION
The framework is implemented based on the DeSyDe framework publicly available at Github2. The
DeSyDe framework finds an optimal selection of PE modes and mapping of tasks to PEs considering
power consumption and performance. The papers of Rosvall et al. [27, 29] describe the details on
how the framework calculates the scheduling, performance, and power consumption. The following
paragraphs describe the extensions and changes to the DeSyDe framework we implemented to
achieve the before described calculation of an optimal and secure solution.
Task and communication bus representation: We extended the task representation by adding
the definition of data entities and operations to the tasks. The DeSyDe tool’s functional system
description uses task graphs to represent synchronous data flows. We use this representation to
describe the system’s control flow, but with the integration of the data entities also its data flow.
This data flow representation is further used to describe the communication overhead. Based on the
task mapping, the data exchange channels between the tasks are put to different communication
buses. Based on the used bus mode’s transmission speed, the communication delay for passing the
data entities over the bus is calculated. The original communication model of the DeSyDe model
uses a TDMA-bus model where each PE can communicate with any other PE. By replacing the
TDMA-bus model with the dedicated communication buses used in our approach, we not only
integrated the communication delay to the performance model but also changed the mapping of
tasks to PEs, as explained in Section 3.3.1. The framework calculates the transmission delay of the
communication between two tasks over a physical link by multiplying the link’s encoding factor
with the transmission speed, times the exchanged data size. The data entity exchanged via the
physical connection is determined by the communication channel between the tasks mapped to the
linked PEs. The framework uses this additional transmission delay for calculating the worst-case
communication time propagating into the overall system performance, as described in [27]. The
framework integrates the computational overhead induced by the security functions by adding it
to the WCET of the respective tasks, which affects the system’s performance.
Security constraints: The calculation of the security constraints builds upon the knowledge of
security capabilities, security requirements, attack goals, and available security functions. The
mapping between the security capabilities and tasks’ security functions is realized in a straight
forward check, coming with a computational overhead of𝑂 (𝑁𝑁𝑃𝐸𝑀

𝑇), with 𝑁𝑇 being the number of
tasks in the application graph, and 𝑁𝑃𝐸𝑀 being the number of all modes of all PEs. The framework
determines the set of all secure connections 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 , denoted 𝑆𝐸𝐶𝑐𝑜𝑛𝑛 = (𝑠𝑒𝑐𝑐𝑜𝑛𝑛1 , ..., 𝑠𝑒𝑐𝑐𝑜𝑛𝑛𝜙), with
2https://github.com/forsyde/DeSyDe

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 182 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:13

𝜙 being the maximum number of all found 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 . The calculation of the attack goals bases on
the BNAG and, thus, is a computationally hard problem. The framework must solve a Boolean
satisfiability problem, checking if all mappings satisfy the security mapping constraints and the
attack goal thresholds are not exceeded. This computational overhead even increases by the fact
that each task to PE mode mapping 𝜌 (𝑡, 𝑝𝑒 (𝑚)) changes the BNAG by adding the respective secret
key-based security function 𝑠 𝑓𝑘 attacks with the supported keys. Hence, the recalculation of the
attack goals is necessary for each task to PE mapping. Approximate inferences through sampling
are capable of reducing the NP-hardness of the exact probabilistic inference [9].

Reducing the number of necessary attack goal calculations induced by the different mapping pos-
sibilities, the framework searches the BNAG for all attacks influencing the attack goals, disregarding
all other attacks. It orders all PEs according to the implementation vulnerability 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 of their
respective modes. The PE modes’ 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 are denoted by the function 𝜃 (𝑝𝑒 (𝑚)). The ordered set
Θ = (𝜃1 (𝑝𝑒𝑥 (𝑚𝑦)) ≤, ..., ≤ 𝜃𝑛 (𝑝𝑒𝑥 ′ (𝑚𝑦′)) is then used for calculating the attack goals for each pos-
sible mapping 𝜌 (𝑡, 𝑝𝑒 (𝑚)). The framework permutes all feasible 𝜌 (𝑡, 𝑝𝑒 (𝑚)) using Θ and calculates
the attack goals for each permutation described as 𝑃 = (𝜌1 (𝑡1, 𝑝𝑒𝑎 (𝑚𝑏)), ..., 𝜌𝑁𝑇 (𝑡𝑁𝑇 , 𝑝𝑒𝑁𝑃𝐸 (𝑚𝑁𝑚))),
with 𝑁𝑃𝐸 being the number of all 𝑝𝑒 and 𝑁𝑚 the number of modes of the current 𝑝𝑒 . Considering the
permutations, not all of them represent feasible task mappings, as a system mapping 𝜌 (𝑡𝑥 , 𝑝𝑒𝑎 (𝑚𝑏))
cannot map 𝜌 (𝑡𝑦, 𝑝𝑒𝑎 (𝑚𝑐)). The framework eliminates these infeasible combinations before starting
the attack goal calculation. For each 𝑃 the possible key sets of the used 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 are determined
by traversing all 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 in 𝑆𝐸𝐶𝑐𝑜𝑛𝑛 and checking the 𝑠𝑒𝑐𝐶𝑎𝑝 of each 𝜌 (𝑡, 𝑝𝑒 (𝑚)) of 𝑠𝑒𝑐𝑐𝑜𝑛𝑛 . Based
on 𝑠𝑒𝑐𝐶𝑎𝑝 the set of possible keys 𝐾 for all involved 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 is determined (𝑠 𝑓𝑘). In each 𝑃 , the
combinations of all 𝑠 𝑓𝐾 are iterated. In each iteration, the framework forms the respective BNAG
to calculate the attack goals (𝑎𝑔) of said iteration (𝑎𝑔(𝑖)). At the end of each iteration, 𝑎𝑔(𝑖) is
added to the set 𝑎𝑔(𝑃). The framework checks this set 𝑎𝑔(𝑃) at the end of said permutation 𝑃 .
As the framework ordered Θ descending, it can halt the calculation of 𝑎𝑔(𝑃) when it found a
𝑃𝑖𝑛𝑠𝑒𝑐 , not containing any 𝑎𝑔(𝑖) satisfying the defined attack thresholds. All following 𝑃 can be
rendered insecure without further attack goal calculation, until a 𝑃 is reached, in which at least
one 𝜌 ′(𝑡𝑥 , 𝑝𝑒𝑎′ (𝑚𝑏′)) has a 𝜃 ′(𝑝𝑒𝑎′ (𝑚𝑏′)) smaller than 𝜃 (𝑝𝑒𝑎 (𝑚𝑏)) of 𝜌 (𝑡𝑥 , 𝑝𝑒𝑎 (𝑚𝑏)) in 𝑃𝑖𝑛𝑠𝑒𝑐 . After
that, the algorithm continues calculating the security goals for all following 𝑃 until reaching the
next 𝑃𝑖𝑛𝑠𝑒𝑐 .The algorithm’s computational worst case is not finding any mapping dissatisfying the
security goals’ thresholds. In all other cases, the algorithm will reduce the number of necessary
inference calculations in the BNAG.

5 EVALUATION AND RESULTS
We used the framework presented here to design a secure indoor localization system with the
support of our industry partners. The secure localization system consists of nodes and anchors.
The anchors have static positions within a room. Nodes and anchors determine their distances
from each other using an ultra-wideband (UWB) based ranging approach. A localization system
consisting of a single or more anchors aims at localizing all nodes in its vicinity. To perform this
localization, nodes and anchors exchange ranging packets. Taking the timestamps when sending
and receiving these packets allows the calculation of the packet’s time of flight. This time of flight
then allows the calculation of the distance between the communicating devices. A system that
knows the distances between a node and multiple (at least three) anchors can calculate the node’s
position based on triangulation.

Such systems are not only used for device and asset tracking, but also for realizing key-less entry
systems. In such systems, the node functions as a key, the anchor as a lock. Lock and key perform a
distance-bound authorization process consisting of an authorization part and a ranging part. Only
if a key is authorized to access a certain location and is close enough, the system grants access

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 183 –

Publication J - ACM Transactions on Embedded Computing Systems

111:14 Lukas Gressl, et al.

Table 2. PEs with security options, containing their implementation vulnerability 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 , performance (Perf)
given in µs, and power consumption (PWC) in mW. The performance and power consumption for encryption
𝑠𝑐𝑒𝑛𝑐 and authentication 𝑠𝑐𝑎𝑢𝑡ℎ are given for symmetric (sym) and asymmetric (asym) cryptography.

HWC Sec. Feat. 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛
Perf/PWC
𝑠𝑐𝑒𝑛𝑐 ,𝑠𝑐𝑎𝑢𝑡ℎ 𝑠𝑐𝑡𝑠𝑠 𝑠𝑐𝑡𝑒

AP

HWC, HWF 0.4 sym(40/50),asym(100/90) -/- 10/10
SWC scp, HWF 0.5 sym(70/60) -/- 10/10
SWC scp, TEE 0.6 sym(70/60) -/- 5/5
SWC f., TEE 0.8 sym(45/40) -/- 5/5

SE
EAL 6+ 0.05 sym(110/70),asym(160/130) 50/20 20/15
EAL 5+ 0.1 sym(100/60),asym(140/120) 30/10 15/10
EAL 4+ 0.2 sym(100/50),asym(140/100) 20/10 10/10

UR

HWC, MS 0.25 sym(60/40),asym(110/100) -/- 20/20
HWC, HWF 0.35 sym(50/30),asym(100/90) -/- 5/10
HWC, TZ 0.5 sym(50/30),asym(100/90) -/- 10/5
SWC scp, TZ 0.6 sym(80/40) -/- 10/5
SWC f., TZ 0.2 sym(50/35) -/- 5/5

to the location it secures. Secure designs of such systems are of great importance, as the lack of
security considerations can lead to inadvertent incidents, such as reported here3 4.
The task was to design a secure localization system, given a set of alternative PE coming with

different security capabilities. Each node and anchor device consists of an application processor
(AP), a UWB radio (UR), and an optional secure element (SE). Each hardware component listed in
table 2 is represented by a distinct PE, coming with the described modes. Furthermore, each device
additionally comes with a Bluetooth Low Energy (BLE) radio, serving the message exchange of infor-
mation not needed for the ranging process. The AP types come with hardware-based cryptography
(HWC) or with software-based cryptography (SWC). The SWC can either be functional only (f.) or
side-channel protected (scp). The task encapsulation is either supported by a hardware firewall
(HWF) or by a Trusted Execution Environment (TEE). For the SE, we provided the framework with
various types, coming with different Evaluation Assurance Levels (EAL). The UR can also support
HWC or SWC, and come with an HWF or a Trust-Zone (TZ). Furthermore, one possible solution
for the UR consists of two separate micro-controllers, where one serves distinctly as a secure zone.
Each PE comes with a distinct 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 and different supported 𝑠𝑒𝑐𝐶𝑎𝑝 . Security experts rated

their 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 . Where possible, we used Common Criteria Certifications5, performing the estimation
on the distinct (EAL). The 𝑠𝑒𝐶𝑎𝑝 comes with distinct security overhead and power consumption
characteristics. We estimated these characteristics during early system design. Based on the chosen
type, the distinct 𝑠𝑒𝑐𝐶𝑎𝑝 comes with different security overheads and power consumption. Table
2 lists the alternative PEs, including their supported 𝑠𝑒𝑐𝐶𝑎𝑝 , 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 , performance and power
characteristics. The functionality of the system consists of three consecutive phases:

• Authentication phase: In the authentication phase, both node and anchor device exchange
pre-configured challenges. These challenges allow a mutual authentication between the node
and anchor. Based on successful authentication, a shared session secret is derived.

3https://www.esat.kuleuven.be/cosic/fast-furious-and-insecure-passive-keyless-entry-and-start-in-modern-supercars/
4https://nieuws.kuleuven.be/en/content/2018/security-flaws-leave-keyless-tesla-cars-vulnerable-to-theft
5https://www.commoncriteriaportal.org/products/#AC

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 184 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:15

Table 3. Security relevant tasks with their 𝑠𝑟 , and their WCETs given in µs.

Device Task Name 𝑠𝑟 AP SE UR
Node & Anchor create challenge (t1, t7) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 80 100 90
Node & Anchor check challenge (t6, t11) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 70 150 100
Node & Anchor create session secret (t13, t18) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ,𝑖𝑛𝑡 80 140 100
Node & Anchor check session secret (t17, t23) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 60 120 80
Node create config (t24) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 50 150 70
Node check config (t30) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 30 100 40
Anchor create status msg (t31) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 50 150 100
Node create rng poll msg (t36) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 40 150 80
Anchor create rsp msg (t42) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 40 130 70
Node create final msg (t48) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 20 180 50
Node & Anchor generate ts (t38, t44, t50) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 10 50 20
Anchor extract ts (t53) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 40 90 70
Anchor calculate distance (t54) 𝑐𝑜𝑛𝑓 ,𝑎𝑢𝑡ℎ 30 80 50

• Session and Configuration phase: The node and anchor device exchange their session
secrets derived on the previously exchanged challenges. After establishing the session, node
and anchor devices exchange their configurations. Based on these configurations, they set up
a ranging session.

• Ranging phase: Based on the exchanged configuration, the node and the anchor device
perform the ranging. The ranging phase starts with the node sending a poll-packet to the
anchor. The anchor responds to this packet sending a response on the node. The node sends
a final packet to the anchor. This final packet contains all sending and receiving timestamps
(ts) stored by the node. The anchor device uses these ts to calculate the packets’ time of flight,
and, hence, the distance to the node. Based on this distance and the authorization performed
earlier, the anchor grants access to the node.

The task graph depicted in Figure 6 represents the system’s functionality. It includes the data
entities used by each task, and the task’s operations performed on these entities. The overall
functionality consists of an authentication phase, a session and configuration phase, and a ranging
phase. In the authentication phase, node and anchor exchange and verify their respective challenges.
In the session and configuration phase, the node device requests a new session and, upon receiving a
positive response, sends its configuration parameters to the anchor device. The anchor device applies
the received configuration. In the ranging phase, the node and anchor device exchange ranging
packets. At the end of this exchange, the anchor collects the packets’ timestamps and calculates
the distance between the itself and the node. If the distance drops below a certain threshold, the
anchor opens the door it secures. Overall, the task graph consists of 59 nodes describing the secure
ranging system’s functionality. Table 3 lists the estimated WCETs of the security-relevant tasks
when mapped to the distinct PEs. Furthermore, it lists the security requirements 𝑠𝑟 of the distinct
tasks, based on the data entities they operate on.
The system’s functionality must resist potential cybersecurity attacks. Figure 7 shows detailed

attack scenarios, aiming at distinct phases. To model these attack scenarios, and, further, let the
framework derive the system’s security constraints, we made the following assumptions regarding
potential attackers. The attacker is capable of sniffing both the traffic on the BLE and the UWB
channels. The attacker is further capable of capturing the exchanged packets, as well as injecting
packets addressing both the node and the anchor devices. The attacker is also capable of accessing

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 185 –

Publication J - ACM Transactions on Embedded Computing Systems

111:16 Lukas Gressl, et al.

Node

create
chall

forward
chall

rx chall
resp

check
chall
resp

chall chall

w, tx rx, tx

rx, txrx, r

1 2 3

1011

Anchor

tx chall

rx, tx

chall

4

rx chall

rx, tx

chall

5
forward

chall

rx, tx

challchall

6
check
chall

rx, tx

chall

7
create
chall

anchor

w, tx

chall
anchor

chall

8create
chall
resp

rx, w, tx

chall-rsp
chall

9
tx chall

resp

rx, w, tx

chall-rspchall-rspchall-rsp

start
session

12

create
start

session

w, tx13

session

create
session

requ

rx, r, w, tx14

session
requ

tx
session

requ

rx, tx15

session
requ

rx
session

requ

rx, tx16

session
requ

create
session

resp

rx, w, tx17

session
resp

pack
session

resp
rx, w, tx

18

session
resp

forward
session

resp

rx, tx

19

session
resp

create
resp
msg

rx, w, tx
20

session
rsp-msg

tx resp
msg

rx, tx
21

session
rsp-msg

rx resp
msg

rx, tx
22

session
rsp-msg

check
resp
msg

rx, r
23

session
rsp-msg

create
config

w, tx
24

config

pack
config

rx, w, tx
25

config
msg

forward
config
msg

rx, tx
26

config
msg

tx config
msg

rx, tx
27

config
msg

rx config
msg

rx, tx
28

config
msg

unpack
config

rx, r, tx
29

config
msg

check
config

rx, r
30

config

start rng

35

create
poll msg

w, tx36

poll msg

pack
poll msg

rx, r, w, tx37

poll msg

tx poll
msg

rx, tx
38

poll msg

rx poll
msg

rx, tx
39

poll msg

unpack
poll msg

rx, tx
40

poll msg

get poll
info

rx, tx41

poll msg

create
rng resp

w, tx42

rsp msg

pack rng
resp

rx, r, w, tx43

rsp msg

tx rng
resp

rx, tx44

rsp msg

rx rng
resp

rx, tx45

rsp msg

get resp
info

rx, w, tx
46

rsp msg

pack ts

rx, r, w, tx47

time-
stamps

create
fin msg

rx, r, w, tx48

fin msg

pack fin
msg

rx, w, tx49

fin msg

tx fin
msg

rx, tx50

fin msg

rx fin
msg

rx, tx51

fin msg

get fin
info

rx, r, tx

52

fin msg

get ts

rx, r, w, tx53

ts

calc dist

rx, r, w, tx

54

dist

check
dist

rx, r, w, tx55

dist

open

56

au
th

en
tic

at
io

n
ph

as
e

se
ss

io
n

&
 c

on
fig

ur
at

io
n

ph
as

e
ra

ng
in

g
ph

as
e

tx open
msg

open
msg

rx, r, w, tx57

rx open
msg

open
msg

rx, tx58
display
open
info

59

open
msg

rx, r, tx

create
status
msg

31

status
msg

w, tx

tx status
msg

32

status
msg

rx, tx

rx status
msg

33

status
msg

rx, tx

check
status
msg

34

status
msg

rx, r

Fig. 6. Functional description of the secure ranging use case showing the tasks for the node and the anchor
device. The numbers denote the task numbers.

the devices logically, exploiting maintenance interfaces. Based on these assumptions, the attacks in
the distinct phases comprise:

• Authentication attacks: Sniffing the authentication exchange, extracting, faking, and in-
jecting the faked challenges into the communication between node and anchor. Disclosing
and manipulating the challenge within the devices, before their exchange.

• Session and Configuration attacks: Sniffing the session exchange, extracting, manipulat-
ing, and injecting the altered session, from outside and by device intrusion. Thereby the
attacker is capable of hijacking the ranging session. The attacker can attack the configuration

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 186 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:17

Table 4. Security functions and keys used by the system, including their attack success probabilities (asp).

Security Functions Key Key-lifetime 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 asp Key disclosure asp

Cryptography
Master Key long-term 0.4 0.5
Internal Key long-term 0.25 0.4
Session Key short-term 0.15 0.2
Certificate long-term 0.1 0.2

Task Encapsulation / / 0.25 /
Secure Storage / / 0.25 /

parameters in the same way, thereby manipulating the configuration of the subsequent
ranging process.

• Ranging attacks: The attacker is also capable of sniffing the ranging process, extracting,
manipulating, and injecting faked ranging packets. Furthermore, the attacker can manipulate
the timestamps within the device. These attacks allow the attacker to lead the anchor into
wrong distance calculations.

The overall attack scenario consists of 43 attack nodes split into four attack graphs. These graphs
contain seven attack goals. None of these attack goals are allowed to exceed their distinct thresholds.
We provided the framework with a set of security functions 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 the system can use to

mitigate these attacks, protecting the system against them. As explained in Section 3, each 𝑠𝑒𝑐𝐹𝑢𝑛𝑐
comes with an attack stating the probability of an attacker breaking it. Furthermore, 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 use
keys, which further influence the attack probability of the attack targeting the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 . Table 4 lists
the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 the framework can select from, including their attack probabilities of being broken by
the potential attacker. For cryptographic security functions, the attack probabilities also reflect the
used key’s lifetime and the prospect of successfully breaking the operation.

Furthermore, it contains the attack probabilities of the distinct keys, which also depend on their
lifetimes. The session key derives from either the master key or the certificate. The system uses
the internal key only for communication within the same device. Although it is a long-term key,
the internal key can be used by all 𝑝𝑒 (𝑚) supporting task encapsulation 𝑠𝑐𝑡𝑒 . The system uses the
master, internal, and session keys for symmetric cryptography only. The certificate for asymmetric
cryptography.
We provided the inputs described in here to the framework and let it compute the security-

feasible solutions, considering their task mappings and system partitioning. Figure 8 shows this
solution space, depicting each solution based on its overall system delay, power consumption, and
the number of broken security goals. We normalized both the performance and power consumption
to the solution with the best performance and lowest power consumption, respectively. The solution
space regards all security-feasible solutions (solutions which map tasks in such a way that their
𝑠𝑒𝑐𝐹𝑢𝑛𝑐𝑡 are supported by the PE’s 𝑠𝑒𝑐𝐶𝑎𝑝). The whole solution space consists of 543808 solutions.
From these solutions, only 29232 fulfill the security constraints (have no broken security goals).
Hence, the framework discarded 94, 62% of the whole solution space. Figure 9 shows the solutions
ordered according to their average attack success probability (𝑎𝑝𝑎𝑣𝑔). The figure shows that the
𝑎𝑝𝑎𝑣𝑔 of the found solutions ranges from 0.0008 to 0.00823. Most of the solutions (> 55%) have an
𝑎𝑝𝑎𝑣𝑔 of less than 0.0033. All these solutions are at least 59.9% less likely to be successfully attacked
than the most insecure solution found by the framework.

Tables 5 and 6 show the fastest, the most secure, the fastest secure, and the most power-efficient,
but secure solution. Each solution states the average attack probability at the attack goals (𝑎𝑝𝑎𝑣𝑔 =∑𝐺

𝑖=0 𝑎𝑝𝑎𝑣𝑔 (𝑖)
𝐺), where 𝐺 is the number of all attack goals. It states the normalized 𝛿𝑠𝑦𝑠 and the

normalized 𝜔𝑠𝑦𝑠 . Tables 5 and 6 also describe where the used keys are placed. The framework
selects for the fastest solution only the PEs and modes with the fastest security capabilities. For the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 187 –

Publication J - ACM Transactions on Embedded Computing Systems

111:18 Lukas Gressl, et al.

Attack configuration

Attack authentication process

t4

extract
challenge

t9

inject
discl.
chall

t10

replay
challenge

fake challenge
manipulate
challenge

t6

intrude
anchor

t1

t7 t1

discl.
chall
node

t2

tamp
chall
node

t8

tamp
chall

 anchor

t3

sniff
chall.
 exch.

discl.
chall

 anchor

Attack session establishment process

t14

discl
session
node

t18

discl
session
 anchor

t14

change
session
node

change session
params

t13

intrude
node

t17

intrude
anchor

t15

sniff session
exchange

t16

extract
session

t20

change
session
anchor

t16

change
session

t22

inject
manip.
session

Attack ranging process and dist. measurement

t6

manip.
 chall. check

anchor

t11

manip.
 chall. check

node

disturb
challenge check

manipulate
distance calc

manipulate
ranging process

t38,
t44, t52

sniff
rng packet

exch

t42

intrude
Anchor

t36, t48

intrude
Node

t38

interfere
rng poll

t39, t45,
t51

extract
rng pack.

info.

t44

interfere
rng resp

t52

interfere
rng final

t40

inject
rng poll

t46

inject
rng resp

t52

inject
rng final

t53

manip.
final ts

t43

manip.
ts gen.
Anchor

t49

change
final ts

t37,
t49

manip.
ts gen.
Node

t51

change ts
 data

t54

tamp
distance

calc.

manipulate
configuration

t24

intrude Node

t27

sniff
config
exch

t25

manip.
config

t28

extract
config

t29

inject
faked

 config

P=0.9
P=0.8 P=0.8

P=0.8 P=0.8 P=0.9

P=0.7
P=0.9P=0.6 P=0.6 P=0.8

P=0.57 P=0.44

P=0.34

P=0.28

P=0.67 P=0.63
P=0.54 P=0.54

P=0.37

P=0.42 P=0.38

P=0.33

P=0.72 P=0.72 P=0.83

P=0.57
P=0.57

P=0.41

P=0.69

P=0.56

P=0.74
P=0.82

P=0.64

P=0.58

P=0.61

P=0.61 P=0.61

P=0.54

P=0.42
P=0.42 P=0.36

P=0.23

P=0.53 P=0.53 P=0.53

P=0.42
P=0.37

P=0.43

P=0.29

T=0.005 T=0.005 T=0.0075 T=0.005

T=0.005 T=0.005 T=0.01

intrude
node

Fig. 7. Security attack scenarios described as BNAGs. The BNAGs show the unconditional probabilities of
each attack node. The attack goals come with distinct thresholds.

fastest solution, it places the tasks to the PEs where they have the lowest estimatedWCET. Therefore,
it only puts tasks to the SEs of the anchor and node device, if there is no other option (feasibility of
𝑠𝑒𝑐𝐹𝑢𝑛𝑐 must be guaranteed). It also tries to put as many tasks to the same PE as possible, as this
reduces the communication time induced by the bus system. Looking at the cryptographic 𝑠𝑒𝑐𝐶𝑎𝑝 ,
one can notice that the fastest solution aims at using symmetric cryptography only. For the most
secure solution, the framework only selects the PEs and modes with the lowest 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 , as this
reduces the attack success probabilities (asp) of the attacks aiming at the 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 . The framework

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 188 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:19

reached goals

normalized power consumption

no
rm

al
iz

ed
 d

el
ay

Fig. 8. Solution space identified by the framework. Solutions are ordered by their system delay 𝛿𝑠𝑦𝑠 normalize
to the fastest solutions and the system power consumption 𝜔𝑠𝑦𝑠 normalize to the most power efficient
solutions. The solutions are colored based on the number of broken security goals

aims at using the cryptographic 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 with the session key as much as possible, as it comes with
the lowest asp. For this solution, the session key derives from the certificate, as the certificate comes
with a lower asp than the master key. Where possible, the solution uses asymmetric cryptography
using the certificate. Considering secure but performance optimal/power consumption optimal
solutions, the framework only selects modes for both the UR and the AP coming with HWC. Neither
the performance optimal and secure nor the most power-efficient and secure solution comes with a
SE with an assurance level lower than EAL5+, as this would be considered insecure. Both solutions
use the session key for performing the cryptographic 𝑠𝑒𝑐𝐹𝑢𝑛𝑐 , derived from the master key.
Table 7 lists the mappings of the security-relevant tasks to the PEs in the fastest, most secure,

fastest secure, and most power-efficient and secure solution. For the fastest solution, the framework
maps all tasks to the AP, if possible. For the most secure solution, the framework puts all possible
tasks to the SE, as it offers the lowest 𝑖𝑚𝑝𝑙𝑣𝑢𝑙𝑛 . The task mappings for the fastest secure and the
most power-efficient and secure solution are equal. The different modes selected for the PEs of these
solutions alone cause the differences between the 𝛿𝑠𝑦𝑠 and 𝜔𝑠𝑦𝑠 . In all solutions, the framework
places at least t18 and t13 on the SE of the node and anchor device, respectively. It must perform
this mapping as both tasks store the session secret exchanged between the devices. As this secret
must be kept safe from tampering, only the SE can store it in tamper-safe storage.

5.1 Execution Times and Scalability
We executed the framework with the experimental use case described in here on a system providing
16 GB of RAM and an Intel® Core™ i7-4600U CPU with 2.10GHz. To examine the runtime and the
scalability of our approach, we executed the framework with different subsets of the use case. Hence,
the framework had to solve different numbers of combinations considering the task mappings and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 189 –

Publication J - ACM Transactions on Embedded Computing Systems

111:20 Lukas Gressl, et al.

Fig. 9. Solutions found by the framework categorized according to their 𝑎𝑝𝑎𝑣𝑔 . Stepsize of 4.9095 ∗ 10−5

Table 5. Fastest and most secure solutions found based on 𝑎𝑝𝑎𝑣𝑔 and 𝛿𝑠𝑦𝑠 normalized to the system with the
lowest 𝛿𝑠𝑦𝑠 .

Device HWC Fastest solution Most secure solution

Anchor
UR SWC, f., TZ HWC, MS
SE EAL 4+ EAL 6+
AP SWC, f., TEE HWC, HWF

Node
UR SWC, f., TZ HWC, MS
SE EAL 4+ EAL 6+
AP SWC, f., TEE HWC, HWF

𝑎𝑝𝑎𝑣𝑔 0.0047 0.00087
norm 𝛿𝑠𝑦𝑠 ~1.0 ~1.09
norm 𝜔𝑠𝑦𝑠 ~1.12 ~1.03

Key Placement

Anchor
UR 𝑠𝑠𝑘 , 𝑠𝑏𝑘 𝑠𝑠𝑘 , 𝑠𝑏𝑘
SE 𝑠𝑏𝑘 , 𝑠𝑚𝑘 , 𝑠𝑏𝑘 , 𝑠𝑠𝑘
AP 𝑠𝑏𝑘 , 𝑠𝑚𝑘 , 𝑠𝑏𝑘 , 𝑐𝑒𝑟𝑡

Node
UR 𝑠𝑠𝑘 , 𝑠𝑏𝑘 𝑠𝑠𝑘 , 𝑠𝑏𝑘
SE 𝑠𝑏𝑘 , 𝑠𝑚𝑘 , 𝑠𝑏𝑘 , 𝑐𝑒𝑟𝑡
AP 𝑠𝑏𝑘 , 𝑠𝑚𝑘 , 𝑠𝑏𝑘 , 𝑠𝑠𝑘

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 190 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:21

Table 6. Fastest secure and most power efficient (MPE) secure solution found based on 𝑎𝑝𝑎𝑣𝑔 , 𝛿𝑠𝑦𝑠 normalized
to the system with the lowest 𝛿𝑠𝑦𝑠 , and 𝜔𝑠𝑦𝑠 normalized to the system with the lowest 𝜔𝑠𝑦𝑠 .

Device HWC Fastest secure solution MPE secure solution

Anchor
UR HWC, HWF HWC, TZ
SE EAL 5+ EAL 5+
AP HWC, HWF HWC, HWF

Node
UR HWC, HWF HWC, TZ
SE EAL 6+ EAL 5+
AP HWC, HWF HWC, HWF

𝑎𝑝𝑎𝑣𝑔 0.0047 0.00087
norm 𝛿𝑠𝑦𝑠 ~1.023 ~1.051
norm 𝜔𝑠𝑦𝑠 ~1.112 ~1.053

Key Placement

Anchor
UR 𝑠𝑠𝑘 , 𝑠𝑏𝑘 𝑠𝑠𝑘 , 𝑠𝑏𝑘
SE 𝑠𝑏𝑘 , 𝑠𝑚𝑘 𝑠𝑏𝑘 , 𝑠𝑚𝑘
AP 𝑠𝑏𝑘 , 𝑠𝑚𝑘 𝑠𝑏𝑘 , 𝑠𝑚𝑘

Node
UR 𝑠𝑠𝑘 , 𝑠𝑏𝑘 𝑠𝑠𝑘 , 𝑠𝑏𝑘
SE 𝑠𝑏𝑘 , 𝑠𝑚𝑘 𝑠𝑏𝑘 , 𝑠𝑚𝑘
AP 𝑠𝑏𝑘 , 𝑠𝑚𝑘 𝑠𝑏𝑘 , 𝑠𝑚𝑘

Table 7. Fastest and most secure solutions found based on 𝑎𝑝𝑎𝑣𝑔 and 𝛿𝑠𝑦𝑠 normalized to the system with the
lowest 𝛿𝑠𝑦𝑠 .

Device HWC Fastest Most secure Fastest secure MPE secure

Anchor
UR t31, t42, t44 t44 t6, t31, t42,

t44, t53, t54
t6, t31, t42,
t44, t53, t54

SE t18
t18, t31, t42,
t6, t7, t17,
t53, t54

t18 t18

AP t6, t7, t17,
t53, t54 - t7, t17 t7, t17

Node
UR t36, t48,

t38, t50 t38, t50
t11, t24, t30,
t36, t38, t48,
t50

t11, t24, t30,
t36, t38, t48,
t50

SE t13
t1, t11, t13,
t23, t24, t30,
t36, t48

t13 t13

AP t1, t11, t23,
t24, t30 - t1, t23 t1, t23

system partitioning. Table 8 shows the different variants (variant III consists of the whole use case)
with their distinct execution times, with and without reducing the number of necessary attack goal
calculations by using the break criteria described in Section 4. Variant I comes with 6, 359, variant
II comes with 51, 932, and variant III comes with 4, 661, 264 security-feasible combinations. Based
on these configurations, one can see that for variant I, the break criteria optimization was able to
reduce the execution time by 37.37%, for variant II by 13.55%, and for variant III by 44.24%. The

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 191 –

Publication J - ACM Transactions on Embedded Computing Systems

111:22 Lukas Gressl, et al.

amount of reduced time highly depends on the attack scenarios. The sooner the calculation reaches
the break criteria, the more the system can reduce the execution time. The calculation time per
solution is ~0.013sec for variant I, for variant III the calculation time per solution is ~0.00095sec.
This difference in the calculation time per solution is due to a static ramp up overhead caused by
the framework. Hence, the bigger the use case becomes, the less time the framework needs for the
calculation of each solution.

With the secure ranging system use case, we show the feasibility and scalability of our security-
aware DSE framework. We show how the system designer can use the framework to define security
constraints using attack models and how they influence the system partitioning and task mapping
of the distinct solutions. The use case shows the approach’s capability of reducing the solution
space by introducing these additional security constraints and the influence of the chosen security
capabilities on the solution’s overall performance and power consumption.

Table 8. Execution times for different variants with and without break criteria.

Mode Variant I Variant II Variant III
No break crit. 1min 21.816sec 26min 6.864sec 1h 13min 57.367sec
Break crit 51.239sec 22min 34.498sec 41min 34.199sec

6 CONCLUSION AND FUTUREWORK
In this paper, we describe a novel approach for introducing security attack scenarios and security
functionality selection into a system design process of embedded systems. The introduced frame-
work allows a designer to specify the system’s functionality, the possible hardware architecture
components running the defined functionality, model-based attack scenarios, and a range of secu-
rity functions usable by the system. The framework uses these descriptions to suggest an optimal
hardware component selection, the task to component mapping, and optimal usage of security
functions with respective key material. We described the functionality of the framework during
design time based on a secure ranging system use case. Furthermore, we showed its feasibility for
finding not only the most secure but also the, e.g., best performing and still secure solution.
The framework presented here constitutes an important step for introducing detailed security

requirements into the design space exploration of embedded systems based on attack probabilities.
Looking into related work security constraints and usable security functions can be formalized
more specifically. We imagine the framework utilized as a tool to simplify the design process
of secure embedded systems and emphasize the importance of information security at an early
stage of the system design process. In this sense, the framework introduces the experience and
knowledge of security experts in the design flow in an easier way. Thus, the framework supports
system designers not experienced in information security during the first phases of system design.
The security expert knowledge is, however, also the limiting factor in this process. The information
about the assurance level of a security operation’s implementation must be provided by the security
experts a priori. The CC certification can only give guidance about the security level of certain
secure devices. However, this guidance is not directly usable for judging what vulnerability can
be found by attackers considering the security functions. As these security functions secure the
tasks running on the platform, this information is critical to the overall system design. Hence, a
standardized method for judging these security level of such security functions would be needed.
Based on this method, the framework could store this information in a repository. Future designs
could benefit from this repository, as it could support the design process of secure embedded
systems.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 192 –

7 Publications

Design Space Exploration for Secure IoT Devices and Cyber-Physical Systems 111:23

For future work, this work will be extended to support not only security attack scenarios but a
complete security risk estimation. This extension would add critical and important information
to the DSE process and allow the framework to consider additional constraints, such as expected
financial loss caused by successfully executed security attacks, etc. Furthermore, we want to show
how the framework can also be used on a large scale system, covering not only the embedded
world but also higher layers, such as web servers and applications, etc.

ACKNOWLEDGMENT
Project partners are NXP Semiconductors Austria GmbH and the Technical University of Graz.
This work was supported by the Austrian Research Promotion Agency (FFG) within the project
UBSmart (project number: 859475).

REFERENCES
[1] 2012. Common Criteria for Information Technology Security Evaluation Part 2. (2012). https://doi.org/10.1016/S0168-

3659(03)00201-3
[2] Mohammed Nasser Al-mhiqani, Rabiah Ahmad, Warusia Yassin, Aslinda Hassan, Zaheera Zainal Abidin, Nabeel Salih

Ali, and Karrar Hameed Abdulkareem. 2018. Cyber-Security Incidents : A Review Cases in Cyber-Physical Systems.
(2018).

[3] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. 2002. Scalable, Graph-based Network Vulnerability Analysis.
In Proceedings of the 9th ACM Conference on Computer and Communications Security (Washington, DC, USA). ACM,
New York, NY, USA, 217–224. https://doi.org/10.1145/586110.586140

[4] Nan Feng, Harry Jiannan Wang, and Minqiang Li. 2014. A security risk analysis model for information systems:
Causal relationships of risk factors and vulnerability propagation analysis. Information Sciences (2014). https:
//doi.org/10.1016/j.ins.2013.02.036

[5] Marcel Frigault and Lingyu Wang. 2008. Measuring Network Security Using Bayesian Network-Based Attack Graphs.
(2008). https://doi.org/10.1109/COMPSAC.2008.88

[6] Sebastian Graf, Michael Glaß, Jürgen Teich, and Christoph Lauer. 2014. Multi-variant-based design space exploration
for automotive embedded systems. In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1–6.

[7] Lukas Gressl, Christian Steger, and Ulrich Neffe. 2019. A Security Aware Design Space Exploration Framework. In
Proceedings of the Fourteenth International Conference on Systems ICONS 2019. ThinkMind(TM) Digital Library, Valencia,
Spain. http://www.thinkmind.org/index.php?view=article{&}articleid=icons{_}2019{_}2{_}20{_}40042

[8] Lukas Gressl, Christian Steger, and Ulrich Neffe. 2019. Security Driven Design Space Exploration for Embedded
Systems. In 2019 Forum for Specification and Design Languages (FDL). IEEE, 1–8.

[9] Haipeng Guo and William Hsu. 2002. A Survey of Algorithms for Real-Time Bayesian Network Inference. Papers from
the Workshop on Real-Time Decision Support and Diagnosis Systems 1 (2002).

[10] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B. Bobba. 2018. A design-space exploration for allocating
security tasks in multicore real-Time systems. Proceedings of the 2018 Design, Automation and Test in Europe Conference
and Exhibition, DATE 2018 (2018). https://doi.org/10.23919/DATE.2018.8342007

[11] David Heckerman and John S. Breese. 1996. Causal independence for probability assessment and inference using
Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans. 26, 6 (1996).
https://doi.org/10.1109/3468.541341

[12] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. 2006. Threat modeling-uncover security design
flaws using the stride approach. MSDN Magazine-Louisville (2006).

[13] Ke Jiang, Petru Eles, and Zebo Peng. 2013. Optimization of secure embedded systems with dynamic task sets. Proceedings
-Design, Automation and Test in Europe, DATE (2013), 1765–1770. https://doi.org/10.7873/date.2013.355

[14] Jan Jürjens. 2005. Sound methods and effective tools for model-based security engineering with UML. Proceedings.
27th International Conference on Software Engineering, ICSE (2005). https://doi.org/10.1145/1062455.1062519

[15] Eunusk Kang. 2016. Design Space Exploration for Security. IEEE Cybersecurity Development Design (2016). https:
//doi.org/10.1109/SecDev.2016.22

[16] Bastian Knerr. 2008. Heuristic Optimisation Methods for System Partitioning in HW / SW Co-Design. Ph.D. Dissertation.
Vienna University of Technology.

[17] LetitiaW. Li, Florian Lugou, and Ludovic Apvrille. 2017. Security-awareModeling and Analysis for HW/SWPartitioning.
Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (2017). https:
//doi.org/10.5220/0006119603020311

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 193 –

Towards Security-Aware Design Space Exploration for Embedded Systems

111:24 Lukas Gressl, et al.

[18] Chih Ta Lin, Sung Lin Wu, and Mei Lin Lee. 2017. Cyber attack and defense on industry control systems. 2017 IEEE
Conference on Dependable and Secure Computing (2017). https://doi.org/10.1109/DESEC.2017.8073874

[19] Chumg-Wei Lin and Alberto Sangiovanni-Vincentelli. 2017. Security-Aware Design for Cyber-Physical Systems. Springer.
[20] Chung Wei Lin, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-Aware mapping for TDMA-based real-

Time distributed systems. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers,
ICCAD 2015-January, January (2015), 24–31. https://doi.org/10.1109/ICCAD.2014.7001325

[21] Chung Wei Lin, Qi Zhu, and Alberto Sangiovanni-Vincentelli. 2015. Security-Aware Modeling and Efficient Mapping
for CAN-Based Real-Time Distributed Automotive Systems. IEEE Embedded Systems Letters 7, 1 (2015), 11–14. https:
//doi.org/10.1109/LES.2014.2354011

[22] Yung Chia Lin, Chung Wen Huang, and Jenq Kuen Lee. 2005. System-level design space exploration for security
processor prototyping in analytical approaches. Proceedings of the Asia and South Pacific Design Automation Conference,
ASP-DAC 1 (2005), 376–380. https://doi.org/10.1145/1120725.1120873

[23] Martin Lukasiewycz, Philipp Mundhenk, and Sebastian Steinhorst. 2016. Security-aware obfuscated priority assignment
for automotive CAN platforms. ACM Transactions on Design Automation of Electronic Systems 21, 2 (2016), 1–27.
https://doi.org/10.1145/2831232

[24] Giovanni Mariani, Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-Couvreur, Gianluca Palermo, Cristina
Silvano, and Vittorio Zaccaria. 2010. An industrial design space exploration framework for supporting run-time
resource management on multi-core systems. In 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). IEEE, 196–201.

[25] Lorenzo Pagliari, Raffaela Mirandola, and Catia Trubiani. 2018. Multi-modeling Approach to Performance Engineering
of Cyber-Physical Systems Design. Proceedings of the IEEE International Conference on Engineering of Complex Computer
Systems, ICECCS (2018). https://doi.org/10.1109/ICECCS.2017.22

[26] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. 2012. Dynamic Security Risk Management Using Bayesian Attack
Graphs. IEEE Transactions on Dependable and Secure Computing 9, 1 (2012). https://doi.org/10.1109/TDSC.2011.34

[27] Kathrin Rosvall, Nima Khalilzad, George Ungureanu, and Ingo Sander. 2017. Throughput Propagation in Constraint-
Based Design Space Exploration for Mixed-Criticality Systems. Proceedings of the 9th Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools - RAPIDO ’17 (2017). https://doi.org/10.1145/3023973.3023977

[28] Kathrin Rosvall, Tage Mohammadat, George Ungureanu, Johnny Oberg, and Ingo Sander. 2018. Exploring power and
throughput for dataflow applications on predictable NoC multiprocessors. Proceedings - 21st Euromicro Conference on
Digital System Design, DSD 2018 (2018). https://doi.org/10.1109/DSD.2018.00011

[29] Kathrin Rosvall and Ingo Sander. 2014. A Constraint-based Design Space Exploration Framework for Real-time
Applications on MPSoCs. Proceedings of the Conference on Design, Automation & Test in Europe (2014). https:
//doi.org/10.7873/DATE.2014.339

[30] Bernhard Schätz, Sebastian Voss, and Sergey Zverlov. 2015. Automating Design-Space Exploration: Optimal Deployment
of Automotive SW-Components in an ISO26262 Context. In Proceedings of the 52nd Annual Design Automation Conference
(San Francisco, California) (DAC ’15). Association for Computing Machinery, New York, NY, USA, Article Article 99,
6 pages. https://doi.org/10.1145/2744769.2747912

[31] Vivek Shandilya, Chris B. Simmons, and Sajjan Shiva. 2014. Use of attack graphs in security systems. Journal of
Computer Networks and Communications 2014 (2014). https://doi.org/10.1155/2014/818957

[32] Ingo Stierand, Sunil Malipatlolla, Sibylle Froschle, Alexander Stuhring, and Stefan Henkler. 2014. Integrating the
security aspect into design space exploration of embedded systems. Proceedings - IEEE 25th International Symposium
on Software Reliability Engineering Workshops, ISSREW 2014 (2014). https://doi.org/10.1109/ISSREW.2014.29

[33] Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen. 2018. Using Bayesian Networks for Probabilistic
Identification of Zero-Day Attack Paths. IEEE Transactions on Information Forensics and Security 13, 10 (2018).
https://doi.org/10.1109/TIFS.2018.2821095

[34] Sebastian Voss, Johannes Eder, and FlorianHölzl. 2014. Design Space Exploration and its Visualization in AUTOFOCUS3..
In Software Engineering (Workshops). 57–66.

[35] Yong Xie, Liangjiao Liu, Renfa Li, Jianqiang Hu, Yong Han, and Xin Peng. 2015. Security-aware signal packing algorithm
for CAN-based automotive cyber-physical systems. IEEE/CAA Journal of Automatica Sinica 2, 4 (2015), 422–430.

[36] Yong Xie, Gang Zeng, Ryo Kurachi, Hiroaki Takada, and Guoqi Xie. 2018. Security/Timing-aware Design Space
Exploration of CAN FD for Automotive Cyber-Physical Systems. IEEE Transactions on Industrial Informatics (2018).
https://doi.org/10.1109/TII.2018.2851939

[37] Bowen Zheng, Peng Deng, Rajasekhar Anguluri, Qi Zhu, and Fabio Pasqualetti. 2016. Cross-Layer Codesign for Secure
Cyber-Physical Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 5 (2016).
https://doi.org/10.1109/TCAD.2016.2523937

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

– 194 –

Bibliography

[1] J. Gan, “Tradeoff analysis for Dependable Real-Time Embedded Systems during the Early
Design Phases,” Technical University of Denmark (DTU), 2014.

[2] L. Gressl, M. Krisper, C. Steger, and U. Neffe, “Towards Security Attack and Risk Assess-
ment during Early System Design,” in 2020 International Conference on Cyber Security
and Protection of Digital Services (Cyber Security), pp. 1–8, 2020.

[3] L. Gressl, U. Neffe, and C. Steger, “Design and Implementation of an HCI based Peer
to Peer APDU Protocol,” in 2018 21st Euromicro Conference on Digital System Design
(DSD), pp. 159–162, IEEE, 2018.

[4] D. Evans, “The internet of things - how the next evolution of the internet is chaging every-
thing,” tech. rep., Cisco Internet Business Solutions Group (IBSG), 2011.

[5] P. Middleton, P. Kjeldsen, and J. Tully, “Forecast: The inter-
net of things, worldwide, 2013,” 2013. Available at https:
//www.juniperresearch.com/press/press-releases/
iot-connected-devices-to-triple-to-38-bn-by-2020.

[6] Statista, “Iot: number of connected devices worldwide 2012-2025,” 2020.
Available at https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide.

[7] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks,
vol. 54, no. 15, pp. 2787–2805, 2010.

[8] D. INFSO, “Networked Enterprise & RFID INFSO G. 2 Micro & Nanosystems,” Co-
operation with the Working Group RFID of the ETP EPOSS, Internet of Things in, 2020.

[9] J. Wurm, K. Hoang, O. Arias, A. Sadeghi, and Y. Jin, “Security analysis on consumer and
industrial IoT devices,” in 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 519–524, Jan 2016.

[10] W. Wahlster, “From industry 1.0 to industry 4.0: towards the 4th industrial revolution (fo-
rum business meets research),” 3rd European Summit on Future Internet Towards Future
Internet International Collaborations Espoo, Finland, vol. 31, 2012.

[11] E. A. Lee, “Cyber Physical Systems: Design Challenges,” Tech. Rep. UCB/EECS-2008-8,
EECS Department, University of California, Berkeley, Jan 2008.

[12] N. Jazdi, “Cyber physical systems in the context of Industry 4.0,” in 2014 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics, pp. 1–4, May 2014.

[13] S. Yoon, H. Park, and H. S. Yoo, “Security issues on smarthome in iot environment,” in
Computer science and its applications, pp. 691–696, Springer, 2015.

[14] M. Nasser, R. Ahmad, W. Yassin, A. Hassan, Z. Zainal, N. Salih, and K. Hameed, “Cyber-
Security Incidents: A Review Cases in Cyber-Physical Systems,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 1, 2018.

[15] S. D. Applegate, “The dawn of Kinetic Cyber,” in 2013 5th International Conference on
Cyber Conflict (CYCON 2013), pp. 1–15, June 2013.

– 195 –

https://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
https://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
https://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-38-bn-by-2020
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide

Towards Security-Aware Design Space Exploration for Embedded Systems

[16] J. Slay and M. Miller, “Lessons learned from the maroochy water breach,” in Critical In-
frastructure Protection, 2007.

[17] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems Security—A Survey,”
IEEE Internet of Things Journal, vol. 4, pp. 1802–1831, Dec 2017.

[18] S. Rehman and K. Mustafa, “Research on Software Design Level Security Vulnerabilities,”
SIGSOFT Softw. Eng. Notes, vol. 34, p. 1–5, Dec. 2009.

[19] B. Knerr and M. Holzer, Heuristic optimisation methods for system partitioning in HW/SW
Co-Design. Citeseer, 2008.

[20] NoMagic, “SysML Plugin 19.0 LTR Documentation.” Available at https://docs.
nomagic.com/display/SYSMLP190/Requirement.

[21] NoMagic, “MagicDraw 19.0 LTR Documentation.” Available at https://docs.
nomagic.com/display/MD190/Constraint.

[22] IBM Knowledge Center, “Security concepts and mechanisms.” Available at
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/
com.ibm.mq.sec.doc/q009730_.htm.

[23] D. M. Buede and W. D. Miller, The engineering design of systems: models and methods.
John Wiley & Sons, 2016.

[24] A. K. Mandal, C. Parakash, and A. Tiwari, “Performance evaluation of cryptographic algo-
rithms: DES and AES,” in 2012 IEEE Students’ Conference on Electrical, Electronics and
Computer Science, pp. 1–5, IEEE, 2012.

[25] D. S. A. Minaam, H. M. Abdual-Kader, and M. M. Hadhoud, “Evaluating the Effects of
Symmetric Cryptography Algorithms on Power Consumption for Different Data Types.,”
IJ Network Security, vol. 11, no. 2, pp. 78–87, 2010.

[26] D. W. Hubbard and R. Seiersen, “How to measure anything in cybersecurity risk,” 2016.

[27] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts, “Constraint-based design-space explo-
ration and model synthesis,” in International Workshop on Embedded Software, pp. 290–
305, Springer, 2003.

[28] A. Roy, D. S. Kim, and K. S. Trivedi, “Cyber security analysis using attack countermeasure
trees,” in Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, pp. 1–4, 2010.

[29] I. Stierand, S. Malipatlolla, S. Fröschle, A. Stühring, and S. Henkler, “Integrating the Se-
curity Aspect into Design Space Exploration of Embedded Systems,” in 2014 IEEE In-
ternational Symposium on Software Reliability Engineering Workshops, pp. 371–376, Nov
2014.

[30] Y. Xie, G. Zeng, R. Kurachi, H. Takada, and G. Xie, “Security/Timing-aware Design Space
Exploration of CAN FD for Automotive Cyber-Physical Systems,” IEEE Transactions on
Industrial Informatics, no. 8, 2018.

[31] L. Gressl, C. Steger, and U. Neffe, “A Security Aware Design Space Exploration Frame-
work,” in ICONS 2019 The Fourteenth International Conference on Systems, 2019.

[32] L. Gressl, C. Steger, and U. Neffe, “Consideration of Security Attacks in the Design Space
Exploration of Embedded Systems,” in 2019 22nd Euromicro Conference on Digital System

– 196 –

https://docs.nomagic.com/display/SYSMLP190/Requirement
https://docs.nomagic.com/display/SYSMLP190/Requirement
https://docs.nomagic.com/display/MD190/Constraint
https://docs.nomagic.com/display/MD190/Constraint
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.sec.doc/q009730_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.5.0/com.ibm.mq.sec.doc/q009730_.htm

Bibliography

Design (DSD), pp. 530–537, IEEE, 2019.

[33] L. Gressl, M. Krisper, C. Steger, and U. Neffe, “Towards an automated exploration of secure
iot/cps design-variants,” in International Conference on Computer Safety, Reliability, and
Security, pp. 372–386, Springer, 2020.

[34] L. Gressl, C. Steger, and U. Neffe, “Security Driven Design Space Exploration for Em-
bedded Systems,” in 2019 Forum for Specification and Design Languages (FDL), pp. 1–8,
IEEE, 2019.

[35] L. Gressl, A. Rech, C. Steger, A. Sinnhofer, and R. Weissnegger, “Security based design
space exploration for cps,” in Proceedings of the 35th Annual ACM Symposium on Applied
Computing, SAC ’20, (New York, NY, USA), p. 593–595, Association for Computing Ma-
chinery, 2020.

[36] L. Gressl, A. Rech, C. Steger, A. Sinnhofer, and R. Weissnegger, “A Design Exploration
Framework for Secure IoT-Systems,” in 2020 International Conference on Cyber Situa-
tional Awareness, Data Analytics and Assessment (CyberSA), pp. 1–8, 2020.

[37] L. Gressl, C. Steger, and U. Neffe, “Design Space Exploration for Secure IoT Devices and
Cyber-Physical Systems,” 2020. accepted at the ACM Transactions on Embedded Comput-
ing Systems.

[38] L. Gressl, C. Steger, and U. Neffe, “Message Encapsulation Pattern,” in Proceedings of the
23rd European Conference on Pattern Languages of Programs, pp. 1–6, 2018.

[39] F. Balarin, P. Giusto, A. Jurecska, M. Chiodo, C. Passerone, E. Sentovich, H. Hsieh,
L. Lavagno, B. Tabbara, A. Sangiovanni-Vincentelli, et al., Hardware-software co-design
of embedded systems: the POLIS approach. Springer Science & Business Media, 1997.

[40] T. Basten, E. Van Benthum, M. Geilen, M. Hendriks, F. Houben, G. Igna, F. Reckers,
S. De Smet, L. Somers, E. Teeselink, et al., “Model-Driven Design-Space Exploration for
Embedded Systems: The Octopus Toolset,” in International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation, pp. 90–105, Springer, 2010.

[41] F. Herrera and I. Sander, “Combining analytical and simulation-based design space explo-
ration for time-critical systems,” in Proceedings of the 2013 Forum on specification and
Design Languages (FDL), pp. 1–8, Sep. 2013.

[42] T. Kempf, G. Ascheid, and R. Leupers, Multiprocessor Systems on Chip: Design Space
Exploration. Springer Science & Business Media, 2011.

[43] A. Brekling, M. R. Hansen, and J. Madsen, “Models and formal verification of multiproces-
sor system-on-chips,” The Journal of Logic and Algebraic Programming, vol. 77, no. 1-2,
pp. 1–19, 2008.

[44] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-Vincentelli, G. Yang,
H. Zeng, and Q. Zhu, “A next-generation design framework for platform-based design,” in
Conference on using hardware design and verification languages (DVCon), vol. 152, 2007.

[45] I. Sander and A. Jantsch, “System modeling and transformational design refinement in
forsyde [formal system design],” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 23, no. 1, pp. 17–32, 2004.

[46] B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. Van Der Putten, and J. P. Voeten,
“Software/hardware engineering with the parallel object-oriented specification language,”

– 197 –

Towards Security-Aware Design Space Exploration for Embedded Systems

in 2007 5th IEEE/ACM International Conference on Formal Methods and Models for Code-
sign (MEMOCODE 2007), pp. 139–148, IEEE, 2007.

[47] P. Marwedel, Embedded System Hardware, pp. 119–175. Dordrecht: Springer Netherlands,
2011.

[48] K. Rosvall and I. Sander, “A constraint-based design space exploration framework for real-
time applications on mpsocs,” in 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1–6, IEEE, 2014.

[49] K. Rosvall, N. Khalilzad, G. Ungureanu, and I. Sander, “Throughput propagation in
constraint-based design space exploration for mixed-criticality systems,” in Proceedings of
the 9th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools,
pp. 1–8, 2017.

[50] N. Khalilzad, K. Rosvall, and I. Sander, “A modular design space exploration framework for
multiprocessor real-time systems,” in 2016 Forum on Specification and Design Languages
(FDL), pp. 1–7, IEEE, 2016.

[51] K. Rosvall, T. Mohammadat, G. Ungureanu, J. Öberg, and I. Sander, “Exploring power
and throughput for dataflow applications on predictable noc multiprocessors,” in 2018 21st
Euromicro Conference on Digital System Design (DSD), pp. 719–726, IEEE, 2018.

[52] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring embed-
ded system architectures at multiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–112, 2006.

[53] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra, and E. F.
Deprettere, “A framework for rapid system-level exploration, synthesis, and programming
of multimedia mp-socs,” in Proceedings of the 5th IEEE/ACM international conference on
Hardware/software codesign and system synthesis, pp. 9–14, 2007.

[54] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Martinez, S. Bocchio,
R. Zafalon, P. Avasare, G. Vanmeerbeeck, et al., “Multicube: Multi-objective design space
exploration of multi-core architectures,” in VLSI 2010 Annual Symposium, pp. 47–63,
Springer, 2011.

[55] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the ground up, vol. 71.
Springer Science & Business Media.

[56] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design Second Edition: A
Guide to Using SystemVerilog for Hardware Design and Modeling. Springer Science &
Business Media, 2006.

[57] L. G. Murillo, M. Mura, and M. Prevostini, “Semi-automated hw/sw co-design for embed-
ded systems: from marte models to systemc simulators,” in 2009 Forum on Specification &
Design Languages (FDL), pp. 1–6, IEEE, 2009.

[58] S. Kunzli, F. Poletti, L. Benini, and L. Thiele, “Combining simulation and formal methods
for system-level performance analysis,” in Proceedings of the Design Automation & Test in
Europe Conference, vol. 1, pp. 1–6, IEEE, 2006.

[59] K. Lahiri, A. Raghunathan, and S. Dey, “Performance analysis of systems with multi-
channel communication architectures,” in VLSI Design 2000. Wireless and Digital Imaging
in the Millennium. Proceedings of 13th International Conference on VLSI Design, pp. 530–

– 198 –

Bibliography

537, IEEE, 2000.

[60] SECTOR, STANDARDIZATION and ITU, OF, “ITU-Tx. 1205,” Interfaces, vol. 10,
no. 20-X, p. 49.

[61] R. Von Solms and J. Van Niekerk, “From information security to cyber security,” computers
& security, vol. 38, pp. 97–102, 2013.

[62] A. Alshboul, “Information systems security measures and countermeasures: Protecting or-
ganizational assets from malicious attacks,” Communications of the IBIMA, 2010.

[63] C. Schou and D. P. Shoemaker, Information assurance for the enterprise: A roadmap to
information security. McGraw-Hill, Inc., 2006.

[64] S. Samonas and D. Coss, “The CIA strikes back: Redefining Confidentiality, Integrity and
Availability in Security,” Journal of Information System Security, vol. 10, no. 3, 2014.

[65] N. Ferguson and B. Schneier, Practical cryptography, vol. 141. Wiley New York, 2003.

[66] H. G. Brauch, “Concepts of security threats, challenges, vulnerabilities and risks,” in Cop-
ing with global environmental change, disasters and security, pp. 61–106, Springer, 2011.

[67] M. Jouini, L. B. A. Rabai, and A. B. Aissa, “Classification of security threats in information
systems.,” ANT/SEIT, vol. 32, pp. 489–496, 2014.

[68] Microsoft Docs, “The STRIDE Threat Model.” Available at https://docs.
microsoft.com/en-us/previous-versions/commerce-server/
ee823878%28v%3dcs.20%29.

[69] G. Dhillon, Principles of information systems security: Texts and cases. John Wiley & Sons
Incorporated, 2007.

[70] CNSSI, No, “CNSSI 4009-2015,” National Information Assurance (IA) Glossary, vol. 26,
2015.

[71] NIST, SP, “NIST Publication 800-32,” Introduction to Public Key Technology and the Fed-
eral PKI Infrastructure, 2001.

[72] E. McCallister, T. Grance, and K. Scarfone, “NIST Special Publication 800-122: Guide to
Protecting the Confidentiality of Personally Identifiable Information (PII),” Gaithersburg,
MD:[US] National Institute of Standards and Technology, US Department of Commerce,
2010.

[73] M. G. Solomon and M. Chapple, Information Security Illuminated. Jones & Bartlett Pub-
lishers, 2009.

[74] M. Abomhara et al., “Cyber Security and the Internet of Things: Vulnerabilities, Threats,
Intruders and Attacks,” Journal of Cyber Security and Mobility, vol. 4, no. 1, pp. 65–88,
2015.

[75] D. Papp, Z. Ma, and L. Buttyan, “Embedded Systems Security: Threats, Vulnerabilities,
and Attack Taxonomy,” in 2015 13th Annual Conference on Privacy, Security and Trust
(PST), pp. 145–152, IEEE, 2015.

[76] B. A. Forouzan, Cryptography & network security. McGraw-Hill, Inc., 2007.

[77] N. Fips, “46-3: The official Document describing the DES Standard,” tech. rep., Technical
report, Technical report, NIST, 1999.

– 199 –

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878%28v%3dcs.20%29
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878%28v%3dcs.20%29
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878%28v%3dcs.20%29

Towards Security-Aware Design Space Exploration for Embedded Systems

[78] J. Daemen and V. Rijmen, The Design of Rijndael AES - The Advanced Encryption Stan-
dard. Springer Science & Business Media, 2013.

[79] ISO/IEC 9797-2:2011, “Information technology — Security techniques — Message Au-
thentication Codes (MACs) — Part 2: Mechanisms using a dedicated hash-function,” Stan-
dard, International Organization for Standardization, Geneva, CH, 2011.

[80] M. Bellare, R. Canetti, and H. Krawczyk, “Message authentication using hash functions:
The hmac construction,” RSA Laboratories’ CryptoBytes, vol. 2, no. 1, pp. 12–15, 1996.

[81] J. Jonsson, “On the Security of CTR+ CBC-MAC,” in International Workshop on Selected
Areas in Cryptography, pp. 76–93, Springer, 2002.

[82] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[83] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography.
Springer Science & Business Media, 2006.

[84] A. J. Menezes, J. Katz, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography. CRC press, 1996.

[85] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature Algorithm
(ECDSA),” International journal of information security, vol. 1, no. 1, pp. 36–63, 2001.

[86] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A Survey of
LightweightCryptography Implementations,” IEEE Design & Test of Computers, vol. 24,
no. 6, pp. 522–533, 2007.

[87] B. W. Lampson, “A Note on the Confinement Problem,” Communications of the ACM,
vol. 16, no. 10, pp. 613–615, 1973.

[88] B. Schneier, “Cryptanalysis of md5 and sha: Time for a new standard,” Computerworld,
vol. 19, 2004.

[89] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for message authentica-
tion,” 1997.

[90] M. M. N. Biasizzo, M. Mali, and F. Novak, “Hardware implementation of AES algorithm,”
Journal of Electrical Engineering, vol. 56, no. 9-10, pp. 265–269, 2005.

[91] M. Shand and J. Vuillemin, “Fast implementations of RSA cryptography,” in Proceedings
of IEEE 11th Symposium on Computer Arithmetic, pp. 252–259, IEEE, 1993.

[92] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mechanisms for se-
cure embedded systems,” in 17th International Conference on VLSI Design. Proceedings.,
pp. 605–611, IEEE, 2004.

[93] S. Mao and T. Wolf, “Hardware Support for Secure Processing in Embedded Systems,”
IEEE Transactions on Computers, vol. 59, no. 6, pp. 847–854, 2010.

[94] X. Yan-ling, P. Wei, and Z. Xin-guo, “Design and Implementation of Secure Embedded
Systems Based on Trustzone,” in 2008 International Conference on Embedded Software
and Systems, pp. 136–141, July 2008.

[95] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Proposed Embedded Security
Framework for Internet of Things (IoT),” in 2011 2nd International Conference on Wireless
Communication, Vehicular Technology, Information Theory and Aerospace & Electronic

– 200 –

Bibliography

Systems Technology (Wireless VITAE), pp. 1–5, IEEE, 2011.

[96] S. Levy, Crypto: How the Code Rebels Beat the Government–Saving Privacy in the Digital
Age. Penguin, 2001.

[97] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,” in Annual
Cryptology Conference, pp. 631–648, Springer, 2010.

[98] J. Camenisch, S. Fischer-Hübner, and K. Rannenberg, Privacy and identity management for
life. Springer Science & Business Media, 2011.

[99] M. Schiffman, “Common Vulnerability Scoring System (CVSS),” URL
https://www.first.org/cvss/v3.1/specification-document, 2019.

[100] NIST, “National Vulnerability Database.” Available at https://nvd.nist.gov/
general.

[101] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–29, 1999.

[102] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack graph-based probabilis-
tic security metric,” in IFIP Annual Conference on Data and Applications Security and
Privacy, pp. 283–296, Springer, 2008.

[103] L. Wang, A. Singhal, and S. Jajodia, “Measuring the overall security of network configura-
tions using attack graphs,” in IFIP Annual Conference on Data and Applications Security
and Privacy, pp. 98–112, Springer, 2007.

[104] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using bayesian networks for cyber security
analysis,” in 2010 IEEE/IFIP International Conference on Dependable Systems & Networks
(DSN), pp. 211–220, IEEE, 2010.

[105] H.-K. Kong, M. K. Hong, and T.-S. Kim, “Security risk assessment framework for smart car
using the attack tree analysis,” Journal of Ambient Intelligence and Humanized Computing,
vol. 9, no. 3, pp. 531–551, 2018.

[106] D. W. Hubbard and R. Seiersen, How to measure anything in cybersecurity risk. John Wiley
& Sons, 2016.

[107] M. Krisper, J. Dobaj, G. Macher, and C. Schmittner, “RISKEE : A Risk-Tree Based Method
for Assessing Risk in Cyber Security,” in Proceedings - EuroSPI 2019: European System,
Software & Service Process Improvement & Innovation, 2019.

[108] Common Criteria, “Common Criteria for Information Technology Security Evaluation Part
1 - 3. Version 3.1 Revision 5,” CC, April 2018.

[109] B. Schätz, S. Voss, and S. Zverlov, “Automating design-space exploration: Optimal deploy-
ment of automotive sw-components in an iso26262 context,” in Proceedings of the 52nd
Annual Design Automation Conference, DAC ’15, (New York, NY, USA), Association for
Computing Machinery, 2015.

[110] S. Voss, J. Eder, and F. Hölzl, “Design space exploration and its visualization in autofo-
cus3.,” in Software Engineering (Workshops), pp. 57–66, 2014.

[111] S. Graf, M. Glaß, J. Teich, and C. Lauer, “Multi-variant-based design space exploration for
automotive embedded systems,” in 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1–6, IEEE, 2014.

[112] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo, C. Silvano,

– 201 –

https://nvd.nist.gov/general
https://nvd.nist.gov/general

Towards Security-Aware Design Space Exploration for Embedded Systems

and V. Zaccaria, “An industrial design space exploration framework for supporting run-
time resource management on multi-core systems,” in 2010 Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), pp. 196–201, IEEE, 2010.

[113] Y. C. Lin, C. W. Huang, and J. K. Lee, “System-level design space exploration for security
processor prototyping in analytical approaches,” Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC, vol. 1, pp. 376–380, 2005.

[114] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-Layer Codesign for Se-
cure Cyber-Physical Systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 5, 2016.

[115] C.-W. Lin and A. Sangiovanni-Vincentelli, Security-Aware Design for Cyber-Physical Sys-
tems. Springer, 2017.

[116] C. W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-Aware Modeling and Effi-
cient Mapping for CAN-Based Real-Time Distributed Automotive Systems,” IEEE Embed-
ded Systems Letters, vol. 7, no. 1, pp. 11–14, 2015.

[117] C. W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-Aware mapping for TDMA-
based real-Time distributed systems,” IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD, vol. 2015-January, no. January, pp. 24–
31, 2015.

[118] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design Optimization of Security-
Sensitive Mixed-Criticality Real-Time Embedded Systems,” Proc. ReTiMiCS, RTCSA,
no. Cc, 2013.

[119] J. Jürjens, “Sound methods and effective tools for model-based security engineering with
UML,” Proceedings. 27th International Conference on Software Engineering, ICSE, 2005.

[120] L. W. Li, F. Lugou, and L. Apvrille, “Security-aware Modeling and Analysis for HW/SW
Partitioning,” Proceedings of the 5th International Conference on Model-Driven Engineer-
ing and Software Development, 2017.

[121] Y. Xie, L. Liu, R. Li, J. Hu, Y. Han, and X. Peng, “Security-aware signal packing algo-
rithm for can-based automotive cyber-physical systems,” IEEE/CAA Journal of Automatica
Sinica, vol. 2, no. 4, pp. 422–430, 2015.

[122] M. Lukasiewycz, P. Mundhenk, and S. Steinhorst, “Security-aware obfuscated priority as-
signment for automotive CAN platforms,” ACM Transactions on Design Automation of
Electronic Systems, vol. 21, no. 2, pp. 1–27, 2016.

[123] K. Jiang, P. Eles, and Z. Peng, “Optimization of secure embedded systems with dynamic
task sets,” Proceedings -Design, Automation and Test in Europe, DATE, pp. 1765–1770,
2013.

[124] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-space exploration for
allocating security tasks in multicore real-Time systems,” Proceedings of the 2018 Design,
Automation and Test in Europe Conference and Exhibition, DATE 2018, 2018.

[125] E. Kang, “Design Space Exploration for Security,” IEEE Cybersecurity Development De-
sign, 2016.

[126] C. J. Anderson, N. Foster, D. Kozen, and D. Walker, “Net KAT : Semantic Foundations for
Networks,” pp. 113–126, 2014.

– 202 –

Bibliography

[127] T. Nelson, D. J. Dougherty, C. Barratt, and K. Fisler, “The Margrave Tool for Firewall
Analysis,” Proceedings of the 24th USENIX Large Installation System Administration Con-
ference LISA 2010, pp. 1–8, 2010.

[128] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying network-
wide invariants in real time,” in Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13), pp. 15–27, 2013.

[129] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic Security Risk Management Using
Bayesian Attack Graphs,” IEEE Transactions on Dependable and Secure Computing, vol. 9,
no. 1, 2012.

[130] N. Feng, H. J. Wang, and M. Li, “A security risk analysis model for information systems:
Causal relationships of risk factors and vulnerability propagation analysis,” Information
Sciences, 2014.

[131] M. Frigault and L. Wang, “Measuring network security using bayesian network-based at-
tack graphs,” in 2008 32nd Annual IEEE International Computer Software and Applications
Conference, pp. 698–703, IEEE, 2008.

[132] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian networks for probabilistic
identification of zero-day attack paths,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 10, pp. 2506–2521, 2018.

[133] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network vulnerability
analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications
Security, (New York, NY, USA), pp. 217–224, ACM, 2002.

[134] I. Ray and N. Poolsapassit, “Using attack trees to identify malicious attacks from autho-
rized insiders,” in European Symposium on Research in Computer Security, pp. 231–246,
Springer, 2005.

[135] C. Phillips and L. P. Swiler, “A graph-based system for network-vulnerability analysis,” in
Proceedings of the 1998 workshop on New security paradigms, pp. 71–79, 1998.

[136] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated generation and
analysis of attack graphs,” in Proceedings 2002 IEEE Symposium on Security and Privacy,
pp. 273–284, IEEE, 2002.

[137] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, “A design framework to efficiently
explore energy-delay tradeoffs,” in Proceedings of the ninth international symposium on
Hardware/software codesign, pp. 260–265, 2001.

[138] T. Kempf, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr, “Analytical and
simulation-based design space exploration of software defined radios,” International jour-
nal of parallel programming, vol. 38, no. 3-4, pp. 303–321, 2010.

[139] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk management using bayesian
attack graphs,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1,
pp. 61–74, 2011.

[140] C. Schulte, G. Tack, and M. Z. Lagerkvist, Modeling and Programming with Gecode. May
2019. Available at https://www.gecode.org/doc-latest/MPG.pdf.

[141] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow programs
for digital signal processing,” IEEE Transactions on computers, vol. 100, no. 1, pp. 24–35,

– 203 –

https://www.gecode.org/doc-latest/MPG.pdf

Towards Security-Aware Design Space Exploration for Embedded Systems

1987.

[142] K. Ito and K. K. Parhi, “Determining the minimum iteration period of an algorithm,” Jour-
nal of VLSI signal processing systems for signal, image and video technology, vol. 11, no. 3,
pp. 229–244, 1995.

[143] K. Mikhaylov and J. Tervonen, “Evaluation of power efficiency for digital serial interfaces
of microcontrollers,” in 2012 5th International Conference on New Technologies, Mobility
and Security (NTMS), pp. 1–5, IEEE, 2012.

[144] M. Schober, “Implementation and design of a uwb-based network simulation platform for
indoor localization systems,” Master’s thesis, Graz University of Technology, April 2019.

[145] D. Veit, M. Gadringer, and E. Leitgeb, “A simulation environment for uwb hardware de-
velopment and protocol design,” in 2019 15th International Conference on Telecommuni-
cations (ConTEL), pp. 1–6, IEEE, 2019.

[146] M. Spörk, C. A. Boano, M. Zimmerling, and K. Römer, “Bleach: Exploiting the full poten-
tial of ipv6 over ble in constrained embedded iot devices,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, pp. 1–14, 2017.

[147] Common Criteria Working Group et al., “Common methodology for information technol-
ogy security evaluation,” tech. rep., Technical report, Common Criteria Interpretation Man-
agement Board, 2017.

[148] T. Schläpfer and A. Rüst, “Security on iot devices with secure elements,” in Embedded
World Conference, Nürnberg, 26.-28. Februar 2019, WEKA, 2019.

[149] S. Levy, “Performance and security of ecdsa,” 2015.

[150] L. M. Raju and M. Sumathi, “Secured high throughput of 128-bit aes algorithm based on
interleaving technique,”

[151] A. Rech, L. Gressl, F. Basic, C. Seifert, C. Steger, and A. Sinnhofer, “Multi-Layered IoT
System Design Towards Secure End-to-End Communication,” 2020. presented at the 46th
Annual Conference of the IEEE Industrial Electronics Society (IES).

[152] P. Koopman and T. Chakravarty, “Cyclic redundancy code (crc) polynomial selection for
embedded networks,” in International Conference on Dependable Systems and Networks,
2004, pp. 145–154, IEEE, 2004.

[153] D. Neirynck, M. O’Duinn, and C. McElroy, “Characterisation of the nlos performance of
an ieee 802.15. 4a receiver,” in 12th Workshop on Navigation, Positioning and Communi-
cations (WPNC), 2015.

[154] ISO IEC, “ISOIEC 7816-3,” no. 4, p. 27, 2006.

[155] ISO IEC, “ISOIEC FDIS 7816-4,” p. 162, 2014.

[156] ETSI, “TS 102 622 - V12.1.0 - Smart Cards; UICC - Contactless Front-end (CLF) Interface;
Host Controller Interface (HCI),” 2014.

[157] N. Feng, H. J. Wang, and M. Li, “A security risk analysis model for information systems:
Causal relationships of risk factors and vulnerability propagation analysis,” Information
sciences, vol. 256, pp. 57–73, 2014.

[158] Z. Zhao, V. Tsoutsouras, D. Soudris, and A. Gerstlauer, “Network/system co-simulation
for design space exploration of iot applications,” in 2017 International Conference on Em-

– 204 –

Bibliography

bedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 46–53,
IEEE, 2017.

– 205 –

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Hypothesis and Research Questions
	Contributions

	Thesis Structure

	Background
	Design Space Exploration
	Analytical Design Space Exploration
	Simulation-based Design Space Exploration
	Combined Design Space Exploration

	Cyber-securty
	Security Properties
	Security Threats and Attacks
	Security Mechanisms

	Security Assessment Methods

	Related Work
	DSE Tools considering Cyber-Security
	Abstract Approaches
	Detailed Approaches
	Network Design Approaches

	Security Attack Analysis Tools
	Analytical and Simulation-based DSE
	Differentiation
	Security-driven DSE
	Security Attack Analysis Tools
	Analytical and Simulation-based DSE

	The Security-Aware Design Space Exploration Framework
	Overview
	Analytical DSE Approach
	Design Perspectives
	System Mapping
	Constraint and Optimization Goal Definition

	Analytical DSE Implementation
	Realizing SaDSE in DeSyDe
	Resulting Solutions

	Simulation-based DSE Approach
	Solution Transformation to System Simulation

	Simulation-based DSE Implementation
	Environment Simulation Implementation
	Connection to Physical Channel Simulation

	Evaluation
	Use Case Evaluations
	Security Rating
	Secure Sensor System
	Secure Indoor Localization System

	Performance Measurements
	Simulation-based DSE
	System Simulation Evaluation
	Simulation-based Improvements
	Usability of the Framework

	Summary and Conclusion
	Conclusion
	Limitations
	Future Work

	Publications
	Bibliography

