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Univ.-Prof. Dipl.-Ing. Dr.techn. Thomas Pock

Inz. Mgr Inz. Anna Pukaluk
Ass.Prof. Dipl.-Ing. Dr.techn. Gerhard Sommer

Head of Institute: Univ.-Prof. Dipl.-Ing. Dr.techn. Professor Gerhard A.
Holzapfel

October 15, 2020





Contents

Abstract V

Kurzfassung VII

Acknowledgment IX

1 Introduction 1
1.1 Collagen Fibrils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proteoglycans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Mechanical Role of Proteoglycans . . . . . . . . . . . . . . . . . 3
1.3 Acquisition of three-dimensional Images of differently stretched human

aortic Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Segmentation of Proteoglycans 7
2.1 First Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Preprocessing: TV-l1 Denoising . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Tube Detection Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 21

3 Segmentation of Proteoglycans and Collagen Fibrils based on Machine Learn-
ing 25
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Neural Networks in a Nutshell . . . . . . . . . . . . . . . . . . . 25
3.1.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.5 Instance Normalization . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.6 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 U-Net Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Network Architecture and Parameters . . . . . . . . . . . . . . . 36

III



IV Contents

3.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 ESPNet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Network Architecture and Parameters . . . . . . . . . . . . . . . 41
3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 45

4 Comparison of different Approaches 48
4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Comparison of Proteoglycan Segmentation . . . . . . . . . . . . 50
4.2.2 Comparison of Collagen Fibril Segmentation . . . . . . . . . . . 50

5 Orientation and Diameter Evaluation of Proteoglycans 52
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Guided Image Filtering . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Orientation and Diameter Estimation based on Frangi Tube Detection 57

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion 69

Bibliography 73



Abstract

The interaction of proteoglycans with collagen fibrils in arterial tissue is still a matter of
an ongoing debate, different theories have been developed to explain their interconnected
mechanical behaviour. Measuring the response of the tissue to the application of mechani-
cal stretch with subsequent generation and examination of three-dimensional images is an
interesting and promising strategy.
However, evaluating the volumetric images recorded for this purpose takes the capacity of
the human visual system to its limits, analysing them without any computational assistance
is hardly possible. Therefore the aim of this thesis was to investigate, implement and com-
pare different procedures for segmenting proteoglycans and collagen fibrils in images.
As a first simple approach, thresholding was applied. Proteoglycans were found to be
rather tube-like, therefore, as a second approach, a tube detection filter was examined. For
both thresholding and tube detection filtering, preprocessing the images with a Total Vari-
ation l1 denoising was necessary.
Next, two deep learning models based on encoder-decoder networks were investigated. As
there were not many labelled images available, data augmentation was crucial.
The resulting segmentation masks were reliable and, as an additional task, orientations and
diameters of segmented proteoglycans were evaluated with respect to axial, circumferential
and radial direction of the tissue samples.
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Kurzfassung

Die Interaktion von Proteoglykanen und Kollagenfibrillen im arteriellen Gewebe wird
derzeit eingehend diskutiert, verschiedene Theorien wurden entwickelt um das mechanisch
miteinander gekoppelte Verhalten beider Strukturen zu erklären. Das Messen des resul-
tierenden Materialverhaltens auf eine mechanische Belastung mit anschließender Unter-
suchung von bildgebenden Darstellungen des Gewebes ist eine vielversprechende Strate-
gie.
Die zu diesem Zweck aufgenommenen dreidimensionalen Aufnahmen bringen das men-
schliche visuelle System an seine Grenzen, das Analysieren der Bilder ohne eine comput-
erbasierte Unterstützung ist schier unmöglich. Deshalb war es das Ziel dieser Masterarbeit,
Methoden zur Segmentierung von Proteoglykanen und Kollagenfibrillen zu untersuchen,
zu implementieren und zu vergleichen.
Der erste einfachste Ansatz war ein Thresholding der Bilder. Da die Proteoglykane sehr
“ tube-ähnlich” sind, wurde außerdem ein Tube-Detection Filter untersucht. Für das Thresh-
olding und den Tube-Detection Filter war eine Vorverarbeitungsfilterung basierend auf
einem Total Variaton l1 Modell notwendig.
Anschließend wurden zwei Deep Learning Modelle basierend auf Encoder-Decoder-
Architekturen getestet. Daten Augmentierung war äußerst hilfreich, da nur sehr wenige
annotierte Bilder zur Verfügung standen.
Die erzielten Segmentierungen waren so zuverlässig, dass zusätzlich eine Untersuchung
der Orientierungen und Durchmesser der segmentierten Proteoglykane durchgeführt wer-
den konnte. Diese wurde so ausgeführt, dass die Ergebnisse im Bezug auf die axiale,
circumferentiale und radiale Richtung der Gewebeprobe ausgewertet werden konnten.
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1 Introduction

Arteries fulfil crucial tasks in the human body. They transport blood from the heart
to tissues and organs, providing them with oxygen and nutrients. Arterial tissue has to
cope with 35 - 40 million heartbeats, which means 35 - 40 million load cycles, during one
year. If the tissue is affected by disease, the outcome can be life threatening and will at
least decreasing the patient’s quality of life. Pathogenetic development of vascular tissue
accompanying diseases, such as hypertension, atherosclerosis or aneurysms, has been as-
sociated with a restructuring and reordering of the extracellular matrix and its functions.
Interactions of the extracellular matrix with other constituents are altered. Due to its high
stiffness, collagen is known to play a major role in the load-bearing characteristic of the ar-
terial tissue (Holzapfel, 2008). As collagen fibrils are embedded in an extracellular matrix
with significant amounts of proteoglycans, particular attention needs to be directed to their
influence (Linkan et. al., 2016).

In order to find out more about the interaction of proteoglycans with collagen fibrils,
the Insitute of Biomechanics at the University of Technology Graz has started investigat-
ing human aortas. Samples are tested and evaluated mechanically, loads are applied and
mechanical responses measured. Mechanically treated tissue samples are then inspected
using electron microscopy.

As a unit, our eyes and our brain are remarkably good when it comes to evaluating
images and our ability to detect certain structures in images sets a high standard for any
computer vision approach. However, interpreting these electron microscopy images con-
stitutes a challenge for the human visual system. They are quite noisy, structures are not
distinctively depicted and difficult to distinguish. In order to investigate them in a struc-
tured way, computational segmentation is necessary.

1.1 Collagen Fibrils

In humans, 28 different collagen types are known. For vascular tissue, fibrillar collagens
of type I and type III are the most prominent ones. Each fibril forming collagen molecule
is composed of three parallel left-handed helical polypeptide strands. These so called α
- chains are characterized by a repeating amino acid sequence: Glycin-X-Y. X and Y can
be any amino acid. These three α - chains then form a right-handed triple-helix. Collagen
molecules can be either homotrimeric, which means that they consist of three identical α
- chains, or heterotypic, which means that they consist of different α - chains. Classical
fibrillar collagens have a long central triple-helical region in each polypeptide α - chain.
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2 1 Introduction

Figure 1.1 Illustrative example of the assembly of collagen molecules to collagen fibrils
(Hulmes, 2008).

For collagen molecules of type I and III, this central helical region is flanked by short
non-helical segments (Hulmes, 2008).

Collagen molecules self-assemble into D-periodic cross-striated fibrils with specific gap
and overlap regions, see Figure 1.1. D is the characteristic axial periodicity of the collagen
molecules. Collagen molecules are bound to collagen molecules of the next ”package”
by covalent cross-links. The assembly process is driven by the loss of solvent molecules
from the surface of the proteins, this minimizes the surface-area-to-volume-ratio of the
final arrangement and is therefore favourable (Kadler et. al., 1996).

1.2 Proteoglycans

A basic proteoglycan (PG) consists of a core protein with one or more covalently bound
glycosaminoglycans (GAGs). GAGs are long unbranched chains of repeating disaccharide
units (Mattson et al., 2019). Figure 1.2 shows a schematic illustration of a proteogly-
can. Proteoglycans were not considered to have a significant impact on the tissue and and
thus often neglected. However, more and more studies have shown that they do have an
influence on the behaviour of the arterial wall. For example, an increased presence of pro-
teoglycans can cause a dissection of arterial wall layers. In contrast, insufficient levels of
proteoglycans decrease the ability of the blood vessel to regulate electric charges and struc-
ture and was suggested to cause aortic rupture due to their influence on the functionality of
other components (Mattson et al., 2019).
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Figure 1.2 Illustrative figure of a proteoglycan structure (taken from https://biology-
forums.com/index.php?action=gallery;sa=view;id=283, date of access:
31.08.2020.)

1.2.1 Mechanical Role of Proteoglycans
The mechanical role of PGs is still controversial. Different theories have been developed

to explain the mechanical role of proteoglycans. The first theory states that proteoglycans
act as elastic bridges between collagen fibrils, influencing their mechanical and stress re-
laxation properties. Proteoglycans are assumed to transmit loads between fibrils. A second
assumption considers the proteoglycans and their glycosaminoglycans as an interjacent
medium with zero stiffness under tension. Based on this assumption, a second theory is
developed, stating that PGs do not contribute to load transmission between fibrils. A third
”slide-stuck” theory suggests that GAGs promote interfibrillar sliding. PGs are assumed
to act as intermediate clutches between adjacent fibrils, protecting fibrils from rupturing
(Linkan et. al., 2016).

1.3 Acquisition of three-dimensional Images of differently
stretched human aortic Samples

In order to find out more about the mechanical influence of proteoglycans on collagen
structures, the Institute of Biomechanics tested tissue samples of the human aorta biaxially.
An equibiaxial stretch driven test protocol was used in order to achieve different stretch
values: 1.00, 1.05, 1.10 and 1.15. When the desired stretch values were reached, the testing
process was stopped and the sample was fixed with 2% glutaraldehyde. To visualize the
nanostructure of the sample by a transmission electron microscope, it was embedded in
Epoxy resin and it was cut in ultra-thin slices (approx. 250 nm). These slices were brought
on a copper grid which was then attached in the transmission electron microscope.
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Figure 1.3 Slice of a reconstructed three-dimensional image generated by the transmis-
sion electron microscope. All values are given in voxels.

(a) Proteoglycans (b) Collagen fibrils

Figure 1.4 Slice of original image with some proteoglycans marked with a yellow frame
and some collagen fibrils marked with a red frame.
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In order to get a three-dimensional image of the tissue, a tilt series with a tilt angle
ranging from -65° to 65° and an angle increment of 1° was recorded. For alignment and
3D reconstruction out of tilt projections, the sample was stained with protein A coated
colloidal 10 nm gold particles as reference points.

These three-dimensional reconstructed grayscale images with a resolution of 100× 2048
× 2048 voxels were the starting point for this thesis. Figure 1.3 illustrates what is meant
if it is referred to image slices throughout the thesis, the three-dimensional images can be
considered to be composed of 100 image slices with a resolution of 2048 × 2048 voxels.
In Figure 1.4 some proteoglycans and collagen fibrils are highlighted.





2 Segmentation of Proteoglycans

2.1 First Insights

As a first step, a concept of the appearance and size of the proteoglycans in the images
was developed. It could be observed that some proteoglycans look rather circular in an
image slice, while others were more ellipsoidal, see Figure 2.1.

(a) Type 1: Ellipsoidal PG (b) Type 2: More circular PG

Figure 2.1 Exemplary proteoglycans of defined types, i.e., ellipsoidal in Figure 2.1a and
circular in Figure 2.1b.

In order to find out more about their three-dimensional shape, a three-dimensional man-
ual segmentation of individual proteoglycans was done using the segmentation editor of
Fiji. It turned out that their depicted shape varies in a two-dimensional image slice because
they are oriented differently in the three-dimensional image stack. Their three-dimensional
shapes are all rather similar and can be described as “sausage”-like. Figure 2.2 shows a
manual segmentation of a proteoglycan which appeared circular in an image slice. Figure
2.3 shows a segmentation of a proteoglycan which was depicted more ellipsoidal in the
individual image slices.

7



8 2 Segmentation of Proteoglycans

(a) (b) (c)

Figure 2.2 Manually segmented proteoglycan appearing circular in two-dimensional im-
age stack slices. Views from different perspectives (Figure 2.2a - 2.2c)

(a) (b) (c)

Figure 2.3 Manually segmented proteoglycan appearing ellipsoidal in two-dimensional
image stack slices. Views from different perspectives (Figure 2.3a - 2.3c)

2.2 Preprocessing: TV-l1 Denoising

The original reconstructed results were quite noisy. Structures corresponding to proteo-
glycans might appear darker than the background, but zooming in one can observe that the
dark pixels are “disconnected” by lighter coloured pixels, see Figure 2.4. In order to be
able to use thresholding and tube detection filters, preprocessing was necessary.
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Figure 2.4 Magnification of a proteoglycan in the image stack.

To get rid of the irregularities in voxel intensities, a Total Variation l1 denoising was im-
plemented. This denoising method is contrast independent and purely geometric, therefore
it can be used to remove structures of a certain size (Chambolle et al., 2016).

(a) (b)

Figure 2.5 TV-l1 denoising can be used to remove salt and pepper noise. An example of
an image before (Figure 2.5a) and after TV-l1 denoising (Figure 2.5b)
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2.2.1 Methods

The TV-l1 model is the following:

min
u

∫
Ω

|Du|+ λ

∫
Ω

|u(x)− u♦(x)|dx (2.1)

where Ω is the image domain and u♦ is the given noisy image. The left term, Du =
∇udx, is called a regularization term. It makes sure, that the total amount of edges in
the image will be penalized while strong discontinuities corresponding to strong edges
will remain. By selecting a suitable parameter λ, we can remove the ”disconnecting”
light coloured voxel areas from the image in order to get ”connected” dark proteoglycan
structures. The TV-l1 model (equation 2.1) is non-differentiable, it can not be minimized
by standard gradient descent methods.

However, one can observe that the TV-l1 model matches the following problem:

min
u
f(Ku) + g(u) (2.2)

where f and g are convex lower semicontinuous functions and K a linear operator. In-
stead of minimizing the original non-differentiable problem, a solution can be found for
the equivalent saddle point problem with K = D and a dual variable p:

min
u

max
p
〈Du, p〉+ g(u)− f ∗(p) (2.3)

One can see that g(u) = λ||u − u♦||1 and the convex conjugate of f is f ∗(p) =
δ{2,∞≤1}(p). Combining this, one can state equation 2.4 as:

min
u

max
p
〈Du, p〉+ λ||u− u♦||1 − δ{2,∞≤1}(p) (2.4)

To solve this saddle point problem, the following primal-dual algorithm was imple-
mented:

for every k ≥ 0 do
uk+1, pk+1 by solving
uk+1 = proxτ,g(u

k − τD∗pk)
pk+1 = proxσ,f∗(pk + σD(2uk+1 − uk)

end
Algorithm 1: TV-l1 primal-dual algorithm.

The proximal map of ũk+1 = uk − τD∗pk with respect to g is the following:

proxτ,g(ũ
k+1) = u♦ + max{0, |ũk+1 − u♦| − τλ} sign{ũk+1 − u♦} (2.5)

The proximal map of the dual variable p̃k+1 = pk + σD(2uk+1 − uk) with respect to f ∗

is
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proxσ,f∗(p̃k+1) =
p̃k+1

max{1, ||p̃k+1||2}
. (2.6)

The term 2uk+1−uk = uk+1− (uk−uk+1) is called overrelaxation step and can be seen
as an approximated ”extra” gradient (Pock, 2020; Chambolle et al., 2016).
λ can be chosen to remove structures up to a certain size. It is multiplied to the right term

of the original TV-l1 model, which is responsible for the difference between solution and
original image. This means that if λ is set to a high value, small structures are removed. A
low value for λ makes sure that larger structure are erased.

(a) Original image (b) TV-l1 filter result, λ =
0.4

(c) TV-l1 filter result, λ =
0.3

Figure 2.6 TV-l1 denoising can be used to remove structures of a certain size by setting λ
to an appropriate value, independent of contrast. The original image in Figure
2.6a displays dots of differnt sizes and intensities, Figures 2.6b and 2.6c show
that the lower the chosen value for λ is, the larger the sizes of the removed
dots are.
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2.2.2 Results and Discussion
The algorithm was applied in 3D. To decrease the computation time, the resolution was

decreased to 25× 512× 512 voxel.

(a) Original image slice (b) Denoised image slice

Figure 2.7 Image slice of the original images stack (Figure 2.7a), and the TV-l1 filter
result (Figure 2.7b) of the same slice. Parameter λ was set to 0.32, 500 iter-
ations were performed. It can be seen that proteoglycan structures are now
”continuously” coloured, their outer edges have been kept.

It can be seen in Figure 2.7 that proteoglycan structures are now ”continuously” coloured
while their outer edges have been preserved. The selection of a suitable value for λ was not
always straightforward and had to be adjusted for every dataset. If the chosen value was
too high, the denoising effect was not sufficient. Setting it too low resulted in a removal of
structures of interest.

2.3 Thresholding

2.3.1 Methods
It can be seen that the proteoglycans are in most cases depicted darker than other struc-

tures, therefore a thresholding was tested as a first simple approach after previous TV-l1
preprocessing. The images were normalized between 0 and 1, then a suitable threshold
was set. Voxels with an intensity below a chosen threshold t were set to 1, others were set
to 0.
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2.3.2 Results and Discussion

(a) Original image (b) Thresholded image
without TV-l1 filtering

(c) Thresholded image with
applied TV-l1 filtering

Figure 2.8 Comparison of thresholding (t = 0.3) with and without applied TV-l1 pre-
processing. Cutout of the unprocessed original image (Figure 2.8a) is shown
together with the same region of the thresholded result without any prepro-
cessing (Figure 2.8b) and with previous TV-l1 filtering (Figure 2.8c).

Figure 2.8 shows nicely that the TV-l1 preprocessing was highly necessary in order for
a simple thresholding to work at all. Without it, the proteoglycans are not ”continuously”
darker than other structures and many voxels of the proteoglycan area are not detected. Fig-
ure 2.10 shows an example of an image dataset where many proteoglycans were segmented
surprisingly well. For other datasets the contrast between proteoglycans and collagen fib-
rils is very low, a distinction by a single threshold value is nearly impossible. To conclude,
it can be said that although thresholding is a very simple method, it led to nice outcomes
for certain images. However, finding a suitable threshold can be cumbersome. If it is set
too low, many proteoglycans are not detected. If the chosen value is too high, voxels which
are not part of a proteoglycan are considered. The threshold has to be readjusted and fine-
tuned for every dataset. Additionally, in order for the method to work at all, the images
have to be denoised significantly.
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(a) Original image slice (b) Thresholded image slice

Figure 2.9 Slice 17 of original image stack (Figure 2.9a) and thresholded image stack
(Figure 2.9b). Thresholding led to reasonable results for this dataset, t = 0.34.

(a) Original image slice (b) Thresholded image slice

Figure 2.10 Slice 17 of original image stack (Figure 2.10a) and thresholded image stack
(Figure 2.10b). Example of a dataset where thresholding led to poor results,
t = 0.39.
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2.4 Tube Detection Filters

As it has been observed that proteoglycans look rather tube-like, a tube detection filter
was investigated. Although collagen fibrils might be described as tube-like too, they are
never completely depicted in the images, only some segments of their total structure are im-
aged in the datasets. Therefore the tube detection filter was applied to detect proteoglycans
only.

2.4.1 Methods

Tubularity Assumption

The fundamental base for the algorithms is a mathematical tubularity assumption. Tubu-
lar structures have a cross section which is shaped like a disc. The intensity values along
the tube will remain rather constant while the intensities in the normal plane will change
similarly to a Gaussian distribution. The neighbourhood of a pixel x0 can be examined via
Taylor expansion around the pixel:

I(x0 + ∆x) ≈ I(x0) + ∆x∇I(x0) +
1

2
∆xT∇2I(x0)∆x (2.7)

where∇ represents the differential operator, see equation 2.8.

∇ =


∂
∂x

∂
∂y

∂
∂z

 (2.8)

∇2 is defined as a dyadic multiplication of∇ in the following way:

∇2 = ∇ · ∇T =


∂
∂x

∂
∂y

∂
∂z

( ∂
∂x

∂
∂y

∂
∂z

)
=


∂2

∂x∂x
∂2

∂x∂y
∂2

∂x∂z

∂2

∂y∂x
∂2

∂y∂y
∂2

∂y∂z

∂2

∂z∂x
∂2

∂z∂y
∂2

∂z∂z

 (2.9)

Using these operators,∇I(x0) and∇2I(x0) denote the gradient and the Hessian matrix
at x0, respectively. In order to be able to take different scales into account, ∇2Iσ(x0)
describes the Hessian matrix of pixel x0 at scale σ. The anterior term σ2 in equation 2.10



16 2 Segmentation of Proteoglycans

is needed to ensure invariance under image scaling.

∇2Iσ(x0) = σ2


∂2I
∂x∂x

∂2I
∂x∂y

∂2I
∂x∂z

∂2I
∂y∂x

∂2I
∂y∂y

∂2I
∂y∂z

∂2I
∂z∂x

∂2I
∂z∂y

∂2I
∂z∂z

 (2.10)

Figure 2.11 Visualization of eigenvectors of a ’perfect’ tube (Urschler, 2019).

Examining the Hessian matrix by looking at its eigenvalues and eigenvectors, informa-
tion about the local curvature around a pixel x0 can be gathered.

An eigenvalue decomposition of the Hessian matrix results in three orthonormal direc-
tions, v1,v2 and v3, with corresponding eigenvalues λ1, λ2 and λ3 where |λ1| ≤ |λ2| ≤
|λ3| and |vi| = 1.

Figure 2.12 shows how the magnitude of the eigenvalues will look like for different
three-dimensional shapes.
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Figure 2.12 Different three-dimensional geometric shapes and their corresponding eigen-
values (Oruganti et al., 2013).

For a tube, λ1 is the smallest eigenvalue, ideally zero. Therefore v1 can be assumed
to show in the direction along the tube because the smallest change of intensity values is
expected in this direction. λ2 and λ3 have a high magnitude and a positive sign if the tubular
structures are dark in front of a light background and a negative sign if the structures are
lighter coloured than the background. It can be assumed that v2 and v3 are lying in the
orthogonal plane of the tube. Figure 2.11 visualizes the eigenvector directions.

Summarizing the statements above, for an ideal tube in a 3D image stack, the following
should be true:

|λ1| ≈ 0 (2.11)

|λ1| � |λ2| (2.12)

|λ2| ≈ |λ3| (2.13)

This mathematical model is the central component of the Frangi algorithm (Frangi et al.,
1998; Pock et al., 2005; Urschler, 2019).

Multiscale Vessel Enhancement Filtering

The Frangi algorithm was developed by Alejandro F. Frangi, Wiro J. Niessen, Koen
L. Vincken and Max A. Viergever and published in 1998 with a focus on blood vessel
segmentation.
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Figure 2.13 shows a classical Frangi filter application on a three-dimensional lung CT
image.

Figure 2.13 Maximum intensity projections of a Frangi filter response applied on a CT
image of a human lung.

Using the eigenvalues of the Hessian matrix presented in the previous section, two dis-
similarity measures are examined, RA and RB and a ”second order structureness” S.

Ratio RA will be close to 1 for tubular shapes because λ2 will be approximately λ3. If
the structure differs from a tube, λ2 and λ3 will be significantly different and the result will
be close to 0.

RA =
Largest Cross Section Area/π

(Largest Axis Semilength)2
=
|λ2|
|λ3|

(2.14)

RB evaluates the deviation from a blob-like structure, it will be very close to zero if there
is hardly any change of intensities along the tube.

RB =
V olume4π

3

(Largest Cross Section Area/π)
3
2

=
|λ1|√
|λ2λ3|

(2.15)

Both ratios are based only on the geometric informations of the image. In the back-
ground, the contrast will be low due to the scarcity of structures. The eigenvalues will be
small and the ”second order structureness” S, based on the Frobenius matrix norm of the
eigenvalues, will be low. In regions where there is much contrast compared to the back-
ground due to the appearance of structures, the eigenvalues and therefore also S will be
higher.

S =

√∑
j≤D

λ2
j (2.16)

In order to assign a high medialness response value R to voxels belonging to a tubular
structure, RA, RB and S are combined as stated in equation 2.17 and 2.18. The following
equation is valid for dark structures on a light coloured background:
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R =

{
0 if λ2 < 0 or λ3 < 0

(1− exp(−R2
A

2α2 ))(exp(−R2
B

2β2 ))(1− exp(− S2

2c2
)) else

(2.17)

If the tubular structures are light in contrast to a darker background, the condition
changes slightly:

R =

{
0 if λ2 > 0 or λ3 > 0

(1− exp(−R2
A

2α2 ))(exp(−R2
B

2β2 ))(1− exp(− S2

2c2
)) else

(2.18)

In summary, one could say that RA, RB and S are features which are assembled into
probability-like estimates of vesselness. The resulting estimation terms are combined in
a multiplicative way which makes sure that the response R is large only if all criteria are
fulfilled (Frangi et al., 1998; Urschler, 2019).

Frangi Algorithm Formulation and its Parameters

Since the tubular structures one wants to capture will most likely appear at different
sizes, a scale space implementation is necessary. In order to achieve this, the image stack is
filtered with a Gaussian filter with different standard deviations σ. At the end the maximum
medialness response across the scale range is taken (Urschler, 2019) .

for all scales do

for all voxels (x,y,z) do
Compute Hessian matrix∇2I(x, y, z)

Compute eigenvalues of Hessian matrix

Investigate eigenvalues to determine medialness response R(x, y, z)

end

end

Choose maximum medialness response across scale range

Algorithm 2: Frangi algorithm.

The parameters α, β and c are thresholds which specify the sensitivity of the filter. α

and β are set to 0.5 for many applications and also for the results shown in this document.

c it mostly set to the maximum of the norm of the Hessian matrix (Frangi et al., 1998). For

the results generated for this thesis, c = 75.



20 2 Segmentation of Proteoglycans

Numerical implementation of derivatives

One might ask at this point what it means to talk about derivatives in the context of im-

ages. Finite difference methods approximate the differential operator by replacing deriva-

tives with differential quotients. There are forward, backward and central differences. The

central difference method approximates the derivative directly at the center voxel and is the

most accurate variant, therefore it is used for both first and second order derivatives.

Assuming a simple one-dimensional smooth function u at a point x ∈ R, one can define

its derivative
∂u

∂x
= lim

h→0

u(x+ h)− u(x− h)

2h
(2.19)

This states the that the exact derivative can be calculated with the quotient on the right

hand side if h approaches zero. A fairly good approximation of the derivative can be

determined if h is sufficiently small (Frey et al., 2008).

First order derivatives for a three-dimensional signal are computed as follows:

∂I

∂x
≈ 1

2

Ii+1,j,k − Ii−1,j,k

∆x
(2.20)

∂I

∂y
≈ 1

2

Ii,j+1,k − Ii,j−1,k

∆y
(2.21)

∂I

∂z
≈ 1

2

Ii,j,k+1 − Ii,j,k−1

∆z
(2.22)

Second derivatives are determined in the same way as stated in equations 2.23 and 2.24

for ∂I2

∂x∂x
and ∂I2

∂x∂y
. Again, a central difference scheme is used.

∂I2

∂x∂x
≈

Ii+1,j,k − Ii,j,k
∆x

− Ii,j,k − Ii−1,j,k

∆x
∆x

=
Ii−1,j,k − 2Ii,j,k + Ii+1,j,k

∆x2 (2.23)

∂I2

∂x∂y
≈

(
∂I

∂y
)i+1,j,k − (

∂I

∂y
)i−1,j,k

∆x
=

1

4

Ii+1,j+1,k − Ii+1,j,k − Ii,j+1,k + Ii,j,k
∆x∆y

(2.24)
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For ∆x,∆y and ∆z one voxel is used for the implementation for this thesis.

2.4.2 Results and Discussion

The resolution of the image was decreased to 25 × 512 × 512 voxel to speed up the

process. The Frangi filter was applied after previous TV-l1 denoising (λ = 0.9, 200 itera-

tions).

(a) Original image slice (b) Frangi filter response

Figure 2.14 Application of Frangi filter with σ ∈ {1, ...5}. Slice of the original im-
age stack (Figure 2.14a) and its corresponding Frangi filter response (Figure
2.14a).

Figure 2.14 shows a typical filter response. The left image of Figure 2.15 suggests

that many proteoglycans were detected quite well. However, looking at the right image

of Figure 2.15, it is obvious that although many proteoglycans were correctly detected

(voxels coloured in green), a significant amount of structures which should not have been

considered (voxels coloured in red) were selected.

To reduce the number of falsely detected voxels, a Hysteresis thresholding was applied.

For this type of thresholding a low and a high threshold are chosen, tl and th, respectively.

A response is considered as a strong response and kept if it is higher than th and denoted as
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too weak if it is below tl. For responses in between tl and th it is checked if they are located

in the neighbourhood of a strong response. If they are, they remain as a response. Figure

2.16 shows that thresholding is highly necessary. Although the Hysteresis thresholding

improves the result significantly, a lot of not correctly as proteoglycans detected voxels

remain. It was also tried to set the thresholds stricter to get rid of more false positives,

but when doing so a lot of correctly detected proteoglycans were lost as well. Another

weakness of the algorithm when applied to the proteoglycan datasets was noticed. Figure

2.17 shows the filter response of a ”perfect” tube, which was created by stacking circles on

top of each other. One can see that the filter works very well at the center region of the tube.

However, one can see a change in response behaviour at the top and at the bottom of the

tube. At those regions, the mathematical tubularity assumption does not apply anymore,

since it states that intensities do not change along tube direction, whereas the intensities

at the top and the bottom of the tube change abruptly. The assignment of eigenvectors to

be oriented in-plane or along tube direction is no longer valid at those positions. However,

response values at ”problematic” regions are low, the thresholding process eliminates them.

Still this effect has to be kept in mind since proteoglycans are rather ”short” and so is their

central region where the algorithm works best.
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(a) PGs in original image (b) Detected PGs

(c) Legend

Figure 2.15 Original image with marked Frangi filter response in comparison with
ground truth (Figure 2.15a), for better clarity falsely detected proteoglycans
are not depicted and a representation of all detected proteoglycans (after Hys-
teresis thresholding) in comparison with ground truth (Figure 2.15b). The
legend in Figure 2.15c explains the displayed colours.

(a) Unprocessed response (b) Thresholding (c) Hysteresis thresholding

Figure 2.16 Comparison of unprocessed response (Figure 2.16a), response after simple
thresholding (Figure 2.16b) and after Hysteresis thresholding (Figure 2.16c).
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(a) (b) (c) (d)

Figure 2.17 Application of Frangi filter with σ ∈ Z : σ ∈ [1, 5] on a “perfect tube”.
Slice of the tube cut orthonormal to the tube direction (Figure 2.17a) and
corresponding Frangi filter response (Figure 2.17b). Slice cut along tube
direction (Figure 2.17c) and its Frangi filter response (Figure 2.17d).

(a) (b)

Figure 2.18 Problematic regions where tubularity assumption is not fulfilled are marked
by yellow arrows presented on a slice of the “perfect tube” (Figure 2.18a)
and its Frangi response (Figure 2.18b).



3 Segmentation of Proteoglycans and

Collagen Fibrils based on Machine

Learning

Results generated by previously described methods were not sufficiently reliable, so as

a next step machine learning models were investigated.

As there was only one single three-dimensional image stack available, it was decided

to start with a two dimensional approach. In total, 12 two-dimensional images with a

resolution of 2048 × 2048 pixels with corresponding manually segmented ground truths

were used as training and validation data. The images were split into 8 training and 4

validation images.

In the preprocessing step, the resolution of input and target images was decreased by

two and split into 4 quadrants. The intensities of the input image were normalized between

0 and 1. Two different models were examined, both were implemented in PyTorch.

3.1 Background

3.1.1 Neural Networks in a Nutshell

Artificial neural networks are inspired by the structure and functioning of the brain. The

general purpose of these mathematical models is to analyse data. Their basic entities are

artificial neurons. In an artificial neuron of network layer l an input al is weighted by wl

and a bias bl is added (equ. 3.1). The result yl+1 is activated by a non-linear activation

function Φ (Eq. 3.2). This activation function enables the model to capture non-linearities.

25
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yl+1 = Wlal + bl (3.1)

al+1 = Φ(yl+1) (3.2)

By connecting artificial neurons to each other, a neural network is constructed (Figure

3.1a). In order to determine if the mathematical model generated by the network is a good

or a bad one, the output of the last layer has to be designed in a way such that it can be

compared to a target. The discrepancy between output and target can then be measured by

a so called loss function `, which can be seen as a ”supervision” signal. If the model did not

perform well, its parameters wl and bl have to be altered. This can be done by minimizing

the loss of the output and the corresponding target. The gradient ∂`
∂wl measures the rate of

increase of the loss function ` with respect to changes of wl. This means that (for a small

region around wl ) if the loss should be decreased, one has to move in the negative direction

of the gradient. Equation 3.3 shows how the weight parameters are updated. τ is needed to

control the extent of the adjustment.

(wl)t+1 = (wl)t − τ ∂`

∂(wl)t
(3.3)

The same procedure can be applied for the update of bias parameters.

(bl)t+1 = (bl)t − τ ∂`

∂(bl)t
(3.4)

For processing images, connecting every neuron of one layer with every neuron of the

next layer would lead to a huge amount of learnable (updateable) parameters. In convolu-

tional neural networks a neuron of one layer is therefore only connected to nearby neurons

of the next layer, see Figure 3.1b. In a convolutional layer, a convolution is calculated

for each input region by sliding a kernel across the input of the convolutional layer. In

regions where the kernel overlaps the input, values at the same location at kernel and in-

put are multiplied with each other, the results are summed up to a final scalar value. The

mathematical description can be written as given in equation 3.5 with a two-dimensional

input feature map I(i, j), a two-dimensional kernel K(m,n) and a two-dimensional result
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C(i, j). Strictly speaking, the operation is a cross-correlation and not a convolution.

C(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.5)

The kernel shares its weights with each neuron of the layer, see Figure 3.1c for an illustra-

tion. Due to this weight-sharing characteristic, the reduction of parameters is not the only

advantage of convolutional neural networks. In images, local values are often highly cor-

related and their statistics invariant to their spatial location. As a kernel shares its weights,

patterns from different local regions in the image can be found. By using different kernels,

different types of patterns can be extracted. Additionally, pooling layers are integrated

into a network to reduce spatial dimensions. They can help to enhance the generalization

ability of a network by introducing spatial invariance. Pooling layers do not require and

therefore do not learn parameters. In a pooling layer, a pooling window is sliding over the

entire input. In the overlapping region of pooling kernel and input, depending on the type

of pooling, the average, the maximum or any other chosen value is computed. By doing so,

the pooling operator maps all subregions into single numbers (Emmert-Streib et al., 2003;

Wu, 2017).
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(a) Fully connected neural network. Every

neuron is connected to every neuron of

the next layer.

(b) Convolutional neural network. Neurons

are only connected to some neurons of

the next layer.

(c) In a convolutional neural net-

work neurons of one layer

share kernel weights .

Figure 3.1 Illustration of fully connected network (Figure 3.1a) and convolutional neural
networks (Figure 3.1b and 3.1c). Images taken from Emmert-Streib et al.
(2003).



3.1 Background 29

3.1.2 Activation Functions

ReLU (Rectified Linear Unit) and Leaky ReLU activation functions were tested to acti-

vate inner layers.

The ReLu function (Equation 3.6) is widely used in the neural network field, its cal-

culations are inexpensive and it shows fast convergence behaviour. However, ReLU units

can ”die” during the training process. If, for example, a strong gradient is backpropagated

through the network, the weight update can be severely unfavourable and, from that point

on, the gradient flowing through this ReLU unit will be constantly 0 because the activation

gets ”stuck” in the horizontal plane on the left side where x < 0.

f(x) =

0 if x ≤ 0

x if x > 0
(3.6)

The leaky ReLu (Equation 3.7) function attempts to fix this problem of ”dying units” by

having a small negative slope instead of a horizontal plane at values for x < 0. As a result,

gradients will not be zero in those region, they will contribute to the network.

f(x) =

αx if x ≤ 0

x if x > 0
(3.7)

It turned out that the leaky ReLU function worked better for both subsequently described

networks and was therefore used. α was set to 0.01. The output layer of both networks was

activated by a Sigmoid activation function.

The Sigmoid activation function is defined in the following equation:

f(x) =
1

1 + exp(−x)
(3.8)

It takes a real-valued number and “squeezes” it into a range between 0 and 1, see figure

3.2c. For a large negative number the denominator will be large and the result therefore 0.

For a large positive number the denominator and the result of the function will be 1 (Li et.

al., 2016).
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(a) ReLU (b) Leaky ReLU

(c) Sigmoid function

Figure 3.2 Activation functions used and tested for the machine learning models: ReLu
(Figure 3.2), Leaky ReLu (Figure 3.2b) and Sigmoid function (Figure 3.2c).

3.1.3 Loss Function

As all target images were binary images, the pixel-wise Sigmoid activation function was

used on the final feature map and combined with a binary cross entropy loss.

With target tc and activated network output pc for class c, the cross-entropy loss of a

pixel ij is defined as follows:

`CE,ij = −
C∑
c= 1

tc,ij log(pc,ij) (3.9)

For this application only two classes are needed, proteoglycan and non-proteoglycan
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class, or collagen and non-collagen class and the expression can be simplified:

`CE,ij = −[tc,ij log(σ(sc,ij)) + (1− tc,ij) log(1− σ(sc,ij))] (3.10)

One can observe that activating the last layer with a Sigmoid function is necessary in

order to have reasonable values for pc = σ(sc) between 0 and 1. The logarithm of σ(sc)

will be close to 0 if σ(sc) is close to 1, and it will be approximating -∞ if σ(sc) is close

to 0. Since tc is either 0 or 1, the loss will be low if target and estimated output are similar

and large otherwise.

The loss is calculated per pixel. In order to get a final scalar value, the loss is averaged

over all pixels.

3.1.4 Optimization

For both implemented networks, the Adaptive Moment Estimation (Adam) optimizer

was used. Intuitively one can think of the optimizer as a heavy ball with friction.

Gradient descent optimization algorithms minimize an objective function (loss function)

J(θ), where θ ∈ Rd are the parameters of the model. As previously described, by updating

the parameters θ in the negative direction of the gradient ∇θJ(θ) one can follow the slope

of the surface of the objective function “downwards” until a valley is reached.

If the “standard” gradient descent algorithm is used, updates are performed based on

the gradient of the loss of the entire training dataset. Stochastic gradient descent updates

the model parameters by determining the gradient of the loss of each individual training

sample.

If momentum is added to the standard stochastic gradient method, a fraction γ of the

gradient at the previous time step t− 1 is added to the update of the current time step t:

vt = γ vt−1 + τ∇θJ(θ) (3.11)

θ = θ − vt (3.12)

Intuitively one can think of a ball, as it rolls downhill it will become faster along its

way because it accumulates momentum. The parameter updates behave similarly. For
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dimensions whose gradients are oriented in the same direction, the momentum increases

and severe updates are made. In the contrary, if gradients change directions, only slight

updates are performed.

The Adam optimizer relies on an exponentially decaying average of past gradients mt,

similar to momentum:

mt = β1mt−1 + (1− β1)∇θJ(θt) (3.13)

Additionally an exponentially decaying average of previously determined squared gra-

dients vt is used:

vt = β2vt−1 + (1− β2)(∇θJ(θt))
2 (3.14)

As mt and vt are biased towards 0, they need to be bias-corrected.

m̃t =
mt

1− βt1
(3.15)

ṽt =
vt

1− βt2
(3.16)

The Adam update rule can now be written as:

θt+1 = θt −
τ√
ṽt + ε

m̃t (3.17)

Intuitively one can think of the algorithm as a ball with friction: it will overshoot local

minima but once it reaches a flat minimum it will remain there (Ruder, 2016).

3.1.5 Instance Normalization

The performance of both networks was significantly improved by adding normalization

layers. Layer normalization and instance normalization layers were applied and the ob-

tained results compared. Batch normalization would not have made sense since batches of

size 1 were used. Instance normalization led to the best results for both networks.

Assuming that x ∈ RN×C×W×H is an input tensor, with N batched images, C feature

channels and a spatial resolution W ×H , then the tijk-th element can be denoted as xtijk.
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t is the index of the image in the batch, i is the feature channel and j and k are the indices

of the spatial dimensions.

Mean µti and variance σti are computed for each sample and for each channel across

both spatial dimensions (Wu et al., 2018):

µti =
1

HW

W∑
l=1

H∑
m=1

xtilm (3.18)

σ2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm − µti)2 (3.19)

Using both one can compute a normalized version of the tijk -th element of x:

x̂tijk =
xtijk − µti√
σ2
ti + ε

(3.20)

ε is added to the denominator to increase numerical stability. Instance normalization is

applied during training and validation (Ulyanov et al., 2016). Figure 3.3 shows a very nice

illustration of different normalization strategies.

Figure 3.3 Illustration of mentioned normalization methods. H and W are spatial axes,
C is the channel axis and N the batch axis of feature map tensors (Wu et al.,
2018).
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3.1.6 Data Augmentation

Due to the small amount of training data, severe overfitting was happening for both

networks. Hence, data augmentation was crucial. Figure 3.4 shows the significant im-

provement of the learning behaviour of the U-Net model very nicely. Rotation, shifting,

flipping and elastic deformation were implemented. Simard et al. (2003) suggest to im-

plement random elastic deformation by generating displacement vector fields ∆x and ∆y

which are chosen randomly from a Uniform distribution between -1 and 1. ∆x and ∆y are

convolved with a Gaussian distribution with standard deviation σ. Setting σ to a relatively

high value ensures that displacements remain rather low because the random value will

average around 0. In order to control the extent of deformation, the displacement fields are

multiplied with a constant parameter α. For this thesis, α was randomly chosen between

20 and 100, σ was set to 10.

(a) Loss without data augmentation (b) Loss with implemented data augmenta-

tion

Figure 3.4 U-Net loss showing the impact of data augmentation by comparison between
the loss without (Figure 3.4a) and with implemented data augmentation (Fig-
ure 3.4b) .
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(a) Original input (b) Deformed input

(c) Proteoglycan target (d) Deformed proteoglycan target

Figure 3.5 Input image (Figure 3.5a) and corresponding proteoglycan target image (Fig-
ure 3.5b) and their elastically deformed versions (Figure 3.5c and 3.5d).
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3.2 U-Net Model

3.2.1 Network Architecture and Parameters

Figure 3.6 Illustration of network architecture, adapted from Figure 1 in Ronneberger
et al. (2015).

The first network used for this thesis is based on the U-Net architecture developed by

Ronneberger et al. (2015) and its modification for feature extraction used by Knöbelreiter

et al. (2015), see Figure 3.6 for an illustrative representation.

It consists of a contracting path and an expansive path. In the contracting path two

convolutions each followed by a Leaky ReLU activation function are applied repeatedly.

The first convolution of each ”spatial resolution level” is doubling the amount of feature

channels. A max pooling layer after the activation of the second convolution is used for

downsampling to reach the ”spatial resolution level” below. The expansive path is com-

posed of upsampling layers followed by two convolutions and Leaky ReLu activations.

The first convolution is applied on the concatenated channels of the upsampled layer and

the corresponding layer of the contracting path (Ronneberger et al., 2015).
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Table 3.1 Network architecture.

Layer KS Resolution Channels Input Activation fct.

conv00 3 W ×H/W ×H 1/16 Image Leaky ReLU

norm00 - W ×H/W ×H 16/16 conv00 -

conv01 3 W ×H/W ×H 16/16 norm00 Leaky ReLU

pool0 2 W ×H/W
2
× H

2
16/16 conv01 -

norm01 - W
2
× H

2
/ W

2
× H

2
16/16 pool0 -

conv10 3 W
2
× H

2
/ W

2
× H

2
16/32 norm01 Leaky ReLU

norm10 - W
2
× H

2
/ W

2
× H

2
32/32 conv10 -

conv11 3 W
2
× H

2
/ W

2
× H

2
32/32 conv10 Leaky ReLU

pool1 2 W
2
× H

2
/ W

4
× H

4
32/32 conv10 -

norm01 - W
4
× H

4
/ W

4
× H

4
32/32 pool1 -

conv20 3 W
4
× H

4
/ W

4
× H

4
32/64 norm01 Leaky ReLU

norm20 - W
4
× H

4
/ W

4
× H

4
64/64 conv20 -

conv21 3 W
4
× H

4
/ W

4
× H

4
64/32 conv20 Leaky ReLU

bilin1 - W
4
× H

4
/ W

2
× H

2
32/32 conv21 -

conv12 3 W
2
× H

2
/ W

2
× H

2
64/32 {bilin1, conv11} Leaky ReLU

conv13 3 W
2
× H

2
/ W

2
× H

2
32/16 conv12 Leaky ReLU

bilin0 - W
2
× H

2
/W ×H 32/32 conv12 -

conv02 3 W ×H/W ×H 48/16 {bilin0, conv01 } Leaky ReLU

conv03 3 W ×H/W ×H 16/16 conv02 Leaky ReLU

output 3 W ×H/W ×H 16/1 conv03 Sigmoid

Table 3.1 shows the exact parameters of the network. W = 512 and H = 512 since the

resolution of the two-dimensional images was decreased by two and the images were split

into quadrants.

A sigmoid function is applied on the last convolutional layer which has one channel per

pixel. In order to compare the result with the binary target to compute the accuracy and

IoU, values greater than 0.5 are set to 1, all others are set to 0. The computation of accuracy

and IoU are described in detail in chapter 4.
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Additionally, layer normalization and instance normalization layers were added at dif-

ferent positions, e.g. before and after the activation function was tested. Instance nor-

malization layers after the Leaky ReLU function in the contracting path turned out to

lead to highest accuracies. The Adam Optimizer with a learning rate of 0.0004 was used

for proteoglycan and collagen fibril segmentation trainings. Weights were initialized ac-

cording to a Gaussian distribution with 0 mean and a standard deviation of
√

2
N

. N is

the number of incoming nodes of one neuron, hence N = kernelsize ∗ kernelsize ∗
number of input channels (Ronneberger et al., 2015). Convolution bias was not used.
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3.2.2 Results and Discussion

(a) (b)

Figure 3.7 Training behaviour with data augmentation and instance normalization for the
proteoglycan segmentation, shown by loss (Figure 3.7a) and accuracy (Figure
3.7b) during training.

(a) (b)

Figure 3.8 Training behaviour with data augmentation and instance normalization for the
collagen fibril segmentation, shown by loss (Figure 3.8a) and accuracy (Figure
3.8b) during training.

Figure 3.7 shows the behaviour of the U-Net based model during training with aug-

mented training data and additional instance normalization for the segmentation of proteo-
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glycans. It can be seen that the accuracy increased rapidly at the beginning and remained

between 0.6 and 0.7 at higher epoch numbers. The model with the highest accuracy (0.72)

was saved. Figure 3.8 shows the training of the U-Net model for the collagen fibril seg-

mentation. Again, the accuracy improved significantly at low epoch numbers and remained

around 0.8. The best model with an accuracy of 0.82 was saved. Figures 3.9 and 3.10 show

an example of both segmentations.

(a) Input (b) Output (c) Target

Figure 3.9 U-Net model segmentation of proteoglycans. The trained U-Net model is
applied on a validation input image (Figure 3.9a). Its output (Figure 3.9b) can
be compared with the target segmentation mask (Figure 3.9c).

(a) Input (b) Output (c) Target

Figure 3.10 U-Net model segmentation of collagen fibrils. The trained network is applied
on a validation input image (Figure 3.10a). Its segmentation output (Figure
3.10b) can be compared with the target segmentation mask (Figure 3.10c).
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3.3 ESPNet Model

3.3.1 Network Architecture and Parameters

The second Machine Learning approach is based on the ESPNet (Efficient Spatial Pyra-

mid) developed by Mehta et al. (2018).

A standard convolutional layer takes Fi ∈ RW×H×M as an input feature map and Fo ∈
RW×H×N is the resulting output feature map. W and H are the width and the height of the

feature maps, M is the number of input feature channels, N the number of output feature

channels.

The ESPNet uses ESP modules, which decompose standard convolutions into two steps:

a computation reducing point-wise convolution and a spatial pyramid of dilated convolu-

tions which re-samples the feature maps to learn representations from receptive fields of

different sizes, see Figure 3.11.

Figure 3.11 Decomposition of a standard convolution (Mehta et al., 2018).

The computation, power and memory efficient ESP module relies on the following strat-

egy:

• Reduce: To shrink the dimensionality of the feature maps uniformly, a divider pa-

rameter K is introduced. For a given divider K, the ESP module reduces the feature
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maps from M-dimensional space to a N
K

- dimensional space by using a point-wise

convolution with a 1 × 1 kernel.

• Split: The resulting low-dimensional feature maps are then split across K parallel

branches.

• Transform: In each branch these low-dimensional feature maps are then processed

simultaneously with equally sized kernels but different dilation rates. For each ker-

nel, the same number of pixels participate, but they cover K different receptive fields.

If n × n pixels are considered, the effective spatial dimension of a dilated kernel is

nk × nk with nk = (n− 1)2(k−1) + 1, k = 1, ..., K.

• Merge: In the last strategy step, the output of all K parallel branches are concatenated

in order to get an N-dimensional output feature map.

Figure 3.12 Illustration of the ESPmodule strategy and the HFF (hierarchical feature fu-
sion) (Mehta et al., 2018).

Simply concatenating all branches might lead to unwanted gridding artefacts, therefore

Mehta et al. (2018) suggest to add the outputs of differently dilated kernels hierarchically
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before concatenating them (HFF, hierarchical feature fusion). Branches with a larger re-

ceptive field are subsequently added to previously joined branches with smaller receptive

fields.

Figure 3.12 shows the strategy of the ESPmodule in a block diagram. Figure 3.13 shows

the architecture of the ESP-Net. It consists of an encoder path (depicted on the left side)

and a decoder path (depicted on the right side). For down-sampling, strided ESP modules

are used. The hyperparameter α is needed to control the depth of the network. At spatial

level l, the ESP module is repeated αl times. At low levels (l = 0, l = 1) a lot of memory is

required because feature maps have high spatial dimensions. To keep the network memory

efficient, ESP and convolutional modules are not repeated at these levels. Feature maps of

the previous strided down-sampling ESP module are concatenated with the previous ESP

module to improves the flow of information (depicted as curved arrow in Figure 3.13).

To compensate the loss of spatial information due to down-sampling and convolutions, a

down-sampled version of the input image is additionally concatenated at those network

positions. The decoder path is based on a reduce-upsample-merge (RUM) principle, which

make it possible to use the information at every spatial level. The reduce - step performs

a projection of feature maps of spatial levels l and l − 1 to a C-dimensional space. C

represents the number of classes in the dataset. As the Sigmoid function is used to activate

the last layer of the network, C = 1 for this application. To match the spatial dimensions

of the feature map at spatial level l − 1, the feature map of the layer below, l, has to be

upsampled by a sampling factor of 2. This is achieved by applying a deconvolution kernel

with kernel size 2 × 2 at the reduce step. The final merge - process is a concatenation of

the previously upsampled feature map from spatial level l with the C-dimensional feature

map of spatial level l − 1. The RUM principle is repeated until spatial dimension l = 0 is

reached and the spatial dimensions of the final feature map are the same as the input image

dimensions (Mehta et al., 2018). A Sigmoid activation function is applied on the final

feature map to compute a binary segmentation mask. Mehta et al. (2018) used PReLU

acitvation functions and batch normalization for inner layers, for this thesis Leaky ReLU

and instance normalization turned out to work better. Divider parameter K is 5, depth

hyperparameter α2 was set to 2, α3 was set to 8. The Adam Optimizer with a learning rate

of 0.001 was used for proteoglycan and collagen fibril segmentation trainings.
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Figure 3.13 Illustration of the ESPNet architecture, adapted from Mehta et al. (2018).
C = 1, since at the end a one channel output layer is activated by a Sigmoid
function. Conv-n means that a convolution with an n×n kernel is performed.
Adapted from Mehta et al. (2018)
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3.3.2 Results and Discussion

(a) (b)

(c)

Figure 3.14 Training behaviour with data augmentation and instance normalization for
the proteoglycan segmentation, shown by loss (Figure 3.14a), accuracy (Fig-
ure 3.14b) and the comparison of validation accuracy and IoU (Figure 3.14c)
during training.

For the training of the segmentation model for proteoglycans, it was not sufficient to

only consider the accuracy as an indicator. At low iteration numbers a high accuracy

was measured although the IoU remained low (see Figure 3.14), therefore a model was

only considered to be ”good enough” if both accuracy and IoU increased during a training

epoch. The accuracy increased rapidly at low epoch numbers but starts to decrease again
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at approximately 100 epochs, while the IoU increases continously. The training process

for the segmentation collagen fibrils behaves more evenly, both IoU and accuracy improve

with more epochs. Figure 3.16 shows one example for a proteoglycan segmentation. The

borders of the segmented structures are slightly ”edgy”, it can be assumed that this is due

to the upsampling behaviour of the ESPNet.

(a) (b)

(c)

Figure 3.15 Training behaviour with data augmentation and instance normalization for
the collagen fibril segmentation, shown by loss (Figure 3.15a), accuracy
(Figure 3.15b) and the comparison of validation accuracy and IoU (Figure
3.15c) during training
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(a) Input (b) Output (c) Target

Figure 3.16 ESPNet model segmentation of proteoglycans. The trained Network is ap-
plied on a validation input image (Figure 3.16a). Its segmentation output
(Figure 3.16b) can be compared with the target segmentation mask (Figure
3.16c).

(a) Input (b) Output (c) Target

Figure 3.17 ESPNet model segmentation of collagen fibrils. The trained ESPNet model
is applied on a validation input image (Figure 3.17a). Its segmentation output
(Figure 3.17b) can be compared with the target segmentation mask (Figure
3.17c).



4 Comparison of different Approaches

4.1 Methods

4.1.1 Evaluation Metrics

In order to evaluate and compare different segmentation results, accuracy and intersec-

tion over union were computed for datasets where a manually segmented ground truth was

available.

Accuracy

The accuracy is the average number of correctly classified voxels. U ∈ RM×N×J is

assumed to be the binary output of the segmentation. Voxels, which are part of a segmented

structure have an intensity value equal to one. If not, their intensity is zero. T ∈ RM×N×J

is the manually segmented ground truth. Segmented voxels are labelled with one, others

with zero. m is the total amount of segmented voxels in the ground truth image stack, so it

is the number of voxels with an intensity value equal to one.

The accuracy is the percentage of correctly classified voxels and is computed as given in

equation (4.1).

A =
1

m

∑
i,j,k

δ̃(Ui,j,k, Ti,j,k) with δ̃(x, y) =


1 if x = y = 1

0 if x 6= y

0 if x = y = 0

(4.1)

48
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Intersection over Union (IoU)

Additionally to the accuracy, the intersection-over-union is determined too. The intersection-

over-union is the overlapping volume of segmentation result and ground truth divided by

the volume of union between result and ground truth, see equation 4.2.

IoU =
|U ∩ T |
|U ∪ T |

(4.2)

Again, U ∈ RM×N×J is the binary output of the algorithm and T ∈ RM×N×J is the

manually segmented ground truth, segmented voxels have intensity value one, all other

voxels are set to zero.

For a perfect segmentation, the segmented result matches exactly the ground truth. Their

intersection is equal to their union and the determined intersection over union equal to one.

If the segmentation involves many falsely classified voxels, the union of T and U would be

rather large and as a result the intersection over union close to zero.

(a) Ground truth T . (b) Result U . (c) Intersection |U ∩
T |.

(d) Union |U ∪ T |.

Figure 4.1 Demonstration of intersection-over-union for an illustrative structure. If Fig-
ure 4.1a and 4.1b are assumed to be ground truth T and result U , respec-
tively, Figure 4.1c depicts their intersection |U ∩ T | and Figure 4.1d their
union |U ∪ T |.
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4.2 Results and Discussion

4.2.1 Comparison of Proteoglycan Segmentation

Table 4.1 compares thresholding, the Frangi tube detection algorithm and both imple-

mented Machine Learning approaches for the segmentation of proteoglycans. For the

thresholding approach and the Frangi algorithm, values for accuracy and IoU were cal-

culated based on one labelled 3D dataset. For both Machine Learning models, values of all

4 × 4 validation quadrant images were averaged. Both accuracy AP and intersection over

union IoUP were calculated per-proteoglycan class.

Table 4.1 Comparison of per-proteoglycan class accuracy and IoU on validation set.

Method Validation set dimension AP IoUP

Thresholding 3D 0.4131 0.3018
Frangi 3D 0.5227 0.2025
U-Net Model 2D 0.7279 0.5961
ESPNet Model 2D 0.9669 0.6258

The machine learning models performed significantly better than the “classical” ap-

proaches, considering both accuracy and IoU. The ESPNet model delivered even better

results than the U-Net model.

4.2.2 Comparison of Collagen Fibril Segmentation

Table 4.2 compares the implemented Machine Learning approaches for the segmentation

of collagen fibrils. Values of all 4× 4 validation quadrant images were averaged. Accuracy

AC and intersection IoUC were calculated per-collagen-fibril class.
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Table 4.2 Comparison of per-collagen-fibril class accuracy AC and intersection over
union IoUC on validation set.

Method Validation set dimension AC IoUC

U-Net Model 2D 0.8269 0.7086

ESPNet Model 2D 0.9511 0.9048

Both machine learning models achieved good results. Again, the ESP-Net is perform-

ing significantly better. Compared to the segmentation of proteoglycans, better values for

accuracy and IoU were achieved. There are more collagen fibril voxels than proteoglycan

voxels in the images, the networks had more information to learn from.



5 Orientation and Diameter Evaluation

of Proteoglycans

The best segmentation result obtained with the ESP-Net model was then used to eval-

uate orientation and diameter of segmented proteoglycans. The procedure is not done for

collagen fibrils since most of them are only partially captured in the electron microscope

image.

The output of the ESPNet model shows “edgy” boundaries due to the down- and upsam-

pling character of the network’s architecture, see Figure 5.1. Additionally, since the model

is applied on two-dimensional slices of the three-dimensional image stack, the stacked

binary masks do not fit seamlessly together. In order to smooth the boundaries of the seg-

menation in the three-dimension image, a Guided Image Filtering published by He et al.

(2013) was applied. The refined mask was then used to establish the radii and orientations

of the proteoglycans in the images, again based on the Frangi algorithm.

Figure 5.1 Edgy proteoglycan borders of the segmentation.

52
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5.1 Methods

5.1.1 Guided Image Filtering

The Guided Image Filter filters an input image F by means of a guidance image I (see

Figure 5.2). To use this filter as a ”mask refinement”, the unprocessed input image and the

binary output image are the filter’s guidance I and input F , respectively.

Figure 5.2 Refine input (unrefined mask) F with guidance (unprocessed original image)
I to get a refined mask U , image adapted from He et al. (2010).

Definition

First a (2r + 1) × (2r + 1) square window wp with radius r centered around pixel p is

defined:

ωp = {q : ||p− q||∞ ≤ r} (5.1)

A filter output pixel Uq inside this window wp can be represented as a linear transforma-

tion of I inside this window. For the local linear model stated in equation 5.2 ∇U = a∇I
is valid. Hence, U inherits edges from I and has an edge only if guidance I has an edge.

Uq = apIq + bp ∀q ∈ ωp (5.2)

Linear coefficients ap and bp are assumed to be constant inside wp and can be determined

by solving the minimization problem stated in equation 5.3. The regularization parameter
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ε > 0 prevents ap from becoming too large. It can be seen as a parameter to set ”the extent

of edge-preservation”: the lower the chosen value, the more edges in the filter input image

are kept.

E(ap, bp) =
1

2

∑
q∈ωp

((apIq + bp − Fq)2 + εa2
p) (5.3)

After solving the linear regression problem the parameters can be written as:

ap =

1
|ωp|
∑

q∈ωp
FqIq − µpmp

σ2 + ε
(5.4)

bp = mp − apµp (5.5)

|ωp| is the number of pixels in ωp, µp and σ2 are mean and variance of guidance I in

ωp and mp is the mean of filter input F in ωp. As the linear model is applied to the entire

image, each pixel q is involved in all windows ωp which include q, therefore |ωp| different

solutions Uq are computed. One strategy is to average over all possible values for Uq in

order to come up with a final intensity value:

Uq =
1

|ωp|
∑
p:q∈ωp

(apIq + bp) = aqIq + bq (5.6)

In Equation 5.6, aq = 1
|ωq |
∑

p∈ωq
ap and bq = 1

|ωq |
∑

p∈ωq
bp. Since aq and bq are outputs

of an averaging filter operation, ∇U ≈ a∇I is still valid. This means that severe intensity

changes in the guidance image I will be (mostly) present in the filter output U as well (He

et al., 2013; Pock, 2019).

Guided Image Filter for Mask Refinement

Due to the preservation of severe intensity changes in the input image, gradients ap-

pearing in the original image at the boundaries between proteoglycan- / collagen fibril-

structure will be incorporated in order to get a refined mask. For this thesis, r = 8 and

ε = 0.05 using the images with a resolution 50 × 1024 × 1024 pixels. The output of the

filter was then converted into a binary image. A good threshold was determined by com-
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puting a ROC (Receiver Operator Characteristic) Curve. The curve gives a relationship

between the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the

y-axis:

FPR =
FP

FP + TN
(5.7)

TPR =
TP

TP + FN
(5.8)

TP describes the amount of true positives, FP is the amount of false positives. TN and FN is

the number of true negatives and false negatives, respectively. Additionally, a plot showing

the accuracy and IoU for different threshold values was examined. The filter output was

normalized between 0 and 1 before comparing different thresholds. It turned out that a

threshold set to 0.3 led to the most reasonable results.
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(a)

(b)

Figure 5.3 The threshold was set to 0.3 according to the evaluation of ROC (Figure 5.3a)
and IoU / Accuracy curve (Figure 5.3b).
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5.1.2 Orientation and Diameter Estimation based on Frangi Tube

Detection

The Frangi algorithm was then applied on the three-dimensional previously refined bi-

nary mask with σ ∈ {1, ...14}. A non-maxima suppression was computed to extract the

tubes’ centerlines. It can be said that the multiscale response Rms of a voxel on a tube’s

centerline is a local maximum. Assuming that the converse is true, local maxima in the

multiscale response Rms are located at the centerline and extracting local maxima leads to

centerline detection.

The eigenvectors v2 and v3 of the Hessian Matrix ∇2Iσmax(x) at scale σmax, the scale

where the maximum response was determined at that voxel x, is examined in order to

compare multiscale responses in the normal plane. A voxel x can be considered to be

a local maximum and therefore to be located at the centerline if following criteria are

fulfilled (Krissian et al., 2000):

Rms(x) ≥ Rms(x± v2) and Rms(x) ≥ Rms(x± v3). (5.9)

Evaluation of Diameters

σmax at the centerline is used to estimate the diameter. The mathematical model states

that the intensities in plane follow a Gaussian distribution with a certain standard variance.

The highest response value corresponds to the Gaussian distribution whose standard devi-

ation fits best to the actual tube cross section. Therefore σmax can be used to estimate the

radius of the tube. In order to find a mathematical relationship between scale and diameter,

the diameter of a proteoglycan was measured in the available ground truth images (resolu-

tion of 100 × 2048 × 2048 voxel) and the corresponding scale value at the centerline of

the Frangi filter response (resolution of 25 × 512 × 512 voxel) evaluated.

Figure 5.4 shows all 60 diameter/scale pairs and the linear function d(σmax) (equation

5.10) which was fitted accordingly, diameters are given in voxels:

d(σmax) = 7.88 ∗ σmax + 11.03 (5.10)
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Figure 5.4 Scale - diameter relationship. The diameter is given in voxels.

Evaluation of Orientations

Figure 5.5 Image stack in coordinate system: x goes in “slice-direction”, y in “row-
direction” and z in “column-direction”.
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As it is assumed that v1 shows in tube direction, its coordinates could be used as an

indicator for the orientation of proteoglycans. In order to interpret the orientations of the

eigenvectors v1, their coordinates were converted into spherical coordinates as used in

Holzapfel et al. (2015). With equations 5.11, 5.12 and 5.13, the direction of a proteoglycan

can be defined in spherical coordinates as illustrated in 5.6.

r =
√
v2

1,x + v2
1,y + v2

1,z (5.11)

Φ = arctan(
v1,z

v1,y

) (5.12)

Θ = arcsin(
v1,x

r
) (5.13)

Figure 5.6 A unit vector N(Φ,Θ) can be defined by angles Φ and Θ in a rectangular
Cartesian coordinate system. ex, ey and ez are unit vectors of the coordinate
system, adapted from Holzapfel et al. (2015).
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Biomechanical Interpretation

In order to interpret the measurements in a biomechanical context, it is necessary to

convert the diameter from voxels to nanometers. In the reconstructed three-dimensional

images with resolution 100 × 2048 × 2048 voxel, all voxels have a size of 0.5317 ×
0.5317 × 0.5317 nm. This means that the estimated diameter d in voxel can be converted

to a diameter d̃ in nm by multiplying it by 0.5317.

d̃(σmax) = d(σmax) ∗ 0.5317 = 4.19 ∗ σmax + 5.86 (5.14)

Tested aortas were cut in axial direction to get a planar tissue sample. These tissue

samples were then treated biaxially, that means they are stretched in their circumferential

and their radial direction. Figure 5.7 shows an illustration of vessel directions.

Figure 5.7 Simplified illustration of a vessel with depicted axial, circumferential and ra-
dial direction.

The radial direction is always aligned with the x-axis of the image stack, but circum-

ferential and axial direction of the tissue sample do not have to be oriented along y- and

z-axis of the image stack. The angle between z-axis and circumferential direction of the

sample is already determined by the Institute of Biomechanics. Based on this angle α, the

plane of the coordinate system spanned by y- and z-axis can be rotated around the x-axis

(radial axis) by means of a rotation matrix. In order to align the rotated y-axis with the

circumferential direction and rotated z-axis with axial direction, the coordinate system is

additionally rotated by 90° . In total, the coordinate system is rotated by γ = α + 90°.
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
v′1,x

v′1,y

v′1,z

 =


1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)




v1,x

v1,y

v1,z

 (5.15)

Rotated axis y′ is then aligned with the circumferential direction, z′-axis is aligned with

the axial direction. The equations for spherical coordinates can be altered accordingly:

Φ′ = arctan(
v′1,z
v′1,y

) (5.16)

Θ′ = arcsin(
v′1,x
r

) (5.17)

(a) (b)

Figure 5.8 y- and z-axis are rotated by γ in order to align them to axial and circumfer-
ential direction of the tissue sample. Θ′ and Φ′ can then be used to evaluate
proteoglycan orientations with respect to axial, circumferential and radial di-
rection. Figure 5.8b is adapted from Holzapfel et al. (2015).



62 5 Orientation and Diameter Evaluation of Proteoglycans

Artefacts at Tube ”Endpoints” - Additional Thresholding

(a) “Perfect” tube

(b) Eigenvectors v1

Figure 5.9 One can see that the determination of eigenvectors is not working that well at
“end regions” of a perfect tube as it is depicted in Figure 5.9a. The assumption
that intensities do not change in tube direction is not valid at the top and the
bottom of the tube. The eigenvectors v1 may not be oriented in tube direction
at these “end regions” (Figure 5.9b).

In order to see if the non-maxima suppression and the estimation of orientation and

radii makes sense, the evaluation was also performed on computer generated tubes, two-

dimensional circles were stacked upon each other to create a three-dimensional tube. Fig-

ures 5.9 and 5.10 visualizes eigenvectors, response and scale values of a tube which is

”shorter than the image stack”. Abrupt intensity changes at the top and at the bottom con-

tradict the mathematical basis which states that intensities do not change in tube direction

and this then leads to miss-determination of tube orientations. One can see in Figure 5.10a

that response values at voxels where the mathematical assumption does not fit properly are



5.1 Methods 63

rather low and a thresholding is sufficient to eliminate those artefacts. Therefore, addi-

tionally to the criteria for the non-maxima suppression (Equation 5.9), it was checked if

response values were higher than a chosen threshold t = 0.1.

(a) Response values after non-maxima suppression.

(b) σ after non-maxima suppression.

Figure 5.10 Visualization of multiscale response (Figure 5.10a) and σ (Figure 5.10b) af-
ter a non-maxima suppression. Again, one can see the artefacts at the top and
at the bottom of the tube due to the deviation of the mathematical tubularity
assumption.
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5.2 Results and Discussion

(a) Image section of one slice of the image stack showing two

proteoglycans. PG 1 is “standing” in the image stack, PG

2 is “lying”.

(b) Visualized main directions, the direction of PG 1 is ori-

ented “upwards”, PG 2 is oriented more along the image

slice plane.

(c) Visualized scales σmax. The scale of PG 1 is significantly

larger than the scale of PG 2.

Figure 5.11 Two exemplary proteoglycans (Figure 5.11a) with depicted orientations (Fig-
ure 5.11b) and scales (Figure 5.11c) at their centerlines.
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Figure 5.11 shows an example of determined main orientations and scales. For Proteo-

glycan 1, which can be described as to be ”standing” in the image stack, the estimated

direction is oriented perpendicularly to the slice plane. The main direction of the ”lying”

Proteoglycan 2 is estimated to be oriented more or less along the plane. Both estimated

directions are very reasonable. For Proteoglycan 1, scale σmax = 5. Using equations 5.10

and 5.14, a diameter d = 50.43 in voxels and d̃ = 26 in nm was determined. For Proteo-

glycan 2 σmax is equal to 2, resulting in a diameter d = 26.79 in voxels and d̃ = 14.24

in nm. The proteoglycans’ diameter was measured manually, both measurements matched

the computations.

Figures 5.12 and 5.13 show the same slice of the original image stack and the segmentation

of proteoglycans, the histogram of diameters and the histogram for the spherical angles for

both datasets. One can see that the proteoglyans of the first dataset are generally smaller

than the proteoglycans in the second image stack. This is also reflected in the histograms.

The histogram of the first dataset suggests that most proteoglycans have a diameter around

18 nm. Proteoglycans with greater diameters are rarely present and proteoglycans with a

diameter larger than 30 nm were not detected at all. In contrast, the histogram of the second

dataset shows that there is a significant amount of proteoglycans with a diameter between

18 and 30 nm. The largest detected proteoglycans have a diameter of 34 nm.

Regarding the orientations of proteoglycans in the images, it is observable that for the ma-

jority of proteoglycans for the first dataset (Figure 5.12d), Θ′ is close to 90 ° and Φ′ is

approx. -45 °, suggesting that they are oriented mainly out of plane along radial direction

with a tendency to be directed “in between” circumferential and axial direction. In the

second dataset, the histogram (Figure 5.13d) shows that although many proteoglycans are

oriented out of plane as well, for a large extent of proteoglycans Θ′ is approx. -45 °and Φ′

around 0 °, which means that they are only slightly oriented out of plane and significantly

directed in circumferential direction.
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(a) Original image (b) Proteoglycan segmentation

(c) Histogram of diameters (d) Histogram of Θ′ and Φ′

Figure 5.12 First exemplary dataset with one slice of the original image stack (Figure
5.12a) and its segmented proteoglyans (Figure 5.12b). The diameters of
the segmented proteoglycans in the whole dataset were plotted in a one-
dimensional histogram (Figure 5.12c) and angles Θ′ and Φ′ of the proteogly-
can orientations were plotted in a two-dimensional histogram (Figure 5.12d).
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(a) Original image (b) Proteoglycan segmentation

(c) Histogram of diameters (d) Histogram of Θ′ and Φ′

Figure 5.13 Second exemplary dataset with one slice of the original image stack (Figure
5.13a) and its segmented proteoglyans (Figure 5.13b). The diameters of the
segmented proteoglycans in the whole dataset are given in a one-dimensional
histogram (Figure 5.13c), angles Θ′ and Φ′ are given in a two-dimensional
histogram (Figure 5.13d).



6 Conclusion

The prerequisites for this thesis were quite demanding. With the naked eye, it is rela-

tively hard to recognize and identify proteoglycans and collagen fibrils. Various structures

are not assignable with certainty. Hence, segmenting images manually is highly laborious

and cumbersome, reliable three-dimensional annotations are especially difficult to gener-

ate. As a result, only very little labelled training data for evaluating methods and training

machine learning models was available.

Both “classical” approaches, thresholding and Frangi algorithm, have the big advantage

of being transparent and plausible, one is able to interpret and comprehend their behaviour

at any step and datapoint. Thresholding is computationally inexpensive and although a

series of calculations are computed at every voxel for the Frangi algorithm, it is possible

to run the program on a simple CPU in reasonable time if the resolution of the images

is decreased. However, the underlying assumption for the tube detection algorithm is a

severe simplification. In reality, the recorded data does not show infinitely long tubular

structures and the intensity profile in the normal plane might not be described well by a

Gaussian distribution. If the structures in the 3D dataset deviate too much from the tubu-

lar assumption, the algorithm can behave poorly. Furthermore, for both thresholding and

Frangi algorithm it is often necessary to preprocess the images in some way, the prepro-

cessing process itself can be quite demanding. Choosing appropriate parameters for both

approaches is challenging too.

Both deep learning models outperformed previous approaches significantly. Although

the models rely only on two-dimensional images, GPUs were absolutely essential for their

training. However, the trained models are able to compute segmentation masks in real-

time, no preprocessing is necessary.

The evaluation of diameters and orientations was done as an additional task because the

segmentations achieved by the ESPNet model were considered to be sufficiently reliable.
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70 6 Conclusion

The strategy used, based on the considerations of the Frangi algorithm, leads to reasonable

findings and is a good starting point for further investigation of segmented structures. But

as the mathematical tubularity assumption is violated at “end regions” of tubes and con-

sidering that proteoglycans and their “central regions” are rather short, other approaches

could lead to more solid results, e.g. a medialness transform.

Although the segmentation of both structures turned out to be surprisingly good, the

model could be improved considerably by training it on more data, especially on three-

dimensional data. However, labelling three-dimensional data is labour-intensive and cum-

bersome. An approach to tackle this issue could be based on the method proposed by

Koziński et al. (2020).

They developed a method to train deep neural networks to segment three-dimensional

images of linear structures using only annotations of two-dimensional maximum intensity

projections of the training data. They introduce a loss function which penalizes deviations

between the output of the network and the annotated maximum intensity projections along

all three axes. The annotation expense is decreased severely without any worsening of the

model performance.
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