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Kurzfassung

Bei Hybridfahrzeugen ist die genaue Schätzung des Ladezustandes der Batterie von
besonders großer Bedeutung. Im Gegensatz zu reinen Elektrofahrzeugen wird bei Hybri-
dantrieben während des Betriebs die Batterie ständig geladen und entladen. Das Mana-
gement System der Batterie hat die Aufgabe, die einzelnen Zellen der Batterie in einem
ausgeglichenen Ladezustand zu halten um übermäßiges Laden beziehungsweise Entladen
zu vermeiden, was einen großen sicherheitsrelevanten Aspekt darstellt. Da der Ladezu-
stand aber keine Größe ist, die direkt messbar ist, muss sie geschätzt werden, was mittels
Systemmodellierung erreicht werden kann.

Bei der Systemmodellierung versucht man das Verhalten einer einzelnen Zelle abzubil-
den. Die Batterie selbst besteht aus vielen solcher Zellen in paralleler und serieller Schal-
tung. Den Ansatz der statistischen Modellierung mit Hilfe eines Kalman-Filters hat bereits
Gregory L. Plett verfolgt, und seine Ergebnisse für Lithium-Ionen-Polymer Batterien sind
vielversprechend.

Bei diesem Ansatz wird die Zelle durch ein Zustandsraummodell dargestellt, das so-
wohl Verhalten als auch dynamische Effekte wie den Hysterese-Effekt modellieren kann.
Der Ladezustand der Zelle wird dabei als Systemzustand betrachtet. Ist das Modell mit
seinen Parametern ermittelt, kann mit Hilfe des Kalman Filters im ersten Schritt der Sy-
stemzustand vorausgesagt und geschätzt werden und in einem zweiten Schritt wird dieser
Schätzwert mit Hilfe aktueller Messwerte korrigiert. Für die Berechnungen sind lediglich
die Werte des vorhergehenden Zeitschrittes notwendig. Es ist nicht erforderlich, einen um-
fangreichen zeitlichen Verlauf zu speichern, was ebenfalls ein großer Vorteil ist.

In der vorliegenden Arbeit wird untersucht, ob diese Art der Zellmodellierung auch für
andere Arten von Zellchemie-Typen in Lithium-Ionen-Batterien vergleichbare Ergebnisse
liefern kann.

Die Daten für Systemidentifikation und Zellmodellierung stammen von Standard Zell-
Tests, durchgeführt auf Prüfständen der Magna E-Car (Graz).

Die verschiedenen Zellchemie-Typen eignen sich je nach der Ausprägung der charak-
teristischen Kennlinie besser oder weniger gut für diese Art der Zustandsschätzung. Wie
gut der Kalman-Filter arbeiten kann hängt hauptsächlich davon ab, wie genau sich im
Vorfeld die Parameter ermitteln lassen. Die Qualität der geschätzten Parameter wiederum
hängt von der Qualität der Testdaten ab - diese sollten möglichst genau und fehlerfrei auf-
gezeichnet sein, da Fehler bei der Systemidentifikation sonst indirekt in den Parametern
mitgeschätzt werden und somit zu systematischen Fehlern bei der späteren Zustandsschät-
zung führen.
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Abstract

An accurate value of a cell’s state (i.e. its State of Charge (SOC)) is very important in
the field of Hybrid Electric Vehicles (HEVs), since in contrast to Electric Vehicles (EVs)
the battery is constantly charged and discharged during use and losing track of the SOC
would lead to serious problems within the battery management unit. Unfortunately, SOC
cannot be measured directly and therefore has to be estimated. This leads to a point where
system modeling plays a role.

The variety of approaches to cell modeling is wide, ranging from simple statistical
models to neural nets to complex, physics based models. Using a Kalman Filter (KF)
to estimate a systems state has already been tested by Gregory L. Plett and his results
working with lithium-ion polymer cells are promising.

This modeling approach is based on state space representations that model behavior
and dynamics of the system (i.e. the cell). Detailed insights of the cell are not necessary,
dynamic effects like hysteresis and relaxation can easily be taken into account. By taking
SOC as a system state, once the model and its parameters are determined, a KF (or an
Extended Kalman Filter (EKF) in the case of nonlinear state space equations) is used to
predict the state of the system while running and corrects the estimate by exploiting the
actual measurements. This only requires the values of the previous time step, there is no
need to store more history.

This thesis investigates whether using different kinds of lithium-ion cell chemistries
results in similar outcomes. Data for system identification and testing was obtained from
standard cell tests performed at Magna E-Car (Graz). The models proposed by Plett were
used and nonlinear system identification was done by applying an EKF.

It appears that the KF considered by itself works well but system identification is cru-
cial. Accurate estimates of the system parameters are absolutely essential for satisfying
state estimation. Thus carefully determined experimental data is necessary. Otherwise
system identification leads to faulty parameters which in turn cause inaccurate state esti-
mation of the model.
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Chapter 1

Introduction

Batteries can not be imagined away these days. They are prevalent in mobile phones,
notebooks or other portable devices that ease and comfort our everyday lives. But even
more complex applications like an Hybrid Electric Vehicle (HEV) make use of portable
power supplies. From perspective of the user, running out of power can range from annoying
disruptions of phone calls to loss of work as well as to stranding by the side of the road.
Thus knowing the current State of Charge (SOC) is essential, the more precise the better.
In the case of hybrid or electric vehicles the information on the current SOC resembles the
fuel gauge and the estimate is required as exact as possible.

However, the measurement of a fluid level is much easier than an educated guess of the
remaining charge of a battery. But SOC does not only represent the electric fuel gauge,
it is also relevant for the battery pack management and safety issues which is even more
crucial though not obvious to the user.
Since it can not be measured directly SOC is needed to be estimated. While a rough
guesstimate would be sufficient for appliances like mobile phones, the Battery-Management
System (BMS) of an HEV makes use of various models to compute an (still inexact)
estimate of that quantity.
Those models range from simple statistical models to neural nets to complex, physics-based
models [18]. Physics-based models are for instance electrochemical models or equivalent
circuit-based models.

In automotive applications the preferred type of battery at this time is the Lithium-Ion
Battery (LIB) 1. Those batteries have the best energy-to-weight ratios, low self-discharge

1LIBs are intercalation-based batteries, where intercalation is the term for ions moving in and out of
an interstitial site in a lattice structure.

11



CHAPTER 1. INTRODUCTION 12

rates when not in use and exhibit no memory effect 2. The application in an HEV demands
large amounts of energy, safe operations, reliability and durability. The BMS that controls
the battery is composed of hardware and software to control the charging and discharging
processes. This is critical for safety, since LIBs can ignite and burst into flames when
incorrectly (over)charged or damaged [5].

1.1 Motivation

The focus of this work is on cell modeling by means of statistical models, in particular
based on the principles of the Extended Kalman Filter (EKF). It closely follows the work
of Gregory L. Plett who has already successfully built such models for Lithium-Ion Polymer
Battery (LiPB) packs (see: Plett [14, 15, 16]). LiPB uses a polymer gel as electrolyte. This
type of battery cell is mostly used in handheld devices since it provides high energy density
but within the cost of a higher risk of inflammation in case of damage. Those cell types
also come with neat cell characteristics, which makes modeling fairly easy. The shape of
the Open-Circuit Voltage (OCV) characteristic has big influence on the later estimate. A
flat curve may lead to more inaccurate estimates and makes the model prone to errors.

The aim was to achieve comparable results with two different cell chemistries (Lithium-
Titanate (LiTi): Li4Ti5O12 and Lithium-Iron-Phosphate (LiFePO): LiFePO4) which offer
lower energy density but are also less likely to explode. The Lithium-Titanate (LiTi)-
cells on the one hand show only little hysteresis effect which is good for modeling, the
LiFePO-cells on the other hand show high polarization values and moreover the Open-
Circuit Voltage (OCV)-characteristic has plateaus and is only linearly increasing within
an interval of approximately 12% to 35% SOC. Usually batteries are operated within the
range of 20% to 80% of SOC so in the latter case, the shape of the OCV characteristic
poses a challenge for the estimate of the SOC. Moreover the data of the LiFePO-pack is
highly affected by drift.

Data used for the experiments is drawn from various standard tests of the battery packs
on test plants, the packs itself are to be implemented in HEV applications.

2Memory effect - also known as lazy battery effect, observed in NiCd (Nickel-Cadmium) rechargeable
batteries. The term refers to the loss of capacity when NiCd-cells are repeatedly recharged after being
partially discharged (which causes changes in the metallic structure of the charged portions of the nickel
electrode), see Cope and Podrazhansky [6].
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1.2 Related Work

1.2.1 Approaches to Cell Modeling

There is a wide range of approaches to this topic. Generally speaking modeling means
reproducing the relevant parts of a real system to build up an abstract copy of it which
can be used for diagnostics and prognostics. The advantage of a model compared to the
real system is that since it is an abstraction, it is less complex but accurate enough to
investigate the main parameters.

One distinguishes between white-box models, black-box models and the hybrid form
called grey-box models.

White-box modeling refers to modeling, where the system and it’s structure are well-
known but of too complex nature. So the complexity is reduced willingly through abstrac-
tion. On the other hand there are systems, where the inner structure is unknown and
only the performance and input-/output variables can be monitored. The background and
context of the system’s interaction are often hard or not to understand. Drawing models
from observations, respectively from experimental data is called black-box modeling.

Since the world itself is not only black-and-white, the most common type of model is
the grey-box model, where parts of the system are well-known and others are not, nor
can every interaction be entirely explained. The resulting model therefore is based on
experimental data as well as on insights into the system.

A good overview of various approaches is provided in [13]. The main representatives
for modeling cells are briefly explained in the following:

1.2.2 Equivalent Circuit-Based Modeling

Usually in an Equivalent Circuit Model (ECM) the OCV is represented by a high-valued
capacitor and the SOC-value is inferred via a OCV-SOC Look-Up Table (LUT) (OCV can
be regarded as ’state’ of the system). The remainder of the circuit represents the internal
resistance of the cell and effects like terminal voltage relaxation. ECMs are based on the
physical understanding of the cell structure and chemistry as well as they require a few
parameters (like resistance values) which can easily be obtained from experimental data.
It is obvious that ECMs are kind of grey-box models. The benefits of this approach is
that complicated and intensive computing can be minimized and thus results are obtained
quickly. As a drawback, those models can not adapt to influences like cell aging.

Yann Liaw developed a simple ECM [12] for LIBs which is shown in Figure 1.1. R1

unites all ohmic resistant components and the non-linear components are modeled as the
R2C-circuit, where R2 unites all non-linear, faradic behavior (charge transfer, redox-related
properties, . . . ). The source and load serve for charging and discharging conditions.
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Figure 1.1: Example of a simple ECM (from Liaw et al. [12]).

This model is mainly used for simulation of cell impedance response and discharge
behavior.

1.2.3 Electrochemical Modeling

This modeling approach is based on electrochemical principles and is therefore physics-
based (based on the insights), although it also requires some offline estimated parameters
which are obtained by experimental data. Electrochemical models are supposed to pre-
dict the spatially distributed behavior of the cell, like the concentration of lithium ions
or the potentials in the electrolyte and the solid electrode. For simplification usually
one-dimensional (1D)-spatial models are derived, that represent the dynamics along the
horizontal X-axis (see Figure 2.1).

Lithium can be considered to appear in two disjoint states also called phases, namely
dissolved in the electrolyte and intercalated in the electrode material. Hence lithium occurs
at every point along the X-axis either in phase 1 or 2. The dynamics of those phases are
described by a set of differential equations where the state parameters at the position x
at time t are the current and the electric potential (in the solid electrode as well as in
the electrolyte), the molar flux of lithium, the concentration of the electrolyte and the
concentration of the solid-phase lithium [5].

1.2.4 Statistical Modeling

Statistical modeling is the object of this work. The methods are based on Kalman Filter
(KF) theory. To be able to make use of KFs a discrete-time state-space model of the cell
itself is needed. The state-space model consists of two equations: the state equation and
the output equation, i.e:

xk = f(xk−1, uk−1) + wk−1 state equation (1.1)

yk = g(xk, uk) + vk output equation (1.2)
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The state of the system xk at a certain time k is a function of the exogenous system
input uk−1 and system state xk−1 at the previous time step k−1 as well as of unmeasured
process noise wk−1. The corresponding output yk at time k then is a function of the actual
system state xk and input uk with additional measurement noise vk.

In contrast to other modeling methods, the cell’s SOC is considered to be a fundamental
state of the system, not an output variable.

Within a simple basic model the present electric current represents the system’s exoge-
nous input and the loaded terminal voltage (note, not the Open-Circuit Voltage (OCV) at
rest) is regarded as the system’s output. The process noise models the current-sensor error
and inaccuracies of the state equation, whereas the measurement noise represents errors
of the voltage sensor and inaccuracies of the output equation. SOC is denoted as system
state xk.

But also more complex models are feasible, they only differ in the definitions of xk,
uk, f(. . .) and g(. . .). For example may the vector uk also contain cell temperature Tk,
an estimate of the cell capacity C or an estimate of the cell’s internal resistance Rk. Also
additional system states can be taken into account, like the level of hysteresis which is
typically slowly changing. Adding a hysteresis state to the state equation models these
slow transitions. Both functions f(. . .) and g(. . .) can be linear as well as non-linear.

Basically the output of a causal system depends on past and present inputs. Consid-
ering a system state like in our case SOC, it reflects a summary of all impacts that past
inputs had on the system. Hence, the present system output can be regarded as a func-
tional relation of the present system input and present system state only. Its advantage is,
that no past input values need to be stored.

A Kalman Filter (KF) is an algorithm used to estimate the time-varying inner states of
a dynamic system. It comprises a set of recursive equations that are evaluated at every time
step as the system is running. Mainly two computation steps are performed: First a time
update is calculated to predict the expected state value for the following time index (see
Equation 1.1). Second, during the measurement update (see Equation 1.2), the estimated
output based on the state-estimate of the time update is compared to the physical system
output and the difference is seen as output error. More precisely it is named innovation,
because it is used to adapt the model’s state estimate in order to minimize the error and
thus it innovates the estimate of the time update. The influence of the correction term itself
is adjusted by the Kalman gain which can be regarded as the weighing of the innovation.

Since the KF tracks its own error, it provides dynamic error-bounds for the state
estimates. This allows an extensive use of the system within save limits. In case of a
battery that stands for save operations without over-stressing of the cells.
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1.3 Organization of the Work

After a short introduction in Chapter 1, Chapter 2 gives a quick overview of what a
Lithium-Ion Battery (LIB) is and clarifies naming conventions. Also a short review on the
Discrete Kalman Filter (KF) is provided in Chapter 3.

Chapter 4 discusses the different models used in this work in detail as well as methods
for system identification an parameter determination.

Cell Testing and the recorded data are topics of Chapter 5, discussed for both cell
chemistries used. The necessary preprocessing of the data is explained as well as the
composition of test and training data sets.

Chapter 6 sets focus on the hysteresis effect and how the cell characteristic i.e. OCV
curve and hysteresis loops are derived from the given data.

The results of the implementation are finally shown and discussed in Chapter 7.



Chapter 2

Fundamentals

2.1 Principle of a Lithium-Ion Battery

Naming Conventions are important to be clear about frequently-used terms, therefore
according to Andrea [1, chap. 1.1] the definitions are:

• Cell: basic element of a battery

• Block: collection of cells (wired parallel, providing greater amount of ampere hours)

• Battery: collections of cells or blocks (wired in series, providing higher voltage)

• Pack (or battery pack): collection of batteries arranged in any series and/or parallel
combination

The principle of intercalation-based cells is explained as follows1: the four main com-
ponents are the porous negative electrode, the porous positive electrode, the separator and
the electrolyte. The negative electrode is connected to the negative terminal of the cell
(contains usually graphite as intercalation material) and the positive electrode is connected
to the positive terminal. This electrode can be made of various chemistries, but metal ox-
ides or a blend of multiple metal oxides (like LiMnO2) from which the naming of the cell
is derived are most commonly used. The separator is the electrical insulator and is a thin
porous medium that inhibits electrons to flow between the positive and negative electrode.
The electrolyte is a concentrated solution which serves as an ionic conduction medium
where both electrodes and the separator are immersed. Since the separator is porous, ions
can pass through it by means of the electrolyte. The Li+ ions move in response to an
electrochemical potential gradient.

1Algorithms for Advanced BMS-systems [5]

17
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Figure 2.1: The anatomy of an intercalation cell: additional conductive and binder ma-
terials in the electrodes hold the electrode together and improve its conductivity (from
Chaturvedi et al. [5]).

Figure 2.1 shows the main components of a cell. During discharge, ions are extracted
from the negative electrode and intercalate the positive electrode. During charge, the
reverse process occurs. The free energy of the lithium inserted in the negative electrode
differs from the free energy when placed in interstitials sites of the positive electrode. In
fact, the energy of lithium stored in the negative electrode is much higher. Those free
energies are known as electrochemical potentials (in [J/mol]). Using these potentials, the
electrostatic potential (also called the electric potential or electric field potential, in [J/C]

or [V ]) of an electrode can be expressed as a function of the amount of lithium stored
in the material or to be more precise as a function of the utilization of the electrode,
where the term utilization denotes the ratio of the actual to the maximum possible lithium
concentration.

The electrostatic potential is also referred to as Open-Circuit Potential (OCP). Both
electrodes show OCPs, where the difference between them denotes the OCP of the com-
plete cell. It relates to the rest voltage which is measured between the current collectors,
assuming no charging or discharging currents. Alternatively the OCP of a cell is also called
OCV.

Intercalation cells show different equilibrium potentials at the same SOC, depending
on its recent history - i.e. whether the battery was previously charged (intercalated) or
discharged (deintercalated). The OCV following charge is higher than following a discharge
pulse at the same SOC. When doing a full discharge followed by a charge cycle the legs of
the main hysteresis loop can be measured. These mark the maximum limits of polarization.
When cycling round a certain level of SOC, the hysteresis loop takes accordingly smaller
shape.
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2.2 Relevance of the State Of Charge

In Andrea [1, chap. 1.4] the State of Charge (SOC) of a cell or a battery at a given
time is the proportion of the charge available at that point, compared to the total charge
available when it is fully charged. It is expressed in percent, from 100% when full to 0%
when empty.

It is important to emphasize, that every cell of a battery pack has its own SOC,
whereupon the resulting capacity of the whole pack can also be denoted as SOC. In this
work the term SOC is mainly used for a single cell since the modeling concerns the cell
itself and not the cell compound i.e. the whole battery pack.

When charging or discharging a battery, the battery’s ability of accepting or releasing
charge is limited by the cell which first reaches a SOC of 100% or 0%. Hence, the charging
or discharging process is triggered by the SOC-levels of the single cells instead of the whole
pack in order to avoid over-discharge and over-charge, which would harm the cells and
pose a risk to the user. More precisely, the cells’ voltages are monitored and if the voltage
of a cell meets a certain threshold (both for charge and discharge), the cell is assumed to
be fully charged or discharged.

It is clear to see, that the battery’s capacity depends on the capacities of the cells.
If there are severe cell-to-cell imbalances of SOC, the resulting capacity of the battery is
very low, up to the extreme case that it becomes nearly useless. In order to maximize
the battery’s capacity one tends to equalize the SOC-levels of the cells. This is done by
so-called balancing algorithms that are implemented within the BMS (Cao et al. [4]):

• Charge Shuttling among the cells (Active Balancing)

• Wasting Energy of the mostly charged cell with dissipative resistors (Passive Balanc-
ing)

• Selectively Shunting the charging current around already fully charged cells via shunt
resistors (End-Of-Charge Method)

Electric Vehicle (EV) batteries tend to be fully charged between the use cycles in
contrast to HEV-applications, where a fully charged battery would diminish the charge
acceptance capability (e.g. through regenerative braking). On the other hand a system at
a level close to 0% SOC, which is definitely ready to accept energy, is not able to deliver any.
Therefore in HEVs the battery pack is usually maintained at some intermediate SOC-level
around 40% to 80%. That marks save boundaries providing enough headroom to accept
regenerative power on the one hand and on the other hand the lower limit assures high
power discharge capabilities for boosting and moreover lengthens the battery life since too
deep Depth of Discharge (DOD) is avoided.
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Another reason for keeping the pack in the medium range of SOC is that in this region
most cell chemistries show nearly linear relations between the open circuit terminal voltage
and the SOC. The OCV-characteristic (OCV vs. SOC) can be seen as the fingerprint of a
cell’s chemistry and plays a very important role in cell modeling (for detailed explanation
see chapter 6). When a cell is allowed to rest for a longer period of time, its terminal
voltage decays to the OCV, therefore a simple approach for getting a rough SOC estimate
would be using the OCV- characteristic as a LUT.

2.2.1 Benefits of an accurate State Of Charge estimation

A battery pack takes several advantages of an accurate SOC estimate [Plett [14]]:

• Longevity of the battery pack, due to avoidance of over-discharge and over-charge
(taking account of the differing SOC-levels of the cells).

• Performance, by knowing the constraints for over-discharge and over-charge, one can
aggressively use the entire pack capacity.

• Reliability, good SOC estimators are independent of the driving profile.

• Density, smaller and lighter packs are feasible, since, due to accurate information
on battery state and SOC, extensive use within design limits becomes possible (no
“over-engineering” is needed).

• Economy, costs can be reduced due to small and reliable systems.

2.2.2 Influences on State Of Charge

One may think that simple coulomb counting, current integration or voltage metering
(OCV characteristic as LUT) alone could provide a satisfying SOC estimate. But SOC
is also highly influenced by other quantities than the input current, which must not be
neglected. In order to achieve accurate estimates of the SOC it is necessary to pay attention
to these influencing factors, both during extensive testing of the pack and during cell
modeling.

The most important factors that have an impact on the cell’s capacity and further on
its SOC are discussed in the following:

First of all capacity varies significantly with temperature and cell aging causes a decrease
of the capacity over time.

Charge and discharge rates have an impact on the SOC because of the electrochemical
actions inside the cell: it takes them finite time to complete. This is apparent when
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considering short term charging and discharging pulses. By the time the discharge pulse
occurs, the chemical effect of the preceding charging pulse may not be completed yet.

Last but not least are LIBs subject to hysteresis effects: The OCV following a charge
is higher than the OCV following a discharge pulse at the same SOC (see also Chapter 6).

Self discharge at rest due to the drain of built-in voltage monitoring circuits and the
chemical constituent parts is very low for LIBs and can therefore be neglected. Moreover
battery packs in HEVs are unlikely to rest for weeks or months.



Chapter 3

Introduction Of Discrete Kalman
Filter

3.1 Short Review

Greg Welch and Gary Bishop are well-known for their seminal paper titled ‘An Introduction
to the Kalman Filter’ [19]. In this section a short review on that topic is given. The
notations are coincident, but in contrast to Welch and Bishop the driving input uk is also
accounted for in the output equation which is similar to the definition of [14].

In case of a linear system, Equations (1.1) and (1.2) can be rewritten in matrix notation
as:

xk = Axk−1 +Buk−1 + wk−1 (3.1)

yk = Cxk +Duk + vk (3.2)

wk and vk are white Gaussian noise, assumed to be independent and show normal prob-
ability distributions. Q and R represent the process noise covariance and measurement
noise covariance, i.e.:

p(w) ∼ N (0, Q),

p(v) ∼ N (0, R).

The matrices A and B relate the previous state and input to the current state, C maps
the state to the measurement (output of the system) and D relates the input directly to
the output, all matrices together describe the dynamics of the system. Note, that these
matrices may possibly change within time but for better readability the subscript k is
neglected.

22
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As already mentioned in 1.2.4, a KF consists of two major computing parts at a time
step k: the time update and the measurement update which are also named prediction step
and correction step. This can be regarded as a form of feedback control: First, a system
state is estimated. Afterwards the filter gets a feedback in form of the (noisy) measurement
and based on that feedback the filter corrects its estimate. This is shown in Figure 3.1.

In order to be able to distinguish between these estimates, the terms a priori estimate
i.e. the estimate of xk−1 and the measurement yk−1 are known, and a posteriori estimate,
i.e. yk is known, are established. The a priori estimates are denoted by a super minus,
whereas the a posteriori estimates are denoted by a super plus: x̂−k , x̂

+
k . The hat itself

indicates that the value is an estimate.

TIME UPDATE
prediction step

MEASUREMENT UPDATE
correction step

Figure 3.1: The KF iterates through prediction and correction step.

We define the estimate errors e−k , e
+
k and the corresponding covariances P−k , P+

k as:

e−k ≡ xk − x̂
−
k , P−k = E[e−k , e

−T
k ], (3.3)

e+
k ≡ xk − x̂

+
k , P+

k = E[e+
k , e

+T
k ], where E denotes the expected value. (3.4)

The Kalman gain or blending factor K is a factor that minimizes the a posteriori error
covariance (3.4) in order to improve the estimate. The derivation of K is not trivial and
there are more than one possible resulting forms. A common one is given by:

Kk =
P−k C

T

CP−k C
T +R

. (3.5)

The gain K is later used to weigh the innovation (see Equation (3.9)) i.e. the difference
between the actual measurement yk and the measurement prediction Cx−k + Duk. It is
easy to see that the weighting depends on the measurement noise covariance R: if R
approaches zero, which allows the assumption of a very accurate measurement, K increases
and therefore weights the innovation more heavily. This can be interpreted as that the
measurement becomes more trustworthy and the predicted value is trusted less. On the
other hand, if the a priori error covariance P−k approaches zero, this would indicate a very
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accurate estimate and therefore the estimate is trusted more while the impact of the actual
measurement decreases.

The five equations of the discrete KF-algorithm resemble a predictor-corrector algo-
rithm, initial estimates for x̂+

k−1 and P+
k−1 are required:

x̂−k = Ax̂+
k−1 +Buk−1, (3.6)

P−k = AP+
k−1A

T +Q, (3.7)

Kk = P−k C
T/CP−k C

T+R, (3.8)

x̂+
k = x̂−k +Kk[yk − (Cx̂−k +Duk)], (3.9)

P+
k = (I −KkC)P−k . (3.10)

Equations (3.6) and (3.7) constitute the time update (predictor step) and equations
(3.8) - (3.10) form the measurement update (correction step). The filter cycles through the
steps in a recursive manner. But no actual recursion needs to be computed, neither past
state nor input values need to be stored since they are indirectly available through the a
posteriori estimates which are projected to the next iteration. This makes implementations
of the KF very feasible A, B, C and D are taken from (3.1) and (3.2), Q and R are the
covariances of the noise processes. The actual measurement is taken before computing the
a posteriori estimate x̂+

k . A detailed and profound derivation of the KF and its equations
based on the probabilistic origins and principles of system theory can be found in [3].

3.2 Extended Kalman Filtering for Nonlinear Processes

If the state and/or the output equations are non-linear, Kalman filtering as presented
above can not be applied. Linearization has to be done for the current estimate using the
partial derivatives of the non-linear functions f(. . .) and g(. . .) with respect to x. State
and output equation are defined as in (1.1) and (1.2):

xk = f(xk−1, uk−1) + wk−1,

yk = g(xk, uk) + vk.
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f(. . .) and g(. . .) can be approximated by a first order Taylor series expansion1

f(xk, uk) ≈ f(x̂k, uk) +
∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂k

(xk − x̂k), and (3.11)

g(xk, uk) ≈ g(x̂k, uk) +
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂k

(xk − x̂k). (3.12)

The partial derivates are defined as Âk and Ĉk (which are Jacobian matrices):

Âk =
∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂k

, (3.13)

Ĉk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂k

. (3.14)

Substituting Equation (1.1) and (1.2) into (3.11) and (3.12) and using Âk and Ĉk leads to:

xk ≈ Âk−1xk−1 + f(x̂k−1, uk−1)− Âk−1x̂k−1︸ ︷︷ ︸
I

+wk−1, (3.15)

yk ≈ Ĉkxk + g(x̂k, uk)− Ĉkx̂k︸ ︷︷ ︸
II

+vk. (3.16)

The marked terms I and II are not functions of xk but of its estimate and they replace the
terms Buk−1 and Duk in comparison to the Equations in (3.1) and (3.2), which were used
to deduce the standard KF from.

The whole algorithm adapted for the EKF is summarized as follows:

x̂−k = f(x̂+
k−1, uk−1) (3.17)

P−k = Âk−1P
+
k−1Â

T
k−1 +Q (3.18)

Kk = P−k Ĉ
T
k/ĈkP−k Ĉ

T
k +R (3.19)

x̂+
k = x̂−k +Kk[yk − g(x̂−k , uk)] (3.20)

P+
k = (I −KkĈk)P

−
k (3.21)

The definitions are very similar to (3.6) - (3.10). For the state and output estimate the
non-linear functions are used and the matrices A and C are replaced by Âk and Ĉk.

1assumed f(x) is differentiable at the point x0, the Taylor series expansion is:
f(x) = f(x0) + f ′(x0)

1!
(x− x0)1 + f ′′(x0)

2!
(x− x0)2 + . . .+ f(n)(x0)

n!
(x− x0)n +Rn(x).

The linearization of the function y = f(x) at an operation point P0(x0, y0) (which is from the geometrical
point of view the approximation of the function by its first derivate) is denoted as:
f(x) ≈ f(x0) + f ′(x0)(x− x0), [2, chap. 15.1.3].
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3.3 Extended Kalman Filtering for System Identification

In this work, EKF is used to identify parameters of the models if the parameters are not
linear. If the parameters are linear the problem can be solved straightforward by least-
squares estimation [15]. At this point this kind of application of EKF is discussed in
general, independently of any concrete system model. The appliance to a certain model
depends basically on the adaptation of Equation (3.24).

For system identification the EKF is used as an observer of the parameters of the system
models. The parameters are denoted by Θ and the non-linear state-space model is adapted
in a way, that Θ becomes the ’state’ i.e. vector of states which has to be estimated:

Θk = Θk−1 + rk−1, (3.22)

dk = g(xk, uk,Θk) + ek. (3.23)

rk is fictitious white Gaussian noise and represents small perturbations, since model param-
eters might change slowly over time. Moreover by adding noise, the established uncertainty
of the estimate (even if the parameters are assumed constant) allows the algorithm to adapt
to Θ̂. Function g(. . .) is the (non-linear) output equation of the system model, ek again
models sensor noise as well as modeling errors and dk is the system output which, computed
with regard to the estimated parameters Θ̂, is compared to the measured cell output yk in
order to adapt the parameters and minimize the estimation error. The functionality of the
algorithm is the same as before, merely some equations slightly change in their definition.
For easier legibility the error covariance matrices of rk and ek are denoted according to the
previous derivation of the EKF as Q̃ and R̃.

According to (3.14):

ĈΘ
k =

dg(xk, uk,Θ)

dΘ

∣∣∣∣
Θ=Θ̂−k

. (3.24)

Similar as in (3.17) to (3.21) we have the equations for the EKF for system identification
as follows:

Θ̂−k = ˆΘ+
k−1, (3.25)

P−k = P+
k−1 + Q̃, (3.26)

KΘ
k = P−k (ĈΘ

k )T/ĈΘ
k P
−
k (ĈΘ

k )T+R̃, (3.27)

Θ̂+
k = Θ̂−k +KΘ

k [yk − g(xk, uk, Θ̂
−
k )], (3.28)

P+
k = (I −KΘ

KĈ
Θ
k )P−k . (3.29)



Chapter 4

Statistical Approach for Cell
Modeling

As already mentioned in this work we focus on the papers of Gregory L. Plett [14, 15, 16].
We are interested in applying these models for different cell chemistries and investigate
their performance. The models are left unchanged in order to be able to compare the
results directly. All models are equal in the sense that they are state-space models, where
SOC is (amongst others) regarded as a state of the system. In Table 4.1 on page 34 the
state-space equations of the models that were evaluated are listed and summarized.
But before, each model is introduced in detail in the following sections.

4.1 Simple Model

The Simple Model (SM) is specified as:

zk = zk−1 −
(
η∆t

Cn

)
ik−1, (4.1)

yk = OCV(zk)−Rik, (4.2)

where zk denotes the system state (SOC), ik represents the system input (current), η
describes coulombic efficiency and Cn: nominal capacity, yk represents the system output
(predicted cell terminal voltage), R describes the internal resistance of the cell.

The Simple Model (SM) is the most basic model and may be intuitively understood.
The state equation (4.1) is based on the formula that states, that the electric charge which
is transferred in the period t1 to t2 equals the integral of the current i(t) over that period:
Q =

∫ t2
t1
I dt (see [9, chap M.2]). Assuming an adequate small sampling period and within

that a constant current ik, the expression can be discretized by the following rectangular

27
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approximation [2, chap. 12]: Qk = ik∆t.
The second term of Equation (4.1) calculates the charge weighted by the coulombic

efficiency η which indicates the efficiency of the transferred charge with which the chemical
reaction inside the cell is caused. Both, LiTi-cells and LiFePO-cells have a coulombic
efficiency of 0.9999 for charging as well as for discharging currents1. In order to obtain an
expression of SOC the value is related to the nominal capacity Cn. Therefore the overall
state value comprises the state value of the previous time step added up with the estimated
value of the current sampling interval ∆t.

The output equation (4.2) simply uses the OCV-characteristic as a LUT. This rough
first estimate is corrected by the term Rik where R denotes the inner resistance of the cell.

It might contradict intuition that the correcting term in (4.2) as well as the second term
in (4.1) are actually subtracted from the first terms. This is because Plett’s definition of the
instantaneous cell current is negative for charging and positive for discharging. Therefore
in the case of charging considering a negative signed ik the SOC increases as one expects
and the estimated output voltage becomes greater than the estimate taken from the LUT,
which also fully complies with what we know about the hysteresis.

4.2 Zero-State Hysteresis Model

The Zero-State Hysteresis Model (ZSHM) is specified as:

zk = zk−1 −
(
η∆t

Cn

)
ik−1, (4.3)

yk = OCV(zk)−Rik − skM(zk), (4.4)

where again as in Section 4.1 the variables denote the following: zk: system state (SOC), ik:
system input (current), η: coulombic efficiency, Cn: nominal capacity, yk: system output
(predicted cell terminal voltage), R: internal resistance of cell. In addition sk describes the
signum of ik and M(·) marks the maximum polarization.

The drawback of the SM is the fact that it doesn’t factor-in the impact of the hysteresis2.
A simple approach to tackle this issue is to check the sign of the instantaneous current and
switch to the corresponding function i.e. ’leg’ of the major hysteresis loop (for example
the major hysteresis loop of LiFePO-cells is shown in Figure 6.5). This is accounted for in
Zero-State Hysteresis Model (ZSHM). Since no additional state for hysteresis is introduced,
the model is named Zero-State Hysteresis Model (in contrast to the One-State Hysteresis
Model (OSHM) in Section 4.3).

1personal conversation with Klaus Hochgatter, chemist at Magna E-Car, 2011.
2For a detailed explanation of the hysteresis effect and its origins see Chapter 6.
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The state equation of the ZSHM is the same as for the SM, since no additional state
is required. Merely the output equation is modified by adding the term skM(zk) which
represents the offset due to hysteresis. sk is the sign of ik, therefore its value is 1 for
positive (discharging) and −1 for negative currents (charging). In the case of rest periods
sk = sk−1, which means it is kept in mind whether the current of the preceding time step
was a charging or discharging one. M(·) denotes the maximum hysteresis, more precisely
half the difference between the two legs of the major hysteresis loop. This is also called
the cell’s polarization voltage. Thus the polarization voltage is added or subtracted to the
estimated cell voltage depending on the sign of the current.

4.3 One-State Hysteresis Model

The polarization voltage as introduced in Section 4.2 leads to a kind of worst case es-
timate since it refers to the maximum deviance of the output voltage due to hysteresis
effects. The real deviation of the terminal voltage is more likely to be smaller, since the
cells are charged and discharged continuously and the hysteresis can not be expected to
develop to its maximum at each time step. In fact the major hysteresis loop only takes its
shape in the case of a full charge followed by a full discharge. Under everyday conditions
shorter periods of partial charge are followed by periods of partial discharge and vice versa.
Therefore instead of the major loop, minor hysteresis loops occur. Furthermore supposing
the polarization to flip its sign according to the input current is a crude assumption. It
rather decays slowly from one leg to the other. Therefore the hysteresis effect suggests

itself to rather influence the output as a system state depending on the previous time step
than to have an impact as a fixed value which is summed up to the output measurement.
Considering the hysteresis value as additional system state distinguishes the OSHM from
the ZSHM (Section 4.2) although both are designed to model hysteretic behavior. The
therefore introduced hysteresis state h(z, t) is not a differential equation in time, but in
SOC, where ż = dz/dt. Then the hysteresis state can be expressed as

dh(z, t)

dz
= γ sgn(ż)(M(z, ż)− h(z, t)), (4.5)

where M(z, ż) is a function which describes the maximum polarization with regard to hys-
teresis as a function of SOC and the rate-of-change of SOC. Note, within the ZSHM of
the previous Section 4.2, the maximum polarization is considered to be a constant value.
The term M(z, ż)− h(z, t) relates to the characteristic that the rate-of-change of the hys-
teresis voltage is proportional to the distance from the major hysteresis loop, i.e. an
exponential decay of voltage to the major loop. This rate of decay is tuned by γ (the hys-
teresis rate constant), a positive constant where the signum function ensures the equation
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to be stable for both, charge and discharge. Since the state space models are differential

equations in time (not SOC), the hysteresis state has to be modified by multiplying both
sides of Equation 4.5 with dz

dt :

dh(z, t)

dz
dz
dt

= γ sgn(ż)(M(z, ż)− h(z, t))
dz
dt
. (4.6)

The change of SOC with respect to t, dz
dt , is nothing else than −(η i(t)/Cn) (see also the

discussion of Equation (4.1) in section 4.1). Using ż sgn(ż) = |ż|, equation (4.6) can be
rewritten to

ḣ(t) =

∣∣∣∣η i(t)γCn

∣∣∣∣M(z, ż)−
∣∣∣∣η i(t)γCn

∣∣∣∣h(t). (4.7)

Assuming i(t) and M(z, ż) are constant over the sample period ∆t, equation (4.7) can be
discretized using standard techniques3 to

hk+1 = exp

(
−
∣∣∣∣η ikγ ∆t

Cn

∣∣∣∣)hk +

(
1− exp

(
−
∣∣∣∣η ikγ ∆t

Cn

∣∣∣∣))M(z, ż). (4.8)

For better readability Equation (4.8) is shortened by substituting F (ik) for the term exp(·),
with

F (ik) = exp

(
−
∣∣∣∣η ikγ ∆t

Cn

∣∣∣∣) , (4.9)

where η describes the coulombic efficiency, Cn the nominal capacity, γ refers to the hys-
teresis rate constant and ∆t is the sampling interval. This is pasted into the state equation
(Equation 4.10) and the output equation is extended by the actual hysteresis state (which
replaces the rough hysteresis voltage estimate of the ZSHM), see Equation 4.11.

Thus the One-State Hysteresis Model (OSHM) is specified as:[
hk

zk

]
=

[
F (ik−1) 0

0 1

][
hk−1

zk−1

]
+

[
0 (1− F (ik−1))

−η∆t
Cn

0

][
ik−1

M(z, ż)

]
, (4.10)

yk = OCV(zk)−Rik + hk, (4.11)

where within the vector containing the system states zk denotes SOC and hk the hysteresis
voltage. ik refers to the system input (current), F (ik) is defined as in Equation (4.9). M(·, ·)

3Plett [15] doesn’t go into detail which techniques have been used, but I suppose the matrix exponential
d
dt
eAt = AeAt = eAtA has been applied, such that ẋ(t) = Ax(t)+Bu(t) by premultiplying can be rewritten

to e−Atẋ(t) = e−AtAx(t) + e−AtBu(t). Then integrating leads to the solution of the continuous equation:
x(t) = eAtx(0) +

∫ t
0
eA(t−τBu(τ)dτ which can be discretized assuming u constant during each time step to

x[k + 1] = eATx[k] +A−1(eAT − I)Bu[k].
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denotes the maximum polarization as a function of SOC, η describes coulombic efficiency
and Cn nominal capacity. The predicted cell terminal voltage is described by the system
output yk, R shows the internal resistance of the cell.

4.4 Enhanced Self-Correcting Model

What is referred to as relaxation effect describes the phenomenon that when a cell is
allowed to rest (time constants between pulsed currents), it takes some time for the voltage
to completely relax to its rest voltage, i.e. convergence to its steady-state level. Those
time constants can be described as rest periods where the output voltages yk converges to
OCV as well as constant current charge or discharge periods.
The relaxation effect can be implemented as low-pass filter on ik. The aim is to achieve a
model that forces yk to converge to OCV for rest or OCV −Rik for a constant charging /
discharging current.

Meeting this requirements, the output equation needs to have the form

yk = OCV(zk)︸ ︷︷ ︸
fn(zk)

+ hk︸︷︷︸
fn(zk,ik)

+ filt(ik)−Rik︸ ︷︷ ︸
fn(ik)

, (4.12)

where fn(zk) and fn(zk, ik) describe the long-term DC-level like a bias to the output and
fn(ik) contribute the short-term variation around the long-term level.

From this, two criteria can be deduced for the filter:

1. The output of the filter filt(ik) has to be zero after a long rest period i.e. yk →
OCV + hk.

2. The output of the filter filt(ik) has to converge to zero during constant charge /
discharge i.e. that yk → OCV + hk −Rik.

The first criterion is met by using a stable linear filter4. To satisfy the second criterion the
filter should have zero DC-gain.

The state-space form of the filter itself is

fk = Af fk−1 +Bf ik−1, (4.13)

yf
k = Gf fk, (4.14)

4For asymptotic stability the eigenvalues (i.e. the poles of the system) have to be located inside the
unit circle, see [10, chap. 7.6.2]
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where fk is the filter state, Af denotes the state-transition matrix, Bf the input matrix and
Gf the output matrix of the filter. The above equations can easily be integrated into the
state-space equations of the model as shown in Equations (4.15) and (4.16).

The state-space equations of the Enhanced Self-Correcting Model (ESCM) are specified
as: fk

hk

zk

 =

 diag(α) 0 0

0 F (ik−1) 0

0 0 1


 fk−1

hk−1

zk−1

+

 1 0

0 (1− F (ik−1))

−η∆t
Cn

0

[ ik−1

M(z, ż)

]
,

(4.15)

yk = OCV(zk)−Rik + hk +Gfk. (4.16)

The additional system state fk denotes the relaxation filter state zk and hk remain the
system states SOC and hysteresis voltage, ik represents the system input (current). α

contains the filter poles, F (ik) is explained in Equation 4.9. M(·, ·) shows maximum polar-
ization, η marks the coulombic efficiency and Cn the nominal capacity. yk again represents
the system output (predicted cell terminal voltage) and R marks the internal resistance of
the cell, G states the filter gain matrix as introduced in Equation 4.14.

4.4.1 Filter Poles

The poles of the filter are found via the eigenvalues of Af 5. The filter is stable if all poles
are located within the unit circle, i.e. max

∣∣eig(Af)
∣∣ < 1. Poles close to +1 tend to

show slowly decaying dynamics whereas poles close to zero decay quickly. Negative poles
oscillate and so may complex-conjugate poles. Thus it is adequate to define the state-
transition matrix such that Af = diag(α), −1 < αj < 1, where α is a vector containing
the eigenvalues of A, i.e. the poles.

The input matrix Bf can be chosen arbitrarily under the constraint that no entry is
zero. By selecting Af and Bf as described above, the first criterion is met which states
yk → OCV + hk for long rest periods.

The output matrix Gf, also referred to as the weighting of the filter or gain, has to be
chosen in a way that satisfies the second criterion i.e. yk → OCV + hk −Rik for constant
input currents. In our case Gf is a vector of length nf, where nf is the number of filter

5The eigenvalues of A are the solutions λ to the characteristic equation: det(A − λI) = 0 of A, where
I is the identity matrix. In case that A is a diagonal matrix, the eigenvalues are the entries of the main
diagonal. The eigenvalues of the system matrix correspond to the poles of the systems’s transfer function.
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states, defined as follows:

Gf(I −Af)−1Bf = 0,

Gf
[
diag(

1

1− α
)

]
Bf = 0.

Assuming Bf = [1 . . . 1]T , the above equation can be rewritten as a sum, i.e.:

nf∑
j=1

gj
1− αj

= 0. (4.17)

To fix the zero DC-gain constraint one element of the Gf vector has to be dependent on
the others in a way that the overall sum in (4.17) equals zero. This is met by defining the
nf− th element of Gf as the negative sum over the others, i.e. the elements g1 to gnf−1 are
determined during system identification and gnf is

gnf = −
nf−1∑
j=1

gj
1− αnf

1− αj
. (4.18)
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4.5 Overview of Models

Table 4.1 allows a direct comparison of the state-space equations of the examined mod-
els. From top to bottom more complexity is added to the models which is obvious when
opposing the equations to each other. The state equations can be intuitively understood
as system states are only added but not modified. For example the state equation for zk
as defined within the Simple Model (SM) can directly be read out of the state equation
from One-State Hysteresis Model (OSHM) or Enhanced Self-Correcting Model (ESCM).
The output equations reflect the enhancement of the output estimate by adding additional
terms to the OCV-bias.

Examined models (brought up by G. L. Plett [16])

Simple Model (SM):
zk = zk−1 −

(
η∆t
Cn

)
ik−1

yk = OCV(zk)−Rik
Zero-State Hysteresis Model (ZSHM):

zk = zk−1 −
(
η∆t
Cn

)
ik−1

yk = OCV(zk)−Rik − skM(zk)

One-State Hysteresis Model (OSHM):[
hk
zk

]
=

[
F (ik−1) 0

0 1

] [
hk−1

zk−1

]
+

[
0 (1− F (ik−1))

−η∆t
Cn

0

] [
ik−1

M(z, ż)

]
yk = OCV(zk)−Rik + hk

Enhanced Self-Correcting Model (ESCM): fk
hk
zk

 =

 diag(α) 0 0
0 F (ik−1) 0
0 0 1

 fk−1

hk−1

zk−1

+

 1 0
0 (1− F (ik−1))

−η∆t
Cn

0

[ ik−1

M(z, ż)

]
yk = OCV(zk)−Rik + hk +Gfk

Table 4.1: Overview of the models examined in this work.
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4.6 System Identification

To be able to use the models for predicting state and output variables, first the model
parameters need to be identified. These unknown quantities can be estimated by system
identification procedures, where a set of N input/output triples {yk, ik, zk} is given.

If parameters occur linearly in the output equation, the model is said to be linear in
the parameters. Thus offline least-squares estimation in closed form is a feasible approach
for determining the parameters of such models [11, chap. 18.5], like in the case of SM and
ZSHM. If a model is not linear in the parameters, like in the case of OSHM and Enhanced
Self-Correcting Model (ESCM), an alternative method is needed. A possible way to tackle
this problem is using an EKF for estimating the parameters as already introduced in
Section 3.3 on page 26.

4.6.1 System Identification using Least Squares

In order to be able to use least squares estimation three matrices have to be formed first:
OCV does not have impact on any of the parameters, only directly on the output.

Therefore computation can be simplified by not using the output voltage values for system
identification but define the vector Y = [y1−OCV(z1) y2−OCV(z2) . . . yN −OCV(zN )]T

which contains the measured output subtracted by the corresponding value selected from
the OCV LUT 6

This leads to a simplified output Equation 4.19.
Matrix H = [h1 h2 . . . hN ]T contains the parameter’s coefficients of the output equation:
each row hj equals a whole parameter set. The unknown parameters are collected in the
vector Θ = [θ1 θ2 . . . θk]

T .

Y = HΘ. (4.19)

Assuming that the k columns of H are linearly independent, Equation (4.19) can be
solved for Θ using the pseudo inverse. This results in the desired values of the models’
parameters:

Θ = (HTH)−1HT︸ ︷︷ ︸
pseudo inverse

Y. (4.20)

6For information on how to generate such LUTs, see Chapter 6, Section 6.4 and 6.5 and Section 5.4.1.
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Parameter estimation for the Simple Model:

The unknown parameter of the SM is the internal resistance R of the cell. Since the
internal resistance under charging conditions does not equal the internal resistance under
discharging conditions, we introduce R+ and R− respectively, i.e.:

Θ =
[
R+ R−

]T
.

The superscript indicates whether the resistance is valid for positive or negative input
currents. Thus the rows of H are hj =

[
i+j i

−
j

]
, also compare the output equation of the

SM (4.2). Y is defined as shown on page 35.

Parameter estimation for the Zero-State Hysteresis Model:

Again Y is used as before. According to Equation (4.4) the unknown parameters then are
R+, R− and M appearing with its coefficients ± ij and sj . Thus

Θ =
[
R+ R− M

]T
and the rows of H are formed by hj =

[
i+j i−j sj

]
. Note, within ZSHM there doesn’t exist

any dependency of M on zk i.e. the SOC, M is considered to be a constant value, see
Section 4.2. Otherwise ZSHM wouldn’t be linear in its parameters.

4.6.2 System Identification using the Extended Kalman Filter

How the Extended Kalman Filter (EKF) can be used for system identification is already
explained in Section 3.3. Here the specific details for applying this method to the models
which are not linear in parameters is discussed.

CΘ
k = d g(·,·,·)

dΘ

∣∣∣
Θ=Θ̂−k

needs to be calculated for every single model (see Equation (3.24)).

For that the following derivatives are required, where g(·, ·, ·) is the output equation of the
system model (see Equation 3.23). Equation 4.22 is the calculation of the term dxk/dΘ

from Equation 4.21, where f(·, ·, ·) represents the state equation of the system model (see
Equation 3.22):

dg(xk, uk,Θ)

dΘ
=
∂g(xk, uk,Θ)

∂Θ
+

∂g(xk, uk,Θ)

∂xk

dxk
dΘ

, (4.21)

dxk
dΘ

=
∂f(xk−1, uk−1,Θ)

∂Θ
+

∂f(xk−1, uk−1,Θ)

∂xk−1

dxk−1

dΘ
. (4.22)

Apparently, Equations (4.21) and (4.22) are of recursive nature and evolve over time.
For initialization purposes, the term dx0/dΘ is set to zero except that side information which
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would lead to a better estimate of the initial state is available.

Parameter estimation for the One-State Hysteresis Model (OSHM) :

In the case of OSHM the unknown parameter vector is

Θ =
[
R+ R− M γ

]T
.

Again ± R is the cell’s internal resistance, M the maximum polarization voltage and γ as
part of F (ik) the hysteresis rate constant.

f(·) and g(·) are according to Equations (4.10) and (4.11):

f(xk, uk,Θ) =

[
F (ik)hk + (1− F (ik)) M(z, ż)

zk +
(
−η ∆t

Cn
ik

) ]
g(xk, uk,Θ) = OCV(zk) − Rik + hk

with F (ik) = exp(−|η ik γ ∆t
Cn

|) or in short Fk.

In order to solve Equations (4.21) and (4.22) the partial derivatives have to be calcu-
lated:

∂g(xk, uk,Θ)

∂Θ
=

[
∂g(·)
∂R+

∂g(·)
∂R+

∂g(·)
∂M

∂g(·)
∂γ

]
=
[
−i+ − i− 0 0

]
∂g(xk, uk,Θ)

∂xk
=

[
∂g(·)
∂hk

∂g(·)
∂zk

]
=

[
1

∂OCV(zk)

∂zk

]

∂f(xk−1, uk−1,Θ)

∂Θ
=

[
∂f(hk−1,uk−1,Θ)

∂R+
∂f(hk−1,uk−1,Θ)

∂R−
∂f(hk−1,uk−1,Θ)

∂M
∂f(hk−1,uk−1,Θ)

∂γ
∂f(zk−1,uk−1,Θ)

∂R+
∂f(zk−1,uk−1,Θ)

∂R−
∂f(zk−1,uk−1,Θ)

∂M
∂f(zk−1,uk−1,Θ)

∂γ

]

=

[
0 0 (1− Fk−1)sgn(ik−1) (M − hk−1)

∣∣∣η ik−1 ∆t
Cn

∣∣∣Fk−1

0 0 0 0

]
∂f(xk−1, uk−1,Θ)

∂xk−1
=

[
∂f(hk−1,uk−1,Θ)

∂hk−1

∂f(hk−1,uk−1,Θ)
∂zk−1

∂f(zk−1,uk−1,Θ)
∂hk−1

∂f(zk−1,uk−1,Θ)
∂zk−1

]

=

[
Fk−1 0

0 1

]
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In Equation (4.21) the terms ∂g(·)∂xk
and dxk

dΘ are multiplied. Since the second row’s entries

of ∂f
∂Θ are zero, the term ∂OCV(zk)

∂zk
is always multiplied by zero and therefore never used.

Thus the resulting equations corresponding to (4.21) and (4.22) simplify to:

dg(xk, uk,Θ)

dΘ
=
[
−i+ − i− 0 0

]
+ [1]

dhk
dΘ

dhk
dΘ

=
[

0 0 (1− Fk−1)sgn(ik−1) (M − hk−1)
∣∣∣η ik−1 ∆t

Cn

∣∣∣Fk−1

]
+ Fk−1

dhk−1

dΘ

Parameter estimation for the Enhanced Self-Correcting Model :

Assuming nf filter states the unknown parameter vector then is

Θ =
[
R+ R− g1 . . . gnf−1 β1 . . . βnf M γ

]T
,

where β is defined as

β = tanh(α), (4.23)

and α is the vector which contains the location of the filter poles. This definition produces
the benefit that its inverse function forces α to stay within values7 of ± 1 which is required
for the filter to be asymptotically stable.

The elements of Gf = [g1 g2 . . . gnf ] are only estimated up to gnf−1 since the nfth

element depends on the other entries to achieve zero DC-gain as mentioned in Equation
(4.17). This also causes the derivatives to be a bit more complicated.

fk = [fk1 fk2 . . . fk
nf ]

T is a column vector of length nf and let nf = 3. The third
term of the filter output equation is computed using the sum from Equation (4.18) in order
to fulfill the second criterion of zero DC-gain (Section 4.4):

yf = Gff

= g1f1 + g2f2 +

(
−g1

1− α3

1− α1
− g2

1− α3

1− α2

)
︸ ︷︷ ︸

g
nf

f3

Then for instance

∂yf

∂g1
= f1 − f3

1− α3

1− α1
.

7α = tanh−1(β) = artanh(β), the areatangens hyperbolicus is defined as: artanh(x) := 1
2
ln( 1+x

1−x ),
|x| < 1 and its derivative is d

dxartanh(x) = 1
1−x2 , |x| < 1.
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Therefore

∂g(xk, uk,Θ)

∂gi
= fki − fknf

1− αnf

1− αi
, for i = {1, . . . , (nf − 1)}. (4.24)

f(·) and g(·) according to (4.15) and (4.16) and with respect to Equation (4.23) are:

f(xk, uk,Θ) =


diag(artanh(β))fk + ik

F (ik)hk + (1− F (ik)) M(z, ż)

zk +
(
−η ∆t

Cn
ik

)


g(xk, uk,Θ) = OCV(zk) − Rik + hk + Gffk

= OCV(zk) − Rik + hk + g1fk1 + g2fk2 + . . . + gnffk
nf

Hence the partial derivatives evolve as follows:

∂g(·)k
∂Θ

=
[
−i+ −i− fk1 − fknf

1−α
nf

1−α1
. . . fk

nf−1
− fk

nf

1−α
nf

1−α
nf−1

0 . . . 0
]

∂g(·)k
∂xk

=

[
Gf 1

∂OCV(zk)

∂zk

]

∂f(·)k−1

∂Θ
=


0 . . . 0 diag

(
1

1−β2

)
fk−1 0 0

0 . . . 0 0 (1− Fk−1)sgn(ik−1) (M − hk−1)
∣∣∣η ik−1 ∆t

Cn

∣∣∣Fk−1

0 . . . 0 0 0 0


∂f(·)k−1

∂xk−1
=

 diag(artanh(β)) 0 0

0 Fk−1 0

0 0 1


As in the case of OSHM, the term ∂OCV(zk)

∂zk
multiplies to zero and the simplified equations

for (4.21) and (4.22) are:

dg(xk, uk,Θ)

dΘ
=
[
−i+ −i− fk1 − fknf

1−α
nf

1−α1
. . . fk

nf−1
− fk

nf

1−α
nf

1−α
nf−1

0 . . . 0
]

+

. . . +
[
Gf 1

] dx̃k
dΘ

dx̃k
dΘ

=

 0 . . . 0 diag
(

1
1−β2

)
fk−1 0 0

0 . . . 0 0 (1− Fk−1)sgn(ik−1) (M − hk−1)
∣∣∣η ik−1 ∆t

Cn

∣∣∣Fk−1

 +

. . . +

[
diag(artanh(β)) 0

0 Fk−1

]
dx̃k−1

dΘ



Chapter 5

Cell Testing and Data Preprocessing

All cell tests were performed on a test plant at Magna E-Car (Graz) in 2010/2011.

5.1 Testing the Lithium-Titanate - cells

The Lithium-Titanate (LiTi)-pack1 is a Toshiba Super Charge Ion Battery (SCiB) with
twelve cells in series.

5.1.1 Open-Circuit Voltage - Test

The test started with a fully charged pack, then the pack was discharged in steps of 5%
of SOC each until fully discharged and afterwards charged with the same procedure until
fully charged again. Between each pulse the pack was allowed to rest for three hours to
relax to the open current voltage at the current reference point. It took more than 120
hours (5 days) to complete the test.

The pack was tested at a temperature of 25◦C as well as of 40◦C. Besides other variables,
voltage, current and time as well as the amount of electric charge Q[Ah] (via an ampere-
hour meter) were recorded at a sampling rate of 10s, except during the occurrence of
current pulses the sampling rate was higher with 5ms. Figure 5.1 shows the current pulses
and the corresponding amount of ampere hours of collected data at a temperature of 25◦C.

The initial condition of the pack was set to Q = 0Ah and it was discharged with
3A-pulses that last for 207s. When fully discharged, the pack’s state reached a state of
−3.345Ah. For charging pulses of 10A with a duration of 62s were used. When fully
charged again the pack showed a capacity of 0.116Ah due to a longer rest period before
the test. This equals 3.3% of the (measured) capacity and lies within the known range of

1Molecular Formula: Li4Ti5O12

40
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Figure 5.1: Example of raw data measured during an OCV-test at 25◦C. The charging
and discharging pulses (red) correspond exactly to the edges of the curve of the measured
capacity (blue).

self-discharge rates. Therefore, the overall measured nominal capacity is 3.345 + 0.116 ≈
3.46Ah.

The corresponding SOC[%]-values can be calculated from the recorded Q[Ah]-data:

SOC =
Q−Qmin

Cn
· 100, (5.1)

where Cn denotes the nominal capacity of the pack.

We used the data obtained by the OCV - test to determine the OCV characteristic and
hysteresis curve.

5.1.2 Pulse Power Characterization - Test

In general the Pulse Power Characterization (PPC) - test serves to determine the charging
and discharging performance of the pack at a certain level of SOC.

Similar to the OCV-test the pack was fully charged and discharged in steps of 10% of
the measured nominal capacity. After reaching a defined SOC-level, the pack rested for
90min, then a charging or discharging pulse was turned on followed by another 30min of
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rest. Before turning to the next reference point of SOC, a correction pulse with 75% of
the preceding pulse was used to avoid artifacts from the previous step.

In contrast to the OCV-test, the cells are only allowed to rest for 30min after the onset
of the current pulse, yet not completely relaxed when heading for the next reference point.
To encounter that, the correction pulse is needed.

This test was executed within two different settings: With charging and discharging
pulses of 100A as well with charging pulses of 50A and discharging pulses of 80A. Both
settings were tested at 25◦C and at 40◦C. All pulses (also the correction pulses) lasted for
a period of 10s.

Unfortunately in the case of discharging the test stand also used 75% of the charging
pulse as correction pulse instead of 75% of the discharging pulse which in the latter case
of different amplitudes lead to errors of the succeeding location of the reference point (the
SOC was too low).

I also used this data to determine both the OCV characteristic and hysteresis curve but
since the internal resistance of a cell depends on the current pulses (amplitude and dura-
tion) this lead to higher resistance values and a greater polarization within the hysteresis
legs which is more unlikely than the results obtained through OCV-data. Considering the
fact that current pulses like in the Pulse Power Characterization (PPC)-test do not occur
in the ‘real life’ (i.e. the driving profile) of a battery, adhering to OCV-data seemed to be
more plausible.

5.1.3 Test-Cycle - Test

The cycle used in the test-cycle-tests as well as in the life-cycle-tests is a certain load profile
specified by the client. It lasts about 4200s and consists of three sub-cycles. Correction
pulses are used to keep the SOC-level neutral. Started at a desired initial condition of SOC
the cycle is supposed to end at the same level (due to drift the SOC increases slightly)
followed by two reference pulses of 31A which last 10s each. Since within the entire cycle
the sub-cycles start at different SOC-levels diversity of the data is given.

In the case of the test-cycle two cycles in series were examined. The first test runs were
done with the coolant at 42◦C, an initial condition of 1.33Ah which equals 43% SOC and
not only the packs’ voltage and temperature were recored but the voltage and temperature
of every single cell. Figure 5.1.3 shows how the cells’ temperatures evolve over time. Later
on the test was repeated for a temperature of the coolant from 20◦C to 40◦C in steps of
5◦C. For each temperature the data was collected for three different initial states namely
33%, 43% as well as 53% SOC. During these test runs only the minimum and maximum
temperature of the cells and the minimum and maximum cell voltage was recorded.
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From a previous test2 a nominal capacity of 3.1Ah was determined (the pack has had
aged in the mean while). Firstly the pack was fully discharged until its first cell reached
the minimum of 1.8V (specified by the manufacturer). The ampere-hour meter was reset
to zero3 and the pack was charged to the initial condition. Two entire cycles were executed
consecutively and afterwards the pack was discharged again to the threshold of 1.8V . From
these reference points of full discharge the drift of the ampere-hour meter was calculated.

Figure 5.2: Temperatures of the single cells and corresponding developing of Ah-values
measured during a test-cycle-test at 42◦C which is the temperature of the coolant. The
two cycles are separated by a red dashed line. It can be seen that it almost takes the whole
first cycle to bring the cells to operating temperature. Their temperatures differ from each
other since they are mounted separately on the coolant.

This data was used for system identification as well as for testing. Since the tempera-
tures of the second cycle didn’t vary as much as during the first cycle, data samples of the
first cycle were omitted when estimating the parameters.

5.1.4 Life-Cycle - Test

The life-cycle-test is similar to the test-cycle test except that seven cycles are executed
one after another, each followed by two reference pulses of 31A for 10s. This test was
only performed at a temperature of 42◦C. It is used for testing purposes with parameters

2A shortened PPC-test was used as reference test to determine the remaining nominal capacity after
2000 operating hours.

3If the ampere-hour meter is reset and therefore not calibrated, one cannot calculate the corresponding
SOC-values directly from the Ah-measurements as proposed in section 5.1.1 but has to compute the integral
over the input current (cumulative sum).
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determined by system identification with test-cycle data of the same temperature. As in
the case of the test-cycle test it is obvious that drift is an issue. It is primarily caused by the
ampere-hour meter and can be assumed linear4. Figure 5.3 shows the measured Ah data
and the same data corrected by its drift. When using Ah-values computed by integrating
the current, the same correction is needed and as a consequence by that procedure the
SOC-values are pruned too. Of course this also holds true for data of the test-cycle tests.
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Figure 5.3: Life-cycle test of seven cycles. The Ah-values computed via the integral of the
input current before (cyan) and after drift-correction (blue).

4personal conversation with Dr. Stefan Doczy
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5.2 Testing the Lithium-Iron-Phosphate - cells

The Lithium-Iron-Phosphate (LiFePO)-pack5 consists of 66 cells of 4.5Ah capacity with
every two cells forming a block summing up to a total capacity of 8.5Ah6

5.2.1 Open-Circuit Voltage - Test

Testing differs from the test of the LiTi-pack which has such little hysteretic behavior that
it was possible to neglect current pulses usually used for leading the pack back to OCV-
level. These short pulses of ±60A for charge and ±80A for discharge are necessary for the
LiFePO-pack and are set directly before the onset of the next charging / discharging step
(4, 2A charging / discharging pulse). This guarantees that the pack’s voltage returns to
OCV from the hysteresis leg it has relaxed to. Figure 5.4 shows the input current together
with the resulting SOC. This test was realized for 23◦C as well as for 40◦C.
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Figure 5.4: Raw data measured during the OCV-test of the LiFePO-pack at 40◦C. The
hysteresis pulses that turn the pack back to OCV-level are applied directly before the
smaller charging and discharging pulses (red).

5Molecular Formula: LiFePO4
6The ‘missing’ 0.5Ah form a buffer to make sure that no cell is overstressed (compare balancing methods

on page 19).
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5.2.2 Test-/Life-Cycle - Test

Test and the lifecycle data is available for 47◦C. The load profile (i.e. the driving cycle,
see section 5.3) was the same as in the case of the LiTipack. The test-cycle test covers two
driving cycles, the lifecycle test seven cycles. Drift is again an issue. But in contrast to the
other cell chemistry, a large negative drift can be observed when calculating the Ah-values
directly from the input current, actually the values run below 0Ah as can be seen in Figure
5.5:
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Figure 5.5: Life-cycle test of seven cycles. The Ah-values computed via the integral of the
input current before (cyan) and after drift-correction (blue).
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5.3 Load Profile of Driving Cycle

The driving cycle that was used as test cycle (two times repeated) as well as for the life-
cycle test (seven times repeated) lasts about 4200 seconds and consists of four sub-cycles
of different duration as listed in table 5.1.

Sub-cycle Duration [s]
Cycle 1 144,2
Cycle 2 353,5
Cycle 3 789,4
Cycle 4 200,0

Table 5.1: The duration of each sub-cycle of the load profile which is used for test and
lifecycle tests.

Cycles 1 to 3 describe predefined load values, at the end of cycle 2 a current reference
value is provided to guarantee a neutral SOC-state regarding the higher-level sequence.
This reference value depends on the temperature. Cycle 4 also consist of two current
reference values which last 10 seconds each. The sub-cycles appear in the following order:
1, 1, 2, 2, 2, 1, 1, 3, 3, 2, 2, 4. The colored vertical lines in figure 5.6 indicate the begin of
each sub-cycle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−150

−100

−50

0

50

100
Load profile of a single test cycle.

cu
rr

en
t [

A
]

time [h]

 

 
current
begin of
sub−cycle (sc) 1
sc 1
sc 2
sc 2
sc 2
sc 1
sc 1
sc 3
sc 3
sc 2
sc 2
sc 4

Figure 5.6: Load profile of a single test cycle. This is used in test cycle and life cycle tests
for both cell types.
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5.4 Preprocessing of Data

The naming of all workspaces supply information on type of the designated use, cell chem-
istry, origin of data (OCV, test-cycle, life-cycle), temperature (if data of same test is
available at different temperatures), start-SOC (if differing from ‘standard’ values) and am-
perage (if various current settings are available as in the case of the OCV-test of LiFePO).

5.4.1 Open-Circuit Voltage Look-Up Tables

Data from OCV-tests was used to deduce the hysteretic behavior of the cells, i.e. the
hysteresis legs. Further using these legs, the OCV-curves were determined.

The OCV characteristics are stored in workspaces that contain LUTs in the form of
(m x 2) matrices for high and low temperatures (resolved with an accuracy of 0.1%),
where m denotes the number of data points. The workspaces also contains the maximum
polarization voltage read out from the hysteresis legs for both temperatures.

Since the resolution of the LUT is higher than achieved by only measured data, the
missing corresponding voltage values for a vector x containing SOC-values from 0% to
100% (in steps of 0.1% SOC) are determined via linear interpolation.

The hysteresis legs needed to be smoothed for further calculations. This was done by
a moving average window without zero padding to avoid distortions around 0% and 100%

SOC. The smoothing starts with the (ws−1
2 + 1)-th element, where ws denotes the window

size.

In order to retrieve a reliable value for M , the maximum polarization is computed by
searching the maximum difference between the hysteresis legs within the region of 25% to
75% SOC.

For the LiFePO-cell the OCV-test was accomplished at different amperages of charging
and discharging currents. The results are nearly similar, for OCV computation we chose
the data with the lowest amperages (i.e. 60A charging, 80A discharging pulses).

5.4.2 Training Sets

Training sets were generally generated from test-cycle data. When using this data (espe-
cially with regard to use the best data available for training sets) samples belonging to the
first cycle were dismissed because of the evolution of the cell temperatures. The data is
cleaned, that means its drift is corrected and samples that contribute to correction pulses
during the cycle are neglected.

Drift was assumed to be linear. The data vector of a driving cycle contains as first and
last element reference points of full discharge, i.e. of same value, namely 0Ah. When data
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is drift affected, these reference points show different values. Linear drift equals defining
a straight line from the first to the last sample, i.e. a vector of the same size as the data
vector with elements equally spaced from first to last sample value. Then test data can be
cleaned by subtracting those drift values from the drift affected data.

Figure 5.7: Drift affected data and same data corrected by subtracting the assumed to be
linear drift values indicated by the straight line from the first to the last sample of the
measured Ah values.

Furthermore the sets were built using the input current for Ah computation, since the
Ah values determined by the Ampere-hour meter are derived from the current measured
within the test plant (at the connectors of the battery) whereas the values of the input
current directly come from the current sensor within the system itself, which equals also the
‘real-life’ scenario and usually is more accurate. The output voltage was set to the lowest
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measured cell voltage7 as by under-running first the threshold used for safe operations
these cells were responsible for the switch off and can be regarded as matching best the
corresponding SOC-level.

In the case of the LiTi-pack, test cycles were accomplished at various temperature
ranges of the coolant (20◦C, 25◦C, 30◦C, 35◦C, 40◦C, 42◦C) and except for the latter also
at three different levels of start SOC (33%, 43%, 53%), see also table 7.3. Training sets
were built from all data sets with an initial condition of 43%. Thus system parameters can
be identified for every temperature condition.

For the LiFePO-pack data is only available at 47◦C.

5.4.3 Test Sets

Test sets were generated from the 2nd test-cycle as well as from life-cycle data. Data is drift
corrected and includes correction pulses. Again the minimum cell voltage was chosen as
system output. For every temperature of the coolant and every initial condition a separate
test set was generated. When using life-cycle data, the cell temperatures were not taken
into account.

Every set (training as well as test set) is provided as a matlab-workspace containing
a (m x 3) data matrix M that holds m input-output triples of the form {yk, ik, zk} where
yk is the measured output voltage, ik the input current and zk the ‘true’ state of the
cell, i.e. the corresponding SOC-value computed from the input current. Additionally
the corresponding time-vector (time_) and a variable cap_cell that holds the measured
nominal capacity is stored.

Both, training and test sets are drift corrected in their SOC-values. Moreover training
sets do not contain any correction pulses that occur during the driving cycles. Current
pulses in the beginning and in the end of the tests used for calibration and to approach a
desired start-SOC are dismissed anyway.

For the life-cycle test sets we used drift corrected as well as drift affected data to be
able to show the impact of drift on state and output estimation (which can not be seen as
clear using shorter sequences).

7At the end of the test, when the pack is fully discharged again, the cell that first under-runs the
threshold for switch off and states the pack as fully discharged, is in fact the cell that is the most discharged
in comparison to the others and has therefore most likely the ‘true’ state of 0% SOC.



Chapter 6

Hysteresis and Open-Circuit Voltage

As already mentioned in chapter 2.2 the Open-Circuit Voltage (OCV)-curve reflects the
characteristic behavior of a cell. In fact the measured samples 〈voltage, ampere hours〉
are not located on the OCV-curve directly but rather on the legs of the major hysteresis
loop which evolves when cycling the pack from 0% to 100%SOC and back.

The OCV-characteristic itself is then computed as arithmetic mean of both legs. It is
obviously monotonically increasing but not necessarily strictly monotonically increasing.

6.1 The Hysteresis Effect

A hysteresis effect can be observed in systems where the output not only depends on the
independent variable input but also on its past environment. That means the system
behaves according to path dependencies and may remain in different sates provided the
same input. These states can also be regarded as several apparent equilibria of the system.
To predict future outputs the current internal state (as it has emerged according to past
inputs) or the system’s history have to be known. If the system is provided an increasing
followed by a decreasing input (or vice versa) the systems output will form a loop.

In the case of LIBs, the hysteresis effect describes a voltage gap at a certain point of
SOC depending on if the system has been previously charged or discharged. Dreyer et al.
[7, 8] investigated the hysteresis effect in batteries with focus on the behavior of LiFePO.

Conventional understanding of the hysteresis states that it is caused by the rates of
charge and discharge, particle size, electrode thickness and so forth and could be minimized
by i.e. minimizing the particle size. Hence the voltage gap between charge and discharge
curve should become very small when decreasing the charging / discharging rates to suffi-
ciently small values.

51



CHAPTER 6. HYSTERESIS AND OPEN-CIRCUIT VOLTAGE 52

During experiments with preconditioned1 electrodes they discovered a final voltage gap
of a few millivolts to several tens of millivolts (depending on the electrode material) even
when the charging/discharging currents approach zero. That implies that at least two
equilibrium potentials do exist. According to Dreyer the hysteretic behavior is caused
by the many-particle system and the fact that lithium can be exchanged between the
connected particles.

Due to charging and discharging processes phase transitions take place that cause
hysteretic behavior. Part of the particles transit to another phase while the others remain
in the previous phase. The chemical potential and thus the localization of the equilibrium
depends on the number of storage particles in each phase. The relation of the chemical
potential and the lithium mole fraction is non-monotone which results in the hysteresis
effect.

Figure 6.1: Phase transitions in a many-particle system: Scenario 2 where particles ex-
change lithium within their neighborhood is much more likely than scenario 1 since only
the total amount of lithium of the whole ensemble can be controlled (from Dreyer et al.
[7]).

Dreyer explains the basic mechanism of the phase transition by looking at a single
FePO4-storage particle [8]. If the lithium content of the particle is small it is in the
so-called α-phase, a single-phase state. While discharging, the total amount of lithium
increases. When exceeding a certain value the particle exhibits a coexistence of two phases:
an inner shell with small and an outer layer with high lithium concentration which is likely
to be unstable due to surface tensions between the two phases within the particle. For
stability the amount of lithium of a single particle needs to be controlled (scenario 1 in
Figure 6.1) which is impossible within an ensemble of a many-particle system where only
the total amount of lithium within the ensemble can be controlled. In a multiple particle
system the single particles can exchange lithium atoms, therefore two-phase particles can

1previously cycled
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either absorb lithium from other particles in the neighborhood or release lithium in order
to become a stable single-phase particle (Figure 6.1, scenario 2). The phase with high
lithium concentration is called β-phase.

The chemical potential of the lithium-component is a function of lithium concentration,
i.e. the particle composition2 [7], where a particle itself exhibits a non-monotone chemical
potential. This non-monotonicity with respect to the lithium concentration implies the
hysteretic behavior of a many-particle system (provided that its members are single-phase
particles) [8].

6.2 Computational Aspects

Using data from OCV-tests the significant samples needed for the computation of the
hysteresis legs are found by taking the charge and discharge current onsets into account:
Always the last sample before the next onset is chosen because at this time the pack is
most relaxed and those samples represent most likely the hysteretic behavior as they are
closest to (or rather assumed to be onto) the legs of the major loop. In the case of the
Lithium Iron Phosphate cell, the sample right before the hysteresis correction pulses is
chosen as sample that lies on the hysteresis leg. The correction pulses assure that the cell
voltage returns to OCV-level from wherefrom the following charging / discharging pulse
provokes the next 5% SOC-step.

Figure 6.2 shows which samples are selected (black crosses), the four subfigures repre-
sent the testing of both cell chemistries at low and high temperatures. Interpolation over
those significant samples leads to the hysteresis legs of the major loop from 0% to 100%
SOC with a precision of 0.1% SOC.

The OCV-characteristic is defined as arithmetic mean of the major hysteresis loop and
is computed accordingly. It is used as mapping between terminal voltage and SOC, i.e.
the value tuples are stored and used as Look-Up Table (LUT) for further computations
(see also Section 5.4.1).

2see also chapter 2.1
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(b) LiTi, 40◦C
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(c) LiFePO, 23◦C
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Figure 6.2: Charging and discharging currents (in blue) and SOC (in red) directly computed
from Ah-values. The crosses mark the samples which are chosen in order to compute the
hysteresis curves. (a) LiTi 25◦C, (b) LiTi 40◦C, (c) LiFePO 23◦C, (d) LiFePO 40◦C.

6.3 Polarization

With regard to the hysteresis legs, the maximum polarization can be determined as the
maximum of half of the difference of the two legs (for logical reasons within a region of the
two-phase-regime3, i.e. between 25% and 70% SOC). Those values are listed in table 6.1,
the corresponding graphs of the hysteresis legs are shown in Figure 6.4 and Figure 6.5.

3Particles are present in α- as well as in β-phase.
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Maximum polarization Polarization at 50% SOC
Li4Ti5O12
25◦C: 0.3444mV 0.0092mV
40◦C: 0.7331mV 0.5326mV

LiFePO4
23◦C: 18.3387mV 8.6186mV
40◦C: 18.1959mV 7.0732mV

Table 6.1: The table above shows the maximum polarization values within the two-phase
regimes and the polarization at 50% SOC for both cell chemistries.

6.4 Hysteresis and Open-Circuit Voltage of Lithium - Ti-
tanate cells

Lithium-Titanate (LiTi) shows very little hysteretic behavior. Due to inaccuracies of the
measurements the legs of the hysteresis do slightly intersect within the upper regions of
SOC which theoretically is not possible. For lower temperatures the intersection takes
place around 50% SOC, at higher temperatures it starts between 55% and 60% SOC. This
is shown in Figure 6.3. It is to stress, that as consequence the OCV-curve for SOC levels
greater than 50% is not as trustworthy as for lower levels.

But from theory, at the very most in the case of no hysteretic behavior the legs may
coincide, which is why for samples belonging to the charging leg but being their voltage
smaller than the voltage of the corresponding sample of the discharging leg (at the same
level of SOC), we used the arithmetic mean of both instead4. Thus in the case of the
Lithium Titanate cell, the OCV-characteristic for higher levels of SOC is not as accurate
as for lower levels.

The hysteresis curves for both temperatures at which the OCV-tests have been realized
are shown in Figure 6.4a-b. Computation of the arithmetic mean leads to the OCV-
characteristics which are shown in Figure 6.4c for both temperatures.

It has to be emphasized that the behavior of the OCV-characteristic in the case of
LiTi is very appealing since it is strictly monotonically increasing and does not show any
plateaus.

4According to the advice of Alexander Janek (Magna E-Car), personal conversation, 2011
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Figure 6.3: LiTi: The legs of the major hysteresis loop are intersecting in higher regions
of SOC for both temperatures of the coolant: (a) 25◦C (b) 40◦C.

6.5 Hysteresis and Open-Circuit Voltage of Lithium - Iron-
Phosphate - cells

Lithium-Iron-Phosphate (LiFePO) shows a greater polarization than LiTi. For this cathode
material Dreyer [7] reveals a voltage gap of about 20mV within a region of 40% to 60%

SOC. This matches the results shown in table 6.1, where LiFePO at 50% SOC exhibits
a polarization up to 8.6mV which equals a voltage gap of 17.2mV at that point. The
hysteresis curves are shown in Figure 6.5(a),(b).

The OCV-characteristics (Figure 6.5(c)) show a large plateau within the region of
approximately 40% to 60% SOC and a smaller one around 80% SOC. These plateaus may
lead to ambiguous results when searching the LUT for a certain voltage value.



CHAPTER 6. HYSTERESIS AND OPEN-CIRCUIT VOLTAGE 57

25 30 35 40 45 50 55 60 65 70 75
2380

2400

2420

2440

2460

2480

2500

2520

2540

vo
lta

ge
 [m

V
]

SOC [%]

hysteresis legs within 25%−75% SOC at 25 °C

charge  

  discharge
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Figure 6.4: LiTi: OCV-characteristic and hysteresis curves within 10% to 90% of SOC for
low and high temperatures. (a) 25◦C, (b) 40◦C, (c) OCV for both temperatuers.
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Figure 6.5: LiFePO: OCV-characteristic and hysteresis curves within 10% to 90% of SOC.
(a) 23◦C, (b) 40◦C, (c) OCV for both temperatuers.



Chapter 7

Implementation and Results

In the case of Lithium-Titanate (LiTi), for all experiments with data at temperature 20◦C,
25◦C and 30◦C the OCV LUT at 25◦C is used, for higher temperatures, the LUT at 40◦C
is used. In the case of Lithium-Iron-Phosphate (LiFePO), OCV-data at 40◦C is applied,
since test data is only available at 47◦C.

7.1 System Identification

For system identification the training sets are used.

7.1.1 System Identification using Least Squares

In the case of the Simple Model (SM) and the Zero-State Hysteresis Model (ZSHM) least
squares estimation1 was applied.

Since in the case of the LiTi - pack data was available for several temperature ranges (of
the coolant), parameters were estimated for every range. It can be seen that by increasing
temperature the magnitude of the internal resistances decreases. Moreover the internal
resistance for discharging is about 0.2mΩ higher than the internal resistance for charging.

Training sets could be used en bloc, least squares estimation does not require separated
charging and discharging data.

For the SM only the resistances are estimated, in the case of ZSHM the maximum
polarization is estimated too. Figure 7.1 shows the trend of the estimated parameters for
the LiTi - cell over the temperature range for both, for SM as well as for ZSHM.

The exact values for both cell chemistries are listed in Table 7.1.

1see section 4.6.1 for a detailed explanation
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Simple Model (SM) Zero-State Hysteresis Model (ZSHM)
Li4Ti5O12 20◦C
R+: 1.5127mΩ 1.5621mΩ
R-: 1.7760mΩ 1.8227mΩ
M: 2.5836mV

25◦C
R+: 1.4577mΩ 1.5052mΩ
R-: 1.7032mΩ 1.7577mΩ
M: 2.4853mV

30◦C
R+: 1.4166mΩ 1.4464mΩ
R-: 1.5897mΩ 1.6237mΩ
M: 1.5580mV

35◦C
R+: 1.3122mΩ 1.3674mΩ
R-: 1.5813mΩ 1.6440mΩ
M: 2.8686mV

40◦C
R+: 1.2862mΩ 1.3315mΩ
R-: 1.5172mΩ 1.5684mΩ
M: 2.3497mV

42◦C
R+: 1.2403mΩ 1.2487mΩ
R-: 1.3411mΩ 1.3505mΩ
M: 0.4335mV

LiFePO4 47◦C
R+: 1.5568mΩ 1.5402mΩ
R-: 1.5472mΩ 1.5287mΩ
M: 1.5675mV

Table 7.1: Estimated parameter values for the SM and the ZSHM for both, LiTi and
LiFePO cells. System identification was done using least squares. According to Plett’s
notation, R+ denotes the internal resistance for discharge, R− the internal resistance for
charge.

7.1.2 System Identification using the Extended Kalman Filter

Identifying the parameters using the EKF requires treating charging and discharging data
separately. The initial values for covariance matrices, noise, Θ etc. are chosen according
to previous knowledge or in a neutral way.

The initial inner resistance is influenced by previous observations, the maximum po-
larization is determined during evaluation of the OCV-characteristic of the cell chemistry
and gamma is initialized to a neutral value of 1.
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Figure 7.1: Estimated parameters of the LiTi-cell at various temperatures of the coolant.

The error covariance matrices need to be initialized as diagonal matrix with plausible
values, i.e. a roughly estimated deviation of 0.0001Ω for the inner resistance. Its size is
specified by the length of the Θ-vector. It is a diagonal matrix because any dependencies
of parameters among each other are unknown and the entries of the main diagonal only
represent the variances of the parameters themselves.

The derivative dx0
dθ is initialized to zero unless side information gives a better estimate

of its value [15].
The fictitious process noise Q is necessary to model slow changes of the parameters

and the infidelity of the model itself. Furthermore it allows the filter to adapt Θ. Thus it
is initialized to very small values non equal zero. The sensor / measurement uncertainty
is supposed to be about 0.1V , thus the measurement noise R is initialized accordingly.

The initial values of SOC z0 and hysteresis voltage h0 are set to the ’true’ measured
SOC-value of the first sample within the training set and the maximum polarization value,
respectively.

Issues that may arise when implementing a Kalman Filter on a real system

When implementing a KF/EKF on a real system various kinds of difficulties such as diver-
gence or instability may occur and it may not work even if its theory is correct. The main
reasons for that are finite precision arithmetic (which theoretically should be infinite and
thus leads to round-off errors) and modelling errors [17]. When talking about modelling
errors this includes that in real life applications the system model is not precisely known.
In this work neither the measurement noise nor the process noise is known. They are not
pure white, zero-mean noise either which however is another assumption as well as that
the noise sequences are supposed to be completely uncorrelated. Not violating any of these
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assumptions seems impossible in real implementations.

Advantage of various strategies can be taken into account to make the filter work.
Increasing arithmetic precision would be the most obvious at first glance but it is costly,
tackles only symptoms and doesn’t get to the root of the problem. Moreover this isn’t
always realizable in real systems.

We used the following configurations from [17, p. 140] to realize a stable behavior:

• Appropriate initializing to avoid large changes (especially in P ).

• Symmetrizing P at each time step: P = (P + P T )/2.

• Using fictitious process noise.

• Using a rewritten form of the covariance measurement update equation (Joseph form,
Equation 7.1), thus reducing computational complexity and improving robustness.

• Defining boundaries for the parameters to estimate and resetting them when exceed-
ing the limits (plus updating the error covariance accordingly).

The Joseph Form assures that the covariance matrix is positive semi-definite. It re-
places the common covariance measurement update equation (see Equation 3.21)

P+ = (I −K ∗ C) ∗ P− by

P+ = (I −K ∗ C) ∗ P− ∗ (I −K ∗ C)′ +K ∗R ∗K ′ . (7.1)

For better readability indexes are omitted.

Moreover it may be useful to set limits for the estimated values in order to avoid them
to diverge. Physical limits are obvious, others may be predicted from previous knowledge
of the cell-type, like values that can be expected for inner resistances of the cell. This is
particularly important when using EKF for system identification. In-depth explanations
can be found where the models are discussed in detail. The parameter values used for
initializing the EKF for parameter identification are shown in Table 7.2.
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One-State Hysteresis Model (OSHM) Enhanced Self-Correcting Model (ESCM)
Li4Ti5O12/LiFePO4
Θ (if no other information on theta is provided):
R: 0.0016Ω 0.0013Ω
g1: — 0
g2: — 0
g3: — 0
β1: — 0
β2: — 0
β3: — 0
β4: — 0
M: maximum polarization maximum polarization
γ: 1 1

P+:

 0.0001 0 0
0 0.0001 0
0 0 0.2

2



0.0001 0 0 0 0 0 0 0 0 0
0 0.0001 0 0 0 0 0 0 0 0
0 0 0.0001 0 0 0 0 0 0 0
0 0 0 0.0001 0 0 0 0 0 0
0 0 0 0 0.0001 0 0 0 0 0
0 0 0 0 0 0.0001 0 0 0 0
0 0 0 0 0 0 0.0001 0 0 0
0 0 0 0 0 0 0 0.0001 0 0
0 0 0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0 0 0.2



2

dx0
dθ :

[
0 0 0

]
Q: q ∗ q′
q:

[
0.0001 0.0001 0.0001

]
R: 0.1 ∗ 0.1

z0 SOC of first sample SOC of first sample
h0 maximum polarization value maximum polarization value

of the particular cell chemistry of the particular cell chemistry

Table 7.2: The paramter values that are used to initialize the EKF for parameter identification are the same for both chemistries
except the value of maximum polarization.
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7.2 State-space equations for output estimation (Simple Model,
Zero-State Hysteresis Model)

To get a glimpse whether the identified parameters are appropriate or not, they can be
fed into the state space equations and be tested using the known initial condition of the
system’s state.

Both models, SM as well as ZSHM, use the current integral to determine the state of
the next time step. This equals the procedure the Ah-values of the test-set itself have been
determined. Therefore to some extend a correct state estimate can be expected. But the
estimated SOC won’t match the ‘true’ values exactly, since these are drift corrected and
the ‘estimates’ of the state equations are not (just integrating the current leads to the same
amount of drift that has been corrected in advance when generating the training and test
sets).

A correct initial state value is needed because a state-space model itself is not able to
adapt or correct its estimates to any measurements2.

Nevertheless, the comparison of the estimated output voltage to the measured output
voltage gives evidence if the magnitudes of the internal resistances lie within plausible
ranges or not.

7.2.1 Lithium - Titanate cell

Figure 7.2 shows the results for a single test set at 35◦C with a start SOC of 53%. 7.2(a)
shows the whole sequence whereas (b) and (c) zoom in for details.

Looking at the trend of SOC in (a) the drift starts to become evident after about 25
minutes.

Retrieving the to the system state (i.e. SOC) corresponding voltage values from the
OCV-LUT leads to the first rough estimate that output equations of all models have in
common. It is represented by the blue solid line that can be seen in the second plot in (a).
An output equation is generally composed of the rough estimate taken from the LUT and
improved by additional terms that take the actual input current and possible additional
system states into account:

yk︸︷︷︸
red solid line

= OCV(zk)︸ ︷︷ ︸
blue solid line

− Rik . . .︸ ︷︷ ︸
additional terms

An interpretation from a different point of view would be that the blue line represents the
system at rest and the additional terms model the dynamics of the system.

2To recall the models see the sections 4.1 and 4.2 on page 27f.
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In Figures 7.2(b) and (c) a timeframe is picked where the drift does not play a role
yet as can be seen in the first plot of (b). Investigating the positive and negative peaks
of the voltage it turns out that sometimes the estimated value matches the true value
pretty accurate and sometimes the differences of the amplitudes are quite big. On the
one hand this is caused by inaccurate values of the internal resistances, but on the other
hand universal and accurate magnitudes do not exist. The internal resistances do not only
depend on temperature but also on the condition of the input current: Amplitude as well
as duration of a current pulse do have influence on the internal resistance of a cell.

The characteristic of the input current is opposed to a (greater) zoom of the output
voltage in Figure 7.2(c). While first the resistances seem to be too small for charge and
too large for discharge, a minute later the values get very close.

Another interesting observation can be made around minute 2,2: A longer period of
constant input current close to zero causes a nearly constant estimate of the output voltage
while the true voltage slowly decays to OCV (i.e. the blue line). This phenomenon is
referred to as relaxation. Since the SM doesn’t take it into account3, the output estimate
proceeds with a step instead of a smooth decay. This step can also be noticed in (b) around
minute 1, 1.2, 3.4 and 4.6. For data at 35◦C the OCV-characteristic at 40◦C was used.

Figure 7.3 shows the root mean squared errors of output voltage and the SOC. Since
SM and ZSHM only differ in their output equations, the SOC-error stays the same. The
error of the output voltage is in the case of ZSHM slightly higher than in the case of SM.
This can be explained by the fact, that ZSHM adds / subtracts the maximum polarization
value i.e. the ’worst case’ hysteretic behavior in form of the constant parameter M . The
model ‘thinks’ that the cell’s voltage constantly deviates from OCV-level about 1− 2mV .
But the real hysteresis is far smaller up to zero, so augmenting the OCV-value by M may
lead to worse results in that specific case.

Moreover it appears that with increasing temperatures the voltage error diminishes.
From this the conclusion can be drawn that the smaller internal resistance values that
have been identified for higher temperatures, fit the model and thus model the cell better
than greater values.

Training sets were built from data with 43% SOC as initial condition. Even though
best results are gained using test sets with 33% start SOC (Figures 7.3(a), (c)). Since
the OCV-characteristic of LiTi has nearly the same gradient for every of the three initial
conditions, it can not be responsible for the divergence. A plausible explanation is the
assumption that also the current state of the cell has an impact on the internal resistance.
That means that the internal resistance at 53% SOC differs, due to differing proportions

3The relaxation effect is modeled within the Enhanced Self-Correcting Model, for implementation details
and results see 7.3.1 and 7.3.2
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of the chemistries inside the cell, from the internal resistance of the same cell (at the same
temperature and age) at 33%.

Figures 7.3(b) and (d) are not very meaningful since the state is not really estimated
but computed and therefore inaccurate due to drift. Thus the magnitude of the bars only
states how much the data drifts. The current sensor that has been used was a hall effect
sensor whose drift depends on the magnetic field it was exposed to during recently past
measurements. Remarkable is the fact that the RMSE of the test set an 42◦C almost
doubles the RMSE of SOC of the other data sets: This data was recorded weeks before
and the remaining data sets during consecutive experiments.

Equivalent to Figure 7.2, Figure 7.4 shows the results when testing the ZSHM with the
same test set. Figures 7.4(a) and (b) are directly comparable to Figures 7.2(b) and (c).

Using life-cycle data for testing makes the drift obvious. In Figures 7.5(a) and (b) the
SM has been used and has not been altered, merely the test set has been exchanged by its
drift affected pendant. Thus it is evident, that the error of the estimated output voltage
is due to drift caused by the current sensor. Moreover this is the proof that data (training
sets and test sets) need to be drift corrected.
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(a) SOC and output voltage of the whole cycle. The first plot shows the true SOC-
values in comparison to the estimate of the state equation. The blue solid line in the
voltage plot marks the crude estimate by the LUT. This estimate added up with the
voltage computed from internal resistance and input current results in the red line
and represents the estimate of the output equation.
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(b) Zoom of first 5 minutes (drift has no serious
impact yet).
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(c) Detailed zoom lined up with corresponding in-
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Figure 7.2: Simple Model (SM). Test-cycle at 35◦C with initial condition of 53% SOC.
Internal resistances: 1, 3122mΩ (charge), 1, 5813mΩ (discharge). Red lines represent the
‘estimates’ by the state-space equations, black lines the true values. (b) and (c) zoom in
on same data as shown in (a).
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Figure 7.3: Root mean squared errors of output voltage and SOC for the LiTi-cell when
only using the state-space equations for prediction.
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(a) Zoom of first 5 minutes (drift has no serious
impact yet).
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(b) Detailed zoom.

Figure 7.4: Zero-State Hysteresis Model (ZSHM). Test-cycle at 35◦C with initial condition
of 53% SOC. Internal resistances: 1.3674mΩ (charge), 1.6440mΩ (discharge). Maximum
polarization M: 2.8686mV . Red lines represent the ‘estimates’ by the state-space equations,
black lines the true values.
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(a) drift corrected
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Figure 7.5: Simple Model (SM). (a) Drift corrected data of the life-cycle at 42◦C, (b) same
data as in (a) but including the drift.
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7.2.2 Lithium - Iron - Phosphate cell

In the case of Lithium-Iron-Phosphate (LiFePO), the drift caused by the current sensor is
worse than in the case of Lithium Titanate. When using the state-space equations without
the possibility of correcting the state itself it quickly decays to 0% SOC (and would fall
below, what is physically impossible.). This is shown in Figure 7.6 together with the
corresponding zoomed details in (c) and (d).
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(a) LiFePO, SM.
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(b) LiFePO, ZSHM.
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(c) SM, zoomed details
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(d) ZSHM, zoomed details

Figure 7.6: LiFePO: Parameters for SM: 1.5568mΩ (R+), 1.5472mΩ (R-); for ZSHM:
1.5402mΩ (R+), 1.5287mΩ (R-), 1.5675mV (M).
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7.3 The Extended Kalman Filter for state estimation

Once parameters are determined, every model can be fit into an EKF for state estimation.
Even in the case of SM and ZSHM an EKF is necessary, since in the output equations
zk occurs as parameter of the function OCV(zk) and is not only associated with a linear
coefficient.

Process noise and measurement noise are assumed to be zero-mean white Gaussian
stochastic processes and can therefore be considered as invariant and chosen within plau-
sible ranges (see section 3.1). The process noise Q is defined as diagonal matrix of same
size as the state vector. The measurement noise R is important to select well, since it
determines how much the filter ’trusts’ the actual measured value compared to it’s own
prediction.

The measurement was carried out using a hall effect sensor. Thus the measurement
noise would in fact be depending on the current and diminish if it is constant over a period
of time. But this is neglected within the modelling. The characteristic of these sensors
that must not be neglected is that they are prone to temperature and cause significant
drift which has to be compensated.

7.3.1 Lithium - Titanate cell

For the Lithium Titanate cell test sets for various temperatures with different initial SOC
were available (Table 7.3). For each temperature the corresponding training set was loaded
and the system parameters were determined using least squares or EKF like already ex-
plained in sections 7.1.1 and 4.6.2. Since OCV is only available at 25◦C and 40◦C, the
OCV-characteristic with temperature closer to the temperature of the training set was
used4.

33% 43% 53% lifecycle, 43%
20◦C X X X
25◦C X X X
30◦C X X X
35◦C X X X
40◦C X X X
42◦C X X

Table 7.3: Available data sets for the Lithium Titanate cell, used for cell testing.

In order to be able to compare the results directly (and since the data was the same
4The OCV characteristic at 25◦C was used for 20◦C, 25◦C and 30◦C data; the OCV characteristic at

40◦C was used for 35◦C, 40◦C and 42◦C data sets.
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for each test) for each model the same process noise and measurement noise were chosen:
Q = a diagonal matrix of same size as θ, with 0.0012 as main entries; R = 0.52.

Preliminary the state variable zk−1 was initialized to a random SOC-value between
20% and 80%. This is the range, the SOC of a battery pack of a HEV is expected to lie
within.
The corresponding error covariance can only be a guess since no ’a priori’ measurement
exists. The only prior knowledge ready at hand is that data sets start at 33%, 43% or
53% of SOC. The first sample of the state variable z will therefore lie within the interval
on which zk−1 has been initialized before. It is likely that between two samples the state
variable does not make large changes.
In practice initialization errors of more than 20% are not very realistic and mainly depend
on the shape of the OCV-characteristic.

60% SOC is the difference of the maximum and minimum value of the desired range
mentioned above and is used as kind of worst case guess for initializing the error covariance
value of z: P+

k−1 = 602. The random number for z and the first sample of the data set
(which roughly can also be interpreted as real value of zk−1) will not differ more than
60%, this holds true for every data set and is used for initializing the corresponding error
covariance.
The sampling rate for the ’preceding’ output sample was set to 20ms in order to fit the
data characteristics.

In order to avoid the estimated state values to run out of physical boundaries, their
reasonability is verified after each iteration of the filter. In the case of SOC the value is
reset to 50%, if the value of z was beyond its boundaries of 0% reps. 100%.

As showcase, test runs at 30◦C with start-SOC of 33% are used. Taking into account
the estimated inner resistances and root mean squared error values, performance can be
expected to be quite good.
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Simple Model

When feeding the SM into the EKF the parameter set determined through least squares
estimation (Table 7.1) was used. The state variable was initialized as declared in the
beginning of this Section (7.3.1). Results are shown in Figure 7.7. Jumps regarding the
trend of the values from 30◦C to 35◦C may very likely refer to the use of different OCV
LUT. Figures 7.8 and 7.9 show the performance of the model for data at 30C.
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Figure 7.7: Simple Model (SM), (a) Parameters estimated via least squares estimation,
(b) and (c) RMS errors regarding the output voltage and estimated SOC value for each
available test-set.
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Figure 7.8: LiTi, test data at 30◦C, 33% start SOC: Measured and estimated output
voltage and SOC for 2nd cycle of a test-cycle, using EKF and SM for state estimation.
Figure 7.9 shows the first five minutes of same data.
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Figure 7.9: SM. Detailed zoom of Figure 7.8
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Zero-State Hysteresis Model

Though another parameter M is added, the model is still linear in its parameters. Thus
they are determined via least squares as in the case of the SM (Table 7.1). Initialization
of the single state variable was the same as explained earlier (7.7). Jumps regarding the
trend of the values from 30◦C to 35◦C may very likely refer to the use of different OCV
LUTs. The estimated parameters together with the results are shown in Figure 7.10.
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Figure 7.10: Zero-State Hysteresis Model (ZSHM), (a) Parameters estimated via least
squares estimation, (b) and (c) RMS errors regarding the output voltage and estimated
SOC value for each available test-set.
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Figure 7.11: LiTi, test data at 30◦C, 33% start SOC: Measured and estimated output
voltage and SOC for 2nd cycle of a test-cycle, using EKF and ZSHM for state estimation.
Figure 7.12 shows the first five minutes of same data.
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Figure 7.12: ZSHM. Detailed zoom of Figure 7.11
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Comparison of models (SM, ZSHM) that are linear in parameters by means of
test data at 30◦C and start SOC of 33%.

Both models have the same inner resistances identified (see Figures 7.7(a) and 7.10(a)).
They have similar performance, ZSHM seems to lead to a little worse results than SM.
This may refer to the characteristics of the LiTi-cell which hardly shows hysteresis effects,
thus very small maximum polarization values are identified which still may be too large.
Also recall that OCV data is not very accurate at least for SOC-levels greater than 50%.
The hysteresis legs are interleaving which is theoretically impossible and may cause faulty
values of maximum polarization (see Chapter 6.4 and further discussion within Chapter
7.2.1). Recall when using the state equations of SM and ZSHM for state estimation, data
is prone to drift (Chapter 7.2.1, Figure 7.5), whereas feeding them into an EKF, the model
corrects itself and adapts appropriately.

Figure 7.11 and 7.8 show data from the 2ndcycle of the test-cycle at 30◦C and start
SOC of 33%5. As mentioned before, OCV-data seems to be more trustworthy for smaller
SOC-values and with regard to parameter estimation the lower temperatures seem to yield
not the best, neither the worst results but a balanced compromise.

5This cycle is used for demonstration for all models using EKF
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One-State Hysteresis Model

The OSHM is not linear in its parameters (θ = [R±,±M,γ]), thus they need to be es-
timated using an EKF. It turned out to be necessary to estimate separated parameters
sets for charging and discharging. Otherwise the filter would not converge. The longer a
sequence of charging / discharging is, the more reliable the result of the parameter set will
be.
Unfortunately the training data consists of short sequences of charging and discharging
stringed together. Thus the training set is parsed for sequences of continuous input cur-
rent values of the same sign for at least 8 seconds which equals a subset of data consisting of
400 samples or more. Each subset is provided to the filter where the results of a processed
subset are used as initial values for the subsequent set. The parameters of the very first
subset are initialized to R± = 1.6mΩ (see Table 7.1), ±M = ±maximum polarization value
derived from the OCV-characteristic and γ = 1 (positive constant, neutral element).
This approach may be more time consuming but cannot be avoided. The testing using
all available test sets including parameter estimation for each temperature takes about 7
minutes6.
Again, the estimations of the filter need to be restricted to reasonable boundaries, namely:
R has to be positive, 3mΩ > R > 0Ω; M has to have the correct sign and should not
exceed the maximum polarization two times, γ has to be positive. It is substantial for the
modelling that those restrictions are well-considered. If they are too loose or too strict,
parameter estimation leads to unreasonable values which has bad influence on the perfor-
mance of the model later on.
If it is necessary to reset the estimated values, the error covariance needs to be updated ac-
cordingly. Furthermore it may happen, that due to round-off errors, the covariance matrix
does not stay symmetric, which is also prevented programatically.

Figures 7.13 and 7.14 show the estimated parameters and the performance of the model
if the inner resistance R is limited to 3mΩ compared to a strict limit of 1.8227mΩ which is
the highest inner resistance that has been identified earlier using least squares (see Table
7.1). A loose restriction for R during parameter identification leads to larger inner resis-
tances in general. But the ratio between charging and discharging values stays roughly
constant and values decrease over increasing temperature. Compared with the result from
least square estimation (Figure 7.1 and Table 7.1, the maximum values for the inner resti-
tances are R+ = 1.5621mΩ and R− = 1.8227mΩ estimated for ZSHM at 20◦C. It can be
assumed that with increasing temperatures of the coolant, the values of the inner resis-
tances decrease, as it happens, if the filter is allowed to converge somewhere between zero
and double the value that is expected.

6Platform: MacBook Pro, 2.4 GHz Intel Core i5, 4 GB 1333 MHz DDR3, OS X 10.7.5
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It seems that parameters within more severe restrictions do not evolve correctly, even
though the model gives the impression to perform better with smaller inner resistances.
Nevertheless for all computations less severe restrictions were chosen. Parameter identi-
fication using EKF seems to work fine. If it does not converge to exactly the expected
values - like in the particular case of the inner resistances - it may be caused by the fact,
that the EKF is not provided all data but subsequences and / or the data is not optimal
for accurate parameter estimation.
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Figure 7.13: LiTi: Estimated parameters for OSHM (via EKF).

The additional state variable h is initialized to 0.5mV , which is the approx. mean of
the maximum polarization values at both temperatures where OCV- data is available (see
Table 6.1). To limit the value of h it is tested against the doubled maximum polarization
value. If it fails, it is reset to the (positive or negative) maximum polarization value.
Testing against the maximum polarization value itself seemed to be too restrictive to let
the filter evolve, thus the doubled value is used instead.

Figure 7.14 shows the results using parameter sets from Figure 7.13 (a) and (b). Jumps
regarding the trend of the values from 30◦C to 35◦C may very likely refer to the use of
different OCV LUTs. As expected since LiTi does not show much hysteretic behavior, the
results are similar to the results of SM (Figure 7.7) and ZSHM (Figure 7.10). Figures 7.15
and 7.16 using parameters from Figure 7.13(a) (Figures 7.17 and 7.18 using parameters
from Figure 7.13(b)) show the performance of the model using data at 30◦C of the coolant.
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(b) using parameters from Figure 7.13b
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(c) using parameters from Figure 7.13a
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Figure 7.14: LiTi: Modeling error of the OSHM, using parameter sets obtained with
different restrictions (see Figure 7.13).
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Figure 7.15: LiTi, data at 30◦C and 33% start SOC: Measured and estimated output
voltage and SOC for 2nd cycle of a test-cycle, using EKF and OSHM for state estimation.
Identified parameters as in Figure 7.13(a). Figure 7.16 shows the first five minutes of the
same data in detail.
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Figure 7.16: OSHM. Parameter setting: Figure 7.13(a). Detailed zoom of Figure 7.15
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Figure 7.17: LiTi, data at 30◦C and 33% start SOC: Measured and estimated output
voltage and SOC for 2nd cycle of a test-cycle, using EKF and OSHM for state estimation.
Identified parameters as in Figure 7.13(b). Figure 7.18 shows the first five minutes of the
same data in detail.
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Figure 7.18: OSHM. Parameter setting: Figure 7.13(b). Detailed zoom of Figure 7.17
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Enhanced Self-Correcting Model

For the ESCM not only the parameters R, M and γ have to be determined but also the
filter weighting factors g1, · · · , g3 and the poles β1, · · · , β4 (see 4.6.2).

It seems that the more complex the model gets, the harder it is to determine the
correct parameter setting. Again training data is split in charging and discharging subsets
like it was already done for the parameter identification of the OSHM. The parameters
both models have in common - R±,±M,γ - are initialized to the same values due to the
consideration of the ESCM being an upgrade (i.e. an enhancement) of the OSHM. Thus
the models can be directly compared to each other.
The remaining parameters that represent the gain of the filter, g1, g2, g3, are initialized
around 1 (0.9, 1, 1.1), thus the diagonal matrix G would resemble the identity matrix.
The parameters β1, β2, β3, β4 are initialized to arbitrary complex values such that a pole
is located in each quadrant and none of them are complex conjugate (0.1 + 0.1i, 0.7 −
0.3i,−0.3 + 0.04i,−0.4 − 0.6i). Since the EKF is robust to poor initialization the exact
values are not that crucial.
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Figure 7.19: LiTi: Estimated parameters for ESCM (via EKF).

During identification the parameters R,M, γ are tested against boundaries as already
described in subsection 7.3.1. The parameters gi may evolve freely, but β has to be forced
within boundaries too. The reason for that are round-off errors during computation. Even
when α stays within its bounds −1 < tanh(β) < 1 (according to the definition of the
tangens hyperbolicus), α would not only approximate but become 1 if only β would be a
sufficient large number. Matlab evaluates tanh(5) to 0.9999 7, tanh(5.2) = 1.0000. The

7assuming datatype short
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latter would lead to division by zero when deriving g4. Therefore it is crucial to ensure
that each |α| < 1 and therefore force each β to stay within |β| = ±5 (see also the definition
of α: 4.23).
In order to avoid bad values of the remaining parameters, they are verified to be real num-
bers and reset to their real part if necessary.
If the correction of parameters is necessary, the error covariance matrix is updated accord-
ingly. The identified parameters are shown in Figure 7.19. Looser restrictions for R during
parameter identification lead to larger inner resistances as already noticed before, but in
comparison to system identification using the OSHM (Figure 7.13) they’ve increased even
more.
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Figure 7.20: LiTi: Modeling error of OSHM, parameter sets with different restrictions (see
Figure 7.13).

When using the identified parameters to run the EKF model with, the state variables
SOC and hysteresis voltage need to be tested with regard to their real numbered nature
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too. To keep the state variables within physical boundaries the same checks as described
for the OSHM in Section 7.3.1 are applied.

The parameter determination in this case identifies much greater values for the inner
resistances than the other models (see Figure 7.19). It is obvious that those values cause
oversized voltage peaks when comparing the estimated to the measured output value.
This can be seen in 7.20(a) and (b) - the resulting RMS modelling error is more than
ten times higher than for the OSHM. But the estimation of the state variable seems to
be very accurate and the EKF converges with more ease when restrictions are not too
rigorous. ESCM yields the best result for the life-cyle though. Figures 7.21 to 7.24 show
the performance of the model using the same test data at 30◦C as for the previous models.
The oversized voltage peaks of the estimated output voltage can clearly be seen in the
corresponding subplots of the figures.

In the case of ESCM parameter identification and testing using all available test sets
lasts about 16 minutes.
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Figure 7.21: LiTi, ESCM, test-cyle at 30◦C and 33% start SOC. Measured and estimated
output voltage and SOC. Identified parameters as in Figure 7.19(a). Figure 7.22 shows
the first five minutes of the same data in detail.
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Figure 7.22: LiTi, Detailed zoom of Figure 7.21
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Figure 7.23: LiTi, ESCM, test-cyle at 30◦C and 33% start SOC. Measured and estimated
output voltage and SOC. Identified parameters as in Figure 7.19(b). Figure 7.24 shows
the first five minutes of the same data in detail.
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Figure 7.24: LiTi: Detailed zoom of Figure 7.23
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7.3.2 Lithium - Iron - Phosphate cell

For the LiFePO-cell the same scripts were applied as for the LiTi-cell. Since only test data
at 47◦C is available, the OCV characteristic at 40◦C was used. For lack of further insights,
nearly the same settings as for the LiTi-cell were applied except for the measurement noise
R = 0.12 (the process noise stays the same: Q = 0.0012). For details see section 7.3.1.

One major difference to the data of the LiTi-cell are the initial values of the SOC:
the test-cycle test starts at approximately 14% SOC, whereas the life-cycle test starts at
approximately 25% SOC, which are very small numbers regarding the fact that usually the
cells are tried to keep in the range of 20% to 80% SOC in order to avoid overstressing of the
cell. But taking the OCV-characteristic in account (see Figure 6.5), these values lie within
a range where the curve shows the highest gradient and is almost linear which is ideal
for using the characteristic as LUT, since no ambiguous values will occur as they would
in higher regions. Therefore the state variable representing the SOC will be initialized
accordingly to a random number 10% ≤ z ≤ 40% SOC during testing.

Simple Model

Parameter estimation and testing for the SM model takes about 90 seconds. The internal
resistances for discharge, R+, and charge, R−, are identified using least squares. The
parameters are listed in Table 7.1.

Keeping in mind that the OCV-characteristic isn’t that much reliable for LiFePO due
to noisy data, the rough estimate by the corresponding LUT isn’t reliable either. Since
that given estimate plays a huge role for all models this can be regarded as systematic
bias or error the EKF is likely to compensate. Compare the OCV curve of the LiFePO-
cell(Figure 6.5, Section 6.5) to the performance of the model in Figures 7.25 and 7.26.
Notice the bend of the OCV-characteristic close to 10% SOC and oppose it to the resulting
values of the estimated output voltage by the LUT represented by the blue line of the
bottom plot. Inaccuracies of the OCV- characteristic for low SOC-values can be seen in
the voltage plot by the blue line which represents the estimate from the OCV LUT: for
SOC-values significantly smaller than 20% the curve which is in general smooth shows
unusual big changes and jumps. The bottom plot of Figure 7.26 shows that the identified
inner resistances seem to fit the model since the estimated output voltage matches the
measured output voltage well (especialy the peaks).
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Figure 7.25: LiFePO, SM, test-cycle. Measured and estimated output voltage and SOC.
Figure 7.26 shows the first five minutes of the same data in detail.
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Figure 7.26: LiFePO: Detailed zoom of Figure 7.25.
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Figure 7.27 shows that the simple model doesn’t take hysteresis effects into account.
The estimated output voltage results in a constant value (red line of the bottom plot)
between minute 0.7 and minute 0.9 whereas the measured output (black line) is slowly
declining to that voltage level. SOC stays constant within that interval.
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Figure 7.27: LiFePO: Measured and estimated output voltage and SOC. No hysteresis
effect modeled.
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Zero-State Hysteresis Model

Parameters are identified using least squares estimation, for the identified values see Table
7.1. Process and measurement noise of the EKF are set to: Q = 0.0012, R = 0.12. There’s
no significant improvement to the SM from the previous section evident.

During testing the state variable is monitored and reset to 50% SOC if it exceeded its
physically reasonable bounds of 0% resp. 100% SOC. Parameter estimation and testing
for the ZSHM model takes about 100 seconds.

Figures 7.28 and 7.29 show the second cycle of the test-cycle at 47◦C, where in the
latter only the trend during the first five minutes is shown. In the case of the LiFePO pack,
the filter converges much slower than with LiTi (see Figure 7.12). This may be caused
by inaccuracies of the OCV LUT and the shape of the OCV characteristic which shows a
plateau from 35% SOC to about 70% SOC.

In order to avoid the plateau and its ambiguous values from the LUT, the intend was
to shift the load profile to lower capacity regions of the battery pack where the OCV
characteristic is linearly increasing. Compare Figure 6.5 in Section 6.5. The favorable
interval to this intend would lie within approximately 13% SOC to 35% SOC. But in
Figure 7.28 it can be seen, that the load of the test-cycle exceeds this interval, namely
from lower than 10% SOC to more than 40% SOC.

Close to 0% SOC and close to 100% SOC, data isn’t reliable anyways8, that’s why
battery packs typically are used within a range from 25% to 75%. In Figure 6.5 this
can be deduced from the steeply sloping OCV-characteristic for SOC-levels lower than
approximately 13% and may cause estimation errors of the SOC (since the bias i.e the
estimate from the LUT is less reliable). Ambiguous SOC values for yk > 3.3V may also
provoke bad state estimates.

8Personal conversation at Magna E-Car.
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Figure 7.28: LiFePO, SM, test-cycle. Measured and estimated output voltage and SOC.
Figure 7.26 shows the first five minutes of the same data in detail.
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Figure 7.29: LiFePO: Detailed zoom of Figure 7.28.
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One-State Hysteresis Model

The OSHM parameters are initialized and identified like earlier described for the LiTi-cell
(section 7.3.1), except the measurement noise and process noise which are set to R = 0.12,
Q = 0.0012 for state modeling (system identification: R = 0.52).

The maximum polarization M of the LiFePO-cell is much greater than the maximum
polarization of the LiTi-cell, thus during parameter identification it is only restricted to
±10%, R is supposed to stay within 1mΩ ≤ R ≤ 2mΩ. During modelling, the hysteresis
voltage is limited to two times the maximum polarization.

Parameter estimation and testing takes about 110 seconds. The performance of the
model is shown in Figures 7.30 and 7.31. Since LiFePO shows hysteretic behavior, the
hysteresis state takes plausible values in contrast to modeling the LiTi-cell with the same
model (see Figure 7.15). Possible causes of inaccuracies of the estimate are discussed in
the previous paragraphs on SM and ZSHM.
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Figure 7.30: LiFePO, OSHM, test-cycle. Measured and estimated output voltage and
SOC. Figure 7.31 shows the first five minutes of the same data in detail.
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Figure 7.31: LiFePO: Detailed zoom of Figure 7.30.
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The success of modeling the hysteresis effect can be seen in Figure 7.32 which is a
detailed zoom of Figure 7.30 and covers the same interval as Figure 7.27. The estimated
output voltage declines similar to the measured output voltage within the interval of 0.7 to
0.9 minutes. The estimate of the LUT is constant during that interval, but the hysteresis
voltage is decreasing which causes the estimated output to decrease as well. Compare
Figure 7.27 which shows the behavior of the output voltage when modeling was done using
a model (i.e. the SM) which doesn’t take hysteresis effects into account.
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Figure 7.32: LiFePO: Measured and estimated output voltage and SOC. Hysteresis effect
modeled.
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Enhanced Self-Correcting Model

System identification is done as described for the LiTi-cell in section 7.3.1. For parameter
estimation a measurement error of R = 0.52 was assumed, during testing, the measurement
error was set to R = 0.12.

The ESCM converges fast to a good estimate of SOC but faces the same issues as the
other models due to erroneous training / test / OCV data. It is to point out that this
model predicts the SOC best but at the same time the predicted output value yk overshoots
the measured output value multiple times. This can be seen in Figure 7.33 and Figure 7.34
where the performance of the model is shown.
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Figure 7.33: LiFePO, ESCM, test-cycle. Measured and estimated output voltage and SOC.
Figure 7.34 shows the first five minutes of the same data in detail.
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Figure 7.34: LiFePO: Detailed zoom of Figure 7.33.



Chapter 8

Discussion and Future Work

This work shows that battery modeling by means of statistical models is a promising
approach for SOC estimation. Especially within the field of HEV where a battery pack is
constantly charged and discharged during use, an accurate estimate of SOC is required for
the BMS to operate safe. Battery modeling by means of statistical models can fulfill that
requirement. Dynamic effects like hysteresis can easily be factored in and lead to better
estimates.

It also demonstrates the importance of reliable data for system identification. If the
identified model parameters are appropriate, the EKF is robust even to poor initialization
and converges fast.

Basic prerequisite is good knowledge of the cell’s behavior and an accurate OCV-
characteristic. That knowledge can be drawn from interpreting data from standard cell
tests, detailed insights on the cell are not necessary. As this is the only information needed
and to rely on, it emphasizes the importance of reliable cell data.

Basically this approach is feasible for every cell type, but not all cell types are equally
well suited. Cell types that show a monotonically increasing OCV-characteristic within
the middle range of SOC seem to be the best choice.

Since the main part of all models consists of the rough estimate by looking up the OCV-
characteristic, the models only differ in the way they are able to enhance this estimate.
Furthermore not every possible enhancement seems to provide the expected improvement.
For example in the case of the LiTi-cell which does not show much hysteretic behavior,
adding an additional state variable to adapt hysteretic voltage does not have big influence
on the resulting estimate but makes the model way more complex, where on the other
hand the same model is promising for the LiFePO-cell.

For further investigation it would be interesting to set up a model for LiTi, which
emphasizes the relaxation effect but ignores the hysteresis effect. Moreover, since system
identification via least squares seems to lead to more reliable values of the cell’s internal
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resistances for charge and discharge, it could be of interest, forcing the EKF to those
resistance values when doing system identification using the EKF. Another approach
would be treating the internal resistance in general not as constant values for charge and
discharge but dependent on temperature (those measurements are available) and SOC.

For the LiFePO-pack, acquisition of new test and OCV data would be good in order
to serve as proof of the assumptions that have been made in this work concerning the
performance of the EKF. If a highly accurate OCV-test is feasible, it would be worth a try
using test cycle data which load profile is located within a higher range of SOC. Based on
this new insights, better assumptions concerning the models and parameter identification
could be made.

And last but not least, generating training sets from data from different driving cycles
i.e. load profiles would lead to better parameterization of the models. Thus potentially
over-fitting to a certain test-cycle behavior could be eliminated. For the LiTi-pack at
least test data at different temperatures with different initial conditions was available (but
always of the same cycle), but for the LiFePO-pack test data and life-cycle data was only
recorded at 47◦C.
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