
Mag. Michael Ladislaus JUHOS, BSc

On Fresen’s Proof of
the CLT for Convex Bodies

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Dipl.-Math. Dr. Joscha Karl PROCHNO

Institut für Mathematik und wissenschaftliches Rechnen,
Karl-Franzens-Universität Graz

Graz, October 2020





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature





Abstract

In 2019 Daniel Fresen worked out a proof of the central limit theorem (CLT) for convex
bodies which he claimed to be significantly simpler than the original proof published by
Bo’az Klartag in [“A Central Limit Theorem for Convex Sets”. In: Invent. Math. 168.1
(Jan. 2007), pp. 91–131]. In the present thesis we discuss Fresen’s proof in detail and
assess the claim of simplicity.
In the first chapter firstly we formulate the problem, that is, how a CLT for convex

bodies is to be understood: a CLT for convex bodies means that the projections onto
onedimensional subspaces of the uniform distribution on an isotropic convex body in Rn
are close to an appropriately scaled normal distribution, with both the measure of the
exceptional subspaces and the deviation from normality converging to zero as n → ∞.
Secondly we trace the milestones in the history of that problem, citing the important
precursors and subsequent results.
The second chapter treats the mathematical background needed to establish Fresen’s

arguments, some of the results being of general use, others in specific need of proving the
CLT for convex bodies.
The third chapter is entirely devoted to elaborate on the details of Fresen’s proof. The

three main steps of it are as follows: first, show that the projections onto most low-
dimensional subspaces of the original distribution convolved with a normal distribution
of small variance are approximately radially symmetric; the main tools employed are
Fourier-transform and concentration of meausre on the sphere. Second, establish a “thin-
shell-property” for these low-dimensional projections. And third, from that property
derive that most onedimensional projections of the original distribution are close to
normal.
In the fourth and final chapter we summarize our conclusions drawn from working on

the proof.
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Kurzfassung

2019 arbeitete Daniel Fresen eine Beweis des zentralen Grenzwertsatzes (ZGS) für konve-
xe Körper aus, der seiner Behauptung nach wesentlich einfacher sei als der ursprüngliche
Beweis, den Bo’az Klartag in [“A Central Limit Theorem for Convex Sets”. In: Invent.
Math. 168.1 (Jän. 2007), SS. 91–131] veröffentlicht hatte. In der vorliegenden Arbeit
diskutieren wir Fresens Beweis im Detail und bewerten den Anspruch der Einfachheit.
Im ersten Kapitel formulieren wir erstens das Problem, das heißt, wie ein ZGS für kon-

vexe Körper zu verstehen sei: Ein ZGS für konvexe Körper heißt, dass die Projektionen
auf eindimensionale Unterräume der Gleichverteilung auf einem isotropen konvexen Kör-
per im Rn nahe einer entsprechend skalierten Normalverteilung sind, wobei sowohl das
Maß der Ausnahmeunterräume als auch die Abweichung von der Normalverteilung für
n→∞ gegen null konvergieren. Zweitens spüren wir den Meilensteinen in der Geschichte
dieses Problems nach, wobei wir wichtige Vorgänger- und Nachfolgeergebnisse anführen.
Das zweite Kapitel behandelt den mathematischen Hintergrund, der zum Aufstellen

von Fresens Argumenten benötigt wird; einige Ergebnisse sind von allgemeinem Nutzen,
andere werden speziell für den Beweis des ZGS für konvexe Körper gebraucht.
Das dritte Kapitel ist ganz der Ausarbeitung der Details von Fresens Beweis gewidmet.

Die drei Hauptschritte desselben sind wie folgt: Als Erstes zeigt man, dass die Projek-
tionen auf die meisten niederdimensionalen Unterräume der Ausgangsverteilung, gefal-
tet mit einer Normalverteilung kleiner Varianz, annähernd radialsymmetrisch sind; die
Hauptwerkzeuge dabei sind Fouriertransformation und Maßkonzentration auf der Sphäre.
Als Zweites wird eine „Dünne-Schale-Eigenschaft“ (engl. „thin-shell-property“) dieser nie-
derdimensionalen Projektionen nachgewiesen. Und als Drittes wird aus jener Eigenschaft
hergeleitet, dass die meisten eindimensionalen Projektionen der Ausgangsverteilung nahe
einer Normalverteilung sind.
Im vierten und letzten Kapitel fassen wir unsere Schlüsse zusammen, die wir aus der

Arbeit am Beweis gezogen haben.

7





Danksagung

Mein inniger Dank gilt zuvorderst meinen Eltern, die mich all die Jahre unterstützt
haben, und meiner Familie.
Nicht weniger Dank gebührt meinem Betreuer Joscha, der mir diese Arbeit und das

Eintauchen in die Welt, die sie berührt, ermöglicht hat.
Dank sage ich auch allen, die mich auf dem Weg begleitet haben, sei es ein längeres,

sei es ein kürzeres Stück.

9





Contents

Basic notation 15

1 Introduction 17
1.1 Problem-formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Two examples: the cube and the ball . . . . . . . . . . . . . . . . . . . . . 18
1.3 Overview of the history of the CLT for convex bodies . . . . . . . . . . . . 21

2 Mathematical preparations 29
2.1 Various technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Log-concave functions and measures . . . . . . . . . . . . . . . . . . . . . 33
2.3 Thin-shell-property and central limit-theorem . . . . . . . . . . . . . . . . 56

3 The main theorem and its proof 69
3.1 The first step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 The second step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 The third step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Concluding remarks 89

Bibliography 91

11





List of Tables

3.1 Overview of constants in proof of Theorem 3.1. . . . . . . . . . . . . . . . 87

13





Basic notation

N denotes the set of natural numbers starting with one, and N0 := N ∪ {0}; interval-
notation is used whenever confusion with intervals of reals is unlikely. Throughout let
n ∈ N be the dimension of the space, arbitrary unless explicitly stated otherwise. o ∈ Rn
is the zero-vector. We set R≥0 := [0,∞) and R>0 := (0,∞).
For sets A,B ⊂ Rn and Λ ⊂ R, the Minkowski-sum is defined by A+B := {x+ y|x ∈

A ∧ y ∈ B}, with the special case of translation a + B := {a} + B; furthermore ΛA :=
{λa|λ ∈ Λ ∧ a ∈ A}, with the special cases of scaling λA := {λ}A and Λa := Λ{a}, in
particular Ra for a 6= o is the onedimensional subspace with direction a.
〈·, ·〉 is the standard inner product on Rn, that is 〈x, y〉 := xTy for x, y ∈ Rn (considered

to be column-vectors, T denotes matrix-transpose), and ‖·‖ is the standard Euclidean
norm, that is ‖x‖ := 〈x, x〉1/2; Bn := {x ∈ Rn|‖x‖ ≤ 1} is the closed unit-ball and
Sn−1 := {x ∈ Rn|‖x‖ = 1} the unit-sphere.
All random-variables are defined on a common probability-space (Ω,F ,P), expectation

and variance w.r.t. P are denoted by E and Var respectively. For a topological space X
let B(X) be its Borel-σ-algebra. vn is the Lebesgue-measure on (Rn,B(Rn)), additionally
for n = 0 we set R0 := {0} and v0 := δ0 (the Dirac-measure at 0). σn−1 is the surface-
measure on Sn−1 (viewed as an embedded manifold) scaled to σn−1(Sn−1) = 1, it is the
unique orthogonally invariant probability-measure on (Sn−1,B(Sn−1)). Any nonnegative,
measurable function whose integral is 1 is called a density ; integrals of vector- or matrix-
valued functions are defined componentwise. For A ⊂ Rn define the indicator-function
1A : Rn → R by 1A(x) := 1, if x ∈ A, and 1A(x) := 0 otherwise. log is the natural
logarithm.
The harpoon � is used for various senses of restrictions: for a map f : A → B and

C ⊂ A, the map f�C : C → B is usually defined by (f�C)(x) := f(x) for all x ∈ C, but for
a σ-algebra A and a measure µ : A → [0,∞] and C ∈ A we define A�C := {A∩C|A ∈ A}
and the measure µ�C : A�C → [0,∞] by (µ�C)(A ∩ C) := µ(A ∩ C) for all A ∈ A.
Other notation shall be introduced where appropriate. As far as possible the notation

of cited authors is adapted to ours.
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1 Introduction

1.1 Problem-formulation

A central limit-theorem (CLT) is the statement that a sequence of random-variables
(Xn)n≥1 converges in distribution to a normal, or Gaußian, distribution. There are vari-
ous setups: the Xn’s may be scalar or multivariate, and accordingly the limit distribution
is one- or multi-dimensional; often some standardization is demanded such that the limit
distribution has zero expectation and unit (co-)variance; the Xn’s may be compound,
that is, of the form Xn =

∑Kn
k=1Xn,k (with (Kn)n≥1 ⊂ N, often strictly increasing); other

variations are possible. The task usually is to formulate sufficient conditions (and also
necessary ones if possible) on (Xn)n≥1 in order for a CLT to hold.
A classical CLT – if not considered to be downright the CLT – is that of Lindeberg;

throughout ϕ denotes the probability-density-function (PDF) of the standard normal
distribution, ϕ(z) = (2π)−

n
2 e−

1
2
‖z‖2 with z ∈ Rn (dimension as the situation demands),

and in the onedimensional case Φ its cumulative distribution-function (CDF), Φ(z) =∫ z
−∞ ϕ(t) dt with z ∈ R.

Theorem 1.1 (CLT, Lindeberg 1922). Let (Xn)n≥1 be a sequence of independet ran-
dom-variables which are centred, i.e. E[Xn] = 0, and Var[Xn] ∈ R>0; denote s2

n :=∑n
i=1 Var[Xi]. If the Lindeberg-condition

∀ε ∈ R>0 : lim
n→∞

1

s2
n

n∑
i=1

E
[
X2
i 1[|Xi|>εsn]

]
= 0, (1.1)

holds, then
(

1
sn

∑n
i=1Xi

)
n≥1

converges in distribution to a standard normal distribution,
that is

∀t ∈ R : lim
n→∞

∣∣∣P[ 1

sn

n∑
i=1

Xi ≤ t
]
− Φ(t)

∣∣∣ = 0.

If in particular the random-variables Xn are independent and identically distributed (“i.i.d.”)
with E[X1] = 0 and Var[X1] = σ2 ∈ R>0, then condition (1.1) is satisfied and hence(

1
σ
√
n

∑n
i=1Xi

)
n≥1

converges in distribution to a standard normal distribution.
(Multivariate versions do exist.)

While this CLT often is understood as a statement about the asymptotic distribution of
the mean 1

n

∑n
i=1Xi, and this view is widespread and indeed useful especially in statistics,

it also allows for another interpretation, as follows. For simplicity assume that all Xn are
scalar, centred and have variance one, then 1√

n

∑n
i=1Xi =

∑n
i=1

1√
n
Xi = 〈θ(n), X(n)〉 if
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18 1. INTRODUCTION

we put θ(n) := 1√
n

(1, . . . , 1)T and X(n) := (X1, . . . , Xn)T. Note that θ(n) ∈ Sn−1, hence
〈θ(n), X(n)〉 can be considered as the projection (always orthogonal here) of X(n) onto
the onedimensional subspace Rθ(n), and E[X(n)] = o, Var[X(n)] = In (the (n × n)-unit-
matrix). Therefore we can state that there exists a onedimensional projection of X(n)

which approximately follows a standard normal distribution.
This reformulation opens the door to further generalization: do not consider the se-

quence (Xn)n≥1 of random-variables, but rather the joint distribution µn of (X1, . . . , Xn)T

on Rn and drop the independence of the coordinates; also take projections onto k-dimen-
sional subspaces, for k ∈ [1, n − 1]. The image-measure under the projection onto a
k-dimensional subspace shall be referred to as a k-dimensional marginal of the original
measure. The task now is to identify those high-dimensional distributions for which there
exist approximately normal k-dimensional marginals, or more strongly, for which most
marginals are approximately normal.
“Approximately normal” usually means, close to a normal distribution at least with

respect to the weak topology of (finite) measures; stronger modes of convergence are
welcome. The meaning of “most marginals” can be motivated in the following way: as
already noted, onedimensional projections are induced by unit-vectors, that is, elements
of Sn−1; the sphere has finite surface-measure, which therefore can be scaled to have
total mass 1; “most directions θ” then means, for all θ in a subset of Sn−1 with measure
close to one. Preferably the measure of the set of exceptional directions should converge
to zero for n→∞.
As the CLT of Lindeberg shows, independence of coordinates imposes sufficient struc-

ture on high-dimensional distributions in order to yield approximate normality of low-
dimensional marginals. Another possible structure is convexity, which issues in a CLT for
convex sets, the history of which is rolled up briefly in Section 1.3 (see also Klartag [24,
p. 402]). But before that we take a closer look at two benchmark examples.

1.2 Two examples: the cube and the ball

The cube We consider the cube Cn := [−
√

3,
√

3]n ⊂ Rn; let X be uniformly dis-
tributed on the cube. By the uniform distribution on a set A ∈ B(Rn) we mean the
probability-measure on B(Rn) given by B 7→ vn(B∩A)

vn(A) , provided vn(A) ∈ R>0. Because
of symmetry E[X] = o and E[XiXj ] = 0 for i, j ∈ [1, n] with i 6= j follow immediately.
The density of X is 1

vn(Cn) 1Cn(x) =
∏n
i=1( 1

v1(C1)
1C1(xi)) for x ∈ Rn, from the product-

representation follow independence and identical distribution on C1 of the coordinates
Xi (i ∈ [1, n]), and their common variance is

E[X2
1 ] =

∫ √3

−
√

3

x2

2
√

3
dx =

√
3

3 − (−
√

3)3

6
√

3
= 1.

As already stated, Lindeberg’s CLT implies approximate normal distribution of∑n
i=1

1√
n
Xi = 〈 1√

n
(1, . . . , 1)T, X〉, but we would like to try general θ ∈ Sn−1 and assert

approximate normality of 〈θ,X〉. To that end let (Xn)n≥1 be i.i.d. random-variables
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with X1 distributed uniformly on C1, then Xn := (X1, . . . , Xn) is distributed uniformly
on Cn, and let (τn)n≥1 ⊂ R not constantly zero. Define sn :=

(∑n
i=1 τ

2
i

)1/2 and set
θn := 1

sn
(τ1, . . . , τn) as soon as sn > 0, say for n ≥ N ∈ N, then θn ∈ Sn−1. Note

〈θn, Xn〉 = 1
sn

∑n
i=1 τiXi, and (τnXn)n≥1 still consists of independent, centred random-

variables; therefore the task is to assert that this sequence fulfills Lindeberg’s condi-
tion (1.1).
First we remark that Lindeberg’s condition in general implies Feller’s condition:

lim
n→∞

max
{Var[τiXi]

s2
n

∣∣∣i ∈ [1, n]
}

= 0,

which in our case is equivalent to limn→∞max{|θni ||i ∈ [1, n]} = 0, and we are going to
show that this implies Lindeberg’s condition (this converse is not generally true). So let
limn→∞max{|θni ||i ∈ [1, n]} = 0 and let ε ∈ R>0, then there exists n0 ≥ N such that
max{|θni ||i ∈ [1, n]} < ε√

3
for all n ≥ n0; this implies |τi|sn < ε√

3
for all i ∈ [1, n], for any

n ≥ n0. Let n ≥ n0 and i ∈ [1, n], then because of |Xi| ≤
√

3 we have |τiXi| < εsn, hence
1[|τiXi|≥εsn] = 0 and thus 1

sn

∑n
i=1 E[|τiXi|1[|τiXi|≥εsn]] = 0 for all n ≥ n0, consequently

Lindeberg’s condition is satisfied and the CLT holds, that is, 〈θn, Xn〉 approximately
follows a standard normal distribution.
We want to estimate how many directions θn ∈ Sn−1 (in the sense of σn−1) fulfill

the condition limn→∞max{|θni ||i ∈ [1, n]} = 0. To do that we fix n ∈ N and ε ∈ (0, 1]
and find an upper bound for σn−1

{
θ ∈ Sn−1

∣∣max{|θi||i ∈ [1, n]} ≥ ε
}
; certainly this is

at most 2nσn−1{θ ∈ Sn−1|θ1 ≥ ε} (by union-bound and orthogonal invariance of the
sphere). By choosing a suitable parametrization of the sphere, for example, and also
anticipating Lemma 2.3, p. 30, we have

σn−1{θ ∈ Sn−1|θ1 ≥ ε} =
Γ(n2 )

√
π Γ(n−1

2 )

∫ π
2

arcsin(ε)
cos(φ)n−1 dφ

=
Γ(n2 )

√
π Γ(n−1

2 )

∫ √1−ε2

0
xn−2 (1− x2)−

1
2 dx ≤

≤
(n−1

2 )
1
2

√
π

1

ε

∫ √1−ε2

0
xn−2 dx =

=
(1− ε2)

n−1
2

ε
√

2π(n− 1)
.

We observe that for any ε bounded away from zero, limn→∞ σn−1

{
θ ∈ Sn−1

∣∣max{|θi||i ∈
[1, n]} ≥ ε

}
= 0, that is, the set of directions for which the CLT may fail is negligible

for high dimensions, roughly speaking; or conversely, if the direction is chosen at random
uniformly from the unit-sphere, with high probability the respective marginal will be
approximately normally distributed. Obvious elements of the failure-set are the canon-
ical unit-vectors, because 〈eni , Xn〉 = Xi which is uniformly distributed by assumption,
independent of dimension.



20 1. INTRODUCTION

The ball Now take the ball
√
n+ 2Bn, and again let X be uniformly distributed on

it. The result for this case is also referred to as Maxwell’s principle or Maxwell–Borel-
lemma, and can be found, e.g., in Rassoul-Agha and Seppäläinen [36, p. 81], or Johnston
and Prochno [19]. As in the case of the cube, E[X] = o and E[XiXj ] = 0 (i 6= j) follow
from symmetry, as does Var[X1] = · · · = Var[Xn], and by Cavalieri’s principle there
holds (recall vn(Bn) = πn/2

Γ(n
2

+1))

Var[X1] =
1

vn(
√
n+ 2Bn)

∫ √n+2

−
√
n+2

x2
1vn−1

(√
n+ 2− x2

1B
n−1
)
dx1

=
vn−1(Bn−1)

vn(Bn)(n+ 2)n/2

∫ √n+2

−
√
n+2

x2 (n+ 2− x2)
n−1
2 dx

=
Γ(n+2

2 )
√
π Γ(n+1

2 )(n+ 2)n/2
Γ(3

2)Γ(n+1
2 )(n+ 2)

n+2
2

Γ(n+4
2 )

= 1.

In particular, the components are uncorrelated, but since the density cannot be written
as a product of onedimensional densities they are not independent, therefore application
of Lindeberg’s CLT is out of question.
Nevertheless we try and even consider k-dimensional marginals, where k may depend

on n such that k√
n
→ 0 as n → ∞ (so the case of constant k is covered; we do not

claim that this is the best possible dependence of k on n). Because of the orthogonal
invariance of the ball it suffices to consider the subspace E = Rk×{0}n−k spanned by the
first k canonical unit-vectors, and we identify E = Rk; we write pE for the orthogonal
projection onto E. The density of X is 1

vn(
√
n+2Bn)

1√n+2Bn ; let A ∈ B(Rk), then the
distribution of pE ◦X is given by

P[pE ◦X ∈ A] = P[(X1, . . . , Xk)
T ∈ A ∧ (Xk+1, . . . , Xn)T ∈ Rn−k]

=

∫
A

∫
Rn−k

1√n+2Bn(x1, . . . , xn)

vn(
√
n+ 2Bn)

d(xk+1, . . . , xn) d(x1, . . . , xk),

and this shows that pE ◦X has the following density (x ∈ Rk),

f(x) =

∫
Rn−k

1

vn(
√
n+ 2Bn)

1√n+2Bn(x, y) dy

=
1

vn(Bn)(n+ 2)
n
2

∫
Rn−k

1√
n+2−‖x‖2Bn−k(y) dy

=
vn−k

(√
n+ 2− ‖x‖2Bn−k)

vn(Bn)(n+ 2)
n
2

=
vn−k(B

n−k)(n+ 2− ‖x‖2)
n−k
2

vn(Bn)(n+ 2)
n
2

=
Γ(n2 + 1)

Γ(n−k2 + 1)(1 + n
2 )

k
2

(2π)−
k
2

(
1− ‖x‖

2

n+ 2

)n−k
2
.

Now we have
(
1 − ‖x‖

2

n+2

)n−k
2 → exp

(
−‖x‖

2

2

)
as n → ∞, therefore the latter part of f

converges precisely to (2π)−
k
2 e−

1
2
‖x‖2 , the density of the k-dimensional standard normal
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distribution. It remains to prove that the former part converges to one; to that end we
write first

Γ
(n

2
+ 1
)

= Γ
(n

2
+ 1−

⌊k
2

⌋) bk/2c∏
i=1

(n
2

+ 1− i
)
,

for an estimate from above we again employ Lemma 2.3, p. 30, and get

Γ(n2 + 1)

Γ(n−k2 + 1)(n2 + 1)
k
2

≤
(n−k2 + 1)

k
2
−b k

2
c

(n2 + 1)
k
2

bk/2c∏
i=1

(n
2

+ 1− i
)

=

=
(n+ 2− k

n+ 2

) k
2
−b k

2
c bk/2c∏
i=1

n+ 2− 2i

n+ 2
≤ 1,

and from below, using 1 + x ≤ ex, we have

Γ(n2 + 1)

Γ(n−k2 + 1)(n2 + 1)
k
2

≥
(n−k2 + 1)(n2 + 1− bk2c)

k
2
−b k

2
c−1

(n2 + 1)
k
2

bk/2c∏
i=1

(n
2

+ 1− i
)

=

=
n+ 2− k
n+ 2

(n+ 2− 2bk2c
n+ 2

) k
2
−b k

2
c−1
bk/2c∏
i=1

n+ 2− 2i

n+ 2
≥

≥ n+ 2− k
n+ 2

(n+ 2− 2bk2c
n+ 2

) k
2
−b k

2
c−1(n+ 2− 2bk2c

n+ 2

)b k
2
c
≥

≥ n+ 2− k
n+ 2

(n+ 2− 2bk2c
n+ 2

) k
2
−b k

2
c−1

exp
(
−

2bk2c
2

n+ 2− 2bk2c

)
,

and this lower bound converges to one as n → ∞ (here we have used limn→∞
k√
n

= 0).
Thus the densities converge pointwise and hence convergence in distribution is estab-
lished.

1.3 Overview of the history of the CLT for convex bodies

The history of the CLT for convex bodies reaches back about 150 years and has its actual
roots, as do various other mathematical results, in physics, namely in the kinetic theory
of gases. As recounted in Diaconis and Freedman [9, pp. 418f.] (see there for further
references), it was E. Borel, while actually working on a theorem by J. C. Maxwell, who
stated that the first few k components of a point (x1, . . . , xn)T distributed uniformly
on Sn−1 asymptotically follow a normal distribution and are independent. The connec-
tion with physics is the following: consider an insulated system of n

3 free particles, the
i-th particle having velocity (x3i−2, x3i−1, x3i)

T and each having the same mass m, then
because of conservation of energy the total kinetic energy m

2

∑n
i=1 x

2
i = E is constant,

hence (x1, . . . , xn)T ∈
√

2E
m Sn−1; if now uniform distribution on the sphere is assumed
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we have precisely the situation studied by Borel (assuming random behaviour in space,
velocity or other suitable quantities is standard in statistical mechanics).
Another precursor presented in [9, p. 419f.] is P. Lévy who studied means of operators

U on L2([0, 1]). Because there is no orthogonally invariant probability-measure on the
unit-sphere of that space, Lévy used a discretization where he approximated a function
f from L2([0, 1]) by those fn which are constant on subintervals of equal length 1

n , the
constants being the averages of the original function over the respective subintervals; then
the L2-norm of f equals that of fn and that equals the Euclidean norm of the vector of
constants divided by

√
n, in particular the L2-unit-sphere is approximated by

√
nSn−1.

We thus get an approximate mean Mn(U) of U by averaging U(fn) over
√
nSn−1, and

the limit M(U) = limn→∞Mn(U) is declared the mean of U . If U depends on the
evaluation of f on few points, then M(U) happens to be a mean with respect to the
standard normal distribution.
As the title of [9] suggests, the authors did not strive for a CLT but rather for a

representation-theorem; they proved that an orthogonally invariant distribution is close in
total-variation-distance to a scale mixture of independent standard normal distributions.
But in order to do this, they showed that the distribution of the first k components of a
point uniformly distributed on a sphere is close to a properly scaled normal distribution,
and then they used that the uniform distributions on spheres are extreme points of the
convex set of orthogonally invariant distributions.

The next major step was Brehm and Voigt [6]. At this point we should explain the
notion of convex body:

Definition 1.2. A convex body is a compact, convex set K ⊂ Rn with nonempty interior
(then by convexity K is the closure of its interior). It is called isotropic iff vn(K) = 1
(not for all authors this is part of the defintion),

∫
K x dx = o and there is a constant

LK ∈ R>0 such that
∫
K〈θ, x〉

2 dx = L2
K for all θ ∈ Sn−1 (pictorially speaking, the body

has unit-volume, barycentre at the origin and its ellipsoid of inertia is a sphere).

Isotropy also allows for a stochastic interpretation: let K ⊂ Rn be an isotropic con-
vex body and let X be a random-variable having uniform distribution on K. Then the
density of X is 1K and therefore

∫
K x dx = E[X] = o and

∫
K〈θ, x〉

2 dx = E[〈θ,X〉2] =
θT E[XXT]θ = θT Var[X]θ = L2

K , from which Var[X] = L2
KIn follows, that is the co-

ordinates of X are uncorrelated and have equal variance.
Brehm and Voigt investigated the cross-sections of convex bodies, that is the functions

ϕK,θ(t) := vn−1{x ∈ K|〈θ, x〉 = t} (note that {x ∈ Rn|〈θ, x〉 = t} is the (n − 1)-dimen-
sional hyperplane with normal vector θ ∈ Sn−1 passing through tθ; more important for
us, ϕK,θ is the density of the marginal on Rθ of the uniform distribution on K), and show
convergence of those in L1 and uniformly to a normal density for K being the hypercube
[−1

2 ,
1
2 ]n, the ball Bn (also for cross-sections of codimension k),1 the cross-polytope, i.e.

the l1-ball, with θ = 1√
n

(1, . . . , 1)T, and the standard-simplex ∆n for a discrete set of

1Our analysis of the cube and the ball given in Section 1.2 is somewhat similar to that of Brehm and
Voigt, and in some points based on it, though significantly coarser.
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directions. They also noted that, naturally, convergence to a normal distribution cannot
be expected for every θ ∈ Sn−1: take the hypercube and, say, the first coordinate-axis,
then ϕK,θ = 1[−1/2,1/2] for any n ∈ N and hence normality will never be achieved. They
already remark:

“It appears to be a known conjecture among specialists that this is a general
phenomenon: For large dimensions the function ϕK,u should be close to a
Gaussian density for all isotropic normed convex bodies K and for ‘most’
directions u ∈ Sn−1. More precisely, the density corresponding to K should
be the Gaussian with variance L2

K .” [6, p. 438]

Around the time of [6] also Anttila, Ball and Perissinaki [1] busied themselves with the
conjecture (of which Brehm and Voigt became well aware, as they admit). They worked
with symmetric isotropic convex bodies, so they additionally assumed K = −K :=
{−x|x ∈ K}, and that assumtion they needed because they were going to define a norm
based on K. As an aside, they used ρ for what was LK in [6]. As far as we can tell, the
authors of [1] were the first to make the following hypothesis explicit in the context of
convex bodies [1, p. 4723]:

Concentration-Hypothesis. For a given ε < 1
2 we say that K satisfies the ε-concen-

tration hypothesis if

P
[∣∣∣‖X‖√

n
− ρ
∣∣∣ ≥ ερ] ≤ ε. (1.2)

Here X is a random-variable distributed uniformly on K. In the further course of
the studies on the CLT-problem for convex bodies this concentration-hypothesis has also
become known as “thin-shell-hypotehsis” or “thin-shell-property”, because the pictorial
interpretation is that at least the fraction 1−ε of the mass ofK lies within a thin spherical
shell with thickness 2ε times radius. The authors of [1] referred back to earlier ideas of
Diaconis and Freedman [8], of Sudakov [37] and of von Weizsäcker [38]. They stated the
conjecture that all isotropic convex bodies satisfy (1.2) with ε ≤ C log(n)√

n
, and proved that

for lp-balls ε ≤ Cn−
1
3 (recall that, for p ∈ R≥1, the lp-ball is {x ∈ Rn|

∑n
i=1|xi|p ≤ 1}

and the l∞-ball is {x ∈ Rn|∀i ∈ [1, n] : |xi| ≤ 1}), and that concentration also holds for
uniformly convex symmetric bodies contained in a small Euclidean ball (i.e. radius about√
n). Their CLT takes the subsequent form [1, Theorem 4].

Theorem 1.3. Under the concentration-hypothesis (1.2), for δ > 0 we have

σn−1

{
θ ∈ Sn−1

∣∣∣∣∀t ∈ R :

∣∣∣∣∫ t

−t
gθ(s) ds−

∫ t

−t
g(s) ds

∣∣∣∣ ≤ δ+4ε+
c√
n

}
≥ 1−4

√
n log(n)e−

nδ2

50 .

In their notation gθ is the cross-section-function in direction θ, that is, the same as ϕK,θ
in [6], and g is the normal density with variance ρ2. Note that because of symmetricity
of the involved distributions the “symmetric CDF” t 7→

∫ t
−t g(s) ds carries the same

information as the usual “left tail” CDF t 7→
∫ t
−∞ g(s) ds.
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We also stress the two major points of their proof: on the one hand use (1.2) to prove
closeness of the normal distribution and an average distribution, that means, take the
CDF Fθ of the projected measure for each θ ∈ Sn−1 and then compute the (pointwise)
average over the sphere F =

∫
Sn−1 Fθ dσn−1(θ); and on the other hand use Lipschitz-

continuity and concentration on the sphere in order to show that for most θ, Fθ is close
to F (the relevant result of Lévy is reproduced as Theorem 2.27, p. 61, in the present
work).

Perhaps a minor, but not unimportant, contribution of Brehm, Hinow, Vogt and
Voigt [5] was that for logarithmically concave densities several modes of convergence
towards a normal distribution are equivalent; in particular uniform convergence of the
CDFs, of the PDFs and L1-convergence of the PDFs are equivalent. Here, a function
f : R→ R≥0 is called logarithmically concave if f((1− λ)x+ λy) ≥ f(x)1−λ f(y)λ for all
x, y ∈ R and λ ∈ (0, 1); the cross-section-functions discussed so far have that property.

Where the mathematicians hitherto worked with bodies, Bobkov [2] took the next step
and generalized the task to distributions. This begs the question, which might be the
right generalization, but to the specialists of the asymptotic theory of convex bodies the
answer was obvious: consider logarithmically concave distributions. For short, a measure
µ is called logarithmically concave if for any compact sets A,B ∈ Rn and λ ∈ (0, 1) there
holds µ((1− λ)A+ λB) ≥ µ(A)1−λ µ(B)λ; the uniform distribution on any convex body
is such (the similarity to ‘logarithmically concave function’ is no coincidence).
Indeed, Bobkov demonstrated more: he investigated Rn-valued random-variables X

(n ≥ 2) with general distribution, but the property Var[X] = In; as before let Fθ for
θ ∈ Sn−1 denote the CDF of 〈θ,X〉, and F the average of the Fθ’s over Sn−1. The
Lévy-distance between two CDFs G,G′ is defined as L(G,G′) := inf{ε ∈ R>0|∀t ∈
R : G′(t − ε) − ε ≤ G(t) ≤ G′(t + ε) + ε}, it induces the weak convergence. ‖·‖L∞(R)

is the (essential) supremum-norm on R. Then the following holds [2, Theorem 1.1,
Corollary 2.5].

Theorem 1.4. If Var[X] = In holds true, for all δ ∈ R>0,

σn−1{θ ∈ Sn−1|L(Fθ, F ) ≥ δ} ≤ 4n
3
8 e−

1
4
nδ4 .

If in addition (1.2) holds (with ρ = 1), then for all δ ∈ R>0,

σn−1

{
θ ∈ Sn−1

∣∣‖Fθ − Φ‖L∞(R) ≥ 4ε+ δ
}
≤ 4n

3
8 e−cnδ

4
,

where c ∈ R>0 is a universal constant.

Note the generality of the result: X even need not be centred, the only requirements
are unit covariance-matrix and the thin-shell-property. In the case of logarithmically
concave distributions the result was sharpened to the following [2, Theorem 1.2], where a
random-vector X or its distribution is termed isotropic iff it is centred and Var[X] = In.

Theorem 1.5. Assume a random-vector X has an isotropic logarithmically concave dis-
tribution. Then, for all δ ∈ R>0,

σn−1

{
θ ∈ Sn−1

∣∣∃t ∈ R : ec|t||Fθ(t)− F (t)| ≥ δ
}
≤ C
√
n log(n)e−cnδ

2
,
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where C, c ∈ R>0 are universal constants.

We should mention that in the study of asymptotic convex geometry “universal con-
stant” or “absolute constant” means, not depending on any parameter or quantity, not
even and especially not on the dimension n; also to be mentioned is that the values of
constants may change, and usually do change, from one appearance to the next. Bobkov
did not write down an analogue to his Corollary 2.5 for the logarithmically concave case,
that is, comparing Fθ and Φ.
An important observation by Bobkov is that, applying Čebyšëv’s inequality, Var[‖X‖2] ≤

Cn is sufficient for X to satisfy the thin-shell-property, in particular ε ≤ Cn−
1
3 then.

The uniform distributions on lp-balls and on the uniformly convex bodies studied in [1]
fulfill this “small-variance-property”.

Now the course seemed clear: whosoever affirmed the thin-shell-property for logarith-
mically concave distributions, would prove the CLT for convex bodies at the same time.
This was accomplished by Klartag [20] in what is, we deem, rightly called a breakthrough
and seminal work. He proved the following [20, Theorem 1.4].

Theorem 1.6. Let X be a random-vector with an isotropic, logarithmically concave
distribution in Rn. Then for all ε ∈ [0, 1],

P
[∣∣∣‖X‖√

n
− 1
∣∣∣ ≥ ε] ≤ Cn−cε2 ,

where C, c ∈ R>0 are universal constants.

This established the thin-shell-property (1.2) with ε = C
√

log(log(n))
log(n) ; granted, that

result did not yet fit the expectation of [1], but nevertheless it was a great achievement of
Klartag. His version of the CLT for convex bodies then reads as follows [20, Theorem 1.1].
(Note that the name “CLT for convex bodies” has stuck although ever since [2] the more
general setting of logarithmically concave distributions has been studied.)

Theorem 1.7. There exist null-sequences (εn)n≥1 and (δn)n≥1 with εn ≤ C
√

log(log(n))
log(n)

and δn ≤ e−cn
0.99, where C, c ∈ R>0 are universal constants, for which the following

holds: let n ≥ 1 and let X be a random-vector in Rn with an isotropic, logarithmically
concave distribution, then

σn−1{θ ∈ Sn−1|dTV(〈θ,X〉, Z) > εn} < δn,

where Z is a scalar random-variable with standard normal distribution.

Klartag employed the total-variation-distance dTV which essentially is the L1-distance
of the respective densities. He also proved a result for projections onto k-dimensional
subspaces for k ≤ c log(n)

log(log(n)) , and additionally a somewhat stronger result for so-called
unconditional distributions (those which are invariant under all coordinate-reflexions
xi 7→ −xi for i ∈ [1, n]), in this latter case θ = 1√

n
(1, . . . , 1)T is always admissible.
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Klartag concedes, “The quantitative estimate we provide for εn is rather poor. (. . . )
[W]e are still lacking the precise Berry-Esseen type bound. A plausible guess might be
that the logarithmic dependence should be replaced by a power-type decay, in the bound
for εn.”

In some sense the hunt for a CLT for convex bodies has found its end with [20],
the subsequent contributions have dealt more with improving the bounds of the thin-
shell-property. Others tried different proof-techniques, for example Fleury, Guédon and
Paouris [11]: they again worked with bodies, not distributions, and produced the follow-
ing [11, Theorem 1].

Theorem 1.8. There exists c ∈ R>0 such that for every isotropic convex body K ⊂ Rn
and every ε ∈ (0, 1),

vn

{
x ∈ K

∣∣∣∣∣∣ ‖x‖√
nLK

− 1
∣∣∣ ≥ ε} ≤ 2e−c

√
ε log(n)1/12 .

Hence the thin-shell-property is satisfied with ε = C log(log(n))2

log(n)1/6
. A markedly better res-

ult was obtained by Klartag again [21]; he proved P
[∣∣‖X‖√

n
−1
∣∣ ≥ ε] ≤ Cα exp(−cαε

10
3
−α n

1
3
−α)

for any small α ∈ R>0 (smaller values worsen the constants) in [21, Theorem 4.4], which
leads to a thin-shell-estimate with ε ≈ n−

1
14 and corresponding power-type-bounds for

the CLT itself. Although the value of the exponents was not yet satisfying, this was
a clear improvement over the logarithmic bounds found until then; this was also valid
for the dependence of k on n for k-dimensional marginals. The measure of the set of
exceptional directions (or subspaces) remained essentially unchanged.

It was also Klartag who proved sharp Berry-Esseen-type bounds for unconditional,
isotropic, logarithmically concave distributions in [23, Theorem 1].

Theorem 1.9. Under said assumtions,

sup

{∣∣∣∣P[α ≤ 1√
n

n∑
i=1

Xi ≤ β
]
−
∫ β

α
ϕ(t) dt

∣∣∣∣∣∣∣∣α, β ∈ R, α ≤ β
}
≤ C

n
,

where C ∈ R>0 is a universal constant. Moreover, for any θ = (θ1, . . . , θn) ∈ Sn−1,

sup

{∣∣∣∣P[α ≤ 〈θ,X〉 ≤ β]−
∫ β

α
ϕ(t) dt

∣∣∣∣∣∣∣∣α, β ∈ R, α ≤ β
}
≤ C

n∑
i=1

θ4
i .

As ingredient to the proof Klartag established Var[‖X‖2] ≤ Cn under the aforemen-
tioned assumtions, which bound had already been mentioned by Bobkov [2] (see above).
The conjecture is that this holds for all isotropic logarithmically concave distributions.
An equivalent statement is E[(‖X‖ −

√
n)2] ≤ C with a universal constant C ∈ R>0,

this is what currently is called the “thin-shell-conjecture” in the asymptotic geometry of
convex bodies.
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Further steps were the works by Fleury [10], where he showed P
[∣∣‖X‖√

n
− 1
∣∣ ≥ ε

]
≤

Ce−cn
1/8ε and P

[‖X‖√
n
− 1 ≥ ε

]
≤ Ce−cn

1/4ε2 , either for all ε ∈ [0, 1], and Guédon and

Milman [18] with P
[∣∣‖X‖√

n
− 1
∣∣ ≥ ε

]
≤ Ce−c

√
nmin{ε,ε3} for all ε ∈ R≥0; this also implies

E[(‖X‖ −
√
n)2] ≤ Cn

2
3 . As far as we are aware, the best recent result concerning

the thin-shell-conjecture is Lee and Vempala [27, Corollary 9], extended by the same
authors in [29, Corollary 13], where they obtained E[(‖X‖ −

√
n)2] ≤ Cn

1
2 ; but they

provided no estimates of the deviation-probability P
[∣∣‖X‖√

n
−1
∣∣ ≥ ε], since they exploited

the connexions with various other conjectures for convex bodies, central among them
the Kannan-Lovász-Simonovits-conjecture. We refer to the cited articles and especially
to [28] by the same authors.

The relevant contribution to the CLT for convex bodies for the present thesis is
Fresen [14]. As the title of his work suggests, he did not aim for improved bounds on
either the deviation-probability P

[∣∣‖X‖√
n
− 1
∣∣ ≥ ε] or on the expectation E[(‖X‖−

√
n)2],

but he had revisited the CLT itself and wanted to “present a simple proof that is self-
contained (except for very classical results such as the Prékopa-Leindler inequality) and
is accessible to anyone” [14, p. 1]. Our declared task is to thoroughly discuss Fresen’s
proof and to possibly assess whether he has achieved the aimed simplicity. Throughout
the present thesis, whenever we make statements related to Fresen’s work we refer to
the just cited article [14] and omit the citation-mark; other works by Fresen are properly
cited.
Also in what follows, Remarks are distinguished from Comments: the former refer to

purely mathematical contents; whereas the latter deal with Fresen’s article and need not
always be mathematical in substance, and they are concluded with the sign ♦.





2 Mathematical preparations

2.1 Various technical results

This section contains various technical results that share no other feature than being
of use in what follows thereafter. The first two lemmata treat the interplay of surface-
measures on the sphere and the Grassmannian and the Haar-measure on the orthogonal
group. Here the orthogonal group is denoted by On(R) and its normed Haar-measure by
µO (i.e. µO(On(R)) = 1); recall that σn−1 is the unique orthogonally invariant probabil-
ity-measure on Sn−1. The Grassmannian manifold Gn,k is the compact manifold of all
k-dimensional subspaces of Rn, for k ∈ [0, n], and σn,k is the measure induced on it by
µO via σn,k(A) := µO{U ∈ On(R)|UF ∈ A} for A ∈ B(Gn,k), where F ∈ Gn,k is a fixed
subspace (whose choice does not matter); this measure too is orthogonally invariant.

Lemma 2.1. For any θ ∈ Sn−1 and A ∈ B(Sn−1) there holds

µO{U ∈ On(R)|Uθ ∈ A} = σn−1(A).

Proof. Let θ ∈ Sn−1. We are using the fact that σn−1 is the unique orthogonally invariant
measure on Sn−1 with total mass 1. Call the measure on the left-hand-side µ, then

µ(Sn−1) = µO{U ∈ On(R)|Uθ ∈ Sn−1}
= µO(On(R)) = 1,

because Uθ ∈ Sn−1 for all U ∈ On(R). For orthogonal invariance let A ∈ B(Sn−1) and
V ∈ On(R), then

{U ∈ On(R)|V −1Uθ ∈ A} = {U ∈ On(R)|Uθ ∈ A},

because if U ∈ On(R) with V −1Uθ ∈ A, then V −1U ∈ On(R) is in the set on the right-
hand-side; and conversely, if U satisfies Uθ ∈ A, then also V −1(V U)θ ∈ A and hence
V U ∈ On(R) is in the set on the left-hand-side. From this follows

µ(V A) = µO{U ∈ On(R)|Uθ ∈ V A}
= µO{U ∈ On(R)|V −1Uθ ∈ A}
= µO{U ∈ On(R)|Uθ ∈ A} = µ(A).

Lemma 2.2. Let k ∈ [1, n] and for each E ∈ Gn,k let σE denote the normed surface-
measure on SE := E ∩ Sn−1 (note that SE is an orthogonal image of Sk−1 × {0}n−k).
Then, for any A ∈ B(Sn−1),

σn−1(A) =

∫
Gn,k

σE(E ∩A) dσn,k(E).

29
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Proof. Call the measure defined by the integral µ; as with Lemma 2.1 we show orthogonal
invariance of µ and µ(Sn−1) = 1. The latter is straightforward:

µ(Sn−1) =

∫
Gn,k

σE(E ∩ Sn−1) dσn,k(E)

=

∫
Gn,k

σE(SE) dσn,k(E) =

∫
Gn,k

1 dσn,k(E)

= σn,k(Gn,k) = 1.

For the former let A ∈ B(Sn−1) and U ∈ On(R). We are going to use the transformation-
formula (see, e.g., Çınlar [7, Chapter 1, Theorem 5.2] or Klenke [25, Theorem 4.10]) and
orthogonal invariance of σn,k and obtain

µ(UA) =

∫
Gn,k

σE(E ∩ UA) dσn,k(E)

=

∫
Gn,k

σUE(UE ∩ UA) d(σn,k ◦U−1)(E)

=

∫
Gn,k

σE(E ∩A) dσn,k(E) = µ(A).

Remarks. One stochastic interpretation of the lemma above is that the uniform distri-
bution on Sn−1 can be simulated by first choosing uniformly a k-dimensional subspace
of Rn and then choosing uniformly a point on the unit-sphere of that subspace.

Comment. The lemma is the essence of Fresen’s casual remark, “[n]ote that Pθ′PE = Pθ
where θ is uniformly distributed in Sn−1” (p. 8, lines 4 and 5). His E is a Gn,k-valued
σn,k-distributed random-variable and θ′ is a SE-valued σE-distributed random-variable;
he calls them just “uniformly distributed”. ♦

The next lemma is concerned with an estimate of the Eulerian gamma-function Γ
which in some sense generalizes the well-known relation Γ(x + 1) = xΓ(x). There also
exist other bounds of various sharpness (e.g., by Gautschi [15]). We present the result
given by Wendel in [39].

Lemma 2.3. For any x ∈ R>0 and s ∈ [0, 1],

x(x+ s)s−1 Γ(x) ≤ Γ(x+ s) ≤ xs Γ(x).

Proof. Let x ∈ R>0. For s ∈ {0, 1} there is nothing to prove, hence let s ∈ (0, 1). Recall
Hölder’s inequality

∫
A
f(t)g(t) dt ≤

(∫
A
f(t)p dt

) 1
p
(∫

A
g(t)q dt

) 1
q

,
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where A ∈ B(R), f, g : A→ [0,∞] are measurable, and p, q ∈ (1,∞) with 1
p + 1

q = 1. We
set A = R>0, f(t) := (tx−1 e−t)1−s, g(t) := (tx e−x)s, and p := 1

1−s , q := 1
s . This implies

f(t)g(t) = tx+s−1 e−t, and inserting into Hölder’s inequality we get

Γ(x+ s) =

∫ ∞
0

tx+s−1 e−t dt ≤

≤
(∫ ∞

0
tx−1 e−t dt

)1−s(∫ ∞
0

tx e−t dt

)s
=

= Γ(x)1−s Γ(x+ 1)s

= Γ(x)1−s xs Γ(x)s = xs Γ(x).

This also implies the lower bound because

xΓ(x) = Γ(x+ 1) = Γ
(
(x+ s) + (1− s)

)
≤ (x+ s)1−s Γ(x+ s).

Remarks. The statement can actually be strengthened to: for x ∈ R>0 and s ∈ (0, 1),
Γ(x + s) < xs Γ(x) holds. Since t 7→ f(t)1/(1−s) = tx−1 e−t and t 7→ g(t)1/s = tx e−t are
linearly independent in L1(R>0) for s ∈ (0, 1), Hölder’s inequality has strict inequality
in that case.
The following two lemmata deal with the CDF of the standard normal distribution,

Φ. The first of these is from [2, Lemma 2.6] (verbatim also in Brazitikos et al. [4,
Equation (12.1.5)]); the second is used without comment by Fresen.

Lemma 2.4. Let t ∈ R≥0. For all α ∈ [0, 1] there holds Φ(t) − Φ(αt) ≤ 1
2(1 − α), and

for all α ∈ [1,∞) there holds Φ(αt)− Φ(t) ≤ 1√
2πe

(α− 1).

Remarks. The two inequalities can be fused to |Φ(αt)−Φ(t)| ≤ 1
2 |α−1| for all t, α ∈ R≥0.

Proof. Note that, because Φ′ = ϕ is increasing on R≤0 and decreasing on R≥0, Φ is
convex on R≤0 and concave on R≥0.
Validity is obvious for t = 0, so let t > 0. Let α ∈ [0, 1], then by concavity and

1
2 = Φ(0) ≤ Φ(t) ≤ 1,

Φ(αt) ≥ Φ(0) +
Φ(t)− Φ(0)

t− 0
(αt− 0) = Φ(t)− (Φ(t)− Φ(0)) + α(Φ(t)− Φ(0)) =

= Φ(t)− (Φ(t)− Φ(0))(1− α) ≥ Φ(t)− 1

2
(1− α).

If α ∈ [1,∞), then again by concavity and by xϕ(x) ≤ 1√
2πe

for x ∈ R≥0 (maximum
attained at 1 as revealed by discussion),

Φ(αt) ≤ Φ(t) + ϕ(t)(αt− t) = Φ(t) + tϕ(t)(α− 1) ≤ Φ(t) +
1√
2πe

(α− 1).

Lemma 2.5. Let t ∈ R and ν, σ ∈ [0, 1], then

Φ
( t− ν√

1 + σ2

)
≥ Φ(t)− ν + σ√

2π
and Φ

( t+ ν√
1 + σ2

)
≤ Φ(t) +

ν + σ√
2π

.
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Proof. First we consider t ∈ R≥0. We prove the upper bound first. Since t+ν√
1+σ2

≥ 0,
ϕ(t) ≤ ϕ(0) = 1√

2π
, and 1√

1+σ2
≤ 1, we get by concavity

Φ
( t+ ν√

1 + σ2

)
≤ Φ(t) + ϕ(t)

( t+ ν√
1 + σ2

− t
)
≤

≤ Φ(t) +
1√
2π

ν ≤ Φ(t) +
ν + σ√

2π
.

For the lower bound consider three cases: first let t−ν ≤ 0, then t−ν ≤ t−ν√
1+σ2

≤ 0 ≤ t,
hence t− t−ν√

1+σ2
≤ t− (t− ν) = ν ≤ ν + σ. By convexity on R≤0,

Φ
( t− ν√

1 + σ2

)
≥ Φ(0) + ϕ(0)

t− ν√
1 + σ2

,

by concavity on R≥0,
Φ(t) ≤ Φ(0) + ϕ(0)t,

and thus
Φ
( t− ν√

1 + σ2

)
≥ Φ(t) + ϕ(0)

( t− ν√
1 + σ2

− t
)
≥ Φ(t)− ν + σ√

2π
.

Now let t − ν ∈ [0, 2 +
√

2], then t − t−ν√
1+σ2

≤ ν + σ holds (this can be proved by

rearranging the inequality to t− ν ≤ σ
√

1+σ2√
1+σ2−1

; the right-hand-side is decreasing in σ and
so takes its minumum value 2 +

√
2 at σ = 1), thus again by concavity,

Φ(t) ≤ Φ
( t− ν√

1 + σ2

)
+ ϕ

( t− ν√
1 + σ2

)(
t− t− ν√

1 + σ2

)
≤ Φ

( t− ν√
1 + σ2

)
+
ν + σ√

2π
.

Finally let t− ν ≥ 2 +
√

2. By Lemma 2.4,

Φ(t) = Φ
( t√1 + σ2

t− ν
t− ν√
1 + σ2

)
≤ Φ

( t− ν√
1 + σ2

)
+

1√
2πe

( t√1 + σ2

t− ν
− 1
)

;

the function x 7→
√

1 + x2 is convex on R≥0, hence
√

1 + x2 ≤ 1+(
√

2−1)x for x ∈ [0, 1];
using this fact together with σ ≤ 1 leads us to

t
√

1 + σ2

t− ν
− 1 =

√
1 + σ2 +

ν
√

1 + σ2

t− ν
− 1 ≤

≤ (
√

2− 1)σ +

√
2

2 +
√

2
ν = (

√
2− 1)(ν + σ);

In total this yields

Φ(t) ≤ Φ
( t− ν√

1 + σ2

)
+

√
2− 1√
2πe

(ν + σ),

from which the statement follows because of
√

2−1√
e
≤ 1.
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Now let t ∈ R≤0. Using Φ(z) = 1− Φ(−z) for z ∈ R we see

Φ
( t− ν√

1 + σ2

)
= 1− Φ

( −t+ ν√
1 + σ2

)
≥ 1− Φ(−t)− ν + σ√

2π
= Φ(t)− ν + σ√

2π

on the one hand, and on the other

Φ
( t+ ν√

1 + σ2

)
= 1− Φ

( −t− ν√
1 + σ2

)
≤ 1− Φ(−t) +

ν + σ√
2π

= Φ(t) +
ν + σ√

2π
.

The last result in this section is about approximation of points on the sphere by a
finite subset, typically referred to as a net. It will be important that the set does not
have too many points. The proof of the latter is based on a standard volume-comparison-
argument.

Lemma 2.6. For any ε ∈ (0, 1] there exists a set N ⊂ Sn−1 with |N | ≤ (3
ε )n and

∀θ ∈ Sn−1∃θ′ ∈ N : ‖θ − θ′‖ ≤ ε.

(N is an ε-net for, or ε-dense in, Sn−1.)

Proof. Let ε ∈ (0, 1]. Let N ∈ N denote the minimal cardinality of an ε-net for Sn−1 and
M ∈ N the maximal cardinality of an ε-separated set M ⊂ Sn−1, that is, if x, y ∈ M
with x 6= y, then ‖x− y‖ > ε. First we show N ≤M .
Let M ⊂ Sn−1 be ε-separated with |M| = M . We prove that M is an ε-net; then

N ≤M follows by definiton. Let θ ∈ Sn−1, w.l.o.g. θ /∈M, then |M ∪ {θ}| > M , hence
it is not ε-separated, therefore there are θ′, θ′′ ∈M∪{θ} with θ′ 6= θ′′ and ‖θ′− θ′′‖ ≤ ε;
asM is ε-separated, θ ∈ {θ′, θ′′}, say θ = θ′′, thus ‖θ − θ′‖ ≤ ε.
Now we show M ≤ (3

ε )n. Let M ⊂ Sn−1 be as before, then the balls θ + ε
2B

n, for
θ ∈M, are pairwise disjoint, and

⋃
θ∈M(θ+ ε

2B
n) ⊂ (1 + ε

2)Bn. Passing to the volumes
yields

|M|
(ε

2

)n
vn(Bn) = vn

[ ⋃
θ∈M

(
θ +

ε

2
Bn
)]
≤
(

1 +
ε

2

)n
vn(Bn),

and because of ε ≤ 1 this gives us

M = |M| ≤
(2

ε
+ 1
)n
≤
(3

ε

)n
.

2.2 Log-concave functions and measures

In this section we give a few very basic definitons and results about logarithmically
concave functions, measures and random-variables, plus some surrounding facts. As
stated by Fresen, the contribution of his proof is simplicity, and indeed little background
from the asymptotic theory of convex sets is needed. The first result is the classical
inequality of Prékopa and Leindler. Prékopa in [33, Theorem 1] first proved the special
case for n = 1 and λ = 1

2 , Leindler in [30] then extended the result to arbitrary λ ∈ [0, 1],
and lastly Prékopa again in [34, Theorem 3] generalized it to n ∈ N. The proof is adapted
from [4, Theorem 1.2.3] (they only treat the integrable case).
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Theorem 2.7 (Prékopa-Leindler). Let f, g, h : Rn → [0,∞] be measurable and let λ ∈
(0, 1). If for every x, y ∈ Rn,

h((1− λ)x+ λy) ≥ f(x)1−λ g(y)λ, (2.1)

then, ∫
Rn
h dvn ≥

(∫
Rn
f dvn

)1−λ(∫
Rn
g dvn

)λ
.

Proof. Case 1, f and g are integrable. Induction on n. n = 1: For
∫
R f dv1 = 0 or∫

R g dv1 = 0 there is nothing to prove, so let either integral be positive. Then the map
x 7→

(∫
R f dv1

)−1 ∫ x
−∞ f dv1 is continuous and increasing, with limits 0 for x→ −∞ and

1 for x → ∞; define X : (0, 1) → R by X(t) := inf
{
x ∈ R

∣∣(∫
R f dv1

)−1 ∫ x
−∞ f dv1 > t

}
(in essence the right-continuous quantile-function), then

∫ X(t)
−∞ f dv1 = t

∫
R f dv1 for all

t ∈ (0, 1) by continuity, and X is strictly increasing (because the former relation implies,
if X(s) = X(t), then s = t), therefore X is differentiable almost everywhere and there
holds f(X(t))X ′(t) =

∫
R f dv1. Analogously define Y : (0, 1)→ R with g instead of f .

Now we set Z := (1 − λ)X + λY , then Z is strictly increasing and differentiable
almost everywhere. With the substitution z = Z(t) and the arithmetic-geometric-means-
inequality applied to Z ′ we may conclude,∫

R
h(z) dz =

∫ 1

0
h(Z(t))Z ′(t) dt

=

∫ 1

0
h((1− λ)X(t) + λY (t))((1− λ)X ′(t) + λY ′(t)) dt

≥
∫ 1

0
f(X(t))1−λ g(Y (t))λX ′(t)1−λ Y ′(t)λ dt =

=

∫ 1

0

(
f(X(t))X ′(t)

)1−λ (
g(Y (t))Y ′(t)

)λ
dt

=

(∫
R
f dv1

)1−λ(∫
R
g dv1

)λ
.

n − 1 → n: Let n ∈ N, n ≥ 2, such that the statement holds for functions on Rn−1.
Let f, g, h : Rn → R≥0 satisfy (2.1); for each s ∈ R define fs, gs, hs : Rn−1 → R≥0 by
fs(x) := f(x, s), analogously gs, hs. Let x, y ∈ Rn−1 and s, t ∈ R, then

h(1−λ)s+λt((1− λ)x+ λy) = h((1− λ)(x, s) + λ(y, t))

≥ f(x, s)1−λ g(y, t)λ = fs(x)1−λ gt(y)λ,

so by the induction-hypothesis∫
Rn−1

h(1−λ)s+λt dvn−1 ≥
(∫

Rn−1

fs dvn−1

)1−λ(∫
Rn−1

gt dvn−1

)λ
.
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Setting F,G,H : R → R≥0 to be F (s) :=
∫
Rn−1 fs dvn−1, analogously G,H, we see that

they satisfy (2.1) for n = 1, hence by the induction-basis we conclude∫
Rn
h dvn =

∫
R
H dv1 ≥

(∫
R
F dv1

)1−λ(∫
R
Gdv1

)λ
=

=

(∫
Rn
f dvn

)1−λ(∫
Rn
g dvn

)λ
.

Case 2, f or g is not integrable. Then we approximate by fm := min{f,m}1mBn and
gm := min{g,m}1mBn , for m ∈ N; from this follows that fm and gm are integrable,
(fm)m≥1 and (gm)m≥1 are monotonically increasing and (fm)m≥1 → f , (gm)m≥1 → g
pointwise, hence by monotone convergence also the respective integrals converge. By
assumption

h((1− λ)x+ λy) ≥ f(x)1−λ g(y)λ ≥ fm(x)1−λ gm(y)λ

for all x, y ∈ R and m ∈ N, therefore by case 1∫
Rn
h dvn ≥

(∫
Rn
fm dvn

)1−λ(∫
Rn
gm dvn

)λ
for every m ∈ N, and by taking the limit as m→∞ the claim is proved.

Remarks. 1. The theorem can be generalized to an arbitrary number of factors, though
for the present work this is not relevant.
2. The statement can be reformulated so as to be a reverse Hölder’s inequality: set

p := 1
1−λ and q := 1

λ , then p, q ∈ R>1 and 1
p + 1

q = 1; furthermore use fp and gq

instead of f and g, resp., then there holds: if h(z) ≥ sup{f(x)g(y)|xp + y
q = z}, then∫

Rn h dvn ≥
(∫

Rn f
p dvn

)1/p(∫
Rn g

q dvn
)1/q, or more concisely in terms of the Lp-norms,

‖h‖L1(Rn) ≥ ‖f‖Lp(Rn)‖g‖Lq(Rn).

Since Fresen’s proof makes use of projections of random-variables on subspaces (eventu-
ally onedimensional for the final result) and the involved distributions have vn-densities,
it makes sense to study the densities of the projections. Here we need to explain how in-
tegration over a subspace is to be understood. Let E ∈ Gn,k with k ∈ [0, n]; if k = 0, i.e.
E = {o}, then we choose the Dirac-measure on E and hence

∫
E f(x) dx = f(o) for every

function f : E → [−∞,∞]. If k ≥ 1, then E is an embedded differentiable manifold,
hence the integral

∫
E f(x) dx exists for suitable measurable functions f : E → [−∞,∞]

(see, e.g., Forster [12, Chapter 14] concerning integration over embedded manifolds). In
particular we may choose an orthonormal basis u1, . . . , uk ∈ E and with this the map
κ : Rk → Rn defined by κ(t) :=

∑k
i=1 tiui is a linear isometric parametrization of E with

Gramian determinant one, hence
∫
E f(x) dx =

∫
Rk(f ◦ κ) dvk whenever the integral is

defined; in particular f ∈ L1(E) iff f ◦ κ ∈ L1(Rk).
Furthermore, (E, 〈·, ·〉) is a Euclidean vector-space in itself and κ̃ : Rk → E, defined

by κ̃(t) := κ(t), is an isometric isomorphism, and for the adjoint operators there hold
κ̃∗ = κ∗�E and therefore (κ∗κ)(t) = t for all t ∈ Rk and (κκ∗)(x) = x for all x ∈ E.
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[Proof. We are going to use indices in order to make explicit on which space the respective
inner products are defined. Obviously κ∗�E is a linear map from E to Rk. Moreover, for
any ξ ∈ Rk and x ∈ E we have

〈κ̃∗(x), ξ〉Rk = 〈x, κ̃(ξ)〉E = 〈x, κ(ξ)〉Rn = 〈κ∗(x), ξ〉Rk ,

and from that the desired identity follows. ]

For a subset, especially a subspace, A ⊂ Rn let A⊥ := {y ∈ Rn|∀x ∈ A : 〈x, y〉 = 0}
denote the orthogonal complement; for x ∈ Rn we simplify x⊥ := {x}⊥.

Definition 2.8. Let f : Rn → [0,∞] be measurable and let E ⊂ Rn be a subspace, then
the marginal of f on E is defined as the map πEf : E → [0,∞] given by

πEf(x) :=

∫
E⊥

f(x+ y) dy.

Remarks. If f is integrable, then
∫
E πEf(x) dx =

∫
E

∫
E⊥ f(x+ y) dy dx =

∫
Rn f(x) dx <

∞, hence πEf is integrable too, and so takes the value ∞ on a null-set.

Recall that, given a subspace E ∈ Gn,k, pE : Rn → E ↪→ Rn denotes the orthogonal
projection onto E.

Lemma 2.9. Let f, g : Rn → [0,∞] be measurable and let E ⊂ Rn be a subspace.
1. If we define the measure µ by dµ = f dvn, then πEf is the density of µ ◦ p−1

E with
respect to integration on E.

2. πE(f ∗ g) = πEf ∗ πEg, where on the right-hand-side we have convolution on E,
that is (F ∗G)(x) =

∫
E F (x− y)G(y) dy for F,G : E → [0,∞] measurable.

Proof. 1. Let A ∈ B(E), then p−1
E (A) = A + E⊥; for any x ∈ E and y ∈ E⊥ there

holds 1A+E⊥(x+ y) = 1A(x), therefore

µ(p−1
E (A)) = µ(A+ E⊥) =

∫
Rn

1A+E⊥(x)f(x) dx

=

∫
E

∫
E⊥

1A+E⊥(x+ y)f(x+ y) dy dx =

∫
E

1A(x)

∫
E⊥

f(x+ y) dy dx

=

∫
E

1A(x)πEf(x) dx.

2. Let x ∈ E, then

πE(f ∗ g)(x) =

∫
E⊥

(f ∗ g)(x+ y) dy

=

∫
E⊥

∫
Rn
f(x+ y − z)g(z) dz dy

=

∫
E

∫
E⊥

g(z′ + z′′)

∫
E⊥

f(x+ y − z′ − z′′) dy dz′′ dz′
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=

∫
E
πEf(x− z′)

∫
E⊥

g(z′ + z′′) dz′′ dz′

=

∫
E
πEf(x− z′)πEg(z′) dz′

= (πEf ∗ πEg)(x),

where from the second to the third line we have swapped the integrals and split up
Rn = E × E⊥, writing z = z′ + z′′, and from the third to the fourth line we have
substituted y′ := y − z′′.

Remarks. The important stochastic interpretation of the above lemma is as follows: letX
be a random-vector with distribution with vn-density f , then the distribution of pE ◦X
has density πEf with respect to integration over E.
Analogously to the marginals on subspaces we also need the Fourier-transform on

subspaces.

Definition 2.10 (Fourier-transform on subspaces). Let E ⊂ Rn be a nonzero subspace,
then the Fourier-transform on E is the map FE : L1(E)→ C0(E) defined by

FEf(ξ) =

∫
E
e−2πi〈ξ,x〉f(x) dx.

Instead of FRn we may simply write F.

Remarks. 1. If κ : Rk → Rn is a parametrization of E ∈ Gn,k as described on p. 35,
then we can express

FEf(ξ) =

∫
E
e−2πi〈ξ,x〉 f(x) dx =

∫
Rk

e−2πi〈ξ,κ(t)〉 f(κ(t)) dt

=

∫
Rk

e−2πi〈κ∗(ξ),t〉 f(κ(t)) dt = FRk(f ◦ κ)(κ∗(ξ)),

where f ∈ L1(E) and ξ ∈ E. In particular, for E = Rn we may use the identical
parametrization and then Definition 2.10 is consistent with the usual definition of the
Fourier-transform. This representation also shows that FE maps to C0(E) indeed.
2. If f is the distribution-density of an Rn-valued random-variable X, then we can

express Ff(ξ) = E[e−2πi〈ξ,X〉], with ξ ∈ Rn.
The following lemma collects some basic facts concerning the Fourier-transform on

subspaces; in particular, it shows that Fourier-transforms and marginals on subspaces go
together well. For the properties of the Fourier-transform on Rn used in the proof we
refer the reader to, e.g., Grafakos [16, Chapter 2.2].

Lemma 2.11. Let E ∈ Gn,k with k ∈ [1, n].
1. Let f, g ∈ L1(E), then FE(f ∗ g) = FEf · FEg.
2. Let f ∈ L1(E) such that FEf ∈ L1(E), then the inversion-formula holds:

f(x) =

∫
E
e2πi〈ξ,x〉FEf(ξ) dξ.
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3. Let f : Rn → [0,∞] be integrable, then

(Ff)�E = FE(πEf).

In particular, if (Ff)�E ∈ L1(E), the inversion-formula reads (x ∈ E)

πEf(x) =

∫
E
e2πi〈ξ,x〉Ff(ξ) dξ.

Proof. Throughout this proof we fix a parametrization κ : Rk → Rn of E as described on
p. 35.
1. First note with regard to the convolution that, for any t ∈ Rk,

(f ∗ g)(κ(t)) =

∫
E
f(κ(t)− x)g(x) dx =

∫
Rk
f(κ(t)− κ(s))g(κ(s)) ds

=

∫
Rk

(f ◦ κ)(t− s)(g ◦ κ)(s) ds = ((f ◦ κ) ∗ (g ◦ κ))(t).

This implies, for any ξ ∈ E,

FE(f ∗ g)(ξ) = FRk((f ∗ g) ◦ κ)(κ∗(ξ)) = FRk((f ◦ κ) ∗ (g ◦ κ))(κ∗(ξ))

=
(
FRk(f ◦ κ) · FRk(g ◦ κ)

)
(κ∗(ξ))

= FRk(f ◦ κ)(κ∗(ξ))FRk(g ◦ κ)(κ∗(ξ))

= FEf(ξ)FEg(ξ) = (FEf · FEg)(ξ).

2. We have FEf = FRk(f ◦κ)◦κ∗ ∈ L1(E) iff FRk(f ◦κ)◦κ∗◦κ = FRk(f ◦κ) ∈ L1(Rk),
hence inversion is applicable to FRk(f ◦ κ) and this yields, for any x ∈ E,∫

E
e2πi〈ξ,x〉FEf(ξ) dξ =

∫
E
e2πi〈ξ,x〉FRk(f ◦ κ)(κ∗(ξ)) dξ

=

∫
Rk

e2πi〈κ(t),x〉FRk(f ◦ κ)(t) dt

=

∫
Rk

e2πi〈t,κ∗(x)〉FRk(f ◦ κ)(t) dt

= (f ◦ κ)(κ∗(x)) = f(x).

3. Let ξ ∈ E, then,

FE(πEf)(ξ) =

∫
E
e−2πi〈ξ,x〉 πEf(x) dx

=

∫
E
e−2πi〈ξ,x〉

∫
E⊥

f(x+ y) dy dx

=

∫
E

∫
E⊥

e−2πi〈ξ,x+y〉 f(x+ y) dy dx

=

∫
Rn

e−2πi〈ξ,x〉 f(x) dx

= Ff(ξ),

where in the third line we have used 〈ξ, y〉 = 0 for ξ ∈ E, y ∈ E⊥.
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We now formally define logarithmically concave functions, measures and random-vari-
ables. In the sequel we shorten the term to ‘log-concave’.

Definition 2.12 (log-concavity). 1. A function f : Rn → R≥0 is called log-concave iff
for any x, y ∈ Rn and λ ∈ (0, 1),

f((1− λ)x+ λy) ≥ f(x)1−λ f(y)λ. (2.2)

2. A finite measure µ on Rn is called log-concave iff for any compact sets1 A,B ⊂ Rn
and λ ∈ (0, 1),

µ((1− λ)A+ λB) ≥ µ(A)1−λ µ(B)λ. (2.3)

3. A Rn-valued random-variable is called log-concave iff its distribution is a log-concave
measure.

Remarks. 1. A function f : Rn → R≥0 is log-concave iff − log ◦f : Rn → R ∪ {∞}
is convex (here log(0) := −∞). Hence its support is a convex subset of Rn and it is
continuous on the relative interior of its support.

[Proof. For any x, y ∈ Rn and λ ∈ (0, 1) there holds

f((1− λ)x+ λy) ≥ f(x)1−λ f(y)λ

if and only if

− log
(
f((1− λ)x+ λy)

)
≤ −(1− λ) log(f(x))− λ log(f(y)). ]

2. The characteristic function 1K of a convex subset K ⊂ Rn is log-convex.

[Proof. Let x, y ∈ Rn and λ ∈ (0, 1). If x, y ∈ K, then also (1 − λ)x + λy ∈ K, hence
both sides evaluate to 1; if x /∈ K or y /∈ K, then the right-hand-side is 0; in either case
the inequality (2.2) is satisfied. ]

3. The function x 7→ e−‖x‖
2 is log-concave. By applying Lemma 2.14 below it follows

that any Gaußian density is log-concave and Theorem 2.15 implies that the normal
distribution is log-concave.
4. The definition of log-concave measures can be extended to Radon-measures (i.e.,

locally finite, inner regular measures); any finite measure on B(Rn) is a Radon-measure
(see, e.g., [25, Theorem 13.6]). We will have no need of such a generalization.

As per the first remark, the support of a log-concave function is convex; the same is
true for log-concave measures with the appropriate definition of ‘support’ inserted: the
support of the measure µ on (Rn,B(Rn)) is the (closed) set

{x ∈ Rn|∀ε ∈ R>0 : µ(x+ εBn) > 0}.

(We provide no symbol because it would be rarely used.)
1The use of compact sets avoids the difficulty that in general (1−λ)A+λB need not be measurable even
if A,B are so. If A,B are compact, then so is A×B, the map (x, y) 7→ (1−λ)x+λy is continuous and
(1− λ)A+ λB is the image of A×B under that map and hence it is compact, therefore measurable.
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Lemma 2.13. The support of any log-concave measure µ is convex.

Proof. Let x, y ∈ Rn be in the support of µ and let λ ∈ (0, 1); we have to show µ((1 −
λ)x+ λy + εBn) > 0 for any ε ∈ R>0, so let ε ∈ R>0. We note

(1− λ)x+ λy + εBn = (1− λ)(x+ εBn) + λ(y + εBn)

(inclusion from left to right is valid for any set instead of εBn, the converse only holds
for convex sets). Because x and y are in the support of µ, we know µ(x+ εBn) > 0 and
µ(y + εBn), and log-concavity finally implies

µ
(
(1− λ)x+ λy + εBn

)
= µ

(
(1− λ)(x+ εBn) + λ(y + εBn)

)
≥

≥ µ(x+ εBn)1−λ µ(y + εBn)λ > 0.

The classes of log-concave functions and measures enjoy stability under certain im-
portant operations:

Lemma 2.14. Let φ : Rm → Rn be affine (m ∈ N ∪ {0}), let α ∈ R≥0 and let E ⊂ Rn
be a k-dimensional subspace (k ∈ [1, n]).
A. Let f, g : Rn → R≥0 be log-concave functions.

1. αf is log-concave.
2. f ◦ φ is log-concave.
3. fg is log-concave.
4. If f is integrable, then πEf is log-concave.
5. If f and g are integrable, then f ∗ g is log-concave.
B. Let µ : B(Rn)→ R≥0 and ν : B(Rm)→ R≥0 be log-concave measures.

1. αµ is log-concave.
2. ν ◦ φ−1 is log-concave.
3. If K ⊂ Rn is closed and convex, then µ�K is log-concave.
4. µ⊗ ν is log-concave.
5. If m = n, then µ ∗ ν is log-concave.

Proof. A. Let x, y ∈ Rn (except for 4.) and λ ∈ (0, 1).
1. This follows from multiplying (2.2) with α and using α = α1−λ αλ on the right-hand-
side.
2. − log ◦f is convex, therefore also (− log ◦f) ◦ φ = − log ◦ (f ◦ φ) and hence f ◦ φ is
log-concave.
3. Writing out (2.2) for either f and g and multiplying the inequalities, while using that
all terms involved are nonnegative, yields the result.
4. Let x, y ∈ E, let U := (u1, . . . , un−k) be an orthonormal basis of E⊥ and let ξ, η ∈
Rn−k, then

f
(
(1− λ)x+ λy + U((1− λ)ξ + λη)

)
= f

(
(1− λ)(x+ Uξ) + λ(y + Uη)

)
≥

≥ f(x+ Uξ)1−λ f(y + Uη)λ,
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so the Prékopa-Leindler-inequality (with h(ξ) := f((1−λ)x+λy+Uξ), F (ξ) := f(x+Uξ)
and g(ξ) := f(y + Uξ)) implies

πEf((1− λ)x+ λy) =

∫
Rn−k

f((1− λ)x+ λy + Uξ) dξ ≥

≥
(∫

Rn−k
f(x+ Uξ) dξ

)1−λ(∫
Rn−k

f(y + Uξ) dξ

)λ
=

= πEf(x)1−λπEf(y)λ.

5. The maps (x, y) 7→ y and (x, y) 7→ x− y, defined on Rn × Rn, are affine, hence by 2.
(x, y) 7→ f(x − y) and (x, y) 7→ g(y) are log-concave, then by 3. h(x, y) := f(x − y)g(y)
is log-concave; now by 4. πRn×{o}h is log-concave, and finally, since x ∈ Rn 7→ (x, o) ∈
Rn × Rn is again affine, f ∗ g is log-concave, because (f ∗ g)(x) = πRn×{o}h(x, o) =∫
Rn f(x− y)g(y) dy.
B. Let A,B ⊂ Rn be compact and let λ ∈ (0, 1).

1. Finiteness is clear; furthermore multiply both sides of (2.3) with α = α1−λ αλ.
2. Clearly (ν◦φ−1)(Rn) = ν(Rm) <∞. For the rest we have to anticipate Theorem 2.16:2

For ν there exist k ∈ [0,m], an injective affine map ψ : Rk → Rm and a log-concave density
f : Rk → R≥0 such that, for all A ∈ B(Rm), ν(A) =

∫
ψ−1(A) f dvk =

∫
Rk(1A ◦ ψ)f dvk;

this is equivalent to
∫
Rm h dν =

∫
Rk(h ◦ ψ)f dvk for all measurable h : Rm → R≥0.

We know (1− λ)(φ ◦ ψ)−1(A) + λ(φ ◦ ψ)−1(B) ⊂ (φ ◦ ψ)−1((1− λ)A+ λB), this implies

1(1−λ)A+λB

(
(φ ◦ ψ)((1− λ)x+ λy)

)
≥ 1A((φ ◦ ψ)(x))1−λ1B((φ ◦ ψ)(y))λ,

together with f((1 − λ)x + λy) ≥ f(x)1−λ f(y)λ and Prékopa–Leindler (using F (ξ) :=
1A((φ ◦ ψ)(ξ))f(ξ), g(ξ) := 1B((φ ◦ ψ)(ξ))f(ξ) and h(ξ) := 1(1−λ)A+λB((φ ◦ ψ)(ξ))f(ξ))
we conclude

ν
(
φ−1((1− λ)A+ λB)

)
=

∫
Rm

1(1−λ)A+λB(φ(x)) dν(x)

=

∫
Rk

1(1−λ)A+λB(φ(ψ(ξ)))f(ξ) dξ

≥
(∫

Rk
1A((φ ◦ ψ)(ξ))f(ξ) dξ

)1−λ(∫
Rk

1B((φ ◦ ψ)(ξ))f(ξ) dξ

)λ
=

=

(∫
Rm

1A(φ(x)) dν(x)

)1−λ(∫
Rm

1B(φ(x)) dν(x)

)λ
= ν(φ−1(A))1−λ ν(φ−1(B))λ.

3. Recall (µ�K)(A) = µ(A ∩ K). Finiteness follows from µ(K) ≤ µ(Rn) < ∞. Both
A∩K and B∩K are compact by closedness of K, and (1−λ)(A∩K)+λ(B∩K) ⊂ ((1−

2The problem is that φ−1(A) need not be compact any more; this is always the case if φ is not injective
and φ−1(A) 6= ∅.
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λ)A+λB)∩K (because: let x ∈ A∩K and y ∈ B∩K, then (1−λ)x+λy ∈ (1−λ)A+λB
and (1− λ)x+ λy ∈ K by convexity of K), hence

(µ�K)((1− λ)A+ λB) = µ
(
((1− λ)A+ λB) ∩K

)
≥ µ

(
(1− λ)(A ∩K) + λ(B ∩K)

)
≥ µ(A ∩K)1−λ µ(B ∩K)λ = (µ�K)(A)1−λ (µ�K)(B)λ.

4. First we have (µ⊗ ν)(Rn×Rm) = µ(Rn)ν(Rm) <∞. Again we invest Theorem 2.16,
let k, ψ, f be as before. Moreover, for A ⊂ Rn × Rm and y ∈ Rm define Ay := {x ∈
Rn|(x, y) ∈ A}; if A is measurable (compact), then also Ay.
Now let A,B ⊂ Rn × Rm be compact, then, for any y1, y2 ∈ Rm, (1 − λ)Ay1 + λBy2 ⊂
((1− λ)A+ λB)(1−λ)y1+λy2 and so

µ
(
((1− λ)A+ λB)(1−λ)y1+λy2

)
≥ µ((1− λ)Ay1 + λBy2) ≥ µ(Ay1)1−λ ν(By2)λ;

also f((1 − λ)ξ1 + λξ2) ≥ f(ξ1)1−λ f(ξ2)λ for all ξ1, ξ2 ∈ Rk. Thus we may apply
Prékopa–Leindler to F (ξ) := µ(Aψ(ξ))f(ξ), g(ξ) := µ(Bψ(ξ))f(ξ) and h(ξ) := µ

(
((1 −

λ)A+ λB)ψ(ξ)

)
f(ξ) and therewith obtain

(µ⊗ ν)((1− λ)A+ λB) =

∫
Rm

µ
(
((1− λ)A+ λB)y

)
dν(y)

=

∫
Rk
µ
(
((1− λ)A+ λB)ψ(ξ)

)
f(ξ) dξ

≥
(∫

Rk
µ(Aψ(ξ))f(ξ) dξ

)1−λ(∫
Rk
µ(Bψ(ξ))f(ξ) dξ

)λ
=

=

(∫
Rm

µ(Ay) dν(y)

)1−λ(∫
Rm

µ(By) dν(y)

)λ
= (µ⊗ ν)(A)1−λ (µ⊗ ν)(B)λ.

5. This follows from 2. and 4., because µ ∗ ν = (µ ⊗ ν) ◦ φ−1 with φ(x, y) := x + y by
definition.

Log-concave functions and measures are closely related to each other, as the following
two theorems show.

Theorem 2.15. Let f : Rn → R≥0 be log-concave, let a + E ⊂ Rn be the affine hull of
its support, with some a ∈ Rn and E ∈ Gn,k, k ∈ [0, n], suppose

∫
E f(a + x) dx < ∞,

and define µ : B(Rn) → [0,∞] by µ(A) :=
∫
E 1A(a + x)f(a + x) dx for A ∈ B(Rn), then

µ is log-concave.

Proof. µ(Rn) <∞ is immediate.
Suppose E = Rn first. Let A,B ⊂ Rn be compact and let λ ∈ (0, 1). We observe

1(1−λ)A+λB((1− λ)x+ λy) ≥ 1A(x)1−λ 1B(y)λ
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for any x, y ∈ Rn, for if x ∈ A and y ∈ B, then both sides equal 1, or if x /∈ A or y /∈ B,
then the right-hand-side equals 0. Setting F := 1Af , g := 1Bf and h := 1(1−λ)A+λBf ,
the premises for applying the Prékopa-Leindler-inequality are met and we get

µ((1− λ)A+ λB) =

∫
Rn

1(1−λ)A+λBf dvn ≥

≥
(∫

Rn
1Af dvn

)1−λ(∫
Rn

1Bf dvn

)λ
=

= µ(A)1−λ µ(B)λ.

Now let k := dim(E) < n. Let κ : Rk → Rn be a parametrization of E as described on
p. 35 and set φ := a+ κ, then φ is affine and thus f ◦ φ is log-concave and defines a log-
concave measure ν on Rk. Then, for any A ∈ B(Rn),

µ(A) =

∫
E

1A(a+ x)f(a+ x) dx =

∫
Rk

1A(φ(ξ))f(φ(ξ)) dξ

=

∫
Rk

1φ−1(A)(ξ)f(φ(ξ)) dξ = ν(φ−1(A));

so if A,B ⊂ Rn are compact and λ ∈ (0, 1), then φ−1((1−λ)A+λB) ⊃ (1−λ)φ−1(A) +
λφ−1(B), φ−1(A) and φ−1(B) are compact, and log-concavity of µ follows from that of
ν.

Remarks. As a special instance the measure induced by α1K with a convex set K ⊂ Rn,
where vn(K) < ∞, and α ∈ R>0, is log-concave, therefore so is the uniform distribu-
tion on a convex body (take K a convex body and α = vn(K)−1). If we followed the
more general definition using Radon-measures also Lebesgue-measure itself would be log-
concave.

The converse result to Theorem 2.15 goes back to Borell [3, Theorem 3.2]; actually his
theorem covers both the necessity- and sufficiency-parts and is valid for Radon-measures.

Theorem 2.16. Let µ : B(Rn) → R be a log-concave measure, then there exist a k ∈
[0, n], a finite measure ν on Rk with a log-concave vk-density and an affine map φ : Rk →
Rn such that µ = ν ◦ φ−1.
(W/o proof.)

A log-concave function need not be integrable, take for instance f(x1, . . . , xn) := ex1 ;
but if it is, it vanishes at infinity with exponential rate, and therefore moments of arbit-
rary order exist (proof from Klartag [22, Lemma 2.1], also in [4, Lemma 2.2.1]):

Lemma 2.17. Let f : Rn → R≥0 be log-concave with
∫
Rn f dvn ∈ R>0, then there exist

constants A,B ∈ R>0 such that, for all x ∈ Rn, f(x) ≤ Ae−B‖x‖.

Proof. Because of
∫
Rn f dvn > 0, there is a c ∈ (0, 1) with vn

(
f−1[(c,∞)]

)
> 0, the

latter set is convex by log-concavity of f , and since it has nonzero volume its interior
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is nonempty; let x0 ∈ Rn and r ∈ R>0 with x0 + rBn ⊂ f−1[(c,∞)]. It suffices to
consider x0 = o; else define f0(x) := f(x− x0), then f(x) = f0(x+ x0) ≤ Ae−B‖x+x0‖ ≤
Ae−B(‖x‖−‖x0‖) = (AeB‖x0‖)e−B‖x‖.
The set f−1[( ce ,∞)] is convex, contains f−1[(c,∞)] and by integrability of f ,

vn
(
f−1[( ce ,∞)]

)
∈ R>0, thence it also is bounded, so let R ∈ R>0 with f−1[( ce ,∞)] ⊂

R
2B

n. (An unbounded convex set containing a ball also contains a half-cylinder with
infinite height and therefore has infinite volume.) Then, for x ∈ Rn with ‖x‖ ≥ R,
R x
‖x‖ /∈ f

−1[( ce ,∞)] and thus f(R x
‖x‖) ≤

c
e , and also r x

‖x‖ ∈ f
−1[(c,∞)], thus f(r x

‖x‖) ≥ c.
Now write R x

‖x‖ = ‖x‖−R
‖x‖−r r

x
‖x‖ + R−r

‖x‖−r x, then by log-concavity

c

e
≥ f

(
R

x

‖x‖

)
≥ f

(
r
x

‖x‖

) ‖x‖−R
‖x‖−r

f(x)
R−r
‖x‖−r ≥ c

‖x‖−R
‖x‖−r f(x)

R−r
‖x‖−r

and so,

f(x) ≤ c−
‖x‖−R
R−r c

‖x‖−r
R−r e−

‖x‖−r
R−r ≤

(
ce

r
R−r
)
e−
‖x‖
R .

If ‖x‖ ≤ R, then let y ∈ x
2 + r

2B
n, this implies ‖2y − x‖ = 2‖y − x

2‖ ≤ 2 r
2 = r, and

from this and from y = 1
2 (2y − x) + 1

2 x and log-concavity follows

f(y) ≥ f(2x− y)
1
2 f(x)

1
2 ≥ c

1
2 f(x)

1
2

Thence,

∞ >

∫
Rn
f(y) dy ≥

∫
x
2

+ r
2
Bn
f(y) dy ≥ c

1
2 vn

(r
2
Bn
)
f(x)

1
2 ,

or,

f(x) ≤ c−1 vn

(r
2
Bn
)−2

(∫
Rn
f dvn

)2

=: M ≤ (eM)e−
‖x‖
R ,

and thus the claim follows with A := max
{
ce

r
R−r , eM

}
and B := 1

R .

The following concept of isotropy in the context of convex bodies means that a body
has the same moment of inertia for every axis of rotation (along with its barycentre
sitting at the origin; see also Definition 1.2); in the context of probability measures it is
more or less another term for ‘standardized’, that is, having zero expectation and unit
covariance, but also used for functions and measures.

Definition 2.18 (isotropy). 1. A density-function f : Rn → R≥0 is said to be isotropic
iff

•
∫
Rn xf(x) dx = o (f is centred) and

•
∫
Rn xx

Tf(x) dx = In,
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provided that the integrals exist.
2. A probability-measure µ : B(Rn)→ [0,∞] is isotropic iff
•
∫
Rn x dµ(x) = o (µ is centred) and

•
∫
Rn xx

T dµ(x) = In,
provided that the integrals exist.
3. A Rn-valued random-variable X is isotropic iff its distribution is an isotropic meas-

ure (equivalently: E[X] = o and Var[X] = E[XXT] = In, provided that the moments
exist).

The following lemma shows that isotropy can be achieved without great difficulty.

Lemma 2.19. 1. Let f : Rn → R≥0 be measurable with
∫
Rn f dvn ∈ R>0, such that∫

Rn xf(x) dx and
∫
Rn xx

Tf(x) dx are defined and the latter is nonsingular, then there
exist a constant α ∈ R>0 and a bijective affine map φ : Rn → Rn such that αf ◦ φ is
isotropic.
2. Let µ : B(Rn) → [0,∞] be a finite, non-trivial measure such that

∫
Rn x dµ(x) and∫

Rn xx
T dµ(x) are defined and the latter is nonsingular, then there exist a constant α ∈

R>0 and a bijective affine map φ : Rn → Rn such that αµ ◦ φ is isotropic.

Proof. 1. Define

b :=

∫
Rn xf(x) dx∫
Rn f(x)dx

∈ Rn,

A :=

[∫
Rn(x− b)(x− b)Tf(x) dx∫

Rn f(x) dx

]1/2

∈ Mn(R)

and

α :=
det(A)∫

Rn f(x) dx
∈ R≥0,

then A is symmetric and positive-definite, and hence α > 0. The function defined by
f ′(x) = αf(Ax+ b) is isotropic because∫

Rn
f ′(x) dx = α

∫
Rn
f(Ax+ b) dx =

α

det(A)

∫
Rn
f(y) dy = 1,∫

Rn
xf ′(x) dx = α

∫
Rn
xf(Ax+ b) dx =

α

det(A)

∫
Rn
A−1(y − b)f(y) dy

=
A−1∫

Rn f dvn

(∫
Rn
yf(y) dy − b

∫
Rn
f(y) dy

)
= o,

and∫
Rn
xxTf ′(x) dx = α

∫
Rn
xxTf(Ax+ b) dx =

α

det(A)

∫
Rn
A−1(y − b)(y − b)TA−1f(y) dy

=
A−1∫

Rn f dvn

∫
Rn

(y − b)(y − b)Tf(y) dy A−1 = In.
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2. Analogous to above define

α := µ(Rn)−1,

b := α

∫
Rn
x dµ(x), and

A :=

(
α

∫
Rn

(x− b)(x− b)T dµ(x)

) 1
2

,

the affine map φ(x) := Ax+ b and therewith µ′ := αµ ◦φ. Applying the transformation-
formula

∫
Rn h(x) dµ′(x) = α

∫
Rn h(A−1(x− b)) dµ(x) proves the statement.

Remarks. If the function or measure is log-concave to begin with, then by Lemma 2.19
also the transformed function and measure, resp., will be log-concave.
The following simple lemma connects the expectation of the squared norm with the

covariance-matrix.

Lemma 2.20. Let f : Rn → R≥0 be a density with A =
∫
Rn xx

Tf(x) dx, then∫
Rn‖x‖

2f(x) dx = tr(A).

Proof. This is a consequence of cyclic invariance of the trace, that is, ‖x‖2 = xTx =
tr(xTx) = tr(xxT); as a linear operator the trace commutes with the integral.

The next result is Grünbaum’s lemma, going back to Grünbaum [17, Theorem 2 and
Remark (iii)] and quoted as given in [4, Lemma 2.2.6].

Lemma 2.21 (Grünbaum). Let µ be a centred log-concave probability-measure with full-
dimensional support, then, for every θ ∈ Sn−1,

µ{x ∈ Rn|〈θ, x〉 ≤ 0} ≥ 1

e
.

Remarks. If the support of µ is not full-dimensional, it is contained in a hyperplane, and
then for any θ ∈ Sn−1 orthogonal to that hyperplane the stated measure is 1.

Proof. Let θ ∈ Sn−1. Note that, since µ has full-dimensional support, it has a log-
concave vn-density f by Theorem 2.16, hence it is absolutely continuous.
Special case. There exists M ∈ R>0 such that µ{x ∈ Rn||〈θ, x〉| > M} = 0. Define

F (t) := µ{x ∈ Rn|〈θ, x〉 ≤ t} for t ∈ R, then F is the CDF of the marginal of µ on Rθ,
hence absolutely continuous and increasing, with F (t) = 0 for t ≤ −M and F (t) = 1
for t ≥ M ; F also is log-concave for the following reason: we set A := {(x, s) ∈ Rn ×
R|〈θ, x〉 ≤ s}, then A is convex, therefore 1A is log-concave, thus (x, t) 7→ 1A(x, t)f(x)
is log-concave and so is t 7→

∫
Rn 1A(x, t)f(x) dx = F (t) (Lemma 2.14). We have to show

F (0) ≥ 1
e .

Because µ is centred, so are all its onedimensional marginals, and combined with partial
integration this yields

0 =

∫ M

−M
tF ′(t) dt = [tF (t)]M−M −

∫ M

−M
F (t) dt = M −

∫ M

−M
F (t) dt,
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equivalently, ∫ M

−M
F (t) dt = M.

F is log-concave, hence log ◦F is concave, therefore log(F (t)) ≤ log(F (0))+ F ′(0)
F (0) t for all

t ∈ R, that is F (t) ≤ F (0)eαt with α := F ′(0)
F (0) ∈ R>0; w.l.o.g. let 1

α < M . Additionally
we know F ≤ 1, and therewith we can estimate

M =

∫ M

−M
F (t) dt ≤

∫ 1/α

−∞
F (0)eαt dt+

∫ M

1/α
1 dt

=
F (0)

α
[eαt]

1/α
−∞ +M − 1

α
=

eF (0)

α
+M − 1

α
,

and F (0) ≥ 1
e follows by rearrangement.

General case. For anyM ∈ N we set HM := {x ∈ Rn||〈θ, x〉| ≤M}, then HM is closed,
convex and µ(HM ) > 0 (otherwise the convex support of µ would be contained in one of
the halfspaces {x ∈ Rn|〈θ, x〉 < −M} or {x ∈ Rn|〈θ, x〉 > M}, but then also the bary-
centre would lie in one of those and hence could not be zero) and limM→∞ µ(HM ) = 1
by monotone convergence; furthermore we define bM := 1

µ(HM )

∫
Rn 1HM (x)x dµ(x) (the

barycentre of µ restricted to HM ), then by dominated convergence limM→∞ bM =∫
Rn x dµ(x) = o since µ is centred, therefore there exists B ∈ R>0 such that ‖bM‖ ≤ B
for all M ∈ N. With this we define the measure µM (M ∈ N) by

µM (A) :=
µ
(
(bM +A) ∩HM

)
µ(HM )

=
1

µ(HM )

∫
Rn

1HM (x)1A(x− bM ) dµ(x)

for any A ∈ B(Rn). Obviously µM is a probability-measure with µM{x ∈ Rn||〈θ, x〉| >
M+B} = 0, moreover µM is centred. Also, µM is log-concave because it is the restriction
to a closed, convex set and translation of the log-convex measure µ. Furthermore, µM
cannot be degenerate, otherwise its mass would be concentrated in the set E ∩HM with
a proper subspace E, and then µ would be concentrated on bM +E, which it is not. The
special case now implies µM{x ∈ Rn|〈θ, x〉 ≥ 0} ≥ 1

e , valid for all M ∈ N.
We have (1HM (x))M≥1 → 1 for every x ∈ Rn. Let A ∈ B(Rn) and x ∈ Rn \ ∂A, then

there is ε ∈ R>0 with x + εBn ⊂ Rn \ ∂A, and by (bM )M≥1 → o there exists M0 ∈ N
such that bM ∈ εBn and therefore x − bM ∈ Rn \ ∂A for any M ≥ M0, which implies
(1A(x− bM ))M≥1 → 1A(x); hence if µ(∂A) = 0, then (1HM (x)1A(x− bM ))M≥1 → 1A(x)
µ-almost everywhere, and from dominated convergence follows (µM (A))M≥1 → µ(A).
As remarked at the beginning of the proof, the boundary of any halfspace has µ-measure
zero, also µM{x ∈ Rn|〈θ, x〉 ≥ 0} ≥ 1

e for all M ≥ 1, and hence the claim follows.

Comment. It is unclear to us what theoretical background Fresen expects from his read-
ers, as on the one hand he claims that his proof is accessible to anyone, but on the other
hand he calls the proving of Grünbaum’s lemma an interesting exercise (page 8); though
the proof cited above does not seem to us trivial at all. ♦
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The following is an examplification of the rigidity of log-concave functions, it can
be considered a strengthening of Fradelizi’s theorem (as in [4, Theorem 2.2.2]) in the
isotropic case.

Lemma 2.22. Let f : Rn → R≥0 be an isotropic log-concave density, then f(o) ≥ 2−7n.

Proof. The set f−1[(f(o),∞)] ⊂ Rn is convex by log-concavity, with o /∈ f−1[(f(o),∞)],
hence there exists θ ∈ Sn−1 with 〈θ, x〉 ≤ 〈θ, o〉 = 0 for all x ∈ f−1[(f(o),∞)], or,
equivalently, 〈θ, x〉 > 0 implies f(x) ≤ f(o), for all x ∈ Rn. (Note that if f−1[(f(o),∞)] =
∅, any θ ∈ Sn−1 works.)
Let µ denote the measure with vn-density f , then, applying Lemma 2.21 (because of

absolute continuity > instead of ≥ does not hurt), for any r ∈ R>0,

1

e
≤ µ{x ∈ Rn|〈θ, x〉 > 0} =

= µ{x ∈ Rn|〈θ, x〉 > 0 ∧ ‖x‖ < r}+ µ{x ∈ Rn|〈θ, x〉 > 0 ∧ ‖x‖ ≥ r} ≤

≤
∫
{x∈Rn|〈θ,x〉>0∧‖x‖<r}

f(x) dx+ µ{x ∈ Rn|‖x‖ ≥ r} ≤

≤ f(o)vn
(
{x ∈ Rn|〈θ, x〉 > 0} ∩ rBn

)
+ µ{x ∈ Rn|‖x‖ ≥ r} =

=
1

2
f(o)vn(rBn) + µ{x ∈ Rn|‖x‖ ≥ r},

and therefore
µ{x ∈ Rn|‖x‖ ≥ r} ≥ 1

e
− rn

2
f(o)vn(Bn).

Now substitute r = Avn(Bn)−1/n with A ∈ R>0; by Lemma 2.20 and using Markov’s
inequality we obtain

n =

∫
Rn
‖x‖2f(x) dx ≥ A2vn(Bn)−2/nµ{x ∈ Rn|‖x‖ ≥ Avn(Bn)−1/n} ≥

≥ A2vn(Bn)−2/n
(1

e
− Anvn(Bn)−1

2
f(o)vn(Bn)

)
=

= vn(Bn)−2/n
(A2

e
− An+2

2
f(o)

)
;

the last expression is maximized at A =
(

4
e(n+2)f(o)

)1/n, and plugging in yields

n ≥ vn(Bn)−2/n
( 4

e(n+ 2)f(o)

)2/n n

e(n+ 2)

and thence

f(o) ≥ 4
(
e(n+ 2)

)−1−n
2 vn(Bn)−1;
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we know vn(Bn) = πn/2Γ(n+2
2 )−1 = πn/2 n+2

2Γ(n+2
2

+1)
, so investing Stirling’s approximation

Γ(x+ 1) ≥
√

2πx(xe )x we get

f(o) ≥ 4π−
n
2
(
e(n+ 2)

)−n+2
2

2

n+ 2

√
π(n+ 2) (n+ 2)

n+2
2 (2e)−

n+2
2 =

=
4
√
π

e2

1√
n+ 2

(e
√

2π)−n.

By discussing x 7→
√
x+ 2 (e

√
2π)x 2−7x for x ≥ 1 we find out that its global maximum

is smaller than 4
√
π

e2
, and hence the claim is established.

Comment. We do not understand how Fresen obtains the worse estimate Cn−
3
2 (e
√

2π)−n

instead of our sharper one, Cn−
1
2 (e
√

2π)−n, as he does not spell out more details. His
introduction of the sequence (αn)n≥1 and statement of limn→∞ αn = 1 seem to us an
unnecessary complication. A bit confusing are his ommissions of quantifications in lines 4
(generalization over x ∈ Rn) and 8 (generalization over A ∈ R>0). Besides, in the fifth
line from below there should stand vn

(
αn
√

n
2πeB

n
)
. ♦

Remarks. If f is a centred but not necessarily isotropic, log-concave density, we know
by Lemma 2.19 that f ′ := αf ◦ A with A :=

(∫
Rn xx

Tf(x) dx
)1/2 (abusing notation by

writing A both for the matrix and the induced linear map) and α := det(A) is isotropic,
thus f ′(o) = αf(Ao) = αf(o) ≥ 2−7n, therefore f(o) ≥ α−12−7n = det(A)−12−7n.

Lemma 2.17 can be strengthened under the assumtion of isotropy (the constants are
no longer depending on the function); the case n = 1 is proved in [2, Lemma 3.2]:

Lemma 2.23. There exist constants An, Bn ∈ R>0 such that for any isotropic, log-
concave density f : Rn → R≥0 there holds, for all x ∈ Rn, f(x) ≤ Ane−Bn‖x‖.

Proof. We do not present a complete proof here, but restrict ourselves to plugging to-
gether the main ingredients. One is found in Lovász and Vempala [31, Theorem 5.14,
(d)]: for any isotropic, log-concave density f : Rn → R≥0 there holds f(o) ≤ 18n

vn(Bn) ≤
2
√
n(20n)

n
2 . (The proof is somewhat similar to that of our Lemma 2.22, which actually

is part of the cited Theorem 5.14, (d), and also uses Grünbaum’s lemma. The proof of
our Lemma 2.22 expands the sketch given by Fresen, and does not follow [31].)
The other is [21, Corollary 2.4], stating that for any isotropic, log-concave function

f : Rn → R≥0 we have f(x) ≤ f(o)eCn−c‖x‖ for all x ∈ Rn, with universal constants
C, c ∈ Rn. [21] gives no explicit values for the constants, but retracing the steps of the
proof (which also involves an excursus to [22, Lemma 2.7]) we may reconstruct C = 2
and c = 1

48 log(80e4)
≥ 1

402.34 .

The claim follows with An := (18e2)n

vn(Bn) and Bn := 1
48 log(80e4)

(note that the latter does
not depend on dimension).

The last lemma in this section already is in dedicate preparation for the proof of the
main Theorem 3.1, it treats the radial part of a log-concave density when transforming
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integrals to polar coordinates and essentially tells that this radial part is strongly peaked,
and if the locations of peaks for different angles do not differ too much, they are actually
close to a multiple of

√
n.

Lemma 2.24. Let n ≥ 2, let f : Rn → R≥0 be a differentiable log-concave function with∫∞
0 f(tx) dt ∈ R>0 for every x ∈ Sn−1. Let x ∈ Sn−1.
1. Define the function Fx : R≥0 → R≥0 by Fx(t) := tn−1f(tx), then Fx is a log-concave

function (considered as a function on R by extending with value zero).
2. Fx has a unique maximizer tx ∈ R>0, and there holds

−tx
d

dt
log(f(tx))

∣∣
t=tx

= n− 1.

3. For all u ∈ [0, 1],∫ (1+u)tx

(1−u)tx

Fx(t) dt ≥
(
1− 3e−

log(e/2)
2

nu2
) ∫ ∞

0
Fx(t) dt.

4. Let f additionally be a centred density with
∫
Rn xx

Tf(x) dx = σ2In for some σ ∈
R>0 and let there exist a γ ∈ (0, 1

2 ] such that 1− γ ≤ tx
ty
≤ 1

1−γ for all x, y ∈ Sn−1. For
any x ∈ Sn−1 pick a random-variable Xx with density (

∫∞
0 Fx dv1)−1 Fx. Let there exist

C1, C2 ∈ R>0 such that, for any x ∈ Sn−1, |E[Xx] − tx| ≤ C1
tx√
n
and Var[Xx] ≤ C2

t2x
n .

Then there exists C ∈ R>0 such that, if γ + C1√
n
≤ 1

4 holds, then, for any x ∈ Sn−1,

∣∣∣ tx
σ
√
n
− 1
∣∣∣ ≤ 3γ +

C√
n
.

Proof. 1. It suffices to show that t 7→ tn−1 is log-concave; then, because t 7→ tx is
affine, t 7→ f(tx) is log-conacave and thus Fx as the product of log-concave functions is
so itself.
Let s, t ∈ R≥0, s 6= t, and λ ∈ (0, 1). By the inequality of arithmetic and geometric

means,

s1−λtλ < (1− λ)s+ λt,

and thence

((1− λ)s+ λt)n−1 > (s1−λtλ)n−1 = (sn−1)1−λ (tn−1)λ.

So actually Fx is strictly log-concave on its support.
2. By Lemma 2.17, Fx(t) decays at least exponentially to zero for t→∞. Furthermore

Fx(0) = 0, and by the assumptions on f , values of t with Fx(t) > 0 exist and Fx is
continuous, hence Fx attains a global maximum; by strict log-convexity the maximizer
is unique. The characterization of tx is a rearrangement of F ′x(tx) = 0.
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3. For brevity we call c := log( e2). The function t 7→ log(f(tx)) is concave and hence
lies below its tangent at tx; together with 2., this means, for all t ∈ R≥0,

log(f(tx)) ≤ log(f(txx)) +
d

dt
log(f(tx))

∣∣
t=tx

(t− tx) =

= log(f(txx))− (n− 1)
( t
tx
− 1
)
.

Also log(1 + z) ≤ z − cz2 for all z ∈ [−1, 1], and therefore

log
( t
tx

)
−
( t
tx
− 1
)
≤ −c

( t
tx
− 1
)2

for all t ∈ R≥0 with
∣∣ t
tx
− 1
∣∣ ≤ 1. These facts now imply

Fx(t) = exp
(
(n− 1) log(t) + log(f(tx))

)
≤

≤ exp
(

(n− 1) log
( t
tx

)
+ (n− 1) log(tx) + log(f(txx))− (n− 1)

( t
tx
− 1
))

=

= Fx(tx) exp
(

(n− 1) log
( t
tx

)
− (n− 1)

( t
tx
− 1
))
≤

≤ Fx(tx) exp
(
−c(n− 1)

( t
tx
− 1
)2)

,

still for all t ∈ R≥0 with
∣∣ t
tx
− 1
∣∣ ≤ 1.

Let t ∈ (tx, 2tx]. If s ∈ [tx, t], then s = t−s
t−tx tx + s−tx

t−tx t, and by log-concavity,

Fx(s) ≥ Fx(tx)
t−s
t−tx Fx(t)

s−tx
t−tx = Fx(t)

(Fx(tx)

Fx(t)

) t−s
t−tx ≥

≥ Fx(t) exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)
;

integrating yields∫ ∞
0

Fx(s) ds ≥
∫ t

tx

Fx(s) ds ≥

≥ Fx(t)

∫ t

tx

exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)
ds =

= − t2xFx(t)

c(n− 1)(t− tx)

[
exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)]t
tx

=
t2xFx(t)

c(n− 1)(t− tx)

{
exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}
,

thus,

t2xFx(t)

c(n− 1)(t− tx)
≤
{

exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}−1

∫ ∞
0

Fx(s) ds.
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If s ∈ [t,∞), then t = s−t
s−tx tx + t−tx

s−tx s, so again by log-concavity,

Fx(t) ≥ Fx(tx)
s−t
s−tx Fx(s)

t−tx
s−tx ,

or,

Fx(s) ≤ Fx(tx)−
s−t
t−tx Fx(t)

s−tx
t−tx = Fx(t)

( Fx(t)

Fx(tx)

) s−t
t−tx ≤

≤ Fx(t) exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)
;

again integrate,∫ ∞
t

Fx(s) ds ≤ Fx(t)

∫ ∞
t

exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)
ds =

= − t2xFx(t)

c(n− 1)(t− tx)

[
exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)]∞
t

=
t2xFx(t)

c(n− 1)(t− tx)
≤

≤
{

exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}−1

∫ ∞
0

Fx(s) ds,

where we have used our former result. Rewriting with u := t
tx
− 1 ∈ (0, 1] produces∫ ∞

(1+u)tx

Fx(t) dt ≤
{

exp
(
c(n− 1)u2

)
− 1
}−1

∫ ∞
0

Fx(t) dt.

Now consider t ∈ [0, tx). As before, first let s ∈ [t, tx], then s = tx−s
tx−t t+ s−t

tx−t tx, hence

Fx(s) ≥ Fx(t)
tx−s
tx−t Fx(tx)

s−t
tx−t = Fx(t)

(Fx(tx)

Fx(t)

) t−s
t−tx ≥

≥ Fx(t) exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)
,

from this follows∫ ∞
0

Fx(s) ds ≥
∫ tx

t
Fx(s) ds ≥

≥ Fx(t)

∫ tx

t
exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)
ds =

= − t2xFx(t)

c(n− 1)(t− tx)

[
exp
(
c(n− 1)

(t− tx)(t− s)
t2x

)]tx
t

=
t2xFx(t)

c(n− 1)(tx − t)

{
exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}
,
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so,

t2xFx(t)

c(n− 1)(tx − t)
≤
{

exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}−1

∫ ∞
0

Fx(s) ds.

For s ∈ [0, t] we have t = tx−t
tx−s s+ t−s

tx−s tx, consequently,

Fx(t) ≥ Fx(s)
tx−t
tx−s Fx(tx)

t−s
tx−s ,

thence,

Fx(s) ≤ Fx(t)
tx−s
tx−t Fx(tx)−

t−s
tx−t = Fx(t)

( Fx(t)

Fx(tx)

) s−t
t−tx ≤

≤ Fx(t) exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)
;

from that by integrating,∫ t

0
Fx(s) ds ≤ Fx(t)

∫ t

0
exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)
ds =

= − t2xFx(t)

c(n− 1)(t− tx)

[
exp
(
−c(n− 1)

(t− tx)(s− t)
t2x

)]t
0

=
t2xFx(t)

c(n− 1)(tx − t)

{
1− exp

(
c(n− 1)

t(t− tx)

t2x

)}
≤

≤
{

exp
(
c(n− 1)

( t
tx
− 1
)2)
− 1
}−1

∫ ∞
0

Fx(s) ds;

by substituting u := 1− t
tx
∈ (0, 1] this reads

∫ (1−u)tx

0
Fx(t) dt ≤

{
exp
(
c(n− 1)u2

)
− 1
}−1

∫ ∞
0

Fx(t) dt.

Putting things together, we obtain∫ (1+u)tx

(1−u)tx

Fx(t) dt ≥
{

1− 2
[
exp
(
c(n− 1)u2

)
− 1
]−1}∫ ∞

0
Fx(t) dt,

and it remains to bound the term within the braces. First note

1− 2
[
exp
(
c(n− 1)u2

)
− 1
]−1
≤ 0⇐⇒ |u| ≤

( log(3)

c(n− 1)

) 1
2
.

Hence, it is sufficient to consider the range |u| ∈
[( log(3)
c(n−1)

)1/2
, 1
]
. We have[

exp
(
c(n− 1)u2

)
− 1
]−1

= exp
(
−c(n− 1)u2

)[
1− exp

(
−c(n− 1)u2

)]−1
,
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the inverted term is decreasing in |u| and thus[
1− exp

(
−c(n− 1)u2

)]−1
≤
[
1− exp

(
−c(n− 1)

log(3)

c(n− 1)

)]−1
=

3

2
,

therefore, for |u| ≥
( log(3)
c(n−1)

)1/2,
1− 2

[
exp
(
c(n− 1)u2

)
− 1
]−1
≥ 1− 3 exp

(
−c(n− 1)u2

)
,

and for smaller |u| the right-hand-side is again negative. Lastly, n − 1 ≥ n
2 for n ≥ 2,

and so
1− 3 exp

(
−c(n− 1)u2

)
≥ 1− 3 exp

(
− c

2
nu2

)
.

4. Here we set c := log(e/2)
2 . Let x ∈ Sn−1. Then for any y ∈ Sn−1 we get the upper

bound

E[X2
y ] = E[Xy]

2 + Var[Xy] ≤

≤
(
ty + C1

ty√
n

)2
+ C2

t2y
n

=

= t2y

(
1 +

2C1√
n

+
C2

1 + C2

n

)
,

now we have 1
n ≤

1√
2n

for n ≥ 2 and t2y ≤
t2x

(1−γ)2
≤ (1 + 6γ)t2x by exploiting convexity of

γ 7→ 1
(1−γ)2

and γ ∈ [0, 1
2 ], so we may continue,

E[X2
y ] ≤ t2x(1 + 6γ)

(
1 +

(
2C1 +

C2
1 + C2√

2

) 1√
n

)
=

= t2x

(
1 + 6γ + (1 + 6γ)

(
2C1 +

C2
1 + C2√

2

) 1√
n

)
≤

≤ t2x
(

1 + 6γ +
2C√
n

)
,

where we have defined C := 4C1+
√

2(C2
1 +C2). Using Lemma 2.20 and polar coordinates,

we obtain

nσ2 =

∫
Rn
‖ξ‖2f(ξ) dξ

=
2π

n
2

Γ(n2 )

∫
Sn−1

∫ ∞
0

r2Fy(r) dr dσn−1(y)

=
2π

n
2

Γ(n2 )

∫
Sn−1

E[X2
y ]

∫ ∞
0

Fy(r) dr dσn−1(y) ≤

≤ t2x
(

1 + 6γ +
2C√
n

) 2π
n
2

Γ(n2 )

∫
Sn−1

∫ ∞
0

Fy(r) dr dσn−1(y) =



2.2. LOG-CONCAVE FUNCTIONS AND MEASURES 55

= t2x

(
1 + 6γ +

2C√
n

)
.

From this follows

tx
σ
√
n
≥
(

1 + 6γ +
2C√
n

)− 1
2
.

Convexity of ξ 7→ (1+ξ)−1/2 implies (1+ξ)−1/2 ≥ 1− ξ
2 for all ξ ∈ (−1,∞) and therefore

tx
σ
√
n
≥ 1− 3γ − C√

n
.

Similarly we bound the expectation from below (note that by our assumtions C1√
n
≤ 1

4),

E[X2
y ] ≥ E[Xy]

2 ≥
(
ty − C1

ty√
n

)2
=

= t2y

(
1− 2C1√

n
+
C2

1

n

)
≥ t2x(1− γ)2

(
1− 2C1√

n

)
≥ t2x(1− 2γ)

(
1− 2C1√

n

)
=

= t2x

(
1− 2γ − 2C1√

n
+

4C1γ√
n

)
≥

≥ t2x
(

1− 2γ − 2C1√
n

)
,

where we have used (1− γ)2 ≥ 1− 2γ (by convexity). This we use in order to estimate
in its turn

nσ2 =
2π

n
2

Γ(n2 )

∫
Sn−1

E[X2
y ]

∫ ∞
0

Fy(r) dr dσn−1(y) ≥

≥ t2x
(

1− 2γ − 2C1√
n

)
.

Hence,

tx
σ
√
n
≤
(

1− 2γ − 2C1√
n

)− 1
2
.

Again by convexity we have (1 + x)−1/2 ≤ 1 − 2(
√

2 − 1)x for x ∈ [−1
2 , 0], and by our

assumptions we may use this to get

tx
σ
√
n
≤ 1 + 4(

√
2− 1)γ +

4(
√

2− 1)C1√
n

.

From this the statement follows since 4(
√

2− 1) ≤ 3 and 4(
√

2− 1)C1 ≤ C.
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Comment. Though Fresen does not state it, point 3. essentially is [20, Lemma 4.5] (apart
from the range of the relative deviation: [0, 1

2 ] for the former, [0, 1] for the latter; we have
adapted the constants so to cover the larger range). In our view, Fresen’s proof has
two advantages: it rquires Fx to be differentiable only once (versus C2 in [20]), and
the techniques themselves are mostly elementary. Point 4. provides an analogue to [20,
Lemma 4.6, (ii)]. ♦

2.3 Thin-shell-property and central limit-theorem

In this section we provide important stochastic tools, some of which bear an interest of
their own. The first result regards the spherical properties, so to say, of the n-dimensional
standard normal distribution.

Lemma 2.25. Let n ≥ 2 and let Z be an Rn-valued random-variable with standard
normal distribution.

1. Z
‖Z‖ has distribution σn−1 and is independent of ‖Z‖.

2. If X is an Rn-valued random-variable with distribution µ and independent of Z,
then Y :=

〈
X
‖X‖ ,

Z
‖Z‖
〉
has the same distribution as Z1

‖Z‖ and is independent of ‖X‖.
3. For any ε ∈ R>0 there holds

P
[∣∣∣‖Z‖√

n
− 1
∣∣∣ ≥ ε] ≤ e + 2

2
√

2
e−

1
2
nε2 .

Proof. 1. This actually holds for any radially symmetric distribution which puts no
mass on the origin. See, e.g., Prochno, Thäle and Turchi [35, Proposition 3.3] for an even
more general result. Write ϕ(z) = ψ(‖z‖) with ψ : R≥0 → R≥0, then by transforming to
polar coordinates,

1 =

∫
Rn
ϕ(z) dz =

∫
Rn
ψ(‖z‖) dz

=

∫ ∞
0

∫
Sn−1

rn−1 ψ(‖rθ‖) 2π
n
2

Γ(n2 )
dσn−1(θ) dr =

2π
n
2

Γ(n2 )

∫ ∞
0

rn−1 ψ(r) dr.

Now let A ∈ B(Sn−1), then Z
‖Z‖ ∈ A iff Z ∈ R>0A because the former implies ‖Z‖ > 0

and Z ∈ ‖Z‖A ⊂ R>0A, and the latter means Z = λa for some λ ∈ R>0, a ∈ A, therefore
‖Z‖ = λ and hence Z

‖Z‖ = a ∈ A. With this we get

P
[ Z

‖Z‖
∈ A

]
= P[Z ∈ R>0A] =

∫
R>0A

ϕ(z) dz

=

∫ ∞
0

∫
A
rn−1 ψ(r)

2π
n
2

Γ(n2 )
dσn−1(θ) dr

=
2π

n
2

Γ(n2 )

∫ ∞
0

rn−1 ψ(r) dr

∫
A
dσn−1(θ) = σn−1(A).
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For the independence-part let A ∈ B(Sn−1) and B ∈ B(R≥0), then via a similar reasoning
as above, Z

‖Z‖ ∈ A ∧ ‖Z‖ ∈ B iff Z ∈ BA; moreover 1BA(rθ) = 1B(r)1A(θ) for r ∈ R≥0

and θ ∈ Sn−1. Thus,

P
[ Z

‖Z‖
∈ A ∧ ‖Z‖ ∈ B

]
= P[Z ∈ BA] =

∫
Rn

1BA(z)ϕ(z) dz

=

∫
R≥0

∫
Sn−1

rn−1 1BA(rθ)ψ(r)
2π

n
2

Γ(n2 )
dσn−1(θ) dr

=

∫
B
rn−1 ψ(r)

2π
n
2

Γ(n2 )
dr

∫
A
dσn−1(θ)

= σn−1(A)

∫
B

∫
Sn−1

rn−1 ψ(r)
2π

n
2

Γ(n2 )
dσn−1(θ) dr

= σn−1(A)

∫
{z∈Rn|‖z‖∈B}

ϕ(z) dz

= P
[ Z

‖Z‖
∈ A

]
P[‖Z‖ ∈ B].

2. For the distribution of Y let t ∈ R and note that because of 1., P
[
Z1
‖Z‖ ≤ t

]
=

σn−1{θ ∈ Sn−1|θ1 ≤ t}. Thus,

P[Y ≤ t] = (µ⊗ σn−1)
{

(x, θ) ∈ Rn × Sn−1
∣∣∣〈 x

‖x‖
, θ
〉
≤ t
}

=

∫
Rn

∫
Sn−1

1[〈 x
‖x‖ ,θ〉≤t](x, θ) dσn−1(θ) dµ(x)

=

∫
Rn
σn−1

{
θ ∈ Sn−1

∣∣∣〈 x

‖x‖
, θ
〉
≤ t
}
dµ(x)

=

∫
Rn
σn−1{θ ∈ Sn−1|θ1 ≤ t} dµ(x)

= σn−1{θ ∈ Sn−1|θ1 ≤ t},

where we have used rotational invariance of σn−1 (rotate x
‖x‖ to e1). For the independ-

ence-part let s, t ∈ R and s ≥ 0, yielding

P
[
‖X‖ ≤ s ∧

〈 X

‖X‖
,
Z

‖Z‖

〉
≤ t
]

=

∫
Rn

∫
Sn−1

1[‖x‖≤s]∩[〈 x
‖x‖ ,θ〉≤t](x, θ) dσn−1(θ) dµ(x)

=

∫
[‖x‖≤s]

σn−1

{
θ ∈ Sn−1

∣∣∣〈 x

‖x‖
, θ
〉
≤ t
}
dµ(x)

= µ{x ∈ Rn|‖x‖ ≤ s}σn−1{θ ∈ Sn−1|θ1 ≤ t}
= P[‖X‖ ≤ s]P[Y ≤ t],

where again we have used rotational invariance of σn−1, as before.



58 2. MATHEMATICAL PREPARATIONS

3. Let ε ∈ R>0; we will estimate the upper and lower tails separately, first the former.
There holds

P
[‖Z‖√

n
− 1 ≥ ε

]
= P[‖Z‖ ≥ (1 + ε)

√
n] = P

[
Z ∈ [(1 + ε)

√
n,∞)Sn−1

]
=

∫ ∞
(1+ε)

√
n

∫
Sn−1

rn−1 (2π)−
n
2 e−

1
2
r2 2π

n
2

Γ(n2 )
dσn−1(θ) dr

=
21−n

2

Γ(n2 )

∫ ∞
(1+ε)

√
n
rn−1 e−

1
2
r2 dr;

transforming r = x+
√
n, we get

rn−1 = (x+
√
n)n−1 = n

n−1
2

(
1 +

x√
n

)n−1
≤ n

n−1
2 ex

√
n,

so the integral can be estimated by∫ ∞
(1+ε)

√
n
rn−1 e−

1
2
r2 dr ≤ n

n−1
2

∫ ∞
ε
√
n
ex
√
n e−

1
2

(x+
√
n)2 dx =

= n
n−1
2 e−

n
2

∫ ∞
ε
√
n
e−

1
2
x2 dx ≤

≤
√
π

2
n
n−1
2 e−

n
2 e−

1
2
nε2 ,

where we have used the estimate
∫∞
δ ϕ(t) dt ≤ 1

2 ϕ(δ). By Stirling’s formula we also have
Γ(n2 ) = 2

n Γ(n2 + 1) ≥ 2
n

√
πnn

n
2 2−

n
2 e−

n
2 ; thus we obtain

P
[‖Z‖√

n
− 1 ≥ ε

]
≤ 21−n

2

2
n

√
πnn

n
2 2−

n
2 e−

n
2

√
π

2
n
n−1
2 e−

n
2 e−

1
2
nε2 =

=
1√
2
e−

1
2
nε2 .

Concerning the lower tail we have

P
[‖Z‖√

n
− 1 ≤ −ε

]
= P[‖Z‖ ≤ (1− ε)

√
n]

=
21−n

2

Γ(n2 )

∫ (1−ε)
√
n

0
rn−1 e−

1
2
r2 dr;

with the substitution r = x+
√
n, the domain of integration becomes [−

√
n,−ε

√
n], and

as before (x+
√
n)n−1 = n

n−1
2 (1 + x√

n
)n−1; estimating that from above is more involving

this time: consider f(x) := (1 + x√
n

)n−1 e−x
√
n for x ∈ [−

√
n, 0], the critical points are

−
√
n (only for n ≥ 3) and − 1√

n
, the respective function-values are f(−

√
n) = 0 and
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f(− 1√
n

) = e(1 − 1
n)n−1; because of f(−

√
n) = 0 ≤ f(x), f(0) = 1, and f(− 1√

n
) ∈ [1, e2 ]

we know f(x) ≤ e
2 and thus (1+ x√

n
)n−1 ≤ e

2 e
x
√
n; so the integral is bounded from above

as follows,∫ −ε√n
−
√
n

(
1 +

x√
n

)n−1
e−

1
2

(x+
√
n)2 dx ≤ e

2

∫ −ε√n
−
√
n

ex
√
n e−

1
2

(x+
√
n)2 dx ≤

≤ e

2
e−

n
2

∫ −ε√n
−∞

e−
1
2
x2 dx ≤

≤
√
π

2

e

2
e−

n
2 e−

1
2
nε2 ;

using the same estimate for Γ(n2 ) as above, we arrive at

P
[‖Z‖√

n
− 1 ≤ −ε

]
≤ 21−n

2

2
n

√
πnn

n
2 2−

n
2 e−

n
2

n
n−1
2

√
π

2

e

2
e−

n
2 e−

1
2
nε2 =

=
e

2
√

2
e−

1
2
nε2 .

Adding the inequalities for upper and lower tail finishes the proof.

The next lemma is intimately related to the concentration of measure on the sphere,
saying that the volume of a spherical cap approximately follows a normal distribution
with standard deviation 1√

n
; this has the effect that in high dimensions an only slightly

“fattened” equator already carries most of the mass (of course because of orthogonal
invariance this holds for every great circle), see also [24, p. 403]. The interested reader
is referred to the textbook of Ledoux [26] for the basics of concentration of measure.

Lemma 2.26. Let n ≥ 2. Define Φn : R→ [0, 1] by Φn(t) := σn−1{θ ∈ Sn−1|θ1 ≤ t√
n
},

then
‖Φn − Φ‖L∞(R) ≤

2√
n
.

Remarks. The bound actually is poor; graphical experiments suggest something like at
most 0.15√

n
, and perhaps even 0.2

n , but the proof does not yield as much.

Proof. Let Z be an Rn-valued random-variable with standard normal distribution, then
Lemma 2.25, 1., implies Φn(t) = P

[
Z1
‖Z‖ ≤

t√
n

]
. Note that because of the symmetry

of Sn−1 there holds Φn(−t) = 1 − Φn(t), the same goes for Φ and hence it suffices to
consider |Φn(t) − Φ(t)| for t ∈ R≥0. Also the statement is trivially valid for n ≤ 4, so
w.l.o.g. assume n ≥ 5.
First let t ≥

√
n, then Φn(t) = 1, hence

|Φn(t)− Φ(t)| = 1− Φ(t) ≤ 1

t
ϕ(t) ≤ 1√

2π
√
n
.
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Now consider t ∈ [0,
√
n). DenoteW := (Z2, . . . , Zn)T, then Z1 andW are independent

Gaußian random-variables, and ‖Z‖2 = Z2
1 + ‖W‖2. Thus,

|Φn(t)− Φ(t)| =
∣∣∣P[Z1 ≤

t√
n
‖Z‖

]
− Φ(t)

∣∣∣ =
∣∣∣P[Z1 ≤ 0 ∨ Z2

1 ≤
t2

n
‖Z‖2

]
− Φ(t)

∣∣∣
=
∣∣∣P[Z1 ≤ 0 ∨ n− t

2

n
Z2

1 ≤
t2

n
‖W‖2

]
− Φ(t)

∣∣∣
=
∣∣∣P[Z1 ≤

t√
n− t2

‖W‖
]
− Φ(t)

∣∣∣
=

∣∣∣∣∫
Rn−1

∫ t√
n−t2

‖w‖

−∞
(2π)−

1
2 e−

1
2
z21 dz1 (2π)−

n−1
2 e−

1
2
‖w‖2 dw − Φ(t)

∣∣∣∣
=

∣∣∣∣∫
Rn−1

Φ
( t‖w‖√

n− t2
)

(2π)−
n−1
2 e−

1
2
‖w‖2 dw − Φ(t)

∣∣∣∣
=
∣∣∣E[Φ ◦ t‖W‖√

n− t2
]
− Φ(t)

∣∣∣ ≤
≤ E

[∣∣∣Φ ◦ t‖W‖√
n− t2

− Φ(t)
∣∣∣].

For t2 ≥
√
n

2 we use 1− Φ(s) ≤ 1
2 e
− s

2

2 and E[e−s‖Z‖
2
] = E[e−sZ

2
1 ]n = (1 + 2s)−

n
2 , either

for s ∈ R≥0, also (1 + x
n)n ≤ ex (for x ∈ [−n,∞)), and e−x ≤ 1

ex (for x ∈ R≥0); this
yields

E
[∣∣∣Φ ◦ t‖W‖√

n− t2
− Φ(t)

∣∣∣] ≤ 1

2
E
[
e
− t2

2(n−t2)
‖W‖2]

+
1

2
e−

1
2
t2 =

=
1

2

(
1 + 2

t2

2(n− t2)

)−n−1
2

+
1

2
e−

1
2
t2

=
1

2

(
1− t2

n

)n−1
2

+
1

2
e−

1
2
t2 ≤

≤ 1

2
e−

n−1
2n

t2 +
1

2
e−

1
2
t2

≤ 1

2

2

et2

( n

n− 1
+ 1
)

≤ 31

15e

1

t2
≤ 1

t2
≤ 2√

n
.

In the case t2 ≤
√
n

2 ≤
n
4 we use Lemmata 2.4 and 2.25, 3., and |x−1| = |x2−1|

|x+1| ≤ |x
2−1|

(for x ∈ R≥0) to obtain

E
[∣∣∣Φ ◦ t‖W‖√

n− t2
− Φ(t)

∣∣∣] ≤ 1

2
E
[∣∣∣ ‖W‖√

n− t2
− 1
∣∣∣]

≤
√
n− 1

2
√
n− t2

E
[∣∣∣ ‖W‖√

n− 1
− 1
∣∣∣]+

1

2

∣∣∣ √n− 1√
n− t2

− 1
∣∣∣
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≤
√
n− 1

2
√
n− t2

∫ ∞
0

P
[∣∣∣ ‖W‖√

n− 1
− 1
∣∣∣ ≥ ε] dε+

1

2

∣∣∣ n− 1

n− t2
− 1
∣∣∣

≤
√
n− 1

2
√
n− t2

e + 2

2
√

2

∫ ∞
0

e−
1
2

(n−1)ε2 dε+
|t2 − 1|

2(n− t2)
=

=

√
n− 1√
n− t2

e + 2

4
√

2

1

2

√
2π

n− 1
+
|t2 − 1|

2(n− t2)

=
(e + 2)

√
π

8

1√
n− t2

+
|t2 − 1|

2(n− t2)
≤

≤ (e + 2)
√
π

4
√

3

1√
n

+

√
n/2

2 · 3n/4
≤ 2√

n
.

Comment. Unfortunately Fresen’s hints towards a proof (page 10) are too scant for us
in order to reconstruct it; he only writes down (essentially) Φn(t) − Φn(−t) = P

[
|Z1| ≤

t√
n−t2

(∑n
i=2 Z

2
i

)1/2] (he inadvertently misses the square-root over the sum) and suggests
using Φ((1 + δ)t) − Φ(t) ≤ Cδ and Gaußian concentration about

√
n; as an alternative

he speaks of considering the density Φ′n. He gives no further information on what he has
in mind about how to string the ingredients together to a full-fledged proof. This is why
here we have presented the proof of [2, Lemma 2.7], given also in [4, p. 396]. ♦

The theorem of Lévy given below, taken from [4, Theorem 1.7.9], builds upon the con-
centration of measure on the sphere; its usual interpretation is that a Lipschitz-continuous
function on the sphere is “almost constant” on “most of its domain”. If the mean used
below is replaced by the Lévy-mean (also called median), then an analogous statement
holds for other probability-spaces where concentration of measure can be observed.
Recall that for metric spaces (X, dX), (Y, dY ) a function f : X → Y is called Lipschitz-

continuous with constant L ∈ R≥0 iff dY (f(x1), f(x2)) ≤ LdX(x1, x2) for all x1, x2 ∈ X.
The standard metric on Sn−1 is the arclength or geodesic distance given by d(θ, θ′) :=
arccos 〈θ, θ′〉; the Euclidean metric on Rn induces the chordal metric on Sn−1.

Theorem 2.27 (Lévy). Let f : Sn−1 → R be Lipschitz-continuous with constant L ∈ R>0

and set

M :=

∫
Sn−1

f(θ) dσn−1(θ).

Then, for every ε ∈ R>0,

σn−1

{
θ ∈ Sn−1

∣∣|f(θ)−M | ≥ ε
}
≤ 2 exp

(
−(n− 1)ε2

2L2

)
.

(W/o proof.)

Remarks. Because of ‖θ−θ′‖ ≤ d(θ, θ′), the Lipschitz-constant computed with respect to
the arclength is bounded from above by the Lipschitz-constant with respect to Euclidean
distance, hence also the latter may be used.
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One of the key-statements concerning almost normal marginals of high-dimensional
random-vectors is the following theorem (formulated and proved here for log-concave
distributions; see Theorem 1.4 on p. 24 for the more general version given in [2]).

Theorem 2.28 (thin shell implies CLT). There exist constants C, c ∈ R>0 such that the
following holds: let ε ∈ (0, 1

2) and let X be an Rn-valued isotropic log-concave random-
variable. If X has the thin-shell-property

P
[∣∣∣‖X‖√

n
− 1
∣∣∣ ≥ ε] ≤ ε,

then, for any δ ∈ R>0, there holds

σn−1

{
θ ∈ Sn−1

∣∣∣ sup
{
|P[〈θ,X〉 ≤ t]− Φ(t)|

∣∣t ∈ R
}
≥ δ +

3ε

2

}
≤ C
√
n e−cnδ

2
.

Comment. Fresen omits the role of δ by seemingly equalling it with ε; while not harmful
in itself, it bereaves the theorem of some of its generality and, more importantly, it
hinders its application for the proof of the main Theorem 3.1 where we indeed make use
of choosing δ independently from ε (albeit the former is going to be a multiple of the
latter; see page 80).
A minor slip is his writing ε > 0, where the literature usually restricts to ε ∈ (0, 1

2),
and at least our proof explicitly needs an upper bound smaller than 1. A matter of taste
is his longwinding formulation of the premises instead of something shorter like, “let µ
be an isotropic, log-concave probability measure on Rk with density f ”. The measure in
line 5 of the theorem should be σk−1. ♦

Proof. Call f the density ofX. Define the map F : Sn−1×R→ R by F (θ, t) := P[〈θ,X〉 ≤
t]; we are going to show that F (·, t) is Lipschitz-continuous for any t ∈ R. First let t ∈ R
and θ1, θ2 ∈ Sn−1 with ‖θ1−θ2‖ ≤ 1

10 , w.l.o.g. θ1 6= θ2; denoteHi := {x ∈ Rn|〈θi, x〉 ≤ t},
i ∈ {1, 2}, then

|F (θ, t)− F (θ2, t)| = |P[X ∈ H1]− P[X ∈ H2]|
= |P[X ∈ H1 \H2] + P[X ∈ H1 ∩H2]

− P[X ∈ H2 \H1]− P[X ∈ H2 ∩H1]| ≤
≤ P[X ∈ H1 \H2] + P[X ∈ H2 \H1] = P[X ∈ H1 4H2];

Let E ∈ Gn,2 be the linear hull of {θ1, θ2}, α := arccos〈θ1, θ2〉 ∈ (0, π2 ), then by the
Gram–Schmidt-process

{
θ1,

θ2−cos(α)θ1
sin(α)

}
is an orthonormal basis of E and every x ∈ Rn

can be expressed as x = x1θ1 + x2
θ2−cos(α)θ1

sin(α) + y with unique x1, x2 ∈ R and y ∈ E⊥,
this means

x ∈ H1 4H2 ⇐⇒ x ∈ H1 \H2 ∨̇ x ∈ H2 \H1

⇐⇒ (〈θ1, x〉 ≤ t ∧ 〈θ2, x〉 > t) ∨̇ (〈θ1, x〉 > t ∧ 〈θ2, x〉 ≤ t)
⇐⇒ (x1 ≤ t ∧ cos(α)x1 + sin(α)x2 > t)

∨̇ (x1 > t ∧ cos(α)x1 + sin(α)x2 ≤ t).
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Furthermore, 1H14H2(x + y) = 1H14H2(x) for all x ∈ E and y ∈ E⊥, and therefore (we
write fE(x1, x2) := πEf(x1θ1 + x2

1−cos(α)θ1
sin(α) ))

|F (θ1, t)− F (θ2, t)| ≤
∫
E

∫
E⊥

1H14H2(x+ y)f(x+ y) dy dx =

=

∫ t

−∞

∫ ∞
t−cos(α)x1

sin(α)

fE(x1, x2) dx2 dx1

+

∫ ∞
t

∫ t−cos(α)x1
sin(α)

−∞
fE(x1, x2) dx2 dx1.

Because X is log-concave and isotropic, f is a log-concave, isotropic density, hence πEf
is so and also fE , thus by Lemma 2.23 there exist constants A,B ∈ R>0 independent of
fE such that fE(x1, x2) ≤ Ae−B‖(x1,x2)T‖ ≤ Ae−B(|x1|+|x2|) for all (x1, x2)T ∈ R2. First
consider the case t ≥ 0, then the first integral is∫ t

−∞

∫ ∞
t−cos(α)x1

sin(α)

fE(x1, x2) dx2 dx1 ≤ A
∫ t

−∞
e−Bx1

∫ ∞
t−cos(α)x1

sin(α)

e−Bx2 dx2 dx1 =

=
A

B

∫ t

−∞
e−Bx1e

−B t−cos(α)x1
sin(α) dx1

=
A

B
e
− Bt

sin(α)

∫ t

−∞
e
B

cos(α)−sin(α)
sin(α)

x1 dx1

=
A sin(α)

B2(cos(α)− sin(α))
e
− Bt

sin(α)
(1−cos(α)+sin(α))

;

the exponent there is 1 + 1−cos(α)
sin(α) = 1 + 2 sin(α/2)2

2 sin(α/2) cos(α/2) = 1 + tan(α2 ) ≥ 1, furthermore,

if we set s := ‖θ1− θ2‖, then s = 2 sin(α2 ) and thence sin(α)
cos(α)−sin(α) =

2 sin(α
2

)

2 cos(α2 )2−1

cos(α2 )
−2 sin(α

2
)

=

s
2−s2√
4−s2

−s
≤ 200

179 s by using s ≤ 1
10 . This gives

∫ t

−∞

∫ ∞
t−cos(α)x1

sin(α)

fE(x1, x2) dx2 dx1 ≤
200A

179B2
e−Bt ‖θ1 − θ2‖.

The second integral can be estimated as∫ ∞
t

∫ t−cos(α)x1
sin(α)

−∞
fE(x1, x2) dx2 dx1 ≤ A

∫ ∞
t

e−Bx1
∫ t−cos(α)x1

sin(α)

−∞
eBx2 dx2 dx1 =

=
A

B
e

Bt
sin(α)

∫ ∞
t

e
−B sin(α)+cos(α)

sin(α)
x1 dx1

=
A sin(α)

B2(sin(α) + cos(α))
e
− Bt

sin(α)
(sin(α)+cos(α)−1)

;
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now 1 − 1−cos(α)
sin(α) = 1 − sin(α

2
)

cos(α
2

) = 1 − s√
4−s2 ≥ 1 − 1√

399
and sin(α)

cos(α)+sin(α) ≤
sin(α)
cos(α) =

2 sin(α
2

)

2 cos(α2 )2−1

cos(α2 )

= s
2−s2√
4−s2

≤ 200
199 s, which yields

∫ ∞
t

∫ t−cos(α)x1
sin(α)

−∞
fE(x1, x2) dx2 dx1 ≤

200A

199B2
e
−B(1− 1√

399
)t ‖θ1 − θ2‖,

and taking everything together we have shown

|F (θ1, t)− F (θ2, t)| ≤
400A

179B2
e
−B(1− 1√

399
)t ‖θ1 − θ2‖.

For the case t ≤ 0 we observe

F (θ, t) = P[〈θ,X〉 ≤ t] = 1− P[〈θ,X〉 ≥ t]
= 1− P[〈−θ,X〉 ≤ −t] = 1− F (−θ,−t) = 1− F (−θ, |t|)

and therefore

|F (θ1, t)− F (θ2, t)| = |F (−θ1, |t|)− F (−θ2, |t|)| ≤
400A

179B2
e
−B(1− 1√

399
)|t| ‖θ1 − θ2‖.

Now let θ1, θ2 have arbitrary distance, then along the shorter arc of the great circle
through θ1 and θ2 choose points θ(0) = θ1, . . . , θ

(N) = θ2 such that ‖θ(i)−θ(i−1)‖ ≤ 1
10 and

the arcs spanned by successive points intersect at most at the endpoints, for a suitable
N ∈ N.3 Then

N∑
i=1

‖θ(i) − θ(i−1)‖ ≤
N∑
i=1

d(θ(i−1), θ(i)) = d(θ1, θ2) ≤ π

2
‖θ1 − θ2‖

and therefore

|F (θ1, t)− F (θ2, t)| ≤
N∑
i=1

|F (θ(i−1), t)− F (θ(i), t)|

≤
N∑
i=1

400A

179B2
e
−B(1− 1√

300
)|t| ‖θ(i−1) − θ(i)‖

≤ 200πA

179B2
e
−B(1− 1√

399
)|t| ‖θ1 − θ2‖,

that is, F (·, t) is Lipschitz-continuous with constant at most L(t) := 200πA
179B2 e

−B(1− 1√
399

)|t|.
We aim for an application of Theorem 2.27, so we define the average distribution-function
F : R→ R by

F (t) :=

∫
Sn−1

F (θ, t) dσn−1(θ)
[
= (PX ⊗σn−1){(x, θ) ∈ Rn × Sn−1|〈θ, x〉 ≤ t}

]
.

3Effectively this can be done in the following way: orthonormalize {θ1, θ2} as before, set α :=
arccos〈θ1, θ2〉 ∈ (0, π], α0 := 2 arcsin( 1

20
), N := d α

α0
e and take the points θ(i) := cos( iα

N
)θ1 +

sin( iα
N
) θ2−cos(α)θ1

sin(α)
for i ∈ [0, N ]; if θ2 = −θ1, then choose any θ′2 /∈ {±θ1} for the orthonormal-

ization.
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Let δ ∈ R>0, w.l.o.g. δ ≤ 1 (since distribution-functions cannot be more than 1 apart),
set m := b1

δ c ∈ N, and for i ∈ [1,m] define ti := F−1( i
m+1) ∈ R (in the sense of quantile-

function), then

σn−1

{
θ ∈ Sn−1

∣∣∃i ∈ [1,m] : |F (θ, ti)− F (ti)| ≥ δ
}
≤

≤
m∑
i=1

σn−1

{
θ ∈ Sn−1

∣∣|F (θ, ti)− F (ti)| ≥ δ
}

≤
m∑
i=1

2e
− (n−1)

2L(ti)
2 δ

2

≤ 2me
− 1

4L(0)2
nδ2 ≤ 2

δ
e
− 1

4L(0)2
nδ2

(keep in mind that L(0) = 200πA
179B2 is an absolute constant); now if nδ2 ≥ 4L(0)2, then

2
δ ≤

√
n

L(0) , and if nδ2 ≤ 4L(0)2, then
√
n

L(0) e
− 1

4L(0)2
nδ2 ≥ 1

eL(0) . Therefore, define C :=

max{e, 1
L(0)}, then

2
δ ≤ L(0)C

√
n

L(0) = C
√
n for large δ, and C

√
ne
− 1

4L(0)2
nδ2 ≥ 1 for small

δ; as σn−1 ≤ 1 we have, for all δ ∈ (0, 1],

σn−1

{
θ ∈ Sn−1

∣∣∃i ∈ [1,m] : |F (θ, ti)− F (ti)| ≥ δ
}
≤ C
√
n e
− 1

4L(0)2
nδ2
.

This shall be extended to all t ∈ R: let θ ∈ Sn−1 such that |F (θ, ti) − F (ti)| < δ for all
i ∈ [1,m]. First case, t < t1: then 0 ≤ F (θ, t) ≤ F (θ, t1) and 0 ≤ F (t) ≤ F (t1) = 1

m+1 <
δ, thus

F (θ, t)− F (t) ≥ −F (t1) > −δ > −2δ,

F (θ, t)− F (t) ≤ F (θ, t1) = F (θ, t1)− F (t1) + F (t1) < 2δ.

Second case, ti ≤ t ≤ ti+1 for some i ∈ [1,m − 1]: then F (θ, ti) ≤ F (θ, t) ≤ F (θ, ti+1),
F (ti) ≤ F (t) ≤ F (ti+1) and F (ti+1)− F (ti) = 1

m+1 < δ, hence

F (θ, t)− F (t) ≥ F (θ, ti)− F (ti+1) = F (θ, ti)− F (ti)− (F (ti+1)− F (ti)) > −2δ,

F (θ, t)− F (t) ≤ F (θ, ti+1)− F (ti) = F (θ, ti+1)− F (ti+1) + F (ti+1)− F (ti) < 2δ.

Third case, t ≥ tm: then F (θ, tm) ≤ F (θ, t) ≤ 1 and 1−δ < 1− 1
m+1 = F (tm) ≤ F (t) ≤ 1,

therefore

F (θ, t)− F (t) ≥ F (θ, tm)− 1 = F (θ, tm)− F (tm)− (1− F (tm)) > −2δ,

F (θ, t)− F (t) ≤ 1− F (tm) < δ < 2δ.

These lines have shown

σn−1

{
θ ∈ Sn−1

∣∣∃t ∈ R : |F (θ, t)− F (t)| ≥ 2δ
}
≤ C
√
n e
− 1

4L(0)2
nδ2
.

In order to compare F to Φ let Z be a Sn−1-valued, σn−1-distributed random-variable
independent of X, then by Lemma 2.25, 2., Y :=

〈
X
‖X‖ , Z

〉
is identically distributed to
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Z1 and is independent of ‖X‖; this also means P[Y ≤ t] = Φn(t
√
n) with Φn as defined

in Lemma 2.26. Let t ∈ R≥0, then

F (t) = (PX ⊗σn−1){(x, θ) ∈ Rn × Sn−1|〈θ, x〉 ≤ t}

= P[〈Z,X〉 ≤ t] = P
[
Y ≤ t

‖X‖

]
= P

([
Y ≤ t

‖X‖

]∣∣∣∣[∣∣∣‖X‖√n − 1
∣∣∣ ≤ ε])P

[∣∣∣‖X‖√
n
− 1
∣∣∣ ≤ ε]

+ P
([
Y ≤ t

‖X‖

]∣∣∣∣[∣∣∣‖X‖√n − 1
∣∣∣ > ε

])
P
[∣∣∣‖X‖√

n
− 1
∣∣∣ > ε

]
.

For an upper bound we estimate the second and third probabilities by 1 and use the thin-
shell-property for the forth one, for the first one we exploit the condition

∣∣‖X‖
n − 1

∣∣ ≤ ε
equivalent to 1

(1+ε)
√
n
≤ 1
‖X‖ ≤

1
(1−ε)

√
n
and therewith get

F (t) ≤ P
([
Y ≤ t

(1− ε)
√
n

]∣∣∣∣[∣∣∣‖X‖√n − 1
∣∣∣ ≤ ε]) · 1 + 1 · ε =

= Φn

( t

1− ε

)
+ ε ≤ Φ

( t

1− ε

)
+

2√
n

+ ε

≤ Φ(t) +
2√
n

+
(

1 +

√
2

eπ

)
ε ≤ Φ(t) +

2√
n

+
3ε

2
,

where furthermore we have used independence of Y and ‖X‖, Lemma 2.26 to compare
Φn and Φ, and Lemma 2.4 to get Φ

(
t

1−ε
)
≤ Φ(t) + 1√

2πe
( 1

1−ε − 1) = Φ(t) + 1√
2πe

ε
1−ε ≤

Φ(t) + ε
√

2
eπ .

For a lower bound we estimate the third and fourth probabilites by 0 and take the
complements in the first and second ones, that is,

F (t) ≥
{

1− P
([
Y >

t

‖X‖

]∣∣∣∣[∣∣∣‖X‖√n − 1
∣∣∣ ≤ ε])}{1− P

[∣∣∣‖X‖√
n
− 1
∣∣∣ > ε

]}
≥
{

1− P
([
Y >

t

(1 + ε)
√
n

]∣∣∣∣[∣∣∣‖X‖√n − 1
∣∣∣ ≤ ε])}(1− ε) =

= Φn

( t

1 + ε

)
(1− ε) ≥ Φn

( t

1 + ε

)
− ε ≥ Φ

( t

1 + ε

)
− 2√

n
− ε ≥

≥ Φ(t)− 2√
n
−
(

1 +
1√
2eπ

)
ε ≥ Φ(t)− 2√

n
− 3ε

2
,

where Φ(t) ≤ Φ
(

t
1+ε

)
+ 1√

2πe
(1 + ε− 1) = Φ

(
t

1+ε

)
+ ε√

2πe
again by Lemma 2.4.

For t ≤ 0 we remark that −Z has the same distribution as Z and thence

F (t) = P[〈Z,X〉 ≤ t] = 1− P[〈Z,X〉 ≥ t]
= 1− P[〈−Z,X〉 ≤ −t] = 1− P[〈Z,X〉 ≤ −t] = 1− F (−t),
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and because the same symmetry-relation holds mutatis mutandis for Φ, the estimates
derived above transfer to the case t ≤ 0. Finally let θ ∈ Sn−1 such that |F (θ, t)−F (t)| <
2δ for all t ∈ R, then, for all t ∈ R,

|F (θ, t)− Φ(t)| ≤ |F (θ, t)− F (t)|+ |F (t)− Φ(t)| < 2δ +
2√
n

+
3ε

2
.

We already know C
√
n e
− 1

4L(0)2
nδ2 ≥ 1 for nδ2 ≤ 4L(0)2, equivalently 2√

n
≥ δ

L(0) ; by
estimating 2δ + 2√

n
+ 3ε

2 ≥ (2 + 1
L(0))δ + 3ε

2 the failure-set becomes larger, but since

C
√
n e
− 1

4L(0)2
nδ2 ≥ 1 for those n and δ anyway, it does not matter; on the other hand, for

nδ2 ≥ 4L(0)2 the good set becomes larger by estimating 2δ+ 2√
n

+ 3ε
2 ≤ (2 + 1

L(0))δ+ 3ε
2 ,

so the lower bound 1 − C
√
n e
− 1

4L(0)2
nδ2 is valid still. This means that in any case we

may absorb 2√
n
into the δ-term and get

σn−1

{
θ ∈ Sn−1

∣∣∣∃t ∈ R : |F (θ, t)− Φ(t)| ≥
(

2 +
1

L(0)

)
δ +

3ε

2

}
≤ C
√
n e
− 1

4L(0)2
nδ2
.

Replacing δ by L(0)
2L(0)+1 δ yields the desired result.

Comment. Fresen’s proof has the merit of the simpler demonstration of the Lipschitz-
continuity of F (·, t).
Unfortunately it contains several typos: line 3 should read [. . . ] ≤ µ({〈x, θ1〉 ≤ t} 4
{〈x, θ2〉 ≤ t}) because M already denotes the measure of a halfspace, hence taking the
symmetric difference and the measure do not make sense; also equality will usually be
violated as is evident from spelling out the details. The same wrong equality-sign stands
in line 6, there also the integration-boundaries have incorrect 1 instead of t, and q is a
function of both x and y. In line 10 the argument of the exponential function should read
−c|x| − c|y| (absolute values missing and mismatching names of variables); the absolute
values again are missing in line 12, and for an unknown reason the constant has been
changed to c′; also the upper boundary of the inner integral should be t − y tan(β). In
lines 14 and 15 n ought to be replaced by k. On page 10, line 1, Y should rather be
called “scalar” since as an inner product it is onedimensional. Lastly, Y is identical in
distribution to

√
k θ1. (The missing square-root in line 7 from below has alrady been

hinted at.) ♦





3 The main theorem and its proof

This whole chapter is devoted to the proof of the following theorem.

Theorem 3.1 (CLT for convex sets). There exist null-sequences (εn)n≥1 ⊂ (0, 1] and
(δn)n≥1 ⊂ (0, 1], such that for any n ≥ 1 and any Rn-valued isotropic, log-concave
random-variable X,

σn−1

{
θ ∈ Sn−1

∣∣ sup
{
|P[〈θ,X〉 ≤ t]− Φ(t)|

∣∣t ∈ R
}
≥ εn

}
≤ δn.

Comment. Fresen writes ωn instead of δn (used by Klartag), but this is just notation;
much more unusual is Fresen’s speaking of the “Haar-measure” on the sphere: this seems
to be an idiosyncrasy of Fresen, since he also uses that wording in the appendix and, e.g.,
[13, p. 3]. Nevertheless we deem this improper because a Haar-measure always is defined
on a group, and neither the sphere Sn−1 nor the Grassmannian Gn,k is a group. It is
true that the orthogonal group On(R) acts transitively on either manifold and hence its
Haar-measure (which it is indeed) can be transferred to orthogonally invariant measures
on said manifolds; in the case of the sphere this induced measure equals, up to scaling,
the usual surface-measure. In view of this we do not see why Fresen does not simply
speak of the normalized surface measure. ♦

Let f denote the density of X. In a nutshell the main-steps of Fresen’s proof are
as follows: show that a slightly modified version of f is almost radially symmetric on
any subspace of some suitably small dimension, then that along any ray it is highly
concentrated around its maximizer, and finally derive a thin-shell-estimate from that;
Theorem 2.28 yields the result.
W.l.o.g. we may assume n ≥ 3; in any case the statement is trivially fulfilled if δn =

εn = 1 for small n up to an absolute bound.
Let Z be an Rn-valued standard Gaußian variable independent of X and let σ ∈ (0, 1];

set Y := X + σZ, then Y has density h := f ∗ ϕσ, with ϕσ being the density of σZ.
By Lemma 2.14, 5., Y is log-concave with E[Y ] = o and Var[Y ] = (1 + σ2)In, and h
is infinitely often differentiable. The Fourier-transform is Fh = Ff · Fϕσ; because Ff
is bounded and Fϕσ is integrable, Fh is integrable too and we may use the inversion-
formula.

3.1 The first step.

Let ξ1, ξ2 ∈ Rn, then, using |eix − eiy| ≤ |x− y| for x, y ∈ R and isotropy of X,

|Ff(ξ1)−Ff(ξ2)| =
∣∣E[e−2πi〈ξ1,X〉]− E[e−2πi〈ξ2,X〉]

∣∣ ≤
69
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≤ E[|e−2πi〈ξ1,X〉 − e−2πi〈ξ2,X〉|] ≤
≤ 2π E[|〈ξ1 − ξ2, X〉|] ≤ 2π E[〈ξ1 − ξ2, X〉2]1/2 =

= 2π
(
(ξ1 − ξ2)T E[XXT](ξ1 − ξ2)

)1/2
= 2π‖ξ1 − ξ2‖,

so Ff is at most 2π-lipschitz.

Comment. Fresen’s calculation at this point is a bit awkward: on the one hand, in order
to pull out ‖ξ1− ξ2‖ he must assume that this term is nonzero, but nowhere does he say
so, and on the other hand the gain of doing so is not immediately apparent because he
presupposes Var[X] = In, but here he uses the property E[〈θ,X〉2] = 1 for all θ ∈ Sn−1

of isotropy.
Without need he also introduces E = UF already at this point. ♦

Now let ε ∈ (0, 1
2 ], c1, δ ∈ R>0, and let k ∈ N with k ≥ 2, k ≤ n−1 and k ≤ c1

− log(ε) δ
2n.1

Let F ⊂ Rn be a k-dimensional subspace (considered fixed, e.g. F = Rk ×{0}n−k), then
SF = Sn−1∩F is a (k−1)-dimensional sphere, hence by Lemma 2.6 there exists an ε-net
N ⊂ SF with |N | ≤ (3

ε )k. We denote M(t) :=
∫
Sn−1 Ff(tθ) dσn−1(θ) for t ∈ R≥0. The

map ξ 7→ Ff(tξ) has Lipschitz-constant at most 2πt. Let tm := (1 + ε)m
√
k
σ for m ∈ Z,

then applying Theorem 2.27 and Lemma 2.1 together with subadditivity we obtain, with
C1 ∈ R>0,

µO

{
U ∈ On(R)

∣∣∣∀m ∈ N0∀θ ∈ N : |Ff(Utmθ)−M(tm)| < C1tm

(
δ+

√
log(1 +m)

n

)}
=

= 1− µO

{
U ∈ On(R)

∣∣∣∃m ∈ N0∃θ ∈ N : |Ff(Utmθ)−M(tm)| ≥

≥ C1tm

(
δ +

√
log(1 +m)

n

)}
≥

≥ 1−
∞∑
m=0

∑
θ∈N

µO

{
U ∈ On(R)

∣∣∣|Ff(Utmθ)−M(tm)| ≥ C1tm

(
δ +

√
log(1 +m)

n

)}
≥

≥ 1−
∞∑
m=0

∑
θ∈N

2 exp
(
− (n− 1)

2(2π)2t2m
C2

1 t
2
m

(
δ +

√
log(1 +m)

n

)2)
≥

≥ 1− 2
(3

ε

)k ∞∑
m=0

exp
(
− C2

1n

(4π)2

(
δ2 +

log(1 +m)

n

))
;

from ε ≤ 1
2 and k ≤ c1

− log(ε)nδ
2 follows (3

ε )k ≤ exp
( c1 log(6)

log(3) nδ
2
)
, and the sum yields

∞∑
m=0

exp
(
− C2

1n

(4π)2

(
δ2 +

log(1 +m)

n

))
= exp

(
− C2

1

(4π)2
nδ2
)
· ζ
( C2

1

(4π)2

)
,

1Fresen inadvertently misses the square of δ.
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provided C1
4π > 1, equivalently C1 > 4π, and ζ is the Riemann-zeta-function; so we can

state

µO

{
U ∈ On(R)

∣∣∣∀m ∈ N0∀θ ∈ N : |Ff(Utmθ)−M(tm)| < C1tm

(
δ+

√
log(1 +m)

n

)}
≥

≥ 1− 2ζ
( C2

1

(4π)2

)
exp
[(c1 log(6)

log(2)
− C2

1

(4π)2

)
nδ2
]

=: 1− C2

2
e−c2nδ

2
,

where c2 > 0 iff c1 <
log(2)

log(6)(4π)2
C2

1 . Since it is cancelled during the calculations, we may
replace tm by t−m in the result above. In particular, if n is large enough and δ is not too
small, then the set in question has positive measure, tending to 1 at an exponential rate
as n→∞.
This result shows that, roughly speaking, for most orthogonal transformations, Ff is

close to its spherical mean on the transform of the grid {tmθ|m ∈ Z ∧ θ ∈ N}.

Comment. One of the more confusing habits of Fresen in this paper is his use of the
same symbols C and c for different constants throughout the work (even taking into
account the common practice referred to on page 25 that the values may change). At
some points this can be justified by arguing with “adapting the constants”, but at other
points we are dealing with independent entities the graphical identification of which can
be confusing or even detrimental to the validity of the argument. At this point he even
does not introduce the constants, they appear on the scene without further comment.
In order ro counteract any ambiguity we have opted to distinguish the constants care-

fully by indexing them, and we also explicitly state their relations to previously used
ones; an overview of all constants is given in Table 3.1 on page 87.
Another comment necessary at this point is Fresen’s writing of log(m) which is −∞

for m = 0; one might think that he had m ≥ 1 in mind, but he expressly uses m = 0 too.
In the further course of the proof this causes log

(
log
(σ‖ξ‖√

k
∨
√
k

σ‖ξ‖
))
< 0 for σ‖ξ‖√

k
∈ (1

e , e),
so the square-root is not real there and the estimate becomes useless for considerably
many ξ. The situation is easy to mend, and we have done so by using log(m+ 1). It is
unclear how that error slipped his attention. ♦

We wish to extend this result from the grid tmθ, with m ∈ Z and θ ∈ N , to all of
F . Because M(0) =

∫
Sn−1 Ff(o) dσn−1(θ) = Ff(o) = Ff(Uo) for all U ∈ On(R), it

suffices to consider ξ ∈ F \ {o}. Take such a ξ, then ξ
‖ξ‖ ∈ SF , hence there is θ ∈ N

with
∣∣ ξ
‖ξ‖ − θ

∣∣ ≤ ε. We treat two cases, ‖ξ‖ ≥
√
k
σ and ‖ξ‖ ≤

√
k
σ . In the first case we set

m :=
⌊
log(1 + ε)−1 log

(σ‖ξ‖√
k

)⌋
∈ N0 and ξ′ := tmθ, then (U ∈ On(R))

|Ff(Uξ)−M(‖ξ‖)| ≤ |Ff(Uξ)−Ff(Uξ′)|+ |Ff(Uξ′)−M(‖ξ′‖)|+ |M(‖ξ′‖)−M(‖ξ‖)|
≤ 2π‖ξ − ξ′‖+ |Ff(Uξ′)−M(‖ξ′‖)|+ |M(‖ξ′‖)−M(‖ξ‖)|.

the last term satisfies

|M(‖ξ′‖)−M(‖ξ‖)| =
∣∣∣∣∫
Sn−1

Ff(‖ξ′‖θ) dσn−1(θ)−
∫
Sn−1

Ff(‖ξ‖θ) dσn−1(θ)

∣∣∣∣ ≤
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≤
∫
Sn−1

|Ff(‖ξ′‖θ)−Ff(‖ξ‖θ)| dσn−1(θ) ≤

≤ 2π

∫
Sn−1

∥∥‖ξ′‖θ − ‖ξ‖θ∥∥ dσn−1(θ) ≤

≤ 2π‖ξ − ξ′‖;

for the middle term we may take such U ∈ On(R) that |Ff(Utmθ)−M(tm)| ≤ C1tm
(
δ+√

log(1+m)
n

)
, or since tm = ‖ξ′‖ = (1 + ε)m

√
k
σ and thus m = log(1 + ε)−1 log

(σ‖ξ′‖√
k

)
,

|Ff(Uξ′)−M(‖ξ′‖)| ≤ C1

[
δ +

√
1

n
log
(

1 + log(1 + ε)−1 log
(σ‖ξ′‖√

k

))]
‖ξ′‖;

by using log(1 + ε) ≤ 1 and subaddititvity of the square-root we have√
1

n
log
(

1 + log(1 + ε)−1 log
(σ‖ξ′‖√

k

))
≤
√
− log(log(1 + ε))

n
+

√
1

n
log
(

1 + log
(σ‖ξ′‖√

k

))
.

If we put α ≥ log(log(3/2))
log(1/2) ≈ 1.31, then εα ≤ 2 log(3

2)ε ≤ log(1 + ε) for all ε ∈ [0, 1
2 ]

(the second inequality stems from concavity of logarithm), this implies − log(log(1 +
ε)) ≤ −α log(ε) which we use for the first square-root-term. By our choices of m and θ,
‖ξ′‖ ≤ ‖ξ‖ ≤ (1 + ε)‖ξ′‖ and

∥∥ ξ
‖ξ‖ −

ξ′

‖ξ′‖
∥∥ ≤ ε, these imply ‖ξ − ξ′‖ ≤ 2ε‖ξ‖, therefore,

|Ff(Uξ)−M(‖ξ‖)| ≤

≤ 4π‖ξ − ξ′‖+ C1

[
δ +
√
α

√
− log(ε)

n
+

√
1

n
log
(

1 + log
(σ‖ξ′‖√

k

))]
‖ξ′‖ ≤

≤
[
8πε+ C1δ + C1

√
α

√
− log(ε)

n
+ C1

√
1

n
log
(

1 + log
(σ‖ξ‖√

k

))]
‖ξ‖.

In the case ‖ξ‖ ≤
√
k
σ choose θ ∈ N with

∥∥ ξ
‖ξ‖ − θ

∥∥ ≤ ε as before, and m :=
⌊
log(1 +

ε)−1 log
( √

k
σ‖ξ‖

)⌋
∈ N0, and set ξ′ := t−mθ. With this choice ‖ξ

′‖
1+ε ≤ ‖ξ‖ ≤ ‖ξ

′‖ holds,

hence ‖ξ′‖ ≤ 3
2‖ξ‖ and

√
k

σ‖ξ′‖ ≤
√
k

σ‖ξ‖ , furthermore ‖ξ − ξ′‖ ≤ 2ε‖ξ‖. The rest of the

calculations is virtually the same as above, apart from m = log(1 + ε)−1 log
( √

k
σ‖ξ′‖

)
and

an additional factor of 3
2 for the middle term, so we have

|Ff(Uξ)−M(‖ξ‖)| ≤

≤
[
8πε+

3C1

2
δ +

3C1

2

√
α

√
− log(ε)

n
+

3C1

2

√
1

n
log
(

1 + log
( √k
σ‖ξ‖

))]
‖ξ‖.

To simplify matters, we enlarge the right-hand-sides by taking C3 := max
{

8π, 3C1
√
α

2

}
and also write the maximum σ‖ξ‖√

k
∨
√
k

σ‖ξ‖ in the logarithm; the set of U ’s for which
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the inequalities holds is not diminished by these actions, its measure still is at least
1 − C2

2 e−c2nδ
2 for either one. Thus with the intersection-bound µO(A ∩ B) ≥ µO(A) +

µO(B)− 1 we have found

µO

{
U ∈ On(R)

∣∣∣∣∀ξ ∈ F : |Ff(Uξ)−M(‖ξ‖)| ≤

≤ C3

[
δ + ε+

√
− log(ε)

n
+

√
1

n
log
(

1 + log
(σ‖ξ‖√

k
∨
√
k

σ‖ξ‖

))]
‖ξ‖
}
≥

≥ 1− C2e
−c2nδ2 .

We use our freedom with ε to choose it such that gn(x) := x +

√
− log(x)

n is (nearly)
minimized. We have limx→0+ gn(x) =∞, gn(1) = 1, gn is strictly convex on (0, 1√

e
] and

strictly concave on [ 1√
e
, 1], and g′n( 1√

e
) = 1−

√
e

2n > 0 iff n > e
2 , that is n ≥ 2, which in our

case is fulfilled; hence gn has a unique minimizer on (0, 1√
e
]. Looking at the first derivative,

the minimizer is the solution of x
√
− log(x) = 1

2
√
n
in that interval. This is equivalent to

solving −x2 log(x2) = 1
2n ; now G(x) := −x log(x) is strictly concave on [0, 1] with G(0) =

G(1) = 0 and global maximum 1
e attained at 1

e , this shows G(x) ≥ x for all x ∈ [0, 1
e ]; in

particular from G(x2) = 1
2n follows x2 ≤ 1

2n and hence x ≤ 1√
2n
. Because gn( 1√

2n
) < 1

and even limn→∞ gn( 1√
2n

) = 0 monotonically, we choose ε = 1√
2n

as the approximate

minimizer (as n ≥ 3, also ε ≤ 1
2 holds). Furhermore gn( 1√

2n
) = 1√

2n
+

√
log(2n)

2n =√
log(n)
n

(
1√

2 log(n)
+
√

log(2)+log(n)
2 log(n)

)
≤
√

log(n)
n

(
1√

2 log(3)
+
√

log(2)
2 log(3) + 1

2

)
≤ 1.58

√
log(n)
n

for n ≥ 3, and we update C4 := C3

(
1√

2 log(3)
+
√

log(2)
2 log(3) + 1

2

)
= C3

1+
√

log(6)√
log(9)

.

Comment. Fresen’s ε =

√
log(n)
n seems to be a slip of the pen, writing the desired result

in the upper bound for the actual value of ε; as is evident from his later k ≤ cδ2 log(n)−1n
(page 8, lines 3, 4) he had ε = C

nα in mind, perhaps α ∈ {1
2 , 1}, though the details are

unrecoverable. ♦

As UF ∈ Gn,k and ‖Uξ‖ = ‖ξ‖ for any U ∈ On(R) and ξ ∈ Rn, we may rewrite,

σn,k

{
E ∈ Gn,k

∣∣∣∣∀ξ ∈ E : |Ff(ξ)−M(‖ξ‖)| ≤

≤ C4

[
δ +

√
log(n)

n
+

√
1

n
log
(

1 + log
(σ‖ξ‖√

k
∨
√
k

σ‖ξ‖

))]
‖ξ‖
}
≥ 1− C2e

−c2nδ2 .

Let E ∈ Gn,k from the set above. As noted near the beginning of the proof, Fh is
integrable and hence the inversion-formula may be applied, and by Lemma 2.11 Fh�E =
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FEπEh. Therefore, for all x ∈ E,

πEh(x) =

∫
E
e2πi〈ξ,x〉Fh(ξ) dξ.

We have Fh = Ff ·Fϕσ, where Fϕσ(ξ) = e−2π2σ2‖ξ‖2 (ξ ∈ Rn); let x ∈ E and U ∈ On(R)
with UE = E, then

|πEh(Ux)− πEh(x)|=

=

∣∣∣∣∫
E
e2πi〈ξ,Ux〉Fh(ξ) dξ −

∫
E
e2πi〈ξ,x〉Fh(ξ) dξ

∣∣∣∣
=

∣∣∣∣∫
E
e2πi〈ξ,x〉Fh(Uξ) dξ −

∫
E
e2πi〈ξ,x〉Fh(ξ) dξ

∣∣∣∣ ≤
≤
∫
E
|Fh(Uξ)−Fh(ξ)| dξ =

=

∫
E
|Ff(Uξ)−Ff(ξ)|Fϕσ(ξ) dξ ≤

≤
∫
E

(
|Ff(Uξ)−M(‖ξ‖)|+ |Ff(ξ)−M(‖ξ‖)|

)
Fϕσ(ξ) dξ ≤

≤ 2C4

∫
E

[
δ +

√
log(n)

n
+

√
1

n
log
(

1 + log
(σ‖ξ‖√

k
∨
√
k

σ‖ξ‖

))]
‖ξ‖Fϕσ(ξ) dξ;

the integrand is radially symmetric, so we transform to k-dimensional polar coordinates

and immediately get a factor 2π
k
2

Γ( k
2

)
from the angular part. The

(
δ+

√
log(n)
n

)
-part becomes

a simple gamma-integral after a substitution and using Lemma 2.3:

∫ ∞
0

e−2π2σ2r2 rk dr =
(2π2σ2)−

k+1
2

2

∫ ∞
0

s
k−1
2 e−s ds

=
(2π2σ2)−

k+1
2

2
Γ
(k + 1

2

)
≤ (2π2σ2)−

k+1
2

2
√

2

√
k Γ
(k

2

)
.

For the second part we first estimate log(1 + x) ≤ x (x ∈ R≥0) to get rid of the double-
logarithm, then use the inequality log(x) ≤ 2

e x
1/2 (x ∈ [1,∞)) to eliminate the remaining

logarithm, split the integration-domain at r =
√
k
σ to take care of the maximum, perform

the same substitution as before, and again apply Lemma 2.3; this yields

∫ ∞
0

√
log
(

1 + log
( σr√

k
∨
√
k

σr

))
rk e−2π2σ2r2 dr ≤
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≤ (2π2σ2)−
k+1
2

2

√
2

e

(
(2k)

1
8 π

1
4

∫ 2π2k

0
s
k
2
− 5

8 e−s ds

+ (2k)−
1
8 π−

1
4

∫ ∞
2π2k

s
k
2
− 3

8 e−s ds

)
≤

≤ (2π2σ2)−
k+1
2

√
2e

(
(2k)

1
8 π

1
4 Γ
(k

2
+

3

8

)
+ (2k)−

1
8 π−

1
4 Γ
(k

2
+

5

8

))
≤

≤ (2π2σ2)−
k+1
2

√
2e

(
2−

1
4 π

1
4 + 2−

3
4 π−

1
4
)√
k Γ
(k

2

)
;

since n ≥ 3, we also have
√

1
n ≤ δ +

√
log(n)
n , and this leads to

|πEh(Ux)− πEh(x)| ≤ 2C4

(
δ +

√
log(n)

n

)
2π

k
2

Γ(k2 )

(2π2σ2)−
k+1
2

2

·
( 1√

2
+

√
2

e

(
2−

1
4 π

1
4 + 2−

3
4 π−

1
4
))√

k Γ
(k

2

)
=

= C4

√
2e + 2

5
4 π

1
4 + 2

3
4 π−

1
4

√
πe

(2πσ2)−
k+1
2

(
δ +

√
log(n)

n

)√
k;

(3.1)

for future reference we define C5 := C4

√
2e+2

5
4 π

1
4 +2

3
4 π−

1
4√

πe
≈ 2.314C4. This inequality now

says that πEh is almost radially symmetric; to be precise, we have shown the following,

σn,k

{
E ∈ Gn,k

∣∣∣∣∃x, y ∈ E : ‖x‖ = ‖y‖ ∧ |πEh(x)− πEh(y)| >

> C5(2πσ2)−
k+1
2

(
δ +

√
log(n)

n

)√
k

}
≤ C2e

−c2nδ2 . (3.2)

3.2 The second step.

As a reminder, we want to show that on any ray the radial density is concentrated around
its maximizer. First we show that for any two directions the maximizers are relatively
near. Following the notation of Lemma 2.24, for any x ∈ SE let hx(t) := − log(πEh(tx))
be defined on R>0; because h is log-concave, hx is convex, and because πEh = πEf ∗πEϕσ
and πEϕσ is smooth, so is πEh and hence hx.
Let x, y ∈ SE ; by Lemma 2.24, 1. and 2., the function t 7→ Hx(t) := tk−1πEh(tx) =

tk−1 e−hx(t) has a unique global maximizer tx ∈ R>0 charcterized by txh′x(tx) = k − 1;
the same holds for y. W.l.o.g. let tx < ty (for tx = ty there is nothing to prove). By
convexity,

hx(ty)− hx(tx) ≥ h′x(tx)(ty − tx) = (k − 1)
ty − tx
tx

,
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hy(ty)− hx(tx) ≤ −h′y(ty)(tx − ty) = (k − 1)
ty − tx
ty

,

and hence

max{|hx(t)− hy(t)||t ∈ {tx, ty}} ≥
|hx(tx)− hy(tx)|+ |hx(ty)− hy(ty)|

2

≥ −(hx(tx)− hy(tx)) + (hx(ty)− hy(ty))
2

=

=
(hx(ty)− hx(tx))− (hy(ty)− hy(tx))

2
≥

≥ k − 1

2

( ty − tx
tx

− ty − tx
ty

)
=

=
k − 1

2

(ty − tx)2

txty
.

We are going to prove hx(t)− hy(t) < 1 for either t ∈ {tx, ty} by contradiction. Assume
that there exists t ∈ {tx, ty} with hx(t) − hy(t) ≥ 1. Since h is the density of Y with
Var[Y ] = (1 + σ2)In, πEh is the density of pE ◦Y with Var[pE ◦Y ] = (1 + σ2) pE =

(1 + σ2)IE ; applying the remark after Lemma 2.22 with A =
(∫
E xx

TπEh(x) dx
)1/2

=

Var[pE ◦Y ]1/2 we obtain πEh(o) ≥ det((1 + σ2)IE)−1/22−7k = (1 + σ2)−k/22−7k. Thus
by convexity on the one hand hy(0) ≥ hy(t) + h′y(t)(−t) and on the other hand h′y(tx) ≤
h′y(ty), and by our assumption,

|e−hx(t) − e−hy(t)| = e−hy(t)|e−(hx(t)−hy(t)) − 1| ≥

≥ e−hy(0)−h′y(t)t (1− e−1)

≥ (1− e−1)πEh(o)e−h
′
y(ty)ty

≥ (1− e−1)(1 + σ2)−
k
2 2−7ke−k+1 = (e− 1)(1 + σ2)−

k
2 2−7ke−k. (3.3)

But from (3.1) of the first step,

|e−hx(t) − e−hy(t)| = |πEh(tx)− πEh(ty)| ≤ C5(2πσ2)−
k+1
2

(
δ +

√
log(n)

n

)√
k, (3.4)

and by the right choice of parameters (for which see (3.13), third step) this upper bound
is smaller than the lower bound and we have arrived at a contradiction. This proves
hx(t) − hy(t) < 1 for either t ∈ {tx, ty}; let t ∈ {tx, ty} be the maximizer of |hx − hy|.
The function z 7→ |ez − 1| for z ∈ R is concave on R≤0 and convex on R≥0, therefore
|ez − 1| ≥ −(1 − e−1)z = (1 − e−1)|z| for z ∈ [−1, 0] and |ez − 1| ≥ z ≥ (1 − e−1)|z| for
z ≥ 0. This leads to

|e−hx(t) − e−hy(t)| = e−hy(t)|ehy(t)−hx(t) − 1|

≥ e−hy(0)−h′y(t)t(1− e−1)|hy(t)− hx(t)|
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≥ (1 + σ2)−
k
2 2−7ke−k+1(1− e−1)

k − 1

2

(ty − tx)2

txty

≥ (e− 1)(k − 1)

2
(1 + σ2)−

k
2 2−7ke−k

(ty − tx)2

t2y
,

combined with (3.4) we get

ty − tx
ty

≤
( 2

(e− 1)(k − 1)

) 1
2
(1 + σ2)

k
4 2

7k
2 e

k
2

√
C5(2πσ2)−

k+1
4

(
δ +

√
log(n)

n

) 1
2

k
1
4

≤
( 2C5

(e− 1)
√

2π

) 1
2
( √k
k − 1

) 1
2
e( 7

2
log(2)+ 1

2
− 1

4
log(2π))k

· (1 + σ2)
k
4 σ−

k+1
2

(
δ

1
2 +

( log(n)

n

) 1
4

)
≤

≤ γ := C6e
c3k(1 + σ2)

k
4 σ−

k+1
2

(
δ

1
2 +

( log(n)

n

) 1
4

)
, (3.5)

where we have used
√
k

k−1 ≤
√

2 for k ≥ 2 and have defined C6 :=
(

2C5

√
2

(e−1)
√
π

)1/2 and
c3 := 1

2 + 7
2 log(2) − 1

4 log(2π) ≈ 2.467. For the sequel we assume that the parameters
are such that γ ∈ (0, 1

2 ] (this shall be justified below).
From E[pE ◦Y ] = o we also can infer

∫∞
0 πEh(tx) dt ∈ R>0 for any x ∈ SE ; otherwise∫∞

0 πEh(tx) dt = 0 for some x ∈ SE implies πEh(tx) = 0 for t ∈ R>0 and therefore
the support of πEh is contained in a halfspace with o at the boundary which does not
contain R>0x, but then E[pE ◦Y ] =

∫
E xπEh(x) dx lies in the open halfspace and thus

cannot be o. For this reason we may apply Lemma 2.24 to get, for any u ∈ [0, 1] and
with c4 := log(e/2)

2 ,∫ (1+u)tx

(1−u)tx

tk−1πEh(tx) dt ≥ (1− 3e−c4ku
2
)

∫ ∞
0

tk−1πEh(tx) dt. (3.6)

Comment. There is little need for comment on the second step of Fresen’s proof, yet his
demonstration of ty

tx
− 1 ≤ γ, though perhaps not the most elegant one, still is a great

feat.
Why he only allows for u ∈ [0, 1

2 ] is unclear, given that a larger range can be achieved
without difficulty, as shown in our proof of the corresponding Lemma 2.24, 3. The Taylor-
expansion used on page 6, line 4, may be an overkill as only a quadratic estimate is aimed
at. ♦

3.3 The third step.

Recall that we want to establish the thin-shell-property for pE ◦Y in order to get a CLT
for it and then transfer the latter result to the original X on the whole of Rn. Let x ∈ SE
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and u ∈ [0, 1],2 then for any y ∈ SE we know 1− γ ≤ tx
ty
≤ 1

1−γ and therefore

(1− 2(u+ γ))tx ≤ ((1− 2γ)− 2u)
1

1− γ
ty =

(
1− γ

1− γ
− 2

1− γ
u
)
ty ≤ (1− u)ty

and
(1 + 2(u+ γ))tx ≥

(
1 +

u+ γ

1− γ

)
(1− γ)ty = (1 + u)ty;

this leads to (transform to polar coordinates)

P
[∣∣∣‖pE ◦Y ‖

tx
− 1
∣∣∣ ≤ 2(u+ γ)

]
=

= P
[
(1− 2(u+ γ))tx ≤ ‖pE ◦Y ‖ ≤ (1 + 2(u+ γ))tx

]
=

∫
{y∈E|(1−2(u+γ))tx≤‖y‖(1+2(u+γ))tx}

πEh(y) dy

=
2π

k
2

Γ(k2 )

∫
SE

∫ (1+2(u+γ))tx

(1−2(u+γ))tx

tk−1πEh(ty) dt dσk−1(y) ≥

≥ 2π
k
2

Γ(k2 )

∫
SE

∫ (1+u)ty

(1−u)ty

tk−1πEh(ty) dt dσk−1(y)

≥ (1− 3e−c4ku
2
)

2π
k
2

Γ(k2 )

∫
SE

∫ ∞
0

tk−1πEh(ty) dt dσk−1(y) =

= 1− 3e−c4ku
2
,

because the last double integral is just
∫
E πEh(y) dy = 1.

Comment. At this point we would like to use Lemma 2.24, 4., in order to replace tx by√
1 + σ2

√
k, but there are complications. Fresen elaborates in his note “Radius of the

thin shell” on page 8 how this could be achieved: the density πEh meets the requirements
of Lemma 2.24, hence 3. implies, for any y ∈ SE and u ∈ [0, 1],∫ (1+u)ty

(1−u)ty

tk−1 πEh(t) dt ≥ (1− 3e−cku
2
)

∫ ∞
0

tk−1πEh(t) dt,

or, equivalently, if we define a random-variable Xy as in Lemma 2.24,

P
[∣∣∣Xy

ty
− 1
∣∣∣ ≥ u] ≤ 3e−cku

2
, (3.7)

still valid for all u ∈ [0, 1]. This should yield upper bounds for |E[Wy]− ty| and Var[Wy]
via ∣∣E[Xy]− ty

∣∣ ≤ E[|Xy − ty|] =

∫ ∞
0

P[|Xy − ty| ≥ t] dt
!
≤ C ′1

tx√
k

2Bn2 instead of Sn−1 on page 6, line 3 from below, clearly is an oversight.
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and

Var[Xy] = Var[Xy − ty] ≤ E[(Xy − ty)2] =

∫ ∞
0

P[(Xy − ty)2 ≥ t] dt
!
≤ C ′2

t2x
k
,

for some C ′1, C ′2 ∈ R>0. The problem is that we need to bound the tail-probabilities
P[|Wy − ty| ≥ u] for all u ∈ R≥0, but with (3.7) we only have estimates for u ∈ [0, 1]. We
do not know if log-convexity could be exploited in the right manner in order to get useful
bounds for the present situation. Once the estimates are accepted, the remaining part
of Fresen’s calculations at this point does not pose serious problems; the only point to
mention is that E[‖πEY ‖2] equals (1 + σ2)k, not just k. We have spelled out the details
in our proof of Lemma 2.24, 4.
Klartag circumvents the problem in [20, Lemma 4.6] by working on the whole space

instead of one-dimensional subspaces, and by using his Lemma 2.1 which gives a uniform
exponential bound on tail-probabilities.
For the remainder of the proof we assume the existence of C7 ∈ R>0 such that∣∣ tx√
1+σ2

√
k
− 1
∣∣ ≤ 3γ + C7√

k
, as stated by the conclusion of Lemma 2.24, 4. ♦

Now
∣∣‖pE ◦Y ‖

tx
− 1
∣∣ ≤ 2(u+ γ) implies∣∣∣ ‖pE ◦Y ‖√

1 + σ2
√
k
− 1
∣∣∣ ≤ ∣∣∣ ‖pE ◦Y ‖√

1 + σ2
√
k
− tx√

1 + σ2
√
k

∣∣∣+
∣∣∣ tx√

1 + σ2
√
k
− 1
∣∣∣ ≤

≤ tx√
1 + σ2

√
k

∣∣∣‖pE ◦Y ‖
tx

− 1
∣∣∣+ 3γ +

C7√
k

≤
(

1 + 3γ +
C7√
k

)
2(u+ γ) + 3γ +

C7√
k

≤
(

2 + 6γ +
2C7√
k

+
C7

u
√
k

)
u+

(
5 + 6γ +

C7√
k

)
γ

≤ (5 + (
√

2 + α′)C7)u+ (8 +
√

2
−1
C7)γ

≤ α′′(u+ γ),

where we have bounded 1
u
√
k
≤ α′ ∈ R>0, which will be justified by our choice below,

and put α′′ := max
{

5 + (
√

2 + α′)C7, 8 + C7√
2

}
. Thus

P
[∣∣∣ ‖pE ◦Y ‖√

1 + σ2
√
k
− 1
∣∣∣ ≥ α′′(u+ γ)

]
≤ P

[∣∣∣‖pE ◦Y ‖
tx

− 1
∣∣∣ ≥ 2(u+ γ)

]
≤ 3e−c4ku

2
.

Since α′′ ≥ 3, we can symmetrize this to

P
[∣∣∣ ‖pE ◦Y ‖√

1 + σ2
√
k
− 1
∣∣∣ ≥ α′′(u+ γ + e−c4ku

2)] ≤ P
[∣∣∣ ‖pE ◦Y ‖√

1 + σ2
√
k
− 1
∣∣∣ ≥ α′′(u+ γ)

]
≤ 3e−c4ku

2

≤ α′′
(
u+ γ + e−c4ku

2)
,



80 3. THE MAIN THEOREM AND ITS PROOF

so we have the thin-shell-property with ε = α′′
(
u + γ + e−c4ku

2) (again, ε ≤ 1
2 shall be

ensured; note that this ε is different from that used in Step 1 whose value has been set
to 1√

2n
). Therefore Theorem 2.28 asserts the existence of constants C8, c5 ∈ R>0 such

that, by plugging in δ = u+ γ + e−c4ku
2 in said theorem,

σE

{
θ ∈ SE

∣∣∣∃t ∈ R :
∣∣∣P[〈θ, pE ◦Y√

1 + σ2

〉
≤ t
]
− Φ(t)

∣∣∣ ≥ (1 +
3α′′

2

)(
u+ γ + e−c4ku

2)}
≤ C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2]
; (3.8)

note that P
[〈
θ, pE ◦Y√

1+σ2

〉
≤ t
]
−Φ(t) = P[〈θ, pE ◦Y 〉 ≤ s]−Φ

(
s√

1+σ2

)
via the substitution

s = t
√

1 + σ2.

Comment. We think Fresen’s application of Theorem 2.28 is a bit unhappy, because the
shell in question has radius tx, but in the version of the theorem given in his appendix
and also in the literature cited by him the shell is supposed to have radius equal to the
square-root of the dimension, and only in the aforementioned note “Radius of the thin
shell” – which he does not mention at the relevant point in the proof – does he address
that issue; so for an unprepared reader not familiar with Theorem 2.28 its application on
page 7 may seem dubious. It is for this reason that we have rearranged the arguments so
that a thin-shell-estimate with the “correct” radius is established for which Theorem 2.28
can be used without doubt. ♦

Let θ ∈ SE from the set above. Now 〈θ, pE ◦Y 〉 = 〈θ, pE ◦X〉 + σ〈θ, pE ◦Z〉, where
〈θ, pE ◦Z〉 has standard normal distribution.3 Let t ∈ R and ν ∈ (0, 1], then

〈θ, pE ◦Y 〉 ≤ t− ν =⇒ 〈θ, pE ◦X〉 ≤ t ∨ 〈θ, pE ◦Z〉 ≤ −
ν

σ
;

by subadditivity, (3.8) and Lemma 2.5 this leads to a lower bound for P[〈θ, pE ◦X〉 ≤ t],
to wit,

P[〈θ, pE ◦X〉 ≤ t] ≥ P[〈θ, pE ◦Y 〉 ≤ t− ν]− P
[
〈θ, pE ◦Z〉 ≤ −

ν

σ

]
≥ Φ

( t− ν√
1 + σ2

)
−
(

1 +
3α′′

2

)(
u+ γ + e−c4ku

2)− 1 + Φ
(ν
σ

)
≥ Φ(t)− ν + σ√

2π
−
(

1 +
3α′′

2

)(
u+ γ + e−c4ku

2)− 1

2
e−

1
2
ν2

σ2

≥ Φ(t)− C9

(
ν + σ + u+ γ + e−c4ku

2
+ e−

ν2

2σ2
)
,

where of course C9 := max
{

1√
2π
, 1 + 3α′′

2 , 1
2

}
= 1 + 3α′′

2 . Similarly we have

〈θ, pE ◦X〉 ≤ t =⇒ 〈θ, pE ◦Y 〉 ≤ t+ ν ∨ 〈θ, pE ◦Z〉 ≥
ν

σ
3Because a linearly transformed Gaußian variable again is Gaußian, 〈θ, pE ◦Z〉 = 〈p∗E(θ), Z〉 = 〈θ, Z〉,
E[〈θ, Z〉] = 〈θ,E[Z]〉 = 〈θ, o〉 = 0 and Var[〈θ, Z〉] = 〈θ,Var[Z]θ〉 = 〈θ, Inθ〉 = ‖θ‖2 = 1.
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and by the same means as before we get an upper bound,

P[〈θ, pE ◦X〉 ≤ t] ≤ P[〈θ, pE ◦Y 〉 ≤ t+ ν] + P
[
〈θ, pE ◦Z〉 ≤

ν

σ

]
≤ Φ

( t+ ν√
1 + σ2

)
+
(

1 +
3α′′

2

)(
u+ γ + e−c4ku

2)
+ 1− Φ

(ν
σ

)
≤ Φ(t) +

ν + σ√
2π

+
(

1 +
3α′′

2

)(
u+ γ + e−c4ku

2)
+

1

2
e−

1
2
ν2

σ2

≤ Φ(t) + C9

(
ν + σ + u+ γ + e−c4ku

2
+ e−

ν2

2σ2
)
.

We introduce the error-bound

εn := C9

(
ν + σ + u+ γ + e−c4ku

2
+ e−

ν2

2σ2
)
. (3.9)

(This is not quite the εn as stated in the theorem, for which we must take the maximum
with 1.) Thus, so far we have shown

σE
{
θ ∈ SE

∣∣∃t ∈ R : |P[〈θ, pE ◦X〉 ≤ t]− Φ(t)| ≥ εn
}

≤ C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2]
. (3.10)

Until now we have been working with θ from subspaces E for which the “almost ra-
dially symmetric”-property (3.1) holds; we want to know for which θ ∈ Sn−1 (in the
sense of measure) the “almost normally distributed”-property of 〈θ,X〉 holds. First note
〈θ, pE ◦X〉 = 〈p∗E(θ), X〉 = 〈θ,X〉 for any θ ∈ SE , so we can drop pE in (3.10). We con-
sider the “failure-set”, i.e. the set of those θ ∈ Sn−1 for which the normal approximation
possibly does not hold. To that end call A ⊂ Gn,k the set on the left-hand-side of (3.2),
then σn,k(A) ≤ C2e

−c2nδ2 ; and for each4 E ∈ Ac call BE the set on the left-hand-side of
(3.10), then σE(BE) ≤ C8

√
k exp

[
−c5k

(
u+γ+ e−c4ku

2)2]. Call the failure-set Θ, that is

Θ :=
{
θ ∈ Sn−1

∣∣∃t ∈ R : |P[〈θ,X〉 ≤ t]− Φ(t)| ≥ εn
}
. (3.11)

Then Θ ∩ E = BE for each E ∈ Ac. Using Lemma 2.2, we finally obtain

σn−1(Θ) = 1− σn−1(Θc) = 1−
∫
Gn,k

σE(Θc ∩ E) dσn,k(E) ≤

≤ 1−
∫
Ac

σE(Θc ∩ E) dσn,k(E) = 1−
∫
Ac

σE(BcE) dσn,k(E) ≤

≤ 1−
∫
Ac

(
1− C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2])
dσn,k(E) =

= 1−
(
1− C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2])
σn,k(Ac) ≤

≤ 1−
(
1− C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2])(
1− C2e

−c2nδ2) ≤
4Ac denotes the complement of the set A when the basic set is clear.
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≤ C8

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2]
+ C2e

−c2nδ2 =: δn. (3.12)

(Here again, for the δn of the theorem the maximum with 1 must be taken. Additionally,
in order for the computation above to work we must impose that the bounds on σE(BE)
and σn,k(A) are at most 1. This is garanteed by proving δn ≤ 1 which shall be done
below.)

Comment. Again the order of Fresen’s arguments is clouding what is going on: at the
end of page 7 he is still working in E, thus it is difficult to see why the failure-probab-
ility should contain the summand C exp(−cδn2), and he also gives no argument for its
inclusion; only on the next page does he make the jump from SE to Sn−1. ♦

Finally we choose the parameters:5

σ =
1

log(n+ 1)
, k =

c6 log(n+ 1)

log(log(n+ 2))
, δ =

log(n+ 1)√
n

,

u =
C10 log(log(n+ 2))√

log(n+ 1)
, ν =

C10√
log(n+ 1)

,

(3.13)

with C10, c6 ∈ R>0 for the fine tuning, and show that all requirements needed along
the way are satisfied. Obviously all parameters are positive for any n ∈ N. We note
the basic asymptotic behaviour: k � n and limn→∞ k = ∞, so k ≥ 2 is eventually
fulfilled (actually in order to make sense k has to be rounded to an integer, but for the
asymptotics this is immaterial), and limn→∞ δ = limn→∞ σ = limn→∞ u = limn→∞ ν =
0; furthermore σ ≤ 1 for all n ≥ 2.
The first is k ≤ c1

− log(ε) nδ
2 on page 70; on page 73 we have set ε = 1√

2n
, plugging in

yields that k ≤ 2c1
log(2n) nδ

2 must be met; we have

c6 log(n+ 1)

log(log(n+ 2))
≤ 2c1n

log(2n)

log(n+ 1)2

n
=

2c1 log(n+ 1)2

log(n)
(
1 + log(2)

log(n)

)
⇐⇒ c6 ≤

2c1

1 + log(2)
log(n)

log(n+ 1)

log(n)
log(log(n+ 2)) ≥

≥ 2c1

1 + log(2)
log(3)

· 1 · log(log(5)) = c1
log(9) log(log(5))

log(6)
,

so by imposing c6 ≤ c1
log(9) log(log(5))

log(6) that relation is satisfied.
In the second step we have derived lower and upper bounds for |e−hx(t) − e−hy(t)| and

promised that the lower will be greater than the upper. The lower bound (3.3) is

(e− 1)(1 + σ2)−
k
2 2−7k e−k = (e− 1)e

− log(128e)
c6 log(n+1)

log(log(n+2))

(
1 +

1

log(n+ 1)2

)− c6 log(n+1)
2 log(log(n+1))

5Curiously, Fresen writes C2 without ever having used C1 before.
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= (e− 1)(n+ 1)
− c6 log(128e)

log(log(n+1))

· (n+ 1)
− c6 log(1+log(n+1)2)

2 log(log(n+2)) (n+ 1)
c6 log(log(n+1))
log(log(n+2))

= (e− 1)
(n+ 1

n

)c6[− log(128e)
log(log(n+2))

− log(1+log(n+1)2)
2 log(log(n+2))

+
log(log(n+1))
log(log(n+2))

]
· nc6

[
− log(128e)

log(log(n+2))
− log(1+log(n+1)2)

2 log(log(n+2))
+

log(log(n+1))
log(log(n+2))

]
,

and the term in brackets in the exponents can be bounded from below as follows (n ≥ 3
always),

− log(128e)

log(log(n+ 2))
− log(1 + log(n+ 1)2)

2 log(log(n+ 2))
+

log(log(n+ 1))

log(log(n+ 2))
≥

≥ − log(128e)

log(log(5))
−

log
(
1 + 1

log(n+1)2

)
2 log(log(n+ 2))

≥ − log(128e)

log(log(5))
−

log
(
1 + 1

log(4)2

)
2 log(log(5))

≥ −12.74,

in addition n+1
n ≤

4
3 , this yields

(e− 1)(1 + σ2)−
k
2 2−7k e−k ≥ (e− 1)

(4

3

)−12.74c6
n−12.74c6 ≥ 1.669n−

1
10 ,

if we demand 12.74c6 ≤ 1
10 , that is c6 ≤ 1

127.4 .
For the upper bound (3.4) we obtain

C5(2πσ2)−
k+1
2

(
δ +

√
log(n)

n

)√
k =

C5√
2π

√
2π
− c6 log(n+1)

2 log(log(n+2))

( 1

log(n+ 1)

)− c6 log(n+1)
log(log(n+2))

−1

·
(

log(n+ 1)√
n

+

√
log(n)

n

)√
c6 log(n+ 1)

log(log(n+ 2))

=
C5
√
c6√

2π
√
n

(n+ 1)
− c6 log(

√
2π)

log(log(n+2)) (n+ 1)
c6 log(log(n+1))
log(log(n+2))

·
(

1 +

√
log(n)

log(n+ 1)

) log(n+ 1)
5
2√

log(log(n+ 2))

=
C5
√
c6√

2π
√
n
n
c6

log(log(n+1))−log(
√
2π)

log(log(n+2))

·
(n+ 1

n

)c6 log(log(n+1))−log(
√
2π)

log(log(n+2))

·
(

1 +

√
log(n)

log(n+ 1)

) log(n+ 1)
5
2√

log(log(n+ 2))
;
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in the exponents we simply estimate log(log(n+1))−log(
√

2π)
log(log(n+2)) ≤ log(log(n+1))

log(log(n+2)) ≤ 1; further-

more n+1
n ≤ 4

3 and
√

log(n)

log(n+1) ≤
√

log(n+1)

log(n+1) = 1√
log(n+1)

≤ 1√
log(4)

and 1√
log(log(n+2))

≤

1√
log(log(5))

, also log(n + 1)
5
2 =

( log(n+1)
log(n)

) 5
2 log(n)

5
2 ≤

( log(4)
log(3)

) 5
2 log(n)

5
2 ; moreover a

standard-calculation shows nc6−
1
10 log(n)

5
2 ≤

(
25

e(1−10c6)

) 5
2 , equivalently nc6 log(n)

5
2 ≤(

25
e(1−10c6)

) 5
2 n

1
10 (note that from before we already know c6 ≤ 1

127.4 , hence 1− 10c6 > 0).
Taken together we have proved

C5(2πσ2)−
k+1
2

(
δ +

√
log(n)

n

)√
k ≤

C5
√
c6√

2π log(log(5))

(4

3

)c6(
1 +

1√
log(4)

)
·
( 25 log(4)

e log(3)(1− 10c6)

) 5
2
n−

1
2

+ 1
10 ≤ 53.5C5n

− 1
2

+ 1
10 .

In any case the upper bound transgresses the lower bound for n >
(

53.5C5
1.669

) 10
3 at the

latest.
Next we want to verify γ ∈ (0, 1

2 ], recall its definition in (3.5):

C6e
c3k(1 + σ2)

k
4 σ−

k+1
2

(
δ

1
2 +

( log(n)

n

) 1
4

)
= C6e

c3c6 log(n+1)
log(log(n+2))

(
1 +

1

log(n+ 1)2

) c6 log(n+1)
4 log(log(n+2))

· log(n+ 1)
c6 log(n+1)

2 log(log(n+2))
+ 1

2

·
(√

log(n+ 1)

n
1
4

+
log(n)

1
4

n
1
4

)
=
C6

n
1
4

(n+ 1)
c6
[
4c3+log(1+log(n+1)−2)

4 log(log(n+2))
+

log(log(n+1))
2 log(log(n+2))

]
· log(n+ 1)

(
1 +

log(n)
1
4

log(n+ 1)
1
2

)
;

we are applying the usual estimation-techniques: concerning the brackets-term we have
4c3+log(1+log(n+1)−2)

4 log(log(n+2)) ≤ 4c3+log(1+log(4)−2)
4 log(log(5)) ≤ 5.41, then log(log(n+1))

log(log(n+2)) ≤ 1, next (n + 1)ρ =(
1 + 1

n

)ρ
nρ ≤

(
4
3

)ρ
nρ, furthermore log(n + 1) = log(n+1)

log(n) log(n) ≤ log(4)
log(3) log(n), also

log(n)1/4

log(n+1)1/2
≤ log(n+1)1/4

log(n+1)1/2
= log(n + 1)−

1
4 ≤ log(4)−

1
4 , and finally n5.91c6− 1

4 log(n) ≤
20

e(1−118.2c6) n
− 1

5 , which is valid because of c6 ≤ 1
127.4 ; this sums up to

γ ≤ C6

(4

3

)5.91c6 log(4)

log(3)

(
1 + log(4)−

1
4
) 20

e(1− 118.2c6)
n−

1
5 ≤ 250.4C6n

− 1
5 ,

which implies limn→∞ γ = 0 and hence γ ≤ 1
2 eventually (e.g. n ≥ (500.8C6)5).

The application of Lemma 2.24, 3., for (3.6) requires u ∈ [0, 1], which is guaranteed
for n sufficiently large (in this case, very; roughly n ≥ e6.32C4

10 − 2) by limn→∞ u = 0, as
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already noted above. The proximity-condition of tx and
√

1 + σ2
√
k stated on page 79,

if it were deducible from Lemma 2.24, 4., would need γ +
C′1√
k
≤ 1

4 ; again this is fulfilled
by γ converging to zero and k converging to infinity.
The next case is the bound 1

u
√
k
≤ α′ on page 79:

1

u
√
k

=

√
log(n+ 1)

C10 log(log(n+ 2))

√
log(log(n+ 2))
√
c6

√
log(n+ 1)

=
1

C10
√
c6

1√
log(log(n+ 2))

≤ 1

C10

√
c6 log(log(5))

,

so we may effectively take α′ := 1

C10

√
c6 log(log(5))

. This also reveals limn→∞
1

u
√
k

= 0,

equivalently limn→∞(ku2) =∞, and hence limn→∞ ε = limn→∞ α
′′(u+γ+e−c4ku

2)
= 0,

therefore ε ≤ 1
2 as claimed on page 80 is (eventually) achieved. The satisfying of ν ≤ 1

on page 80 again is a simple consequence of limn→∞ ν = 0, more precisely is holds for
n ≥ eC

2
10 − 1.

Comment. Fresen does not address this one as he has not overtly used it; we do not
know how, if at all, he managed to get the thin-shell-estimate with the “correct” radius
without running into this term, since like elsewhere he gives no details. ♦

We are now closing in on the sequences (δn)n≥1 and (εn)n≥1 as stated in the theorem.
δn is the upper bound for the failure-probability in (3.12), thus

δn = C2e
−c2nδ2 + C9

√
k exp

[
−c5k

(
u+ γ + e−c4ku

2)2] ≤ C2e
−c2nδ2 + C9

√
k e−c5ku

2
=

= C2e
−c2n log(n+1)2

n + C9

√
c6 log(n+ 1)√

log(log(n+ 2))
e
− c5c6 log(n+1)

log(log(n+2))

C2
10 log(log(n+2))2

log(n+1) ≤

≤ C2e
−c2 log(n+1)2 +

C9

√
c6 log(n+ 1)√
log(log(5))

e−c5c6C
2
10 log(log(n+2)) =

= C2(n+ 1)−c2 log(n+1) +
C9

√
c6 log(n+ 1)√
log(log(5))

log(n+ 2)−c5c6C
2
10 ≤

≤ C2n
−c2 log(4) +

C9
√
c6√

log(log(5))
log(n+ 2)

1
2
−c5c6C2

10 =

=
(
C2n

−c2 log(4) log(n)c5c6C
2
10−

1
2 +

C9
√
c6√

log(log(5))

)
log(n)

1
2
−c5c6C2

10 ≤

≤
[
C2

(c5c6C
2
10 − 1

2

ec2 log(4)

)c5c6C2
10−

1
2

+
C9
√
c6√

log(log(5))

]
log(n)

1
2
−c5c6C2

10 ,

where we require 1
2 − c5c6C

2
10 < 0, that is C10 >

1√
2c5c6

, then limn→∞ δn = 0 and the
convergence can be accelerated by taking larger values of C10.
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The error-bound εn for the difference of the distribution-functions in (3.9) is determined
as follows,

εn
C9

= ν + σ + u+ γ + e−c4ku
2

+ e−
ν2

2σ2

≤ C10√
log(n+ 1)

+
1

log(n+ 1)
+
C10 log(log(n+ 2))√

log(n+ 1)

+ 250.4C6n
− 1

5 + e−c4c6C
2
10 log(log(n+2)) + e

− C2
10

2 log(n+1)
log(n+1)2

=

=
C10√

log(n+ 1)
+

1

log(n+ 1)
+
C10 log(log(n+ 2))√

log(n+ 1)

+ 250.4C6n
− 1

5 + log(n+ 2)−c4c6C
2
10 + (n+ 1)−

1
2
C2

10

=
log(log(n+ 2))√

log(n+ 1)

( C10

log(log(n+ 2))
+

1

log(log(n+ 2))
√

log(n+ 1)
+ C10

+
250.4C6n

− 1
5

√
log(n+ 1)

log(log(n+ 2))
+

log(n+ 2)−c4c6C
2
10

√
log(n+ 1)

log(log(n+ 2))

+
(n+ 1)−

1
2
C2

10

√
log(n+ 1)

log(log(n+ 2))

)
;

as usually, 1
log(log(n+2)) ≤

1
log(log(5)) ,

1√
log(n+1)

≤ 1√
log(4)

, n−
1
5

√
log(n+ 1) ≤

√
log(4)
log(3) ·

(n−
2
5 log(n))

1
2 ≤

√
log(4)
log(3)

√
5
2e , (n + 1)−

1
2
C2

10

√
log(n+ 1) = ((n + 1)−C

2
10 log(n + 1))

1
2 ≤

1
C10
√
e
, and for the second-to-last term we additionally demand 1

2−c4c6C
2
10 < 0, so C10 >

1√
2c4c6

, thence log(n + 2)−c4c6C
2
10

√
log(n+ 1) ≤ log(n + 2)

1
2
−c4c6C2

10 ≤ log(5)
1
2
−c4c6C2

10 ;
put together this reads

εn ≤
C9

log(log(5))

(
C10 +

1√
log(4)

+ C10 log(log(5))

+ 250.4C6

√
5 log(4)

2e log(3)
+ log(5)

1
2
−c4c6C2

10 +
1

C10
√
e

) log(log(n+ 2))√
log(n+ 1)

and from this limn→∞ εn = 0 readily follows, and the proof is complete.

For the convenience of the reader we provide an overview over the constants used in
this proof in Table 3.1; note that A,B themselves come from Lemma 2.23 for n = 2,
therefore A = 324e4

π ≈ 5631 and B = 1
48 log(80e4)

≈ 1
402.34 .

We also give a numerical example, as far as possible: we start with C1 = 4π
√

2 ≈ 17.8,
then C2 = 4ζ(2) = 2π2

3 ≈ 6.58 and c1 < 2 log(2)
log(6) , for instance c1 = log(2)

log(6) ≈ 0.387,
herewith c2 = 1; c3 ≈ 2.47 and c4 ≈ 0.1534 are fixed in any case; furthermore c6 ≤
min{0.2257, 0.007 85} = 0.007 85. α ≈ 1.3024 is given, from that follow C3 ≈ 30.422,
C4 ≈ 48.00, C5 ≈ 111.05 and C6 ≈ 10.155. From A and B result c5 ≈ 6.11 · 10−21
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constant remarks

α ≥ log(log( 3
2

))

log( 1
2

)
introduced on p. 72, used for C3

α′ = 1

C10

√
c6 log(log(5))

introduced on p. 79, formula on p. 85

α′′ = max
{

5 + (α′ +
√

2)C7, 8 + C7√
2

}
introduced on p. 79, used for C9

c1 <
log(2)

log(6)(4π)2
C2

1 introduced on p. 70, condition on p. 71

c2 =
C2

1
(4π)2

− c1 log(6)
log(2) introduced on p. 71

c3 = 1
2 + 7

2 log(2)− 1
4 log(2π) introduced on p. 77

c4 =
log( e

2
)

2 introduced on p. 77, from Lemma 2.24
c5 = 1

4

(
400πA
179B2 + 1

)−2 introduced on p. 80, from Theorem 2.28
c6 ≤ min

{
c1

log(9) log(log(5))
log(6) , 1

127.4

}
introduced in (3.13), conditions on pp. 82, 83

C1 > 4π introduced on p. 70, condition on p. 71
C2 = 4ζ

( C2
1

(4π)2

)
introduced on p. 71

C3 = max
{

8π, 3C1
√
α

2

}
introduced on p. 72

C4 = C3
1+
√

log(6)√
log(9)

introduced on p. 73

C5 = C4

√
2e+25/4 π1/4+23/4 π−1/4

√
eπ

introduced on p. 75

C6 =
√

2C5

√
2

(e−1)
√
π

introduced on p. 77
C7 ∈ R>0 introduced on p. 79, from Lemma 2.24, 4.
C8 = max

{
e, 179B2

200πA

}
introduced on p. 80, from Theorem 2.28

C9 = 1 + 3α′′

2 introduced on p. 80
C10 >

1√
2 min{c4,c5}c6

introduced in (3.13), conditions on pp. 85, 86

Table 3.1: Overview of constants in proof of Theorem 3.1.

and C8 = max{e, 3.13 · 10−10} = e ≈ 2.72; we continue with C10 > 1.0214 · 1011, e.g.
C10 = 1.1 · 1011, this produces α′ = 1.49 · 10−10. Clearly the constants’ values span
several orders of magnitude; as an extreme case we note the bound n ≥ 104.02·1044 for
u ≤ 1 (this is still a good deal smaller than Skewes’s number).

Note on the mode of convergence

Theorem 3.1 states that most onedimensional marginals are close to the standard normal
distribution in the sense of the uniform distance between the distribution-functions (es-
pescially among statisticians also called Kolmogorov-(Smirnov-)distance); usually this is
stronger than weak convergence of measures, because the latter only demands pointwise
convergence on all continuity-points of the limit-CDF (that is all of R in the case of the
normal distribution). As Fresen points out, [20, Theorem 1.1] is formulated in terms of
the total-variation-distance which in the case of log-concave distributions is immaterial.
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The total-variation-distance dTV of the probability-measures µ and ν on Rn is defined
as

dTV(µ, ν) := 2 sup
{
|µ(A)− ν(A)|

∣∣A ∈ B(Rn)
}

=
∥∥∥dµ
dλ
− dν

dλ

∥∥∥
L1(Rn,λ)

,

where λ is any σ-finite measure with µ � λ and ν � λ (a dominating measure, for
instance λ = 1

2(µ+ ν))
The relevant result is the following, from [5, Theorem 3.3, Remark 3.4]:

Theorem 3.2. There exists an increasing function β1 : (0,∞)→ (0, 2] with

β1(t) = O
(
t(− log(t))

1
2
)

(t ∈
(
0, (2π)−

1
2
]
)

with the following property: for any log-concave density f : R → R≥0 with CDF F and
for any σ ∈ R>0 such that ‖f‖L∞(R) ≤ 1

σ there holds

‖F − Φσ‖L∞(R) ≤ ‖f − ϕσ‖L1(R) ≤ β1(σ‖f − ϕσ‖L∞(R)) ≤ β1

(√
5‖F − Φσ‖

1
2

L∞(R)

)
,

where ϕσ and Φσ are the PDF and CDF respectively of the centred normal distribution
with variance σ2.
If f is centred and σ2 =

∫
R t

2f(t) dt, then ‖f‖L∞(R) ≤ 1
σ is always satisfied.

(W/o proof.)

This is applicable to Theorem 3.1 because X is isotropic and log-concave, therefore
〈θ,X〉 is so for any θ ∈ Sn−1, hence it has an isotropic log-concave density fθ, so σ = 1;
and with dominating measure λ = v1 we have dTV(P〈θ,X〉, γ1) = ‖fθ − ϕ‖L1(R).
For the sake of completeness we mention the more general result from Meckes and

Meckes [32, Corollary 8]; here, as already used above, γn denotes the standard normal
distribution on Rn.

Theorem 3.3. A sequence of log-concave measures on Rn converges weakly to γn if and
only if it converges in total variation to γn.
(W/o proof.)



4 Concluding remarks

Here we recapitulate our observations regarding Fresen’s proof of the CLT for convex
bodies. In particular, we want to assess whether his claim, that the proof be accessible
to anyone, can be justified.
For short, our answer is that it depends on how much of Fresen’s article one takes

into account – either only the proof as contained within Section 2 without the two notes
at the end of that section, or including those notes, or even Section 3 – and how much
mathematical background can be taken for granted.
In the strictest sense of ‘accessible to anyone’, we think that Fresen’s claim cannot

be upheld: the theorem of Lévy for Lipschitz-functions on the sphere (Theorem 2.27)
might not be known to every mathematician, and not everybody might be comfortable
handling the Haar-measure on On(R) and the uniform measures on Sn−1 and on Gn,k
and their interrelations. Perhaps these measure-theoretic results are the main hindrances
for a general audience.
If we assume familiarity with the results just named and if we exclude the aforemen-

tioned two notes, then we deem Fresen’s proof indeed elementary. His style in this article
is extremely compressed, and in one or two cases the order of the arguments may be
unsatisfying, but most of the gaps can be filled in with more or less effort and relativly
simple instruments. We do not claim that the right technique for a particular interme-
diary result is immediately clear, and writing out the details may be tedious at times.
As an example for such elementary, but lengthy, calculations we refer to the sub-proof
that all parameters have the right asymptotic behaviour on pp. 82ff. For the sake of a
clearer arrangement of the main proof, we have removed a few of the intermediary results
and reformulated them as independent lemmas or theorems, if possible. This especially
concerns Step 2, most of which we have relegated to Lemma 2.24.
Now we include the two notes at the end of Fresen’s Section 2 into our considerations.

The second one, “Lower bound on PEf(0)”, is less problematic. It makes use of Grün-
baum’s lemma (Lemma 2.21), the proof of which we deem nontrivial but itself requiring
no further deep results. The first note, “Radius of the thin shell”, has one crucial fault,
which we already have pointed out on p. 78f.: Fresen invests estimates of expectation
and variance which to us seem unattainable.
Fresen’s Section 3 is declared as an appendix and thus not part of the main proof;

nevertheless, it is part of his article and therefore we look into it too. As already noted
on p. 67, its greatest merit is the simpler (in terms of applied techniques) proof of
Lipschitz-continuity. However, for us this is tainted by downplaying, as we might call it,
several important ingredients: one is his “elementary fact” of the exponential bound on an
isotropic log-concave function which, as far as we have found out, is not at all elementary,
at least as concerns its proof. Another is the use of important properties of the normal
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distribution and the uniform distribution on the sphere, which we have summarized in
Lemmas 2.25 and 2.26. We do not say that using these results is improper, but rather
their seeming belittlement.
In total, we agree that over long stretches Fresen’s proof is elementary in its techniques,

but it needs more special results to completely retrace it than Fresen explicitly states.
In spite of its defects we regard his article as a decent contribution to the theory.
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