
Nenad Gvozdenov, BSc

Test environment for camera-based
systems of autonomous vehicles

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Daniel Watzenig

Institute of Automation and Control
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Martin Horn

Graz, October 2020

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present masters thesis.

Date Signature

iii

Acknowledgments

I am deeply grateful to my parents and older sister for supporting me
during the whole study period.

I must mention Stefan Obergröbner who allowed me to use his frame-
work of PathPlanner application which was completed and adapted by me
for the purposes of this project. Also, lots of thanks go to Emina Hadrovic
for providing the implementation of the lane-detection algorithm which
was used in the evaluation phase of this thesis.

Special thanks go to Amar Civgin for the preliminary review of the chapters
of my thesis.

The deepest appreciation from my side goes to Prof. Watzenig and my
supervisor Christian Schwarzl for always having enough time in their busy
schedules to support and guide me through the whole process of my master
thesis.

v

Abstract

This master thesis defines an approach for testing camera-based autonomous
vehicle functions on proving grounds. The goal of the work is to provide a
test environment consisting of a variety of software tools for simulation and
evaluation of advanced driving assistance systems (ADAS). The evaluation
of the ADAS is done as black-box testing procedure where we just provide
inputs and observe the behavior of a system in the simulated environment
by checking the produced output.

The test environment uses projectors to create projected images as input to
the system under test (SUT). One or multiple projectors are used to project
the videos or images of the testing scenarios in front of the vehicle. This
master thesis takes challenges into account caused by projectors. The so-
called Keystone effect occurs when the projector is placed at a certain angle
towards the projecting surface. The projected images or video frames get
deformed under those conditions. An image calibrator tool was developed
to eliminate the distortion by applying the image transformation on the
projected image.

Two additional tools have been developed which are the path-planner
and the image-splitter video player. The path-planner is used to manually
specify driving trajectories and the image-splitter video player to create
videos for the test environment. The video is used to investigate ADAS
traffic line detection with variations in shapes and colors in the simulated
environment.

The basis for video creation is an image of drawn street markings. The
path-planning tool uses a road map and enables the user to draw a path on
the map. The user can then exports a list of waypoints along the defined
path to a file. Out of this map and exported path, the image-splitter tool
creates a video animation. The video is constructed by cropping rectangular

vii

parts from the road map along the path. Those extracted parts are then
stacked into the animation timeline. The tool is capable of defining multiple
image parts at the time, depending on the number of used video projectors
in the simulated environment. In this way, the tool splits the video into
multiple areas, where each area is displayed by one projector. This allows
for a much bigger coverage of the projected area in the test environment.

This master thesis also investigates the problem of detection of depthless
objects. We have used images of different objects like traffic signs, people
or some other obstacles as input to the image calibrator tool. The tool
changes the perspective of the image so that its ground projection creates an
optical illusion from a certain point of view. The 2D projected image is then
perceived from the ADAS systems as a real 3D object. We have evaluated
the vehicles in the simulated environment with different ADAS systems
such as Mobileye 630, VW Sign Assist and VW Lane Assist, and have been
able to stimulate them with our projection approach.

Keywords: ADAS, test environment, keystone effect, black-box testing proce-
dure, optical illusion, perspective transformation, SOTIF, video-animation

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Motivation . 3

1.2 Challenges . 5

1.2.1 Keystone Effect . 6

1.2.2 Optical Illusion and Depth Perception 7

1.2.3 Video creation . 8

1.3 State of the art . 10

2 Tools and Libraries 13
2.1 JavaFX and Scene Builder . 13

2.2 Inkscape . 15

2.3 Test Environment Setup . 16

2.4 Advanced Driver Assistance System (ADAS) 18

2.4.1 Mobileye . 18

2.4.2 Volkswagen Sign Assist 19

2.4.3 Volkswagen Lane Assist 19

3 Software Implementation 21
3.1 Image Calibrator . 21

3.1.1 The User Interface . 22

3.1.2 Perspective Transformation 25

3.2 Path Planner . 28

3.2.1 The User Interface . 28

3.2.2 Bezier Curve . 31

3.2.3 Configuration File . 32

ix

Contents

3.2.4 Export File . 34

3.3 Image-Splitter Video Player . 36

3.3.1 The User Interface . 36

3.3.2 Configuration File . 38

3.3.3 Timeline Animation . 42

4 Evaluation 49
4.1 Test environment and testing scenarios creation 49

4.2 Experimental Results . 53

4.2.1 Moving street marking 54

4.2.2 Perception challenge . 57

5 Conclusion 63

Bibliography 65

x

List of Figures

1.1 ”Most important factors when buying a car” survey is taken
from the following website [1] 2

1.2 The different types of inputs created for the test environment 4

1.3 Scene Builder Application . 5

1.4 Keystone effect . 6

1.5 Example of optical illusion . 8

1.6 Visualized sensor data . 9

2.1 Scene Builder Application . 14

2.2 Inkscape Application . 16

2.3 Test environment setup . 17

2.4 Advanced Driver Assistance System (ADAS) 19

3.1 Image-Calibrator tool . 22

3.2 Image-Calibrator tool with opened preview window 24

3.3 Path-Planner tool . 29

3.4 Examples of Bezier curves . 32

3.5 Image-Splitter Video Player tool 37

3.6 Image-Splitter tool while displaying the video animation . . . 38

3.7 “The horse in motion” . 42

3.8 The calculation of an angle between two points on the image
map . 43

3.9 Explanation of the viewport positioning and finding the opti-
mal cropping area on the map 45

4.1 Ground projections of the checkerboard image, before and
after the calibration of a projector 50

4.2 Different roads drawn within Inkscape 52

4.6 The video frame samples showing the challenges caused by
the indoor environment . 56

xi

List of Figures

4.8 Captured wall projections of transformed images 59

4.9 Testing scenario where the VW Sign Assist system detects the
projected speed-limit sign . 61

xii

1 Introduction

The near future brings us an increasing usage of autonomous vehicles on
the roads. Autonomous driving will provide many advantages and benefits
to our daily lifestyle. However, this way of transporting people and goods
brings certain challenges with it. According to a survey conducted in the US
[1], as shown in Figure 1.1, buyers of new cars named car safety as the most
important characteristic. Based on this information, it is to be expected that
the future users of autonomous vehicles will be most interested in the level
of safety of their vehicles.

The challenge with autonomous vehicles is that the responsibilities are
shifted from the driver to the vehicle. Thus, vehicle safety is linked to au-
tonomous decision making of advanced assistance systems. In order to
achieve a certain level of safety and thus the trust of users, it is necessary
to perform a huge amount of testing of the vehicles advanced assistance
systems during the development phase. In other words, the functional safety
of such systems must be ensured, and has to be shown using testing. The
reason for the huge number of required tests lies in the increasing system
complexity and the increasing number of safety-critical functions which
need to be evaluated in vehicles.

This master thesis defines an approach for testing camera-based autonomous
vehicle functions on proving grounds. The goal of the work is to create a
test environment consisting of a variety of software tools for simulation and
evaluation of advanced driving assistance system (ADAS). The evaluation of
ADAS is done as black-box testing procedure, where we just provide inputs
and observe the behavior of a system in the simulated environment by
checking the produced output. The test environment uses video projectors
to display images as input to the system under test (SUT).

1

1 Introduction

Figure 1.1: ”Most important factors when buying a car” survey is taken from the following
website [1]

Here is the short outlook of our master thesis structure. In this chapter, we
will continue by describing the motivation for creating the test environment
and the problem statement of this project. The project specification is pre-
sented in Chapter 2. First, we will introduce tools and libraries which are
used for software implementation. Further on, we will list all devices used
during test environment construction, as well as different ADASs used in
the evaluation process. Chapter 3 will explain the implementation details of
the tools used to provide input scenarios for a test environment. Chapter 4

of this thesis defines the testing procedure, possible test samples which
could be produced with our approach and the evaluation results of ADASs
will be presented.

2

1.1 Motivation

1.1 Motivation

According to the article [2], some of the governments are discussing the
regulations which would require the usage of advanced driving assistance
systems (ADAS) in every vehicle by the year of 2022. As the present number
of ADAS in vehicles will increase soon, it is necessary to find an efficient way
to evaluate them. The evaluation process of such systems requires a huge
amount of testing hours and a lot of mileage on autonomous test-vehicles.

Therefore, the main motivation for this project has been to enable thor-
ough testing of some safety-critical functions in a simulated environment.
We have decided to create a test environment where we could evaluate some
of the camera-based autonomous vehicle functions.

A test environment executes specific driving scenarios which are created
to investigate the behavior of a system under test in simulated conditions.
It makes the testing procedure for some critical situations much faster and
easier than the testing via test drives on public roads. And also because
of the high number of tests required, in terms of ensuring and verifying
function safety of a system, we need some kind of test automation. In our
particular case, the decision has been made to use the black-box testing pro-
cedure. For this type of procedure, no further changes on the system under
test are required. This is the reason why the unit under test is considered as
black-box. Furthermore, for this type of testing, we just provide different
scenarios to the test environment as input and observe which output the
system under test will provide.

The Figure 1.2 shows three examples of inputs for the test environment.
Videos or images of the testing scenario are displayed in front of a standing
vehicle. The first image from Figure 1.2 represents a testing scenario of
moving street markings. This type of test will be used to evaluate the traffic
line-detection feature of an ADAS. Instead of working with fixed street
markings projections, we wanted to have high flexibility while testing the
driving scenarios. The motivation is to make test environment capable of
executing test scenarios of moving street lines in a variety of different shapes

3

1 Introduction

(a)

(b) (c)

Figure 1.2: The different types of inputs created for the test environment

and colors. And also we wanted to project those test scenarios over multiple
projectors, which enables a much bigger coverage on the projecting surface
and makes the simulated environment better representing the vehicle sur-
roundings.

Figure 1.2 (b) and (c) represent test scenarios of static image projections.
As input for the test environment, images of different objects are used,
like traffic signs, people, or some other obstacles. Those images are then
transformed so that their ground projection creates an optical illusion from
a defined point of view. The motivation for creating such tests is to inves-
tigate the problem of detection of depthless objects. In other words, we
wanted to create a tool which could provide our test environment with
such input images and make our test environment capable of checking if
next-generation ADAS or some other available system like an automatic
emergency brake (AEB) will detect these 2D projected images as real 3D
objects. The potential false detection of such projections could have a larger
impact on vehicle safety in real-world situations. The importance of dealing
with such unintended behavior of current and future autonomous vehicle

4

1.2 Challenges

Figure 1.3: Influence of SOTIF activities on the evolution of the use case categories [3]

systems over time is confirmed by the SOTIF standard, whereof a short
explanation is given below.

“Safety of the intended functionality or short SOTIF focusses on the preven-
tion of hazardous situations caused by technical shortcomings or misuse of
the E/E system. The main challenge in the SOTIF activities is, that not all
technical shortcomings are known during development and in the worst
case might be revealed during operation, after the vehicle has been brought
onto the market. For this reason, the SOTIF activities explicitly includes
tracking the vehicle performance in the field to identify unsafe scenarios
not known during development. This evolution of the use case categories is
shown in Figure 1.3, where the number of unknown and unsafe scenarios is
minimized over time. [3]”

1.2 Challenges

In this section some of the challenges and thoughts which have been consid-
ered during the development of a test environment are presented. The first
issue is related to problems caused by hardware devices, the projectors in
particular. And the other challenges are more related to the implementation
decisions and solutions made during the development of the required tools.

5

1 Introduction

Figure 1.4: Example of the keystone effect (left), The correction of a projected image (right)

1.2.1 Keystone Effect

The usage of projectors for test environment purposes could cause some
distortions of the projected images. The distortion occurs when a projector
is mounted at a certain angle towards the projecting surface. In that case,
the projection receives the shape of a trapeze instead of a rectangle. This
type of distortion is also known as the keystone effect [4]. In Figure 1.4 an
example of a keystone effect is shown.

The keystone effect will appear in our case as well since the projectors
in our setup will be mounted on a certain height tilted towards the ground.
The parts of distorted image projections which are further away from a
projector will have significantly lower contrast and brightness than the rest
of the projection on the projecting surface. These low contrast and brightness
changes, lead to the loss of pixel information of the projected image.

There are several possible solutions for keystone correction. One of the
solutions is manual keystone correction which considers physical adjust-
ment to the lens of the projector. It works well for situations when the
distortion of projection is not so obvious. This type of solution is not suit-
able in our case, since the level of distorted projection images is much
higher, so other solutions are required. The other solution is digital keystone
correction where the projected image is transformed digitally on the com-
puter before it reaches the projector lens. So we decided to implement a tool

6

1.2 Challenges

which is capable of calibrating the projector over an image transformation.
The tool displays the checkerboard calibration pattern on the projecting
surface. If the projected lines of a checkerboard pattern are not parallel, the
user can adjust the transformation values using the tool until all the lines
become parallel. The idea is to find appropriate values for image correction
with the image calibration tool and to apply the same transformation to
each video frame in the testing scenarios. Otherwise, the projected video
will be distorted and unsuitable for testing purposes.

1.2.2 Optical Illusion and Depth Perception

The next challenge in our master thesis is related to the creation of test-
ing scenarios which will be used to investigate the perceptual challenge
of camera-based functions. Figure 1.5 shows the example of such optical
illusions where the painting on the ground on the left image does not have
a clear meaning, but the same painting on the right when observed from a
certain point of view looks similar to a 3D representation of planet earth.

In order to generate such image projections for our test environment, we
used the calibration tool which we use to eliminate the keystone effect of the
projector. This tool is already capable of applying the image transformation
by changing the perspective of a projected image. With this tool, we can
create an optical illusion to the perception algorithm of different obstacles
by transforming the 2D images of for example: traffic signs, peoples, or cars.

7

1 Introduction

Figure 1.5: Optical illusion, taken from following website [5]

1.2.3 Video creation

The Virtual Vehicle Research GmbH has collected sensor data of different
ADAS from the real world. The visualized data can be seen in Figure 1.6.
Those two frames are showing exactly the critical point in time where the
Mobileye 630 ADAS has an issue of detecting the lane in front of the vehicle.

The time difference between those two captured images is just one sec-
ond, and this has been exactly the critical point where the Mobileye 630

ADAS has an issue of detecting the lane in front of the vehicle. The vehicle
has at that moment approached a road construction site and the color of the
street marking has changed to orange.

Hence, we wanted to reproduce some of the critical situations in the simu-
lated environment, like for example changing the color of lines by creating
a video of moving street markings. The challenge has been to find a pro-
cedure for producing needed video projections of moving street markings
that appear as real road markings from the camera-based system point of
view.

The two tools developed for that purpose are the path-planner and the
image-splitter video player. The path-planner is used to manually specify
driving trajectories and the image-splitter video player to create videos for
the test environment. The basis for video creation is an image of drawn

8

1.2 Challenges

Figure 1.6: Visualized sensor data

street markings on a map. The different road map images come in a variety
of line sizes, colors, and shapes and are generated with the Inkscape tool.
Different maps have been used to produce different testing scenarios. The
path-planning tool uses a road map and enables the user to draw a path on
the map. The user can then export a list of waypoints along the defined path
to a file. With this map and the exported path, the image-splitter tool creates
a video animation. The video is constructed by cropping rectangular parts
from the road map along the path. Those extracted parts are then stacked
into the animation timeline.

The other challenge has been to produce video simulation that could be
displayed over multiple projectors. Image-splitter video player tool has
been implemented in such a way, that it is capable of defining multiple
image parts at the defined time instance, depending on the number of used
projector devices in the simulated environment. This tool splits the video
into multiple areas, where each area is displayed by a certain projector.
This allows for a much bigger coverage of the projected area in the test
environment.

9

1 Introduction

1.3 State of the art

The basic idea for this master thesis comes from a research paper with the
title “Phantom of the ADAS: phantom attacks on driver-assistance systems
[6]”. This paper investigates a perceptual challenge that causes the ADASs
and autopilots of semi/fully autonomous vehicles to consider depthless
objects (phantoms) as real. The attacker in their case uses a drone with a
small mounted projector to project the “phantom” in front of the moving
vehicle. Where the term “phantoms” indicates the image projections of
traffic lines, people and traffic signs. In their showcases, a car ADAS or an
autopilot has detected phantoms as real objects, which caused the system to
trigger the brake, or to steer into the lane of oncoming traffic lines, and it
also caused the issue of detecting fakeroad signs. From this paper, we get
the information that camera-based systems can detect ground projection
as a real object. Based on that, we wanted to develop our test environment
capable of projecting the different testing scenarios to evaluate ADASs.

There are already research works which consider the evaluation of ADASs
within a simulated environment, for example: “Testing ADAS though sim-
ulated driving situations analysis: environment configuration [7]” and “A
Method for Testing Camera Based Advanced Driving Assistance Systems
[8]”. However, for testing purposes they are using the commercial simulator
systems, which are capable of reproducing the driving scenarios from the
real world. There are also semi-virtual approaches used for ADAS evalua-
tion, which are combining real test drive captured data and the simulations
data represented in the following paper “Semivirtual Simulations for the
Evaluation of Vision-based ADAS [9]”.

Since our test environment uses projector devices, which suffer from the
keystone effect, we had to handle this problem with an approach described
in the following papers [10], [11], [12]. In those papers, the researchers
have solved the keystone effect by using an additional camera to calculate
geometric relations between the projector and the projecting surface. They
are computing two homographies, first between the camera and projector,
and the second between the projecting surface and the camera. From those
two homographies, they found the image transformation which produces

10

1.3 State of the art

the pre-warped image which could be projected without distortion. In our
solution, we have proceeded without an additional camera. We have created
the tool with which the user is able to manually adjust the values required
for the pre-warp image transformation.

We have also considered the paper “Real time detection of lane mark-
ers in urban streets [13]” to evaluate the quality of projections in our test
environment. In our work, we have used a dataset of image frames collected
from our test environment with the webcam. The algorithm introduced
in the mentioned paper is evaluated on the collected dataset, to verify the
quality of testing scenarios and test environment itself.

11

2 Tools and Libraries

In this chapter applications and frameworks used in software development
are presented. JavaFX is used as the main programing language, which is a
Java library suitable for the development of applications with a graphical
user interface. And we also use the OpenCV library to be able to implement
some of the image processing functions utilized in our tools.

In this chapter, all of the hardware devices and other components used
for the construction of our test environment are listed. At the end of this
chapter, some advanced driver assistance systems (ADAS) and their fea-
tures which could eventually be evaluated in our test environment are also
introduced.

2.1 JavaFX and Scene Builder

For this master thesis, three tools which are used to generate and display
different testing scenarios for our test environment are developed. For the
development of these tools, we use the JavaFX1 library. “JavaFX is a set of
graphics and media packages that enables developers to design, create, test,
debug, and deploy rich client applications that operate consistently across
diverse platforms. [14]” The creation of graphical user interfaces is pretty
easy with the provided Scene Builder tool.

Figure 2.1 shows Scene Builder during the design of one of our user tools.
The left panel in the Scene Builder [14] application contains a set of sections
with different scene elements like panes, buttons, text fields, labels, progress

1https://openjfx.io

13

https://openjfx.io

2 Tools and Libraries

Figure 2.1: Scene Builder Application

bars, and others. All those elements could be dragged over to the hierarchy
tree on the bottom left side of Scene Builder. This hierarchical tree of nodes
defines the layout of the visual elements of the tools user interface. This is
a good starting point for constructing the application. Each node from a
hierarchical tree has an ID, style class, and bounding volume. These node
properties could be defined in the right section of the Scene Builder. For
each node event handlers for mouse, keys or input methods can be specified.
When a hierarchical tree is completed and the properties of each node
are defined, Scene Builder will generate an FXML file of the application.
FXML is an XML-based user interface markup language for defining the
interface of an application. When the FXML file is generated the developer
can continue with implementing the business logic in the IDE. The details
of our tools implementation are presented in Chapter 3.

JavaFX also supports the OpenCV library. OpenCV 2 is an open-source com-

2https://opencv.org

14

https://opencv.org

2.2 Inkscape

puter vision library. The decision to include this library in the application
has been made because of its computational efficiency when dealing with
some image transformations. The methods from OpenCV are applied in
two of our applications:

• Image Calibrator application, used for calculating perspective trans-
formation of the output image.

• Image-Splitter Player application, used for the creation and transfor-
mation of video frames.

2.2 Inkscape

Path-Planner and Image-Splitter Video Player tools require a raster image file
as a tool input. The image defines the road map where only the traffic lines
are shown. In order to generate such images, we use Inkscape. “Inkscape is
a free and open-source vector graphics editor. It uses the standardized SVG
file format as its main format. 3” Inkscape is capable of exporting to other
file formats that are required for our tools such as the portable network
graphics (png) format. Figure 2.2 shows some of the drawn road sections.
These sections have been used to construct the road network by connecting
them to each other. Depending on the testing scenarios which were planned
to be evaluated in our test environment, we drew street markings of differ-
ent shapes, sizes, and colors.

3https://inkscape.org/about/

15

https://inkscape.org/about/

2 Tools and Libraries

Figure 2.2: Inkscape Application

2.3 Test Environment Setup

In Figure 2.3 an example of a test environment setup is shown. This particu-
lar setup uses the following devices and parts:

• Two projectors (“Nec LT245” and “Nec LT30”)

• Three tripods

• Five meters SVGA cable

• One VGA to DisplayPort adapter

• One laptop docking station

• Logitech C920 HD Pro Webcam

As shown in Figure 2.3, the two projectors are placed at a height of two-

16

2.3 Test Environment Setup

Figure 2.3: Test environment setup

meters, slightly tilted towards the ground, so that they could project and
simulate the left and right side of the moving lane. The Webcam is placed in
the middle to capture the video projections so that we could evaluate their
quality. The evaluation part and the different setup of the test environment
are explained in more details in Chapter 4.

We use the docking station in this setup, because it allows the connec-
tion of two projectors to the computer. The docking station has one VGA
and one display port, and if we want the test environment to use more
than two projectors, then a splitter hub with multiple ports with additional
SVGA cables is required.

The tripod used is the “Bosch professional BT 250” built for construction
sites, which can lift the projector to the maximal of two and a half meters
height. The mounted projector could also be rotated in each direction, which
enables easier positioning of the projectors within the test environment.

17

2 Tools and Libraries

2.4 Advanced Driver Assistance System (ADAS)

In this section, advanced driver assistance systems (ADAS), which could
be evaluated in our test environment are presented. “Advanced driver
assistance systems (ADAS) are defined as vehicle-based intelligent safety
systems which could improve road safety in terms of crash avoidance, crash
severity mitigation and protection and post-crash phases. ADAS can, indeed,
be defined as integrated in-vehicle or infrastructure based systems which
contribute to more than one of these crash-phases. [15]” We will focus
only on the camera-based integrated in-vehicle ADASs. Those systems are
currently designed to reduce collisions by providing technologies that alert
the driver over the combination of audible and visual warning signals. The
usage of such systems increases general vehicle safety and enables better
and comfortable driving. In the following sections, several ADAS with their
features are presented.

2.4.1 Mobileye

The Mobileye 630
4 [16] is an ADAS produced by an Israeli subsidiary of

the Intel corporation. This system consists of a camera-system for detection
which is mounted on the vehicles front windshield. As shown in Figure 2.4
b), the small indicator is installed on the driver’s left side to inform the
driver of the potential critical situations and to give him the opportunity
to manually configure some of the product features. The Mobileye has the
following features:

• Forward collision warning, including urban forward-collision warning

• Lane departure warning

• Headway monitoring and warning

4https://www.mobileye.com

18

https://www.mobileye.com

2.4 Advanced Driver Assistance System (ADAS)

(a) Volkswagen Sign Assist [17] (b) Mobileye 630 [16]

Figure 2.4: Advanced Driver Assistance System (ADAS)

• Pedestrian and cyclist detection and collision warning

• Speed limit indicator

• Intelligent high beam control

2.4.2 Volkswagen Sign Assist

This driver-assist system is the product of the Volkswagen company [17],
whose main feature is to detect road signs such as speed limits and no-
overtaking-signs. The detected sing is then shown on the small multifunc-
tional display near the speedometer as illustrated in Figure 2.4 a). This
system is mainly included in cars for driver safety purposes, to reduce the
probability of the driver missing the signs on the roadside while driving the
car.

2.4.3 Volkswagen Lane Assist

This is another drive-assist system from the Volkswagen company [18],
which uses a camera to monitor the road markings. This system prevents
the car from an unintended deviation from the road, in case of the turn
signals not being activated. The increase in driver’s safety is done by the

19

2 Tools and Libraries

system providing them a combination of visual and audible warnings. This
system is automatically activated if the car accelerates over 65km/h.

20

3 Software Implementation

In this chapter the implementation details and their main purposes in the
creation of testing scenarios for a test environment are presented. This
chapter is divided into three sections corresponding to the developed tools,
namely Image Calibrator, Path-Planner and Image Splitter Video Player.

3.1 Image Calibrator

The test environment is based on the usage of projectors. Such an envi-
ronment setup allows displaying images or videos to stimulate the system
under test (SUT). In order to generate a valid projection for the environment,
we have developed this tool to eliminate the keystone effect explained in
Section 1.2.1. The keystone correction is done by applying the required
image transformation on the projecting image. This calibration tool gives
the user a possibility to find the appropriate image transformation for any
kind of projection distortions. The image transformation applied in this tool
is an affine perspective transformation. The OpenCV methods required to
calculate this transformation will be explained in Section 3.1.2.

The second purpose of this tool is the creation of transformed images,
which could be used to evaluate the p erceptual problem, explained in
Section 1.2.2, of camera-based systems. In the following sections, we will
describe the JavaFX implementation of the user interface functions.

21

3 Software Implementation

Figure 3.1: Image-Calibrator tool

3.1.1 The User Interface

The image calibrator tool interface is divided into three sections which are
the menu bar, control fields, and the image viewer. The menu bar offers only
a “File” menu element within which three options are contained: “Load”,
“Export” and “Exit”.

If the user selects the “Load” option, the file chooser window appears
and then the user can select an image file. This tool allows only certain file
formats to be loaded. Namely, it supports JPG and PNG formats. When
the user selects the wanted image file with the file-chooser, an image will
be displayed in the middle of the tool where the image viewer section is
defined. The example of the calibration tool with a loaded checkerboard
image is shown in Figure 3.1, where four green circles in each of the image
corners overlaying the loaded image. The circles are connected with red
lines and displayed the affine image transformation.

22

3.1 Image Calibrator

The corner circle elements can be moved in the x- y- directions, either by
dragging the mouse over them or by using the appropriate spinner field
positioned on the right side of the tool. When a new image is loaded, each of
the corner circles has a zero distance in both directions to the image corners.
By dragging one of the circles at the time the tool calculates the new x and
y values. These values define the displacement distance, in pixels, of a circle
relative to its starting corner position.

In the control fields section on the right side of the tool, spinner fields
are placed. Each of these spinners can manipulate the position of a specific
circle either by clicking on the spinners up/down arrows or by entering a
value into the spinner field. The range of the values which can be entered in
the spinner fields is limited to +/- half of the image width for the x-direction
and the image height for the y-direction. For example, if the loaded image
is 600 pixel wide, the limit values for the x field are set in the range of
-300 to 300. If the user enters the value which is over the limit, the tool will
notify the user with a popup warning message that Drag value is out of
the transformation range and the value would be set to the maximal or the
minimal one, respectively. Below the spinner fields, two additional buttons
are located. The “Reset” button, which sets the values of all spinners to zero
and consequently the circles back to their starting position. The “Preview”
is a toggle button and, depending on its state, a new window appears with
the resulting transformed image. The calculation of the transformation is
described in Section 3.1.2. An observer-pattern has been implemented to
update the transformed image in the preview window each time when the
user changes the position of a circle in the main tool window.

This preview window is undecorated and it can be moved around the
screen or to the display of the plugged-in projector by dragging it with
a mouse. If the user double-clicks the left mouse button on the preview
window, it will be set to full-screen mode. With this preview window, we
are able to manually calibrate the projector device in order to eliminate a
potential keystone effect.

The procedure of projector calibration is explained in the evaluation part of

23

3 Software Implementation

Figure 3.2: Image-Calibrator tool with opened preview window

this master thesis. When the procedure of projector calibration is done, we
could save the projector configuration by exporting a file.

The exported file uses the extensible markup language (XML) format. This
file is later included in the configuration file of the image-splitter video
player tool as a configuration file for the specific projector. The exporting of
this file is done with the “Export” option. When the user selects the “Export”
option the file chooser window pop-up, where the user is able to select one
of the existing XML files or to give the name for a new file and save it. When
the file is saved, the user receives the confirmation alert message, with the
information that the file is successfully saved and the path of the exported
file.

The IOHandler is developed to construct the structure of the exported
file. The exported XML file, shown bellow, has a structure with one root ele-
ment <transformationPoints> and four child elements. Each child element
defines one of the corner points with x- and y- values generated from the
calibration tool.

24

3.1 Image Calibrator

Listing 3.1: Export File

<?xml version="1.0" encoding="UTF-8"?>

<transformationPoints>

<topLeft y="11" x="26"/>

<topRight y="-28" x="-26"/>

<bottomRight y="0" x="0"/>

<bottomLeft y="45" x="-31"/>

</transformationPoints>

The “Exit” option simply terminates the application. The launcher thread
will then shutdown. With that, we have described all features implemented
with the JavaFX for the image-calibration tool. The next section explains the
mathematical background and OpenCV methods used in the development
of this application.

3.1.2 Perspective Transformation

We have applied several methods from the OpenCV library [19] to obtain
the pre-warped images that could be displayed without distortion. The first
used method is “getPerspectiveTransformation”. This method calculates
the perspective transformation matrix between the coordinates of vertices
of a quadrilateral in the source image and the corresponding coordinates
of vertices in the destination image, shown in the code snippet 3.2. The
coordinates of vertices of a quadrilateral in the source image are defined as
the coordinates of the input image corners plus the relative displacement
distance of the moved circles provided by the tool interface. This is the first
parameter in the “getPerspectiveTrasformation” method. The second param-
eter is a matrix of the coordinates of the destination image corner points.
For this function, the order of points put into the matrix is also important,
namely, the first position is the top-left point, second the top-right, third the
bottom-right and fourth is the bottom-left.

25

3 Software Implementation

Listing 3.2: Usage of the “getPerspectiveTransformation” method

Point topLeft = new Point(xTopLeft, yTopLeft);

Point topRight = new Point(input.cols() + xTopRight, yTopRight);

Point bottomRight = new Point(input.cols() + xBotomRight,

input.rows() + yBotomRight);

Point bottomLeft = new Point(xBotomLeft, input.rows() + yBotomLeft);

MatOfPoint2f inputImagePoints = new MatOfPoint2f(topLeft, topRight,

bottomRight, bottomLeft);

Point outputTopLeft = new Point(ZERO, ZERO);

Point outputTopRight = new Point(input.cols() - ONE, ZERO);

Point outputBottomRight = new Point(input.cols() - ONE, input.rows()

- ONE);

Point outputBottomLeft = new Point(ZERO, input.rows() - ONE);

MatOfPoint2f outputImagePoints = new MatOfPoint2f(outputTopLeft,

outputTopRight, outputBottomRight, outputBottomLeft);

Mat perspectiveMat = new Mat(3, 3, CvType.CV_64F);

perspectiveMat = Imgproc.getPerspectiveTransform(inputImagePoints,

outputImagePoints);

The method “getPerspectiveTransformation” returns the 3 x 3 perspective
transformation matrix so that the following equation holds:

x′1
x′2
x′3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
x2
x3

In this equation x1 and x2 are the x, y coordinates of a pixel on the input im-
age and x′1 and x′2 are the x, y coordinates of the resulting pre-warped image.

Since the user can move the corners in each direction, it can cause the
situation where the perspective transformed image has a bigger size than
the original one. If bottom-left or top-left corners are moved into the pos-
itive x-direction, or the top-right or top-left into the positive y-direction,
it requires that the resulting matrix is modified by multiplying it with a

26

3.1 Image Calibrator

translation matrix. This is defined by the following formula:

h11 h12 h13
h21 h22 h23
h31 h32 h33

 1 0 x′

0 1 y′

0 0 1

 =

h′11 h′12 h′13
h′21 h′22 h′23
h′31 h′32 h′33

The translation matrix is formed from the additional height and width
values.
To find the size of the perspective transformed image the following function
has been implemented 3.3. It takes the positions of four-corner points of
the input image and calculates their position in the new perspective trans-
formed image. Then the bounding box is constructed around these resulting
positions, the size of a bounding box is the size of the transformed image
that will be calculated.

Finally, to process the whole perspectively transformed image the OpenCV
“warpPerspective” method is called. It takes four-parameter: input image,
output image, transformation matrix and size, where the output image is
the transformed image with a changed perspective.

Listing 3.3: Function that calculates the size of the transformed image

private Size findSize(MatOfPoint2f cornerPoints, Mat

transformationMat) {

MatOfPoint2f cornersMoved = new MatOfPoint2f();

Core.perspectiveTransform(cornerPoints, cornersMoved,

transformationMat);

MatOfPoint points = new MatOfPoint(cornersMoved.toArray());

Rect rect = Imgproc.boundingRect(points);

Size size = rect.size();

return size;

}

27

3 Software Implementation

3.2 Path Planner

The Path-Planner tool is used to manually specify driving trajectories on
the map. The map is an image file of drawn street markings. We use the
Inkscape application to create different maps where the road lanes with
different shapes and colors heve been drawn. The Path-Planner tool loads
a road map and enables the user to draw a path on the map. The user
can then export a list of waypoints along the defined path to a file. Out
of this map and the exported path, the Image-Splitter tool creates a video
animation of moving street markings.

3.2.1 The User Interface

In this section, all implemented features of this a Path-Planner tool are
presented. The application is divided into four layout sections which are the
menubar, tree-view, image-view, and the controlling fields. In the menubar
section the “File”, “Edit”, “Zoom”, and “Help” elements are contained.
Under the “File” element four options: “Load”, “Save”, “Export”, and “Exit”
are listed. When the user selects the load option, then the file-chooser
window appears and the user can select one of the predefined project con-
figuration files. The content of the configuration file is explained in detail in
Section 3.2.3. When the configuration file is loaded, it is processed with the
IO-Handler. If the IO-Handler parses the whole configuration file without
any errors, the map image will be displayed in the image-view part of the
application. The tool is then ready to use and the user can then start defining
the driving trajectory on the map. The path trajectory is constructed as a col-
lection of Bezier curves explained in Section 3.2.2. Each curve is defined with
three points: the start-, control- and the endpoint. When the wanted path
is drawn on the map, the user can then export the path waypoints to a file
by selecting the Export option. The exported file is described in Section 3.2.4.

In the “Edit” menubar element all methods required for the drawing of
the path such as “Planning-path”, “Freehand-path”, “Create-scene” and
“Reset” are implemented. The “Create-scene” option creates a new driving

28

3.2 Path Planner

Figure 3.3: Path-Planner tool

scene in the driving scenario. If the driving scene is not pre-loaded from
a configuration file, then the user needs to create one to be able to draw a
path within it. Each driving scene can contain multiple paths, and each path
consists of one or multiple moves.

The user can start drawing the path only when the “Planning-path” option
is activated. When this option is activated, one small check symbol will
be displayed beside this option in the “Edit” section. Then the user can
start with placing the points on the road map. The placing of the points is
implemented with a mouse-event, where the JavaFX circle object is drawn
exactly on the pixel-position of an image where the user has pressed the
left mouse button. Since the move is defined with a Bezier curve, the user
places one initial point at the beginning of a new path, the second point is
control point of the move and the third point is the stop point. If the path
consists of multiple moves, then a stop point is also the starting point of the
next move within the same path.
After the user has finished with the positioning of all path points on the

29

3 Software Implementation

map, the “Planning-path” option can be deactivated by toggling this op-
tion under the “Edit” section. The finalization of a path is done with the
“Freehand-path” option whereupon all points are connected in the same
order that they have been created by the user, forming a driving trajectory.

When the path is constructed, on the left side of path-planner tool the
whole hierarchy of the driving scene is displayed in the tree-view form.
We have implemented the drag-and-drop functionalities for the tree-view
structure, so that the user is able to change the order of the moves in-
side the same path or to drag one move over to another path inside the
same driving scene. The user can also select one of the moves from the tree-
view which is then highlighted with the red color on the map, see Figure 3.3.

When the move has been selected, the controlling fields are displayed
on the right side of the application. With those controlling fields, the user
can manipulate the different move attributes. One of these is the moves
graphical representation on the map such as its style, color and width.

Similarly, on the right-hand side view with the control and stop fields,
the user can change the position of the selected move points for both axes.
The loaded image map is scaled so that a certain number of image pixels
has an appropriate value in meters. Accordingly, the values for distances
entered in fields are also defined in meters and represent the relative dis-
tance of the position of control- or endpoint to the selected moves start point.

The “End Speed (m/s)” field enables the user to input a certain value
for the moves speed attribute. This value defines the speed in meters per sec-
ond, which the vehicle will have at the end of a selected move. This attribute
is important for the calculation of the number of samples of waypoints
for the export file. One more field from the controlling fields is important
for the same calculation which is the “Period (s)” field. This field defines
a period, in seconds, which will also be used to calculate the number of
waypoint samples for the exporting file which is explained in Section 3.2.4.
The last option from the “Edit” element is the “Reset” option. It deletes all
project resources and sets the application ready for the loading of the new
project.

30

3.2 Path Planner

Under the “Zoom” menubar element three methods for zooming on the
map are defined, “Zoom-reset”, “Zoom-In” and “Zoom-Out”. “Zoom-reset”
resets the zooming scale factor of the map to the initial value. “Zoom-In”
and “Zoom-Out” options have the same implementation as the scrolling
with the scroll button on the mouse over the map image, which can also be
used in this application.

3.2.2 Bezier Curve

A Bezier curve [20] is a parametric curve that uses the Bernstein polynomi-
als as a basis. The curve is defined with a finite set of points. If the curve
is defined with just two points (start- and endpoint), we would then get
the linear Bezier curve. If we add one additional control point between
the start-point and the end-point then we will obtain a quadratic Bezier
curve. Two control points define the cubic Bezier curve and so on. For our
purposes, only the quadratic form is considered.

Figure 3.4 a) shows a linear Bezier curve defined as a straight line be-
tween two points. While in Figure 3.4 b) two quadratic curves are shown
where we can observe how the slope of the Bezier curves differs based on
the position of its control point. The function that forms a curvature between
given points of a quadratic Bezier curve, where P0 start-, P1 contol- and P2
end-point are, is defined as follows:

B (t) = (1− t)((1− t)P0 + tP1) + t((1− t)P1 + tP2), 0 ≤ t ≤ 1 (3.1)

B (t) = (1− t)2 P0 + 2 (1− t) tP1 + t2P2, 0 ≤ t ≤ 1 (3.2)

Path-Planner tool uses the formula of quadratic Bezier curves to interpolate
the certain number of positions of a generated move. The number of samples
that could be considered along the Bezier curve is defined with the factor t.

31

3 Software Implementation

Figure 3.4: Examples of Bezier curves

3.2.3 Configuration File

The project configuration file for the Path-Planner Application is a single
eXtensible Markup Language (XML) file. An example of the configuration
file structure is shown in code snippet 3.4 which consists of the following
elements:

• <Project> is the root element that encloses the whole XML-file.
<Project> element has an id attribute, generated as (UUID) Uni-
versally Unique Identifier, a 128-bit long value that is unique for all
practical purposes.

• <map> is a child element of the <Project> element. Only two at-
tributes of this element are relevant for our thesis, which are image
and dimension.

• <image> element has a resource attribute, where the URL of the
image map is defined.

• <dimension> element has two attributes width and height. The val-
ues defined under those attributes are used as scaling factors while
calculating from pixels to meters.

32

3.2 Path Planner

The following elements of the configuration file define the predefined driv-
ing scene. The path-planner application can read a file with multiple driving
scenes, where each scene can have multiple paths. But for our testing sce-
narios, we just require one driving scene with one path.

• <DrivingScene> element has UUID attribute. This element could have
multiple <GlobalPath> child nodes depending on how many paths
have been predefined.

• <GlobapPath> element besides UUID has x- and y-attributes, which
define an initial path position on the map. The values represent
the distance in meters from the upper left corner of the map. The
<GlobapPath> element can have one or more <QuadMove> ele-
ments.

• <QuadMove> is the parent element of <StopPoint> and <ControlPoint>
elements. Based on the explanation in the section bezier curve, each
QuadMove is defined with control and stop points. The x- and y-
attributes are the distance in meters relative to the start point. If the
path consists of several moves, then control and stop point distances
are relative to the stop point of the previous move within the same
path.

33

3 Software Implementation

Listing 3.4: Example of the Path-Planner’s configuration file

<?xml version="1.0" encoding="UTF-8"?>

<Project id="d33d2ad9-...">

<map>

<gnss lon="0.0" lat="0.0"/>

<origin y="1.0" x="1.0"/>

<image resource="pathplanningui/resources/..."/>

<dimension width="20.0" height="20.0"/>

<rotation angle="0.0"/>

</map>

<DrivingScene id="950da27b-...">

<GlobalPath id="60c8b6dc-..." y="2.0" x="2.0" speed="0.0"

rotation="0.0">

<QuadMove id="0000016b-...">

<StopPoint y="12.0" x="-3.0" speed="0.0" rotation="0.0"/>

<ControlPoint y="4.0" x="-3.0"/>

</QuadMove>

</GlobalPath>

</DrivingScene>

</Project>

3.2.4 Export File

The Path Planner tool generates a collection of waypoint samples along the
path trajectory. These samples are exported in a comma-separated values
(CSV) file format. First and second column in the file defines the x- and y-
pixel coordinates of a waypoint sample. The top left corner of the image
map refers to the image origins zero-zero pixel position. From that origin
position, all waypoints towards the right direction of the image have positive
x values and towards the bottom, positive y values. The waypoint pixel
positions are extracted from the map as floating values.

The number of samples for each move from a path is calculated with a
given end speed attribute and a time-period value, which is entered into
the application “Period (s)” field.
The duration of each move is calculated by dividing the length of a move

34

3.2 Path Planner

with its given end speed. The move duration is then divided with a time-
period value, which is entered using the application “Period (s)” field. The
result of this division is the number of waypoint samples, which should be
exported per move. For each waypoint sample in the third column in the
file, a timestamp is defined. The timestamp for the first sample starts with
zero and for each consecutive one its value is increased by the time-period.

The last line in the file shows the final timestamp, which is the duration time
of the whole video simulation. The moves with a higher-end speed will have
less number of waypoints. It follows that these parts of the path will get less
frames per second in the video which creates the effect of acceleration in the
video. The format of the exported file of waypoints is crucial for creating
video simulations with the Image splitter tool, which is described in the
following sections.

The example of an export file is shown below:

Listing 3.5: Export file with just three waypoints samples

x(pix);y(pix);timestemp(sec)

589.0000;550.9314;0.0000

584.3252;556.5514;0.1000

582.1279;553.1534;0.2000

...

...

35

3 Software Implementation

3.3 Image-Splitter Video Player

This video player tool is developed to create and display videos for the
simulation environment. The videos represent the testing scenarios for a test
environment that are made to stimulate the system under test (SUT). The
video displays the moving street markings such as road lines of different
shapes and colors. This tool generates such videos from a map image of
drawn street markings and the exported files of previously described tools.
Depending on the number of projectors used in the simulated environment,
the tool is developed in such a way that it can split the video animation
for each projector. This allows for a much bigger coverage of the projected
area in the test environment. In the following sections, the user interface
implementations and the structure of configuration files is presented. At
the end of this chapter the implementation of a timeline animation and
OpenCV functions which were used are explained.

3.3.1 The User Interface

This tool is designed as a simple video player, see Figure 3.5. It consists of a
menu bar, video control buttons and an information section. The menu bar
offers only a “File” menu element to the user. Under the “File” element are
three options, namely “Load”, “Reset” and “Exit”. The “Load” option opens
the file chooser window and enables the user to select a project configura-
tion file. The structure of the configuration file is presented in the following
sections. When the user selects a configuration file, the XML parser checks
and creates all project objects required for the video creation. If some nodes
or their content of the XML configuration file are not correctly defined, the
error window with an appropriate exception will pop up. Otherwise, the
loading window with a progress bar will pop up. The progress bar shows
the creation progress of the simulation in percentages. The creation of a
simulation video is executed within a separate thread so that the user can
stop the loading process by closing the loading window without closing the
main application thread. If some exception occurs during the creation of
the simulation video, the user will be informed with an error window. The

36

3.3 Image-Splitter Video Player

Figure 3.5: Image-Splitter Video Player tool

“Reset” option deletes all actual project objects and makes the tool ready
to load some other configuration files. The “Exit” option terminates the
application thread and closes the main tool window.

Below the menu bar the collection of buttons is shown. All buttons are
enabled for use when the project loading process is finished. When the
videos are generated, the user can open additional windows for displaying
the video animation for all projectors by selecting the “Display” button, as
it is shown in Figure 3.6. When “Display” is activated a certain number of
undecorated preview windows will be displayed, depending on the number
of projectors specified in the configuration file. The user can move them
around by dragging them with the mouse. The preview windows can also
be resized by holding the left mouse button over the windows edge and
moving it in a certain direction. We have implemented additional func-
tionality to set the preview window to fullscreen mode to its predefined
projector device display by simply pressing a “Detect Projectors” button.
Other buttons inside this collection are implemented to manipulate the flow
of the displayed video. The user can select one of the possible radio buttons

37

3 Software Implementation

Figure 3.6: Image-Splitter tool while displaying the video animation

to play, stop or pause the video projection. “Speed +” and “Speed -” buttons
change the timelines flow rate of the video either to speed up or to speed
down. The tool has a progress bar with a corresponding label to show the
videos current time in seconds. Below the progress bar is a list view and a
text area. When the configuration file is loaded, a list view is filled up with
the projector IDs. If the user selects one of the projectors from the view list
than the projector details will be displayed in the text area below the list.
The displayed projector details are computer port, device resolution and the
URL of a file of transformation values generated with the calibration tool
used to eliminate potential projector distortions.

3.3.2 Configuration File

The configuration file of this tool is defined with the XML format. One exam-
ple of a file is shown in code snippet 3.6. The structure of the configuration
file defines the following elements.

38

3.3 Image-Splitter Video Player

• <Splitter> is a parent element and consists of two child elements:<Map>
and <Projectors>.

• <Map> element has two child elements: <Image> and <GlobalPath>.

• <Image> element has a resource attribute. This attribute defines the
URL of an image map file.

• <globalPath> element has a resource attribute. This attribute defines
the URL of the global path file, which has been generated with the
path-planner tool.

• <Projectors> element has a num attribute. This attribute defines the
number of projectors contained in the test environment. This element
contains a specific number of <Projector> child elements depending
on a predefined number of projectors.

• <Projector> element has a name attribute. The name of the projector
is given depending on the projector current position from the testing
environment. It is considered as a projector ID. The <Projector> ele-
ment contains five child elements. Those elements specify projector
details.

• <transformConfig> element has a resource attribute. This attribute
defines the URL of the projector transformation file which has been
generated with an image-calibration tool.

• <Viewport> element has four child elements. This element defines the
viewport specifications. <viewportHeight> and <viewportWidth>
elements values define the height and width in number of pixels
of a viewport respectively. <viewportPosX> and <viewportPosY>
elements values define the distance position of start cropping pixel
relative to the path waypoint sample.

• <resolutionWidth> and <resolutionHeight> element values define
the resolution of a projector device.

39

3 Software Implementation

• <outputDevice> element has a port attribute. This attribute defines
the port of the computer to which the projector device is connected.

The XML parser has been implemented to parse the whole configuration
file structure and to construct all relevant application objects. Besides this
main parser, two additional parsers have been implemented to handle the
resource files from the configuration project file. The first one is related to
<transformConfig> resources, which are the files created with an image-
calibrator tool for each of the projectors from the testing environment. The
parser here passes through each file and sets the transformation values to
the relevant projector objects. The second one handles the comma-separated
values (CSV) file of global path data, which has been generated with the
path-planner tool. The waypoints from the global path and all other objects
defined with the configuration file enable the construction of a timeline
animation which is explained in the following section.
The example of a configuration file is shown on the next page:

40

3.3 Image-Splitter Video Player

Listing 3.6: Configuration file for the test environment with two projectors

<?xml version="1.0" encoding="UTF-8"?>

<splitter>

<map>

<image resource="resources/inputimages/project_highway.png"/>

<globalPath resource="resources/globalpath/path_highway.csv"/>

</map>

<projectors num="2">

<projector name="left">

<transformConfig

resource="resources/projectorsconfig/leftTestingDay.xml"/>

<viewport>

<viewportHeight>80</viewportHeight>

<viewportWidth>100</viewportWidth>

<viewportPosX>-100</viewportPosX>

<viewportPosY>-80</viewportPosY>

</viewport>

<resolutionWidth>1024</resolutionWidth>

<resolutionHeight>768</resolutionHeight>

<outputDevice port="hdmi1"/>

</projector>

<projector name="right">

<transformConfig

resource="resources/projectorsconfig/rightTestingDay.xml"/>

<viewport>

<viewportHeight>80</viewportHeight>

<viewportWidth>100</viewportWidth>

<viewportPosX>0</viewportPosX>

<viewportPosY>-80</viewportPosY>

</viewport>

<resolutionWidth>1024</resolutionWidth>

<resolutionHeight>768</resolutionHeight>

<outputDevice port="hdmi2"/>

</projector>

</projectors>

</splitter>

41

3 Software Implementation

Figure 3.7: “The horse in motion [21]”

3.3.3 Timeline Animation

In this section, it is presented how the video animation timeline is con-
structed. The basic principle behind the implementation is based on stacking
up the images sequentially on the animation timeline. There is an exam-
ple of the first primitive animation based on a sequence of images called
“The horse in motion [21]” shown in Figure 3.7. At that time it was called
chronophotography, that is a photographic technique, where the multiple
phases of a movement are captured. This was the first step in the develop-
ment of motion pictures.

In the same manner, we want to capture the motion of street markings
from the image map to imitate the movement of a vehicle. What was the
photographs in “The horse in motion” example, in our case the so-called
Viewport used to capture the motion. The viewport is in other words the

42

3.3 Image-Splitter Video Player

Figure 3.8: The calculation of an angle between two points on the image map

image clipping area which is used to extract the pixel-region from the image
map along the predefined path. One extracted image part defines one frame
in the video for one waypoint from a global path. The movement of the
viewport will continue sequentially through all waypoint samples until the
last waypoint from the path has been reached. Each extracted image frame
is stacked up into the timeline of the video animation. The tool is capable of
defining multiple viewports at the same time, depending on the number of
projectors used in the simulated environment. Each viewport defines the
extracted image area as the frame for a video intended for a certain projector.

In our implementation, we have first calculated a direction angle between
the waypoints in the global path. The calculation is done for each neighbor-
ing pair. For example, a first waypoint is considered as the center point or

43

3 Software Implementation

reference point, and the second waypoint from the path is the target point.
We calculate the angle from a reference to a target point in degrees, see
Figure 3.8. The calculated angle is set for the reference point. It means that
the viewport in that specific waypoint should have the same orientation.
The range between two waypoints is between 0 and 360 degrees, where the
0 and 360 values represent north orientation on the image map, 90 degrees
is east, 180 is south and 270 is west.

When all orientation between waypoints over the whole global path are
calculated, the next step in the implementation procedure is the positioning
of the viewport on the image map. In the configuration file are the values
for viewport attributes defined, such as viewport width, height and starting
cropping position. The starting cropping position defines the pixel distance
from a waypoint coordinate. This position defines the top left corner of
the viewport. Figure 3.9 a) shows one part of the road map, where the
two orange lines represent the street lanes and the red circle is the current
waypoint from a global path, which is placed in the middle of the road lane.
We know the pixel coordinate of the waypoint on the map from the global
path file. By adding the viewportPosX and viewportPosY values from the
configuration file to the waypoint position, we will obtain a top-left corner
of the viewport. Now, when a top-left position is known, the other three
corner points are computed by adding the viewport width and height to the
top-left coordinate of the viewport. In this particular example the viewport
is placed on top of the left street lane marking.
Figure 3.9 b) shows the next waypoint (blue circle) and the previously

computed angle between these two waypoints. A viewport must also be
rotated by the same angle in order to follow the trajectorys slope. Hence,
all four corner points are rotated around the red waypoint which forms
a rotated viewport. The bounding rectangular around a rotated viewport
defines the pixel region. Instead of working with the whole image matrix,
we limit the region of interest to be around the rotated viewport, as shown
in Figure 3.9 c). In this way, we have optimized the creation of video simula-
tion by limiting the image processing on a smaller pixel region instead of
working with a whole map image. The following code snippet defines the
creation of viewport and some of the OpenCV methods, which have been
used to extract the pixel region of interest of the viewport from the map
image.

44

3.3 Image-Splitter Video Player

(a) (b)

(c)

Figure 3.9: Explanation of the viewport positioning and finding the optimal cropping area
on the map

MatOfPoint2f points = new MatOfPoint2f(topLRotated, topRRotated,

bottomRRotated, bottomLRotated);

RotatedRect rrect = Imgproc.minAreaRect(points);

Rect bbox = rrect.boundingRect();

Mat cropedRect = mapMat.submat(bbox);

Mat rotatedViewport = rotateViewport(point.getRotation(),

cropedRect);

Point center = new Point((rotatedViewport.cols()-1)/2,

(rotatedViewport.rows()1)/2);

int vpTopLeftX = (int) (center.x - (viewportWidth / 2));

int vpTopLeftY = (int) (center.y - (viewportHeight / 2));

Rect vpRect = new Rect(vpTopLeftX, vpTopLeftY, viewportWidth,

viewportHeight);

Mat viewPortMat = rotatedViewport.submat(vpRect);

projector.setRotatedImage(viewPortMat);

resizeAndTransformImage(projector);

The cropped viewport region is not appropriate for the animation frame,
because of its small resolution which is not suitable for displaying it as

45

3 Software Implementation

a frame with the projector. Because of that we resize the viewport image
by factor of four and apply inter-cubic interpolation to increase the image
quality. Then we apply image transformation on the newly resized image as
specified by the configuration file, to avoid the distortion of the projection in
the test environment. This image transformation is the same as used in the
calibration tool for a given projector. The whole procedure: positioning, ro-
tating, cropping, resizing, and transforming is applied for all viewports over
one waypoint, and it is repeated through the whole global path positions. If
the starting cropping pixel position of a viewport is outside the image map,
an exception is thrown and the creation of a simulation is interupted.

After all viewport frames have been created, the function 3.7 is called to
create video animations for our test environment. In JavaFX, an animation
is driven by its associated properties. In our case, the “ImageView” property
defined within each preview window of the tool is animated with the help
of the Timeline class. The Timeline class provides the capability to update
the property values with the progression of time. The timeline is filled by
iterating over global path waypoints. Each waypoint in the loop represents
one “KeyFrame”, where a “KeyFrame” represent the target values at a
specified point in time in the timeline. If multiple projectors are defined, the
function then iterates through the list of projectors and sets the “ImageView”
property value for each projector with an appropriate image. The keyframes
for all projectors are placed at the same specified time on the timeline. When
all the keyframes for a single time instance are processed, the keyframe time
is increased and the function continues with the next waypoint from the
global path list.

46

3.3 Image-Splitter Video Player

Listing 3.7: The function where the whole timeline video animation is constructed

Task<Void> task = new Task<Void>() {

@Override

public Void call() {

int i = 0;

double keyFrameTime = 0.0f;

for (GlobalPathPoint wayPoint : gp.getGlobalPathPoints()) {

for (Projector projector : splitter.getProjectors()) {

vpt.createViewport(wayPoint, projector);

ImageView iv =

(ImageView)projector...getChildrenUnmodifiable().get(0);

Image frameImg = projector.getTransformedImage();

KeyFrame kf = new KeyFrame(Duration.seconds(keyFrameTime),

new KeyValue(iv.imageProperty(), frameImg));

timeline.getKeyFrames().add(kf);

}

keyFrameTime = keyFrameTime + wayPoint.getDuration();

updateProgress(i, gp.getGlobalPathPoints().size());

i++;

}

updateProgress(gp.getGlobalPathPoints().size(),

gp.getGlobalPathPoints().size());

return null;

}

};

In this chapter, we have presented our used three tools. In the next chapter,
we will evaluate the testing scenarios, which have been created with the
help of these three tools, with our test environment.

47

4 Evaluation

The evaluation part of this master thesis presents how the test environment
is set up, and how the input testing scenarios of a test environment have
been created. The process of obtaining the experimental results during the
testing session is also introduced in this chapter. The data is collected at two
different conditions, namely indoor and outdoor. The evaluation process
has been done always after the sunset, because the projector devices require
dark conditions for better visibility of the projections.

4.1 Test environment and testing scenarios
creation

The first step is to connect all required parts for our test environment that
are listed up in Chapter 2.3. During our tests a setup that contains two
projectors has been used, as shown in Figure 2.3, for displaying the moving
street markings. When the tripods with mounted projectors are placed at
the desired position, the next step is the projector calibration. That is done
with an image calibration tool presented in the previous chapter.

The procedure of projector calibration is done as follows:

1. Plug in a projector to a computer where the image-calibrator tool is
running

2. Position the projector in such a way that its projection is displayed on
the planned spot of the test environment projecting surface

49

4 Evaluation

Figure 4.1: Ground projections of the checkerboard image, before and after the calibration
of a projector

3. Load the checkerboard image to the calibration tool

4. Open the tool’s preview window, as shown in Figure 3.2

5. Drag over the preview window to the display of the projector

6. Set the preview window to full-screen mode

7. If the lines of the checkerboard image on the projecting surface are
not parallel, then a correction is needed

8. Drag the corner circles on calibrator tool until the lines of transformed
checkerboard image on the projecting surface become all parallel

9. The values generated from circle displacement, which are required for
image transformation, are exported from the tool to the XML file

The Figure 4.1 left) shows the ground projection of the checkerboard before
the calibration of one projector, and the 4.1 right) represents a corrected
checkerboard on the same spot of the projecting surface. By comparing
those two figures, we could see that on the right image all squares of the
checkerboard image are all with equal size and that all lines are parallel

50

4.1 Test environment and testing scenarios creation

compared to the left figure. It does not look like a perfect chessboard, where
all sides of the squares are equal, because of the position of the camera used
to take this picture.

The same procedure of projector calibration is applied to both projectors.
When the calibration files are exported, their file paths for each projector
will always be imported into every image splitter project file for a certain
projector under the <transformConfig resource= “/...”> node attribute. In
this way, during the video creation, the same transformation is applied to
each video frame. The constructed video will be displayed on the projecting
surface without the distortion, which is present under the same circum-
stances when the calibration procedure has been done.

When the calibration of all projector devices is completed, the creation
of inputs for our test environment follows. For testing scenarios of moving
street markings, the road maps have to be drawn first using the Inkscape
application. We have created images, which contain drawn parallel lines
representing the road lanes. Figure 4.2 shows an example of four differ-
ent drawn roads used during the creation of map images. The following
traffic marking combinations of a road lane have been considered in our
map-making process:

• A common road (solid lines on the sides, an dashed line in the middle)

• Road with changing line types (dashed and solid line are frequently
changing after a certain distance on each side of the road lane)

• Road with changing line sizes (sizes of dashed lines is varying along
the road)

• Road widening (the lines are moving away from each other and create
a road widening effect)

• Road with lines which signalize the construction site on the road (an
dashed orange line and a solid one, as well as in combination with
white line)

51

4 Evaluation

Figure 4.2: Different roads drawn within Inkscape

From each one of these listed cases, a separate road map is drawn. The
created maps are then loaded and scaled with a Path-planner tool. The
dimension scaling values in the configuration file of each pathplaner project
have been adjusted for each map, until the length of a single dashed line is
equal to the length of 6 meters, which is the standardized length on highway
in Austria according to their legal regulation1.

On the scaled map the path in the middle of the road lane is then drawn, to
simulate the trajectory of a moving vehicle, see Figure 3.3. For each move
inside the path the end-speed values in meter per second are defined, as
well as the value inside the time period field of the path-planner tool, which
defines the framerate for the video creation. When all path and tool proper-
ties are configured, the waypoint samples of the path are exported to a CSV
file. The URL location of that file is ready to be included in the configuration
files of the Image-splitter video player tool. In the end, for each testing
scenario, a separate configuration file with a certain image map is created,

1https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&

Gesetzesnummer=10012574

52

https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10012574
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10012574

4.2 Experimental Results

with an appropriate CSV path file to that map, and projector calibration
files. Each file is then ready to be loaded with an image-splitter tool that
will construct and display the video projections for the test environment.

There is still one issue with memory space causing an Image-splitter tool
to fail while creating the video. The problem is caused due to Java heap
memory consumption, therefore our tool is capable to create the video with
a lower framerate. For our videos, we have set only 10 frames per second,
which has been good enough quality for our circumstances.

However, if the user requires the video of a higher framerate or creates the
video animation for a test environment that consists of many projectors,
then the heap memory must be increased by allocating the additional mem-
ory for the Java program. That is done via command-line arguments -Xms
and -Xmx, that specifies the initial heap size and the maximum heap size,
respectively.

4.2 Experimental Results

In the evaluation process of different ADAS with the proposed test environ-
ment, the following issues have been addressed. While trying to evaluate
the Mobileye 630 and VW Lane assist system, by displaying the projection
in front of the standing vehicles, it has been noticed that those systems
cannot detect any of the provided test environments inputs. The reason for
that is that the feature of ADAS’s is only activated if the vehicle is driving
above a certain speed. For example, the Mobileye lane departure warning
feature is activated when the vehicle speed is above 55km/h. Similarly, the
lane assistant of the VW car is activated only when the vehicle speed is
above 65km/h. The possible solution to this issue could be the positioning
of the vehicles on top of the rolling test stands and to project the moving
street markings in front of the vehicle. So that the vehicle could reach a
certain speed while staying in place. Instead of using these two ADAS’s
in the evaluation of our testing environment, it has been proceed with a
different approach.

53

4 Evaluation

Figure 4.3: Testing scenario of normal road lane projections, successfully detected lines (left
line full, right line dashed)

4.2.1 Moving street marking

Since the evaluation of ADAS over a planned black-box testing procedure
has not been possible, the testing on individual perception algorithms has
been applied instead. Firstly, the video projections of our test environment
were captured with a web-camera, which has been positioned at the same
height and orientation as some of the ADAS camera systems. The quality of
the captured projections is then evaluated with the lane-detection algorithm
[13]. The green splines on the video frames represent the position of the line
detected by the algorithm.

In this section, the detection rate of different moving street makings is
examined. Figures 4.3, 4.4 and 4.5 show the performance of collected data
from our test environment which is measured with a lane detection algo-
rithm, under outdoor condition.

54

4.2 Experimental Results

Figure 4.4: Testing scenario of dashed lines with different sizes, the algorithm sometimes
failed to detect short lines

Figure 4.5: Testing scenatio with orange lines. Due to the low contrast of the projected
orange lines, the algorithm is not able to detect one side of the lane

55

4 Evaluation

Figure 4.6: The video frame samples showing the challenges caused by the indoor environ-
ment

Figure 4.6 shows the main issue of detecting the projected lines, when the in-
door test environment is used. The detection algorithm takes also the room
corners and other room furniture edges into consideration. After comparing
the quality of provided data between the indoor and outdoor conditions,
indoor conditions produced data, which had a significantly lower detection
rate of projected lines than the captured projection from the outside.

56

4.2 Experimental Results

Figure 4.7: The test environment with one projector and a web-camera

4.2.2 Perception challenge

In this section some of the produced images, which could be used as input
to a test environment, are presented. The goal of such input is to inves-
tigate a perceptual challenge of camera-based functions, explained in the
Section 1.2.2.

In Figure 4.7 the test environment setup of one projector is shown, which
has been used to display a single transformed image of different signs
and obstacles. This type of input testing scenarios do not require saving
the projector calibration, but instead, the same calibration tool is used to
transform and show the images. In Figure 4.8 several examples of the trans-
formed images are shown. Those images have been projected on the wall
and captured by a web-camera, which has been positioned right in front
of the projector, see Figure 4.7. The wall projections are created while the
projector lens was pointing normal towards the projecting surface.

The first approach is to project such images on the ground as it is al-
ready explained in the motivation part of this master thesis. However, the
problem occurs while trying to achieve the same shape of image ground
projection as it is on the wall. The issue is caused by the projector’s keystone
effect since the projector is tilted towards the ground surface. Such an effect
has an influence on its projection which is the reason why it is not possible

57

4 Evaluation

to obtain the similar image shape. The second issue is the maximal height
of our tripod on which the projector can be positioned. If we even want
to mount the projector to point normal towards the ground, the height of
two and a half meters is too low to make the size of ground projection
big enough to create valid testing scenarios, which could be detected by a
camera-based system. One possible solution to those issues could be to use
a small drone with a mounted projector to create bigger ground projections
as the researchers in paper [6] have done. That enables them the projection
of a slightly bigger transformed image in front of the moving vehicle that
could be perceived from an ADAS as a real 3D-Object.

As the input to the calibration tool PNG images are used, downloaded
from the following webpage2.

2https://favpng.com/

58

https://favpng.com/

4.2 Experimental Results

Figure 4.8: Captured wall projections of transformed images

59

4 Evaluation

One of the successfully conducted testing scenarios is shown in Figure 4.9.
The projected images of road signs are recognized from the ADAS. The
system under test in this case is a VW Sign Assist. This test case has been
conducted in the narrow passage where the testing vehicle approaches the
metal door on whose surface the image of 80km/h speed-limit sign has been
projected. When the vehicle has passed by this metal door, the sign-assist
system has detected the image which is confirmed by providing the 80km/h
sign notification on the car’s multimedia display on the driver’s right side,
as well as with the same notification on the multifunctional display near the
speedometer, see Figure 4.9.

60

4.2 Experimental Results

Figure 4.9: Testing scenario where the VW Sign Assist system detects the projected speed-
limit sign

61

5 Conclusion

This master thesis aims to find an approach for testing the camera-based
autonomous vehicle functions on a proving ground. Based on our developed
test environment and their experimental results, it can be concluded that the
advanced driving assistance systems (ADAS) features listed in Section 2.4
could be evaluated within simulated conditions. During the evaluation
phase of this thesis, we have noticed that with additional adjustments to
our implementation even better results in terms of the evaluation process
of ADAS could be delivered. Hence, our tools and test environment are a
good basis for further development.

We have taken this approach of developing a test environment because
firstly, to make the execution of a black-box testing procedure and some
kind of testing automation for easier and efficient evaluation possible. And
secondly, to be able to reproduce some of the critical situations from the
real world, or potentially to discover some new unknown and unsafe situa-
tions that could cause the ADAS functions to fail. The tools that have been
developed to provide such simulated inputs for a test environment have
completely satisfied our expectations, and also solved the challenges that
are presented in the first chapter of this thesis.

As a short overview of our project, we have developed three applications:
Image calibration, Path-planner, and Image splitter video player tool. An
Image calibration has been developed to eliminate the projector keystone
effect and to provide transformed images for the test environment. The
path-planner is used to manually specify driving trajectories on the map,
while the image-splitter video player is required to create videos of moving
street markings along the predefined trajectories for a test environment.
The full test environment consists of the projectors whose purpose is to
stimulate the system under test by projecting the created testing scenarios

63

5 Conclusion

using the aforementioned tools.

However, users of these tools, and approaches, should be aware that the
created moving street markings for our test environment could not stimulate
the standing test vehicle with an integrated ADAS to deliver any results,
because ADAS features for lane detection are activated only when the ve-
hicle is moving above a certain speed. Also for the testing scenarios that
are created with a calibration tool with the goal to investigate a perceptual
challenge of camera-based ADAS function, it should be considered different
approaches than in the examples shown in Figure 1.2 (b) and (c). To better
understand the implications of these problems, future studies could con-
sider these issues to provide an advanced solution which will then produce
better experimental results.

A potential future work is related to further development of these tools.
Since we have collected information about newly formed challenges dur-
ing the evaluation phase, we could make our test environment easier and
more comfortable to use, by e.g. adding the following feature to our tools.
The potential upgrade could take the intrinsic and extrinsic parameters of
projectors, to be able to detect projection overlaps on the projecting surface,
which will make our test environment more accurate.

64

Bibliography

[1] M Armstrong. Most important factors when buy-
ing a car. https://www.statista.com/chart/13075/

most-important-factors-when-buying-a-car/, last accessed on
22/09/20.

[2] D Dutta. Advanced driver aids might be mandatory by
2022 says Nitin Gadkari: Will make indian roads safer!
https://www.financialexpress.com/auto/car-news/advanced-
driver-aids-might-be-mandatory-by-2022-says-nitin-gadkari-will-
make-indian-roads-safer/1312218/ , last accessed on 14/09/20.

[3] T Doms, B Rauch, B Schrammel, C Schwald, E Spahovic, and
C Schwarzl. Highly automated driving-the new challenges for func-
tional safety and cyber security. TÜV Austria Holding AG and VIRTUAL
VEHICLE, Vienna, Austria, Tech. Rep., 2018.

[4] D Yadav and S Agrawal. Keystone error correction method in camera-
projector system to correct the projected image on planar surface and
tilted projector. International Journal of Computer Science & Engineering
Technology, 4(2):142–146, 2013.

[5] S Henderson. Cool optical illu-
sions. https://coolopticalillusions.com/

standing-on-top-of-the-world-optical-illusion-chalk-art/,
last accessed on 21/09/20.

[6] B Nassi, D Nassi, R Ben-Netanel, Y Mirsky, O Drokin, and Y Elovici.
Phantom of the adas: Phantom attacks on driver-assistance systems.
IACR Cryptol. ePrint Arch., 2020:85, 2020.

65

https://www.statista.com/chart/13075/most-important-factors-when-buying-a-car/
https://www.statista.com/chart/13075/most-important-factors-when-buying-a-car/
https://coolopticalillusions.com/standing-on-top-of-the-world-optical-illusion-chalk-art/
https://coolopticalillusions.com/standing-on-top-of-the-world-optical-illusion-chalk-art/

Bibliography

[7] O Sipele, V M Zamora, A Ledezma Espino, and A Sanchis de Miguel.
Testing adas though simulated driving situations analysis: environment
configuration. 11 2016.

[8] Yin Tan and B Hassan. A method for testing camera based advanced
driving assistance systems. In 2013 IEEE International Symposium on
Assembly and Manufacturing (ISAM), pages 151–154, 2013.

[9] M R Zofka, R Kohlhaas, T Schamm, and J M Zöllner. Semivirtual
simulations for the evaluation of vision-based adas. In 2014 IEEE
Intelligent Vehicles Symposium Proceedings, pages 121–126, 2014.

[10] Jungho K, Youngbae H, and Byeongho C. Automatic keystone cor-
rection using a single camera. In 2015 12th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pages 576–577, 2015.

[11] Qian L and Shengtong C. Perspective correction of distorted projectors
with an uncalibrated camera.

[12] Z Li, K Wong, Y Gong, and M Chang. An effective method for movable
projector keystone correction. IEEE Transactions on Multimedia, 13(1):155–
160, 2011.

[13] M Aly. Real time detection of lane markers in urban streets. In 2008
IEEE Intelligent Vehicles Symposium, pages 7–12, 2008.

[14] J Gordon C Castillo J Potts, N Hildebrandt. JavaFX, Getting Started with
JavaFX. Oracle Corporation, Release 8, E50607-02, 2014. https://docs.
oracle.com/javase/8/javafx/JFXST.pdf, last accessed on 22/09/20.

[15] Advanced driver assistance systems 2016. https://ec.

europa.eu/transport/road_safety/sites/roadsafety/files/

ersosynthesis2016-adas15_en.pdf , last accessed on 22/09/20, 2016.

[16] Mobileye Technologies Ltd. Product Sheet Mobileye 630 System.

[17] Volkswagen. Sign assist. https://www.volkswagen.co.uk/

technology/driver-assist/sign-assist, last accessed on 21/09/20.

[18] Volkswagen. Sign assist. https://www.volkswagen.co.uk/

technology/driver-assist/proximity-sensing, last accessed on
21/09/20.

66

https://docs.oracle.com/javase/8/javafx/JFXST.pdf
https://docs.oracle.com/javase/8/javafx/JFXST.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/ersosynthesis2016-adas15_en.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/ersosynthesis2016-adas15_en.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/ersosynthesis2016-adas15_en.pdf
https://www.volkswagen.co.uk/technology/driver-assist/sign-assist
https://www.volkswagen.co.uk/technology/driver-assist/sign-assist
https://www.volkswagen.co.uk/technology/driver-assist/proximity-sensing
https://www.volkswagen.co.uk/technology/driver-assist/proximity-sensing

Bibliography

[19] G Bradski and A Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[20] G E Farin and G Farin. Curves and surfaces for CAGD: a practical guide.
Morgan Kaufmann, 2002.

[21] E Muybridge. The horse in motion. https://www.loc.gov/item/

97502309/, last accessed on 13/09/20.

67

https://www.loc.gov/item/97502309/
https://www.loc.gov/item/97502309/

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Challenges
	Keystone Effect
	Optical Illusion and Depth Perception
	Video creation

	State of the art

	Tools and Libraries
	JavaFX and Scene Builder
	Inkscape
	Test Environment Setup
	Advanced Driver Assistance System (ADAS)
	Mobileye
	Volkswagen Sign Assist
	Volkswagen Lane Assist

	Software Implementation
	Image Calibrator
	The User Interface
	Perspective Transformation

	Path Planner
	The User Interface
	Bezier Curve
	Configuration File
	Export File

	Image-Splitter Video Player
	The User Interface
	Configuration File
	Timeline Animation

	Evaluation
	Test environment and testing scenarios creation
	Experimental Results
	Moving street marking
	Perception challenge

	Conclusion
	Bibliography

