
Corinna Marlene Mathwieser, BSc

The Minimum Spanning Tree Problem Under Explorable

Uncertainty

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieurin

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Eranda Dragoti-Çela

Institute of Discrete Mathematics

Graz, October 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

The Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U) is an
uncertainty version of the Minimum Spanning Tree Problem where for each edge a
set, usually an open interval, containing the weight of the edge is given and the pre-
cise weight of an edge can be revealed upon request. Querying an edge for its weight
comes at extra cost. The goal is to query edges at minimum cost such that a mini-
mum spanning tree can be identified with certainty. In this master’s thesis we review
different algorithms for the MST-U, as well as existing bounds on the performance
of algorithms. For the new special case of cactus graphs we provide an optimal ran-
domized algorithm. A different version of the problem is the Minimum Spanning Tree
Problem under Vertex Uncertainty (V-MST-U) where vertices are points in the plane
whose positions are given as open sets and the edge weights correspond to the dis-
tances between the end vertices of an edge. For this problem we derive a lower bound
of 2.5 on the performance of any randomized algorithm and introduce a special case of
instances for which we present a randomized algorithm with performance guarantee 3.
We review different explorable uncertainty problems that are related to MST-U, such
as the approximate MST-U or MST weight under uncertainty. Moreover, we introduce
the problem of finding a minimum weight spanning star under uncertainty for which
we show that no algorithm can achieve constant competitive ratio.

5

Contents

Introduction 9

1 Problem definition and notations 13

2 Deterministic Algorithms 15
2.1 Performance of deterministic algorithms 15
2.2 Uniform query costs: the algorithm U-RED 16
2.3 Non-uniform query costs . 20

2.3.1 Framework of BALANCE . 20
2.3.2 Lower Limit Tree . 20
2.3.3 Finding a maximum weight edge in a cycle 21
2.3.4 Core of the algorithm BALANCE 22

3 Randomization 29
3.1 Lower bound . 29
3.2 Uniform query costs . 29

3.2.1 The algorithm RANDOM . 29
3.2.2 An optimal randomized algorithm for cactus graphs with uni-

form query costs . 33
3.3 Non-uniform query costs . 36

3.3.1 Adaption of RANDOM to the non-uniform case 36
3.3.2 An optimal randomized algorithm for cactus graphs with non-

uniform query costs . 38

4 Connection of MST-U to Minimum Bipartite Vertex Cover 41
4.1 Minimum Spanning Tree Verification under Uncertainty 41
4.2 Online Bipartite Vertex Cover . 47

5 Alternative versions of MST under uncertainty 49
5.1 Minimum Spanning Tree with Vertex Uncertainty 49

5.1.1 Deterministic algorithm . 49
5.1.2 Randomization . 51

5.2 Computing the MST Weight under Uncertainty 62
5.3 The OP-OP Model . 65
5.4 Approximate Minimum Spanning Trees 66

7

8 Contents

5.5 Minimum Matroid Base under Uncertainty 67
5.5.1 The algorithm CYCLE . 68
5.5.2 The algorithm CUT . 70

5.6 Special Spanning Trees . 71

Conclusion 74

Bibliography 75

Introduction

Many real world problems do not allow to work with precise data. Instead, parts of
the input are uncertain or only known approximately. This motivates the concept of
combinatorial optimization under uncertainty. Different approaches in this category
include stochastic optimization, where the input data is known to follow a specific
probability distribution, robust optimization which aims to find good solutions for
all possible inputs (for some appropriate measure of solution quality) and explorable
uncertainty. In the setting of explorable or queryable uncertainty, it is possible to
obtain more precise or even exact data by making queries. However, any query causes
additional exploration cost. In an applied scenario this might be time, money or other
resources which are needed for further measurements.
This master’s thesis deals with the Minimum Spanning Tree Problem under Explorable
Uncertainty (MST-U), which was first introduced by Erlebach and Hoffmann [7]. In
an instance of MST-U, each edge is equipped with an uncertainty set and a query cost.
The uncertainty set, usually an interval, is guaranteed to contain the edge’s weight.
An edge query (we also say update) reveals the edge’s true weight. The goal is to
find a set of queries of minimum cost which allows to find a minimum spanning tree
(MST). The queries may be chosen adaptively, i.e. we are allowed to choose the next
update based on the previous outcomes of edge queries. In general, we consider two
types of algorithms: deterministic algorithms and randomized algorithms. Determin-
istic algorithms are allowed to make their choices only based on the graph structure,
the uncertainty sets, the outcome of edge queries and the query costs. Randomized al-
gorithms may use additional randomized parameters which are drawn from a specified
probability distribution. We measure an algorithm’s performance by its competitive
ratio, the ratio between the query cost of the algorithm’s solution and the optimal
query cost (see Definition 1.2.)

The first work on problems where parts of the input are uncertain and can be queried
is due to Kahan [13]. Since then, explorable uncertainty has been considered for differ-
ent combinatorial problems, e.g. shortest paths (see Feder et al. [8]), scheduling (see
Dürr et al. [3]) and the Knapsack Problem (see Goerigk [11]). Erlebach et al. were
the first to introduce the Minimum Spanning Tree Problem under Uncertainty in [7].
They showed that without restrictions made on the uncertainty sets, no algorithm can
achieve constant competitive ratio, which is why subsequently only instances with un-
certainty sets in the form of open intervals or singletons are considered. Erlebach et al.
[7] presented the deterministic algorithm U-RED for the MST-U with uniform query

9

10 Introduction

costs which achieves competitive ratio 2 and proved that no deterministic algorithm
can have a smaller competitive ratio. Moreover, they introduced a different version
of this problem, the Minimum Spanning Tree Problem under Vertex Uncertainty (V-
MST-U), where vertices are points in the plane with uncertain locations and the edge
weights correspond to the distances of the respective end vertices. They showed that
their algorithm can be adapted to work for this setting as well, if uncertainty sets are
(topologically) open. An important question left open was the effect of randomization
in the setting of MST-U. This question was successfully answered by Megow et al. in
[15] where they provided the randomized algorithm RANDOM with performance ratio
1 + 1√

2
. The best known bound for randomized algorithms is 1.5 and was observed

by Erlebach and Hoffmann in [5]. Furthermore, [15] transformed their randomized al-
gorithm into the deterministic algorithm BALANCE with performance ratio 2, which
solves instances with general query cost. Megow et al. [15] also introduced the prob-
lem of finding the weight of an MST under uncertainty (W-MST-U), the problem
α-MST-U of finding an α-approximate MST (see Defintion 5.2) under uncertainty as
well as a version of MST-U, where queries return subintervals instead of the precise
edge weights (OP-OP model). Test results for the MST-U are provided by Focke et
al. in [9]. In [4], Erlebach and Hoffmann deal with the verification problem for the
MST-U with uniform query costs, i.e. the problem of computing an optimal query set
if the uncertainty sets as well as the exact edge weights are given. They show that
the verification problem for MST-U with uniform query costs is solvable in polynomial
time, while the verification problem for the vertex uncertainty problem V-MST-U is
NP-hard.

Chapter 1 of this master’s thesis gives the precise definition of MST-U and further basic
definitions and concepts used through the rest of the thesis. Chapter 2 deals with
deterministic algorithms and gives an overview on existing bounds, algorithms and
the concepts behind U-RED and BALANCE. In Chapter 3, which treats randomized
algorithms for MST-U, we consider the special case of cactus graphs and introduce the
randomized algorithm RANDOMC . RANDOMC achieves competitive ratio 1.5 for the
specified instance type, which is optimal. Chapter 4 deals with the connection between
MST-U and the Minimum Bipartite Vertex Cover Problem which was established by [4]
when presenting their verification algorithm for MST-U with uniform query cost. We
show that the verification problem for MST-U with general query costs can be solved in
polynomial time by adapting the algorithm of [4] to the non-uniform case. In Chapter
5, related problems from the literature are discussed: the previously mentioned vertex
uncertainty problem V-MST-U, α-MST-U, W-MST-U, the OP-OP model as well as the
generalization of MST-U to the Minimum Matroid Base Problem under Uncertainty.
So far, V-MST-U has only been considered in the deterministic setting. We prove that
no randomized algorithm can have a performance guarantee better than 2.5. For the
special case of instances where no two cycles share a non-trivial vertex we introduce the

Introduction 11

algorithm V-RANDOMC and show that V-RANDOMC achieves competitive ratio at
most 3. Finally, we introduce the Minimum Spanning Star Problem under (Explorable)
Uncertainty (MSS-U). The MSS-U is defined analogously to the MST-U except that
we are not aiming to find a general minimum spanning tree but a spanning star of
minimum weight. (A star is a tree where all but one vertices have degree 1.) For the
MSS-U we derive a negative result with respect to competitive analysis, i.e we show
that no algorithm for MSS-U can achieve constant competitive ratio.

1 Problem definition and notations

The Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U) is de-
fined on an undirected graph G = (V,E) with edge weights. However, the precise
weight function is not known a priori. Instead, for each edge e ∈ E, we are given an
uncertainty set Ae, that contains the actual edge weight w̄e of e. If an uncertainty set
Ae contains a single element, we say Ae is trivial. An edge e is trivial if Ae is trivial.
For an edge e ∈ E, we denote by Le := inf Ae the infimum and by Ue := supAe the
supremum of the uncertainty set. We will also refer to Le and Ue as the lower and
the upper limit of Ae (or of e) respectively. We can query an edge e to determine its
weight w̄e. If we query e, the set Ae is updated to a singleton set containing only w̄e.
This is referred to as query or update. The cost of querying an edge e is qe ∈ R>0.
Given uncertainty sets Ae, e ∈ E for the edge weights, a weight function w : E → R≥0
such that we := w(e) is contained in Ae is called a realisation of edge weights. The
task is to find an edge set T of a minimum spanning tree in G with edge weights
w̄e, while minimizing the total cost of queries needed to find T . This means, that we
are aiming to decide on a query set Q ⊂ E of minimum query cost, such that after
querying the edges in Q, we are able to identify an edge set T ⊂ E, which for any
possible realisation w of edge weights is the edge set of a minimum spanning tree in
G with weight function w. In this case we say that a minimum spanning tree can be
identified with certainty. Q is called a feasible query set. We also say that Q verifies
T .

Definition 1.1. For an instance of MST-U an edge set Q ⊂ E is called a feasible
query set if after querying all edges in Q, an MST can be determined with certainty.
Q is called an optimal query set if it is a feasible query set of minimum total cost.

We are considering the online version of the problem, i.e. the algorithm’s choice of the
next query may depend on the outcome of prior queries. To analyze the performance
of a solution found by a (randomized) algorithm we compute the competitive ratio
between the (expected) query cost of the algorithm’s solution and the cost of an
optimal query set.

Definition 1.2. Let I be an instance of MST-U. By OPT (I) we denote the cost of an
optimal query set for instance I. We say that a feasible solution for I which consists
of a feasible query set Q achieves competitive ratio c ≥ 1 if∑

e∈Q qe

OPT (I)
≤ c.

13

14 1 Problem definition and notations

For an algorithm ALG we denote by ALG(I) the cost of the query set which the
algorithm outputs when applied to I. We say that ALG achieves competitive ratio
c ≥ 1 or is c- (update) competitive if

ALG(Ĩ)

OPT (Ĩ)
≤ c

for all instances Ĩ of MST-U.

Example 1.1. Consider the following example of an instance of MST-U, where the
uncertainty sets are indicated as intervals next to the edges in the graph together with
the underlaying realization of edge weights, which is depicted in red. The query cost
of each edge is one.

1 2

34

{2}

(8,9)

8.5

(2,5)3

(3,6)

4

(4,8)7

Note that without querying {1, 2} we know
that it has strictly larger weight than all edges
in the cycle (1234). Hence it can be disre-
garded. Assume we test {2, 3} and {3, 4}, re-
vealing the weights 3 and 4 respectively. Thus
{2, 4} has largest weight in the cycle (234) and
can be excluded.
An optimal solution would query {2, 4} and see
that its weight exceeds the suprema of A{2,3}
and A{3,4}. Thus the competitive ratio of this
solution is 2.

Figure 1.1: An instance of MST-U: The realization of edge weights is depicted in red.
All query costs equal 1.

2 Deterministic Algorithms

We will see that for arbitrary uncertainty sets, no deterministic algorithm can achieve
a constant competitive ratio. For the case where uncertainty sets are either trivial
or do not contain neither their infimum nor their supremum, the algorithm U-RED
presented in Section 2.2 was introduced by Erlebach et al. in [7] and has competitive
ratio 2. This can be shown to be optimal.

2.1 Performance of deterministic algorithms

For some instances it is enough to identify a single edge that needs to be excluded
(e.g. the maximum weight edge in a cycle) or included (such as the minimum weight
edge in a cut). If we allow arbitrary uncertainty sets, an optimal solution might be
able to identify this edge with a single query, while without knowledge of the true edge
weights an algorithm might need to query all of the edges. Erlebach et al. [7] give the
following example:

Example 2.1. Consider a cycle C with k edges such that all edges have uncertainty
set (2, 4] and all but one have weight 3, while the remaining edge ē has weight 4.

An optimal solution queries only edge ē. As 4 is the
largest possible weight, this is sufficient to know that
ē has maximum weight and can be excluded. For any
order however, in which an algorithm ALG queries
the edges in C, there is a realization such that ē is
the last edge queried. This leads to a competitive
ratio of k.

Figure 2.1: No algorithm has constant competitive ratio. ([7], page 286)

Although it would be sufficient to restrict uncertainty sets to singletons and sets that
do not contain neither their supremum nor their infimum, we will, for the sake of
simplicity, assume that from now on uncertainty sets are either singletons or open

15

16 2 Deterministic Algorithms

intervals. This means that without further notion all results in the remaining mas-
ter’s thesis are meant to hold for instances where uncertainty sets are trivial or open
intervals.
However, we still cannot achieve a competitive ratio better than two. This was ob-
served by [7] and can be seen in the following example:

Example 2.2. Consider the following triangle where the edge {1, 3} lies in any MST
but without querying an edge it is impossible to tell whether {2, 3} or {1, 2} is included
in an MST.

1 2

3

(3,5)

(2,4){1}

First assume that an algorithm decides to query edge
{2, 3} first and consider the following realization of edge
weights: w̄{2,3} = 3.5, w̄{1,2} = 4.5. As w̄{2,3} ∈ A{1,2}, the
algorithm has to query {1, 2} too. An optimal solution
however, only queries {1, 2} to see that it has maximum
weight.
Now assume that the algorithm decides to query edge
{1, 2} first while the edge weights are as follows: w̄{2,3} =
2.5, w̄{1,2} = 3.5.

Figure 2.2: Lower bound computation for deterministic algorithms

Again w̄{1,2} lies in A{2,3}, so the algorithm has to query {2, 3} too. An optimal solution
however, only queries {2, 3} to see that it has less weight than {1, 2}. So in both cases
there exists an instance for which the algorithm produces a solution with two times
the optimal query cost.

2.2 Uniform query costs: the algorithm U-RED

In this section we consider instances with query cost qe = 1, e ∈ E, i.e. we want to
minimize the number of queries needed to find an MST.

Definition 2.1. A set W ⊂ E of edges of G is called a witness set, if any set of
updates that suffices to verify that a specific tree is a minimum spanning tree must
update at least one of the uncertainty sets of edges in W .

An algorithm that repeatedly finds a witness set and updates all elements in it, until the
solution can be computed with certainty is called a witness algorithm. The following
result is known about witness algorithms and was proved in a different setting by
Bruce et al. [2] and carried over to the setting of MST-U by [7].

Theorem 2.1. ([7], page 282) If the size of any witness set used by the witness algo-
rithm is at most k, then the witness algorithm is k-update competitive.

2.2 Uniform query costs: the algorithm U-RED 17

The algorithm relies on the following well known essential property of minimum span-
ning trees:

Proposition 2.1. Let G = (V,E) be a weighted graph with edge weights we, e ∈ E and
let C be a cycle in G. If there exists an edge e ∈ C with we ≥ we′ for all e′ ∈ C −{e},
then there exists an MST of G that does not contain e.

The algorithm U-RED is based on Kruskal’s algorithm. Edges are added in order of
increasing lower limit Le. More precisely, the order relation is defined as follows:

Definition 2.2. For two edges e, f ∈ E, e < f if Le < Lf or Le = Lf and Ue < Uf .
We have e ≤ f if e < f or e = f .

Once a cycle is created, we try to remove an edge which has largest weight for all
possible realisations of edge weights. Such edges are called always maximal:

Definition 2.3. Let C be a cycle in G. We say the edge e ∈ C is an always maximal
edge in C if Le ≥ Uc for all c ∈ C − {e}.

If we cannot find an always maximal edge, the algorithm finds a witness set of size 2
among the edges in the cycle, consisting of an edge f with largest upper limit and an
edge g such that Ag intersects Af (g exists, otherwise f would be always maximal.)
The algorithm updates these two edges and restarts the procedure of adding edges
to the empty tree. By showing, that the above choice of f and g is indeed a witness
set, the competitive ratio of 2 follows from Theorem 2.1. The description of algorithm
U-RED is presented in Algorithm 1.

1 Index all edges such that e1 ≤ e2 ≤ ... ≤ em;
2 Let Γ := ∅ ;
3 for i← 1 to m do
4 Add ei to Γ ;
5 if Γ has a cycle C then
6 if C contains an always maximal edge e then
7 delete e from Γ
8 else
9 let f ∈ C such that Uf = max{Uc|c ∈ C};

10 let g ∈ C − {f} such that Ug > Lf ;
11 update f and g;
12 restart the algorithm

Algorithm 1: The algorithm U-RED for MST-U with uniform query costs
(adapted from [7], page 283)

18 2 Deterministic Algorithms

Remark 2.1. U-RED runs in polynomial time. Note that the algorithm is (re-)started
O(m) times because prior to every restart two edges are queried and after querying
all edges we can identify an MST with certainty. Sorting the edges can be done in
O(m log(m)) = O(m log(n)) time. During each iteration of the for-loop we have to
check for acyclicity or find a cycle and identify f and g, each of which can be done in
O(n) time. Finding an always maximal edge in a cycle requires finding an edge with
the largest upper limit among edges in the cycle and comparing its lower limit with
the upper limit of the other cycle edges. This also requires O(n) time. Thus a naive
analysis yields a time complexity of O(m2n).

Erlebach et al. [7] show the following essential property of their algorithm.

Lemma 2.2. The edges f and g in line 9 and 10 of U-RED form a witness set.

This, along with Theorem 2.1, guarantees a competitive ratio of 2:

Theorem 2.3. ([7], page 285) The algorithm U-RED is 2-update competitive.

Example 2.3. We will demonstrate by an example how the algorithm U-RED works.
Consider the graph G with uncertainty sets as in the figure below.

1

2

3

4

5

6

7

(7.2,14)

8

(4,7)

5

(7,16) 15

(6,16) 7(2,9)7(3,6)5

{5}
(5,15)6

(7.1,16)

12

For the sake of notation let e1 :=
{5, 6}, e2 := {6, 7}, e3 := {2, 3},
e4 := {1, 7}, e5 := {2, 5}, e6 := {4, 5},
e7 := {3, 4}, e8 := {4, 6}, e9 := {1, 2}
and w̄i := w̄ei , Ai = Aei for i = 1, .., 9.
Note that prior to the first iteration we
have e1 ≤ e2 ≤ ... ≤ e9 with respect to
the ordering in Definition 2.2 but this
might change during the execution of
the algorithm.

Figure 2.3: An instance of MST-U with uniform query costs. The realisation of edge
weights is depicted in red.

Iteration 1: e1 ≤ e2 ≤ ... ≤ e9. Let Γ := ∅.
For i = 1, .., 6 we simply add ei to Γ without closing a cycle. Once we add e7 to Γ, Γ
contains the cycle C := (2, 3, 4, 5). Then f := e7 is an edge with largest upper limit
among edges in C and the uncertainty set of g := e6 intersects A7. Hence we update
both edges, such that A7 = {15} and A6 = {7}. We restart the algorithm.

2.2 Uniform query costs: the algorithm U-RED 19

Iteration 2: e1 ≤ e2 ≤ e3 ≤ e4 ≤ e5 ≤ e6 ≤ e8 ≤ e9 ≤ e7. Let Γ := ∅.
We add e1, e2, e3, e4, e5 and e6 to Γ without closing a cycle. Then we add e8 to Γ such
that Γ contains the cycle C := (4, 5, 6). Then f := e8 has the largest upper limit
among edges in C and the uncertainty set of g := e1 intersects A8. Hence U-RED
updates both edges, such that A8 = {12} and A1 = {7} and restarts the algorithm.

Iteration 3: Now e2 ≤ e3 ≤ e4 ≤ e5 ≤ e6 ≤ e1 ≤ e9 ≤ e8 ≤ e7. Let Γ := ∅.
Again e2, e3, e4, e5, e6 and e1 are added to Γ without closing a cycle. Then e9 is added
to Γ and Γ contains the cycle C := (1, 2, 5, 6, 7). Then f := e5 has the largest upper
limit among the edges in C and the uncertainty set of g := e9 intersects A5. Once we
have updated the edges, we get A5 = {6} and A9 = {8} such that the instance is now
as in the figure below. The algorithm is restarted.

1

2

3

4

5

6

7

{8} (4,7)

5

{15}

{7}{7}(3,6)5

{5}
{6}

{12}

Iteration 4: e2 ≤ e3 ≤ e4 ≤ e5 ≤
e1 ≤ e6 ≤ e9 ≤ e8 ≤ e7. Let Γ := ∅.
Now we add e2, e3, e4, e5, e1 and e6 to
Γ without closing a cycle. Then e9
is added to Γ and Γ contains the cy-
cle C := (1, 2, 5, 6, 7). Then f := e9
has the largest upper limit among the
edges in C and is always maximal.
Thus e9 is deleted from Γ.

Figure 2.4: The instance prior to the last iteration of U-RED: Each cycle has an always
maximal edge.

When e8 is added to Γ, it closes the cycle C := (4, 5, 6). Now f := e8 is always maximal
in C and is deleted from Γ. Finally we add e9 to Γ, which closes cycle C := (2, 3, 4, 5).
The edge f := e9 is always maximal in C and needs to be deleted from Γ.

Thus U-RED has found the minimum spanning tree with edge set {ei|i = 1, ..., 6}
after having queried the edges in {e1, e5, e6, e7, e8, e9}. Note that e7, e8 and e9 would
have been always maximal in the respective cycles after only updating e1, e5, e6. Hence
U-RED achieves the claimed worst-case competitive ratio of 2.

20 2 Deterministic Algorithms

2.3 Non-uniform query costs

In this section we will present the algorithm BALANCE introduced by Megow et al.
in [15]. BALANCE works for general query costs and achieves an optimal competitive
ratio of 2.

2.3.1 Framework of BALANCE

The algorithm BALANCE as well as the algorithm RANDOM in the next chapter
start out with a certain spanning tree T0, which is considered to be the first candidate
for a minimum spanning tree. In each iteration i we add an edge fi to the tree, in order
of increasing lower limit (more precisely, in the order as in Definition 2.2.) The edge
fi closes a unique cycle Ci. We then try to identify an edge of maximum weight in Ci.
In order to decide which edges should be queried it is essential to better understand
MST-U on cycles. Once we have found a maximum weight edge ei, this edge can be
disregarded as there exists an MST of G which does not contain ei. Hence for the
sequence of subgraphs (V,Ei)

k
i=0, where E0 = T0, Ei = Ei−1 + fi and Ek = E, we find

a nested sequence of query sets ∅ = Q0 ⊂ Q1 ⊂ ... ⊂ Qk, such that Qi verifies that
Ti := Ti−1 + fi − ei is a minimum spanning tree of (V,Ei), i = 0, ..., k.

2.3.2 Lower Limit Tree

A lower limit tree is the edge set of a Minimum Spanning Tree in G, where all edge
weights are set equal to the lower limit of the edge’s uncertainty set. An upper limit tree
is defined analogously. Let TL, TU denote a lower and an upper limit tree respectively.

Remark 2.2. Megow et al. [15] show that all edges in TL\TU with non-trivial uncer-
tainty sets lie in any feasible query set.

Thus the instance can be preprocessed such that TL\TU consists of trivial edges only.
Now assume TL \ TU 6= TU \ TL. The sum of upper limits of edges in TU \ TL cannot
be less than the sum of weights of edges in TL \ TU , otherwise TU \ TL ∪ (TU ∩ TL) =
TU would be the edge set of a lower limit tree of smaller weight than TL. Hence∑

e∈TU\TL Ue =
∑

e∈TL\TU w̄e =
∑

e∈TL\TU Ue which is why we can w.l.o.g. assume
TL = TU . We choose our initial tree T0 to be TL.

Throughout the discussion of BALANCE (as well as all algorithms which are based
on the same framework, e.g. RANDOM) we agree on the following notation:

Definition 2.4. Let R := E\TL =: {f1, ..., fm−n+1}, such that f1 ≤ f2 ≤ ... ≤ fm−n−1,
where ≤ is the ordering as defined in Definition 2.2. Set T0 := TL, E0 := T0 and
Q0 := ∅. For i = 1, ...,m−n+ 1 we denote by Ei := Ei−1 ∪{fi} = TL ∪{f1, ..., fi} the
set of edges which the algorithm has considered after i iterations and by Qi the set of
all edges which the algorithm has queried during the first i iterations. Moreover, let Ti

2.3 Non-uniform query costs 21

be the minimum spanning tree which the algorithm has verified for the graph (V,Ei)
after having queried the edges in Qi during the first i iterations, i = 1, ...,m− n + 1.
Finally, by Ci we denote the cycle closed during the i’th iteration when the algorithm
adds fi to Ti−1.

2.3.3 Finding a maximum weight edge in a cycle

In a cycle C an edge f with largest upper limit is a candidate for a maximum weight
edge, along with all the edges e in C with Ae intersecting Af . By the choice of T0 = TL
and the fact that TL = TU , it turns out that the edge fi has largest upper limit in the
cycle C that it closes with Ti−1.

Lemma 2.4. Let i ∈ {1, ...,m− n+ 1}. Let Ci be the cycle that fi closes when added
to Ti−1. Then fi has largest upper limit among all edges in Ci.

Proof. We show that for all i = 0, ...m−n any edge not in Ei has largest upper limit in
the cycle it closes with Ti. The assertion is true for i = 0 because T0 = TL = TU . Now
assume it is true for i and show that it holds for i+ 1. Let f be an edge in E \ Ei+1.
If the cycle C that f closes with Ti+1 is the same as the cycle C ′ that f closes with
Ti, the assertion is trivially true. Thus we assume that C 6= C ′. This means that
when adding fi+1 to Ti an edge e ∈ C ′ is removed and replaced by fi+1, which only
happens if fi+1’s weight as well as the weight or upper limit of all other edges in Ci+1

are smaller than the upper limit of the deleted edge e. As C consists only of edges in
C ′ and Ci+1, f has largest upper limit in C.

Note that even after querying all edges with uncertainty sets intersecting Afi , fi could
still turn out to have larger weight than any of these edges and thus not be contained
in any MST. Hence, whenever we decide to keep fi as a tree edge, we must have
queried fi. In order to find a maximum weight edge in Ci it is thus sufficient to only
consider those edges with uncertainty interval intersecting Afi that lie in TL.

Definition 2.5. Let fi be the edge added in iteration i and Ci the unique cycle it
closes with Ti−1. Then we define the neighbor set of fi as

X(fi) = {g ∈ Ci ∩ TL|Ag ∩ Afi 6= ∅}.

In each iteration i we try to find a maximum weight edge in the cycle Ci that fi closes.
If X(fi) is not empty (otherwise fi is always maximal) we either query fi or all edges
in X(fi). In fact any feasible query set must contain fi or all edges in X(fi).

Lemma 2.5. Given a graph G with uncertain edge weights and a realization of edge
weights, let TL be its lower limit tree. Let Ti−1 be a verified MST for Gi−1 = (V,Ei−1)
and let Ci be the cycle closed by adding edge fi to Ti−1. Then any feasible query set Q
of Gi = (V,Ei) contains fi or X(fi).

22 2 Deterministic Algorithms

Proof. Assume we want to verify an MST of Gi that contains fi. Then Q must
contain fi because otherwise there are possible realizations for which fi has strictly
largest weight in Ci as it has the largest upper limit in Ci.
Now assume we want to verify an MST T of Gi with fi 6∈ T . Then fi must have
largest weight in the cycle C ′ it closes with T . Note that T has to be an MST of Gi−1
as well, thus fi must have largest weight in Ci. If fi 6∈ Q, then the only possible way
to guarantee that fi has largest weight in Ci is to show that the weights of all other
edges do not lie in Afi . Thus we have to test all neighbors of fi.

So far we have shown that any feasible query set for (V,Ei) contains fi or all edges in
X(fi).
However, we want that any feasible query set of the entire graph G contains these
edges as well. This is guaranteed by the following lemma, which was shown by [15]:

Lemma 2.6. Let i ∈ {0, ...,m−n+1}. Given a feasible query set Q for the uncertainty
graph G = (V,E), then the set Q ∩ Ei is a feasible query set for Gi = (V,Ei).

Remark 2.3. If we still do not know which edge has maximum weight in Ci we go
on querying edges in order of decreasing upper limit until we find a maximum weight
edge. These edges were shown by [15] to be part of any feasible query set as well, due
to the fact that fi has largest upper and lower limit in Ci.

2.3.4 Core of the algorithm BALANCE

To decide whether to query fi or all of its neighbors, the algorithm proceeds as fol-
lows: ”By default” we query the neighbor set X(fi). We want to query the neighbors
because they might reappear in neighbor sets of later iterations. However, we want
to make sure that we maintain a competitive ratio of 2. This is done by assigning an
edge potential ye to every edge e ∈ TL, which is initially set to 0. In each iteration
i, the potential ye of each edge e in X(fi) is either raised to a common level t(fi) or
remains the same, if ye is already greater than t(fi). The value of t(fi) is obtained
by maximizing t ≤ 1 s.t.

∑
e∈X(fi)

qe · max{0, t − ye} ≤ qfi and can be computed by

applying the subroutine displayed in Algorithm 3. Note that t(fi) ≥ 0 and that the
choice of t(fi) guarantees for each edge e that 0 ≤ ye ≤ 1 holds at all times. The edge
potential of e can be interpreted as the share of the query cost of e which has already
been balanced by the query cost in the optimal solution and is increased whenever e is
part of a neighbor set. Thus we make sure that edges which appear in many neighbor
sets are queried.

A formal description of the algorithm BALANCE can be found in Algorithm 2.

Remark 2.4. Note that BALANCE runs in polynomial time. The preprocessing re-
quires solving two MST instances repeatedly but at most m times because prior to

2.3 Non-uniform query costs 23

input : An instance of MST-U with graph G = (V,E), uncertainty sets Ae
and query costs qe, e ∈ E

output: A feasible query set Q

1 Preprocess the instance such that TL = TU and set Γ := TL;
2 Index the edges in R := E \ TL s.t f1 ≤ ... ≤ fm−n+1;
3 Initialize Q = ∅;
4 Initialize ye = 0 for all e ∈ TL;
5 for i← 1 to m− n+ 1 do
6 Add fi to Γ and let Ci be the unique cycle closed;
7 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
8 if X(fi) is not empty then
9 Maximize the threshold t(fi) ≤ 1 s.t.∑

e∈X(fi)
qe ·max{0, t(fi)− ye} ≤ qfi ;

10 Increase edge potentials ye := max{t(fi), ye} for all e ∈ X(fi);
11 if t(fi) < 1 then
12 Add fi to Q and query it.
13 else
14 Add all edges in X(fi) to Q and query them.

15 while no edge in the cycle Ci is always maximal do
16 Query the unqueried edge e ∈ Ci \Q with maximum Ue and add it to

Q.
17 Delete an always maximal edge from Γ

Algorithm 2: The algorithm BALANCE for MST-U with general query costs
(adapted from [15], page 1223 and 1231)

every new computation of a lower and an upper limit tree we query at least one edge.
This yields O(m2 log(n)) time with e.g. Kruskal’s algorithm. Sorting the edges in R
can be done in O(m log(n)) time. We also sort all edges in order of non-increasing
upper limit. We update this sorting whenever we make an edge query. This takes
O(m log(n)) time for the initial sorting and O(log(n)) time per query. During the i’th
iteration, finding Ci and X(fi) can be done in O(n) time. The value of t(fi) can be
computed with the subroutine in Algorithm 3.

This subroutine requires sorting the edge potentials (O(n log(n)) time) and O(k) con-
stant time operations (i.e. O(n) time.)
After having queried fi or all of X(fi), we need to check whether w̄fi ≥ Ue or
w̄e(= Ue) ≤ Lfi for all e ∈ X(fi) respectively. Both can be done in constant time
due to the sorting with respect to the upper limits. Once we have updated fi, there
exists an always maximal edge in Ci iff the edge with maximum upper limit is trivial.
(Hence this can be checked in constant time.) The time needed for edge queries, up-

24 2 Deterministic Algorithms

input : An edge fi with neighbor set X(fi) and edge potentials ye for
e ∈ X(fi)

output: t(fi)

1 Sort the edges in X(fi) = {e1, ..., ek} such that ye1 ≤ ... ≤ yek ;
2 for j ← k to 1 do

3 Compute t such that
∑j

l=1 qel(t− yel) = cfi ;
4 if t− yej ≥ 0 then
5 STOP, output t(fi) := min{1, t}

Algorithm 3: Computing t(fi)

dating the ordering of upper limits or checking whether there is an always maximal
edge is not counted per iteration, because it sums up to O(m log(n)) over all itera-
tions. The run-time per iteration without these operations can thus be bounded by
O(n log(n)). Hence the overall run-time for the algorithm, without the preprocessing,
is bounded by O(m · n log(n)) time and by O(m2 log(n)) time if the preprocessing is
included.

Theorem 2.7. ([15], page 1230) The algorithm BALANCE achieves competitive ratio
2.

Proof. To compare the query cost of the set Q found by BALANCE with the cost of
an optimal query set Q∗ we consider three subsets of Q separately: edges which also
lie in Q∗, edges in TL ∩ Q which do not lie in Q∗ and edges in R = E \ TL which are
queried by BALANCE but are not in the optimal query set Q∗. Then∑

e∈Q

qe =
∑

e∈Q∩Q∗
qe +

∑
e∈(Q∩TL)\Q∗

qe +
∑

i:fi∈(Q∩R)\Q∗
qfi .

Consider first edges in (Q ∩R) \Q∗. An edge in Q ∩R is queried, thus we know that
t(fi) < 1 is chosen such that we obtain equality in line 9 of Algorithm 2. We denote
by yie the potential of e at the beginning of the i’th iteration. Hence t(fi) = yi+1

e for
all edges whose potential changes in iteration i and we have∑

i:fi∈(Q∩R)\Q∗
qfi =

∑
i:fi∈(Q∩R)\Q∗

∑
e∈X(fi)

(yi+1
e − yie) · qe.

Note that even though we do not sum over all iterations, for a fixed e the sum∑
i:fi∈(Q∩R)\Q∗

e∈X(fi)

(yi+1
e − yie)

2.3 Non-uniform query costs 25

can be bounded by ye, where ye is the potential of e after the last iteration, because the
potential never decreases. As for any fi ∈ R \Q∗ the neighbor set X(fi) lies entirely
in Q∗, we can sum over all edges e ∈ TL ∩Q∗. Hence

∑
i:fi∈(Q∩R)\Q∗

qfi ≤
∑

e∈TL∩Q∗
ye · qe ≤

∑
e∈TL∩Q∗

qe

Now we consider the query cost of (Q ∩ TL) \ Q∗. Note that for e ∈ TL ∩ Q we have
ye = 1. Again we use that for e ∈ X(fi) with e 6∈ Q∗ we know by Lemma 2.5 that fi
lies in Q∗. Thus:

∑
e∈(Q∩TL)\Q∗

qe ≤
∑

e∈TL\Q∗
qe · ye =

∑
e∈TL\Q∗

qe
∑

i:fi∈R∩Q∗
e∈X(fi)

(yi+1
e − yie)

≤
∑

i:fi∈R∩Q∗

∑
e∈X(fi)

qe(y
i+1
e − yie) ≤

∑
i:fi∈R∩Q∗

qfi .

Finally the cost of edges in Q ∩ Q∗ can simply be bounded by the cost of all of Q∗.
Hence

∑
e∈Q

qe ≤
∑
e∈Q∗

qe +
∑

i:fi∈R∩Q∗
qfi +

∑
e∈TL∩Q∗

qe = 2
∑
e∈Q∗

qe.

Example 2.4. We will now demonstrate by an example how the algorithm BALANCE
works. Consider the graph G with uncertainty sets as in the figure below. We use
the same edge names (e1, ..., e9) and notation for the uncertainty sets as in Example
2.3, as well as qj := qej , j = 1, ..., 9 for the query costs which all equal 1, except for
q1 = q6 = 2 and q9 = 1.8.

26 2 Deterministic Algorithms

1

2

3

4

5

6

7

(7.2,14)

8

(4,7)

5

(7,16) 15

(6,16) 7(2,9)7(3,6)5

(4,18)5

(5,15)6

(7.1,16)

12

Preprocessing: {e1, e2, e3, e4, e5, e6}
is the edge set of a lower limit tree and
{e2, e3, e1, e9, e5, e6} is the edge set of
an upper limit tree. Thus by Remark
2.2 we know that e4 lies in any feasible
query set, thus we update e4. We set
TL(:= TU) := {e1, e2, e3, e4, e5, e6} and
f1 := e7, f2 := e8, f3 := e9.

Figure 2.5: An instance of MST-U with non-uniform query costs. The realisation of
edge weights is depicted in red. The query costs are equal to one except
for q1 = q6 = 2, q9 = 1.8 (in green).

Now we set Γ := TL, Q := ∅ and yj := yej = 0 for all j ∈ {1, ..., 6}.

i=1: The edge e7 closes the cycle C1 = (2, 3, 4, 5) in Γ := TL ∪ {e7}. The uncertainty
sets A5 and A6 intersect A7, hence Xe7 = {e5, e6}.
Then t(e7) = arg maxt∈[0,1]{q5 · max{0, (t − y5)} + q6 · max{0, (t − y6)}} = 1

3
and we

have q5(t(e7)− y5) + q6(t(e7)− y6) = 1 · (1
3
− 0) + 2 · (1

3
− 0) = 1 = q7. We increase

y5 :=
1

3
, y6 :=

1

3
.

As t(e7) = 1
3
< 1, we query f1 = e7, i.e. Q := {e7}. This yields w̄7 = 15 ∈ A6, hence

we cannot identify a maximum weight edge in C1. Thus, we query the edge e6, which
has now the largest upper limit among edges in C1 and add it to Q, i.e. Q := {e6, e7}.
Now we know, that e7 is a maximum weight edge in C1, we remove it from Γ, i.e
Γ := TL.

i=2: The edge e8 closes the cycle C2 = (4, 5, 6) in Γ := TL ∪ {e8}. The uncertainty
set of A1 intersects A8 and we have Xe8 = {e1}. BALANCE sets t(e8) := 0.5 and we
have q1(t(e8)− y1) = 2 · (0.5− 0) = 1 = q8. BALANCE sets

y1 :=
1

2
.

Moreover, we set Q := {e6, e7, e8} and query e8, revealing w̄8 = 12, which is sufficient
to see that e8 has maximum weight among the edges in C2. Set Γ := TL.

2.3 Non-uniform query costs 27

i=3: The edge e9 closes the cycle C3 = (1, 2, 5, 6, 7) in Γ := TL∪{e9}. The uncertainty
sets of e5 and e1 intersect A9, hence X(e9) := {e1, e5}. Now in this iteration t(e9) = 1
and q1(t(e9)− y1) + q5(t(e9)− y5) = 2 · (1− 1

2
) + 1 · (1− 1

3
) = 5

3
≤ q9. Hence we query

the edges in the neighbor set which is sufficient to identify e9 as a maximum weight
edge in C3. Set Q := {e1, e5, e6, e7, e8} and output Γ := TL.
The cost of this solution for the preprocessed instance is 2+1+2+1+1 = 7, while an
optimal solution queries e6, e5 and e1, which yields a query cost of 5. This yields a
competitive ratio of 7

5
= 1.4 for the preprocessed instance and 8

6
≈ 1.33 for the original

instance.

Now let us see how BALANCE performs in the uniform query cost case for the instance
in Example 2.3.

Example 2.5. Consider the instance of MST-U and the notation of Example 2.3.
Here we already have TL = TU = {e1, ..., e6} without prior queries. As for f1 = e7,
f2 = e8 and f3 = e9 the cycles stay the same as in the non-uniform case, we will just
briefly state the neighbor sets, how the potentials increase and which edges are added
to Q.
First set Q := ∅ and yj := yej = 0 for all j ∈ {1, ..., 6}.

i=1: X(e7) = {e5, e6} as in the non-uniform case. We have t(e7) = 1
2

and
q5(t(e7)− y5) + q6(t(e7)− y6) = 1 · (1

2
− 0) + 1 · (1

2
− 0) = 1 = q7. We increase

y5 :=
1

2
, y6 :=

1

2
.

As t(e7) = 1
2
< 1, we query f1 = e7 and then e6, as querying e7 does not turn out to

be sufficient to see that e7 is a maximum weight edge in C1. So Q := {e6, e7}.

i=2: Again the neighbor set X(e8) = {e1} stays the same as in the non-uniform case.
BALANCE sets t(e8) := 1 which satisfies q1(t(e8) − y1) = 1 · (1 − 0) = 1 = q8. The
edge potential of y1 is now

y1 := 1.

Moreover, as t(e8) = 1, we set Q := {e1, e6, e7} and query e1, revealing w̄1 = 7, which
is sufficient to see that e8 has maximum weight among the edges in C2.

i=3: Now the neighbor set of edge e9 only contains e5. Thus we have t(e9) = 1 such
that q5(t(e9)− y5) = 1 · (1− 1

2
) = 1

2
≤ 1 = q9. Hence we query e5, which makes it clear

that e9 is a maximum weight edge in C3. Set Q := {e1, e5, e6, e7} and output Γ := TL.

Remember that U-RED queried 6 edges when applied to this instance. Hence, for this
instance BALANCE performs better than U-RED. This is not necessarily the case in
general.

3 Randomization

3.1 Lower bound

Consider again Example 2.2. An algorithm queries edge {2, 3} first with probability
p.

1 2

3

(3,5)

(2,4){1}

If we consider again the realization w̄{2,3} = 3.5, w̄{1,2} =
4.5, the expected number of queries is 2p + (1 − p), as
w̄{2,3} ∈ A{1,2} and thus the algorithm has to query {1, 2}
too if it queries {2, 3} first.
Now we assume that the underlying realization is w̄{2,3} =
2.5, w̄{1,2} = 3.5. Then the expected number of queries is
p+ 2(1− p).

Figure 3.1: Lower bound computation for randomized algorithms

As max{2p + (1 − p), p + 2(1 − p)} is minimal for p = 1
2
, no randomized algorithm

can achieve a competitive ratio less than 1.5 when applied to this instance. The lower
bound of 1.5 for randomized algorithms was observed by [5].

3.2 Uniform query costs

3.2.1 The algorithm RANDOM

The algorithm RANDOM which was introduced by [15] works similar as BALANCE
and uses the same framework. In each iteration i we try to find a maximum weight edge
in the cycle Ci that fi closes. If X(fi) is not empty (otherwise fi is always maximal) we
either query fi or all edges in X(fi). If we still do not know which edge has maximum
weight in Ci we go on querying edges in order of decreasing upper limit until we find
a maximum weight edge. To decide whether to query fi or all of its neighbours the
algorithm uses randomization. Again each edge e in TL is assigned an edge potential
ye which is initially set to 0 and can only increase throughout the algorithm. In the
setting of RANDOM however, ye can be interpreted as the probability that e is queried.
In each iteration i, a total potential of 1√

2
is spread among edges in X(fi) (the choice

29

30 3 Randomization

of 1√
2

becomes evident in the analysis of the algorithm.) Thereby the potential ye of

each edge e in X(fi) is either raised to a common level t(fi) (yet to be defined) or
remains the same, if ye is already greater than t(fi).
In the beginning of the algorithm we agree on a bound b that is drawn uniformly at
random from [0, 1]. Whenever t(fi) exceeds b, i.e. whenever all edges in X(fi) have
potential at least b, we decide to query all edges in X(fi). Otherwise we query fi.
This means that an edge e ∈ TL \ Q∗ is queried if its potential exceeds the query
bound b, where Q∗ denotes an optimal query set. Hence an edge e ∈ TL \Q∗ is queried
with probability P[ye ≥ b] = ye and an edge fi ∈ R \ Q∗ is queried with probability
P[t(fi) < b] = 1− t(fi).
Algorithm 4 gives a formal description of the algorithm RANDOM.

input : An instance of MST-U with graph G = (V,E), uncertainty sets Ae,
e ∈ E and uniform query costs

output: A feasible query set Q

1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that TL = TU and set Γ := TL;
3 Index the edges in R := E \ TL by increasing lower limit f1, ..., fm−n+1;
4 Initialize Q = ∅;
5 Initialize ye = 0 for all e ∈ TL;
6 for i← 1 to m− n+ 1 do
7 Add fi to Γ and let Ci be the unique cycle closed;
8 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
9 if X(fi) is not empty then

10 Maximize the threshold t(fi) ≤ 1 s.t.∑
e∈X(fi)

max{0, t(fi)− ye} ≤ 1√
2
;

11 Increase edge potentials ye := max{t(fi), ye} for all e ∈ X(fi);
12 if t(fi) < b then
13 Add fi to Q and query it.
14 else
15 Add all edges in X(fi) to Q and query them.

16 while no edge in the cycle Ci is always maximal do
17 Query the unqueried edge e ∈ Ci \Q with maximum Ue and add it to

Q.
18 Delete an always maximal edge from Γ

Algorithm 4: The algorithm RANDOM for MST-U with uniform query costs
(adapted from [15], page 1223 and 1227)

3.2 Uniform query costs 31

Analysis of RANDOM

Again we partition the query set Q into the three subsets Q ∩ Q∗, (Q ∩ R) \ Q∗
and (Q ∩ TL) \ Q∗, where Q∗ is an optimal query set. Similar to the proof of the
competitive ratio of BALANCE the expected query cost of each of these sets can be
bounded separately. Megow et al. [15] show the following lemmata:

Lemma 3.1. For any feasible query set Q∗ it holds that∑
e∈TL\Q∗

ye ≤
1√
2
· |R ∩Q∗|,

where ye denotes the edge potential of e after an execution of RANDOM.

Lemma 3.2. For any feasible query set Q∗, it holds that∑
i:fi∈R\Q∗

(1− t(fi)) ≤
1√
2
· |TL ∩Q∗|.

Hence we obtain the following result about the competitive ratio of RANDOM:

Theorem 3.3. ([15], page 1228) RANDOM has competitive ratio 1 + 1√
2

(≈ 1.707).

Proof. By applying Lemma 3.1 and Lemma 3.2 to the overall expected value, we get:

E[|Q|] = E[|Q ∩Q∗|] + E[|(Q ∩ TL) \Q∗|] + E[|(Q ∩R) \Q∗|]

= E[|Q ∩Q∗|] +
∑

e∈TL\Q∗
P[e ∈ Q] +

∑
i:fi∈R\Q∗

P[fi ∈ Q]

= E[|Q ∩Q∗|] +
∑

e∈TL\Q∗
ye +

∑
i:fi∈R\Q∗

(1− t(fi))

3.1

≤ E[|Q ∩Q∗|] +
1√
2
|R ∩Q∗|+

∑
i:fi∈R\Q∗

(1− t(fi))

3.2

≤ E[|Q ∩Q∗|] +
1√
2
|R ∩Q∗|+ 1√

2
|TL ∩Q∗|

≤ |Q∗|+ 1√
2
|R ∩Q∗|+ 1√

2
|TL ∩Q∗| = (1 +

1√
2

) · |Q∗|.

Example 3.1. We will now demonstrate by an example how the algorithm RANDOM
works. Consider the graph G with uncertainty sets as in the figure below. We use the
same edge names (e1, ..., e9) and notation for the uncertainty sets as in Example 2.3.

32 3 Randomization

1

2

3

4

5

6

7

(7.2,14)

8

(4,7)

5

(7,16) 15

(6,16) 7(2,9)7(3,6)5

(4,18)5

(5,15)6

(7.1,16)

12

Preprocessing: As in Example 2.4
the preprocessing results in query-
ing e4, which lies in any feasible
query set and yields TL(:= TU) :=
{e1, e2, e3, e4, e5, e6}. The edges in
R := E \ TL = {e7, e8, e9} are indexed
via f1 := e7, f2 := e8 and f3 := e9 such
that f1 ≤ f2 ≤ f3. Assume that draw-
ing b uniformly at random from [0, 1]
yields b = 0.4.

Figure 3.2: An instance of MST-U with uniform query costs. The realisation of edge
weights is depicted in red.

Now we set Γ := TL, Q := ∅ and yj := yej = 0 for all j ∈ {1, ..., 6}.

i=1: The edge e7 closes the cycle C1 = (2, 3, 4, 5) in Γ := TL ∪ {e7}. The uncertainty
sets A5 and A6 intersect A7, hence X(e7) = {e5, e6}. Then t(e7) = 1

2
√
2

and we have

(t(e7)− y5) + (t(e7)− y6) = (1
2
√
2
− 0) + (1

2
√
2
− 0) = 1√

2
. We increase

y5 :=
1

2
√

2
, y6 :=

1

2
√

2
.

As t(e7) = 1
2
√
2
≈ 0.35 < 0.4, we query e7, i.e. Q := {e7}. As w̄7 = 15 ∈ A6, we have

to query e6 too, Q := {e6, e7}. Now we know, that e7 is a maximum weight edge in
C1 and remove it from Γ, i.e Γ := TL.

i=2: The edge e8 closes the cycle C2 = (4, 5, 6) in Γ := TL ∪ {e8}. The uncertainty
set of A1 intersects A8 and we have X(e8) = {e1}. RANDOM sets t(e8) := 1√

2
such

that t(e8)− y1 = 1√
2
− 0 = 1√

2
. RANDOM sets

y1 :=
1√
2
.

Moreover, we set Q := {e1, e6, e7} and query e1, because t(e8) = 1√
2
≈ 0.707 > 0.4.

Now e8 has become an always maximal edge among the edges in C2. Set Γ := TL.

i=3: The edge e9 closes the cycle C3 = (1, 2, 5, 6, 7) in Γ := TL ∪ {e9}. Note that the
neighbor set of e9 is {e5}. Now t(e9) = 1 as 1− y5 = 1− 1

2
√
2
≤ 1√

2
. Thus we query e5,

as t(e9) = 1 ≥ 0.4, remove e9 from Γ, i.e. Γ := TL and output Q := {e1, e5, e6, e7}.

3.2 Uniform query costs 33

This means that for b = 0.4, RANDOM finds a solution with competitive ratio 5
4
.

3.2.2 An optimal randomized algorithm for cactus graphs
with uniform query costs

An essential aspect of solving the MST-U is handling edges which appear on multiple
cycles. In this section however, we consider the special case of cactus graphs, where
a cactus graph is a connected graph in which two cycles share at most one vertex.
Speaking in the terminology of RANDOM, this means that no edge in TL will appear
in more than one neighbor set. Once we are able to treat cycles separately it turns out
that it is possible to achieve an optimal expected competitive ratio of 1.5. Note that
RANDOM does not necessarily achieve expected competitive ratio 1.5 for instances of
this type: Consider the instance used to compute the lower bound in Section 3.1. TL
consists of the edges {1, 3} and {2, 3}. When adding {1, 2} to TL, potential α = 1√

2
is

distributed among the neighbors of {1, 2}, consisting only of the edge {2, 3}. Hence,
{2, 3} is queried first with probability 1√

2
, while {1, 2} is queried first with probability

1 − 1√
2
. If we face the realization w̄{2,3} = 3.5 and w̄{1,2} = 4.5, then the expected

competitive ratio equals 1− 1√
2

+ 2 1√
2

= 1 + 1√
2
> 1.5.

For cactus graphs it is possible to achieve competitive ratio 1.5 in expectation, using
the following observation: The framework of RANDOM guarantees that once we have
queried fi or all of X(fi), querying edges in the current cycle Ci in order of decreasing
upper limit until an MST can be identified only adds edges to the query set which must
lie in any feasible query set. Thus, if we start by querying fi then we have queried at
most one edge on Ci, which is not in the optimal solution.

Remark 3.1. In an instance of MST-U where the graph G is a cycle, querying fi = f1
first leads to a competitive ratio of at most OPT+1

OPT
, which is at most 1.5 unless OPT =

1.

Proposition 3.1. For cactus graphs there exists an algorithm RANDOMC with com-
petitive ratio at most 1.5, which is optimal. Moreover, if G is a cycle with TL = TU
in which the edge with maximum upper limit has k neighbors, RANDOMC achieves
competitive ratio 1 + k

k2+1
.

Proof. We first consider a graph C which consists of a single cycle. Assume again that
we have applied the same preprocessing as for RANDOM and BALANCE and that
TL = TU . Let f be the edge in E \ TL and let k := |X(f)| be the number of neighbors
of f in C. Our algorithm starts by querying all edges in X(f) with probability p.
With probability 1 − p, its first step is to query f . Once it has queried X(f) or f ,
it proceeds as RANDOM and queries edges in order of decreasing upper limit until a
maximum weight edge can be identified.
If an optimal solution does not query f , it must query all of the neighbors in X(f)

34 3 Randomization

and thus queries k edges. Hence, with probability p, we query the same edges as the
optimal solution and achieve competitive ratio 1. With probability 1− p, we query f
and possibly all of the edges in the neighbor set, such that the competitive ratio is at
most k+1

k
. In this case the expected competitive ratio is at most kp+(k+1)(1−p)

k
.

If an optimal solution queries f , we produce the optimal solution if we start by querying
f , i.e. with probability 1 − p. If we start by querying all of X(f), we might have to
query f too, while the optimal solution might query f only. In this case the expected
competitive ratio is bounded by (k + 1)p+ (1− p). As

max
{kp+ (k + 1)(1− p)

k
, (k + 1)p+ (1− p)

}
is minimized for p = 1

k2+1
, we achieve competitive ratio at most 1 + k

k2+1
, if we can

guarantee that we start by querying X(f) with probability 1
k2+1

or by querying f with

probability 1 − 1
k2+1

. For general G, we treat each cycle separately. A description of
the algorithm RANDOMC is depicted in Algorithm 5.
Let Ci be the cycle closed in iteration i. For an instance which consists only of
Ci, let Q∗i denote an optimal query set and OPTi := |Q∗i |. As cycles in G do not
share any edges, the disjoint union Q∗ of the Q∗i is an optimal solution for G and thus
OPT =

∑m−n+1
i=1 OPTi. Moreover, this structure guarantees that X(fi) is independent

of the choice of queries in previous iterations as well as their outcome. As
P[RANDOMC starts by querying all of X(fi)] = P[b ≤ 1

k2+1
] = 1

k2+1
, we thus expect

at most (1 + k
k2+1

)OPTi ≤ 1.5 · OPTi queries in iteration i. Let c denote the number
of queries made in the preprocessing.
Thus,

E[ALG]

OPT
=
c+ E[

∑m−n+1
i=1 ALGi]

OPT
=
c+

∑m−n+1
i=1 E[ALGi]

OPT
≤ c+

∑m−n+1
i=1 1.5 ·OPTi

c+
∑m−n+1

i=1 OPTi

≤ 1.5.

Remark 3.2. Without preprocessing, the algorithm RANDOMC runs in O(mn) time
and the preprocessing can be done in O(m2 log(n)) time. The analysis is the same as
for BALANCE in Remark 2.4, except for the computation of edge potentials which is
not needed here.

Example 3.2. We will now demonstrate by an example how the algorithm RANDOMC

works. Consider the graph G with uncertainty sets as in Figure 3.3 below.

Preprocessing: Note that this graph is already preprocessed, in the sense that
TL = TU = E \ {{1, 2}, {5, 6}, {7, 9}}. Assume that drawing b uniformly at random

3.2 Uniform query costs 35

input : An instance of MST-U with cactus graph G = (V,E), uncertainty
sets Ae, e ∈ E and uniform query costs

output: A feasible query set Q

1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that TL = TU and set Γ := TL;
3 Index the edges f1, ..., fm−n+1 in R := E \ TL arbitrarily ;
4 Initialize Q = ∅;
5 for i← 1 to m− n+ 1 do
6 Add fi to Γ and let Ci be the unique cycle closed;
7 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
8 Let k := |X(fi)| ;
9 if X(fi) = ∅ then

10 delete fi from Γ
11 else
12 if b ≤ 1

k2+1
then

13 add all edges in X(fi) to Q and query them.
14 else
15 Add fi to Q and query fi.
16 while no edge in the cycle Ci is always maximal do
17 Query the unqueried edge e ∈ Ci \Q with maximum Ue and add it

to Q.
18 Delete an always maximal edge from Γ

Algorithm 5: The algorithm RANDOMC for MST-U with uniform query
costs in cactus graphs

from [0, 1] yields b = 0.4. Pick the ordering f1 = {1, 2}, f2 = {5, 6} and f3 = {7, 9}.

i=1: The edge f1 closes the cycle C1 = (1, 2, 3, 9), where it has precisely one neighbor
(X(f1) = {{2, 3}}.) Thus k := 1 and we have 1

k2+1
= 0.5 > 0.4 = b, which is why we

query {2, 3}. As w̄{2,3} = 6 < Lf1 , we can exclude f1 from Γ.

i=2: Next we add f2 to Γ, where it closes the cycle C2 = (4, 5, 6, 9). Its neighbor
set is X(f2) = {{4, 9}, {4, 5}, {6, 9}} and thus k := 3. As 1

k2+1
= 1

10
= 0.1 < 0.4,

RANDOMC decides to query f2. Now C2 does still not have an always maximal edge,
thus we go on by querying {6, 9} and then {4, 5}. The latter turns out to have maxi-
mum weight among edges in C2 and is excluded from Γ.

i=3: Finally we consider C3 = (7, 8, 9), which arises from adding f3 to Γ. Here the
neighbor set is X(f3) = {{7, 8}, {8, 9}} and hence k := 2. Again we decide to query

36 3 Randomization

2

3

4

567

8

1

9

(2,8)

{0}{0}

6

(1,8)

6

(3,9)8.5

(7,11)

8

(4,10) 5(7,11)7.5(3,10) 5

(1,8)

6

(7,11) 8

Figure 3.3: An instance of MST-U with uniform query costs in a cactus.The realisation
of edge weights is depicted in red.

f3, because 1
k2+1

= 1
5

= 0.2 < 0.4. Unfortunately w̄f3 lies inside the uncertainty sets
of both its neighbors, so we have to query {7, 8} and {8, 9} too in order to see that f3
has maximum weight among edges in C3.

Hence for this instance, RANDOMC outputs the query set
{{2, 3}, {5, 6}, {6, 9}, {4, 5}, {7, 9}, {7, 8}, {8, 9}} if b = 0.4. Note that an optimal
solution for the cycle C1 only queries one edge, an optimal solution for C2 queries
{4, 5}, {5, 6} and {6, 9}, while an optimal solution for C3 queries edges of the neighbor
set only, i.e. {7, 8} and {8, 9}. Thus for C1 and C2 we have found an optimal solution
and OPT1 = 1, OPT2 = 3, OPT3 = 2. This yields a competitive ratio of 7

6
for this

instance if b = 0.4.

3.3 Non-uniform query costs

3.3.1 Adaption of RANDOM to the non-uniform case

The algorithm RANDOM can be adapted to work for non-uniform query costs as well.
In this case we distribute

qfi√
2

potential among the neighbors of fi. This means that in

order to determine t(fi) we have to

maximize t(fi) ≤ 1 s.t.
∑
e∈Xfi

qe ·max{t(fi)− ye, 0} ≤
qfi√

2
. (3.1)

3.3 Non-uniform query costs 37

The results on the competitiveness of RANDOM extend to this adaption, as shown
by [15]:

Theorem 3.4. ([15], page 1230) For the non-uniform query cost setting the algorithm
RANDOM adapted according to (3.1) achieves competitive ratio 1 + 1√

2
.

Remark 3.3. The algorithm RANDOM for uniform as well as for non-uniform query
costs runs in polynomial time. The analysis is identical to the one of BALANCE (see
Remark 2.4.)

Example 3.3. We will now demonstrate by an example how the algorithm RANDOM
works in the case of non-uniform query costs. Consider the graph G with uncertainty
sets as in the figure below. We use the same edge names (e1, ..., e9) and notation for
the uncertainty sets as in Example 2.3, as well as qj := qej , j = 1, ..., 9 for the query
costs.

1

2

3

4

5

6

7

(7.2,14)

8

(4,7)

5

(7,16) 15

(6,16) 7(2,9)7(3,6)5

(4,18)5

(5,15)6

(7.1,16)

12

Preprocessing: As in Example 2.4
the preprocessing results in query-
ing e4 and yields TL(:= TU) :=
{e1, e2, e3, e4, e5, e6}. The edges in
R := E \TL = {e7, e8, e9} are again in-
dexed via f1 := e7, f2 := e8 and f3 :=
e9. Assume that drawing b uniformly
at random from [0, 1] yields b = 0.4
like in Example 3.1.

Figure 3.4: An instance of MST-U with non-uniform query costs. The realisation of
edge weights is depicted in red. The query costs are equal to one except
for q1 = q6 = 2 and q7 = 1.8 (in green.)

Now we set Γ := TL, Q := ∅ and yj := yej = 0 for all j ∈ {1, ..., 6}.

i=1: Adding e7 to Γ yields C1 = (2, 3, 4, 5) and X(e7) = {e5, e6}. Then t(e7) = 1
3
√
2

such that we have q5(t(e7)−y5)+q6(t(e7)−y6) = 1 ·(1
3
√
2
−0)+2 ·(1

3
√
2
−0) = 1√

2
= q7√

2
.

We thus set

y5 :=
1

3
√

2
, y6 :=

1

3
√

2
.

As t(e7) = 1
3
√
2
< 0.4 = b, we query f1 = e7, i.e. Q := {e7}. We still cannot identify

a maximum weight edge in C1. Thus, we query the edge e6 too and add it to Q, i.e.

38 3 Randomization

Q := {e6, e7}. The edge e7 as a maximum weight edge in C1 is removed from Γ, i.e
Γ := TL.

i=2: The edge e8 closes the cycle C2 = (4, 5, 6) in Γ := TL∪{e8} and we have X(e8) =
{e1}. RANDOM sets t(e8) := 1

2
√
2

and we have q1(t(e8)−y1) = 2 ·(1
2
√
2
−0) = 1√

2
= q8√

2
.

The potential of y1 is increased:

y1 :=
1

2
√

2
.

As t(e8) = 1
2
√
2
≈ 0.35 < 0.4, we set Q := {e6, e7, e8} and query e8, revealing w̄8 = 12,

which is sufficient to see that e8 has maximum weight among the edges in C2. Set
Γ := TL.

i=3: The edge e9 closes the cycle C3 = (1, 2, 5, 6, 7) in Γ := TL ∪ {e9}. The uncer-
tainty sets of e1 and e5 intersect A9, hence X(e9) := {e1, e5}. Now in this iteration
t(e9) = 47

45
√
2
≈ 0.74 and satisfies q1(t(e9)− y1) + q5(t(e9)− y5) =

2 · (47
45
√
2
− 1

2
√
2
) + 1 · (47

45
√
2
− 1

3
√
2
) = 9

5
√
2

= q9√
2
. Hence, as t(e9) > 0.4, we query

e1 and e5 which is sufficient to identify e9 as a maximum weight edge in C3. Set
Q := {e1, e5, e6, e7, e8}, set Γ := TL and output Q.

This means that for b = 0.4, the cost of this solution for the preprocessed instance is
2+1+2+1+1 = 7, while an optimal solution queries e6, e5 and e1, which yields a query
cost of 5. This yields a competitive ratio of 7

5
= 1.4 for the preprocessed instance and

8
6
≈ 1.33 for the original instance.

3.3.2 An optimal randomized algorithm for cactus graphs
with non-uniform query costs

The algorithm RANDOMC can easily be adapted to work for non-uniform query costs
as well. Let Ci denote the cycle closed by fi during the i′th iteration and let X(fi)
be the neighbor set of fi. We denote by qi the cost of querying all edges in X(fi),

i.e. qi :=
∑

e∈X(fi)
qe. With probability pi =

q2fi
q2fi

+q2i
we start by querying all edges in

X(fi) and with probability 1− pi we start by querying fi. Afterwards we proceed as
usually, i.e. as in the framework of BALANCE. A precise description of RANDOMC

for general query costs is given by Algorithm 6.

Proposition 3.2. The algorithm RANDOMC for MST-U instances in cactus graphs
with general query costs achieves competitive ratio at most 1.5, which is optimal.

Proof. Let Q∗i be an optimal query set for the cycle Ci. We set OPTi := |Q∗i |, Qi :=
Q ∩ Ci and denote by ALGi the sum of query costs of edges in Qi. We aim to show

3.3 Non-uniform query costs 39

input : An instance of MST-U with cactus graph G = (V,E), uncertainty
sets Ae and query costs qe, e ∈ E

output: A feasible query set Q

1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that TL = TU and set Γ := TL;
3 Index the edges f1, ..., fm−n+1 in R := E \ TL arbitrarily ;
4 Initialize Q = ∅;
5 for i← 1 to m− n+ 1 do
6 Add fi to Γ and let Ci be the unique cycle closed;
7 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
8 Let qi :=

∑
e∈X(fi)

qe ;

9 if X(fi) = ∅ then
10 delete fi from Γ
11 else

12 if b ≤
q2fi

q2fi
+q2i

then

13 add all edges in X(fi) to Q and query them.
14 else
15 Add fi to Q and query fi.
16 while no edge in the cycle Ci is always maximal do
17 Query the unqueried edge e ∈ Ci \Q with maximum Ue and add it

to Q.
18 Delete an always maximal edge from Γ

Algorithm 6: The algorithm RANDOMC for MST-U with general query costs
in cactus graphs

that E[ALGi]
OPTi

≤ 1.5 for all i = m − n + 1. Analogously to the proof of Proposition 3.1
we obtain that the competitive ratio is bounded by

piqi + (1− pi)(qi + qfi)

qi
= 1 + (1− pi)

qfi
qi
,

if fi 6∈ Q∗i and by

(1− pi)qfi + pi(qi + qfi)

qfi
= 1 + pi

qi
qfi
,

if fi ∈ Q∗i . For pi =
q2fi

q2fi
+q2i

both these ratios yield the value

1 +
qiqfi

q2fi + q2i
.

40 3 Randomization

Note that

qi · qfi
q2fi + q2i

≤ 1

2
⇐⇒

2qiqfi ≤ q2fi + q2i ⇐⇒
0 ≤ (qfi − qi)2

and is thus true.
As ALGi

OPTi
≤ 1.5 for all i, we obtain that E[ALG]

OPT
≤ 1.5 by the same arguments as used in

the proof of Proposition 3.1.

4 Connection of MST-U to
Minimum Bipartite Vertex Cover

In all examples so far we were able to compute the competitive ratio of a solution
because with the knowledge of the underlying realization it was “easy to see” which
queries an optimal solution would make. This leads to the question whether there is
an algorithmic way of computing the optimal solution (i.e. an optimal query set) given
the knowledge of the real edge weights. This problem is called Minimum Spanning
Tree Verification under Uncertainty and was studied by Erlebach and Hoffmann in
[4]. They established a connection between the verification problem of MST-U and
Minimum Bipartite Vertex Cover which was later modified by [15] to construct an
instance of Online Bipartite Vertex Cover (see Definition 4.2) from an instance of
MST-U.

4.1 Minimum Spanning Tree Verification under

Uncertainty

Definition 4.1. Consider a graph G = (V,E) such that for each e ∈ E we are given
an uncertainty set Ae, where Ae is an open interval or trivial, a query cost qe, as well
as the edge weight we ∈ Ae. The Minimum Spanning Tree Verification Problem under
Uncertainty (MST-U-VER) consists in finding a minimum cost query set Q ⊂ E such
that if updating the edges in Q verifies the edge weights we, e ∈ Q, then the edge set
of an MST can be calculated.

Erlebach and Hoffmann [4] present an algorithm based on U-RED which computes an
optimal query set in polynomial time and makes use of a connection between MST-U
and Bipartite Vertex Cover. The following approach is similar to the one in [4] but we
adapted it to the framework of BALANCE instead of U-RED.

The algorithm VERIFICATION works in three phases. In Phase 1 it identifies a set
A of edges that have to be in any feasible query set, as well as a set

P := {(d1, B1), ..., (dk, Bk)} ⊂ R× P(TL),

where k ∈ N, R := E \ TL and P fulfills the following two properties:

41

42 4 Connection of MST-U to Minimum Bipartite Vertex Cover

1. The set Q′ = {A ∪ {di|i ∈ I} ∪
⋃
j∈J Bj| I, J form a partition of {1, ..., k}} is a

set of feasible query sets,

2. if Q is a feasible query set, it contains an element of Q′ as a subset.

Phase 2 is a sorting phase to “tidy up” the set P constructed during Phase 1. During
Phase 3, VERIFICATION identifies an element of Q′ that minimizes the query cost
by establishing a connection to the (weighted) Bipartite Vertex Cover Problem. In
the following we describe the three phases in more detail. A formal description of
VERIFICATION can be found in Algorithm 7.

Phase 1 : Let fi ∈ R be the edge added to Ti−1 during the execution of BALANCE
and let Ci be the unique cycle closed. Then either the edge fi is always maximal or
by Lemma 2.5 and Remark 2.3 one of five cases might occur:

1. Querying fi is sufficient to find a maximum weight edge in Ci while querying
X(fi) is not.
In that case fi which has maximum weight in Ci has to be in any feasible query
set, thus VERIFICATION adds fi to A and deletes it from the current tree.

2. Querying X(fi) is sufficient to find a maximum weight edge in Ci while querying
only fi is not. However, ∃S (X(fi) such that querying {fi} ∪ S is sufficient
too.
In this case it is non-trivial to decide whether {fi}∪S or X(fi) should be queried
because it not only depends on the query cost but also on future cycles which
might contain edges in X(fi). However, all edges in S lie in every feasible query
set with certainty. So VERIFICATION adds S to A and the pair (fi, X(fi)−S)
to P and removes fi from the current tree.

3. Querying X(fi) is sufficient to find a maximum weight edge in Ci while querying
only fi is not and @S (X(fi) such that querying {fi} ∪ S is sufficient too.
Hence X(fi) is contained in any feasible query set, thus VERIFICATION adds
all edges in X(fi) to A and deletes fi from the current tree.

4. Querying either fi only or all of X(fi) is sufficient to identify a maximum weight
edge in Ci. Hence it is again unsure whether OPT queries fi or X(fi). Thus
VERIFICATION adds the pair (fi, X(fi)) to P and deletes fi from Ti−1 + fi.

5. Neither querying fi nor querying X(fi) is sufficient to determine which edge in
Ci has maximum weight. This means that {fi} ∪ S must lie in every feasible
query set, where S ⊂ X(fi) contains edges of Ci in order of decreasing upper
limit up to the point where a maximum weight edge e can be identified. Thus
we add all edges in S ∪ {fi} to A and delete the edge e from the current tree.

4.1 Minimum Spanning Tree Verification under Uncertainty 43

Phase 2: In Phase 2 we take care of the possibility that for a pair (d,B) in P some
edges in B also lie in A. After the execution of VERIFICATION Phase 1, the set
P is updated in the following way: For every (d,B) ∈ P , all elements of B ∩ A are
removed from B. In the case where B becomes empty, the pair (d,B) is removed from
P entirely. Properties 1 and 2 remain true.

Phase 3: During this phase, the optimal solution is computed. Consider a weighted
bipartite graph G′ = (V1 ∪ V2, E ′), where V1 = {d1, ..., dk}, V2 =

⋃
i=1,...,k Bi and dib

is an edge in E ′ if b ∈ Bi. The weight of a vertex e in G′ is given by the query cost
qe of the corresponding edge e ∈ E. We compute a vertex cover L in G′ of minimum
weight. The edges corresponding to vertices in L together with the necessary edges in
A yield our query set Q.

Theorem 4.1. The algorithm VERIFICATION solves MST-U-VER with general
query costs correctly and runs in polynomial time.

Proof. Note that with the knowledge of the edge weights, VERIFICATION is able to
identify which of the five cases described above occurs by determining the maximum
weight edge in Ci and comparing we with Lfi and wfi with Ue for e ∈ X(fi).
First we argue that the required Properties 1 and 2 of P are indeed fulfilled. Property
1 holds due to the following observations: If we add a pair (d,B) to P in Case 4, it is
sufficient to query either d or B to determine the maximum weight edge in the cycle
of the current iteration of BALANCE. If we add (d,B) to P in Case 2, a maximum
weight edge in the current cycle of BALANCE can be determined by querying either
d or B ∪ S, where S ⊂ A.
Property 2 of P is fulfilled by Lemma 2.5 and Remark 2.3. Note that Lemma 2.5 and
Remark 2.3 also guarantee that edges in A lie in any feasible query set.

Now we argue that the output Q is indeed an optimal query set.
By Property 2 of P , it is sufficient to find a cheapest query set within Q′. Elements
of A are in every feasible solution. Thus, we need to find an element of

P ′ = {{di|i ∈ I} ∪
⋃
j∈J

Bj| I, J form a partition of {1, ..., k}}

with smallest query cost, as each element of P ′ is disjoint to A.

44 4 Connection of MST-U to Minimum Bipartite Vertex Cover

input : A graph G = (V,E) and for each e ∈ E an uncertainty set Ae, the
query cost qe and the edge weight we ∈ Ae

output: An optimal query set Q

1 Preprocess the instance such that TL = TU and set Γ := TL;
2 Index the edges in R := E \ TL such that f1 ≤ ... ≤ fm−n+1;
3 Initialize A = ∅, initialize P = ∅ ;
4 // Phase 1

5 for i← 1 to m− n+ 1 do
6 Add fi to Γ and let Ci be the unique cycle closed;
7 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
8 if X(fi) is empty then
9 Remove fi from Γ.

10 else
11 if wfi ≥ Ue for all e ∈ X(fi) and there exists an edge e ∈ X(fi) such

that we > Lfi then
12 A := A ∪ {fi} and Γ := Γ− fi.
13 if we ≤ Lfi for all e ∈ X(fi) and there exists an edge e ∈ X(fi) such

that Ue > wfi then
14 Let S = {e ∈ X(fi)|Ue > wfi};
15 if S 6= X(fi) then
16 A := A ∪ S, P := P ∪ {(fi, X(fi) \ S)} and Γ := Γ− fi
17 else
18 A := A ∪X(fi) and Γ := Γ− fi
19 if wfi ≥ Ue and we ≤ Lfi for all e ∈ X(fi) then
20 P := P ∪ {(fi, X(fi))} and Γ := Γ− fi
21 else
22 Let S ⊂ X(fi) contain edges of Ci in order of decreasing upper

limit up to the point where querying {fi} ∪ S allows to identify a
maximum weight edge e in Ci;

23 Set A := A ∪ {fi} ∪ S and Γ := Γ− e.
24 // Phase 2

25 for (d,B) ∈ P do
26 B := B − (B ∩ A);
27 if B = ∅ then
28 P := P − (d,B)

29 // Phase 3

30 Construct the graph G′ from P , let L be a minimum vertex cover in G′;
31 Output Q := A ∪ L

Algorithm 7: The algorithm VERIFICATION for MST-U-VER with general
query costs

4.1 Minimum Spanning Tree Verification under Uncertainty 45

(For a pair (d,B) ∈ P we have that B is disjoint to A due to the execution of Phase
2 and d 6∈ A because an edge fi in R will never become part of a neighbor set, nor
reappear as fj ∈ R during a later iteration j.)
Our problem of finding an element of P ′ with minimum overall query cost translates
to a Minimum Vertex Cover Problem in G′ in the following sense: An element of P ′

contains either di or all vertices inside Bi for each i ∈ {1, ..., k} and is thus a vertex
cover of G′. Now let L be a vertex cover of G′. If there is an i such that di 6∈ L, then it
must contain all neighbors of di in G′, which means that Bi ⊂ L. Hence every vertex
cover of G′ contains an element of P ′ as a subset. Thus a minimum vertex cover of G′

corresponds to an element of P ′ with minimum query cost.

Finally note that VERIFICATION runs in polynomial time:
Phase 1: The first phase needs at most O(m2 log(n)) time with the same arguments
as used for BALANCE in Remark 2.4 (bottleneck preprocessing!)
Phase 2: P has O(m) elements and each Bi has O(n) elements, hence “tidying up” P
can be done in at most O(mn) time.
Phase 3: The instance of Minimum Bipartite Vertex Cover has O(m) vertices and
O(mn) edges. Hence it can be solved in O(

√
m5n) time by reducing to the maximum

flow problem and using the Push-Relabel algorithm.

We demonstrate the algorithm VERIFICATION by the following two examples:

Example 4.1. First we consider our usual instance of Example 2.3 (alongside the
notation of Example 2.3.) Assume all query costs equal 1. We initialize A := ∅ and
P := ∅.

Phase 1:

i=1: For f1 = e7 and X(e7) = {e5, e6}, we have w̄e ≤ Le7 for all e ∈ X(e7) and
S := {e ∈ X(e7)|Ue > w̄7} = {e6} 6= X(e7). Thus we set A := A ∪ S = {e6} and
P := {(e7, {e5})}.

i=2: Similarly, for f2 = e8 and X(e8) = {e1, e6}, we have w̄e ≤ Le8 for all e ∈ X(e8)
and S := {e ∈ X(e8)|Ue > w̄8} = {e6} 6= X(e8). Thus A remains unchanged and
P := P ∪ {(e8, {e1})} = {(e7, {e5}), (e8, {e1})}.

i=3: Finally for f3 = e9 and X(e9) = {e1, e5}, we have w̄e ≤ Le9 for all e ∈ X(e9)
but S := {e ∈ X(e9)|Ue > w̄9} = X(e9). Thus A := A ∪ X(e9) = {e1, e5, e6} and P
remains unchanged.

Phase 2:
As both edges, e1 and e5 lie in A, (e7, {e5}), (e8, {e1}) are both removed from P .

46 4 Connection of MST-U to Minimum Bipartite Vertex Cover

Phase 3:
As P is empty, we obtain that A is an optimal query set without solving any Bipartite
Vertex Cover instance.

A little more meaningful is the following example:

Example 4.2. Consider an instance of MST-U as depicted in Figure 4.1 below. Note
that the instance is preprocessed in the sense that TL = TU = E\{{1, 2}, {2, 3}, {5, 6}}.
W.l.o.g. we set f1 := {2, 3}, f2 := {1, 2} and f3 := {5, 6}. We initialize A := ∅ and
P := ∅.

1 2

3

4

5

6

7

(6,10)

7

(6,10)7

(1,7)

5

(2,8)

5

(6,10)7

(2,8)

5
(1,7) 5

(1,7) 5

(2,8)

5

Figure 4.1: An instance of MST-U with non-uniform query costs, where red numbers
denote the realization of edge weights. The query costs are one for all
edges, except q{2,3} = q{1,7} = q{4,7} = 0.5. These edges are drawn in green.

Phase 1:

i=1: The edge f1 closes the cycle C1 := (2, 3, 4, 7) such that
X(f1) = {{2, 7}, {3, 4}, {4, 7}}. Now either querying all of X(f1) or querying
{f1, {2, 7}} is sufficient to see that f1 has maximum weight among edges in C1 (Case
2 in the explanation of the algorithm.) We thus have S = {{2, 7}} 6= X(f1). We set
A := A ∪ S = {{2, 7}} and P := {(f1, {{3, 4}, {4, 7}})}.

i=2: Similarly, for f2 and X(f2) = {{2, 7}, {1, 7}}, we could either query all edges
in X(f2) or query f2 and {2,7}. Hence S := {{2, 7}}, A remains unchanged and
P := {(f1, {{3, 4}, {4, 7}}), (f2, {{1, 7}})}.

i=3: Finally for f3 and X(f3) = {{1, 7}, {4, 7}, {4, 5}, {1, 6}}, we can query the en-
tire neighbor set or f3 together with {1, 6} and {4, 5}. The latter two must hence

4.2 Online Bipartite Vertex Cover 47

lie in any feasible query set. Thus, we set A := {{2, 7}, {1, 6}, {4, 5}} and P :=
{(f1, {{3, 4}, {4, 7}}), (f2, {{1, 7}}), (f3, {{1, 7}, {4, 7}}}.

Phase 2:
As A does not intersect any of the Bi, i = 1, 2, 3, the set P remains unaltered.

Phase 3:
Now we obtain an instance of Minimum Weight Bipartite Vertex Cover as displayed
in Figure 4.2. It is easy to see that {f1, {4, 7}, {1, 7}} yields a minimum weight vertex
cover. Hence {{2, 7}, {1, 6}, {4, 5}, {2, 3}, {4, 7}, {1, 7}} is an optimal query set with
weight 4.5.

f1

f2

f3

{3, 4}

{4, 7}

{1, 7}

Figure 4.2: VERIFICATION needs to solve an instance of Minimum Weighted Bipar-
tite Vertex Cover. Green vertices correspond to edges with query cost
0.5.

4.2 Online Bipartite Vertex Cover

Megow et al. [15] use the connection between Minimum Bipartite Vertex Cover and
MST-U-VER to build an instance of the Online Bipartite Vertex Cover.

Definition 4.2. An instance of Online Bipartite Vertex Cover consists of a bipartite
graph G = (A ∪ B,E) with B = {b1, ..., bk} and vertex weights wv ≥ 0, v ∈ A ∪ B.
We aim to find a sequence (Ci)

k
i=1 such that Ci ⊂ V for i = 1, ..., k and Ci−1 ⊂ Ci for

i = 2, ..., k, where Ci is a vertex cover of the graph G[A∪ {b1, ..., bi}] which is induced
by the vertices in A and the first i vertices in B.
However, only the vertices of A,the so-called offline vertices, are given a priori, while
the vertices in B are initially unknown (and thus also their ordering b1, ..., bk). They
appear one at a time alongside their incident edges. In any iteration an algorithm has

48 4 Connection of MST-U to Minimum Bipartite Vertex Cover

to maintain a valid vertex cover of the current graph, while keeping the overall weight
of the cover as small as possible. Once a vertex is added to the vertex cover it cannot
be removed during a later iteration. (Otherwise we could simply compute the offline
solution in the end.)

Now consider the following graph G′ = (A∪B,E ′) constructed throughout the execu-
tion of RANDOM: The edges of the graph G in our instance of MST-U give rise to the
vertices of the instance of Online Bipartite Vertex Cover. Let A := TL be the offline
vertices. The edges in R := E \ TL give rise to the set B of online vertices and appear
in the order in which they arise during the execution of RANDOM. Once the edge
fi ∈ R appears, its vertex in G′ is connected to all vertices corresponding to edges in
X(fi) (defined as in Definition 2.5) via edges in E ′. The weights of the vertices in G′

are given by the query costs of the corresponding edges. This is indeed an instance of
Online Bipartite Vertex Cover, as it depends on the cycles which are closed during the
execution of RANDOM and thus on the realization of edge weights. Hence G′ cannot
be constructed offline.

Remark 4.1. In fact, [15] make use of the online vertex cover graphG′ in their algorithm
RANDOM: The water-filling scheme used to compute the increase of edge potentials
during the execution of RANDOM is an adaption of an algorithm by Wang and Wong
for Online Bipartite Vertex Cover in [16].

5 Alternative versions of MST
under uncertainty

5.1 Minimum Spanning Tree with Vertex

Uncertainty

The model of vertex uncertainty (V-MST-U) is introduced in [7]. In this setting the
vertices correspond to points in the Euclidean plane and the weight of an edge is the
distance between its end vertices. The locations of the points are initially uncertain
but an algorithm can update a vertex v at query cost qv to reveal its exact location.
As usual, V-MST-U can be defined for general query costs qv > 0. In this master’s
thesis however (as well as in the existing literature so far), we will only see results for
the case where query costs are uniform.

5.1.1 Deterministic algorithm

Erlebach et al. [7] argue that U-RED can be adapted to the setting of vertex uncer-
tainty.

Definition 5.1. Given an instance I of V-MST-U with graph G = (V,E) and uncer-
tainty sets Av, v ∈ V the associated edge instance Ĩ is an instance of MST-U with
graph G and uncertainty sets A{u,v} = {d(u′, v′)|u′ ∈ Au, v′ ∈ Av}.

Remark 5.1. Observe the following two relations between V-MST-U and MST-U. Let
I be an instance of V-MST-U and Ĩ the associated edge instance.

• If e = uv is an edge of G we will not gain any information about e’s weight if
we query neither u nor v. Hence, if W is a witness set of the associated edge
instance then W ′ := {u| u is an end-vertex of an edge in W} is a witness set of
I.

• If all uncertainty sets of I are either trivial or open then every uncertainty set
of Ĩ is also either trivial or open. Thus, Theorem 2.1 yields that whenever every
witness set in a witness algorithm A for MST-U has size at most k, we can turn
it into a 2k-competitive algorithm A′ for V-MST-U by simulating an edge query
through querying its two end-vertices.

49

50 5 Alternative versions of MST under uncertainty

Figure 5.1: Lower bound for V-MST-U (adapted from [7], page 287)

Hence U-RED yields a 4-competitive algorithm for V-MST-U with uniform query
costs, under the restriction to trivial or open uncertainty sets. If we update a vertex v
which is incident to multiple edges, we obtain information about every incident edge.
This leads to the question if we might achieve a better competitive ratio if we choose
an approach that is not related to the associated edge instance. The answer to this
question is in fact no, as shown by [7]:

Theorem 5.1. ([7], page 287) No deterministic algorithm for V-MST-U under the
restriction to trivial or open uncertainty sets can achieve a competitive ratio less than
4. This remains true even under the assumption of uniform query costs.

Proof. Consider the graph displayed in Figure 5.1, where all black dots represent
vertices with trivial uncertainty sets and all query costs equal 1. The vertices A,
B, C and D have non-trivial, open uncertainty sets of length 2 and small positive
width. (More precisely, we consider open sets Av in R2, such that the largest distance
between points in the closure of Av equals 2 and is attained only for the two points in
the intersection between the boundary of Av and the upper horizontal line, if v = A
or v = B, or the lower horizontal line, if v = C or v = D, of the graph embedding
depicted in Figure 5.1.) The length of each edge between trivial vertices is 1 and the
distance between each non-trivial uncertainty set and its closest incident vertex is 1
as well. Thus all but two edges lie in any MST with certainty and we only need to
determine whether {A,B} or {C,D} should be included in an MST.
We distinguish four cases, depending on which of the non-trivial uncertainty sets is
not among the first three to be queried by an algorithm. For each of these cases a
malicious adversary confronts the algorithm with a different realization, which forces
the algorithm to query the fourth vertex too:

• If A (D) is among the first three vertices to be queried, it is located at distance
at most ε from the far right end of AA (AD) and

• if B (C) is among the first three vertices to be queried, it is located at distance
at most ε from the far left end of AB (AC),

5.1 Minimum Spanning Tree with Vertex Uncertainty 51

where ε > 0 is small.

Case 1: The algorithm queries B, C and D first. Then d(A,B) ∈ (7 + ε, 9 + ε) and
d(C,D) = 8− 2ε ∈ (7 + ε, 9 + ε), where d denotes the Euclidean distance. Hence the
algorithm needs to query A in order to know if {A,B} or {C,D} has smaller weight.
Now assume that the location of A turns out to be located at distance at most ε from
the far left end of AA. Then by updating only A, the optimal solution finds out that
d(A,B) ∈ (9 − ε, 11 − ε) and d(C,D) ∈ (4, 8). Hence an optimal solution only needs
a single query to exclude the edge {A,B}.

Case 2: The case where the algorithm queries A, C and D first works analogously to
Case 1.

Case 3: The algorithm queries A, B and D first. Then d(C,D) ∈ (6 − ε, 8 − ε) and
d(A,B) = 7 + 2ε ∈ (6− ε, 8− ε). Hence, C needs to be queried too. If C is located at
distance at most ε from the far right end of AC , then by updating only C instead of A,
B and D, the optimal solution sees that d(A,B) ∈ (7, 11) while d(C,D) ∈ (4−ε, 6−ε),
which means that {C,D} is inside the MST.

Case 4: The case where the algorithm queries A, B and C first works again analogously
to Case 3.

A surprising difference between the edge and the vertex setting was shown by [4] with
respect to the verification problem. The verification problem of V-MST-U is defined
analogously to Definition 4.1. Remember that for MST-U the verification problem
can be solved in polynomial time (Theorem 4.1). Erlebach and Hoffmann [4] however
show, that this is not the case for vertex uncertainty:

Theorem 5.2. ([4], page 175) The verification problem of V-MST-U is NP-hard.

5.1.2 Randomization

Lower Bound

We will first prove a lower bound for the performance of any randomized algorithm
for V-MST-U.

Proposition 5.1. No randomized algorithm for V-MST-U under the restriction to
trivial or open uncertainty sets can achieve a competitive ratio less than 2.5. This
remains true even if query costs are restricted to be uniform.

Proof. Consider again the instance of V-MST-U as in the proof of Theorem 5.1. We
denote the instances constructed by the adversary in the proof of Theorem 5.1 with
RA, RB, RC and RD. More precisely for sufficiently small ε > 0,

52 5 Alternative versions of MST under uncertainty

• let RA be a realization such that A, B and C are located at distance at most ε
from the far left end of their uncertainty sets AA, AB, AC and D is located at
distance at most ε from the far right end of AD.

• Let RB be such that C is located at distance at most ε from the far left end of
its uncertainty set AC and A, B, D are located at distance at most ε from the
far right end of AA, AB resp. AD.

• Let RC be such that B is located at distance at most ε from the far left end of
its uncertainty set AB and A, C, D are located at distance at most ε from the
far right end of AA, AC resp. AD.

• Let RD be such that B, C and D are located at distance at most ε from the far
left end of their uncertainty sets AB, AC , AD and A is located at distance at
most ε from the far right end of AA.

In the proof of Theorem 5.1 we have seen that if G has realization Av, v ∈ {A,B,C,D},
it is sufficient to query v to identify an MST, while querying all edges in V \ {v} is
not enough to exclude a maximum weight edge.
Consider the randomized family of instances (R, p), where R = {RA, RB, RC , RD} and
p(Rv) = P[R = Rv] = 0.25 for v ∈ {A,B,C,D}. Then no deterministic algorithm

ALG achieves a better expected competitive ratio ER∼pR(ALG(G,R)
OPT (G,R)

), than the algo-

rithm ALG1 which queries A, B, C, D (or less if an MST can already be identified)
in this order independently from the queries’ results. This is due to the fact that
querying v only reveals whether or not we are facing realization Rv but if not, it is
indistinguishable which of the remaining realizations it might be.
Then by a variant of Yao’s Principle (see Borodin and El-Yaniv [1], Theorem 8.5), no
randomized algorithm has a better performance than

min
ALG∈A

ER∼pR(
ALG(G,R)

OPT (G,R)
) = ER∼pR(

ALG1(G,R)

OPT (G,R)
) =

0.25(ALG1(G,RA) + ALG1(G,RB) + ALG1(G,RC) + ALG1(G,RD)) =

0.25(1 + 2 + 3 + 4) = 2.5,

where A denotes the class of all deterministic algorithms.

Preprocessing

A first step towards a randomized algorithm for V-MST-U is to adapt the preprocessing
of RANDOM to the vertex setting. Let I be an instance of V-MST-U. If we compute
TL and TU for the associated edge instance Ĩ, then by Remark 2.2, any edge in TL \TU
lies in any feasible edge query set for Ĩ. Hence for each edge e = {x, y} ∈ TL \ TU , the

5.1 Minimum Spanning Tree with Vertex Uncertainty 53

set {x, y} is a witness set of I by the first property in Remark 5.1. However, when
simulating an edge query in the preprocessing of Ĩ by querying its end vertices, it is
important to update one edge at the time before rebuilding TL and TU and updating
the next edge in the new TL \ TU .

Remark 5.2. Each time that we simulate an edge query in the preprocessing for V-
MST-U, we update a witness set of size 2. Hence half of the vertices queried during
the preprocessing for V-MST-U lie in any feasible solution.

Note that this preprocessing is not as “stable” as in the edge version: Whenever we
update an edge by querying its end vertices we not only get the edge’s weight but also
alter the uncertainty sets of adjacent edges. This means that an edge which has largest
upper and lower limit in a cycle in Ĩ is not guaranteed to still have this property after
an edge query was made. Thus it is not straightforward to carry over the algorithm
RANDOM to the setting of V-MST-U by simulating an edge query by updating its
end vertices. Note for instance, that if a maximum weight edge in a cycle Ci cannot be
identified after having queried the end vertices of fi or of all of the neighbors in X(fi),
it is not necessarily true that an edge which has largest upper limit in the current cycle
of the associated edge instance also forms a witness set in I. Moreover, for i > 1 it is
not even sure that fi has largest upper and lower limit in Ci at the moment the cycle
is closed. We can handle the first of these two issues. In order to avoid the second one
we consider again a special case similar to Section 3.2.2.

Special Case: Disjoint Cycles

In this section we consider only instances of V-MST-U where no two cycles share a
vertex with non-trivial uncertainty set. For instances of this type it is possible to
obtain a randomized algorithm whose performance is better than in the deterministic
case.

Consider an instance I consisting of a cycle C which has been preprocessed such that
there is an edge in the associated edge instance Ĩ which has largest upper and lower
limit and which we denote by f . We will first establish an analogue of the framework
of RANDOM where edges are queried in order of decreasing upper limit, once either
f or all of X(f) has been queried. Assume we have queried f (its two end vertices)
and still no edge is known to have maximum weight. Let g be an edge with maximum
upper limit in C. We distinguish two cases:

• Ag contains the weight of f . Then an optimal vertex query set must contain
at least one end vertex of g by Remark 2.3 and Remark 5.1. Note that this is
always the case if both end vertices of g have not yet been queried.

54 5 Alternative versions of MST under uncertainty

• Lg ≥ wf . Let h be an edge with largest upper limit in C \ {g}. Then by Lemma
2.2 and Remark 5.1 the end vertices of g and h give a witness set of I. Note
that the size of this witness set is at most 3, because Lg ≥ wf implies that one
end vertex of g has already been queried.

Remark 5.3. Thus, once we have queried f and still no edge is known to have maximum
weight, we can solve the instance by additionally querying at most three times the
number of vertices an optimal solution queries. If f has maximum weight then we will
always end up in the first case and thus solve the instance by additionally querying at
most two times the number of vertices an optimal solution queries.

We will now briefly describe how the algorithm V-RANDOMC works. The algorithm
first preprocesses the instance such that TL = TU in the associated edge instance. This
is done by updating witness sets of size 2 (remember Remark 5.2). Like RANDOM,
the algorithm continues by adding edges fi 6∈ TL to the current tree one at a time
and each time removes a longest edge in the cycle Ci closed by fi. Now remember
Remark 3.1 for the edge uncertainty problem. A similar observation is used for the
vertex uncertainty version too: It is beneficial to start by querying end vertices of fi
unless the optimal solution is small and does not contain end vertices of fi. Thus
V-RANDOMC distinguishes three scenarios.

Scenario 1: The edges in the neighbor set have at least four different end vertices.
This means that we have at least two edges in the neighbor set and if the neighbor
set consists of precisely two edges, these two edges do not intersect. In this scenario
V-RANDOMC performs deterministically. It starts by querying the end vertices of fi.
In case we still do not know which edge in the current cycle is the longest, we update
either an edge with largest upper limit or two edges g and h such that g has largest
upper limit in Ci and h has largest upper limit in Ci \{g} until we find a longest edge.
During this step it is guaranteed that we update witness sets of size at most 3 (see
Remark 5.3). A detailed description of how the algorithm performs in Scenario 1 is
displayed in the subroutine V-DETC in Algorithm 9.

Scenario 2: The neighbor set of fi contains precisely one edge e. In this scenario, we
query the at most four different end vertices of e and fi in random order up to the
point where a longest edge in Ci can be identified. To this end we draw a permutation
σ uniformly at random from S4, if e and fi are not adjacent, or from S3 if e and fi are
adjacent and permute the vertices accordingly.

Scenario 3: The neighbor set of fi contains precisely two edges which intersect in a
common vertex w. Now the algorithm wants to make sure that priority is given to
those vertices which possibly form an optimal query set Q∗i of size one in Ci. Re-
member that a feasible solution which queries neither end vertex of fi must query an
end vertex of each of the neighbor edges (by Lemma 2.5 and Remark 5.1). Hence the

5.1 Minimum Spanning Tree with Vertex Uncertainty 55

only candidate for a size one query set apart from the end vertices of fi is w. Thus
V-RANDOMC queries w and the two end vertices of fi in random order until a longest
edge in Ci can be identified or all three vertices have been queried. If still know edge
in Ci is known to have maximum length, we query the two remaining end vertices of
edges in X(fi).

A detailed description of V-RANDOMC is displayed in Algorithm 8.

In the following we will introduce notation used in the description of V-RANDOMC

and in the proof of the algorithm’s performance.
Let Nfi := Ci(X(fi)) denote the subgraph of Ci which is induced by X(fi). We
denote by a the number of vertices in Nfi , i.e. a := | ∪{x,y}∈X(f) {x, y}| and define

b :=
∑

K

⌊
|K|
2

⌋
, where K sums over the connected components of Nfi . An example is

depicted in Figure 5.2.

Remark 5.4. Note that b ≥ a
3

and that any solution which queries no end vertex of fi
must query at least b vertices.

1

2

3 4

5

6

7

89

10

fi

Figure 5.2: Ci with edge fi and the edges in X(fi) (bold). Here a = 8 and b = 3. An
optimal solution which avoids fi must query at least three vertices to cover
all edges in X(fi).

Remark 5.5. Scenario 1 is described by a ≥ 4, Scenario 2 is described by a = 2 and
Scenario 3 is described by a = 3. Note that a = 1 is impossible and a = 0 means that
X(fi) is empty and thus fi is always maximal in Ci.

Moreover we will use the following notation for the technical implementation of the
algorithm. Let S4 =: {σ(4)

1 , σ
(4)
2 , ..., σ

(4)
24 } be the set of permutations

σ
(4)
j : {1, 2, 3, 4} → {1, 2, 3, 4}. We assume that the indices j are chosen such that the

permutations are ordered lexicographically, e.g. σ
(4)
1 = (1, 2, 3, 4), σ

(4)
2 = (1, 2, 4, 3), ...

56 5 Alternative versions of MST under uncertainty

Let σ
(3)
j with j = 1, ..., 6 be defined analogously.

For a vertex label l : V → {1, ..., n} and a subset A ⊂ V we denote by
r : A → {1, ..., |A|} the order preserving bijection, i.e. r(u) < r(v) ⇐⇒ l(u) < l(v)
for all u, v ∈ A.

Now we will prove that V-RANDOMC achieves competitive ratio 3.

Proposition 5.2. For instances of V-MST-U with uniform query costs where no two
cycles share a vertex with non-trivial uncertainty set, the algorithm V-RANDOMC

achieves competitive ratio at most 3.

Proof. Let Ci be the cycle closed in iteration i. For an instance which consists only of
Ci, let Q∗i denote an optimal vertex query set and OPTi := |Q∗i |. As cycles in G do not
share non-trivial vertices, the disjoint union Q∗ of the Q∗i is an optimal solution for
G and thus OPT =

∑m−n+1
i=1 OPTi. Moreover, this structure guarantees that X(fi)

is independent of both the choice of queries in previous iterations and the outcome
of those queries. We aim to show that we expect at most 3 ·OPTi queries in iteration i.

First consider Scenario 1, where a ≥ 4. We distinguish three cases:

Case 1: |Q∗i | ≥ 2 and Q∗i contains at least one end vertex of fi,

Case 2: Q∗i = {x}, where x is an end vertex of fi,

Case 2: Q∗i ∩ fi = ∅.

For now we assume that with probability pi we start by querying the end vertices of fi
and with probability 1−pi we start by querying all vertices in Nfi . We will argue that
pi = 1 is the optimal choice, i.e. that the maximum of the three expected competitive
ratios in Case 1, Case 2 and Case 3 is minimized for pi = 1.

Case 1: With probability pi we start by querying fi. The edge fi shares at least
one vertex with Q∗i and after having queried fi, we go on by querying witness sets of
size at most three. Hence the competitive ratio is at most 3. If we start by querying
vertices in Nfi , we might end up querying all end vertices of edges in X(fi) and both
end vertices of fi. As |Q∗i | ≥ 2 the competitive ratio is bounded by a+2

2
. Thus the

expected competitive ratio ECR1(pi) in Case 1 is bounded by

ECR1(pi) ≤ 3pi +
a+ 2

2
(1− pi) = 2pi −

a

2
pi +

a

2
+ 1. (5.1)

Case 2: With probability pi we start by querying fi which yields competitive ratio 2.
With probability 1− pi we start by querying vertices in Nfi and might need to query

5.1 Minimum Spanning Tree with Vertex Uncertainty 57

input : An instance of V-MST-U with uniform query costs and graph
G = (V,E) such that no two cycles share a vertex with non-trivial
uncertainty set

output: A feasible query set Q

1 Draw p uniformly at random from [0, 1];
2 Let l : V → {1, ..., n} be an arbitrary but fixed labeling of the vertex set;

3 Let S3 =: {σ(3)
1 , σ

(3)
2 , ..., σ

(3)
6 } and S4 =: {σ(4)

1 , σ
(4)
2 , ..., σ

(4)
24 };

4 Preprocess the instance such that TL = TU and set Γ := TL;
5 Index the edges f1, ..., fm−n+1 in R := E \ TL arbitrarily ;
6 Initialize Q = ∅;
7 for i← 1 to m− n+ 1 do
8 Let x1 and x2 denote the end vertices of fi;
9 Add fi to Γ and let Ci be the unique cycle closed;

10 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi ;
11 Compute a := | ∪{x,y}∈X(fi) {x, y}|;
12 if a ≤ 1 then
13 Delete fi from Γ
14 else if a = 2 then
15 // Query all end vertices in X(fi) ∪ {fi} in random order

16 Let w1, w2 denote the end vertices of the edge in X(fi);
17 Let k := |{x1, x2, w1, w2}| ∈ {3, 4};
18 Let r : {x1, x2, w1, w2} → {1, ..., k} be the order preserving bijection

w.r.t l;

19 Let j ∈ {1, ..., k!} be such that j−1
k!

< p ≤ j
k!

if p > 0 else j := 1;

20 Query the vertices in {x1, x2, w1, w2} in order of increasing σ
(k)
j ◦ r

until a maximum weight edge in Ci can be identified.
21 else if a = 3 then
22 // Query all candidates for a size 1 query set first and

in random order

23 Let w denote the vertex incident to two neighbors;
24 Let r : {x1, x2, w} → {1, 2, 3} be the order preserving bijection w.r.t l;

25 Let j ∈ {1, ..., 6} be such that j−1
6
< p ≤ j

6
if p > 0 else j := 1;

26 Query the vertices in {x1, x2, w} in order of increasing σ
(3)
j ◦ r until a

maximum weight edge in Ci can be identified or all three vertices
were queried;

27 if No edge in Ci is always maximal then
28 Query the remaining end vertices of edges in X(fi).

29 else
30 Use Algorithm V-DETC to find a maximum weight edge in Ci
31 Delete an always maximal edge in Ci from Γ

Algorithm 8: The algorithm V-RANDOMC for V-MST-U with uniform
query costs in graphs where no two cycles intersect in non-trivial vertices

58 5 Alternative versions of MST under uncertainty

input : A cycle Ci of the algorithm V-RANDOMC with its edge fi,
neighbor set X(fi), as well as the current query set Q and the
uncertainty sets Av for v ∈ V (Ci)

output: A query set Q

1 Add both end vertices of fi to Q and query them;
2 while no edge in the cycle Ci is always maximal do
3 Let g be an edge with largest upper limit in X(fi);
4 if wfi ∈ Ag then
5 Query the end vertices of g and add them to Q.
6 else
7 Let h be an edge with largest upper limit in X(fi) \ {g};
8 Query the end vertices of g and h and add them to Q.

Algorithm 9: The subroutine V-DETC

all end vertices of edges in X(fi) and both end vertices of fi. Thus the competitive
ratio is bounded by a+ 2. Hence the expected competitive ratio ECR2(pi) in Case 2
is at most

ECR2(pi) ≤ 2pi + (a+ 2)(1− pi) = −api + a+ 2. (5.2)

Case 3: With probability pi we start by querying fi and go on by querying witness
sets of size at most two (see Remark 5.3). Hence with probability pi the competitive
ratio is at most

2 + 2 ·OPTi
OPTi

= 2 +
2

OPTi
≤ 2 +

2

b
,

by Remark 5.4. With probability 1 − pi we start by querying vertices in Nfi which
yields a competitive ratio of at most a

b
≤ 3, also by Remark 5.4. Thus the expected

competitive ratio ECR3(pi) in Case 3 is bounded by

ECR3(pi) ≤ (2 +
2

b
)pi + 3(1− pi) =

2

b
pi − pi + 3. (5.3)

Now we show that max{ECR1(pi), ECR2(pi), ECR3(pi)} is minimized for pi = 1. As
a ≥ 4 implies that b ≥ 2, we have that 2 + 2

b
≤ 3 and a+2

2
≥ 3. Hence

(2 +
2

b
)pi + 3(1− pi) ≤ 3pi +

a+ 2

2
(1− pi),

which means that the value in Equation 5.3 is at most the value in Equation 5.1. Thus
it is enough to look at the values in 5.1 and 5.2. Note that a ≥ 4 implies that 2− a

2
≤ 0.

This means that the value in Equation 5.1 is minimized for pi = 1. The same holds
for Equation 5.2 because −a ≤ 0. For pi = 1 the value in Equation 5.1 equals

2− a

2
+
a

2
+ 1 = 3

5.1 Minimum Spanning Tree with Vertex Uncertainty 59

and the value in Equation 5.2 equals

−a+ a+ 2 = 2.

Thus, if a ≥ 4 we obtain a competitive ratio of at most 3 if we deterministically query
fi and afterwards proceed as in our analogue of the framework of RANDOM.

Now we consider Scenario 2, i.e. we assume a = 2. If an optimal query set Q∗i for
Ci has size at least 2 then the competitive ratio is at most a+2

2
= 2, even if we query

all vertices of edges in the neighbor set and both end vertices of fi. If Q∗i = {v} is
a singleton then it is equally likely that v is the first, the second, the third or the
fourth vertex to be queried (if fi and the edge in the neighbor set do not share an
end vertex − otherwise v is queried after one, two or three queries with probability 1

3

each.) Hence the expected competitive ratio is at most 1+2+3+4
4

= 2.5.
Thus, if a = 2 we obtain a competitive ratio of at most 2.5 if we query all of the at
most four vertices of edges in X(fi) ∪ {fi} in an order which we pick uniformly at
random.

Finally we turn to Scenario 3 and assume a = 3. If Q∗i has size at least 2 then the
competitive ratio is again at most a+2

2
= 2.5. If Q∗i = {v} then v could either be an

end vertex of fi or the vertex shared by the two edges in the neighbor set. Thus it is
equally likely that v is queried first, second or third, which means that the competitive
ratio is bounded by 1+2+3

3
= 2. Thus, if a = 3 we achieve a competitive ratio of at most

2.5 if we query the three vertices which are candidates for a size one query set first (in
an order which we pick uniformly at random) and only query the remaining vertices
of edges in X(fi)∪{fi} if a maximum weight edge in Ci cannot yet be identified. The
cases a = 3 and a = 2 are illustrated in Figure 5.3.

Let c denote the number of queries made in the preprocessing.
Then,

E[ALG]

OPT
=
c+ E[

∑m−n+1
i=1 ALGi]

OPT
=
c+

∑m−n+1
i=1 E[ALGi]

OPT
≤ c+

∑m−n+1
i=1 3 ·OPTi

0.5c+
∑m−n+1

i=1 OPTi

≤ 3.

Remark 5.6. The algorithm V-RANDOMC runs in polynomial time. The uncertainty
interval of the associated edge instance needs to be computed for m edges. For the
cases where a ≤ 3 we only perform constant time operations. The analysis of V-DETC

is similar to the one of BALANCE (see Remark 2.4), except that the computation
of edge potentials is not needed. Hence, V-RANDOMC needs O(mn) time without
preprocessing and O(m2 log(n)) time with the preprocessing included.

60 5 Alternative versions of MST under uncertainty

1

(a) (b) (c)

2 1 2 1 2

5 3 4 3 4 3

4

fi fi fi

Figure 5.3: Ci with b = 1, where edges in X(fi) are bold. Vertices which are displayed
in red are possible candidates for an optimal query set Q∗i of size one. In
(a) we have a = 3 such that the end vertices of fi and the vertex in the
intersection of the two neighbor edges are possible candidates for a size
one query set. In (b) and (c) we have a = 2. Depending on whether fi and
the edge in the neighbor set share a vertex, there are either four or three
candidates for a size one query set.

Remark 5.7. The algorithm V-RANDOMC is defined for uniform query costs and
cannot be adapted for the non-uniform case in a straightforward way because it relies
on witness sets, a concept which only makes sense for uniform query costs.

Let us see how the algorithm V-RANDOMC proceeds when applied to the following
small instance of V-MST-U:

Example 5.1. Consider the instance as displayed in Figure 5.4 below.
Let ε > 0 be small. All vertices, except for the vertices in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
have trivial uncertainty sets. The length of edges between trivial vertices is ε and the
distance between a trivial vertex and the boundary of an adjacent non-trivial vertex
is ε too. Assume that the realisation of vertex positions is such that 3, 4, 5, 6 and 7
lie in the center of their uncertainty intervals and the locations of 1 and 2 are such
that the length of {1, 2} is 10 + 2ε. Moreover the vertices 8, 9 and 11 are located at
distance at most ε from the far left end of their uncertainty sets, while 10 is located
at distance at most ε from the far right end of A10.
In the associated edge instance, the upper limits of all edges except for {1, 2}, {3, 4},
{5, 6}, {6, 7}, {8, 9} and {10, 11} are at most 7 + ε. Thus these edges have to lie in
an MST with certainty. In the associated edge instance we have A{1,2} = (10, 14),
A{3,4} = (1, 11), A{5,6} = A{6,7} = (6, 12.5), A{8,9} = (7, 11) and A{10,11} = (4, 8). The
associated edge instance does not need preprocessing, as we already have TL = TU =
E \{{1, 2}, {8, 9}}. Assume that p = 0.4. For the non-trivial vertices we pick the label
l as indicated by the black numbers in Figure 5.4. The trivial vertices are labelled

5.1 Minimum Spanning Tree with Vertex Uncertainty 61

Figure 5.4: An instance of V-MST-U. Blue numbers correspond to distances, black
numbers correspond to vertex labels of vertices with non-trivial uncertainty
sets.

arbitrarily, their labels do not matter. Remember that we assume that the permuta-
tions are ordered lexicographically, e.g. σ

(4)
1 = (1, 2, 3, 4), σ

(4)
2 = (1, 2, 4, 3)... We set

f1 = {1, 2}, f2 = {8, 9} and Q := ∅.

i=1 In the first iteration, we have C1 = (1, 2, ..., 3, 4, ..., 5, 6, 7, ...) and a = 5. Hence
we apply the deterministic subroutine V-DETC . The edge {1, 2} is queried and it
turns out that w̄{1,2} = 10 + 2ε, which lies in the uncertainty sets of all three neighbor
edges. Now {5, 6} is an edge with largest upper limit such that its end vertices are
queried and added to Q := {5, 6}. It turns out that w̄{5,6} = 9.25 and A{6,7} is set to
(9, 9.5). Now {3, 4} has the maximum upper limit among edges in C1 and both end
vertices are queried, i.e. Q := {3, 4, 5, 6}. The edge {1, 2} is removed from Γ. Note

62 5 Alternative versions of MST under uncertainty

that an optimal solution queries 6 to see that the lengths of {5, 6} and {6, 7} both lie
in (9, 9.5) and 4, which reveals that the length of {3, 4} must lie in (4.5, 7.5).

i=2 In the second iteration, we have C2 = (8, 9, ..., 10, 11, ...) and a = 2. As {10, 11}
and {8, 9} are not adjacent, we have k := 4 and r(8) = 1, r(9) = 2, r(10) = 3 and

r(11) = 4. As 9
24

= 0.375 and 10
24
≈ 0.42, we set j = 10. Note that σ

(4)
10 = (2, 3, 4, 1).

Then σ
(4)
10 (r(8)) = σ

(4)
10 (1) = 2, σ

(4)
10 (r(9)) = σ

(4)
10 (2) = 3, σ

(4)
10 (r(10)) = σ

(4)
10 (3) = 4 and

σ
(4)
10 (r(11)) = σ

(4)
10 (4) = 1. Hence we start by querying 11 (Q := {3, 4, 5, 6, 11}) such

that the uncertainty set of {10, 11} is updated to A{10,11} = (6 − ε, 8 − ε) ⊂ A{8,9}.
Thus we cannot yet identify a maximum weight edge in C2. Now we query 8 (Q :=
{3, 4, 5, 6, 8, 11}), which yields that w̄{8,9} ∈ (9 − ε, 11 − ε), i.e. {8, 9} has maximum
weight in C2. Note that an optimal solution for C2 would have queried 8 only.
Hence, for this instance of V-MST-U the competitive ratio achieved by V-RANDOMC

is 4+2
2+1

= 2, if p = 0.4.

5.2 Computing the MST Weight under

Uncertainty

Another variant of the Minimum Spanning Tree Problem under Uncertainty is MST
Weight under Uncertainty (W-MST-U) which not only asks for the edge set of an
MST but also for the precise weight of an MST. W-MST-U was introduced by [15]
who provided a query optimal algorithm that runs in polynomial time. The algorithm
CUT-WEIGHT relies on the following well-known property of minimum spanning
trees:

Proposition 5.3. T is the edge set of a minimum spanning tree if and only if for
every e ∈ T it holds that if C is one of the two connected components in T − e, then
e has minimum weight in the cut set δ(C).

The algorithm CUT-WEIGHT starts with an arbitrary spanning tree Γ and iteratively
deletes an edge e ∈ Γ. In each iteration, CUT-WEIGHT queries the edges in the cut
which is defined by the two connected components of Γ−e in order of increasing lower
limits until a minimum weight edge f in the cut can be identified and its weight is
known. Finally, Γ is updated by exchanging f and e. Algorithm 10 displays a formal
description of CUT-WEIGHT.

Remark 5.8. The algorithm CUT-WEIGHT runs in O(mn) time. Computing a span-
ning tree requires at most O(m log(n)) time. Prior to the for-loop we sort the edges
with respect to increasing lower limit and update the sorting whenever an edge is
queried (O(log(n)) time per query). In each iteration of the for-loop we need to find
the cut edges (O(m) time) and check whether the cut edge with smallest lower limit
is trivial (which requires constant time.) The time needed for querying edges and

5.2 Computing the MST Weight under Uncertainty 63

input : An instance of W-MST-U with graph G = (V,E), uncertainty sets
Ae and query costs qe, e ∈ E

output: A feasible query set Q

1 Determine a spanning tree Γ;
2 Index the edges of Γ by f1, ..., fn−1;
3 Initialize Q = ∅;
4 for i← 1 to n− 1 do
5 Delete fi from Γ and let Si be the cut containing all edges between the

two components of Γ;
6 while Si does not contain a minimal edge with trivial uncertainty

interval do
7 Choose g ∈ Si s.t. Lg = min{Le|e ∈ Si};
8 Query g and add it to Q

9 Add a minimal edge in Si to Γ

Algorithm 10: The algorithm CUT-WEIGHT for W-MST-U with general
query costs (adapted from [15], page 1232)

updating the sorting sums up to O(m log(n)) time in total. Hence, n iterations yield
a run-time of at most O(mn).

[15] showed that every edge queried during the execution of CUT-WEIGHT lies in
any feasible query set for the W-MST-U instance:

Theorem 5.3. ([15], page 1232) The algorithm CUT-WEIGHT outputs an optimal
solution for W-MST-U.

An intuitive motivation for choosing a cut-based algorithm over a cycle-based algo-
rithm (such as BALANCE or U-RED), is that a cycle-based algorithm is biased to
query edges outside the MST while CUT-WEIGHT identifies edges with minimum
weight in a cut which ultimately lie inside the MST.

Example 5.2. The following example shall demonstrate how CUT-WEIGHT works.
We will use again the instance as given in Example 2.3. We pick
Γ := {{1, 2}, {1, 7}, {6, 7}, {4, 6}, {3, 4}, {5, 6}} as a feasible spanning tree to start
with and initialize Q := ∅.

i=1: In the first iteration we remove {1, 2} from Γ which results in the two com-
ponents induced by the vertex sets {2} and {1, 3, 4, 5, 6, 7}. The cut set is given by
S1 = {{1, 2}, {2, 3}, {2, 5}}. The edge g := {2, 3} has the minimum lower limit among
the cut edges and is thus queried and then added to Γ. Hence Q := {{2, 3}}.

64 5 Alternative versions of MST under uncertainty

i=2: Next we remove {1, 7} from Γ, which isolates the vertex 1. The cut set we obtain
is S2 = {{1, 2}, {1, 7}}. The edge {1, 7} has the minimum lower limit among edges in
S2 and is trivial. Thus no query is made and {1, 7} is re-added to the tree.

i=3: When removing {6, 7} from Γ, we consider the cut set S3 = {{6, 7}, {1, 2}} out
of which {6, 7} is queried and added to the tree. Q := {{2, 3}, {6, 7}}.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

i=1

i=3

i=5

(7.2,14)

8

(4,7)

5

(5,15)6

(7.2,14)

8

(3,6)5

(7,16) 15

(6,16) 7

(7.1,16)

12

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

i=2

i=4

i=6

(7.2,14)

8

{5}

(7.2,14)

8

(6,16) 7

(5,15)6

(7.1,16)

12

(7.2,14)

8

(2,9)7

(7.1,16)

12

Figure 5.5: The six iterations of CUT-WEIGHT: Edges in green belong to Γ, while
cut edges in Si are red, i = 1, ..., 6.

i=4: The removal of {4, 6} leads to the components given by {1, 5, 6, 7} and {2, 3, 4}
and the cut set S4 = {{1, 2}, {4, 6}, {4, 5}, {2, 5}}. We query {2, 5} and obtain

5.3 The OP-OP Model 65

w̄{2,5} = 5, which is less that the lower limit of any of the other edges in the cut.
Thus we add {2, 5} to the tree and set Q := {{2, 3}, {6, 7}, {2, 5}}.

i=5: By removing the edge {3, 4} from Γ, we isolate the vertex 4, hence S5 consists of
the edges incident to 4. We query {4, 5}, which has the minimum lower limit among
edges in the cut and see that it can be added to Γ. Q := {{2, 3}, {6, 7}, {2, 5}, {4, 5}}.

i=6: In the last iteration we consider the cut edges in S6 = {{5, 6}, {1, 2}, {4, 6}},
which are obtained by removing {5, 6} from Γ. {5, 6} needs to be queried and is re-
added to the spanning tree. Q := {{2, 3}, {6, 7}, {2, 5}, {4, 5}, {5, 6}}.

Hence we found the minimum spanning tree
Γ = {{2, 5}, {1, 7}, {6, 7}, {2, 3}, {4, 5}, {5, 6}} as well as its weight 6+5+5+5+7+7=35
by querying the edges in the optimal query setQ = {{2, 3}, {6, 7}, {2, 5}, {4, 5}, {5, 6}}.

5.3 The OP-OP Model

So far, queries were able to return the precise weight of the queried edge. In some
settings however, it might be more realistic for a query to only reveal increasingly
refined estimates of the edge weights.
Gupta et al. [12] consider the more general setting where a function f(x1, x2, ...xn)
is to be computed while some of the xi’s are not fully specified but are known to lie
in some interval. Again an algorithm can make queries about the xi. If the input
intervals are open (OP) and the queries return points (P), the model is referred to as
OP-P. If the input consists of open intervals and queries reveal open subintervals of
the original uncertainty sets, the model is called OP-OP.

A useful connection between the OP-P model and the OP-OP model is given by the
following theorem, which was proved by [12]:

Theorem 5.4. ([12], page 6) A witness algorithm for a problem under the OP-P model
is a witness algorithm for the OP-OP version of the same problem.

By Theorem 2.1, the algorithm U-RED extends to a 2-competitive algorithm for the
OP-OP version of MST-U.
Again one might ask if randomization yields an improvement in terms of competitive
ratio. Unlike in the OP-P version of MST-U, the answer to this question is no, as
shown by [15]. They define an instance of the OP-OP version of MST-U such that no

deterministic algorithm has expected ratio ALG(G,R)
OPT (G,R)

less than 2, whereR is a realization
drawn from a family R of feasible realization of edge weights according to a specific
probability distribution p. Together with a variant of Yao’s Principle (See Borodin
and El-Yaniv [1], Theorem 8.5), this yields the following result shown by [15]:

66 5 Alternative versions of MST under uncertainty

Theorem 5.5. ([15], page 1238) No randomized algorithm for MST-U under the OP-
OP model can achieve competitive ratio c < 2.

5.4 Approximate Minimum Spanning Trees

Another alternative of MST-U is to relax the necessity of an exact MST and aim for
an α-approximate solution instead:

Definition 5.2. Given an instance of MST-U with graph G = (V,E) and realization
w̄e, e ∈ E, let T ∗ be the edge set of a minimum spanning tree. The α-approximate
MST-U consists in finding the edge set of a spanning tree T such that

∑
e∈T w̄e ≤

α ·
∑

e∈T ∗ w̄e, while minimizing the query cost needed to find T . Note, that the
requirement to find an MST is relaxed only for the algorithm, not for the optimum
solution. An optimal query set still has to verify an exact MST.

However, this relaxation does not yield an improvement in terms of the known bounds
for the competitive ratio, as proved in [15].

Theorem 5.6. ([15], page 1239) For α > 1, there is no c-competitive (randomized)
algorithm for the α-approximate MST-U with c < 2 (c < 1.5).

Proof. Let α > 1 and consider the following instance as depicted in the figure below.

1 2

34

{0}

(1
2α
, 2α)

{0}

(1
4α
, α + 1)

Note that {1, 4} and {2, 3} are in any MST.
However, there might be an α-approximate
spanning tree which does not contain both
{1, 4} and {2, 3}. Let Q be a query set and T ′

a spanning tree, such that querying the edges
in Q verifies that T ′ is α-approximate. Now as-
sume first that T ′ does not contain both {1, 4}
and {2, 3}. Let T be a spanning tree that con-
tains both the trivial edges and let T ∗ be an
MST.

Figure 5.6: Lower bound computation for the α-approximate MST-U. In this instance
all query costs equal 1.

Then by querying edges in Q we know that w̄(T) ≤ w̄(T ′) ≤ α · w̄(T ∗), where w̄
denotes the sum of weights of edges in the respective tree. Thus, querying the edges
in Q also guarantees that T is an α-approximate tree. Hence we can w.l.o.g. assume
that a feasible query set Q aims to verify an α-approximate tree T which contains
both edges of cost 0.

5.5 Minimum Matroid Base under Uncertainty 67

We first prove the deterministic bound. Assume a deterministic algorithm queries
{1, 2} first. Consider the realization R1 with w̄{1,2} = 1, w̄{3,4} = 1

3α
. As 1 6≤ α · 1

2α
and

α+ 1
2
6≤ α ·1, the algorithm has to query {3, 4} too to find an α-approximate spanning

tree. An optimal solution, however, only queries {3, 4} to find an exact MST. Now
we assume an algorithm queries {3, 4} first while the realization R2 is w̄{1,2} = 3α+1

2
,

w̄{3,4} = 1. Then the optimal solution only needs to query {1, 2} to find that {3, 4} is
in an MST. The algorithm however, needs to query {1, 2} too because 1 6≤ α · 3

4α
and

3α
2
6≤ α · 1.

Now we turn to the case of randomized algorithms. A randomized algorithm queries
edge {1, 2} first with probability p. If the realization is R1, then the expected query
cost is 2p+(1−p). If the realization is R2, then the expected query cost is p+2(1−p).
Again the maximum expected query cost for these two instances is minimized by
choosing p = 0.5. Hence no randomized algorithm can achieve a competitive ratio
below 1.5.

5.5 Minimum Matroid Base under Uncertainty

In this section we will see how the results for MST-U extend to the more general
Minimum Weight Matroid Base Problem under Uncertainty (MMB-U).

Definition 5.3. A matroid is a pair (E, I) with I ⊂ P(E), such that

• ∅ ∈ I,

• If I ∈ I and Ĩ ⊂ I, then Ĩ ∈ I,

• If I, Ĩ ∈ I and |Ĩ| > |I|, then ∃ e ∈ Ĩ \ I, such that I ∪ {e} ∈ I.

We call a set I ∈ I independent and a set C ∈ P(E) \ I dependent. A set B ∈ I
is a base of the matroid if for all e ∈ E \ B the set B ∪ {e} is not in I. A minimal
dependent set (with respect to inclusion) is called circuit.

Definition 5.4. For a matroid (E, I) and a weight function w̄ : E → R≥0, the Min-
imum Weight Matroid Base Problem (MMB) consists in finding a base B ∈ I of the
matroid such that

∑
b∈B w̄b is minimal.

For the Minimum Weight Matroid Base Problem under Uncertainty (MMB-U) we are
given an uncertainty set Ae instead of each weight w̄e, which is guaranteed to lie inside
Ae and can be determined by querying e at cost qe. We assume each uncertainty set
to be an open interval or a singleton. The goal is to find a minimum weight matroid
base at minimum query cost.

MMB is a generalization of MST in the following sense: For a connected graph G =
(V,E), define the matroid M := (E, I), where I := {A ⊂ E | (V,A) is cycle-free}.

68 5 Alternative versions of MST under uncertainty

Then B is a basis of M iff B is the edge set of a spanning tree. Hence the MST in G
translates to the MMB in M . A matroid whose independent sets are the forests of a
(not necessarily connected) graph is called graphic.

Algorithms which have been presented for the MST-U can be modified in order to
work for MMB-U too: For the case where query costs are uniform, Erlebach et al. [6]
show that the algorithm U-RED can be generalized to work for MMB-U as well and
achieves competitive ratio 2. For general query costs, the algorithms BALANCE and
RANDOM can also be adapted such that they work in the setting of matroids and
achieve competitive ratio 2 and 1 + 1√

2
respectively, as shown by [15]. The algorithm

CUT-WEIGHT which will be discussed in Section 5.2 and computes the exact weight
of an MST in the setting of explorable uncertainty such that the set of edges which
are queried has minimum cost also translates to the matroid case where is achieves
competitive ratio 1 too (see [15]).

Megow et al. [15] present two additional algorithms for MMB-U with uniform query
costs: the best-in greedy algorithm CYCLE and the worst-out greedy algorithm CUT.

5.5.1 The algorithm CYCLE

CYCLE merges ideas from BALANCE and U-RED. Thus we assume that a lower
(upper) limit basis BL (BU) is defined analogously to a lower (upper) limit tree in
Section 2.3.2, the ordering “<” of elements with respect to lower limits is an analogue
of Definition 2.2 and an always maximal element in a circuit is defined in the same way
as an always maximal edge in a cycle (see Definition 2.3). The framework of CYCLE
is similar to the one of BALANCE or RANDOM. We start out with an initial basis,
a lower limit basis BL. Then we add the remaining elements fi one after the other,
in order of non-decreasing lower limits. Each time that we add such an element, we
consider the circuit Ci which arises from adding fi to the current basis. By querying
elements until an always maximal element in Ci can be identified we make sure that we
maintain a partial solution. The edges that we query in a specific circuit however, are
not picked in the same way as in the algorithm BALANCE. Instead, CYCLE proceeds
in a similar way as U-RED: It chooses an element f with maximum upper limit in Ci
and and an element g in Ci \ {f} such that Af ∩Ag 6= ∅ and queries both. Note that
we do not need to assume BL = BU here, because we do not require that f = fi. A
precise description of CYCLE is displayed in Algorithm 11.

Megow et al. [15] show that the algorithm CYCLE achieves competitive ratio 2:

Theorem 5.7. ([15], page 1234) The algorithm CYCLE outputs a feasible query set
for MMB-U with uniform query costs and is 2-competitive.

5.5 Minimum Matroid Base under Uncertainty 69

input : An instance of MMB-U with matroid M = (E, I), uncertainty sets
Ae, e ∈ E and uniform query costs

output: A feasible query set Q

1 Determine BL and set Γ := BL;
2 Index the elements in R := E \BL such that f1 ≤ ... ≤ fk;
3 Initialize Q := ∅;
4 for i← 1 to k do
5 Add fi to Γ and let Ci be the occurring circuit;
6 while Ci does not contain an always maximal element do
7 Choose f ∈ Ci s.t. Uf = max{Ue|e ∈ Ci};
8 Choose g ∈ Ci \ {f} with Ug > Lf ;
9 Add f and g to Q and query them

10 Delete the maximum weight element ē from Γ

11 Return Q

Algorithm 11: The algorithm CYCLE for MMB-U with uniform query costs
(adapted from [15], page 1234)

Example 5.3. Consider the matroid M = ({a, b, c, d}, I) with
I = {I ∈ P({a, b, c, d}) | |I| ≤ 2}. Let Aa = (2, 5), Ab = (1, 4), Ac = (2, 3) and
Ad = (3, 6) with weights w̄a = 3, w̄b = 2, w̄c = 2.5 and w̄d = 4. Note that all subsets
of size 2 are bases of M . BL := {a, b} is a lower limit basis. Hence f1 = c, f2 = d and
we set Γ := {a, b}.

i=1: We add c to Γ. Then C1 = {a, b, c} is the circuit in Γ, f := a has the largest
upper limit in C1 and g := c is such that Ac ∩ Aa = (2, 3) ∩ (2, 5) 6= ∅. We query a
and c. As w̄c = 2.5 ∈ (1, 4) = Ab, another iteration of the while-loop is required such
that b is queried too. CYCLE removes a from Γ because it has largest weight in the
circuit C1, i.e. Γ = {b, c}, Q := {a, b, c}.

i=2: We add d to Γ. We have C2 = {b, c, d}. Note that d is always maximal in C2

because Ld = 3 > 2 = w̄b and Ld = 3 > 2.5 = w̄c. Hence we know that Γ := {b, c} is
a minimum weight basis and output Q.

Note that an optimal solution would have queried a and b only because we need
not query c to see that w̄a > Uc and Ld > Uc. This means that CYCLE achieves
competitive ratio 1.5 when applied to this instance if it picks g := c in the first
iteration. Had it picked g := b in the first iteration it would have even found an
optimal solution.

Remark 5.9. The matroid M in Example 5.3 is uniform (the independent sets are

70 5 Alternative versions of MST under uncertainty

precisely the sets of size at most 2) but not graphic.

5.5.2 The algorithm CUT

The algorithm CUT starts out with an upper limit basis BU instead of a lower limit
basis and deletes elements in order of decreasing upper limit. More precisely, we define
the ordering of elements as follows:

Definition 5.5. For two elements e, f ∈ E we say that e >u f if Ue > Uf or Ue = Uf
and Le > Lf . If e >u f or e = f holds, we say that e ≥u f .

Each time we delete an element gi from the current basis, we consider the analogue of
a cut set, namely the elements in Si = {e ∈ E | Γ∪{e} is a basis}, where Γ denotes the
basis found in the previous iteration minus the deleted element gi. By making queries,
we identify a minimum weight edge in Si which is consequently picked to complete the
basis. The algorithm CUT is displayed in Algorithm 12.

input : An instance of MMB-U with matroid M = (E, I), uncertainty sets
Ae, e ∈ E and uniform query costs

output: A feasible query set Q

1 Determine BU and set Γ := BU ;
2 Index the elements in BU such that g1 ≥u ... ≥u gn;
3 Initialize Q := ∅;
4 for i← 1 to n do
5 Delete gi from Γ;
6 Let Si = {e ∈ E | Γ ∪ {e} contains a basis};
7 while we cannot identify a minimum weight element in Si do
8 Choose g ∈ Si s.t. Lg = min{Le|e ∈ Si};
9 Choose f ∈ Si \ {g} with Lf < Ug;

10 Add f and g to Q and query them

11 Add the minimum weight element ē from Si to Γ

12 Return Q

Algorithm 12: The algorithm CUT for MMB-U with uniform query costs
(adapted from [15], page 1235)

CUT achieves competitive ratio 2, as shown by [15]:

Theorem 5.8. ([15], page 1236) The algorithm CUT finds a feasible query set for
MMB-U with uniform query costs and is 2-competitive.

5.6 Special Spanning Trees 71

Example 5.4. We consider the same instance of MMB-U with matroid M as in Ex-
ample 5.3. The choice of the upper limit basis BU = {b, c} is unique. Then g1 = b and
g2 = c. Set Γ := {b, c} and Q := ∅.

i=1: First CUT removes b from Γ. As all subsets of size 2 form a basis, we have
S1 = {a, b, d}. The element b has smallest lower limit among elements of S1, i.e.
g := b. Assume CUT picks f = d, because Ad ∩ Ab = (3, 6) ∩ (1, 4) 6= ∅ and queries
both edges. It becomes clear that b has smallest weight in S1, i.e. Γ := {b, c} and
Q := {b, d}.

i=2: CUT removes c from Γ. This yields S1 = {a, c, d}. Assume CUT picks g := c
and f := a. Then querying c and a yields that c needs to be re-included into Γ and
we output Q := {a, b, c, d}.

Remember that {a, b} is an optimal query set. This means that CUT can achieve
its worst case competitive ratio of 2 when applied to this instance. Had CUT chosen
f := a in the first iteration, it would have found an optimal solution.

5.6 Special Spanning Trees

Instead of identifying a general minimum spanning tree, one could also ask to find
a minimum spanning tree of a specified type at minimum query cost. However, for
many types of special spanning trees, it is already NP-hard to find such a tree in a
graph, e.g. Hamiltonian paths, spiders (see Gargano et al. [10]) or caterpillars (see
Khosravani [14]).

A special spanning tree that can be found in polynomial time is a star tree.

Definition 5.6. The complete bipartite graph K1,k is called star tree Sk. If a graph
G with n vertices contains Sn−1 as a subgraph, then Sn−1 is said to be a spanning star
in G.

We define the Minimum Spanning Star Problem under Explorable Uncertainty (MSS-
U) analogously to MST-U. However, it turns out that no algorithm for MSS-U can
achieve constant competitive ratio.

Proposition 5.4. There exists no algorithm for MSS-U which achieves constant com-
petitive ratio.

Proof. Consider a graph G = (V,E) with V = {1, ..., n} and
E = {{1, v}|v = 2, ..., n}∪{{n, v}|v = 1, ..., n−1}. Then G has precisely two spanning
stars with center 1 resp. n (all other vertices have degree 2.) Let qe = 1 for all e ∈ E.

72 5 Alternative versions of MST under uncertainty

The uncertainty sets are defined as follows:

• A{1,n} = {1},

• A{1,k} = (0, 1) for k = 2, ..., n− 1 and

• A{n,k} = (0, n) for k = 2, ..., n− 1.

Now assume the realization of edge weights is such that w̄{j,n} = n − 1 for some
arbitrary but fixed j ∈ {2, ..., n−1} and w̄e = 0.5 for all e ∈ E \{{j, n}, {1, n}}. Then
an optimal solution queries only {j, n} to know that the spanning star with center n
has larger weight. Conversely, without querying {j, n}, it is impossible to tell which
spanning star has minimum weight. For each possible order in which an algorithm
queries edges in G, we can choose an instance as above with j such that {j, n} is the
last edge of type {k, n} with k ∈ {2, ..., n− 1} to be queried by the algorithm. Hence
no algorithm achieves competitive ratio better than n− 2. For n = 5 the construction
is illustrated in Figure 5.7.

1 5

4

3

2

{1}

(0,1)

(0,1)

(0,1) (0,5)

(0,5)

(0,5)

4

Figure 5.7: The weight of {2, 5} is displayed in red. All missing edge weights equal
0.5. An optimal solution only needs to query {2, 5} which has larger weight
than the star with center 1 can have. A deterministic algorithm can not
distinguish between the edges {2, 5}, {3, 5} and {4, 5} and might have to
query all three of them.

Conclusion

In this master’s thesis we have seen different deterministic as well as randomized
algorithms for the Minimum Spanning Tree Problem Under Explorable Uncertainty
and other variants of the problem. The following table gives an overview over the
performance of the algorithms as well as over existing lower bounds.

BALANCE U-RED RANDOM RANDOMC V-RANDOMC CUT- BOUND BOUND
WEIGHT DET. RAND.

MST-U 2 2 1 + 1√
2

- - - 2 1.5

MST-U cactus 2 2 1 + 1√
2

1.5 - - 2 1.5

V-MST-U - 4 - - - - 4 2.5
V-MST-U - 4 - - 3 - 4 2.5
special case
MMB-U 2 2 1 + 1√

2
- - - 2 1.5

MMB-U Weight - - - - - 1 1 1
MST-U Weight - - - - - 1 1 1
Approx. MST-U 2 2 1 + 1√

2
- - - 2 1.5

Op-Op - 2 - - - - 2 2
MSS-U - - - - - - no const. no const.

Table 5.1: This table lists the results for uniform query costs. The results are iden-
tical for the non-uniform case, except for the algorithms U-RED and V-
RANDOMC which cannot be applied in the latter case. The entry “-” is
used whenever an algorithm cannot be applied to the specific problem. Note
that algorithm names refer to the original algorithms for MST-U, as well as
to adaptions of the original algorithms for different settings.

The MST-U in itself is a problem which still deserves further investigation. A major
open question is whether there exist randomized algorithms with a smaller perfor-
mance guarantee than RANDOM or whether the lower bound of 1.5 can be improved.
Also note that there is no randomized algorithm for the V-MST-U so far and even
for the special case where cycles intersect in trivial vertices only, there is a gap of
0.5 between the lower bound and the performance of V-RANDOMC . Also for the
deterministic case the version of V-MST-U with non-uniform query costs remains un-
solved. Moreover, different models of the uncertainty exploration could be the subject
of further investigations. So far, only adaptive models have been considered. Erlebach
and Hoffmann [5] suggested a partly non-adaptive concept, where queries are made in
rounds. Queries of the same round have to be made in parallel and depend solely on
the query outcome of previous rounds. Different round competitive models, e.g. mod-
els where the objective function is the minimization of the number of rounds while

73

74 5 Alternative versions of MST under uncertainty

the number of queries per round is fixed or models where the goal is to minimize the
number of queries while the number of rounds should not exceed a value k could be
considered in future work on the topic.

Bibliography

[1] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[2] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems, 38(4):411–
423, 2005.

[3] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. Scheduling with Explorable Un-
certainty. In 9th Innovations in Theoretical Computer Science Conference (ITCS
2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[4] T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncer-
tainty. In Proceedings of the International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 164–175, 2014.

[5] T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with
uncertainty. Bulletin of the European Association for Theoretical Computer Sci-
ence, 116, 2015.

[6] T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for
cheapest set problems under uncertainty. Theoretical Computer Science, 613:51–
64, 2016.

[7] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Comput-
ing minimum spanning trees with uncertainty. In Proceedings of Symposium on
Theoretical Aspects of Computer Science, pages 277–288, 2008.

[8] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62(1):1–18, 2007.

[9] J. Focke, N. Megow, and J. Meißner. Minimum Spanning Tree under Explorable
Uncertainty in Theory and Experiments. In 16th International Symposium on
Experimental Algorithms (SEA 2017), volume 75 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 22:1–22:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

75

76 Bibliography

[10] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaroa. Spanning spiders
and light-splitting switches. Discrete Mathematics, 285:83–95, 2004.

[11] M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack
problem with queries. Computers and Operations Research, 55:12–22, 2015.

[12] M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and
related problems. Computing Research Repository, abs/1108.5525, 2011.

[13] S. Kahan. A model for data in motion. 23rd Annual ACM Symposium on Theory
of Computing (STOC’91), pages 267–277, 1991.

[14] M. Khosravani. Searching for Optimal Caterpillars in General and Bounded
Treewidth Graphs. PhD Thesis, Department of Computer Science, University
of Auckland, 2011.

[15] N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM Journal on Computing, 46(4):1217–
1240, 2017.

[16] Y. Wang and S.-W. Wong. Two-sided online bipartite matching and vertex cover:
Beating the greedy algorithm. In Proceedings of the International Colloquium on
Automata, Languages and Programming, pages 1070–1081, 2015.

List of Algorithms

1 The algorithm U-RED for MST-U with uniform query costs (adapted
from [7], page 283) . 17

2 The algorithm BALANCE for MST-U with general query costs (adapted
from [15], page 1223 and 1231) . 23

3 Computing t(fi) . 24

4 The algorithm RANDOM for MST-U with uniform query costs (adapted
from [15], page 1223 and 1227) . 30

5 The algorithm RANDOMC for MST-U with uniform query costs in cac-
tus graphs . 35

6 The algorithm RANDOMC for MST-U with general query costs in cactus
graphs . 39

7 The algorithm VERIFICATION for MST-U-VER with general query costs 44

8 The algorithm V-RANDOMC for V-MST-U with uniform query costs in
graphs where no two cycles intersect in non-trivial vertices 57

9 The subroutine V-DETC . 58
10 The algorithm CUT-WEIGHT for W-MST-U with general query costs

(adapted from [15], page 1232) . 63
11 The algorithm CYCLE for MMB-U with uniform query costs (adapted

from [15], page 1234) . 69
12 The algorithm CUT for MMB-U with uniform query costs (adapted from

[15], page 1235) . 70

77

List of Figures

1.1 An instance of MST-U: The realization of edge weights is depicted in
red. All query costs equal 1. 14

2.1 No algorithm has constant competitive ratio. ([7], page 286) 15

2.2 Lower bound computation for deterministic algorithms 16

2.3 An instance of MST-U with uniform query costs. The realisation of
edge weights is depicted in red. 18

2.4 The instance prior to the last iteration of U-RED: Each cycle has an
always maximal edge. 19

2.5 An instance of MST-U with non-uniform query costs. The realisation
of edge weights is depicted in red. The query costs are equal to one
except for q1 = q6 = 2, q9 = 1.8 (in green). 26

3.1 Lower bound computation for randomized algorithms 29

3.2 An instance of MST-U with uniform query costs. The realisation of
edge weights is depicted in red. 32

3.3 An instance of MST-U with uniform query costs in a cactus.The reali-
sation of edge weights is depicted in red. 36

3.4 An instance of MST-U with non-uniform query costs. The realisation
of edge weights is depicted in red. The query costs are equal to one
except for q1 = q6 = 2 and q7 = 1.8 (in green.) 37

4.1 An instance of MST-U with non-uniform query costs, where red num-
bers denote the realization of edge weights. The query costs are one for
all edges, except q{2,3} = q{1,7} = q{4,7} = 0.5. These edges are drawn in
green. 46

4.2 VERIFICATION needs to solve an instance of Minimum Weighted Bi-
partite Vertex Cover. Green vertices correspond to edges with query
cost 0.5. 47

5.1 Lower bound for V-MST-U (adapted from [7], page 287) 50

5.2 Ci with edge fi and the edges in X(fi) (bold). Here a = 8 and b = 3.
An optimal solution which avoids fi must query at least three vertices
to cover all edges in X(fi). 55

79

80 List of Figures

5.3 Ci with b = 1, where edges in X(fi) are bold. Vertices which are
displayed in red are possible candidates for an optimal query set Q∗i of
size one. In (a) we have a = 3 such that the end vertices of fi and
the vertex in the intersection of the two neighbor edges are possible
candidates for a size one query set. In (b) and (c) we have a = 2.
Depending on whether fi and the edge in the neighbor set share a
vertex, there are either four or three candidates for a size one query set. 60

5.4 An instance of V-MST-U. Blue numbers correspond to distances, black
numbers correspond to vertex labels of vertices with non-trivial uncer-
tainty sets. 61

5.5 The six iterations of CUT-WEIGHT: Edges in green belong to Γ, while
cut edges in Si are red, i = 1, ..., 6. 64

5.6 Lower bound computation for the α-approximate MST-U. In this in-
stance all query costs equal 1. 66

5.7 The weight of {2, 5} is displayed in red. All missing edge weights equal
0.5. An optimal solution only needs to query {2, 5} which has larger
weight than the star with center 1 can have. A deterministic algorithm
can not distinguish between the edges {2, 5}, {3, 5} and {4, 5} and might
have to query all three of them. 72

	Introduction
	Problem definition and notations
	Deterministic Algorithms
	Performance of deterministic algorithms
	Uniform query costs: the algorithm U-RED
	Non-uniform query costs
	Framework of BALANCE
	Lower Limit Tree
	Finding a maximum weight edge in a cycle
	Core of the algorithm BALANCE

	Randomization
	Lower bound
	Uniform query costs
	The algorithm RANDOM
	An optimal randomized algorithm for cactus graphs with uniform query costs

	Non-uniform query costs
	Adaption of RANDOM to the non-uniform case
	An optimal randomized algorithm for cactus graphs with non-uniform query costs

	Connection of MST-U to Minimum Bipartite Vertex Cover
	Minimum Spanning Tree Verification under Uncertainty
	Online Bipartite Vertex Cover

	Alternative versions of MST under uncertainty
	Minimum Spanning Tree with Vertex Uncertainty
	Deterministic algorithm
	Randomization

	Computing the MST Weight under Uncertainty
	The OP-OP Model
	Approximate Minimum Spanning Trees
	Minimum Matroid Base under Uncertainty
	The algorithm CYCLE
	The algorithm CUT

	Special Spanning Trees

	Conclusion
	Bibliography

