@ NAWI Graz TU

Natural Sciences Grazm

Corinna Marlene Mathwieser, BSc

The Minimum Spanning Tree Problem Under Explorable

Uncertainty

MASTER’S THESIS
to achieve the university degree of
Diplom-Ingenieurin

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Eranda Dragoti-Cela
Institute of Discrete Mathematics

Graz, October 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

The Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U) is an
uncertainty version of the Minimum Spanning Tree Problem where for each edge a
set, usually an open interval, containing the weight of the edge is given and the pre-
cise weight of an edge can be revealed upon request. Querying an edge for its weight
comes at extra cost. The goal is to query edges at minimum cost such that a mini-
mum spanning tree can be identified with certainty. In this master’s thesis we review
different algorithms for the MST-U, as well as existing bounds on the performance
of algorithms. For the new special case of cactus graphs we provide an optimal ran-
domized algorithm. A different version of the problem is the Minimum Spanning Tree
Problem under Vertex Uncertainty (V-MST-U) where vertices are points in the plane
whose positions are given as open sets and the edge weights correspond to the dis-
tances between the end vertices of an edge. For this problem we derive a lower bound
of 2.5 on the performance of any randomized algorithm and introduce a special case of
instances for which we present a randomized algorithm with performance guarantee 3.
We review different explorable uncertainty problems that are related to MST-U, such
as the approximate MST-U or MST weight under uncertainty. Moreover, we introduce
the problem of finding a minimum weight spanning star under uncertainty for which
we show that no algorithm can achieve constant competitive ratio.

Contents

Introduction| 9
I Probl Rt I ons 13
2 Deterministic Algorithms| 15
[2.1 Performance of deterministic algorithms| 15
(2.2 Uniform query costs: the algorithm U-RED| 16
2.3 Non-uniform query costs| oL 20
2.3.1 Framework of BALANCHE| 20

232 Lower Lumit Treel 20

[2.3.3 Finding a maximum weight edge in a cyclef 21

[2.3.4 Core of the algorithm BALANCE| 22
3__Randomization| 29
BI1 Towerbound 29
(3.2 Uniform query costs| 29
[3.2.1 The algorithm RANDOM| 29

[3.2.2 An optimal randomized algorithm for cactus graphs with uni- |

[form query costs|o 33
[3.3 Non-uniform query costs| 0oL 36
[3.3.1 Adaption of RANDOM to the non-uniform case| 36

[3.3.2 An optimal randomized algorithm for cactus graphs with non- |

| uniform query costs|. 38
[4 Connection of MST-U to Minimum Bipartite Vertex Cover| 41
(4.1 Minimum Spanning Tree Verification under Uncertainty|. 41
4.2 Online Bipartite Vertex Cover| 47

[Alternative versions of MS'T under uncertainty| 49
[>.1 Minimum Spanning Tree with Vertex Uncertainty| 49
[>.1.1 Deterministic algorithm| 49

b.1.2 Randomizationlo 51

(5.2 Computing the MS'T Weight under Uncertainty] 62
B3 The OP-OP Modello o o 65
[b.4 Approximate Minimum Spanning Irees| 66

8 Contents

(5.5 Minimum Matroid Base under Uncertainty| 67
[5.5.1 The algorithm CYCLE| 68

[5.5.2 The algorithm CUT| 70

[5.6 Special Spanning Trees| 71
Conclusionl 74

[Bibliography| 75

Introduction

Many real world problems do not allow to work with precise data. Instead, parts of
the input are uncertain or only known approximately. This motivates the concept of
combinatorial optimization under uncertainty. Different approaches in this category
include stochastic optimization, where the input data is known to follow a specific
probability distribution, robust optimization which aims to find good solutions for
all possible inputs (for some appropriate measure of solution quality) and explorable
uncertainty. In the setting of explorable or queryable uncertainty, it is possible to
obtain more precise or even exact data by making queries. However, any query causes
additional exploration cost. In an applied scenario this might be time, money or other
resources which are needed for further measurements.

This master’s thesis deals with the Minimum Spanning Tree Problem under Ezxplorable
Uncertainty (MST-U), which was first introduced by Erlebach and Hoffmann [7]. In
an instance of MST-U, each edge is equipped with an uncertainty set and a query cost.
The uncertainty set, usually an interval, is guaranteed to contain the edge’s weight.
An edge query (we also say update) reveals the edge’s true weight. The goal is to
find a set of queries of minimum cost which allows to find a minimum spanning tree
(MST). The queries may be chosen adaptively, i.e. we are allowed to choose the next
update based on the previous outcomes of edge queries. In general, we consider two
types of algorithms: deterministic algorithms and randomized algorithms. Determin-
istic algorithms are allowed to make their choices only based on the graph structure,
the uncertainty sets, the outcome of edge queries and the query costs. Randomized al-
gorithms may use additional randomized parameters which are drawn from a specified
probability distribution. We measure an algorithm’s performance by its competitive
ratio, the ratio between the query cost of the algorithm’s solution and the optimal
query cost (see Definition [1.2])

The first work on problems where parts of the input are uncertain and can be queried
is due to Kahan [13]. Since then, explorable uncertainty has been considered for differ-
ent combinatorial problems, e.g. shortest paths (see Feder et al. [§]), scheduling (see
Diirr et al. [3]) and the Knapsack Problem (see Goerigk [11]). Erlebach et al. were
the first to introduce the Minimum Spanning Tree Problem under Uncertainty in [7].
They showed that without restrictions made on the uncertainty sets, no algorithm can
achieve constant competitive ratio, which is why subsequently only instances with un-
certainty sets in the form of open intervals or singletons are considered. Erlebach et al.
[7] presented the deterministic algorithm U-RED for the MST-U with uniform query

10 Introduction

costs which achieves competitive ratio 2 and proved that no deterministic algorithm
can have a smaller competitive ratio. Moreover, they introduced a different version
of this problem, the Minimum Spanning Tree Problem under Vertex Uncertainty (V-
MST-U), where vertices are points in the plane with uncertain locations and the edge
weights correspond to the distances of the respective end vertices. They showed that
their algorithm can be adapted to work for this setting as well, if uncertainty sets are
(topologically) open. An important question left open was the effect of randomization
in the setting of MST-U. This question was successfully answered by Megow et al. in
[15] where they provided the randomized algorithm RANDOM with performance ratio
1+ \/ié The best known bound for randomized algorithms is 1.5 and was observed
by Erlebach and Hoffmann in [5]. Furthermore, [I5] transformed their randomized al-
gorithm into the deterministic algorithm BALANCE with performance ratio 2, which
solves instances with general query cost. Megow et al. [I5] also introduced the prob-
lem of finding the weight of an MST under uncertainty (W-MST-U), the problem
a-MST-U of finding an a-approximate MST (see Defintion under uncertainty as
well as a version of MST-U, where queries return subintervals instead of the precise
edge weights (OP-OP model). Test results for the MST-U are provided by Focke et
al. in [9]. In [4], Erlebach and Hoffmann deal with the verification problem for the
MST-U with uniform query costs, i.e. the problem of computing an optimal query set
if the uncertainty sets as well as the exact edge weights are given. They show that
the verification problem for MST-U with uniform query costs is solvable in polynomial
time, while the verification problem for the vertex uncertainty problem V-MST-U is

NP-hard.

Chapter 1 of this master’s thesis gives the precise definition of MST-U and further basic
definitions and concepts used through the rest of the thesis. Chapter 2 deals with
deterministic algorithms and gives an overview on existing bounds, algorithms and
the concepts behind U-RED and BALANCE. In Chapter 3, which treats randomized
algorithms for MST-U, we consider the special case of cactus graphs and introduce the
randomized algorithm RANDOMs. RANDOM¢ achieves competitive ratio 1.5 for the
specified instance type, which is optimal. Chapter 4 deals with the connection between
MST-U and the Minimum Bipartite Vertex Cover Problem which was established by [4]
when presenting their verification algorithm for MST-U with uniform query cost. We
show that the verification problem for MST-U with general query costs can be solved in
polynomial time by adapting the algorithm of [4] to the non-uniform case. In Chapter
5, related problems from the literature are discussed: the previously mentioned vertex
uncertainty problem V-MST-U, a-MST-U, W-MST-U, the OP-OP model as well as the
generalization of MST-U to the Minimum Matroid Base Problem under Uncertainty.
So far, V-MST-U has only been considered in the deterministic setting. We prove that
no randomized algorithm can have a performance guarantee better than 2.5. For the
special case of instances where no two cycles share a non-trivial vertex we introduce the

Introduction 11

algorithm V-RANDOM¢ and show that V-RANDOM achieves competitive ratio at
most 3. Finally, we introduce the Minimum Spanning Star Problem under (Ezplorable)
Uncertainty (MSS-U). The MSS-U is defined analogously to the MST-U except that
we are not aiming to find a general minimum spanning tree but a spanning star of
minimum weight. (A star is a tree where all but one vertices have degree 1.) For the
MSS-U we derive a negative result with respect to competitive analysis, i.e we show
that no algorithm for MSS-U can achieve constant competitive ratio.

1 Problem definition and notations

The Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U) is de-
fined on an undirected graph G = (V, E) with edge weights. However, the precise
weight function is not known a priori. Instead, for each edge e € E, we are given an
uncertainty set A, that contains the actual edge weight w, of e. If an uncertainty set
A, contains a single element, we say A, is trivial. An edge e is trivial if A, is trivial.
For an edge e € F, we denote by L. := inf A, the infimum and by U, := sup A, the
supremum of the uncertainty set. We will also refer to L, and U, as the lower and
the upper limit of A, (or of e) respectively. We can query an edge e to determine its
weight w,. If we query e, the set A, is updated to a singleton set containing only w,.
This is referred to as query or update. The cost of querying an edge e is q. € R.y.
Given uncertainty sets A., e € E for the edge weights, a weight function w : £ — R
such that w, := w(e) is contained in A, is called a realisation of edge weights. The
task is to find an edge set 7' of a minimum spanning tree in G with edge weights
w,, while minimizing the total cost of queries needed to find T'. This means, that we
are aiming to decide on a query set () C E of minimum query cost, such that after
querying the edges in (), we are able to identify an edge set 7" C FE, which for any
possible realisation w of edge weights is the edge set of a minimum spanning tree in
G with weight function w. In this case we say that a minimum spanning tree can be
vdentified with certainty. () is called a feasible query set. We also say that) verifies
T.

Definition 1.1. For an instance of MST-U an edge set () C F is called a feasible
query set if after querying all edges in @, an MST can be determined with certainty.
Q is called an optimal query set if it is a feasible query set of minimum total cost.

We are considering the online version of the problem, i.e. the algorithm’s choice of the
next query may depend on the outcome of prior queries. To analyze the performance
of a solution found by a (randomized) algorithm we compute the competitive ratio
between the (expected) query cost of the algorithm’s solution and the cost of an
optimal query set.

Definition 1.2. Let I be an instance of MST-U. By OPT'(I) we denote the cost of an
optimal query set for instance I. We say that a feasible solution for I which consists
of a feasible query set () achieves competitive ratio ¢ > 1 if

ZeGQ e

OPT(I) =

13

14 1 Problem definition and notations

For an algorithm ALG we denote by ALG(I) the cost of the query set which the
algorithm outputs when applied to I. We say that ALG achieves competitive ratio
¢ > 1 oris ¢- (update) competitive if

ALG(I) -
OPTU)—C

for all instances I of MST-U.

Example 1.1. Consider the following example of an instance of MST-U, where the
uncertainty sets are indicated as intervals next to the edges in the graph together with
the underlaying realization of edge weights, which is depicted in red. The query cost
of each edge is one.

Note that without querying {1,2} we know
/2) that it has strictly larger weight than all edges
in the cycle (1234). Hence it can be disre-
garded. Assume we test {2,3} and {3,4}, re-
vealing the weights 3 and 4 respectively. Thus
(2,5) {2,4} has largest weight in the cycle (234) and
can be excluded.
An optimal solution would query {2, 4} and see
@ that its weight exceeds the suprema of Ay g
(3.,6) and Ays 4y. Thus the competitive ratio of this
solution is 2.

(8,9)

@ 8.5

{2}

Figure 1.1: An instance of MST-U: The realization of edge weights is depicted in red.
All query costs equal 1.

2 Deterministic Algorithms

We will see that for arbitrary uncertainty sets, no deterministic algorithm can achieve
a constant competitive ratio. For the case where uncertainty sets are either trivial
or do not contain neither their infimum nor their supremum, the algorithm U-RED
presented in Section was introduced by Erlebach et al. in [7] and has competitive
ratio 2. This can be shown to be optimal.

2.1 Performance of deterministic algorithms

For some instances it is enough to identify a single edge that needs to be excluded
(e.g. the maximum weight edge in a cycle) or included (such as the minimum weight
edge in a cut). If we allow arbitrary uncertainty sets, an optimal solution might be
able to identify this edge with a single query, while without knowledge of the true edge
weights an algorithm might need to query all of the edges. Erlebach et al. [7] give the
following example:

Example 2.1. Consider a cycle C' with k edges such that all edges have uncertainty
set (2,4] and all but one have weight 3, while the remaining edge € has weight 4.

(2.4]

An optimal solution queries only edge e. As 4 is the
largest possible weight, this is sufficient to know that
¢ has maximum weight and can be excluded. For any
order however, in which an algorithm ALG queries
(2.4] the edges in C, there is a realization such that e is
the last edge queried. This leads to a competitive
(2,4] ratio of k.

(2.4]

(2,4]

(2.4]

Figure 2.1: No algorithm has constant competitive ratio. ([7], page 286)

Although it would be sufficient to restrict uncertainty sets to singletons and sets that
do not contain neither their supremum nor their infimum, we will, for the sake of
simplicity, assume that from now on uncertainty sets are either singletons or open

15

16 2 Deterministic Algorithms

intervals. This means that without further notion all results in the remaining mas-
ter’s thesis are meant to hold for instances where uncertainty sets are trivial or open
intervals.

However, we still cannot achieve a competitive ratio better than two. This was ob-
served by [7] and can be seen in the following example:

Example 2.2. Consider the following triangle where the edge {1, 3} lies in any MST
but without querying an edge it is impossible to tell whether {2, 3} or {1, 2} is included
in an MST.

First assume that an algorithm decides to query edge
{2,3} first and consider the following realization of edge
weights: Wi2,3} = 3.9, Wy} = 4.5. As Wya3) € A{LQ}, the
algorithm has to query {1,2} too. An optimal solution
{1} (24) however, only queries {1,2} to see that it has maximum
weight.
Now assume that the algorithm decides to query edge
(3,5) {1, 2} first while the edge weights are as follows: w3, =
2.5, Wiy 0y = 3.5.

Figure 2.2: Lower bound computation for deterministic algorithms

Again wy 9y lies in Ao 3y, so the algorithm has to query {2, 3} too. An optimal solution
however, only queries {2, 3} to see that it has less weight than {1,2}. So in both cases
there exists an instance for which the algorithm produces a solution with two times
the optimal query cost.

2.2 Uniform query costs: the algorithm U-RED

In this section we consider instances with query cost ¢. = 1, e € E, i.e. we want to
minimize the number of queries needed to find an MST.

Definition 2.1. A set W C FE of edges of G is called a witness set, if any set of
updates that suffices to verify that a specific tree is a minimum spanning tree must
update at least one of the uncertainty sets of edges in W.

An algorithm that repeatedly finds a witness set and updates all elements in it, until the
solution can be computed with certainty is called a witness algorithm. The following
result is known about witness algorithms and was proved in a different setting by
Bruce et al. [2] and carried over to the setting of MST-U by [7].

Theorem 2.1. ([7], page 282) If the size of any witness set used by the witness algo-
rithm is at most k, then the witness algorithm is k-update competitive.

2.2 Uniform query costs: the algorithm U-RED 17

The algorithm relies on the following well known essential property of minimum span-
ning trees:

Proposition 2.1. Let G = (V, E) be a weighted graph with edge weights we, e € E and
let C be a cycle in G. If there exists an edge e € C' with we > we for all € € C' — {e},
then there exists an MST of G that does not contain e.

The algorithm U-RED is based on Kruskal’s algorithm. Edges are added in order of
increasing lower limit L.. More precisely, the order relation is defined as follows:

Definition 2.2. For two edges e, f € E, e < fif L. < Ly or L, = Ly and U. < Uy.
We have e < fife < fore= f.

Once a cycle is created, we try to remove an edge which has largest weight for all
possible realisations of edge weights. Such edges are called always maximal:

Definition 2.3. Let C be a cycle in G. We say the edge e € C' is an always maximal
edge in C'if L, > U, for all c € C' — {e}.

If we cannot find an always maximal edge, the algorithm finds a witness set of size 2
among the edges in the cycle, consisting of an edge f with largest upper limit and an
edge g such that A, intersects Ay (g exists, otherwise f would be always maximal.)
The algorithm updates these two edges and restarts the procedure of adding edges
to the empty tree. By showing, that the above choice of f and ¢ is indeed a witness
set, the competitive ratio of 2 follows from Theorem [2.1} The description of algorithm
U-RED is presented in Algorithm [T}

1 Index all edges such that e; < ey < ... < e;

2 Let I':=0;

3 for i <~ 1 to m do

4 Adde; to I ;

5 if ' has a cycle C' then

6 if C' contains an always mazimal edge e then
7 ‘ delete e from T’

8 else

9 let f € C such that Uy = max{U,|c € C};
10 let g € C'— {f} such that U, > Ly;

11 update f and g;

12 restart the algorithm

Algorithm 1: The algorithm U-RED for MST-U with uniform query costs
(adapted from [7], page 283)

18 2 Deterministic Algorithms

Remark 2.1. U-RED runs in polynomial time. Note that the algorithm is (re-)started
O(m) times because prior to every restart two edges are queried and after querying
all edges we can identify an MST with certainty. Sorting the edges can be done in
O(mlog(m)) = O(mlog(n)) time. During each iteration of the for-loop we have to
check for acyclicity or find a cycle and identify f and g, each of which can be done in
O(n) time. Finding an always maximal edge in a cycle requires finding an edge with
the largest upper limit among edges in the cycle and comparing its lower limit with
the upper limit of the other cycle edges. This also requires O(n) time. Thus a naive
analysis yields a time complexity of O(m?n).

Erlebach et al. [7] show the following essential property of their algorithm.
Lemma 2.2. The edges f and g in line 9 and 10 of U-RED form a witness set.
This, along with Theorem guarantees a competitive ratio of 2:

Theorem 2.3. ([7], page 285) The algorithm U-RED is 2-update competitive.

Example 2.3. We will demonstrate by an example how the algorithm U-RED works.
Consider the graph G with uncertainty sets as in the figure below.

For the sake of notation let e; :=
{5,6}, €y = {6, 7}, €3 = {2, 3},
eq :={1,7}, e5 :={2,5}, e := {4,5},
er = {3,4}, es 1= {4,6}, eg := {1,2}
and w; = w,,, A; = A, fori=1,..,9.
15 Note that prior to the first iteration we
have e; < ey < ... < eg with respect to
the ordering in Definition [2.2] but this
might change during the execution of
the algorithm.

(7.1,16)

Figure 2.3: An instance of MST-U with uniform query costs. The realisation of edge
weights is depicted in red.

Iteration 1: e; < ey < ... <eg. Let I := 0.

For i = 1,..,6 we simply add e; to I" without closing a cycle. Once we add e; to I', '
contains the cycle C' := (2,3,4,5). Then f := e; is an edge with largest upper limit
among edges in C' and the uncertainty set of g := eg intersects A;. Hence we update
both edges, such that A; = {15} and Ag = {7}. We restart the algorithm.

2.2 Uniform query costs: the algorithm U-RED 19

Iteration 2: e; < ey <e3<es <e; <es<es<eg<er Let I' :=0.

We add ey, eq, €3, e4, €5 and eg to I' without closing a cycle. Then we add eg to I' such
that I' contains the cycle C' := (4,5,6). Then f := eg has the largest upper limit
among edges in C' and the uncertainty set of g := ey intersects Ag. Hence U-RED
updates both edges, such that Ag = {12} and A; = {7} and restarts the algorithm.

Iteration 3: Now ey < ez <es<es<eg<e; <eg <eg<er Let T :=0.

Again e, e3, €4, €5, €5 and e; are added to I' without closing a cycle. Then eg is added
to I" and T" contains the cycle C' := (1,2,5,6,7). Then f := e5 has the largest upper
limit among the edges in C' and the uncertainty set of g := eg intersects As. Once we
have updated the edges, we get A5 = {6} and Ag = {8} such that the instance is now
as in the figure below. The algorithm is restarted.

Iteration 4: e; < e3 < ¢4 < e5 <
e1 <eg<eg<eg<er LetT :=0.
Now we add eq, e3, e4, 5,61 and eg to
[' without closing a cycle. Then eq
is added to I' and I' contains the cy-
cle C :=(1,2,5,6,7). Then f := eg
has the largest upper limit among the
edges in C' and is always maximal.
Thus eg is deleted from I'.

{12}

Figure 2.4: The instance prior to the last iteration of U-RED: Each cycle has an always
maximal edge.

When eg is added to I, it closes the cycle C' := (4, 5,6). Now f := eg is always maximal
in C and is deleted from I'. Finally we add eg to I, which closes cycle C' := (2, 3,4, 5).
The edge f := eg is always maximal in C' and needs to be deleted from T'.

Thus U-RED has found the minimum spanning tree with edge set {e;|i = 1,...,6}
after having queried the edges in {ey, es, g, €7, €5, e9}. Note that ez, eg and eg would
have been always maximal in the respective cycles after only updating ey, e5, eg. Hence
U-RED achieves the claimed worst-case competitive ratio of 2.

20 2 Deterministic Algorithms

2.3 Non-uniform query costs

In this section we will present the algorithm BALANCE introduced by Megow et al.
in [15]. BALANCE works for general query costs and achieves an optimal competitive
ratio of 2.

2.3.1 Framework of BALANCE

The algorithm BALANCE as well as the algorithm RANDOM in the next chapter
start out with a certain spanning tree Ty, which is considered to be the first candidate
for a minimum spanning tree. In each iteration ¢ we add an edge f; to the tree, in order
of increasing lower limit (more precisely, in the order as in Definition [2.2]) The edge
fi closes a unique cycle C;. We then try to identify an edge of maximum weight in C.
In order to decide which edges should be queried it is essential to better understand
MST-U on cycles. Once we have found a maximum weight edge e;, this edge can be
disregarded as there exists an MST of G which does not contain e;. Hence for the
sequence of subgraphs (V, E;)%_,, where Ey = Ty, E; = E;_1 + f; and E), = E, we find
a nested sequence of query sets) = Qg C Q1 C ... C Qy, such that Q; verifies that
T, :=T,_1 + f; — e; is a minimum spanning tree of (V, E;), i =0, ..., k.

2.3.2 Lower Limit Tree

A lower limit tree is the edge set of a Minimum Spanning Tree in GG, where all edge
weights are set equal to the lower limit of the edge’s uncertainty set. An upper limit tree
is defined analogously. Let T}, Ty denote a lower and an upper limit tree respectively.

Remark 2.2. Megow et al. [I5] show that all edges in T}, \Ty with non-trivial uncer-
tainty sets lie in any feasible query set.

Thus the instance can be preprocessed such that 77\ consists of trivial edges only.
Now assume 77, \ Ty # Ty \ T1. The sum of upper limits of edges in Ty \ 17, cannot
be less than the sum of weights of edges in T}, \ Ty, otherwise Ty \ T, U (Ty N1Ty) =
Ty would be the edge set of a lower limit tree of smaller weight than 7. Hence

Ycervty Ue = Dcerpry We = Deerp\ry, Ue Which is why we can w.lo.g. assume
Tr = Tyy. We choose our initial tree Ty to be T7..

Throughout the discussion of BALANCE (as well as all algorithms which are based
on the same framework, e.g. RANDOM) we agree on the following notation:

Definition 2.4. Let R := E\T, =: {f1, .., fm—ns1}, such that f; < fo < ... < frn_1,
where < is the ordering as defined in Definition 2.2 Set Ty := Ty, Ey := T and
Qo:=0. Fori=1,...,m—n+1 we denote by E; := E;_U{f;} =T, U{f1,..., fi} the
set of edges which the algorithm has considered after i iterations and by @); the set of
all edges which the algorithm has queried during the first ¢ iterations. Moreover, let T;

2.3 Non-uniform query costs 21

be the minimum spanning tree which the algorithm has verified for the graph (V| E;)
after having queried the edges in @); during the first ¢ iterations, : = 1,....,m —n + 1.
Finally, by C; we denote the cycle closed during the ¢’th iteration when the algorithm
adds f; to T;_1.

2.3.3 Finding a maximum weight edge in a cycle

In a cycle C' an edge f with largest upper limit is a candidate for a maximum weight
edge, along with all the edges e in C' with A, intersecting Ay. By the choice of Ty = 17,
and the fact that Ty, = Ty, it turns out that the edge f; has largest upper limit in the
cycle C' that it closes with 7T;_;.

Lemma 2.4. Leti € {1,....m—n+1}. Let C; be the cycle that f; closes when added
to T;_1. Then f; has largest upper limit among all edges in C;.

Proof. We show that for all ¢ = 0,...m —n any edge not in E; has largest upper limit in
the cycle it closes with T;. The assertion is true for ¢ = 0 because Ty, = T, = Tyy. Now
assume it is true for ¢ and show that it holds for i + 1. Let f be an edge in £\ E;1;.
If the cycle C that f closes with T;, is the same as the cycle C’ that f closes with
T;, the assertion is trivially true. Thus we assume that C' # C’. This means that
when adding f;.1 to T; an edge e € C’ is removed and replaced by fi.1, which only
happens if f;1’s weight as well as the weight or upper limit of all other edges in C;14
are smaller than the upper limit of the deleted edge e. As C consists only of edges in
C" and Cj;q, f has largest upper limit in C. O

Note that even after querying all edges with uncertainty sets intersecting Ay,, f; could
still turn out to have larger weight than any of these edges and thus not be contained
in any MST. Hence, whenever we decide to keep f; as a tree edge, we must have
queried f;. In order to find a maximum weight edge in C; it is thus sufficient to only
consider those edges with uncertainty interval intersecting Ay, that lie in 77.

Definition 2.5. Let f; be the edge added in iteration ¢ and C; the unique cycle it
closes with T;_;. Then we define the neighbor set of f; as

X(f)={geC;nTy|A,N Ay #0}.

In each iteration ¢ we try to find a maximum weight edge in the cycle C; that f; closes.
If X(f;)is not empty (otherwise f; is always maximal) we either query f; or all edges
in X(f;). In fact any feasible query set must contain f; or all edges in X (f;).

Lemma 2.5. Given a graph G with uncertain edge weights and a realization of edge
weights, let Ty, be its lower limit tree. Let T;_q be a verified MST for G;_y = (V, E;_1)
and let C; be the cycle closed by adding edge f; to T;_1. Then any feasible query set Q)
of Gi = (V, E;) contains f; or X(f;).

22 2 Deterministic Algorithms

Proof. Assume we want to verify an MST of G; that contains f;. Then Q must
contain f; because otherwise there are possible realizations for which f; has strictly
largest weight in C; as it has the largest upper limit in Cj.

Now assume we want to verify an MST T of G; with f; ¢ T. Then f; must have
largest weight in the cycle C" it closes with T'. Note that 7" has to be an MST of G;_;
as well, thus f; must have largest weight in C;. If f; € @, then the only possible way
to guarantee that f; has largest weight in C} is to show that the weights of all other
edges do not lie in Ay,. Thus we have to test all neighbors of f;.]

So far we have shown that any feasible query set for (V) E;) contains f; or all edges in
X(fi)-

However, we want that any feasible query set of the entire graph G contains these
edges as well. This is guaranteed by the following lemma, which was shown by [15]:

Lemma 2.6. Leti € {0,...,m—n-+1}. Given a feasible query set Q for the uncertainty
graph G = (V, E), then the set Q N E; is a feasible query set for G; = (V) E;).

Remark 2.3. If we still do not know which edge has maximum weight in C; we go
on querying edges in order of decreasing upper limit until we find a maximum weight
edge. These edges were shown by [I5] to be part of any feasible query set as well, due
to the fact that f; has largest upper and lower limit in C;.

2.3.4 Core of the algorithm BALANCE

To decide whether to query f; or all of its neighbors, the algorithm proceeds as fol-
lows: "By default” we query the neighbor set X (f;). We want to query the neighbors
because they might reappear in neighbor sets of later iterations. However, we want
to make sure that we maintain a competitive ratio of 2. This is done by assigning an
edge potential y. to every edge e € Tp, which is initially set to 0. In each iteration
i, the potential y. of each edge e in X(f;) is either raised to a common level ¢(f;) or
remains the same, if y. is already greater than ¢(f;). The value of ¢(f;) is obtained
by maximizing ¢ < 1s.t. 3 sy ¢e - max{0,t — yc} < gy, and can be computed by
applying the subroutine displayed in Algorithm |3| Note that ¢(f;) > 0 and that the
choice of t(f;) guarantees for each edge e that 0 < y. < 1 holds at all times. The edge
potential of e can be interpreted as the share of the query cost of e which has already
been balanced by the query cost in the optimal solution and is increased whenever e is
part of a neighbor set. Thus we make sure that edges which appear in many neighbor
sets are queried.

A formal description of the algorithm BALANCE can be found in Algorithm 2]

Remark 2.4. Note that BALANCE runs in polynomial time. The preprocessing re-
quires solving two MST instances repeatedly but at most m times because prior to

2.3 Non-uniform query costs 23

input : An instance of MST-U with graph G = (V,), uncertainty sets A,
and query costs ¢., e € E
output: A feasible query set Q

1 Preprocess the instance such that 77, = Ty and set I' := T7;

2 Index the edges in R:= E\ Ty s.t f1 < ... < frna1;

3 Initialize Q = ();

4 Initialize y. = 0 for all e € T7;

5 fori<1tom—n+1do

6 Add f; to I' and let C; be the unique cycle closed;

7 Let X (f;) be the set of edges g € T, N C; with U, > Ly;;

8 if X(f;) is not empty then

9 Maximize the threshold ¢(f;) <1 s.t.

ZeGX(fi) Ge * maX{O, t(fz) - ye} S in;

10 Increase edge potentials y. := max{t(f;), y.} for all e € X(f;);
11 if ¢(f;) <1 then

12 ‘ Add f; to @) and query it.

13 else

14 ‘ Add all edges in X(f;) to @ and query them.
15 while no edge in the cycle C; is always mazximal do

16 Query the unqueried edge e € C; \ @ with maximum U, and add it to

Q.

17 Delete an always maximal edge from I'

Algorithm 2: The algorithm BALANCE for MST-U with general query costs
(adapted from [I5], page 1223 and 1231)

every new computation of a lower and an upper limit tree we query at least one edge.
This yields O(m?log(n)) time with e.g. Kruskal’s algorithm. Sorting the edges in R
can be done in O(mlog(n)) time. We also sort all edges in order of non-increasing
upper limit. We update this sorting whenever we make an edge query. This takes
O(mlog(n)) time for the initial sorting and O(log(n)) time per query. During the i’th
iteration, finding C; and X(f;) can be done in O(n) time. The value of ¢(f;) can be
computed with the subroutine in Algorithm [3|

This subroutine requires sorting the edge potentials (O(nlog(n)) time) and O(k) con-
stant time operations (i.e. O(n) time.)

After having queried f; or all of X(f;), we need to check whether w; > U, or
We(= Ue) < Ly, for all e € X(f;) respectively. Both can be done in constant time
due to the sorting with respect to the upper limits. Once we have updated f;, there
exists an always maximal edge in C; iff the edge with maximum upper limit is trivial.
(Hence this can be checked in constant time.) The time needed for edge queries, up-

24 2 Deterministic Algorithms

input : An edge f; with neighbor set X (f;) and edge potentials y, for
e € X(f;)
output: t(f;)
1 Sort the edges in X (f;) = {e1, ..., ex} such that y., < ... <, ;
2 for j < k to 1 do
3 Compute ¢ such that Zl 1Ge,(t — Ye,) = 535
4 if t —y., > 0 then
5 | STOP, output ¢(f;) := min{1,¢}

Algorithm 3: Computing ¢(f;)

dating the ordering of upper limits or checking whether there is an always maximal
edge is not counted per iteration, because it sums up to O(mlog(n)) over all itera-
tions. The run-time per iteration without these operations can thus be bounded by
O(nlog(n)). Hence the overall run-time for the algorithm, without the preprocessing,
is bounded by O(m - nlog(n)) time and by O(m?log(n)) time if the preprocessing is
included.

Theorem 2.7. ([15], page 1230) The algorithm BALANCE achieves competitive ratio
2.

Proof. To compare the query cost of the set () found by BALANCE with the cost of
an optimal query set QQ* we consider three subsets of () separately: edges which also
lie in Q*, edges in T, N @ which do not lie in Q* and edges in R = E \ T}, which are
queried by BALANCE but are not in the optimal query set Q*. Then

>ge= D> a+ D, at Y. an

ecQ ecQNE* e€(QNTL)\Q™ i:fie(QNR)\Q*

Consider first edges in (Q N R) \ Q*. An edge in @ N R is queried, thus we know that
t(f;) < 1is chosen such that we obtain equality in line 9 of Algorithm [2 We denote
by 4’ the potential of e at the beginning of the i’th iteration. Hence t(f;) = y** for
all edges whose potential changes in iteration ¢ and we have

POREND DD DR Ok

i:fi€(QNR)\Q* i:fi€(@QNR\Q* e€ X (fi)

Note that even though we do not sum over all iterations, for a fixed e the sum

S Wit -

i:fi€(QNR)\Q*
e€ X (fi)

2.3 Non-uniform query costs 25

can be bounded by ., where . is the potential of e after the last iteration, because the
potential never decreases. As for any f; € R\ Q* the neighbor set X (f;) lies entirely
in Q*, we can sum over all edges e € T, N Q*. Hence

Z ing Z ye'QeS Z Ge

i f;€(QNR)\Q* e€TLNQ* e€TLNQ*

Now we consider the query cost of (Q NTy) \ Q*. Note that for e € T, N Q) we have
ye = 1. Again we use that for e € X(f;) with e € Q* we know by Lemma [2.5] that f;
lies in Q*. Thus:

Z Ge < Z Ge " Ye = Z qe Z H_l Z

GE(QQTL)\Q* eETL\Q* EETL\Q* i f;ERNQ™*
e€X(fi)
< DD alwt - < Y an
i:fi€ RNQ* e€ X (f;) i fi€ RNQ*

Finally the cost of edges in @) N Q* can simply be bounded by the cost of all of Q*.
Hence

> 6e<d g+ >, ant D, =2 g

ecqR ecQ* i f;ERNQ* eeT,NQ* ecQ*

Example 2.4. We will now demonstrate by an example how the algorithm BALANCE
works. Consider the graph GG with uncertainty sets as in the figure below. We use
the same edge names (ey, ..., €9) and notation for the uncertainty sets as in Example
as well as q; 1= q;, j = 1,...,9 for the query costs which all equal 1, except for
q1 = qs = 2 and g9 = 1.8.

26 2 Deterministic Algorithms

Preprocessing: {ej, es, €3, €4, €5, €6}
is the edge set of a lower limit tree and
{ea, €3,¢€1, €9, 5,66} is the edge set of
an upper limit tree. Thus by Remark
2.2] we know that e, lies in any feasible
query set, thus we update e,. We set
7.-(29) (6,16)~.7 TL(:= Ty) := {e1, €9, 3, €4, €5, €6} and

12 @ fi1:=er, fo2 = es, f3 1= ey.

Figure 2.5: An instance of MST-U with non-uniform query costs. The realisation of
edge weights is depicted in red. The query costs are equal to one except
for g1 = g6 = 2,49 = 1.8 (in green).

(7.1,16)

Now we set I' := 77, Q := () and y; := y., = 0 for all j € {1,...,6}.

i=1: The edge e closes the cycle Cy = (2,3,4,5) in I' := T, U {e7}. The uncertainty
sets As and Ag intersect A;, hence X.. = {es, e6}.

Then t(er) = argmax,cj {¢s - max{0, (t — y5)} + g¢ - max{0, (t — ys)}} = 3 and we
have gs(t(e7) — ys) + gs(t(er) —ye) =1+ (3 —0) +2- (5 — 0) = 1 = g;. We increase

1 1
Ys = 5% = 3-

3 3
As t(er) = % < 1, we query f; = ez, i.e. @ :={e;}. This yields w; = 15 € Ag, hence
we cannot identify a maximum weight edge in C';. Thus, we query the edge eg, which
has now the largest upper limit among edges in C; and add it to @, i.e. @ := {eg, e7}.
Now we know, that e; is a maximum weight edge in C, we remove it from I'; i.e
I' := TL-

i=2: The edge es closes the cycle Cy = (4,5,6) in I' :== T, U {eg}. The uncertainty
set of Ay intersects Ag and we have X, = {e;}. BALANCE sets t(eg) := 0.5 and we
have ¢1(t(es) —y1) =2- (0.5 —0) = 1 = gs. BALANCE sets

1
Y= 3
Moreover, we set @ := {eg, e7,es} and query es, revealing wg = 12, which is sufficient
to see that eg has maximum weight among the edges in C5. Set I' := T7.

2.3 Non-uniform query costs 27

i=3: The edge eg closes the cycle C5 = (1,2,5,6,7) in I" := T, U{eg}. The uncertainty
sets of e5 and e; intersect Ag, hence X (eg) := {e1, e5}. Now in this iteration t(eg) = 1
and q1(t(eg) —y1) +gs(t(eg) —y5) = 2- (1 —3) +1-(1 - 3) = 3 < go. Hence we query
the edges in the neighbor set which is sufficient to identify eg as a maximum weight
edge in C3. Set Q := {ey, es, €5, €7, €5} and output I' := T7.

The cost of this solution for the preprocessed instance is 2+1+24+1+1 = 7, while an
optimal solution queries eg, e5 and ey, which yields a query cost of 5. This yields a
competitive ratio of % = 1.4 for the preprocessed instance and % ~ 1.33 for the original
instance.

Now let us see how BALANCE performs in the uniform query cost case for the instance
in Example [2.3

Example 2.5. Consider the instance of MST-U and the notation of Example [2.3]
Here we already have T, = Ty = {ey, ..., e} without prior queries. As for f; = e,
fo = eg and f3 = eg the cycles stay the same as in the non-uniform case, we will just
briefly state the neighbor sets, how the potentials increase and which edges are added
to Q.

First set @ := () and y; := y., = 0 for all j € {1,...,6}.

i=1: X(er) = {es, €6} as in the non-uniform case. We have t(e;) = 1 and
gs(t(er) —ys) + qs(t(er) —ys) =1- (3 —0)+1- (3 —0) =1 = g;. We increase
. 1 . 1
Ys 1= 53?/6 =5
As t(er) = % < 1, we query f; = e; and then eg, as querying e; does not turn out to
be sufficient to see that e; is a maximum weight edge in C. So @ := {eg, e7}.

i=2: Again the neighbor set X (eg) = {e1} stays the same as in the non-uniform case.
BALANCE sets t(es) := 1 which satisfies ¢;(t(es) —y1) =1-(1 —0) =1 = gs. The
edge potential of y; is now

y1 = 1.

Moreover, as t(es) = 1, we set @ := {ey, €5, €7} and query ey, revealing w; = 7, which
is sufficient to see that egs has maximum weight among the edges in Cs.

i=3: Now the neighbor set of edge eg only contains e5. Thus we have t(eg) = 1 such

that gs(t(eg) —ys) = 1-(1—3) = 2 <1 = go. Hence we query e5, which makes it clear

that eg is a maximum weight edge in Cj. Set Q) := {ey, €5, €6, €7} and output I' := T7.

Remember that U-RED queried 6 edges when applied to this instance. Hence, for this
instance BALANCE performs better than U-RED. This is not necessarily the case in
general.

3 Randomization

3.1 Lower bound

Consider again Example 2.2 An algorithm queries edge {2,3} first with probability
P.

If we consider again the realization w3y = 3.5, Wy 2) =

4.5, the expected number of queries is 2p + (1 — p), as

W23} € A1,y and thus the algorithm has to query {1,2}
{1} (2.4) too if it queries {2, 3} first.

Now we assume that the underlying realization is wys 3y =

2.5, w12y = 3.5. Then the expected number of queries is

(3.5) p+2(1-p).
Figure 3.1: Lower bound computation for randomized algorithms

As max{2p + (1 — p),p + 2(1 — p)} is minimal for p = 1, no randomized algorithm

can achieve a competitive ratio less than 1.5 when applied to this instance. The lower
bound of 1.5 for randomized algorithms was observed by [5].

3.2 Uniform query costs

3.2.1 The algorithm RANDOM

The algorithm RANDOM which was introduced by [15] works similar as BALANCE
and uses the same framework. In each iteration ¢ we try to find a maximum weight edge
in the cycle C; that f; closes. If X (f;) is not empty (otherwise f; is always maximal) we
either query f; or all edges in X (f;). If we still do not know which edge has maximum
weight in C; we go on querying edges in order of decreasing upper limit until we find
a maximum weight edge. To decide whether to query f; or all of its neighbours the
algorithm uses randomization. Again each edge e in T}, is assigned an edge potential
Ye which is initially set to 0 and can only increase throughout the algorithm. In the
setting of RANDOM however, ¥, can be interpreted as the probability that e is queried.
In each iteration ¢, a total potential of \/LQ is spread among edges in X (f;) (the choice

29

30 3 Randomization

of \% becomes evident in the analysis of the algorithm.) Thereby the potential y. of
each edge e in X (f;) is either raised to a common level £(f;) (yet to be defined) or
remains the same, if y, is already greater than t(f;).

In the beginning of the algorithm we agree on a bound b that is drawn uniformly at
random from [0, 1]. Whenever t(f;) exceeds b, i.e. whenever all edges in X(f;) have
potential at least b, we decide to query all edges in X (f;). Otherwise we query f;.
This means that an edge e € Ty \ Q* is queried if its potential exceeds the query
bound b, where Q* denotes an optimal query set. Hence an edge e € T, \ Q* is queried
with probability Ply. > b] = y. and an edge f; € R\ Q* is queried with probability
PIt(f;) < b] = 1 — ().

Algorithm {4 gives a formal description of the algorithm RANDOM.

input : An instance of MST-U with graph G = (V, E), uncertainty sets A,
e € FE and uniform query costs
output: A feasible query set ()

1 Draw b uniformly at random from [0, 1];

2 Preprocess the instance such that T, = Ty and set I' .= T ;

3 Index the edges in R := F \ T}, by increasing lower limit fi, ..., fin_ni1;
4 Initialize Q = 0;

5 Initialize y. = 0 for all e € T7;

6 fori<1tom—n+1do

7 Add f; to I' and let C; be the unique cycle closed;

8 Let X (f;) be the set of edges g € T, N C; with U, > Ly;;

9 if X (f;) is not empty then

10 Maximize the threshold ¢(f;) <1 s.t.

ZeeX(fz-) max{0,t(f;) — ye} < \%?

11 Increase edge potentials y. := max{t(f;), y.} for all e € X(f;);
12 if ¢(f;) < b then

13 ‘ Add f; to @ and query it.

14 else

15 ‘ Add all edges in X (f;) to @ and query them.

16 while no edge in the cycle C; is always maximal do

17 Query the unqueried edge e € C; \ @ with maximum U, and add it to

Q.

18 Delete an always maximal edge from I"

Algorithm 4: The algorithm RANDOM for MST-U with uniform query costs
(adapted from [I5], page 1223 and 1227)

3.2 Uniform query costs 31

Analysis of RANDOM

Again we partition the query set Q into the three subsets @ N Q*, (Q N R) \ Q*
and (Q NTy) \ QF, where Q* is an optimal query set. Similar to the proof of the
competitive ratio of BALANCE the expected query cost of each of these sets can be
bounded separately. Megow et al. [15] show the following lemmata:

Lemma 3.1. For any feasible query set Q* it holds that

S p<—RAQ,
e€Tr\Q* \/_

where 1y, denotes the edge potential of e after an execution of RANDOM.

Lemma 3.2. For any feasible query set QQ*, it holds that

1
(L=tfi) £ —=-TLnQ"].
Z'ifz'GZR\Q* \/5

Hence we obtain the following result about the competitive ratio of RANDOM:
Theorem 3.3. ([15], page 1228) RANDOM has competitive ratio 1 + \/Li (= 1.707).

Proof. By applying Lemma [3.1] and Lemma [3.2] to the overall expected value, we get:

E[Q[=ElQNQ | +E[(QNTL)\ Q" + E[(Q N R)\ Q"]
=ElQNn@ I+ > PlecQl+ Y, 6 Pfieq]

e€T\Q* i f;€R\Q*

ElQNQ I+ > v+ Y. (L—tf)

eETL\Q* i fi€R\Q*

ElQ N Q| + f|RﬂQ|+ > @—tf)

i fl ER\Q*

INH

INE

E[[Q nQ™[] + \f!RﬂQH\fITLﬂQ!

1 1
§|Q*|+E|RHQ*|+\/—|TLHQ|_(E)-IQ*I-
O

Example 3.1. We will now demonstrate by an example how the algorithm RANDOM
works. Consider the graph G with uncertainty sets as in the figure below. We use the
same edge names (eq, ..., e9) and notation for the uncertainty sets as in Example [2.3]

32 3 Randomization

Preprocessing: As in Example
the preprocessing results in query-
ing e4, which lies in any feasible
query set and yields Tp(:= Ty) =
{e1,€e9,€3,€e4,65,66}. The edges in
15 R:=E\Ty, ={er es,e9} are indexed
via f1 ;= eq, fo := eg and f3 := eg such
that f; < fo < f3. Assume that draw-
ing b uniformly at random from [0, 1]
yields b = 0.4.

(7.1,16)

Figure 3.2: An instance of MST-U with uniform query costs. The realisation of edge
weights is depicted in red.

Now we set I' := 77, Q := () and y; := y., = 0 for all j € {1,...,6}.

i=1: The edge e; closes the cycle C; = (2,3,4,5) in I :== T, U {e7}. The uncertainty

4
sets A5 and Ag intersect Ay, hence X (e7) = {es,e5}. Then t(e7) = ﬁi and we have

(ter) —ys) + (tler) — ys) = (ﬁi —0) + (ﬁi —-0) = \/Lﬁ We increase
1 1
Ys = m»yﬁ = m
As t(er) = #5 ~ 0.35 < 0.4, we query ez, i.e. @ :={e;}. As w; =15 € Ag, we have

to query eg too, @ := {es, e7}. Now we know, that e; is a maximum weight edge in
C: and remove it from I', i.e I := T7.

i=2: The edge es closes the cycle Cy = (4,5,6) in I :== T, U {es}. The uncertainty
set of A; intersects Ag and we have X(es) = {e1}. RANDOM sets t(es) := \/Li such
that t(es) — 11 = % —-0= \/iﬁ RANDOM sets

1
Y = E

Moreover, we set @) := {ey,eq,e7} and query e;, because t(eg) = \/LE ~ 0.707 > 0.4.
Now eg has become an always maximal edge among the edges in C5. Set I' :=T7.

i=3: The edge eg closes the cycle C3 = (1,2,5,6,7) in I" := T, U {eg}. Note that the
neighbor set of eg is {e5}. Now t(eg) =l as 1 —ys =1— ﬁ < \/Li Thus we query es,
as t(eg) =1 > 0.4, remove eg from I', i.e. I' := T}, and output @ := {ey, es, 4, €7}.

3.2 Uniform query costs 33

This means that for b = 0.4, RANDOM finds a solution with competitive ratio %.

3.2.2 An optimal randomized algorithm for cactus graphs
with uniform query costs

An essential aspect of solving the MST-U is handling edges which appear on multiple
cycles. In this section however, we consider the special case of cactus graphs, where
a cactus graph is a connected graph in which two cycles share at most one vertex.
Speaking in the terminology of RANDOM, this means that no edge in T}, will appear
in more than one neighbor set. Once we are able to treat cycles separately it turns out
that it is possible to achieve an optimal expected competitive ratio of 1.5. Note that
RANDOM does not necessarily achieve expected competitive ratio 1.5 for instances of
this type: Consider the instance used to compute the lower bound in Section [3.1] T},
consists of the edges {1,3} and {2,3}. When adding {1,2} to T}, potential o = \/LQ is
distributed among the neighbors of {1,2}, consisting only of the edge {2,3}. Hence,
{2,3} is queried first with probability \%, while {1, 2} is queried first with probability
1 — L. If we face the realization Wy23y = 3.5 and wy; 9y = 4.5, then the expected

V2
competitive ratio equals 1 — \/Li + 2\% =1+ \/Li > 1.5.

For cactus graphs it is possible to achieve competitive ratio 1.5 in expectation, using
the following observation: The framework of RANDOM guarantees that once we have
queried f; or all of X(f;), querying edges in the current cycle C; in order of decreasing
upper limit until an MST can be identified only adds edges to the query set which must
lie in any feasible query set. Thus, if we start by querying f; then we have queried at
most one edge on Cj, which is not in the optimal solution.

Remark 3.1. In an instance of MST-U where the graph G is a cycle, querying f; = fi

first leads to a competitive ratio of at most ogg; L which is at most 1.5 unless OPT =
1.

Proposition 3.1. For cactus graphs there exists an algorithm RAN DOM¢ with com-
petitive ratio at most 1.5, which is optimal. Moreover, if G is a cycle with Ty = Ty
in which the edge with maximum upper limit has k neighbors, RAN DOM achieves
competitive ratio 1 + kz—]il

Proof. We first consider a graph C' which consists of a single cycle. Assume again that
we have applied the same preprocessing as for RANDOM and BALANCE and that
T, = Ty. Let f be the edge in E'\ Ty, and let k := | X (f)| be the number of neighbors
of fin C. Our algorithm starts by querying all edges in X (f) with probability p.
With probability 1 — p, its first step is to query f. Once it has queried X(f) or f,
it proceeds as RANDOM and queries edges in order of decreasing upper limit until a
maximum weight edge can be identified.

If an optimal solution does not query f, it must query all of the neighbors in X (f)

34 3 Randomization

and thus queries k£ edges. Hence, with probability p, we query the same edges as the
optimal solution and achieve competitive ratio 1. With probability 1 — p, we query f
and possibly all of the edges in the neighbor set, such that the competitive ratio is at
most % In this case the expected competitive ratio is at most w.

If an optimal solution queries f, we produce the optimal solution if we start by querying
f, i.e. with probability 1 — p. If we start by querying all of X (f), we might have to
query f too, while the optimal solution might query f only. In this case the expected
competitive ratio is bounded by (k+ 1)p+ (1 — p). As

kp+ (k+1)(1—
max{ P+ k:)(p>,(/€+1)p+(1—p)}
is minimized for p = k++1’ we achieve competitive ratio at most 1 + kQ—’fH, if we can

guarantee that we start by querying X (f) with probability kQ;H or by querying f with
probability 1 — k++1 For general G, we treat each cycle separately. A description of
the algorithm RANDOM is depicted in Algorithm [3]

Let C; be the cycle closed in iteration i. For an instance which consists only of
C;, let @QF denote an optimal query set and OPT; := |Q;|. As cycles in G do not
share any edges, the disjoint union Q* of the)7 is an optimal solution for G and thus
OPT = """ OPT;. Moreover, this structure guarantees that X (f;) is independent
of the choice of queries in previous iterations as well as their outcome. As
P[RANDOMg starts by querying all of X(f;)] = P[b < 5] = 27, we thus expect
at most (1 + %H)OPTi < 1.5 - OPT; queries in iteration 7. Let ¢ denote the number
of queries made in the preprocessing.

Thus,

E[ALG] c+E[X "™ ALG)] c+ X" E[ALG,] _ct S5 - OPT,

OPT OPT OPT T e+ Y MorT,
< 1.5.

O

Remark 3.2. Without preprocessing, the algorithm RANDOM¢ runs in O(mn) time
and the preprocessing can be done in O(m?log(n)) time. The analysis is the same as
for BALANCE in Remark [2.4] except for the computation of edge potentials which is
not needed here.

Example 3.2. We will now demonstrate by an example how the algorithm RANDOM¢
works. Consider the graph G with uncertainty sets as in Figure below.

Preprocessing: Note that this graph is already preprocessed, in the sense that
T, =Ty = E\ {{1,2},{5,6},{7,9}}. Assume that drawing b uniformly at random

3.2 Uniform query costs 35

input : An instance of MST-U with cactus graph G = (V, E), uncertainty
sets A, e € E and uniform query costs
output: A feasible query set ()
1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that T, = Ty and set ' := T7};
3 Index the edges fi, ..., fu_ns1 in R := E \ T}, arbitrarily ;
4 Initialize Q = ();
5 fort<1tom—n+1do
6 Add f; to I' and let C; be the unique cycle closed;
7 Let X (f;) be the set of edges g € T, N C; with U, > Ly;;
8 Let k:= | X(f)] ;
9 | if X(f;) =0 then
10 ‘ delete f; from I
11 else
12 if b < k%ﬂ then
13 ‘ add all edges in X(f;) to @ and query them.
14 else
15 ‘ Add f; to @ and query f;.
16 while no edge in the cycle C; is always maximal do
17 Query the unqueried edge e € C; \ with maximum U, and add it
to Q.
18 Delete an always maximal edge from I’

Algorithm 5: The algorithm RANDOM¢ for MST-U with uniform query
costs in cactus graphs

from [0, 1] yields b = 0.4. Pick the ordering f; = {1,2}, fo = {5,6} and f3 = {7,9}.

i=1: The edge f; closes the cycle Cy = (1,2,3,9), where it has precisely one neighbor
(X(f1) = {{2,3}}.) Thus k := 1 and we have z'5 = 0.5 > 0.4 = b, which is why we
query {2,3}. As w33 =6 < Ly, we can exclude f; from I'.

i=2: Next we add fy to I', where it closes the cycle Cy = (4,5,6,9). Its neighbor
set is X(fo) = {{4,9},{4,5},{6,9}} and thus k := 3. As 5’5 = 15 = 0.1 < 0.4,
RANDOM¢ decides to query f. Now Cs does still not have an always maximal edge,
thus we go on by querying {6,9} and then {4,5}. The latter turns out to have maxi-

mum weight among edges in C5 and is excluded from I'.

i=3: Finally we consider C5 = (7,8,9), which arises from adding f5 to I". Here the
neighbor set is X (f3) = {{7,8},{8,9}} and hence k := 2. Again we decide to query

36 3 Randomization

Figure 3.3: An instance of MST-U with uniform query costs in a cactus.The realisation
of edge weights is depicted in red.

f3, because k21+1 = % = 0.2 < 0.4. Unfortunately wy, lies inside the uncertainty sets

of both its neighbors, so we have to query {7, 8} and {8,9} too in order to see that f3
has maximum weight among edges in Cj.

Hence for this instance, RANDOM¢ outputs the query set
{{2,3},{5,6},{6,9},{4,5},{7,9},{7,8},{8,9}} if b = 0.4. Note that an optimal
solution for the cycle C'; only queries one edge, an optimal solution for C5 queries
{4,5},{5,6} and {6,9}, while an optimal solution for C3 queries edges of the neighbor
set only, i.e. {7,8} and {8,9}. Thus for C; and Cy we have found an optimal solution
and OPTy; = 1, OPTy = 3, OPT3 = 2. This yields a competitive ratio of % for this
instance if b = 0.4.

3.3 Non-uniform query costs

3.3.1 Adaption of RANDOM to the non-uniform case

The algorithm RANDOM can be adapted to work for non-uniform query costs as well.
In this case we distribute q\/i% potential among the neighbors of f;. This means that in

order to determine t(f;) we have to

maximize t(f;) <1 s.t. Z qe - max{t(f;) — ye,0} < a5

3.3 Non-uniform query costs 37

The results on the competitiveness of RANDOM extend to this adaption, as shown
by [15]:

Theorem 3.4. ([I5], page 1230) For the non-uniform query cost setting the algorithm
RANDOM adapted according to achieves competitive ratio 1 + \%

Remark 3.3. The algorithm RANDOM for uniform as well as for non-uniform query
costs runs in polynomial time. The analysis is identical to the one of BALANCE (see

Remark 2.4])

Example 3.3. We will now demonstrate by an example how the algorithm RANDOM
works in the case of non-uniform query costs. Consider the graph G with uncertainty
sets as in the figure below. We use the same edge names (e, ..., ¢9) and notation for
the uncertainty sets as in Example , as well as g; := q.;, j = 1,...,9 for the query
costs.

Preprocessing: As in Example
the preprocessing results in query-
ing e, and yields Tp(:= Ty) :=
{e1,€e9,€3,€e4,65,66}. The edges in
R:= E\Ty = {e7,es,¢e9} are again in-
dexed via f; :=e7, fo := ez and f3 :=
€9. Assume that drawing b uniformly
729 (616)7 at random from [0,1] yields b = 0.4
12 @ like in Example [3.1]

(7.1,16)

Figure 3.4: An instance of MST-U with non-uniform query costs. The realisation of
edge weights is depicted in red. The query costs are equal to one except
for g1 = g6 = 2 and ¢7 = 1.8 (in green.)

Now we set I' := T, Q := 0 and y; :=y., = 0 for all j € {1, ...,6}.

i=1: Adding e; to I" yields C; = (2,3,4,5) and X(7) = {65,66} Then t(e7) = %

such that we have g5(t(e7) —ys5) +qs(t(er) —ys) = (Lf —0)+ (—0) = L =1
We thus set

1 1
Ys := ﬁayﬁ = 3—\/5

As t(er) = ﬁﬁ < 0.4 = b, we query f; = e, i.e. Q= {e;}. We still cannot identify
a maximum weight edge in C';. Thus, we query the edge eg too and add it to @), i.e.

38 3 Randomization

Q := {eg,e7}. The edge e; as a maximum weight edge in C; is removed from T, i.e
.= TL.

i=2: The edge eg closes the cycle Cy = (4,5,6) in ' := T U{es} and we have X (eg) =
{e1}. RANDOM sets t(eg) := 2\[and we have q; (t(es) —y1) = 2+ (535 55 0) = % %
The potential of y; is increased:

1
PN

As t(eg) 55 ~ 0.35 < 0.4, we set Q := {es, e7, es} and query eg, revealing wg = 12,
which is sufﬁ[ient to see that eg has maximum weight among the edges in C5. Set
r:=1T;.

i=3: The edge eg closes the cycle C5 = (1,2,5,6,7) in I' :== T, U {eg}. The uncer-

tainty Sets of e; and ej intersect Ag, hence X (eg) := {e1,e5}. Now in this iteration
teq) = 1T ~ 0.74 and satisfies g (t(eo) — y1) + a5 t(es) — 45 =
: (4:\7/5 2\/5) +1- (454% — ﬁ) = % = . Hence, as t(eg) > 0.4, we query

e; and e; which is sufficient to identify eg as a maximum weight edge in C3. Set
Q :={e1, e5, ¢4, 67,63}, set T' := Ty, and output Q.

This means that for b = 0.4, the cost of this solution for the preprocessed instance is
24+1+42+1+1 = 7, while an optimal solution queries eg, €5 and e, which yields a query
cost of 5. This yields a competitive ratio of % = 1.4 for the preprocessed instance and
8 ~ 1.33 for the original instance.

6

3.3.2 An optimal randomized algorithm for cactus graphs
with non-uniform query costs

The algorithm RANDOM¢ can easily be adapted to work for non-uniform query costs

as well. Let C; denote the cycle closed by f; during the i'th iteration and let X (f;)
be the neighbor set of f;. We denote by g¢; the cost of querying all edges in X(f;),

le. ¢ = ZeEX(f-) ge. With probability p; = 7z i’ 7 we start by querying all edges in
: 7,

X(f;) and with probability 1 — p; we start by querying fi. Afterwards we proceed as

usually, i.e. as in the framework of BALANCE. A precise description of RANDOM¢

for general query costs is given by Algorithm [6]

Proposition 3.2. The algorithm RANDOM¢ for MST-U instances in cactus graphs
with general query costs achieves competitive ratio at most 1.5, which is optimal.

Proof. Let QF be an optimal query set for the cycle C;. We set OPT; := |Q}|, Q; :=
@ N C; and denote by ALG; the sum of query costs of edges in ;. We aim to show

3.3 Non-uniform query costs 39

input : An instance of MST-U with cactus graph G = (V, E), uncertainty
sets A, and query costs ¢., ¢ € E
output: A feasible query set ()
1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that T, = Ty and set ' := T7};
3 Index the edges fi, ..., fn_ns1 in R := E \ T}, arbitrarily ;
4 Initialize Q = ();
5 fori<1tom—n+1do
6 Add f; to I' and let C; be the unique cycle closed;
7 Let X (f;) be the set of edges g € T, N C; with U, > Ly;;
8 Let ¢; := Zeex(m e ;
9 if X(f;) =0 then
10 ‘ delete f; from I'
11 else
2
12 if b < qgﬁq% then
13 ‘ add all edges in X (f;) to @ and query them.
14 else
15 ‘ Add f; to Q and query f;.
16 while no edge in the cycle C; is always maximal do
17 Query the unqueried edge e € C; \ @ with maximum U, and add it
to Q.
18 Delete an always maximal edge from I'

Algorithm 6: The algorithm RANDOM for MST-U with general query costs
in cactus graphs

that % < 1.5 for all : = m —n + 1. Analogously to the proof of Proposition
we obtain that the competitive ratio is bounded by

i + (1 — pi)(gi + gy, :

if f; ¢ QF and by

1 —pi)gy, + pilai + gy, i
(L= pi)an +pl+an) _q,) @

qf; af;

2

if f; € Qr. For p; = q;Tf:q_g both these ratios yield the value

1+ .
47, + ¢

40 3 Randomization

Note that
qi " qf; 1
@ +a " 2
2q:q5, < ¢, + 4 =
0< (qu‘ - qi)2

and is thus true.
As % < 1.5 for all 7, we obtain that % < 1.5 by the same arguments as used in

the proof of Proposition 1] O

4 Connection of MST-U to
Minimum Bipartite Vertex Cover

In all examples so far we were able to compute the competitive ratio of a solution
because with the knowledge of the underlying realization it was “easy to see” which
queries an optimal solution would make. This leads to the question whether there is
an algorithmic way of computing the optimal solution (i.e. an optimal query set) given
the knowledge of the real edge weights. This problem is called Minimum Spanning
Tree Verification under Uncertainty and was studied by Erlebach and Hoffmann in
[4]. They established a connection between the verification problem of MST-U and
Minimum Bipartite Vertex Cover which was later modified by [15] to construct an
instance of Online Bipartite Vertex Cover (see Definition from an instance of
MST-U.

4.1 Minimum Spanning Tree Verification under
Uncertainty

Definition 4.1. Consider a graph G = (V, E) such that for each e € F we are given
an uncertainty set A., where A, is an open interval or trivial, a query cost q., as well
as the edge weight w, € A.. The Minimum Spanning Tree Verification Problem under
Uncertainty (MST-U-VER) consists in finding a minimum cost query set Q C E such
that if updating the edges in Q verifies the edge weights w,, e € (), then the edge set
of an MST can be calculated.

Erlebach and Hoffmann [4] present an algorithm based on U-RED which computes an
optimal query set in polynomial time and makes use of a connection between MST-U
and Bipartite Vertex Cover. The following approach is similar to the one in [4] but we

adapted it to the framework of BALANCE instead of U-RED.

The algorithm VERIFICATION works in three phases. In Phase 1 it identifies a set
A of edges that have to be in any feasible query set, as well as a set

P = {(dlyBl>7 ey (dk,Bk)} C R x P(TL)7

where k € N, R:= E\ Ty, and P fulfills the following two properties:

41

42 4 Connection of MST-U to Minimum Bipartite Vertex Cover

1. The set Q' = {AU{d;li e I}UlJ

set of feasible query sets,

iy Bjl 1, J form a partition of {1,...,k}} is a

2. if Q) is a feasible query set, it contains an element of ()’ as a subset.

Phase 2 is a sorting phase to “tidy up” the set P constructed during Phase 1. During
Phase 3, VERIFICATION identifies an element of)’ that minimizes the query cost
by establishing a connection to the (weighted) Bipartite Vertex Cover Problem. In
the following we describe the three phases in more detail. A formal description of
VERIFICATION can be found in Algorithm [7]

Phase 1 : Let f; € R be the edge added to T;_; during the execution of BALANCE
and let C; be the unique cycle closed. Then either the edge f; is always maximal or
by Lemma [2.5{ and Remark one of five cases might occur:

1. Querying f; is sufficient to find a maximum weight edge in C; while querying
X(f;) is not.
In that case f; which has maximum weight in C; has to be in any feasible query
set, thus VERIFICATION adds f; to A and deletes it from the current tree.

2. Querying X (f;) is sufficient to find a maximum weight edge in C; while querying

only f; is not. However, 35 C X(f;) such that querying {f;} U S is sufficient
too.
In this case it is non-trivial to decide whether { f;}US or X (f;) should be queried
because it not only depends on the query cost but also on future cycles which
might contain edges in X (f;). However, all edges in S lie in every feasible query
set with certainty. So VERIFICATION adds S to A and the pair (f;, X(f;) —.5)
to P and removes f; from the current tree.

3. Querying X (f;) is sufficient to find a maximum weight edge in C; while querying
only f; is not and S C X(/f;) such that querying {f;} U S is sufficient too.
Hence X (f;) is contained in any feasible query set, thus VERIFICATION adds
all edges in X (f;) to A and deletes f; from the current tree.

4. Querying either f; only or all of X (f;) is sufficient to identify a maximum weight
edge in C;. Hence it is again unsure whether OPT queries f; or X (f;). Thus
VERIFICATION adds the pair (f;, X(fi)) to P and deletes f; from T;_; + f;.

5. Neither querying f; nor querying X (f;) is sufficient to determine which edge in
C; has maximum weight. This means that {f;} U S must lie in every feasible
query set, where S C X(f;) contains edges of C; in order of decreasing upper
limit up to the point where a maximum weight edge e can be identified. Thus
we add all edges in S U{f;} to A and delete the edge e from the current tree.

4.1 Minimum Spanning Tree Verification under Uncertainty 43

Phase 2: In Phase 2 we take care of the possibility that for a pair (d, B) in P some
edges in B also lie in A. After the execution of VERIFICATION Phase 1, the set
P is updated in the following way: For every (d, B) € P, all elements of BN A are
removed from B. In the case where B becomes empty, the pair (d, B) is removed from
P entirely. Properties [I] and [2] remain true.

Phase 3: During this phase, the optimal solution is computed. Consider a weighted
bipartite graph G" = (V1 U Va, '), where Vi = {di,...,dy}, Vo = U;_,_, Bi and d;b
is an edge in £ if b € B;. The weight of a vertex e in G’ is given by the query cost
ge of the corresponding edge e € E. We compute a vertex cover L in G’ of minimum
weight. The edges corresponding to vertices in L together with the necessary edges in
A yield our query set Q).

Theorem 4.1. The algorithm VERIFICATION solves MST-U-VER with general

query costs correctly and runs in polynomaial time.

Proof. Note that with the knowledge of the edge weights, VERIFICATION is able to
identify which of the five cases described above occurs by determining the maximum
weight edge in C; and comparing w, with Ly, and wy, with U, for e € X (f;).

First we argue that the required Properties (1| and [2] of P are indeed fulfilled. Property
holds due to the following observations: If we add a pair (d, B) to P in Case 4, it is
sufficient to query either d or B to determine the maximum weight edge in the cycle
of the current iteration of BALANCE. If we add (d, B) to P in Case 2, a maximum
weight edge in the current cycle of BALANCE can be determined by querying either
d or BUS, where S C A.

Property [2 of P is fulfilled by Lemma [2.5| and Remark Note that Lemma [2.5 and
Remark also guarantee that edges in A lie in any feasible query set.

Now we argue that the output @) is indeed an optimal query set.
By Property [2| of P, it is sufficient to find a cheapest query set within)’. Elements
of A are in every feasible solution. Thus, we need to find an element of

P ={{dJi e I} U U B;| I, J form a partition of {1,...,k}}

jeT

with smallest query cost, as each element of P’ is disjoint to A.

44 4 Connection of MST-U to Minimum Bipartite Vertex Cover

input : A graph G = (V, F) and for each e € E an uncertainty set A., the
query cost ¢. and the edge weight w, € A,
output: An optimal query set ()

1 Preprocess the instance such that T;, = Ty and set I' := T7;
2 Index the edges in R := E \ T}, such that f; < ... < fi_na1;
3 Initialize A = (), initialize P = () ;
4 // Phase 1

5 fori<—1tom—n-+1do
6

7

8

9

Add f; to I' and let C; be the unique cycle closed;

Let X (f;) be the set of edges g € T, N C; with U, > Ly;;

if X(f;) is empty then

‘ Remove f; from I'.
10 else
11 if wy, > U, for all e € X(f;) and there ezists an edge e € X(f;) such
that we > Ly, then
12 | A=AU{fi}and T :=T— f;.
13 if w. <Ly, for all e € X(f;) and there exists an edge e € X (f;) such
that U > wy, then
14 Let S = {e € X(f;)|Ue > wy, };
15 if S# X(f;) then
16 | A:=AUS, P:=PU{(f;,X(fi)\S)} and I':=T — f;
17 else
18 | A=AUX(f))and =T — f;
19 if wy, > U, and w. < Ly, for all e € X(f;) then
20 | P=PU{(fi, X(fi))} and T :=T — f;
21 else
22 Let S C X (f;) contain edges of C; in order of decreasing upper
limit up to the point where querying {f;} U S allows to identify a
maximum weight edge e in Cj;

23 Set A:=AU{fi}uSandT':=T —e.

24 // Phase 2

25 for (d,B) € P do

26 B:=B—(BNA);

27 if B =0 then

28 | P:=P—(d,B)

29 // Phase 3

30 Construct the graph G’ from P, let L be a minimum vertex cover in G’;
31 Output QQ := AU L

—r

Algorithm 7: The algorithm VERIFICATION for MST-U-VER with general
query costs

4.1 Minimum Spanning Tree Verification under Uncertainty 45

(For a pair (d, B) € P we have that B is disjoint to A due to the execution of Phase
2 and d € A because an edge f; in R will never become part of a neighbor set, nor
reappear as f; € R during a later iteration j.)

Our problem of finding an element of P’ with minimum overall query cost translates
to a Minimum Vertex Cover Problem in G’ in the following sense: An element of P’
contains either d; or all vertices inside B; for each i € {1,...,k} and is thus a vertex
cover of G'. Now let L be a vertex cover of G'. If there is an i such that d; ¢ L, then it
must contain all neighbors of d; in G’, which means that B; C L. Hence every vertex
cover of G’ contains an element of P as a subset. Thus a minimum vertex cover of G’
corresponds to an element of P’ with minimum query cost.

Finally note that VERIFICATION runs in polynomial time:

Phase 1: The first phase needs at most O(m?log(n)) time with the same arguments
as used for BALANCE in Remark (bottleneck preprocessing!)

Phase 2: P has O(m) elements and each B; has O(n) elements, hence “tidying up” P
can be done in at most O(mn) time.

Phase 3: The instance of Minimum Bipartite Vertex Cover has O(m) vertices and
O(mn) edges. Hence it can be solved in O(vm5n) time by reducing to the maximum
flow problem and using the Push-Relabel algorithm. O

We demonstrate the algorithm VERIFICATION by the following two examples:

Example 4.1. First we consider our usual instance of Example (alongside the
notation of Example) Assume all query costs equal 1. We initialize A :=) and
P :=.

Phase 1:

i=1: For f; = e; and X(e7) = {es,e6}, we have w, < L., for all e € X(e7) and
S = {e € X(e7)|Ue > w7} = {eg} # X(er). Thus we set A := AU S = {es} and
b= {(er, {es})}-

i=2: Similarly, for fo = es and X (eg) = {e1, e}, we have w, < L., for all e € X(e3)
and S = {e € X(eg)|U. > ws} = {es} # X(es). Thus A remains unchanged and
b= PU{(es, {er})} = {(er,{es}), (es, {e2})}-

i=3: Finally for f3 = eg and X(eg) = {e1,e5}, we have w, < L., for all e € X(eg)
but S := {e € X(e9)|U. > w9} = X(eg). Thus A := AU X(eg) = {e1,e5,66} and P

remains unchanged.

Phase 2:
As both edges, e; and e lie in A, (e7,{es}), (es, {e1}) are both removed from P.

46 4 Connection of MST-U to Minimum Bipartite Vertex Cover

Phase 3:
As P is empty, we obtain that A is an optimal query set without solving any Bipartite
Vertex Cover instance.

A little more meaningful is the following example:

Example 4.2. Consider an instance of MST-U as depicted in Figure [4.1] below. Note
that the instance is preprocessed in the sense that T, = Ty = F\{{1,2},{2,3},{5,6}}.
W.lo.g. weset fi :={2,3}, fo := {1,2} and f5 := {5,6}. We initialize A := () and
P:=10.

(6,10)

Figure 4.1: An instance of MST-U with non-uniform query costs, where red numbers
denote the realization of edge weights. The query costs are one for all
edges, except qq23) = 1,77 = qqa,7y = 0.5. These edges are drawn in green.

Phase 1:

i=1: The edge f; closes the cycle Cy := (2,3,4,7) such that

X(f1) ={{2,7},{3,4},{4,7}}. Now either querying all of X(f) or querying
{f1,{2,7}} is sufficient to see that f; has maximum weight among edges in C (Case
2 in the explanation of the algorithm.) We thus have S = {{2,7}} # X (f1). We set

A=AUS={{2,7}} and P:= {(fi, {{3,4}, {4, 7} })}.

i=2: Similarly, for fo and X(f2) = {{2,7},{1,7}}, we could either query all edges
in X(fy) or query fo and {2,7}. Hence S := {{2,7}}, A remains unchanged and

b= {1, {{3,4},{4,7}}), (f2, ({1, T} })}-

i=3: Finally for f3 and X(f3) = {{1,7},{4,7},{4,5},{1,6}}, we can query the en-
tire neighbor set or f; together with {1,6} and {4,5}. The latter two must hence

4.2 Online Bipartite Vertex Cover 47

lie in any feasible query set. Thus, we set A := {{2,7},{1,6},{4,5}} and P :=
{(fla{{3’4}’{477}})7(f?v{{177}})7(f37{{177}7{47 7}}}

Phase 2:
As A does not intersect any of the B;, 1 = 1,2, 3, the set P remains unaltered.

Phase 3:

Now we obtain an instance of Minimum Weight Bipartite Vertex Cover as displayed
in Figure .2 It is easy to see that {fi, {4, 7},{1,7}} yields a minimum weight vertex
cover. Hence {{2,7},{1,6},{4,5},{2,3},{4,7},{1,7}} is an optimal query set with
weight 4.5.

{3,4}

fs

Figure 4.2: VERIFICATION needs to solve an instance of Minimum Weighted Bipar-
tite Vertex Cover. Green vertices correspond to edges with query cost
0.5.

4.2 Online Bipartite Vertex Cover

Megow et al. [I5] use the connection between Minimum Bipartite Vertex Cover and
MST-U-VER to build an instance of the Online Bipartite Vertex Cover.

Definition 4.2. An instance of Online Bipartite Vertex Cover consists of a bipartite
graph G = (AU B, F) with B = {by,...,bx} and vertex weights w, > 0, v € AU B.
We aim to find a sequence (C;)¥_; such that C; C V for i = 1,....,k and C;_, C C; for
i =2,...,k, where C; is a vertex cover of the graph G[A U {by, ..., b;}] which is induced
by the vertices in A and the first ¢ vertices in B.

However, only the vertices of A,the so-called offline vertices, are given a priori, while
the vertices in B are initially unknown (and thus also their ordering by, ...,b;). They
appear one at a time alongside their incident edges. In any iteration an algorithm has

48 4 Connection of MST-U to Minimum Bipartite Vertex Cover

to maintain a valid vertex cover of the current graph, while keeping the overall weight
of the cover as small as possible. Once a vertex is added to the vertex cover it cannot
be removed during a later iteration. (Otherwise we could simply compute the offline
solution in the end.)

Now consider the following graph G’ = (AU B, E’) constructed throughout the execu-
tion of RANDOM: The edges of the graph G in our instance of MST-U give rise to the
vertices of the instance of Online Bipartite Vertex Cover. Let A := T}, be the offline
vertices. The edges in R := E'\ T}, give rise to the set B of online vertices and appear
in the order in which they arise during the execution of RANDOM. Once the edge
fi € R appears, its vertex in G’ is connected to all vertices corresponding to edges in
X(f;) (defined as in Definition via edges in E’. The weights of the vertices in G’
are given by the query costs of the corresponding edges. This is indeed an instance of
Online Bipartite Vertex Cover, as it depends on the cycles which are closed during the
execution of RANDOM and thus on the realization of edge weights. Hence G’ cannot
be constructed offline.

Remark 4.1. In fact, [I5] make use of the online vertex cover graph G” in their algorithm
RANDOM: The water-filling scheme used to compute the increase of edge potentials
during the execution of RANDOM is an adaption of an algorithm by Wang and Wong
for Online Bipartite Vertex Cover in [16].

5 Alternative versions of MST
under uncertainty

5.1 Minimum Spanning Tree with Vertex
Uncertainty

The model of vertex uncertainty (V-MST-U) is introduced in [7]. In this setting the
vertices correspond to points in the Euclidean plane and the weight of an edge is the
distance between its end vertices. The locations of the points are initially uncertain
but an algorithm can update a vertex v at query cost ¢, to reveal its exact location.
As usual, V-MST-U can be defined for general query costs ¢, > 0. In this master’s
thesis however (as well as in the existing literature so far), we will only see results for
the case where query costs are uniform.

5.1.1 Deterministic algorithm

Erlebach et al. [7] argue that U-RED can be adapted to the setting of vertex uncer-
tainty.

Definition 5.1. Given an instance I of V-MST-U with graph G = (V, E) and uncer-
tainty sets A,, v € V the associated edge instance [is an instance of MST-U with
graph G and uncertainty sets Ay, ,, = {d(uv',v")[v’ € A,,v" € A, }.

Remark 5.1. Observe the following two relations between V-MST-U and MST-U. Let
I be an instance of V-MST-U and [the associated edge instance.

o If e = wv is an edge of G we will not gain any information about e’s weight if
we query neither u nor v. Hence, if W is a witness set of the associated edge
instance then W’ := {u| u is an end-vertex of an edge in W} is a witness set of
I.

e [f all uncertainty sets of I are either trivial or open then every uncertainty set
of I is also either trivial or open. Thus, Theorem yields that whenever every
witness set in a witness algorithm A for MST-U has size at most k, we can turn
it into a 2k-competitive algorithm A’ for V-MST-U by simulating an edge query
through querying its two end-vertices.

49

50 5 Alternative versions of MST under uncertainty

A 7 /

____G____/ __ _e___
2

2 2

oA l) [)

R : (O ¢ 9

Figure 5.1: Lower bound for V-MST-U (adapted from [7], page 287)

Hence U-RED yields a 4-competitive algorithm for V-MST-U with uniform query
costs, under the restriction to trivial or open uncertainty sets. If we update a vertex v
which is incident to multiple edges, we obtain information about every incident edge.
This leads to the question if we might achieve a better competitive ratio if we choose
an approach that is not related to the associated edge instance. The answer to this
question is in fact no, as shown by [7]:

Theorem 5.1. ([7], page 287) No deterministic algorithm for V-MST-U under the
restriction to trivial or open uncertainty sets can achieve a competitive ratio less than
4. This remains true even under the assumption of uniform query costs.

Proof. Consider the graph displayed in Figure [5.1I] where all black dots represent
vertices with trivial uncertainty sets and all query costs equal 1. The vertices A,
B, C and D have non-trivial, open uncertainty sets of length 2 and small positive
width. (More precisely, we consider open sets A, in R?, such that the largest distance
between points in the closure of A, equals 2 and is attained only for the two points in
the intersection between the boundary of A, and the upper horizontal line, if v = A
or v = B, or the lower horizontal line, if v = C' or v = D, of the graph embedding
depicted in Figure [5.1]) The length of each edge between trivial vertices is 1 and the
distance between each non-trivial uncertainty set and its closest incident vertex is 1
as well. Thus all but two edges lie in any MST with certainty and we only need to
determine whether {A, B} or {C, D} should be included in an MST.

We distinguish four cases, depending on which of the non-trivial uncertainty sets is
not among the first three to be queried by an algorithm. For each of these cases a
malicious adversary confronts the algorithm with a different realization, which forces
the algorithm to query the fourth vertex too:

e If A (D) is among the first three vertices to be queried, it is located at distance
at most € from the far right end of A4 (Ap) and

e if B (C) is among the first three vertices to be queried, it is located at distance
at most € from the far left end of Ap (A¢),

5.1 Minimum Spanning Tree with Vertex Uncertainty 51

where € > 0 is small.

Case 1: The algorithm queries B, C' and D first. Then d(A, B) € (7T +¢,9 + €) and
d(C,D) =8 —2¢ € (T+¢,9 + ¢€), where d denotes the Euclidean distance. Hence the
algorithm needs to query A in order to know if {A, B} or {C, D} has smaller weight.
Now assume that the location of A turns out to be located at distance at most € from
the far left end of A4. Then by updating only A, the optimal solution finds out that
d(A,B) € (9 —¢,11 —€) and d(C, D) € (4,8). Hence an optimal solution only needs
a single query to exclude the edge {A, B}.

Case 2: The case where the algorithm queries A, C' and D first works analogously to
Case 1.

Case 3: The algorithm queries A, B and D first. Then d(C, D) € (6 —¢,8 — ¢) and
d(A,B) =T7+2¢€ (6 —¢,8—c¢). Hence, C needs to be queried too. If C is located at
distance at most € from the far right end of A¢, then by updating only C' instead of A,
B and D, the optimal solution sees that d(A, B) € (7,11) while d(C, D) € (4—¢,6—¢),
which means that {C, D} is inside the MST.

Case 4: The case where the algorithm queries A, B and C first works again analogously
to Case 3.
O

A surprising difference between the edge and the vertex setting was shown by [4] with
respect to the verification problem. The verification problem of V-MST-U is defined
analogously to Definition Remember that for MST-U the verification problem
can be solved in polynomial time (Theorem [4.1). Erlebach and Hoffmann [4] however
show, that this is not the case for vertex uncertainty:

Theorem 5.2. ([4], page 175) The verification problem of V-MST-U is NP-hard.

5.1.2 Randomization
Lower Bound

We will first prove a lower bound for the performance of any randomized algorithm

for V-MST-U.

Proposition 5.1. No randomized algorithm for V-MST-U under the restriction to
trivial or open uncertainty sets can achieve a competitive ratio less than 2.5. This
remains true even if query costs are restricted to be uniform.

Proof. Consider again the instance of V-MST-U as in the proof of Theorem [5.1 We
denote the instances constructed by the adversary in the proof of Theorem with
R4, Rg, Rc and Rp. More precisely for sufficiently small € > 0,

52 5 Alternative versions of MST under uncertainty

e let R4 be a realization such that A, B and C are located at distance at most €
from the far left end of their uncertainty sets A4, Ag, Ac and D is located at
distance at most € from the far right end of Ap.

e Let Rp be such that C is located at distance at most € from the far left end of
its uncertainty set Ao and A, B, D are located at distance at most € from the
far right end of A4, Ap resp. Ap.

e Let Rc be such that B is located at distance at most € from the far left end of
its uncertainty set Ag and A, C, D are located at distance at most € from the
far right end of A4, Ac resp. Ap.

e Let Rp be such that B, C' and D are located at distance at most € from the far
left end of their uncertainty sets Ag, Ac, Ap and A is located at distance at
most € from the far right end of A4.

In the proof of Theorem 5.1 we have seen that if G has realization A,, v € {A, B, C, D},
it is sufficient to query v to identify an MST, while querying all edges in V' \ {v} is
not enough to exclude a maximum weight edge.

Consider the randomized family of instances (R, p), where R = { R4, Rp, Rc, Rp} and
p(R,) = P[R = R,] = 0.25 for v € {A,B,C,D}. Then no deterministic algorithm
ALG achieves a better expected competitive ratio ERNPR(%), than the algo-
rithm ALG; which queries A, B, C, D (or less if an MST can already be identified)
in this order independently from the queries’ results. This is due to the fact that
querying v only reveals whether or not we are facing realization R, but if not, it is
indistinguishable which of the remaining realizations it might be.

Then by a variant of Yao’s Principle (see Borodin and El-Yaniv [I], Theorem 8.5), no
randomized algorithm has a better performance than

, ALG(G,R). ALGH(G,R),
ALGEA ERNﬁ(OPT(G, R)) = By OPT(G, R))=
0.25(ALGy(G, R4) + ALG,(G, Rp) + ALG\ (G, Re) + ALG, (G, Rp)) =
0.25(1+2+3+4) =25,

where A denotes the class of all deterministic algorithms.]

Preprocessing

A first step towards a randomized algorithm for V-MST-U is to adapt the preprocessing
of RANDOM to the vertex setting. Let I be an instance of V-MST-U. If we compute
T;. and Ty for the associated edge instance I, then by Remark , any edge in T\ Ty
lies in any feasible edge query set for I. Hence for each edge e = {z,y} € T, \ Ty, the

5.1 Minimum Spanning Tree with Vertex Uncertainty 53

set {z,y} is a witness set of I by the first property in Remark [5.1 However, when
simulating an edge query in the preprocessing of I by querying its end vertices, it is
important to update one edge at the time before rebuilding 77, and Ty and updating
the next edge in the new T, \ Ty .

Remark 5.2. Each time that we simulate an edge query in the preprocessing for V-
MST-U, we update a witness set of size 2. Hence half of the vertices queried during
the preprocessing for V-MST-U lie in any feasible solution.

Note that this preprocessing is not as “stable” as in the edge version: Whenever we
update an edge by querying its end vertices we not only get the edge’s weight but also
alter the uncertainty sets of adjacent edges. This means that an edge which has largest
upper and lower limit in a cycle in I is not guaranteed to still have this property after
an edge query was made. Thus it is not straightforward to carry over the algorithm
RANDOM to the setting of V-MST-U by simulating an edge query by updating its
end vertices. Note for instance, that if a maximum weight edge in a cycle C; cannot be
identified after having queried the end vertices of f; or of all of the neighbors in X (f;),
it is not necessarily true that an edge which has largest upper limit in the current cycle
of the associated edge instance also forms a witness set in I. Moreover, for ¢ > 1 it is
not even sure that f; has largest upper and lower limit in C; at the moment the cycle
is closed. We can handle the first of these two issues. In order to avoid the second one
we consider again a special case similar to Section |3.2.2

Special Case: Disjoint Cycles

In this section we consider only instances of V-MST-U where no two cycles share a
vertex with non-trivial uncertainty set. For instances of this type it is possible to
obtain a randomized algorithm whose performance is better than in the deterministic
case.

Consider an instance I consisting of a cycle C' which has been preprocessed such that
there is an edge in the associated edge instance I which has largest upper and lower
limit and which we denote by f. We will first establish an analogue of the framework
of RANDOM where edges are queried in order of decreasing upper limit, once either
f or all of X(f) has been queried. Assume we have queried f (its two end vertices)
and still no edge is known to have maximum weight. Let g be an edge with maximum
upper limit in C'. We distinguish two cases:

e A, contains the weight of f. Then an optimal vertex query set must contain
at least one end vertex of ¢ by Remark and Remark [5.1] Note that this is
always the case if both end vertices of g have not yet been queried.

54 5 Alternative versions of MST under uncertainty

e L, > wy. Let h be an edge with largest upper limit in C'\ {g}. Then by Lemma
and Remark the end vertices of g and h give a witness set of I. Note
that the size of this witness set is at most 3, because L, > wy implies that one
end vertex of g has already been queried.

Remark 5.3. Thus, once we have queried f and still no edge is known to have maximum
weight, we can solve the instance by additionally querying at most three times the
number of vertices an optimal solution queries. If f has maximum weight then we will
always end up in the first case and thus solve the instance by additionally querying at
most two times the number of vertices an optimal solution queries.

We will now briefly describe how the algorithm V-RANDOM¢ works. The algorithm
first preprocesses the instance such that 77, = Ty in the associated edge instance. This
is done by updating witness sets of size 2 (remember Remark . Like RANDOM,
the algorithm continues by adding edges f; € T to the current tree one at a time
and each time removes a longest edge in the cycle C; closed by f;. Now remember
Remark [3.T] for the edge uncertainty problem. A similar observation is used for the
vertex uncertainty version too: It is beneficial to start by querying end vertices of f;

unless the optimal solution is small and does not contain end vertices of f;. Thus
V-RANDOM¢ distinguishes three scenarios.

Scenario 1: The edges in the neighbor set have at least four different end vertices.
This means that we have at least two edges in the neighbor set and if the neighbor
set consists of precisely two edges, these two edges do not intersect. In this scenario
V-RANDOM¢ performs deterministically. It starts by querying the end vertices of f;.
In case we still do not know which edge in the current cycle is the longest, we update
either an edge with largest upper limit or two edges g and h such that g has largest
upper limit in C; and h has largest upper limit in C; \ {g} until we find a longest edge.
During this step it is guaranteed that we update witness sets of size at most 3 (see
Remark [5.3)). A detailed description of how the algorithm performs in Scenario 1 is
displayed in the subroutine V-DET¢ in Algorithm [9]

Scenario 2: The neighbor set of f; contains precisely one edge e. In this scenario, we
query the at most four different end vertices of e and f; in random order up to the
point where a longest edge in C; can be identified. To this end we draw a permutation
o uniformly at random from Sy, if e and f; are not adjacent, or from Ss if e and f; are
adjacent and permute the vertices accordingly.

Scenario 3: The neighbor set of f; contains precisely two edges which intersect in a
common vertex w. Now the algorithm wants to make sure that priority is given to
those vertices which possibly form an optimal query set)} of size one in C;. Re-
member that a feasible solution which queries neither end vertex of f; must query an
end vertex of each of the neighbor edges (by Lemma and Remark [5.1)). Hence the

5.1 Minimum Spanning Tree with Vertex Uncertainty 55

only candidate for a size one query set apart from the end vertices of f; is w. Thus
V-RANDOM¢ queries w and the two end vertices of f; in random order until a longest
edge in C; can be identified or all three vertices have been queried. If still know edge
in C; is known to have maximum length, we query the two remaining end vertices of

edges in X(f;).
A detailed description of V-RANDOM¢ is displayed in Algorithm [§]

In the following we will introduce notation used in the description of V-RANDOM¢
and in the proof of the algorithm’s performance.

Let Ny = C;(X(fi)) denote the subgraph of C; which is induced by X(f;). We
denote by a the number of vertices in Ny, i.e. a := | Ugyyex(n {#,y}| and define
b:=>x L@J, where K sums over the connected components of Ny,. An example is

depicted in Figure[5.2]

Remark 5.4. Note that b > £ and that any solution which queries no end vertex of f;
must query at least b vertices.

Figure 5.2: C; with edge f; and the edges in X (f;) (bold). Here a = 8 and b = 3. An
optimal solution which avoids f; must query at least three vertices to cover
all edges in X (f;).

Remark 5.5. Scenario 1 is described by a > 4, Scenario 2 is described by a = 2 and
Scenario 3 is described by a = 3. Note that a = 1 is impossible and ¢ = 0 means that
X(f;) is empty and thus f; is always maximal in C;.

Moreover we will use the following notation for the technical implementation of the
algorithm. Let Sy =: {054), ol .., ol3)} be the set of permutations

a](-4) :{1,2,3,4} — {1,2,3,4}. We assume that the indices j are chosen such that the

permutations are ordered lexicographically, e.g. a§4) =(1,2,3,4), a§4) =(1,2,4,3), ...

56 5 Alternative versions of MST under uncertainty

Let 05-3) with j = 1,...,6 be defined analogously.

For a vertex label [: V' — {1,...,n} and a subset A C V' we denote by

r: A — {1,...,]A|} the order preserving bijection, i.e. r(u) < r(v) <= I(u) < [(v)
for all u,v € A.

Now we will prove that V-RANDOM achieves competitive ratio 3.

Proposition 5.2. For instances of V-MST-U with uniform query costs where no two
cycles share a vertexr with non-trivial uncertainty set, the algorithm V-RANDOM¢
achieves competitive ratio at most 3.

Proof. Let C; be the cycle closed in iteration i. For an instance which consists only of
C;, let QF denote an optimal vertex query set and OPT; := |Q7|. As cycles in G do not
share non-trivial vertices, the disjoint union @* of the Q)7 is an optimal solution for
G and thus OPT = Z?:l"“ OPT;. Moreover, this structure guarantees that X (f;)
is independent of both the choice of queries in previous iterations and the outcome
of those queries. We aim to show that we expect at most 3-OPT; queries in iteration i.

First consider Scenario 1, where a > 4. We distinguish three cases:
Case 1: |Qf| > 2 and Q] contains at least one end vertex of f;,
Case 2: Qf = {x}, where x is an end vertex of f;,

Case 2: Qr N fi = 0.

For now we assume that with probability p; we start by querying the end vertices of f;
and with probability 1 —p; we start by querying all vertices in Ny,. We will argue that
p; = 1 is the optimal choice, i.e. that the maximum of the three expected competitive
ratios in Case 1, Case 2 and Case 3 is minimized for p; = 1.

Case 1: With probability p; we start by querying f;. The edge f; shares at least
one vertex with ()7 and after having queried f;, we go on by querying witness sets of
size at most three. Hence the competitive ratio is at most 3. If we start by querying
vertices in Ny, we might end up querying all end vertices of edges in X (f;) and both
end vertices of fi. As |Qf| > 2 the competitive ratio is bounded by 232, Thus the
expected competitive ratio FC'R;(p;) in Case 1 is bounded by

a+2 a a
ECR:(ps) S3pz‘+T(1—pz‘) :2pi_§pi+§+1' (5.1)
Case 2: With probability p; we start by querying f; which yields competitive ratio 2.

With probability 1 — p; we start by querying vertices in Ny, and might need to query

5.1 Minimum Spanning Tree with Vertex Uncertainty

o7

N

© 0w N O oA~ W

10
11
12
13
14
15
16
17
18

19

20

21
22

23
24

25

26

27
28
29
30
31

input : An instance of V-MST-U with uniform query costs and graph
G = (V, E) such that no two cycles share a vertex with non-trivial
uncertainty set

output: A feasible query set)

Draw p uniformly at random from [0, 1];

Let [:V — {1,.. n} be an arbitrary but fixed labeling of the vertex set;

Let S5 = {053),02 . } and S; =: {o\V, o) créi)}

Preprocess the 1nstance such that T, = Ty and set I' .= T7;

Index the edges f1, ..., fm—nt+1 in R := E\ T}, arbitrarily ;

Initialize @ = 0;

fort<1tom—n+1do

Let 1 and x5 denote the end vertices of f;;

Add f; to I' and let C; be the unique cycle closed;

Let X (f;) be the set of edges g € T, N C; with U, > Ly;;

Compute a := | Ugayyex(s) {2, 4}1;

if a <1 then
‘ Delete f; from I'

else if a = 2 then

// Query all end vertices in X(f;) U{f;} in random order

Let wy, we denote the end vertices of the edge in X (f;);

Let k := [{x1, x9, w1, wa}| € {3,4};

Let r: {x1, o, wy,we} — {1,...,k} be the order preserving bijection
w.r.t [;

Let j € {1,...,k!} be such that Jk;,l <p< % if p>0else j:=1;

Query the vertices in {xq, 2, w1, ws} in order of increasing a](.k) or
until a maximum weight edge in C; can be identified.

else if a = 3 then

// Query all candidates for a size 1 query set first and

in random order
Let w denote the vertex incident to two neighbors;

Let j € {1,...,6} be such that % <p< % if p>0else j:=1;

Query the vertices in {z1, x5, w} in order of increasing aj(.g) or until a
maximum weight edge in C; can be identified or all three vertices
were queried;

if No edge in C; is always mazrimal then

‘ Query the remaining end vertices of edges in X (f;).

else
‘ Use Algorithm V-DET¢ to find a maximum weight edge in C;
Delete an always maximal edge in C; from I’

Let r: {x1, 29, w} — {1,2,3} be the order preserving bijection w.r.t [;

Algorithm 8: The algorithm V-RANDOMg for V-MST-U with uniform

query costs in graphs where no two cycles intersect in non-trivial vertices

58 5 Alternative versions of MST under uncertainty

input : A cycle C; of the algorithm V-RANDOM¢ with its edge f;,
neighbor set X (f;), as well as the current query set () and the
uncertainty sets A, for v € V(C;)

output: A query set @

1 Add both end vertices of f; to @ and query them;

2 while no edge in the cycle C; is always maximal do

3 Let g be an edge with largest upper limit in X (f;);

if wy, € A, then

‘ Query the end vertices of g and add them to Q.

else
Let h be an edge with largest upper limit in X (f;) \ {g};
Query the end vertices of g and h and add them to Q.

® N O o A

Algorithm 9: The subroutine V-DET ¢

all end vertices of edges in X (f;) and both end vertices of f;. Thus the competitive
ratio is bounded by a + 2. Hence the expected competitive ratio FC Ry (p;) in Case 2
is at most

ECRy(p;) <2p;i+ (a+2)(1 —p;) = —ap; + a + 2. (5.2)

Case 3: With probability p; we start by querying f; and go on by querying witness
sets of size at most two (see Remark |5.3]). Hence with probability p; the competitive
ratio is at most

2+2-0OPT; 9. 2 <2+2

OPT, =~ OPT,~ " b
by Remark [5.4, With probability 1 — p; we start by querying vertices in Ny, which
yields a competitive ratio of at most § < 3, also by Remark . Thus the expected

competitive ratio FC'R3(p;) in Case 3 is bounded by

2 9
EG&@DS(?+pm+3ﬂ—p025m—m+ﬁ. (5.3)

Now we show that max{ECR;(p;), ECRs(p;), EC R3(p;)} is minimized for p;, = 1. As
a > 4 implies that b > 2, we have that 2 + % < 3 and GTH > 3. Hence
a—+ 2

2
(2+ E)pz +3(1 —p;) < 3p; + T(l — i),

which means that the value in Equation [5.3]is at most the value in Equation[5.1] Thus
it is enough to look at the values in an Note that a > 4 implies that 2—§ < 0.
This means that the value in Equation is minimized for p; = 1. The same holds
for Equation because —a < 0. For p; = 1 the value in Equation [5.1] equals

a a
2——4+-+1=3
SRR

5.1 Minimum Spanning Tree with Vertex Uncertainty 59

and the value in Equation [5.2| equals
—a+a+2=2

Thus, if a > 4 we obtain a competitive ratio of at most 3 if we deterministically query
fi and afterwards proceed as in our analogue of the framework of RANDOM.

Now we consider Scenario 2, i.e. we assume a = 2. If an optimal query set)} for
C; has size at least 2 then the competitive ratio is at most “%2 = 2, even if we query
all vertices of edges in the neighbor set and both end vertices of f;. If Qf = {v} is
a singleton then it is equally likely that v is the first, the second, the third or the
fourth vertex to be queried (if f; and the edge in the neighbor set do not share an
end vertex — otherwise v is queried after one, two or three queries with probability %
each.) Hence the expected competitive ratio is at most Lﬁ% = 2.5.

Thus, if @ = 2 we obtain a competitive ratio of at most 2.5 if we query all of the at
most four vertices of edges in X (f;) U {f;} in an order which we pick uniformly at
random.

Finally we turn to Scenario 3 and assume a = 3. If) has size at least 2 then the
competitive ratio is again at most 2 = 2.5. If Q7 = {v} then v could either be an
end vertex of f; or the vertex shared by the two edges in the neighbor set. Thus it is
equally likely that v is queried first, second or third, which means that the competitive
ratio is bounded by 1+—§+3 = 2. Thus, if a = 3 we achieve a competitive ratio of at most
2.5 if we query the three vertices which are candidates for a size one query set first (in
an order which we pick uniformly at random) and only query the remaining vertices
of edges in X (f;) U{f;} if a maximum weight edge in C; cannot yet be identified. The

cases a = 3 and a = 2 are illustrated in Figure [5.3]

Let ¢ denote the number of queries made in the preprocessing.

Then,
E[ALG] c¢+E[XI "™ ALG] c+ X" E[ALG,] _ct SIS OPT,
OPT OPT - OPT T 05c+ Yt orT,
<3.
O

Remark 5.6. The algorithm V-RANDOM¢ runs in polynomial time. The uncertainty
interval of the associated edge instance needs to be computed for m edges. For the
cases where a < 3 we only perform constant time operations. The analysis of V-DET ¢~
is similar to the one of BALANCE (see Remark , except that the computation
of edge potentials is not needed. Hence, V-RANDOM¢ needs O(mn) time without
preprocessing and O(m?log(n)) time with the preprocessing included.

60 5 Alternative versions of MST under uncertainty

fi fi fi
(a) (b) ()

Figure 5.3: C; with b = 1, where edges in X (f;) are bold. Vertices which are displayed
in red are possible candidates for an optimal query set ()f of size one. In
(a) we have a = 3 such that the end vertices of f; and the vertex in the
intersection of the two neighbor edges are possible candidates for a size
one query set. In (b) and (c¢) we have a = 2. Depending on whether f; and
the edge in the neighbor set share a vertex, there are either four or three
candidates for a size one query set.

Remark 5.7. The algorithm V-RANDOMg¢ is defined for uniform query costs and
cannot be adapted for the non-uniform case in a straightforward way because it relies
on witness sets, a concept which only makes sense for uniform query costs.

Let us see how the algorithm V-RANDOM¢ proceeds when applied to the following
small instance of V-MST-U:

Example 5.1. Consider the instance as displayed in Figure below.

Let € > 0 be small. All vertices, except for the vertices in {1,2,3,4,5,6,7,8,9,10,11}
have trivial uncertainty sets. The length of edges between trivial vertices is € and the
distance between a trivial vertex and the boundary of an adjacent non-trivial vertex
is € too. Assume that the realisation of vertex positions is such that 3, 4, 5, 6 and 7
lie in the center of their uncertainty intervals and the locations of 1 and 2 are such
that the length of {1,2} is 10 + 2e. Moreover the vertices 8, 9 and 11 are located at
distance at most € from the far left end of their uncertainty sets, while 10 is located
at distance at most € from the far right end of Ayg.

In the associated edge instance, the upper limits of all edges except for {1,2}, {3,4},
{5,6}, {6,7}, {8,9} and {10,11} are at most 7 + e. Thus these edges have to lie in
an MST with certainty. In the associated edge instance we have Ag 9 = (10,14),
A{3’4} = (1, 11), A{576} = A{677} = (6, 12.5), A{&g} = (7, 11) and A{lO,ll} = (4,8) The
associated edge instance does not need preprocessing, as we already have T}, = Ty =
E\{{1,2},{8,9}}. Assume that p = 0.4. For the non-trivial vertices we pick the label
[as indicated by the black numbers in Figure [5.4, The trivial vertices are labelled

5.1 Minimum Spanning Tree with Vertex Uncertainty 61

0.5 6 6 6

- l l '
1 1 1

7 6 5

=y
~N

1 2 ¢
1 1 1 L1 1 :
I T I T 1 1 p
2 7 2 1 2 p
8 9)
11 10
| 1 | [|
1 || 1 1
2 4 2

Figure 5.4: An instance of V-MST-U. Blue numbers correspond to distances, black
numbers correspond to vertex labels of vertices with non-trivial uncertainty
sets.

arbitrarily, their labels do not matter. Remember that we assume that the permuta-
tions are ordered lexicographically, e.g. O'£4) = (1,2,3,4), 0&4) = (1,2,4,3)... We set

fi=11,2}, fo={8,9} and Q := 0.

i=1 In the first iteration, we have C; = (1,2,...,3,4,...,5,6,7,...) and a = 5. Hence
we apply the deterministic subroutine V-DET¢. The edge {1,2} is queried and it
turns out that wy; 2y = 10 + 2¢, which lies in the uncertainty sets of all three neighbor
edges. Now {5,6} is an edge with largest upper limit such that its end vertices are
queried and added to @ := {5,6}. It turns out that w e = 9.25 and Ag 7y is set to
(9,9.5). Now {3,4} has the maximum upper limit among edges in C; and both end
vertices are queried, i.e. @ := {3,4,5,6}. The edge {1,2} is removed from I". Note

62 5 Alternative versions of MST under uncertainty

that an optimal solution queries 6 to see that the lengths of {5,6} and {6, 7} both lie
in (9,9.5) and 4, which reveals that the length of {3,4} must lie in (4.5,7.5).

i=2 In the second iteration, we have Cy = (8,9,...,10,11,...) and a = 2. As {10,11}
and {8,9} are not adjacent, we have k := 4 and r(8) = 1, 7(9) = 2, r(10) = 3 and
r(11) = 4. As 2 = 0.375 and £ ~ 0.42, we set j = 10. Note that o}y = (2,3,4,1).
Then a1g(r(8)) = o1 (1) = 2, 019 (r(9)) = o1 (2) = 3, 019 (r(10)) = 07(3) = 4 and
0'%)(7"(11)) = a%)(él) = 1. Hence we start by querying 11 (Q := {3,4,5,6,11}) such
that the uncertainty set of {10,11} is updated to Agp11; = (6 — €,8 —€) C Agg}.
Thus we cannot yet identify a maximum weight edge in Cy. Now we query 8 (Q :=
{3,4,5,6,8,11}), which yields that W, € (9 —€,11 —¢), i.e. {8,9} has maximum
weight in C5. Note that an optimal solution for C5 would have queried 8 only.

Hence, for this instance of V-MST-U the competitive ratio achieved by V-RANDOM¢

is 512 =2, if p = 0.4.

5.2 Computing the MST Weight under
Uncertainty

Another variant of the Minimum Spanning Tree Problem under Uncertainty is MST
Weight under Uncertainty (W-MST-U) which not only asks for the edge set of an
MST but also for the precise weight of an MST. W-MST-U was introduced by [15]
who provided a query optimal algorithm that runs in polynomial time. The algorithm
CUT-WEIGHT relies on the following well-known property of minimum spanning
trees:

Proposition 5.3. T s the edge set of a minimum spanning tree if and only if for
every e € T it holds that if C s one of the two connected components in T — e, then
e has minimum weight in the cut set §(C).

The algorithm CUT-WEIGHT starts with an arbitrary spanning tree [' and iteratively
deletes an edge e € I'. In each iteration, CUT-WEIGHT queries the edges in the cut
which is defined by the two connected components of I' — e in order of increasing lower
limits until a minimum weight edge f in the cut can be identified and its weight is
known. Finally, I' is updated by exchanging f and e. Algorithm [10] displays a formal
description of CUT-WEIGHT.

Remark 5.8. The algorithm CUT-WEIGHT runs in O(mn) time. Computing a span-
ning tree requires at most O(mlog(n)) time. Prior to the for-loop we sort the edges
with respect to increasing lower limit and update the sorting whenever an edge is
queried (O(log(n)) time per query). In each iteration of the for-loop we need to find
the cut edges (O(m) time) and check whether the cut edge with smallest lower limit
is trivial (which requires constant time.) The time needed for querying edges and

5.2 Computing the MST Weight under Uncertainty 63

input : An instance of W-MST-U with graph G = (V, F), uncertainty sets
A, and query costs q., € € E
output: A feasible query set ()

1 Determine a spanning tree I';
2 Index the edges of I by fi, ..., fn_1;
3 Initialize Q = ();
4 fori+1ton—1do
5 Delete f; from I' and let S; be the cut containing all edges between the
two components of I';
6 while S; does not contain a minimal edge with trivial uncertainty
interval do
Choose g € S; s.t. Ly = min{L.|e € S;};
Query g and add it to @
9 Add a minimal edge in S; to I’

Algorithm 10: The algorithm CUT-WEIGHT for W-MST-U with general
query costs (adapted from [15], page 1232)

updating the sorting sums up to O(mlog(n)) time in total. Hence, n iterations yield
a run-time of at most O(mn).

[15] showed that every edge queried during the execution of CUT-WEIGHT lies in
any feasible query set for the W-MST-U instance:

Theorem 5.3. ([15], page 1232) The algorithm CUT-WEIGHT outputs an optimal
solution for W-MST-U.

An intuitive motivation for choosing a cut-based algorithm over a cycle-based algo-
rithm (such as BALANCE or U-RED), is that a cycle-based algorithm is biased to
query edges outside the MST while CUT-WEIGHT identifies edges with minimum
weight in a cut which ultimately lie inside the MST.

Example 5.2. The following example shall demonstrate how CUT-WEIGHT works.
We will use again the instance as given in Example [2.3] We pick

I = {{1,2},{1,7},{6,7},{4,6},{3,4},{5,6}} as a feasible spanning tree to start
with and initialize Q := ().

i=1: In the first iteration we remove {1,2} from I' which results in the two com-
ponents induced by the vertex sets {2} and {1,3,4,5,6,7}. The cut set is given by
St ={{1,2},{2,3},{2,5}}. The edge g := {2, 3} has the minimum lower limit among
the cut edges and is thus queried and then added to I'. Hence @ := {{2,3}}.

64 5 Alternative versions of MST under uncertainty

i=2: Next we remove {1, 7} from I', which isolates the vertex 1. The cut set we obtain
is So = {{1,2},{1,7}}. The edge {1,7} has the minimum lower limit among edges in
Sy and is trivial. Thus no query is made and {1, 7} is re-added to the tree.

i=3: When removing {6, 7} from I', we consider the cut set S3 = {{6,7},{1,2}} out
of which {6, 7} is queried and added to the tree. @ := {{2,3},{6,7}}.

©

Figure 5.5: The six iterations of CUT-WEIGHT: Edges in green belong to I', while
cut edges in S; are red, 1 =1, ..., 6.

(7.1,16) (7.1,16)

i=4: The removal of {4,6} leads to the components given by {1,5,6,7} and {2, 3,4}
and the cut set Sy = {{1,2},{4,6},{4,5},{2,5}}. We query {2,5} and obtain

5.3 The OP-OP Model 65

Wya53 = 5, which is less that the lower limit of any of the other edges in the cut.
Thus we add {2,5} to the tree and set @ := {{2,3},{6,7},{2,5}}.

i=5: By removing the edge {3,4} from I', we isolate the vertex 4, hence Sy consists of
the edges incident to 4. We query {4,5}, which has the minimum lower limit among
edges in the cut and see that it can be added to I'. @ := {{2,3},{6,7},{2,5},{4,5}}.

i=6: In the last iteration we consider the cut edges in Sg = {{5,6},{1,2},{4,6}},
which are obtained by removing {5,6} from I". {5,6} needs to be queried and is re-
added to the spanning tree. @ := {{2,3},{6,7},{2,5},{4,5},{5,6}}.

Hence we found the minimum spanning tree
I'={{2,5},{1,7},{6,7},{2,3},{4,5},{5,6} } as well as its weight 64+5+5+5+7+7=35
by querying the edges in the optimal query set @ = {{2,3},{6,7},{2,5},{4,5},{5,6}}.

5.3 The OP-OP Model

So far, queries were able to return the precise weight of the queried edge. In some
settings however, it might be more realistic for a query to only reveal increasingly
refined estimates of the edge weights.

Gupta et al. [I2] consider the more general setting where a function f(xq,xs,...x,)
is to be computed while some of the x;’s are not fully specified but are known to lie
in some interval. Again an algorithm can make queries about the z;. If the input
intervals are open (OP) and the queries return points (P), the model is referred to as
OP-P. If the input consists of open intervals and queries reveal open subintervals of
the original uncertainty sets, the model is called OP-OP.

A useful connection between the OP-P model and the OP-OP model is given by the
following theorem, which was proved by [12]:

Theorem 5.4. ([12], page 6) A witness algorithm for a problem under the OP-P model
is a witness algorithm for the OP-OP version of the same problem.

By Theorem [2.1] the algorithm U-RED extends to a 2-competitive algorithm for the
OP-OP version of MST-U.

Again one might ask if randomization yields an improvement in terms of competitive
ratio. Unlike in the OP-P version of MST-U, the answer to this question is no, as
shown by [15]. They define an instance of the OP-OP version of MST-U such that no
deterministic algorithm has expected ratio % less than 2, where R is a realization
drawn from a family R of feasible realization of edge weights according to a specific
probability distribution p. Together with a variant of Yao’s Principle (See Borodin

and El-Yaniv [I], Theorem 8.5), this yields the following result shown by [15]:

66 5 Alternative versions of MST under uncertainty

Theorem 5.5. ([15], page 1238) No randomized algorithm for MST-U under the OP-
OP model can achieve competitive ratio ¢ < 2.

5.4 Approximate Minimum Spanning Trees

Another alternative of MST-U is to relax the necessity of an exact MST and aim for
an a-approximate solution instead:

Definition 5.2. Given an instance of MST-U with graph G = (V| E) and realization
W, e € F, let T be the edge set of a minimum spanning tree. The a-approximate
MST-U consists in finding the edge set of a spanning tree 7" such that) _,w. <
@ - Y cp We, While minimizing the query cost needed to find 7. Note, that the
requirement to find an MST is relaxed only for the algorithm, not for the optimum
solution. An optimal query set still has to verify an exact MST.

However, this relaxation does not yield an improvement in terms of the known bounds
for the competitive ratio, as proved in [15].

Theorem 5.6. ([15], page 1239) For o > 1, there is no c-competitive (randomized)
algorithm for the a-approzimate MST-U with ¢ < 2 (¢ < 1.5).

Proof. Let o > 1 and consider the following instance as depicted in the figure below.

(3, 2a) Note that {1,4} and {2,3} are in any MST.
@ However, there might be an a-approximate
spanning tree which does not contain both
{1,4} and {2,3}. Let @ be a query set and 7"
(0} {0} a spanning tree, such that querying the edges
in () verifies that 7" is a-approximate. Now as-
sume first that 7" does not contain both {1,4}
~ - and {2,3}. Let T be a spanning tree that con-
(4/ @ tains both the trivial edges and let T™ be an
(e o+ 1) MST.

Figure 5.6: Lower bound computation for the a-approximate MST-U. In this instance
all query costs equal 1.

Then by querying edges in Q we know that w(T) < w(T") < « - w(T*), where w
denotes the sum of weights of edges in the respective tree. Thus, querying the edges
in) also guarantees that T is an a-approximate tree. Hence we can w.l.o.g. assume
that a feasible query set () aims to verify an a-approximate tree T" which contains
both edges of cost 0.

5.5 Minimum Matroid Base under Uncertainty 67

We first prove the deterministic bound. Assume a deterministic algorithm queries
{1, 2} first. Consider the realization Ry with w2y = 1, Wz 4y = 3% As1 £ - i and
a+ % £ a-1, the algorithm has to query {3,4} too to find an c-approximate spanning
tree. An optimal solution, however, only queries {3,4} to find an exact MST. Now
we assume an algorithm queries {3,4} first while the realization Ry is Wy 2y = 30‘; Ly
w34y = 1. Then the optimal solution only needs to query {1, 2} to find that {3,4} is
in an MST. The algorithm however, needs to query {1,2} too because 1 £ « - % and
a Za-l.

Now we turn to the case of randomized algorithms. A randomized algorithm queries
edge {1,2} first with probability p. If the realization is R, then the expected query
cost is 2p+ (1 —p). If the realization is R, then the expected query cost is p+2(1—p).
Again the maximum expected query cost for these two instances is minimized by
choosing p = 0.5. Hence no randomized algorithm can achieve a competitive ratio
below 1.5. O

5.5 Minimum Matroid Base under Uncertainty

In this section we will see how the results for MST-U extend to the more general
Minimum Weight Matroid Base Problem under Uncertainty (MMB-U).

Definition 5.3. A matroid is a pair (E,Z) with Z C P(FE), such that
e e,
elf/€Zand I CI, then €T,
e If I,] €T and |I| > |I|, then 3 e € I\ I, such that J U {e} € Z.

We call a set I € 7 independent and a set C' € P(E) \ Z dependent. A set B € T
is a base of the matroid if for all e € E'\ B the set B U {e} is not in Z. A minimal
dependent set (with respect to inclusion) is called circuit.

Definition 5.4. For a matroid (F,Z) and a weight function w : F — R, the Min-
imum Weight Matroid Base Problem (MMB) consists in finding a base B € Z of the
matroid such that), @, is minimal.

For the Minimum Weight Matroid Base Problem under Uncertainty (MMB-U) we are
given an uncertainty set A, instead of each weight w,, which is guaranteed to lie inside
A. and can be determined by querying e at cost g.. We assume each uncertainty set
to be an open interval or a singleton. The goal is to find a minimum weight matroid
base at minimum query cost.

MMB is a generalization of MST in the following sense: For a connected graph G =
(V, E), define the matroid M := (E,Z), where Z := {A C E | (V, A) is cycle-free}.

68 5 Alternative versions of MST under uncertainty

Then B is a basis of M iff B is the edge set of a spanning tree. Hence the MST in ¢
translates to the MMB in M. A matroid whose independent sets are the forests of a
(not necessarily connected) graph is called graphic.

Algorithms which have been presented for the MST-U can be modified in order to
work for MMB-U too: For the case where query costs are uniform, Erlebach et al. [6]
show that the algorithm U-RED can be generalized to work for MMB-U as well and
achieves competitive ratio 2. For general query costs, the algorithms BALANCE and
RANDOM can also be adapted such that they work in the setting of matroids and
achieve competitive ratio 2 and 1 + % respectively, as shown by [15]. The algorithm
CUT-WEIGHT which will be discussed in Section and computes the exact weight
of an MST in the setting of explorable uncertainty such that the set of edges which
are queried has minimum cost also translates to the matroid case where is achieves
competitive ratio 1 too (see [15]).

Megow et al. [15] present two additional algorithms for MMB-U with uniform query
costs: the best-in greedy algorithm CYCLE and the worst-out greedy algorithm CUT.

5.5.1 The algorithm CYCLE

CYCLE merges ideas from BALANCE and U-RED. Thus we assume that a lower
(upper) limit basis Br, (By) is defined analogously to a lower (upper) limit tree in
Section [2.3.2] the ordering “<” of elements with respect to lower limits is an analogue
of Definition [2.2]and an always maximal element in a circuit is defined in the same way
as an always maximal edge in a cycle (see Definition [2.3). The framework of CYCLE
is similar to the one of BALANCE or RANDOM. We start out with an initial basis,
a lower limit basis B;. Then we add the remaining elements f; one after the other,
in order of non-decreasing lower limits. Each time that we add such an element, we
consider the circuit C; which arises from adding f; to the current basis. By querying
elements until an always maximal element in C; can be identified we make sure that we
maintain a partial solution. The edges that we query in a specific circuit however, are
not picked in the same way as in the algorithm BALANCE. Instead, CYCLE proceeds
in a similar way as U-RED: It chooses an element f with maximum upper limit in C;
and and an element g in C; \ {f} such that Ar N A, # () and queries both. Note that
we do not need to assume B = By here, because we do not require that f = f;. A
precise description of CYCLE is displayed in Algorithm

Megow et al. [I5] show that the algorithm CYCLE achieves competitive ratio 2:

Theorem 5.7. ([I5], page 1234) The algorithm CYCLE outputs a feasible query set
for MMB-U with uniform query costs and is 2-competitive.

5.5 Minimum Matroid Base under Uncertainty 69

input : An instance of MMB-U with matroid M = (E,Z), uncertainty sets
A., e € E and uniform query costs
output: A feasible query set ()

Determine By, and set I := By;
Index the elements in R := E \ By, such that f; < ... < f;
Initialize Q := 0;
for i <1 to k do
Add f; to I' and let C; be the occurring circuit;
while C; does not contain an always maximal element do
Choose f € C; s.t. Uy = max{U.|e € C};
Choose g € C; \ {f} with U, > Ly;
Add f and g to @ and query them
Delete the maximum weight element e from I’
11 Return @)

© o N O oA W N R

=
o

Algorithm 11: The algorithm CYCLE for MMB-U with uniform query costs
(adapted from [I5], page 1234)

Example 5.3. Consider the matroid M = ({a,b, c,d},Z) with

Z ={I € P({a,b,c,d}) | |I|] < 2}. Let A, = (2,5), Ay, = (1,4), A. = (2,3) and
Ay = (3,6) with weights w, = 3, W, = 2, w, = 2.5 and wy = 4. Note that all subsets
of size 2 are bases of M. By, := {a, b} is a lower limit basis. Hence f; = ¢, fo = d and
we set I' := {a,b}.

i=1: We add ¢ to I". Then C; = {a,b,c} is the circuit in I', f := a has the largest
upper limit in C and ¢ := ¢ is such that A. N A, = (2,3) N (2,5) # 0. We query a
and c. As w, = 2.5 € (1,4) = A, another iteration of the while-loop is required such

that b is queried too. CYCLE removes a from I' because it has largest weight in the
circuit C, i.e. I' = {b,c}, Q := {a, b, c}.

i=2: We add d to I'. We have Cy = {b,¢,d}. Note that d is always maximal in Cy
because Ly =3 > 2 = wy, and Ly = 3 > 2.5 = w.. Hence we know that I" := {b, ¢} is
a minimum weight basis and output Q.

Note that an optimal solution would have queried a and b only because we need
not query c to see that w, > U. and Ly > U.. This means that CYCLE achieves
competitive ratio 1.5 when applied to this instance if it picks ¢ := ¢ in the first
iteration. Had it picked ¢ := b in the first iteration it would have even found an
optimal solution.

Remark 5.9. The matroid M in Example is uniform (the independent sets are

70 5 Alternative versions of MST under uncertainty

precisely the sets of size at most 2) but not graphic.

5.5.2 The algorithm CUT

The algorithm CUT starts out with an upper limit basis By instead of a lower limit
basis and deletes elements in order of decreasing upper limit. More precisely, we define
the ordering of elements as follows:

Definition 5.5. For two elements e, f € E' we say that e >, f if U, > Uy or U, = Uy
and L, > Ly. If e >, f or e = f holds, we say that e >, f.

Each time we delete an element ¢; from the current basis, we consider the analogue of
a cut set, namely the elements in S; = {e € F' | 'U{e} is a basis}, where I" denotes the
basis found in the previous iteration minus the deleted element g;. By making queries,
we identify a minimum weight edge in \S; which is consequently picked to complete the
basis. The algorithm CUT is displayed in Algorithm [12]

input : An instance of MMB-U with matroid M = (E,Z), uncertainty sets
A,., e € E and uniform query costs
output: A feasible query set @)

Determine By and set I' := By;

Index the elements in By such that g1 >, ... >4 gn;

Initialize Q := 0;

for 1 < 1 ton do

Delete g; from T

Let S; ={e € E | I'U{e} contains a basis};

while we cannot identify a minimum weight element in S; do
Choose g € S; s.t. Ly = min{L.|e € S;};
Choose f € S;\ {g} with Ly < Uy;
Add f and ¢ to @ and query them

Add the minimum weight element e from S; to I’

Return @

© 0o N O A W N

=
o

- e
N =

Algorithm 12: The algorithm CUT for MMB-U with uniform query costs
(adapted from [I5], page 1235)

CUT achieves competitive ratio 2, as shown by [15]:

Theorem 5.8. ([15], page 1236) The algorithm CUT finds a feasible query set for
MMB-U with uniform query costs and is 2-competitive.

5.6 Special Spanning Trees 71

Example 5.4. We consider the same instance of MMB-U with matroid M as in Ex-
ample . The choice of the upper limit basis By = {b, ¢} is unique. Then ¢g; = b and
go =c. Set I':= {b,c} and @ := 0.

i=1: First CUT removes b from I". As all subsets of size 2 form a basis, we have
S1 = {a,b,d}. The element b has smallest lower limit among elements of S, i.e.
g :=b. Assume CUT picks f = d, because AzN A, = (3,6) N (1,4) # () and queries
both edges. It becomes clear that b has smallest weight in Sy, i.e. T' := {b,¢} and
Q = {b,d}.

i=2: CUT removes ¢ from I'. This yields S; = {a,c,d}. Assume CUT picks g := ¢
and f := a. Then querying ¢ and a yields that ¢ needs to be re-included into I' and
we output @ = {a,b,c,d}.

Remember that {a,b} is an optimal query set. This means that CUT can achieve
its worst case competitive ratio of 2 when applied to this instance. Had CUT chosen
f := a in the first iteration, it would have found an optimal solution.

5.6 Special Spanning Trees

Instead of identifying a general minimum spanning tree, one could also ask to find
a minimum spanning tree of a specified type at minimum query cost. However, for
many types of special spanning trees, it is already NP-hard to find such a tree in a
graph, e.g. Hamiltonian paths, spiders (see Gargano et al. [I0]) or caterpillars (see
Khosravani [14]).

A special spanning tree that can be found in polynomial time is a star tree.

Definition 5.6. The complete bipartite graph K ; is called star tree Sj. If a graph
G with n vertices contains .S,,_; as a subgraph, then S,,_; is said to be a spanning star
in G.

We define the Minimum Spanning Star Problem under Ezplorable Uncertainty (MSS-
U) analogously to MST-U. However, it turns out that no algorithm for MSS-U can
achieve constant competitive ratio.

Proposition 5.4. There exists no algorithm for MSS-U which achieves constant com-
petitive ratio.

Proof. Consider a graph G = (V, E) with V = {1,...,n} and
E={{l,v}v=2,..,n}U{{n,v}|v =1,...,n—1}. Then G has precisely two spanning
stars with center 1 resp. n (all other vertices have degree 2.) Let g. = 1 for all e € E.

72 5 Alternative versions of MST under uncertainty

The uncertainty sets are defined as follows:
o Apay =11}
o Apw =(0,1) for k=2,...,n —1 and
o Appy = (0,n) for k=2,...,n—1.

Now assume the realization of edge weights is such that @y, = n — 1 for some
arbitrary but fixed j € {2,...,n—1} and w, = 0.5 for all e € E\ {{j,n},{1,n}}. Then
an optimal solution queries only {j,n} to know that the spanning star with center n
has larger weight. Conversely, without querying {j,n}, it is impossible to tell which
spanning star has minimum weight. For each possible order in which an algorithm
queries edges in G, we can choose an instance as above with j such that {j,n} is the
last edge of type {k,n} with k € {2,...,n — 1} to be queried by the algorithm. Hence
no algorithm achieves competitive ratio better than n — 2. For n = 5 the construction

is illustrated in Figure [5.7] O

Figure 5.7: The weight of {2,5} is displayed in red. All missing edge weights equal
0.5. An optimal solution only needs to query {2, 5} which has larger weight
than the star with center 1 can have. A deterministic algorithm can not
distinguish between the edges {2,5},{3,5} and {4,5} and might have to
query all three of them.

Conclusion

In this master’s thesis we have seen different deterministic as well as randomized
algorithms for the Minimum Spanning Tree Problem Under Explorable Uncertainty
and other variants of the problem. The following table gives an overview over the
performance of the algorithms as well as over existing lower bounds.

BALANCE | U-RED | RANDOM | RANDOM¢ | V-RANDOM¢ CUT- BOUND | BOUND
WEIGHT DET. RAND.

MST-U 2 2 1+ 5 - - - 2 1.5
MST-U cactus 2 2 + % 1.5 - 2 1.5
V-MST-U 4 - 4 2.5
V-MST-U 4 3 4 2.5
special case
MMB-U 2 2 1+ 5 - - - 2 1.5
MMB-U Weight - - - - - 1 1 1
MST-U Weight - - - - - 1 1 1
Approx. MST-U 2 2 1+ % - - - 2 1.5
Op-Op - 2 - - - - 2 2
MSS-U - - - - - - no const. | no const.

Table 5.1: This table lists the results for uniform query costs. The results are iden-
tical for the non-uniform case, except for the algorithms U-RED and V-
RANDOM¢ which cannot be applied in the latter case. The entry “-” is
used whenever an algorithm cannot be applied to the specific problem. Note
that algorithm names refer to the original algorithms for MST-U, as well as
to adaptions of the original algorithms for different settings.

The MST-U in itself is a problem which still deserves further investigation. A major
open question is whether there exist randomized algorithms with a smaller perfor-
mance guarantee than RANDOM or whether the lower bound of 1.5 can be improved.
Also note that there is no randomized algorithm for the V-MST-U so far and even
for the special case where cycles intersect in trivial vertices only, there is a gap of
0.5 between the lower bound and the performance of V-RANDOM¢. Also for the
deterministic case the version of V-MST-U with non-uniform query costs remains un-
solved. Moreover, different models of the uncertainty exploration could be the subject
of further investigations. So far, only adaptive models have been considered. Erlebach
and Hoffmann [5] suggested a partly non-adaptive concept, where queries are made in
rounds. Queries of the same round have to be made in parallel and depend solely on
the query outcome of previous rounds. Different round competitive models, e.g. mod-
els where the objective function is the minimization of the number of rounds while

73

74 5 Alternative versions of MST under uncertainty

the number of queries per round is fixed or models where the goal is to minimize the
number of queries while the number of rounds should not exceed a value k could be
considered in future work on the topic.

Bibliography

1]

2]

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems, 38(4):411—
423, 2005.

C. Diirr, T. Erlebach, N. Megow, and J. Meifiner. Scheduling with Explorable Un-
certainty. In 9th Innovations in Theoretical Computer Science Conference (ITCS
2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1-30:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncer-
tainty. In Proceedings of the International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 164-175, 2014.

T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with
uncertainty. Bulletin of the Furopean Association for Theoretical Computer Sci-
ence, 116, 2015.

T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for
cheapest set problems under uncertainty. Theoretical Computer Science, 613:51—
64, 2016.

T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihaldk, and R. Raman. Comput-
ing minimum spanning trees with uncertainty. In Proceedings of Symposium on
Theoretical Aspects of Computer Science, pages 277-288, 2008.

T. Feder, R. Motwani, L.. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62(1):1-18, 2007.

J. Focke, N. Megow, and J. Meifiner. Minimum Spanning Tree under Explorable
Uncertainty in Theory and Experiments. In 16th International Symposium on
Ezxperimental Algorithms (SEA 2017), volume 75 of Leibniz International Pro-
ceedings in Informatics (LIPlcs), pages 22:1-22:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

75

76

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaroa. Spanning spiders
and light-splitting switches. Discrete Mathematics, 285:83-95, 2004.

M. Goerigk, M. Gupta, J. Ide, A. Schobel, and S. Sen. The robust knapsack
problem with queries. Computers and Operations Research, 55:12-22, 2015.

M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and
related problems. Computing Research Repository, abs/1108.5525, 2011.

S. Kahan. A model for data in motion. 23rd Annual ACM Symposium on Theory
of Computing (STOC’91), pages 267277, 1991.

M. Khosravani. Searching for Optimal Caterpillars in General and Bounded
Treewidth Graphs. PhD Thesis, Department of Computer Science, University
of Auckland, 2011.

N. Megow, J. Meifiner, and M. Skutella. Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM Journal on Computing, 46(4):1217—
1240, 2017.

Y. Wang and S.-W. Wong. Two-sided online bipartite matching and vertex cover:
Beating the greedy algorithm. In Proceedings of the International Colloquium on
Automata, Languages and Programming, pages 10701081, 2015.

List of Algorithms

(I The algorithm U-RED for MST-U with uniform query costs (adapted |
| from [T, page 283)] 17
2 The algorithm BALANCE for MST-U with general query costs (adapted |
| from [15], page 1223 and 1231) 23
B Computing t(fi)| 24
i The algorithm RANDOM for MST-U with uniform query costs (adapted |
| from [15], page 1223 and 1227)| 30
15] The algorithm RANDOM for MST-U with uniform query costs in cac- |
| tus graphs|[. 35
(§ 'T'he algorithm RANDOM for MS'T-U with general query costs in cactus |
[graphs| L 39
['The algorithm VERIFICATION for MST-U-VER with general query costs| 44
(8 The algorithm V-RANDOM for V-MST-U with uniform query costs in |
| graphs where no two cycles intersect in non-trivial vertices| 57
19 The subroutine V-DET<|. 58
(10 The algorithm CUT-WEIGH'T for W-MST-U with general query costs |
| (adapted from [15], page 1232)] 63
11 The algorithm CYCLE for MMB-U with uniform query costs (adapted |
| from [I5], page 1234)]. 69
(12 The algorithm CUT for MMB-U with uniform query costs (adapted from |
[(5], page 1235)]. 70

7

List of Figures

N

An instance of MS'T-U: The realization of edge weights is depicted in

red. All query costsequal 1. 14
2.1 No algorithm has constant competitive ratio. ([7], page 286)| 15
[2.2 Lower bound computation for deterministic algorithms| 16
[2.3 An instance of MST-U with uniform query costs. The realisation of |
edge weights i1s depicted inred.| 18
[2.4 The instance prior to the last iteration of U-RED: Each cycle has an |
always maximal edge.|. oo 19
[2.5 An instance of MST-U with non-uniform query costs. The realisation [
ot edge weights 1s depicted in red. The query costs are equal to one |
except for ¢ =g = 2,99 = 1.8 (in green).| 26
[3.1 Lower bound computation for randomized algorithms| 29
[3.2 An instance of MST-U with uniform query costs. The realisation of [
edge weights 1s depicted inred.| 32
[3.3 An instance of MST-U with uniform query costs in a cactus.l'he reali- |
sation of edge weights 1s depicted inred.| 36
[3.4 An instance of MST-U with non-uniform query costs. The realisation |
ot edge weights 1s depicted in red. The query costs are equal to one |
except for g =gs =2 and gz = 1.8 (ingreen.)[. 37
4.1 An instance of MST-U with non-uniform query costs, where red num- |
bers denote the realization of edge weights. The query costs are one for |
all edges, except qr231 = qq1,77 = qqa,7y = 0.9. These edges are drawn 1n |
GTEEN. | .« v v v o e e e e e 46
(4.2 VERIFICATION needs to solve an instance of Minimum Weighted Bi- |
partite Vertex Cover. Green vertices correspond to edges with query [
cost O8] e 47
.1 Lower bound for V-MST-U (adapted from [7], page 287)] 50
5.2 C; with edge f; and the edges in X (f;) (bold). Here a = 8 and b = 3. |
An optimal solution which avoids f; must query at least three vertices [
to cover all edges in X (f;).|. L 55

79

80 List of Figures

(5.3 C; with b = 1, where edges in X(f;) are bold. Vertices which are |
displayed in red are possible candidates for an optimal query set ()7 of
size one. In (a) we have a = 3 such that the end vertices of f; and
the vertex in the intersection of the two neighbor edges are possible |
candidates for a size one query set. In (b) and (c) we have a = 2. |
Depending on whether f; and the edge in the neighbor set share a |
vertex, there are either four or three candidates for a size one query set.| 60

(.4 An instance of V-MST-U. Blue numbers correspond to distances, black |

[numbers correspond to vertex labels of vertices with non-trivial uncer- |

[tainty sets.|. L 61
[5.5 The six iterations of CUT-WEIGH'T: Edges in green belong to |', while |
| cut edges in S; arered, 2 =1,....6.[. 64
[5.6 Lower bound computation for the a-approximate MST-U. In this in- |
[stance all query costsequal 1.| 66

[5.7 The weight of {2,5} is displayed in red. All missing edge weights equal
0.5. An optimal solution only needs to query {2,5} which has larger
welght than the star with center 1 can have. A deterministic algorithm |
can not distinguish between the edges {2, 5}, {3,5} and {4, 5} and might |
have to query all three of them.| 72

	Introduction
	Problem definition and notations
	Deterministic Algorithms
	Performance of deterministic algorithms
	Uniform query costs: the algorithm U-RED
	Non-uniform query costs
	Framework of BALANCE
	Lower Limit Tree
	Finding a maximum weight edge in a cycle
	Core of the algorithm BALANCE

	Randomization
	Lower bound
	Uniform query costs
	The algorithm RANDOM
	An optimal randomized algorithm for cactus graphs with uniform query costs

	Non-uniform query costs
	Adaption of RANDOM to the non-uniform case
	An optimal randomized algorithm for cactus graphs with non-uniform query costs

	Connection of MST-U to Minimum Bipartite Vertex Cover
	Minimum Spanning Tree Verification under Uncertainty
	Online Bipartite Vertex Cover

	Alternative versions of MST under uncertainty
	Minimum Spanning Tree with Vertex Uncertainty
	Deterministic algorithm
	Randomization

	Computing the MST Weight under Uncertainty
	The OP-OP Model
	Approximate Minimum Spanning Trees
	Minimum Matroid Base under Uncertainty
	The algorithm CYCLE
	The algorithm CUT

	Special Spanning Trees

	Conclusion
	Bibliography

