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Kurzfassung

Image-Based Lightning (IBL) Methoden in Kombination mit High-Dynamic-
Range (HDR) Bildern ermöglichen eindrucksvolle Erfahrungen in Mixed
Reality (MR) Szenarien. Realistisches Shading von virtuellen Modellen mit
einer lebensechten Beleuchtung führt zu einer glaubwürdigen Fusionierung
von realen und gerenderten Objekten.

Die Aufnahme von HDR Video Information ist üblicherweise nur mit teuren
Geräten und Ausstattung möglich, worauf die meisten Nutzer keinen Zu-
griff haben. Hier wird eine neuartige Lösung präsentiert die eine Kom-
bination von Algorithmen aus verschiedenen Computer Vision Bereichen
verwendet: Feature Matching, Image Warping, Optical Flow, und Graph-
Cuts, welche vergleichbare Resultate erzeugen.

Der Hauptunterschied zu anderen Forschungsprojekten ist die Verbesserung
eines Standard-Dynamic-Range (SDR) Zielbildes mit HDR Information und
die Anwendung dieser erzeugten HDR Information in einer IBL-basierenden
MR Applikation.

Unsere Methoden werden qualitativ und quantitativ verglichen mit ide-
alen Resultaten sowie mit der SDR Beleuchtung, in drei verschiedenen
Beleuchtungsszenarien und unterschiedlichen 3D Modellen.

Da die erzeugte HDR Information nur als Lichtquelle angewandt und nie
direkt angezeigt wird, führen sogar nicht ideale Resultate zu schlüssigen
Ergebnissen die eine Verbesserung zu üblichen Methoden darstellt, und
besonders bei diffusen Objekten herausragt. Unsere Lösung ist als leistbare
Alternative für CGI Film Beleuchtung sowie im MR Bereich anwendbar.
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Abstract

Image-based lighting (IBL) methods paired with High-dynamic-range (HDR)
images enable an immersive experience for mixed reality (MR) scenarios.
Realistic shading of virtual models with real-world illumination may lead
to a credible fusion of reality and rendered objects.

Capturing HDR video information is usually linked to expensive equipment
and hardware, which ordinary users may not have access to. Here, a novel
solution that offers comparable results is presented utilizing a combination
of algorithms from different computer vision fields: feature matching, image
warping, optical flow, and graph-cuts.

The main difference to other research is the enhancement of Standard-
dynamic-range (SDR) target frames with HDR information and applying
the created HDR information in an MR application using IBL.

Our methods are qualitatively and quantitatively compared to ideal re-
sults and SDR illumination, featuring three different lighting scenarios and
various 3D models.

As generated HDR information is only applied as a light source and not
directly displayed, even non-ideal results lead to coherent results improving
conventional methods, excelling on diffuse objects. Our design is therefore
applicable as an affordable alternative for CGI movie illumination and
MR.
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1 Introduction

In Augmented Reality (AR) and Virtual Reality (VR) applications, the user
is either put into an enhanced version of the real world or a completely
artificial place in a virtual environment. In both options, the user is presented
an addition of virtual content. These applications can either be used for
professional content or simply for entertainment value. Popular examples
are Pokemon GO [64], Half-Life: Alyx [104] or applications like Snapchat [43]
or Instagram [26] which layer various AR filters on top of the camera, e.g.
masks, frames or artwork.

(a) VR application: Half-Life: Alyx [104] (b) AR application: Pokemon GO [64]

Figure 1.1: Example Virtual- and Augmented-Reality applications

To provide the user with an immersive experience, multiple factors influence
the perceived quality, like illumination, size, or physical properties, with the
ultimate goal that the user should not be able to distinguish the virtually

1



1 Introduction

created content from the real world [62]. While all these quality factors are
of high importance, this thesis focuses on the area of virtual lighting.

To create a result that is as realistic as possible, it is first necessary to gather
information from the scene which should be enhanced in the final version.
In this work, it was decided to make use of 360° High Dynamic Range
(HDR) images for reproducing realistic lighting conditions of the real scene.
HDR displays the deepest shadows and the brightest highlights of a scene,
as each image consists of several pictures at a different exposure time.
Therefore, it excels at depicting illumination cues and serves ultimately as
input for a system that applies image-based lighting (IBL) onto a virtual
object in an AR-application.

Present research often provides solutions for professional settings, requiring
special hardware, like HDR cameras or extremely strong computers, which
is most often impossible to afford as a private consumer. Thus, a solution is
presented by using a combination of images and algorithms to enable users
with accessible hardware to reach similar results. Although it may seem
that everyday users have no use for this modern technology, several devices
already support HDR content, or are at least experimenting with this tech-
nology. For instance, the Samsung Galaxy S10 referred to as HDR10+ [37]
or the BenQ EX3501R monitor [18].

Also the (indie) film industry is a potential target area, as photo-realistic
illumination paired with computer-generated imagery (CGI) can lead to
excellent results, while still being affordable.

(a) CGI with IBL by a private media artist [34] (b) CGI in the movie Alita: Battle Angel [29]

Figure 1.2: CGI in an indie project versus professional film industry
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1.1 Goals

1.1 Goals

This thesis presents a novel solution creating a realistic mixed reality (MR)
experience using 'normal' Standard Dynamic Range (SDR) recordings of a
scene paired with the information of sparse HDR images.
It aims to remove the constraints of requiring expensive hardware, while still
creating reasonable results, especially in comparison with non-IBL solutions.
The main goal is to demonstrate how a combination of algorithms and
affordable hardware performs concerning lighting compared to a high-end
solution utilized by professional film studios. Thereby, the main hypothesis
is whether the conduction of qualitative and quantitative analysis leads to
the generation of promising results in the majority of recorded scenarios.
For this purpose, expensive hardware is compensated with the combination
of feature matching, optical flow, tone-mapping, and graph-cut algorithms,
while still reaching results of similar quality.

Another focus of this project lies in the utilization of SDR frames while
feature matching, and applying this matching information in the warp-
ing part in combination with HDR panoramic-frames. Subsequently, these
created light probes can then be applied as a source of lighting informa-
tion to illuminate for example a virtual object, as HDR excels in this case
and serves realistic outcomes. IBL utilizes the accurately calculated real-
world information to recreate the scenes lighting rather than modeling the
illumination.

Realism is a major goal for any AR application, ultimately achieving that
real and virtual objects are indistinguishable. To do so the user has to create
an AR, VR, or other MR application and utilize the HDR information as a
lighting source for e.g. diffuse or specular shaders.

The final goal of this thesis is the creation of the mentioned mobile MR
application featuring dynamic IBL by utilizing the created HDR images and
comparing its performance to existing solutions.

3



1 Introduction

1.2 Challenges

As HDR is still a quite new technology and only a handful of the current
systems support HDR at the moment, difficulties have been arising while
using technology which is not yet considered as standard. For example,
in many required algorithms HDR was not yet supported. These circum-
stances were the reason for creating a workaround by using SDR images for
matching and applying those values. During the research on related work,
no existing solution which features this kind of workaround concerning
HDR warping was determined.

To begin with, one of the obstacles has been the lack of an HDR display
or monitor. As only some of the latest monitors can display HDR images,
many users would have to tone-map the given or resulting HDR-frames
to interpret them correctly. This is not only inconvenient but additionally
slows down the evaluation process, as a user cannot tell with the naked eye
if the result differs a lot from the actual frame. HDR images show a bigger
range of brightness values compared to an SDR image which is either too
light or too dark, in all cases lacking details.

Surprisingly neither on Windows 10 nor Mac OS, the pre-installed image
viewers were able to display output from any HDR-frames, except a white
screen. The Luminance HDR tool [56] and Picturenaut [36] enabled the
creation or simply viewing of the HDR-images, with the option to manually
adjust the brightness of an image and even tone-map them as a preview.
On the provided Samsung Galaxy S9, the phone claimed to be unable to
open the '.HDR' filetype and the Google Playstore did not provide any HDR
viewers, just mainly creation tools. With the Android application called
'MPlayer' HDR videos could be played back with the setting 'Software
encoding'.

An additional difficulty is the lack of HDR-technology in modern software,
forcing the adaption of source code by researchers and engineers to gain
access to modern technologies, as they only sparsely exist in standard
software like Matlab. This environment provides an HDR read-and-write-
function, but only handles the '.HDR' file extension and none of the other file
formats like '.EXR'. Further functions exceeding read-and-write are absent
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in the current Matlab distribution, which is expected to change in the near
future.

Due to the fact that the provided 360° camera (see section 3.1) did not
support an exposure series, the images have to be recorded on each location
where an HDR image should be captured. Depending on the size of the
scene, the amount of required images also scales, as the whole scene should
be covered as HDR data (for details see subsection 3.1.1).

A significant limitation of mobile devices is the low amount of available
storage and graphic memory. Moreover, the processing power is much less
than a modern desktop computer with an extra graphic processing unit
(GPU). As mobile phones still struggle with the data amount of high-quality
HDR images, the resolution of the images had to be reduced, and the HDR
frames could only be applied for IBL.

5





2 Related work

This chapter gives an overview of already existing research that is related
to the presented thesis (i.e. HDR, IBL, feature matching, optical flow, and
graph-cut) and additionally how featured technologies are used in other
research projects.

The main difference to other research is the enhancement of an SDR target
frame with HDR information and applying the created HDR information in
an MR application featuring IBL.

2.1 Definitions and keywords

For each of the system's parts several algorithms are involved to achieve
the final result. Therefore, the following sub-chapters explain the related
techniques, computer graphics, and -vision concepts and terms connected
to this thesis. Additionally, fields of application of each of the concepts are
presented.

2.1.1 High dynamic range (HDR)

As HDR is generally regarded as providing enhanced quality (vs. SDR im-
ages), the next chapter is giving up-to-date information on its characteristics.
In brief, HDR images are characterized by a greater bit depth, a wider range
of luminance, and a more extended color volume in comparison to SDR
images.

7
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HDR image formats There are several formats for storing HDR images,
differing in the usage of memory space. The non-zero part of a number is
called the Mantissa, whereas the Exponent defines how many positions the
decimal point is moved. Additionally, there can be a sign bit to show if a
value is positive or negative. These elements are defining the floating-point
number, utilized to encode the high precision of HDR values.

Figure 2.1: HDR encoding types: (a) Portable PixMap (.ppm) (b) Radiance (.pic, .hdr) (c)
OpenEXR (.exr) [85]

Portable PixMap (.ppm) for example uses for all the red, green, and blue
values a 32-bit IEEE float (see 2.1.a), which is the recommended option if
storage space is not a limiting factor. Alternatively, there is the more compact
Radiance format (.pic, .hdr) applying a single common exponent and a
mantissa for each channel(see 2.1.b). Lastly, OpenEXR (.exr) is supported
natively by most modern GPUs and uses 16 bit floats for each color channel
(see 2.1.c).

8
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Acquisition of equirectangular HDR Images As the provided 360° camera
does not support the native recording of HDR images, the method known
as exposure bracketing was used, which is shown in Figure 2.2.

Figure 2.2: Example exposure series to create an HDR Image [99]

In each position where HDR Images should be recorded the user has to
take several images at the same set of exposure times. Moreover, the white
balance of the camera should be locked. It is important to set the camera to
Manual mode: in any other mode, the automatic exposure function would
adjust the exposure between shots. Thereby, parts of the scene with light
sources in it would be taken at a different set of exposure time from the
darker parts of the panorama [100].

9



2 Related work

A tripod is suggested, but not required. At least a stable surface is highly
recommended to reduce artifacts. It is also vital that the scene stays identi-
cally, which is a challenging task in dynamic scenes as every motion leads
to artifacts, like ghosting. Also changing illumination can create problems
during the creation part, for which the Picturenaut software (section 4.5)
was utilized.

2.1.2 Tonemapping

The tone mapping algorithm is mandatory if the light intensity level or con-
trast experienced in a real environment exceeds the available dynamic range
of the display device. However, simple downscaling of the illumination-
or contrast range does not produce satisfying or accurate results. During
the past decades color and image appearance models have been created to
reproduce the visual appearance which the human eye experiences in the
'real world'.

Figure 2.3: HDR image: Linear scaling versus tone-mapped result [75]

Applications Tone mapping has several application fields like producing
optically pleasing images, reproducing as many details as possible, max-
imizing contrast, or creating visual effects for image editors. In scientific
projects, it is mainly used to adjust the dynamic range to match the available
one, as those might not always be fitting together.
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During this project tone mapping was applied to generate SDR frames by
tone mapping HDR frames, display them on any device, print them within
this thesis and especially make them usable in the necessary algorithms and
tone map the resulting images.

2.1.3 Augmented Reality

AR is defined as 'a technology that layers computer-generated enhancements on
top of the existing real world to make it more meaningful through the ability to
interact with it' [1]. Simplified, AR enhances the real world with virtual mod-
els and information. Many current applications are based on marker-based
technology, as it is much simpler to detect and recognize images that have
been hard-coded in a device in advance.
Contrary to that a markerless AR application can recognize almost any ob-
ject, which needs a higher amount of effort as it is more difficult concerning
the implementation [1].

Differences to Virtual Reality Both AR and VR are relatively similar tech-
nologies with mainly the same purpose, namely to serve users with an
enhanced or enriched experience. The main property of VR is the creation
of a virtual world that is completely computer generated and driven. On the
other side, AR adds virtual components as a new level of interaction to the
real world. Therefore the only requirement for AR is that the device includes
a camera, whereas in VR the user needs an own headset for displaying the
whole virtual scene [80].

Mixed Reality MR does not exclusively take place in either the physical
or virtual world but is a mixture of both [60].
MR is best explained as 'the range between reality and VR, which allows virtual
and real elements to be combined in different degrees [80]'.

11



2 Related work

Figure 2.4: The so called 'mixed reality continuum' contains all possible combinations of
the real and virtual worlds [60].

Applications Applications for AR are for example available in the enter-
tainment sector, like mobile games or animations (see Figure 1.1), in the
medical field, as guidance or overlay for areas where the human eye lacks in-
formation, in the military, as an overlay of additional information for troops,
in the navigation field to localize certain buildings or add information to
sights and in the educational sector to teach with augmented models or
scenes [14]. In this thesis, AR is utilized to render a virtual object in a real
scene with fitting HDR illumination of this virtual model.

2.1.4 Global Illumination - Image-Based Lighting (IBL)

In real life, the light originates from every direction either directly from
light sources or indirectly after reflecting off objects in the environment,
being partially absorbed in the process. The whole real scene can be seen
as a single light source for virtual objects, which leads to more realistic
and lifelike illumination as it adds a higher amount of details to the objects
(see section 5.1). HDR-images, in particular cube-maps, are a great way
to encode such an 'environment lighting'. This technique is referred to as
Image-Based Lighting or sometimes Indirect Lighting [31].
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Figure 2.5: HDR images used to light an artificial scene [74]

It is usually mandatory to utilize HDR for IBL as the illumination in envi-
ronment maps has to be in floating-point precision, rather than arbitrary
fixed-precision values to ensure meaningful physical units. Connected to
these maps two distinct types of environment mappings exist. On the one
hand, if the map represents incoming light from the point of view of an
observer it is called radiance map, and on the other hand, the type of map
that directly represents outgoing light after reflection which is referred to as
irradiance map [80].

Reflectance and environment lighting The basic illumination model in
computer graphics consists of three components: Ambient light, diffuse
reflection and specular reflection. Ambient light models the combination of
light reflections, which origin from surrounding objects in the scene. It has
neither spatial nor directional characteristics and can be generally seen as
background lighting. Diffuse reflection is designed for matte surfaces. The
resulting surfaces appear equally bright from any viewing angle as they are
modeled to reflect light with the same intensity in every direction. Specular
reflections occur on any shiny surface and their appearance depend on the
objects material and the light. Contrary to diffuse reflection they model
reflected light towards the camera [40].
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To create an environment map the integral for each output ωo sample
direction has to be solved by sampling a high amount of directions ωi

over the hemisphere Ω while their radiance is averaged. The sample direc-
tions ωi from the hemisphere are oriented towards the output ωo sample
direction [92].

Figure 2.6: Simple sketch for environment lighting [92]

In Equation 2.1 the reflectance equation is presented with the main goal
of 'solving the integral of all incoming light directions ωi over the hemisphere
Ω' [17].

Lo(p, ωo) =
∫

Ω
(kd

c

π

)Li(p, ωi)n · ωidωi +
∫

Ω
(ks

DFG

4(ωo · n)(ωi · n)
)Li(p, ωi)n · ωidωi

(2.1)

The diffuse kd and the specular ks term are independent of each other
therefore the integral is presented split into two parts, to handle them
individually [17].

The BRDF equation is used to define how light is reflected on the surfaces
of given materials. Many reflection models use their own BRDFs, which
vary in their properties like complexity and level of realism, e.g. Phong [72],
Oren–Nayar model [67], Cook–Torrance model [17], and others. Phong
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shading, which is seen as a classical model does not provide a very realis-
tic illumination. It still creates appropriate outcomes, but lack in realism.
In contrary, physically-based rendering (PBR) approaches as seen in the
Oren–Nayar model and the Cook-Torrance model aim for authentic repre-
sentations of materials. The Oren–Nayar reflectivity model is designed for
diffuse reflection from rough surfaces whereas the Cook-Torrance model
specializes in specular PBR.

In realistic natural lighting scenarios, as part of this thesis, the color chan-
nels' brightness values are typically above 255 and contain more accurate
values than fixed-point numbers. Therefore physically-based BRDFs should
always be paired with HDR to reach optimum results.

The software Unity (see section 4.4) with which the AR application was
created, utilizes the Torrance–Sparrow model, which is a PBR model repre-
senting the directional reflectance characteristics of a specularly reflecting
rough surface [87].

Generally, IBL is independent of the type of BRDF but creates more lifelike
results if it is paired with a physical-based BRDF, as the light sources
are represented as images from the real world. Usually pre-processing
concerning reflection and lighting is applied in connection with IBL, to
improve performance during execution. This procedure differs concerning
whether the light probe is used for diffuse or specular reflections. For diffuse
reflection, every point in the hemisphere gets blurred in advance to generate
a low-frequency illumination, which averages the color in the areas. Whereas
for specular reflection, a pre-computed environment convolution map with
the focus on roughness is created and the sequentially blurrier results
are stored. Additionally, the BRDF's response to various light directions
featuring several different roughnesses of the material is pre-computed
[92].

Light sources and alternatives In computer graphics there are typically
three variants of light sources available: point lights, directional lights, and
spotlights.
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Figure 2.7: Schematic of light source types in computer graphics [106]

A point light distributes light equally in all directions, simulating a naked
bulb suspended from a ceiling without any shade. A spotlight is similar, but
it simulates a theatre spotlight, which spreads light uniformly but restricts
it to a cone, which is gradually less intense towards the sides of the cone.
Otherwise, a directional light imitates an infinitely distant light source,
illuminating the objects in the scene from a single direction, with equal
intensity [40].

IBL and the other light sources are not exclusive to each other. Often a
combination of several of them leads to the most realistic representation
of scene lighting. In computer games for example IBL is often utilized for
environmental lighting, whereas a spotlight is chosen to simulate a flashlight
and point sources to mimic the behavior of light bulbs. It is not always
necessary to apply IBL, as specific scenes like dark caves contain hardly any
light sources except e.g. a flashlight or a torch.

2.1.5 Feature extraction and matching

Feature extraction and matching is a highly relevant part of computer vision
as it is needed in various commonly known algorithms and tasks, such as
object detection, robot navigation, Structure-from-Motion (SFM), and other
image related tasks. An image consists usually of a large variety of features,
although not all of them are regarded as useful. Favorable feature points
are characterized by four properties: 1) repeatability, 2) saliency, 3) locality
and, 4) compactness and efficiency [35].
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Figure 2.8: Example feature- extraction and matching [35]

Typically, the feature extraction and matching process comprises of four
phases [89][90]:

• feature point detection - identification of the interest points
• computing feature descriptors for each of them - creation of a descrip-

tion vector for each feature point. Each feature point descriptor is
rotation, scale, translation and lighting invariant.

• matching of corresponding keypoints - feature point descriptors are
checked between the images, to identify matching keypoints. Typically
they are linked as keypoint pairs (Ai, Bi) - (Ai', Bi'), where (Ai, Bi) is a
feature point in the first image and (Ai', Bi') is the fitting match in the
second image.

• transformation estimation between the two pictures utilizing the
matching keypoints

Those four steps are named in order of the process, therefore the detection
step is the most consequential of those points, as it affects all further tasks.

Applications There are many different regions of application in modern
technology for feature detection and matching, for example:

• Automate object tracking
• Image alignment
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• Stereo calibration
• Image segmentation
• Image classification
• Robotic mapping and navigation
• Image indexing and content retrieval

During this project, feature detection was applied to both tone-mapped
HDR images and the target SDR frame, and following that, feature matching
was then applied to identify corresponding points in both of them. This was
necessary as both images were shot from a different location, angle, and
rotation. Later those matched features were used to warp the HDR image
into the perspective of the SDR frame.

2.1.6 Optical Flow

Szeliski [85] described optical flow as: 'The most general and challenging
version of motion estimation is to compute an independent estimate of motion at
each pixel. This generally involves minimizing the brightness or color difference
between corresponding pixels summed over the image'.

In the following figure, a simple sketch of the optical flow of three consecu-
tive frames is displayed.

Figure 2.9: Detection of optical flow on the image plane [22]

18



2.1 Definitions and keywords

Applications Correct estimation of optical flow may be utilized for motion-
related detection and tracking. It is a core tool of computer vision for the
quantification of perceived changes or motion using image sequences [42].

In this project, the optical flow algorithm by C. Liu [52] was applied to calcu-
late a new HDR light probe between two adjacent HDR images: one forward
warped and one backward warped image. These newly created images are
forwarded as input to the graph cut algorithm (see subsection 2.1.7).

2.1.7 Graph-cut

As the optical flow function of the framework calculates the previously
mentioned backward and forward flows it provides two output frames.
Those two images are needed to combine to a single frame which should
represent the optimal mixture of all of them, in terms of appearance. That is
the point where the graph-cut comes into play, as its task is the combination
of the two mentioned images, with additional information of the SDR
image.

During this project, graph-cut has been connecting patches from either the
left warped HDR frame or the right warped HDR frame, as the SDR images
would create too distinct results. To avoid the influence of the SDR frame
during the graph-cut the SDR frame has been penalized with a high weight
of 500, to assure rather a patch from any adjacent HDR frame is used. This
weight is the variable c in Equation 2.2.

To calculate the data cost of graph-cut, the following equation has to be
fulfilled to decide which patch is chosen for the following blending. As part
of this equation, the calculated motion confidence is required, is calculated
during the optical flow for each pixel [33].

Equation 2.2 shows the formal definition of the data cost function D for
computing the cost of assigning a given label l to a pixel p [33].
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D(p, l) =











c if l = fi

∞ if wl(p)

Dc(p, l) + D f (p, l) + Dd(l, fi) undefined otherwise

Dc(p, l) = ‖wl(p)− fi(p)‖
D f (p, l) = 1 − motion confidence(wl(p))

Dd(l, fi) =
| frame index(wl)− i |

| frame index(wright)− frame index(wle f t) |

(2.2)

• The constant c is the defined as cost for choosing the SDR option
as target pixel, which in this case was set to 500 to avoid any SDR
information in the resulting picture;

• wl is the warped image (either left or right);
• Dc is applied to improve color consistency between a pixel and the

label;
• D f is applied as factor to the motion vector confidence;
• Dd favors labels that are temporally closer to the target frame i.

The pixel channel- and the confidence-values are both numbers between
[0-1]. The motion vector confidence is generated during the optical flow
computation.

Applications Applications for graph-cuts are for example image and video
texture synthesis like in the project of Kwatra et al. [48], which transformed
and copied region from one scene to another, or generated additional
textures without any perceptual inconsistencies.
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2.2 Related papers

2.2.1 HDR-Imaging

In 1997 Debevec et al. [20] described a process of retrieving HDR radiance
maps from ordinary photographs recorded by standard cameras. As seen in
Figure 2.10, several conventional images are recorded of the identical scene
varying only the value of exposure. Following that, the image series may be
algorithmically combined to an HDR image.

Figure 2.10: Sixteen photographs of a church with various exposure [20]

The algorithm recovers the response function (Figure 2.11) from the multiple
photographs and utilizing this function fuses them into a single HDR
radiance map. The pixel values in this resulting map correspond to their
correct values (Figure 2.11). This method of HDR Image creation is still used
nowadays and it was moreover applied in the practical task for this thesis.
For further details see subsection 2.1.1. For this project, the Reinhard05

operator [75] was chosen as tone mapping-operator to convert HDR images
into the SDR domain. Although it is regarded as one of the more simple
operators, it is at the same time one of the fastest and most widespread
ones, leading to fine results. There are specialized research papers, like 'A
comparative review of tone-mapping algorithms for high dynamic range video' by
Eilertsen et al. [24] comparing all pros and cons of each of these tone
mapping-operators, as there is a large amount of them available.
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(a) Recovered response function for the imaging system
used in the church photographs in Figure 2.10 [20]

(b) Resulting rendering using histogram compression
also simulating the human visual system, e.g.
glare [20]

Figure 2.11: Utilized response function and the resulting reconstructed HDR radiance map

Concerning the acquisition of HDR images one publication in 2019 by Yan et
al. [101] deals with progress in the 'ghosting free' creation of them through
an 'attention-guided end-to-end deep neural network (AHDRNet)'. This project
shows a non-flow based solution which avoids errors and artifacts due to
optical-flow estimation.

Figure 2.12: The AHDRNet system consists of two networks. An attention network to
analyze and extract features plus a merging network for HDR estimation[101]
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Other recent researches show trends in reconstructing HDR images from
a single SDR image by utilizing deep learning. The approach by Lee et al.
[49] aims to create several exposures of a single input SDR image by utiliz-
ing a multi-layered convolutional neural network (CNN) (see Figure 2.13).
Following that, those images may be fused as typically, to create the target
HDR image. Similarly, Khan et al. [44] apply the idea of feedback in their
recurrent neural network with a hidden state.This enables them to recon-
struct a target HDR frame by guiding their low-level features of the image
utilizing extracted high-level features in the mentioned hidden state of the
system.

Figure 2.13: CNN based exposure-bracket generation to generate an HDR utilizing only
one SDR target image [49]

As HDR images tend to have much larger file sizes, compression of HDR
content is another interesting topic. In the recent paper from 2019, Maymon
et al. [57] applied contrast optimization and local adaptation connected to
HDR and could drastically compress the dynamic range, without eliminat-
ing the existing fine details of the HDR content.

2.2.2 Image-Based Lighting

In 1998 Debevec [21] introduced image-based lighting with HDR and differ-
ential rendering, which is the method that allows real-world illumination
effects to be preserved. Although initially in 1984 Miller et al. [61] discussed
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environment maps that can be applied to perform image-based diffuse and
specular lighting. Paul Debevec greatly influenced the related work with his
influential research throughout the years, and his name occurred in many
scientific works connected to this thesis.

An extremely interesting approach by Meerbeek et al.[7] describes a method
of searching an image database for images to be used in rendering a scene
using IBL (Figure 2.14). Thereby, the user searches for images including
lighting infrastructure information additionally to keywords. The results are
based more on the lighting infrastructure rather than the user's word-based
search terms.

Figure 2.14: Illustration how color values may be selected from an image database [7]

Recent image-based lighting concepts showed promising improvement in
two main areas, in the level of realism as well as the efficiency and calculation
speed, leading partially to real-time lighting results. Optimal artificial sky
models can significantly improve simulation accuracies with the ability to
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include light color information and dynamic day-lighting simulations. This
can recreate luminance for different dynamic lighting situations and even
the most complex cloudy sky conditions, enhancing e.g. models for city
planning and architectural purposes. A detailed description is given in the
work 'Dynamic day-lighting simulation facility based on image-data' by
Bian et al. [9].

Kneiphof et al. [46] published in 2019 results in connection with the lighting
of Microfacet Bi-Directional Reflectance Distribution Functions (BRDFs)
with varying iridescence. Iridescence is perceived as 'gradual color changes,
depending on the view and illumination direction' [46], and is an extremely
challenging effect to simulate in real-time.

Figure 2.15: Rendering iridescent effects in real-time [46]

2.2.3 Light estimation in MR environments

Currently, automatic light estimators are aiming to replace the conventional
IBL method of capturing the lighting, e.g. one module of ARCore (see
section 4.4). Nevertheless, the majority of their results is still suboptimal,
as the conventional methods lead to more realistic results, especially re-
garding reflections. These estimators still provide a better light estimate
compared to other applications, like Ikea Place. However, a combination of
light estimation and IBL is possible and may lead to an enhanced way of
lighting.
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Nevertheless, promising research for example by Unger et al. [91] has been
published, who designed and build a real time light probe which supports
IBL purposes (Figure 2.16). Their system captures high quality color images
of 512x512 pixels with HDR at 25 frames per second.

Figure 2.16: RGB capture setup with three cameras aimed at a mirror sphere [91]

Through the reflection in the mirror sphere the researches capture the
surrounding scene. Their approach may lead to convincing results, but the
presented capture setup is rather oriented for researchers than for users on
the consumer level.

As in many related technologies, deep learning also proposes a solution
for MR illumination. PointAR [105] by Zhao et al. consists of an efficient
mathematical model and a compact deep learning model to create a light-
ing estimation pipeline. Their method published in March 2020 claims to
perform well, even on the limited hardware of smartphones, and creates
credible results on diffuse objects. Unfortunately, no images with specular
reflection were presented and their approach does not apply IBL methods.
Park et al. [69] aim to calculate correct illumination by recording only a
standard photo of a target object without any need for special hardware by
utilizing three sequential deep neural networks. Their prediction applies an
extensive amount of materials and structures and gradually decreases the
dependency on them with the trained networks. Noticeably in Figure 2.17,
the specular reflections are rather blurry and lacking detail compared to IBL
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methods. Nevertheless, the overall performance regarding the color theme
is accurate.

Figure 2.17: Qualitative comparison between rendered results and ground-truth [69]

2.2.4 Feature matching

Feature detection and description is a highly relevant and current topic,
as artificial intelligence and robotics paired with the ability to see and
understand their environment, create applications and opportunities with
endless potential [77].

Scale-invariant feature transform (SIFT) [54], speeded-up robust features
(SURF) [6], and KAZE [27] are well-known feature detectors in computer
vision with SIFT as the most established one. Lately though with the trend
of deep learning, algorithms based on CNNs tend to outperform state of the
art computer vision detectors. Learned invariant feature transform (LIFT)
[102], SuperPoint [23] and local feature network (LF-NET) [66] are some of
the most prominent examples.

Considering matching and registration, Truong et al. [88] conducted research
connected to the performance of various feature matchers. ORB [76], Binary
Robust Invariant Scalable Keypoints (BRISK) [50], Fast Retina Keypoint
(FREAK) [2] and the previously mentioned matchers LIFT, SuperPoint,
SURF, KAZE, and LF-NET were evaluated in their research, resulting with
SuperPoint outperforming others considering feature matching and LIFT
showing the best quality of image registration.
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One recent paper from June 2020 describes an innovative CNN-based fea-
ture detector using so-called 'Greedily Learned Accurate Match Points
(GLAM points)', which have been learned in a semi-supervised way. This
paper claims to significantly outperform classical feature detectors and even
modern state of the art CNN systems [89].

(a) SIFT (b) GLAMpoints

Figure 2.18: Feature points observed by a) SIFT and b) GLAMpoints and obtained matches.
Detected features are depicted in white, while red lines false resemble positives
and green lines resemble to true positives[89]

As feature matching is often followed by image warping and stitching, some
recent research work by Hristova et al. [38] features the elimination of color
differences that occur during HDR image stitching. This is a common issue
in image generation, as seams or abrupt color changes may occur in border
regions of image segments. Their displayed work shows impressive results,
but unfortunately, their algorithms were not available during the practical
process of this thesis. These functions may have improved the quality and
outcome of a few obtained images.

Overall, feature extraction and matching will stay an extremely relevant
topic as it has become a fixed part in trending technology, leading from
autonomous driving to object recognition or even in outer space programs.
SIFT was for example used on the Mars Rover by National Aeronautics and
Space Administration (NASA) (Figure 2.19).
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Figure 2.19: NASA Mars Rover images with SIFT feature matches [84]

2.2.5 Optical Flow

Current technologies from 2019 are heading into self- or un-supervised
approaches in optical flow estimation. Self-supervised systems aim to learn
accurate optical flow estimations reducing the need for pre-training of the
system on datasets [53], whereas unsupervised optical flow and stereo depth
estimations are currently using CNNs to take advantage of consistencies in
the scene, like geometric patterns.

Figure 2.20: SelFlow: Self-Supervised Learning of Optical Flow. Utilizing a self-supervised
CNN, occlusions and multi-frame formulation is frequently improved and
therefore the optical-flow performance increases [53]

An interesting approach is shown by Wang et al. [95]. They use a stereo
camera, providing additional information to the CNNs. By showing the
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scene from two different angles, the system can take advantage of depth
information created by the combined information of the stereo images.

Further applications are video denoising, making use of information from
adjacent frames to remove noise and other artifacts, or deinterlacing which
is 'the process of converting a video taken with alternating fields of even and
odd lines to a non-interlaced signal that contains both fields in each frame' [85].
Overall optical flow is applied in traffic analysis and vehicle tracking or
segmentation tasks (Figure 2.21) [65].

Figure 2.21: Spatial-temporal bounding tubes to model the vehicle's motion [51]

2.2.6 Graph-cut

In current research works, graph cuts are often used as a tool of segmen-
tation or separation of various objects in a scene. Applications reach from
image processing for dividing foreground from background pixels [63] or
the medical sector like magnetic resonance imaging (MRI) [19] or endoscopic
bladder image registration [98].

Figure 2.22: Bladder image analysis using Graph-cut [98].

During the research process of graph-cuts, it was noticed that in the last
years the basic task of segmentation did not change drastically, as it was
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discussed in various research papers. On the contrary, the procedure of
conduction is differing significantly between papers, as more advanced
methods have been developed throughout the years.

For example in the recently published work of Hu et al. [39], the system
applies multi-threshold segmentation for irregular images, leading to lower
error rates in different evaluations and even claims to have a lower run-time
than other state of the art image segmentation algorithms. In the cited
research the authors present a solution which may even be used on either
square and nonsquare input frames, by finding the minimum of a cost
function utilizing a so called 'artificial bee colony algorithm'. This calculated
value is later applied to find the optimal threshold of the image.
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Figure 3.1: Overview of the system structure adapted from [33]

As depicted in Figure 3.1, the presented system involves three parts, which
may be interconnected:

• Light probe interpolation
• Generating HDR key frames
• Image-Based Lighting

The main goal of this system is to create an accurate light probe at any
position in the recorded scene. To do so there are two different approaches
provided, utilizing feature matching and warping, or alternatively optical
flow. In any of these options, the scene has to be sampled with HDR images,
which may be applied as light probes throughout the scene. Realistically not
every random position is sampled and the user might require the application
of an exact light probe on an unsampled location.

The user may use optical flow instead of this procedure to calculate an
HDR light probe between a pair of adjacent HDR images. In this case, the
optical flow is determined between the SDR image and each of the two
HDR light probes, generating two flow warped images in the same position.
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Following that these images are combined utilizing graph-cut reconstruction
and optional artifact handling.

Alternatively, the HDR generation may be conducted with feature matching
of the target frame and the nearest HDR light probe. Thereby, the user is
required to record a 'standard' image on the target position and following
to this the HDR image is warped to that perspective. This process requires
additional steps, like HDR image rotation and the conversion into cube
maps. This simpler approach has the advantage of a faster execution time,
as discussed in section 5.4.

Independently of the procedure, the user creates a fitting HDR light probe
on the target position, which may be applied for HDR IBL in an MR
environment, like in the case of this thesis - Unity or the OpenGL IBL
Viewer.

3.1 Hardware

To capture the required 360° images the provided Samsung Gear 360° camera
and a Samsung Galaxy S9 phone were utilized. The provided camera cost at
the time of this thesis around 200 euros. Here, the smartphone was applied
as a remote control for the camera and as storage of the adjusted images.
Moreover, pictures on the camera were directly stored in the fisheye format,
whereas on the phone they were stitched together into equirectangular
images in the Samsung Gear 360 app.

Typically, in a camera three parameters are controlling the amount of light
captured:

• the exposure time
• the aperture - also known as f-number
• the sensitivity - also known as ISO value

Ideally only the exposure time while recording images should be varied,
as the other two parameters also include side effects if they are changed.
The aperture affects not only the amount of captured light but as a side
effect the depth of field changes as well. On the contrary, the sensitivity also
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affects the amount of noise in the recordings, which may affect the camera's
noise reduction algorithm and might lead to unpredictable results [100].

Figure 3.2: Samsung Gear 360 camera
schematic [78]

Figure 3.3: Samsung Galaxy S9 smart-
phone [79]

3.1.1 Capturing process

Before capturing the images with the previously mentioned 360° camera,
auto exposure was turned off in the settings as well as the white balance
was set to a fixed value, depending on the scenery in the range of 2800

Kelvin (indoor) - 5300 Kelvin (outdoor) [100]. After these steps were checked,
several options needed to be adjusted and ensured in the scene, although
unfortunately some issues were found after unsuccessful recordings.

A usual room has frequent regions that lack features, making it harder to
match those areas successfully later in the matching algorithm. Typical ex-
amples are plain walls, doors, curtains, or solid colored surfaces of furniture.
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A solution to prevent this is the usage of AR markers which can be gener-
ated by various websites or in this case through Vuforia target markers [93].
Not only feature-sparse regions affect the matching, but also several similar
or identical objects can cause false results in the matching procedure as they
could lead to mismatches. Another important property to be aware of is
the time of recording the scene, if it contains a light source from outdoors,
as the day times change the lighting conditions quite drastically. This has
an enormous impact considering matching and the generation of HDR
images.

After all those preparations are ensured, seven different exposed images per
HDR frame locations and SDR target frames of the scene are recorded. The
exposure values reach from -3EV to +3EV in one EV steps. Afterward, the
recordings are sent to the Samsung S9 phone, where they are converted to
equirectangular images in the process. For every exposure time, the whole
panorama should always be covered, otherwise, this may lead to unpleasant
blend artifacts in only partly overlapping regions.

3.2 System structure

As the connected terms have been explained, the following sections focus on
the different processes in detail. Here, the three parts of the system, which
may be interconnected, are explained independently.

3.2.1 Part I - Light probe interpolation

As the starting point of the system, it is necessary to capture seven images
with different exposure values on evenly distributed locations in the scene
(see subsection 3.1.1). As seen in Figure 3.4 the system uses SDR and
HDR frames as input, depicted in the first block of the figure. Following
that correspondences between each SDR frame are calculated and used to
create two warped HDR images in the position of the target SDR frame.
This is executed with the help of the optical flow algorithm. As the last
step, as seen in the third block of the figure, the warped images and the
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SDR information are blended together and some of the possibly occurring
artifacts are handled as well using the aforementioned graph-cut algorithm.
As a result, an HDR frame is generated on each position where only an
SDR frame existed beforehand. These densely sampled scenes allow the
user to apply realistic IBL almost at any position of the scene, leading to a
real-world illumination experience.

Figure 3.4: Detailed system structure - Light probe interpolation [33]

For this part, the user needs access to a 360° camera that should be connected
to a smartphone. By utilizing this hardware it is possible to interpolate the
newly recorded SDR frames from the camera between a pair of adjacent
HDR light probes. The SDR image provides a practical environment map
of the scene, which can be applied in correct localization followed by the
interpolation of HDR information with the optical flow and graph-cut
algorithms.

During the thesis, several results were obtained using this system leading
to various results e.g. highly precise, blurry, or even distorted images. As
expected the optimal results were reached with the closest, well-rotated
HDR frames in use, whereas suboptimal calculation occurred when the
light probes were very distinct from the SDR capture.

The first step after capturing was the calculation of the optical flow between
the SDR version of the light probes and the target frame. Thereby, the
resulting flow vectors were consecutively applied to the HDR version of the
two adjacent light probes: The forward flow to one of them and the backward
flow to the other HDR frame. This process generates two HDR frames on
the position of the required target frame followed by the calculation of a
motion confidence matrix for each warped HDR frame.
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Following this process, the next task is to apply a graph-cut algorithm to
the two newly generated HDR images with the corresponding SDR frame
on the same position as the target image. After refining with additional
alpha-beta swapping to lessen probable artifacts, which may have occurred
during the calculation, the framework generates an HDR frame with the
combined information of the three frames.

3.2.2 Part II - Generating HDR key frames

As overview, like for the other system it is required that at least some HDR
light probes exist, which is conducted via exposure fusion (Figure 3.5.a).
This is required as the target frame has to be warped from the nearest
available HDR image, so optimally they are distributed evenly in the scene
(Figure 3.5.b). Up next it has to be decided which light probe is positioned
the closest to the recorded SDR target image to ensure the best possible
results (Figure 3.5.c). The distance is calculated by Colmap localization in
the presented solution. Due to the fact that the equirectangular presentation
of an image is heavily distorted the further away the pixels are from the
center of the image, it is required to rotate it in several degrees to ensure
undistorted image information for the following steps. Additionally, the
equirectangular image has to be converted into a cubemap to correctly
match the top sides of the images(Figure 3.5.d). Following that the nearest
rotated light probe is tone mapped and these images are utilized in feature
matching and warping with the target image. The conversion to the SDR
domain is required as some algorithms do not support HDR files. Then, the
best performing light probes and their transformation matrix are calculated
and stored (Figure 3.5.e). To continue the process the HDR image connected
to the best performing light probe is selected and the previously stored
transformation matrix is applied to it by warping its perspective. As a final
step the created warps, which represent single sides of the cubemap have to
be converted into an equirectangular image to be utilized as a HDR light
probe on the target location.
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3.2 System structure

Figure 3.5: Detailed system structure - Generating HDR key frames. Words enclosed by a
box represent images. a) Exposure fusion b) Sparse HDR light probe positions
(H) c) Choosing closest HDR frame to SDR path (X) d) Rotating the nearest
HDR frame and conversion into cube map for 'top'side e) Tonemapping of the
closest rotated HDR frame followed by feature matching and warping to the
target sides in the SDR domain leading to finding the best performing matches
plus the connected transformation matrix f) Utilizing the HDR version of the
best matches and applying the previously calculated transformation matrix
in the warping of the HDR frame resulting in HDR cube sides which can be
transformed to the final equirectangular image

In detail, as the starting point of this part, it is necessary to make sure that
HDR light probes are evenly distributed locations in the scene (see subsec-
tion 3.1.1). Additionally, one SDR image sequence needs to be recorded,
showing the scene. Next, the images are directly transferred from the cam-
era, as well as converted through the Samsung Galaxy S9 with the gear 360°
software to obtain both fisheye- and equirectangular images. Then with the
help of Picturenaut section 4.5 the recorded exposure brackets are combined
and result in one HDR image per recorded image location. The HDR loca-
tions are marked as H, while the SDR path is depicted as a line (Figure 3.5.b).
After splitting the fisheye images with Photoscape X (see section 4.5) to two
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different images for the front and the back view of the 360° camera, they
are ready to be used for localization purposes. The distance of the frames
is calculated by the sparse scene reconstruction functionality performed
with the help of the Colmap software (see section 4.5),which served as a
development system. Due to its accurate pose reconstructions, the provided
information has been serving in the debugging process, as these are vital
for the proof of concept. As input for Colmap, the fisheye images of the
SDR sequence as well as the zero-EV exposure fisheye images of each of
the HDR keypoint locations are used. This is required as for every other
frame of the recorded path the spatially closest HDR frame is conducted, as
displayed in part c of the system structure, where X resembles the target
frame and the circled H the closest HDR frame. As the image location, the
average position of the front- and the back-fisheye-image is assumed.

Figure 3.6: Example image directly stored on the 360° camera
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Figure 3.7: Figure 3.6 after conversion to equirectangular

After the target frames and the HDR images have been localized successfully
the following steps are a) the rotation in several angles (see section 4.2) of
the HDR frame in question and b) the conversion into a cube map using
equi2cubic function in Matlab (see section 4.1). The rotation of the nearest
light probe is obligatory as the uncentered areas of an equirectangular
image are heavily distorted, and a reconstruction of the whole 360° image
is intended. Therefore, an undistorted view in every direction of the image
is required. The horizontal rotation in various degrees assures that all the
sides of the scene occur centered and therefore undistorted in at least one
of the rotated panoramas.

The cube map is advantageous as the top and the bottom of the cube map
are handled in a special way. The top face of the cube is only matched
with the top face of the closest HDR image, as the camera is assumed to be
upright in all cases. Opposite, the bottom side is included in the SDR format,
taken directly from the SDR version of the target frame. It is assumed that
this side does not contain any light sources, as it is rather unlikely that there
is any illumination source coming from below. Furthermore, it cannot be
matched correctly due to the total differences in the target frame and the
combined exposure series. In one situation this side was recorded while
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carrying the camera, while in the other scene it was placed on top of a pole
or tripod. The rest of the individual cube-sides are then matched with the
nearest rotated equirectangular HDR images.

Noteworthy, feature matching is performed in the SDR spectrum, therefore
the provided and rotated HDR frames have to be tone mapped as displayed
in Figure 3.5.e. The resulting image of the SDR image warping is not taken
into account for the final image, however, the obtained transformation is
stored and later applied to the HDR version of the best performing SDR
matches (Figure 3.5.f).

Feature matching This project utilizes a SURF feature detector and a
Fast Library for Approximate Nearest Neighbors (FLANN) based fea-
ture matcher. Both are part of the Open Source Computer Vision Library
(OpenCV) (see section 4.3) as ready-made functions in which the fundamen-
tal parameters can be altered by the user. By defintion, 'FLANN contains a
collection of algorithms optimized for fast nearest neighbor search in large datasets
and high dimensional features'[3]. It features faster calculations than the al-
ternative matcher for extensive datasets, therefore it was chosen over the
brute-force matcher (BFMatcher). In the matching process, the image with the
most matching unambiguous features is chosen.

The so called Lowe's ratio test [55] was developed in 2004 with the goal of
filtering matches allowing only sufficiently different ones.

if distance1 < distance2 · feature distance constant then . . .

Where distance1 is the distance between the chosen keypoint and its best
match, and distance2 is the distance between the keypoint and its second-
best match. If the second-best match is different enough the match is ac-
cepted, as the match is recognized as unique and therefore unambiguous.
The feature distance variable can be set in the range of 0-1 within the frame-
work, where 1 is the greatest distance and 0 is the strictest variation. In this
practical work, values in the range of 0.45-0.7 were chosen due to rejecting
features that are too distinct while accepting feature distances that normally
occur during the recording process. Setting the feature distance too low may
result in only a few matches, sometimes only high feature density regions
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get matched or areas which are recorded without any kind of interferences
or changing angles while recording. Contrary to that a too high feature
distance leads to false positives. Thereby, resulting images are told to be the
best matching by the algorithm, although the user could clearly tell that the
images have only low or no similarity at all.

Figure 3.8: Example feature matching

Green lines in Figure 3.8 display feature points in which the matching
algorithm decided to be the same in both images. In this example, it is
clearly visible that feature sparse areas like white walls or ceilings are non-
ideal regions to apply feature matching, as no matching features could be
detected or at least classified as identical in both images.

Warping Following the matching of the detected features, the transforma-
tion between the tone mapped HDR frame and the target SDR image is
calculated by finding the perspective transformation of the image pair. This
is referred to as homography and applies their matched feature points. The
process of homography is performed in the SDR domain as the functions
partly require SDR images. Via computing the homography also a transfor-
mation matrix is generated, which may then be applied to the HDR image,
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containing the same features. The warping process is finalized by warping
the perspective from the HDR frame utilizing the generated transformation
and ultimately generating the fitting HDR light probe.

To conclude, an example for one frame creation is presented in the simplified
Figure 3.9:

Figure 3.9: Example warp perspective [73]

In the first step, the target frame is shown as 'reference' and 'moving' rep-
resents the SDR version of the nearest light probe frame. Next, the cor-
responding feature points are located in both images and by finding the
homography the transformation matrix is calculated as seen in the center
part. To finalize the process this transformation matrix has to be applied via
perspective warping to the HDR version of the light probe frame to create
the correctly transformed light probe in the HDR domain.

3.2.3 Part III - Image-Based Lighting

The illumination model consists of HDR panorama frames that are utilized
for IBL and objects with fitting physically based material, representing
realistic behavior of the respective real-world object.

Therefore shiny surfaces would be assigned a mainly specular physically
based material, whereas matte areas would apply a diffuse material. The ma-
jority of illumination originates from the provided panoramas by applying
BDRF shading (see subsection 2.1.4), which may be dynamically updated.
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Adding lighting provided by light estimators or other light sources is op-
tional. This combined illumination is then applied to the virtual object,
which has fitting materials linked to it.

Depending on the system, the HDR panorama is either internally converted
to a cube map, as in Unity, or manually converted into a six-sided cube map
like in the Open Graphics Library (OpenGL) IBL-Viewer.

Figure 3.10: IBL Workflow [45]

The illumination deriving from the panoramas is applied utilizing shaders.
These shaders process the provided information and determine how to
render each pixel, by evaluating the BRDF. Per definition, shaders control
the rendering of lightning and shading effects. 'Vertex shaders' affect the
position, lighting, and color, whereas 'geometry shaders' generate points,
lines, and triangles [40]. Fragment shaders define RGBA (red, green, blue,
alpha) colors for all processed pixels. Noteworthy, the illumination of each
fragment is calculated individually by combining exposure information
from the provided illumination source, BRDF, the model's material, and the
model's geometry. This is conducted by interpolating the vertex normals
across the entire polygon and then computing ambient, diffuse, and spec-
ular lighting for each fragment. Additionally in the scene included light
probes support the dynamic change of panoramas at runtime and the fitting
illumination from the current cube map.

To achieve a correct localization and scale in the 'real' scene, a dense recon-
struction from the recorded SDR image path is necessary. This reconstruction
is conducted with the Colmap software at the same time as the sparse re-
construction, needed in finding the closest HDR frame for each SDR frame.
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As the virtual objects and scene information has to be linked to the real
world, an AR marker is placed below the origin of the image path for
initialization.

Figure 3.11: AR Marker tracking pipeline [94]

This step is called registration, which is the process of aligning the physical
and synthetic world. Here a visual AR marker is utilized for image registra-
tion, which is a computer vision task, and correctly determines the camera's
position and angle as well as the rotation. Since high precision is vital for
achieving immersive AR, the scene has to be correctly set up to match the
objects and IBL to reality [10].
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As previously mentioned the presented framework consists of three parts:

• Light probe interpolation to generate additional intermediate light
probes by applying optical flow and Graph-Cut

• Generating HDR key frames by feature matching and image warping
• An AR-application which utilizes generated HDR lighting information

to illuminate a virtual object

For this thesis, the task of the generation of extra HDR light probes was
influenced by several related Python tutorials which focused on feature
matching followed by image warping. The majority of examples have ap-
plied a variety of ready-made OpenCV functions as part of their source
code and likewise, it was implemented as practical approach for this thesis.
Therefore, the framework for HDR generation is mainly developed in
Python, although at some points some inputs and outputs are used from
other Software like Matlab (section 4.1) or Colmap.

The light probe interpolation part is formed by two existing frameworks,
adjusted by modifications, extensions, and combined into one. The result-
ing framework uses a mixture of Matlab code paired with 'mexed' C++
code, leading to the creation of a user-friendly function accessible within
Matlab[42]. Therefore changes in the C++ code always have to be 'mexed',
meaning creating a usable function which then can be called within Matlab,
without the need of using an additional coding environment for running
those functions.

Unfortunately, no example code or frameworks were provided by the au-
thors of 'Enhancing and Experiencing Spacetime Resolution with Videos and
Stills' [33]. Therefore, it was needed to refer to the framework of the prede-
cessor of this paper by Bhat et al. [8] called 'Using Photographs to Enhance
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Videos of a Static Scene'. This framework seemed to be fitting to the topic
of this master's degree project via applying the image-based-rendering
algorithm also mentioned by Gupta et al.. There were no examples or docu-
mentation contained in this framework and after a while of unsuccessful
trials it was decided to abandon this framework and an own framework
was set up.

Neither optical flow nor graph cuts are a newly invented technology, there-
fore existing Matlab frameworks that were determined during the initial
research phase were combined and extended, as the previously mentioned
framework was not functioning and outdated. These frameworks were
created by Liu [52] and Bagon [4].

The graph-cut implementation of Bagon [4] heavily relies on the previous
research by Boykov et al. [103], which developed a technology to make
optimal cuts for a given labeling of an image. This means that the image
gets fragmented into smooth regions with sharp discontinuities at the border.
This is important in this project as a single HDR picture consisting of two
warped HDR frames has to be created, which should be fused without any
noticeable traces. This is performed by blending the created fragments using
a graph-cut algorithm.
As a final result, one framework which runs both tasks with shared input
frames and a connected work-space was created. The frames generated
in the optical flow function automatically serve as input to the graph cut
function. This process may be repeated for several frames which are only
available as SDR.

The second part originally consisted of simple feature matching and warp-
ing using OpenCV functions but was continuously expanded with func-
tionalities when needed. For example the usage of location information
from Colmap, Random sample consensus (RANSAC) [28] functionality,
inpainting (section 4.3), tone mapping, and the usage of HDR information.
For Python, the Anaconda [41] development environment was applied for
changing and extending the source code.

As explained in subsection 3.2.2, for the generation of additional light probes
a combination of feature matching and warping is applied to the nearest
HDR images and the target frame. The following functions had the biggest
impact in this process and were mainly from the OpenCV library:
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• xfeatures2d.SURF create().detectAndCompute() - finds the keypoints
and descriptors with SURF

• FlannBasedMatcher().knnMatch(SDR source, SDR target) - matches
descriptors, which was followed by choosing the best performing pair

• findHomography(source-feature-points, destination-feature-points,...)
- finds the perspective transformation of the image pair and calculates
the corresponding transformation matrix

• warpPerspective(HDR light probe, transformation matrix,...) - creates
the target image by warping the HDR, utilizing the transformation
matrix from the SDR domain

A frequent problem included for instance the brightness values in parts of
the code, as they were clamped between 0 - 1 which is the usual way for
'non' HDR images. It was quite challenging to find the locations where the
information went missing, but in the final version, all the values remained
in the desired range.

Concerning the final application, an IBL viewer was provided by Dipl. Ing.
David Mandl from the Institute of Computer Graphics and Vision, Graz,
Austria. After the relatively smooth setup of this viewer on Windows with
the help of OpenGL, the porting to an Android AR application proved itself
as more inconvenient than expected. The majority of OpenGL functions were
specially designed to work on Windows systems and had to be converted
or rewritten to make use of OpenGL-for Embedded Systems (OpenGL-ES),
a mobile version of OpenGL, as well as some file system operations as
they are distinct on Android systems. Android implementations are mainly
developed in Kotlin or Java, therefore the provided C++ framework had
to be converted either to a static library or the functionalities had to be
redesigned in Unity. In the last phase of this master's degree project, the
Windows OpenGL version was used to generate results for evaluation,
whereas a Unity application was created for mobile support.

As mentioned in the system description (see subsection 3.2.3) the HDR
panoramas are utilized as the source of lighting with the help of BRDF
shading. Every single fragment of the object which should be illuminated is
independently evaluated by the BRDF to create fitting and realistic results.
It is important that the cube map and the linked shaders are correctly set
up and that the materials of the object are physically based, with the result
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in adaption to the scene's lighting.
As this project focuses on illumination and lighting, it was vital that all
quality settings within Unity concerning lighting, shadows, and similar
options were set to the highest level. Otherwise, parts of the system were not
functioning as expected, as light probes were low resolution and remained
static without the correct settings.

Figure 4.1: Screenshot from created Unity AR application

Each blue sphere represents a image path position, linked to the correspond-
ing HDR panorama and the orange spheres are the positions where the
exposure series were recorded. A green sphere is positioned directly above
the provided AR marker which serves as a connector of the real and the
virtual scene's location (occluded by the helmet in Figure 4.1).

Due to the lack of known scale in the dense reconstruction, the scene's
model was scaled utilizing an A3 sized cube within Unity. It was ensured
that the reconstructed marker within the scene has the same dimensions as
the 'real' A3 sized AR marker. The primary reason for choosing an A3 sized
marker was the increased feature-rich area (vs. usual A4). Additionally, the
spheres resembling the camera positions were marked as 'children' of the
scene' s model within Unity. This guarantees a correct scale and location, as
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any transformation affecting the 'parent' game object (in this case the scene),
is at the same time applied to it's 'children' (the spheres).

The following frameworks and software played a role in the generation of
the results of this thesis.

4.1 Matlab

As a core development platform Matlab [42] was decided to be used, as
prior experience with this coding environment existed, and the majority of
related source code was created within Matlab. It was taken into considera-
tion that the mixing of different coding languages and frameworks can bare
difficulties. Therefore provided Matlab frameworks served as the basis for
this project, described in the following section 4.1 and section 4.1.
Originally it was unknown that those frameworks rely on previously com-
piled C++ source code, therefore involuntarily mixing of different coding
languages occurred, which luckily did not cause any problems during execu-
tion. For C++ the Visual Studio [59] development environment was applied
for changing and extending the source code.

Matlab HDRI Toolbox The hdrIMwrite() and hdrIMread() functions were
part of an HDRI framework to the book 'Advanced High Dynamic Range
Imaging: Theory and Practice' by Banterle et al. [5], and extended the standard
Matlab functions by the capability of reading different '.HDR' formats.
In principle, this so-called 'Toolbox' has a way broader bandwidth of features,
but those two functions are the only ones which were vital during this
project, aside from the image comparison functions to compare the results.
This Toolbox is explained as an extra chapter of the previously mentioned
book 'Advanced High Dynamic Range Imaging' [5].

Code by C. Liu et al. The project by Liu et al. [52] consists of 'mexed' code
written in C++ language. The provided source code was applied and modi-
fied in this thesis during the part which dealt with optical flow. Originally
the framework calculated and displayed the optical flow between two frames.
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During this project, this framework was extended by the functionality of the
summation of calculated optical flows, and the application of optical flow
vectors onto other frames, in this case, HDR input frames. At the end of
the reworking process, the framework was altered to make use of the given
SDR frames and calculate the flow between these frames. Additionally, the
two adjacent HDR frames are used as input for the function which applies
the calculated flow onto the HDR images, to generate warped images in the
position of the existing SDR frames.

Code by Bagon et al. The project by Bagon et al. [4][12][47][103] consists
of 'mexed' code written in C++ language. This source code contained the
functionality of graph-cuts within Matlab. The given framework was altered
to function with the created warped HDR frames, the calculated motion
confidence from the optical flow part, and the given SDR images. At the
end of the rework, this adjusted part of the code generated the final result
with the inputs from the warped images as well as the frames generated by
the optical flow part.

Code by Phan The provided functions equi2cubic [70] and cubic2equi [71]
included the functionality to use an equirectangular version of a scene and
create six cube faces that represent the scene and vice versa.
An example of an equirectangular image is seen in Figure 3.7. This was
required in several parts of the project, for example:

• for extraction of single sides of the scene, as for example the top side
gets only matched with other top cube faces.

• to insert the SDR bottom face into equirectangular images
• to handle a panoramic scene without using the full input frames at

once
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Figure 4.2: Equirectangular image transformed into cube-faces

4.2 C++

IBL Viewer The IBL C++ Framework with OpenGL functionality was pro-
vided by Dipl.-Ing. David Mandl from the Institute of Computer Graphics
and Vision, Graz, Austria (ICG). Originally the framework supported ren-
dering of an HDR image onto a skybox and using the image information to
illuminate a virtual 3D model.
For this thesis, the functionality was extended by dynamic loading and
displaying of video frames on the skybox, rather than a single HDR image,
as well as using dynamic HDR lighting information to illuminate a virtual
object. In the final version of the program, the SDR image sequence of a
scene can be played on the skybox and at the same time an HDR light
probes provide the IBL. Ultimately the project needed to be recreated in
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Unity, as Android did not support the common OpenGL functions like on a
computer operating system. Nevertheless, it provided a working solution
on Windows 10 environments and it was utilized to generate the results
used for comparison in chapter 5.

Equirectangular rotate This program is which is coded in C++ language
is able to rotate equirectangular images with Euler angles using OpenCV
functions. The user has the option to specify different angles for the roll,
pitch, and yaw rotation. It was originally developed by ChoYG [15] and
adapted as part of this thesis to handle HDR values and the storing of HDR
images.

4.3 Python

OpenCV As inspiration, a sample feature matcher in Python using OpenCV
was used as a base for the feature matching task in this project [3]. Functions
from the OpenCV library like cv2.FlannBasedMatcher() or
cv2.xfeatures2d.SURF create() were ready-made parts of the source code.
Throughout the project, several OpenCV functions were utilized, which
simplified the process of feature matching and image warping.

HDRI Inpainting HDRI Inpainting is an inpainting framework which im-
plements several classic image inpainting methods in Python and Matlab.
These algorithms complete and supplement the book 'Digital inpainting based
on the Mumford-Shah-Euler image model' [25].
The included Mumford-Shah Inpainting with Ambrosio-Tortorelli approx-
imation was chosen as it generated the best fitting results in the terms of
credibility. The only adaptation to the source code was the change to their
image writing process to handle '.HDR' input images as well [68].
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4.4 Unity

Unity is a game engine developed by Unity Technologies and supports
the creation of software for a variety of use cases, e.g. three-dimensional,
two-dimensional, AR, VR. What separates Unity from other game engines
is that many functionalities are already included in the software, like the
physical behavior of objects or different light sources. The primary coding
language for Unity is C#.

ARCore ARCore is a platform for building augmented reality experiences
developed by Google [30]. Their sample project Hello-AR-C served as a
starting point to develop an AR app to display the resulting IBL in an AR
scenario. In subsection 5.6.2, their application served to create compara-
tive results, as it is a commonly used platform featuring automatic light
estimation.

4.5 Software

Shotcut This program was used to extract the single frames from the
recorded and provided (HDR) videos for evaluation, as this framework
currently requires frames as input rather than a video file [83]. Additionally,
the Shotcut software was applied as a video editing software to edit the
resulting videos.

Picturenaut Picturenaut was used to generate HDR Images by combining
several bracketed images with different exposure values. Namely -3 EV,
-2 EV, -1 EV, 0 EV, 1 EV, 2 EV and 3 EV. This process was needed, as the
provided 360° camera was unable to capture HDR images by itself. During
the HDR creation, it was possible to assign each image an exposure value,
and additionally, it was possible to enable anti-ghosting and anti-blur [36].
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PhotoScape X PhotoScape X is a photo editing software that provides
features like a photo viewer, batch photo editing, and more [86]. In this
project, it was used to split the fisheye images provided by the camera
(Figure 3.6), into two separate fisheye images in a bulk. This step is necessary
as Colmap needs extra fisheye images for the front and the back view in
its image localization algorithm, while the original images contained the
front-facing fisheye camera view, and the back facing view on a single
image.

Colmap Colmap is best described as a SFM and Multi-View Stereo pipeline.
It offers a wide range of features for image reconstruction [81][82]. This soft-
ware enabled the accurate localization of the HDR key frames and the SDR
frames in the given scene to find the nearest key frame to each target frame.
The images had to be provided as SDR fisheye images as equirectangular
image types were not supported at the time of this publication. For the
needed purposes a sparse scene reconstruction was sufficient while localiz-
ing the frames. Through the utilization of a quaternion plus a translation
vector, the pose of an input image may be reconstructed. The coordinate
system of the input image is oriented that the X-axis points to the right, the
Y-axis downwards, and the Z-axis to the front [81][82].

Luminance HDR This program was used to tone-map the given and gen-
erated HDR images to SDR images with the usage of various tone mappers,
although mainly the Reinhard05 tone mapper was applied. Additionally, the
program was used to evaluate the given and generated HDR images with
bare eyes, as the standard image viewer is not capable of displaying these
frames. For a quick evaluation if an image is close to a fitting solution this
method is sufficient and an in-depth comparison was used as the result
became close to the reference output. An included slider in this program al-
lows the user to change the brightness in the given image, and the user may
use it to make previous regions in the image more visible/detailed [56].
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As the performance of this work is affected by several factors e.g. amount of
HDR frames, scenery, or model, this section compares the results in different
settings.

The provided scenes feature a set of different lighting conditions. On the
contrary, the chosen models display a range of different available materials,
which feature distinct lighting properties. The amount of recorded HDR
frames affects the run-time of the algorithm as each of them is checked for
fitting features. As the IBL can be calculated before usage, the execution time
of the algorithm has minor impact. Depending on the number of total images
the result may improve if additional images are added which include better
fitting matches of features. Some information that is generated during each
execution step can be reused and so the total time per frame-calculation
is reduced if several results are generated at the same execution cycle.
Examples for reusable information are extracted features, tone mapped
images, rotated- and to cube map converted panoramas. Due to varying
conditions image matching, -warping and, -stitching have to be computed
repeatedly. The majority of information can be computed offline and may
be stored without an impact on the performance. Thereby, the whole HDR
frame generation process is precomputed, and also the scene's structure is
predefined. Only the localization of the AR marker, symbolizing the initial
position and rotation, and the correct illumination has to be computed
during runtime.
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5.0.1 Recorded scenes

(a) Kitchen-scene: Only artificial light

(b) Flat-scene: Natural- and artificial light

(c) Outdoor-scene: Only natural light

Figure 5.1: Different recorded scenes
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5.1 Qualitative results

In the following section qualitative image results are presented comparing:

• Scenes
• Models
• SDR versus HDR
• Created versus 'real' images

The selected scenes contain different light setups, artificial light, partly
natural- and artificial light, and only natural light (subsection 5.0.1). Inten-
tionally, the chosen models differ in their physical illumination behavior.
Highly reflective, diffuse, partly diffuse, and specular and real-world objects
are presented.

(a) Mirror Shield: Highly reflective [32] (b) Corset: Diffuse + specular details [45]

(c) Duck: Diffuse Object [45] (d) Ikea chair Poäng: Real-life Object [13]

Figure 5.2: GLTF Models

These models were provided in the GLTF-format [45], which were loaded
into Unity as well as the IBL Viewer. For Unity, a special importer plugin
was required [16].
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5.1.1 IBL Results on different Models: Kitchen Scene

(a) Mirror Shield: Highly reflective [32] (b) Corset: Diffuse + specular details [45]

(c) Duck: Diffuse Object [45] (d) Ikea chair Poäng: Real-life Object [13]

Figure 5.3: IBL results on different Models: Kitchen Scene (tonemapped)

The kitchen scene displays a slightly warmer white balance originating from
several ceiling lamps and is generating credible results. All illumination in
the scene is artificial lighting, as the room does not contain any windows
and therefore no impact from other light sources is available, which is an
advantage of this sealed-off location as some variable factors are reduced.
The most remarkable impact is seen in the shield (Figure 5.3.a), as it reflects
details from the scene, whereas the other three objects appear marginally
redder. Noticeably, a duplicate door is reflected in the shield, which is an
example of one of the errors that may occur during the HDR generation and
is discussed in section 5.5. In the other objects, this error is unnoticeable due
to a lower specularity in their materials. In the leather chair (Figure 5.3.d), it
is noticeable that the light sources are positioned above the model, therefore
the seat is brighter illuminated than the back of the chair.

60



5.1 Qualitative results

5.1.2 IBL Results on different Models: Flat Scene

(a) Mirror Shield: Highly reflective [32] (b) Corset: Diffuse + specular details [45]

(c) Duck: Diffuse Object [45] (d) Ikea chair Poäng: Real-life Object [13]

Figure 5.4: IBL results on different Models: Flat Scene (tonemapped)

In the flat scene, the light originating from the window heavily impacts the
different models. The scene was recorded on a sunny day and no shades
or curtains occluded the windows. All available lamps in the room were
switched on to add extra light sources to the scene. Here, the specular parts
of the objects are brightly illuminated which are facing the windows, the
back of the chair (Figure 5.4.d) is shiny and even the tiny specular details
on the corset (Figure 5.4.c) are noticeably bright. In comparison to that the
diffuse duck (Figure 5.4.c) is generally lighter than in the kitchen scene,
depicting the existing impact on purely diffuse objects. On the contrary, the
indoor lamp has hardly any influence on the IBL, as the sun rays from the
window have the highest luminance and therefore the highest effect.
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5.1.3 IBL Results on different Models: Outdoor Scene

(a) Mirror Shield: Highly reflective [32] (b) Corset: Diffuse + specular details [45]

(c) Duck: Diffuse Object [45] (d) Ikea chair Poäng: Real-life Object [13]

Figure 5.5: IBL results on different Models: Outdoor Scene (tonemapped)

Outdoors the scene is dominated by high illumination values, as the sun
serves as the main light source. This construction site was recorded on
a sunny summer day without any clouds in the sky, which increases the
impact of the sun during IBL. In the shield (Figure 5.5.a), nearby objects
are reflected credibly and the already bright appearing models are even
lighter than in the flat scene, where the sun rays only shine through the
window. The buttons and small details on the corset model (Figure 5.5.b)
appear shiny and the diffuse wine red parts have high luminance. Due to
the bright illumination, the rubber duck (Figure 5.5.c) model seems like it
is neon-colored and the leather chair (Figure 5.5.d) resembles real leather
when it is hit by sun rays. Overall the scene's lighting is serving a realistic
result mimicking the illumination of a sunny day.
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5.1 Qualitative results

5.1.4 SDR illumination versus HDR illumination

(a) SDR IBL with SDR background (b) HDR IBL with SDR background

Figure 5.6: SDR illumination versus HDR illumination (tonemapped), Damaged Helmet
model [45]

For comparison, both models were positioned identically and the SDR
frame which was applied in Figure 5.6.a for IBL served as background in
both of the images. The difference in illumination between an object with
SDR to HDR IBL is best described with more dull reflections and lacking
details. In the specular parts of both helmets, the nearby paintings and other
objects are visible, as both versions apply IBL. Here, the biggest impact
is seen on the hardly existing reflections of light sources, as the available
brightness range in SDR is simply not capable of displaying values beyond
255. As previously mentioned also only fixed-point values are available
for SDR images, while HDR images consist of floating-point numbers. In
Figure 5.6.a, the whole helmet model consists of more or less a more matte
colored palette. In mainly diffuse areas the impact is not as severe as in
stronger reflective parts but still noticeably greyer, lacking highlights.
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5.1.5 HDR warping vs. un-warped HDR vs. HDR
ground-truth vs. SDR ground-truth

(a) Warped HDR IBL with ideal HDR background (b) Unwarped HDR IBL with ideal HDR background

(c) HDR ground-truth IBL with ideal HDR background (d) SDR ground-truth IBL with ideal HDR background

Figure 5.7: HDR warping vs. HDR lightprobe vs. HDR ground-truth vs. SDR ground-
truth(tonemapped)

Here, a comparison between all utilized scenes for IBL is presented. In
Figure 5.7.a and (b), the spatially closest HDR light probe and the warped
HDR from the created system are compared. In both images the dynamic
range and the warmth of the white balance of the scene is perceived in an
identical manner. Nevertheless, the result is lacking realism especially in
the reflective parts of the model. Objects located in deviant directions in the
real scene are present in the specular reflection leading to poor performance
results of credibility. The target illumination in the HDR domain of the
identical location is presented in Figure 5.7.c and as SDR in Figure 5.7.d.
Thereby, differences to the original scene appear obvious. The differences
between HDR and SDR illumination have been discussed in the previous
section (subsection 5.1.4).
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5.1 Qualitative results

5.1.6 IBL Results: Created versus 'real' HDR Image

(a) IBL from calculated HDR (b) IBL from recorded HDR

Figure 5.8: IBL results: Created versus 'real' HDR-Image (tonemapped) - Kitchen scene
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(a) IBL from calculated HDR (b) IBL from recorded HDR

Figure 5.9: IBL results: Created versus 'real' HDR-Image (tonemapped) - Flat Scene
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5.1 Qualitative results

(a) IBL from calculated HDR (b) IBL from recorded HDR

Figure 5.10: IBL results: Created versus 'real' HDR-Image (tonemapped) - Outdoor Scene
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Here, the IBL of a generated HDR frame is compared to the IBL of a recorded
HDR frame on an almost identical position in the scenery. As background,
the same HDR image is used in both cases, whereas it is only applied as
a source of illumination in the (b)-versions above. The comparison shows
promising results as the images are hardly distinguishable. Minor details like
a less dominant reflection of the marker or a slightly bigger reflection of the
window are noticeable. Nevertheless, high levels of credibility concerning
illumination and reflections are present in the generated IBL.

5.1.7 Nearest HDR IBL vs. Optical flow results vs. SDR
ground-truth

(a) SDR ground-truth IBL (b) Nearest HDR light probe

(c) Optical flow HDR IBL using available light probes (d) Optical flow HDR using nearby warped HDRs

Figure 5.11: Nearest HDR image vs. optical flow HDR vs. SDR ground-truth(tonemapped)

As it is vital to evaluate the performance of the IBL generated by the optical
flow system some results are provided for comparison. As target image the
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SDR image utilized for IBL in Figure 5.11.a has been chosen and it served
as background in all of the images.

In Figure 5.11.b the nearest HDR light probe was applied for IBL, leading to
acceptable results, which could be improved by correcting the rotation of
the cube map. This serves only as an example and the performance could
improve if the light probe would be located closer to the target image, and
vice versa.

The light probe interpolation system is convincing in the task of increasing
the capturing density, generating additional light probes between a pair of
existing ones. In Figure 5.11.c the two nearest HDRs' served as input as they
were recorded, whereas in Figure 5.11.d two created warps (with Part II of
the system) on a path were applied in the optical flow process. Figure 5.11.c
shows roughly fitting light sources in the specular reflections, which suffer
from partly blurry regions as artifacts occurred due to the differences in
the adjacent HDRs. The version in Figure 5.11.d has the advantage that
the rotation and perspective of them were already quite similar, leading to
lower intensity of the optical flow vectors resulting in smoother images.

5.2 Quantitative results

5.2.1 Structural similarity

The structural similarity index (SSIM) is a utilized for predicting the per-
ceived equality of any kind of digital images and videos [97]. The difference
to other comparison techniques like, mean squared error (MSE) or peak
signal to noise ratio (PSNR) is that these compare absolute errors between
images; whereas SSIM is a perception-based model that compares perceived
change in structural information, and additionally including perceptual
phenomena, both luminance and contrast factors. Structural information
recognizes pixels which are nearby as strongly connected, and uses these
spatially close pixels as the source of information for the structure of per-
ceived objects [96].
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ssim value = ssim(A, re f ) (5.1)

Equation 5.1 computes the SSIM value for image A using re f as the refer-
ence image in Matlab. The value 1 displays the optimal result, whereas 0

symbolizes complete difference.

5.2.2 Mean squared error

The MSE between two signals X and Y with n amount of samples is typically
computed as [5]:

MSE =
1

n

n

∑
i=1

(Xi − Yi)
2. (5.2)

Equation 5.3 computes the MSE value for image A using re f as the reference
image in Matlab.

mse value = immse(A, re f ) (5.3)

Lower MSE values express superior results. Zero resembles a perfect match,
whereas values <30 are still acceptable.

5.2.3 Peak signal to noise ratio

PSNR is another widely used metric, which takes the maximum value of
the signal into consideration, and can be described based on MSE as [5]:

PSNR = 20 · log10

(

MAXI√
MSE

)

(5.4)

MAXI is the maximum allowable signal intensity, divided by the square
root of the MSE.

psnr value = psnr(A, re f ) (5.5)
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5.2 Quantitative results

Equation 5.5 computes the PSNR value for image A using re f as the ref-
erence image in Matlab. Higher PSNR values indicate superior results.
Values <20 represent low performance and ≥ 35 acceptable ones with ideal
properties above 40.

5.2.4 Table of results

To generate images fitting for quantitative results, the camera was fixed
to a specific location in the scene and the model was placed in a constant
position. The different metrics (SSIM, MSE, and PSNR) were all calculated
on renderings of the scene, followed by tone mapping.

These renderings were generated for the calculated image, which was
created with the presented solution, and for the 'real'-HDR-image recorded
on the identical location as the SDR target frame. Obviously, the 'ideal'-
HDR-image was not applied during the image generation and only served
as input for comparison.

For these comparative renderings, the scene background was removed and
only the illuminated model served as input as seen in Figure 5.12.

Figure 5.12: Example input for quantitative comparison
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Evaluation of metrics
Image or Metric SSIM MSE PSNR
Kitchen Scene - Helmet 0.959 257.1 24.0
Kitchen Scene - Corset 0.999 2.3 44.4
Kitchen Scene - Duck 0.999 6.8 39.8
Kitchen Scene - Chair 0.974 28.1 33.6
Kitchen Scene - Shield 0.974 149.1 26.4
Flat Scene - Helmet 0.925 331.8 22.9
Flat Scene - Corset 0.996 10.5 37.9
Flat Scene - Duck 0.996 34.8 32.7
Flat Scene - Chair 0.963 39.6 32.2
Flat Scene - Shield 0.953 353.8 22.6
Outdoor Scene - Helmet 0.962 106.1 27.9
Outdoor Scene - Corset 0.998 4.5 41.6
Outdoor Scene - Duck 0.999 5.3 40.9
Outdoor Scene - Chair 0.992 12.3 37.2
Outdoor Scene - Shield 0.943 83.1 28.9

Table 5.1: Comparison of different metrics results

Independently of the scene, objects with a higher proportion of diffuse
reflections lead to better results in all comparative metrics. An explanation
for this is that for diffuse reflection roughly fitting details are sufficient
for promising results, whereas highly specular objects reflect almost every
highlight of the scene.

Overall the SSIM metric showed very high similarity with values above 92%
since it compares structural information rather than absolute errors. The
MSE and PSNR results are mixed, due to the fact that the shield- and helmet
model result in rather high differences, while the corset and duck model
display excellent results. To conclude, the results highly benefit from the
fact that the generated images 'only' serve as lighting information, as the
results in panorama comparisons would be worse.
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5.2 Quantitative results

Kitchen Scene:

Average metrics: SSIM: 0.981; MSE: 88.7; PSNR: 33.6

In this scene with only artificial light, the SSIM metric displayed almost
perfect results. MSE and PSNR evaluated excellent results in diffuse models
and although the performance on a specular object could have been better,
the overall results were generally pleasing.

Flat Scene:

Average metrics: SSIM: 0.967; MSE: 154.1; PSNR: 29.7

The flat scene performed the worst of the three compared scenes. Particu-
larly MSE and PSNR showed underwhelming results, with an average of
over 150 for MSE and the lowest PSNR values close to 20. On the contrary,
the SSIM was only slightly lower than the competitive locations.

Outdoor Scene:

Average metrics: SSIM: 0.979; MSE: 42.3; PSNR: 35.3

On average, the outdoor scene outperforms the other recording locations
in the evaluations that compare absolute errors between images. On all
models, the rendering comparisons showed satisfying results, with possible
improvements on specular objects.
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5 Results

5.2.5 Evaluation of image distance between HDR and SDR

It is vital to acknowledge that HDR images can only be created successfully
if there is fitting HDR image information available to utilize in the algo-
rithms. If the distance between recorded HDR images and the target frames
increases, less information is obtained, as the images have fewer features in
common.
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Figure 5.13: Evaluation of HDR to SDR image distance

As expected, the comparative metrics show lower performance with increas-
ing distance. SSIM shows performance at the higher range of the scale, as the
overall structural information is heavily influenced by the model's structure.
In the MSE and the PSNR metric, the absolute differences are compared and
so the distance has a larger impact on their results. Overall the evaluation of
the metrics displays higher scores than assumed, considering partly failed
warped sides after 1.5 meters distance.

The increase of performance at 2.5 meters is due to the successful creation
of the top cube side, which failed at 2.0 meters as a lamp was at the ceiling
in the same location. Especially if the scene is a narrow area, certain parts
of the scene are not present on the available HDR image, due to the angle
of the camera, or occlusions by other objects. In outdoor scenes, it may
display better performance as objects are typically visible in a larger range
compared to an indoor scene, with only a few meters of total area.
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5.3 Memory

5.3 Memory

As previously mentioned, HDR information is a demanding task in many
ways, even for modern systems. Keeping a high amount of HDR frames in
the memory results in a completely unusable system during the calculation.
At certain points, the available 32 gigabytes (GB) of random access memory
(RAM) is fully loaded and some of the utilized HDR frames are swapped
out to the solid-state drive (SSD). This outsourcing of the files leads to
a slower runtime of the calculation process, due to lower read and write
speed.

Each warped image can be calculated independently from each other. If the
closest HDR frame is though as well the closest for another SDR frame, it
can be loaded into the storage only once. Memory space may be saved by
reusing the extracted feature points as they stay the same over time.

Roughly one HDR frame of the kitchen scene has 80 megabytes, which
leads to about 1.4 GB of disk space for a single image, rotated in 20-degree
changes. Depending on the scene between 13-17 camera positions were
recorded, leading to a huge amount of data. It is important to consider, that
also the resulting images are HDR frames, therefore, taking up additional
memory.

These factors were the reason for downscaling in the mobile application
and that HDR was only utilized for IBL. At the current state, the system
is relatively unoptimized concerning memory, therefore, many options
still exist. Optimization for memory structure is always a difficult task. A
possible idea is, if it is known that in two images a feature point is identical,
a storage structure may be created that points straight on the same memory
address possibly avoiding loading times.

5.4 Runtime

There are several factors influencing the runtime of the HDR light probe
generation. It is mainly affected by image resolution, HDR light probes
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amount, number of rotations per HDR light probe, and the algorithm choice
(warping or optical flow).

Light probe interpolation The light probe interpolation process took with
the resolution of 512x256 pixels 9 seconds. The optical flow calculations took
most of the execution time with 5.2 seconds and the graph-cut calculated
about 3.2 seconds. The advantage of this method is that there is no need
for extra transformations to neither the input nor the final image as they
remain as an equirectangular image. Here, the time to calculate a single side
is not relevant in a significant manner, as the whole picture is calculated at
once. Only the resolution of the three images may be altered, compared to
the feature matching part where rotations, amount of light probes, and the
resolution may be changed.

To demonstrate the scaling of the system, the execution time takes ap-
proximately 1500 seconds (∼ 25 minutes) for an extremely large image of
7776x3888 pixels. In detail, about 23 seconds were spent on image load-
ing and tone mapping, 1210 seconds on optical flow calculations, and 260

seconds for the graph-cut at this high resolution.

Feature matching and warping One complete image of feature matching
and warping, considering four rotations, meaning 90-degree steps of the
nearest HDR takes about 2.1 seconds using images with the resolution of
512x256 pixels. In detail, in this setup about 0.04 seconds were spent on
image loading and tone mapping, 0.28 seconds on feature matching, and 0.15

seconds for image warping for a single side of the target cube map (172x172

pixels). This has to be repeated for five of the six cube sides, neglecting
the bottom side leading to the mentioned ∼two seconds execution time.
Both loading and matching times are affected by the amount of HDR light
probe frames, as eight rotations roughly double the runtime. It took 0.08

seconds loading time and 0.62 seconds for feature matching while image
warping took the same duration. The loading times can be excluded from
the runtime, as normally they are loaded once at the beginning of the system.
Compared to the light probe interpolation system the runtime is only about
25%.
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5.4 Runtime

The performance of the warping and matching usually declines with a low
amount of input frames and the rotation process was applied once for each
image and not conducted for every single execution. To rotate a 512x256

pixel panorama in four different angles it took about five seconds whereas
the extreme 24 rotations took about 30 seconds.

The execution time with a higher resolution of 972x486 pixels finishes after
about 30 seconds. To evaluate the scaling of this system, the runtime for a
extremely high resolution image and utilizing a high amount of rotations is
also presented. One iteration of feature matching and warping, considering
24 rotations, meaning 15-degree steps of the nearest HDR takes about 350

seconds (∼ 6 minutes) using images with the highest available resolution
of 7776x3888 pixels. In detail, 330 seconds were spent on feature matching,
and 14 seconds for image warping.

Moreover, the execution time considering an additional HDR light probe
would double, as the algorithm handles extra HDR frames the same way
as it works with extra rotations. Therefore, considering four rotations from
each of the two light sources takes the same amount of execution time as
eight rotations from one light probe.

The resulting runtimes are measured considering a rather unoptimized
system which does not utilize GPU acceleration and consists mainly of
OpenCV functions as well as Matlab code. Related research to accelerate
OpenCV calculations via GPU implementation is available and the presented
execution times could be drastically improved by adding this functionality.

Figure 5.14: Performance results for GPU vs. CPU in the standard OpenCV core GEMM
performance test modified from [11]
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For example Bowely [11] presented results for comparison purposes, of
GPU as well as CPU runtime tests (Figure 5.14). The provided graph depicts
a clear acceleration of runtime in the standard OpenCV core GEMM per-
formance test, as shorter bars represent faster execution times. To conduct
this addition an NVIDIA GPU is required and several additional libraries
as well as toolkits have to be built including some extra configurations.
By implementing this acceleration the presented system may provide 30

fps results in certain configurations. Considering resolution, in most of the
MR use cases, a rather low-resolution light probe is sufficient for credible
results. For evaluation purposes, these enormous frames were also applied
to display the scaling of the system.

5.5 Limitations

The previously displayed images show results in well-working scenes and
adjusted parameters. However, several errors occurred during the process of
the HDR generation, which are reflected in some of the evaluation metrics
results. Due to a lack of features, similar objects, or non-optimally chosen
parameters, failures arise in the system.

In Figure 5.15, some of the unsuccessfully created images are displayed
for further analysis. Suboptimal parameter choice affects a) the number of
detected features, where a lack of them leads to holes, and a surplus to
mismatching, as well as b), the matching quality, causing duplicate objects
or even abnormal distortions.

Mismatching is a common issue, which can be limited by utilizing AR
makers and choosing feature-dense scenes. Algorithmically the resulting
warp may be compared to the SDR target image to confirm that the images
resemble each other, or RANSAC may be applied to filter the features.
Fine-tuning of the parameters and information is key to a fitting result.
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5.6 Additional comparative results

(a) Failed warping: strong distortions

(b) Warping errors: duplicate objects, distortions and holes

Figure 5.15: System limitations

5.6 Additional comparative results

In this section the presented results are compared to existing AR applica-
tions: 1) Ikea Place application and 2) Google Hello AR Unity application.

As the model of choice, the previously presented Ikea chair Poäng was
selected, as the model was included in the Ikea application and as well
provided as a downloadable model. The Hello AR application was modified
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to display the chair model instead of the originally included one. In subsec-
tion 5.6.3 the chair model is shown in the application which was developed
during this thesis, and its performance is evaluated against the existing
competitors, developed by several corporations.

The resulting images were recorded in the same room and it was ensured
that the 'real-world' lighting conditions and the model's position were
similar. An additional chair is present in the image to display the lighting
effects on a physically existing object.

5.6.1 Ikea AR application

Figure 5.16: A real scene with a virtual Ikea chair Poäng. Image from Ikea Place application.

The virtual chair which was placed in the application lacks any lighting
information from the real world. Thereby, the lighting is pre-defined and
consists only of a static shadow below the chair and otherwise uniform
illumination of the model. The chair's placement was conducted with the
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included ray-tracing functionality, which creates the chair at the position
where the smartphone's camera is pointing at when the user touches the
screen. Surprisingly, even a basic shadow has a positive impact on the
perceived realism of the object. Overall, the lack of lighting and reflections
leads to a distinct separation from real-world objects.

5.6.2 Google Hello AR application

Figure 5.17: A real scene with a virtual Ikea chair Poäng. Image from ARCore application,
replaced standard model with chair Poäng.

The 'Hello AR' application features a basic light estimation of the captured
image, and applies it to a virtual model, which in this case was replaced
with the same model as in the Ikea AR application. The application suggests
flat areas as possible placement options for the virtual object, which the user
can select by touching the chosen location on the screen. The model itself
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looks already quite real, although consistencies with the real scene could be
improved, as it seems to be floating in the scene, due to the lack of shadows
and impact on the real scene.

5.6.3 Own Unity AR application

Figure 5.18: A real scene with a virtual Ikea chair Poäng. Image from created application
using IBL.

Contrary to the previous applications, the presented application includes
IBL from the priorly recorded HDR scene leading to an accurate representa-
tion of the scene's lighting scenario. The chair is rendered at the recognized
position of a printed AR marker, which can be rotated and moved during
runtime. An additional directional light source from the main lighting di-
rection paired with a transparent plane results in realistic shadows. This
technique mimics a better connection between virtual and real-world im-
proving consistencies.
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IBL and HDR are high-performance tasks for mobile devices, especially if
the result should look as lifelike as possible. In accordance with Moore's
law, which predicted exponential growth of transistor count in integrated
circuits, also overall development in information technology has shown
similar advances. The performance of mobile devices is improved at a rela-
tively quick rate, but if the device capacities are limited modern streaming
technologies might support in non-real-time fields of application [80].

When aiming for IBL, the generation of HDR images with the presented
method can be recommended, even if the method may produce some more
apparent artifacts (versus SDR images), the results outperform the standard
illumination. Artifacts that might be visibly noticeable in the resulting
images are most of the time of minor impact in the model's lighting.

Likewise noticeable were the variances in results obtained during this
practical project. The results were varying quite a lot depending on the
scene. Dynamic scenes cause lots of artifacts if the camera is moving fast,
and objects differ greatly. Therefore, this aspect needs to be further analyzed
to reduce those artifacts.

6.1 Benefits

The implementation of the results in this thesis are highly beneficial in two
potential areas, namely computer-generated imagery movie illumination and
MR.

In the movie industry, especially lighting techniques have a big impact on
the resemblance to real-world scenes. There are some expensive hardware
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solutions available to deal with this topic, but an extremely cheaper version
using algorithms instead of expensive and inconvenient hardware could
be an acceptable alternative. The price of the Insta360 Titan, which can
record HDR videos is currently 16000 euros whereas the Samsung Gear 360°
camera, which was utilized in this thesis costs roughly 200 euros.

In AR, MR, and as well VR, more realistic illumination would be a benefit
for virtual scenes and generated objects. It could be used for example with
the Microsoft Hololens [58], to apply coherent and lifelike illumination to
virtual objects in the room. As seen in the comparison to the Ikea app, which
uses only basic lighting on their virtual furniture, the results of this project
highlight the big impact of IBL.

6.2 Future Work

Quality of life features Currently, the framework relies on input images
by the user which have to be extracted, separated, and converted by using
different software like Shotcut (section 4.5). Therefore it might be a use-
ful feature to extend the framework by an automatic routine to open the
different programs and run them with the necessary files.

Another quite inconvenient step concerning the creation of the HDR images
is its dependency on manual exposure fusion, as Picturenaut (section 4.5)
needs given exposure values per image to correctly fuse them. This requires
additional time during the setup of the system as these steps have to be
repeated for every HDR frame. This part could be improved by automation,
requiring a set sequence of images with no 'mistakes' during recording,
to assign the frame sequence always to the same fitting sequence of expo-
sure values. Alternatively, this step can be simplified by the usage of an
HDR-compatible 360° camera, which is already existing but has inconve-
nient features e.g. high cost, large size, and impracticability for an average
consumer.

A possible quality of life feature is a graphical user interface or a fully
deployable program, as the end consumer might not have the knowledge or
necessary licenses to run Matlab or other required software.
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Improvements Consistencies within frame sequences are currently not
taken into account, as each of the pictures is created individually. Further
research in this field could lead to an even more realistic result, as minor
interruptions in the picture sequence could disrupt the flow of the object's
illumination. Currently, each frame is created by itself, but the usage of
further information given by adjacent or even the whole sequence could
reduce possible artifacts, like flickering caused by drastic changes from one
frame to the other. In this part, some threshold in the difference between
frames could have been implemented to discard images that have low
similarity with their warped neighbors. If the difference is too high, the
frame in question is replaced by a frame that is created with the optical flow
algorithm instead.

During the practical process of this thesis, Colmap did not yet support
equirectangular input images for scene reconstruction, therefore only the
average position per image is applied, which might not be as accurate
as a localized 360° image. This could further increase the robustness and
performance.

Real-world scenes tend to change over time, especially outside the light-
ing conditions vary drastically. Therefore, some mechanism to update the
existing light probes and update the whole data structure would be re-
quired, especially if lightning changes are detected. The sampling of the
scene would require extra research, to find out the amount with which the
performance stays in an acceptable range. Every redundant HDR capturing
avoided, reduces effort in the initial setup phase. Not only the sampling
amount but also well the optimal sampling locations might help to improve
these issues. Potential viewing angles and the structure of the scene might
offer helpful insight during recording.

Extension with VR As mentioned in subsection 2.1.3 the main difference
between AR and VR is that AR requires only a camera, while VR needs a
headset for displaying. Therefore, an extension for VR requires an adaptation
that also facilitates the display of the scene on the device, instead of only
the virtual model. The localization in the scene would in this case be
unnecessary, as no input from the real-world scene exists.
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An aspect to consider while using VR is that the displayed information
should be coherent with everyday situations, which means smooth scenes,
as few video jitters as possible, and no sudden unnatural jumps, as this may
cause nausea.

All these aforementioned features have to be taken into consideration for
further implementations of the presented framework. These results may
therefore have a high impact on further research in this field of application.
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