
Olena Mashkina, BSc

Linear Text Segmentation with Neural OIE
on Novels and Subtitles

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl-Inf. Dr. Stefanie Lindstaedt

Graz, September 2020

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Acknowledgments

I am deeply grateful to my supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Kern for en-
couraging my work. �ank you for your valuable feedback as well as your ability
to stay positive throughout the course of dataset acquisition and methodology
challenges.

I would like to thank my �ancé Bernd for his support, understanding, patience
and his ability to make me laugh even during the di�cult times. I am immensely
grateful to have you in my life, without you I would not be the same person I am
now and this thesis would never be �nished.

Special thanks to my friend Asia for her kindness and calmness facing the im-
measurable number of my daily complaints. You have helped me more than you
realize.

Finally, I am grateful to those who actually bothered to ask what my thesis is about
instead of asking me when is it going to be done.

Olena Mashkina

Graz, 10.09.2020

iii

Abstract

Automatically separating text into coherent segments sharing the same topic is a
nontrivial task in research area of Natural Language Processing. Over the course of
time text segmentation approaches were improved by applying existing knowledge
from various science �elds including linguistics, statistics and graph theory. At the
same time obtaining a corpus of textual data varying in structure and vocabulary is
problematic. Currently emerging application of neural network models in Natural
Language Processing shows promise, which particularly can be seen on an example
of Open Information Extraction. However the in�uence of knowledge obtained
by an Open Information Extraction system on a text segmentation task remains
unknown.

�is thesis introduces text segmentation pipeline supported by word embeddings
and Open Information Extraction. Additionally, a �ctional text corpus consisting of
two parts, novels and subtitles, is presented. Given a baseline text segmentation
algorithm, the e�ect of replacing word tokens with word embeddings is examined.
Consequently, neural Open Information Extraction is applied to the corpus and the
information contained in the extractions is transformed into word token weighting
used on top of the baseline text segmentation algorithm.

�e evaluation shows that application of the pipeline to the corpus increased the
performance for more than a half of novels and less than a half of subtitle �les
in comparison to the baseline text segmentation algorithm. Similar results are
observed in a preliminary step in which word tokens were substituted by their
word embedding representations. Taking into account complex structural features
of the corpus, this work demonstrates that text segmentation may bene�t from
incorporating knowledge provided by an Open Information Extraction system.

v

Contents

Abstract v

1. Introduction 1
1.1. Research �estion . 1
1.2. Outline . 2

2. Related Work 5
2.1. Background . 5

2.1.1. Linear Text Segmentation 5
2.1.2. Open Information Extraction 6
2.1.3. Word Embeddings . 7
2.1.4. Dystopian Fiction . 7
2.1.5. Subtitles and Captions . 8
2.1.6. Film Adaptations . 9

2.2. State of the Art . 9
2.2.1. Linear Text Segmentation 9
2.2.2. Open Information Extraction 13
2.2.3. Application of Literary Fiction and Film Subtitles 15

3. Method 19
3.1. Dataset Description . 19

3.1.1. Dataset Part 1: Novels . 19
3.1.2. Dataset Part 2: Subtitles 21
3.1.3. Motivation for Choosing Dataset 22

3.2. Dataset Preprocessing . 25
3.2.1. Preprocessing of Novels 26
3.2.2. Preprocessing of Subtitles 27

3.3. TextTiling Algorithm . 28
3.3.1. Tokenization . 29

vii

Contents

3.3.2. Score Calculation . 29
3.3.3. Boundary Identi�cation 32

3.4. Recurrent Neural Network Open Information Extraction (RnnOIE) 33
3.5. Combining RnnOIE and TextTiling 35

4. Evaluation 43
4.1. Measures . 43

4.1.1. WindowDi� Measure . 43
4.1.2. Pk Measure . 43

4.2. Results . 44
4.3. Discussion . 50

5. Conclusions 57
5.1. Future Work . 58

Bibliography 61

A. Regular Expressions 71

B. Stop Words and Punctuation 73

C. RnnOIE Extraction 75

viii

List of Figures

3.1. Length of novels and subtitles in words 24
3.2. Pipeline of performed work . 38
3.3. Valleys and peaks in lexical scores graph 39
3.4. Lexical score smoothing is necessary (an example) 40
3.5. Depth score values distribution (an example) 41
3.6. Architecture of a bi-LSTM RNN used in RnnOIE 42

4.1. A visual example of evaluation measures 44
4.2. Parameter choice process with TPE 47
4.3. TT and TWE depth scores comparison (an example) 51
4.4. Subtopic boundaries in novels and subtitles (an example) 55
4.5. Depth scores landscape for TT, TWE, TWE OIE (an example) . . . 56

A.1. Regular Expressions used on Novels dataset 71
A.2. Regular Expressions used on Subtitles dataset 71

B.1. Stop word list . 73
B.2. Punctuation characters . 73

C.1. An example of RnnOIE extraction in JSON format. 76

ix

List of Tables

2.1. Notable text segmentation algorithms 16
2.2. Notable OIE approaches . 17

3.1. Overview of Novels dataset part 20
3.2. Overview of Subtitles dataset part 22
3.3. An example of subtitle u�erances in .srt format 23
3.4. An example of RnnOIE extraction tags. 34

4.1. Overview of results for Subtitles 48
4.2. Overview of results for Novels . 49

xi

1. Introduction

1.1. Research�estion

An author is responsible for giving their text a structure comprehensive for human
readers. However, with a constantly emerging amount of unstructured textual infor-
mation on the Internet and in print automatic text segmentation gained signi�cant
role in Natural Language Processing (NLP) research �eld. Text segmentation is
a nontrivial task due to ambiguous topic boundaries, di�erences in writing style,
vocabulary and text length. Text segmentation of automatically generated text,
for instance automatic video captions, also poses a challenge. Application of text
segmentation not only provides visual separation of unstructured text to the reader
but also serves as a prerequisite task in other NLP applications, for instance, in-
formation retrieval, summarization and text understanding. An NLP task of Open
Information Extraction (OIE) allows expressing key information contained in a
text by extracting n-ary propositions. �is thesis assumes that enriching linear text
segmentation process with OIE knowledge holds potential for positively in�uenc-
ing the text segmentation results. As far as the author of this thesis is aware, the
task of linear text segmentation improvement with the help of OIE has not been
approached before.

�erefore, the main research questions this thesis aims to answer are:

• Related to Natural Language Processing:
How does a modi�cation of a linear text segmentation method by adding
knowledge generated by Open Information Extraction (OIE) in�uence the
performance of this method?

• Related to the created dataset:
How does the performance of presented in this work segmentation pipeline
compare for di�erent �ctional narrative text corpora (novels and subtitles)?

1

1. Introduction

To establish a benchmark performance for a linear text segmentation an existing
algorithm is used. More formally, given a text segmented into a set of sentences
{sentence1, . . . , }, method presented in this thesis may be expressed as a function
composition. First, functions necessary to prepare the text for linear text segmenta-
tion are executed, lt ◦ ts : S −→ T , where ts is a text segmentation function and
lt is a lemmatization and tokenization function.

ts : S −→ W, S = {sentence1, . . . , } and W = {word1, . . . , }
lt : W −→ T, T = {token1, . . . , }

�en, a�er lt ◦ ts : S −→ T is performed by linear text segmentation algorithm
part of the pipeline consisting of function composition tt3 ◦ tt2 ◦ tt1 : T −→ SB is
executed.

tt1 : T −→ TS, TS = {token sequence1, . . . }
tt2 : TS −→ B, B = {block1, . . . }
tt3 : B −→ SB, SB = {segment boundary1, . . . }

To answer the �rst research question the linear text segmentation algorithm is
modi�ed which may be represented in form of compositions f1◦lt◦ts : S −→ WE
followed by f3 ◦ f2 : S −→ W ′ and f6 ◦ f5 ◦ f4 : W ′,WE −→ SB.

f1 : T −→ WE, WE = {word embedding1, . . . }
f2 : S −→ OIE, OIE = {oie proposition1, . . . }
f3 : OIE −→ W ′, W ′ = {weight1, . . . }
f4 : W

′,WE −→ WES, WES = {weighted embedding sequence1, . . . }
f5 : WES −→ WEB, WEB = {weighted embedding block1, . . . }
f6 : WEB −→ SB

1.2. Outline

�is thesis describes the application of OIE based on Recurrent Neural Networks
(RNN) to the task of linear text segmentation given a corpus consisting of novels
and subtitles to �lm adaptations of these novels. �e remainder of this thesis is
structured as follows.

2

1.2. Outline

Chapter 2 provides an overview of existing research and literature related to the
topics covered in this thesis. Section 2.1 introduces basic concepts required to under-
stand the contributions of this work to the NLP research �eld. Section 2.2 describes
recent work in research areas related to this thesis in more detail. First, the advance-
ment of linear text segmentation is presented in Subsection 2.2.1. Consequently,
current state of knowledge on OIE is described in Subsection 2.2.2. Finally, applica-
tion examples of literary �ction and �lm subtitles are given in Subsection 2.2.3.

Chapter 3 provides information about the dataset and technical implementation.
First, in Section 3.1 a detailed presentation of the dataset is given followed by
motivation for choosing this type of data in Subsection 3.1.3. Second, details about
the preprocessing of the dataset are provided in Section 3.2. �ird, TextTiling linear
text segmentation algorithm is explained in Section 3.3. �en, Recurrent Neural
Network Open Information Extraction (RnnOIE) algorithm used for OIE extraction
is introduced in Section 3.4. Finally, Section 3.5 describes how in this work OIE
results are integrated into linear text segmentation algorithm.

Chapter 4 demonstrates the performance of linear text segmentation approach
presented in this work. First, text segmentation measures used for the evaluation
are explained in Section 4.1. A�erwards, evaluation process including parameter
search is described in detail in Section 4.2. Finally, achieved results are shown and
discussed in Section 4.3.

In conclusion, Chapter 5 outlines possible further research directions and sugges-
tions for future work.

3

2. Related Work

2.1. Background

�is section gives an overview of the concepts relevant for this thesis. First, NLP
speci�c concepts are introduced. Linear text segmentation is described in Subsec-
tion 2.1.1. Main properties along with the formal de�nition of OIE are presented
in Section 2.1.2. Subsection 2.1.3 provides a description of word embeddings and
introduces distributional hypothesis the word embeddings are based on. A�er-
wards, non-technical terms related to �ction and �lm are introduced. �e qualities
of dystopian �ction are described in Subsection 2.1.4. Subsection 2.1.5 de�nes the
di�erence between related terms subtitles and captions along with an explanation
which type of subtitles are used in this work. Finally, Subsection 2.1.6 provides
insight into a meaning of a term ”�lm adaptation”.

2.1.1. Linear Text Segmentation

�e goal of linear text segmentation, which is sometimes called topic segmenta-
tion, is to automatically locate a transition from one topic to another in a text [17,
37, 59]. In order to achieve this goal a linear text segmentation system separates
given input into a sequence of neighboring textual segments. Each of such seg-
ments contains a certain number of passages such as paragraphs or sentences and
is characterized by a single homogeneous topic. Linear text segmentation algorithm
used in this thesis is called TextTiling [26], a detailed description of it can be found
in Section 3.3.

5

2. Related Work

2.1.2. Open Information Extraction

Considering a Web corpus as an input to an already existing traditional closed
Information Extraction (IE) systems certain challenges became apparent [18]. First,
traditional IE relies on knowing the nature of an input domain beforehand. How-
ever, considering the versatility of the Web it is hard to determine a domain before
the extraction. Second, IE expects prede�ned number and type of relations to be
extracted by the system in advance. For Web it is not known what types of relation-
ships are typical for the data under consideration and the number of relations is not
only unknown, but also large. �ird, for IE it is possible to de�ne new additional
relations, which leads to a repetition of the extraction process as a consequence. A
system operating on a corpora as large as the Web has to be capable of performing
extractions in a single pass.

In an a�empt to overcome aforementioned challenges Open Information Extrac-
tion (OIE) as a more �exible alternation of IE was introduced [6]. Accordingly,
three main properties of an OIE system may be de�ned as follows:

1. Domain independence. �ere is no prede�ned domain on which OIE has to
rely for performing the extraction of relations.

2. Unsupervised extraction (automation). An extractor is able to handle diverse
data without explicit instructions about which relations it will encounter.
Detecting the relations is one of the tasks of the extractor.

3. Scalability (e�ciency). It is possible to extract all relations from a large amount
of heterogeneous unstructured data in one pass.

Formally an OIE system can be described as a function foie which takes a collection
of sentences s = {sentence1, . . . , } (a textual document) as an input and returns a
set of n-ary tuples for each sentence in a collection s as an output [65]. Each n-tuple
contains at least two arguments connected by a semantic relation between them,
also called a predicate {argument 1, predicate, argument 2}. �ere is no limit to the
number of relational n-tuples extracted from a single sentence. �e n-tuples should
represent propositions clearly expressed in the sentence, however generation of
n-tuples representing implied propositions is optional [53]. Table 3.4 shows an
example of OIE extraction by an extractor used in this work, RnnOIE [54].

6

2.1. Background

2.1.3. Word Embeddings

Word embedding generation is a class of methods for transforming original textual
data into a vector space based on prediction from the linguistic context [1, p. 331].
Each word in a vocabulary of a corpus is assigned a single real-valued vector which
is learned by the chosen word embedding method. Word embedding vectors are
dense and low-dimentional as opposed to sparse high-dimentional one-hot style
representation of a vocabulary [44].

Word embedding is able to capture a set of contexts in which a word appears
and therefore can be considered an approximation of this word’s meaning [5, 67].
A word sharing the same neighbors with another word, but not necessarily co-
occuring with it suggests these two words have similar meaning. �is quality is
based on distributional hypothesis from linguistic theory which states that words
occurring in similar context tend to have similar meaning [25].

Widely used algorithms to generate word embeddings are GloVe [48], fastText [12,
31] and Word2Vec [42]. �is work uses neural word embedding algorithm Word2Vec
as described in Section 3.5.

2.1.4. Dystopian Fiction

�ough there exists no agreed classi�cation or a clear de�nition of dystopian
literature genre, it is agreed upon that dystopian �ction is characterized by depiction
and critique of political and social tendencies over the period of past few decades
prior to the time of publication [62, p. 6].

Dystopian �ction characterizes a future society in an unwanted, critical state [60, 51].
Government or other type of power has gained total control of the population [60].
An individual is portrayed as weak and oppressed, alienated from others, the only
aim of their existence being the ful�llment of their duties and social responsibilities.
Free communication between individuals is restricted which may be linguistically
emphasized by the introduction of a new language. Development of a new language
or code of speech is used to enable the reader to gain deeper understanding of the
described social situation. For example, in novel ”Nineteen Eighty-Four” a new code
of speech called ”Newspeak” is used to in�uence or gain power over people [62,

7

2. Related Work

p. 81]. Social commentary on concerns or hopes about technology and its e�ect on
the individuals and society as a whole is frequently given [7, p. 145].

Novels ”We” by E. Zamyatin, ”Brave New World” by A. Huxley and ”Nineteen
Eighty-Four” by G. Orwell are widely accepted as examples of classic dystopian
novels [62, p. 16]. Contemporary dystopian �ction is partially targeting young adult
readers, for example ”Feed” by M. T. Anderson and �e Hunger Games trilogy by S.
Collins [51], [7, p. 145].

2.1.5. Subtitles and Captions

�e terms subtitle and caption will be de�ned from language learning perspective.
�e main assumption is that a viewer of an audiovisual media has di�erent knowl-
edge level in two languages [40]. It is expected that one of the languages is the �rst
language of the viewer, yet it is not required. �e audio track to the video is in the
language in which the viewer has lower language understanding pro�ciency. �e
viewer sees a transcription of the currently spoken in the video speech displayed
on the screen. If this text is in the language the viewer understands be�er, the text
is called subtitle. If this text is in the language the viewer understands worse, and
correspondingly is in the same language as the audio, the text is called caption.

Deaf or hard of hearing viewers are another type of audience for which the cap-
tions are created [28]. Hearing-impaired individuals need more contextual input in
addition to a plain text transcript in order to fully understand what is happening
in the video. �erefore captions displayed to such viewers may include descrip-
tions of non-verbal information audible in the current video sequence. Examples of
non-speech elements include speaker di�erentiation, background noises, audience
reaction, sound e�ects, existence of music and so on.

�ere are two types of captions: closed captions and open captions [29]. Open
captions are embedded into the video �le and cannot be hidden. Closed captions
(CC) are separate and the viewer can decide if the display of captions should be
activated or not.

�e audio tracks to the �lm adaptations are not used as a part of the dataset in this
thesis. Hence it is not possible to call used transcripts subtitles as de�ned in the
language learning context. �e non-speech elements, if present, are �ltered out as
described in the Subsection 3.2.2. Lacking these features used transcripts do not

8

2.2. State of the Art

qualify as captions if used in the context regarding viewers who are deaf or hard of
hearing. Nonetheless, the textual transcripts used in this thesis will be further on
referred to as subtitles for the purposes of readability.

2.1.6. Film Adaptations

A�lmadaptation is a conversion of a literary source (a novel, short story, etc.) into
a �lm [45, p. 53]. �e screenplay to the �lm is adopted rather than original, based on
the already existing storyline and ideas. Adaptation implies change and di�erences
due to the transition from one art medium to another [11, p. 5]. For example, the
interior understanding of a character provided by the linguistic medium cannot
be translated into a visual medium in an equally intelligible way. However, �lm
adaptation may be promoted in such a way that the similarity to the original art
piece is a part of the appeal for the �lm [39, p. 3], �delity to the literary source
being a widely discussed topic.

2.2. State of the Art

2.2.1. Linear Text Segmentation

A wide range of di�erent approaches to address challenges of linear text segmen-
tation was developed over the years. Methods based on existing knowledge from
various �elds, for example, linguistics, statistics, graph theory, etc. were used, re-
cent years marked by an emerging interest in application of word embeddings and
neural networks. Table 2.1 gives an overview of prominent linear text segmentation
approaches along with their key features.

Most text segmentation methods can be categorized into two classes: similarity-
based and generative models [37]. �e similarity-based models are centered
around a theory that the textual data in the same topic segment bears more re-
semblance to itself than the data in the preceding or consequent segment. �is
assumption is based on lexical cohesion theory which states that text segments with
similar vocabulary are likely to be found in one coherent topic segment [24]. Text
segmentation algorithms TextTiling [26], C99 [13] and LCseg [20] are examples

9

2. Related Work

of similarity-based models. �ough GraphSeg [21] is a graph-based algorithm, it
utilizes lexical similarity and therefore may also be considered similarity-based. �e
main assumption behind generative models is that a textual input consists of a hid-
den sequence of topics and it is possible to di�erentiate between the topic segments
based on the characteristic probability distribution of words [37, 52]. Text segmen-
tation algorithms U00 [61], Sun et al. [55], BayesSeg [17] and TopicTiling [50] are
examples of generative models.

TextTiling [26] aims to determine whether there is a topic shi� between two
neighboring text segments based on term repetition. �e algorithm starts with
the division of text into pseudo-sentences of prede�ned length which are grouped
together into blocks. �en the score determination step is executed in which the
algorithm compares every two adjacent blocks in the input in a moving window
fashion. Each block is treated as a bag of words for computing a score representing
the amount of cohesion between the two blocks at hand. Low amount of cohesion
signi�es higher probability of a topic shi�. Finally, the boundary detection is per-
formed by �ltering the potential segmentation points with the cohesion level lower
than a prede�ned threshold. A detailed description of TextTiling algorithm can be
found in Section 3.3.

C99 algorithm [13] is based on detecting segmentation boundaries by applying
divisive hierarchical clustering to a rank matrix. First, the vector-space representa-
tions of sentences are used to compute a similarity matrix consisting of the pairwise
cosine similarities between each pair of the sentences in the input document. �en
the similarity values are converted to ranks to achieve local normalization. Finally,
hierarchical clustering is used to determine the position of topic boundaries. �e
inside density consisting of a normalized sum of the rank values in a segment
is computed for coherent text segments. �e text is recursively split into smaller
segments, split point being a potential boundary maximizing the density value, until
the quality of segmentation stops showing signi�cant improvements in comparison
to the average segmentation quality results.

U00 algorithm [61] uses dynamic programming to �nd a minimum cost segmen-
tation. Given a textual input, a gap between two adjacent words is considered a
potential topic boundary. A graph is constructed with gaps as vertices and ordered
connections between gaps as edges. �is step is followed by cost calculation for
each edge. �e algorithm determines a minimum cost path in a graph from the �rst

10

2.2. State of the Art

gap to the last gap by means of dynamic programming. As a result a segmentation
is obtained in which separated text segments correspond to edges in a graph.

LCseg [20] is based on term repetition and uses lexical chains to compute the
segmentation. First, a lexical chain containing all repetitions of a term in the entire
document is constructed. A�erwards, a weighting scheme based on a derivation of
term frequency-inverse document frequency (tf-idf) metric is applied. Longer chains
are assigned lower weight than the shorter ones and chains with less repeated terms
receive lower score. Similar to TextTiling a moving window of prede�ned size is
used to scan the input. A lexical cohesion function is achieved by computing the
lexical cohesion score at each transition between two windows. Lexical cohesion
score is composed of cosine similarity using lexical chains overlapping with the two
windows instead of using word counts. Once the algorithm �nds a local minimum
with strong cohesion function values at the neighboring points to the le� and to the
right, the hypothesized segmentation probability is computed. Conclusively, the
points with highest segmentation probabilities which are larger than a threshold
are considered �nal segmentation boundaries.

An approach introduced by Sun et al. [55] relies on mutual information and weighted
mutual information to produce a segmentation and topic alignment between multi-
ple documents. Text segmentation is seen as an optimization problem of �nding
such a segmentation and alignment that the loss of mutual information or weighted
mutual information is minimal. �e term weights are used as means of so� clas-
si�cation to decrease the e�ect of general or document-speci�c stop words and
increase the in�uence of cue phrases on the segmentation process. �e sentences
sharing a topic are clustered together and the clusters are consequently used for
alignment between documents of the dataset. �e weighting of a term or a term
cluster is based on entropy among documents or segments of documents.

BayesSeg [17] approach is based on using Bayesian framework to identify lexical
cohesion. �e words in every topic segment are considered to be draws from a
multinomial language model corresponding to this topic segment. �e probability
mass of a segment concentrated on a small subset of words signi�es the high
likelihood of the language model of this segment. An objective function value of
term frequency obtained from the probability perspective is maximized. Dynamic
programming is applied to compute the �nal maximum likelihood segmentation.

A variation of the algorithm allows the integration of auxiliary information sources,
for example cue phrases, without the need for additional labeling. By using this

11

2. Related Work

method it is possible to bias the sample selection towards the known cue phrases.
In this case the draws are made from a special language model shared by all topics
and documents in the dataset. A designed sampling-based inference technique is
applied to produce a �nal segmentation.

TopicTiling [50] is a supervised text segmentation algorithm which uses the
Bayesian Inference method of Latent Dirichlet Allocation (LDA). TopicTiling al-
gorithm is based on a simpli�ed version of TextTiling, however it uses topic IDs
detected by the Inference method of LDA rather than term vectors for word rep-
resentation. First, the documents in the training dataset are annotated with topic
IDs. Due to the probabilistic nature of LDA an assignment of topic distribution in
di�erent runs may be inconsistent, therefore the most frequent topic ID assigned
to the word is used as the word’s topic ID. �en, topic IDs assigned to words are
used to compute a score at each gap between two consecutive sentences. �e �nal
segmentation either returns a speci�ed number of boundaries in case the number
of segments was given as input or all boundaries with values larger than a certain
threshold.

GraphSeg [21] is an unsupervised algorithm based on a semantic relatedness
graphs. First, semantic relatedness between sentences is measured. Hence each
word in one sentence is connected to each word in another sentence building a
complete bipartite graph. �e weights of the bipartite graph are represented by
the cosine similarity measure between the word embedding vectors of each word
pair. Hungarian method is applied to the graph in order to �nd a matching in
which the sum of the edge weights is minimal. In the next step, given a set of
word pairs provided by the Hungarian algorithm, the semantic relatedness measure
between the sentences is computed. �e measure is based on the cosine similarity
and information content of the word pairs. A�erwards, each sentence in the text
is considered a node in a relatedness graph and semantic relatedness measure
is calculated for each sentence pair. An edge connects two sentences given the
semantic relatedness measure between them is larger than a threshold. Finally, text
segmentation is completed by locating maximal cliques of adjacent sentences in
the constructed relatedness graph with the help of Bron-Kerbosch algorithm.

Sector [4] is an algorithm based on neural networks which performs text segmen-
tation and topic label assignment using bi-directional Long Short-Term Memory
(bi-LSTM) neural network. First, the sentence encoding based on Bloom �lter
compression method for sparse vectors is executed. �en, the assignment of a

12

2.2. State of the Art

latent topic to each sentence is performed with the help of a two layer bi-LSTM
neural network followed by an additional embedding layer with tanh activation
function. Consequently, the output layer with softmax activation function for
single topic labeling or sigmoid activation function for multi-topic labeling de-
codes the potential text segment labels. Finally, the information from output layers
and topic embeddings is used in order to perform �nal segmentation and topic
classi�cation.

2.2.2. Open Information Extraction

According to Niklaus et al. [46] OIE systems may be classi�ed into categories of
learning-based, rule-based, clause-based and systems capturing inter-proposition
relationships. Recently multiple systems based on neural networks were introduced
in an a�empt to solve the task of OIE. Table 2.2 lists key features of OIE approaches
described in this Subsection.

TextRunner [66] is a pioneering learning-based system in OIE. TextRunner uses
limited automatically labeled data for training, therefore it is considered a self-
supervised machine learning algorithm. First, given a small set of sentences a parser
based on heuristic constrains automatically labels sentences with extractions. Inde-
pendently, part of speech (POS) tags are assigned to sentences and noun phrases in
a single pass over all documents in a corpus. Second, a sequence-labeling model
is used to create a relational phrase extractor. �en, given a sentence as an input
the candidate argument pairs consisting of noun phrases are identi�ed. �e rela-
tional phrase extractor decides whether to label the words between the parts of an
argument pair as a relational phrase. Finally, an unsupervised probabilistic model
is used to perform coreference resolution.

ReVerb [19] is a rule-based OIE system based on TextRunner. �e main disad-
vantages of existing OIE systems at the time were uninformative and incoherent
extractions. �erefore ReVerb introduced syntactic and lexical constraints in an
a�empt to reduce these unwanted extraction qualities. �e extraction approach
is centered around relation phrase, which means �rst specifying the relations
satisfying the constraints and then �nding corresponding arguments. Syntactic con-
straints are handcra�ed Regular Expressions based on POS tags. Lexical constraints
are based on assumption that a trustworthy relational phrase is encountered in

13

2. Related Work

connection to a considerable number of clearly de�ned argument pairs in a large
corpora.

ClausIE [16] is a clause-based OIE system. ClausIE converts the input sentences
into simpli�ed independent clauses and uses clause constituents to generate the
propositions. First, a dependency tree of a sentence representing its grammatical
structure is generated. Second, the clauses in the input sentence are identi�ed and
the dependency relations are mapped to clause constituents. Consequently, a type
of clause under consideration is determined based on the grammatical function of
clause constituents. Finally, a conclusion is made about which constituents or com-
binations of constituents result in a proposition and a corresponding proposition is
generated.

Stanford OIE [3] is an another example of clause-based OIE system. First, a clas-
si�er is learned by traversing a dependency tree and making a prediction about
whether an edge produces an independent clause or not at each step. �us the
sentences are split into short u�erances with the help of a learned classi�er. �en,
natural logic (a proof system based on human language syntax) is applied to the
extracted u�erances to maximally reduce them without loosing essential content.
Finally, a small set of hand-cra�ed rules is used to split the shortened u�erances
into predicate-argument OIE triples.

Recurrent Neural Network OIE (RnnOIE) [54] is an OIE system based on neural
network architecture. In this approach OIE extraction is addressed as sequence
labeling problem. Given labeled dataset, supervised learning of a model by means
of an bi-LSTM transducer architecture is performed. Multiple extraction tuples are
encoded for a single sentence. A predicate is assigned multiple arguments making
a tuple n-ary rather than binary. Custom BIO labels adapted from Semantic Role
Labeling (SRL) systems are used to signify argument position and capture semantic
meaning. An example of RnnOIE extraction along with BIO labeling can be seen
in Table 3.4. Figure 3.6 depicts the architecture of RnnOIE system. More detailed
description of RnnOIE can be found in Section 3.4.

Cui et al. [14] follow neural approach to generate binary OIE extractions. OIE
extraction is seen as sequence-to-sequence generation problem with input sentence
de�ned as the input sequence and the extracted OIE tuples with certain placeholders
interpreted as output sequence. An RNN with an a�ention-based encoder-decoder
Long Short-Term Memory (LSTM) architecture is applied to the input. An encoder

14

2.2. State of the Art

encodes the input sequence in form of a context vector which is in turn used by
the decoder to generate the output sequence of variable length.

2.2.3. Application of Literary Fiction and Film Subtitles

�ere are various ways in which NLP techniques are used to analyze �ctional
texts and �lm subtitles. One of NLP applications is representation of interpersonal
relationships in a work of �ction by means of creating a �ctional/social character
network [34, 47, 58]. A �ctional character network aims at detecting characters and
representing information about them as well as discovering connections between
the characters and expressing according relationships. Named Entity Resolution
(NER), coreference resolution and anaphora resolution may be used in order to
detect and identify the characters[15]. Fictional character networks may be used
for assessment of the validity of literary theories, deciding on the level of historicity
and realism, classi�cation of �ction works, role detection, summarization, storyline
detection and story segmentation [34]. Additionally, the corpora may be used to
identify various key narrative features. For example, it may be applied to recreate
the order and location of the events which took place [43], detect a mood of a
�lm [56] or discover relevant scenes of a �lm without the need for analyzing the
visual input [2, 27]. Finally, �ctional literary texts are used to produce character
summarization [69], chapter summarization [35] and novel summarization [30]
due to the text length and narrative form.

Subtitles are used as a corpus of unstructured dialogue without annotation. Hence
subtitles are segmented to identify whether consecutive sentences are part of the
same dialogue turn [38] and may be annotated with a scene or speaker tag [68].

Manual translation performed by a professional human translator is a time-consuming
task, therefore subtitles and literary �ction corpora are used as a component of
machine translation [63, 64]. For example, machine translation systems based
on existing subtitle datasets are used for translating subtitles into di�erent lan-
guages [23, 41]. Another example is performing automatic translation of novels
with the use of models trained on literary �ction as a supporting tool in a translation
process [57].

15

2. Related Work

algorithm publication
year

supervised similarity-
based

generative key features

TextTiling [26] 1997 no1 X lexical co-occurance
C99 [13] 2000 no2 X divisive hierarchical clus-

tering, ranking matrix
U00 [61] 2001 no2 X minimum cost segmenta-

tion, dynamic program-
ming

LCSeg [20] 2003 no2 X TextTiling-based, lexical
chains

Sun et al. [55] 2007 no3 X mutual information, dy-
namic programming

BayesSeg [17] 2008 no3 X Bayesian framework, in-
corporating cue phrases,
dynamic programming

TopicTiling [50] 2012 yes X LDA-based
GraphSeg [21] 2016 no X semantic relatedness

graph, word embeddings
Sector [4] 2019 no LSTM neural network,

topic labeling

Table 2.1.: Classi�cation and key features of notable linear text segmentation algorithms. One could
argue that the algorithms with superscript may be considered semi-supervised as they
expect additional information about the input.
1 TextTiling expects the paragraph structure of the input text is given.
2 �ere exists a variation of the algorithm which expects the number of topic segments
is given.
3 In the presented evaluation of the algorithm in the paper it is assumed the number of
topic segments is known.

16

2.2. State of the Art

OIE system publication
year

key features

TextRunner [66] 2007 • learning-based
• shallow syntactic analysis (POS tags, NP chunks)
• labeling training examples with a set of handcra�ed
pa�erns

ReVerb [19] 2011 • rule-based
• shallow syntactic analysis (POS tags, NP chunks)
• lexical and semantic constraints

ClausIE [16] 2013 • clause-based
• dependency parsing
• detecting clauses and identifying clause types
• no training required

Stanford OIE [3] 2015 • clause-based
• dependency parsing
• minimization of extracted clauses
• extraction based on handcra�ed pa�erns

RnnOIE [54] 2018 • neural-based
• bi-LSTM transducer for supervised model training
• extracts n-ary relational tuples
• OIE as a sequence labeling problem

Cui et al. [14] 2018 • neural-based
• encoder-decoder LSTM RNN for supervised model
training
• extracts binary relational tuples
• OIE as a sequence-to-sequence generation problem

Table 2.2.: Key features of notable OIE systems.

17

3. Method

�is Chapter provides necessary information about the dataset creation and pre-
processing along with detailed description of NLP methods and algorithms used
in this thesis. First, a general overview of the dataset is given in Section 3.1. �e
dataset consists of two parts, Novels and Subtitles. �e Novels part of the dataset is
described in Subsection 3.1.1 followed by the Subtitles part in Subsection 3.1.2. �e
motivation for using this type of dataset is explained in Subsection 3.1.3. Second,
the preprocessing steps performed on the dataset are presented in Section 3.2 in
which Subsection 3.2.1 is dedicated to Novels dataset part and Subsection 3.2.2 to
Subtitles dataset part. Finally, the parts of the linear text segmentation algorithm
TextTiling are presented in Section 3.3. Neural OIE model used for the generation
of propositions in this work is described in Section 3.4. �e manner in which afore-
mentioned OIE and linear text segmentation methods are connected is shown in
Section 3.5.

3.1. Dataset Description

�e dataset for this thesis contains two parts. �e �rst part of the dataset includes
novels as described in Subsection 3.1.1, the second part consists of subtitles to
�lm adaptations of these novels presented in Subsection 3.1.2. �e language of
the dataset is English. �e motivation behind the dataset choice is explained in
Subsection 3.1.3.

3.1.1. Dataset Part 1: Novels

�e Novels dataset includes 11 plain text �les, see Table 3.1 for an overview.

19

3. Method

Novel title Author Original language Publication year
1 Nineteen Eighty-Four:

A Novel
G. Orwell English 1949

2 Brave New World A. Huxley English 1932
3 We Y. Zamyatin Russian wri�en in 1920,

translated into
English in 1924

4 �e Handmaid’s Tale M. Atwood English 1985
5 Do Androids Dream of

Electric Sheep?
P. K. Dick English 1968

6 �e Hunger Games S. Collins English 2008
7 Catching Fire S. Collins English 2009
8 Mockingjay S. Collins English 2010
9 �e Giver L. Lowry English 1993
10 �e Maze Runner J. Dashner English 2009
11 Ready Player One E. Cline English 2011

Table 3.1.: Overview of Novels dataset part. All novels satisfy two criteria. First, the literature genre
of a novel is dystopian �ction. Second, there exists a screen adaptation of the novel which
can be used in the Subtitles dataset. Only �ctional text of the novels in plain text format
is used as input for text segmentation task.

�e �les include the text constituting the novel and therefore do not contain non-
�ctional parts of the book such as dedication, acknowledgments, table of contents,
etc. All novels share the same literature genre of dystopian �ction.

A novel “We” by Y. Zamyatin was originally wri�en in Russian and then translated
into English. “�e Handmaid’s Tale” was wri�en by Canadian author M. Atwood.
”Nineteen eighty-four” and ”Brave New World” were wri�en by English authors
G. Orwell and A. Huxley respectively. Remaining seven novels were wri�en by
authors from USA. �ough the majority of novels in the dataset were created by
di�erent authors, three novels were wri�en by S. Collins and compose �e Hunger
Games trilogy.

20

3.1. Dataset Description

�e novels vary in publication date, the oldest one being “We” by Y. Zamyatin
wri�en in Russian in 1920, published in English in 1924 and the newest one being
“Ready Player One” by E. Cline published in 2011.

In order to enable the evaluation of linear text segmentation algorithm, it is essential
that a novel contains chapters, see Chapter 3.2.1 for more detailed explanation. �e
novel “Fahrenheit 451” by R. Bradbury, for example, could not be included into the
dataset since despite being structurally separated into three parts, the parts do not
include chapters.

3.1.2. Dataset Part 2: Subtitles

�e Subtitles dataset consists of 13 SubRip subtitle �les, see Table 3.2 for an overview.
�ese �les are going to be referred to as SRT �les further on and are subtitle �les
in .srt format.

Table 3.3 shows an example of two consequent subtitle sequences following SRT
format structure. A single sequence consists of four components, which are a
sequence number counter, beginning and end time codes for subtitle display on
screen, sequence text and a blank line. Beginning time code de�nes when the
subtitle text starts to be visible on screen. It is followed by a symbolic arrow ”-->”
leading to the end time code, which is the time when the sequence text disappears
from the screen. Time codes use milliseconds precision in hh:mm:ss,sss format.
Subtitle text can include more than one line.

�e reason for an unequal number of novels and subtitles is due to the �lm adapta-
tion aspects. �e Subtitles dataset contains subtitles to two di�erent screen adap-
tations of the novel “Nineteen Eighty-Four” by G. Orwell, one produced in 1956
and another one in 1984. �e screen adaptation of a single book “Mockingjay” by S.
Collins consists of two parts, resulting into two separate subtitle �les. �erefore
the Subtitles dataset has two items more than the Novels dataset.

�e �lm ”We” was produced in Germany and therefore the subtitles are a translation
from German into English. Both screen adaptations of the book ”Nineteen Eighty-
Four: A Novel” from year 1956 and 1984 were produced in the UK. Remaining
screen adaptations originate from USA.

21

3. Method

Film title Director Original language Release year
1 Nineteen Eighty-Four M. Anderson English 1956
2 Nineteen Eighty-Four M. Radford English 1984
3 Brave New World L. Libman, L. Williams English 1998
4 We V. Jasný German 1982
5 �e Handmaid’s Tale V. Schlöndor� English 1990
6 Blade Runner R. Sco� English 1982
7 �e Hunger Games G. Ross English 2012
8 �e Hunger Games:

Catching Fire
F. Lawrence English 2013

9 �e Hunger Games:
Mockingjay - Part 1

F. Lawrence English 2014

10 �e Hunger Games:
Mockingjay - Part 2

F. Lawrence English 2015

11 �e Giver P. Noyce English 2014
12 �e Maze Runner W. Ball English 2014
13 Ready Player One S. Spielberg English 2018

Table 3.2.: Overview of Subtitles dataset part. Every �lm is a screen adaptation of a novel included
in the Novel dataset part. All �lm subtitles are SRT �les.

�e release year of the �lms does not vary as signi�cantly as the one of novels. �e
oldest �lm is ”Nineteen Eighty-Four” directed by M. Anderson in 1956. �e newest
�lm is ”Ready Player One” directed by S. Spielberg in 2018.

3.1.3. Motivation for Choosing Dataset

Initially only subtitles were seen as a dataset. However, using solely subtitles
introduces the issue of limited data for word embedding training. �e quality
of word embedding model is dependent on the size of the training corpus, the
larger the corpus the higher the word embeddings quality [36]. �e combination
of subtitles and novels expands the number of words signi�cantly. See Figure 3.1

22

3.1. Dataset Description

1
00:02:17,440 --> 00:02:20,375
Your task seems impossible to me.

2
00:02:20,476 --> 00:02:22,501
�e situation is critical at the moment.
I still have to try.

Table 3.3.: An example of two consequent subtitle sequences in an SRT �le. A single subtitle sequence
consists of its numeric counter, time at which the sequence text should be displayed at the
screen and time at which it should be hidden, sequence text and a blank line signifying
the end of the current sequence. Time codes are separated by an arrow --> and use
millisecond precision.

for the comparison between the overall number of words in a novel and in a
corresponding subtitle �le. �e longest novel is ”Ready Player One” by E. Cline
containing 140 721 words, the shortest novel is ”�e Giver” by L. Lowry with 44
790 words. �e longest subtitle �le is ”Ready Player One” with 10 863 words, the
shortest subtitle �le is ”Blade Runner”, a �lm adaptation of a novel ”Do Androids
Dream of Electric Sheep?”, with 4 303 words.

23

3.
M
ethod

Figure 3.1.: �e comparison between the overall number of words in a novel (dark green) and corresponding subtitle (green). �e
number includes non unique words as well as stop words.

24

3.2. Dataset Preprocessing

Dataset used for this thesis holds properties which cannot be found in expository
or descriptive texts. Fictional narrative texts use synonyms rather than word repe-
titions. Dystopian literature and �lms o�en contain made up terms which are not
limited to only proper names. Outside of �ction context such vocabulary may be
compared to words with typos or slang words which may not be a part of a formal
vocabulary, but are not uncommon in casual communication.

Moreover, within creative writing certain liberties in expression of thoughts and
opinions as well as critique of culture, society and political situation may be in-
troduced. In case of dystopian se�ing already existing words may obtain �ctional
ironic meaning. For example, “Ministry of Love” in the novel “Nineteen Eighty-
Four” by G. Orwell is more related to misery than to positive feeling of a�ection
and “peacekeepers” in the Hunger Games trilogy by S. Collins are an instrument of
repression.

�e length of paragraphs and sentences is irregular and not easily predictable.
Both novels and subtitles make heavy use of dialogues. Dialogues introduce rapid
switches between characters and topics as well as punctuation challenges such as
incomplete sentences ending with ellipsis.

Given described theoretical background a set of algorithms is chosen to perform
the task at hand. �is chapter provides a detailed overview of these algorithms
as well as information about selection, preprocessing and transformation of input
data. Figure 3.2 shows the pipeline of performed work.

3.2. Dataset Preprocessing

In order to evaluate the linear text segmentation performance it is necessary to
generate ground truth against which the results are compared. �e ground truth
for the linear text segmentation task at hand should consist of topic shi� positions
in the input.

Relevant information about dataset �les is computed once and is cached in form
of binary �les for future usage by TextTiling or RnnOIE. �ese binary �les in-
clude chapters and paragraphs of novels, scenes of subtitles, word tokens and
token weights computed by RnnOIE. Statistical data about the dataset �le such as
length of the sentences and paragraphs as well as vocabulary size is also stored.

25

3. Method

To calculate WindowDi� and Pk metric it is necessary to know if a token begins
a new topic segment, therefore this information is calculated and stored for each
token as well. More detailed information about the preprocessing of novels can be
found in Subsection 3.2.1. Subsection 3.2.2 describes the preprocessing process for
subtitles.

3.2.1. Preprocessing of Novels

�e narrative element of a novel, which is expected to satisfy all qualities of a topic
segment according to de�nition in Chapter 3.3, is a chapter. �e naive approach of
separating a text into paragraphs and declaring them topic segments is not feasible
due to the fact that novels include multiple dialogues. Forma�ing of a dialogue
requires that a new paragraph starts as soon as speaker change occurs, which does
not correspond to the idea of a single segment fully enclosing a certain topic.

For Novels dataset Regular Expressions are used to �nd and remove structural
pa�erns not related to topic shi�s. �ese Regular Expressions can be found in
Appendix A.1. Remaining textual data is separated into text segments, each of them
representing a chapter. �e beginning of such text segment is considered to be
a topic shi� position and is used for the evaluation of linear text segmentation
algorithm as described in Chapter 4.

All the headlines signifying the beginning of a novel part and its numeration , for
example ”Part 1”, are removed. �e title of a part, if present, represents an idea
shared by more than one chapter. �erefore it cannot be appended as an additional
textual input to one unique block of text and is taken out.

�e headers containing the word ”chapter” along with its ordinal number are
removed. �ough the book ”We” by Y. Zamyatin is separated into sequences labeled
”records” by author, they are treated as equal to chapters as in terms of structure they
represent the same concept. Another text separation techniques such as epilogue
or dinkus (three or more asterisks in a row) are also considered to be equivalent to
a chapter in terms of topic shi� and are treated in the same manner as chapters.
�e title of a chapter, if present, is viewed as the �rst sentence in a chapter, this
way it is considered to be a piece of the chapter text.

�e novel ”�e Handmaid’s Tale” by M. Atwood includes a special case of novel
structure not shared by other novels from the dataset. One chapter or more can be

26

3.2. Dataset Preprocessing

preceded by a title in order to create a separate section and signify a broader theme.
Sections which closely relate to the main character are titled ”Night”, the other
sections named for example ”Waiting Room” or ”Household” tell more general
story. �ough such sections are not the same as parts from the literary perspective,
they are treated in the same way for the purpose of text processing, which means
the ordinal number and title of the section are removed throughout the text �le.

3.2.2. Preprocessing of Subtitles

Subtitles used in this thesis essentially are transcripts of dialogue in the �lm. On one
hand subtitles in this form do not have any structural anchors created by author
similar to paragraphs or chapters in novels. On the other hand a �lm consists
of sequential non-overlapping scenes. A change from one scene to another is
happening if the situation or a unit of a dialogue has come to an end. �is largely
corresponds with the de�nition of a subtopic segment as de�ned in Chapter 3.3. An
assumption is made that if there occurs a pause in action during which no dialogue
is spoken then a scene switch has taken place. �is way a subtopic segment starts
either at the beginning of the subtitle text or a�er a pause which lasts �ve seconds
or longer.

In Subtitles dataset the textual information not relevant to the subtopic is removed.
Regular Expressions are used to �lter out occasionally used SRT forma�ing tags.
�ese Regular Expressions can be found in Appendix A.2. Nonverbal information
not audible in the audio track intended for deaf or hard of hearing people is separated
out. �is includes speaker identi�cation and symbols signifying the beginning and
ending of music. �e song lyrics are le� in place if they are directly connected to
the plot. For example the lyrics of a song ”�e Hanging Tree” in �e Hunger Games
trilogy is a part of the narration, but a song ”Julia” by band Eurythmics featured in
the �lm ”1984” released in 1984 is not. �e �ltering is done manually in cases when
using Regular Expressions to �nd the uniform forma�ing pa�ern to describe the
non-speech elements is error-prone.

27

3. Method

3.3. TextTiling Algorithm

�e linear text segmentation algorithm used in this thesis is based on a paper ”Text-
Tiling: Segmenting Text into Multi-paragraph Subtopic Passages” by M. Hearst [26].

TextTiling is one of the early similarity-based linear text segmentation algorithms.
However, it is not uncommon to use approaches closely resembling TextTiling
as a base for new text segmentation methods, for example LCSeg [20], TSF [32]
and TopicTiling [50] utilize TextTiling approach to build their ideas upon it. �e
ingenuous design of TextTiling algorithm leaves room for experimentation simulta-
neously providing robust linguistic foundation. �ese qualities make this algorithm
an exceptional candidate for NLP enhancement presented in this thesis without
the need for creating a completely new algorithm from scratch.

�is section describes the original TextTiling algorithm along with changes or
enhancements performed as a part of this work. One of such alterations is the
application of TextTiling to the dataset consisting of �ctional text, see Section 3.1
for more information about choosing the dataset and detailed dataset description.
Initially, �ctional texts were not taken into consideration as potential input type
for TextTiling.

Original TextTiling algorithm takes expository texts with minimal styling, such
as headings, as an input. It is required that the input text consists of paragraphs.
An expository text contains one or more main topic discussions, which can be
overlapping. However it is assumed that such text can be presented as a sequence
of non-overlapping continuous subtopic segments.

A subtopic segment has following properties:

• represents one single subject of discussion
• does not overlap with other subtopic segments
• consists of a continuous text segment
• includes one or more paragraphs

�e goal of the TextTiling algorithm is to �nd the precise location of transition from
one subtopic segment to another, which is called a subtopic shi�. �e algorithm
consists of thee parts: tokenization, score calculation and boundary identi�cation.
It is required to provide parameter values for token-sequence size and block size to
perform linear text segmentation with the help of TextTiling.

28

3.3. TextTiling Algorithm

3.3.1. Tokenization

First, the whole input text is converted into a single sequence of tokens. �e process
of tokenization includes conversion of words to lower case and lemmatization. A�er-
wards this single sequence is separated into consecutive multiple token-sequences
of size w (prede�ned parameter of the TextTiling algorithm). �e parameter w
is supposed to approximate the length of a sentence. �e motivation for using
parameter w is that real sentences may vary signi�cantly in length and therefore
have a potential to produce incomparable scores. Stop words are �ltered out from
token-sequences.

In this thesis the text is separated into tokens based on the RnnOIE tokenization
rules, see Section 3.5 for more details. �e stop word list used for this thesis is an
extended version of nltk.corpus stop words list. It can be seen in Appendix B.

3.3.2. Score Calculation

In the original paper it is shown that the blocks score calculation method produces
be�er results than vocabulary introduction method. �erefore in this thesis the
blocks score calculation is used and only this method will be described in detail.

Lexical Score

A block is obtained by taking k consequent token-sequences. Prede�ned parameter
k approximates average number of sentences in a paragraph in a similar fashion
as the parameter w approximates sentence length. It is worth mentioning that the
size of a single block in tokens can be less than a number obtained by multiplying
token-sequence size by block size because the stop words are �ltered out from
token-sequences.

�e change of subtopic in text is presumed to be accompanied by a change in vo-
cabulary. �erefore computation of cosine similarity between blocks (lexical score)
is done by observing how di�erent is the vocabulary of the adjacent blocks. A tran-
sition from tokensequencei to the tokensequencei+1 is called a token-sequence
gap. A lexical score is calculated at each token-sequence gap. �erefore given n

29

3. Method

token-sequences, there are n− 1 token-sequence gaps and correspondingly n− 1
lexical scores.

Following steps are necessary to calculate the lexical score at a token-sequence
gap. First, two blocks consisting of k token-sequences each are formed: block1 =
{tokensequencei, . . . , tokensequencei+k} and block2 = {tokensequencei+k+1,
. . . , tokensequence2k+1}, here the numeration begins with 1 and i is an incre-
menting index. Second, a common vocabulary consisting of all tokens occurring in
both blocks is calculated. A weight of a token wt,b1 is the frequency of a vocabulary
token t within a block1. In conclusion, the lexical score at the token-sequence gap
between blocks block1 and block2 is measured by their cosine similarity according
to the formula 3.1:

score =

∑
twt,b1wt,b2√∑
t w

2
t,b1w

2
t,b2

(3.1)

A�er the lexical score is calculated, the counter i is incremented by one. �is way
the comparison between the blocks is done using the principle of moving window
with a step of one token-sequence allowing to calculate the lexical similarity at
each token-sequence gap.

�ough one could assume that there is no subtopic shi� for at least some arbitrary
number of token-sequences in expository text, there is no certainty that this as-
sumption is true for �ctional literature and subtitles. �erefore to calculate a lexical
score at each token-sequence gap a number of comparisons at the beginning and
at the end of computation includes blocks with less token-sequences than k. �e
�rst comparison takes place between a block consisting out of one token-sequence
and a block of size k, the second comparison is between a block out of two token-
sequences and a block of size k and so on. �e number of such smaller blocks at
the beginning and end of calculation depends on the value of parameter k.

Depth Score

As can be seen in the Figure 3.3, lexical scores graph has high points called peaks
and low points called valleys. High peak tops on both sides of a token-sequence
gap create a deep valley at this token-sequence gap. Such a valley signals strong
change in the vocabulary, because the lexical similarity of the blocks �rst decreases
and then increases. In order to determine whether a subtopic change has taken

30

3.3. TextTiling Algorithm

place a depth score is calculated at each token-sequence gap. To calculate the
depth score of a token-sequence gapj the lexical scores of the gaps to the le� of
it gaps left = score(gapj−1), . . . , score(gap0) and of the gaps to the right of it
gaps right = score(gapj+1), . . . , score(gapm) are observed. Here m + 1 is the
overall number of token-sequence gaps. To �nd the highest neighboring peak to
the le� the values of gaps left are scanned one by one from score(gapj−1) to
score(gap0) until the �rst peak at gapl which satis�es the condition 3.2 is found.

∃gapl : score(gapl) ∈ gaps left and

score(gapl) > score(gapj) and

score(gapl) > score(gapl−1)

(3.2)

�e highest neighboring peak to the right is computed in an analogous way with
ascending gap index and should satisfy the condition 3.3.

∃gapr : score(gapr) ∈ gaps right and

score(gapr) > score(gapj) and

score(gapr) > score(gapr+1)

(3.3)

A�er both gapl and gapr have been identi�ed, the depth score of gapj is calculated
using the formula 3.4.

depth score(gapj) =score(gapl)− score(gapj) +

score(gapr)− score(gapj)
(3.4)

Score Smoothing

Peaks in the lexical scores which are directly followed or preceded by higher
peaks are interfering with the process of �nding a highest neighboring peak for
computing depth scores. See Figure 3.4 for an example. To avoid such behavior
average smoothing of lexical scores is introduced. Fist, smoothing width size s and
number of smoothing rounds r are chosen. �en for each token-sequence gap gap
following steps are repeated r times:

31

3. Method

1. �nd lexical the score at gap
2. �nd the lexical scores of the s/2 gaps to the le� of gap
3. �nd the lexical scores of the s/2 gaps to the right of gap
4. calculate the average of the lexical scores from steps 1, 2, 3 and assign its

value to gap

To enable the calculation of lexical score smoothing for the �rst and last token-
sequence gap in this work s/2 zeros are added at the beginning and at the end of
the lexical scores list (zero padding).

For the dataset used in this work smoothing improves the evaluation results in
some cases, but it fails to consequently improve the results for all �les in the dataset.
For this reason no smoothing was used in this thesis.

3.3.3. Boundary Identification

�e depth scores with values over a certain threshold are considered potential
segment boundaries. In case the depth scores are distributed normally the suggested
threshold value is calculated by either subtraction of standard deviation from mean
called the liberal measure LC or subtraction of half of the value of standard deviation
from mean called conservative measure HC.

�e original paper makes an assumption that depth scores are distributed normally,
however this does not hold for the dataset used in this thesis. �e distribution of
depth scores of novels and �lms is tested with help of shapiro and normaltest

from scipy.stats package. Depending on the input parameters the distribution
in some cases �ts gamma probability distribution as can be seen in Figure 3.5,
nonetheless it is not true for all cases. �erefore the threshold is set to the median
value of depth score data.

Another assumption is made that �nal segment boundaries should be rather sparse
than dense. �erefore only the depth scores located at least three token-sequences
apart from each other should be taken into consideration.

It is possible that detected potential subtopics are not located exactly at the begin-
ning of a paragraph. In such case the location of a subtopic boundary is moved to
the original text paragraph structure. Given a token-sequence gap that has been
identi�ed as a potential subtopic shi� �rst the closest paragraph break to the le� of

32

3.4. Recurrent Neural Network Open Information Extraction (RnnOIE)

it is examined. �is paragraph break is marked as a subtopic shi� if it has not been
selected as such previously. In case it has already been selected, the closest para-
graph break to the right of the token-sequence gap is considered in the same way.
In case both closest neighboring paragraph breaks have been identi�ed as subtopic
boundaries, the second closest paragraph break to the le� of the token-sequence
gap is taken into consideration. �is paragraph break is required to be at least three
token-sequences away from the previously observed paragraph break on the le�-
hand side. �e same steps are performed on the right-hand side if the second closest
paragraph break to the le� has been marked as a valid subtopic shi� in previous
steps. If there was no success in approximation of found subtopic boundary to the
paragraph structure a�er observing four closest neighboring paragraph breaks this
subtopic boundary is discarded. A �nal list of detected boundaries consists out of
all paragraph breaks which were identi�ed as subtopic shi�s.

�e Subtitles dataset is missing the paragraph structure by de�nition, therefore ap-
proximation to original paragraph structure cannot be implemented and is skipped
during code execution for this type of input.

3.4. Recurrent Neural Network Open Information
Extraction (RnnOIE)

In order to perform OIE for this thesis the version of Recurrent Neural Network
Open Information Extraction (RnnOIE) implemented by Allen Institute for Arti�cial
Intelligence (AllenAI) is used. A Predictor class is imported from Python library
allennlp.predictors.predictor and is instantiated by a model provided by
AllenAI 1. Original RnnOIE is de�ned in the paper “Supervised Open Information
Extraction” by Stanovsky et al. [54]. �ough the AllenAI version of RnnOIE contains
slight di�erences to original RnnOIE in labeling notation, these dissimilarities do
not in�uence the functioning of the model. �erefore though the reimplemented
RnnOIE model will be described, it would be referred to as RnnOIE further on for
be�er readability.

By applying RnnOIE a predicate-argument structure of a sentence is obtained.
Given a sentence s = {word0, . . . , wordn} RnnOIE extracts a set of correspond-

1h�ps://s3-us-west-2.amazonaws.com/allennlp/models/openie-model.2018-08-20.tar.gz

33

3. Method

ing tuples. Each tuple represents a proposition stated in a given sentence s. A
subspan xi of a sentence s consists of one or more adjacent words from it xi =
{wordk, . . . , wordk+y}. A single extracted tuple tj = {x0, . . . , xm} consists of at
least two subspans of s. One subspan of a tuple is marked as a predicate, while all
the other subspans are marked as arguments. Tuples of a sentence can overlap with
each other, therefore multiple tuples can share the same predicate. A predicate may
include modal auxiliary verbs and embedded predicates and therefore it is possible
for a predicate to consist out of more than one word.

RnnOIE uses custom BIO tagging. Beginning (B) is assigned to the words at the
beginning of a subspan. Inside (I) is a�ributed to other words inside of the subspan.
Outside (O) is a tag for words of the sentence which are not a part of a tuple under
consideration. An example of an RnnOIE extraction with BIO tagging can be seen
in the Table 3.4.

Input sentence:
�e sun went down and the dark-gray clouds changed color.
Extracted tuples:
1) [ARG0: �e sun] [V: went] [ARG1: down]
�eB-ARG0 sunI-ARG0 wentB-V downB-ARG1 andO theO darkO -O grayO cloudsO changedO colorO
2) [ARG0: the dark - gray clouds] [V: changed] [ARG1: color]
�eO sunO wentO downO andO theB-ARG0 darkI-ARG0 -I-ARG0 grayI-ARG0 cloudsI-ARG0 changedB-V
colorB-ARG1

Table 3.4.: An example of RnnOIE extraction tags. RnnOIE produces two tuples for the input sentence.
First tuple consists out of predicate ”went” as signi�ed by a label V (verb) and two
arguments ARG0 and ARG1, each being a subspan of original sentence. Second tuple
contains predicate ”changed” and two corresponding arguments. Under the dashed lines
the labels for single tokens are shown. According to BIO-tagging additional le�er B
(beginning), I (inside) or O (outside) are added to predicate and argument information.
In the second tuple a token ”the” is at the beginning of ARG0 and therefore is tagged
B-ARG0, ”dark” is inside of an argument and is tagged I-ARG0, ”sun” is outside of a
predicate or any argument in this tuple and is tagged ”O”.

RnnOIE is a model obtained by supervised training of a RNN with a bi-LSTM
architecture. First, feature vectors, which are going to be used as an input to the
neural network, are prepared. A feature vector is computed for each word in the

34

3.5. Combining RnnOIE and TextTiling

sentence according to the formula 3.5, where ⊕ stands for concatenation.

feature vector(wordi) =emb(wordi)⊕ emb(POS(wordi))⊕
emb(p)⊕ emb(POS(p))

(3.5)

Given a sentence s = {word0, . . . , wordn} each wordi, i ∈ 0 . . . n is mapped to a
vector which is a corresponding pre-trained 300-dimentional GloVe word embed-
ding emb(wordi). A POS of wordi is encoded as a �ve-dimentional word embedding
emb(POS(wordi)). A tuple t contains a single word which can be identi�ed as
predicate’s syntactic head p. �erefore a feature vector of wi is constructed by
concatenating word embedding of wi, word embedding of POS of wi as well as
word embedding of predicate’s syntactic head and word embedding of its POS. �en
the input embeddings are transformed into contextualized output embeddings by
bi-directional deep LSTM transducer [22]. �ese output embeddings are passed as
an input into so�max function. Finally, the so�max function produces independent
probability distribution over possible tags for each word. �e architecture of the
network can be seen in Figure 3.6.

3.5. Combining RnnOIE and TextTiling

On one hand, TextTiling is based on a textual representation of the input. For the
purpose of enhancing linear text segmentation with context information word
embeddings are used.

�is work evaluates the e�ect of substituting words with word embeddings vectors
on the performance of given linear text segmentation algorithm. Replacing a word
with a word embedding makes it possible that words with similar meaning are
represented by similar vectors [42].

On the other hand, the original TextTiling approach makes use of lexical co-
occurrence. �is way the algorithm relies on semantic proximity based on word
repetition without taking the syntactic meaning of words in the sentence into
account. In order to evaluate the bene�t of using such information in division of a
�ctional text into meaningful units this work concentrates on enriching linear text
segmentation process with OIE representations of the same input.

35

3. Method

In case of TextTiling with word embeddings, input tokens are replaced by their
vector representations at the step of spli�ing input into token sequences. In this
work Word2Vec word embedding algorithm [42] from the module gensim.models
is used.

Usage of pre-trained word embeddings such as provided by Google 2 proved to be
impractical for the dataset used in this thesis. Fictional texts, especially of dystopian
genre, contain terms or sometimes even languages made up by the author which
are not a part of English vocabulary used to train such word embedding models. A
novel and its �lm adaptation share the �ctional terms and proper names. Hence
the Word2Vec model is �rst trained on the sentences from a novel and then the
same model is additionally trained on subtitle sentences to slightly expand training
corpus size. Stop words are not included in the training set to create a stronger pull
between vectors of relevant words. Following parameters were used to generate
the model: the length of the word embedding is 300, the size of the dynamic context
window size is �ve, minimum number of words considered during training is one,
used training algorithm is skip-gram. �e training phase of the Word2Vec algorithm
is not fully deterministic. �erefore generated model is stored in a �le and used
for evaluation with di�erent TextTiling parameters to avoid using di�erent vector
representations of the same input for evaluation.

A�er the word embeddings are generated they are applied to TextTiling. Given
a block b of size n such that b = {vt1 , . . . , vtn}, where vt1 stands for a Word2Vec
vector of a token with an index one in this block, vector representation of this
block vb is computed according to the formula vb =

∑n
i=1 vi. �e vector length

of di�erent blocks stays constant for a single algorithm run and therefore cosine
similarity is calculated between block vectors of the same length.

TextTiling and RnnOIE are combined by applying weights to word embeddings.
Given a sentence as an input, RnnOIE extracts propositions stated in the sentence
in form of n-ary tuples. It is possible that a word token is not a part of any tuple
or that multiple tuples share the same word token. In this work it is assumed that
the appearance or absence of a word token in an OIE tuple corresponds to the
strength of syntactic meaning of this word token in the given sentence. �erefore
an overall number of occurrences of a certain word token in all extracted tuples
of a single sentence is seen as token’s weight. Stop words listed in Appendix B.1
are automatically assigned a weight of zero because they carry li�le semantic

2h�ps://code.google.com/archive/p/word2vec/

36

3.5. Combining RnnOIE and TextTiling

meaning. By applying a weight to a word’s vector its direction stays the same, but
the magnitude is increased or decreased.

Figure C.1 shows an example of RnnOIE extraction in JSON format given the input
sentence ”�e sun went down and the dark-gray clouds changed color.” �e key
”words” contains a list of extracted tokens for given sentence. RnnOIE uses a custom
tokenizer based on spaCy tokenizer which follows slightly di�erent rules than the
tokenizers initially used in this work (word tokenize or TweetTokenizer from
nltk.tokenize). Using di�erent tokenizers leads to unequal number of extracted
tokens which introduces di�culties for matching tokens with their weights pro-
duced by RnnOIE. For example, as can be seen in Figure C.1, a word ”dark-gray”
is separated by RnnOIE tokenizer into three tokens ”dark”, ”-”, ”gray”, however
both TweetTokenizer and nltk.tokenizer extract only one token ”dark-gray”.
In order to reduce potential errors custom RnnOIE tokenizer is used throughout
this work.

37

3. Method

Figure 3.2.: Pipeline of performed work for the novels (le� branch) and �lms (right branch).

38

3.5. Combining RnnOIE and TextTiling

Figure 3.3.: �e landscape of lexical scores for the novel ”�e Maze Runner” by J. Dashner (k=13,
w=49), the gaps between token-sequences 776 to 780 are shown. y778 represents a lexical
score y at a token-sequence gap 778 and is called a valley because it has lower value
than neighboring token-sequence gaps. Lexical scores y777 and y779 are called peaks.

39

3. Method

Figure 3.4.: �e peak at y3 is detected as a closest peak to the right of the valley at y2. However it
would be bene�cial to mark y5 as such because the lexical similarity value decreases
only slightly in y4. To avoid such behavior smoothing is introduced.

40

3.5. Combining RnnOIE and TextTiling

Figure 3.5.: An example of depth score value distribution for the novel ”�e Giver” by L. Lowry with
block size 12 and token-sequence size 107. �e area (integral) under the histogram sums
up to 100%. �is example illustrates that an assumption made by original TextTiling
paper about normal distribution of depth scores values does not hold for the dataset
used in this work.

41

3. Method

Figure 3.6.: Architecture of a bi-LSTM RNN used in RnnOIE, adapted from Stanovsky et al. [54]. Neu-
ral network input contains both current word’s features (orange circles) and predicate’s
syntactic head features (yellow circles). �ese features consist out of word embedding
and it’s part of speech embedding. RnnOIE uses a bi-LSTM RNN with the so�max output
layer to produce independent probability distributions over all various possible BIO
tags.

42

4. Evaluation

4.1. Measures

For results evaluation two common metrics for text segmentation are used: Pk [8]
and WD (WindowDi�) [49].

4.1.1. WindowDi� Measure

Evaluated algorithm provides a list of hypothetical boundaries which is compared
to the list of reference segmentation boundaries. To calculate WindowDi� Measure
a window of size k is moved over a document. �e moving window size k is
set to the half of the average segment size of the ground truth. In this work a
boundary is signi�ed by a token at the beginning of a new subtopic segment.
Given an interval with k tokens [i, i + k] the number of reference boundaries in
this interval b(refi, refi+k) is compared to the number of hypothetical boundaries
b(hypi, hypi+k), see Figure 4.1 for a visual example.

In case b(refi, refi+k) is not equal to b(hypi, hypi+k) a penalty is added to the
algorithm’s score. �e size of the penalty is |b(refi, refi+k)− b(hypi, hypi+k)| > 0.
�e score is normalized by the number of performed measurements therefore the
possible values of WD measure are in [0, 1] with zero being the best achieved value.
If a boundary is o� by a number of words less than k it is called a near miss and is
still considered a correct boundary identi�cation.

4.1.2. Pk Measure

Pk measure is a probability that k units (in case of this work k tokens) are incorrectly
identi�ed as being either in a same segment or di�erent segments. See Figure 4.1 for

43

4. Evaluation

Figure 4.1.: An example of di�erences between hypothesized segmentation and reference segmenta-
tion given a window size k of �ve tokens. If a boundary is o� by a few tokens it is called
a near miss and is still considered a correct boundary identi�cation. False negative is a
boundary which is present in the reference segmentation, but was not detected by the
algorithm. False positive is a boundary which was found by the algorithm despite its
absence in the reference segmentation. False positives and false negatives are penalized
by both WindowDi� and Pk.

a visual example. �e moving window size k is set to the half of the average segment
size of the ground truth. �erefore an interval [i, i + k] consisting of k tokens is
observed with an assumption that any of the tokens may be a segment beginning.
Inside of this interval the number of tokens b(hypi, hypi+k) which are considered by
the algorithm under evaluation to start a new segment is compared to the analogous
number b(refi, refi+k) from the reference segmentation. If b(hypi, hypi+k) is not
equal to b(refi, refi+k) a penalty is added to the algorithm’s score. In this case a
detected subtopic boundary is either a false positive or a false negative. A near miss
is considered a correct boundary identi�cation. A�er the comparison is done the
moving window is moved further by one token. At the end of execution the obtained
score is normalized by the number of performed measurements. An algorithm which
has managed to detect all boundaries correctly achieves a Pk score zero.

4.2. Results

For TextTiling algorithm the values of two parameters, token-sequence size w
and block size k, should be de�ned prior to the run, see Subsection 3.3.1 and
Subsection 3.3.2 for more information.

�e �rst parameter w is an estimate of sentence length in tokens. Initially an
assumption was made that its possible values lie in the interval between minimum

44

4.2. Results

sentence length min sl and maximum sentence length max sl for the evaluated
�le. TextTiling parameter k is an approximation of the number of sentences in
a paragraph. Analogous to w the value of k was expected to lie in the interval
between the minimum paragraph length min pl and the maximum paragraph
length max pl.

However, the minimum length of a sentence in all �les of the dataset is one. �e
minimum length of the paragraphs (novels) or scenes (subtitles) is equal or less
than eight. �erefore using these minimum values as lower parameter value bounds
could lead to the algorithm comparing unnecessary short vectors. In case of such
comparison a low lexical score will be assigned frequently which would lead to a
faulty subtopic boundary detection. To avoid such behavior the lower bound of the
value interval is set to the median sentence length value median sl and median
paragraph length median pl.

∀w ∈ [median sl,max sl], length in tokens (4.1)
∀k ∈ [median pl,max pl], length in sentences (4.2)

To choose the parameter values, �rst, the objective function which should be
minimized by the parameter search algorithms is de�ned. �e objective function
takes the token-sequence size and block size as input parameters. �e function
itself includes the execution of original TextTiling algorithm with input parameters
on a given input �le. A�er the TextTiling is performed the WindowDi� measure is
applied to the TextTiling results. �is way given the input parameters block size
and token-sequence size the objective function returns the WindowDi� measure
value.

Second, two di�erent parameter optimization algorithms were applied to the novel
”Ninety-Eighty Four” as well as to the corresponding subtitles. �e random search
parameter optimization [9] was performed for 100 iterations. �en 100 iterations
of Bayesian Optimization using the Tree-structured Parzen Estimator (TPE) algo-
rithm [10] were performed on the same dataset items and the results were compared
to each other. TPE algorithm delivered more reliable results in less time, therefore
in this work the choice of a parameter pair (ki,wi) for an evaluation run i from the
corresponding intervals is done with the help of TPE. �e TPE algorithm from the
module hyperopt is used.

45

4. Evaluation

�ird, for each item in the dataset the value of objective function was calculated
for 100 parameter pairs, i ∈ [0, 99], chosen by the TPE algorithm and stored in a
CSV �le. Figure 4.2 shows the parameter search process on an example of the novel
”Brave New World” by A. Huxley.

Ten parameter pairs resulting in lowest WindowDi� values were identi�ed for
further use. TextTiling with word embeddings as well as TextTiling with OIE are
executed given these parameter pairs as input. Here not only the WindowDi�
measure, but also Pk measure is calculated. Tables 4.1 and 4.2 provide an overview
of the three parameter pairs which produce the lowest WindowDi� and Pk measure
values for each �le.

46

4.2. Results

(a)

(b)

Figure 4.2.: Parameter search order for the novel ”Brave New World” with ki ∈ [2, 102] and wi ∈
[9, 259]. A parameter pair (ki,wi) is chosen by TPE algorithm. Numbers next to the
points correspond to the evaluation run number i, i ∈ [0, 99]. �e color of the point
represents the value of the objective function given (ki,wi) as input. �e algorithm
gradually aims at the areas where the probability of the minimal value of the objective
function is the highest. �e top right corner area of the Figure (a) where lowest values
of objective function are located is shown in Figure (b).

47

4.
Evaluation

Film title TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

1 Nineteen Eighty-Four (1956) k=39, w=22 k=34, w=21 k=29, w=22
WD=0.412
Pk=0.387

WD=0.423
Pk=0.401

WD=0.389
Pk=0.375

WD=0.403
Pk=0.387

WD=0.418
Pk=0.407

WD=0.405
Pk=0.386

WD=0.409
Pk=0.388

WD=0.416
Pk=0.397

WD=0.413
Pk=0.394

2 Nineteen Eighty-Four (1984) k=29, w=22 k=34, w=21 k=14, w=21
WD=0.41
Pk=0.393

WD=0.395
Pk=0.376

WD=0.405
Pk=0.389

WD=0.401
Pk=0.381

WD=0.431
Pk=0.411

WD=0.405
Pk=0.386

WD=0.443
Pk=0.426

WD=0.408
Pk=0.389

WD=0.429
Pk=0.415

3 Brave New World k=32, w=41 k=36, w=41 k=25, w=38
WD=0.395
Pk=0.372

WD=0.393
Pk=0.37

WD=0.381
Pk=0.357

WD=0.394
Pk=0.371

WD=0.382
Pk=0.359

WD=0.409
Pk=0.39

WD=0.383
Pk=0.367

WD=0.404
Pk=0.39

WD=0.395
Pk=0.375

4 We k=50, w=48 k=43, w=51 k=45, w=48
WD=0.393
Pk=0.385

WD=0.413
Pk=0.408

WD=0.445
Pk=0.445

WD=0.394
Pk=0.383

WD=0.412
Pk=0.409

WD=0.444
Pk=0.438

WD=0.396
Pk=0.39

WD=0.423
Pk=0.422

WD=0.433
Pk=0.429

5 �e Handmaid’s Tale k=56, w=44 k=42, w=41 k=55, w=40
WD=0.349
Pk=0.334

WD=0.367
Pk=0.352

WD=0.369
Pk=0.36

WD=0.356
Pk=0.343

WD=0.35
Pk=0.329

WD=0.362
Pk=0.357

WD=0.35
Pk=0.34

WD=0.386
Pk=0.379

WD=0.38
Pk=0.37

6 Blade Runner k=18, w=34 k=22, w=23 k=28, w=34
WD=0.336
Pk=0.325

WD=0.36
Pk=0.351

WD=0.354
Pk=0.343

WD=0.35
Pk=0.331

WD=0.343
Pk=0.326

WD=0.363
Pk=0.348

WD=0.347
Pk=0.344

WD=0.349
Pk=0.339

WD=0.352
Pk=0.339

7 �e Hunger Games k=46, w=20 k=27, w=24 k=48, w=19
WD=0.374
Pk=0.359

WD=0.411
Pk=0.4

WD=0.411
Pk=0.394

WD=0.383
Pk=0.362

WD=0.409
Pk=0.4

WD=0.406
Pk=0.394

WD=0.386
Pk=0.366

WD=0.42
Pk=0.411

WD=0.413
Pk=0.396

8 �e Hunger Games: Catching Fire k=57, w=40 k=51, w=40 k=61, w=40
WD=0.32
Pk=0.305

WD=0.334
Pk=0.324

WD=0.342
Pk=0.327

WD=0.327
Pk=0.312

WD=0.337
Pk=0.329

WD=0.329
Pk=0.315

WD=0.328
Pk=0.317

WD=0.35
Pk=0.343

WD=0.338
Pk=0.332

9 �e Hunger Games: Mockingjay - Part 1 k=13, w=97 k=8, w=98 k=12, w=110
WD=0.354
Pk=0.35

WD=0.3353
Pk=0.331

WD=0.349
Pk=0.347

WD=0.351
Pk=0.342

WD=0.3354
Pk=0.327

WD=0.36
Pk=0.355

WD=0.354
Pk=0.351

WD=0.343
Pk=0.338

WD=0.354
Pk=0.346

10 �e Hunger Games: Mockingjay - Part 2 k=21, w=97 k=20, w=97 k=13, w=108
WD=0.326
Pk=0.322

WD=0.315
Pk=0.312

WD=0.329
Pk=0.326

WD=0.33
Pk=0.327

WD=0.316
Pk=0.311

WD=0.325
Pk=0.321

WD=0.332
Pk=0.33

WD=0.334
Pk=0.331

WD=0.317
Pk=0.312

11 �e Giver k=82, w=28 k=78, w=28 k=70, w=28
WD=0.427
Pk=0.388

WD=0.408
Pk=0.372

WD=0.442
Pk=0.414

WD=0.409
Pk=0.376

WD=0.43
Pk=0.399

WD=0.432
Pk=0.414

WD=0.414
Pk=0.376

WD=0.419
Pk=0.387

WD=0.485
Pk=0.463

12 �e Maze Runner k=43, w=27 k=5, w=28 k=44, w=27
WD=0.357
Pk=0.338

WD=0.373
Pk=0.36

WD=0.38
Pk=0.367

WD=0.359
Pk=0.34

WD=0.388
Pk=0.377

WD=0.402
Pk=0.392

WD=0.36
Pk=0.347

WD=0.375
Pk=0.364

WD=0.402
Pk=0.394

13 Ready Player One k=95, w=34 k=66, w=39 k=73, w=39
WD=0.365
Pk=0.346

WD=0.3547
Pk=0.339

WD=0.378
Pk=0.369

WD=0.366
Pk=0.345

WD=0.3554
Pk=0.334

WD=0.365
Pk=0.349

WD=0.369
Pk=0.351

WD=0.356
Pk=0.345

WD=0.373
Pk=0.362

Table 4.1.: An overview of three parameter pairs which result in the lowest WindowDi� or Pk values for each �le in the subtitle
dataset part. �e same parameter pair (block size k and token-sequence size w) is used to execute original TextTiling
algorithm, TextTiling with word embeddings as well as TextTiling with OIE. �e lowest achieved measure value is marked
in bold.

48

4.2.
R
esults

Novel title TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

TextTiling TextTiling
with word
embeddings

TextTiling
with OIE

1 Nineteen Eighty-Four: A Novel k=24, w=136 k=31, w=135 k=14, w=131
WD=0.961
Pk=0.531

WD=0.917
Pk=0.514

WD=0.854
Pk=0.515

WD=0.97
Pk=0.528

WD=0.874
Pk=0.529

WD=0.882
Pk=0.564

WD=0.97
Pk=0.528

WD=0.891
Pk=0.519

WD=0.909
Pk=0.509

2 Brave New World k=100, w=258 k=99, w=255 k=98, w=256
WD=0.542
Pk=0.424

WD=0.623
Pk=0.503

WD=0.685
Pk=0.541

WD=0.613
Pk=0.507

WD=0.544
Pk=0.432

WD=0.671
Pk=0.522

WD=0.579
Pk=0.456

WD=0.672
Pk=0.5

WD=0.668
Pk=0.532

3 We k=22, w=88 k=31, w=88 k=29, w=81
WD=0.783
Pk=0.521

WD=0.703
Pk=0.499

WD=0.739
Pk=0.5

WD=0.756
Pk=0.508

WD=0.738
Pk=0.519

WD=0.724
Pk=0.51

WD=0.789
Pk=0.515

WD=0.817
Pk=0.522

WD=0.76
Pk=0.468

4 �e Handmaid’s Tale k=14, w=112 k=11, w=109 k=16, w=112
WD=0.788
Pk=0.525

WD=0.721
Pk=0.485

WD=0.709
Pk=0.518

WD=0.77
Pk=0.497

WD=0.747
Pk=0.514

WD=0.711
Pk=0.475

WD=0.768
Pk=0.503

WD=0.716
Pk=0.49

WD=0.725
Pk=0.513

5 Do Androids Dream of Electric Sheep? k=20, w=70 k=10, w=71 k=17, w=68
WD=0.99
Pk=0.523

WD=0.953
Pk=0.508

WD=0.983
Pk=0.517

WD=0.988
Pk=0.523

WD=0.959
Pk=0.502

WD=0.972
Pk=0.507

WD=0.996
Pk=0.523

WD=0.959
Pk=0.515

WD=0.99
Pk=0.515

6 �e Hunger Games k=39, w=54 k=40, w=52 k=5, w=48
WD=0.996
Pk=0.5094

WD=0.981
Pk=0.512

WD=0.9814
Pk=0.515

WD=0.995
Pk=0.51

WD=0.989
Pk=0.509

WD=0.986
Pk=0.517

WD=1.0
Pk=0.5094

WD=1.0
Pk=0.5094

WD=1.0
Pk=0.5094

7 Catching Fire k=11, w=44 k=3, w=51 k=8, w=56
WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

WD=1.0
Pk=0.509

8 Mockingjay k=19, w=46 k=29, w=36 k=12, w=43
WD=1.0
Pk=0.524

WD=0.989
Pk=0.528

WD=1.0
Pk=0.524

WD=1.0
Pk=0.524

WD=0.994
Pk=0.524

WD=0.993
Pk=0.527

WD=1.0
Pk=0.524

WD=1.0
Pk=0.524

WD=1.0
Pk=0.524

9 �e Giver k=12, w=107 k=11, w=106 k=14, w=101
WD=0.723
Pk=0.529

WD=0.69
Pk=0.468

WD=0.739
Pk=0.481

WD=0.719
Pk=0.52

WD=0.711
Pk=0.542

WD=0.728
Pk=0.534

WD=0.748
Pk=0.481

WD=0.764
Pk=0.518

WD=0.772
Pk=0.521

10 �e Maze Runner k=13, w=49 k=9, w=52 k=7, w=50
WD=0.989
Pk=0.511

WD=0.947
Pk=0.503

WD=0.934
Pk=0.498

WD=0.987
Pk=0.511

WD=0.956
Pk=0.513

WD=0.962
Pk=0.509

WD=0.988
Pk=0.511

WD=0.964
Pk=0.516

WD=0.969
Pk=0.51

11 Ready Player One k=8, w=71 k=8, w=60 k=8, w=58
WD=0.998
Pk=0.51

WD=0.992
Pk=0.513

WD=0.981
Pk=0.516

WD=0.998
Pk=0.511

WD=0.99
Pk=0.51

WD=0.984
Pk=0.509

WD=0.997
Pk=0.51

WD=0.99
Pk=0.51

WD=0.986
Pk=0.508

Table 4.2.: An overview of three parameter pairs which result in the lowest WindowDi� or Pk values for each �le in the novel dataset
part. �e same parameter pair (block size k and token-sequence size w) is used to execute original TextTiling algorithm,
TextTiling with word embeddings as well as TextTiling with OIE. In case a unique lowest achieved measure value is
obtained it is marked in bold.

49

4. Evaluation

4.3. Discussion

As can be seen in Tables 4.1 and 4.2 it is not possible to generalize a TextTiling
parameter space which would satisfy all input �les equally well. �e parameters
yielding the best results may di�er signi�cantly and should be chosen based on the
data they are applied to.

�e value of Pk metric is lower than the one of WindowDi� for the same parameters.
�e reason for this is the condition which determines if a penalty is given by the
measures. If there is at least one reference boundary in the window and one or more
boundary in hypothetical boundaries for the same window, Pk does not penalize
and as a result does not take the number of detected false positives into account.
Hence WindowDi� penalizes the false positives more than Pk which results in an
overall lower score and higher measure value.

�e le�most three columns of the Tables 4.1 and 4.2 represent a parameter pair
using which the top values for the WindowDi� measure were achieved. Using this
parameter pair for 6 out of 13 subtitles and for 9 out of 11 novels replacing words
by embedding vectors in TextTiling algorithm decreases the WindowDi� measure
which signi�es the increase in the algorithm’s performance. �e reason for this
may be that word embedding model includes the context of a text for which it
was generated. �e original TextTiling algorithm (TT) studies a number of word
tokens which two consequent blocks of text have in common. �e more similar is
the vocabulary of two blocks, the higher their lexical similarity. �e meaning of
these word tokens and their signi�cance in the rest of the text is not taken into
consideration. Word embeddings o�er a similar representation for words used in a
similar way [1]. Applying TextTiling with word embeddings (TWE) to the input and
therefore replacing the word tokens with word embeddings of these tokens extends
the TT representation introducing more context information. Word embeddings
have an ability to capture related words [33], which also may improve the linear
text segmentation results for �ctional texts with diverse vocabulary.

�e substitution of word tokens with word embeddings changes the landscape of
lexical scores and depth scores by altering the location of peaks and valleys. Word
embeddings are real-valued vectors single elements of which have the order of
magnitude less than -1. �e high similarity between the vectors frequently results in
values of lexical scores close, but not equal, to one. As a consequence the magnitude
of depth scores is close, but not equal, to zero. To compare the landscape of depth

50

4.3. Discussion

scores of the TT approach to the TWE approach, the TWE depth scores and cut-
o� threshold are scaled up. �e scaling ratio is calculated by dividing the cut-o�
threshold of TT by the cut-o� threshold of TWE. �is way both methods share the
same value of the TT cut-o� threshold and the di�erences in the depth score values
are easier to compare visually. As can be seen in the Figure 4.3 on an example from
the novel ”�e Maze Runner” by J. Dashner the landscape of the depth scores for
TWE is similar to the one of TT, however the importance of token-sequence gaps
is magni�ed or reduced depending on which approach is used.

Figure 4.3.: �e landscape of depth scores for the novel ”�e Maze Runner” by J. Dashner (k=13,
w=49), the gaps between token-sequences 900 to 949 are shown. TWE depth scores
were scaled up to allow be�er visual comparison. Token-sequence gaps 904 and 942 are
identi�ed as a subtopic boundary by both TT and TWE. Token-sequence gaps 908, 922,
948 are considered subtopic boundaries by TWE, but not by TT and other way around
in case of the gaps 929 and 946. For the token-sequence gaps 911 and 912 as well as 935
and 936 the algorithms disagree on the boundary by one token-sequence gap.

�e disagreement between the values of Pk and WindowDi� measures for subtitles
is low compared to the novels. �is di�erence signi�es that a number of false
positives detected by the algorithms for subtitle �les is also lower. �is may be
due to the nature of ground truth for subtitles. Finding an unambiguous subtopic
boundary is a challenging task even for linguistic experts [26]. In this work a
more generic approach for creation of ground truth is used as described in Subsec-
tions 3.2.1 and 3.2.2. Automatically generated subtopic breaks for subtitle �les are
more frequent compared to the novels. �e subtopic breaks in the ground truth
are located close to each other in many cases. �is may correspond be�er to how
scene transitions are distributed in �ctional texts than separation into chapters.

51

4. Evaluation

Figure 4.4a shows the reference boundaries as well as boundaries identi�ed by
the algorithms presented in this work on an example of the subtitles to the �lm
”Ninety Eighty-Four” produced in 1956. For a comparison an example of reference
boundaries of novels can be seen in Figure 4.4b.

As mentioned above, the separation into chapters as the smallest subtopic segments
may be too coarse for novels. �e choice of chapter beginnings as segment start
markers expects that one chapter represents one subtopic segment and there are
no subject switches inside of a chapter, yet this is not always the case. �is can be
illustrated on an example of the novel ”Catching Fire” by S. Collins. �e measure
values for the novel are large independent of the parameters or chosen method.
�e reason for this behavior may be that the novel mostly consists of dialogue
with rather short descriptions from a narrator’s perspective. Each dialogue line is
treated by the algorithm as a new paragraph, allowing it to place more subtopic
shi� markers as it would do in case of a descriptive text with long paragraphs. In a
dialogue more than one party is expressing their opinion with their own speci�c
vocabulary, therefore the vocabulary changes frequently. Nevertheless it is expected
that a big vocabulary switch happens only at the beginning of a chapter resulting
in a large number of false positives as can be seen in the Figure 4.4b.

In reference to novels the block size parameter space is linked to the paragraph
length and therefore independent from the chapter length, wherein the chapter
boundaries are representing the ground truth. �e subtitles do not contain chapters
or paragraphs, therefore the scene boundaries as de�ned in the Subsection 3.2.2
play the role of both paragraph breaks and subtopic breaks (ground truth). Limiting
the block size to be the maximum size of paragraphs (novels) or scenes (subtitles)
allows the length of a single block to exceed the median length of the text segment
in a reference signi�cantly.

In case of the novel ”Brave New World” by A. Huxley both block size and token-
sequence size are large compared to the parameters of other novels in Table 4.2. �e
size of a single block is 25 800 word tokens or less taking into consideration that
the removal of stop words decreases the block size, wherein the median length of a
chapter is 3 682 word tokens (stop words included). Hence the size of a block may
exceed the text reference by 7.0 times. Due to the large size of the token-sequence
the word embedding vector corresponding to this sequence looses accuracy of its
context meaning which may cause TT to produce be�er results than TWE.

52

4.3. Discussion

For subtitles a similar picture can be observed: the lower the ratio between maximum
block size and median scene size, the be�er TWE performance. For ”Nineteen
Eighty-Four”(1984) the ratio is 29.00, for ”Nineteen Eighty-Four”(1956) the ratio is
30.11, for ”Mockingjay”(part 1) the ratio is 36.03, for ”Brave New World” the ratio is
37.49, for ”�e Giver” the ratio is 38.92. �e ratios for the rest of the subtitles range
from 48.42 (”Blade Runner”) to 170.00 (”Ready Player One”). Nevertheless TWE
performs be�er than TT despite the high ratio between maximum block size and
median scene length for two subtitle �les, ”Mockingjay” (part 2) with ratio 97.00
and ”Ready Player One” with ratio 170.00.

Despite much larger ratios the maximum size of the block for subtitles is notably
lower than the one of novels. �e largest value of maximum block size for subtitles
is 3 230 for ”Ready Player One”, whereas for novels aforementioned ”Brave New
World” has the largest value of 25 800 word tokens. A large block containing a large
number of token-sequences may lead to a consequence that a vector corresponding
to such block in a step of lexical score calculation carries li�le unique information
about the block.

Observing the parameter pair with the best achieved WindowDi� measure values
in Tables 4.1 and 4.2, for 4 out of 13 subtitles and for 7 out of 11 novels applying
TextTiling with word embeddings and OIE weights (TWE OIE) increases the per-
formance in comparison to TT. Figure 4.5 illustrates the changes in the depth score
landscape depending on the method. An example shown is taken from the subtitles
to the �lm ”�e Maze Runner”. To allow be�er visual comparison the depth score
values of TWE and TWE OIE were scaled up as described above.

A question arises why does the application of TWE OIE produce be�er results than
TWE in some cases as well as why does it appear to be a more e�ective method
for novels than subtitles. A possible answer is the writing style of the input text.
OIE tool used for TWE OIE, RnnOIE, extracts propositions from an unstructured
text with one or more predicates as described in Section 3.4. However, predicates
consisting of nouns as well as informal speech pose a challenge to RnnOIE [54].
An example of sentence posing a challenge is ”Because of my job” found in a novel
”Do Androids Dream of Electric Sheep?”. �is short sentence appears to be a part
of a spoken or wri�en conversation between characters of the novel. In such case
the grammatically correct construction of a sentence is neglected and the mind
of a conversational partner is supposed to �ll in the lack of linguistic structure.
Given such sentences as input RnnOIE does not produce any tuples, the sentence

53

4. Evaluation

is considered irrelevant by the pipeline, which in turn leads to zero weights for all
word tokens of such sentence. �is poses a problem when a large number of short
informal sentences in the data is encountered which is the case for all the subtitles
and some of the novels.

In subtitles the percentage of sentences under 5 words in an input �le exceeds 35%
percent for each �le ranging from �lm ”Brave New World” with 37.95% to ”�e Maze
Runner” with 67.29%. In novels the percentage of such sentences is lower ranging
from 15.47% for ”Nineteen Eighty-Four: A Novel” to 28.36% for ”�e Giver”. Other
novels with number of short sentences over 25% are ”Brave New World” (28.09%),
”Do Androids Dream of Electric Sheep?” (26.93%), ”We” (26.76%) and ”Mockingjay”
(26.74%). For all these �les the WindowDi� measure for TWE OIE is higher than
for TWE.

During the analysis of the results it became apparent that some of the stop words
have not been completely �ltered out. Custom RnnOIE tokenizer used in this work
separates contractions used with personal pronouns into two tokens, a contraction
token keeping an apostrophe. For example, ”I’m” is separated into tokens ”I” and
”’m”. �e same behavior is observed in case of possessive ”’s”, for instance, ”Dave’s”
is separated into ”Dave” and ”’s”. Contractions are included in the nltk.corpus

stop words list, however they do not include an apostrophe which means that for
example ”s” is in the stop words list, but ”’s” is not. Hence the stop words list should
be extended.

54

4.3. Discussion

(a)

(b)

Figure 4.4.: An example of ground truth and subtopic boundaries detected by three algorithms. A
word token which is positioned directly a�er the subtopic shi� is marked by a vertical
line on the y-axis. �e colors of the vertical lines correspond to the method used to
detect subtopic shi�s.
Figure (a) shows detected subtopic boundaries for the subtitles to the �lm ”Ninety
Eighty-Four” (1956), k=39, w=22. �ere is a larger number of subtopic boundaries than
in novels. Multiple subtopic breaks in ground truth are located close to each other.
Figure (b) depicts detected subtopic boundaries for the novel ”Catching Fire” by S. Collins,
k=11, w=44. All methods have di�culty identifying the switch from one chapter to
another (ground truth) as a subtopic shi� and introduce a large number of false positives.

55

4. Evaluation

Figure 4.5.: A comparison of the landscape of depth scores and boundaries for three methods: TT,
TWE and TWE OIE. Token-sequence gaps 150 to 200 of a subtitle �le to a �lm ”�e
Maze Runner” (k=43, w=27) are shown. TWE and TWE OIE depth scores were scaled
up to allow be�er visual comparison.
All algorithms agree on a subtopic boundary at token-sequence gap 157. TT depth
score landscape from token-sequences 162 to 179 contains a prolonged valley, however
TWE and TWE OIE demonstrate multiple peaks. Both TWE and TWE OIE agree on the
subtopic boundary at the token-sequence gap 168 and another subtopic boundary is
detected at 173 by TWE and 172 by TWE OIE. TT identi�es the subtopic boundary at
token-sequence gap 183, in TWE landscape this peak is suppressed, however it appears
again in TWE OIE landscape at a token-sequence gap 184. Two peaks in TWE a�er the
token-sequence gap 193 are almost completely suppressed in TWE OIE.

56

5. Conclusions

�e �rst research question this thesis aimed to answer was whether a modi�cation
of a linear text segmentation method by adding knowledge generated by Open
Information Extraction in�uences the performance of this method. �e text segmen-
tation pipeline introduced in this work is referred to as TWE OIE. An intermediate
step of TWE OIE, referred to as TWE, is a replacement of word tokens in a linear text
segmentation algorithm called TextTiling with corresponding word embeddings.
Given the pipeline run with the lowest achieved WindowDi� and Pk values the
substitution resulted in lower WindowDi� and Pk values for 6 out of 13 subtitles
and 9 out of 11 novels, which signi�ed increase in performance. Application of
a complete pipeline by using extractions produced by an OIE system RnnOIE to
generate a weighting scheme for obtained word embeddings led to decrease of both
WindowDi� and Pk values for 4 out of 13 subtitles and 7 out of 11 novels. �erefore
it is concluded that the usage of word embeddings in combination with informa-
tion obtained from RnnOIE system has a potential to improve the performance of
TextTiling text segmentation algorithm. It should be mentioned that the dataset
created for this work used automatically generated topic boundaries as ground
truth. Other than that due to its �ctional nature the dataset did not contain obvious
subtopic boundaries. �us performing evaluation on a corpus with more apparent
subtopic switches may provide be�er results. �e major challenges of introduced
pipeline were related to the TextTiling parameter optimization, handling of long
texts with considerably variable subtopic length and extracting propositions from
grammatically incomplete sentences.

�e second research question was whether there is a di�erence in performance of the
introduced pipeline for parts of the created corpus (novels and subtitles). Overall the
WindowDi� and Pk values for subtitles are signi�cantly lower than measure values
for novels independent of the used method, which may be caused by the nature of
topic boundaries distribution in the subtitles part of the corpus. WindowDi� and
Pk values of the pipeline are lower than the benchmark performance for 7 out of 11

57

5. Conclusions

novels and 4 out of 13 subtitle �les for the pipeline run with the lowest measure
values. �erefore TWE OIE appears to be a more e�ective method for novels than
subtitles. �e di�erence in performance may be a�ributed to the large number of
short informal sentences encountered in the subtitles.

A further contribution of this thesis to the NLP research area is creation of a corpus
consisting of 11 �ctional novels and 13 subtitle �les to the �lm adaptations of
these novels. �is type of data holds such unique properties as synonym usage,
�ctitious terms, creative writing style, variable length of text segments, irregular
topic transitions and extensive use of dialogue.

5.1. Future Work

�is thesis provides a good starting point for discussion and further research of
applying OIE based on neural networks to the linear text segmentation and other
NLP tasks. More extensive evaluation of performed work can be obtained by using
the described approach on a modi�ed version of current dataset or other datasets.
Dataset used in this thesis consisted of texts from twentieth and twenty-�rst century
with �ctional narrative form. Hence it is important to investigate the in�uence
of other text writing styles on the results. �is can be achieved, for instance, by
creating a dataset consisting of expository texts and subtitles to documentaries.
Evaluation of results on an arti�cial dataset with unambiguous subtopic shi�s
would make it possible to generate baseline WindowDi� and Pk values for TWE
and TWE OIE. Such baseline could provide a reference for result evaluation. �e
ground truth in this work was automatically generated and future work could
include the creation of more accurate ground truth by linguistics experts.

On one hand, it is possible to de�ne the parts of used dataset (novels and subtitles)
as two independent datasets with separate word embedding models. On the other
hand, a word embedding model may be trained on a single text document consisting
of all �les in the dataset merged into one. It is a question of additional research to
investigate how strong is the in�uence of such separation or merger on the linear
text segmentation outcome.

It became apparent that informal writing with short, not fully formulated sentences
had an in�uence on the performance. �erefore a comparison of achieved results

58

5.1. Future Work

to performance of the pipeline on a dataset consisting of texts wri�en in formal
language poses an interesting question.

Moreover, modi�cations and improvements can be made to the used models and
parameters. �e parameter space used for the TextTiling algorithm parameters was
based on the statistical information about the input �le. It is possible to further
�ne-tune or rede�ne the boundaries of the parameter space, especially given the
�ndings about the in�uence of the block size on the results described in Section 4.3.
Parameter search could be performed for larger number of iterations for every
modi�cation of the original linear text segmentation algorithm. In this thesis the
same parameters were used to generate a single word-embedding model for each
linear text segmentation. �e in�uence of parameter tuning for the Word2Vec
model generation on the overall result could be examined in more detail. Further
research may prove bene�cial to the computation of sentence embeddings as well
as token weight calculation based on OIE tuples.

In terms of the results application to other NLP �elds, a promising direction for
future work could be examining the usage of subtopic segments to perform an
alignment of scenes in �lms to scenes in novels. Apart from looking at the datasets
in English, a possible next step could be applying discussed techniques to other
natural languages.

59

Bibliography

[1] C. C. Aggarwal. Machine learning for text. Springer, 2018.

[2] E. Amer and A. Nabil. A framework to automate the generation of movies’
trailers using only subtitles. In Proceedings of the 7th International Conference
on So�ware and Information Engineering, pages 126–130, 2018.

[3] G. Angeli, M. J. J. Premkumar, and C. D. Manning. Leveraging linguistic
structure for open domain information extraction. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 344–354, 2015.

[4] S. Arnold, R. Schneider, P. Cudré-Mauroux, F. A. Gers, and A. Löser. Sector: a
neural model for coherent topic segmentation and classi�cation. Transactions
of the Association for Computational Linguistics, 7:169–184, 2019.

[5] R. Bamler and S. Mandt. Dynamic word embeddings. arXiv preprint
arXiv:1702.08359, 2017.

[6] M. Banko, M. J. Cafarella, S. Soderl, M. Broadhead, and O. Etzioni. Open
information extraction from the web. In Proceedings of the International Joint
Conference on Arti�cial Intelligence, page 2670–2676, 2007.

[7] B. Basu, K. R. Broad, and C. Hintz. Contemporary dystopian �ction for young
adults: Brave new teenagers. Routledge, 2013.

[8] D. Beeferman, A. Berger, and J. La�erty. Statistical models for text segmenta-
tion. Machine learning, 34(1-3):177–210, 1999.

[9] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(Feb):281–305, 2012.

61

Bibliography

[10] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures.
In International conference on machine learning, pages 115–123, 2013.

[11] G. Bluestone. Novels into �lm. Univ of California Press, 1968.

[12] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

[13] F. Y. Choi. Advances in domain independent linear text segmentation. arXiv
preprint cs/0003083, 2000.

[14] L. Cui, F. Wei, and M. Zhou. Neural open information extraction. arXiv
preprint arXiv:1805.04270, 2018.

[15] N. Dekker, T. Kuhn, and M. van Erp. Evaluating social network extraction for
classic and modern �ction literature. PeerJ Preprints, 6:e27263v1, 2018.

[16] L. Del Corro and R. Gemulla. Clausie: clause-based open information extrac-
tion. In Proceedings of the 22nd international conference on World Wide Web,
pages 355–366, 2013.

[17] J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 334–343, 2008.

[18] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction
from the web. Communications of the ACM, 51(12):68–74, 2008.

[19] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open informa-
tion extraction. In Proceedings of the 2011 conference on empirical methods in
natural language processing, pages 1535–1545, 2011.

[20] M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing. Discourse segmentation
of multi-party conversation. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics, pages 562–569, 2003.

[21] G. Glavaš, F. Nanni, and S. P. Ponze�o. Unsupervised text segmentation using
semantic relatedness graphs. In Proceedings of the Joint Conference on Lexical
and Computational ing semantic relatedness graphs, pages 125–130, 2016.

62

Bibliography

[22] A. Graves. Sequence transduction with recurrent neural networks. arXiv
preprint arXiv:1211.3711, 2012.

[23] P. Gupta, M. Sharma, K. Pitale, and K. Kumar. Problems with automating
translation of movie/tv show subtitles. arXiv preprint arXiv:1909.05362, 2019.

[24] M. A. K. Halliday and R. Hasan. Cohesion in english, 1976.

[25] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[26] M. A. Hearst. Tex�iling: Segmenting text into multi-paragraph subtopic
passages. Journal of Computational linguistics, 23(1):33–64, 1997. doi: 10.1021/
acs.inorgchem.5b00134.

[27] M. Hesham, B. Hani, N. Fouad, and E. Amer. Smart trailer: Automatic genera-
tion of movie trailer using only subtitles. In 2018 First International Workshop
on Deep and Representation Learning (IWDRL), pages 26–30. IEEE, 2018.

[28] R. Hong, M. Wang, X.-T. Yuan, M. Xu, J. Jiang, S. Yan, and T.-S. Chua. Video
accessibility enhancement for hearing-impaired users. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 7S(1), Oct.
2011. doi: 10.1145/2037676.20.

[29] M. S. Jelinek Lewis and D. W. Jackson. Television literacy: Comprehension
of program content using closed captions for the deaf. �e Journal of Deaf
Studies and Deaf Education, 6(1):43–53, Jan. 2001. doi: 10.1093/deafed/6.1.43.

[30] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao. Latent
dirichlet allocation (lda) and topic modeling: models, applications, a survey.
Multimedia Tools and Applications, 78(11):15169–15211, 2019.

[31] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for e�cient
text classi�cation. arXiv preprint arXiv:1607.01759, 2016.

[32] R. Kern and M. Granitzer. E�cient linear text segmentation based on infor-
mation retrieval techniques. In Proceedings of the International Conference on
Management of Emergent Digital EcoSystems, pages 167–171, 2009.

[33] D. Kiela, F. Hill, and S. Clark. Specializing word embeddings for similarity
or relatedness. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2044–2048, 2015.

63

Bibliography

[34] V. Labatut and X. Bost. Extraction and analysis of �ctional character networks:
A survey. ACM Computing Surveys (CSUR), 52(5):1–40, 2019.

[35] F. Ladhak, B. Li, Y. Al-Onaizan, and K. McKeown. Exploring content selection
in summarization of novel chapters. arXiv preprint arXiv:2005.01840, 2020.

[36] S. Lai, K. Liu, S. He, and J. Zhao. How to generate a good word embedding.
IEEE Intelligent Systems, 31(6):5–14, 2016.

[37] J. Li, B. Chiu, S. Shang, and L. Shao. Neural text segmentation and its ap-
plication to sentiment analysis. IEEE Transactions on Knowledge and Data
Engineering, 2020.

[38] P. Lison and R. Meena. Automatic turn segmentation for movie & tv subtitles.
In 2016 IEEE Spoken Language Technology Workshop (SLT), pages 245–252.
IEEE, 2016.

[39] C. MacCabe, K. Murray, and R. Warner. True to the Spirit: Film Adaptation and
the �estion of Fidelity. Oxford University Press, 2011.

[40] P. Markham. Captioned videotapes and second-language listening word
recognition. Foreign Language Annals, 32(3):321–328, 1999. doi: 10.1111/j.
1944-9720.1999.tb01344.x.

[41] E. Matusov, P. Wilken, and Y. Georgakopoulou. Customizing neural machine
translation for subtitling. In Proceedings of the Fourth Conference on Machine
Translation (Volume 1: Research Papers), pages 82–93, 2019.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, pages 1–12,
2013.

[43] M. Mitri. Story analysis using natural language processing and interactive
dashboards. Journal of Computer Information Systems, pages 1–11, 2020.

[44] A. Mnih and K. Kavukcuoglu. Learning word embeddings e�ciently with
noise-contrastive estimation. In Advances in neural information processing
systems, pages 2265–2273, 2013.

[45] J. Monaco. How to read a �lm: Movies, media, and beyond. Oxford University
Press, 2009.

64

Bibliography

[46] C. Niklaus, M. Ce�o, A. Freitas, and S. Handschuh. A survey on open infor-
mation extraction. arXiv preprint arXiv:1806.05599, 2018.

[47] S.-B. Park, K.-J. Oh, and G.-S. Jo. Social network analysis in a movie using
character-net. Multimedia Tools and Applications, 59(2):601–627, 2012.

[48] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

[49] L. Pevzner. A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–36, 2002.

[50] M. Riedl and C. Biemann. Topictiling: a text segmentation algorithm based on
lda. In Proceedings of ACL 2012 Student Research Workshop, pages 37–42, 2012.

[51] F. Sera�ni and J. Blasingame. �e changing face of the novel. �e Reading
Teacher, 66(2):145–148, 2012.

[52] R. Shaw. Automatically segmenting oral history transcripts. arXiv preprint
arXiv:1509.08842, 2015.

[53] G. Stanovsky and I. Dagan. Creating a large benchmark for open information
extraction. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2300–2305, 2016.

[54] G. Stanovsky, J. Michael, L. Ze�lemoyer, and I. Dagan. Supervised open infor-
mation extraction. Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, 1 (Long Papers)(Section 4):885–895, 2018. doi: 10.18653/v1/N18-1081.

[55] B. Sun, P. Mitra, C. L. Giles, J. Yen, and H. Zha. Topic segmentation with shared
topic detection and alignment of multiple documents. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 199–206, 2007.

[56] P. Svensson and Y. Taoudi. Labeling moods of movies by processing subtitles,
2019.

[57] A. Toral, M. Wieling, and A. Way. Post-editing e�ort of a novel with statistical
and neural machine translation. Frontiers in Digital Humanities, 5:9, 2018.

65

Bibliography

[58] Q. D. Tran and J. E. Jung. Cocharnet: Extracting social networks using character
co-occurrence in movies. J. UCS, 21(6):796–815, 2015.

[59] G. Tür, D. Hakkani-Tür, A. Stolcke, and E. Shriberg. Integrating prosodic and
lexical cues for automatic topic segmentation. Computational linguistics, 27
(1):31–57, 2001.

[60] M. Turku. Reality versus �ction: �e truth behind a utopian/dystopian novel.
“Hëna e Plotë” Bedër University, page 54, 2016.

[61] M. Utiyama and H. Isahara. A statistical model for domain-independent text
segmentation. In Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics, pages 499–506, 2001.

[62] E. S. Valentine. �e Protagonist’s Response to Power and Language in the
Dystopian Novel. PhD thesis, 1998.

[63] M. Volk, R. Sennrich, C. Hardmeier, and F. Tidström. Machine translation of
tv subtitles for large scale production. 2010.

[64] L. Wang, X. Zhang, Z. Tu, A. Way, and Q. Liu. Automatic construction of
discourse corpora for dialogue translation. arXiv preprint arXiv:1605.06770,
2016.

[65] F. Wu and D. S. Weld. Open information extraction using wikipedia. In
Proceedings of the 48th annual meeting of the association for computational
linguistics, pages 118–127, 2010.

[66] A. Yates, M. Banko, M. Broadhead, M. J. Cafarella, O. Etzioni, and S. Soderland.
Textrunner: open information extraction on the web. In Proceedings of Human
Language Technologies: �e Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL-HLT), pages 25–26,
2007.

[67] H. Zamani and W. B. Cro�. Relevance-based word embedding. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 505–514, 2017.

[68] L. Zhang and Q. Zhou. Automatically annotate tv series subtitles for dialogue
corpus construction. In 2019 Asia-Paci�c Signal and Information Processing

66

Bibliography

Association Annual Summit and Conference (APSIPA ASC), pages 1029–1035.
IEEE, 2019.

[69] W. Zhang, J. C. K. Cheung, and J. Oren. Generating character descriptions for
automatic summarization of �ction. In Proceedings of the AAAI Conference on
Arti�cial Intelligence, volume 33, pages 7476–7483, 2019.

67

Appendix

69

Appendix A.

Regular Expressions

Figure A.1.: Regular Expressions used to bring the input �les from Novels dataset to a consistent
format. Python’s re module is used. Text of the book ”�e Handmaid’s Tale” by M.
Atwood requires special handling.

Figure A.2.: Regular Expressions used to bring the input �les from Subtitles dataset to a consistent
format. Python’s re module is used.

71

Appendix B.

Stop Words and Punctuation

Figure B.1.: List of stop words used in this thesis.

Figure B.2.: List of punctuation characters used in this thesis.

73

Appendix C.

RnnOIE Extraction

75

Appendix C. RnnOIE Extraction

Figure C.1.: An example of RnnOIE extraction in JSON format. Two tuples were extracted, �rst
de�ned by predicate ”went”, second by predicate ”changed”. �e separation of the
sentence according to predicate-argument structure can be seen under ”description”.
Individual BIO tags for each of the words are listed under ”tags”. Extracted tokens of
the sentence are listed under ”words”.

76

