
Sandra Wilfling, BSc.

Versatile DSP Architecture for a
Radio Receiver

Master Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree program:
Information and Computer Engineering

submitted to

Graz University of Technology

Supervisors Ass.Prof. Dipl.-Ing. Dr.techn. Peter Söser
Dipl.-Ing. Dr.techn. Ulrich Mühlmann

Institute of Electronics
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Bernd Deutschmann

Graz, September 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Radio Frequency Identification Technology (RFID) is widely used in our
daily lives, such as in electronic payment systems or product identification.
With the growing field of applications for RFID technology, the development
of RFID receivers is becoming more and more complex.

A classical RFID receiver Application-specific Integrated Circuit (ASIC)
design has the downside of very long development cycles. In addition, the
non-versatile architecture does not allow fixes and architectural updates in a
very late product development stage. By the idea of using a versatile Digital
Signal Processor (DSP) architecture, these problems can be solved. Firstly,
only one single architecture needs to be taped-out and secondly, the flexible
software-oriented structure allows to do modifications even in the design-in
phase or can be subject to later firmware updates on the customer side.

In order to propose a DSP architecture for an existing RFID receiver, the
digital core of the receiver system is analyzed. Firstly, the critical parts
of the receiver are identified. For these parts, optimizations are proposed
and evaluated. From this point, the most promising optimizations are
implemented on a DSP hardware and analyzed in terms of performance.
Finally, the results of the performance analysis are presented.

Keywords: RFID Technology, RF-Signal Processing, Matched Filter, Mat-
lab/Simulink, DSP Development, Texas Instruments (TI) DSK6713

iii

Kurzfassung

Radio Frequency Identification Technology (RFID) ist eine weit verbreit-
ete Technologie, die ihre Anwendungen unter anderem in elektronischen
Zahlungssystemen und in der Produktidentifikation findet. Mit dem stetig
wachsenden Anwendungsbereich für RFID-Produkte steigern sich auch die
Anforderungen in der Entwicklung von RFID-Empfängern.

Die langen Entwicklungszeiten von Application-specific Integrated Cir-
cuits (ASICs) schränken die Weiterentwicklung wesentlich ein. Zusätzlich
erlaubt die Architektur der ASICs keine Reparaturen und Modifikatio-
nen zu späteren Zeitpunkten. Durch eine Digital Signal Processor (DSP)-
Architektur können diese Probleme gelöst werden. Eine flexible software-
orientierte Struktur erlaubt Modifikationen und Firmware-Updates auf der
Kundenseite. Zusätzlich können verschiedene Anwendungsgebiete über
Softwareänderungen abgedeckt werden.

Diese Arbeit behandelt den Entwurf einer DSP-Architektur für einen bereits
existierenden RFID-Empfänger. Darin wird der Digitalteil des Empfängers
analysiert. Im ersten Schritt werden die kritischen Teile des Systems iden-
tifiziert. Für diese Komponenten werden verschiedene Optimierungen
vorgeschlagen und evaluiert. Die vielversprechendsten Optimierungen wer-
den auf einer DSP-Hardware implementiert und auf ihre Performance
getestet. Im Abschluss werden die Ergebnisse der Performanceanalyse
präsentiert.

Stichwörter: RFID Technologie, RF Signalverarbeitung, Matched Filter-
ing, Matlab/Simulink, DSP Entwicklung, TI DSK6713

iv

Contents

Abstract iii

Kurzfassung iii

1 Introduction 1
1.1 Motivation . 2

2 Related Work 3
2.1 RFID Technology . 3

2.1.1 Characteristics of RFID Systems 4

2.1.2 ISO Standards and NFC Definitions 5

2.2 RF Signal Processing . 6

2.2.1 Modulation/Demodulation 6

2.2.2 Symbol Detection - SNR Maximization 9

2.2.3 Symbol Synchronization 14

2.3 Digital Filter Design . 17

2.3.1 FIR Filters . 18

2.3.2 IIR Filters . 18

2.3.3 Filter Implementation 19

2.3.4 Filter Performance . 21

2.3.5 Recursive FIR Filters . 21

2.3.6 CIC Filters . 22

2.4 System Architectures in Signal Processing 24

2.4.1 FPGAs . 24

2.4.2 DSP Architectures . 28

3 Design 32
3.1 Existing System Overview . 32

3.1.1 Existing System - Reader Mode 33

v

Contents

3.2 Proposed Optimizations - Matched Filtering 37

3.2.1 Comb Filtering . 37

3.2.2 Recursive Filter Implementation 39

3.2.3 Dual Matched Filter Set 50

4 Implementation 52
4.1 DSK6713 Development Kit . 52

4.1.1 C6713 DSP . 53

4.1.2 Code Composer Studio 57

4.1.3 TI Toolchain - Code Generation Tools 57

4.1.4 Configuration and Connection 58

4.1.5 Simulink Interface . 59

4.1.6 Processor-in-Loop Simulation 60

4.2 Test setup . 60

4.2.1 PIL Setup . 60

4.2.2 Matched Filter . 62

5 Results and Conclusion 65
5.1 Results . 65

5.1.1 Performance Estimation 66

5.1.2 Measurement Results 70

5.2 Outlook . 73

Appendix I

Bibliography I

List of Acronyms IV

vi

List of Figures

1.1 Overview of an RFID receiver digital core 2

2.1 Overview of an RFID system 3

2.2 Overview of NFC Tag Types and ISO standards 6

2.3 ASK Modulation . 7

2.4 Schematic overview of an I-Q demodulator 8

2.5 Constellation Diagram of OOK and BPSK 9

2.6 AWGN Distribution and BPSK Constellation Diagram with
AWGN . 10

2.7 Correlation Demodulator Topology 12

2.8 Matched Filter Topology . 13

2.9 Peak Detector Overview . 15

2.10 Early and late sampling of correlator output 16

2.11 Implementation of an Early-Late Gate synchronizer 17

2.12 Comparison of FIR and IIR filters 20

2.13 Schematic overview of a CIC filter 23

2.14 Overview of the Xilinx Zynq-ZC7045 26

2.15 Zynq DSP Slice Architecture . 27

2.16 Overview of the Analog Devices Blackfin core 29

2.17 Overview of the C6713 pipeline 30

2.18 Overview of the NXP Coolflux core 31

3.1 Matched filter system for BPSK 34

3.2 Original impulse responses for Filter 0 38

3.3 Original impulse responses for Filter 1 39

3.4 Impulse responses hC,1 and hC,2 for Filter 0 42

3.5 Impulse response hC for generated Filter 0 42

3.6 Impulse responses hC,1 and hC,2 and hC for Filter 1 43

3.7 Impulse response hC for generated Filter 1 43

vii

List of Figures

3.8 Comparison of pole-zero maps of original and recursive so-
lution for Filter 0 . 44

3.9 Comparison of pole-zero maps 45

3.10 Simulink implementation of Filter 0. 46

3.11 Simulink implementation of Filter 1. 47

3.12 System errors due to rounding inside filter structure. 48

3.13 Reference model of a matched filter 48

3.14 Simulink test setup for the matched filters 49

3.15 Combination of a matched filter system for Filter 0 and Fil-
ter 1 . 50

3.16 Simulink dual FIR filter implementation 51

3.17 Simulink dual single recursion filter implementation 51

4.1 DSK6713 Overview . 53

4.2 C6713 Block Diagram . 54

4.3 C6713 Functional Units . 55

4.4 DSK6713 Memory Map . 56

4.5 Overview of different Simulink integration methods 61

4.6 Simulink Embedded Coder requirements 62

4.7 Matched Filter as generated PIL block 63

4.8 PIL Simulation Testbench for a single matched filter 63

4.9 PIL Simulation Testbench for a dual matched filter set 64

5.1 Performance estimation for Filter 0 67

5.2 Performance estimation for Filter 1 68

5.3 Generic Performance Estimation for filter sets 69

5.4 Performance measurement results for Filter 0 71

5.5 Performance measurement results for full filter set 72

viii

1 Introduction

Wireless communication technology has become more and more popular
during the last few years. Nowadays, wireless systems are widely used in
our daily lives, for instance, in smartphones, computer networks or smart
cards.

The various applications of wireless communication have brought up dif-
ferent types of technologies, which are each suited for a certain purpose
and range. In long range communication, the state-of-the-art consists of
3G and 4G, with the new 5G technology coming. Middle or short range
communication, which is mainly indoors, relies on technologies such as
Wi-Fi and Bluetooth. In close-range communication, which involves ranges
of centimeters, the standard is RFID/Near-Field Communication (NFC)
technology.

The focus of this work is set on RFID systems and the architecture of
RFID receivers. In general, the RFID technology is designed for short range
wireless communication. Data transfer is established through a magnetic
field, which has a range of centimeters. Therefore, RFID is widely used for
applications with close contact between the communication partners, for
instance, in the scanning of smart cards or in contactless payment.

In most cases, RFID communication systems are implemented by Integrated
Circuits (ICs). The main producers of RFID systems are microelectronic
companies, such as Infineon Technologies, NXP Semiconductors or ST
Microelectronics. Examples for RFID readers are the PN512 [13] from NXP
and the ST Microelectronics ST25R3912 [16]. These chips both implement
RFID frontends for proximity coupling at 13.56 MHz.

1

1 Introduction

1.1 Motivation

In the development of microchips, crucial factors are the chip area and the
power consumption. These two factors directly influence the production
costs of the chip. Most systems aim to minimize them by using various
optimizations. In NFC technology, most transmitters and receivers are im-
plemented as mixed-signal ICs, which consist of an analog and a digital
part. While the analog part covers the basic processing steps, the digital
core implements signal processing algorithms, control logic and data trans-
fer protocols. An overview of a digital RFID receiver core is depicted in
Figure 1.1.

Figure 1.1: Overview of an RFID receiver digital core

In the design of digital cores, several steps can be taken to optimize in terms
of performance. Optimization is crucial especially in RFID receivers, which
implement complex signal processing algorithms. An approach is to add a
microcontroller core to the system, which can implement some of the most
power-consuming algorithms of the system. For this purpose, a processor
which is designed for signal processing applications, a so-called DSP, can
be used.

The aim of this work is to evaluate a digital RFID receiver core and to
optimize the receiver in terms of computational performance. In addition,
part of the signal processing algorithms should be implemented on a DSP.
Finally, the performance of the DSP implementation should be analyzed.

2

2 Related Work

This chapter covers the background of the thesis, including an introduction
to RFID technology and the signal processing of RFID systems. These sec-
tions relate to the books ’RFID Handbook’ [6] and ’Communication Systems
Engineering’ [14]. In addition, a special emphasis is put into the design
of digital filters and also on the platforms that are used for implementing
digital signal processing algorithms.

2.1 RFID Technology

RFID is a technology that makes it possible to create a contactless com-
munication within a close range. In the most basic version, RFID systems
consist of two elements, a reader and a transponder. An overview of an
RFID system is depicted in Figure 2.1.

Figure 2.1: Overview of an RFID system, cf. ’RFID Handbook’ Figure 1.6 [6]

3

2 Related Work

The active element in the communication is the RFID reader. The reader
transmits requests for identification to the transponder. Then, the transpon-
der answers by transmitting data.

In the first RFID systems, transponders were mainly used to transmit a
Unique Identifier (UID) in order to identify a product. Nowadays, however,
RFID transponders can implement more advanced communication methods
and protocols.

2.1.1 Characteristics of RFID Systems

The RFID technology offers many options for implementing a contactless
communication system. Various manufacturers, such as ST Microelectronics,
NXP Semiconductors, or Infineon Technologies have been creating RFID
systems with different features. In order to characterize these systems,
several parameters can be used.

Carrier Frequency and Coupling Type

The main characteristic of RFID systems is the carrier or operating frequency.
The frequency bands can be classified into Low Frequency (LF) at 30 to
300 kHz, High Frequency (HF) which ranges from 3 to 30 MHz, and Ultra
High Frequency (UHF) at 300 MHz to 3 GHz and microwave systems above
3 GHz. The carrier frequency is also related to the type of coupling that
is used for communication. While HF and LF systems use the magnetic
field of the antenna (inductive coupling), UHF and microwave systems use
backscattering from electromagnetic waves.
The operating frequency bands for an RFID system must be licensed in the
region of use. Therefore, most systems operate at a few standard frequency
bands which are available in many countries. For instance, in the EU, the
mainly used bands are in the range of 100-135 kHz for LF bands, in the HF
bands the carrier frequency of 13.56 MHz and in UHF range at 865 to 868

MHz.
The system that is used in the thesis is specified for the 13.56 MHz HF band,
so a special focus is set on the technologies that use this frequency band.

4

2 Related Work

Coupling Range

Another important characteristic of RF systems is the coupling range. The
coupling range defines the maximum distance between two communication
partners where a communication is still possible. The range is influenced by
many factors, for instance by the type of coupling, which can be inductive
or backscattering.
The main classes that define the coupling range are close-coupling (< 1cm),
proximity coupling (1cm-1.5m) or vicinity coupling.

Operating Mode

The operating mode describes the power supply of RFID tags in inductive
coupling systems. Since inductive coupling systems use a magnetic field to
create a communication channel, the energy from the magnetic field can be
used to act as the power supply for the tag.

2.1.2 ISO Standards and NFC Definitions

RFID technology is standardized by various standards, which define the
characteristics of data transfer from physical layer upwards. The standards
define physical coupling characteristics, data encodings and transfer proto-
cols of RF systems. In the HF band there are various standards defined by
the International Standardisation Organisation/International Electrotechni-
cal Commission (ISO), such as ISO 10563 for close coupling systems, ISO
14443 [9] for proximity coupling and ISO 15693 for vicinity coupling. An-
other widely used set of standards is the Japanese Industrial Standards (JIS),
from which for instance JIS X 6319-4 (FeliCa) is widely used.

While these standards cover the low level protocols (physical layer, air
interface, anticollision and basic data transfer), the ISO 18092-NFCIP-1
standard defines NFC communication. The NFC standard relies on the
RFID standards for the definition of the physical interface.

In addition to the ISO standards the NFC forum has defined five Tag Types.
These Tag Types also include a specification for higher level data transfer

5

2 Related Work

protocols, tag memory size, etc. The Tag Types specify certain data rates
from the ISO standards for use, as depicted in Figure 2.2.

Type 3 Type 4 Type 5

ISO 14443-A ISO 14443-B JIS 6319-4 ISO 15693

Tag Type

ISO Standard

NFC-A NFC-B NFC-F NFC-V
NFC Forum

Classification

106 kBit/s 212, 424 kBit/s 106,212,424 kBit/s 26.48 kBit/sData Rate

< 2kB < 2kB 32 kB 64 kBMemory

Type 1 Type 2Type 1 Type 2 Type 3 Type 4 Type 5

ISO 14443-A ISO 14443-B JIS 6319-4 ISO 15693

Tag Type

ISO Standard

NFC-A NFC-B NFC-F NFC-V
NFC Forum

Classification

106 kBit/s 212, 424 kBit/s 106,212,424 kBit/s 26.48 kBit/sData Rate

< 2kB < 2kB 32 kB 64 kBMemory

Type 1 Type 2

Figure 2.2: Overview of Tag Types specifications and ISO standards, according to [20].

2.2 RF Signal Processing

In digital communications, the step of signal conditioning has become
more and more important. New application fields, such as mobile radio
systems, require NFC devices to operate in the vicinity of various other
communication systems with different technologies. Hence, the accurate
processing of transmitted and received signals has become a critical factor
in digital communication systems. In recent technology, RFID and NFC
strongly rely on digital signal processing techniques in their transmitters
and receivers. This section is going to give an overview of the techniques
applied in state-of-the-art NFC.

2.2.1 Modulation/Demodulation

The main step of RF transmission is modulation, which transfers the signal
from the baseband into the required frequency band. The modulation is
done by multiplying the baseband signal with a high-frequency carrier
signal, which is usually implemented as a mixer. The multiplication in the
time domain is represented by a convolution in the frequency domain, there-
fore shifting the spectrum of the baseband signal to the carrier frequency.

6

2 Related Work

The main modulation techniques are amplitude modulation, frequency
modulation and phase modulation. This section references [4] and [6].

In NFC systems, some modulation techniques that are widely used are
Amplitude Shift Keying (ASK), On-Off Keying (OOK) and Binary Phase
Shift Keying (BPSK). In most of the NFC modulation techniques, the carrier
wave is not modulated directly, instead one or two subcarriers are used. The
subcarriers operate at a fraction of the carrier frequency and are modulated
by ASK or BPSK modulation. The modulated subcarrier is then multiplied
with the carrier wave, as depicted in Figure 2.3.

Baseband Signal

Carrier

13,56 MHz

Subcarrier

868 kHz

Modulation SignalModulated Subcarrier

Figure 2.3: Schematic overview of an ASK modulation with subcarrier, cf. Finkenzeller [6],
Fig. 6.12

On the receiver side, the signal must be transferred back into baseband
domain by demodulation. This step, however, is way more complex than
the modulation. While the basic transfer to baseband frequency can be
done by a multiplication, it must be considered that a received signal
can be affected by distortions, interference and noise during the transfer
through the communication channel. In order to recover the information
from a distorted signal, more complex techniques must be employed. This
is particularly important of RFID readers, which may receive weak signals
from the corresponding transponder. In addition, some applications, e.g.
passive transponders, require the recovery of the carrier as clock for the
digital part of their system.

The modulation systems used in NFC technology require the demodulation
of ASK or BPSK signals. For ASK, the simplest demodulation technique
would be an envelope detector, which can be realised by a rectifier and a

7

2 Related Work

lowpass filter. However, this detector only recovers the signal amplitude.
For signals affected by phase distortion through the communication chan-
nel, the detected amplitude may decrease and even cross zero, meaning
that information about the signal is lost. If the signal is affected by phase
distortions, a coherent demodulation such as the In-Phase-Quadrature (I-Q)
demodulation system is necessary.

I-Q Demodulation

The I-Q demodulation is based on the multiplication of the input signal
with two different carrier signals, one that is supposed to be in phase,
and the other one with a phase difference of 90 degrees. The resulting
signals can then be interpreted as the real (in-phase) and the imaginary
value (quadrature phase) of the input signal. An overview of this system is
depicted in Figure 2.4.

Local Oscillator

90°

I

Q

Vin

Figure 2.4: Schematic overview of an I-Q demodulator

After the mixer stage, the I and Q signals can be processed by lowpass
filters, Direct Current (DC) removal, gain compensation etc. The next stages

8

2 Related Work

in the Radio Frequency (RF) processing chain are symbol detection and
synchronization.

The I-Q demodulation retains the phase information of the input signal.
Signals that have been affected by phase distortions can therefore be recov-
ered without losing most of the information. The I and Q values can then
be depicted in a constellation diagram, which shows the different symbols
used in the modulation and their amplitude and phase values. Figure 2.5
depicts the modulation signals and the corresponding constellation diagram
for BPSK and OOK signals.

OOK Signal - Sequence "1010"

BPSK Signal - Sequence "1010"

(a) Modulated signals of BPSK and OOK

BPSK
OOK
BPSK
OOK

Im

Re

Im

Re

BPSK
OOK

Im

Re

(b) Constellation Diagram:
OOK and BPSK

Figure 2.5: Signals and constellation diagram of the modulation types OOK and BPSK

Modern RF systems use mixed-signal modulation/demodulation systems.
The implementation of an I-Q demodulator requires an internal oscillator to
generate the carrier frequency input for the mixer. For creating these local
oscillators, there are multiple possibilities. Some systems use Phase-Locked
Loops (PLLs), which are usually implemented in analog design with digital
control logic. Another approach is to create the local oscillator from direct
digital synthesis.

2.2.2 Symbol Detection - SNR Maximization

In the RF signal processing chain, the next step after the demodulation/mixer
stage is the symbol detection. After the carrier wave has been mixed, only the
baseband signal should remain. However, noise and distortions are added to

9

2 Related Work

the signal while passing through the communication channel. These factors
affect the signal so that a simple detection based on the original decision
boundaries may not be sufficient.

AWGN

One of the main factors that influence the signal through the communication
channel is zero-mean Additive White Gaussian Noise (AWGN). The AWGN
is defined as:

y[n] = x[n] + ν[n] (2.1)

ν[n] ∼ N (0, σ2
ν)

The effect of AWGN on a modulation signal is shown in the constellation
diagram in Figure 2.6. In this constellation diagram, the symbols 0 and 1 are
affected by noise, causing a distortion in amplitude and phase. The symbols
0 and 1 can still be distinguished from each other, but the distance between
the symbols has decreased. This may lead to decision errors when the signal
is more strongly corrupted by the noise.

Figure 2.6: Distribution of AWGN (left) and Constellation Diagram of a BPSK signal that
is affected by AWGN (right)

10

2 Related Work

Symbol Detection

In order to recover the information from a noisy signal, there are multiple
techniques, according to [14]. The idea of these techniques is to minimize
the probability of errors in the detection of symbols.

This method is based on the optimum detector [14], which is implemented
by the cross-correlation function. By using this function, it is possible to max-
imize the Signal-to-Noise Ratio (SNR) of a noisy signal when the expected
input signal is known. The cross-correlation is defined as:

rxy[n] =
∞

∑
k=−∞

x[k]y[n + k] (2.2)

A correlation-type demodulator calculates the cross-correlation of the input
signal with each of the possible expected signals. The input signal x[n]
is multiplied with the expected signal y[n] that is shifted by an offset k,
and then integrated, yielding correlation signals rxy[n]. There are several
methods that implement the correlation demodulator, such as the correlator,
the matched filter and the integrate-and-dump receiver.

Correlator

The first technique that implements the cross-correlation is the correlator,
which is depicted in Figure 2.7. For each expected symbol, the correlation
value is calculated by a multiplication and an integration. These correlation
values can then be compared, yielding the most likely symbol. While the
depicted structure is defined for the time-continuous domain, the same
structure can be applied in time-discrete domain. The correlator is the most
straight-forward implementation of a correlation-type demodulator, but not
the most performance-efficient method.

11

2 Related Work

Figure 2.7: Overview of a correlation demodulator, cf. ’Correlation-type demodulator’, [14],
p.371

Matched Filter

A more efficient method is the matched filter. The matched filter also uses
the auto-correlation function to minimize the error probability, this time,
however, it is implemented by the method of the convolution. The auto-
correlation can be rewritten as a convolution of two signals:

rxy[n] =
∞

∑
k=−∞

x[k]y[n + k] =

∞

∑
k=−∞

x[k]y[−(−n− k)] =

∞

∑
k=−∞

x[k]y[(−n− k)] = x[n] ∗ y[−n]

12

2 Related Work

This convolution can be implemented by a filter with an impulse response
that is equal to the time-reversed signal y[n]. The detection of multiple
symbols can be implemented by a structure as depicted in Figure 2.8.
The filter functions ψ1, ψ2,ψN are correspondent to the time-reversed
waveform of each symbol. Similar to the structure of the correlator, this
structure can also be applied in time-discrete domain.

Figure 2.8: Overview of a matched filter topology, cf. ’Matched filter-type demodulator’,
[14], p.377

This structure can be generated by Finite Impulse Response (FIR) filters,
which directly use the signal values as the impulse response. While FIR
filters require a large complexity for long signals, other topologies like
the Cascaded Integrator Comb (CIC) that can be used. In general, the
main requirement for synthesizing a matched filter is the knowledge of the
expected symbol.

13

2 Related Work

Integrate-and Dump Receiver

A method that provides a simpler implementation than the matched filter
and the correlator is the Integrate-and-Dump receiver. This receiver is ap-
plied when the expected signal is in a rectangular shape. As the correlator
and the matched filter, the Integrate-and-Dump Receiver is based on the
mathematical definition of the cross-correlation. When correlating a real-
valued signal with a rectangular signal, the correlation operation can be
described by an integration:

y[n] =

{
1 0 <= n < N

2
0 else

rxy[n] =
∞

∑
k=−∞

x[k]y[n + k] =
N
2

∑
k=0

x[k]

This integration can be implemented by an integrate-and dump circuit as
described in [17]. The input signal is integrated for N

2 samples, then the
integrator is reset. At the sampling instant N

2 , the output of the integrate-
and-dump receiver is equal to the output of a matched filter with the
impulse response y[n]. The receiver is more simple and more computation-
ally efficient than the matched filter, since it only requires an integrator and
a sampler instead of a filter operation.

2.2.3 Symbol Synchronization

In digital communication systems, the synchronization between transmitter
and receiver is crucial to guarantee a functional data transfer. While in wired
communication systems the synchronization can be achieved by transmitting
a clock signal simultaneously to the data transmission, the synchronization
cannot be achieved so easily in wireless systems. In many wireless systems
the clock must be recovered from the transmitted data signal.

14

2 Related Work

Coherent receivers such as the I-Q demodulator require the exact symbol
timings for a correct functionality. The output of the detectors, such as a
correlator or matched filter, must be sampled at the right sampling point.
The output of a correlator is in a triangular shape, such as depicted in
Figure 2.10 due to the integrating property of the correlation function. This
output should then be sampled at its maximum. In a signal affected by
noise, the maximum may be shifted in time, therefore a periodic sampling
method would lead to errors. The sampling times have to be adjusted. For
solving this problem, there are various algorithms, such as peak detection,
early-late gating or maximum-likelihood detection.

Peak Detection

In order to sample the matched filter output at its maximum, peak detection
methods can be employed. For detecting the peak, a common method is to
analyze the first derivative of the signal. In a local maximum of a function,
the first derivative has a value of zero and changes its sign. This property
can be exploited by using a differentiator and a zero-crossing detector on
the signal to find the peaks. Such a topology is depicted in Figure 2.9.

Figure 2.9: Overview of a simple peak detector that can be used for synchronization. The
differentiated input signal is sent through a zero-crossing detector to determine
the sampling instants.

15

2 Related Work

Due to noise and distortions in the signal, there may be multiple local
maxima in the signal. In order to filter unwanted peaks, the input signal
can be smoothed by a lowpass filter. For this application a moving average
filter would be a reasonable choice.

Early-Late Gating

A more advanced method is the Early-Late-Gating algorithm, which was
described in [14] and [15]. [14] explains this concept by a closed control
loop, which controls a sampler based on the values of the sampled signal
at certain points of time. In every step of the algorithm, the input signal is
sampled at an arbitrary time T. Next to this sample, two more samples are
taken: one sample at an earlier point TE = T − δ and one sample at a later
point TL = T + δ. The sampling values of TE and TL are compared to find
out if the sampling instant is too early or too late. Figure 2.10 depicts the
timing of the sampler for three different cases.

Sampling too early Correct Sampling Sampling too late

x(t)

tT+δT-δ T

x(t)

tT+δT-δ T

x(t)

tT-δ T+δT

x(t)

tT-δ T+δT

x(t)

tT-δ T+δTT-δ T+δT

x(t)

tT-δ T+δT

Figure 2.10: Early and late sampling of correlator output

If the sampling instant is too early, the value of x(t) at TE is higher than at
TL, and vice versa. The difference between the signals at TE and TL can be
evaluated to determine the correct sampling instant.

A topology that implements the Early-Late-Gate method was described in
the dissertation of Stevens [17], and is depicted in Figure 2.11.

16

2 Related Work

Figure 2.11: Implementation of an Early-Late Gating synchronizer, cf. [17],p.27, ’Early-late-
gate data synchronizer’.

In this topology, there are two integrators, which integrate over the first
half (early gate) and the second half (late gate) of the signal. The difference
between the integrated samples is used to adjust the integration time of
the integrators. When the output values of both integrators are equal, the
sampling instant is at the correct timing.

2.3 Digital Filter Design

Digital filters are the main building block in signal processing. The most
basic functionality of a digital filter is to modify the spectral characteristics
of signals. While they can be used in simple applications, such as lowpass,
highpass or bandpass filtering, they also find use in more complex algo-
rithms. Since these filters are so widely used, various different topologies,
such as FIR, Infinite Impulse Response (IIR) or CIC have been developed
throughout the years. The topologies and design methods introduced in
this section are related to textbooks by Lyons [10] and Oppenheim [12].

17

2 Related Work

2.3.1 FIR Filters

The simplest filter topology is the FIR filter. This is due to the benefits of
the finite impulse response, which include linear phase, stability, and a
simple filter structure. The input-output relation of an FIR filter is defined
as following for a filter length (taps) of N:

y[n] =
N−1

∑
k=0

akx[n− k] (2.3)

The order of an FIR filter is correspondent to the number of coefficients in
the filter (including zero-valued coefficients). The transfer function of this
filter is defined as:

H(z) =
N−1

∑
k=0

akz−k (2.4)

As the transfer function contains of zeros but no poles, the filter is stable
and the phase of the filter is linear. These filters can be created with a
certain specified impulse response or magnitude/phase by making use of
optimization algorithms. Widely used techniques in FIR filter design are the
least-squares method and the Parks-McClellan algorithm.

FIR filters are one of the simplest topologies for digital filters. These filters
consist of a forward path, in which various coefficients are multiplied with
the delayed input signal.

For synthesizing filters with sharp edges in the magnitude response, high
filter orders and therefore a high number of coefficients are necessary. This
leads to higher computational efforts compared to other topologies.

2.3.2 IIR Filters

Digital filters that do not have a finite impulse response are called IIR filters.
A basic definition of an IIR filter is:

y[n] =
N

∑
i=0

bix[n− i] +
M

∑
k=1

aky[n− k] (2.5)

18

2 Related Work

The delayed samples of the output signal y[n− k] create a feedback inside
the filter structure. The transfer function of such an IIR filter is:

H(z) = ∑N
i=0 biz−i

1−∑M
k=1 akz−k

(2.6)

The order of the filter is defined by the factor M.

IIR Filter Design

There are various methods for the design of IIR filters. Some of these meth-
ods are based on the design of an analog filter, which is then transformed
into the digital domain. For instance, one of these methods is the impulse
invariance method, which is based on evaluating the impulse response of
a digital filter. This method is defined by the following steps, according to
Lyons [10]:

1. Design analog filter impulse response H(s).
2. Apply the bilinear transformation to the continuous impulse response

to receive H(z).
3. Substitute the sampling time tS into the transfer function H(z).

The z-transformed impulse response can be used as coefficient set for
designing the filter.

2.3.3 Filter Implementation

There are multiple ways in which digital filters can be implemented. Since
the difference equations that define a digital filter consist of multiplications,
additions and delays, the implementation of a filter can be realized by a
combination of these elements. The implementations have different benefits
and drawbacks in terms of execution speed and numerical stability.

19

2 Related Work

Direct Forms

The most basic filter implementation is the Direct Form 1, which can imple-
ment both FIR and IIR filters. This implementation contains a forward path
and a feedback path. Each path consists of cascaded delay elements, the
output of the delays are multiplied with the corresponding coefficients and
accumulated. An implementation of Direct Form 1 is depicted in Figure 2.12.

Figure 2.12: Comparison of an FIR filter (left) to an IIR implementation in Direct Form 1

(right)

Since the Direct Form 1 is not a very performance-efficient solution, other
implementations of digital filters have been created, such as the Direct Form
2 other the Transposed Direct Form 2. These implementations reduce the
number of delays in the system by adjusting the filter structure.

High-order IIR Filters

While FIR filters of higher orders can be implemented in a Direct Form
structure, IIR filters of high orders must be analyzed carefully. Since IIR
filters are not guaranteed to be stable, filters at high orders may experience

20

2 Related Work

instabilities due to quantization errors. In order to minimize such risks, IIR
filters of high orders are mostly created from a cascade of second-order
filters, which are also called biquads.

2.3.4 Filter Performance

The performance of a digital filter depends on the number of operations
that are necessary to compute one single filtering step. The operations in a
digital filter implementation can be divided into arithmetic and memory
operations.

The arithmetic operations in digital filters consist of multiplication and ad-
dition operations. The input signal is multiplied with different coefficients
and stored in delay elements, the results are added. The operation of multi-
plication and addition can be combined into a Multiply-Accumulate (MAC)
operation. The memory operations are defined by the delay elements in the
system. The process of storing a value in a delay element requires time and
resources, which must be considered when analyzing the performance.

In FIR filter design the performance is directly proportional to the number
of taps in the filter. Each tap is represented by a delay, a multiplication and
an addition.

2.3.5 Recursive FIR Filters

The design of FIR filters is strongly based on optimization algorithms.
These algorithms take a desired magnitude response as specification, and
iteratively calculate filter coefficients to fit to the magnitude response. In
order to fit the designed filter to the specifications, the algorithms often use
filters with high orders. Such FIR filters are often implemented with orders
of 100 or higher, causing performance issues.

The performance of these filters can be improved by adopting a recursive
strategy to design the filter. This approach is based on separating a large
filter structure into smaller structures. In the implementation of an FIR filter,
the filter structure is created directly from the impulse response. This means

21

2 Related Work

that each sample of the impulse response requires a MAC operation. In
order to increase the efficiency of the filter, the filter structure is split up
into a cascade of smaller filters. The technique of creating recursive filters is
described by Hassan et al. [7] and also by Vainio et al. [22].

The recursive filter design is based on finding an analytical expression of
the filter transfer function in the z-domain. The analytic expression should
consist mainly of multiplications of different terms, which can then be
implemented as a cascade of filters. For this purpose, basic arithmetic rules
such as polynomial division, binomial formulas, geometric sums or similar
are used. For instance, an FIR filter defined by a cubic function

H(z) = z−3 + 3z−2 + 3z−1 + 1

can be described by a cascade of three filters:

H(z) = (1 + z−1) · (1 + z−1) · (1 + z−1)

The decomposition yields three smaller filter structures. The structures are
then cascaded with each other. The cascaded implementation decreases
the computational costs since the structures are simpler. In this example,
two multiplications have been removed from the equation, the filter can be
implemented by additions. For filters of higher orders the computational
costs may decrease significantly (see [7]).

The recursive implementation may introduce pole-zero cancellations into the
system, therefore the stability of the filter is no longer granted. Inaccuracies
in the implementation, such as fixed-point inaccuracy or rounding errors,
can create instabilities in the system. Therefore, the stability of recursive
filters must be analyzed carefully.

2.3.6 CIC Filters

Similar to the recursive FIR filter, a performance-efficient topology of fil-
ters is the CIC structure. This structure was first mentioned by Eugene
Hogenauer in [8]. These filters consist of multiple stages, which can be
implemented by addition and delay elements. There are no multiplications

22

2 Related Work

required, which means that these filters require low computational effort.
While CIC filters are mainly used in sampling-rate conversions such as
interpolation and decimation, they can also be used for implementing FIR
filters such as the moving average.

The CIC principle is based on combining an integrator filter with a comb
filter to create a uniform impulse response.

The discrete integrator is defined as:

HI(z) =
1

1− z−1

A comb filter consists of an impulse response of two samples: one positive
and one negative. The samples are separated by the delay M, creating a
transfer function of:

HC(z) = 1− z−M

When these two filters are combined, the following transfer function is
created:

H(z) = HC(z) · HI(z) =
1− z−M

1− z−1

The impulse response of this filter is equivalent to a moving average filter
with M samples and gain M. The filter can be implemented by the following
topology (Figure 2.13):

Figure 2.13: Schematic overview of a CIC filter

23

2 Related Work

CIC Filter Applications

CIC filters are widely used in digital signal processing. This is due to their
simple and performance-efficient implementation, which consists purely
of additions and delay elements. CIC filters are mainly used in multi-rate
systems, as decimation or interpolation filters for up- and downsampling.
In interpolation, the rate conversion is done between the comb filtering and
integrating step, while in decimation the comb stage is placed before the
rate conversion.

2.4 System Architectures in Signal Processing

Signal processing algorithms can be implemented on many computing
platforms. Since the algorithms consist of mathematical structures, they
can be translated into various computational languages or implemented in
digital design or as analog circuit. Each of these methods offers benefits
and drawbacks in terms of long-term stability, implementation cost and
performance.

In order to optimize the performance of signal processing algorithms, var-
ious architectures have been invented. In the first designs of processors,
mainly general-purpose microprocessors were implemented. However, in
state-of-the art technology, the standard architectures are specifically de-
signed for signal processing, so-called DSPs architectures. Alternatively, fil-
ter algorithms are implemented in Hardware Description Language (HDL)
on Field Programmable Gate Arrays (FPGAs) or ASICs.

This section introduces and compares different architectures for DSP and
FPGAs, relating to the book Software-Defined Radio for Engineers [3].

2.4.1 FPGAs

In the field of circuit design FPGAs have become a popular implementation
platform for signal processing algorithms. While the FPGA has its origin
in simple logic cells and programmable logic arrays, state-of-the art FPGAs

24

2 Related Work

offer a wide range of functionality. The main benefits of FPGA in comparison
with processors are the variable clock frequency and the parallel execution
of logic. In comparison with ASICs, FPGAs are a cheaper solution, even
though they are more power consuming and require more chip area [5].

An FPGA consists of various logic cells, which are connected by pro-
grammable switches. Depending on the programming, different structures
of both combinational and sequential logic can be constructed. The main
building blocks of FPGA logic are memory cells, flip-flops, look-up tables
(combinational logic) and clock/routing elements.

In addition to these basic cells, state-of-the-art FPGAs contain additional
elements. For development, FPGAs are often embedded into System-on-
Chip (SoC). The combination with a microcontroller, RAM or flash memory
and bus interfaces makes FPGAs a versatile platform for signal processing.

An example for a widely used FPGA SoC is the Xilinx Zynq series, which
contains a Xilinx Artix/Kintex/Virtex FPGA, an ARM processor core and
additional coprocessors. An overview of the Zynq-7000 is depicted in Fig-
ure 2.14.

25

2 Related Work

Figure 2.14: Overview of the Xilinx Zynq-ZC7045 [24]

FPGAs - DSP Slices

Many FPGAs contain so-called DSP slices. DSP slices are logic cells designed
for DSP operations, mostly they implement a multiply-accumulate operation.
In Verilog code, the slices can be instantiated directly, or assigned through
multiplication and addition operators. The basic MAC operation would be
implemented as:

P = (A · B) + C

Therefore, a DSP slice must contain at least a multiplier and an accumulator.
Depending on the implementation of the slice, various additional operations
can be used in combination with the MAC.

26

2 Related Work

DSP slices are embedded in many state-of-the art FPGAs, for instance, in the
Xilinx Zynq as the DSP48E1 slice [1]. This slice is described in Figure 2.15.

Figure 2.15: Architecture of the Zynq DSP Slice, [1]

The main part of the slice is the hardware multiplier, which supports inputs
of 25 x 18 bit. Afterwards, a 42 bit arithmetic/logic operation (addition/
subtraction, and, or, xor etc.) can be executed in the slice. In addition
to this basic functionality, the DSP48E1 also includes a pre-adder before
the multiplication and rounding and saturation logic. The most advanced
mathematical operation that can be implemented by the DSP48E1 is:

P = (A± D) · B± C

The slice can be configured to detect overflows and underflows, and im-
plements a saturation logic. While the DSP48E1 can be used without any
clock input, it also offers the option to use a pipelining register between the
multiplier and arithmetic/logic and registers at the main ouptuts.

27

2 Related Work

2.4.2 DSP Architectures

DSPs are processors that are designed specifically for digital signal process-
ing purposes. In contrast to general purpose processors, DSP architectures
are optimized for high data throughput and parallel processing of instruc-
tions. Since the instructions that are used in signal processing are mainly
filtering operations, DSPs are designed to execute arithmetic operations
efficiently.

Many DSPs support special arithmetic operations that are common in signal
processing, such as complex number arithmetic, Fast Fourier Transformation
(FFT) algorithms or Viterbi decoding.

Functional Units

The architecture of a DSP is defined by several features. The main part
of the architecture are the functional units, which include the Arithmetic-
Logic Unit (ALU), the address generation units and the datapath. While
in a general purpose Central Processing Unit (CPU), the functional units
are usually implemented only once per unit type, a DSP features multiple
instances of the functional units.

The ALU is often distributed into multiple parallel units. Since in DSP
applications many multiplication and addition operations are required,
most DSPs contain a dedicated unit for the MAC operation. The MAC unit
can be implemented multiple times in order to allow parallel processing,
such as in the Analog Devices Blackfin core, which supports two parallel
16-bit and one 32-bit MAC operations. The architecture of the Blackfin core
is depicted in Figure 2.16.

28

2 Related Work

Figure 2.16: Overview of the Analog Devices Blackfin core

The MAC unit is often extended by a rounding or saturation unit. The other
arithmetic and logic operations are mostly divided into separate ALUs for
different bit widths, for instance into one unit each for 16-bit, 32-bit and
64-bit instructions.

The number of functional units in a DSP can be used as a guideline to
estimate its possible performance. The more functional units are available,
the more operations can be executed in parallel. However, it is important to
notice that the functional units do not operate at full capacity all the time.
When using the functional units, factors such as the memory latency or the
data dependencies inside the code play an important role.

In order to fully use the parallel arithmetic and MAC units, most DSPs
implement multiple datapath structures and load/store units. This means

29

2 Related Work

that there are multiple address generation units that are then connected to
the datapath and the ALU.

Execution Times and Pipelining

DSPs implement various arithmetic/logic and memory instructions, which
may have different execution times. For instance, in the case of memory
access operations like Load/Store, the execution time depends on the datap-
ath architecture of the CPU and the internal delay of the memory. Especially
when the memory is clocked at lower frequency than the CPU, memory
access may take multiple cycles. In contrast to this, a simple integer logic
operation can be implemented as a single-cycle instruction.

In order to execute the instructions in an optimal execution time, state-of-
the-art DSPs implement pipelining mechanisms. Pipelining distributes the
instructions into stages, at the most basic version into Fetch, Decode and
Execute. These stages can then be executed in parallel, leading to a higher
throughput.

More advanced DSPs implement multi-stage pipelines, such as the Analog
Devices Blackfin with a 10-stage pipeline and the TI TMS320C6713 with a
16-stage pipeline (depicted in Figure 2.17).

Figure 2.17: Overview of the 16-stage C6713 pipeline, from [23]

In this pipeline, there are four sub-stages for the Fetch stage, two sub-
stages for the Decode stage and up to 10 sub-stages for the Execute stage,
depending on the type of instruction.

30

2 Related Work

Floating/Fixed Point Arithmetic

While general-purpose processors implement floating-point arithmetic as a
standard feature, DSPs often omit floating-point calculations. This is due
to the large complexity of a floating-point arithmetic pipeline, which takes
multiple shift and arithmetic operations. The drawbacks are the longer
execution time (multiple cycles required) and the required chip area, which
is a critical factor in DSP cores for ASICs.

Therefore, many smaller DSP cores only use fixed-point/integer arithmetic.
While this arithmetic offers a significantly smaller computation range than
floating-point arithmetic, the complexity of the architecture is drastically
reduced. The computation range limits can be partially compensated by
supporting larger bit widths in computation.

An example for a fixed-point DSP is the NXP Coolflux, which is optimized
for ASIC development. The Coolflux is available in a 16-bit and 32-bit
architecture. An overview of this core is depicted in Figure 2.18. Optionally,
the Coolflux core can be combined with additional coprocessors for Viterbi
decoding or complex number operations.

Figure 2.18: Overview of the NXP Coolflux DSP core, cf.[21]

31

3 Design

The main focus of this work is to analyze an existing RFID receiver system
and to optimize the signal processing algorithms inside it. Therefore, the
system had to be analyzed in terms of performance. Then, an optimization
of the system was proposed and evaluated in Simulink. This chapter gives
an introduction into the existing system and the proposed optimizations.

3.1 Existing System Overview

The system on which this work is based on is a mixed-signal RF transceiver
IC which is developed by NXP Semiconductors. This IC can be operated
both as a reader and a transponder, in either Reader Mode (RM) and Card
Mode (CM).

In RM the IC supports the ISO standards ISO 14443-A and B for data rates
up to 848 kBd and ISO 18092 FeliCa for up to 424 kBd. The reader mode also
supports ISO 15693 for single sub-carrier modes. In CM the IC supports the
ISO standards ISO 14443-A, ISO-14443-B and ISO 18092 for selected data
rates. Table 3.1 shows an overview of the standards supported in reader or
card mode.

32

3 Design

Mode Standard Supported Data Rates
RM ISO 14443-A 106, 212, 424, 848 kBd
RM ISO 14443-B 106, 212, 424, 848 kBd
RM ISO 15693 Single Sub-Carrier 6.6, 26.5 kBd
RM ISO 15693 Single Sub-Carrier 53, 106, 212 kBd
RM ISO 18092 FeliCa 212, 424 kBd
CM ISO 18092 106, 212, 424 kBd
CM ISO 14443-A 106, 212, 424, 848 kBd
CM ISO 14443-B 106, 212, 424, 848 kBd

Table 3.1: Supported ISO standards by the existing hardware implementation

In this work the focus is set on analyzing and optimizing the reader mode
of the existing system. Therefore, the general functionality of the reader
mode is introduced.

3.1.1 Existing System - Reader Mode

The reader mode signal processing chain consists of multiple steps. The
incoming data consists of an I and a Q signal, which are then processed
separately. Firstly, the data is preprocessed, then a matched filter and an
averaging filter are implemented. Then, the I and Q channels are combined.
The final stage of the signal processing chain is a symbol synchronizer.

SNR Maximization - Matched Filtering

One of the main components of the signal processing chain is a matched
filter, which is used for signal detection. Since the RF modulation techniques
use a rectangular subcarrier signal, the matched filter detector must replicate
rectangular signals. For instance, for BPSK modulation, a pure square signal
and a square signal with phase inversion must be detected. A system
of matched filters for BPSK would have the following impulse responses
(Figure 3.1):

33

3 Design

Figure 3.1: Matched filters for BPSK signals: Filter to detect a logic 0 (left) and a logic 1

(right)

The impulse response is defined as following (Filter 0):

h[n] = δ[n] + δ[n− 1] + ... + δ[n− 3]− δ[n− 4]− ...
−δ[n− 7] + δ[n− 8] + ... + δ[n− 11]− δ[n− 12]− ...− δ[n− 15]

(3.1)

For Filter 1, the impulse response would be defined as:

h[n] = δ[n] + δ[n− 1] + ... + δ[n− 3]− δ[n− 4]− ...
−δ[n− 7]− ...− δ[n− 11] + δ[n− 12]− ... + δ[n− 15]

(3.2)

Absolute Value Calculation + Averaging

In order to detect a BPSK signal, the maximum value of the matched filter
must be analyzed. Before obtaining the maximum, the signal is smoothed.
This is implemented by an absolute value calculation and a moving average
filter.

The moving average is implemented as a recursive filter:

xC[n] =
1
M

(x[n]− x[n−M]) (3.3)

y[n] = y[n− 1] + xC[n] (3.4)

34

3 Design

Channel Combination

The I and Q signal must be combined to calculate the magnitude of the
complex input signal. This is defined as following:

mag[n] =
√

x2
i [n] + x2

q[n] (3.5)

Since this computation is expensive due to the square and square root
operations, a more efficient algorithm was used.

The alpha-min-beta-max algorithm is used to approximate the magnitude
of a complex signal. This algorithm is defined as:

mag[n] = α ·min(|xi[n]|, |xq[n]|) + β ·max(|xi[n]|, |xq[n]|) (3.6)

The parameters α and β are defined by empirical measurements. In some
cases, when the values of α and β fulfill certain constraints, the multiplication
can be implemented by an integer operation or a shift operation, making
the computation more efficient. In addition, the absolute value calculation
can be omitted since the input values of the channel combiner are already
positive.

Symbol Synchronization

After the channel combination, the signal must be checked against timing in-
accuracies, e.g. jtters. In order to make sure that the sampling of the matched
filter output happens at the point where the signal is at a maximum, the
signal processing chain contains a zero-crossing detection synchronizer.

This system uses a two-stage filter cascaded with a zero-crossing detector for
symbol synchronization. The output of this system is a one-bit signal which
changes its level at the optimum sampling points. The synchronization filter

35

3 Design

is defined as following:

xC[n] =
1
M

(x[n]− 2x[n−M] + x[n− 2M]) (3.7)

z [n] = z [n− 1] + xC [n] (3.8)
y [n] = y [n− 1] + z[n] (3.9)

The zero crossing detection is implemented as:

sync [n] = sign (y [n]− y [n− 1]) (3.10)

After the symbol synchronization the signal can be decoded.

36

3 Design

3.2 Proposed Optimizations - Matched Filtering

There are different ways to optimize the performance of a digital filter sys-
tem in terms of execution time. In the existing system, the main bottleneck
was the matched filter signal detector. Therefore, a main focus was set on
the optimization of the matched filters.

3.2.1 Comb Filtering

In the existing filter system, the signal detector for subcarrier RF signals was
implemented by multiple FIR filters with up to 64 taps each. The runtime of
the FIR filtering operation is directly proportional to the length of the filter
impulse response, every tap of the filter requires a delay, a multiplication
and an addition. In filters with higher orders (e.g. N > 100), this leads to
a drastic increase in computation time due to long delay lines and a large
number of multiplications.

Since these filters caused the main computational expense, the first approach
in optimization was to simplify the matched filter. In this process the
recursion technique was applied.

The original implementation contains two matched filters for each BPSK
data rate with impulse responses as depicted in Figure 3.1. Since these filters
were computationally expensive, the existing system already implemented
a first optimization by using the CIC principle. The FIR filter was split into
a comb filter xC[n] and a weighted integrator. The splitting operation was
done by calculating the first derivative of the impulse response.

For the impulse response h[n] of Filter 0 (Equation 3.1), the first derivative
of the impulse response resulted in the following comb function:

xC[n] = x[n]− 2x[n− 4] + 2x[n− 8]− 2x[n− 12] + x[n− 16] (3.11)

The comb was then followed by an integrator:

y[n] = y[n− 1] +
1
M

xC[n] (3.12)

37

3 Design

In addition, the weight factor M was defined to normalize the filter gain for
different filter lengths in samples, and could therefore be set to a different
value for each filter.

The resulting impulse response of the comb filter and the full filter are
depicted in Figure 3.2.

Figure 3.2: Impulse response of the comb filter xC[n] (left) and full impulse response h[n]
for Filter 0. The generated impulse response is identical to the original FIR
impulse response (referenced in Figure 3.1).

For Filter 1, the differentiation results in:

xC[n] = x[n]− 2x[n− 4] + 2x[n− 12]− x[n− 16] (3.13)

y[n] = y[n− 1] +
1
M

xC[n]

The impulse response is then generated as (Figure 3.3):

38

3 Design

Figure 3.3: Impulse response of the comb filter xC[n] (left) and full impulse response h[n]
for Filter 1. As for Filter 0, the generated impulse response is identical to the
original (referenced in Figure 3.1).

3.2.2 Recursive Filter Implementation

The comb filtering topology is already more computationally efficient than
the original FIR filter. However, in order to further increase the perfor-
mance of the matched filtering, another optimization was introduced. The
optimized filter should use a minimum number of calculations.

In order to reach this goal, an approach that was used in [7] was applied.
The aim of this approach is to decrease the number of taps in the filter by
using recursion. This makes use of the fact that transfer functions of filters
can be expressed as the result of a rational function in the z-domain. In
the z-domain, an FIR transfer function can be described by a polynomial of
order N. This polynomial can then be simplified by means of polynomial
division or other arithmetic operations, leading to a simplified transfer
function. Since the simplification may introduce additional poles into the
system, the stability of the new filter must be analyzed carefully.

The application of this principle was then applied for Filter 0 and Filter 1.
Since the derivations are similar for both filters, only the derivation for Fil-
ter 0 is described fully. The derivation is based on the comb filter equations
3.11 and 3.12.

The first step of the optimization is a generalization of the matched filter

39

3 Design

equations. For this purpose, the parameters N and k are defined. N is
defined as the number of taps of the whole filter, while k is the number of
taps per half subcarrier period in the matched filter impulse response. The
number of taps in the comb filter corresponds to the value N

k + 1. Therefore,
equation 3.11 can be rewritten as:

xC[n] = x[n]− 2x[n− k] + 2x[n− 2k]− 2x[n− 3k] + x[n− N] (3.14)

The next step of the optimization is the Z-Transformation to gain the transfer
function of the comb HC(z):

XC(z) = X(z)− 2X(z)z−k + 2X(z)z−2k − 2X(z)z−3k + X(z)z−N

HC(z) =
XC(z)
X(z)

= 1− 2z−k + 2z−2k − 2z−3k + z−N

In order to simplify the transfer function a correction function was intro-
duced:

Hcorr(z) = 1− z−N

HC,corr(z) = HC(z) + Hcorr(z)

HC,corr(z) = 2− 2z−k + 2z−2k − 2z−3k = 2
(

z−k + z−2k − z−3k
)

HC,corr(z) = 2
(

1 + z−k + z−2k − z−3k
)
= 2

(
1

∑
i=0

z−2ki −
1

∑
i=0

z−k(2i+1)

)

The sum range is substituted by N
2k − 1, resulting in:

HC,corr(z) = 2

 N
2k−1

∑
i=0

z−2ki −
N
2k−1

∑
i=0

z−2ki · z−k

 = 2 · (1− z−k)

N
2k−1

∑
i=0

z−2ki

Using the geometric sum formula ∑N
i=0 qi = 1−qN+1

1−q , the transfer function is

40

3 Design

further simplified:

HC,corr(z) = z−2ki = 2 · (1− z−k) · 1− z−2k(N
2k)

1− z−2k

HC,corr(z) = 2 · (1− z−k)
1− z−N

1− z−2k = 2 · (1− z−N)
1− z−k

1− z−2k = 2 · 1− z−N

1 + z−k

The last step in the z-domain is removing the correction Hcorr(z) and com-
bining the comb filter with an integrator.

HC(z) = (1− z−N) · 1− z−k

1 + z−k = HC,1(z) · HC,2(z)

HC,1(z) = (1− z−N)

HC,2(z) =
1− z−k

1 + z−k

H(z) = HC(z) ·
1

1− z−1

In the time domain, the filter is expressed by three difference equations:

hC,1 : xC1 [n] = x [n]− x [n− N] (3.15)
hC,2 : xC [n] = xC1 [n]− y [n− k]− xC1 [n− k] (3.16)

h : y [n] = y [n− 1] +
1
M

xC [n] (3.17)

The same transformation was applied to the matched filters for symbol 1,
resulting in the following difference equations:

hC,1 : xC1 [n] = x [n]− x [n− N] (3.18)
hC,2 : xC [n] = xC1 [n]− y [n− k]− xC1 [n− k] (3.19)

h : y [n] = y [n− 1] +
1
M

xC [n] (3.20)

For both filters, a recursive system consisting of three stages could be
generated. This system then had to be analyzed and compared to the
original model.

41

3 Design

Impulse response

The first part of the analysis was the generation of the impulse responses
for Filter 0 and Filter 1 to check whether the resulting impulse response
was still the same. Therefore, the impulse responses hC,1 and hC,2 of the
generated Filter 0 are depicted in Figure 3.4.

Figure 3.4: Impulse response of the generated filters hC,1 (left) and hC,2 (right) for Filter 0.

Combining hC,1 and hC,2 lead to the comb filter function hC (depicted in
Figure 3.5):

Figure 3.5: Impulse response hC for generated Filter 0.

42

3 Design

Comparing with Figure 3.2, it is visible that the optimized filter has the
same impulse response as the original comb filter (Equation 3.11).

The same procedure was applied for Filter 1 (depicted in Figure 3.6):

Figure 3.6: Impulse response of the generated filters hC,1 (left top) and hC,2 (right) for
Filter 1

Combining hC,1 and hC,2 leads to the generated comb filter function for
Filter 1 (depicted in Figure 3.7):

Figure 3.7: Impulse response hC for generated Filter 1

As for Filter 0, the impulse response hC of the generated filter for Filter 1 is
equal to the original comb filter (comparing with Figure 3.3).

43

3 Design

This means that the impulse response of the matched filter system is not
affected by the recursive optimization. However, this check alone is not
enough to prove the feasibility of the optimization. Therefore, further analy-
sis had to be performed. The first step was a pole-zero analysis.

Pole-zero analysis

A pole-zero analysis is essential to check the stability of the optimized filter.
While the optimization has not changed the impulse response of the filter,
the change of topology may introduce new poles and zeros in the z-domain
into the system. If there is a pole outside the unit circle, the system is
unstable and not usable. Therefore, the pole-zero maps of the original and
optimized filter must be analyzed. This was done for Filter 0 and Filter 1.

In Figure 3.8 and Figure 3.9, the pole-zero maps for Filter 0 and Filter 1 are
depicted. The recursion adds canceling poles and zeros to the system. The
optimization introduces N

2k additional pole-zero cancellations. Since these
poles are located on the unit circle, the filter is at the stability limit, which
must be considered in the implementation.

(a) Pole-zero map of original Filter 0. (b) Pole-zero map of optimized Filter 0.

Figure 3.8: Comparison of pole-zero maps of original and recursive solution for Filter 0

44

3 Design

(a) Pole-zero map of original Filter 1. (b) Pole-zero map of optimized Filter 1.

Figure 3.9: Comparison of pole-zero maps of original and recursive solution for Filter 1

Accumulator width estimation

In the design of filters at the stability limit there are some critical points
to consider. In order to prevent instabilities that would render the filter
unusable, the implementation must exactly match the calculated transfer
function. This is not always possible, since the implementation of a filter
may introduce quantization effects such as rounding inaccuracies, limit
cycles or overflows into the system. Since any inaccuracies could move the
poles on the unit circle outside of the unit circle, there must be a special
focus on preventing rounding operations and overflows. In order to prevent
these, the filter was implemented purely using integer arithmetic, avoiding
any gain operations that would need rounding inside the filter system. In
addition, the width of the accumulators inside the filter system had to be
estimated in order to prevent overflows.

The estimation of the accumulator width was done by expanding the input
range by the maximum gain of each filter stage. For estimating the maximum
gain, a widely used method is the calculation of the DC gain. In the matched
filter, however, this method could not be used since the filter contains a zero

45

3 Design

at zero frequency, leading to a DC gain of zero. Instead, the 1-norm was
used as an estimator for each filter stage. The 1-norm is defined in Equation
3.21:

‖ h ‖1= ∑ |h[n]| (3.21)

Using this norm, the accumulator width can be calculated as:

wout = log2(‖ h ‖1) + win (3.22)

For the matched filter set, the maximum DC gain was calculated as 10 bits.
Therefore, for a 10-bit input data width, the required accumulator width
becomes 20 bits. In order to use 16-bit data in the matched filter, the input
data width would have to be reduced to 6 bits.

Implementation

In order to create a computationally efficient filter, a cascaded form con-
sisting of three stages in Transposed Direct Form 2 was implemented in
Simulink. Each stage represents one difference equation from the equation
sets 3.17 and 3.20. The implementation of the system is shown in Figure
3.10 and 3.11.

Figure 3.10: Simulink implementation of Filter 0.

46

3 Design

Figure 3.11: Simulink implementation of Filter 1.

Gain Factor

The gain of the matched filter plays an important role in the implementation
of the filter system. In the original system, the DC gain of the filters was
expected to be 4. Therefore, the gain factor M was defined as:

M =
N
4

(3.23)

In the differential equations, the gain is implemented as a division. Since di-
vision operations are computationally expensive, the gain was implemented
as a more efficient bit shift operation. From the gain factor, a bit shift factor
m was defined as:

m = log2

(
1
M

)
(3.24)

The bit shift operation introduces a rounding into the system. These round-
ing errors had to be considered in the implementation, which was crucial
since the filter system was designed to be operating at the stability limit.

During testing, these errors led to unstable behavior of the output. An
example of this behavior is depicted in Figure 3.12. In order to avoid this,
the gain element 1

M was moved to the output of the system. While this did
not eradicate the rounding errors, the stability problems could be removed
and the system was deemed to be stable.

47

3 Design

Figure 3.12: System errors due to rounding inside filter structure.

Test Setup

In order to prove the operation of the optimized filter, a test setup was
developed. The implementation was compared to a reference model of
the original FIR filter. This model was implemented as a Simulink block
(depicted in Figure 3.13).

Figure 3.13: Reference model of a matched filter

In addition, a testbench was created to compare the reference model against
the implementation (depicted in Figure 3.14). In the testbench, the interme-
diate signals xC,1[n] and xC[n] (referenced in the equation sets 3.17 and 3.20)
were also passed to the Matlab workspace for further analysis.

48

3 Design

Figure 3.14: Simulink test setup for the matched filters

The inputs for the testbench were created in Matlab. In order to test various
conditions, different input signals were applied to the filters. First, a square
signal and a BPSK signal were generated as input to test the function of
the matched filter. For the matched filters the input data width had to be
12 bit signed, the output data width had to be set to 19 bits. The outputs
of the two models were compared and the error between the outputs was
calculated. For the error calculation the Mean Squared Error (MSE) was
used as metric. The MSE of the implementation is calculated as:

MSEFilterx =
1
N

N

∑
n=1

(y− yFIR)
2 (3.25)

To pass a test the MSE had to be zero over the whole signal.

In addition, the filter was tested against input signals corresponding to
the additional pole-zero cancellations. The same tests were applied to the
matched filter for symbol 1. These tests passed without errors.

Finally, the filter was tested against overflows by applying a ramp, a noise
signal, an impulse and a step function as input signals.

49

3 Design

3.2.3 Dual Matched Filter Set

The matched filters Filter 0 and Filter 1 are used in combination to detect
both a logic 0 and logic 1 of the input signal. In a BPSK detection chain
the filters are executed in parallel, creating two output signals for each
symbol (as depicted in Figure 2.8). Since both filters partially show the same
characteristics, it is possible to share some of the arithmetic operations for
both filters. For instance, the FIR impulse response of Filter 0 and Filter 1

share the first 16 taps of the filter. In a pure FIR implementation these 16

taps could be shared by both filters. Due to the linearity of the filters, the
common part of the impulse response can be extracted:

h0[n] = hCommon[n] + hFilter0[n]
h1[n] = hCommon[n] + hFilter1[n]

The common part of the filter structure can then be implemented in a
separate structure, as depicted in Figure 3.15.

++

++

x[n]

y0[n]

y1[n]

h Common [n]

h Filter0 [n]

h Filter1 [n]

Figure 3.15: Combination of a matched filter system for Filter 0 and Filter 1

The advantage of such a dual structure is the reduced computation cost
due to the sharing of the first half of the impulse response by both filters.

50

3 Design

The zero samples in the impulse responses hCommon, hFilter0 and hFilter1 do
not have to be computed. Therefore, the number of taps in the whole filter
system is reduced by 25 %.

The dual structure of the matched filters can be implemented by a pure FIR
filter set and also by a recursive filter set. A Simulink implementation of
these filter sets is depicted in Figure 3.16 and Figure 3.17.

Figure 3.16: Simulink implementation of a dual system for a pure FIR filter set

Figure 3.17: Simulink implementation of a dual system for a single recursion filter set

51

4 Implementation

This chapter covers the implementation of the receiver algorithm on a DSP
development kit. The implementation was proposed to be done on the TI
kit. This development kit was selected due to its C6713 processor, which is
one of state-of-the art DSPs and its compatibility with Matlab/Simulink.

The implementation was based on the Simulink models that were created
during the design and optimization of the matched filter algorithm. These
models were generated as C code and executed on the development kit. In
addition, in order to measure the performance of the algorithm, a test setup
was created in Simulink.

4.1 DSK6713 Development Kit

The platform for the implementation was selected to be the DSP Starter
Kit (DSK) 6713 development kit. This kit was developed by TI in cooperation
with Spectrum Digital and can be used for evaluating the C6000 processor
family [18]. The main component of the DSK6713 is the TMS320C6713

floating-point DSP, which can be programmed and debugged via a Joint
Test Action Group (JTAG) interface. The memory of the DSP is extended by
16 MB of RAM and 512 kB of flash memory. In addition, there is an AIC23

audio codec embedded on the board, which can be controlled by the DSP.
These components are depicted in the block diagram Figure 4.1. The kit can
be connected to a PC per USB (on-board JTAG emulator), and the power
supply is 5V.

52

4 Implementation

Figure 4.1: Schematic overview of the DSK6713 development kit, cf. ’Block Diagram C6713

DSK’, DSK6713 Technical Reference [18]

For software development on the DSK6713, TI provides the Code Composer
Studio software. This software includes a full toolchain for the kit, including
a compiler, optimization tools, and a debug suite. In addition, the DSK6713

kit is supported by the MathWorks Embedded Coder Support Package for
Matlab/Simulink. This package enables C code generation from Matlab
or Simulink for the DSK6713. In addition, the support package offers the
IDELink function, which allows to include the kit into the simulation flow.

4.1.1 C6713 DSP

The main component of the DSK6713 is the C6713 DSP core, which contains
a Very Long Instruction Word (VLIW) processor architecture. The core is
powered by a supply of 1.2V and operates at a maximum clock frequency
of 225 MHz. An overview of the C6713 is depicted in Figure 4.2.

53

4 Implementation

Figure 4.2: C6713 Block Diagram

The main component of the C6713 is the CPU, which contains eight func-
tional units (shown in Figure 4.3). The architecture is separated into two
datapaths, which each contain one MAC (.Mx), Load/Store (.Dx), and two
ALUs (.Sx) and (.Lx). The .Sx ALU supports 16-bit and 32-bit instructions,
the .Lx ALU is mainly used for 32-bit instructions. The .Mx, .Lx, and .Sx
ALUs support floating-point and fixed-point instructions. Corresponding
to each datapath there is a set of 32 CPU registers each, named Ax and Bx.
When these units are used in parallel, each unit can access its own register
set for input and output. In addition, there are two crosspaths available,
which can be used to access registers from the opposite set.

54

4 Implementation

Figure 4.3: C6713 Functional Units

55

4 Implementation

The C6713 is programmed in the languages C and Assembly. In addition,
the two languages can be combined by using linear assembly, which can be
embedded into C code.

During programming, when writing C code or linear assembly code, the
toolchain distributes the instructions among the functional units. In con-
trast, when pure assembly language is used, each of the instructions can be
assigned to a dedicated functional unit manually. Then the programmer is
responsible for distribution of instructions and optimization or paralleliza-
tion.

Memory

The memory of the DSK6713 is split up into internal memory, external RAM,
and external flash memory. The C6713 contains 256k of internal memory,
which consists of L1 cache and L2 cache.

Each of the memory modules can be accessed as a certain address region.
The address layout of the C6713 processor is depicted in Figure 4.4.

Figure 4.4: DSK6713 Memory Map

56

4 Implementation

4.1.2 Code Composer Studio

Code Composer Studio (CCS) is a collection of development tools created by
TI which is specifically designed to support embedded system development
in C/C++ and Assembly. The suite contains an Integrated Development
Environment (IDE), which is based on the Eclipse C/C++ Development
Tooling (CDT), and a toolchain, which is compatible with several micro-
controller and DSP products of TI. The toolchain includes code generation
tools, on-chip debugging tools and performance measurement tools. The
CCS versions 3 to 5 support the DSK6713 development kit, the latest version
of this software is CCSv9. [11]

4.1.3 TI Toolchain - Code Generation Tools

The compiler, linker and assembler for the DSK6713 are included in a
package called the TI Code Generation Tools (CGT), which are designed
for the processors of the C6000 series. This section refers to the overview of
George Mock in the TI Training series [11].

Compiler and Linker

The C6000 compiler offers various optimization methods for improving the
execution efficiency of the code on assembly instruction level. There are
four levels of optimization, which can each be set by a compiler flag. The
lowest level of optimization, -o0, only covers statement-wide optimization.
The levels -o1 and -o2 cover block- and function-wise optimization and
level -o3 optimizes the code over the range of the whole file. The standard
level of optimization is set to -o2. For the optimization levels of -o2 and -o3

advanced features such as software pipelining are enabled in the compiler.
These optimizations may greatly reduce the number of instructions required
for execution, however they may negatively affect the debugging of the
code. Therefore, it is recommended by TI to disable the optimizations while
debugging, and then re-compile the code with optimizations.

57

4 Implementation

In addition to the compiler, the linker also offers settings that can be con-
figured, most importantly the memory layout. For defining this, the linker
accepts a command file. It is important to define the entry points for stack
and heap, since these are the sections that are accessed most often. If
possible, these sections should be set into the fastest accessible memory
regions.

The compiler and linker generate object files, which are specified by the
Common Object File Format (COFF). A COFF File consists of file headers,
code sections, relocation information, a symbol table and a string table. The
COFF format is no longer supported in newer versions of the CGT, from
CGT 7.2 upwards the EABI file format is used.

Chip Support Library

The TI Chip Support Library (CSL) for the C6000 processors provides an
application programming interface for configuring and controlling the DSP
on-chip peripherals. The C6000 CSL includes access functions to the serial
ports, the memory interfaces, the general-purpose I/O and many others.
The library supports the processors C6201-C6713.

Board Support Library

In addition to the CSL, TI and Spectrum Digital provide a Board Support
Library (BSL) for the DSK6713 development kit. This library contains func-
tions that are designed to access the modules of the DSK6713 that are not
covered by the CSL. The BSL provides access to the switches and LEDs of
the development kit, the flash memory and the AIC23 audio codec.

4.1.4 Configuration and Connection

In order to connect the Matlab and CCS software to the DSK6713 board,
several steps must be taken. Firstly, CCS must be configured to use the
correct toolchain settings for the DSK6713. The main part of the setup is the

58

4 Implementation

configuration of the debug emulator. When CCS is connected to the devel-
opment kit, diagnosis functions are provided to ensure the functionality of
the kit. Afterwards, the link to Matlab can be established.

Debug Emulator

According to Spectrum Digital [18], the connection to the DSK6713 is es-
tablished through the Spectrum Digital DSK-EVM-eZdsp onboard USB
emulator. This emulator enables communication through an Universal Se-
rial Bus (USB) connection by emulating the JTAG protocol.

GEL files

The CCS debugger is configured by scripts in General Extension Language
(GEL), a C-like language. The main purpose of GEL files is to act as an
initialization script for the hardware. This includes configuring peripherals
of the hardware, such as interrupt settings and cache initialization. Another
important function at startup is to create a memory map for the debugger
to define the accessible memory regions. In addition, the setup can include
a self-test of the peripherals. Further features include runtime debugging
options, such as access to variables at runtime. [2]

4.1.5 Simulink Interface

Matlab provides an interface between the CCS IDE and the Simulink simu-
lator, which is called IDELink. The IDELink makes it possible to connect
the Simulink software to embedded system development IDEs, for instance,
to the TI CCS and the Analog Devices VisualDSP++. The Simulink simula-
tion is linked to the IDE, which is then connected to the target hardware.
IDE Link supports debugging on target hardware and for certain targets
processor-in-loop simulation. For TI products, the CCS versions 3.3 to 5 are
supported.

59

4 Implementation

4.1.6 Processor-in-Loop Simulation

In the design of signal processing algorithms, the algorithms are first mod-
eled in a simulation tool, and then implemented on a targeted hardware.
This process can be improved by Processor-in-Loop (PIL) simulation, which
includes the targeted hardware in the simulation flow.

In this method the simulation model is first converted into code, then exe-
cuted on the target hardware. The hardware provides data to the simulation
tool through an interface. PIL is widely used in control theory to simulate
models of different controllers on a real-time platform.

4.2 Test setup

In the implementation, a PIL setup was used to evaluate the performance of
the receiver algorithm on the DSK6713. The purpose of the implementation
was to compare different filter structures in sense of execution time and also
to find possible optimizations. In addition, different settings for compiler
optimization and parallelization of the DSP were evaluated.

4.2.1 PIL Setup

In order to set up the PIL simulation, the algorithms had to be modeled in
Simulink, then translated into C code and embedded into the simulation
as a PIL block. This workflow was first executed for the matched filter, and
then adapted for the whole signal processing chain.

During the setup, the toolchain and the software requirements for the system
had to be analyzed. The DSK6713 offers different methods of integration
into a Simulink environment in combination with Code Composer Studio.

The DSK6713 is supported by the Code Composer Studio versions 3 to 5.
While version 3 offers the full integration of the DSK6713 into Simulink,
versions 4 and 5 only offer reduced compatibility. The generation of C
code and executables is still supported by using makefiles, the PIL setup

60

4 Implementation

is no longer possible. An overview of the different methods and their
requirements is depicted in Figure 4.5.

CurrentCurrent

Simulink
Modelling

Simulink Coder
Compatibilty

Checks

Simulink Code
Generation

(generic)

Simulink Coder
Embedded Coder

Embed into Code
Composer Studio

Compile

Manual adaptation

Code Composer
Studio

CCSv5 – Code Generation CCSv5 – Executable Generation

Requirements

DSK6713

C6000 Compiler,
Chip Support
Library (CSL)

Debug

Simulink
Processor-in-Loop

Simulation

CCSv3 – Full Simulink Integration

Simulink
Embedded Coder
Support Package

C6000

Code Composer Studio Version
3.3

Requirements

Performance
Characteristics

CCS Profiling
Tools

Simulink
Executable
Generation

Simulink
Embedded Coder
Support Package

C6000

Requirements

Load to DSK/
Debug

Performance
Characteristics

DSK6713

CCS Profiling
Tools (reduced
functionality)

Matlab R2016a or
earlier

Code Composer
Studio 3-5

C6000 Compiler,
Chip Support
Library (CSL) Matlab R2016a or

earlier

Performance
Characteristics

Simulink/CCS
Integrated

Profiling Tools

Figure 4.5: Overview of different Simulink integration methods and their software require-
ments

The first method that was evaluated during the setup was the pure C
code generation in Simulink and the compilation and execution in Code
Composer Studio 5. However, this method had the drawback that a manual
adaptation of the C code was necessary to compile the code in CCSv5.
Therefore, the next step was to move the executable generation to Simulink
and only execute the generated binary from CCSv5. This method created
strong limitations in the profiling of the generated code.

Finally, a full PIL setup was implemented in the CCSv3 software. For this,
an Embedded Coder Support package for C6000 processors was required.
In order to use the Embedded Coder Support package with CCSv3, the
following tools (depicted in Figure 4.6) had to be installed:

61

4 Implementation

Simulink
Embedded Coder
Support Package

C6000

Matlab R2016a or
earlier

C6000 Compiler,
Chip Support
Library (CSL)

Requirements
MathWorks

Requirements
Spectrum Digital / TI

Code Composer
Studio 3.3

Simulink Coder

DSK6713 Drivers
for CCSv3.3

Embedded Coder

Matlab Coder

Figure 4.6: Simulink Embedded Coder requirements

After the setup of the DSK6713 in combination with the Embedded Coder
Support Package, the signal processing algorithms of the NFC receiver could
be implemented on the DSK6713.

4.2.2 Matched Filter

In the original model of the NFC receiver, the main bottleneck in terms
of performance was the matched filter. Therefore, the implementation was
first focused on improving the matched filter algorithm and evaluating
its performance. For this purpose, different topologies of the matched
filter were modeled in Simulink and evaluated in a PIL simulation. In
addition, different compilation methods from the DSK6713 code generation
framework were evaluated in order to optimize the performance.

In Simulink, the PIL simulation is implemented by firstly generating code,
and then embedding the generated code into a testbench in form of a PIL
block. An instance of a generated PIL block is depicted in Figure 4.7.

62

4 Implementation

Figure 4.7: Matched Filter as generated PIL block

In order to check whether the PIL block still produced the expected output,
a test setup was implemented in Simulink. An overview of the test setup is
depicted in Figure 4.8.

Figure 4.8: PIL Simulation Testbench for a single matched filter

In the test setup, different PIL blocks can be selected as a referenced model.
The module under test can be compared to an FIR filter reference imple-
mentation. Additionally, a Simulink implementation of the generated PIL
block was added to the testbench for debug purposes.

For the evaluation of a full matched filter set, a second testbench was created.
This setup is depicted in Figure 4.9.

63

4 Implementation

Figure 4.9: PIL Simulation Testbench for a dual matched filter set

In this setup, the performance of different combinations of the two matched
filters should be analyzed. Similar to the testbench for a single matched
filter, the testbench contains the PIL blocks for different implementations as
referenced model variants. Each matched filter is compared to a reference
model.

64

5 Results and Conclusion

The implementation of the matched filter was tested for various topolo-
gies and implementations. After testing the functionality and stability of
the different topologies, the performance of each filter was analyzed. The
performance was first estimated from the design of the filters, and then
measured form the implementation. In this chapter, the results of the per-
formance analysis are presented. Additionally, an outlook into further work
is given.

5.1 Results

The matched filter was optimized and then implemented on the DSP plat-
form. The implementation was first tested to grant its functionality and then
analyzed in terms of performance. For this purpose, a first estimation of
the performance was developed during the design phase. Afterwards, this
estimation was compared to the real measurement results. The tests were
done for a set of filters with the following parameters (Table 5.1 and 5.2):

Filter x N 1
M k

0 16 4 4

0 32 8 8

0 64 16 8

0 64 16 4

0 64 16 2

0 32 8 4

0 32 8 16

Table 5.1: Parameters of Filter 0 used in the estimation of computational effort.

65

5 Results and Conclusion

Filter x N 1
M k

1 16 4 4

1 32 8 8

1 64 16 8

1 64 16 4

1 64 16 2

Table 5.2: Parameters of Filter 1 used in the estimation of computational effort.

5.1.1 Performance Estimation

The first results that are presented in this work are the results of a perfor-
mance estimation. This estimation was done mainly to achive a first overview
of the performance of the different topologies and to check whether an opti-
mization would increase the filter performance at all.

Estimation - DSK6713 Modelling

In order to estimate the performance, a model of the DSK6713 development
kit and its architecture was created. The development kit implements the
matched filter as C code and executes this code on the DSP core. The perfor-
mance of this execution can be defined by the clock cycles that are necessary
to execute the filtering operations. For this, the number of instructions and
the number of cycles per instruction are important factors.

For the execution of a single instruction on the DSP, the cycle times vary de-
pending on the instruction type. The cycles per instruction for the operation
used in the matched filters are listed below (referencing the TI TMS320C6713

Assembly Instruction Set [19]):

τ [cycles] =

1 addition/subtraction
1 gain/shi f t
2 multiplication
5 load/store

66

5 Results and Conclusion

First Estimation - Single Matched Filter

With the help of the DSK6713 model, a first estimation was calculated. In
the first estimation each filter was evaluated separately. This was done due
to the differences in the topologies of Filter 0 and Filter 1. Figure 5.1 and
5.2 depict the results of this estimation for Filter 0 and Filter 1.

Figure 5.1: Performance estimation for Filter 0 on a generic platform

The estimation shows that the performance of the pure FIR implementation
mainly depends on the number of taps N for both filters. The performance
of the single recursion filter is better than the pure FIR filter in any case.
The fully recursive filter has a constant performance for each parameter set.

67

5 Results and Conclusion

Figure 5.2: Performance estimation for Filter 1 on a generic platform

When comparing the results for Filter 0 and Filter 1 for equal parameter
sets, it can be seen that there are no significant differences in performance
between the two filter topologies.

Estimation - Full Matched Filter Set

Afterwards, the performance of a full filter set was estimated. In addition to
the standard implementation, a dual filter set was evaluated. The result of
this evaluation is depicted in Figure 5.3):

68

5 Results and Conclusion

Figure 5.3: Performance estimation for a full filter set on a generic platform

The combination of two filter sets into a dual filter system shows a significant
reduction for the pure FIR filter, for the single recursion there is still an
improvement. The fully recursive system was not combined due to the
nature of the topology.

Estimation Conclusions

The estimation states that the pure FIR filter implementation is significantly
more computationally expensive than the other implementations. The single

69

5 Results and Conclusion

recursive filter is more efficient for filters with up to N = 16 taps. For
filters with a larger number of taps the fully recursive filter is more efficient.
Another benefit of the fully recursive filter is the constant execution time
regardless of the parameters N and k. In all topologies, the combined
versions of the filter set show a drastically better performance than their
counterparts without combination.

5.1.2 Measurement Results

The performance estimation was used as a basic starting point for the imple-
mentation and the performance measurement. In the implementation, dif-
ferent ways of optimization were evaluated to improve the performance.

Single Matched Filter - Evaluation of different compilation options

Firstly, a single matched filter was evaluated. In the Simulink workflow,
there were options to improve the performance by compiler optimization.
For this, the three optimization stages −o1,−o2 and −o3 were evaluated.
In addition, an evaluation of the performance between a floating-point
implementation and a fixed-point/integer implementation was done. The
results of the performance evaluation are depicted in Figure 5.4.

70

5 Results and Conclusion

Figure 5.4: Performance measurement results for Filter 0 on the DSK6713

The starting point of the performance measurement was the reference FIR
filter model (Figure 3.13). The optimization of the filter topology brings a
significant reduction of computation time. A further increase is shown by
replacing floating-point operations by fixed-point operations. The use of
compiler optimization gives a further increase in performance, showing that
the performance reaches the estimated value of clock cycles.

Matched Filter - Full Set

In addition to the measurement for a single filter, a full filter set was
analyzed. In this analysis, a reference model of both filters was used as a
starting point. Then, different topologies and combination methods were
evaluated. The filters were implemented as fixed-point version, compiler

71

5 Results and Conclusion

optimization was omitted. The results of the evaluation are depicted in
Figure 5.5.

Figure 5.5: Performance measurement results for a full filter set on the DSK6713

The results show that the recursive FIR version of the full set performs
better than the original FIR filters. However, the combination of the filters
into a dual set, does not produce the expected results of a performance
improvement. This may be due to the implementation of the full filter set
in Simulink, which can be improved further. In a full set, the optimized
version of filters performs significantly better than all other implementations.
Therefore, the recommendation of this work is to use the optimized matched
filter topology.

72

5 Results and Conclusion

5.2 Outlook

The outcomes of this work offer several options for further work and
improvement. The design of this work resulted in an optimized topology
for the matched filter and a design test setup for the DSK6713 development
kit.

The matched filter was optimized and implemented as a recursive filter
topology. The structure of the filter still offers possibilities for improvements,
such as a poly-phase implementation of the topology, an integrate-and-
dump implementation of the matched filter or a reduction of the sampling
rate to improve the performance. Further improvements can be evaluated
and compared against the existing solution.

While in this work the main purpose was to improve the matched filter
topology and to evaluate the performance of the matched filter, the meth-
ods of this work can be used for more components of the existing signal
processing chain, such as the channel combiner, the symbol synchronizer or
the averaging filter. These filters can be modeled in Simulink and executed
on the DSP kit, giving information about the performance of different filter
topologies.

In conclusion, the implementation of the filter on the development kit
showed an efficient way for generating C code from Simulink models.
Therefore it is possible to generate C code for different platforms. A smaller
DSP core such as the NXP Coolflux could be embedded into an ASIC
alongside the existing Verilog implementation. This core could then take
over the more complex signal processing operations of the filtering chain,
reducing chip area and power consumption of the ASIC.

73

Appendix

Bibliography

[1] 7 Series DSP48E1 Slice User Guide. Tech. rep. Xilinx Inc., 2018 (cit. on
p. 27).

[2] Alan Campbell et al. Creating Device Initialization GEL Files. Tech. rep.
Texas Instruments, 2004 (cit. on p. 59).

[3] Travis F. Collins and Robin Getz. Software-Defined Radio for Engineers.
Artech House, 2018. isbn: 978-1-63081-457-1. (Cit. on p. 24).

[4] Edmund Ehrlich. “Digital Demodulator Architecture of a Contactless
Reader System for HF RFID Applications Supporting Data Rates up
to 13.56 Mbit/sec.” PhD thesis. Graz University of Technology, 2011

(cit. on p. 7).

[5] U. Farooq, Z. Marrakchi, and H. Mehrez. Tree-based Heterogeneous
FPGA Architectures - Application Specific Exploration and Optimization.
Springer, 2012 (cit. on p. 25).

[6] Klaus Finkenzeller. RFID-Handbuch: Grundlagen und praktische An-
wendungen von Transpondern, kontaktlosen Chipkarten und NFC. 7th ed.
München: Hanser, 2015. isbn: 978-3-446-43943-6 (cit. on pp. 3, 7).

[7] F. Hassan and S. Khorbotly. “Recursive implementation of exponential
linear phase FIR filters.” In: 2011 18th IEEE International Conference on
Electronics, Circuits, and Systems. Dec. 2011, pp. 559–562 (cit. on pp. 22,
39).

[8] E. Hogenauer. “An economical class of digital filters for decimation
and interpolation.” In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 29.2 (Apr. 1981), pp. 155–162. issn: 0096-3518 (cit. on p. 22).

[9] International Standard ISO/IEC 14443. ISO/IEC, 2016 (cit. on p. 5).

[10] Richard G. Lyons. Understanding Digital Signal Processing. Pearson,
2011 (cit. on pp. 17, 19).

I

Bibliography

[11] George Mock. C Compiler Tips and Tricks. TI Training. Texas Instruments
Inc. Mar. 2015. url: training.ti.com/c-compiler-tips-tricks (cit.
on p. 57).

[12] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-
time Signal Processing (2Nd Ed.) Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1999. isbn: 0-13-754920-2 (cit. on p. 17).

[13] PN512 Full NFC Forum-compliant frontend. Tech. rep. NXP Semicon-
ductors, June 2016 (cit. on p. 1).

[14] John G. Proakis and Masoud Salehi. Communication Systems Engi-
neering. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994. isbn:
0-13-158932-6 (cit. on pp. 3, 11–13, 16).

[15] P.N. Ravichandran et al. “Design and Implementation of Early-Late
Gate Bit Synchronizer for Satellite Communication.” In: National Con-
ference on Communications. Jan. 2009, pp. 15–18 (cit. on p. 16).

[16] ST25R3912 ST25R3913 High performance HF reader / NFC initiator for
payment applications with 1 W output power. STMicroelectronics. Aug.
2018 (cit. on p. 1).

[17] Andrew E. Stevens. “An Integrate-and-Dump Receiver for Fiber Optic
Networks.” PhD thesis. Columbia University, 1995 (cit. on pp. 14, 16,
17).

[18] TMS320C6713 DSK Technical Reference. Tech. rep. Spectrum Digital
Inc., 2003 (cit. on pp. 52, 53, 59).

[19] TMS320C67x/C67x+ DSP CPU and Instruction Set Referencre Guide. Tech.
rep. Texas Instruments Inc., 2006 (cit. on p. 66).

[20] TN1216 Technical Note, ST25 NFC guide. Tech. rep. STMicroelectronics,
Oct. 2016 (cit. on p. 6).

[21] Ultra Low Power CoolFlux DSP. Tech. rep. NXP Semiconductors Inc.,
2015-2018 (cit. on p. 31).

II

training.ti.com/c-compiler-tips-tricks

Bibliography

[22] O. Vainio, M. Renfors, and T. Saramaki. “Recursive implementation
of FIR differentiators with optimum noise attenuation.” In: Quality
Measurement: The Indispensable Bridge between Theory and Reality (No
Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation
and Measurement Technology Conference and IMEKO Tec. Vol. 1. June
1996, 344–349 vol.1 (cit. on p. 22).

[23] Paul Yin. Introduction to TMS320C6000 DSP Optimization. Tech. rep.
Texas Instruments Inc., 2011 (cit. on p. 30).

[24] Zynq-7000 SoC Data Sheet: Overview. Tech. rep. Xilinx Inc., 2018 (cit. on
p. 26).

III

List of Acronyms

RF Radio Frequency

RFID Radio Frequency Identification Technology

LF Low Frequency

HF High Frequency

UHF Ultra High Frequency

ISO International Standardisation Organisation/International
Electrotechnical Commission

JIS Japanese Industrial Standards

EPC Electronic Product Code

NFC Near-Field Communication

UID Unique Identifier

I-Q In-Phase-Quadrature

ASK Amplitude Shift Keying

BPSK Binary Phase Shift Keying

OOK On-Off Keying

AWGN Additive White Gaussian Noise

SNR Signal-to-Noise Ratio

RM Reader Mode

CM Card Mode

IV

Bibliography

IC Integrated Circuit

DC Direct Current

AC Alternating Current

PLL Phase-Locked Loop

MAC Multiply-Accumulate

FFT Fast Fourier Transformation

IIR Infinite Impulse Response

FIR Finite Impulse Response

MSE Mean Squared Error

CIC Cascaded Integrator Comb

CPU Central Processing Unit

USB Universal Serial Bus

ALU Arithmetic-Logic Unit

DSP Digital Signal Processor

ASIC Application-specific Integrated Circuit

FPGA Field Programmable Gate Array

SoC System-on-Chip

HDL Hardware Description Language

VLIW Very Long Instruction Word

TI Texas Instruments

CCS Code Composer Studio

IDE Integrated Development Environment

DSK DSP Starter Kit

CDT C/C++ Development Tooling

GEL General Extension Language

V

Bibliography

CSL Chip Support Library

BSL Board Support Library

COFF Common Object File Format

CGT Code Generation Tools

JTAG Joint Test Action Group

PIL Processor-in-Loop

VI

	Abstract
	Kurzfassung
	Introduction
	Motivation

	Related Work
	RFID Technology
	Characteristics of RFID Systems
	ISO Standards and NFC Definitions

	RF Signal Processing
	Modulation/Demodulation
	Symbol Detection - SNR Maximization
	Symbol Synchronization

	Digital Filter Design
	FIR Filters
	IIR Filters
	Filter Implementation
	Filter Performance
	Recursive FIR Filters
	CIC Filters

	System Architectures in Signal Processing
	FPGAs
	DSP Architectures

	Design
	Existing System Overview
	Existing System - Reader Mode

	Proposed Optimizations - Matched Filtering
	Comb Filtering
	Recursive Filter Implementation
	Dual Matched Filter Set

	Implementation
	DSK6713 Development Kit
	C6713 DSP
	Code Composer Studio
	TI Toolchain - Code Generation Tools
	Configuration and Connection
	Simulink Interface
	Processor-in-Loop Simulation

	Test setup
	PIL Setup
	Matched Filter

	Results and Conclusion
	Results
	Performance Estimation
	Measurement Results

	Outlook

	Appendix
	Bibliography
	List of Acronyms

